Science.gov

Sample records for confocal mosaicing microscopy

  1. Multimodal confocal mosaicing microscopy: an emphasis on squamous cell carcinoma

    NASA Astrophysics Data System (ADS)

    Chen, Nathaniel W.; Sensibaugh, Jordan; Ardeshiri, Ardaland; Blanchard, Adam; Jacques, Steven; Gareau, Daniel

    2010-02-01

    Our previous study reported a sensitivity of 96.6% and a specificity of 89.2% in rapidly detecting Basal Cell Carcinomas (BCCs) when nuclei were stained with acridine orange. Squamous Cell Carcinomas (SCCs) and infiltrative BCCs remain difficult to detect. More complete screening can be achieved utilizing both acridine orange for nuclei staining and eosin for cytoplasmic contrast, using two lasers to excite the two stains independently. Nuclear fluorescence is achieved by staining with acridine orange (0.5mM, 60 s), and cytoplasmic fluorescence is achieved by staining with eosin working solution (30 s). This work shows good morphological contrast of SCC and infiltrative BCC with eosin, acridine orange, and reflectance, and presents a means for rapid SCC and infiltrative BCC detection in fresh skin excisions using multimodal confocal microscopy. In addition, digital staining is shown to effectively simulate hematoxylin and eosin (H&E) histology with confocal mosaics.

  2. Strip mosaicing confocal microscopy for rapid imaging over large areas of excised tissue

    NASA Astrophysics Data System (ADS)

    Abeytunge, Sanjee; Li, Yongbiao; Larson, Bjorg; Peterson, Gary; Toledo-Crow, Ricardo; Rajadhyaksha, Milind

    2012-03-01

    Confocal mosaicing microscopy is a developing technology platform for imaging tumor margins directly in fresh tissue, without the processing that is required for conventional pathology. Previously, basal cell carcinoma margins were detected by mosaicing of confocal images of 12 x 12 mm2 of excised tissue from Mohs surgery. This mosaicing took 9 minutes. Recently we reported the initial feasibility of a faster approach called "strip mosaicing" on 10 x 10 mm2 of tissue that was demonstrated in 3 minutes. In this paper we report further advances in instrumentation and software. Rapid mosaicing of confocal images on large areas of fresh tissue potentially offers a means to perform pathology at the bedside. Thus, strip mosaicing confocal microscopy may serve as an adjunct to pathology for imaging tumor margins to guide surgery.

  3. Sensitivity and Specificity for Detecting Basal Cell Carcinomas in Mohs Excisions with Confocal Fluorescence Mosaicing Microscopy

    PubMed Central

    Gareau, Daniel S.; Karen, Julie K.; Dusza, Stephen W.; Tudisco, Marie; Nehal, Kishwer S.; Rajadhyaksha, Milind

    2009-01-01

    Recent studies have demonstrated the ability of confocal fluorescence mosaicing microscopy to rapidly detect basal cell carcinomas (BCCs) directly in thick and fresh Mohs surgical excisions. Mosaics of confocal images display large areas of tissue with high resolution and magnification equivalent to 2X, which is the standard magnification when examining pathology. Comparison of mosaics to Mohs frozen histopathology was shown to be excellent for all types of BCCs. However, the comparisons in the previous studies were visual and qualitative. In this paper, we report the results of a semi-quantitative preclinical study in which forty-five confocal mosaics were blindly evaluated for the presence (or absence) of BCC tumor. The evaluations were by two clinicians: a senior Mohs surgeon, with prior expertise in interpreting confocal images, and a novice Mohs fellow, with limited experience. The blinded evaluation was compared to the gold standard of frozen histopathology. BCCs were detected with an overall sensitivity of 96.6%, specificity of 89.2%, positive predictive value of 93.0% and negative predictive value of 94.7%. The results demonstrate the potential clinical utility of confocal mosaicing microscopy toward rapid surgical pathology-at-the-bedside to expedite and guide surgery. PMID:19566305

  4. Confocal microscopy with strip mosaicing for rapid imaging over large areas of excised tissue

    NASA Astrophysics Data System (ADS)

    Abeytunge, Sanjee; Li, Yongbiao; Larson, Bjorg; Peterson, Gary; Seltzer, Emily; Toledo-Crow, Ricardo; Rajadhyaksha, Milind

    2013-06-01

    Confocal mosaicing microscopy is a developing technology platform for imaging tumor margins directly in freshly excised tissue, without the processing required for conventional pathology. Previously, mosaicing on 12-×-12 mm2 of excised skin tissue from Mohs surgery and detection of basal cell carcinoma margins was demonstrated in 9 min. Last year, we reported the feasibility of a faster approach called "strip mosaicing," which was demonstrated on a 10-×-10 mm2 of tissue in 3 min. Here we describe further advances in instrumentation, software, and speed. A mechanism was also developed to flatten tissue in order to enable consistent and repeatable acquisition of images over large areas. We demonstrate mosaicing on 10-×-10 mm2 of skin tissue with 1-μm lateral resolution in 90 s. A 2.5-×-3.5 cm2 piece of breast tissue was scanned with 0.8-μm lateral resolution in 13 min. Rapid mosaicing of confocal images on large areas of fresh tissue potentially offers a means to perform pathology at the bedside. Imaging of tumor margins with strip mosaicing confocal microscopy may serve as an adjunct to conventional (frozen or fixed) pathology for guiding surgery.

  5. Confocal mosaicing microscopy in skin excisions: a demonstration of rapid surgical pathology

    PubMed Central

    Gareau, D.S.; Patel, Y.G.; Li, Y.; Aranda, I.; Halpern, A.C.; Nehal, K.S.; Rajadhyaksha, M.

    2009-01-01

    Summary Precise micro-surgical removal of tumour with minimal damage to the surrounding normal tissue requires a series of excisions, each guided by an examination of frozen histology of the previous. An example is Mohs surgery for the removal of basal cell carcinomas (BCCs) in skin. The preparation of frozen histology is labour-intensive and slow. Confocal microscopy may enable rapid detection of tumours directly in surgical excisions with minimal need for frozen histology. Mosaicing of images enables observation of nuclear and cellular morphology in large areas of surgically excised tissue. In skin, the use of 10–1% acetic acid as a reflectance contrast agent brightens nuclei in 0.5–5 min and enhances nuclear-to-dermis contrast and detectability of BCCs. A tissue fixture was engineered for precisely mounting surgical excisions to enable mosaicing of 36 × 36 images to create a field of view of 12 × 12 mm. This large field of view displays the excision at 2× magnification, similar to that routinely used by Mohs surgeons when examining frozen histology. Comparison of mosaics to histology demonstrates detectability of BCCs. Confocal mosaicing presently requires 9 min, instead of 20–45 min per excision for preparing frozen histology, and thus may provide a means for rapid pathology-at-the-bedside to expedite and guide surgery. PMID:19196421

  6. A machine learning method for identifying morphological patterns in reflectance confocal microscopy mosaics of melanocytic skin lesions in-vivo

    NASA Astrophysics Data System (ADS)

    Kose, Kivanc; Alessi-Fox, Christi; Gill, Melissa; Dy, Jennifer G.; Brooks, Dana H.; Rajadhyaksha, Milind

    2016-02-01

    We present a machine learning algorithm that can imitate the clinicians qualitative and visual process of analyzing reflectance confocal microscopy (RCM) mosaics at the dermal epidermal junction (DEJ) of skin. We divide the mosaics into localized areas of processing, and capture the textural appearance of each area using dense Speeded Up Robust Feature (SURF). Using these features, we train a support vector machine (SVM) classifier that can distinguish between meshwork, ring, clod, aspecific and background patterns in benign conditions and melanomas. Preliminary results on 20 RCM mosaics labeled by expert readers show classification with 55 - 81% sensitivity and 81 - 89% specificity in distinguishing these patterns.

  7. Implementation of fluorescence confocal mosaicing microscopy by "early adopter" Mohs surgeons: a review of recent progress

    NASA Astrophysics Data System (ADS)

    Jain, Manu; Rajadhyaksha, Milind; Nehal, Kishwer

    2016-03-01

    Confocal mosaicing microscopy (CMM) enables rapid imaging of large areas of fresh tissue ex vivo without the processing that is necessary for conventional histology. When performed with fluorescence mode using acridine orange (nuclear specific dye) it enhances nuclei-to-dermis contrast that enables detection of all types of BCCs including thin strands of infiltrative basal cell carcinomas (BCCs). Thus far, this technique has been mostly validated in research setting for the analysis of BCC tumor margins. Recently, CMM has been adopted and implemented in real clinical settings by some surgeons as an alternative tool to frozen section (FS) during Mohs surgery. In this review article we summarize the development of CMM guided imaging of ex vivo tissues from bench to bedside. We also present its current state of application in routine clinical workflow not only for the assessment of BCC margin but also for other skin cancers such as melanoma, SCC, and some infectious diseases where FS is not routinely performed. Lastly, we also discuss the potential limitations of this technology as well as future developments. As this technology advances further, it may serve as an adjunct to standard histology and enable rapid surgical pathology of skin cancers at the bedside.

  8. Fluorescence confocal mosaicing microscopy of basal cell carcinomas ex vivo: demonstration of rapid surgical pathology with high sensitivity and specificity

    NASA Astrophysics Data System (ADS)

    Gareau, Daniel S.; Karen, Julie K.; Dusza, Stephen W.; Tudisco, Marie; Nehal, Kishwer S.; Rajadhyaksha, Milind

    2009-02-01

    Mohs surgery, for the precise removal of basal cell carcinomas (BCCs), consists of a series of excisions guided by the surgeon's examination of the frozen histology of the previous excision. The histology reveals atypical nuclear morphology, identifying cancer. The preparation of frozen histology is accurate but labor-intensive and slow. Nuclear pathology can be achieved by staining with acridine orange (1 mM, 20 s) BCCs in Mohs surgical skin excisions within 5-9 minutes, compared to 20-45 for frozen histology. For clinical utility, images must have high contrast and high resolution. We report tumor contrast of 10-100 fold over the background dermis and submicron (diffraction limited) resolution over a cm field of view. BCCs were detected with an overall sensitivity of 96.6%, specificity of 89.2%, positive predictive value of 93.0% and negative predictive value of 94.7%. The technique was therefore accurate for normal tissue as well as tumor. We conclude that fluorescence confocal mosaicing serves as a sensitive and rapid pathological tool. Beyond Mohs surgery, this technology may be extended to suit other pathological needs with the development of new contrast agents. The technique reported here accurately detects all subtypes of BCC in skin excisions, including the large nodular, small micronodular, and tiny sclerodermaform tumors. However, this technique may be applicable to imaging tissue that is larger, more irregular and of various mechanical compliances with further engineering of the tissue mounting and staging mechanisms.

  9. Confocal microscopy and exfoliative cytology

    PubMed Central

    Reddy, Shyam Prasad; Ramani, Pratibha; Nainani, Purshotam

    2013-01-01

    Context: Early detection of potentially malignant lesions and invasive squamous-cell carcinoma in the oral cavity could be greatly improved through techniques that permit visualization of subtle cellular changes indicative of the neoplastic transformation process. One such technique is confocal microscopy. Combining rapidity with reliability, an innovative idea has been put forward using confocal microscope in exfoliative cytology. Aims: The main objective of this study was to assess confocal microscopy for cytological diagnosis and the results were compared with that of the standard PAP stain. Settings and Design: Confocal microscope, acridine orange (AO) stain, PAP (Papanicolaou) stain. The study was designed to assess confocal microscopy for cytological diagnosis. In the process, smears of patients with (clinically diagnosed and/or suspected) oral squamous cell carcinoma as well as those of controls (normal people) were stained with acridine orange and observed under confocal microscope. The results were compared with those of the standard PAP method. Materials and Methods: Samples of buccal mucosa smears from normal patients and squamous cell carcinoma patients were made, fixed in 100% alcohol, followed by AO staining. The corresponding set of smears was stained with PAP stain using rapid PAP stain kit. The results obtained were compared with those obtained with AO confocal microscopy. Results: The study had shown nuclear changes (malignant cells) in the smears of squamous cell carcinoma patients as increased intensity of fluorescence of the nucleus, when observed under confocal microscope. Acridine orange confocal microscopy showed good amount of sensitivity and specificity (93%) in identifying malignant cells in exfoliative cytological smears. Conclusion: Confocal microscopy was found to have good sensitivity in the identification of cancer (malignant) cells in exfoliative cytology, at par with the PAP method. The rapidity of processing and screening a

  10. Confocal microscopy in microgravity research

    NASA Astrophysics Data System (ADS)

    Goede, A. P. H.; Brakenhoff, G. J.; Woldringh, C. L.; Aalders, J. W. G.; Imhof, J. P.; van Kralingen, P.; Mels, W. A.; Schreinemakers, P.; Zegers, A.

    We have studied the application and the feasibility of confocal scanning laser microscopy (CSLM) in microgravity research. Its superior spatial resolution and 3D imaging capabilities and its use of light as a probe, render this instrument ideally suited for the study of living biological material on a (sub-)cellular level. In this paper a number of pertinent biological microgravity experiments is listed, concentrating on the direct observation of developing cells and cellular structures under microgravity condition. A conceptual instrument design is also presented, aimed at sounding rocket application followed by Biorack/Biolab application at a later stage.

  11. CONFOCAL MICROSCOPY SYSTEM PERFORMANCE: SPECTROSCOPY

    EPA Science Inventory

    The confocal laser-scanning microscope (CLSM) has enormous potential in many biological fields. The goal of a CLSM is to acquire and quantify fluorescence and in some instruments acquire spectral characterization of emitted signals. The accuracy of these measurements demands that...

  12. Confocal microscopy of skin cancers: Translational advances toward clinical utility

    PubMed Central

    Rajadhyaksha, Milind

    2014-01-01

    Recent advances in translational research in and technology for confocal microscopy of skin cancers, toward clinical applications, are described. Advances in translational research are in diagnosis of melanoma in vivo, pre-operative mapping of lentigo maligna melanoma margins to guide surgery and intra-operative imaging of residual basal cell carcinomas to guide shave-biopsy. Advances in technology include mosaicing microscopy for detection of basal cell carcinomas in large areas of excised tissue, toward rapid pathology-at-the-bedside, and development of small, simple and low-cost line-scanning confocal microscopes for worldwide use in diverse primary healthcare settings. Current limitations and future opportunities and challenges for both clinicians and technologists are discussed. PMID:19964286

  13. Multidepth imaging by chromatic dispersion confocal microscopy

    NASA Astrophysics Data System (ADS)

    Olsovsky, Cory A.; Shelton, Ryan L.; Saldua, Meagan A.; Carrasco-Zevallos, Oscar; Applegate, Brian E.; Maitland, Kristen C.

    2012-03-01

    Confocal microscopy has shown potential as an imaging technique to detect precancer. Imaging cellular features throughout the depth of epithelial tissue may provide useful information for diagnosis. However, the current in vivo axial scanning techniques for confocal microscopy are cumbersome, time-consuming, and restrictive when attempting to reconstruct volumetric images acquired in breathing patients. Chromatic dispersion confocal microscopy (CDCM) exploits severe longitudinal chromatic aberration in the system to axially disperse light from a broadband source and, ultimately, spectrally encode high resolution images along the depth of the object. Hyperchromat lenses are designed to have severe and linear longitudinal chromatic aberration, but have not yet been used in confocal microscopy. We use a hyperchromat lens in a stage scanning confocal microscope to demonstrate the capability to simultaneously capture information at multiple depths without mechanical scanning. A photonic crystal fiber pumped with a 830nm wavelength Ti:Sapphire laser was used as a supercontinuum source, and a spectrometer was used as the detector. The chromatic aberration and magnification in the system give a focal shift of 140μm after the objective lens and an axial resolution of 5.2-7.6μm over the wavelength range from 585nm to 830nm. A 400x400x140μm3 volume of pig cheek epithelium was imaged in a single X-Y scan. Nuclei can be seen at several depths within the epithelium. The capability of this technique to achieve simultaneous high resolution confocal imaging at multiple depths may reduce imaging time and motion artifacts and enable volumetric reconstruction of in vivo confocal images of the epithelium.

  14. Multimodal confocal mosaics enable high sensitivity and specificity in screening of in situ squamous cell carcinoma

    NASA Astrophysics Data System (ADS)

    Grados Luyando, Maria del Carmen; Bar, Anna; Snavely, Nicholas; Jacques, Steven; Gareau, Daniel S.

    2014-02-01

    Screening cancer in excision margins with confocal microscopy may potentially save time and cost over the gold standard histopathology (H and E). However, diagnostic accuracy requires sufficient contrast and resolution to reveal pathological traits in a growing set of tumor types. Reflectance mode images structural details due to microscopic refractive index variation. Nuclear contrast with acridine orange fluorescence provides enhanced diagnostic value, but fails for in situ squamous cell carcinoma (SCC), where the cytoplasm is important to visualize. Combination of three modes [eosin (Eo) fluorescence, reflectance (R) and acridine orange (AO) fluorescence] enable imaging of cytoplasm, collagen and nuclei respectively. Toward rapid intra-operative pathological margin assessment to guide staged cancer excisions, multimodal confocal mosaics can image wide surgical margins (~1cm) with sub-cellular resolution and mimic the appearance of conventional H and E. Absorption contrast is achieved by alternating the excitation wavelength: 488nm (AO fluorescence) and 532nm (Eo fluorescence). Superposition and false-coloring of these modes mimics H and E, enabling detection of the carcinoma in situ in the epidermal layer The sum mosaic Eo+R is false-colored pink to mimic eosins' appearance in H and E, while the AO mosaic is false-colored purple to mimic hematoxylins' appearance in H and E. In this study, mosaics of 10 Mohs surgical excisions containing SCC in situ and 5 containing only normal tissue were subdivided for digital presentation equivalent to 4X histology. Of the total 16 SCC in situ multimodal mosaics and 16 normal cases presented, two reviewers made 1 and 2 (respectively) type-2 errors (false positives) but otherwise scored perfectly when using the confocal images to screen for the presence of SCC in situ as compared to the gold standard histopathology. Limitations to precisely mimic H and E included occasional elastin staining by AO. These results suggest that

  15. Confocal multiview light-sheet microscopy

    PubMed Central

    Medeiros, Gustavo de; Norlin, Nils; Gunther, Stefan; Albert, Marvin; Panavaite, Laura; Fiuza, Ulla-Maj; Peri, Francesca; Hiiragi, Takashi; Krzic, Uros; Hufnagel, Lars

    2015-01-01

    Selective-plane illumination microscopy has proven to be a powerful imaging technique due to its unsurpassed acquisition speed and gentle optical sectioning. However, even in the case of multiview imaging techniques that illuminate and image the sample from multiple directions, light scattering inside tissues often severely impairs image contrast. Here we combine multiview light-sheet imaging with electronic confocal slit detection implemented on modern camera sensors. In addition to improved imaging quality, the electronic confocal slit detection doubles the acquisition speed in multiview setups with two opposing illumination directions allowing simultaneous dual-sided illumination. Confocal multiview light-sheet microscopy eliminates the need for specimen-specific data fusion algorithms, streamlines image post-processing, easing data handling and storage. PMID:26602977

  16. CONFOCAL MICROSCOPY SYSTEM PERFORMANCE: AXIAL RESOLUTION

    EPA Science Inventory

    Abstract

    Confocal Microscopy System Performance: Axial resolution.
    Robert M. Zucker, PhD

    Reproductive Toxicology Division, National Health and Environmental Effects Research Laboratory, Office of Research and Development, U.S. Environmental Protection Agency, Re...

  17. Confocal microscopy imaging of solid tissue

    EPA Science Inventory

    Confocal laser scanning microscopy (CLSM) is a technique that is capable of generating serial sections of whole-mount tissue and then reassembling the computer acquired images as a virtual 3-dimensional structure. In many ways CLSM offers an alternative to traditional sectioning ...

  18. Confocal filtering in cathodoluminescence microscopy of nanostructures

    SciTech Connect

    Narváez, Angela C. E-mail: j.p.hoogenboom@tudelft.nl; Weppelman, I. Gerward C.; Moerland, Robert J.; Hoogenboom, Jacob P. E-mail: j.p.hoogenboom@tudelft.nl; Kruit, Pieter

    2014-06-23

    Cathodoluminescence (CL) microscopy allows optical characterization of nanostructures at high spatial resolution. At the nanoscale, a main challenge of the technique is related to the background CL generated within the sample substrate. Here, we implement confocal detection of the CL signal to minimize the background contribution to the measurement. Nano-phosphors were used as point sources to evaluate the filtering capabilities of our confocal CL system, obtaining an axial intensity profile with 2.7 μm full width at half maximum for the central peak, in good correspondence with theoretical expectations. Considering the electron interaction volume, we found that the confocal filter becomes effective for electron energies above 20 keV, when using a 25 μm pinhole (0.86 Airy units). To illustrate our approach, we present confocal CL imaging of gold nanowires and triangular shaped plates deposited on an indium-tin oxide covered glass substrate, comparing the images with those obtained in standard unfiltered CL detection. The results show that confocal CL microscopy is a valuable tool for the investigation of nanostructures on highly cathodoluminescent substrates, widely used in biological and optical applications.

  19. Confocal Raman Microscopy in Pharmaceutical Development

    NASA Astrophysics Data System (ADS)

    Haefele, Thomas F.; Paulus, Kurt

    There is a wide range of applications of confocal Raman microscopy in pharmaceutical development. It is a powerful tool to probe the distribution of components within a formulation, to characterize homogeneity of pharmaceutical samples, to determine solid state of drug substances and excipients and to characterize contaminations and foreign particulates. The information obtained by confocal Raman microscopy is extremely useful, sometimes even crucial, for drug substance design, for the development of solid and liquid formulations, as a tool for process analytics and for patent infringements and counterfeit analysis. In this chapter, those aspects and applications will be presented, focusing on solid drug formulations. This chapter will also reveal the advantages and demonstrate the synergies of Raman mapping as compared to similar imaging methods such as SEM/EDX, NIR and MIR imaging.

  20. Comprehensive volumetric confocal microscopy with adaptive focusing

    PubMed Central

    Kang, DongKyun; Yoo, Hongki; Jillella, Priyanka; Bouma, Brett E.; Tearney, Guillermo J.

    2011-01-01

    Comprehensive microscopy of distal esophagus could greatly improve the screening and surveillance of esophageal diseases such as Barrett’s esophagus by providing histomorphologic information over the entire region at risk. Spectrally encoded confocal microscopy (SECM) is a high-speed reflectance confocal microscopy technology that can be configured to image the entire distal esophagus by helically scanning the beam using optics within a balloon-centering probe. It is challenging to image the human esophagus in vivo with balloon-based SECM, however, because patient motion and anatomic tissue surface irregularities decenter the optics, making it difficult to keep the focus at a predetermined location within the tissue as the beam is scanned. In this paper, we present a SECM probe equipped with an adaptive focusing mechanism that can compensate for tissue surface irregularity and dynamic focal variation. A tilted arrangement of the objective lens is employed in the SECM probe to provide feedback signals to an adaptive focusing mechanism. The tilted configuration also allows the probe to obtain reflectance confocal data from multiple depth levels, enabling the acquisition of three-dimensional volumetric data during a single scan of the probe. A tissue phantom with a surface area of 12.6 cm2 was imaged using the new SECM probe, and 8 large-area reflectance confocal microscopy images were acquired over the depth range of 56 μm in 20 minutes. Large-area SECM images of excised swine small intestine tissue were also acquired, enabling the visualization of villous architecture, epithelium, and lamina propria. The adaptive focusing mechanism was demonstrated to enable acquisition of in-focus images even when the probe was not centered and the tissue surface was irregular. PMID:21698005

  1. Optimal pupil design for confocal microscopy

    NASA Astrophysics Data System (ADS)

    Patel, Yogesh G.; Rajadhyaksha, Milind; DiMarzio, Charles A.

    2010-02-01

    Confocal reflectance microscopy may enable screening and diagnosis of skin cancers noninvasively and in real-time, as an adjunct to biopsy and pathology. Current instruments are large, complex, and expensive. A simpler, confocal line-scanning microscope may accelerate the translation of confocal microscopy in clinical and surgical dermatology. A confocal reflectance microscope may use a beamsplitter, transmitting and detecting through the pupil, or a divided pupil, or theta configuration, with half used for transmission and half for detection. The divided pupil may offer better sectioning and contrast. We present a Fourier optics model and compare the on-axis irradiance of a confocal point-scanning microscope in both pupil configurations, optimizing the profile of a Gaussian beam in a circular or semicircular aperture. We repeat both calculations with a cylindrical lens which focuses the source to a line. The variable parameter is the fillfactor, h, the ratio of the 1/e2 diameter of the Gaussian beam to the diameter of the full aperture. The optimal values of h, for point scanning are 0.90 (full) and 0.66 for the half-aperture. For line-scanning, the fill-factors are 1.02 (full) and 0.52 (half). Additional parameters to consider are the optimal location of the point-source beam in the divided-pupil configuration, the optimal line width for the line-source, and the width of the aperture in the divided-pupil configuration. Additional figures of merit are field-of-view and sectioning. Use of optimal designs is critical in comparing the experimental performance of the different configurations.

  2. Extended Field Laser Confocal Microscopy (EFLCM): Combining automated Gigapixel image capture with in silico virtual microscopy

    PubMed Central

    Flaberg, Emilie; Sabelström, Per; Strandh, Christer; Szekely, Laszlo

    2008-01-01

    Background Confocal laser scanning microscopy has revolutionized cell biology. However, the technique has major limitations in speed and sensitivity due to the fact that a single laser beam scans the sample, allowing only a few microseconds signal collection for each pixel. This limitation has been overcome by the introduction of parallel beam illumination techniques in combination with cold CCD camera based image capture. Methods Using the combination of microlens enhanced Nipkow spinning disc confocal illumination together with fully automated image capture and large scale in silico image processing we have developed a system allowing the acquisition, presentation and analysis of maximum resolution confocal panorama images of several Gigapixel size. We call the method Extended Field Laser Confocal Microscopy (EFLCM). Results We show using the EFLCM technique that it is possible to create a continuous confocal multi-colour mosaic from thousands of individually captured images. EFLCM can digitize and analyze histological slides, sections of entire rodent organ and full size embryos. It can also record hundreds of thousands cultured cells at multiple wavelength in single event or time-lapse fashion on fixed slides, in live cell imaging chambers or microtiter plates. Conclusion The observer independent image capture of EFLCM allows quantitative measurements of fluorescence intensities and morphological parameters on a large number of cells. EFLCM therefore bridges the gap between the mainly illustrative fluorescence microscopy and purely quantitative flow cytometry. EFLCM can also be used as high content analysis (HCA) instrument for automated screening processes. PMID:18627634

  3. Combined Confocal and Magnetic Resonance Microscopy

    SciTech Connect

    Wind, Robert A.; Majors, Paul D.; Minard, Kevin R.; Ackerman, Eric J.; Daly, Don S.; Holtom, Gary R.; Thrall, Brian D.; Weber, Thomas J.

    2002-05-12

    Confocal and magnetic resonance microscopy are both used to study live cells in a minimally invasive way. Both techniques provide complementary information. Therefore, by examining cells simultaneously with both methodologies, more detailed information is obtained than is possible with each of the microscopes individually. In this paper two configurations of a combined confocal and magnetic resonance microscope described. In both cases the sample compartment is part of a temperature regulated perfusion system. The first configuration is capable of studying large single cells or three-dimensional cell agglomerates, whereas with the second configuration monolayers of mammalian cells can be investigated . Combined images are shown of Xenopus laevis frog oocytes, model JB6 tumor spheroids, and a single layer of Chinese hamster ovary cells. Finally, potential applications of the combined microscope are discussed.

  4. Digital confocal microscopy through a multimode fiber.

    PubMed

    Loterie, Damien; Farahi, Salma; Papadopoulos, Ioannis; Goy, Alexandre; Psaltis, Demetri; Moser, Christophe

    2015-09-01

    Acquiring high-contrast optical images deep inside biological tissues is still a challenging problem. Confocal microscopy is an important tool for biomedical imaging since it improves image quality by rejecting background signals. However, it suffers from low sensitivity in deep tissues due to light scattering. Recently, multimode fibers have provided a new paradigm for minimally invasive endoscopic imaging by controlling light propagation through them. Here we introduce a combined imaging technique where confocal images are acquired through a multimode fiber. We achieve this by digitally engineering the excitation wavefront and then applying a virtual digital pinhole on the collected signal. In this way, we are able to acquire images through the fiber with significantly increased contrast. With a fiber of numerical aperture 0.22, we achieve a lateral resolution of 1.5µm, and an axial resolution of 12.7µm. The point-scanning rate is currently limited by our spatial light modulator (20Hz). PMID:26368478

  5. Building large mosaics of confocal edomicroscopic images using visual servoing.

    PubMed

    Rosa, Benoît; Erden, Mustafa Suphi; Vercauteren, Tom; Herman, Benoît; Szewczyk, Jérôme; Morel, Guillaume

    2013-04-01

    Probe-based confocal laser endomicroscopy provides real-time microscopic images of tissues contacted by a small probe that can be inserted in vivo through a minimally invasive access. Mosaicking consists in sweeping the probe in contact with a tissue to be imaged while collecting the video stream, and process the images to assemble them in a large mosaic. While most of the literature in this field has focused on image processing, little attention has been paid so far to the way the probe motion can be controlled. This is a crucial issue since the precision of the probe trajectory control drastically influences the quality of the final mosaic. Robotically controlled motion has the potential of providing enough precision to perform mosaicking. In this paper, we emphasize the difficulties of implementing such an approach. First, probe-tissue contacts generate deformations that prevent from properly controlling the image trajectory. Second, in the context of minimally invasive procedures targeted by our research, robotic devices are likely to exhibit limited quality of the distal probe motion control at the microscopic scale. To cope with these problems visual servoing from real-time endomicroscopic images is proposed in this paper. It is implemented on two different devices (a high-accuracy industrial robot and a prototype minimally invasive device). Experiments on different kinds of environments (printed paper and ex vivo tissues) show that the quality of the visually servoed probe motion is sufficient to build mosaics with minimal distortion in spite of disturbances. PMID:23192481

  6. EVALUATION OF CONFOCAL MICROSCOPY SYSTEM PERFORMANCE: PRETTY PICTURES OR CONFOCAL QA

    EPA Science Inventory

    Evaluation of confocal microscopy system performance: Pretty pictures or confocal QA?

    Robert M. Zucker

    Reproductive Toxicology Division, National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency, Research Triangle Park, N...

  7. Digital differential confocal microscopy based on spatial shift transformation.

    PubMed

    Liu, J; Wang, Y; Liu, C; Wilson, T; Wang, H; Tan, J

    2014-11-01

    Differential confocal microscopy is a particularly powerful surface profilometry technique in industrial metrology due to its high axial sensitivity and insensitivity to noise. However, the practical implementation of the technique requires the accurate positioning of point detectors in three-dimensions. We describe a simple alternative based on spatial transformation of a through-focus series of images obtained from a homemade beam scanning confocal microscope. This digital differential confocal microscopy approach is described and compared with the traditional Differential confocal microscopy approach. The ease of use of the digital differential confocal microscopy system is illustrated by performing measurements on a 3D standard specimen. PMID:25303106

  8. Confocal microscopy of the living eye.

    PubMed

    Cavanagh, H D; Jester, J V; Essepian, J; Shields, W; Lemp, M A

    1990-01-01

    Confocal microscopy is an imaging paradigm that allows optical sectioning of almost any material with increased axial and lateral spatial resolution and better image contrast. We have applied this technology to the study of the living eye of cats, albino rabbits, and humans. The technique allows in vivo, noninvasive, real time images of the eye at magnifications (630x) which allow resolution of anatomical detail at the cellular level. In this paper we report details of our current instrument techniques and some of our results. The past development, present state-of-the-art, and projected future advances and applications of this novel microscopy are discussed. Preliminary observations are reported for all layers of the cornea, the limbus, and wound-healing responses in single animals. PMID:2407380

  9. Characterization of Polymer Blends: Optical Microscopy (*Polarized, Interference and Phase Contrast Microscopy*) and Confocal Microscopy

    SciTech Connect

    Ramanathan, Nathan Muruganathan; Darling, Seth B.

    2015-01-01

    Chapter 15 surveys the characterization of macro, micro and meso morphologies of polymer blends by optical microscopy. Confocal Microscopy offers the ability to view the three dimensional morphology of polymer blends, popular in characterization of biological systems. Confocal microscopy uses point illumination and a spatial pinhole to eliminate out-of focus light in samples that are thicker than the focal plane.

  10. Automated cellular pathology in noninvasive confocal microscopy

    NASA Astrophysics Data System (ADS)

    Ting, Monica; Krueger, James; Gareau, Daniel

    2014-03-01

    A computer algorithm was developed to automatically identify and count melanocytes and keratinocytes in 3D reflectance confocal microscopy (RCM) images of the skin. Computerized pathology increases our understanding and enables prevention of superficial spreading melanoma (SSM). Machine learning involved looking at the images to measure the size of cells through a 2-D Fourier transform and developing an appropriate mask with the erf() function to model the cells. Implementation involved processing the images to identify cells whose image segments provided the least difference when subtracted from the mask. With further simplification of the algorithm, the program may be directly implemented on the RCM images to indicate the presence of keratinocytes in seconds and to quantify the keratinocytes size in the en face plane as a function of depth. Using this system, the algorithm can identify any irregularities in maturation and differentiation of keratinocytes, thereby signaling the possible presence of cancer.

  11. Corneal In Vivo Confocal Microscopy: Clinical Applications.

    PubMed

    You, Jae Young; Botelho, Paul J

    2016-01-01

    In vivo confocal microscopy (IVCM) has become a widely accepted imaging technique to study the human living cornea. It provides a unique opportunity to visualize the corneal tissue at the cellular level without damage and longitudinally observe its pathologic and normative changes. With rapidly evolving technology, there has been an abundance of interest in maximizing its potential to better understand the human cornea in health and disease. This is evidenced by a growing literature analyzing acquired and inherited corneal and also systemic diseases using corneal IVCM. This article provides a narrative review of IVCM and its applications. [Full article available at http://rimed.org/rimedicaljournal-2016-06.asp, free with no login]. PMID:27247970

  12. Evaluation of reflectance confocal microscopy in dermatophytosis.

    PubMed

    Hui, Dai; Xue-cheng, Sun; Ai-e, Xu

    2013-03-01

    Traditional diagnostic testing for dermatophyte infection currently requires skin scraping for light microscopy and/or fungal culture or skin biopsy. Immunofluorescent microscopy can also be used with calcofluor stain. All of these tests can be time-consuming to perform, require a waiting period for results and are invasive. This study aimed to define the in vivo reflectance confocal microscopy (RCM) features of superficial cutaneous fungal infections and to analyse concordance with microscopic examination. Totally, 45 patients, who were diagnosed with superficial cutaneous fungal infections according to the positive result of microscopic examination, were enrolled in this study. We selected three typical lesions examined by RCM, and then recorded the results. In the patients with the tinea manus and pedis, mycelium in stratum corneum was found by the RCM in 14 of 22 patients (14/22; 63.64%). In the patients with the tinea cruris, mycelium in stratum corneum was found by the RCM in 19 of 23 patients (19/23; 82.61%). RCM seems to be useful for microscopic evaluation of mycelium features and may have a scientific value in study of superficial cutaneous fungal infections. PMID:22963376

  13. Deep stroma investigation by confocal microscopy

    NASA Astrophysics Data System (ADS)

    Rossi, Francesca; Tatini, Francesca; Pini, Roberto; Valente, Paola; Ardia, Roberta; Buzzonetti, Luca; Canovetti, Annalisa; Malandrini, Alex; Lenzetti, Ivo; Menabuoni, Luca

    2015-03-01

    Laser assisted keratoplasty is nowadays largely used to perform minimally invasive surgery and partial thickness keratoplasty [1-3]. The use of the femtosecond laser enables to perform a customized surgery, solving the specific problem of the single patient, designing new graft profiles and partial thickness keratoplasty (PTK). The common characteristics of the PTKs and that make them eligible respect to the standard penetrating keratoplasty, are: the preservation of eyeball integrity, a reduced risk of graft rejection, a controlled postoperative astigmatism. On the other hand, the optimal surgical results after these PTKs are related to a correct comprehension of the deep stroma layers morphology, which can help in the identification of the correct cleavage plane during surgeries. In the last years some studies were published, giving new insights about the posterior stroma morphology in adult subjects [4,5]. In this work we present a study performed on two groups of tissues: one group is from 20 adult subjects aged 59 +/- 18 y.o., and the other group is from 15 young subjects, aged 12+/-5 y.o.. The samples were from tissues not suitable for transplant in patients. Confocal microscopy and Environmental Scanning Electron Microscopy (ESEM) were used for the analysis of the deep stroma. The preliminary results of this analysis show the main differences in between young and adult tissues, enabling to improve the knowledge of the morphology and of the biomechanical properties of human cornea, in order to improve the surgical results in partial thickness keratoplasty.

  14. Biological applications of confocal fluorescence polarization microscopy

    NASA Astrophysics Data System (ADS)

    Bigelow, Chad E.

    Fluorescence polarization microscopy is a powerful modality capable of sensing changes in the physical properties and local environment of fluorophores. In this thesis we present new applications for the technique in cancer diagnosis and treatment and explore the limits of the modality in scattering media. We describe modifications to our custom-built confocal fluorescence microscope that enable dual-color imaging, optical fiber-based confocal spectroscopy and fluorescence polarization imaging. Experiments are presented that indicate the performance of the instrument for all three modalities. The limits of confocal fluorescence polarization imaging in scattering media are explored and the microscope parameters necessary for accurate polarization images in this regime are determined. A Monte Carlo routine is developed to model the effect of scattering on images. Included in it are routines to track the polarization state of light using the Mueller-Stokes formalism and a model for fluorescence generation that includes sampling the excitation light polarization ellipse, Brownian motion of excited-state fluorophores in solution, and dipole fluorophore emission. Results from this model are compared to experiments performed on a fluorophore-embedded polymer rod in a turbid medium consisting of polystyrene microspheres in aqueous suspension. We demonstrate the utility of the fluorescence polarization imaging technique for removal of contaminating autofluorescence and for imaging photodynamic therapy drugs in cell monolayers. Images of cells expressing green fluorescent protein are extracted from contaminating fluorescein emission. The distribution of meta-tetrahydroxypheny1chlorin in an EMT6 cell monolayer is also presented. A new technique for imaging enzyme activity is presented that is based on observing changes in the anisotropy of fluorescently-labeled substrates. Proof-of-principle studies are performed in a model system consisting of fluorescently labeled bovine

  15. Reflectance confocal microscopy for mucosal diseases.

    PubMed

    Cinotti, E; Labeille, B; Cambazard, F; Thuret, G; Gain, P; Perrot, J L

    2015-10-01

    Non-invasive, real-time microscopic imaging using in vivo reflectance confocal microscopy (RCM) has been demonstrated to be a useful tool for the evaluation of skin diseases and in particular for skin neoplasms. Recently, the RCM devices dedicated to the skin have also been applied to perform "virtual biopsies" of the oral, genital and ocular mucosa. In fact, mucosa is a sensitive area where non invasive imaging techniques are of high interest in order to spare biopsies and excisions. Mucosa is particularly suitable for RCM because of its thin or absent cornified layer and its thin epithelium that allows a deeper penetration of the laser with the consequent possibility of exploring deeper tissue levels. Besides, being useful for the diagnosis, RCM may be helpful to identify the area to be biopsied in case of large or multifocal lesions and may be regarded as a complementary technique for non invasive assessment of treatment efficacy. The RCM features of healthy mucosa are described and a revision of the literature of the mucosal diseases that can be diagnosed by RCM has been performed. PMID:26099354

  16. EVALUATION OF CONFOCAL MICROSCOPY SYSTEM PERFORMANCE

    EPA Science Inventory

    BACKGROUND. The confocal laser scanning microscope (CLSM) has enormous potential in many biological fields. Currently there is a subjective nature in the assessment of a confocal microscope's performance by primarily evaluating the system with a specific test slide provided by ea...

  17. Video-Mosaicing of Reflectance Confocal Images For Rapid Examination of Large Areas of Skin In Vivo

    PubMed Central

    Kose, Kivanc; Cordova, Miguel; Duffy, Megan; Flores, Eileen S.; Brooks, Dana H.; Rajadhyaksha, Milind

    2015-01-01

    Background With reflectance confocal microscopy (RCM) imaging, skin cancers can be diagnosed in vivo and margins detected to guide treatment. Since the field of view of an RCM image is much smaller than the typical size of lesions, mosaicing approaches have been developed to display larger areas of skin. However, the current paradigm for RCM mosaicing in vivo is limited both in speed and to pre-selected rectangular-shaped small areas. Another approach, called “video-mosaicing,” enables higher speeds and real-time operator-selected areas of any size and shape, and will be more useful for RCM examination of skin in vivo. Objectives To demonstrate the feasibility and clinical potential of video-mosaicing of RCM images to rapidly display large areas of skin in vivo. Methods Thirteen videos of benign lesions, melanocytic cancers and residual basal cell carcinoma margins were collected on volunteer subjects with a handheld RCM scanner. The images from each video were processed and stitched into mosaics to display the entire area that was imaged. Results Acquisition of RCM videos covering 5.0–16.0 mm2 was performed in 20–60 seconds. The video-mosaics were visually determined to be of high quality for resolution, contrast and seamless contiguity, and the appearance of cellular-level and morphologic detail. Conclusion Video-mosaicing confocal microscopy, with real-time operator-choice of the shape and size of the area to be imaged, will enable rapid examination of large areas of skin in vivo. This approach may further advance noninvasive detection of skin cancer and, eventually, facilitate wider adoption of RCM imaging in the clinic. PMID:24720744

  18. CONFOCAL LASER SCANNING MICROSCOPY OF RAT FOLLICLE DEVELOPMENT

    EPA Science Inventory

    This study used confocal laser scanning microscopy (CLSM) to study follicular development in millimeter pieces of rat ovary. To use this technology, it is essential to stain the tissue before laser excitation with the confocal microscope. Various fluorescent stains (Yo-Pro, Bo-Pr...

  19. Confocal microscopy via multimode fibers: fluorescence bandwidth

    NASA Astrophysics Data System (ADS)

    Loterie, Damien; Psaltis, Demetri; Moser, Christophe

    2016-03-01

    We recently described a method for confocal reflection imaging through fibers, as a way to increase contrast when imaging unstained biological specimens. Using a transmission matrix, focused spots can be created at the distal end of a fiber. The backscattered field coming back from the sample can be filtered using optical correlation to obtain spatial selectivity in the detection. In this proceedings article, we briefly review the working principle of this method, and we discuss how the scheme could be adapted to confocal fluorescence imaging. In particular, we show simulations of the achievable detection bandwidth when using step-index multimode fibers as imaging devices.

  20. In Vivo Confocal Microscopy in Chloroquine-Induced Keratopathy

    PubMed Central

    Paladini, Iacopo; Menchini, Ugo; Mencucci, Rita

    2013-01-01

    In vivo confocal microscopy is becoming a mandatory examination to study corneal abnormalities such as drug deposits in systemic disease. A female diagnosed with fibromyalgia on systemic chloroquine for 9 months presented for an ophthalmic examination. Confocal microscopy was performed using the Confoscan 4 (Nidek Co. Ltd., Gamagori, Japan) and multiple highly reflective deposits in the epithelial basal cells were found, that were consistent with choloquine. Deposits were also present in the wing cell layer. In the anterior stroma these deposits were rare. Atypically shaped and branched nerves were also present in the anterior stroma. Corneal deposits of chloroquine can be evaluated by confocal microscopy. Confocal microscopy provides information on corneal metabolism and physiology. Chloroquine keratopathy can affect the anterior stroma in addition to the epithelium. PMID:23580857

  1. CONFOCAL MICROSCOPY SYSTEM PERFORMANCE: LASER POWER MEASUREMENTS

    EPA Science Inventory

    Laser power abstract
    The reliability of the confocal laser-scanning microscope (CLSM) to obtain intensity measurements and quantify fluorescence data is dependent on using a correctly aligned machine that contains a stable laser power. The laser power test appears to be one ...

  2. An alternative method of promoter assessment by confocal laser scanning microscopy.

    PubMed

    Sahoo, Dipak K; Ranjan, Rajiv; Kumar, Deepak; Kumar, Alok; Sahoo, Bhabani S; Raha, Sumita; Maiti, Indu B; Dey, Nrisingha

    2009-10-01

    A rapid and useful method of promoter activity analysis using techniques of confocal laser scanning microscopy (CLSM) is described in the present study. The activities of some pararetroviral promoters such as CaMV35S (Cauliflower mosaic virus), FMVSgt3 (Figwort mosaic virus sub-genomic transcript) and MMVFLt12 (Mirabilis mosaic virus full-length transcript) coupled to GFP (green fluorescent protein) and GUS (beta-glucuronidase) reporter genes were determined simultaneously by the CLSM technique and other available conventional methods for reporter gene assay based on relevant biochemical and molecular approaches. Consistent and comparable results obtained by CLSM as well as by other conventional assay methods confirm the effectiveness of the CLSM approach for assessment of promoter activity. Hence the CLSM method can be suggested as an alternative way for promoter analysis on the basis of high throughput. PMID:19540268

  3. Fluorescence performance standards for confocal microscopy

    NASA Astrophysics Data System (ADS)

    Rüttinger, Steffen; Kapusta, Peter; Völlkopf, Volker; Koberling, Felix; Erdmann, Rainer; Macdonald, Rainer

    2010-02-01

    State of the art confocal microscopes offer diffraction limited (or even better) spatial resolution, highest (single molecule) sensitivity and ps-fluorescence lifetime measurement accuracy. For developers, manufacturers, as well as users of confocal microscopes it is mandatory to assign values to these qualities. In particular for users, it is often not easy to ascertain that the instrument is properly aligned as a large number of factors influence resolution or sensitivity. Therefore, we aspire to design a set of performance standards to be deployed on a day-to-day fashion in order to check the instruments characteristics. The main quantities such performance standard must address are: • Spatial resolution • Sensitivity • Fluorescence lifetime To facilitate the deployment and thus promote wide range adoption in day-to-day performance testing the corresponding standards have to be ready made, easy to handle and to store. The measurement procedures necessary should be available on as many different setups as possible and the procedures involved in their deployment should be as easy as possible. To this end, we developed two performance standards to accomplish the mentioned goals: • Resolution reference • Combined molecular brightness and fluorescence lifetime reference The first one is based on sub-resolution sized Tetra-SpeckTM fluorescent beads or alternatively on single molecules on a glass surface to image and to determine quantitatively the confocal volume, while the latter is a liquid sample containing fluorescent dyes of different concentrations and spectral properties. Both samples are sealed in order to ease their use and prolong their storage life. Currently long-term tests are performed to ascertain durability and road capabilities.

  4. Detection limits of confocal surface plasmon microscopy

    PubMed Central

    Pechprasarn, Suejit; Somekh, Michael G.

    2014-01-01

    This paper applies rigorous diffraction theory to evaluate the minimum mass sensitivity of a confocal optical microscope designed to excite and detect surface plasmons operating on a planar metallic substrate. The diffraction model is compared with an intuitive ray picture which gives remarkably similar predictions. The combination of focusing the surface plasmons and accurate phase measurement mean that under favorable but achievable conditions detection of small numbers of molecules is possible, however, we argue that reliable detection of single molecules will benefit from the use of structured surfaces. System configurations needed to optimize performance are discussed. PMID:24940537

  5. Tri-modal confocal mosaics detect residual invasive squamous cell carcinoma in Mohs surgical excisions

    NASA Astrophysics Data System (ADS)

    Gareau, Dan; Bar, Anna; Snaveley, Nicholas; Lee, Ken; Chen, Nathaniel; Swanson, Neil; Simpson, Eric; Jacques, Steve

    2012-06-01

    For rapid, intra-operative pathological margin assessment to guide staged cancer excisions, multimodal confocal mosaic scan image wide surgical margins (approximately 1 cm) with sub-cellular resolution and mimic the appearance of conventional hematoxylin and eosin histopathology (H&E). The goal of this work is to combine three confocal imaging modes: acridine orange fluorescence (AO) for labeling nuclei, eosin fluorescence (Eo) for labeling cytoplasm, and endogenous reflectance (R) for marking collagen and keratin. Absorption contrast is achieved by alternating the excitation wavelength: 488 nm (AO fluorescence) and 532 nm (Eo fluorescence). Superposition and false-coloring of these modes mimics H&E, enabling detection of cutaneous squamous cell carcinomas (SCC). The sum of mosaic Eo+R is false-colored pink to mimic the appearance of eosin, while the AO mosaic is false-colored purple to mimic the appearance of hematoxylin in H&E. In this study, mosaics of 10 Mohs surgical excisions containing invasive SCC, and five containing only normal tissue were subdivided for digital presentation equivalent to 4× histology. Of the total 50 SCC and 25 normal sub-mosaics presented, two reviewers made two and three type-2 errors (false positives), respectively. Limitations to precisely mimic H&E included occasional elastin staining by AO. These results suggest that confocal mosaics may effectively guide staged SCC excisions in skin and other tissues.

  6. Tri-modal confocal mosaics detect residual invasive squamous cell carcinoma in Mohs surgical excisions

    PubMed Central

    Bar, Anna; Snaveley, Nicholas; Lee, Ken; Chen, Nathaniel; Swanson, Neil; Simpson, Eric; Jacques, Steve

    2012-01-01

    Abstract. For rapid, intra-operative pathological margin assessment to guide staged cancer excisions, multimodal confocal mosaic scan image wide surgical margins (approximately 1 cm) with sub-cellular resolution and mimic the appearance of conventional hematoxylin and eosin histopathology (H&E). The goal of this work is to combine three confocal imaging modes: acridine orange fluorescence (AO) for labeling nuclei, eosin fluorescence (Eo) for labeling cytoplasm, and endogenous reflectance (R) for marking collagen and keratin. Absorption contrast is achieved by alternating the excitation wavelength: 488 nm (AO fluorescence) and 532 nm (Eo fluorescence). Superposition and false-coloring of these modes mimics H&E, enabling detection of cutaneous squamous cell carcinomas (SCC). The sum of mosaic Eo+R is false-colored pink to mimic the appearance of eosin, while the AO mosaic is false-colored purple to mimic the appearance of hematoxylin in H&E. In this study, mosaics of 10 Mohs surgical excisions containing invasive SCC, and five containing only normal tissue were subdivided for digital presentation equivalent to 4× histology. Of the total 50 SCC and 25 normal sub-mosaics presented, two reviewers made two and three type-2 errors (false positives), respectively. Limitations to precisely mimic H&E included occasional elastin staining by AO. These results suggest that confocal mosaics may effectively guide staged SCC excisions in skin and other tissues. PMID:22734774

  7. Confocal fluorescence microscopy for detection of cervical preneoplastic lesions

    NASA Astrophysics Data System (ADS)

    Sheikhzadeh, Fahime; Ward, Rabab K.; Carraro, Anita; Chen, Zhaoyang; van Niekerk, Dirk; MacAulay, Calum; Follen, Michele; Lane, Pierre; Guillaud, Martial

    2015-03-01

    We examined and established the potential of ex-vivo confocal fluorescence microscopy for differentiating between normal cervical tissue, low grade Cervical Intraepithelial Neoplasia (CIN1), and high grade CIN (CIN2 and CIN3). Our objectives were to i) use Quantitative Tissue Phenotype (QTP) analysis to quantify nuclear and cellular morphology and tissue architecture in confocal microscopic images of fresh cervical biopsies and ii) determine the accuracy of high grade CIN detection via confocal microscopy. Cervical biopsy specimens of colposcopically normal and abnormal tissues obtained from 15 patients were evaluated by confocal fluorescence microscopy. Confocal images were analyzed and about 200 morphological and architectural features were calculated at the nuclear, cellular, and tissue level. For the purpose of this study, we used four features to delineate disease grade including nuclear size, cell density, estimated nuclear-cytoplasmic (ENC) ratio, and the average of three nearest Delaunay neighbors distance (3NDND). Our preliminary results showed ENC ratio and 3NDND correlated well with histopathological diagnosis. The Spearman correlation coefficient between each of these two features and the histopathological diagnosis was higher than the correlation coefficient between colposcopic appearance and histopathological diagnosis. Sensitivity and specificity of ENC ratio for detecting high grade CIN were both equal to 100%. QTP analysis of fluorescence confocal images shows the potential to discriminate high grade CIN from low grade CIN and normal tissues. This approach could be used to help clinicians identify HGSILs in clinical settings.

  8. Visualizing Cochlear Mechanics Using Confocal Microscopy

    NASA Astrophysics Data System (ADS)

    Ulfendahl, M.; Boutet de Monvel, J.; Fridberger, A.

    2003-02-01

    The sound-evoked vibration pattern of the hearing organ is based on complex mechanical interactions between different cellular structures. To explore the structural changes occurring within the organ of Corti during basilar-membrane motion, stepwise alterations of the scala tympani pressure were applied in an in vitro preparation of the guinea-pig temporal bone. Confocal images were acquired at each pressure level. In this way, the motion of several structures could be simultaneously observed with high resolution in a nearly intact system. Images were analyzed using a novel wavelet-based optical-flow estimation algorithm. Under the present experimental conditions, the reticular lamina moved as a stiff plate with a center of rotation in the region of the inner hair cells. The outer hair cells appeared non-rigid and the basal, synaptic regions of these cells displayed significant radial motion indicative of cellular bending and internal shearing.

  9. Reflectance confocal microscopy in infectious diseases.

    PubMed

    Cinotti, E; Labeille, B; Cambazard, F; Perrot, J L

    2015-10-01

    In vivo reflectance confocal microscope (RCM) is a high-resolution non-invasive imaging technique that was initially focused on the diagnosis of skin cancers. A rising number of other indications have been later described for the diagnosis and management of inflammatory and infectious dermatological disorders. RCM can identify cutaneous parasites that are not visible to naked eye such as Sarcoptes scabiei and Demodex folliculorum and it allows to better identify the different body parts of bigger parasites such as ticks. Fungal filaments can also be identified as elongated bright structures in the cutaneous upper layers. RCM cannot observe virus directly. However, the cytopathic effect associated with some virus can be recognized. In addition of being helpful for the diagnosis and follow-up after treatment, thanks to its non-invasiveness, RCM allows pathophysiological studies. PMID:26129682

  10. Chromatic confocal microscopy using staircase diffractive surface.

    PubMed

    Rayer, Mathieu; Mansfield, Daniel

    2014-08-10

    A chromatic confocal microscope (CCM) is a high-dynamic-range noncontact distance measurement sensor; it is based on a hyperchromatic lens. The vast majority of commercial CCMs use refractive-based chromatic dispersion to chromatically code the optical axis. This approach significantly limits the range of applications and performance of the CCM. In order to be a suitable alternative to a laser triangulation gauge and laser encoder, the performance of the CCM must be improved. In this paper, it is shown how hybrid aspheric diffractive (HAD) lenses can bring the CCM to its full potential by increasing the dynamic range by a factor of 2 and the resolution by a factor of 5 while passively athermizing and increasing the light throughput efficiency of the optical head [M. Rayer, U.S. patent 1122052.2 (2011)]. The only commercially suitable manufacturing process is single-point diamond turning. However, the optical power carried by the diffractive side of a hybrid aspheric diffractive lens is limited by the manufacturing process. A theoretical study of manufacturing losses has revealed that the HAD configuration with the highest diffraction efficiency is for a staircase diffractive surface (SDS). SDS lenses have the potential to reduce light losses associated with manufacturing limits by a factor of 5 without increasing surface roughness, allowing scalar diffraction-limited optical design with a diffractive element. PMID:25320920

  11. Confocal Raman microscopy of protein adsorbed in chromatographic particles.

    PubMed

    Xiao, Yuewu; Stone, Thomas; Bell, David; Gillespie, Christopher; Portoles, Marta

    2012-09-01

    Confocal Raman microscopy is a nondestructive analytical technique that combines the chemical information from vibrational spectroscopy with the spatial resolution of confocal microscopy. It was applied, for the first time, to measure conformation and distribution of protein adsorbed in wetted chromatographic particles. Monoclonal antibody was loaded into the Fractogel EMD SO(3) (M) cation exchanger at 2 mS/cm or 10 mS/cm. Amide I and III frequencies in the Raman spectrum of the adsorbed protein suggest that there are no detectable changes of the original β-sheet conformation in the chromatographic particles. Protein depth profile measurements indicate that, when the conductivity is increased from 2 mS/cm to 10 mS/cm, there is a change in mass transport mechanism for protein adsorption, from the shrinking-core model to the homogeneous-diffusion model. In this study, the use of confocal Raman microscopy to measure protein distribution in chromatographic particles fundamentally agrees with previous confocal laser scanning microscopic investigations, but confocal Raman spectroscopy enjoys additional advantages: use of unlabeled protein to eliminate fluorescent labeling, ability for characterization of protein secondary structure, and ability for spectral normalization to provide a nondestructive experimental approach to correct light attenuation effects caused by refractive index (RI) mismatching in semiopaque chromatographic particles. PMID:22803776

  12. Video-rate Scanning Confocal Microscopy and Microendoscopy

    PubMed Central

    Nichols, Alexander J.; Evans, Conor L.

    2011-01-01

    Confocal microscopy has become an invaluable tool in biology and the biomedical sciences, enabling rapid, high-sensitivity, and high-resolution optical sectioning of complex systems. Confocal microscopy is routinely used, for example, to study specific cellular targets1, monitor dynamics in living cells2-4, and visualize the three dimensional evolution of entire organisms5,6. Extensions of confocal imaging systems, such as confocal microendoscopes, allow for high-resolution imaging in vivo7 and are currently being applied to disease imaging and diagnosis in clinical settings8,9. Confocal microscopy provides three-dimensional resolution by creating so-called "optical sections" using straightforward geometrical optics. In a standard wide-field microscope, fluorescence generated from a sample is collected by an objective lens and relayed directly to a detector. While acceptable for imaging thin samples, thick samples become blurred by fluorescence generated above and below the objective focal plane. In contrast, confocal microscopy enables virtual, optical sectioning of samples, rejecting out-of-focus light to build high resolution three-dimensional representations of samples. Confocal microscopes achieve this feat by using a confocal aperture in the detection beam path. The fluorescence collected from a sample by the objective is relayed back through the scanning mirrors and through the primary dichroic mirror, a mirror carefully selected to reflect shorter wavelengths such as the laser excitation beam while passing the longer, Stokes-shifted fluorescence emission. This long-wavelength fluorescence signal is then passed to a pair of lenses on either side of a pinhole that is positioned at a plane exactly conjugate with the focal plane of the objective lens. Photons collected from the focal volume of the object are collimated by the objective lens and are focused by the confocal lenses through the pinhole. Fluorescence generated above or below the focal plane will

  13. Video-rate scanning confocal microscopy and microendoscopy.

    PubMed

    Nichols, Alexander J; Evans, Conor L

    2011-01-01

    Confocal microscopy has become an invaluable tool in biology and the biomedical sciences, enabling rapid, high-sensitivity, and high-resolution optical sectioning of complex systems. Confocal microscopy is routinely used, for example, to study specific cellular targets, monitor dynamics in living cells, and visualize the three dimensional evolution of entire organisms. Extensions of confocal imaging systems, such as confocal microendoscopes, allow for high-resolution imaging in vivo and are currently being applied to disease imaging and diagnosis in clinical settings. Confocal microscopy provides three-dimensional resolution by creating so-called "optical sections" using straightforward geometrical optics. In a standard wide-field microscope, fluorescence generated from a sample is collected by an objective lens and relayed directly to a detector. While acceptable for imaging thin samples, thick samples become blurred by fluorescence generated above and below the objective focal plane. In contrast, confocal microscopy enables virtual, optical sectioning of samples, rejecting out-of-focus light to build high resolution three-dimensional representations of samples. Confocal microscopes achieve this feat by using a confocal aperture in the detection beam path. The fluorescence collected from a sample by the objective is relayed back through the scanning mirrors and through the primary dichroic mirror, a mirror carefully selected to reflect shorter wavelengths such as the laser excitation beam while passing the longer, Stokes-shifted fluorescence emission. This long-wavelength fluorescence signal is then passed to a pair of lenses on either side of a pinhole that is positioned at a plane exactly conjugate with the focal plane of the objective lens. Photons collected from the focal volume of the object are collimated by the objective lens and are focused by the confocal lenses through the pinhole. Fluorescence generated above or below the focal plane will therefore not

  14. Colloidal structural evolution of asphaltene studied by confocal microscopy

    NASA Astrophysics Data System (ADS)

    Hung, Jannett; Castillo, Jimmy A.; Reyes, A.

    2004-10-01

    In this work, a detail analysis of the flocculation kinetic of asphaltenes colloidal particles has been carried out usng confocal microscopy. The colloidal structural evolution of the asphaltene flocculated has had varies postulated; however, the aggregation process of asphaltene is still not fully understood. In a recent paper, using Confocal microscope (homemade), we reported high-resolution micrographic images of asphaltenes flocculated and the correlation between crude oil stability and flocculation process. This technique permitted visualizes directly the physical nature of asphaltene flocculated. In this work, a detail analysis of the flocculation kinetic of asphaltene colloidal particles has been carried out using confocal microscopy. The physical nature of asphaltene flocculated from different crude oils is showed through of high-resolution image micrographies and its colloidal structural evolution.

  15. FOOD SURFACE TEXTURE MEASUREMENT USING REFLECTIVE CONFOCAL LASER SCANNING MICROSCOPY

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Confocal laser scanning microscopy (CLSM) was used in the reflection mode to characterize the surface texture (roughness) of sliced food surfaces. Sandpapers of grit size between 150 and 600 were used as the height reference to standardize the CLSM hardware settings. Sandpaper particle sizes were v...

  16. CONFOCAL MICROSCOPY SYSTEM PERFORMANCE: FOUNDATIONS FOR MEASUREMENTS, QUANTITATION AND SPECTROSCOPY

    EPA Science Inventory

    The confocal laser-scanning microscopy (CLSM) has enormous potential in many biological fields. The goal of a CLSM is to acquire and quantify fluorescence and in some instruments acquire spectral characterization of the emitted signal. The accuracy of these measurements demands t...

  17. CONFOCAL MICROSCOPY SYSTEM PERFORMANCE: QA TESTS, QUANTITATION AND SPECTROSCOPY

    EPA Science Inventory

    Confocal Microscopy System Performance: QA tests, Quantitation and Spectroscopy.

    Robert M. Zucker 1 and Jeremy M. Lerner 2,
    1Reproductive Toxicology Division, National Health and Environmental Effects Research Laboratory, Office of Research Development, U.S. Environmen...

  18. Three-Dimensional Visualization of Interfacial Phenomena Using Confocal Microscopy

    NASA Astrophysics Data System (ADS)

    Shieh, Ian C.

    Surfactants play an integral role in numerous functions ranging from stabilizing the emulsion in a favorite salad dressing to organizing the cellular components that make life possible. We are interested in lung surfactant, which is a mixture of lipids and proteins essential for normal respiration because it modulates the surface tension of the air-liquid interface of the thin fluid lining in the lungs. Through this surface tension modulation, lung surfactant ensures effortless lung expansion and prevents lung collapse during exhalation, thereby effecting proper oxygenation of the bloodstream. The function of lung surfactant, as well as numerous interfacial lipid systems, is not solely dictated by the behavior of materials confined to the two-dimensional interface. Rather, the distributions of materials in the liquid subphase also greatly influence the performance of interfacial films of lung surfactant. Therefore, to better understand the behavior of lung surfactant and other interfacial lipid systems, we require a three-dimensional characterization technique. In this dissertation, we have developed a novel confocal microscopy methodology for investigating the interfacial phenomena of surfactants at the air-liquid interface of a Langmuir trough. Confocal microscopy provides the excellent combination of in situ, fast, three-dimensional visualization of multiple components of the lung surfactant system that other characterization techniques lack. We detail the solutions to the numerous challenges encountered when imaging a dynamic air-liquid interface with a high-resolution technique like confocal microscopy. We then use confocal microscopy to elucidate the distinct mechanisms by which a polyelectrolyte (chitosan) and nonadsorbing polymer (polyethylene glycol) restore the function of lung surfactant under inhibitory conditions mimicking the effects of lung trauma. Beyond this physiological model, we also investigate several one- and two-component interfacial films

  19. Confocal microscopy and variable-focal length microlenses

    NASA Astrophysics Data System (ADS)

    Mac Raighne, Aaron M.; Yang, Lisong; Dunbar, L. Andrea; McCabe, Eithne M.; Scharf, Toralf

    2004-07-01

    Confocal microscopy has a unique optical sectioning property which allows three-dimensional images at different depths. Use of a microlens array is a potential alternative to the Nipkow disk for parallel imaging with high throughput in real-time confocal microscopy. The use of variable-focal-length microlenses can provide a way to axially scan the foci electronically avoiding the inflexible mechanical movement of the lens or the sample. Here we demonstrate a combination of a variable-focal-length microlens array and a fiber optic bundle as a way to create a high throughput aperture array that would be potentially applied as confocal imaging in vivo biological specimens. Variable focal length microlenses that we use consist of a liquid crystal film sandwiched between a pair of conductive substrates with patterned electrodes. The incident side of the microlens array was determined by examining the focus distribution in the axial direction. The variation of the focal length obtained by changing the voltage and corresponding focus intensity were measured through a conventional microscope. Meanwhile, the fiber bundle was characterized by coupling with either coherent or incoherent light source. We use the fiber bundle as both a multiple aperture and an image-carrying element and combine it with a microlens array to built up a confocal system. Axial responses are measured in two optical arrangements as a route to investigate endoscope potential.

  20. Rapid confocal imaging of large areas of excised tissue with strip mosaicing

    PubMed Central

    Abeytunge, Sanjee; Li, Yongbiao; Larson, Bjorg; Toledo-Crow, Ricardo; Rajadhyaksha, Milind

    2011-01-01

    Imaging large areas of tissue rapidly and with high resolution may enable rapid pathology at the bedside. The limited field of view of high-resolution microscopes requires the merging of multiple images that are taken sequentially to cover a large area. This merging or mosaicing of images requires long acquisition and processing times, and produces artifacts. To reduce both time and artifacts, we developed a mosaicing method on a confocal microscope that images morphology in large areas of excised tissue with sub-cellular detail. By acquiring image strips with aspect ratios of 10:1 and higher (instead of the standard ∼1:1) and “stitching” them in software, our method images 10×10 mm2 area of tissue in about 3 min. This method, which we call “strip mosaicing,” is currently three times as fast as our previous method. PMID:21639560

  1. Confocal device and application strategies for endoluminal optical coherence microscopy

    NASA Astrophysics Data System (ADS)

    George, Markus; Schnieder, Ludger; Buess, Gerhard F.

    2003-10-01

    While endoscopic optical coherence tomography has been established successfully in vivo ,implementation of endoluminal optical coherence microscopy remains demanding,s suitable confocal probe is lacking. A miniaturized confocal laser scanning microscope is presented,which fulfills the requirements for endoluminal optical coherence microscopy. First,imaging experience gained for optical coherence microscopy of nimal gastrointestinal tissue samples is described. For this purpose,laboratory scale optical coherence microscope with an image acquisition time of 1min 30 s was employed. Cellular membranes can be identified throughout the gastrointestinal organs. Frequency domain image analysis can be used to distinguish columnar from squamous epithelium. Profilometric information on sample surfaces can be obtained directly as isophase lines. Second, the miniaturized confocal laser scanning microscope is characterized. Having an effective diameter of 25 mm, it houses single-mode optical fiber,scanning mirror and an objective lens. The micro-electro-mechanical mirror with gimballed suspension allows two dimensional scanning without introducing an optical path difference. The sinusoidal movement of both axes has to be considered to approximate cartesian image coordinates. Field geometry is illustrated s function of excitation amplitude and frequency. Acceptable image quality is chieved for frame rate of 0.5 Hz. A strategy to position the focal plane axially within the sample volume is discussed.

  2. Study of liquid jet instability by confocal microscopy.

    PubMed

    Yang, Lisong; Adamson, Leanne J; Bain, Colin D

    2012-07-01

    The instability of a liquid microjet was used to measure the dynamic surface tension of liquids at the surface ages of ≤1 ms using confocal microscopy. The reflected light from a laser beam at normal incidence to the jet surface is linear in the displacement of the surface near the confocal position, leading to a radial resolution of 4 nm and a dynamic range of 4 μm in the surface position, thus permitting the measurement of amplitude of oscillation at the very early stage of jet instability. For larger oscillations outside the linear region of the confocal response, the swell and neck position of the jet can be located separately and the amplitude of oscillation determined with an accuracy of 0.2 μm. The growth rate of periodically perturbed water and ethanol∕water mixture jets with a 100-μm diameter nozzle and mean velocity of 5.7 m s(-1) has been measured. The dynamic surface tension was determined from the growth rate of the instability with a linear, axisymmetric, constant property model. Synchronisation of the confocal imaging system with the perturbation applied to the jet permitted a detailed study of the temporal evolution of the neck into a ligament and eventually into a satellite drop. PMID:22852668

  3. Study of liquid jet instability by confocal microscopy

    NASA Astrophysics Data System (ADS)

    Yang, Lisong; Adamson, Leanne J.; Bain, Colin D.

    2012-07-01

    The instability of a liquid microjet was used to measure the dynamic surface tension of liquids at the surface ages of ≤1 ms using confocal microscopy. The reflected light from a laser beam at normal incidence to the jet surface is linear in the displacement of the surface near the confocal position, leading to a radial resolution of 4 nm and a dynamic range of 4 μm in the surface position, thus permitting the measurement of amplitude of oscillation at the very early stage of jet instability. For larger oscillations outside the linear region of the confocal response, the swell and neck position of the jet can be located separately and the amplitude of oscillation determined with an accuracy of 0.2 μm. The growth rate of periodically perturbed water and ethanol/water mixture jets with a 100-μm diameter nozzle and mean velocity of 5.7 m s-1 has been measured. The dynamic surface tension was determined from the growth rate of the instability with a linear, axisymmetric, constant property model. Synchronisation of the confocal imaging system with the perturbation applied to the jet permitted a detailed study of the temporal evolution of the neck into a ligament and eventually into a satellite drop.

  4. Confocal microscopy patterns in nonmelanoma skin cancer and clinical applications.

    PubMed

    González, S; Sánchez, V; González-Rodríguez, A; Parrado, C; Ullrich, M

    2014-06-01

    Reflectance confocal microscopy is currently the most promising noninvasive diagnostic tool for studying cutaneous structures between the stratum corneum and the superficial reticular dermis. This tool gives real-time images parallel to the skin surface; the microscopic resolution is similar to that of conventional histology. Numerous studies have identified the main confocal features of various inflammatory skin diseases and tumors, demonstrating the good correlation of these features with certain dermatoscopic patterns and histologic findings. Confocal patterns and diagnostic algorithms have been shown to have high sensitivity and specificity in melanoma and nonmelanoma skin cancer. Possible present and future applications of this noninvasive technology are wide ranging and reach beyond its use in noninvasive diagnosis. This tool can also be used, for example, to evaluate dynamic skin processes that occur after UV exposure or to assess tumor response to noninvasive treatments such as photodynamic therapy. We explain the characteristic confocal features found in the main nonmelanoma skin tumors and discuss possible applications for this novel diagnostic technique in routine dermatology practice. PMID:24002008

  5. Parallel detection experiment of fluorescence confocal microscopy using DMD.

    PubMed

    Wang, Qingqing; Zheng, Jihong; Wang, Kangni; Gui, Kun; Guo, Hanming; Zhuang, Songlin

    2016-05-01

    Parallel detection of fluorescence confocal microscopy (PDFCM) system based on Digital Micromirror Device (DMD) is reported in this paper in order to realize simultaneous multi-channel imaging and improve detection speed. DMD is added into PDFCM system, working to take replace of the single traditional pinhole in the confocal system, which divides the laser source into multiple excitation beams. The PDFCM imaging system based on DMD is experimentally set up. The multi-channel image of fluorescence signal of potato cells sample is detected by parallel lateral scanning in order to verify the feasibility of introducing the DMD into fluorescence confocal microscope. In addition, for the purpose of characterizing the microscope, the depth response curve is also acquired. The experimental result shows that in contrast to conventional microscopy, the DMD-based PDFCM system has higher axial resolution and faster detection speed, which may bring some potential benefits in the biology and medicine analysis. SCANNING 38:234-239, 2016. © 2015 Wiley Periodicals, Inc. PMID:26331288

  6. Polarization conversion in confocal microscopy with radially polarized illumination.

    PubMed

    Tang, Wai Teng; Yew, Elijah Y S; Sheppard, Colin J R

    2009-07-15

    The effects of using radially polarized illumination in a confocal microscope are discussed, and the introduction of a polarization mode converter into the detection optics of the microscope is proposed. We find that with such a configuration, bright-field imaging can be performed without losing the resolution advantage of radially polarized illumination. The detection efficiency can be increased by three times without having to increase the pinhole radius and sacrificing the confocality of the system. Furthermore, the merits of such a setup are also discussed in relation to surface plasmon microscopy and single-molecule orientation studies, where the doughnut point spread function can be engineered into a single-lobed point spread function. PMID:19823530

  7. Automated identification of epidermal keratinocytes in reflectance confocal microscopy

    NASA Astrophysics Data System (ADS)

    Gareau, Dan

    2011-03-01

    Keratinocytes in skin epidermis, which have bright cytoplasmic contrast and dark nuclear contrast in reflectance confocal microscopy (RCM), were modeled with a simple error function reflectance profile: erf( ). Forty-two example keratinocytes were identified as a training set which characterized the nuclear size a = 8.6+/-2.8 μm and reflectance gradient b = 3.6+/-2.1 μm at the nuclear/cytoplasmic boundary. These mean a and b parameters were used to create a rotationally symmetric erf( ) mask that approximated the mean keratinocyte image. A computer vision algorithm used an erf( ) mask to scan RCM images, identifying the coordinates of keratinocytes. Applying the mask to the confocal data identified the positions of keratinocytes in the epidermis. This simple model may be used to noninvasively evaluate keratinocyte populations as a quantitative morphometric diagnostic in skin cancer detection and evaluation of dermatological cosmetics.

  8. Multimodal confocal hyperspectral imaging microscopy with wavelength sweeping source

    NASA Astrophysics Data System (ADS)

    Kim, Young-Duk; Do, Dukho; Yoo, Hongki; Gweon, DaeGab

    2015-02-01

    There exist microscopes that are able to obtain the chemical properties of a sample, because there are some cases in which it is difficult to find out causality of a phenomenon by using only the structural information of a sample. Obtaining the chemical properties of a sample is important in biomedical imaging, because most biological phenomena include changes in the chemical properties of the sample. Hyperspectral imaging (HSI) is one of the popular imaging methods for characterizing materials and biological samples by measuring the reflectance or emission spectrum of the sample. Because all materials have a unique reflectance spectrum, it is possible to analyze material properties and detect changes in the chemical properties of a sample by measuring the spectral changes with respect to the original spectrum. Because of its ability to measure the spectrum of a sample, HSI is widely used in materials identification applications such as aerial reconnaissance and is the subject of various studies in microscopy. Although there are many advantages to using the method, conventional HSI has some limitations because of its complex configuration and slow speed. In this research we propose a new type of multimodal confocal hyperspectral imaging microscopy with fast image acquisition and a simple configuration that is capable of both confocal and HSI microscopies.

  9. Imaging intracellular protein dynamics by spinning disk confocal microscopy

    PubMed Central

    Stehbens, Samantha; Pemble, Hayley; Murrow, Lindsay; Wittmann, Torsten

    2012-01-01

    The palette of fluorescent proteins has grown exponentially over the last decade, and as a result live imaging of cells expressing fluorescently tagged proteins is becoming more and more main stream. Spinning disk confocal microscopy (SDC) is a high speed optical sectioning technique, and a method of choice to observe and analyze intracellular fluorescent protein dynamics at high spatial and temporal resolution. In an SDC system, a rapidly rotating pinhole disk generates thousands of points of light that scan the specimen simultaneously, which allows direct capture of the confocal image with low noise scientific grade cooled charged-coupled device (CCD) cameras, and can achieve frame rates of up 1000 frames per second. In this chapter we describe important components of a state-of-the-art spinning disk system optimized for live cell microscopy, and provide a rationale for specific design choices. We also give guidelines how other imaging techniques such as total internal reflection (TIRF) microscopy or spatially controlled photoactivation can be coupled with SDC imaging, and provide a short protocol on how to generate cell lines stably expressing fluorescently tagged proteins by lentivirus-mediated transduction. PMID:22264541

  10. Robust mosaicing with correction of motion distortions and tissue deformations for in vivo fibered microscopy.

    PubMed

    Vercauteren, Tom; Perchant, Aymeric; Malandain, Grégoire; Pennec, Xavier; Ayache, Nicholas

    2006-10-01

    Real-time in vivo and in situ imaging at the cellular level can be achieved with fibered confocal microscopy. As interesting as dynamic sequences may be, there is a need for the biologist or physician to get an efficient and complete representation of the entire imaged region. For this demand, the potential of this imaging modality is enhanced by using video mosaicing techniques. Classical mosaicing algorithms do not take into account the characteristics of fibered confocal microscopy, namely motion distortions, irregularly sampled frames and non-rigid deformations of the imaged tissue. Our approach is based on a hierarchical framework that is able to recover a globally consistent alignment of the input frames, to compensate for the motion distortions and to capture the non-rigid deformations. The proposed global alignment scheme is seen as an estimation problem on a Lie group. We model the relationship between the motion and the motion distortions to correct for these distortions. An efficient scattered data approximation scheme is proposed both for the construction of the mosaic and to adapt the demons registration algorithm to our irregularly sampled inputs. Controlled experiments have been conducted to evaluate the performance of our algorithm. Results on several sequences acquired in vivo on both human and mouse tissue also demonstrate the relevance of our approach. PMID:16887375

  11. Atherosclerotic plaque detection by confocal Brillouin and Raman microscopies

    NASA Astrophysics Data System (ADS)

    Meng, Zhaokai; Basagaoglu, Berkay; Yakovlev, Vladislav V.

    2015-02-01

    Atherosclerosis, the development of intraluminal plaque, is a fundamental pathology of cardiovascular system and remains the leading cause of morbidity and mortality worldwide. Biomechanical in nature, plaque rupture occurs when the mechanical properties of the plaque, related to the morphology and viscoelastic properties, are compromised, resulting in intraluminal thrombosis and reduction of coronary blood flow. In this report, we describe the first simultaneous application of confocal Brillouin and Raman microscopies to ex-vivo aortic wall samples. Such a non-invasive, high specific approach allows revealing a direct relationship between the biochemical and mechanical properties of atherosclerotic tissue.

  12. High-resolution confocal microscopy using synchrotron radiation.

    PubMed

    van der Oord, C J; Jones, G R; Shaw, D A; Munro, I H; Levine, Y K; Gerritsen, H C

    1996-06-01

    A confocal scanning light microscope coupled to the Daresbury Synchrotron Radiation Source is described. The broad spectrum of synchrotron radiation and the application of achromatic quartz/CaF2 optics allows for confocal imaging over the wavelength range 200-700 nm. This includes UV light, which is particularly suitable for high-resolution imaging. The results of test measurements using 290-nm light indicate that a lateral resolution better than 100 nm is obtained. An additional advantage of the white synchrotron radiation is that the excitation wavelength can be chosen to match the absorption band of any fluorescent dye. The availability of UV light for confocal microscopy enables studies of naturally occurring fluorophores. The potential applications of the microscope are illustrated by the real-time imaging of hormone traffic using the naturally occurring oestrogen coumestrol. (The IUPAC name for coumestrol is 3,9-dihydroxy-6H-benzofurol[3,2-c][1]benzo-pyran-6-one (Chem. Abstr. Reg. No. 479-13-0). The trivial name will be used throughout this paper. PMID:8801359

  13. Noninvasive imaging of the human rod photoreceptor mosaic using a confocal adaptive optics scanning ophthalmoscope

    PubMed Central

    Dubra, Alfredo; Sulai, Yusufu; Norris, Jennifer L.; Cooper, Robert F.; Dubis, Adam M.; Williams, David R.; Carroll, Joseph

    2011-01-01

    The rod photoreceptors are implicated in a number of devastating retinal diseases. However, routine imaging of these cells has remained elusive, even with the advent of adaptive optics imaging. Here, we present the first in vivo images of the contiguous rod photoreceptor mosaic in nine healthy human subjects. The images were collected with three different confocal adaptive optics scanning ophthalmoscopes at two different institutions, using 680 and 775 nm superluminescent diodes for illumination. Estimates of photoreceptor density and rod:cone ratios in the 5°–15° retinal eccentricity range are consistent with histological findings, confirming our ability to resolve the rod mosaic by averaging multiple registered images, without the need for additional image processing. In one subject, we were able to identify the emergence of the first rods at approximately 190 μm from the foveal center, in agreement with previous histological studies. The rod and cone photoreceptor mosaics appear in focus at different retinal depths, with the rod mosaic best focus (i.e., brightest and sharpest) being at least 10 μm shallower than the cones at retinal eccentricities larger than 8°. This study represents an important step in bringing high-resolution imaging to bear on the study of rod disorders. PMID:21750765

  14. Use of confocal microscopy for nanoparticle drug delivery through skin

    NASA Astrophysics Data System (ADS)

    Zhang, Leshuai W.; Monteiro-Riviere, Nancy A.

    2013-06-01

    Confocal laser scanning microscopy (CLSM) is a well-used microscopic tool that provides valuable morphological and functional information within cells and tissues. The application of CLSM to skin and the topical penetration of nanoparticles (NP) will be addressed. First, we describe the advantages of confocal microscopy compared to other techniques and its use relative to skin research. Second, we discuss the ability of CLSM to detect single NP. Regarding their interaction with skin, the appropriate method to retain nanoparticle localization in the tissue with minimal fixation is critically important. Also, the interaction of several different types of NP (quantum dots, fullerene and dendrimers) and their interaction with skin detected by CLSM under various conditions (flexed, tape stripped and abraded skin) is reviewed. Finally, human epidermal keratinocytes and dendritic cells that serve as appropriate in vitro models for skin cell interactions and cellular uptake of NP are also discussed. In conclusion, the unique functions of CLSM such as the ability to detect fluorescence, optical sectioning, three dimensional remodeling, as well as its use in the reflection mode in tandem with other methods, provides great promise with broad applications regarding the interactions of nanomaterials with skin.

  15. Template-driven segmentation of confocal microscopy images.

    PubMed

    Chen, Ying-Cheng; Chen, Yung-Chang; Chiang, Ann-Shyn

    2008-03-01

    High quality 3D visualization of anatomic structures is necessary for many applications. The anatomic structures first need to be segmented. A variety of segmentation algorithms have been developed for this purpose. For confocal microscopy images, the noise introduced during the specimen preparation process, such as the procedure of penetration or staining, may cause images to be of low contrast in some regions. This property will make segmentation difficult. Also, the segmented structures may have rugged surfaces in 3D visualization. In this paper, we present a hybrid method that is suitable for segmentation of confocal microscopy images. A rough segmentation result is obtained from the atlas-based segmentation via affine registration. The boundaries of the segmentation result are close to the object boundaries, and are regarded as the initial contours of the active contour models. After convergence of the snake algorithm, the resulting contours in regions of low contrast are locally refined by parametric bicubic surfaces to alleviate the problem of incorrect convergence. The proposed method increases the accuracy of the snake algorithm because of better initial contours. Besides, it can provide smoother segmented results in 3D visualization. PMID:18178286

  16. Precise colloids with tunable interactions for confocal microscopy

    PubMed Central

    Kodger, Thomas E.; Guerra, Rodrigo E.; Sprakel, Joris

    2015-01-01

    Model colloidal systems studied with confocal microscopy have led to numerous insights into the physics of condensed matter. Though confocal microscopy is an extremely powerful tool, it requires a careful choice and preparation of the colloid. Uncontrolled or unknown variations in the size, density, and composition of the individual particles and interactions between particles, often influenced by the synthetic route taken to form them, lead to difficulties in interpreting the behavior of the dispersion. Here we describe the straightforward synthesis of copolymer particles which can be refractive index- and density-matched simultaneously to a non-plasticizing mixture of high dielectric solvents. The interactions between particles are accurately tuned by surface grafting of polymer brushes using Atom Transfer Radical Polymerization (ATRP), from hard-sphere-like to long-ranged electrostatic repulsion or mixed charge attraction. We also modify the buoyant density of the particles by altering the copolymer ratio while maintaining their refractive index match to the suspending solution resulting in well controlled sedimentation. The tunability of the inter-particle interactions, the low volatility of the solvents, and the capacity to simultaneously match both the refractive index and density of the particles to the fluid opens up new possibilities for exploring the physics of colloidal systems. PMID:26420044

  17. Segmentation of skin strata in reflectance confocal microscopy depth stacks

    NASA Astrophysics Data System (ADS)

    Hames, Samuel C.; Ardigò, Marco; Soyer, H. Peter; Bradley, Andrew P.; Prow, Tarl W.

    2015-03-01

    Reflectance confocal microscopy is an emerging tool for imaging human skin, but currently requires expert human assessment. To overcome the need for human experts it is necessary to develop automated tools for automatically assessing reflectance confocal microscopy imagery. This work presents a novel approach to this task, using a bag of visual words approach to represent and classify en-face optical sections from four distinct strata of the skin. A dictionary of representative features is learned from whitened and normalised patches using hierarchical spherical k-means. Each image is then represented by extracting a dense array of patches and encoding each with the most similar element in the dictionary. Linear discriminant analysis is used as a simple linear classifier. The proposed framework was tested on 308 depth stacks from 54 volunteers. Parameters are tuned using 10 fold cross validation on a training sub-set of the data, and final evaluation was performed on a held out test set. The proposed method generated physically plausible profiles of the distinct strata of human skin, and correctly classified 81.4% of sections in the test set.

  18. Embryonic Heart Morphogenesis from Confocal Microscopy Imaging and Automatic Segmentation

    PubMed Central

    Gribble, Megan; Pertsov, Arkady M.; Shi, Pengcheng

    2013-01-01

    Embryonic heart morphogenesis (EHM) is a complex and dynamic process where the heart transforms from a single tube into a four-chambered pump. This process is of great biological and clinical interest but is still poorly understood for two main reasons. On the one hand, the existing imaging modalities for investigating EHM suffered from either limited penetration depth or limited spatial resolution. On the other hand, current works typically adopted manual segmentation, which was tedious, subjective, and time consuming considering the complexity of developing heart geometry and the large size of images. In this paper, we propose to utilize confocal microscopy imaging with tissue optical immersion clearing technique to image the heart at different stages of development for EHM study. The imaging method is able to produce high spatial resolution images and achieve large penetration depth at the same time. Furthermore, we propose a novel convex active contour model for automatic image segmentation. The model has the ability to deal with intensity fall-off in depth which is characterized by confocal microscopy images. We acquired the images of embryonic quail hearts from day 6 to day 14 of incubation for EHM study. The experimental results were promising and provided us with an insight view of early heart growth pattern and also paved the road for data-driven heart growth modeling. PMID:24454530

  19. Combined FLIM and reflectance confocal microscopy for epithelial imaging

    NASA Astrophysics Data System (ADS)

    Jabbour, Joey M.; Cheng, Shuna; Shrestha, Sebina; Malik, Bilal; Jo, Javier A.; Applegate, Brian; Maitland, Kristen C.

    2012-03-01

    Current methods for detection of oral cancer lack the ability to delineate between normal and precancerous tissue with adequate sensitivity and specificity. The usual diagnostic mechanism involves visual inspection and palpation followed by tissue biopsy and histopathology, a process both invasive and time-intensive. A more sensitive and objective screening method can greatly facilitate the overall process of detection of early cancer. To this end, we present a multimodal imaging system with fluorescence lifetime imaging (FLIM) for wide field of view guidance and reflectance confocal microscopy for sub-cellular resolution imaging of epithelial tissue. Moving from a 12 x 12 mm2 field of view with 157 ìm lateral resolution using FLIM to 275 x 200 μm2 with lateral resolution of 2.2 μm using confocal microscopy, hamster cheek pouch model is imaged both in vivo and ex vivo. The results indicate that our dual modality imaging system can identify and distinguish between different tissue features, and, therefore, can potentially serve as a guide in early oral cancer detection..

  20. Measurement of steep edges and undercuts in confocal microscopy.

    PubMed

    Mueller, T; Jordan, M; Schneider, T; Poesch, A; Reithmeier, E

    2016-05-01

    Confocal microscopy is widely used to measure the surface topography of specimen with a precision in the micrometer range. The measurement uncertainty and quality of the acquired data of confocal microscopy depends on various effects, such as optical aberrations, vibrations of the measurement setup and variations in the surface reflectivity. In this article, the influence of steep edges and undercuts on measurement results is examined. Steep edges on the specimen's surface lead to a reduced detector signal which influences the measurement accuracy and undercuts cause surface regions, which cannot be captured in a measurement. The article describes a method to overcome the negative effects of steep edges and undercuts by capturing several measurements of the surface with different angles between the surface and the optical axis of the objective. An algorithm is introduced which stitches different angle measurements together without knowledge of the exact position and orientation of the rotation axis. Thus, the measurement uncertainty due to steep edges and undercuts can be avoided without expensive high-precision rotation stages and time consuming adjustment of the measurement setup. PMID:27011256

  1. Atomic force microscopy and confocal laser scanning microscopy on the cytoskeleton of permeabilised and embedded cells.

    PubMed

    Meller, Karl; Theiss, Carsten

    2006-03-01

    We describe a technical method of cell permeabilisation and embedding to study the organisation and distribution of intracellular proteins with aid of atomic force microscopy and confocal laser scanning microscopy in identical areas. While confocal laser scanning microscopy is useful for the identification of certain proteins subsequent labelling with markers or antibodies, atomic force microscopy allows the observation of macromolecular structures in fixed and living cells. To demonstrate the field of application of this preparatory technique, cells were permeabilised, fixed, and the actin cytoskeleton was stained with phalloidin-rhodamine. Confocal laser scanning microscopy was used to show the organisation of these microfilaments, e.g. geodesic dome structures. Thereafter, cells were embedded in Durcupan water-soluble resin, followed by UV-polymerisation of resin at 4 degrees C. This procedure allowed intracellular visualisation of the cell nucleus or cytoskeletal elements by atomic force microscopy, for instance to analyse the globular organisation of actin filaments. Therefore, this method offers a great potential to combine both microscopy techniques in order to understand and interpret intracellular protein relations, for example, the biochemical and morphological interaction of the cytoskeleton. PMID:16360280

  2. Adaptive optics in digital micromirror based confocal microscopy

    NASA Astrophysics Data System (ADS)

    Pozzi, P.; Wilding, D.; Soloviev, O.; Vdovin, G.; Verhaegen, M.

    2016-03-01

    This proceeding reports early results in the development of a new technique for adaptive optics in confocal microscopy. The term adaptive optics refers to the branch of optics in which an active element in the optical system is used to correct inhomogeneities in the media through which light propagates. In its most classical form, mostly used in astronomical imaging, adaptive optics is achieved through a closed loop in which the actuators of a deformable mirror are driven by a wavefront sensor. This approach is severely limited in fluorescence microscopy, as the use of a wavefront sensor requires the presence of a bright, point like source in the field of view, a condition rarely satisfied in microscopy samples. Previously reported approaches to adaptive optics in fluorescence microscopy are therefore limited to the inclusion of fluorescent microspheres in the sample, to use as bright stars for wavefront sensors, or time consuming sensorless optimization procedures, requiring several seconds of optimization before the acquisition of a single image. We propose an alternative approach to the problem, implementing sensorless adaptive optics in a Programmable array microscope. A programmable array microscope is a microscope based on a digital micromirror device, in which the single elements of the micromirror act both as point sources and pinholes.

  3. 3D imaging of neutron tracks using confocal microscopy

    NASA Astrophysics Data System (ADS)

    Gillmore, Gavin; Wertheim, David; Flowers, Alan

    2016-04-01

    Neutron detection and neutron flux assessment are important aspects in monitoring nuclear energy production. Neutron flux measurements can also provide information on potential biological damage from exposure. In addition to the applications for neutron measurement in nuclear energy, neutron detection has been proposed as a method of enhancing neutrino detectors and cosmic ray flux has also been assessed using ground-level neutron detectors. Solid State Nuclear Track Detectors (or SSNTDs) have been used extensively to examine cosmic rays, long-lived radioactive elements, radon concentrations in buildings and the age of geological samples. Passive SSNTDs consisting of a CR-39 plastic are commonly used to measure radon because they respond to incident charged particles such as alpha particles from radon gas in air. They have a large dynamic range and a linear flux response. We have previously applied confocal microscopy to obtain 3D images of alpha particle tracks in SSNTDs from radon track monitoring (1). As a charged particle traverses through the polymer it creates an ionisation trail along its path. The trail or track is normally enhanced by chemical etching to better expose radiation damage, as the damaged area is more sensitive to the etchant than the bulk material. Particle tracks in CR-39 are usually assessed using 2D optical microscopy. In this study 6 detectors were examined using an Olympus OLS4100 LEXT 3D laser scanning confocal microscope (Olympus Corporation, Japan). The detectors had been etched for 2 hours 50 minutes at 85 °C in 6.25M NaOH. Post etch the plastics had been treated with a 10 minute immersion in a 2% acetic acid stop bath, followed by rinsing in deionised water. The detectors examined had been irradiated with a 2mSv neutron dose from an Am(Be) neutron source (producing roughly 20 tracks per mm2). We were able to successfully acquire 3D images of neutron tracks in the detectors studied. The range of track diameter observed was between 4

  4. Cosmetic assessment of the human hair by confocal microscopy.

    PubMed

    Hadjur, Christophe; Daty, Gérard; Madry, Geneviève; Corcuff, Pierre

    2002-01-01

    The optical sectioning property of the confocal microscope offers a breakthrough from the classic observation of the hair in a scanning electron microscope (SEM). Confocal microscopy requires minimal sampling preparation, and the hair can be observed in its natural environment with less damage than by other microscopic methods such as SEM. While used in the reflection mode, the true morphology of the cuticle and the various exogenous deposits at the surface can be identified and quantified. This relatively noninvasive, nondestructive technique is routinely used by us to monitor the efficiency of cleansing shampoos, to assess the homogeneity of layering polymers, and to evaluate the changes they induce in the optical properties of the hair surface in terms of opacity, transparency, and brilliancy. A second important field of investigation uses the fluorescence channel which reveals the internal structure of the hair. Fluorescent probes (rhodamine and its derivatives) demonstrate the routes of penetration and outline the geometry of cortical cells and of the medulla according to their lipophilic or hydrophilic properties. A volume rendering of a hair cylinder provides a better understanding of the interrelationships between cuticle cells, cortical cells, and the medullar channel. This recent technology is becoming an invaluable tool for the cosmetic assessment of the hair. PMID:11998902

  5. Confocal laser scanning microscopy with spatiotemporal structured illumination.

    PubMed

    Gao, Peng; Nienhaus, G Ulrich

    2016-03-15

    Confocal laser scanning microscopy (CLSM), which is widely utilized in the biological and biomedical sciences, is limited in spatial resolution due to diffraction to about half the light wavelength. Here we have combined structured illumination with CLSM to enhance its spatial resolution. To this end, we have used a spatial light modulator (SLM) to generate fringe patterns of different orientations and phase shifts in the excitation spot without any mechanical movement. We have achieved 1.8 and 1.7 times enhanced lateral and axial resolutions, respectively, by synthesizing the object spectrum along different illumination directions. This technique is thus a promising tool for high-resolution morphological or fluorescence imaging, especially in deep tissue. PMID:26977667

  6. Reflectance confocal microscopy for cutaneous infections and infestations.

    PubMed

    Cinotti, E; Perrot, J L; Labeille, B; Cambazard, F

    2016-05-01

    Reflectance confocal microscopy (RCM) is a high-resolution emerging imaging technique that allows non-invasive diagnosis of several cutaneous disorders. A systematic review of the literature on the use of RCM for the study of infections and infestations has been performed to evaluate the current use of this technique and its possible future applications in this field. RCM is particularly suitable for the identification of Sarcoptes scabies, Demodex folliculorum, Ixodes, Dermatophytes and Candida species in the clinical practice and for the follow-up after treatment. The cytopathic effect of herpes simplex virus, varicella zoster virus and molluscipoxvirus is also detectable by this imaging technique even in a pre-vesicular stage. In addition, thanks to its non-invasiveness, RCM allows pathophysiological studies. PMID:26387660

  7. Monitoring Ubiquitin-Coated Bacteria via Confocal Microscopy.

    PubMed

    Lork, Marie; Delvaeye, Mieke; Gonçalves, Amanda; Van Hamme, Evelien; Beyaert, Rudi

    2016-01-01

    Salmonella is a gram-negative facultative intracellular pathogen that is capable of infecting a variety of hosts. Inside host cells, most Salmonella bacteria reside and replicate within Salmonella-containing vacuoles. They use virulence proteins to manipulate the host cell machinery for their own benefit and hijack the host cytoskeleton to travel toward the perinuclear area. However, a fraction of bacteria escapes into the cytosol where they get decorated with a dense layer of polyubiquitin, which labels the bacteria for clearance by autophagy. More specifically, autophagy receptor proteins recognize the ubiquitinated bacteria and deliver them to autophagosomes, which subsequently fuse to lysosomes. Here, we describe methods used to infect HeLa cells with Salmonella bacteria and to detect their ubiquitination via immunofluorescence and laser scanning confocal microscopy. PMID:27613040

  8. Endoscopic probe optics for spectrally encoded confocal microscopy

    PubMed Central

    Kang, DongKyun; Carruth, Robert W.; Kim, Minkyu; Schlachter, Simon C.; Shishkov, Milen; Woods, Kevin; Tabatabaei, Nima; Wu, Tao; Tearney, Guillermo J.

    2013-01-01

    Spectrally encoded confocal microscopy (SECM) is a form of reflectance confocal microscopy that can achieve high imaging speeds using relatively simple probe optics. Previously, the feasibility of conducting large-area SECM imaging of the esophagus in bench top setups has been demonstrated. Challenges remain, however, in translating SECM into a clinically-useable device; the tissue imaging performance should be improved, and the probe size needs to be significantly reduced so that it can fit into luminal organs of interest. In this paper, we report the development of new SECM endoscopic probe optics that addresses these challenges. A custom water-immersion aspheric singlet (NA = 0.5) was developed and used as the objective lens. The water-immersion condition was used to reduce the spherical aberrations and specular reflection from the tissue surface, which enables cellular imaging of the tissue deep below the surface. A custom collimation lens and a small-size grating were used along with the custom aspheric singlet to reduce the probe size. A dual-clad fiber was used to provide both the single- and multi- mode detection modes. The SECM probe optics was made to be 5.85 mm in diameter and 30 mm in length, which is small enough for safe and comfortable endoscopic imaging of the gastrointestinal tract. The lateral resolution was 1.8 and 2.3 µm for the single- and multi- mode detection modes, respectively, and the axial resolution 11 and 17 µm. SECM images of the swine esophageal tissue demonstrated the capability of this device to enable the visualization of characteristic cellular structural features, including basal cell nuclei and papillae, down to the imaging depth of 260 µm. These results suggest that the new SECM endoscopic probe optics will be useful for imaging large areas of the esophagus at the cellular scale in vivo. PMID:24156054

  9. Photobleaching property of confocal laser scanning microscopy with masked illumination

    NASA Astrophysics Data System (ADS)

    Kim, DongUk; Moon, Sucbei; Song, Hoseong; Yang, Wenzhong; Kim, Dug Y.

    2010-02-01

    Confocal laser scanning microscopy (CLSM) has become the tool of choice for high-contrast fluorescence imaging in the study of the three-dimensional and dynamic properties of biological system. However, the high cost and complexity of commercial CLSMs urges many researchers to individually develop low cost and flexible confocal microscopy systems. The high speed scanner is an influential factor in terms of cost and system complexity. Resonant galvo scanners at several kHz have been commonly used in custom-built CLSMs. However, during the repeated illumination for live cell imaging or 3D image formation, photobleaching and image distortion occurred at the edges of the scan field may be more serious than the center due to an inherent property (e.g. sinusoidal angular velocity) of the scan mirror. Usually, no data is acquired at the edges due to large image distortion but the excitation beam is still illuminated. Here, we present the photobleaching property of CLSM with masked illumination, a simple and low cost method, to exclude the unintended excitation illumination at the edges. The mask with a square hole in its center is disposed at the image plane between the scan lens and the tube lens in order to decrease photobleaching and image distortion at the edges. The excluded illumination section is used as the black level of the detected signals for a signal quantizing step. Finally, we demonstrated the reduced photobleaching at the edges on a single layer of fluorescent beads and real-time image acquisition without a standard composite video signal by using a frame grabber.

  10. Confocal laser scanning microscopy in study of bone calcification

    NASA Astrophysics Data System (ADS)

    Nishikawa, Tetsunari; Kokubu, Mayu; Kato, Hirohito; Imai, Koichi; Tanaka, Akio

    2012-12-01

    Bone regeneration in mandible and maxillae after extraction of teeth or tumor resection and the use of rough surface implants in bone induction must be investigated to elucidate the mechanism of calcification. The calcified tissues are subjected to chemical decalcification or physical grinding to observe their microscopic features with light microscopy and transmission electron microscopy where the microscopic tissue morphology is significantly altered. We investigated the usefulness of confocal laser scanning microscopy (CLSM) for this purpose. After staggering the time of administration of calcein and alizarin red to experimental rats and dogs, rat alveolar bone and dog femur grafted with coral as scaffold or dental implants were observed with CLSM. In rat alveolar bone, the calcification of newly-formed bone and net-like canaliculi was observed at the mesial bone from the roots progressed at the rate of 15 μm/day. In dog femur grafted with coral, newly-formed bones along the space of coral were observed in an orderly manner. In dog femur with dental implants, after 8 weeks, newly-formed bone proceeded along the rough surface of the implants. CLSM produced high-magnification images of newly-formed bone and thin sections were not needed.

  11. Latest advances in confocal microscopy of skin cancers toward guiding patient care: a Mohs surgeon's review and perspective (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Nehal, Kishwer S.; Rajadhyaksha, Milind

    2016-02-01

    Latest advances in confocal microscopy of skin cancers toward guiding patient care: a Mohs surgeon's review and perspective About 350 publications worldwide have reported the ability of reflectance confocal microscopy (RCM) imaging to detect melanocytic skin lesions in vivo with specificity of 84-88% and sensitivity of 71-92%, and non-melanocytic skin lesions with specificity of 85-97% and sensitivity 100-92%. Lentigo maligna melanoma can be detected with sensitivity of 93% and specificity 82%. While the sensitivity is comparable to that of dermoscopy, the specificity is 2X superior, especially for lightly- and non-pigmented lesions. Dermoscopy combined with RCM imaging is proving to be both highly sensitive and highly specific. Recent studies have reported that the ratio of equivocal (i.e., would have been biopsied) lesions to detected melanomas dropped by ~2X when guided by dermoscopy and RCM imaging, compared to that with dermoscopy alone. Dermoscopy combined with RCM imaging is now being implemented to guide noninvasive diagnosis (to rule out malignancy and biopsy) and to also guide treatment, with promising initial impact: thus far, about 3,000 patients have been saved from biopsies of benign lesions. These are currently under follow-up monitoring. With fluorescence confocal microscopy (FCM) mosaicing, residual basal cell carcinomas can be detected in Mohs surgically excised fresh tissue ex vivo, with sensitivity of 94-97% and specificity 89-94%. FCM mosaicing is now being implemented for guiding Mohs surgery. To date, about 600 Mohs procedures have been performed, guided with mosaicing, and with pathology being performed in parallel to confirm the final outcome. These latest advances demonstrate the promising ability of RCM and FCM to guide patient care.

  12. Mosaic acquisition and processing for optical-resolution photoacoustic microscopy

    NASA Astrophysics Data System (ADS)

    Shao, Peng; Shi, Wei; Chee, Ryan K. W.; Zemp, Roger J.

    2012-08-01

    In optical-resolution photo-acoustic microscopy (OR-PAM), data acquisition time is limited by both laser pulse repetition rate (PRR) and scanning speed. Optical-scanning offers high speed, but limited, field of view determined by ultrasound transducer sensitivity. In this paper, we propose a hybrid optical and mechanical-scanning OR-PAM system with mosaic data acquisition and processing. The system employs fast-scanning mirrors and a diode-pumped, nanosecond-pulsed, Ytterbium-doped, 532-nm fiber laser with PRR up to 600 kHz. Data from a sequence of image mosaic patches is acquired systematically, at predetermined mechanical scanning locations, with optical scanning. After all imaging locations are covered, a large panoramic scene is generated by stitching the mosaic patches together. Our proposed system is proven to be at least 20 times faster than previous reported OR-PAM systems.

  13. Diffusion of photoacid generators by laser scanning confocal microscopy

    NASA Astrophysics Data System (ADS)

    Zhang, Ping L.; Webber, Stephen E.; Mendenhall, J.; Byers, Jeffrey D.; Chao, Keith K.

    1998-06-01

    Diffusion of the photogenerated acid during the period of time between exposure and development can cause contrast loss and ultimately loss of the latent image. This is especially relevant for chemically amplified photoresists that require a post-exposure baking step, which in turn facilitates acid diffusion due to the high temperature normally employed. It is thus important to develop techniques with good spatial resolution to monitor the photogeneration of acid. More precisely, we need techniques that provide two distinct types of information: spatial resolution on various length scales within the surface layer and also sufficient depth resolution so that one can observe the transition from very surface layer to bulk structure in the polymer blend coated on silicon substrate. Herein laser scanning confocal microscopy is used to evaluate the resist for the first time. We report the use of the confocal microscopy to map the pag/dye distribution in PHS matrices, with both reflectance images and fluorescence images. A laser beam is focused onto a small 3D volume element, termed a voxel. It is typically 200 nm X 200 nm laterally and 800 nm axially. The illuminated voxel is viewed such that only signals emanating from this voxel are detected, i.e., signal from outside the probed voxel is not detected. By adjusting the vertical position of the laser focal point, the voxel can be moved to the designated lateral plane to produce an image. Contrast caused by topology difference between the exposed and unexposed area can be eliminated. Bis-p-butylphenyl iodonium triflat (7% of polyhydroxystyrene) is used as photoacid generators. 5% - 18% (by weight, PHS Mn equals 13 k) resist in PGMEA solution is spin cast onto the treated quartz disk with thickness of 1.4 micrometers , 5 micrometers space/10 micrometers pitch chrome mask is used to generate the pattern with mercury DUV illumination. Fluoresceinamine, the pH-sensitive dye, is also used to enhance the contrast of

  14. Rhinosporidium seeberi Nuclear Cycle Activities Using Confocal Microscopy.

    PubMed

    Delfino, Darly; Mendoza, Leonel; Vilela, Raquel

    2016-02-01

    Rhinosporidium seeberi is an uncultivated Ichthyosporean infecting animals, including humans. Recent studies suggested R. seeberi undergoes synchronized nuclear division without cytokinesis. We used confocal microscopy to investigate R. seeberi nuclear division cycles in formalin-fixed tissues stained with DAPI and phalloidin. We report that R. seeberi nuclei in juvenile and intermediary sporangia synchronously divided without cytokinesis. Intermediary sporangia display numerous 3-4 μm nuclei at different mitotic stages as well as a thick inner layer with strong affinity for phalloidin. Mature sporangia showed numerous 5-12 μm cell-walled endospores, each containing a 2-4 μm in diameter nucleus. Phalloidin did not bind to the inner layers of mature sporangia or endospores. The development of a "germinative zone" in the inner layer of mature sporangia containing hundreds of nuclei was also confirmed. This study establishes that during the R. seeberi life cycle synchronous nuclear divisions without cytokinesis takes place, resulting in the formation of thousands of nuclei. Cytokinesis, on the other hand, is a 1-time event and occurs in the latest stages of intermediate sporangia, after the formation of thousands of nuclei and just before mature sporangia development. PMID:26461427

  15. Managing multiple image stacks from confocal laser scanning microscopy

    NASA Astrophysics Data System (ADS)

    Zerbe, Joerg; Goetze, Christian H.; Zuschratter, Werner

    1999-05-01

    A major goal in neuroanatomy is to obtain precise information about the functional organization of neuronal assemblies and their interconnections. Therefore, the analysis of histological sections frequently requires high resolution images in combination with an overview about the structure. To overcome this conflict we have previously introduced a software for the automatic acquisition of multiple image stacks (3D-MISA) in confocal laser scanning microscopy. Here, we describe a Windows NT based software for fast and easy navigation through the multiple images stacks (MIS-browser), the visualization of individual channels and layers and the selection of user defined subregions. In addition, the MIS browser provides useful tools for the visualization and evaluation of the datavolume, as for instance brightness and contrast corrections of individual layers and channels. Moreover, it includes a maximum intensity projection, panning and zoom in/out functions within selected channels or focal planes (x/y) and tracking along the z-axis. The import module accepts any tiff-format and reconstructs the original image arrangement after the user has defined the sequence of images in x/y and z and the number of channels. The implemented export module allows storage of user defined subregions (new single image stacks) for further 3D-reconstruction and evaluation.

  16. Improving transverse resolution of confocal microscopy through spatiotemporal modulation

    NASA Astrophysics Data System (ADS)

    Wang, Baokai; Zou, Limin; Zhang, Su; Tan, Jiubin

    2015-11-01

    A new method is proposed in this paper to improve transverse resolution of a confocal microscope. By setting up the model of a confocal microscope system through spatiotemporal modulation with moving gratings or acousto-optical modulation without defocus distance under coherent light illumination and deducing two-dimensional coherent image formula and transfer function, simulation tests are run with or without spatiotemporal modulation to prove the effectiveness of the proposed method. Simulation results indicate the proposed method can be used to improve the transverse resolution of a confocal microscope system.

  17. Laser ablation of basal cell carcinomas guided by confocal microscopy

    NASA Astrophysics Data System (ADS)

    Sierra, Heidy; Cordova, Miguel; Nehal, Kishwer; Rossi, Anthony; Chen, Chih-Shan Jason; Rajadhyaksha, Milind

    2016-02-01

    Laser ablation offers precise and fast removal of superficial and early nodular types of basal cell carcinomas (BCCs). Nevertheless, the lack of histological confirmation has been a limitation. Reflectance confocal microscopy (RCM) imaging combined with a contrast agent can offer cellular-level histology-like feedback to detect the presence (or absence) of residual BCC directly on the patient. We conducted an ex vivo bench-top study to provide a set of effective ablation parameters (fluence, number of passes) to remove superficial BCCs while also controlling thermal coagulation post-ablation to allow uptake of contrast agent. The results for an Er:YAG laser (2.9 um and pulse duration 250us) show that with 6 passes of 25 J/cm2, thermal coagulation can be effectively controlled, to allow both the uptake of acetic acid (contrast agent) and detection of residual (or absence) BCCs. Confirmation was provided with histological examination. An initial in vivo study on 35 patients shows that the uptake of contrast agent aluminum chloride) and imaging quality is similar to that observed in the ex vivo study. The detection of the presence of residual tumor or complete clearance was confirmed in 10 wounds with (additional) histology and in 25 lesions with follow-up imaging. Our results indicate that resolution is sufficient but further development and use of appropriate contrast agent are necessary to improve sensitivity and specificity. Advances in RCM technology for imaging of lateral and deep margins directly on the patient may provide less invasive, faster and less expensive image-guided approaches for treatment of BCCs.

  18. Measuring Corneal Haze by Using Scheimpflug Photography and Confocal Microscopy

    PubMed Central

    McLaren, Jay W.; Wacker, Katrin; Kane, Katrina M.; Patel, Sanjay V.

    2016-01-01

    Purpose We compared corneal backscatter estimated from a Scheimpflug camera with backscatter estimated from a clinical confocal microscope across a wide range of corneal haze. Methods A total of 59 corneas from 35 patients with a range of severity of Fuchs' endothelial corneal dystrophy and 15 corneas from 9 normal participants were examined using a Scheimpflug camera (Pentacam) and a confocal microscope (ConfoScan 4). The mean image brightness from the anterior 120 μm, midcornea, and posterior 60 μm of the cornea across the central 2 mm recorded by the Scheimpflug camera and analogous regions from the confocal microscope were measured and standardized. Differences between instruments and correlations between backscatter and disease severity were determined by using generalized estimating equation models. Results Backscatter measured by the two instruments in the anterior and midcornea were correlated (r = 0.67 and 0.43, respectively, P < 0.001), although in the posterior cornea they were not correlated (r = 0.13, P = 0.66). Measured with the Scheimpflug camera, mean backscatter from the anterior and midcornea were greater, whereas backscatter from the posterior cornea was lower (P < 0.001) than that measured by the confocal microscope. Backscatter from the anterior cornea was correlated with disease severity for both instruments (Scheimpflug, r = 0.55, P < 0.001; confocal, r = 0.49, P = 0.003). Conclusions The Scheimpflug camera and confocal microscope should not be used interchangeably to measure corneal haze. The ability to detect changes in backscatter with disease severity is superior with the Scheimpflug camera. However, the confocal microscope provides higher resolution of corneal structure. PMID:26803798

  19. Progress in reflectance confocal microscopy for imaging oral tissues in vivo

    NASA Astrophysics Data System (ADS)

    Peterson, Gary; Zanoni, Daniella K.; Migliacci, Jocelyn; Cordova, Miguel; Rajadhyaksha, Milind; Patel, Snehal

    2016-02-01

    We report progress in development and feasibility testing of reflectance confocal microscopy (RCM) for imaging in the oral cavity of humans. We adapted a small rigid relay telescope (120mm long x 14mm diameter) and a small water immersion objective lens (12mm diameter, NA 0.7) to a commercial handheld RCM scanner (Vivascope 3000, Caliber ID, Rochester NY). This scanner is designed for imaging skin but we adapted the front end (the objective lens and the stepper motor that axially translates) for intra-oral use. This adaption required a new approach to address the loss of the automated stepper motor for acquisition of images in depth. A helical spring-like cap (with a coverslip to contact tissue) was designed for approximately 150 um of travel. Additionally other methods for focusing optics were designed and evaluated. The relay telescope optics is being tested in a clinical setting. With the capture of video and "video-mosaicing", extended areas can be imaged. The feasibility of imaging oral tissues was initially investigated in volunteers. RCM imaging in buccal mucosa in vivo shows nuclear and cellular detail in the epithelium and epithelial junction, and connective tissue and blood flow in the underlying lamina propria. Similar detail, including filiform and fungiform papillae, can be seen on the tongue in vivo. Clinical testing during head and neck surgery is now in progress and patients are being imaged for both normal tissue and cancerous margins in lip and tongue mucosa.

  20. In vivo confocal microscopy of meibomian glands in primary blepharospasm

    PubMed Central

    Lin, Tong; Gong, Lan

    2016-01-01

    Abstract The aim of the study was to evaluate the morphological changes of meibomian glands (MGs) in primary blepharospasm (PBS) by in vivo laser scanning confocal microscopy (LSCM) and to investigate the correlations between clinical data of PBS and LSCM parameters of MGs. This prospective and case–control study recruited 30 consecutive PBS patients and 30 age- and gender-matched healthy controls. After questionnaire assessments of ocular surface disease index (OSDI), Jankovic rating scale, and blepharospasm disability index, all subjects underwent blink rate evaluation, tear film break-up time (TBUT), corneal fluorescein staining (CFS), Schirmer test, MG expressibility, meibum quality, MG dropout, and LSCM examination of the MGs. The main LSCM outcomes included the mean MG acinar area and density, orifice diameter, meibum secretion reflectivity, acinar irregularity, and inhomogeneity of interstice and acinar wall. The PBS patients had significantly higher blink rate, higher OSDI and CFS scores, lower TBUT and Schirmer test value, and worse MG expressibility than the controls (All P < 0.05), whereas meibum quality showed no difference (P > 0.05). The PBS patients showed lower values of MG acinar area, orifice diameter and meibum secretion reflectivity, and higher scores of acinar irregularity and inhomogeneity of interstices than the controls (All P < 0.05). For the PBS patients, the severity of blepharospasm evaluated by JCR scale was strong correlated with MG acinar area (P < 0.001), orifice diameter (P = 0.002), meibum secretion reflectivity (P = 0.002), and MG acinar irregularity (P = 0.013). The MG expressibility was significantly correlated to MG acinar area (P = 0.039), orifice diameter (P < 0.001), and MG acinar irregularity (P = 0.014). The OSDI score was moderate correlated with MG acinar irregularity (P = 0.016), whereas the TBUT value was positively correlated with MG acinar area (P = 0.045) and negatively correlated to MG acinar

  1. Confocal Microscopy of Jammed Matter: From Elasticity to Granular Thermodynamics

    NASA Astrophysics Data System (ADS)

    Jorjadze, Ivane

    Packings of particles are ubiquitous in nature and are of interest not only to the scientific community but also to the food, pharmaceutical, and oil industries. In this thesis we use confocal microscopy to investigate packing geometry and stress transmission in 3D jammed particulate systems. By introducing weak depletion attraction we probe the accessible phase-space and demonstrate that a microscopic approach to jammed matter gives validity to statistical mechanics framework, which is intriguing because our particles are not thermally activated. We show that the fluctuations of the local packing parameters can be successfully captured by the recently proposed 'granocentric' model, which generates packing statistics according to simple stochastic processes. This model enables us to calculate packing entropy and granular temperature, the so-called 'compactivity', therefore, providing a basis for a statistical mechanics of granular matter. At a jamming transition point at which there are formed just enough number of contacts to guarantee the mechanical stability, theoretical arguments suggest a singularity which gives rise to the surprising scaling behavior of the elastic moduli and the microstructure, as observed in numerical simulations. Since the contact network in 3D is typically hidden from view, experimental test of the scaling law between the coordination number and the applied pressure is lacking in the literature. Our data show corrections to the linear scaling of the pressure with density which takes into account the creation of contacts. Numerical studies of vibrational spectra, in turn, reveal sudden features such as excess of low frequency modes, dependence of mode localization and structure on the pressure. Chapter four describes the first calculation of vibrational density of states from the experimental 3D data and is in qualitative agreement with the analogous computer simulations. We study the configurational role of the pressure and demonstrate

  2. High-resolution confocal Raman microscopy using pixel reassignment.

    PubMed

    Roider, Clemens; Ritsch-Marte, Monika; Jesacher, Alexander

    2016-08-15

    We present a practical modification of fiber-coupled confocal Raman scanning microscopes that is able to provide high confocal resolution in conjunction with high light collection efficiency. For this purpose, the single detection fiber is replaced by a hexagonal lenslet array in combination with a hexagonally packed round-to-linear multimode fiber bundle. A multiline detector is used to collect individual Raman spectra for each fiber. Data post-processing based on pixel reassignment allows one to improve the lateral resolution by up to 41% compared to a single fiber of equal light collection efficiency. We present results from an experimental implementation featuring seven collection fibers, yielding a resolution improvement of about 30%. We believe that our implementation represents an attractive upgrade for existing confocal Raman microscopes that employ multi-line detectors. PMID:27519099

  3. Reflectance confocal microscopy of red blood cells: simulation and experiment

    PubMed Central

    Zeidan, Adel; Yelin, Dvir

    2015-01-01

    Measuring the morphology of red blood cells is important for clinical diagnosis, providing valuable indications on a patient’s health. In this work, we have simulated the appearance of normal red blood cells under a reflectance confocal microscope and discovered unique relations between the morphological parameters and the resulting characteristic interference patterns of the cell. The simulation results showed good agreement with in vitro reflectance confocal images of red blood cells, acquired using spectrally encoded flow cytometry that imaged the cells in a linear flow without artificial staining. By matching the simulated patterns to confocal images of the cells, this method could be used for measuring cell morphology in three dimensions and for studying their physiology. PMID:26600999

  4. FTIR microscopy and confocal Raman microscopy for studying lateral drug diffusion from a semisolid formulation.

    PubMed

    Gotter, B; Faubel, W; Neubert, R H H

    2010-01-01

    Fourier transform infrared (FTIR) microscopy was applied to obtain information on lateral drug diffusion of dithranol in artificial acceptor membranes. Lateral (2D) drug distribution into an artificial membrane was investigated on an area of 300microm x 1000microm with a lateral resolution of 25microm x 25microm by integrating a specific IR band located at 1430cm(-1). The concentration profiles show a heterogeneous distribution of dithranol particles resulting in non-uniform drug diffusion. Use of the FTIR microscope either in the transmission or in the reflection mode was restricted to a thickness of the DDC membrane <15microm. The third dimension (depth profile) was analysed by means of confocal Raman microscopy (CRM). In an artificial membrane, the depth range from a minimum of 1.5microm up to a maximum of 49microm was analysed for dithranol distribution. PMID:19615444

  5. Confocal Raman microscopy for identification of bacterial species in biofilms

    NASA Astrophysics Data System (ADS)

    Beier, Brooke D.; Quivey, Robert G.; Berger, Andrew J.

    2011-03-01

    Implemented through a confocal microscope, Raman spectroscopy has been used to distinguish between biofilm samples of two common oral bacteria species, Streptococcus sanguinis and mutans, which are associated with healthy and cariogenic plaque, respectively. Biofilms of these species are studied as a model of dental plaque. A prediction model has been calibrated and validated using pure biofilms. This model has been used to identify the species of transferred and dehydrated samples (much like a plaque scraping) as well as hydrated biofilms in situ. Preliminary results of confocal Raman mapping of species in an intact two-species biofilm will be shown.

  6. Full-field interferometric confocal microscopy using a VCSEL array

    PubMed Central

    Redding, Brandon; Bromberg, Yaron; Choma, Michael A.; Cao, Hui

    2014-01-01

    We present an interferometric confocal microscope using an array of 1200 VCSELs coupled to a multimode fiber. Spatial coherence gating provides ~18,000 continuous virtual pinholes allowing an entire en face plane to be imaged in a snapshot. This approach maintains the same optical sectioning as a scanning confocal microscope without moving parts, while the high power of the VCSEL array (~5 mW per laser) enables high-speed image acquisition with integration times as short as 100 µs. Interferometric detection also recovers the phase of the image, enabling quantitative phase measurements and improving the contrast when imaging phase objects. PMID:25078199

  7. Spectral confocal reflection microscopy using a white light source

    NASA Astrophysics Data System (ADS)

    Booth, M.; Juškaitis, R.; Wilson, T.

    2008-08-01

    We present a reflection confocal microscope incorporating a white light supercontinuum source and spectral detection. The microscope provides images resolved spatially in three-dimensions, in addition to spectral resolution covering the wavelength range 450-650nm. Images and reflection spectra of artificial and natural specimens are presented, showing features that are not normally revealed in conventional microscopes or confocal microscopes using discrete line lasers. The specimens include thin film structures on semiconductor chips, iridescent structures in Papilio blumei butterfly scales, nacre from abalone shells and opal gemstones. Quantitative size and refractive index measurements of transparent beads are derived from spectral interference bands.

  8. Resolution doubling using confocal microscopy via analogy with structured illumination microscopy

    NASA Astrophysics Data System (ADS)

    Hayashi, Shinichi

    2016-08-01

    Structured illumination microscopy (SIM) is a super-resolution fluorescence microscopy with a 2-fold higher lateral resolution than conventional wide-field fluorescence (WF) microscopy. Confocal fluorescence (CF) microscopy has approximately the same optical cutoff frequency as SIM; however, the maximum theoretical increase in lateral resolution over that of WF is 1.4-fold with an infinitesimal pinhole diameter. Quantitative comparisons based on an analytical imaging formula revealed that modulation transfer functions (MTFs) of SIM reconstructed images before postprocessing are nearly identical to those of CF images recorded with an infinitesimal pinhole diameter. Here, we propose a new method using an adequate pinhole diameter combined with the use of an apodized Fourier inverse filter to increase the lateral resolution of CF images to as much as that SIM images without significant noise degradation in practice. Furthermore, the proposed method does not require a posteriori parameterization and has reproducibility. This approach can be easily applied to conventional laser scanning CF, spinning disk CF, and multiphoton microscopies.

  9. WHOLE INSECT AND MAMMALIAN EMBRYO IMAGING WITH CONFOCAL MICROSCOPY: MORPHOLOGY AND APOPTOSIS

    EPA Science Inventory

    Background: After fluorochromes are incorporated into cells, tissues, and organisms, confocal microscopy can be used to observe three-dimensional structures. LysoTracker Red (LT) is a paraformaldehyde fixable probe that concentrates into acidic compartments of cells and indicates...

  10. Ex Vivo (Fluorescence) Confocal Microscopy in Surgical Pathology: State of the Art.

    PubMed

    Ragazzi, Moira; Longo, Caterina; Piana, Simonetta

    2016-05-01

    First developed in 1957, confocal microscopy is a powerful imaging tool that can be used to obtain near real-time reflected light images of untreated human tissue with nearly histologic resolution. Besides its research applications, in the last decades, confocal microscopy technology has been proposed as a useful device to improve clinical diagnosis, especially in ophthalmology, dermatology, and endomicroscopy settings, thanks to advances in instrument development. Compared with the wider use of the in vivo tissue assessment, ex vivo applications of confocal microscopy are not fully explored. A comprehensive review of the current literature was performed here, focusing on the reliable applications of ex vivo confocal microscopy in surgical pathology and on some potential evolutions of this new technique from pathologists' viewpoint. PMID:27058244

  11. CONFOCAL MICROSCOPY SYSTEM PERFORMANCE: SPECTROSCOPY AND FOUNDATIONS FOR QUANTITATION

    EPA Science Inventory

    The confocal laser-scanning microscope (CLSM) has enormous potential in many biological fields. The reliability of the CLSM to obtain specific measurements and quantify fluorescence data is dependent on using a correctly aligned machine that contains a stable laser power. For man...

  12. CONFOCAL MICROSCOPY SYSTEM PERFORMANCE: FOUNDATIONS FOR CALIBRATION, QUANTITATION AND SPECTROSCOPY

    EPA Science Inventory

    The confocal laser-scanning microscope (CLSM) has enormous potential in many biological fields. The goal of a CLSM is to acquire and quantify fluorescence and in some instruments acquire spectral characterization of emitted signals. The accuracy of these measurements demands that...

  13. Laser scanning confocal microscopy: history, applications, and related optical sectioning techniques.

    PubMed

    Paddock, Stephen W; Eliceiri, Kevin W

    2014-01-01

    Confocal microscopy is an established light microscopical technique for imaging fluorescently labeled specimens with significant three-dimensional structure. Applications of confocal microscopy in the biomedical sciences include the imaging of the spatial distribution of macromolecules in either fixed or living cells, the automated collection of 3D data, the imaging of multiple labeled specimens and the measurement of physiological events in living cells. The laser scanning confocal microscope continues to be chosen for most routine work although a number of instruments have been developed for more specific applications. Significant improvements have been made to all areas of the confocal approach, not only to the instruments themselves, but also to the protocols of specimen preparation, to the analysis, the display, the reproduction, sharing and management of confocal images using bioinformatics techniques. PMID:24052346

  14. The use of reflectance confocal microscopy in selected inflammatory skin diseases.

    PubMed

    Białek-Galas, Kamila; Wielowieyska-Szybińska, Dorota; Dyduch, Grzegorz; Wojas-Pelc, Anna

    2015-06-01

    Reflectance confocal microscopy is a modern, non-invasive diagnostic method that enables real-time imaging of the epidermis and upper layers of the dermis with nearly histological precision and high contrast. The application of this technology to skin imaging during the last years has resulted in progress of dermatological diagnosis, providing virtual access to living skin, without the need for conventional histopathology. The presented method potentially has broad application in the diagnosis of skin diseases. This article provides a summary of the latest reports and previous achievements in the field of reflectance confocal microscopy. General characteristics of confocal images in selected inflammatory skin diseases are presented. PMID:26247522

  15. Cytosolic pH gradients in cultured neuronal cell lines studied by laser scanning confocal microscopy, real-time confocal microscopy, and spectral imaging microscopy

    NASA Astrophysics Data System (ADS)

    Sanchez-Armass, Sergio; Sennoune, Souad; Martinez, Gloria M.; Ortega, Filiberta; Martinez-Zaguilan, Raul

    2002-06-01

    Changes in intracellular pH are important for the regulation of many physiological processes including: cell growth and differentiation, exocytosis, synaptic transmission, cell motility and invasion, to name a few. In pathological states such as cancer and diabetes, pH regulation is known to be altered. Nevertheless the physiological and pathological significance of this ion, there are still many gaps in our knowledge. The advent of fluorescent pH probes to monitor this ion, has substantially accelerated its study. New advances in the methods of detection of this ion by fluorescence-based approaches have also helped us to understand more about the regulation of cytosolic pH. This study evaluates the usefulness of real time confocal imaging microscopy, laser scanning confocal microscopy, and spectral imaging microscopy to the study of pH. These approaches exhibit unsurpassed temporal, spatial, and spectral resolution and are complementary. We employed cell lines derived from the brain exhibiting soma and dendrites. The existence of cell polarity suggests that the different protein composition/micro environment in discrete subcellular domains may affect the properties of fluorescent ion indicators. We performed in situ calibration of pH probes in discrete cellular regions of the neuronal cell lines to eliminate any bias in data interpretation because of differences in cell thickness/micro environment. We show that there are distinct in situ calibration parameters in different cellular domains. These indicate that in situ titrations in discrete cellular domains are needed to assign pH values. We concluded that there are distinct pH micro domains in discrete cellular regions of neuronal cell lines.

  16. Anti-translational research: from the bedside back to the bench for reflectance confocal microscopy

    NASA Astrophysics Data System (ADS)

    Gareau, Daniel

    2014-03-01

    The reflectance confocal microscope has made translational progress in dermatology. 0.5 micrometer lateral resolution, 0.75mm field-of-view and excellent temporal resolution at ~15 frames/second serve the VivaScope well in the clinic, but it may be overlooked in basic research. This work reviews high spatiotemporal confocal microscopy and presents images acquired of various samples: zebra fish embryo where melanocytes with excellent contrast overly the spinal column, chicken embryo, where myocardium is seen moving at 15 frames/ second, calcium spikes in dendrites (fluorescence mode) just beyond the temporal resolution, and human skin where blood cells race through the artereovenous microvasculature. For an introduction to confocal microscopy, see: http://dangareau.net.s69818.gridserver.com/science/confocal-microscopy

  17. Resolution doubling in fluorescence microscopy with confocal spinning-disk image scanning microscopy

    PubMed Central

    Schulz, Olaf; Pieper, Christoph; Clever, Michaela; Pfaff, Janine; Ruhlandt, Aike; Kehlenbach, Ralph H.; Wouters, Fred S.; Großhans, Jörg; Bunt, Gertrude; Enderlein, Jörg

    2013-01-01

    We demonstrate how a conventional confocal spinning-disk (CSD) microscope can be converted into a doubly resolving image scanning microscopy (ISM) system without changing any part of its optical or mechanical elements. Making use of the intrinsic properties of a CSD microscope, we illuminate stroboscopically, generating an array of excitation foci that are moved across the sample by varying the phase between stroboscopic excitation and rotation of the spinning disk. ISM then generates an image with nearly doubled resolution. Using conventional fluorophores, we have imaged single nuclear pore complexes in the nuclear membrane and aggregates of GFP-conjugated Tau protein in three dimensions. Multicolor ISM was shown on cytoskeletal-associated structural proteins and on 3D four-color images including MitoTracker and Hoechst staining. The simple adaptation of conventional CSD equipment allows superresolution investigations of a broad variety of cell biological questions. PMID:24324140

  18. Confocal microscopy for astrocyte in vivo imaging: Recycle and reuse in microscopy

    PubMed Central

    Pérez-Alvarez, Alberto; Araque, Alfonso; Martín, Eduardo D.

    2013-01-01

    In vivo imaging is one of the ultimate and fundamental approaches for the study of the brain. Two-photon laser scanning microscopy (2PLSM) constitutes the state-of-the-art technique in current neuroscience to address questions regarding brain cell structure, development and function, blood flow regulation and metabolism. This technique evolved from laser scanning confocal microscopy (LSCM), which impacted the field with a major improvement in image resolution of live tissues in the 1980s compared to widefield microscopy. While nowadays some of the unparalleled features of 2PLSM make it the tool of choice for brain studies in vivo, such as the possibility to image deep within a tissue, LSCM can still be useful in this matter. Here we discuss the validity and limitations of LSCM and provide a guide to perform high-resolution in vivo imaging of the brain of live rodents with minimal mechanical disruption employing LSCM. We describe the surgical procedure and experimental setup that allowed us to record intracellular calcium variations in astrocytes evoked by sensory stimulation, and to monitor intact neuronal dendritic spines and astrocytic processes as well as blood vessel dynamics. Therefore, in spite of certain limitations that need to be carefully considered, LSCM constitutes a useful, convenient, and affordable tool for brain studies in vivo. PMID:23658537

  19. Comparison between optical-resolution photoacoustic microscopy and confocal laser scanning microscopy for turbid sample imaging

    NASA Astrophysics Data System (ADS)

    U-Thainual, Paweena; Kim, Do-Hyun

    2015-12-01

    Optical-resolution photoacoustic microscopy (ORPAM) in theory provides lateral resolution equivalent to the optical diffraction limit. Scattering media, such as biological turbid media, attenuates the optical signal and also alters the diffraction-limited spot size of the focused beam. The ORPAM signal is generated only from a small voxel in scattering media with dimensions equivalent to the laser spot size after passing through scattering layers and is detected by an acoustic transducer, which is not affected by optical scattering. Thus, both ORPAM and confocal laser scanning microscopy (CLSM) reject scattered light. A multimodal optical microscopy platform that includes ORPAM and CLSM was constructed, and the lateral resolution of both modes was measured using patterned thin metal film with and without a scattering barrier. The effect of scattering media on the lateral resolution was studied using different scattering coefficients and was compared to computational results based on Monte Carlo simulations. It was found that degradation of lateral resolution due to optical scattering was not significant for either ORPAM or CLSM. The depth discrimination capability of ORPAM and CLSM was measured using microfiber embedded in a light scattering phantom material. ORPAM images demonstrated higher contrast compared to CLSM images partly due to reduced acoustic signal scattering.

  20. Comparison between optical-resolution photoacoustic microscopy and confocal laser scanning microscopy for turbid sample imaging.

    PubMed

    U-Thainual, Paweena; Kim, Do-Hyun

    2015-12-01

    Optical-resolution photoacoustic microscopy (ORPAM) in theory provides lateral resolution equivalent to the optical diffraction limit. Scattering media, such as biological turbid media, attenuates the optical signal and also alters the diffraction-limited spot size of the focused beam. The ORPAM signal is generated only from a small voxel in scattering media with dimensions equivalent to the laser spot size after passing through scattering layers and is detected by an acoustic transducer, which is not affected by optical scattering. Thus, both ORPAM and confocal laser scanning microscopy (CLSM) reject scattered light. A multimodal optical microscopy platform that includes ORPAM and CLSM was constructed, and the lateral resolution of both modes was measured using patterned thin metal film with and without a scattering barrier. The effect of scattering media on the lateral resolution was studied using different scattering coefficients and was compared to computational results based on Monte Carlo simulations. It was found that degradation of lateral resolution due to optical scattering was not significant for either ORPAM or CLSM. The depth discrimination capability of ORPAM and CLSM was measured using microfiber embedded in a light scattering phantom material. ORPAM images demonstrated higher contrast compared to CLSM images partly due to reduced acoustic signal scattering. PMID:26256640

  1. In-vivo multi-spectral confocal microscopy

    NASA Astrophysics Data System (ADS)

    Rouse, Andrew R.; Udovich, Joshua A.; Gmitro, Arthur F.

    2005-03-01

    A multi-spectral confocal microendoscope (MCME) for in-vivo imaging has been developed. The MCME employs a flexible fiber-optic catheter coupled to a slit-scan confocal microscope with an imaging spectrometer. The catheter consists of a fiber-optic imaging bundle linked to a miniature objective and focus assembly. The focus mechanism allows for imaging to a maximum tissue depth of 200 microns. The 3mm diameter catheter may be used on its own or routed though the instrument channel of a commercial endoscope. The confocal nature of the system provides optical sectioning with 3 micron lateral resolution and 30 micron axial resolution. The system incorporates two laser sources and is therefore capable of simultaneous acquisition of spectra from multiple dyes using dual excitation. The prism based multi-spectral detection assembly is typically configured to collect 30 spectral samples over the visible range. The spectral sampling rate varies from 4nm/pixel at 490nm to 8nm/pixel at 660nm and the minimum resolvable wavelength difference varies from 8nm to 16nm over the same spectral range. Each of these characteristics are primarily dictated by the dispersion characteristics of the prism. The MCME is designed to examine cellular structures during optical biopsy and to exploit the diagnostic information contained within the spectral domain. The primary applications for the system include diagnosis of disease in the gastro-intestinal tract and female reproductive system. In-vitro, and ex-vivo multi-spectral results are presented.

  2. Enhanced confocal microscopy and ophthalmoscopy with polarization imaging

    NASA Astrophysics Data System (ADS)

    Campbell, Melanie C. W.; Bueno, Juan M.; Cookson, Christopher J.; Liang, Qingyuan; Kisilak, Marsha L.; Hunter, Jennifer J.

    2005-09-01

    We previously developed a Mueller matrix formalism to improve confocal imaging in microscopes and ophthalmoscopes. Here we describe a procedure simplified by firstly introducing a generator of polarization states in the illumination pathway of a confocal scanning laser microscope and secondly computing just four elements of the Mueller matrix of any sample and instrument combination. Using a subset of Mueller matrix elements, the best images are reconstructed. The method was tested for samples with differing properties (specular, diffuse and partially depolarizing). Images were also studied of features at the rear of the eye. The best images obtained with this technique were compared to the original images and those obtained from frame averaging. Images corresponding to non-polarized incident light were also computed. For all cases, the best reconstructed images were of better quality than both the original and frame-averaged images. The best reconstructed images also showed an improvement compared with the images corresponding to non polarized light. This methodology will have broad application in biomedical imaging.

  3. Variational attenuation correction in two-view confocal microscopy

    PubMed Central

    2013-01-01

    Background Absorption and refraction induced signal attenuation can seriously hinder the extraction of quantitative information from confocal microscopic data. This signal attenuation can be estimated and corrected by algorithms that use physical image formation models. Especially in thick heterogeneous samples, current single view based models are unable to solve the underdetermined problem of estimating the attenuation-free intensities. Results We present a variational approach to estimate both, the real intensities and the spatially variant attenuation from two views of the same sample from opposite sides. Assuming noise-free measurements throughout the whole volume and pure absorption, this would in theory allow a perfect reconstruction without further assumptions. To cope with real world data, our approach respects photon noise, estimates apparent bleaching between the two recordings, and constrains the attenuation field to be smooth and sparse to avoid spurious attenuation estimates in regions lacking valid measurements. Conclusions We quantify the reconstruction quality on simulated data and compare it to the state-of-the art two-view approach and commonly used one-factor-per-slice approaches like the exponential decay model. Additionally we show its real-world applicability on model organisms from zoology (zebrafish) and botany (Arabidopsis). The results from these experiments show that the proposed approach improves the quantification of confocal microscopic data of thick specimen. PMID:24350574

  4. The use of laser scanning confocal microscopy (LSCM) in materials science.

    PubMed

    Hovis, D B; Heuer, A H

    2010-12-01

    Laser scanning confocal microscopes are essential and ubiquitous tools in the biological, biochemical and biomedical sciences, and play a similar role to scanning electron microscopes in materials science. However, modern laser scanning confocal microscopes have a number of advantages for the study of materials, in addition to their obvious uses for high resolution reflected and transmitted light optical microscopy. In this paper, we provide several examples that exploit the laser scanning confocal microscope's capabilities of pseudo-infinite depth of field imaging, topographic imaging, photo-stimulated luminescence imaging and Raman spectroscopic imaging. PMID:21077878

  5. Reconstruction and exploration of three-dimensional confocal microscopy data in an immersive virtual environment.

    PubMed

    Ai, Zhuming; Chen, Xue; Rasmussen, Mary; Folberg, Robert

    2005-07-01

    An immersive virtual environment for interactive three-dimensional reconstruction and exploration of confocal microscopy data is presented. For some structures automatic alignment of serial sections can lead to geometric distortions. The superior visual feedback of a Virtual Reality system is used to aid in registering and aligning serial sections interactively. An ImmersaDesk Virtual Reality display system is used for display and interaction with the volumetric confocal data. Detailed methods for handling both single-section and multi-section confocal data are described. PMID:15893451

  6. Digital image acquisition in in vivo confocal microscopy.

    PubMed

    Petroll, W M; Cavanagh, H D; Lemp, M A; Andrews, P M; Jester, J V

    1992-01-01

    A flexible system for the real-time acquisition of in vivo images has been developed. Images are generated using a tandem scanning confocal microscope interfaced to a low-light-level camera. The video signal from the camera is digitized and stored using a Gould image processing system with a real-time digital disk (RTDD). The RTDD can store up to 3200 512 x 512 pixel images at video rates (30 images s-1). Images can be input directly from the camera during the study, or off-line from a Super VHS video recorder. Once a segment of experimental interest is digitized onto the RTDD, the user can interactively step through the images, average stable sequences, and identify candidates for further processing and analysis. Examples of how this system can be used to study the physiology of various organ systems in vivo are presented. PMID:1552573

  7. Group refractive index reconstruction with broadband interferometric confocal microscopy

    PubMed Central

    Marks, Daniel L.; Schlachter, Simon C.; Zysk, Adam M.; Boppart, Stephen A.

    2010-01-01

    We propose a novel method of measuring the group refractive index of biological tissues at the micrometer scale. The technique utilizes a broadband confocal microscope embedded into a Mach–Zehnder interferometer, with which spectral interferograms are measured as the sample is translated through the focus of the beam. The method does not require phase unwrapping and is insensitive to vibrations in the sample and reference arms. High measurement stability is achieved because a single spectral interferogram contains all the information necessary to compute the optical path delay of the beam transmitted through the sample. Included are a physical framework defining the forward problem, linear solutions to the inverse problem, and simulated images of biologically relevant phantoms. PMID:18451922

  8. Inverse image alignment method for image mosaicing and video stabilization in fundus indocyanine green angiography under confocal scanning laser ophthalmoscope.

    PubMed

    Zhou, Yongjin; Xue, Hui; Wan, Mingxi

    2003-01-01

    An efficient image registration algorithm, the Inverse Compositional image alignment method based on minimization of Sum of Squared Differences of images, is applied in fundus blood vessel angiography under confocal scanning laser ophthalmoscope, to build image mosaics which have larger field of view without loss of resolution to assist diagnosis. Furthermore, based on similar technique, the angiography video stabilization algorithm is implemented for fundus documenting. The actual underlying models of motion between images and corresponding convergence criteria are also discussed. The experiment results in fundus images demonstrate the effectiveness of the registration scheme. PMID:14575786

  9. Localizing Proteins in Fixed Giardia lamblia and Live Cultured Mammalian Cells by Confocal Fluorescence Microscopy.

    PubMed

    Nyindodo-Ogari, Lilian; Schwartzbach, Steven D; Skalli, Omar; Estraño, Carlos E

    2016-01-01

    Confocal fluorescence microscopy and electron microscopy (EM) are complementary methods for studying the intracellular localization of proteins. Confocal fluorescence microscopy provides a rapid and technically simple method to identify the organelle in which a protein localizes but only EM can identify the suborganellular compartment in which that protein is present. Confocal fluorescence microscopy, however, can provide information not obtainable by EM but required to understand the dynamics and interactions of specific proteins. In addition, confocal fluorescence microscopy of cells transfected with a construct encoding a protein of interest fused to a fluorescent protein tag allows live cell studies of the subcellular localization of that protein and the monitoring in real time of its trafficking. Immunostaining methods for confocal fluorescence microscopy are also faster and less involved than those for EM allowing rapid optimization of the antibody dilution needed and a determination of whether protein antigenicity is maintained under fixation conditions used for EM immunogold labeling. This chapter details a method to determine by confocal fluorescence microscopy the intracellular localization of a protein by transfecting the organism of interest, in this case Giardia lamblia, with the cDNA encoding the protein of interest and then processing these organisms for double label immunofluorescence staining after chemical fixation. Also presented is a method to identify the organelle targeting information in the presequence of a precursor protein, in this case the presequence of the precursor to the Euglena light harvesting chlorophyll a/b binding protein of photosystem II precursor (pLHCPII), using live cell imaging of mammalian COS7 cells transiently transfected with a plasmid encoding a pLHCPII presequence fluorescent protein fusion and stained with organelle-specific fluorescent dyes. PMID:27515076

  10. Corneal confocal microscopy: Recent progress in the evaluation of diabetic neuropathy

    PubMed Central

    Papanas, Nikolaos; Ziegler, Dan

    2015-01-01

    The present brief review discusses recent progress with corneal confocal microscopy for the evaluation of diabetic sensorimotor polyneuropathy. Corneal confocal microscopy is a new, non-invasive and reproducible diagnostic modality, and it can also be easily applied for patient follow up. It enables new perspectives of studying the natural history of diabetic sensorimotor polyneuropathy, severity of nerve fiber pathology and documenting early nerve fiber regeneration after therapeutic intervention. It shows moderate to high sensitivity and specificity for the timely diagnosis of diabetic sensorimotor polyneuropathy. Currently, corneal confocal microscopy is mainly used in specialized centers, but deserves more widespread application for the assessment of diabetic sensorimotor polyneuropathy. Finally, further progress is required in terms of technical improvements for automated nerve fiber quantification and for analysis of larger images. PMID:26221515

  11. Emulation and design of terahertz reflection-mode confocal scanning microscopy based on virtual pinhole

    NASA Astrophysics Data System (ADS)

    Yang, Yong-fa; Li, Qi

    2014-12-01

    In the practical application of terahertz reflection-mode confocal scanning microscopy, the size of detector pinhole is an important factor that determines the performance of spatial resolution characteristic of the microscopic system. However, the use of physical pinhole brings some inconvenience to the experiment and the adjustment error has a great influence on the experiment result. Through reasonably selecting the parameter of matrix detector virtual pinhole (VPH), it can efficiently approximate the physical pinhole. By using this approach, the difficulty of experimental calibration is reduced significantly. In this article, an imaging scheme of terahertz reflection-mode confocal scanning microscopy that is based on the matrix detector VPH is put forward. The influence of detector pinhole size on the axial resolution of confocal scanning microscopy is emulated and analyzed. Then, the parameter of VPH is emulated when the best axial imaging performance is reached.

  12. Corneal confocal microscopy: Recent progress in the evaluation of diabetic neuropathy.

    PubMed

    Papanas, Nikolaos; Ziegler, Dan

    2015-07-01

    The present brief review discusses recent progress with corneal confocal microscopy for the evaluation of diabetic sensorimotor polyneuropathy. Corneal confocal microscopy is a new, non-invasive and reproducible diagnostic modality, and it can also be easily applied for patient follow up. It enables new perspectives of studying the natural history of diabetic sensorimotor polyneuropathy, severity of nerve fiber pathology and documenting early nerve fiber regeneration after therapeutic intervention. It shows moderate to high sensitivity and specificity for the timely diagnosis of diabetic sensorimotor polyneuropathy. Currently, corneal confocal microscopy is mainly used in specialized centers, but deserves more widespread application for the assessment of diabetic sensorimotor polyneuropathy. Finally, further progress is required in terms of technical improvements for automated nerve fiber quantification and for analysis of larger images. PMID:26221515

  13. Measuring skin penetration by confocal Raman microscopy (CRM): correlation to results from conventional experiments

    NASA Astrophysics Data System (ADS)

    Lunter, Dominique; Daniels, Rolf

    2016-03-01

    Confocal Raman microscopy has become an advancing technique in the characterization of drug transport into the skin. In this study the skin penetration of a local anesthetic from a semisolid preparation was investigated. Furthermore, the effect of the chemical enhancers propylene glycol and POE-23-lauryl ether on its penetration was investigated. The results show that confocal Raman microscopy may provide detailed information on the penetration of APIs into the skin and may elucidate their distribution within the skin with high resolution. The results of the CRM analysis are fully in line with those of conventional permeation and penetration experiments.

  14. Sheet-scanned dual-axis confocal (SS-DAC) microscopy using Richardson-Lucy deconvolution

    PubMed Central

    Wang, Danni; Meza, Daphne; Wang, Yu; Gao, Liang; Liu, Jonathan T.C.

    2015-01-01

    We have previously developed a line-scanned dual-axis confocal (LS-DAC) microscope with subcellular resolution suitable for high-frame-rate diagnostic imaging at shallow depths. Due to the loss of confocality along one dimension, the contrast (signal-to-background ratio) of a LS-DAC microscope is deteriorated compared to a point-scanned DAC microscope. However, by using a sCMOS camera for detection, a short oblique light-sheet is imaged at each scanned position. Therefore, by scanning the light sheet in only one dimension, a thin 3D volume is imaged. Both sequential two-dimensional deconvolution and three-dimensional deconvolution are performed on the thin image volume to improve the resolution and contrast of one en face confocal image section at the center of the volume, a technique we call sheet-scanned dual-axis confocal (SS-DAC) microscopy. PMID:26466290

  15. Sheet-scanned dual-axis confocal microscopy using Richardson-Lucy deconvolution.

    PubMed

    Wang, D; Meza, D; Wang, Y; Gao, L; Liu, J T C

    2014-09-15

    We have previously developed a line-scanned dual-axis confocal (LS-DAC) microscope with subcellular resolution suitable for high-frame-rate diagnostic imaging at shallow depths. Due to the loss of confocality along one dimension, the contrast (signal-to-background ratio) of a LS-DAC microscope is deteriorated compared to a point-scanned DAC microscope. However, by using a sCMOS camera for detection, a short oblique light-sheet is imaged at each scanned position. Therefore, by scanning the light sheet in only one dimension, a thin 3D volume is imaged. Both sequential two-dimensional deconvolution and three-dimensional deconvolution are performed on the thin image volume to improve the resolution and contrast of one en face confocal image section at the center of the volume, a technique we call sheet-scanned dual-axis confocal (SS-DAC) microscopy. PMID:26466290

  16. High-speed confocal fluorescence lifetime imaging microscopy by analog mean-delay method

    NASA Astrophysics Data System (ADS)

    Won, Youngjae; Kim, Donguk; Yang, Wenzhong; Kim, Dug Y.

    2010-02-01

    We have demonstrated the high-speed confocal fluorescence lifetime imaging microscopy (FLIM) by analog mean-delay (AMD) method. The AMD method is a new signal processing technique for calculation of fluorescence lifetime and it is very suitable for the high-speed confocal FLIM with good accuracy and photon economy. We achieved the acquisition speed of 7.7 frames per second for confocal FLIM imaging. Here, the highest photon detection rate for one pixel was larger than 125 MHz and averaged photon detection rate was more than 62.5 MHz. Based on our system, we successfully obtained a sequence of confocal fluorescence lifetime images of RBL-2H3 cell labeled with Fluo-3/AM and excited by 4αPDD (TRPV channel agonist) within one second.

  17. Gastric Tissue Damage Analysis Generated by Ischemia: Bioimpedance, Confocal Endomicroscopy, and Light Microscopy

    PubMed Central

    Beltran, Nohra E.; Garcia, Laura E.; Garcia-Lorenzana, Mario

    2013-01-01

    The gastric mucosa ischemic tissular damage plays an important role in critical care patients' outcome, because it is the first damaged tissue by compensatory mechanism during shock. The aim of the study is to relate bioimpedance changes with tissular damage level generated by ischemia by means of confocal endomicroscopy and light microscopy. Bioimpedance of the gastric mucosa and confocal images were obtained from Wistar male rats during basal and ischemia conditions. They were anesthetized, and stain was applied (fluorescein and/or acriflavine). The impedance spectroscopy catheter was inserted and then confocal endomicroscopy probe. After basal measurements and biopsy, hepatic and gastric arteries clamping induced ischemia. Finally, pyloric antrum tissue was preserved in buffered formaldehyde (10%) for histology processing using light microscopy. Confocal images were equalized, binarized, and boundary defined, and infiltrations were quantified. Impedance and infiltrations increased with ischemia showing significant changes between basal and ischemia conditions (P < 0.01). Light microscopy analysis allows detection of general alterations in cellular and tissular integrity, confirming gastric reactance and confocal images quantification increments obtained during ischemia. PMID:23841094

  18. Reflectance confocal microscopy for scarring and non-scarring alopecia real-time assessment.

    PubMed

    Ardigò, Marco; Agozzino, Marina; Franceschini, Chiara; Donadio, Carlo; Abraham, Leonardo Spagnol; Barbieri, Luca; Sperduti, Isabella; Berardesca, Enzo; González, Salvador

    2016-07-01

    Clinical management of alopecia represents one of the major issues in dermatology. Scalp biopsies are not easily accepted because of the high bleeding and sensitive anatomical area. Trichoscopy is routinely used for diagnosis of alopecia, but in several cases lack to provide sufficient information on the status of the disease. Recently, reflectance confocal microscopy demonstrated its usefulness for the evaluation of several inflammatory skin condition and preliminary reports about alopecia have been proposed in the literature. The aim was to identify the confocal features characterizing scarring and non-scarring alopecia. Reflectance confocal microscopy from 86 patients affected by scarring (28 lichen planopilaris and 9 lupus erythematosus) and non-scarring alopecia (30 androgenic alopecia and 19 alopecia areata), were retrospectively, blinded evaluated. Good concordance between different readers on the confocal criteria has been assessed. Statistical significant features, specific for scarring alopecia and non-scarring alopecia have been identified. In this study, data on reflectance confocal microscopy features useful for the differential diagnosis between scarring and non-scarring alopecia have been identified. Further studies focusing on the use of this non-invasive technique in the therapeutic follow-up and distinction of sub-entities of alopecia are still required. PMID:27225248

  19. Clinical applications of in vivo fluorescence confocal laser scanning microscopy

    NASA Astrophysics Data System (ADS)

    Oh, Chilhwan; Park, Sangyong; Kim, Junhyung; Ha, Seunghan; Park, Gyuman; Lee, Gunwoo; Lee, Onseok; Chun, Byungseon; Gweon, Daegab

    2008-02-01

    Living skin for basic and clinical research can be evaluated by Confocal Laser Scanning Microscope (CLSM) non-invasively. CLSM imaging system can achieve skin image its native state either "in vivo" or "fresh biopsy (ex vivo)" without fixation, sectioning and staining that is necessary for routine histology. This study examines the potential fluorescent CLSM with a various exogenous fluorescent contrast agent, to provide with more resolution images in skin. In addition, in vivo fluorescent CLSM researchers will be extended a range of potential clinical application. The prototype of our CLSM system has been developed by Prof. Gweon's group. The operating parameters are composed of some units, such as illuminated wavelength 488 nm, argon illumination power up to 20mW on the skin, objective lens, 0.9NA oil immersion, axial resolution 1.0μm, field of view 200μm x 100μm (lateral resolution , 0.3μm). In human volunteer, fluorescein sodium was administrated topically and intradermally. Animal studies were done in GFP transgenic mouse, IRC mouse and pig skin. For imaging of animal skin, fluorescein sodium, acridine orange, and curcumine were used for fluorescein contrast agent. We also used the GFP transgenic mouse for fluorescein CLSM imaging. In intact skin, absorption of fluorescein sodium by individual corneocyte and hair. Intradermal administrated the fluorescein sodium, distinct outline of keratinocyte cell border could be seen. Curcumin is a yellow food dye that has similar fluorescent properties to fluorescein sodium. Acridin Orange can be highlight nuclei in viable keratinocyte. In vivo CLSM of transgenic GFP mouse enable on in vivo, high resolution view of GFP expressing skin tissue. GFP signals are brightest in corneocyte, kertinocyte, hair and eccrine gland. In intact skin, absorption of fluorescein sodium by individual corneocyte and hair. Intradermal administrated the fluorescein sodium, distinct outline of keratinocyte cell border could be seen. In

  20. Determination of Nanogram Microparticles from Explosives after Real Open-Air Explosions by Confocal Raman Microscopy.

    PubMed

    Zapata, Félix; García-Ruiz, Carmen

    2016-07-01

    Explosives are increasingly being used for terrorist attacks to cause devastating explosions. The detection of their postblast residues after an explosion is a high challenge, which has been barely investigated, particularly using spectroscopic techniques. In this research, a novel methodology using confocal Raman microscopy has been developed for the analysis of postblast residues from 10 open-air explosions caused by 10 different explosives (TNT, RDX, PETN, TATP, HMTD, dynamite, black powder, ANFO, chloratite, and ammonal) commonly used in improvised explosive devices. The methodology for the determination of postblast particles from explosives consisted of examining the samples surfaces with both the naked eye, first, and microscopically (10× and 50×), immediately afterward; and finally, analyzing the selected residues by confocal Raman spectroscopy in order to identify the postblast particles from explosives. Interestingly, confocal Raman microscopy has demonstrated to be highly suitable to rapidly, selectively, and noninvasively analyze postblast microscopic particles from explosives up to the nanogram range. PMID:27281604

  1. Effects of Fluorescein Staining on Laser In Vivo Confocal Microscopy Images of the Cornea

    PubMed Central

    Sindt, Christine W.; Critser, D. Brice; Grout, Trudy K.; Kern, Jami R.

    2012-01-01

    This study was designed to identify whether topical fluorescein, a common ophthalmic tool, affects laser in vivo confocal microscopy of the cornea, a tool with growing applications. Twenty-five eye care specialists were asked to identify presence or absence of fluorescein in 99 confocal micrographs of healthy corneas. Responses were statistically similar to guessing for the epithelium (48% ± 14% of respondents correct per image) and the subbasal nerve plexus (49% ± 11% correct), but results were less clear for the stroma. Dendritic immune cells were quantified in bilateral images from subjects who had been unilaterally stained with fluorescein. Density of dendritic immune cells was statistically similar between the unstained and contralateral stained eyes of 24 contact lens wearers (P = .72) and of 10 nonwearers (P = .53). Overall, the results indicated that fluorescein staining did not interfere with laser confocal microscopy of corneal epithelium, subbasal nerves, or dendritic immune cells. PMID:22363837

  2. MAMMALIAN APOPTOSIS IN WHOLE NEONATAL OVARIES, EMBRYOS AND FETAL LIMBS USING CONFOCAL MICROSCOPY

    EPA Science Inventory

    The emergence of confocal laser scanning microscopy (CLSM) as a technique capable of optically generating serial sections of whole-mount tissue and then reassembling the computer-stored images as a virtual 3-dimensional structure offers a viable alternative to traditional section...

  3. MAMMALIAN APOPTOSIS IN WHOLE NEONATAL OVARIES USING CONFOCAL LASER SCANNING MICROSCOPY

    EPA Science Inventory

    MAMMALIAN APOPTOSIS IN WHOLE NEONATAL OVARIES USING CONFOCAL LASER SCANNING MICROSCOPY

    Robert M. Zucker Susan C. Jeffery and Sally D. Perreault

    Reproductive Toxicology Division, National Health and Environmental Effects Research Laboratory, U.S. Environmental Prot...

  4. Confocal laser scanning microscopy of apoptosis in organogenesis-stage mouse embryos

    EPA Science Inventory

    Confocal laser scanning microscopy combined with a vital stain has been used to study apoptosis in organogenesis-stage mouse embryos. In order to achieve optical sectioning through embryos, it was necessary to use low power objectives and to prepare the sample appropriately. Mous...

  5. Confocal microscopy studies of morphology and apoptosis: ovaries, limbs, embryos and insects

    EPA Science Inventory

    Confocal laser scanning microscopy (CLSM) is a technique that is capable of generating serial sections of whole-mount tissue and then reassembling the computer-stored images as a virtual 3-dimensional structure. In many ways CLSM offers an alternative to traditional sectioning ap...

  6. CONFOCAL MICROSCOPY SYSTEM PERFORMANCE: FOUNDATIONS FOR QUANTIFYING CYTOMETRIC APPLICATIONS WITH SPECTROSCOPIC INSTRUMENTS

    EPA Science Inventory

    The confocal laser-scanning microscopy (CLSM) has enormous potential in many biological fields. The goal of a CLSM is to acquire and quantify fluorescence and in some instruments acquire spectral characterization of the emitted signal. The accuracy of these measurements demands t...

  7. Confocal Microscopy of thick tissue sections: 3D Visualization of rat kidney glomeruli

    EPA Science Inventory

    Confocal laser scanning microscopy (CLSM) as a technique capable of generating serial sections of whole-mount tissue and then reassembling the computer-acquired images as a virtual 3-dimentional structure. In many ways CLSM offers an alternative to traditional sectioning approac...

  8. Confocal microscopy of thick tissue sections: 3D visualizaiton of rat kidney glomeruli

    EPA Science Inventory

    Confocal laser scanning microscopy (CLSM) as a technique capable of generating serial sections of whole-mount tissue and then reassembling the computer-acquired images as a virtual 3-dimentional structure. In many ways CLSM offers an alternative to traditional sectioning approac...

  9. Visualizing the Tumor Microenvironment of Liver Metastasis by Spinning Disk Confocal Microscopy.

    PubMed

    Babes, Liane; Kubes, Paul

    2016-01-01

    Intravital microscopy has evolved into an invaluable technique to study the complexity of tumors by visualizing individual cells in live organisms. Here, we describe a method for employing intravital spinning disk confocal microscopy to picture high-resolution tumor-stroma interactions in real time. We depict in detail the surgical procedures to image various tumor microenvironments and different cellular components in the liver. PMID:27581024

  10. Swept confocally-aligned planar excitation (SCAPE) microscopy for high speed volumetric imaging of behaving organisms

    PubMed Central

    Bouchard, Matthew B.; Voleti, Venkatakaushik; Mendes, César S.; Lacefield, Clay; Grueber, Wesley B.; Mann, Richard S.; Bruno, Randy M.; Hillman, Elizabeth M. C.

    2014-01-01

    We report a new 3D microscopy technique that allows volumetric imaging of living samples at ultra-high speeds: Swept, confocally-aligned planar excitation (SCAPE) microscopy. While confocal and two-photon microscopy have revolutionized biomedical research, current implementations are costly, complex and limited in their ability to image 3D volumes at high speeds. Light-sheet microscopy techniques using two-objective, orthogonal illumination and detection require a highly constrained sample geometry, and either physical sample translation or complex synchronization of illumination and detection planes. In contrast, SCAPE microscopy acquires images using an angled, swept light-sheet in a single-objective, en-face geometry. Unique confocal descanning and image rotation optics map this moving plane onto a stationary high-speed camera, permitting completely translationless 3D imaging of intact samples at rates exceeding 20 volumes per second. We demonstrate SCAPE microscopy by imaging spontaneous neuronal firing in the intact brain of awake behaving mice, as well as freely moving transgenic Drosophila larvae. PMID:25663846

  11. Optical clearing assisted confocal microscopy of ex vivo transgenic mouse skin

    NASA Astrophysics Data System (ADS)

    Song, Eunjoo; Ahn, YoonJoon; Ahn, Jinhyo; Ahn, Soyeon; Kim, Changhwan; Choi, Sanghoon; Boutilier, Richard Martin; Lee, Yongjoong; Kim, Pilhan; Lee, Ho

    2015-10-01

    We examined the optical clearing assisted confocal microscopy of the transgenic mouse skin. The pinna and dorsal skin were imaged with a confocal microscope after the application of glycerol and FocusClear. In case of the glycerol-treated pinna, the clearing was minimal due to the inefficient permeability. However, the imaging depth was improved when the pinna was treated with FocusClear. In case of dorsal skin, we were able to image deeply to the subcutaneous connective tissue with both agents. Various skin structures such as the vessel, epithelium cells, cartilage, dermal cells, and hair follicles were clearly imaged.

  12. Detection of Gold Nanoparticles Aggregation Growth Induced by Nucleic Acid through Laser Scanning Confocal Microscopy

    PubMed Central

    Gary, Ramla; Carbone, Giovani; Petriashvili, Gia; De Santo, Maria Penelope; Barberi, Riccardo

    2016-01-01

    The gold nanoparticle (GNP) aggregation growth induced by deoxyribonucleic acid (DNA) is studied by laser scanning confocal and environmental scanning electron microscopies. As in the investigated case the direct light scattering analysis is not suitable, we observe the behavior of the fluorescence produced by a dye and we detect the aggregation by the shift and the broadening of the fluorescence peak. Results of laser scanning confocal microscopy images and the fluorescence emission spectra from lambda scan mode suggest, in fact, that the intruding of the hydrophobic moiety of the probe within the cationic surfactants bilayer film coating GNPs results in a Förster resonance energy transfer. The environmental scanning electron microscopy images show that DNA molecules act as template to assemble GNPs into three-dimensional structures which are reminiscent of the DNA helix. This study is useful to design better nanobiotechnological devices using GNPs and DNA. PMID:26907286

  13. Detection of Gold Nanoparticles Aggregation Growth Induced by Nucleic Acid through Laser Scanning Confocal Microscopy.

    PubMed

    Gary, Ramla; Carbone, Giovani; Petriashvili, Gia; De Santo, Maria Penelope; Barberi, Riccardo

    2016-01-01

    The gold nanoparticle (GNP) aggregation growth induced by deoxyribonucleic acid (DNA) is studied by laser scanning confocal and environmental scanning electron microscopies. As in the investigated case the direct light scattering analysis is not suitable, we observe the behavior of the fluorescence produced by a dye and we detect the aggregation by the shift and the broadening of the fluorescence peak. Results of laser scanning confocal microscopy images and the fluorescence emission spectra from lambda scan mode suggest, in fact, that the intruding of the hydrophobic moiety of the probe within the cationic surfactants bilayer film coating GNPs results in a Förster resonance energy transfer. The environmental scanning electron microscopy images show that DNA molecules act as template to assemble GNPs into three-dimensional structures which are reminiscent of the DNA helix. This study is useful to design better nanobiotechnological devices using GNPs and DNA. PMID:26907286

  14. Sub-diffraction imaging with confocal fluorescence microscopy by stochastic photobleaching

    NASA Astrophysics Data System (ADS)

    Wang, Yifan; Kuang, Cuifang; Cai, Huanqing; Li, Shuai; Liu, Wei; Hao, Xiang; Ge, Jianhong; Liu, Xu

    2014-02-01

    We propose a single molecule localization method which takes advantage of stochastic photobleaching to improve the resolution of confocal fluorescence microscopy. By detecting the stochastic intensity loss of fluorophores, each fluorophore in the field can be localized. When all locations are known, a sub-diffraction image can be retrieved through single molecule localization algorithms. A confocal scheme is used to record the bleaching process of the sample. Each fluorophore can be localized from the recorded streaming followed by image subtraction. Compared with other single molecule localization concepts such as stochastic optical reconstruction microscopy (STORM) and photoactivated localization microscopy (PALM), this method does not require a laser cycling equipment and the pixel size is no longer limited by the size of CCD. This technique works well with common fluorescent dyes and does not require the use of engineered photoactivatable proteins or photoswitchable synthetic dye pairs.

  15. Dual-detection confocal microscopy: high-speed surface profiling without depth scanning

    NASA Astrophysics Data System (ADS)

    Lee, Dong-Ryoung; Gweon, Dae-Gab; Yoo, Hongki

    2016-03-01

    We propose a new method for three-dimensional (3-D) imaging without depth scanning that we refer to as the dual-detection confocal microscopy (DDCM). Compared to conventional confocal microscopy, DDCM utilizes two pinholes of different sizes. DDCM generates two axial response curves which have different stiffness according to the pinhole diameters. The two axial response curves can draw the characteristics curve of the system which shows the relationship between the axial position of the sample and the intensity ratio. Utilizing the characteristic curve, the DDCM reconstructs a 3-D surface profile with a single 2-D scanning. The height of each pixel is calculated by the intensity ratio of the pixel and the intensity ratio curve. Since the height information can be obtained directly from the characteristic curve without depth scanning, a major advantage of DDCM over the conventional confocal microscopy is a speed. The 3-D surface profiling time is dramatically reduced. Furthermore, DDCM can measure 3-D images without the influence of the sample condition since the intensity ratio is independent of the quantum yield and reflectance. We present two types of DDCM, such as a fluorescence microscopy and a reflectance microscopy. In addition, we extend the measurement range axially by varying the pupil function. Here, we demonstrate the working principle of DDCM and the feasibility of the proposed methods.

  16. Cement paste surface roughness analysis using coherence scanning interferometry and confocal microscopy

    SciTech Connect

    Apedo, K.L.; Munzer, C.; He, H.; Montgomery, P.; Serres, N.; Fond, C.; Feugeas, F.

    2015-02-15

    Scanning electron microscopy and scanning probe microscopy have been used for several decades to better understand the microstructure of cementitious materials. Very limited work has been performed to date to study the roughness of cementitious materials by optical microscopy such as coherence scanning interferometry (CSI) and chromatic confocal sensing (CCS). The objective of this paper is to better understand how CSI can be used as a tool to analyze surface roughness and topography of cement pastes. Observations from a series of images acquired using this technique on both polished and unpolished samples are described. The results from CSI are compared with those from a STIL confocal microscopy technique (SCM). Comparison between both optical techniques demonstrates the ability of CSI to measure both polished and unpolished cement pastes. - Highlights: • Coherence scanning interferometry (CSI) was used to analyze cement paste surfaces. • The results from the CSI were compared with those from a confocal microscopy. • 3D roughness parameters were obtained using the window resizing method. • Polished and unpolished cement pastes were studied.

  17. Parallel excitation-emission multiplexed fluorescence lifetime confocal microscopy for live cell imaging

    PubMed Central

    Zhao, Ming; Li, Yu; Peng, Leilei

    2014-01-01

    We present a novel excitation-emission multiplexed fluorescence lifetime microscopy (FLIM) method that surpasses current FLIM techniques in multiplexing capability. The method employs Fourier multiplexing to simultaneously acquire confocal fluorescence lifetime images of multiple excitation wavelength and emission color combinations at 44,000 pixels/sec. The system is built with low-cost CW laser sources and standard PMTs with versatile spectral configuration, which can be implemented as an add-on to commercial confocal microscopes. The Fourier lifetime confocal method allows fast multiplexed FLIM imaging, which makes it possible to monitor multiple biological processes in live cells. The low cost and compatibility with commercial systems could also make multiplexed FLIM more accessible to biological research community. PMID:24921725

  18. Use of a white light supercontinuum laser for confocal interference-reflection microscopy

    PubMed Central

    Chiu, L-D; Su, L; Reichelt, S; Amos, WB

    2012-01-01

    Shortly after its development, the white light supercontinuum laser was applied to confocal scanning microscopy as a more versatile substitute for the multiple monochromatic lasers normally used for the excitation of fluorescence. This light source is now available coupled to commercial confocal fluorescence microscopes. We have evaluated a supercontinuum laser as a source for a different purpose: confocal interferometric imaging of living cells and artificial models by interference reflection. We used light in the range 460–700 nm where this source provides a reasonably flat spectrum, and obtained images free from fringe artefacts caused by the longer coherence length of conventional lasers. We have also obtained images of cytoskeletal detail that is difficult to see with a monochromatic laser. PMID:22432542

  19. CINCH (confocal incoherent correlation holography) super resolution fluorescence microscopy based upon FINCH (Fresnel incoherent correlation holography)

    PubMed Central

    Siegel, Nisan; Storrie, Brian; Bruce, Marc

    2016-01-01

    FINCH holographic fluorescence microscopy creates high resolution super-resolved images with enhanced depth of focus. The simple addition of a real-time Nipkow disk confocal image scanner in a conjugate plane of this incoherent holographic system is shown to reduce the depth of focus, and the combination of both techniques provides a simple way to enhance the axial resolution of FINCH in a combined method called “CINCH”. An important feature of the combined system allows for the simultaneous real-time image capture of widefield and holographic images or confocal and confocal holographic images for ready comparison of each method on the exact same field of view. Additional GPU based complex deconvolution processing of the images further enhances resolution. PMID:26839443

  20. In vivo molecular and morphological imaging by real time confocal mini-microscopy

    NASA Astrophysics Data System (ADS)

    Goetz, Martin; Gregor, Sebastian; Fottner, Christian; Garcia-Lazaro, Jose; Schirrmacher, Esther; Kempski, Oliver; Bartenstein, Peter; Weber, Mathias; Biesterfeld, Stefan; Galle, Peter R.; Neurath, Markus F.; Kiesslich, Ralf

    2006-02-01

    We evaluated a newly developed miniaturized confocal laser microscopy probe for real-time in vivo molecular and morphological imaging of normal, inflammatory, and malignant tissue in rodents. In the rigid mini-microscopy probe (diameter 7 mm), a single line laser delivers an excitation wavelength of 488 nm. Optical slice thickness is 7 μm, lateral resolution 0.7 μm. The range of the z-axis is 0 - 250 μm below the tissue surface. Organ systems were examined in vivo in rodent models of human diseases. FITC-labeled Lycopersion esculentum lectin was injected or selected cell populations stained for molecular targeting. Morphological imaging was performed using fluorescein sodium, FITC-labeled dextran, and/or acriflavine hydrochloride. Cellular and subcellular details could be readily visualised in vivo at high resolution. Tissue characteristics of different organs were rendered at real time. Selective blood cell staining allowed observation of blood flow and cell migration. Inflammatory diseases such as hepatitis were diagnosed, and tumors were characterized under microscopic control in vivo. Confocal mini-microscopy allows real time in vivo molecular and morphological histologic imaging at high resolution of normal and diseased tissue. Since confocal microscopy is applicable to humans, this technology will have a high impact on different faculties in medicine.

  1. In-vivo immunofluorescence confocal microscopy of herpes simplex virus type 1 keratitis

    NASA Astrophysics Data System (ADS)

    Kaufman, Stephen C.; Laird, Jeffery A.; Beuerman, Roger W.

    1996-05-01

    The white-light confocal microscope offers an in vivo, cellular-level resolution view of the cornea. This instrument has proven to be a valuable research and diagnostic tool for the study of infectious keratitis. In this study, we investigate the direct visualization of herpes simplex virus type 1 (HSV-1)-infected corneal epithelium, with in vivo confocal microscopy, using HSV-1 immunofluorescent antibodies. New Zealand white rabbits were infected with McKrae strain of HSV-1 in one eye; the other eye of each rabbit was used as an uninfected control. Four days later, the rabbits were anesthetized and a cellulose sponge was applied to each cornea, and a drop of direct HSV fluorescein-tagged antibody was placed on each sponge every 3 to 5 minutes for 1 hour. Fluorescence confocal microscopy was then performed. The HSV-infected corneas showed broad regions of hyperfluorescent epithelial cells. The uninfected corneas revealed no background fluorescence. Thus, using the confocal microscope with a fluorescent cube, we were able to visualize HSV-infected corneal epithelial cells tagged with a direct fluorescent antibody. This process may prove to be a useful clinical tool for the in vivo diagnosis of HSV keratitis.

  2. Three-dimensional resolution and contrast-enhanced confocal microscopy with array detection.

    PubMed

    Ge, Baoliang; Wang, Yifan; Huang, Yujia; Kuang, Cuifang; Fang, Yue; Xiu, Peng; Rong, Zihao; Liu, Xu

    2016-05-01

    What we believe is a novel method for improving confocal microscopy's resolution and contrast in 3D space is proposed. Based on a conventional confocal microscopy setup, we use an array detector composed of 32 photomultiplier tubes (PMTs) to replace one point-detector, where the location offset of each PMT caused a different effective point spread function (PSF). By applying array detection and the fluorescence emission difference method of an image with a solid PSF and another with a donut-shaped PSF, we can enhance lateral resolution about 27% in real time with only one scan, and improve the axial resolving ability by about 22% simultaneously. Experimental results of both fluorescent beads and living cells are presented to verify the applicability and effectiveness of our method. PMID:27128062

  3. Combining total internal reflection sum frequency spectroscopy spectral imaging and confocal fluorescence microscopy.

    PubMed

    Allgeyer, Edward S; Sterling, Sarah M; Gunewardene, Mudalige S; Hess, Samuel T; Neivandt, David J; Mason, Michael D

    2015-01-27

    Understanding surface and interfacial lateral organization in material and biological systems is critical in nearly every field of science. The continued development of tools and techniques viable for elucidation of interfacial and surface information is therefore necessary to address new questions and further current investigations. Sum frequency spectroscopy (SFS) is a label-free, nonlinear optical technique with inherent surface specificity that can yield critical organizational information on interfacial species. Unfortunately, SFS provides no spatial information on a surface; small scale heterogeneities that may exist are averaged over the large areas typically probed. Over the past decade, this has begun to be addressed with the advent of SFS microscopy. Here we detail the construction and function of a total internal reflection (TIR) SFS spectral and confocal fluorescence imaging microscope directly amenable to surface investigations. This instrument combines, for the first time, sample scanning TIR-SFS imaging with confocal fluorescence microscopy. PMID:25506739

  4. Near-IR fluorescence and reflectance confocal microscopy for imaging of quantum dots in mammalian skin

    PubMed Central

    Mortensen, Luke J.; Glazowski, Christopher E.; Zavislan, James M.; DeLouise, Lisa A.

    2011-01-01

    Understanding the skin penetration of nanoparticles (NPs) is an important concern due to the increasing presence of NPs in consumer products, including cosmetics. Technical challenges have slowed progress in evaluating skin barrier and NP factors that contribute to skin penetration risk. To limit sampling error and other problems associated with histological processing, many researchers are implementing whole tissue confocal or multiphoton microscopies. This work introduces a fluorescence and reflectance confocal microscopy system that utilizes near-IR excitation and emission to detect near-IR lead sulfide quantum dots (QDs) through ex vivo human epidermis. We provide a detailed prediction and experimental analysis of QD detection sensitivity and demonstrate detection of QD skin penetration in a barrier disrupted model. The unique properties of near-IR lead-based QDs will enable future studies that examine the impact of further barrier-disrupting agents on skin penetration of QDs and elucidate mechanistic insight into QD tissue interactions at the cellular level. PMID:21698023

  5. Three-dimensional reconstruction of topological deformation in chiral nematic microspheres using fluorescence confocal polarizing microscopy.

    PubMed

    Guo, Jin-Kun; Song, Jang-Kun

    2016-04-01

    Chiral nematic droplets exhibit abundant topological defect structures, which have been intensively studied, both theoretically and experimentally. However, to observe and reconstruct the exact shape of three-dimensional (3D) defect structures has been a challenging task. In this study, we successfully reconstruct the 3D defect structures within a CLC microsphere with long helical pitches by combining polarized optical microscopy (POM) and laser scanning type fluorescence confocal polarizing microscopy (FCPM). The obtained confocal stack images provide us with the vertical location of disclination defects, to allow reconstruction of the full 3D structures. The reconstructed 3D structures can be viewed from different directions, providing a better understanding of the topological structure. Moreover, the defect lines are identified to be + 1 defects, different from the previous prediction. Thus, FCPM provides an excellent tool to study the complex topological configuration in microspheres, and fosters its potential applicability in new devices based on topologically structured soft media. PMID:27137028

  6. Confocal Raman microscopy to monitor extracellular matrix during dental pulp stem cells differentiation

    NASA Astrophysics Data System (ADS)

    Salehi, Hamideh; Collart-Dutilleul, Pierre-Yves; Gergely, Csilla; Cuisinier, Frédéric J. G.

    2015-07-01

    Regenerative medicine brings promising applications for mesenchymal stem cells, such as dental pulp stem cells (DPSCs). Confocal Raman microscopy, a noninvasive technique, is used to study osteogenic differentiation of DPSCs. Integrated Raman intensities in the 2800 to 3000 cm-1 region (C-H stretching) and the 960 cm-1 peak (ν1 PO43-) were collected (to image cells and phosphate, respectively), and the ratio of two peaks 1660 over 1690 cm-1 (amide I bands) to measure the collagen cross-linking has been calculated. Raman spectra of DPSCs after 21 days differentiation reveal several phosphate peaks: ν1 (first stretching mode) at 960 cm-1, ν2 at 430 cm-1, and ν4 at 585 cm-1 and collagen cross-linking can also be calculated. Confocal Raman microscopy enables monitoring osteogenic differentiation in vitro and can be a credible tool for clinical stem cell based research.

  7. Dental pulp stem cells (DPSCs) differentiation study by confocal Raman microscopy

    NASA Astrophysics Data System (ADS)

    Salehi, H.; Collart-Dutilleul, P.-Y.; Gergely, C.; Cuisinier, F. J. G.

    2014-03-01

    Regenerative medicine brings a huge application for Mesenchymal stem cells such as Dental Pulp Stem Cells (DPSCs). Confocal Raman microscopy, a non-invasive, label free , real time and high spatial resolution imaging technique is used to study osteogenic differentiation of DPSCs. Integrated Raman intensities in the 2800-3000 cm-1 region (C-H stretching) and 960 cm-1 peak (phosphate PO4 3-) were collected. In Dental Pulp Stem Cells 21st day differentiated in buffer solution, phosphate peaks ν1 PO4 3- (first vibrational mode) at 960cm-1 and ν2 PO4 3- at 430cm-1 and ν4 PO4 3- at 585cm-1 are obviously present. Confocal Raman microscopy enables the detection of cell differentiation and it can be used to investigate clinical stem cell research.

  8. Analysis of cell-tissue grafts under weightless conditions using confocal fluorescence microscopy

    NASA Astrophysics Data System (ADS)

    Volova, L. T.; Milyakova, M. N.; Rossinskaya, V. V.; Boltovskaya, V. V.; Kulagina, L. N.; Kurganskaya, L. V.; Timchenko, P. E.; Timchenko, E. V.; Zherdeva Taskina, Larisa A.

    2015-03-01

    The research results of monitoring of viable cells in a cellular-tissue graft using confocal laser fluorescence microscopy at 488 nm and 561 nm with the use of fluorophore propidium iodide (propidium iodide, PI Sigma Aldrich USA) are presented. The processing of the received images was carried out using the software ANDOR. It is experimentally shown that the method of confocal fluorescence microscopy is one of the informational methods for detecting cells populated in a 3-D bio-carrier with a resolution of at least 400 nm. Analysis of the received micrographs suggests that the cells that were in a bio-carrier for 30 days in a synchronous ground-based experiment retained their viability compared to a similar space-based experiment in which the cells were hardly detected in a bio-carrier.

  9. Evaluation of human sclera after femtosecond laser ablation using two photon and confocal microscopy

    NASA Astrophysics Data System (ADS)

    Sun, Hui; Kurtz, Ronald; Juhasz, Tibor

    2012-08-01

    Glaucoma is the second-leading cause of blindness worldwide and is often associated with elevated intraocular pressure (IOP). Partial thickness intrascleral channels can be created with a femtosecond laser operating at a wavelength of 1700 nm. Such channels have the potential to increase outflow facility and reduce elevated IOP. Analysis of the dimensions and location of these channels is important in understanding their effects. We describe the application of two-photon microscopy and confocal microscopy for noninvasive imaging of the femtosecond laser created partial-thickness scleral channels in human cadaver eyes. High-resolution images, hundreds of microns deep in the sclera, were obtained to allow determination of the shape and dimension of such channels. This demonstrates that concept of integrating femtosecond laser surgery, and two-photon and confocal imaging has the future potential for image-guided high-precision surgery in transparent and translucent tissue.

  10. In vivo confocal microscopy in dermatology: from research to clinical application

    NASA Astrophysics Data System (ADS)

    Ulrich, Martina; Lange-Asschenfeldt, Susanne

    2013-06-01

    Confocal laser scanning microscopy (CLSM) represents an emerging technique for the noninvasive histomorphological analysis of skin in vivo and has shown its applicability for dermatological research as well as its value as an adjunct tool in the clinical management of skin cancer patients. Herein, we aim to give an overview on the current clinical indications for CLSM in dermatology and also highlight the diverse applications of CLSM in dermatological research.

  11. Single Fluorescent Molecule Confocal Microscopy: A New Tool for Molecular Biology Research and Biosensor Development

    SciTech Connect

    Darrow, C.; Huser, T.; Campos, C.; Yan, M.; Lane, S.; Balhorn, R.

    2000-03-09

    Our original proposal was presented to the LDRD committee on February 18, 1999. The revised proposal that followed incorporated changes that addressed the issues, concerns, and suggestions put forth by the committee members both during the presentation and in subsequent discussions we've had with individual committee members. The goal of the proposal was to establish an SMD confocal microscopy capability and technology base at LLNL. Here we report on our progress during the 6-month period for which funding was available.

  12. UNDERSTANDING THE EFFECTS OF SURFACTANT ADDITION ON RHEOLOGY USING LASER SCANNING CONFOCAL MICROSCOPY

    SciTech Connect

    White, T

    2007-05-08

    The effectiveness of three dispersants to modify rheology was examined using rheology measurements and laser scanning confocal microscopy (LSCM) in simulated waste solutions. All of the dispersants lowered the yield stress of the slurries below the baseline samples. The rheology curves were fitted reasonably to a Bingham Plastic model. The three-dimensional LSCM images of simulants showed distinct aggregates were greatly reduced after the addition of dispersants leading to a lowering of the yield stress of the simulated waste slurry solutions.

  13. Three-dimensional imaging of monogenoidean sclerites by laser scanning confocal fluorescence microscopy.

    PubMed

    Galli, Paolo; Strona, Giovanni; Villa, Anna Maria; Benzoni, Francesca; Fabrizio, Stefani; Doglia, Silvia Maria; Kritsky, Delane C

    2006-04-01

    A nondestructive protocol for preparing specimens of Monogenoidea for both alpha-taxonomic studies and reconstruction of 3-dimensional structure is presented. Gomori's trichrome, a stain commonly used to prepare whole-mount specimens of monogenoids for taxonomic purposes, is used to provide fluorescence of genital spines, the copulatory organ, accessory piece, squamodisc, anchors, hooks, bars, and clamps under laser scanning confocal microscopy. PMID:16729702

  14. Application of confocal laser microscopy for monitoring mesh implants in herniology

    SciTech Connect

    Zakharov, V P; Belokonev, V I; Bratchenko, I A; Timchenko, P E; Vavilov, A V; Volova, L T

    2011-04-30

    The state of the surface of mesh implants and their encapsulation region in herniology is investigated by laser confocal microscopy. A correlation between the probability of developing relapses and the size and density of implant microdefects is experimentally shown. The applicability limits of differential reverse scattering for monitoring the post-operation state of implant and adjacent tissues are established based on model numerical experiments. (optical technologies in biophysics and medicine)

  15. Template confined synthesis of amorphous carbon nanotubes and its confocal Raman microscopy

    SciTech Connect

    Maity, Supratim; Roychowdhury, Tuhin; Chattopadhyay, Kalyan Kumar

    2014-04-24

    Amorphous carbon nanotubes (aCNTs) were synthesized by AAO (anodic aluminum oxide) template at a temperature 500 °C in nitrogen atmosphere using the citric acid as a carbon source without the help of any catalyst particles. Morphological analysis of the as prepared samples was carried out by field emission scanning electron microscopy (FESEM). Confocal Raman imaging has been studied and an attempt has been made to find out the graphitic (sp{sup 2}) and disordered phase of the CNTs.

  16. In vivo confocal microscopy in dermatology: from research to clinical application.

    PubMed

    Ulrich, Martina; Lange-Asschenfeldt, Susanne

    2013-06-01

    Confocal laser scanning microscopy (CLSM) represents an emerging technique for the noninvasive histomorphological analysis of skin in vivo and has shown its applicability for dermatological research as well as its value as an adjunct tool in the clinical management of skin cancer patients. Herein, we aim to give an overview on the current clinical indications for CLSM in dermatology and also highlight the diverse applications of CLSM in dermatological research. PMID:23338938

  17. Actin restructuring during Salmonella typhimurium infection investigated by confocal and super-resolution microscopy

    NASA Astrophysics Data System (ADS)

    Han, Jason J.; Kunde, Yuliya A.; Hong-Geller, Elizabeth; Werner, James H.

    2014-01-01

    We have used super-resolution optical microscopy and confocal microscopy to visualize the cytoskeletal restructuring of HeLa cells that accompanies and enables Salmonella typhimurium internalization. Herein, we report the use of confocal microscopy to verify and explore infection conditions that would be compatible with super-resolution optical microscopy, using Alexa-488 labeled phalloidin to stain the actin cytoskeletal network. While it is well known that actin restructuring and cytoskeletal rearrangements often accompany and assist in bacterial infection, most studies have employed conventional diffraction-limited fluorescence microscopy to explore these changes. Here we show that the superior spatial resolution provided by single-molecule localization methods (such as direct stochastic optical reconstruction microscopy) enables more precise visualization of the nanoscale changes in the actin cytoskeleton that accompany bacterial infection. In particular, we found that a thin (100-nm) ring of actin often surrounds an invading bacteria 10 to 20 min postinfection, with this ring being transitory in nature. We estimate that a few hundred monofilaments of actin surround the S. typhimurium in this heretofore unreported bacterial internalization intermediate.

  18. Observation of dendritic cell morphology under light, phase-contrast or confocal laser scanning microscopy.

    PubMed

    Tan, Yuen-Fen; Leong, Chooi-Fun; Cheong, Soon-Keng

    2010-12-01

    Dendritic cells (DCs) are professional antigen presenting cells of the immune system. They can be generated in vitro from peripheral blood monocytes supplemented with GM-CSF, IL-4 and TNF alpha. During induction, DCs will increase in size and acquire multiple cytoplasmic projections when compared to their precursor cells such as monocytes or haematopoietic stem cells which are usually round or spherical. Morphology of DCs can be visualized by conventional light microscopy after staining or phase-contrast inverted microscopy or confocal laser scanning microscopy. In this report, we described the morphological appearances of DCs captured using the above-mentioned techniques. We found that confocal laser scanning microscopy yielded DCs images with greater details but the operating cost for such a technique is high. On the other hand, the images obtained through light microscopy after appropriate staining or phase contrast microscopy were acceptable for identification purpose. Besides, these equipments are readily available in most laboratories and the cost of operation is affordable. Nevertheless, morphological identification is just one of the methods to characterise DCs. Other methods such as phenotypic expression markers and mixed leukocyte reactions are additional tools used in the characterisation of DCs. PMID:21329180

  19. Analyzing cell structure and dynamics with confocal light scattering and absorption spectroscopic microscopy

    NASA Astrophysics Data System (ADS)

    Qiu, Le; Vitkin, Edward; Fang, Hui; Zaman, Munir M.; Andersson, Charlotte; Salahuddin, Saira; Modell, Mark D.; Freedman, Steven D.; Hanlon, Eugene B.; Itzkan, Irving; Perelman, Lev T.

    2007-02-01

    We recently developed a new microscopic optical technique capable of noninvasive analysis of cell structure and cell dynamics on the submicron scale [1]. It combines confocal microscopy, a well-established high-resolution microscopic technique, with light scattering spectroscopy (LSS) and is called confocal light absorption and scattering spectroscopic (CLASS) microscopy. CLASS microscopy requires no exogenous labels and is capable of imaging and continuously monitoring individual viable cells, enabling the observation of cell and organelle functioning at scales on the order of 100 nm. To test the ability of CLASS microscopy to monitor cellular dynamics in vivo we performed experiments with human bronchial epithelial cells treated with DHA and undergoing apoptosis. The treated and untreated cells show not only clear differences in organelle spatial distribution but time sequencing experiments on a single cell show disappearance of certain types of organelles and change of the nuclear shape and density with the progression of apoptosis. In summary, CLASS microscopy provides an insight into metabolic processes within the cell and opens doors for the noninvasive real-time assessment of cellular dynamics. Noninvasive monitoring of cellular dynamics with CLASS microscopy can be used for a real-time dosimetry in a wide variety of medical and environmental applications that have no immediate observable outcome, such as photodynamic therapy, drug screening, and monitoring of toxins.

  20. Combining confocal Raman microscopy and freeze-drying for quantification of substance penetration into human skin.

    PubMed

    Franzen, Lutz; Anderski, Juliane; Planz, Viktoria; Kostka, Karl-Heinz; Windbergs, Maike

    2014-12-01

    In the area of dermatological research, the knowledge of rate and extent of substance penetration into the human skin is essential not only for evaluation of therapeutics, but also for risk assessment of chemicals and cosmetic ingredients. Recently, confocal Raman microscopy emerged as a novel analytical technique for analysis of substance skin penetration. In contrast to destructive drug extraction and quantification, the technique is non-destructive and provides high spatial resolution in three dimensions. However, the generation of time-resolved concentration depth profiles is restrained by ongoing diffusion of the penetrating substance during analysis. To prevent that, substance diffusion in excised human skin can instantly be stopped at defined time points by freeze-drying the sample. Thus, combining sample preparation by freeze-drying with drug quantification by confocal Raman microscopy yields a novel analytical platform for non-invasive and quantitative in vitro analysis of substance skin penetration. This work presents the first proof-of-concept study for non-invasive quantitative substance depth profiling in freeze-dried excised human stratum corneum by confocal Raman microscopy. PMID:25219950

  1. Visualization and quantification of dentin structure using confocal laser scanning microscopy

    NASA Astrophysics Data System (ADS)

    Kimura, Yuichi; Wilder-Smith, Petra B.; Krasieva, Tatiana B.; Arrastia-Jitosho, Anna-Marie A.; Liaw, Lih-Huei L.; Matsumoto, Koukichi

    1997-07-01

    Dentin was visualized using a new fluorescence technique and confocal laser scanning microscopy. Thirty extracted human teeth showing no clinical signs of caries were investigated. All teeth were horizontally sectioned to approximately 200 micrometers thickness and sections were subjected to different pretreatment conditions as follows: vacuum only, ultrasonication only, sodium hypochlorite only, sodium hypochlorite and vacuum, sodium hypochlorite and ultrasonication, and a combination of sodium hypochlorite, vacuum, and ultrasonication. Some samples were left untreated to serve as control. Following pretreatment, rhodamine 123 fluorescent dye was used for staining at concentrations ranging from 10-3 to 10-7 M for 1 to 24 h at pH 6.0, 6.5, or 7.4. Optical staining occurred at pH 7.4 and concentrations >= 10-5 M over 3 h or longer. Surface images obtained using confocal laser scanning microscopy were similar to those observed by scanning electron microscopy without the need for sample- altering conventional scanning electron microscope preparation techniques. Subsurface imaging to a depth of approximately 60 micrometers was achieved using confocal laser microscope techniques. This fluorescence technique offers a useful new alternative for visualization and quantification of dentin.

  2. In vivo confocal microscopy for the oral cavity: Current state of the field and future potential.

    PubMed

    Maher, N G; Collgros, H; Uribe, P; Ch'ng, S; Rajadhyaksha, M; Guitera, P

    2016-03-01

    Confocal microscopy (CM) has been shown to correlate with oral mucosal histopathology in vivo. The purposes of this review are to summarize what we know so far about in vivo CM applications for oral mucosal pathologies, to highlight some current developments with CM devices relevant for oral applications, and to formulate where in vivo CM could hold further application for oral mucosal diagnosis and management. Ovid Medline® and/or Google® searches were performed using the terms 'microscopy, confocal', 'mouth neoplasms', 'mouth mucosa', 'leukoplakia, oral', 'oral lichen planus', 'gingiva', 'cheilitis', 'taste', 'inflammatory oral confocal', 'mucosal confocal' and 'confocal squamous cell oral'. In summary, inclusion criteria were in vivo use of any type of CM for the human oral mucosa and studies on normal or pathological oral mucosa. Experimental studies attempting to identify proteins of interest and microorganisms were excluded. In total 25 relevant articles were found, covering 8 main topics, including normal oral mucosal features (n=15), oral dysplasia or neoplasia (n=7), inflamed oral mucosa (n=3), taste impairment (n=3), oral autoimmune conditions (n=2), pigmented oral pathology/melanoma (n=1), delayed type hypersensitivity (n=1), and cheilitis glandularis (n=1). The evidence for using in vivo CM in these conditions is poor, as it is limited to mainly small descriptive studies. Current device developments for oral CM include improved probe design. The authors propose that future applications for in vivo oral CM may include burning mouth syndrome, intra-operative mapping for cancer surgery, and monitoring and targeted biopsies within field cancerization. PMID:26786962

  3. The Unique Pollen Morphology of Duparquetia (Leguminosae: Caesalpinioideae): Developmental Evidence of Aperture Orientation Using Confocal Microscopy

    PubMed Central

    BANKS, HANNAH; FEIST-BURKHART, SUSANNE; KLITGAARD, BENTE

    2006-01-01

    • Background and Aims The phylogenetic affinities of the aberrant monotypic genus Duparquetia (subfamily Caesalpinioideae) are at present unresolved. Preliminary results from molecular analyses suggest a basal, isolated position among legumes. A study of Duparquetia pollen was carried out to provide further morphological characters to contribute to multi-data set analyses. Understanding the development of Duparquetia pollen was necessary to clarify the orientation of the apertures. • Methods Pollen grains and developing microspores were examined using light microscopy, confocal microscopy and scanning electron microscopy. Evidence for the orientation of the apertures was provided by the examination of microspores within developing tetrads, using (a) confocal microscopy to locate the position of the ectoapertures, and (b) light microscopy and Alcian blue stain to locate the position of the endoapertures. • Key Results Confocal microscopy has been used for the first time to examine developing microspores in order to obtain information on ectoapertures that was unavailable using other techniques. Pollen in Duparquetia develops in tetrahedral tetrads as in other eudicots, with the apertures arranged in a modified pattern following Fischer's rule. Pollen grains are asymmetrical and have one equatorial-encircling ectoaperture with two equatorial endoapertures, a unique feature in Leguminosae, and in eudicots. • Conclusions The pollen morphology of Duparquetia is so unusual that it provides little information to help determine its closest relatives. However, it does fit with a pattern of greater pollen morphological diversity in the first-branching caesalpinioid legume groups than in the more derived clades. The latitudinal ectoaperture of Duparquetia is unique within the Fabales and eudicot clades, resembling more closely the monosulcate pollen found in monocots and basal angiosperms; however, developmental patterns are recognizably similar to those of all other

  4. Evaluation of the therapeutic results of actinic keratosis treated with topical 5% fluorouracil by reflectance confocal laser microscopy: preliminary study*

    PubMed Central

    Ishioka, Priscila; Maia, Marcus; Rodrigues, Sarita Bartholomei; Marta, Alessandra Cristina; Hirata, Sérgio Henrique

    2015-01-01

    Topical treatment for actinic keratosis with 5% fluorouracil has a recurrence rate of 54% in 12 months of follow-up. This study analyzed thirteen actinic keratoses on the upper limbs through confocal microscopy, at the time of clinical diagnosis and after 4 weeks of treatment with fluorouracil. After the treatment was established and evidence of clinical cure was achieved, in two of the nine actinic keratoses, confocal microscopy enabled visualization of focal areas of atypical honeycomb pattern in the epidermis indicating therapeutic failure. Preliminary data suggest the use of confocal microscopy as a tool for diagnosis and therapeutic control of actinic keratosis. PMID:26131881

  5. Fast Imaging with Inelastically Scattered Electrons by Off-Axis Chromatic Confocal Electron Microscopy

    NASA Astrophysics Data System (ADS)

    Zheng, Changlin; Zhu, Ye; Lazar, Sorin; Etheridge, Joanne

    2014-04-01

    We introduce off-axis chromatic scanning confocal electron microscopy, a technique for fast mapping of inelastically scattered electrons in a scanning transmission electron microscope without a spectrometer. The off-axis confocal mode enables the inelastically scattered electrons to be chromatically dispersed both parallel and perpendicular to the optic axis. This enables electrons with different energy losses to be separated and detected in the image plane, enabling efficient energy filtering in a confocal mode with an integrating detector. We describe the experimental configuration and demonstrate the method with nanoscale core-loss chemical mapping of silver (M4,5) in an aluminium-silver alloy and atomic scale imaging of the low intensity core-loss La (M4,5@840 eV) signal in LaB6. Scan rates up to 2 orders of magnitude faster than conventional methods were used, enabling a corresponding reduction in radiation dose and increase in the field of view. If coupled with the enhanced depth and lateral resolution of the incoherent confocal configuration, this offers an approach for nanoscale three-dimensional chemical mapping.

  6. Dye-enhanced reflectance and fluorescence confocal microscopy as an optical pathology tool

    NASA Astrophysics Data System (ADS)

    Yaroslavsky, Anna N.; Salomatina, Elena; Novak, John; Amat-Roldan, Ivan; Castano, Ana; Hamblin, Michael

    2006-02-01

    Early detection and precise excision of neoplasms are imperative requirements for successful cancer treatment. In this study we evaluated the use of dye-enhanced confocal microscopy as an optical pathology tool in the ex vivo trial with fresh thick non-melanoma skin cancer excisions and in vivo trial with B16F10 melanoma cancer in mice. For the experiments the tumors were rapidly stained using aqueous solutions of either toluidine blue or methylene blue and imaged using multimodal confocal microscope. Reflectance images were acquired at the wavelengths of 630nm and 650 nm. Fluorescence was excited at 630 nm and 650 nm. Fluorescence emission was registered in the range between 680 nm and 710 nm. The images were compared to the corresponding en face frozen H&E sections. The results of the study indicate confocal images of stained cancerous tissue closely resemble corresponding H&E sections both in vivo and in vitro. This remarkable similarity enables interpretation of confocal images in a manner similar to that of histopathology. The developed technique may provide an efficient real-time optical tool for detecting skin pathology.

  7. In vivo reflectance confocal microscopy of shave biopsy wounds: feasibility of intra-operative mapping of cancer margins

    PubMed Central

    Scope, A; Mahmood, U; Gareau, DS; Kenkre, M; Lieb, JA; Nehal, KS; Rajadhyaksha, M

    2010-01-01

    Background Reflectance confocal microscopy (RCM) images skin at cellular resolution and has shown utility for the diagnosis of nonmelanoma skin cancer in-vivo. Topical application of Aluminum Chloride (AlCl3) enhances contrast in RCM images by brightening nuclei. Objective To investigate feasibility of RCM imaging of shave biopsy wounds using AlCl3 as a contrast agent. Methods AlCl3 staining was optimized, in terms of concentration versus immersion time, on excised tissue ex-vivo. RCM imaging protocol was tested in patients undergoing shave biopsies. The RCM images were retrospectively analyzed and compared to the corresponding histopathology. Results For 35% AlCl3, routinely used for hemostasis in clinic, minimum immersion time was determined to be 1 minute. We identified 3 consistent patterns of margins on RCM mosaic images by varying depths: epidermal margins, peripheral dermal margins, and deep dermal margins. Tumour islands of basal cell carcinoma were identified at peripheral or deep dermal margins, correlating on histopathology with aggregates of neoplastic basaloid cells. Atypical cobblestone or honeycomb pattern were identified at the epidermal margins, correlating with a proliferation of atypical keratinocytes extending to biopsy margins. Conclusions RCM imaging of shave biopsy wounds is feasible and demonstrates the future possibility of intra-operative mapping in surgical wounds. PMID:20874785

  8. Influence of confocal scanning laser microscopy specific acquisition parameters on the detection and matching of speeded-up robust features.

    PubMed

    Stanciu, Stefan G; Hristu, Radu; Stanciu, George A

    2011-04-01

    The robustness and distinctiveness of local features to various object or scene deformations and to modifications of the acquisition parameters play key roles in the design of many computer vision applications. In this paper we present the results of our experiments on the behavior of a recently developed technique for local feature detection and description, Speeded-Up Robust Features (SURF), regarding image modifications specific to Confocal Scanning Laser Microscopy (CSLM). We analyze the repeatability of detected SURF keypoints and the precision-recall of their matching under modifications of three important CSLM parameters: pinhole aperture, photomultiplier (PMT) gain and laser beam power. During any investigation by CSLM these three parameters have to be modified, individually or together, in order to optimize the contrast and the Signal Noise Ratio (SNR), being also inherently modified when changing the microscope objective. Our experiments show that an important amount of SURF features can be detected at the same physical locations in images collected at different values of the pinhole aperture, PMT gain and laser beam power, and further on can be successfully matched based on their descriptors. In the final part, we exemplify the potential of SURF in CSLM imaging by presenting a SURF-based computer vision application that deals with the mosaicing of images collected by this technique. PMID:21349249

  9. Taylor series expansion based multidimensional image reconstruction for confocal and 4pi microscopy

    NASA Astrophysics Data System (ADS)

    Dilipkumar, Shilpa; Pratim Mondal, Partha

    2013-08-01

    We propose and experimentally demonstrate a three-dimensional (3D) image reconstruction methodology based on Taylor series approximation (TSA) in a Bayesian image reconstruction formulation. TSA incorporates the requirement of analyticity in the image domain, and acts as a finite impulse response filter. This technique is validated on images obtained from widefield, confocal laser scanning fluorescence microscopy and two-photon excited 4pi (2PE-4pi) fluorescence microscopy. Studies on simulated 3D objects, mitochondria-tagged yeast cells (labeled with Mitotracker Orange) and mitochondrial networks (tagged with Green fluorescent protein) show a signal-to-background improvement of 40% and resolution enhancement from 360 to 240 nm. This technique can easily be extended to other imaging modalities (single plane illumination microscopy (SPIM), individual molecule localization SPIM, stimulated emission depletion microscopy and its variants).

  10. Towards real-time image deconvolution: application to confocal and STED microscopy

    PubMed Central

    Zanella, R.; Zanghirati, G.; Cavicchioli, R.; Zanni, L.; Boccacci, P.; Bertero, M.; Vicidomini, G.

    2013-01-01

    Although deconvolution can improve the quality of any type of microscope, the high computational time required has so far limited its massive spreading. Here we demonstrate the ability of the scaled-gradient-projection (SGP) method to provide accelerated versions of the most used algorithms in microscopy. To achieve further increases in efficiency, we also consider implementations on graphic processing units (GPUs). We test the proposed algorithms both on synthetic and real data of confocal and STED microscopy. Combining the SGP method with the GPU implementation we achieve a speed-up factor from about a factor 25 to 690 (with respect the conventional algorithm). The excellent results obtained on STED microscopy images demonstrate the synergy between super-resolution techniques and image-deconvolution. Further, the real-time processing allows conserving one of the most important property of STED microscopy, i.e the ability to provide fast sub-diffraction resolution recordings. PMID:23982127

  11. Confocal reflectance quantitative phase microscopy system for cell biology studies (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Singh, Vijay Raj; So, Peter T. C.

    2016-03-01

    Quantitative phase microscopy (QPM), used to measure the refractive index, provides the optical path delay measurement at each point of the specimen under study and becomes an active field in biological science. In this work we present development of confocal reflection phase microscopy system to provide depth resolved quantitative phase information for investigation of intracellular structures and other biological specimen. The system hardware development is mainly divided into two major parts. First, creates a pinhole array for parallel confocal imaging of specimen at multiple locations simultaneously. Here a digital micro mirror device (DMD) is used to generate pinhole array by turning on a subset micro-mirrors arranged on a grid. Second is the detection of phase information of confocal imaging foci by using a common path interferometer. With this novel approach, it is possible to measure the nuclei membrane fluctuations and distinguish them from the plasma membrane fluctuations. Further, depth resolved quantitative phase can be correlated to the intracellular contents and 3D map of refractive index measurements.

  12. In Vivo Confocal Microscopy and Anterior Segment Optic Coherence Tomography Findings in Ocular Ochronosis

    PubMed Central

    Demirkilinc Biler, Elif; Guven Yilmaz, Suzan; Palamar, Melis; Hamrah, Pedram

    2015-01-01

    Purpose. To report clinical and in vivo confocal microscopy (IVCM) findings of two patients with ocular ochronosis secondary due to alkaptonuria. Materials and Methods. Complete ophthalmologic examinations, including IVCM (HRT II/Rostock Cornea Module, Heidelberg, Germany), anterior segment optical coherence tomography (AS-OCT) (Topcon 3D spectral-domain OCT 2000, Topcon Medical Systems, Paramus, NJ, USA), corneal topography (Pentacam, OCULUS Optikgeräte GmbH, Wetzlar, Germany), and anterior segment photography, were performed. Results. Biomicroscopic examination showed bilateral darkly pigmented lesions of the nasal and temporal conjunctiva and episclera in both patients. In vivo confocal microscopy of the lesions revealed prominent degenerative changes, including vacuoles and fragmentation of collagen fibers in the affected conjunctival lamina propria and episclera. Hyperreflective pigment granules in different shapes were demonstrated in the substantia propria beneath the basement membrane. AS-OCT of Case 1 demonstrated hyporeflective areas. Fundus examination was within normal limits in both patients, except tilted optic discs with peripapillary atrophy in one of the patients. Corneal topography, thickness, and macular OCT were normal bilaterally in both cases. Conclusion. The degenerative and anatomic changes due to ochronotic pigment deposition in alkaptonuria can be demonstrated in detail with IVCM and AS-OCT. Confocal microscopic analysis in ocular ochronosis may serve as a useful adjunct in diagnosis and monitoring of the disease progression. PMID:26788390

  13. Fibre optic confocal imaging (FOCI) for subsurface microscopy of the colon in vivo.

    PubMed Central

    Delaney, P M; King, R G; Lambert, J R; Harris, M R

    1994-01-01

    Fibre optic confocal imaging (FOCI) is a new type of microscopy which has been recently developed (Delaney et al. 1993). In contrast to conventional light microscopy, FOCI and other confocal techniques allow clear imaging of subsurface structures within translucent objects. However, unlike conventional confocal microscopes which are bulky (because of a need for accurate alignment of large components) FOCI allows the imaging end to be miniaturised and relatively mobile. FOCI is thus particularly suited for clear subsurface imaging of structures within living animals or subjects. The aim of the present study was to assess the suitability of using FOCI for imaging of subsurface structures within the colon, both in vitro (human and rat biopsies) and in vivo (in rats). Images were obtained in fluorescence mode (excitation 488 nm, detection above 515 nm) following topical application of fluorescein. By this technique the glandular structure of the colon was imaged. FOCI is thus suitable for subsurface imaging of the colon in vivo. Images Fig. 2 Fig. 3 PMID:8157487

  14. Confocal Raman microscopy for in depth analysis in the field of cultural heritage

    NASA Astrophysics Data System (ADS)

    Lorenzetti, G.; Striova, J.; Zoppi, A.; Castellucci, E. M.

    2011-05-01

    In the field of cultural heritage, the main concern when a sample is analyzed is its safeguard, and this means that non-destructive techniques are required. In this work, we show how confocal Raman microscopy (CRM) may be successfully applied in the study of works of art as a valuable alternative to other well established techniques. CRM with a metallurgical objective was tested for the in depth study of thin samples that are of interest in the field of cultural heritage. The sensitivity of the instrumentation was first evaluated by analyzing single layers of pure polyethylene terephthalate (PET) films having a thickness of 12, 25, and 50 μm, respectively, and a multilayer sample of polypropylene (PP) and polyethylene (PE). Subsequently, the technique was applied to the analysis of historical dyed cotton yarns in order to check whether it was possible to achieve a better discrimination of the fibres' signals for an easier identification. A substantial improvement of the signal to noise ratio was found in the confocal arrangement with respect to the non-confocal one, suggesting the use of this technique for this kind of analysis in the field of cultural heritage. Furthermore, Raman spectroscopy in confocal configuration was exploited in the evaluation of cleaning performed on the mural painting specimens, treated with acrylic resin (Paraloid B72). Confocal Raman experiments were performed before and after laser cleaning (at different conditions) in order to monitor the presence and to approximate the polymer thickness: the method proved to be a valid comparative tool in assessment of cleaning efficiencies.

  15. Design and analysis of multi-color confocal microscopy with a wavelength scanning detector.

    PubMed

    Do, Dukho; Chun, Wanhee; Gweon, Dae-Gab

    2012-05-01

    Spectral (or multi-color) microscopy has the ability to detect the fluorescent light of biological specimens with a broad range of wavelengths. Currently, the acousto-optic tunable filter (AOTF) is widely used in spectral microscopy as a substitute for a multiple-dichroic mirror to divide excitation and emission signals while maintaining sufficient light efficiency. In addition, systems which utilize an AOTF have a very fast switching speed and high resolution for wavelength selection. In this paper, confocal-spectral microscopy is proposed with a particular spectrometer design with a wavelength-scanning galvano-mirror. This enables the detection of broadband (480-700 nm) fluorescence signals by a single point detector (photomultiplier tube) instead of a CCD pixel array. For this purpose, a number of optical elements were applicably designed. A prism is used to amplify the dispersion angle, and the design of the relay optics matches the signals to the diameter of the wavelength-scanning galvano-mirror. Also, a birefringent material known as calcite is used to offset the displacement error at the image plane depending on the polarization states. The proposed multi-color confocal microscopy with the unique detection body has many advantages in comparison with commercial devices. In terms of the detection method, it can be easily applied to other imaging modalities. PMID:22667622

  16. Investigation of phosphatidylcholine enhancing FITC-insulin across buccal mucosa by confocal laser scanning microscopy

    NASA Astrophysics Data System (ADS)

    Tian, Weiqun; Su, Li; Zeng, Shaoqun; Luo, Qingming; Gao, Qiuhua; Xu, Huibi

    2002-04-01

    The aim was to characterize the transport of fluorescein isothiocyanate (FITC)-labeled dextran and insulin with different resoluble compounds for peptides and proteins through buccal mucosa. The penetration rate of insulin molecules through porcine buccal mucosa (a nonkeratinized epithelium, comparable to human buccal mucosa) was investigated by measuring transbuccal fluxes and by analyzing the distribution of the fluorescent probe in the rabbit buccal mucosa epithelium, using confocal laser scanning microscopy for visualizing permeation pathways. The confocal images of the distribution pattern of FITC-dextran and FITC-insulin showed that the paracellular route is the major pathway of FITC-dextran through buccal mucosa epithelium, the intra-cellular route is the major pathway of FITC-insulin through buccal mucosa epithelium. The permeation rate can be increased by co-administration of soybean phosphatidylcholine (SPC).

  17. Determination of sex by exfoliative cytology using acridine orange confocal microscopy: A short study

    PubMed Central

    Reddy, D Shyam Prasad; Sherlin, Herald J; Ramani, Pratibha; Prakash, P Ajay

    2012-01-01

    Context: Establishing individuality is an imperative aspect in any investigation procedure. Sometimes, in identifying an individual, it becomes necessary to determine the sex of that particular individual. Combining rapidity with reliability, an innovative idea has been put forward using a confocal microscope in exfoliative cytology. In the present study, we have determined the sex of the individual from buccal mucosal scrapings. The exfoliative cells were observed for Barr bodies under a confocal microscope, and the percentage of Barr-body-positive cells was determined. Aims: The main objective of this study is to assess confocal microscopy for the determination of sex by observing Barr bodies in the exfoliative cells of both men and women. Settings and Design: Samples of buccal mucosa smears were made followed by acridine orange staining. The stained slides were observed under a confocal microscope and the data obtained was subjected for statistical analysis, especially for mean and standard deviation. Materials and Methods: Samples of buccal mucosa smears from 20 men and 20 women were obtained by scraping with flat wooden sticks (exfoliative cytology). The smears were fixed in 100% alcohol for 15 min, followed by acridine orange (AO) staining as described by Von Bertalanffy et al. Smears stained with AO were examined under a confocal microscope and the percentage of Barr-body-positive cells was determined. Statistical Analysis Used: Data obtained was subjected for statistical analysis, especially for mean and standard deviation. Results: Two non-overlapping ranges for the percentage of Barr-body-positive cells have been obtained for men and women. It was observed that in the male samples, the percentage of Barr-body-positive cells ranged from 0-3%. In the female samples, the percentage of Barr-body-positive cells ranged from 18-72%, and all the females showed the presence of Barr bodies. Conclusion: The study showed that the presence of Barr body in buccal

  18. Advances in combined endoscopic fluorescence confocal microscopy and optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Risi, Matthew D.

    Confocal microendoscopy provides real-time high resolution cellular level images via a minimally invasive procedure. Results from an ongoing clinical study to detect ovarian cancer with a novel confocal fluorescent microendoscope are presented. As an imaging modality, confocal fluorescence microendoscopy typically requires exogenous fluorophores, has a relatively limited penetration depth (100 μm), and often employs specialized aperture configurations to achieve real-time imaging in vivo. Two primary research directions designed to overcome these limitations and improve diagnostic capability are presented. Ideal confocal imaging performance is obtained with a scanning point illumination and confocal aperture, but this approach is often unsuitable for real-time, in vivo biomedical imaging. By scanning a slit aperture in one direction, image acquisition speeds are greatly increased, but at the cost of a reduction in image quality. The design, implementation, and experimental verification of a custom multi-point-scanning modification to a slit-scanning multi-spectral confocal microendoscope is presented. This new design improves the axial resolution while maintaining real-time imaging rates. In addition, the multi-point aperture geometry greatly reduces the effects of tissue scatter on imaging performance. Optical coherence tomography (OCT) has seen wide acceptance and FDA approval as a technique for ophthalmic retinal imaging, and has been adapted for endoscopic use. As a minimally invasive imaging technique, it provides morphological characteristics of tissues at a cellular level without requiring the use of exogenous fluorophores. OCT is capable of imaging deeper into biological tissue (˜1-2 mm) than confocal fluorescence microscopy. A theoretical analysis of the use of a fiber-bundle in spectral-domain OCT systems is presented. The fiber-bundle enables a flexible endoscopic design and provides fast, parallelized acquisition of the optical coherence tomography

  19. Scanning a microhabitat: plant-microbe interactions revealed by confocal laser microscopy

    PubMed Central

    Cardinale, Massimiliano

    2014-01-01

    No plant or cryptogam exists in nature without microorganisms associated with its tissues. Plants as microbial hosts are puzzles of different microhabitats, each of them colonized by specifically adapted microbiomes. The interactions with such microorganisms have drastic effects on the host fitness. Since the last 20 years, the combination of microscopic tools and molecular approaches contributed to new insights into microbe-host interactions. Particularly, confocal laser scanning microscopy (CLSM) facilitated the exploration of microbial habitats and allowed the observation of host-associated microorganisms in situ with an unprecedented accuracy. Here I present an overview of the progresses made in the study of the interactions between microorganisms and plants or plant-like organisms, focusing on the role of CLSM for the understanding of their significance. I critically discuss risks of misinterpretation when procedures of CLSM are not properly optimized. I also review approaches for quantitative and statistical analyses of CLSM images, the combination with other molecular and microscopic methods, and suggest the re-evaluation of natural autofluorescence. In this review, technical aspects were coupled with scientific outcomes, to facilitate the readers in identifying possible CLSM applications in their research or to expand their existing potential. The scope of this review is to highlight the importance of confocal microscopy in the study of plant-microbe interactions and also to be an inspiration for integrating microscopy with molecular techniques in future researches of microbial ecology. PMID:24639675

  20. Probing the compressibility of tumor cell nuclei by combined atomic force-confocal microscopy

    NASA Astrophysics Data System (ADS)

    Krause, Marina; te Riet, Joost; Wolf, Katarina

    2013-12-01

    The cell nucleus is the largest and stiffest organelle rendering it the limiting compartment during migration of invasive tumor cells through dense connective tissue. We here describe a combined atomic force microscopy (AFM)-confocal microscopy approach for measurement of bulk nuclear stiffness together with simultaneous visualization of the cantilever-nucleus contact and the fate of the cell. Using cantilevers functionalized with either tips or beads and spring constants ranging from 0.06-10 N m-1, force-deformation curves were generated from nuclear positions of adherent HT1080 fibrosarcoma cell populations at unchallenged integrity, and a nuclear stiffness range of 0.2 to 2.5 kPa was identified depending on cantilever type and the use of extended fitting models. Chromatin-decondensating agent trichostatin A (TSA) induced nuclear softening of up to 50%, demonstrating the feasibility of our approach. Finally, using a stiff bead-functionalized cantilever pushing at maximal system-intrinsic force, the nucleus was deformed to 20% of its original height which after TSA treatment reduced further to 5% remaining height confirming chromatin organization as an important determinant of nuclear stiffness. Thus, combined AFM-confocal microscopy is a feasible approach to study nuclear compressibility to complement concepts of limiting nuclear deformation in cancer cell invasion and other biological processes.

  1. Three-dimensional measurement of cAMP gradients using hyperspectral confocal microscopy

    NASA Astrophysics Data System (ADS)

    Rich, Thomas C.; Annamdevula, Naga; Britain, Andrea L.; Mayes, Samuel; Favreau, Peter F.; Leavesley, Silas J.

    2016-03-01

    Cyclic AMP (cAMP) is a ubiquitous second messenger known to differentially regulate many cellular functions over a wide range of timescales. Several lines of evidence have suggested that the distribution of cAMP within cells is not uniform, and that cAMP compartmentalization is largely responsible for signaling specificity within the cAMP signaling pathway. However, to date, no studies have experimentally measured three dimensional (3D) cAMP distributions within cells. Here we use both 2D and 3D hyperspectral microscopy to visualize cAMP gradients in endothelial cells from the pulmonary microvasculature (PMVECs). cAMP levels were measured using a FRETbased cAMP sensor comprised of a cAMP binding domain from EPAC sandwiched between FRET donors and acceptors -- Turquoise and Venus fluorescent proteins. Data were acquired using either a Nikon A1R spectral confocal microscope or custom spectral microscopy system. Analysis of hyperspectral image stacks from a single confocal slice or from summed images of all slices (2D analysis) indicated little or no cAMP gradients were formed within PMVECs under basal conditions or following agonist treatment. However, analysis of hyperspectral image stacks from 3D cellular geometries (z stacks) demonstrate marked cAMP gradients from the apical to basolateral membrane of PMVECs. These results strongly suggest that 2D imaging studies of cAMP compartmentalization -- whether epifluorescence or confocal microscopy -- may lead to erroneous conclusions about the existence of cAMP gradients, and that 3D studies are required to assess mechanisms of signaling specificity.

  2. Three-dimensional imaging of carbon nanostructures by scanning confocal electron microscopy

    NASA Astrophysics Data System (ADS)

    Hashimoto, Ayako; Shimojo, Masayuki; Mitsuishi, Kazutaka; Takeguchi, Masaki

    2009-10-01

    Although scanning confocal electron microscopy (SCEM) shows a promise for optical depth sectioning with high resolution, practical and theoretical problems have prevented its application to three-dimensional (3D) imaging. We employed a stage-scanning system in which only the specimen is moved three dimensionally under a fixed lens configuration, and an annular dark-field (ADF) aperture which blocks direct beams and selects only the scattered electrons. This ADF-SCEM improved depth resolution sufficiently to perform optical depth sectioning. Finally, we succeeded in demonstrating the 3D reconstruction of carbon nanocoils using ADF-SCEM.

  3. Imaging Single ZnO Vertical Nanowire Laser Cavities using UV-Laser Scanning Confocal Microscopy

    SciTech Connect

    Gargas, D.J.; Toimil-Molares, M.E.; Yang, P.

    2008-11-17

    We report the fabrication and optical characterization of individual ZnO vertical nanowire laser cavities. Dilute nanowire arrays with interwire spacing>10 ?m were produced by a modified chemical vapor transport (CVT) method yielding an ideal platform for single nanowire imaging and spectroscopy. Lasing characteristics of a single vertical nanowire are presented, as well as high-resolution photoluminescence imaging by UV-laser scanning confocal microscopy. In addition, three-dimensional (3D) mapping of the photoluminescence emission performed in both planar and vertical dimensions demonstrates height-selective imaging useful for vertical nanowires and heteronanostructures emerging in the field of optoelectronics and nanophotonics.

  4. Spectrally encoded slit confocal microscopy using a wavelength-swept laser

    NASA Astrophysics Data System (ADS)

    Kim, Soocheol; Hwang, Jaehyun; Heo, Jung; Ryu, Suho; Lee, Donghak; Kim, Sang-Hoon; Oh, Seung Jae; Joo, Chulmin

    2015-03-01

    We present an implementation of spectrally encoded slit confocal microscopy. The method employs a rapid wavelength-swept laser as the light source and illuminates a specimen with a line focus that scans through the specimen as the wavelength sweeps. The reflected light from the specimen is imaged with a stationary line scan camera, in which the finite pixel height serves as a slit aperture. This scanner-free operation enables a simple and cost-effective implementation in a small form factor, while allowing for the three-dimensional imaging of biological samples.

  5. Confocal microscopy: A new tool for erosion measurements on large scale plasma facing components in tokamaks

    NASA Astrophysics Data System (ADS)

    Gauthier, E.; Brosset, C.; Roche, H.; Tsitrone, E.; Pégourié, B.; Martinez, A.; Languille, P.; Courtois, X.; Lallier, Y.; Salami, M.

    2013-07-01

    A diagnostic based on confocal microscopy was developed at CEA Cadarache in order to measure erosion on large plasma facing components during shutdown in situ in Tore Supra. This paper describes the diagnostic and presents results obtained on Beryllium and Carbon Fibre Composite (CFC) materials. Erosion in the range of 800 μm was found on one sector of the Toroidal Pumped Limiter (TPL) which provides, by integration to the full limiter a net carbon erosion of about 900 g over the period 2002-2007.

  6. Insights into esophagus tissue architecture using two-photon confocal microscopy

    NASA Astrophysics Data System (ADS)

    Liu, Nenrong; Wang, Yue; Feng, Shangyuan; Chen, Rong

    2013-08-01

    In this paper, microstructures of human esophageal mucosa were evaluated using the two-photon laser scanning confocal microscopy (TPLSCM), based on two-photon excited fluorescence (TPEF) and second harmonic generation (SHG). The distribution of epithelial cells, muscle fibers of muscularis mucosae has been distinctly obtained. Furthermore, esophageal submucosa characteristics with cancer cells invading into were detected. The variation of collagen, elastin and cancer cells is very relevant to the pathology in esophagus, especially early esophageal cancer. Our experimental results indicate that the MPM technique has the much more advantages for label-free imaging, and has the potential application in vivo in the clinical diagnosis and monitoring of early esophageal cancer.

  7. Label-free detection of anticancer drug paclitaxel in living cells by confocal Raman microscopy

    NASA Astrophysics Data System (ADS)

    Salehi, H.; Derely, L.; Vegh, A.-G.; Durand, J.-C.; Gergely, C.; Larroque, C.; Fauroux, M.-A.; Cuisinier, F. J. G.

    2013-03-01

    Confocal Raman microscopy, a non-invasive, label-free, and high spatial resolution imaging technique is employed to trace the anticancer drug paclitaxel in living Michigan Cancer Foundation-7 (MCF-7) cells. The Raman images were treated by K-mean cluster analysis to detect the drug in cells. Distribution of paclitaxel in cells is verified by calculating the correlation coefficient between the reference spectrum of the drug and the whole Raman image spectra. A time dependent gradual diffusion of paclitaxel all over the cell is observed suggesting a complementary picture of the pharmaceutical action of this drug based on rapid binding of free tubulin to crystallized paclitaxel.

  8. Ti-6Al-4V electron beam weld qualification using laser scanning confocal microscopy

    SciTech Connect

    Wanjara, P. . E-mail: priti.wanjara@cnrc-nrc.gc.ca; Brochu, M.; Jahazi, M.

    2005-03-15

    Processing conditions for manufacturing Ti-6Al-4V components by welding using an electron beam source are known to influence the transformation microstructure in the narrow fusion and heat-affected zones of the weld region. This work examined the effect of multiple-sequence welding on the characteristics of the transformed beta microstructure, using laser scanning confocal microscopy to resolve the Widmanstaetten alpha-beta structure in the fusion zone. The evolution in the alpha interlamellar spacing and plate thickness with processing was then related to microhardness measurements in the weld region.

  9. The application of dermal papillary rings in dermatology by in vivo confocal laser scanning microscopy

    NASA Astrophysics Data System (ADS)

    Xiang, W. Z.; Xu, A. E.; Xu, J.; Bi, Z. G.; Shang, Y. B.; Ren, Q. S.

    2010-08-01

    Confocal laser scanning microscopy (CLSM) allows noninvasive visualization of human skin in vivo, without needing to fix or section the tissue. Melanocytes and pigmented keratinocytes at the level of the basal layer form bright dermal papillary rings which are readily amenable to identify in confocal images. Our purpose was to explore the role of dermal papillary rings in assessment of lesion location, the diagnosis, differential diagnosis of lesions and assessment of therapeutic efficacy by in vivo CLSM. Seventy-one patients were imaged with the VivaScope 1500 reflectance confocal microscope provided by Lucid, Inc. The results indicate that dermal papillary rings can assess the location of lesion; the application of dermal papillary rings can provide diagnostic support and differential diagnosis for vitiligo, nevus depigmentosus, tinea versicolor, halo nevus, common nevi, and assess the therapeutic efficacy of NBUVB phototherapy plus topical 0.1 percent tacrolimus ointment for vitiligo. In conclusion, our findings indicate that the dermal papillary rings play an important role in the assessment the location of lesion, diagnosis, differential diagnosis of lesions and assessment of therapeutic efficacy by in vivo CLSM. CLSM may be a promising tool for noninvasive examination in dermatology. However, larger studies are needed to expand the application of dermal papillary rings in dermatology.

  10. Comparison of mouse mammary gland imaging techniques and applications: Reflectance confocal microscopy, GFP Imaging, and ultrasound

    PubMed Central

    Tilli, Maddalena T; Parrish, Angela R; Cotarla, Ion; Jones, Laundette P; Johnson, Michael D; Furth, Priscilla A

    2008-01-01

    Background Genetically engineered mouse models of mammary gland cancer enable the in vivo study of molecular mechanisms and signaling during development and cancer pathophysiology. However, traditional whole mount and histological imaging modalities are only applicable to non-viable tissue. Methods We evaluated three techniques that can be quickly applied to living tissue for imaging normal and cancerous mammary gland: reflectance confocal microscopy, green fluorescent protein imaging, and ultrasound imaging. Results In the current study, reflectance confocal imaging offered the highest resolution and was used to optically section mammary ductal structures in the whole mammary gland. Glands remained viable in mammary gland whole organ culture when 1% acetic acid was used as a contrast agent. Our application of using green fluorescent protein expressing transgenic mice in our study allowed for whole mammary gland ductal structures imaging and enabled straightforward serial imaging of mammary gland ducts in whole organ culture to visualize the growth and differentiation process. Ultrasound imaging showed the lowest resolution. However, ultrasound was able to detect mammary preneoplastic lesions 0.2 mm in size and was used to follow cancer growth with serial imaging in living mice. Conclusion In conclusion, each technique enabled serial imaging of living mammary tissue and visualization of growth and development, quickly and with minimal tissue preparation. The use of the higher resolution reflectance confocal and green fluorescent protein imaging techniques and lower resolution ultrasound were complementary. PMID:18215290

  11. High numerical aperture injection-molded miniature objective for fiber-optic confocal reflectance microscopy

    NASA Astrophysics Data System (ADS)

    Chidley, Matthew Douglas

    This dissertation presents the design of a miniature injection-molded objective lens for a fiber-optic confocal reflectance microscope. This is part of an effort to demonstrate the ability to fabricate low cost, high performance biomedical optics for high resolution in vivo imaging. Disposable endoscopic microscope objectives could help in vivo confocal microscopy technology mature to enable large-scale clinical screening and detection of early cancers and pre-cancerous lesions. This five lens plastic objective has been tested as a stand-alone optical system and has been coupled to a confocal microscope for in vivo imaging of cells and tissue. Changing the spacing and rotation of the individual optical elements can compensate for fabrication inaccuracies and improve performance. An optical-bench testing system was constructed to allow interactive alignment during testing. The modulation transfer function (MTF) of the miniature objective lens is determined using the slanted-edge method. A custom MATLAB program, edgeMTF, was written to collect, analyze, and record test data. An estimated Strehl ratio of 0.64 and an MTF value of 0.70, at the fiber-optic bundle Nyquist frequency, have been obtained. The main performance limitations of the miniature objective are mechanical alignment and flow-induced birefringence. Annealing and experimental injection molding runs were conducted in effort to reduce birefringence.

  12. Synchrotron radiation as a light source in confocal microscopy of biological processes

    NASA Astrophysics Data System (ADS)

    Gerritsen, Hans C.; van der Oord, C. J. R.; Levine, Yehudi K.; Munro, Ian H.; Myring, Wendy J.; Shaw, D. A.; Rommerts, Fokko F.

    1992-04-01

    A novel confocal microscope is presented using the Daresbury Synchrotron Radiation source as its light source. The broad spectrum of synchrotron radiation in combination with the UV compatible microscope allows the extension of confocal microscopy from the visible to the UV region down to about 200 nm. It is envisaged that structures separated by about 70 nm can be resolved at a wavelength of 200 nm. In addition, the tunability of synchrotron radiation affords the selective excitation of any specific fluorescent molecule at the maximum of the absorption band. This avoids the restriction of working at fixed laser lines. A further advantage of using synchrotron radiation is the realization of multiwavelength excitation. Test results using laser systems in the visible and in the UV are presented. Fluorescence images of test targets using UV excitation reveal the superior resolution of the microscope. Furthermore, images of Leydig cells incubated with a fluorescent cholesterol derivative whose maximum of absorption is at 325 nm are shown. These images cannot be produced by conventional confocal laser microscopes. Finally, promising preliminary results obtained with synchrotron radiation are presented.

  13. In vivo Confocal Microscopy Report after Lasik with Sequential Accelerated Corneal Collagen Cross-Linking Treatment

    PubMed Central

    Mazzotta, Cosimo; Balestrazzi, Angelo; Traversi, Claudio; Caragiuli, Stefano; Caporossi, Aldo

    2014-01-01

    We report the first pilot qualitative confocal microscopic analysis of a laser in situ keratomileusis (Lasik) treatment combined with sequential high-fluence accelerated corneal collagen cross-linking, denominated Lasik XTra, by means of HRT II laser scanning in vivo confocal microscopy after a 6-month follow-up. After obtaining approval from the Siena University Hospital Institutional Review Board, a 33-year-old female patient underwent a Lasik XTra procedure in her left eye. Confocal analysis demonstrated induced slight corneal microstructural changes by the interaction between UV-A, riboflavin and corneal stromal collagen, beyond the interface to a depth of 160 µm, without adverse events at the interface and endothelial levels. This application may be considered a prophylactic biomechanical treatment, stiffening the intermediate corneal stroma to prevent corneal ectasia and stabilizing the clinical results of refractive surgery. According to our preliminary experiences, this combined approach may be useful in higher-risk Lasik patients for hyperopic treatments, high myopia and lower corneal thicknesses. PMID:24847258

  14. Simultaneous confocal fluorescence microscopy and optical coherence tomography for drug distribution and tissue integrity assessment

    NASA Astrophysics Data System (ADS)

    Rinehart, Matthew T.; LaCroix, Jeffrey; Henderson, Marcus; Katz, David; Wax, Adam

    2011-03-01

    The effectiveness of microbicidal gels, topical products developed to prevent infection by sexually transmitted diseases including HIV/AIDS, is governed by extent of gel coverage, pharmacokinetics of active pharmaceutical ingredients (APIs), and integrity of vaginal epithelium. While biopsies provide localized information about drug delivery and tissue structure, in vivo measurements are preferable in providing objective data on API and gel coating distribution as well as tissue integrity. We are developing a system combining confocal fluorescence microscopy with optical coherence tomography (OCT) to simultaneously measure local concentrations and diffusion coefficients of APIs during transport from microbicidal gels into tissue, while assessing tissue integrity. The confocal module acquires 2-D images of fluorescent APIs multiple times per second allowing analysis of lateral diffusion kinetics. The custom Fourier domain OCT module has a maximum a-scan rate of 54 kHz and provides depth-resolved tissue integrity information coregistered with the confocal fluorescence measurements. The combined system is validated by imaging phantoms with a surrogate fluorophore. Time-resolved API concentration measured at fixed depths is analyzed for diffusion kinetics. This multimodal system will eventually be implemented in vivo for objective evaluation of microbicide product performance.

  15. Confocal Microscopy of Unfixed Breast Needle Core Biopsies: A Comparison to Fixed and Stained Sections

    PubMed Central

    2009-01-01

    Background Needle core biopsy, often in conjunction with ultrasonic or stereotactic guided techniques, is frequently used to diagnose breast carcinoma in women. Confocal scanning laser microscopy (CSLM) is a technology that provides real-time digital images of tissues with cellular resolution. This paper reports the progress in developing techniques to rapidly screen needle core breast biopsy and surgical specimens at the point of care. CSLM requires minimal tissue processing and has the potential to reduce the time from excision to diagnosis. Following imaging, specimens can still be submitted for standard histopathological preparation. Methods Needle core breast specimens from 49 patients were imaged at the time of biopsy. These lesions had been characterized under the Breast Imaging Reporting And Data System (BI-RADS) as category 3, 4 or 5. The core biopsies were imaged with the CSLM before fixation. Samples were treated with 5% citric acid and glycerin USP to enhance nuclear visibility in the reflectance confocal images. Immediately following imaging, the specimens were fixed in buffered formalin and submitted for histological processing and pathological diagnosis. CSLM images were then compared to the standard histology. Results The pathologic diagnoses by standard histology were 7 invasive ductal carcinomas, 2 invasive lobular carcinomas, 3 ductal carcinomas in-situ (CIS), 21 fibrocystic changes/proliferative conditions, 9 fibroadenomas, and 5 other/benign; two were excluded due to imaging difficulties. Morphologic and cellular features of benign and cancerous lesions were identified in the confocal images and were comparable to standard histologic sections of the same tissue. Conclusion CSLM is a technique with the potential to screen needle core biopsy specimens in real-time. The confocal images contained sufficient information to identify stromal reactions such as fibrosis and cellular proliferations such as intra-ductal and infiltrating carcinoma, and

  16. Programmable illumination and high-speed, multi-wavelength, confocal microscopy using a digital micromirror.

    PubMed

    Martial, Franck P; Hartell, Nicholas A

    2012-01-01

    Confocal microscopy is routinely used for high-resolution fluorescence imaging of biological specimens. Most standard confocal systems scan a laser across a specimen and collect emitted light passing through a single pinhole to produce an optical section of the sample. Sequential scanning on a point-by-point basis limits the speed of image acquisition and even the fastest commercial instruments struggle to resolve the temporal dynamics of rapid cellular events such as calcium signals. Various approaches have been introduced that increase the speed of confocal imaging. Nipkov disk microscopes, for example, use arrays of pinholes or slits on a spinning disk to achieve parallel scanning which significantly increases the speed of acquisition. Here we report the development of a microscope module that utilises a digital micromirror device as a spatial light modulator to provide programmable confocal optical sectioning with a single camera, at high spatial and axial resolution at speeds limited by the frame rate of the camera. The digital micromirror acts as a solid state Nipkov disk but with the added ability to change the pinholes size and separation and to control the light intensity on a mirror-by-mirror basis. The use of an arrangement of concave and convex mirrors in the emission pathway instead of lenses overcomes the astigmatism inherent with DMD devices, increases light collection efficiency and ensures image collection is achromatic so that images are perfectly aligned at different wavelengths. Combined with non-laser light sources, this allows low cost, high-speed, multi-wavelength image acquisition without the need for complex wavelength-dependent image alignment. The micromirror can also be used for programmable illumination allowing spatially defined photoactivation of fluorescent proteins. We demonstrate the use of this system for high-speed calcium imaging using both a single wavelength calcium indicator and a genetically encoded, ratiometric, calcium

  17. Sensitivity and Specificity of Cardiac Tissue Discrimination Using Fiber-Optics Confocal Microscopy.

    PubMed

    Huang, Chao; Sachse, Frank B; Hitchcock, Robert W; Kaza, Aditya K

    2016-01-01

    Disturbances of the cardiac conduction system constitute a major risk after surgical repair of complex cases of congenital heart disease. Intraoperative identification of the conduction system may reduce the incidence of these disturbances. We previously developed an approach to identify cardiac tissue types using fiber-optics confocal microscopy and extracellular fluorophores. Here, we applied this approach to investigate sensitivity and specificity of human and automated classification in discriminating images of atrial working myocardium and specialized tissue of the conduction system. Two-dimensional image sequences from atrial working myocardium and nodal tissue of isolated perfused rodent hearts were acquired using a fiber-optics confocal microscope (Leica FCM1000). We compared two methods for local application of extracellular fluorophores: topical via pipette and with a dye carrier. Eight blinded examiners evaluated 162 randomly selected images of atrial working myocardium (n = 81) and nodal tissue (n = 81). In addition, we evaluated the images using automated classification. Blinded examiners achieved a sensitivity and specificity of 99.2 ± 0.3% and 98.0 ± 0.7%, respectively, with the dye carrier method of dye application. Sensitivity and specificity was similar for dye application via a pipette (99.2 ± 0.3% and 94.0 ± 2.4%, respectively). Sensitivity and specificity for automated methods of tissue discrimination were similarly high. Human and automated classification achieved high sensitivity and specificity in discriminating atrial working myocardium and nodal tissue. We suggest that our findings facilitate clinical translation of fiber-optics confocal microscopy as an intraoperative imaging modality to reduce the incidence of conduction disturbances during surgical correction of congenital heart disease. PMID:26808149

  18. Confocal Microscopy and Molecular-Specific Optical Contrast Agents for the Detection of Oral Neoplasia

    PubMed Central

    Carlson, Alicia L.; Gillenwater, Ann M.; Williams, Michelle D.; El-Naggar, Adel K.; Richards-Kortum, R. R.

    2009-01-01

    Using current clinical diagnostic techniques, it is difficult to visualize tumor morphology and architecture at the cellular level, which is necessary for diagnostic localization of pathologic lesions. Optical imaging techniques have the potential to address this clinical need by providing real-time, sub-cellular resolution images. This paper describes the use of dual mode confocal microscopy and optical molecular-specific contrast agents to image tissue architecture, cellular morphology, and sub-cellular molecular features of normal and neoplastic oral tissues. Fresh tissue slices were prepared from 33 biopsies of clinically normal and abnormal oral mucosa obtained from 14 patients. Reflectance confocal images were acquired after the application of 6% acetic acid, and fluorescence confocal images were acquired after the application of a fluorescence contrast agent targeting the epidermal growth factor receptor (EGFR). The dual imaging modes provided images similar to light microscopy of hematoxylin and eosin and immunohistochemistry staining, but from thick fresh tissue slices. Reflectance images provided information on the architecture of the tissue and the cellular morphology. The nuclear-to-cytoplasmic (N/C) ratio from the reflectance images was at least 7.5 times greater for the carcinoma than the corresponding normal samples, except for one case of highly keratinized carcinoma. Separation of carcinoma from normal and mild dysplasia was achieved using this ratio (p<0.01). Fluorescence images of EGFR expression yielded a mean fluorescence labeling intensity (FLI) that was at least 2.7 times higher for severe dysplasia and carcinoma samples than for the corresponding normal sample, and could be used to distinguish carcinoma from normal and mild dysplasia (p<0.01). Analyzed together, the N/C ratio and the mean FLI may improve the ability to distinguish carcinoma from normal squamous epithelium. PMID:17877424

  19. Sensitivity and Specificity of Cardiac Tissue Discrimination Using Fiber-Optics Confocal Microscopy

    PubMed Central

    Huang, Chao; Sachse, Frank B.; Hitchcock, Robert W.; Kaza, Aditya K.

    2016-01-01

    Disturbances of the cardiac conduction system constitute a major risk after surgical repair of complex cases of congenital heart disease. Intraoperative identification of the conduction system may reduce the incidence of these disturbances. We previously developed an approach to identify cardiac tissue types using fiber-optics confocal microscopy and extracellular fluorophores. Here, we applied this approach to investigate sensitivity and specificity of human and automated classification in discriminating images of atrial working myocardium and specialized tissue of the conduction system. Two-dimensional image sequences from atrial working myocardium and nodal tissue of isolated perfused rodent hearts were acquired using a fiber-optics confocal microscope (Leica FCM1000). We compared two methods for local application of extracellular fluorophores: topical via pipette and with a dye carrier. Eight blinded examiners evaluated 162 randomly selected images of atrial working myocardium (n = 81) and nodal tissue (n = 81). In addition, we evaluated the images using automated classification. Blinded examiners achieved a sensitivity and specificity of 99.2±0.3% and 98.0±0.7%, respectively, with the dye carrier method of dye application. Sensitivity and specificity was similar for dye application via a pipette (99.2±0.3% and 94.0±2.4%, respectively). Sensitivity and specificity for automated methods of tissue discrimination were similarly high. Human and automated classification achieved high sensitivity and specificity in discriminating atrial working myocardium and nodal tissue. We suggest that our findings facilitate clinical translation of fiber-optics confocal microscopy as an intraoperative imaging modality to reduce the incidence of conduction disturbances during surgical correction of congenital heart disease. PMID:26808149

  20. Spatial distribution of perylenequinones in lichens and extended quinones in quincyte using confocal fluorescence microscopy.

    PubMed

    Mathey, A; Lukins, P B

    2001-02-01

    The application of confocal fluorescence microscopy and microspectrofluorimetry to the characterization of the distribution of organic compounds in bulk lichens and mineral structures is demonstrated. Perylenequinones and extended quinones were chosen as both model compounds and as the naturally occurring fluorophores. These molecules occur, respectively, in corticolous microlichens and in a pink-colored mineral called quincyte. The structures of quincyte and of the lichens Cryptothelium rhodotitton and Graphis hematites are described, and the possibilities of energy dissipation and photoprotection mechanisms in these lichens are discussed. This study also illustrates how, for a wide range of specimens, naturally occurring quinone fluorophores in the specimen can be exploited directly to yield chemical and structural information without using fluorescent labelling. These intrinsic quinonoid compounds have molecular fluorescence yields and laser damage thresholds comparable or superior to common microscopy dyes, and can therefore be used to obtain high-contrast 3D fluorescence imaging without the complications introduced by dye labelling. PMID:10936454

  1. Confocal Raman microscopy and fluorescent in situ hybridization - A complementary approach for biofilm analysis.

    PubMed

    Kniggendorf, Ann-Kathrin; Nogueira, Regina; Kelb, Christian; Schadzek, Patrik; Meinhardt-Wollweber, Merve; Ngezahayo, Anaclet; Roth, Bernhard

    2016-10-01

    We combine confocal Raman microscopy (CRM) of wet samples with subsequent Fluorescent in situ hybridization (FISH) without significant limitations to either technique for analyzing the same sample of a microbial community on a cell-to-cell basis. This combination of techniques allows a much deeper, more complete understanding of complex environmental samples than provided by either technique alone. The minimalistic approach is based on laboratory glassware with micro-engravings for reproducible localization of the sample at cell scale combined with a fixation and de- and rehydration protocol for the respective techniques. As proof of concept, we analyzed a floc of nitrifying activated sludge, demonstrating that the sample can be tracked with cell-scale precision over different measurements and instruments. The collected information includes the microbial content, spatial shape, variant chemical compositions of the floc matrix and the mineral microparticles embedded within. In addition, the direct comparison of CRM and FISH revealed a difference in reported cell size due to the different cell components targeted by the respective technique. To the best of our knowledge, this is the first report of a direct cell-to-cell comparison of confocal Raman microscopy and Fluorescent in situ hybridization analysis performed on the same sample. An adaptation of the method to include native samples as a starting point is planned for the near future. The micro-engraving approach itself also opens up the possibility of combining other, functionally incompatible techniques as required for further in-depth investigations of low-volume samples. PMID:27423128

  2. High throughput, detailed, cell-specific neuroanatomy of dendritic spines using microinjection and confocal microscopy

    PubMed Central

    Dumitriu, Dani; Rodriguez, Alfredo; Morrison, John H.

    2012-01-01

    Morphological features such as size, shape and density of dendritic spines have been shown to reflect important synaptic functional attributes and potential for plasticity. Here we describe in detail a protocol for obtaining detailed morphometric analysis of spines using microinjection of fluorescent dyes, high resolution confocal microscopy, deconvolution and image analysis using NeuronStudio. Recent technical advancements include better preservation of tissue resulting in prolonged ability to microinject, and algorithmic improvements that compensate for the residual Z-smear inherent in all optical imaging. Confocal imaging parameters were probed systematically for the identification of both optimal resolution as well as highest efficiency. When combined, our methods yield size and density measurements comparable to serial section transmission electron microscopy in a fraction of the time. An experiment containing 3 experimental groups with 8 subjects in each can take as little as one month if optimized for speed, or approximately 4 to 5 months if the highest resolution and morphometric detail is sought. PMID:21886104

  3. Confocal light sheet microscopy: micron-scale neuroanatomy of the entire mouse brain.

    PubMed

    Silvestri, L; Bria, A; Sacconi, L; Iannello, G; Pavone, F S

    2012-08-27

    Elucidating the neural pathways that underlie brain function is one of the greatest challenges in neuroscience. Light sheet based microscopy is a cutting edge method to map cerebral circuitry through optical sectioning of cleared mouse brains. However, the image contrast provided by this method is not sufficient to resolve and reconstruct the entire neuronal network. Here we combined the advantages of light sheet illumination and confocal slit detection to increase the image contrast in real time, with a frame rate of 10 Hz. In fact, in confocal light sheet microscopy (CLSM), the out-of-focus and scattered light is filtered out before detection, without multiple acquisitions or any post-processing of the acquired data. The background rejection capabilities of CLSM were validated in cleared mouse brains by comparison with a structured illumination approach. We show that CLSM allows reconstructing macroscopic brain volumes with sub-cellular resolution. We obtained a comprehensive map of Purkinje cells in the cerebellum of L7-GFP transgenic mice. Further, we were able to trace neuronal projections across brain of thy1-GFP-M transgenic mice. The whole-brain high-resolution fluorescence imaging assured by CLSM may represent a powerful tool to navigate the brain through neuronal pathways. Although this work is focused on brain imaging, the macro-scale high-resolution tomographies affordable with CLSM are ideally suited to explore, at micron-scale resolution, the anatomy of different specimens like murine organs, embryos or flies. PMID:23037106

  4. Dye-enhanced multimodal confocal microscopy for noninvasive detection of skin cancers in mouse models

    NASA Astrophysics Data System (ADS)

    Park, Jesung; Mroz, Pawel; Hamblin, Michael R.; Yaroslavsky, Anna N.

    2010-03-01

    Skin cancer is the most common form of human cancer. Its early diagnosis and timely treatment is of paramount importance for dermatology and surgical oncology. In this study, we evaluate the use of reflectance and fluorescence confocal microscopy for detecting skin cancers in an in-vivo trial with B16F10 melanoma and SCCVII squamous cell carcinoma in mice. For the experiments, the mice are anesthetized, then the tumors are infiltrated with aqueous solution of methylene blue and imaged. Reflectance images are acquired at 658 nm. Fluorescence is excited at 658 nm and registered in the range between 690 and 710 nm. After imaging, the mice are sacrificed. The tumors are excised and processed for hematoxylin and eosin histopathology, which is compared to the optical images. The results of the study indicate that in-vivo reflectance images provide valuable information on vascularization of the tumor, whereas the fluorescence images mimic the structural features seen in histopathology. Simultaneous dye-enhanced reflectance and fluorescence confocal microscopy shows promise for the detection, demarcation, and noninvasive monitoring of skin cancer development.

  5. Depth characterization of photopolymerized films by confocal Raman microscopy using an immersion objective.

    PubMed

    Courtecuisse, François; Dietlin, Céline; Croutxé-Barghorn, Céline; Van der Ven, Leendert G J

    2011-10-01

    The depth characterization of photopolymer films by confocal Raman microscopy is often troublesome due to refraction effects. To minimize these effects, we used an oil immersion objective and a method was developed to avoid penetration of the oil without damaging the sample surface. Since the surface may be sticky if oxygen in the air inhibits the photopolymerization, a protective layer could not be put onto the film. Therefore, the method consists in using a thin polypropylene foil as substrate for the coating and placing the sample upside down under the objective. In this manner, the immersion oil could be deposited on top of the polypropylene. The advantage of this setup is that the oil, polypropylene substrate, and photopolymer film have close refractive indices. Basic calculations showed that the depth resolution is hardly affected in that configuration and double-bond conversion profiles could be plotted as a function of reliable nominal depth. The validity of the methodology was confirmed by experiments carried out with a dry metallurgical objective on the sample surface, face up, where refraction effects are still minor. In addition, infrared spectroscopy, which was used to follow the photopolymerization, corroborated the Raman conversion of the films over their thickness. The confocal Raman microscopy method can be applied to various photopolymerized systems to characterize their behavior towards oxygen inhibition and other heterogeneities in conversion arising from inner filter effects or interactions between additives for instance. PMID:21986072

  6. Highly versatile confocal microscopy system based on a tunable femtosecond Er:fiber source.

    PubMed

    Träutlein, D; Adler, F; Moutzouris, K; Jeromin, A; Leitenstorfer, A; Ferrando-May, E

    2008-03-01

    The performance of a confocal microscopy setup based on a single femtosecond fiber system is explored over a broad range of pump wavelengths for both linear and nonlinear imaging techniques. First, the benefits of a laser source in linear fluorescence excitation that is continuously tunable over most of the visible spectrum are demonstrated. The influences of subpicosecond pulse durations on the bleaching behavior of typical fluorophores are discussed. We then utilize the tunable near-infrared output of the femtosecond system in connection with a specially designed prism compressor for dispersion control. Pulses as short as 33 fs are measured in the confocal region. As a consequence, 2 mW of average power are sufficient for two-photon microscopy in an organotypic sample from the mouse brain. This result shows great prospect for deep-tissue imaging in the optimum transparency window around 1100 nm. In a third experiment, we prove that our compact setup is powerful enough to exploit even higher-order nonlinearities such as three-photon absorption that we use to induce spatially localized photodamage in DNA. PMID:19343635

  7. Metabolic changes of cultured DRG neurons induced by adenosine using confocal microscopy imaging

    NASA Astrophysics Data System (ADS)

    Zheng, Liqin; Huang, Yimei; Chen, Jiangxu; Wang, Yuhua; Yang, Hongqin; Zhang, Yanding; Xie, Shusen

    2012-12-01

    Adenosine exerts multiple effects on pain transmission in the peripheral nervous system. This study was performed to use confocal microscopy to evaluate whether adenosine could affect dorsal root ganglia (DRG) neurons in vitro and test which adenosine receptor mediates the effect of adenosine on DRG neurons. After adding adenosine with different concentration, we compared the metabolic changes by the real time imaging of calcium and mitochondria membrane potential using confocal microscopy. The results showed that the effect of 500 μM adenosine on the metabolic changes of DRG neurons was more significant than others. Furthermore, four different adenosine receptor antagonists were used to study which receptor mediated the influences of adenosine on the cultured DRG neurons. All adenosine receptor antagonists especially A1 receptor antagonist (DPCPX) had effect on the Ca2+ and mitochondria membrane potential dynamics of DRG neurons. The above studies demonstrated that the effect of adenosine which may be involved in the signal transmission on the sensory neurons was dose-dependent, and all the four adenosine receptors especially the A1R may mediate the transmission.

  8. Combining microtomy and confocal laser scanning microscopy for structural analyses of plant-fungus associations.

    PubMed

    Rath, Magnus; Grolig, Franz; Haueisen, Janine; Imhof, Stephan

    2014-05-01

    The serious problem of extended tissue thickness in the analysis of plant-fungus associations was overcome using a new method that combines physical and optical sectioning of the resin-embedded sample by microtomy and confocal microscopy. Improved tissue infiltration of the fungal-specific, high molecular weight fluorescent probe wheat germ agglutinin conjugated to Alexa Fluor® 633 resulted in high fungus-specific fluorescence even in deeper tissue sections. If autofluorescence was insufficient, additional counterstaining with Calcofluor White M2R or propidium iodide was applied in order to visualise the host plant tissues. Alternatively, the non-specific fluorochrome acid fuchsine was used for rapid staining of both, the plant and the fungal cells. The intricate spatial arrangements of the plant and fungal cells were preserved by immobilization in the hydrophilic resin Unicryl™. Microtomy was used to section the resin-embedded roots or leaves until the desired plane was reached. The data sets generated by confocal laser scanning microscopy of the remaining resin stubs allowed the precise spatial reconstruction of complex structures in the plant-fungus associations of interest. This approach was successfully tested on tissues from ectomycorrhiza (Betula pendula), arbuscular mycorrhiza (Galium aparine; Polygala paniculata, Polygala rupestris), ericoid mycorrhiza (Calluna vulgaris), orchid mycorrhiza (Limodorum abortivum, Serapias parviflora) and on one leaf-fungus association (Zymoseptoria tritici on Triticum aestivum). The method provides an efficient visualisation protocol applicable with a wide range of plant-fungus symbioses. PMID:24249491

  9. Three-dimensional simultaneous optical coherence tomography and confocal fluorescence microscopy for investigation of lung tissue

    NASA Astrophysics Data System (ADS)

    Gaertner, Maria; Cimalla, Peter; Meissner, Sven; Kuebler, Wolfgang M.; Koch, Edmund

    2012-07-01

    Although several strategies exist for a minimal-invasive treatment of patients with lung failure, the mortality rate of acute respiratory distress syndrome still reaches 30% at minimum. This striking number indicates the necessity of understanding lung dynamics on an alveolar level. To investigate the dynamical behavior on a microscale, we used three-dimensional geometrical and functional imaging to observe tissue parameters including alveolar size and length of embedded elastic fibers during ventilation. We established a combined optical coherence tomography (OCT) and confocal fluorescence microscopy system that is able to monitor the distension of alveolar tissue and elastin fibers simultaneously within three dimensions. The OCT system can laterally resolve a 4.9 μm line pair feature and has an approximately 11 μm full-width-half-maximum axial resolution in air. confocal fluorescence microscopy visualizes molecular properties of the tissue with a resolution of 0.75 μm (laterally), and 5.9 μm (axially) via fluorescence detection of the dye sulforhodamine B specifically binding to elastin. For system evaluation, we used a mouse model in situ to perform lung distension by application of different constant pressure values within the physiological regime. Our method enables the investigation of alveolar dynamics by helping to reveal basic processes emerging during artificial ventilation and breathing.

  10. Determination of nitric oxide mediating intracellular Ca2+ release on neurons based on confocal microscopy imaging

    NASA Astrophysics Data System (ADS)

    Zheng, Liqin; Wang, Yuhua; He, Yipeng; Zeng, Yixiu; Zhang, Yanding; Xie, Shusen

    2014-09-01

    The gas NO is a ubiquitous intercellular messenger that modulates a wide range of physiological and pathophysiological functions. But few studies were made to study the role of NO in the Ca2+ release in dorsal root ganglion (DRG) neurons by confocal microscopy. Thus the objective of this study was to assess if NO has a role in Ca2+ signaling in DRG neurons using confocal microscopy combined with special fluorescence probe Fluo-3/AM. A 100 μM concentration of the NO donors (Sodium Nitroprusside, Dihydrate, SNP) and NO synthase inhibitor (NG-Monomethyl-L-arginine, Monoacetate salt, L-NMMA) was used in the study. Results showed that the fluorescence intensity increased rapidly after injecting SNP, which indicated that SNP could enhance intracellular Ca2+ release. And the fluorescence intensity shrank gradually with time and kept at a low level for quite a long period after loading with L-NMMA which indicated that L-NMMA could block intracellular Ca2+ release. All these results demonstrated that NO was involved in the regulation of intracellular Ca2+ release in the DRG neurons.

  11. Adaptive and Background-Aware GAL4 Expression Enhancement of Co-registered Confocal Microscopy Images.

    PubMed

    Trapp, Martin; Schulze, Florian; Novikov, Alexey A; Tirian, Laszlo; J Dickson, Barry; Bühler, Katja

    2016-04-01

    GAL4 gene expression imaging using confocal microscopy is a common and powerful technique used to study the nervous system of a model organism such as Drosophila melanogaster. Recent research projects focused on high throughput screenings of thousands of different driver lines, resulting in large image databases. The amount of data generated makes manual assessment tedious or even impossible. The first and most important step in any automatic image processing and data extraction pipeline is to enhance areas with relevant signal. However, data acquired via high throughput imaging tends to be less then ideal for this task, often showing high amounts of background signal. Furthermore, neuronal structures and in particular thin and elongated projections with a weak staining signal are easily lost. In this paper we present a method for enhancing the relevant signal by utilizing a Hessian-based filter to augment thin and weak tube-like structures in the image. To get optimal results, we present a novel adaptive background-aware enhancement filter parametrized with the local background intensity, which is estimated based on a common background model. We also integrate recent research on adaptive image enhancement into our approach, allowing us to propose an effective solution for known problems present in confocal microscopy images. We provide an evaluation based on annotated image data and compare our results against current state-of-the-art algorithms. The results show that our algorithm clearly outperforms the existing solutions. PMID:26743993

  12. Laser Scanning In Vivo Confocal Microscopy of Clear Grafts after Penetrating Keratoplasty

    PubMed Central

    Wang, Dai; Song, Peng; Wang, Shuting; Sun, Dapeng; Wang, Yuexin; Zhang, Yangyang

    2016-01-01

    Purpose. To evaluate the changes of keratocytes and dendritic cells in the central clear graft by laser scanning in vivo confocal microscopy after penetrating keratoplasty (PK). Methods. Thirty adult subjects receiving PK at Shandong Eye Institute and with clear grafts and no sign of immune rejection after surgery were recruited into this study, and 10 healthy adults were controls. The keratocytes and dendritic cells in the central graft were evaluated by laser scanning confocal microscopy, as well as epithelium cells, keratocytes, corneal endothelium cells, and corneal nerves (especially subepithelial plexus nerves). Results. Median density of subepithelial plexus nerves, keratocyte density in each layer of the stroma, and density of corneal endothelium cells were all lower in clear grafts than in controls. The dendritic cells of five (16.7%) patients were active in Bowman's membrane and stromal membrane of the graft after PK. Conclusions. Activated dendritic cells and Langerhans cells could be detected in some of the clear grafts, which indicated that the subclinical stress of immune reaction took part in the chronic injury of the clear graft after PK, even when there was no clinical rejection episode. PMID:27034940

  13. Live cell imaging using confocal microscopy induces intracellular calcium transients and cell death.

    PubMed

    Knight, Martin M; Roberts, Susan R; Lee, David A; Bader, Dan L

    2003-04-01

    Isolated chondrocytes stained with fluo 4-AM and visualized using standard confocal microscopy techniques exhibited Ca2- transients and oscillations. Decreasing the power of the laser light decreased the percent-age of cells exhibiting these Ca2+ signals. Treatment with the antioxidant ascorbate reduced the Ca2+ response, suggesting that it was mediated by light-induced release of reactive oxygen species (ROS). Cell viability 24 h after the 1-h confocal imaging period was approximately 90% for cells that were neither fluorescently stained nor subjected to laser excitation. By contrast, fluorescently stained cells imaged for 1 h exhibited greatly reduced viability. Treatment with ascorbate reduced the level of cell death, suggesting that the effect was mediated by release of exogenous ROS associated with the interaction of light and the fluorochrome. Ca2+ oscillations were not always associated with cell death, suggesting that separate light-sensitive pathways mediate the two processes. Light-activated Ca2+ signaling may trigger alterations in numerous cell processes and thereby represent an important and hitherto overlooked artifact in fluorescent microscopy of viable cells. PMID:12661552

  14. In vivo fluorescence confocal microscopy: indocyanine green enhances the contrast of epidermal and dermal structures

    NASA Astrophysics Data System (ADS)

    Skvara, Hans; Kittler, Harald; Schmid, Johannes A.; Plut, Ulrike; Jonak, Constanze

    2011-09-01

    In recent years, in vivo skin imaging devices have been successfully implemented in skin research as well as in clinical routine. Of particular importance is the use of reflectance confocal microscopy (RCM) and fluorescence confocal microscopy (FCM) that enable visualization of the tissue with a resolution comparable to histology. A newly developed commercially available multi-laser device in which both technologies are integrated now offers the possibility to directly compare RCM with FCM. The fluorophore indocyanine green (ICG) was intradermally injected into healthy forearm skin of 10 volunteers followed by in vivo imaging at various time points. In the epidermis, accurate assessment of cell morphology with FCM was supplemented by identification of pigmented cells and structures with RCM. In dermal layers, only with FCM connective tissue fibers were clearly contoured down to a depth of more than 100 μm. The fluorescent signal still provided a favorable image contrast 24 and 48 hours after injection. Subsequently, ICG was applied to different types of skin diseases (basal cell carcinoma, actinic keratosis, seborrhoeic keratosis, and psoriasis) in order to demonstrate the diagnostic benefit of FCM when directly compared with RCM. Our data suggest a great impact of FCM in combination with ICG on clinical and experimental dermatology in the future.

  15. Quantification of whey in fluid milk using confocal Raman microscopy and artificial neural network.

    PubMed

    Alves da Rocha, Roney; Paiva, Igor Moura; Anjos, Virgílio; Furtado, Marco Antônio Moreira; Bell, Maria José Valenzuela

    2015-06-01

    In this work, we assessed the use of confocal Raman microscopy and artificial neural network as a practical method to assess and quantify adulteration of fluid milk by addition of whey. Milk samples with added whey (from 0 to 100%) were prepared, simulating different levels of fraudulent adulteration. All analyses were carried out by direct inspection at the light microscope after depositing drops from each sample on a microscope slide and drying them at room temperature. No pre- or posttreatment (e.g., sample preparation or spectral correction) was required in the analyses. Quantitative determination of adulteration was performed through a feed-forward artificial neural network (ANN). Different ANN configurations were evaluated based on their coefficient of determination (R2) and root mean square error values, which were criteria for selecting the best predictor model. In the selected model, we observed that data from both training and validation subsets presented R2>99.99%, indicating that the combination of confocal Raman microscopy and ANN is a rapid, simple, and efficient method to quantify milk adulteration by whey. Because sample preparation and postprocessing of spectra were not required, the method has potential applications in health surveillance and food quality monitoring. PMID:25828656

  16. Corneal confocal microscopy reveals trigeminal small sensory fiber neuropathy in amyotrophic lateral sclerosis

    PubMed Central

    Ferrari, Giulio; Grisan, Enrico; Scarpa, Fabio; Fazio, Raffaella; Comola, Mauro; Quattrini, Angelo; Comi, Giancarlo; Rama, Paolo; Riva, Nilo

    2014-01-01

    Although subclinical involvement of sensory neurons in amyotrophic lateral sclerosis (ALS) has been previously demonstrated, corneal small fiber sensory neuropathy has not been reported to-date. We examined a group of sporadic ALS patients with corneal confocal microscopy, a recently developed imaging technique allowing in vivo observation of corneal small sensory fibers. Corneal confocal microscopy (CCM) examination revealed a reduction of corneal small fiber sensory nerve number and branching in ALS patients. Quantitative analysis demonstrated an increase in tortuosity and reduction in length and fractal dimension of ALS patients’ corneal nerve fibers compared to age-matched controls. Moreover, bulbar function disability scores were significantly related to measures of corneal nerve fibers anatomical damage. Our study demonstrates for the first time a corneal small fiber sensory neuropathy in ALS patients. This finding further suggests a link between sporadic ALS and facial-onset sensory and motor neuronopathy (FOSMN) syndrome, a rare condition characterized by early sensory symptoms (with trigeminal nerve distribution), followed by wasting and weakness of bulbar and upper limb muscles. In addition, the finding supports a model of neurodegeneration in ALS as a focally advancing process. PMID:25360111

  17. Mosaicism

    MedlinePlus

    ... A diagnosis of mosaicism may cause confusion and uncertainty. A genetic counselor may help answer any questions ... member of Hi-Ethics and subscribes to the principles of the Health on the Net Foundation (www. ...

  18. Localization and movement of mineral oil in plants by fluorescence and confocal microscopy.

    PubMed

    Tan, B L; Sarafis, V; Beattie, G A C; White, R; Darley, E M; Spooner-Hart, R

    2005-10-01

    Fluorescence and confocal laser scanning microscopy were explored to investigate the movement and localization of mineral oils in citrus. In a laboratory experiment, fluorescence microscopy observation indicated that when a 'narrow' distillation fraction of an nC23 horticultural mineral oil was applied to adaxial and opposing abaxial leaf surfaces of potted orange [Citrus x aurantium L. (Sapindales: Rutaceae)] trees, oil penetrated steadily into treated leaves and, subsequently, moved to untreated petioles of the leaves and adjacent untreated stems. In another experiment, confocal laser scanning microscopy was used to visualize the penetration into, and the subsequent cellular distribution of, an nC24 agricultural mineral oil in C. trifoliata L. seedlings. Oil droplets penetrated or diffused into plants via both stomata and the cuticle of leaves and stems, and then moved within intercellular spaces and into various cells including phloem and xylem. Oil accumulated in droplets in intercellular spaces and within cells near the cell membrane. Oil entered cells without visibly damaging membranes or causing cell death. In a field experiment with mature orange trees, droplets of an nC23 horticultural mineral oil were observed, by fluorescence microscopy, in phloem sieve elements in spring flush growth produced 4-5 months and 16-17 months after the trees were sprayed with oil. These results suggest that movement of mineral oil in plants is both apoplastic via intercellular spaces and symplastic via plasmodesmata. The putative pattern of the translocation of mineral oil in plants and its relevance to oil-induced chronic phytotoxicity are discussed. PMID:16118255

  19. Development of Useful Recombinant Promoter and Its Expression Analysis in Different Plant Cells Using Confocal Laser Scanning Microscopy

    PubMed Central

    Kumar, Deepak; Sahoo, Dipak K.; Maiti, Indu B.; Dey, Nrisingha

    2011-01-01

    Background Designing functionally efficient recombinant promoters having reduced sequence homology and enhanced promoter activity will be an important step toward successful stacking or pyramiding of genes in a plant cell for developing transgenic plants expressing desired traits(s). Also basic knowledge regarding plant cell specific expression of a transgene under control of a promoter is crucial to assess the promoter's efficacy. Methodology/Principal Findings We have constructed a set of 10 recombinant promoters incorporating different up-stream activation sequences (UAS) of Mirabilis mosaic virus sub-genomic transcript (MS8, -306 to +27) and TATA containing core domains of Figwort mosaic virus sub-genomic transcript promoter (FS3, −271 to +31). Efficacies of recombinant promoters coupled to GUS and GFP reporter genes were tested in tobacco protoplasts. Among these, a 369-bp long hybrid sub-genomic transcript promoter (MSgt-FSgt) showed the highest activity in both transient and transgenic systems. In a transient system, MSgt-FSgt was 10.31, 2.86 and 2.18 times more active compared to the CaMV35S, MS8 and FS3 promoters, respectively. In transgenic tobacco (Nicotiana tabaccum, var. Samsun NN) and Arabidopsis plants, the MSgt-FSgt hybrid promoter showed 14.22 and 7.16 times stronger activity compared to CaMV35S promoter respectively. The correlation between GUS activity and uidA-mRNA levels in transgenic tobacco plants were identified by qRT-PCR. Both CaMV35S and MSgt-FSgt promoters caused gene silencing but the degree of silencing are less in the case of the MSgt-FSgt promoter compared to CaMV35S. Quantification of GUS activity in individual plant cells driven by the MSgt-FSgt and the CaMV35S promoter were estimated using confocal laser scanning microscopy and compared. Conclusion and Significance We propose strong recombinant promoter MSgt-FSgt, developed in this study, could be very useful for high-level constitutive expression of transgenes in a wide variety

  20. Local delivery of fluorescent dye for fiber-optics confocal microscopy of the living heart

    PubMed Central

    Huang, Chao; Kaza, Aditya K.; Hitchcock, Robert W.; Sachse, Frank B.

    2014-01-01

    Fiber-optics confocal microscopy (FCM) is an emerging imaging technology with various applications in basic research and clinical diagnosis. FCM allows for real-time in situ microscopy of tissue at sub-cellular scale. Recently FCM has been investigated for cardiac imaging, in particular, for discrimination of cardiac tissue during pediatric open-heart surgery. FCM relies on fluorescent dyes. The current clinical approach of dye delivery is based on systemic injection, which is associated with high dye consumption, and adverse clinical events. In this study, we investigated approaches for local dye delivery during FCM imaging based on dye carriers attached to the imaging probe. Using three-dimensional confocal microscopy, automated bench tests, and FCM imaging we quantitatively characterized dye release of carriers composed of open-pore foam only and foam loaded with agarose hydrogel. In addition, we compared local dye delivery with a model of systemic dye delivery in the isolated perfused rodent heart. We measured the signal-to-noise ratio (SNR) of images acquired in various regions of the heart. Our evaluations showed that foam-agarose dye carriers exhibited a prolonged dye release vs. foam-only carriers. Foam-agarose dye carriers allowed reliable imaging of 5–9 lines, which is comparable to 4–8 min of continuous dye release. Our study in the living heart revealed that the SNR of FCM images using local and systemic dye delivery is not different. However, we observed differences in the imaged tissue microstructure with the two approaches. Structural features characteristic of microvasculature were solely observed for systemic dye delivery. Our findings suggest that local dye delivery approach for FCM imaging constitutes an important alternative to systemic dye delivery. We suggest that the approach for local dye delivery will facilitate clinical translation of FCM, for instance, for FCM imaging during pediatric heart surgery. PMID:25309455

  1. Correcting spherical aberrations in confocal light sheet microscopy: a theoretical study.

    PubMed

    Silvestri, L; Sacconi, L; Pavone, F S

    2014-07-01

    In the last years, fluorescence light sheet microscopy has attracted an increasing interest among the microscopy community. One of the most promising applications of this technique is the reconstruction of macroscopic biological specimens with microscopic resolution, without physical sectioning. To this aim, light sheet microscopy is combined with clearing protocols based on refractive index matching, which render the tissue transparent. However, these protocols lead to a huge drop in the fluorescence signal, limiting their practical applicability. The reduction of signal to background ratio is commonly ascribed to chemical degradation of the fluorophores by the organic solvents used for clearing. This view however completely neglects another important factor of contrast loss, i.e., optical aberrations. In fact, commercially available objectives suitable for light sheet microscopy are not designed for the refractive index of the clearing solutions, and this mismatch introduces severe spherical aberration. Here we simulated the aberrated point spread function (PSF) of a light sheet microscope with confocal slit detection. We investigated the variation of the PSF as a function of objective numerical aperture (NA) and of imaging depth inside the clearing solution. We also explored the possibility of correcting such spherical aberration by introducing extra optical devices in the detection path. By correcting up to the second order spherical aberration, a quasi-diffraction-limited regime can be recovered, and image quality is restored. PMID:24395714

  2. Confocal Raman microscopy for investigation of the level of differentiation in living neuroblastoma tumor cells

    NASA Astrophysics Data System (ADS)

    Scalfi-Happ, Claudia; Jauss, Andrea; Hollricher, Olaf; Fulda, Simone; Hauser, Carmen; Steiner, Rudolf; Rück, Angelika

    2007-07-01

    The investigation of living cells at physiological conditions requires very sensitive, sophisticated, non invasive methods. In this study, Raman spectral imaging is used to identify different biomolecules inside of cells. Raman spectroscopy, a chemically and structurally sensitive measuring technique, is combined with high resolution confocal microscopy. In Raman spectral imaging mode, a complete Raman spectrum is recorded at every confocal image point, giving insight into the chemical composition of each sample compartment. Neuroblastoma is the most common solid extra-cranial tumor in children. One of the unique features of neuroblastoma cells is their ability to differentiate spontaneously, eventually leading to complete remission. Since differentiation agents are currently used in the clinic for neuroblastoma therapy, there is a special need to develop non-invasive and sensitive new methods to monitor neuroblastoma cell differentiation. Neuroblastoma cells at different degrees of differentiation were analysed with the confocal Raman microscope alpha300 R (WITec GmbH, Germany), using a frequency doubled Nd:YAG laser at 532 nm and 10 mW for excitation. Integration time per spectrum was 80-100 ms. A lateral resolution in submicrometer range was achieved by using a 60x water immersion lens with a numerical aperture of 1,0. Raman images of cells were generated from these sets of data by either integrating over specific Raman bands, by basis analysis using reference spectra or by cluster analysis. The automated evaluation of all spectra results in spectral unmixed images providing insight into the chemical composition of the sample. With these procedures, different cell organelles, cytosol, membranes could be distinguished. Since neuroblastoma cells at high degree of differentiation overproduce noradrenaline, an attempt was made to trace the presence of this neurotransmitter as a marker for differentiation. The results of this work may have applications in the

  3. Modeling of Fibrin Gels Based on Confocal Microscopy and Light-Scattering Data

    PubMed Central

    Magatti, Davide; Molteni, Matteo; Cardinali, Barbara; Rocco, Mattia; Ferri, Fabio

    2013-01-01

    Fibrin gels are biological networks that play a fundamental role in blood coagulation and other patho/physiological processes, such as thrombosis and cancer. Electron and confocal microscopies show a collection of fibers that are relatively monodisperse in diameter, not uniformly distributed, and connected at nodal points with a branching order of ∼3–4. Although in the confocal images the hydrated fibers appear to be quite straight (mass fractal dimension Dm = 1), for the overall system 1confocal images, we developed a method to generate three-dimensional (3D) in silico gels made of cylindrical sticks of diameter d, density ρ, and average length 〈L〉, joined at randomly distributed nodal points. The resulting 3D network strikingly resembles real fibrin gels and can be sketched as an assembly of densely packed fractal blobs, i.e., regions of size ξ, where the fiber concentration is higher than average. The blobs are placed at a distance ξ0 between their centers of mass so that they are overlapped by a factor η = ξ/ξ0 and have Dm ∼1.2–1.6. The in silico gels’ structure is quantitatively analyzed by its 3D spatial correlation function g3D(r) and corresponding power spectrum I(q) = FFT3D[g3D(r)], from which ρ, d, Dm, η, and ξ0 can be extracted. In particular, ξ0 provides an excellent estimate of the gel mesh size. The in silico gels’ I(q) compares quite well with real gels’ elastic light-scattering measurements. We then derived an analytical form factor for accurately fitting the scattering data, which allowed us to directly recover the gels’ structural parameters. PMID:23473498

  4. Comparison of reflectance confocal microscopy and two-photon second harmonic generation microscopy in fungal keratitis rabbit model ex vivo

    PubMed Central

    Lee, Jun Ho; Lee, Seunghun; Yoon, Calvin J.; Park, Jin Hyoung; Tchah, Hungwon; Kim, Myoung Joon; Kim, Ki Hean

    2016-01-01

    Fungal keratitis is an infection of the cornea by fungal pathogens. Diagnosis methods based on optical microscopy could be beneficial over the conventional microbiology method by allowing rapid and non-invasive examination. Reflectance confocal microscopy (RCM) and two-photon second harmonic generation microscopy (TPSHGM) have been applied to pre-clinical or clinical studies of fungal keratitis. In this report, RCM and TPSHGM were characterized and compared in the imaging of a fungal keratitis rabbit model ex vivo. Fungal infection was induced by using two strains of fungi: aspergillus fumigatus and candida albicans. The infected corneas were imaged in fresh condition by both modalities sequentially and their images were analyzed. Both RCM and TPSHGM could detect both fungal strains within the cornea based on morphology: aspergillus fumigatus had distinctive filamentous structures, and candida albicans had round structures superficially and elongated structures in the corneal stroma. These imaging results were confirmed by histology. Comparison between RCM and TPSHGM showed several characteristics. Although RCM and TPSHGM images had good correlation each other, their images were slightly different due to difference in contrast mechanism. RCM had relatively low image contrast with the infected turbid corneas due to high background signal. TPSHGM visualized cells and collagen in the cornea clearly compared to RCM, but used higher laser power to compensate low autofluorescence. Since these two modalities provide complementary information, combination of RCM and TPSHGM would be useful for fungal keratitis detection by compensating their weaknesses each other. PMID:26977371

  5. Prototype study on a miniaturized dual-modality imaging system for photoacoustic microscopy and confocal fluorescence microscopy

    NASA Astrophysics Data System (ADS)

    Chen, Sung-Liang; Xie, Zhixing; Guo, L. Jay; Wang, Xueding

    2014-03-01

    It is beneficial to study tumor angiogenesis and microenvironments by imaging the microvasculature and cells at the same time. Photoacoustic microscopy (PAM) is capable of sensitive three-dimensional mapping of microvasculature, while fluorescence microscopy may be applied to assessment of tissue pathology. In this work, a fiber-optic based PAM and confocal fluorescence microscopy (CFM) dual-modality imaging system was designed and built, serving as a prototype of a miniaturized dual-modality imaging probe for endoscopic applications. As for the design, we employed miniature components, including a microelectromechanical systems (MEMS) scanner, a miniature objective lens, and a small size optical microring resonator as an acoustic detector. The system resolutions were calibrated as 8.8 μm in the lateral directions for both PAM and CFM, and 19 μm and 53 μm in the axial direction for PAM and CFM, respectively. Images of the animal bladders ex vivo were demonstrated to show the ability of the system in imaging not only microvasculature but also cellular structure.

  6. Comparison of reflectance confocal microscopy and two-photon second harmonic generation microscopy in fungal keratitis rabbit model ex vivo.

    PubMed

    Lee, Jun Ho; Lee, Seunghun; Yoon, Calvin J; Park, Jin Hyoung; Tchah, Hungwon; Kim, Myoung Joon; Kim, Ki Hean

    2016-02-01

    Fungal keratitis is an infection of the cornea by fungal pathogens. Diagnosis methods based on optical microscopy could be beneficial over the conventional microbiology method by allowing rapid and non-invasive examination. Reflectance confocal microscopy (RCM) and two-photon second harmonic generation microscopy (TPSHGM) have been applied to pre-clinical or clinical studies of fungal keratitis. In this report, RCM and TPSHGM were characterized and compared in the imaging of a fungal keratitis rabbit model ex vivo. Fungal infection was induced by using two strains of fungi: aspergillus fumigatus and candida albicans. The infected corneas were imaged in fresh condition by both modalities sequentially and their images were analyzed. Both RCM and TPSHGM could detect both fungal strains within the cornea based on morphology: aspergillus fumigatus had distinctive filamentous structures, and candida albicans had round structures superficially and elongated structures in the corneal stroma. These imaging results were confirmed by histology. Comparison between RCM and TPSHGM showed several characteristics. Although RCM and TPSHGM images had good correlation each other, their images were slightly different due to difference in contrast mechanism. RCM had relatively low image contrast with the infected turbid corneas due to high background signal. TPSHGM visualized cells and collagen in the cornea clearly compared to RCM, but used higher laser power to compensate low autofluorescence. Since these two modalities provide complementary information, combination of RCM and TPSHGM would be useful for fungal keratitis detection by compensating their weaknesses each other. PMID:26977371

  7. Fault localization and analysis in semiconductor devices with optical-feedback infrared confocal microscopy

    SciTech Connect

    Sarmiento, Raymund; Cemine, Vernon Julius; Tagaca, Imee Rose; Salvador, Arnel; Mar Blanca, Carlo; Saloma, Caesar

    2007-11-01

    We report on a cost-effective optical setup for characterizing light-emitting semiconductor devices with optical-feedback confocal infrared microscopy and optical beam-induced resistance change.We utilize the focused beam from an infrared laser diode to induce local thermal resistance changes across the surface of a biased integrated circuit (IC) sample. Variations in the multiple current paths are mapped by scanning the IC across the focused beam. The high-contrast current maps allow accurate differentiation of the functional and defective sites, or the isolation of the surface-emittingp-i-n devices in the IC. Optical beam-induced current (OBIC) is not generated since the incident beam energy is lower than the bandgap energy of the p-i-n device. Inhomogeneous current distributions in the IC become apparent without the strong OBIC background. They are located at a diffraction-limited resolution by referencing the current maps against the confocal reflectance image that is simultaneously acquired via optical-feedback detection. Our technique permits the accurate identification of metal and semiconductor sites as well as the classification of different metallic structures according to thickness, composition, or spatial inhomogeneity.

  8. Quantitative confocal fluorescence microscopy of dynamic processes by multifocal fluorescence correlation spectroscopy

    NASA Astrophysics Data System (ADS)

    Krmpot, Aleksandar J.; Nikolić, Stanko N.; Vitali, Marco; Papadopoulos, Dimitrios K.; Oasa, Sho; Thyberg, Per; Tisa, Simone; Kinjo, Masataka; Nilsson, Lennart; Gehring, Walter J.; Terenius, Lars; Rigler, Rudolf; Vukojevic, Vladana

    2015-07-01

    Quantitative confocal fluorescence microscopy imaging without scanning is developed for the study of fast dynamical processes. The method relies on the use of massively parallel Fluorescence Correlation Spectroscopy (mpFCS). Simultaneous excitation of fluorescent molecules across the specimen is achieved by passing a single laser beam through a Diffractive Optical Element (DOE) to generate a quadratic illumination matrix of 32×32 light sources. Fluorescence from 1024 illuminated spots is detected in a confocal arrangement by a matching matrix detector consisting of the same number of single-photon avalanche photodiodes (SPADs). Software was developed for data acquisition and fast autoand cross-correlation analysis by parallel signal processing using a Graphic Processing Unit (GPU). Instrumental performance was assessed using a conventional single-beam FCS instrument as a reference. Versatility of the approach for application in biomedical research was evaluated using ex vivo salivary glands from Drosophila third instar larvae expressing a fluorescently-tagged transcription factor Sex Combs Reduced (Scr) and live PC12 cells stably expressing the fluorescently tagged mu-opioid receptor (MOPeGFP). We show that quantitative mapping of local concentration and mobility of transcription factor molecules across the specimen can be achieved using this approach, which paves the way for future quantitative characterization of dynamical reaction-diffusion landscapes across live cells/tissue with a submillisecond temporal resolution (presently 21 μs/frame) and single-molecule sensitivity.

  9. Fluorescence imaging and time-resolved spectroscopy of steroid using confocal synchrotron radiation microscopy

    NASA Astrophysics Data System (ADS)

    Gerritsen, Hans C.; van der Oord, C. J. R.; Levine, Yehudi K.; Munro, Ian H.; Jones, Gareth R.; Shaw, D. A.; Rommerts, Fokko F.

    1994-08-01

    The Confocal Synchrotron Radiation Microscope at Daresbury was used in a study of the transport and distribution of the steroid Coumestrol in single Leydig cells. The broad spectrum of synchrotron radiation in combination with UV compatible microscope optics affords the extension of confocal microscopy from the visible to the UV region down to about 200 nm. Consequently fluorescent molecules with absorption bands in the UV can be imaged. In addition the pulsed nature of the light source allows us to perform time-resolved fluorescence spectroscopy experiments on microscopic volumes. Coumestrol is a naturally fluorescing plant steroid exhibiting estrogenic activity. In physiological environments it has an absorption peak in the UV at 340 nm and it emits around 440 nm. First results indicate that the Coumestrol transport through the cell membrane is diffusion limited. The weak fluorescence observed in the nuclei of the Leydig cells may be due to fluorescence quenching arising from the interaction of the Coumesterol with nuclear components. However, micro-volume time-resolved fluorescence spectroscopy experiments on cell nuclei have revealed the same decay behavior for Coumesterol in both the cytoplasm and nucleus of the cells.

  10. Lithographically-fabricated channel arrays for confocal x-ray fluorescence microscopy and XAFS

    NASA Astrophysics Data System (ADS)

    Woll, Arthur R.; Agyeman-Budu, David; Choudhury, Sanjukta; Coulthard, Ian; Finnefrock, Adam C.; Gordon, Robert; Hallin, Emil; Mass, Jennifer

    2014-03-01

    Confocal X-ray Fluorescence Microscopy (CXRF) employs overlapping focal regions of two x-ray optics—a condenser and collector—to directly probe a 3D volume. The minimum-achievable size of this probe volume is limited by the collector, for which polycapillaries are generally the optic of choice. Recently, we demonstrated an alternative collection optic for CXRF, consisting of an array of micron-scale collimating channels, etched in silicon, and arranged like spokes of a wheel directed towards a single source position. The optic, while successful, had a working distance of only 0.2 mm and exhibited relatively low total collection efficiency, limiting its practical application. Here, we describe a new design in which the collimating channels are formed by a staggered array of pillars whose side-walls taper away from the channel axis. This approach improves both collection efficiency and working distance, while maintaining excellent spatial resolution. We illustrate these improvements with confocal XRF data obtained at the Cornell High Energy Synchrotron Source (CHESS) and the Advanced Photon Source (APS) beamline 20-ID-B.

  11. The method of axial drift compensation of laser differential confocal microscopy based on zero-tracking

    NASA Astrophysics Data System (ADS)

    Wang, Yajie; Cui, Han; Wang, Yun; Qiu, Lirong; Zhao, Weiqian

    2015-08-01

    Laser differential confocal microscopy (DCM) has advantages of high axial resolution and strong ability of focus identification. However, the imaging mechanism of point scanning needs long measurement time, in the process due to itself mechanical instability and the influence of environment vibration the axial drift of object position is inevitable, which will reduce lateral resolution of the DCM. To ensure the lateral resolution we propose an axial drift compensation method based on zero-tracking in this paper. The method takes advantage of the linear region of differential confocal axial response curve, gets axial drift by detecting the laser intensity; uses grating sensor to monitor the real-time axial drift of lifting stage and realizes closed-loop control; uses capacitive sensor of objective driver to measure its position. After getting the axial drift of object, the lifting stage and objective driver will be driven to compensate position according to the axial drift. This method is realized by using Visual Studio 2010, and the experiment demonstrates that the compensation precision of the proposed method can reach 6 nm. It is not only easy to implement, but also can compensate the axial drift actively and real-timely. Above all, this method improves the system stability of DCM effectively.

  12. Effects of axial scanning in confocal microscopy employing adaptive lenses (CAL)

    NASA Astrophysics Data System (ADS)

    Koukourakis, N.; Finkeldey, M.; Stürmer, M.; Gerhardt, N. C.; Wallrabe, U.; Hofmann, M. R.; Czarske, J. W.; Fischer, A.

    2014-05-01

    We analyze axial scanning in Confocal microscopy based on Adaptive Lenses (CAL). A tunable lens located in the illumination path of a confocal setup enables scanning the focus position by applying an electrical voltage. This opens up the possibility to replace mechanical axial scanning which is commonly used. In our proof-of-principle experiment, we demonstrate a tuning range of about 380 μm. The range can easily be extended by using the whole possible tuning range. During the scan the axial resolution degrades by a factor of about 2.3. The deterioration is introduced by aberrations that strongly depend on the scanning process. Therefore a second lens is located in the detection path of the CAL setup to balance the aberration effects. Both experiments and simulations show that this approach allows creating a homogeneous axial resolution throughout the scan. This is at the cost of tuning range which halves to about 200 μm. The lateral resolution is not noticeably affected and amounts to 500 nm.

  13. Structure and chemical composition of the dentin-enamel junction analyzed by Confocal Raman Microscopy

    NASA Astrophysics Data System (ADS)

    Desoutter, A.; Salehi, H.; Slimani, A.; Marquet, P.; Jacquot, B.; Tassery, H.; Cuisinier, F. J. G.

    2014-02-01

    The structure and chemical composition of the human dentin-enamel junction (DEJ) was studied using confocal Raman microscopy - a chemical imaging technique. Slices of non-fixed, sound teeth were prepared with an Isomet diamond saw and scanned with Witec Alpha300R system. The combination of different characteristics peaks of phosphate, carbonate and organic matrix (respectively 960, 1072 and 1545 cm-1), generates images representing the chemical composition of the DEJ area. Images are also calculated using peak ratios enabling precise determination of the chemical composition across the DEJ. Then, with two characterized peaks, different pictures are calculated to show the ratio of two components. The images of the spatial distribution of mineral phosphate (960cm-1) to organic matrix (1545 cm-1) ratios, mineral carbonates (1072cm-1) to mineral phosphate ratios; and mineral carbonates to organic matrix ratios were reconstructed. Cross sectional and calculated graphic profile show the variations of the different chemical component ratios through the enamel and the dentin. Phosphate to organic ratio shows an accumulation of organic material under the enamel surface. The cross sectional profile of these pictures shows a high phosphate content compared to enamel in the vicinity of the DEJ. The Confocal Raman imaging technique can be used to further provide full chemical imaging of tooth, particularly of the whole DEJ and to study enamel and dentin decay.

  14. Photothermal confocal multicolor microscopy of nanoparticles and nanodrugs in live cells.

    PubMed

    Nedosekin, Dmitry A; Foster, Stephen; Nima, Zeid A; Biris, Alexandru S; Galanzha, Ekaterina I; Zharov, Vladimir P

    2015-08-01

    Growing biomedical applications of non-fluorescent nanoparticles (NPs) for molecular imaging, disease diagnosis, drug delivery, and theranostics require new tools for real-time detection of nanomaterials, drug nano-carriers, and NP-drug conjugates (nanodrugs) in complex biological environments without additional labeling. Photothermal (PT) microscopy (PTM) has enormous potential for absorption-based identification and quantification of non-fluorescent molecules and NPs at a single molecule and 1.4 nm gold NP level. Recently, we have developed confocal PTM providing three-dimensional (3D) mapping and spectral identification of multiple chromophores and fluorophores in live cells. Here, we summarize recent advances in the application of confocal multicolor PTM for 3D visualization of single and clustered NPs, alone and in individual cells. In particular, we demonstrate identification of functionalized magnetic and gold-silver NPs, as well as graphene and carbon nanotubes in cancer cells and among blood cells. The potential to use PTM for super-resolution imaging (down to 50 nm), real-time NP tracking, guidance of PT nanotherapy, and multiplex cancer markers targeting, as well as analysis of non-linear PT phenomena and amplification of nanodrug efficacy through NP clustering and nano-bubble formation are also discussed. PMID:26133539

  15. Automated detection of malignant features in confocal microscopy on superficial spreading melanoma versus nevi

    NASA Astrophysics Data System (ADS)

    Gareau, Dan; Hennessy, Ricky; Wan, Eric; Pellacani, Giovanni; Jacques, Steven L.

    2010-11-01

    In-vivo reflectance confocal microscopy (RCM) shows promise for the early detection of superficial spreading melanoma (SSM). RCM of SSM shows pagetoid melanocytes (PMs) in the epidermis and disarray at the dermal-epidermal junction (DEJ), which are automatically quantified with a computer algorithm that locates depth of the most superficial pigmented surface [DSPS(x,y)] containing PMs in the epidermis and pigmented basal cells near the DEJ. The algorithm uses 200 noninvasive confocal optical sections that image the superficial 200 μm of ten skin sites: five unequivocal SSMs and five nevi. The pattern recognition algorithm automatically identifies PMs in all five SSMs and finds none in the nevi. A large mean gradient ψ (roughness) between laterally adjacent points on DSPS(x,y) identifies DEJ disruption in SSM ψ = 11.7 +/- 3.7 [-] for n = 5 SSMs versus a small ψ = 5.5 +/- 1.0 [-] for n = 5 nevi (significance, p = 0.0035). Quantitative endpoint metrics for malignant characteristics make digital RCM data an attractive diagnostic asset for pathologists, augmenting studies thus far, which have relied largely on visual assessment.

  16. Mapping Li(+) Concentration and Transport via In Situ Confocal Raman Microscopy.

    PubMed

    Forster, Jason D; Harris, Stephen J; Urban, Jeffrey J

    2014-06-01

    We demonstrate confocal Raman microscopy as a general, nonperturbative tool to measure spatially resolved lithium ion concentrations in liquid electrolytes. By combining this high-spatial-resolution technique with a simple microfluidic device, we are able to measure the diffusion coefficient of lithium ions in dimethyl carbonate in two different concentration regimes. Because lithium ion transport plays a key role in the function of a variety of electrochemical devices, quantifying and visualizing this process is crucial for understanding device performance. This method for detecting lithium ions should be immediately useful in the study of lithium-ion-based devices, ion transport in porous media, and at electrode-electrolyte interfaces, and the analytical framework is useful for any system exhibiting a concentration-dependent Raman spectrum. PMID:26273887

  17. Musculature of an illoricate predatory rotifer Asplanchnopus multiceps as revealed by phalloidin fluorescence and confocal microscopy.

    PubMed

    Kotikova, E A; Raikova, O I; Reuter, M; Gustafsson, M K S

    2004-06-01

    The pattern of muscles in the actively swimming predatory rotifer Asplanchnopus multiceps is revealed by staining with tetramethyl-rhodamine isothiocyanate (TRITC)-labelled phalloidin and confocal scanning laser microscopy (CSLM). The major components of the musculature are: prominent semicircular muscles of the corona; paired lateral, dorsal and ventral retractors in the trunk; a network of six seemingly complete circular muscles and anastomosing longitudinal muscles in the trunk; two short foot retractors, originating from a transverse muscle in the lower third of the trunk. The sphincter of the corona marks the boundary between the head and the trunk. The muscular patterns in rotifers with different lifestyles differ clearly, therefore, the muscular patterns seem to be determined by the mode of locomotion and feeding behaviour. PMID:15140596

  18. Confocal Microscopy Studies of Trypsin Immobilization on Porous Glycidyl Methacrylate Beads.

    PubMed

    Malmsten; Xing; Ljunglöf

    1999-12-15

    The immobilization of trypsin on porous glycidyl methacrylate (GMA-GDMA) beads has been investigated. In particular, the distribution within the beads of trypsin and of dextran used for hydrophilizing the bead surface prior to protein immobilization was investigated with confocal microscopy. For the system investigated, the fluorescence intensity profiles obtained when using borate buffer as an ambient solution displayed a distinct minimum at the center of the beads, irrespective of the observation depth. However, by reduction of the refractive index difference between the solution and the beads through the addition of glucose to the aqueous solution, artifacts relating to optical length differences could be reduced. For both low molecular weight fluorescein isothiocyanate (FITC), FITC-labeled trypsin, and FITC-labeled dextran, an essentially homogeneous distribution throughout the beads was observed. This simple "contrast matching" method seems therefore to be an interesting tool when investigating the distribution of immobilized protein in porous chromatography media. Copyright 1999 Academic Press. PMID:10607463

  19. Further study of trichosanthin's effect on mouse embryos with confocal laser scanning microscopy

    NASA Astrophysics Data System (ADS)

    Xu, Hui; Zhang, Chunyang; Ma, Hui; Chen, Die Yan

    2001-09-01

    Trichosanthin(TCS), a ribosome inactivating protein extracted from the root tuber of a traditional Chinese medicine herb Tian Huo Fen(THF), possessed abortifacient, anti-tumor and anti-human immunodeficiency virus(HIV) activities. For centuries in China, THF has been used as an effective folk medicine to terminate early and midtrimester pregnancies and to treat ectopic pregnancies, hydatidiform moles and trophoblastic tumor. We observed the changes in reactive oxygen species and intracellular calcium in mouse embryos induced by TCS with confocal laser scanning microscopy in combination with the fluorescene diacetate (DCFHDA) and Fluo-3-AM. The results indicated that TCS induced increase in intracellular calcium and production of reactive oxygen species in mouse embryos , and TCS inhibited the development of mouse embryos effectively. Mouse embryos of different developmental stages before implantation are used in the experiments. This provides new insight into mechanism for abortifacient activity of TCS.

  20. HIV detection by in-situ hybridization based on confocal reflected light microscopy

    NASA Astrophysics Data System (ADS)

    Smith, Louis C.; Jericevic, Zeljko; Cuellar, Roland; Paddock, Stephen W.; Lewis, Dorothy E.

    1991-05-01

    Elucidation of the pathogenesis of AIDS is confounded by the finding that few actively infected CD4+ cells (1 in 104-105) can be detected in the peripheral blood, even though there is dramatic depletion (often >90%) of CD4+ cells as the disease progresses. A sensitive, 35S-based human immunodeficiency virus (HIV) mRNA in situ hybridization technique was coupled with a new detection method, confocal laser scanning microscopy, to examine transcriptionally active HIV-infected cells from individuals at different disease stages. An algorithm for image segmentation and analysis has been developed to determine the proportion of HIV-positive cells. Data obtained using this improved detection method suggest that there are more HIV mRNA-producing cells in HIV-infected individuals than previously thought, based on other detection methods.

  1. Parallel deconvolution of large 3D images obtained by confocal laser scanning microscopy.

    PubMed

    Pawliczek, Piotr; Romanowska-Pawliczek, Anna; Soltys, Zbigniew

    2010-03-01

    Various deconvolution algorithms are often used for restoration of digital images. Image deconvolution is especially needed for the correction of three-dimensional images obtained by confocal laser scanning microscopy. Such images suffer from distortions, particularly in the Z dimension. As a result, reliable automatic segmentation of these images may be difficult or even impossible. Effective deconvolution algorithms are memory-intensive and time-consuming. In this work, we propose a parallel version of the well-known Richardson-Lucy deconvolution algorithm developed for a system with distributed memory and implemented with the use of Message Passing Interface (MPI). It enables significantly more rapid deconvolution of two-dimensional and three-dimensional images by efficiently splitting the computation across multiple computers. The implementation of this algorithm can be used on professional clusters provided by computing centers as well as on simple networks of ordinary PC machines. PMID:19725070

  2. Starch/carrageenan/milk proteins interactions studied using multiple staining and Confocal Laser Scanning Microscopy.

    PubMed

    Matignon, A; Moulin, G; Barey, P; Desprairies, M; Mauduit, S; Sieffermann, J M; Michon, C

    2014-01-01

    This study focused on the effects of the interactions between modified waxy maize starch, kappa carrageenan and skim milk on the microstructure of their mixed systems using Confocal Laser Scanning Microscopy (CLSM). A multiple staining of the components was set up with a view to improving starch covalent staining. In starch/carrageenan pasted mixtures, carrageenan was found to adsorb on and penetrate slightly into the starch granules, whereas no interactions were observed between starch and milk proteins. In ternary mixtures, interactions between starch granules and carrageenan were no longer observed, even when milk proteins were added after starch swelling in the carrageenan solution, thus showing preferential interactions between carrageenan/milk proteins in comparison to carrageenan/starch granules. Modifying the blending order of the components led to microstructure differences depending on several parameters such as starch/carrageenan interactions, carrageenan/milk proteins network structure, level of starch granules disruption and amylopectin contribution to the microstructure. PMID:24274517

  3. Separation of ballistic and diffusive fluorescence photons in confocal Light-Sheet Microscopy of Arabidopsis roots.

    PubMed

    Meinert, Tobias; Tietz, Olaf; Palme, Klaus J; Rohrbach, Alexander

    2016-01-01

    Image quality in light-sheet fluorescence microscopy is strongly affected by the shape of the illuminating laser beam inside embryos, plants or tissue. While the phase of Gaussian or Bessel beams propagating through thousands of cells can be partly controlled holographically, the propagation of fluorescence light to the detector is difficult to control. With each scatter process a fluorescence photon loses information necessary for the image generation. Using Arabidopsis root tips we demonstrate that ballistic and diffusive fluorescence photons can be separated by analyzing the image spectra in each plane without a priori knowledge. We introduce a theoretical model allowing to extract typical scattering parameters of the biological material. This allows to attenuate image contributions from diffusive photons and to amplify the relevant image contributions from ballistic photons through a depth dependent deconvolution. In consequence, image contrast and resolution are significantly increased and scattering artefacts are minimized especially for Bessel beams with confocal line detection. PMID:27553506

  4. Dual-Model Automatic Detection of Nerve-Fibres in Corneal Confocal Microscopy Images

    PubMed Central

    Dabbah, M.A.; Graham, J.; Petropoulos, I.; Tavakoli, M.; Malik, R.A.

    2011-01-01

    Corneal Confocal Microscopy (CCM) imaging is a non-invasive surrogate of detecting, quantifying and monitoring diabetic peripheral neuropathy. This paper presents an automated method for detecting nerve-fibres from CCM images using a dual-model detection algorithm and compares the performance to well-established texture and feature detection methods. The algorithm comprises two separate models, one for the background and another for the foreground (nerve-fibres), which work interactively. Our evaluation shows significant improvement (p ≈ 0) in both error rate and signal-to-noise ratio of this model over the competitor methods. The automatic method is also evaluated in comparison with manual ground truth analysis in assessing diabetic neuropathy on the basis of nerve-fibre length, and shows a strong correlation (r = 0.92). Both analyses significantly separate diabetic patients from control subjects (p ≈ 0). PMID:20879244

  5. Separation of ballistic and diffusive fluorescence photons in confocal Light-Sheet Microscopy of Arabidopsis roots

    PubMed Central

    Meinert, Tobias; Tietz, Olaf; Palme, Klaus J.; Rohrbach, Alexander

    2016-01-01

    Image quality in light-sheet fluorescence microscopy is strongly affected by the shape of the illuminating laser beam inside embryos, plants or tissue. While the phase of Gaussian or Bessel beams propagating through thousands of cells can be partly controlled holographically, the propagation of fluorescence light to the detector is difficult to control. With each scatter process a fluorescence photon loses information necessary for the image generation. Using Arabidopsis root tips we demonstrate that ballistic and diffusive fluorescence photons can be separated by analyzing the image spectra in each plane without a priori knowledge. We introduce a theoretical model allowing to extract typical scattering parameters of the biological material. This allows to attenuate image contributions from diffusive photons and to amplify the relevant image contributions from ballistic photons through a depth dependent deconvolution. In consequence, image contrast and resolution are significantly increased and scattering artefacts are minimized especially for Bessel beams with confocal line detection. PMID:27553506

  6. Detection of apoptosis caused by anticancer drug paclitaxel in MCF-7 cells by confocal Raman microscopy

    NASA Astrophysics Data System (ADS)

    Salehi, H.; Middendorp, E.; Végh, A.-G.; Ramakrishnan, S.-K.; Gergely, C.; Cuisinier, F. J. G.

    2013-02-01

    Confocal Raman Microscopy, a non-invasive, label free imaging technique is used to study apoptosis in living MCF-7 cells. The images are based on Raman spectra of cells components. K-mean clustering was used to determine mitochondria position in cells and cytochrome c distribution inside the cells was based on correlation analysis. Cell apoptosis is defined as cytochrome c diffusion in cytoplasm. Co-localization of cytochrome c is found within mitochondria after three hours of incubation with 10 μM paclitaxel. Our results demonstrate that the presence of paclitaxel at this concentration in the culture media for 3 hours does not induce apoptosis of MCF7 cells via a caspase independent pathway.

  7. Spectrally encoded confocal microscopy for diagnosing breast cancer in excision and margin specimens.

    PubMed

    Brachtel, Elena F; Johnson, Nicole B; Huck, Amelia E; Rice-Stitt, Travis L; Vangel, Mark G; Smith, Barbara L; Tearney, Guillermo J; Kang, Dongkyun

    2016-04-01

    A large percentage of breast cancer patients treated with breast conserving surgery need to undergo multiple surgeries due to positive margins found during post-operative margin assessment. Carcinomas could be removed completely during the initial surgery and additional surgery avoided if positive margins can be determined intraoperatively. Spectrally encoded confocal microscopy (SECM) is a high-speed reflectance confocal microscopy technology that has a potential to rapidly image the entire surgical margin at subcellular resolution and accurately determine margin status intraoperatively. In this study, in order to test the feasibility of using SECM for intraoperative margin assessment, we have evaluated the diagnostic accuracy of SECM for detecting various types of breast cancers. Forty-six surgically removed breast specimens were imaged with an SECM system. Side-by-side comparison between SECM and histologic images showed that SECM images can visualize key histomorphologic patterns of normal/benign and malignant breast tissues. Small (500 μm × 500 μm) spatially registered SECM and histologic images (n=124 for each) were diagnosed independently by three pathologists with expertise in breast pathology. Diagnostic accuracy of SECM for determining malignant tissues was high, average sensitivity of 0.91, specificity of 0.93, positive predictive value of 0.95, and negative predictive value of 0.87. Intra-observer agreement and inter-observer agreement for SECM were also high, 0.87 and 0.84, respectively. Results from this study suggest that SECM may be developed into an intraoperative margin assessment tool for guiding breast cancer excisions. PMID:26779830

  8. Optical Coherence Tomography Angiography in Mice: Comparison with Confocal Scanning Laser Microscopy and Fluorescein Angiography

    PubMed Central

    Giannakaki-Zimmermann, Helena; Kokona, Despina; Wolf, Sebastian; Ebneter, Andreas; Zinkernagel, Martin S.

    2016-01-01

    Purpose Optical coherence tomography angiography (OCT-A) allows noninvasive visualization of retinal vessels in vivo. OCT-A was used to characterize the vascular network of the mouse retina and was compared with fluorescein angiography (FA) and histology. Methods In the present study, OCT-A based on a Heidelberg Engineering Spectralis system was used to investigate the vascular network in mice. Data was compared with FA and confocal microscopy of flat-mount histology stained with isolectin IB4. For quantitative analysis the National Cancer Institute's AngioTool software was used. Vessel density, the number of vessel junctions, and endpoints were measured and compared between the imaging modalities. Results The configuration of the superficial capillary network was comparable with OCT-A and flat-mount histology in BALBc mice. However, vessel density and the number of vessel junctions per region of interest (P = 0.0161 and P = 0.0015, respectively) in the deep vascular network of BALBc mice measured by OCT-A was significantly higher than with flat-mount histology. In C3A.Cg-Pde6b+Prph2Rd2/J mice, where the deep capillary plexus is absent, analysis of the superficial network provided similar results for all three imaging modalities. Conclusion OCT-A is a helpful imaging tool for noninvasive, in vivo imaging of the vascular plexus in mice. It may offer advantages over FA and confocal microscopy especially for imaging the deep vascular plexus. Translational Relevance The present study shows that OCT-A can be employed for small animal imaging to assess the vascular network and offers advantages over flat-mount histology and FA. PMID:27570710

  9. A virtual size-variable pinhole for single photon confocal microscopy

    NASA Astrophysics Data System (ADS)

    Gao, Guangjun; Khoobehi, Bahram

    2013-03-01

    Pinhole is a critical device in single photon confocal microscopy (SPCM) owning to its ability to block the background noise scattered from back and forth of the focal plane. Without pinhole, the sectioning ability of SPCM will be degraded and many background noise signals will occurred together with useful signals, and sometimes these bad noises can submerge the details that we are interested in. However a pinhole with too small diameter will block both background noises and part of signals and decrease the intensity of the image. Therefore in many cases pinhole size should be selected carefully. Unfortunately because of constrains in mechanics, a pinhole that can change its size continuously, for example from 10 μm to 100 μm, is unavailable. For most commercial confocal microscopies, only several discrete pinhole sizes are provided, such as 10 μm, 30 μm, 60 μm etc. Things will be even harder for some imaging systems which use the input interface of a single mode fiber as the pinhole of SPCM, and then the pinhole size of these systems will be fixed, which far limit the optimization of systems' performance. In this paper, we design a size-variable pinhole setup that can offer a virtual pinhole with its diameter adjustable, which includes a physical pinhole (or single mode fiber) and a fine designed zoom relay (ZR) optical system. The magnification ratio of this ZR can vary smoothly while keeping the conjugation distance unchanged. The aberrations of the ZR are well balanced and diffraction-limited image performance are obtained so that the virtual pinhole can block background scattering noise and pass the in-focus signal effectively and accurately. Simulation results are also provided and discussed.

  10. Spectrally encoded confocal microscopy of esophageal tissues at 100 kHz line rate

    PubMed Central

    Schlachter, Simon C.; Kang, DongKyun; Gora, Michalina J.; Vacas-Jacques, Paulino; Wu, Tao; Carruth, Robert W.; Wilsterman, Eric J.; Bouma, Brett E.; Woods, Kevin; Tearney, Guillermo J.

    2013-01-01

    Spectrally encoded confocal microscopy (SECM) is a reflectance confocal microscopy technology that uses a diffraction grating to illuminate different locations on the sample with distinct wavelengths. SECM can obtain line images without any beam scanning devices, which opens up the possibility of high-speed imaging with relatively simple probe optics. This feature makes SECM a promising technology for rapid endoscopic imaging of internal organs, such as the esophagus, at microscopic resolution. SECM imaging of the esophagus has been previously demonstrated at relatively low line rates (5 kHz). In this paper, we demonstrate SECM imaging of large regions of esophageal tissues at a high line imaging rate of 100 kHz. The SECM system comprises a wavelength-swept source with a fast sweep rate (100 kHz), high output power (80 mW), and a detector unit with a large bandwidth (100 MHz). The sensitivity of the 100-kHz SECM system was measured to be 60 dB and the transverse resolution was 1.6 µm. Excised swine and human esophageal tissues were imaged with the 100-kHz SECM system at a rate of 6.6 mm2/sec. Architectural and cellular features of esophageal tissues could be clearly visualized in the SECM images, including papillae, glands, and nuclei. These results demonstrate that large-area SECM imaging of esophageal tissues can be successfully conducted at a high line imaging rate of 100 kHz, which will enable whole-organ SECM imaging in vivo. PMID:24049684

  11. Automated Microscopy: Macro Language Controlling a Confocal Microscope and its External Illumination: Adaptation for Photosynthetic Organisms.

    PubMed

    Steinbach, Gábor; Kaňa, Radek

    2016-04-01

    Photosynthesis research employs several biophysical methods, including the detection of fluorescence. Even though fluorescence is a key method to detect photosynthetic efficiency, it has not been applied/adapted to single-cell confocal microscopy measurements to examine photosynthetic microorganisms. Experiments with photosynthetic cells may require automation to perform a large number of measurements with different parameters, especially concerning light conditions. However, commercial microscopes support custom protocols (through Time Controller offered by Olympus or Experiment Designer offered by Zeiss) that are often unable to provide special set-ups and connection to external devices (e.g., for irradiation). Our new system combining an Arduino microcontroller with the Cell⊕Finder software was developed for controlling Olympus FV1000 and FV1200 confocal microscopes and the attached hardware modules. Our software/hardware solution offers (1) a text file-based macro language to control the imaging functions of the microscope; (2) programmable control of several external hardware devices (light sources, thermal controllers, actuators) during imaging via the Arduino microcontroller; (3) the Cell⊕Finder software with ergonomic user environment, a fast selection method for the biologically important cells and precise positioning feature that reduces unwanted bleaching of the cells by the scanning laser. Cell⊕Finder can be downloaded from http://www.alga.cz/cellfinder. The system was applied to study changes in fluorescence intensity in Synechocystis sp. PCC6803 cells under long-term illumination. Thus, we were able to describe the kinetics of phycobilisome decoupling. Microscopy data showed that phycobilisome decoupling appears slowly after long-term (>1 h) exposure to high light. PMID:27050040

  12. Confocal microscopy and electrophysiological study of single patient corneal endothelium cell cultures

    NASA Astrophysics Data System (ADS)

    Tatini, Francesca; Rossi, Francesca; Coppi, Elisabetta; Magni, Giada; Fusco, Irene; Menabuoni, Luca; Pedata, Felicita; Pugliese, Anna Maria; Pini, Roberto

    2016-04-01

    The characterization of the ion channels in corneal endothelial cells and the elucidation of their involvement in corneal pathologies would lead to the identification of new molecular target for pharmacological treatments and to the clarification of corneal physiology. The corneal endothelium is an amitotic cell monolayer with a major role in preserving corneal transparency and in regulating the water and solute flux across the posterior surface of the cornea. Although endothelial cells are non-excitable, they express a range of ion channels, such as voltage-dependent Na+ channels and K+ channels, L-type Ca2 channels and many others. Interestingly, purinergic receptors have been linked to a variety of conditions within the eye but their presence in the endothelium and their role in its pathophysiology is still uncertain. In this study, we were able to extract endothelial cells from single human corneas, thus obtaining primary cultures that represent the peculiarity of each donor. Corneas were from tissues not suitable for transplant in patients. We characterized the endothelial cells by confocal microscopy, both within the intact cornea and in the primary endothelial cells cultures. We also studied the functional role of the purinergic system (adenosine, ATP and their receptors) by means of electrophysiological recordings. The experiments were performed by patch clamp recordings and confocal time-lapse microscopy and our results indicate that the application of purinergic compounds modulates the amplitude of outward currents in the isolated endothelial cells. These findings may lead to the proposal of new therapies for endothelium-related corneal diseases.

  13. In Vivo Confocal Microscopy of the Ocular Surface: From Bench to Bedside

    PubMed Central

    Villani, Edoardo; Baudouin, Christophe; Efron, Nathan; Hamrah, Pedram; Kojima, Takashi; Patel, Sanjay V.; Pflugfelder, Stephen C.; Zhivov, Andrey; Dogru, Murat

    2014-01-01

    In vivo confocal microscopy (IVCM) is an emerging technology that provides minimally invasive, high resolution, steady-state assessment of the ocular surface at the cellular level. Several challenges still remain but, at present, IVCM may be considered a promising technique for clinical diagnosis and management. This mini-review summarizes some key findings in IVCM of the ocular surface, focusing on recent and promising attempts to move “from bench to bedside”. IVCM allows prompt diagnosis, disease course follow-up, and management of potentially blinding atypical forms of infectious processes, such as acanthamoeba and fungal keratitis. This technology has improved our knowledge of corneal alterations and some of the processes that affect the visual outcome after lamellar keratoplasty and excimer keratorefractive surgery. In dry eye disease, IVCM has provided new information on the whole-ocular surface morphofunctional unit. It has also improved understanding of pathophysiologic mechanisms and helped in the assessment of prognosis and treatment. IVCM is particularly useful in the study of corneal nerves, enabling description of the morphology, density, and disease- or surgically induced alterations of nerves, particularly the subbasal nerve plexus. In glaucoma, IVCM constitutes an important aid to evaluate filtering blebs, to better understand the conjunctival wound healing process, and to assess corneal changes induced by topical antiglaucoma medications and their preservatives. IVCM has significantly enhanced our understanding of the ocular response to contact lens wear. It has provided new perspectives at a cellular level on a wide range of contact lens complications, revealing findings that were not previously possible to image in the living human eye. The final section of this mini-review provides a focus on advances in confocal microscopy imaging. These include 2D wide-field mapping, 3D reconstruction of the cornea and automated image analysis. PMID

  14. Effects of acids used in the microabrasion technique: Microhardness and confocal microscopy analysis

    PubMed Central

    Pini, Núbia-Inocencya-Pavesi; Ambrosano, Gláucia-Maria-Bovi; da Silva, Wander-José; Aguiar, Flávio-Henrique-Baggio; Lovadino, José-Roberto

    2015-01-01

    Background This study evaluated the effects of the acids used in the microabrasion on enamel. Material and Methods Seventy enamel/dentine blocks (25 mm2) of bovine incisors were divided into 7 groups (n=10). Experimental groups were treated by active/passive application of 35% H3PO4 (E1/E2) or 6.6% HCl (E3/E4). Control groups were treated by microabrasion with H3PO4+pumice (C5), HCl+silica (C6), or no treatment (C7). The superficial (SMH) and cross-sectional (CSMH; depths of 10, 25, 50, and 75 µm) microhardness of enamel were analyzed. Morphology was evaluated by confocal laser-scanning microscopy (CLSM). Data were analyzed by analysis of variance (Proc Mixed), Tukey, and Dunnet tests (α=5%). Results Active application (E1 and E3) resulted in higher microhardness than passive application (E2 and E4), with no difference between acids. For most groups, the CSMH decreased as the depth increased. All experimental groups and negative controls (C5 and C6) showed significantly reduced CSMH values compared to the control. A significantly higher mean CSMH result was obtained with the active application of H3PO4 (E1) compared to HCl (E3). Passive application did not result in CSMH differences between acids. CLSM revealed the conditioning pattern for each group. Conclusions Although the acids displayed an erosive action, use of microabrasive mixture led to less damage to the enamel layers. Key words:Enamel microabrasion, enamel microhardness, confocal laser scanning microscopy. PMID:26535098

  15. Spectrally encoded confocal microscopy (SECM) for rapid assessment of breast excision specimens (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Brachtel, Elena F.; Johnson, Nicole B.; Huck, Amelia E.; Rice-Stitt, Travis L.; Vangel, Mark G.; Smith, Barbara L.; Tearney, Guillermo J.; Kang, DongKyun

    2016-03-01

    Unacceptably large percentage (20-40%) of breast cancer lumpectomy patients are required to undergo multiple surgeries when positive margins are found upon post-operative histologic assessment. If the margin status can be determined during surgery, surgeon can resect additional tissues to achieve tumor-free margin, which will reduce the need for additional surgeries. Spectrally encoded confocal microscopy (SECM) is a high-speed reflectance confocal microscopy technology that has a potential to image the entire surgical margin within a short procedural time. Previously, SECM was shown to rapidly image a large area (10 mm by 10 mm) of human esophageal tissue within a short procedural time (15 seconds). When used in lumpectomy, SECM will be able to image the entire margin surface of ~30 cm2 in around 7.5 minutes. SECM images will then be used to determine margin status intra-operatively. In this paper, we present results from a study of testing accuracy of SECM for diagnosing malignant breast tissues. We have imaged freshly-excised breast specimens (N=46) with SECM. SECM images clearly visualized histomorphologic features associated with normal/benign and malignant breast tissues in a similar manner to histologic images. Diagnostic accuracy was tested by comparing SECM diagnoses made by three junior pathologists with corresponding histologic diagnoses made by a senior pathologist. SECM sensitivity and specificity were high, 0.91 and 0.93, respectively. Intra-observer agreement and inter-observer agreement were also high, 0.87 and 0.84, respectively. Results from this study showed that SECM has a potential to accurately determine margin status during breast cancer lumpectomy.

  16. Elastomeric photo-actuators and their investigation by confocal laser scanning microscopy

    NASA Astrophysics Data System (ADS)

    Czaniková, Klaudia; Ilčíková, Markéta; Krupa, Igor; Mičušík, Matej; Kasák, Peter; Pavlova, Ewa; Mosnáček, Jaroslav; Chorvát, Dušan, Jr.; Omastová, Mária

    2013-10-01

    The photo-actuation behavior of nanocomposites based on ethylene-vinylacetate copolymer (EVA) and styrene-isoprene-styrene (SIS) block copolymer filled with well-dispersed and modified multiwalled carbon nanotubes (MWCNTs) is discussed in this paper. The nanocomposites were prepared by casting from solution. To improve the dispersion of the MWCNTs in EVA, the MWCNT surface was modified with a non-covalent surfactant, cholesteryl 1-pyrenecarboxylate (PyChol). To prepare SIS nanocomposites, the MWCNT surface was covalently modified with polystyrene chains. The good dispersion of the filler was confirmed by transmission electron microscopy (TEM). Special, custom-made punch/die molds were used to create a Braille element (BE)-like shape, which under shear forces induces a uniaxial orientation of the MWCNTs within the matrix. The uniaxial orientation of MWCNTs is an essential precondition to ensure the photo-actuating behavior of MWCNTs in polymeric matrices. The orientation of the MWCNTs within the matrices was examined by scanning electron microscopy (SEM). Nanocomposite BEs were illuminated from the bottom by a red light-emitting diode (LED), and the photo-actuation was investigated by confocal laser scanning microscopy (CLSM). When the BEs were exposed to light, a temporary increase in the height of the element was detected. This process was observed to be reversible: after switching off the light, the BEs returned to their original shape and height.

  17. Roughness of biopores and cracks in Bt-horizons by confocal laser scanning microscopy

    NASA Astrophysics Data System (ADS)

    Leue, Martin; Gerke, Horst H.

    2016-04-01

    During preferential flow events in structured soils, the movement of water and reactive solutes is mostly restricted to larger inter-aggregate pores, cracks, and biopores. The micro-topography of such macropores in terms of pore shapes, geometry, and roughness is crucial for describing the exchange of water and solutes between macropores and the soil matrix. The objective of this study was to determine the surface roughness of intact structural surfaces from the Bt-horizon of Luvisols by confocal laser scanning microscopy. For this purpose, samples with the structural surface types including cracks with and without clay-organic coatings from Bt-horizons developed on loess and glacial till were compared. The surface roughness of these structures was calculated in terms of three parameters from selected surface regions of 0.36 mm² determined with a confocal laser scanning microscope of the type Keyence VK-X100K. These data were evaluated in terms of the root-mean-squared roughness, Rq, the curvature, Rku, and the ratio between surface area and base area, RA. Values of Rq and RA were smaller for coated as compared to uncoated cracks and earthworm burrows of the Bt-horizons from both parent materials. The results indicated that the illuviation of clayey material led to a "smoothing" of the crack surfaces, which was similar for the coarser textured till-Bt and the finer-textured loess-Bt surfaces. The roughness indicated by Rq and RA values was only slightly smaller and that indicated by Rku slightly higher for the structural surfaces from the loess as compared to those from the glacial till. These results suggest a minor importance of the parent material on the roughness of structural surfaces in the Bt-horizon. The similarity of Rq, RA, and Rku values between surfaces of earthworm burrows and uncoated cracks did not confirm an expected smoothing effect of the burrow walls by the earthworm. In contrast to burrow walls, root channels from the loess-Bt were smoother

  18. Performance and sensitivity evaluation of 3D spot detection methods in confocal microscopy.

    PubMed

    Štěpka, Karel; Matula, Pavel; Matula, Petr; Wörz, Stefan; Rohr, Karl; Kozubek, Michal

    2015-08-01

    Reliable 3D detection of diffraction-limited spots in fluorescence microscopy images is an important task in subcellular observation. Generally, fluorescence microscopy images are heavily degraded by noise and non-specifically stained background, making reliable detection a challenging task. In this work, we have studied the performance and parameter sensitivity of eight recent methods for 3D spot detection. The study is based on both 3D synthetic image data and 3D real confocal microscopy images. The synthetic images were generated using a simulator modeling the complete imaging setup, including the optical path as well as the image acquisition process. We studied the detection performance and parameter sensitivity under different noise levels and under the influence of uneven background signal. To evaluate the parameter sensitivity, we propose a novel measure based on the gradient magnitude of the F1 score. We measured the success rate of the individual methods for different types of the image data and found that the type of image degradation is an important factor. Using the F1 score and the newly proposed sensitivity measure, we found that the parameter sensitivity is not necessarily proportional to the success rate of a method. This also provided an explanation why the best performing method for synthetic data was outperformed by other methods when applied to the real microscopy images. On the basis of the results obtained, we conclude with the recommendation of the HDome method for data with relatively low variations in quality, or the Sorokin method for image sets in which the quality varies more. We also provide alternative recommendations for high-quality images, and for situations in which detailed parameter tuning might be deemed expensive. PMID:26033916

  19. Methods of Hematoxylin and Erosin Image Information Acquisition and Optimization in Confocal Microscopy

    PubMed Central

    Yoon, Woong Bae; Kim, Hyunjin; Kim, Kwang Gi; Choi, Yongdoo; Chang, Hee Jin

    2016-01-01

    Objectives We produced hematoxylin and eosin (H&E) staining-like color images by using confocal laser scanning microscopy (CLSM), which can obtain the same or more information in comparison to conventional tissue staining. Methods We improved images by using several image converting techniques, including morphological methods, color space conversion methods, and segmentation methods. Results An image obtained after image processing showed coloring very similar to that in images produced by H&E staining, and it is advantageous to conduct analysis through fluorescent dye imaging and microscopy rather than analysis based on single microscopic imaging. Conclusions The colors used in CLSM are different from those seen in H&E staining, which is the method most widely used for pathologic diagnosis and is familiar to pathologists. Computer technology can facilitate the conversion of images by CLSM to be very similar to H&E staining images. We believe that the technique used in this study has great potential for application in clinical tissue analysis. PMID:27525165

  20. New fluorogenic dyes for analysis of cellular processes by flow cytometry and confocal microscopy.

    PubMed

    Nikolova, Kalina; Kaloyanova, Stefka; Mihaylova, Nikolina; Stoitsova, Stoyanka; Chausheva, Stela; Vasilev, Aleksey; Lesev, Nedyalko; Dimitrova, Petya; Deligeorgiev, Todor; Tchorbanov, Andrey

    2013-12-01

    Fluorescent microscopy and fluorescent imaging by flow cytometry are two of the fastest growing areas in the medical and biological research. Innovations in fluorescent chemistry and synthesis of new dye probes are closely related to the development of service equipment such as light sources, and detection techniques. Among compounds known as fluorescent labels, the cyanine-based dyes have become widely used since they have high excitation coefficients, narrow emission bands and high fluorescence upon binding to nucleic acids. The key methods for evaluation of apoptosis and cell cycle allow measuring DNA content by several flow cytometric techniques. We have synthesized new monomethine cyanine dyes and have characterized their applicability for staining of live and/or apoptotic cells. Imaging experiments by flow cytometry and confocal laser scanning microscopy (CLSM) have been also performed. Two of the dyes have shown high-affinity binding to the nuclei at high dilutions, up to 10(-9)M. Flow cytometry and CLSM have confirmed that these dyes labeled selectively non-living, e.g. ethanol-fixed cells that makes them appropriate for estimations of cell viability and apoptosis. The novel structures proved to be appropriate also for analysis of the cell cycle. PMID:24231377

  1. Three-dimensional reconstructions from optical sections of thick mouse inner ears using confocal microscopy.

    PubMed

    Kopecky, B J; Duncan, J S; Elliott, K L; Fritzsch, B

    2012-12-01

    Three-dimensional (3D) reconstructions of the vertebrate inner ear have provided novel insights into the development of this complex organ. 3D reconstructions enable superior analysis of phenotypic differences between wild type and mutant ears but can result in laborious work when reconstructed from physically sectioned material. Although nondestructive optical sectioning light sheet microscopy may ultimately prove the ideal solution, these technologies are not yet commercially available, or in many instances are not monetarily feasible. Here we introduce a simple technique to image a fluorescently labelled ear at different stages throughout development at high resolution enabling 3D reconstruction of any component of the inner ear using confocal microscopy. We provide a step-by-step manual from tissue preparation to imaging to 3D reconstruction and analysis including a rationale and troubleshooting guide at each step for researchers with different equipment, protocols, and access to resources to successfully incorporate the principles of this method and customize them to their laboratory settings. PMID:23140378

  2. Shear bond strength, failure modes, and confocal microscopy of bonded amalgam restorations.

    PubMed

    Cianconi, Luigi; Conte, Gabriele; Mancini, Manuele

    2011-01-01

    This study evaluated the shear bond strength, failure modes, and confocal microscopy of two different amalgam alloy restorations lined with five adhesive systems. Two regular-set high-copper dental amalgam alloys, Amalcap Plus and Valiant Ph.D, and five commercially available adhesive systems were selected. One hundred and twenty freshly-extracted human third molars were used for the study. The results were statistically evaluated using two-factor analysis of variance (ANOVA). The shear bond strength (SBS) of amalgam to dentin was significantly affected by both the adhesive (p<0.0001) and amalgam alloy (p<0.0002). Regarding mode of failure (MF), among samples restored with Valiant Ph.D, 31 of 50 exhibited adhesive failure, and 19 displayed mixed failure. Laser optical microscopy (OM) of the bonded interface revealed the presence of a good hybrid layer was evident in all experimental groups. Higher bond strengths were measured for four of the five adhesives when used in combination with the spherical alloy. PMID:21383518

  3. Spatial Gradients in Particle Reinforced Polymers Characterized by X-Ray Attenuation and Laser Confocal Microscopy

    SciTech Connect

    LAGASSE,ROBERT R.; THOMPSON,KYLE R.

    2000-06-12

    The goal of this work is to develop techniques for measuring gradients in particle concentration within filled polymers, such as encapsulant. A high concentration of filler particles is added to such materials to tailor physical properties such as thermal expansion coefficient. Sedimentation and flow-induced migration of particles can produce concentration gradients that are most severe near material boundaries. Therefore, techniques for measuring local particle concentration should be accurate near boundaries. Particle gradients in an alumina-filled epoxy resin are measured with a spatial resolution of 0.2 mm using an x-ray beam attenuation technique, but an artifact related to the finite diameter of the beam reduces accuracy near the specimen's edge. Local particle concentration near an edge can be measured more reliably using microscopy coupled with image analysis. This is illustrated by measuring concentration profiles of glass particles having 40 {micro}m median diameter using images acquired by a confocal laser fluorescence microscope. The mean of the measured profiles of volume fraction agrees to better than 3% with the expected value, and the shape of the profiles agrees qualitatively with simple theory for sedimentation of monodisperse particles. Extending this microscopy technique to smaller, micron-scale filler particles used in encapsulant for microelectronic devices is illustrated by measuring the local concentration of an epoxy resin containing 0.41 volume fraction of silica.

  4. Assessing strain mapping by electron backscatter diffraction and confocal Raman microscopy using wedge-indented Si.

    PubMed

    Friedman, Lawrence H; Vaudin, Mark D; Stranick, Stephan J; Stan, Gheorghe; Gerbig, Yvonne B; Osborn, William; Cook, Robert F

    2016-04-01

    The accuracy of electron backscatter diffraction (EBSD) and confocal Raman microscopy (CRM) for small-scale strain mapping are assessed using the multi-axial strain field surrounding a wedge indentation in Si as a test vehicle. The strain field is modeled using finite element analysis (FEA) that is adapted to the near-indentation surface profile measured by atomic force microscopy (AFM). The assessment consists of (1) direct experimental comparisons of strain and deformation and (2) comparisons in which the modeled strain field is used as an intermediate step. Direct experimental methods (1) consist of comparisons of surface elevation and gradient measured by AFM and EBSD and of Raman shifts measured and predicted by CRM and EBSD, respectively. Comparisons that utilize the combined FEA-AFM model (2) consist of predictions of distortion, strain, and rotation for comparison with EBSD measurements and predictions of Raman shift for comparison with CRM measurements. For both EBSD and CRM, convolution of measurements in depth-varying strain fields is considered. The interconnected comparisons suggest that EBSD was able to provide an accurate assessment of the wedge indentation deformation field to within the precision of the measurements, approximately 2×10(-4) in strain. CRM was similarly precise, but was limited in accuracy to several times this value. PMID:26939030

  5. Three-dimensional imaging of the intact mouse cochlea by fluorescent laser scanning confocal microscopy.

    PubMed

    MacDonald, Glen H; Rubel, Edwin W

    2008-09-01

    The complex anatomy of the mammalian cochlea is most readily understood by representation in three-dimensions. However, the cochlea is often sectioned to minimize the effects of its anatomic complexity and optical properties on image acquisition by light microscopy. We have found that optical aberrations present in the decalcified cochlea can be greatly reduced by dehydration through graded ethanols followed by clearing with a mixture of five parts methyl salicylate and three parts benzyl benzoate (MSBB). Clearing the cochlea with MSBB enables acquisition of high-resolution images with multiple fluorescent labels, through the full volume of the cochlea by laser scanning confocal microscopy. The resulting images are readily applicable to three-dimensional morphometric analysis and volumetric visualizations. This method promises to be particularly useful for three-dimensional characterization of anatomy, innervation and expression of genes or proteins in the many new animal models of hearing and balance generated by genetic manipulation. Furthermore, the MSBB is compatible with most non-protein fluorophores used for histological labeling, and may be removed with traditional transitional solvents to allow subsequent epoxy embedding for sectioning. PMID:18573326

  6. Correlated Biofilm Imaging, Transport and Metabolism Measurements via Combined Nuclear Magnetic Resonance and Confocal Microscopy

    SciTech Connect

    Mclean, Jeffrey S.; Ona, Ositadinma; Majors, Paul D.

    2008-02-18

    Bacterial biofilms are complex, three-dimensional, communities that are found nearly everywhere in nature1 and are being recognized as the cause of treatment-resistant infections1 2. Advanced methods are required to characterize their collective and spatial patterns of metabolism however most techniques are invasive or destructive. Here we describe the use of a combined confocal laser scanning microscopy (CLSM) and nuclear magnetic resonance (NMR) microscopy system to monitor structure, mass transport, and metabolism in active biofilms. Non-invasive NMR methods provide macroscopic structure along with spatially-resolved metabolite profiles and diffusion measurements. CLSM enables monitoring of cells by fluorescent protein reporters to investigate biofilm structure and gene expression concurrently. A planar sample chamber design facilitates depth-resolved measurements on 140 nL sample volumes under laminar flow conditions. The techniques and approaches described here are applicable to environmental and medically relevant microbial communities, thus providing key metabolic information for promoting beneficial biofilms and treating associated diseases.

  7. Quantitative Analysis of Subcellular Distribution of the SUMO Conjugation System by Confocal Microscopy Imaging.

    PubMed

    Mas, Abraham; Amenós, Montse; Lois, L Maria

    2016-01-01

    Different studies point to an enrichment in SUMO conjugation in the cell nucleus, although non-nuclear SUMO targets also exist. In general, the study of subcellular localization of proteins is essential for understanding their function within a cell. Fluorescence microscopy is a powerful tool for studying subcellular protein partitioning in living cells, since fluorescent proteins can be fused to proteins of interest to determine their localization. Subcellular distribution of proteins can be influenced by binding to other biomolecules and by posttranslational modifications. Sometimes these changes affect only a portion of the protein pool or have a partial effect, and a quantitative evaluation of fluorescence images is required to identify protein redistribution among subcellular compartments. In order to obtain accurate data about the relative subcellular distribution of SUMO conjugation machinery members, and to identify the molecular determinants involved in their localization, we have applied quantitative confocal microscopy imaging. In this chapter, we will describe the fluorescent protein fusions used in these experiments, and how to measure, evaluate, and compare average fluorescence intensities in cellular compartments by image-based analysis. We show the distribution of some components of the Arabidopsis SUMOylation machinery in epidermal onion cells and how they change their distribution in the presence of interacting partners or even when its activity is affected. PMID:27424751

  8. Evaluation of confocal laser scanning microscopy for enumeration of virus-like particles in aquatic systems

    PubMed Central

    Agis, Martin; Luef, Birgit

    2016-01-01

    Abstract Abundances of virus-like particles (VLPs, mostly bacteriophages) are high in aquatic environments; therefore, techniques for precise enumeration are essential in ecological monitoring. VLPs were determined after staining with SYBR Gold by conventional epifluorescence microscopy and compared to enumerations performed by confocal laser scanning microscopy (CLSM). In order to assess the potential of CLSM for viral direct counts (VDCs), we processed samples from different freshwater and marine systems. Optical sectioning by CLSM and production of an overlay picture of multiple scans enables the often uneven whole investigated filter area to be brought to the plane of focus. This allows for subsequent image analysis of digitally created high-quality images. Another advantage using the CLSM was that the short spot excitation of the stain via laser beam minimized fading of the stain. The VDC results show that there is no significant difference between the two methods. Regarding the known difficulties of viral abundance estimates on particulate material, CLSM was further applied to enumerate VLPs on a small set of marine transparent exopolymeric particles sampled from the Atlantic Ocean. Our data suggest that CLSM is a useful tool to count viruses in water samples as well as attached to certain types of aquatic aggregates. PMID:23108709

  9. 3D Axon structure extraction and analysis in confocal fluorescence microscopy images.

    PubMed

    Zhang, Yong; Zhou, Xiaobo; Lu, Ju; Lichtman, Jeff; Adjeroh, Donald; Wong, Stephen T C

    2008-08-01

    The morphological properties of axons, such as their branching patterns and oriented structures, are of great interest for biologists in the study of the synaptic connectivity of neurons. In these studies, researchers use triple immunofluorescent confocal microscopy to record morphological changes of neuronal processes. Three-dimensional (3D) microscopy image analysis is then required to extract morphological features of the neuronal structures. In this article, we propose a highly automated 3D centerline extraction tool to assist in this task. For this project, the most difficult part is that some axons are overlapping such that the boundaries distinguishing them are barely visible. Our approach combines a 3D dynamic programming (DP) technique and marker-controlled watershed algorithm to solve this problem. The approach consists of tracking and updating along the navigation directions of multiple axons simultaneously. The experimental results show that the proposed method can rapidly and accurately extract multiple axon centerlines and can handle complicated axon structures such as cross-over sections and overlapping objects. PMID:18336075

  10. Three-dimensional reconstruction of paramecium primaurelia oral apparatus through confocal laser scanning optical microscopy

    NASA Astrophysics Data System (ADS)

    Beltrame, Francesco; Ramoino, Paola; Fato, Marco; Delmonte Corrado, Maria U.; Marcenaro, Giampiero; Crippa Franceschi, Tina

    1992-06-01

    Studies on the complementary mating types of Paramecium primaurelia (Protozoa, Ciliates) have shown that cell lines which differ from each other in mating type expression are characterized by different cell contents, organization, and physiology. Referring to these differences and to the differential rates of food vacuole formation, oral apparatuses of the two mating type cells are assumed to possibly differ from each other in some traits, such as, for instance, in their lengths. In our work, the highly organized oral structures are analyzed by means of a laser scanning confocal optical microscope (CLSM), which provides their 3-D visualization and measurement. The extraction of the 3-D intrinsic information related to the biological objects under investigation can be in turn related to their functional state, according to the classical paradigm of structure to function relationships identification. In our experiments, we acquired different data sets. These are optical slices of the biological sample under investigation, acquired in a confocal situation, through epi-illumination, in reflection, and, for comparison with conventional microscopy, 2-D images acquired via a standard TV camera coupled to the microscope itself. Our CLSM system is equipped with a laser beam at 488 and 514 nm and the data have been acquired with various steps of optical slicing, ranging from .04 to .25 micrometers. The volumes obtained by piling-up the slices are rendered through different techniques, some of them directly implemented on the workstation controlling the CLSM system, some of them on a SUN SPARC station 1, where the original data were transferred via an Ethernet link. In this last instance, original software has been developed for the visualization and animation of the 3-D structures, running under UNIX and X-Window, according to a ray-tracing algorithm.

  11. Improving Axial Resolution in Confocal Microscopy with New High Refractive Index Mounting Media

    PubMed Central

    Fouquet, Coralie; Gilles, Jean-François; Heck, Nicolas; Dos Santos, Marc; Schwartzmann, Richard; Cannaya, Vidjeacoumary; Morel, Marie-Pierre; Davidson, Robert Stephen; Trembleau, Alain; Bolte, Susanne

    2015-01-01

    Resolution, high signal intensity and elevated signal to noise ratio (SNR) are key issues for biologists who aim at studying the localisation of biological structures at the cellular and subcellular levels using confocal microscopy. The resolution required to separate sub-cellular biological structures is often near to the resolving power of the microscope. When optimally used, confocal microscopes may reach resolutions of 180 nm laterally and 500 nm axially, however, axial resolution in depth is often impaired by spherical aberration that may occur due to refractive index mismatches. Spherical aberration results in broadening of the point-spread function (PSF), a decrease in peak signal intensity when imaging in depth and a focal shift that leads to the distortion of the image along the z-axis and thus in a scaling error. In this study, we use the novel mounting medium CFM3 (Citifluor Ltd., UK) with a refractive index of 1.518 to minimize the effects of spherical aberration. This mounting medium is compatible with most common fluorochromes and fluorescent proteins. We compare its performance with established mounting media, harbouring refractive indices below 1.500, by estimating lateral and axial resolution with sub-resolution fluorescent beads. We show furthermore that the use of the high refractive index media renders the tissue transparent and improves considerably the axial resolution and imaging depth in immuno-labelled or fluorescent protein labelled fixed mouse brain tissue. We thus propose to use those novel high refractive index mounting media, whenever optimal axial resolution is required. PMID:25822785

  12. Laser-induced cartilage damage: an ex-vivo model using confocal microscopy

    NASA Astrophysics Data System (ADS)

    Frenz, Martin; Zueger, Benno J.; Monin, D.; Weiler, C.; Mainil-Varlet, P. M.; Weber, Heinz P.; Schaffner, Thomas

    1999-06-01

    Although there is an increasing popularity of lasers in orthopedic surgery, there is a growing concern about negative side effects of this therapy e.g. prolonged restitution time, radiation damage to adjacent cartilage or depth effects like bone necrosis. Despite case reports and experimental investigations over the last few years little is known about the extent of acute cartilage damage induced by different lasers types and energies. Histological examination offers only limited insights in cell viability and metabolism. Ho:YAG and Er:YAG lasers emitting at 2.1 micrometer and 2.94 micrometer, respectively, are ideally suited for tissue treatment because these wavelengths are strongly absorbed in water. The Purpose of the present study is to evaluate the effect of laser type and energy on chondrocyte viability in an ex vivo model. Free running Er:YAG (E equals 100 and 150 mJ) and Ho:YAG (E equals 500 and 800 mJ) lasers were used at different energy levels using a fixed pulse length of 400 microseconds. The energy was delivered at 8 Hz through optical fibers. Fresh bovine hyaline cartilage samples were mounted in a water bath at room temperature and the fiber was positioned at 30 degree and 180 degree angles relative to the tissue surface. After laser irradiation the samples were assessed by a life-dead cell viability test using a confocal microscope and by standard histology. Thermal damage was much deeper with Ho:YAG (up to 1800 micrometer) than with the Er:YAG laser (up to 70 micrometer). The cell viability test revealed a damage zone about twice the one determined by standard histology. Confocal microscopy is a powerful tool for assessing changes in tissue structure after laser treatment. In addition this technique allows to quantify these alterations without necessitating time consuming and expensive animal experiments.

  13. Analysis of cellular phosphatidylinositol (3,4,5)-trisphosphate levels and distribution using confocal fluorescent microscopy.

    PubMed

    Palmieri, Michelle; Nowell, Cameron J; Condron, Melanie; Gardiner, James; Holmes, Andrew B; Desai, Jayesh; Burgess, Antony W; Catimel, Bruno

    2010-11-01

    We have developed an immunocytochemistry method for the semiquantitative detection of phosphatidylinositol (3,4,5)-trisphosphate (PI(3,4,5)P3) at the cell plasma membrane. This protocol combines the use of a glutathione S-transferase-tagged pleckstrin homology (PH) domain of the general phosphoinositides-1 receptor (GST-GRP1PH) with fluorescence confocal microscopy and image segmentation using cell mask software analysis. This methodology allows the analysis of PI(3,4,5)P3 subcellular distribution in resting and epidermal growth factor (EGF)-stimulated HEK293T cells and in LIM1215 (wild-type phosphoinositide 3-kinase (PI3K)) and LIM2550 (H1047R mutation in PI3K catalytic domain) colonic carcinoma cells. Formation of PI(3,4,5)P3 was observed 5min following EGF stimulation and resulted in an increase of the membrane/cytoplasm fluorescence ratio from 1.03 to 1.53 for HEK293T cells and from 2.2 to 3.3 for LIM1215 cells. Resting LIM2550 cells stained with GST-GRP1PH had an elevated membrane/cytoplasm fluorescence ratio of 9.8, suggesting constitutive PI3K activation. The increase in the membrane/cytoplasm fluorescent ratio was inhibited in a concentration-dependent manner by the PI3K inhibitor LY294002. This cellular confocal imaging assay can be used to directly assess the effects of PI3K mutations in cancer cell lines and to determine the potential specificity and effectiveness of PI3K inhibitors in cancer cells. PMID:20599646

  14. Comparison of 3D orientation distribution functions measured with confocal microscopy and diffusion MRI.

    PubMed

    Schilling, Kurt; Janve, Vaibhav; Gao, Yurui; Stepniewska, Iwona; Landman, Bennett A; Anderson, Adam W

    2016-04-01

    The ability of diffusion MRI (dMRI) fiber tractography to non-invasively map three-dimensional (3D) anatomical networks in the human brain has made it a valuable tool in both clinical and research settings. However, there are many assumptions inherent to any tractography algorithm that can limit the accuracy of the reconstructed fiber tracts. Among them is the assumption that the diffusion-weighted images accurately reflect the underlying fiber orientation distribution (FOD) in the MRI voxel. Consequently, validating dMRI's ability to assess the underlying fiber orientation in each voxel is critical for its use as a biomedical tool. Here, using post-mortem histology and confocal microscopy, we present a method to perform histological validation of orientation functions in 3D, which has previously been limited to two-dimensional analysis of tissue sections. We demonstrate the ability to extract the 3D FOD from confocal z-stacks, and quantify the agreement between the MRI estimates of orientation information obtained using constrained spherical deconvolution (CSD) and the true geometry of the fibers. We find an orientation error of approximately 6° in voxels containing nearly parallel fibers, and 10-11° in crossing fiber regions, and note that CSD was unable to resolve fibers crossing at angles below 60° in our dataset. This is the first time that the 3D white matter orientation distribution is calculated from histology and compared to dMRI. Thus, this technique serves as a gold standard for dMRI validation studies - providing the ability to determine the extent to which the dMRI signal is consistent with the histological FOD, and to establish how well different dMRI models can predict the ground truth FOD. PMID:26804781

  15. Automated acquisition and analysis of airway surface liquid height by confocal microscopy

    PubMed Central

    Choi, Hyun-Chul; Kim, Christine Seul Ki

    2015-01-01

    The airway surface liquid (ASL) is a thin-liquid layer that lines the luminal side of airway epithelia. ASL contains many molecules that are involved in primary innate defense in the lung. Measurement of ASL height on primary airway cultures by confocal microscopy is a powerful tool that has enabled researchers to study ASL physiology and pharmacology. Previously, ASL image acquisition and analysis were performed manually. However, this process is time and labor intensive. To increase the throughput, we have developed an automatic ASL measurement technique that combines a fully automated confocal microscope with novel automatic image analysis software that was written with image processing techniques derived from the computer science field. We were able to acquire XZ ASL images at the rate of ∼1 image/s in a reproducible fashion. Our automatic analysis software was able to analyze images at the rate of ∼32 ms/image. As proofs of concept, we generated a time course for ASL absorption and a dose response in the presence of SPLUNC1, a known epithelial sodium channel inhibitor, on human bronchial epithelial cultures. Using this approach, we determined the IC50 for SPLUNC1 to be 6.53 μM. Furthermore, our technique successfully detected a difference in ASL height between normal and cystic fibrosis (CF) human bronchial epithelial cultures and detected changes in ATP-stimulated Cl−/ASL secretion. We conclude that our automatic ASL measurement technique can be applied for repeated ASL height measurements with high accuracy and consistency and increased throughput. PMID:26001773

  16. Lipid and protein distribution in epithelial cells assessed with confocal microscopy

    NASA Astrophysics Data System (ADS)

    Peterson, Kajsa H.; Randen, Michael; Hays, Richard M.; Magnusson, Karl-Eric

    1992-06-01

    Confocal laser scanning microscopy, image processing, and volume visualization were used to characterize the 3-D distribution of lectin receptors, lipid probes, and actin cytoskeleton in epithelial cells. Small intestine-like cells were grown on glass or filter supports and apically labelled with different fluorescent lipid and lectin probes. The restriction of the probes by the tight junctions was studied in living cells. Series of confocal x-y sections were transferred to an image processing system for analysis. The fluorescence intensity within a specified area of all x-y sections was plotted as a function of the vertical position of the sections. The curve inclination was used to describe the degree of restriction to the probes. It was found that lectins were more confined to the apical part than the lipids, which showed varying degree of redistribution to the basolateral membrane. Volume rendering, and specifically animated sequences with varying viewpoint and opacity mapping, were used to visualize the structure of actin cytoskeleton and distribution of lipid and lectin probes. In toad bladder epithelial cells, actin was labelled before and after treatment with the antidiuretic hormone vasopressin. The hormone-induced redistribution of actin in the apical and lateral portion of the cells was measured on x-z scanned images. Ratios of apical-to-lateral intensity were calculated. It was found that the decrease in the ratios after vasopressin treatment was around 30%. The decrease was due to loss of actin apically. This is supposed to facilitate apical fusion of vesicles containing the water-channel forming proteins, being important in water homeostasis.

  17. Raman confocal microscopy and AFM combined studies of cancerous cells treated with Paclitaxel

    NASA Astrophysics Data System (ADS)

    Derely, L.; Collart Dutilleul, P.-Y.; Michotte de Welle, Sylvain; Szabo, V.; Gergely, C.; Cuisinier, F. J. G.

    2011-03-01

    Paclitaxel interferes with the normal function of microtubule breakdown, induces apoptosis in cancer cells and sequesters free tubulin. As this drug acts also on other cell mechanisms it is important to monitor its accumulation in the cell compartments. The intracellular spreading of the drug was followed using a WITEC 300R confocal Raman microscope equipped with a CCD camera. Hence Atomic force microscopy (an MFP3D- Asylum Research AFM) in imaging and force mode was used to determine the morphological and mechanical modifications induced on living cells. These studies were performed on living epithelial MCF-7 breast cancer cells. Paclitaxel was added to cell culture media for 3, 6 and 9 hours. Among the specific paclitaxel Raman bands we selected the one at 1670 cm-1 because it is not superposed by the spectrum of the cells. Confocal Raman images are formed by monitoring this band, the NH2 and the PO4 band. Paclitaxel slightly accumulates in the nucleus forming patches. The drug is also concentrated in the vicinity of the cell membrane and in an area close to the nucleus where proteins accumulate. Our AFM images reveal that the treated cancerous MCF-7 cells keep the same size as the non treated ones, but their shape becomes more oval. Cell's elasticity is also modified: a difference of 2 kPa in the Young Modulus characterizes the treated MCF-7 mammary cancerous cell. Our observations demonstrate that paclitaxel acts not only on microtubules but accumulates also in other cell compartments (nucleus) where microtubules are absent.

  18. Any Way You Slice It—A Comparison of Confocal Microscopy Techniques

    PubMed Central

    Jonkman, James

    2015-01-01

    The confocal fluorescence microscope has become a popular tool for life sciences researchers, primarily because of its ability to remove blur from outside of the focal plane of the image. Several different kinds of confocal microscopes have been developed, each with advantages and disadvantages. This article will cover the grid confocal, classic confocal laser-scanning microscope (CLSM), the resonant scanning-CLSM, and the spinning-disk confocal microscope. The way each microscope technique works, the best applications the technique is suited for, the limitations of the technique, and new developments for each technology will be presented. Researchers who have access to a range of different confocal microscopes (e.g., through a local core facility) should find this paper helpful for choosing the best confocal technology for specific imaging applications. Others with funding to purchase an instrument should find the article helpful in deciding which technology is ideal for their area of research. PMID:25802490

  19. Confocal and Atomic Force Microscopies of Color Centers Produced by Ultrashort Laser Irradiation in LiF Crystals

    NASA Astrophysics Data System (ADS)

    Courrol, Lilia Coronato; Martinez, Oscar; Samad, Ricardo Elgul; Gomes, Laércio; Ranieri, Izilda Márcia; Baldochi, Sonia Licia; de Freitas, Anderson Zanardi; Junior, Nilson Dias Vieira

    2008-04-01

    We report properties of the spatial and spectral distribution of color centers produced in LiF single crystals by ultrashort high intensity laser pulses (60 fs, 10 GW) using confocal spectral microscopy and atomic force microscopy. We could identify a large amount of F centers that gave rise to aggregates such as F2, F4, F2+ and F3+ distributed in cracked shape brownish areas. We have taken a 3D image using confocal microscopy of the sample (luminescent image) and no difference is observed in the different planes. The atomic force microscopy image clearly shows the presence of defects on the modified surface. The formation of micrometer or sub-micrometer voids, filaments and void strings was observed and related to filamentation process.

  20. Development of a viability standard curve for microencapsulated probiotic bacteria using confocal microscopy and image analysis software.

    PubMed

    Moore, Sarah; Kailasapathy, Kasipathy; Phillips, Michael; Jones, Mark R

    2015-07-01

    Microencapsulation is proposed to protect probiotic strains from food processing procedures and to maintain probiotic viability. Little research has described the in situ viability of microencapsulated probiotics. This study successfully developed a real-time viability standard curve for microencapsulated bacteria using confocal microscopy, fluorescent dyes and image analysis software. PMID:25887694

  1. Thermal maturity of Tasmanites microfossils from confocal laser scanning fluorescence microscopy

    USGS Publications Warehouse

    Hackley, Paul C.; Kus, Jolanta

    2015-01-01

    We report here, for the first time, spectral properties of Tasmanites microfossils determined by confocal laser scanning fluorescence microscopy (CLSM, using Ar 458 nm excitation). The Tasmanites occur in a well-characterized natural maturation sequence (Ro 0.48–0.74%) of Devonian shale (n = 3 samples) from the Appalachian Basin. Spectral property λmax shows excellent agreement (r2 = 0.99) with extant spectra from interlaboratory studies which used conventional fluorescence microscopy techniques. This result suggests spectral measurements from CLSM can be used to infer thermal maturity of fluorescent organic materials in geologic samples. Spectra of regions with high fluorescence intensity at fold apices and flanks in individual Tasmanites are blue-shifted relative to less-deformed areas in the same body that have lower fluorescence intensity. This is interpreted to result from decreased quenching moiety concentration at these locations, and indicates caution is needed in the selection of measurement regions in conventional fluorescence microscopy, where it is common practice to select high intensity regions for improved signal intensity and better signal to noise ratios. This study also documents application of CLSM to microstructural characterization of Tasmanites microfossils. Finally, based on an extant empirical relation between conventional λmax values and bitumen reflectance, λmax values from CLSM of Tasmanites microfossils can be used to calculate a bitumen reflectance equivalent value. The results presented herein can be used as a basis to broaden the future application of CLSM in the geological sciences into hydrocarbon prospecting and basin analysis.

  2. Correlative scanning electron and confocal microscopy imaging of labeled cells coated by indium-tin-oxide.

    PubMed

    Rodighiero, Simona; Torre, Bruno; Sogne, Elisa; Ruffilli, Roberta; Cagnoli, Cinzia; Francolini, Maura; Di Fabrizio, Enzo; Falqui, Andrea

    2015-06-01

    Confocal microscopy imaging of cells allows to visualize the presence of specific antigens by using fluorescent tags or fluorescent proteins, with resolution of few hundreds of nanometers, providing their localization in a large field-of-view and the understanding of their cellular function. Conversely, in scanning electron microscopy (SEM), the surface morphology of cells is imaged down to nanometer scale using secondary electrons. Combining both imaging techniques have brought to the correlative light and electron microscopy, contributing to investigate the existing relationships between biological surface structures and functions. Furthermore, in SEM, backscattered electrons (BSE) can image local compositional differences, like those due to nanosized gold particles labeling cellular surface antigens. To perform SEM imaging of cells, they could be grown on conducting substrates, but obtaining images of limited quality. Alternatively, they could be rendered electrically conductive, coating them with a thin metal layer. However, when BSE are collected to detect gold-labeled surface antigens, heavy metals cannot be used as coating material, as they would mask the BSE signal produced by the markers. Cell surface could be then coated with a thin layer of chromium, but this results in a loss of conductivity due to the fast chromium oxidation, if the samples come in contact with air. In order to overcome these major limitations, a thin layer of indium-tin-oxide was deposited by ion-sputtering on gold-decorated HeLa cells and neurons. Indium-tin-oxide was able to provide stable electrical conductivity and preservation of the BSE signal coming from the gold-conjugated markers. PMID:25810353

  3. Flow assisted assembly of multilayer colloidal crystals studied using confocal laser scanning microscopy

    NASA Astrophysics Data System (ADS)

    Shereda, Laura T.

    Colloidal crystals are highly ordered particle arrays with potential applications including sensors, optical switches, and photonic materials. For production on an industrially viable scale, processes must be developed to form crystals with low defect densities, good long range order, and favorable kinetics. Application of a field to a concentrated colloidal suspension accelerates crystal formation. Ackerson et al. (Ackerson, 1991) established that systems with stress-based Peclet numbers above one resulted in crystal formation. We investigate formation of colloidal crystals by studying structural changes that occur upon shearing using confocal microscopy. Charge-stabilized poly(methylmethacrylate) particles (phi = 0.35) suspended in dioctyl phthalate were used for experiments. After application of shear, assembled structures were immobilized by UV exposure. The full sample thickness was imaged using confocal microscopy. Particle centroids were located in 3D by means of image processing and local crystallinity was quantified by application of local bond order parameter criteria (tenWolde, 1996). We present microstructural analysis of structures formed by both spin coating and uniform shear flow. Spin coating produces spatiotemporal variation in the ordering of concentrated colloidal dispersions that is a universal function of the local reduced critical stress and macroscopic strain. Samples produced at Peclet numbers greater than one and macroscopic strains above two resulted in crystal formation. A plot of the cryrstalline fraction versus Peclet number yielded a sharp order to disorder transition at Peclet number of order unity. The effect of volume fraction on the Peclet number theory was studied. Results indicated that the theory applied to volume fractions within the crystalline regime. Strain requirements for crystal formation of samples undergoing step strain deformation in a parallel plate geometry were investigated by applying stains of 1--300 to samples

  4. Simultaneous pH measurement in endocytic and cytosolic compartments in living cells using confocal microscopy.

    PubMed

    Lucien, Fabrice; Harper, Kelly; Pelletier, Pierre-Paul; Volkov, Leonid; Dubois, Claire M

    2014-01-01

    Intracellular pH is tightly regulated and differences in pH between the cytoplasm and organelles have been reported(1). Regulation of cellular pH is crucial for homeostatic control of physiological processes that include: protein, DNA and RNA synthesis, vesicular trafficking, cell growth and cell division. Alterations in cellular pH homeostasis can lead to detrimental functional changes and promote progression of various diseases(2). Various methods are available for measuring intracellular pH but very few of these allow simultaneous measurement of pH in the cytoplasm and in organelles. Here, we describe in detail a rapid and accurate method for the simultaneous measurement of cytoplasmic and organellar pH by using confocal microscopy on living cells(3). This goal is achieved with the use of two pH-sensing ratiometric dyes that possess selective cellular compartment partitioning. For instance, SNARF-1 is compartmentalized inside the cytoplasm whereas HPTS is compartmentalized inside endosomal/lysosomal organelles. Although HPTS is commonly used as a cytoplasmic pH indicator, this dye can specifically label vesicles along the endosomal-lysosomal pathway after being taken up by pinocytosis(3,4). Using these pH-sensing probes, it is possible to simultaneously measure pH within the endocytic and cytoplasmic compartments. The optimal excitation wavelength of HPTS varies depending on the pH while for SNARF-1, it is the optimal emission wavelength that varies. Following loading with SNARF-1 and HPTS, cells are cultured in different pH-calibrated solutions to construct a pH standard curve for each probe. Cell imaging by confocal microscopy allows elimination of artifacts and background noise. Because of the spectral properties of HPTS, this probe is better suited for measurement of the mildly acidic endosomal compartment or to demonstrate alkalinization of the endosomal/lysosomal organelles. This method simplifies data analysis, improves accuracy of pH measurements and can

  5. Blinking correlation in nanocrystal quantum dots probed with novel laser scanning confocal microscopy methods

    NASA Astrophysics Data System (ADS)

    Hefti, Ryan Alf

    Semiconductor quantum dots have a vast array of applications: as fluorescent labels in biological systems, as physical or chemical sensors, as components in photovoltaic technology, and in display devices. An attribute of nearly every quantum dot is its blinking, or fluorescence intermittency, which tends to be a disadvantage in most applications. Despite the fact that blinking has been a nearly universal phenomenon among all types of fluorescent constructs, it is more prevalent in quantum dots than in traditional fluorophores. Furthermore, no unanimously accepted model of quantum dot blinking yet exists. The work encompassed by this dissertation began with an in-depth study of molecular motor protein dynamics in a variety of environments using two specially developed techniques, both of which feature applicability to live cell systems. Parked-beam confocal microscopy was utilized to increase temporal resolution of molecular motor motion dynamics by an order of magnitude over other popular methods. The second technique, fast-scanning confocal microscopy (FSCM), was used for long range observation of motor proteins. While using FSCM on motor protein assays, we discovered an unusual phenomenon. Single quantum dots seemingly communicated with neighboring quantum dots, indicated by a distinct correlation in their blinking patterns. In order to explain this novel correlation phenomenon, the majority of blinking models developed thus far would suggest a dipole-dipole interaction or a Coulomb interaction between singly charged quantum dots. However, our results indicate that the interaction energy is higher than supported by current models, thereby prompting a renewed examination. We propose that the blinking correlation we observed is due to a Coulomb interaction on the order of 3-4 elementary charges per quantum dot and that multiple charging of individual quantum dots may be required to plunge them into a non-emissive state. As a result of charging, charge carriers are

  6. Reflectance confocal microscopy for the diagnosis of eosinophilic esophagitis: a pilot study conducted on biopsy specimens

    PubMed Central

    Yoo, Hongki; Kang, DongKyun; Katz, Aubrey J.; Lauwers, Gregory Y.; Nishioka, Norman S.; Yagi, Yukako; Tanpowpong, Pornthep; Namati, Jacqueline; Bouma, Brett E.; Tearney, Guillermo J.

    2012-01-01

    Background Diagnosis of eosinophilic esophagitis (EoE) currently requires endoscopic biopsy and histopathologic analysis of the biopsy specimens to count intraepithelial eosinophils. Reflectance confocal microscopy (RCM) is an endomicroscopy technology that is capable of obtaining high-resolution, optically sectioned images of esophageal mucosa without the administration of exogenous contrast. Objective In this study, we investigated the capability of a high-speed form of RCM, termed spectrally encoded confocal microscopy (SECM), to count intraepithelial esophageal eosinophils and characterize other microscopic findings of EoE. Design A total of 43 biopsy samples from 35 pediatric patients and 8 biopsy samples from 8 adult patients undergoing EGD for EoE were imaged by SECM immediately after their removal and then processed for routine histopathology. Two SECM readers, trained on adult cases, prospectively counted intraepithelial eosinophils and detected the presence of abscess, degranulation, and basal cell hyperplasia on SECM images from the pediatric patients. A pathologist blinded to the SECM data analyzed the same from corresponding slides. Setting The Gastrointestinal Unit, Massachusetts General Hospital. Results Eosinophils by SECM demonstrated a higher reflectance than the surrounding cells and other inflammatory cells. There was good correlation between SECM and histology maximum eosinophil counts/high-power field (R = 0.76, P < .0001). Intra- and interobserver correlations for SECM counts were very good (R = 0.93 and R = 0.92, respectively; P < .0001). For the commonly used eosinophil count cutoff of 15 per high-power field, the sensitivity and specificity of SECM for EoE were 100%. The sensitivity and specificity for abscess, degranulation, and basal cell hyperplasia were 100% and 82%, 91% and 60%, and 94% and 80%, respectively. Intra- and interobserver agreements for these microscopic features of EoE were very good (κ = 0.9/0.9, 0.84/1.0, 0

  7. Imaging genes, chromosomes, and nuclear structures using laser-scanning confocal microscopy

    NASA Astrophysics Data System (ADS)

    Ballard, Stephen G.

    1990-08-01

    For 350 years, the optical microscope has had a powerful symbiotic relationship with biology. Until this century, optical microscopy was the only means of examining cellular structure; in return, biologists have contributed greatly to the evolution of microscope design and technique. Recent advances in the detection and processing of optical images, together with methods for labelling specific biological molecules, have brought about a resurgence in the application of optical microscopy to the biological sciences. One of the areas in which optical microscopy is breaking new ground is in elucidating the large scale organization of chromatin in chromosomes and cell nuclei. Nevertheless, imaging the contents of the cell nucleus is a difficult challenge for light microscopy, for two principal reasons. First, the dimensions of all but the largest nuclear structures (nucleoli, vacuoles) are close to or below the resolving power of far field optics. Second, the native optical contrast properties of many important chromatin structures (eg. chromosome domains, centromere regions) are very weak, or essentially zero. As an extreme example, individual genes probably have nothing to distinguish them other than their sequence of DNA bases, which cannot be directly visualized with any current form of microscopy. Similarly, the interphase nucleus shows no direct visible evidence of focal chromatin domains. Thus, imaging of such entities depends heavily on contrast enhancement methods. The most promising of these is labelling DNA in situ using sequence-specific probes that may be visualized using fluorescent dyes. We have applied this method to detecting individual genes in metaphase chromosomes and interphase nuclei, and to imaging a number of DNA-containing structures including chromosome domains, metaphase chromosomes and centromere regions. We have also demonstrated the applicability of in situ fluorescent labelling to detecting numerical and structural abnormalities both in

  8. Observation of the early stage of insulin crystallization by confocal laser scanning microscopy

    NASA Astrophysics Data System (ADS)

    Mühlig, P.; Klupsch, Th.; Schell, U.; Hilgenfeld, R.

    2001-11-01

    It is demonstrated that high resolution confocal laser scanning microscopy (CLSM) is a powerful tool for in situ observation and analysis of protein crystal growth. CLSM is used to study the early crystallization stage of Des-ThrB30 human insulin in aqueous solution, under conditions known to lead to monoclinic crystals. A modified batch crystallization method for CLSM purposes is applied which allows the growth behavior of crystallites to be studied in reflected light. A few hours after the start of the experiment, microcrystallites of characteristic shapes (mainly prismatic and pyramidal) are observed, the number of which strongly depends on the concentration of higher insulin aggregates in the initial solution. From direct observation as well as from model calculations we conclude that for solute concentrations up to about 3.5-times the saturation value, growth starts from few active insulin precipitate particles while 3D nucleation is neglegible for observation times up to 24 h. The anisotropic growth rates of monoclinic, prismatic crystallites are measured along the long edge of the cover face and perpendicular to the latter. A simultaneous crossover to signifcantly higher growth rates is found when the crystallite size reaches about 2 μm. The higher growth rates are connected with the appearence of striations. We argue that this growth rate crossover is caused by an increased 2D nucleation rate at the edges and corners, which finally results in bunching of steps simultaneously spreading over adjacent crystallite faces.

  9. Correlative Confocal and 3D Electron Microscopy of a Specific Sensory Cell

    PubMed Central

    Bohórquez, Diego; Haque, Fariha; Medicetty, Satish; Liddle, Rodger A.

    2015-01-01

    Delineation of a cell’s ultrastructure is important for understanding its function. This can be a daunting project for rare cell types diffused throughout tissues made of diverse cell types, such as enteroendocrine cells of the intestinal epithelium. These gastrointestinal sensors of food and bacteria have been difficult to study because they are dispersed among other epithelial cells at a ratio of 1:1,000. Recently, transgenic reporter mice have been generated to identify enteroendocrine cells by means of fluorescence. One of those is the peptide YY-GFP mouse. Using this mouse, we developed a method to correlate confocal and serial block-face scanning electron microscopy. We named the method cocem3D and applied it to identify a specific enteroendocrine cell in tissue and unveil the cell’s ultrastructure in 3D. The resolution of cocem3D is sufficient to identify organelles as small as secretory vesicles and to distinguish cell membranes for volume rendering. Cocem3D can be easily adapted to study the 3D ultrastructure of other specific cell types in their native tissue. PMID:26273796

  10. Intraoperative imaging during Mohs surgery with reflectance confocal microscopy: initial clinical experience

    NASA Astrophysics Data System (ADS)

    Flores, Eileen S.; Cordova, Miguel; Kose, Kivanc; Phillips, William; Rossi, Anthony; Nehal, Kishwer; Rajadhyaksha, Milind

    2015-06-01

    Mohs surgery for the removal of nonmelanoma skin cancers (NMSCs) is performed in stages, while being guided by the examination for residual tumor with frozen pathology. However, preparation of frozen pathology at each stage is time consuming and labor intensive. Real-time intraoperative reflectance confocal microscopy (RCM), combined with video mosaicking, may enable rapid detection of residual tumor directly in the surgical wounds on patients. We report our initial experience on 25 patients, using aluminum chloride for nuclear contrast. Imaging was performed in quadrants in the wound to simulate the Mohs surgeon's examination of pathology. Images and videos of the epidermal and dermal margins were found to be of clinically acceptable quality. Bright nuclear morphology was identified at the epidermal margin and detectable in residual NMSC tumors. The presence of residual tumor and normal skin features could be detected in the peripheral and deep dermal margins. Intraoperative RCM imaging may enable detection of residual tumor directly on patients during Mohs surgery, and may serve as an adjunct for frozen pathology. Ultimately, for routine clinical utility, a stronger tumor-to-dermis contrast may be necessary, and also a smaller microscope with an automated approach for imaging in the entire wound in a rapid and controlled manner.

  11. The Effect of Autologous Platelet Lysate Eye Drops: An In Vivo Confocal Microscopy Study

    PubMed Central

    Fea, Antonio M.; Testa, Valeria; Machetta, Federica; Parisi, Simone; D'Antico, Sergio; Spinetta, Roberta; Fusaro, Enrico; Grignolo, Federico M.

    2016-01-01

    Purpose. To determine the effectiveness of autologous platelet lysate (APL) eye drops in patients with primary Sjögren syndrome (SS) dry eye, refractory to standard therapy, in comparison with patients treated with artificial tears. We focused on the effect of APL on cornea morphology with the in vivo confocal microscopy (IVCM). Methods. Patients were assigned to two groups: group A used autologous platelet lysate QID, and group B used preservative-free artificial tears QID, for 90 days. Ophthalmological assessments included ocular surface disease index (OSDI), best corrected visual acuity (BCVA), Schirmer test, fluorescein score, and breakup time (BUT). A subgroup of patients in group A underwent IVCM: corneal basal epithelium, subbasal nerves, Langerhans cells, anterior stroma activated keratocytes, and reflectivity were evaluated. Results. 60 eyes of 30 patients were enrolled; in group A (n = 20 patients) mean OSDI, fluorescein score, and BUT showed significant improvement compared with group B (n = 10 patients). The IVCM showed a significant increase in basal epithelium cells density and subbasal nerve plexus density and number and a decrease in Langerhans cells density (p < 0.05). Conclusion. APL was found effective in the treatment of SS dry eye. IVCM seems to be a useful tool to visualize cornea morphologic modifications. PMID:27200376

  12. Tracking the Dephosphorylation of Resveratrol Triphosphate in Skin by Confocal Raman Microscopy

    PubMed Central

    Zhang, Guojin; Flach, Carol R.; Mendelsohn, Richard

    2007-01-01

    Polyphenolic resveratrol has been identified as a potent antioxidant acting as both a free radical scavenger and an inhibitor of enzyme oxidative activity. However, the reactive propensity of resveratrol also limits its use in topical formulations. A transient derivative of resveratrol, resveratrol triphosphate, has been designed to provide a means for the delayed delivery of the active compound in skin tissue where endogenous enzymes capable of dephosphorylation reside. Confocal Raman microscopy studies of intact pigskin biopsies treated with modified resveratrol provided information about the spatial distribution and time-dependence of permeation and conversion to the native active form. Conversion to the active form was not observed when skin samples were exposed to steam, a procedure that likely inactivates endogenous skin enzymes. In addition, treatment with the triphosphate compared to the parent compound revealed a more homogeneous distribution of resveratrol throughout the stratum corneum and viable epidermis when the former was applied. Thus, the bioavailability of resveratrol in the epidermis appears to be enhanced upon application of the pro-molecule compared to resveratrol. PMID:17826862

  13. Corneal Confocal Microscopy Detects Early Nerve Regeneration in Diabetic Neuropathy After Simultaneous Pancreas and Kidney Transplantation

    PubMed Central

    Tavakoli, Mitra; Mitu-Pretorian, Maria; Petropoulos, Ioannis N.; Fadavi, Hassan; Asghar, Omar; Alam, Uazman; Ponirakis, Georgios; Jeziorska, Maria; Marshall, Andy; Efron, Nathan; Boulton, Andrew J.; Augustine, Titus; Malik, Rayaz A.

    2013-01-01

    Diabetic neuropathy is associated with increased morbidity and mortality. To date, limited data in subjects with impaired glucose tolerance and diabetes demonstrate nerve fiber repair after intervention. This may reflect a lack of efficacy of the interventions but may also reflect difficulty of the tests currently deployed to adequately assess nerve fiber repair, particularly in short-term studies. Corneal confocal microscopy (CCM) represents a novel noninvasive means to quantify nerve fiber damage and repair. Fifteen type 1 diabetic patients undergoing simultaneous pancreas–kidney transplantation (SPK) underwent detailed assessment of neurologic deficits, quantitative sensory testing (QST), electrophysiology, skin biopsy, corneal sensitivity, and CCM at baseline and at 6 and 12 months after successful SPK. At baseline, diabetic patients had a significant neuropathy compared with control subjects. After successful SPK there was no significant change in neurologic impairment, neurophysiology, QST, corneal sensitivity, and intraepidermal nerve fiber density (IENFD). However, CCM demonstrated significant improvements in corneal nerve fiber density, branch density, and length at 12 months. Normalization of glycemia after SPK shows no significant improvement in neuropathy assessed by the neurologic deficits, QST, electrophysiology, and IENFD. However, CCM shows a significant improvement in nerve morphology, providing a novel noninvasive means to establish early nerve repair that is missed by currently advocated assessment techniques. PMID:23002037

  14. Determine scattering coefficient and anisotropy of scattering of murine tissues using reflectance-mode confocal microscopy

    NASA Astrophysics Data System (ADS)

    Samatham, Ravikant; Jacques, Steven L.

    2013-02-01

    Different techniques have been developed to determine the optical properties of turbid media, which include collimated transmission, diffuse reflectance, adding-doubling and goniometry. While goniometry can be used to determine the anisotropy of scattering (g), other techniques are used to measure the absorption coefficient and reduced scattering coefficient (μs(1-g)). But separating scattering coefficient (μs) and anisotropy of scattering from reduced scattering coefficient has been tricky. We developed an algorithm to determine anisotropy of scattering from the depth dependent decay of reflectance-mode confocal scanning laser microscopy (rCSLM) data. This report presents the testing of the algorithm on tissue phantoms with different anisotropies (g = 0.127 to 0.868, at 488 nm wavelength). Tissue phantoms were made from polystyrene microspheres (6 sizes 0.1-0.5 μm dia.) dispersed in both aqueous solutions and agarose gels. Three dimensional images were captured. The rCSLM-signal followed an exponential decay as a function of depth of the focal volume, R(z)ρexp(-μz) where ρ (dimensionless, ρ = 1 for a mirror) is the local reflectivity and μ [cm-1] is the exponential decay constant. The theory was developed to uniquely map the experimentally determined μ and ρ into the optical scattering properties μs and g. The values of μs and g depend on the composition and microstructure of tissues, and allow characterization of a tissue.

  15. Skeletal remodeling dynamics: New approaches with imaging instrumentation. [Laser confocal microscopy:a2

    SciTech Connect

    Parks, N.J.; Pinkerton, K.E.; Seibert, J.A.; Pool, R.R.

    1991-01-01

    This report of progress and future objectives timetable is based on an included schematic of goals and objectives and the project abstract which is included as Appendix 1. Five matters are summarized in the order of (1) novel methods of calcified bone confocal microscopy and reconstruction image analysis of decalcified beagle and human cortical bone serial sections, (2) macroscopic cross-correlation of beagle and human cortical and cancellous bone fractions with CT analysis, (3) guidance to the most radiobiologically important skeletal regions of interest with the just completed {sup 90}Sr bone tumor map from life time beagle studies, (4) deposition patterns of radioactive agents that participate in apatite crystal nucleation processes in bone and leave radiation-excited electrons trapped in bone mineral, and (5) the budget period timetable. The discovery that beta particles from {sup 166}Ho (T{sub {1/2}} =26 hr, {beta}{sub max} = 1.8 MeV) phosphonic acid bone agents leave detectable, long-lived, electron paramagnetic resonance signals in bone is included in Appendix 2 as a joint report.

  16. Modeling enzymatic hydrolysis of lignocellulosic substrates using fluorescent confocal microscopy II: pretreated biomass.

    PubMed

    Luterbacher, Jeremy S; Moran-Mirabal, Jose M; Burkholder, Eric W; Walker, Larry P

    2015-01-01

    In this study, we extend imaging and modeling work that was done in Part I of this report for a pure cellulose substrate (filter paper) to more industrially relevant substrates (untreated and pretreated hardwood and switchgrass). Using confocal fluorescence microscopy, we are able to track both the structure of the biomass particle via its autofluorescence, and bound enzyme from a commercial cellulase cocktail supplemented with a small fraction of fluorescently labeled Trichoderma reseii Cel7A. Imaging was performed throughout hydrolysis at temperatures relevant to industrial processing (50°C). Enzyme bound predominantly to areas with low autofluorescence, where structure loss and lignin removal had occurred during pretreatment; this confirms the importance of these processes for successful hydrolysis. The overall shape of both untreated and pretreated hardwood and switchgrass particles showed little change during enzymatic hydrolysis beyond a drop in autofluorescence intensity. The permanence of shape along with a relatively constant bound enzyme signal throughout hydrolysis was similar to observations previously made for filter paper, and was consistent with a modeling geometry of a hollowing out cylinder with widening pores represented as infinite slits. Modeling estimates of available surface areas for pretreated biomass were consistent with previously reported experimental results. PMID:25042048

  17. Intraoperative imaging during Mohs surgery with reflectance confocal microscopy: initial clinical experience

    PubMed Central

    Flores, Eileen S.; Cordova, Miguel; Kose, Kivanc; Phillips, William; Rossi, Anthony; Nehal, Kishwer; Rajadhyaksha, Milind

    2015-01-01

    Abstract. Mohs surgery for the removal of nonmelanoma skin cancers (NMSCs) is performed in stages, while being guided by the examination for residual tumor with frozen pathology. However, preparation of frozen pathology at each stage is time consuming and labor intensive. Real-time intraoperative reflectance confocal microscopy (RCM), combined with video mosaicking, may enable rapid detection of residual tumor directly in the surgical wounds on patients. We report our initial experience on 25 patients, using aluminum chloride for nuclear contrast. Imaging was performed in quadrants in the wound to simulate the Mohs surgeon’s examination of pathology. Images and videos of the epidermal and dermal margins were found to be of clinically acceptable quality. Bright nuclear morphology was identified at the epidermal margin and detectable in residual NMSC tumors. The presence of residual tumor and normal skin features could be detected in the peripheral and deep dermal margins. Intraoperative RCM imaging may enable detection of residual tumor directly on patients during Mohs surgery, and may serve as an adjunct for frozen pathology. Ultimately, for routine clinical utility, a stronger tumor-to-dermis contrast may be necessary, and also a smaller microscope with an automated approach for imaging in the entire wound in a rapid and controlled manner. PMID:25706821

  18. In vivo reflectance confocal microscopy evaluation of cheilitis glandularis: a report of 5 cases.

    PubMed

    Lourenço, Silvia V; Kos, Eliana; Borguezan Nunes, Thais; Bologna, Sheyla B; Sangueza, Martin; Nico, Marcello M S

    2015-03-01

    Cheilitis glandularis (CG) is an uncommon condition of unknown origin; it is clinically characterized by variable degrees of macrocheilia associated with red dilated ostia of minor salivary glands on the vermilion area, which secrete viscous saliva. Histopathological characteristics of CG are comprised of chronic sialadenitis with engorged acinar lobules and dilated ducts; CG also features chronic sun damage (actinic cheilitis and squamous cell carcinoma). These changes may be localized, and a punch biopsy specimen might fail to reveal enough criteria to support the diagnosis of CG. Reflectance confocal microscopy (RCM) is a noninvasive imaging technique that enables an in vivo en face visualization of tissues with a resolution close to conventional histopathology. Its use allows analysis of the entire lip, without excision. We reported the evaluation of 5 cases of CG based on clinical RCM and histopathological correlation. RCM examination of the lip vermilion mainly revealed a bright aspect of the superficial epithelial layers, which corresponded to labial keratosis. Alteration of the classical epithelial honeycomb pattern was observed in RCM, which corresponded to epithelial changes in actinic cheilitis at histopathology. Round, dark empty spaces intermingling the epithelium, corresponded to the ectopic excretory salivary gland ducts that open their ostia within the lip vermilion. In the lamina propria, the most striking feature was superficial salivary gland lobules, seen as dark gray lobular structures. Our study, demonstrated the use of RCM in the evaluation of CG, showing that a correlation between the clinical, digital RCM images and histopathology improved the diagnostic skills in CG evaluation. PMID:25238451

  19. Automated Segmentation of Skin Strata in Reflectance Confocal Microscopy Depth Stacks.

    PubMed

    Hames, Samuel C; Ardigò, Marco; Soyer, H Peter; Bradley, Andrew P; Prow, Tarl W

    2016-01-01

    Reflectance confocal microscopy (RCM) is a powerful tool for in-vivo examination of a variety of skin diseases. However, current use of RCM depends on qualitative examination by a human expert to look for specific features in the different strata of the skin. Developing approaches to quantify features in RCM imagery requires an automated understanding of what anatomical strata is present in a given en-face section. This work presents an automated approach using a bag of features approach to represent en-face sections and a logistic regression classifier to classify sections into one of four classes (stratum corneum, viable epidermis, dermal-epidermal junction and papillary dermis). This approach was developed and tested using a dataset of 308 depth stacks from 54 volunteers in two age groups (20-30 and 50-70 years of age). The classification accuracy on the test set was 85.6%. The mean absolute error in determining the interface depth for each of the stratum corneum/viable epidermis, viable epidermis/dermal-epidermal junction and dermal-epidermal junction/papillary dermis interfaces were 3.1 μm, 6.0 μm and 5.5 μm respectively. The probabilities predicted by the classifier in the test set showed that the classifier learned an effective model of the anatomy of human skin. PMID:27088865

  20. A model system using confocal fluorescence microscopy for examining real-time intracellular sodium ion regulation.

    PubMed

    Lee, Jacqueline A; Collings, David A; Glover, Chris N

    2016-08-15

    The gills of euryhaline fish are the ultimate ionoregulatory tissue, achieving ion homeostasis despite rapid and significant changes in external salinity. Cellular handling of sodium is not only critical for salt and water balance but is also directly linked to other essential functions such as acid-base homeostasis and nitrogen excretion. However, although measurement of intracellular sodium ([Na(+)]i) is important for an understanding of gill transport function, it is challenging and subject to methodological artifacts. Using gill filaments from a model euryhaline fish, inanga (Galaxias maculatus), the suitability of the fluorescent dye CoroNa Green as a probe for measuring [Na(+)]i in intact ionocytes was confirmed via confocal microscopy. Cell viability was verified, optimal dye loading parameters were determined, and the dye-ion dissociation constant was measured. Application of the technique to freshwater- and 100% seawater-acclimated inanga showed salinity-dependent changes in branchial [Na(+)]i, whereas no significant differences in branchial [Na(+)]i were determined in 50% seawater-acclimated fish. This technique facilitates the examination of real-time changes in gill [Na(+)]i in response to environmental factors and may offer significant insight into key homeostatic functions associated with the fish gill and the principles of sodium ion transport in other tissues and organisms. PMID:27235170

  1. Quantitative analyses of Streptococcus mutans biofilms with quartz crystal microbalance, microjet impingement and confocal microscopy.

    PubMed

    Kreth, J; Hagerman, E; Tam, K; Merritt, J; Wong, D T W; Wu, B M; Myung, N V; Shi, W; Qi, F

    2004-10-01

    Microbial biofilm formation can be influenced by many physiological and genetic factors. The conventional microtiter plate assay provides useful but limited information about biofilm formation. With the fast expansion of the biofilm research field, there are urgent needs for more informative techniques to quantify the major parameters of a biofilm, such as adhesive strength and total biomass. It would be even more ideal if these measurements could be conducted in a real-time, non-invasive manner. In this study, we used quartz crystal microbalance (QCM) and microjet impingement (MJI) to measure total biomass and adhesive strength, respectively, of S. mutans biofilms formed under different sucrose concentrations. In conjunction with confocal laser scanning microscopy (CLSM) and the COMSTAT software, we show that sucrose concentration affects the biofilm strength, total biomass, and architecture in both qualitative and quantitative manners. Our data correlate well with previous observations about the effect of sucrose on the adherence of S. mutans to the tooth surface, and demonstrate that QCM is a useful tool for studying the kinetics of biofilm formation in real time and that MJI is a sensitive, easy-to-use device to measure the adhesive strength of a biofilm. PMID:16429589

  2. In Vivo Laser Scanning Confocal Microscopy of Human Meibomian Glands in Aging and Ocular Surface Diseases

    PubMed Central

    Fasanella, Vincenzo; Mastropasqua, Rodolfo; Brescia, Lorenza; Di Staso, Federico; Ciancaglini, Marco; Mastropasqua, Leonardo

    2016-01-01

    Meibomian glands (MGs) play a crucial role in the ocular surface homeostasis by providing lipids to the superficial tear film. Their dysfunction destabilizes the tear film leading to a progressive loss of the ocular surface equilibrium and increasing the risk for dry eye. In fact, nowadays, the meibomian gland dysfunction is one of the leading causes of dry eye. Over the past decades, MGs have been mainly studied by using meibography, which, however, cannot image the glandular structure at a cellular level. The diffusion of the in vivo laser scanning confocal microscopy (LSCM) provided a new approach for the structural assessment of MGs permitting a major step in the noninvasive evaluation of these structures. LSCM is capable of showing MGs modifications during aging and in the most diffuse ocular surface diseases such as dry eye, allergy, and autoimmune conditions and in the drug-induced ocular surface disease. On the other hand, LSCM may help clinicians in monitoring the tissue response to therapy. In this review, we summarized the current knowledge about the role of in vivo LSCM in the assessment of MGs during aging and in the most diffuse ocular surface diseases. PMID:27047965

  3. In Vivo Laser Scanning Confocal Microscopy of Human Meibomian Glands in Aging and Ocular Surface Diseases.

    PubMed

    Fasanella, Vincenzo; Agnifili, Luca; Mastropasqua, Rodolfo; Brescia, Lorenza; Di Staso, Federico; Ciancaglini, Marco; Mastropasqua, Leonardo

    2016-01-01

    Meibomian glands (MGs) play a crucial role in the ocular surface homeostasis by providing lipids to the superficial tear film. Their dysfunction destabilizes the tear film leading to a progressive loss of the ocular surface equilibrium and increasing the risk for dry eye. In fact, nowadays, the meibomian gland dysfunction is one of the leading causes of dry eye. Over the past decades, MGs have been mainly studied by using meibography, which, however, cannot image the glandular structure at a cellular level. The diffusion of the in vivo laser scanning confocal microscopy (LSCM) provided a new approach for the structural assessment of MGs permitting a major step in the noninvasive evaluation of these structures. LSCM is capable of showing MGs modifications during aging and in the most diffuse ocular surface diseases such as dry eye, allergy, and autoimmune conditions and in the drug-induced ocular surface disease. On the other hand, LSCM may help clinicians in monitoring the tissue response to therapy. In this review, we summarized the current knowledge about the role of in vivo LSCM in the assessment of MGs during aging and in the most diffuse ocular surface diseases. PMID:27047965

  4. A fully automated tortuosity quantification system with application to corneal nerve fibres in confocal microscopy images.

    PubMed

    Annunziata, Roberto; Kheirkhah, Ahmad; Aggarwal, Shruti; Hamrah, Pedram; Trucco, Emanuele

    2016-08-01

    Recent clinical research has highlighted important links between a number of diseases and the tortuosity of curvilinear anatomical structures like corneal nerve fibres, suggesting that tortuosity changes might detect early stages of specific conditions. Currently, clinical studies are mainly based on subjective, visual assessment, with limited repeatability and inter-observer agreement. To address these problems, we propose a fully automated framework for image-level tortuosity estimation, consisting of a hybrid segmentation method and a highly adaptable, definition-free tortuosity estimation algorithm. The former combines an appearance model, based on a Scale and Curvature-Invariant Ridge Detector (SCIRD), with a context model, including multi-range learned context filters. The latter is based on a novel tortuosity estimation paradigm in which discriminative, multi-scale features can be automatically learned for specific anatomical objects and diseases. Experimental results on 140 in vivo confocal microscopy images of corneal nerve fibres from healthy and unhealthy subjects demonstrate the excellent performance of our method compared to state-of-the-art approaches and ground truth annotations from 3 expert observers. PMID:27136674

  5. In Vivo Confocal Microscopy in Dry Eye Disease and Related Conditions

    PubMed Central

    Alhatem, Albert; Cavalcanti, Bernardo; Hamrah, Pedram

    2015-01-01

    A new era of ocular imaging has recently begun with the advent of in vivo confocal microscopy (IVCM), shedding more light on the pathophysiology, diagnosis, and potential treatment strategies for dry eye disease. IVCM is a noninvasive and powerful tool that allows detection of changes in ocular surface epithelium, immune and inflammatory cells, corneal nerves, keratocytes, and meibomian gland structures on a cellular level. Ocular surface structures in dry eye-related conditions have been assessed and alterations have been quantified using IVCM. IVCM may aid in the assessment of dry eye disease prognosis and treatment, as well as lead to improved understanding of the pathophysiological mechanisms in this complex disease. Further, due to visualization of subclinical findings, IVCM may allow detection of disease at much earlier stages and allow stratification of patients for clinical trials. Finally, by providing an objective methodology to monitor treatment efficacy, image-guided therapy may allow the possibility of tailoring treatment based on cellular changes, rather than on clinical changes alone. PMID:23163268

  6. In vivo confocal microscopy of meibomian glands and palpebral conjunctiva in vernal keratoconjunctivitis

    PubMed Central

    Wei, Qiaoling; Le, Qihua; Hong, Jiaxu; Xiang, Jun; Wei, Anji; Xu, Jianjiang

    2015-01-01

    Purpose: To investigate the correlations between conjunctival inflammatory status and meibomian gland (MG) morphology in vernal keratoconjunctivitis (VKC) patients by using in vivo confocal microscopy (CM). Materials and Methods: Nineteen VKC patients (7 limbal, 7 tarsal, and 5 mixed forms) and 16 normal volunteers (controls) were enrolled. All subjects underwent CM scanning to obtain the images of upper palpebral conjunctiva and MGs. Inflammatory cell (IC) density in palpebral conjunctival epithelial and stromal layers, Langerhans cell (LC) density at lid margins and the stroma adjacent to the MG, and MG acinar unit density (MGAUD) were recorded. The longest and shortest diameters of MG acinar were measured. The Kruskal-Wallis test was used to compare the parameter differences whereas the Spearman's rank correlation analysis was applied to determine their correlations. Results: Among all groups, no significant statistical differences were found in epithelial and stromal IC densities, mean values of MG acinar unit densities, or longest and shortest diameters. Both LC parameters in the tarsal-mixed groups were significantly higher than those in the limbal and control groups. All LC densities of VKC patients showed a positive correlation with MGAUD and shortest diameter. Conclusions: In VKC patients, the conjunctival inflammatory status could be associated with the MG status. In vivo CM is a noninvasive, efficient tool in the assessment of MG status and ocular surface. PMID:26044472

  7. Visualization and quantification of healthy and carious dentin structure using confocal laser scanning microscopy

    NASA Astrophysics Data System (ADS)

    Kimura, Yuichi; Wilder-Smith, Petra B. B.; Krasieva, Tatiana B.; Arrastia-Jitosho, Anna-Marie A.; Liaw, Lih-Huei L.; Matsumoto, Koukichi; Berns, Michael W.

    1996-04-01

    In this study, a fluorescence technique was developed for visualization of dentin using confocal laser scanning microscopy (CLSM). Eighteen extracted human teeth were used: 13 showing no clinical signs of caries and 5 with visually apparent decay. Preliminary study: All teeth were horizontally sectioned to approx. 200 micrometers thickness and pre-treated as follows: no pretreatment; vacuum only; ultrasonication only; sodium hypochlorite (NaOCl) only; vacuum and NaOCl; ultrasonication and NaOCl; or vacuum, ultrasonication and NaOCl. Samples were stained with Rhodamine 123 fluorescent dye at a concentration of 10-5 M in phosphate buffer saline for 1 to 24 hours. Caries study: Dentin surfaces, some with pre-existing caries, were visualized using CLSM. Most dentin tubules in sound dentin appeared open using CLSM, but most dentin tubules in carious dentin appeared closed or narrowed. Surface images obtained using CLSM were similar to those seen by SEM, but additional subsurface imaging was possible using CLSM at depth intervals of 1 micrometers to a depth of 30 - 50 micrometers . This technique shows good potential for non-invasive surface and subsurface imaging of dentin structures.

  8. Detection of wood cell wall porosity using small carbohydrate molecules and confocal fluorescence microscopy.

    PubMed

    Donaldson, L A; Kroese, H W; Hill, S J; Franich, R A

    2015-09-01

    A novel approach to nanoscale detection of cell wall porosity using confocal fluorescence microscopy is described. Infiltration of cell walls with a range of nitrophenyl-substituted carbohydrates of different molecular weights was assessed by measuring changes in the intensity of lignin fluorescence, in response to the quenching effect of the 4-nitrophenyl group. The following carbohydrates were used in order of increasing molecular weight; 4-nitrophenyl β-D-glucopyrano-side (monosaccharide), 4-nitrophenyl β-D-lactopyranoside (disaccharide), 2-chloro-4-nitrophenyl β-D-maltotrioside (trisaccharide), and 4-nitrophenyl α-D-maltopentaoside (pentasaccharide). This technique was used to compare cell wall porosity in wood which had been dewatered to 40% moisture content using supercritical CO2, where cell walls remain fully hydrated, with kiln dried wood equilibrated to 12% moisture content. Infiltration of cell walls as measured by fluorescence quenching, was found to decrease with increasing molecular weight, with the pentasaccharide being significantly excluded compared to the monosaccharide. Porosity experiments were performed on blocks and sections to assess differences in cell wall accessibility. Dewatered and kiln dried wood infiltrated as blocks showed similar results, but greater infiltration was achieved by using sections, indicating that not all pores were easily accessible by infiltration from the lumen surface. In wood blocks infiltrated with 4-nitrophenyl α-D-maltopentaoside, quenching of the secondary wall was quite variable, especially in kiln dried wood, indicating limited connectivity of pores accessible from the lumen surface. PMID:25925133

  9. Localization of extracellular matrix components in developing mouse salivary glands by confocal microscopy

    NASA Technical Reports Server (NTRS)

    Hardman, P.; Spooner, B. S.

    1992-01-01

    The importance of the extracellular matrix (ECM) in epithelial-mesenchymal interactions in developing organisms is well established. Proteoglycans and interstitial collagens are required for the growth, morphogenesis, and differentiation of epithelial organs and the distribution of these molecules has been described. However, much less is known about other ECM macromolecules in developing epithelial organs. We used confocal microscopy to examine the distribution of laminin, heparan sulfate (BM-1) proteoglycan, fibronectin, and collagen types I, IV, and V, in mouse embryonic salivary glands. Organ rudiments were isolated from gestational day 13 mouse embryos and cultured for 24, 48, or 72 hours. Whole mounts were stained by indirect immunofluorescence and then examined using a Zeiss Laser Scan Microscope. We found that each ECM component examined had a distinct distribution and that the distribution of some molecules varied with culture time. Laminin was mainly restricted to the basement membrane. BM-1 proteoglycan was concentrated in the basement membrane and also formed a fine network throughout the mesenchyme. Type IV collagen was mainly located in the basement membrane of the epithelium, but it was also present throughout the mesenchyme. Type V collagen was distributed throughout the mesenchyme at 24 hours, but at 48 hours was principally located in the basement membrane. Type I collagen was distributed throughout the mesenchyme at all culture times, and accumulated in the clefts and particularly at the epithelial-mesenchymal interface as time in culture increased. Fibronectin was observed throughout the mesenchyme at all times.

  10. Evaluation of Yogurt Microstructure Using Confocal Laser Scanning Microscopy and Image Analysis.

    PubMed

    Skytte, Jacob L; Ghita, Ovidiu; Whelan, Paul F; Andersen, Ulf; Møller, Flemming; Dahl, Anders B; Larsen, Rasmus

    2015-06-01

    The microstructure of protein networks in yogurts defines important physical properties of the yogurt and hereby partly its quality. Imaging this protein network using confocal scanning laser microscopy (CSLM) has shown good results, and CSLM has become a standard measuring technique for fermented dairy products. When studying such networks, hundreds of images can be obtained, and here image analysis methods are essential for using the images in statistical analysis. Previously, methods including gray level co-occurrence matrix analysis and fractal analysis have been used with success. However, a range of other image texture characterization methods exists. These methods describe an image by a frequency distribution of predefined image features (denoted textons). Our contribution is an investigation of the choice of image analysis methods by performing a comparative study of 7 major approaches to image texture description. Here, CSLM images from a yogurt fermentation study are investigated, where production factors including fat content, protein content, heat treatment, and incubation temperature are varied. The descriptors are evaluated through nearest neighbor classification, variance analysis, and cluster analysis. Our investigation suggests that the texton-based descriptors provide a fuller description of the images compared to gray-level co-occurrence matrix descriptors and fractal analysis, while still being as applicable and in some cases as easy to tune. PMID:25959794

  11. Modeling and simulation of protein uptake in cation exchanger visualized by confocal laser scanning microscopy.

    PubMed

    Yang, Kun; Shi, Qing-Hong; Sun, Yan

    2006-12-01

    Confocal laser scanning microscopy (CLSM) has been extensively applied in the area of protein chromatography to investigate the uptake mechanism of protein in adsorbents. However, due to the light attenuation in the deeper layers of a specimen, quantitative analysis using CLSM data is still far from reality. In this work, an attenuation equation for describing the darkening of the CLSM image in the deeper scanning layers was developed. Bovine serum albumin (BSA) adsorption to SP Sepharose FF was performed by batch adsorption and micro-column chromatography on which protein concentration in single absorbents were visualized by CLSM. The parameters in the equation were estimated by fitting it to the fluorescence intensity profiles obtained at adsorption equilibrium, and then the equation was used to simulate the effect caused by the light scattering and absorption. CLSM analysis demonstrated that BSA adsorption to SP Sepharose FF followed the shrinking core pattern and was predicted reasonably well by the pore diffusion model in combination with the attenuation equation. By comparison of the CLSM data with the simulations, it shows that the attenuation equation was useful to demonstrate the validity of an intraparticle mass transport model for the estimation of intraparticle protein concentration profiles. PMID:17034803

  12. In vivo assessment of the structure of skin microcirculation by reflectance confocal-laser-scanning microscopy

    NASA Astrophysics Data System (ADS)

    Sugata, Keiichi; Osanai, Osamu; Kawada, Hiromitsu

    2012-02-01

    One of the major roles of the skin microcirculation is to supply oxygen and nutrition to the surrounding tissue. Regardless of the close relationship between the microcirculation and the surrounding tissue, there are few non-invasive methods that can evaluate both the microcirculation and its surrounding tissue at the same site. We visualized microcapillary plexus structures in human skin using in vivo reflectance confocal-laser-scanning microscopy (CLSM), Vivascope 3000® (Lucid Inc., USA) and Image J software (National Institutes of Health, USA) for video image processing. CLSM is a non-invasive technique that can visualize the internal structure of the skin at the cellular level. In addition to internal morphological information such as the extracellular matrix, our method reveals capillary structures up to the depth of the subpapillary plexus at the same site without the need for additional optical systems. Video images at specific depths of the inner forearm skin were recorded. By creating frame-to-frame difference images from the video images using off-line video image processing, we obtained images that emphasize the brightness depending on changes of intensity coming from the movement of blood cells. Merging images from different depths of the skin elucidates the 3-dimensional fine line-structure of the microcirculation. Overall our results show the feasibility of a non-invasive, high-resolution imaging technique to characterize the skin microcirculation and the surrounding tissue.

  13. Applicability of confocal laser scanning microscopy for evaluation and monitoring of cutaneous wound healing

    NASA Astrophysics Data System (ADS)

    Lange-Asschenfeldt, Susanne; Bob, Adrienne; Terhorst, Dorothea; Ulrich, Martina; Fluhr, Joachim; Mendez, Gil; Roewert-Huber, Hans-Joachim; Stockfleth, Eggert; Lange-Asschenfeldt, Bernhard

    2012-07-01

    There is a high demand for noninvasive imaging techniques for wound assessment. In vivo reflectance confocal laser scanning microscopy (CLSM) represents an innovative optical technique for noninvasive evaluation of normal and diseased skin in vivo at near cellular resolution. This study was designed to test the feasibility of CLSM for noninvasive analysis of cutaneous wound healing in 15 patients (7 male/8 female), including acute and chronic, superficial and deep dermal skin wounds. A commercially available CLSM system was used for the assessment of wound bed and wound margins in order to obtain descriptive cellular and morphological parameters of cutaneous wound repair noninvasively and over time. CLSM was able to visualize features of cutaneous wound repair in epidermal and superficial dermal wounds, including aspects of inflammation, neovascularisation, and tissue remodelling in vivo. Limitations include the lack of mechanic fixation of the optical system on moist surfaces restricting the analysis of chronic skin wounds to the wound margins, as well as a limited optical resolution in areas of significant slough formation. By describing CLSM features of cutaneous inflammation, vascularisation, and epithelialisation, the findings of this study support the role of CLSM in modern wound research and management.

  14. Spectral mapping of 3D multi-cellular tumor spheroids: time-resolved confocal microscopy.

    PubMed

    Mohapatra, Saswat; Nandi, Somen; Chowdhury, Rajdeep; Das, Gaurav; Ghosh, Surajit; Bhattacharyya, Kankan

    2016-07-21

    A tumor-like multi-cellular spheroid (3D) differs from a 2D cell in a number of ways. This is demonstrated using time resolved confocal microscopy. Two different tumor spheroids - HeLa (cervical cancer) and A549 (lung cancer) - are studied using 3 different fluorescent dyes - C153 (non-covalent), CPM (covalent) and doxorubicin (non-covalent, anti-cancer drug). The pattern of localization of these three fluorescent probes in the 3D tumor cell exhibits significant differences from that in the conventional 2D cells. For both the cells (HeLa and A549), the total uptake of doxorubicin in the 3D cell is much lower than that in the 2D cell. The uptake of doxorubicin molecules in the A549 spheroid is significantly different compared to the HeLa spheroid. The local polarity (i.e. emission maxima) and solvation dynamics in the 3D tumor cell differ from those in 2D cells. The covalent probe CPM exhibits intermittent fluorescence oscillations in the 1-2 s time scale. This is attributed to redox processes. These results may provide new insights into 3D tumors. PMID:27336201

  15. Glutamate-induced intracellular calcium oscillations in astrocytes with confocal microscopy

    NASA Astrophysics Data System (ADS)

    Zhang, Yuan; Zhou, Wei; Liu, Xiuli; Zhu, Geng; Wu, Yuxiang; Luo, Qingming

    2006-02-01

    Changes in the intracellular Ca 2+ concentration ([Ca 2+]i) play a crucial role involved in the modulation of signal transduction, development, and plasticity in the CNS. Glial cells can respond to various stimuli with an increase in [Ca 2+]i. In this paper, we used confocal microscopy to study calcium transient induced by glutamate in cultured astrocytes. Firstly, 100 μM glutamate induced long-time intracellular calcium oscillations in astrocytes and only a single spike under calcium-free solution. When the concentration of glutamate decreased to 1 μM, only a single spike could be induced. It shows that intracellular calcium oscillations depend on agonist concentration and extracellular Ca 2+. Secondly, we investigated amplitude of responses under different stimulation. The amplitude of initial peak induced by 100 μM glutamate decreased in Ca 2+-free condition, whereas the duration of kinetics was prolonged. But both the amplitude and area of a single spike induced by 1 μM Glu decreased in Ca 2+-free condition. The results show that areaof peak is more accurate than amplitude to display transients of [Ca 2+]i. All results above suggest that astrocytes are not passive, they display diverse temporal and spatial increases in [Ca 2+]i in response to a variety of stimuli. These [Ca 2+]i increases provide a possible means for information coding.

  16. Application of confocal microscopy on glutamate-induced intracellular calcium transient in neurons

    NASA Astrophysics Data System (ADS)

    Zhu, Geng; Zhou, Wei; Zhang, Yuan; Liu, Xiuli; Wu, Yuxiang; Luo, Qingming

    2006-02-01

    Intracellular calcium, as an important second messenger, plays a significant role in cell signaling transduction and metabolism. Glutamate can induce the intracellular calcium transient through triggering diverse signaling pathways. To test the effect of glutamate to neurons, we loaded Fluo-3/Am in cultured rat hippocampal neurons, and then acquired two-dimensional fluorescent image by confocal microscopy and the analyzed fluorescent intensity. In cultured neurons, we observed two types of neurons that have different morphology: bipolar-type and pyramidal-type. Inducing [Ca 2+] i transient by glutamate, we found the amplitude and time constant of the response curves of bipolar neurons are larger than those of pyramidal neurons. Further, we induced [Ca 2+] ii transient under different concentrations of glutamate. Two different types of kinetic of the [Ca 2+] i transient have been found, corresponded to the two kinds of neuron. The amplitude of [Ca 2+] i transient increased when applying higher concentration of glutamate in pyramidal neurons; while it decreased in bipolar ones. Responses of neurons bathing in calcium-free extracellular solution to glutamate were different from those bathing in normal solution. [Ca 2+] i transient of pyramidal neurons caused by any concentration were totally blocked; while [Ca 2+] i transient in bipolar neurons caused by high concentration of glutamate (500μM) were partly inhibited. All of the phenomena suggest that different types of cultured hippocampal neurons may have different mechanism of the response to glutamate.

  17. Analyzing Remodeling of Cardiac Tissue: A Comprehensive Approach Based on Confocal Microscopy and 3D Reconstructions.

    PubMed

    Seidel, Thomas; Edelmann, J-C; Sachse, Frank B

    2016-05-01

    Microstructural characterization of cardiac tissue and its remodeling in disease is a crucial step in many basic research projects. We present a comprehensive approach for three-dimensional characterization of cardiac tissue at the submicrometer scale. We developed a compression-free mounting method as well as labeling and imaging protocols that facilitate acquisition of three-dimensional image stacks with scanning confocal microscopy. We evaluated the approach with normal and infarcted ventricular tissue. We used the acquired image stacks for segmentation, quantitative analysis and visualization of important tissue components. In contrast to conventional mounting, compression-free mounting preserved cell shapes, capillary lumens and extracellular laminas. Furthermore, the new approach and imaging protocols resulted in high signal-to-noise ratios at depths up to 60 µm. This allowed extensive analyzes revealing major differences in volume fractions and distribution of cardiomyocytes, blood vessels, fibroblasts, myofibroblasts and extracellular space in control vs. infarct border zone. Our results show that the developed approach yields comprehensive data on microstructure of cardiac tissue and its remodeling in disease. In contrast to other approaches, it allows quantitative assessment of all major tissue components. Furthermore, we suggest that the approach will provide important data for physiological models of cardiac tissue at the submicrometer scale. PMID:26399990

  18. The Effect of Autologous Platelet Lysate Eye Drops: An In Vivo Confocal Microscopy Study.

    PubMed

    Fea, Antonio M; Aragno, Vittoria; Testa, Valeria; Machetta, Federica; Parisi, Simone; D'Antico, Sergio; Spinetta, Roberta; Fusaro, Enrico; Grignolo, Federico M

    2016-01-01

    Purpose. To determine the effectiveness of autologous platelet lysate (APL) eye drops in patients with primary Sjögren syndrome (SS) dry eye, refractory to standard therapy, in comparison with patients treated with artificial tears. We focused on the effect of APL on cornea morphology with the in vivo confocal microscopy (IVCM). Methods. Patients were assigned to two groups: group A used autologous platelet lysate QID, and group B used preservative-free artificial tears QID, for 90 days. Ophthalmological assessments included ocular surface disease index (OSDI), best corrected visual acuity (BCVA), Schirmer test, fluorescein score, and breakup time (BUT). A subgroup of patients in group A underwent IVCM: corneal basal epithelium, subbasal nerves, Langerhans cells, anterior stroma activated keratocytes, and reflectivity were evaluated. Results. 60 eyes of 30 patients were enrolled; in group A (n = 20 patients) mean OSDI, fluorescein score, and BUT showed significant improvement compared with group B (n = 10 patients). The IVCM showed a significant increase in basal epithelium cells density and subbasal nerve plexus density and number and a decrease in Langerhans cells density (p < 0.05). Conclusion. APL was found effective in the treatment of SS dry eye. IVCM seems to be a useful tool to visualize cornea morphologic modifications. PMID:27200376

  19. A confocal microscopy-based atlas of tissue architecture in the tapeworm Hymenolepis diminuta.

    PubMed

    Rozario, Tania; Newmark, Phillip A

    2015-11-01

    Tapeworms are pervasive and globally distributed parasites that infect millions of humans and livestock every year, and are the causative agents of two of the 17 neglected tropical diseases prioritized by the World Health Organization. Studies of tapeworm biology and pathology are often encumbered by the complex life cycles of disease-relevant tapeworm species that infect hosts such as foxes, dogs, cattle, pigs, and humans. Thus, studies of laboratory models can help overcome the practical, ethical, and cost-related difficulties faced by tapeworm parasitologists. The rat intestinal tapeworm Hymenolepis diminuta is easily reared in the laboratory and has the potential to enable modern molecular-based experiments that will greatly contribute to our understanding of multiple aspects of tapeworm biology, such as growth and reproduction. As part of our efforts to develop molecular tools for experiments on H. diminuta, we have characterized a battery of lectins, antibodies, and common stains that label different tapeworm tissues and organ structures. Using confocal microscopy, we have assembled an "atlas" of H. diminuta organ architecture that will be a useful resource for helminthologists. The methodologies we describe will facilitate characterization of loss-of-function perturbations using H. diminuta. This toolkit will enable a greater understanding of fundamental tapeworm biology that may elucidate new therapeutic targets toward the eradication of these parasites. PMID:26049090

  20. Application of Laser Scanning Confocal Microscopy to Heat and Mass Transport Modeling in Porous Microstructures

    NASA Technical Reports Server (NTRS)

    Marshall, Jochen; Milos, Frank; Fredrich, Joanne; Rasky, Daniel J. (Technical Monitor)

    1997-01-01

    Laser Scanning Confocal Microscopy (LSCM) has been used to obtain digital images of the complicated 3-D (three-dimensional) microstructures of rigid, fibrous thermal protection system (TPS) materials. These orthotropic materials are comprised of refractory ceramic fibers with diameters in the range of 1 to 10 microns and have open porosities of 0.8 or more. Algorithms are being constructed to extract quantitative microstructural information from the digital data so that it may be applied to specific heat and mass transport modeling efforts; such information includes, for example, the solid and pore volume fractions, the internal surface area per volume, fiber diameter distributions, and fiber orientation distributions. This type of information is difficult to obtain in general, yet it is directly relevant to many computational efforts which seek to model macroscopic thermophysical phenomena in terms of microscopic mechanisms or interactions. Two such computational efforts for fibrous TPS materials are: i) the calculation of radiative transport properties; ii) the modeling of gas permeabilities.

  1. Automated Segmentation of Skin Strata in Reflectance Confocal Microscopy Depth Stacks

    PubMed Central

    Hames, Samuel C.; Ardigò, Marco; Soyer, H. Peter; Bradley, Andrew P.; Prow, Tarl W.

    2016-01-01

    Reflectance confocal microscopy (RCM) is a powerful tool for in-vivo examination of a variety of skin diseases. However, current use of RCM depends on qualitative examination by a human expert to look for specific features in the different strata of the skin. Developing approaches to quantify features in RCM imagery requires an automated understanding of what anatomical strata is present in a given en-face section. This work presents an automated approach using a bag of features approach to represent en-face sections and a logistic regression classifier to classify sections into one of four classes (stratum corneum, viable epidermis, dermal-epidermal junction and papillary dermis). This approach was developed and tested using a dataset of 308 depth stacks from 54 volunteers in two age groups (20–30 and 50–70 years of age). The classification accuracy on the test set was 85.6%. The mean absolute error in determining the interface depth for each of the stratum corneum/viable epidermis, viable epidermis/dermal-epidermal junction and dermal-epidermal junction/papillary dermis interfaces were 3.1 μm, 6.0 μm and 5.5 μm respectively. The probabilities predicted by the classifier in the test set showed that the classifier learned an effective model of the anatomy of human skin. PMID:27088865

  2. Registration, segmentation, and visualization of confocal microscopy images of arterial thrombus

    NASA Astrophysics Data System (ADS)

    Garg, Ishita; Camp, Jon J.; McBane, Robert; Wysokinski, Waldemar; Robb, Richard A.

    2004-05-01

    Arterial thrombosis causes death or paralysis of an organ, as it migrates to and localizes in different parts of the body. Massive pulmonary emboli cause 50,000 deaths per year. The cause and origin of arterial thrombosis is not well understood nor objectively characterized. The object of this study was to investigate the microscopic structure of arterial thrombus to better understand this pathology. Confocal microscopy cross-sectional images of an embolized thrombus in the coronary artery were obtained. Adjacent pairs of sections were stained with two different stains, fibrin and CD61, to reveal mutually complementary information. The very thin adjacent slices were treated as one slice. Adjacent slices were registered by a combination of manual and automatic techniques using Analyze software developed in the Biomedical Imaging Resource at Mayo. After smoothing the images with a median filter, the CD61 and fibrin stained section images were used together to segment the tissues by multispectral classification. The image volume was classified into background, platelets and surrounding tissue, and thrombus. The segmented volume was then rendered for visualization and analysis of structure of the thrombus in three dimensions. Preliminary results are promising. Such correlation of structural and histological information may be helpful in determining the origin of the thrombus.

  3. A statistical pixel intensity model for segmentation of confocal laser scanning microscopy images.

    PubMed

    Calapez, Alexandre; Rosa, Agostinho

    2010-09-01

    Confocal laser scanning microscopy (CLSM) has been widely used in the life sciences for the characterization of cell processes because it allows the recording of the distribution of fluorescence-tagged macromolecules on a section of the living cell. It is in fact the cornerstone of many molecular transport and interaction quantification techniques where the identification of regions of interest through image segmentation is usually a required step. In many situations, because of the complexity of the recorded cellular structures or because of the amounts of data involved, image segmentation either is too difficult or inefficient to be done by hand and automated segmentation procedures have to be considered. Given the nature of CLSM images, statistical segmentation methodologies appear as natural candidates. In this work we propose a model to be used for statistical unsupervised CLSM image segmentation. The model is derived from the CLSM image formation mechanics and its performance is compared to the existing alternatives. Results show that it provides a much better description of the data on classes characterized by their mean intensity, making it suitable not only for segmentation methodologies with known number of classes but also for use with schemes aiming at the estimation of the number of classes through the application of cluster selection criteria. PMID:20363677

  4. Demeclocycline as a contrast agent for detecting brain neoplasms using confocal microscopy

    NASA Astrophysics Data System (ADS)

    Wirth, Dennis; Smith, Thomas W.; Moser, Richard; Yaroslavsky, Anna N.

    2015-04-01

    Complete resection of brain tumors improves life expectancy and quality. Thus, there is a strong need for high-resolution detection and microscopically controlled removal of brain neoplasms. The goal of this study was to test demeclocycline as a contrast enhancer for the intraoperative detection of brain tumors. We have imaged benign and cancerous brain tumors using multimodal confocal microscopy. The tumors investigated included pituitary adenoma, meningiomas, glioblastomas, and metastatic brain cancers. Freshly excised brain tissues were stained in 0.75 mg ml-1 aqueous solution of demeclocyline. Reflectance images were acquired at 402 nm. Fluorescence signals were excited at 402 nm and registered between 500 and 540 nm. After imaging, histological sections were processed from the imaged specimens and compared to the optical images. Fluorescence images highlighted normal and cancerous brain cells, while reflectance images emphasized the morphology of connective tissue. The optical and histological images were in accordance with each other for all types of tumors investigated. Demeclocyline shows promise as a contrast agent for intraoperative detection of brain tumors.

  5. Confocal laser-scanning microscopy of capillaries in normal and psoriatic skin

    NASA Astrophysics Data System (ADS)

    Archid, Rami; Patzelt, Alexa; Lange-Asschenfeldt, Bernhard; Ahmad, Sufian S.; Ulrich, Martina; Stockfleth, Eggert; Philipp, Sandra; Sterry, Wolfram; Lademann, Juergen

    2012-10-01

    An important and most likely active role in the pathogenesis of psoriasis has been attributed to changes in cutaneous blood vessels. The purpose of this study was to use confocal laser-scanning microscopy (CLSM) to investigate dermal capillaries in psoriatic and normal skin. The structures of the capillary loops in 5 healthy participants were compared with those in affected skin of 13 psoriasis patients. The diameters of the capillaries and papillae were measured for each group with CLSM. All investigated psoriasis patients showed elongated, widened, and tortuous microvessels in the papillary dermis, whereas all healthy controls showed a single capillary loop in each dermal papilla. The capillaries of the papillary loop and the dermal papilla were significantly enlarged in the psoriatic skin lesions (diameters 24.39±2.34 and 146.46±28.52 μm, respectively) in comparison to healthy skin (diameters 9.53±1.8 and 69.48±17.16 μm, respectively) (P<0.001). CLSM appears to represent a promising noninvasive technique for evaluating dermal capillaries in patients with psoriasis. The diameter of the vessels could be seen as a well-quantifiable indicator for the state of psoriatic skin. CLSM could be useful for therapeutic monitoring to delay possible recurrences.

  6. Confocal scanning optical microscopy of a 3-million-year-old Australopithecus afarensis femur.

    PubMed

    Bromage, T G; Goldman, H M; McFarlin, S C; Perez Ochoa, A; Boyde, A

    2009-01-01

    Portable confocal scanning optical microscopy (PCSOM) has been specifically developed for the noncontact and nondestructive imaging of early human fossil hard tissues, which here we describe and apply to a 3-million-year-old femur from the celebrated Ethiopian skeleton, "Lucy," referred to Australopithecus afarensis. We examine two bone tissue parameters that demonstrate the potential of this technology. First, subsurface reflection images from intact bone reveal bone cell spaces, the osteocyte lacunae, whose density is demonstrated to scale negatively with body size, reflecting aspects of metabolism and organismal life history. Second, images of a naturally fractured cross section near to Lucy's femoral mid-shaft, which match in sign those of transmitted circularly polarized light, reveal relative collagen fiber orientation patterns that are an important indicator of femoral biomechanical efficacy. Preliminary results indicate that Lucy was characterized by metabolic constraints typical for a primate her body size and that in her femur she was adapted to habitual bipedalism. Limitations imposed by the transport and invasive histology of unique or rare fossils motivated development of the PCSOM so that specimens may be examined wherever and whenever nondestructive imaging is required. PMID:19191265

  7. Comparing phototoxicity during the development of a zebrafish craniofacial bone using confocal and light sheet fluorescence microscopy techniques.

    PubMed

    Jemielita, Matthew; Taormina, Michael J; Delaurier, April; Kimmel, Charles B; Parthasarathy, Raghuveer

    2013-12-01

    The combination of genetically encoded fluorescent proteins and three-dimensional imaging enables cell-type-specific studies of embryogenesis. Light sheet microscopy, in which fluorescence excitation is provided by a plane of laser light, is an appealing approach to live imaging due to its high speed and efficient use of photons. While the advantages of rapid imaging are apparent from recent work, the importance of low light levels to studies of development is not well established. We examine the zebrafish opercle, a craniofacial bone that exhibits pronounced shape changes at early developmental stages, using both spinning disk confocal and light sheet microscopies of fluorescent osteoblast cells. We find normal and aberrant opercle morphologies for specimens imaged with short time intervals using light sheet and spinning disk confocal microscopies, respectively, under equivalent exposure conditions over developmentally-relevant time scales. Quantification of shapes reveals that the differently imaged specimens travel along distinct trajectories in morphological space. PMID:23242824

  8. Swept confocally-aligned planar excitation (SCAPE) microscopy for high-speed volumetric imaging of behaving organisms

    NASA Astrophysics Data System (ADS)

    Bouchard, Matthew B.; Voleti, Venkatakaushik; Mendes, César S.; Lacefield, Clay; Grueber, Wesley B.; Mann, Richard S.; Bruno, Randy M.; Hillman, Elizabeth M. C.

    2015-02-01

    We report a three-dimensional microscopy technique—swept, confocally-aligned planar excitation (SCAPE) microscopy—that allows volumetric imaging of living samples at ultrahigh speeds. Although confocal and two-photon microscopy have revolutionized biomedical research, current implementations are costly, complex and limited in their ability to image three-dimensional volumes at high speeds. Light-sheet microscopy techniques using two-objective, orthogonal illumination and detection require a highly constrained sample geometry and either physical sample translation or complex synchronization of illumination and detection planes. In contrast, SCAPE microscopy acquires images using an angled, swept light sheet in a single-objective, en face geometry. Unique confocal descanning and image rotation optics map this moving plane onto a stationary high-speed camera, permitting completely translationless three-dimensional imaging of intact samples at rates exceeding 20 volumes per second. We demonstrate SCAPE microscopy by imaging spontaneous neuronal firing in the intact brain of awake behaving mice, as well as freely moving transgenic Drosophila larvae.

  9. Femtosecond laser subsurface scleral treatment in cadaver human sclera and evaluation using two-photon and confocal microscopy

    NASA Astrophysics Data System (ADS)

    Sun, Hui; Fan, Zhongwei; Yan, Ying; Lian, Fuqiang; Kurtz, Ron; Juhasz, Tibor

    2016-03-01

    Glaucoma is the second-leading cause of blindness worldwide and is often associated with elevated intraocular pressure (IOP). Partial-thickness drainage channels can be created with femtosecond laser in the translucent sclera for the potential treatment of glaucoma. We demonstrate the creation of partial-thickness subsurface drainage channels with the femtosecond laser in the cadaver human eyeballs and describe the application of two-photon microscopy and confocal microscopy for noninvasive imaging of the femtosecond laser created partial-thickness scleral channels in cadaver human eyes. A femtosecond laser operating at a wavelength of 1700 nm was scanned along a rectangular raster pattern to create the partial thickness subsurface drainage channels in the sclera of cadaver human eyes. Analysis of the dimensions and location of these channels is important in understanding their effects. We describe the application of two-photon microscopy and confocal microscopy for noninvasive imaging of the femtosecond laser created partial-thickness scleral channels in cadaver human eyes. High-resolution images, hundreds of microns deep in the sclera, were obtained to allow determination of the shape and dimension of such partial thickness subsurface scleral channels. Our studies suggest that the confocal and two-photon microscopy can be used to investigate femtosecond-laser created partial-thickness drainage channels in the sclera of cadaver human eyes.

  10. Cross-Linking Cellulosic Fibers with Photoreactive Polymers: Visualization with Confocal Raman and Fluorescence Microscopy.

    PubMed

    Janko, Marek; Jocher, Michael; Boehm, Alexander; Babel, Laura; Bump, Steven; Biesalski, Markus; Meckel, Tobias; Stark, Robert W

    2015-07-13

    The properties of paper sheets can be tuned by adjusting the surface or bulk chemistry using functional polymers that are applied during (online) or after (offline) papermaking processes. In particular, polymers are widely used to enhance the mechanical strength of the wet state of paper sheets. However, the mechanical strength depends not only on the chemical nature of the polymeric additives but also on the distribution of the polymer on and in the lignocellulosic paper. Here, we analyze the photochemical attachment and distribution of hydrophilic polydimethylacrylamide-co-methacrylate-benzophenone P(DMAA-co-MABP) copolymers with defined amounts of photoreactive benzophenone moieties in model paper sheets. Raman microscopy was used for the unambiguous identification of P(DMAA-co-MABP) and cellulose specific bands and thus the copolymer distribution within the cellulose matrix. Two-dimensional Raman spectral maps at the intersections of overlapping cellulose fibers document that the macromolecules only partially surround the cellulose fibers, favor to attach to the fiber surface, and connect the cellulose fibers at crossings. Moreover, the copolymer appears to accumulate preferentially in holes, vacancies, and dips on the cellulose fiber surface. Correlative brightfield, Raman, and confocal laser scanning microscopy finally reveal a reticular three-dimensional distribution of the polymer and show that the polymer is predominately deposited in regions of high capillarity (i.e., in proximity to fine cellulose fibrils). These data provide deeper insights into the effects of paper functionalization with a copolymer and aid in understanding how these agents ultimately influence the local and overall properties of paper. PMID:26101966

  11. Confocal laser-scanning microscopy for determining the structure of and keratinocyte infiltration through collagen sponges.

    PubMed

    Hanthamrongwit, M; Wilkinson, R; Osborne, C; Reid, W H; Grant, M H

    1996-03-01

    The development of artificial skin substitutes based on cultured cells and biomaterials such as collagen requires an understanding of cellular interactions with the substrate. In this study, human keratinocytes were cultured on the surface of collagen sponges, and confocal laser-scanning microscopy (CLSM) was used to assess both the microstructure of the sponge, and the cell morphology and distribution throughout the sponge. It was found that the pore size increased with increasing depth into the sponge. Both pore size and fiber thickness increased during incubation for up to 10 days at 37 degrees C in culture medium in the absence of cells. This latter effect was not observed when the sponges were incubated in distilled water. Keratinocytes penetrated into the sponge even after only 3 days in culture. By 10 days in culture, the cells had penetrated to the maximum depth that could be examined (120 microns from the sponge surface). In the presence of cells, the inner structure of the collagen sponge had altered after 10 days in culture, with the collagen fibers becoming thicker, and pore geometry less regular. The mechanism responsible for this is unknown at present. Although the presence of the keratinocytes increases distortion of the sponge structure, factors from the medium itself also contribute to this effect. CLSM is a powerful tool for assessing cellular interactions with bioimplants, providing both qualitative and quantitative information. It offers many advantages over scanning electron microscopy (SEM) and histological techniques. CLSM minimizes the time-consuming, extensive preparation of samples required with the latter two methods, and allows noninvasive serial optical sectioning of intact samples. PMID:8698696

  12. Normative Values for Corneal Nerve Morphology Assessed Using Corneal Confocal Microscopy: A Multinational Normative Data Set

    PubMed Central

    Tavakoli, Mitra; Ferdousi, Maryam; Petropoulos, Ioannis N.; Morris, Julie; Pritchard, Nicola; Zhivov, Andrey; Ziegler, Dan; Pacaud, Danièle; Romanchuk, Kenneth; Perkins, Bruce A.; Lovblom, Leif E.; Bril, Vera; Singleton, J. Robinson; Smith, Gordon; Boulton, Andrew J.M.; Efron, Nathan

    2015-01-01

    OBJECTIVE Corneal confocal microscopy is a novel diagnostic technique for the detection of nerve damage and repair in a range of peripheral neuropathies, in particular diabetic neuropathy. Normative reference values are required to enable clinical translation and wider use of this technique. We have therefore undertaken a multicenter collaboration to provide worldwide age-adjusted normative values of corneal nerve fiber parameters. RESEARCH DESIGN AND METHODS A total of 1,965 corneal nerve images from 343 healthy volunteers were pooled from six clinical academic centers. All subjects underwent examination with the Heidelberg Retina Tomograph corneal confocal microscope. Images of the central corneal subbasal nerve plexus were acquired by each center using a standard protocol and analyzed by three trained examiners using manual tracing and semiautomated software (CCMetrics). Age trends were established using simple linear regression, and normative corneal nerve fiber density (CNFD), corneal nerve fiber branch density (CNBD), corneal nerve fiber length (CNFL), and corneal nerve fiber tortuosity (CNFT) reference values were calculated using quantile regression analysis. RESULTS There was a significant linear age-dependent decrease in CNFD (−0.164 no./mm2 per year for men, P < 0.01, and −0.161 no./mm2 per year for women, P < 0.01). There was no change with age in CNBD (0.192 no./mm2 per year for men, P = 0.26, and −0.050 no./mm2 per year for women, P = 0.78). CNFL decreased in men (−0.045 mm/mm2 per year, P = 0.07) and women (−0.060 mm/mm2 per year, P = 0.02). CNFT increased with age in men (0.044 per year, P < 0.01) and women (0.046 per year, P < 0.01). Height, weight, and BMI did not influence the 5th percentile normative values for any corneal nerve parameter. CONCLUSIONS This study provides robust worldwide normative reference values for corneal nerve parameters to be used in research and clinical practice in the study of diabetic and other peripheral

  13. A comparison of image restoration approaches applied to three-dimensional confocal and wide-field fluorescence microscopy.

    PubMed

    Verveer, P. J; Gemkow, M. J; Jovin, T. M

    1999-01-01

    We have compared different image restoration approaches for fluorescence microscopy. The most widely used algorithms were classified with a Bayesian theory according to the assumed noise model and the type of regularization imposed. We considered both Gaussian and Poisson models for the noise in combination with Tikhonov regularization, entropy regularization, Good's roughness and without regularization (maximum likelihood estimation). Simulations of fluorescence confocal imaging were used to examine the different noise models and regularization approaches using the mean squared error criterion. The assumption of a Gaussian noise model yielded only slightly higher errors than the Poisson model. Good's roughness was the best choice for the regularization. Furthermore, we compared simulated confocal and wide-field data. In general, restored confocal data are superior to restored wide-field data, but given sufficient higher signal level for the wide-field data the restoration result may rival confocal data in quality. Finally, a visual comparison of experimental confocal and wide-field data is presented. PMID:12558687

  14. Comparing phototoxicity during the development of a zebrafish craniofacial bone using confocal and light sheet fluorescence microscopy techniques

    PubMed Central

    Jemielita, Matthew; Taormina, Michael J.; DeLaurier, April; Kimmel, Charles B.; Parthasarathy, Raghuveer

    2013-01-01

    The combination of genetically encoded fluorescent proteins and three-dimensional imaging enables cell-type-specific studies of embryogenesis. Light sheet microscopy, in which fluorescence excitation is provided by a plane of laser light, is an appealing approach to live imaging due to its high speed and efficient use of photons. While the advantages of rapid imaging are apparent from recent work, the importance of low light levels to studies of development is not well established. We examine the zebrafish opercle, a craniofacial bone that exhibits pronounced shape changes at early developmental stages, using both spinning disk confocal and light sheet microscopies of fluorescent osteoblast cells. We find normal and aberrant opercle morphologies for specimens imaged with short time intervals using light sheet and spinning disk confocal microscopies, respectively, under equivalent exposure conditions over developmentally-relevant time scales. Quantification of shapes reveals that the differently imaged specimens travel along distinct trajectories in morphological space. (A) Schematic: Light sheet microscopy of zebrafish embryos. Opercle-forming osteoblasts following twenty-four hours of (B) light sheet imaging, showing normal growth, and (C) spinning disk confocal imaging, showing aberrant growth. PMID:23242824

  15. Confocal microscopy: A valid approach to evaluate the three-dimensional characteristics of root-end cavities

    PubMed Central

    Rodríguez-Martos, Ramón; Castellanos-Cosano, Lizett; Yáñez-Vico, Rosa; Segura-Egea, Juan J.; Gutiérrez-Pérez, José L.

    2013-01-01

    Objective: To analyze, using confocal microscope, the three-dimensional characteristics of the root-end cavity preparations completed in root apices of extracted teeth determining their area, perimeter, circularity and cavo-surface angle. Study design: Thirty-two single-rooted extracted teeth underwent endodontic treatment and apical resection. Root-end cavities were prepared according to 4 protocols, as follows: Group1, stainless steel ultrasonic tips (SST) at 33 KHz power; Group 2, SST at 30 KHz power; Group 3, diamond-coated ultrasonic tips (DCT) at 30 KHz power; and Group 4, DCT at 33 KHz power. Finally, root-end cavity was evaluated using a confocal microscope, recording its area, perimeter, circularity and cavo-surface angle. Results: The largest cavity perimeter was found in the Group 2 (4.8 ± 1.6 mm) (p & 0.05). Root-end cavities performed using SST showed larger areas than those performed with DCT (p = 0.03). The power of vibration or the tip type did not show correlation with the perimeter, circularity and cavo-surface angle of the root-end cavity (p & 0.05). Conclusions: Confocal microscopy is a useful approach to study the three-dimensional characteristics of the root-end cavity. Key words:Confocal microscopy, root-end cavity, surgical root canal treatment, ultrasonic tips. PMID:23524419

  16. Global error minimization in image mosaicing using graph connectivity and its applications in microscopy

    PubMed Central

    Khurd, Parmeshwar; Grady, Leo; Oketokoun, Rafiou; Sundar, Hari; Gajera, Tejas; Gibbs-Strauss, Summer; Frangioni, John V.; Kamen, Ali

    2011-01-01

    Several applications such as multiprojector displays and microscopy require the mosaicing of images (tiles) acquired by a camera as it traverses an unknown trajectory in 3D space. A homography relates the image coordinates of a point in each tile to those of a reference tile provided the 3D scene is planar. Our approach in such applications is to first perform pairwise alignment of the tiles that have imaged common regions in order to recover a homography relating the tile pair. We then find the global set of homographies relating each individual tile to a reference tile such that the homographies relating all tile pairs are kept as consistent as possible. Using these global homographies, one can generate a mosaic of the entire scene. We derive a general analytical solution for the global homographies by representing the pair-wise homographies on a connectivity graph. Our solution can accommodate imprecise prior information regarding the global homographies whenever such information is available. We also derive equations for the special case of translation estimation of an X-Y microscopy stage used in histology imaging and present examples of stitched microscopy slices of specimens obtained after radical prostatectomy or prostate biopsy. In addition, we demonstrate the superiority of our approach over tree-structured approaches for global error minimization. PMID:22811964

  17. Waterproofing in Arabidopsis: Following Phenolics and Lipids In situ by Confocal Raman Microscopy.

    PubMed

    Prats Mateu, Batirtze; Hauser, Marie Theres; Heredia, Antonio; Gierlinger, Notburga

    2016-01-01

    Waterproofing of the aerial organs of plants imposed a big evolutionary step during the colonization of the terrestrial environment. The main plant polymers responsible of water repelling are lipids and lignin, which play also important roles in the protection against biotic/abiotic stresses, regulation of flux of gases and solutes, and mechanical stability against negative pressure, among others. While the lipids, non-polymerized cuticular waxes together with the polymerized cutin, protect the outer surface, lignin is confined to the secondary cell wall within mechanical important tissues. In the present work a micro cross-section of the stem of Arabidopsis thaliana was used to track in situ the distribution of these non-carbohydrate polymers by Confocal Raman Microscopy. Raman hyperspectral imaging gives a molecular fingerprint of the native waterproofing tissues and cells with diffraction limited spatial resolution (~300 nm) at relatively high speed and without any tedious sample preparation. Lipids and lignified tissues as well as their effect on water content was directly visualized by integrating the 1299, 1600, and 3400 cm(-1) band, respectively. For detailed insights into compositional changes of these polymers vertex component analysis was performed on selected sample positions. Changes have been elucidated in the composition of lignin within the lignified tissues and between interfascicular fibers and xylem vessels. Hydrophobizing changes were revealed from the epidermal layer to the cuticle as well as a change in the aromatic composition within the cuticle of trichomes. To verify Raman signatures of different waterproofing polymers additionally Raman spectra of the cuticle and cutin monomer from tomato (Solanum lycopersicum) as well as aromatic model polymers (milled wood lignin and dehydrogenation polymer of coniferyl alcohol) and phenolic acids were acquired. PMID:26973831

  18. Waterproofing in Arabidopsis: Following phenolics and lipids in situ by Confocal Raman Microscopy

    NASA Astrophysics Data System (ADS)

    Prats Mateu, Batirtze; Hauser, Marie-Theres; Heredia, Antonio; Gierlinger, Notburga

    2016-02-01

    Waterproofing of the aerial organs of plants imposed a big evolutionary step during the colonization of the terrestrial environment. The main plant polymers responsible of water repelling are lipids and lignin, which play also important roles in the protection against biotic/abiotic stresses, regulation of flux of gases and solutes and mechanical stability against negative pressure, among others. While the lipids, non-polymerized cuticular waxes together with the polymerized cutin, protect the outer surface, lignin is confined to the secondary cell wall within mechanical important tissues. In the present work a micro cross-section of the stem of Arabidopsis thaliana was used to track in situ the distribution of these non-carbohydrate polymers by Confocal Raman Microscopy. Raman hyperspectral imaging gives a molecular fingerprint of the native waterproofing tissues and cells with diffraction limited spatial resolution (~300 nm) at relatively high speed and without any tedious sample preparation. Lipids and lignified tissues as well as their effect on water content was directly visualized by integrating the 1299 cm-1, 1600 cm-1 and 3400 cm-1 band, respectively. For detailed insights into compositional changes of these polymers vertex component analysis was performed on selected sample positions. Changes have been elucidated in the composition of lignin within the lignified tissues and between interfascicular fibers and xylem vessels. Hydrophobising changes were revealed from the epidermal layer to the cuticle as well as a change in the aromatic composition within the cuticle of trichomes. To verify Raman signatures of different waterproofing polymers additionally Raman spectra of the cuticle and cutin monomer from tomato (Solanum lycopersicum) as well as aromatic model polymers (milled wood lignin and dehydrogenation polymer of coniferyl alcohol) and phenolic acids were acquired. Keywords: Arabidopsis thaliana, lignin, cutin, wax, Raman, cuticle, waterproofing

  19. A meta-analysis of reflectance confocal microscopy for the diagnosis of malignant skin tumours.

    PubMed

    Xiong, Y D; Ma, S; Li, X; Zhong, X; Duan, C; Chen, Q

    2016-08-01

    Early diagnosis is extremely important for treatment and prognosis of skin cancer. Reflectance confocal microscopy (RCM) is a recently developed technique used to diagnose skin cancer. This meta-analysis was carried out to assess the accuracy of RCM for the diagnosis of malignant skin tumours. We conducted a systematic literature search of EMBASE, PubMed, the Cochrane Library and Web of Science database for relevant articles in English published up to 24 December 2015. The quality of the included studies was assessed using the QUADAS-2 tool. Statistical analyses were conducted using the software Meta-Disc version 1.4 and STATA version 12.0. A total of 21 studies involving 3108 patients with a total of 3602 lesions were included in the per-lesion analysis. The corresponding pooled results for sensitivity and specificity were 93.6% (95% CI: 0.92-0.95) and 82.7% (95% CI: 0.81-0.84) respectively. Positive likelihood ratio and negative likelihood ratio were 5.84 (95% CI: 4.27-7.98) and 0.08 (95% CI: 0.07-0.10) respectively. Subgroup analysis showed that RCM had a sensitivity of 92.7% (95% CI: 0.90-0.95) and a specificity of 78.3% (95% CI: 0.76-0.81) for detecting melanoma. The pooled sensitivity and specificity of RCM for detecting basal cell carcinoma were 91.7% (95% CI: 0.87-0.95) and 91.3% (95% CI: 0.94-0.96) respectively. RCM is a valid method of identifying malignant skin tumours accurately. PMID:27230832

  20. A case of linear porokeratosis treated with photodynamic therapy with confocal microscopy surveillance.

    PubMed

    Curkova, Andrea Kovacikova; Hegyi, Juraj; Kozub, Peter; Szep, Zoltan; D'Erme, Angelo Massimiliano; Simaljakova, Maria

    2014-01-01

    Linear porokeratosis (LP) is a rare clinical porokeratosis variant, which typically presents at birth, but can also develop in adulthood. Differential diagnosis includes linear lichen planus, lichen striatus, linear verrucous epidermal nevus, incontinentia pigmenti and linear Darier's disease. An LP lesion has an increased risk of transformation into a squamous cell carcinoma or basal cell carcinoma. The treatment of LP is contradictory and disappointing in general. We present a case of a 16-year-old girl with multiple reddish-brown macules and depressions on the medial aspect of her right arm, localized from the palmar joint up to shoulder region in a linear pattern. We performed confocal microscopy (CLSM) of multiple lesions and a punch biopsy after receiving informed consent to confirm the diagnosis. After diagnosis confirmation, we performed Photodynamic therapy (PDT). Methyl aminolevulinate cream in a 160 mg/g concentration (Metvix crm) was applied under occlusion on the previously cleaned surface of every single lesion for 3 hours. The lesions were subsequently illuminated with a dose of 37 J/cm(2) (Aktilite, PhotoCure ASA, Norway). Two months after the first PDT treatment, the patient came for a third PDT session. Treatment follow-up was performed 6 months after the initial PDT session. A CLSM image proved an increase in the width of the stratum spinosum to 42-48 μm, mild post-inflammatory changes were also present. Cosmetic and clinical response up to date at the time of last follow-up (1 year) was satisfactory. No progression was observed. PMID:24119172

  1. Waterproofing in Arabidopsis: Following Phenolics and Lipids In situ by Confocal Raman Microscopy

    PubMed Central

    Prats Mateu, Batirtze; Hauser, Marie Theres; Heredia, Antonio; Gierlinger, Notburga

    2016-01-01

    Waterproofing of the aerial organs of plants imposed a big evolutionary step during the colonization of the terrestrial environment. The main plant polymers responsible of water repelling are lipids and lignin, which play also important roles in the protection against biotic/abiotic stresses, regulation of flux of gases and solutes, and mechanical stability against negative pressure, among others. While the lipids, non-polymerized cuticular waxes together with the polymerized cutin, protect the outer surface, lignin is confined to the secondary cell wall within mechanical important tissues. In the present work a micro cross-section of the stem of Arabidopsis thaliana was used to track in situ the distribution of these non-carbohydrate polymers by Confocal Raman Microscopy. Raman hyperspectral imaging gives a molecular fingerprint of the native waterproofing tissues and cells with diffraction limited spatial resolution (~300 nm) at relatively high speed and without any tedious sample preparation. Lipids and lignified tissues as well as their effect on water content was directly visualized by integrating the 1299, 1600, and 3400 cm−1 band, respectively. For detailed insights into compositional changes of these polymers vertex component analysis was performed on selected sample positions. Changes have been elucidated in the composition of lignin within the lignified tissues and between interfascicular fibers and xylem vessels. Hydrophobizing changes were revealed from the epidermal layer to the cuticle as well as a change in the aromatic composition within the cuticle of trichomes. To verify Raman signatures of different waterproofing polymers additionally Raman spectra of the cuticle and cutin monomer from tomato (Solanum lycopersicum) as well as aromatic model polymers (milled wood lignin and dehydrogenation polymer of coniferyl alcohol) and phenolic acids were acquired. PMID:26973831

  2. Automated motion estimation of root responses to sucrose in two Arabidopsis thaliana genotypes using confocal microscopy.

    PubMed

    Wuyts, Nathalie; Bengough, A Glyn; Roberts, Timothy J; Du, Chengjin; Bransby, M Fraser; McKenna, Stephen J; Valentine, Tracy A

    2011-10-01

    Root growth is a highly dynamic process influenced by genetic background and environment. This paper reports the development of R scripts that enable root growth kinematic analysis that complements a new motion analysis tool: PlantVis. Root growth of Arabidopsis thaliana expressing a plasma membrane targeted GFP (C24 and Columbia 35S:LTI6b-EGFP) was imaged using time-lapse confocal laser scanning microscopy. Displacement of individual pixels in the time-lapse sequences was estimated automatically by PlantVis, producing dense motion vector fields. R scripts were developed to extract kinematic growth parameters and report displacement to ± 0.1 pixel. In contrast to other currently available tools, Plantvis-R delivered root velocity profiles without interpolation or averaging across the root surface and also estimated the uncertainty associated with tracking each pixel. The PlantVis-R analysis tool has a range of potential applications in root physiology and gene expression studies, including linking motion to specific cell boundaries and analysis of curvature. The potential for quantifying genotype × environment interactions was examined by applying PlantVis-R in a kinematic analysis of root growth of C24 and Columbia, under contrasting carbon supply. Large genotype-dependent effects of sucrose were recorded. C24 exhibited negligible differences in elongation zone length and elongation rate but doubled the density of lateral roots in the presence of sucrose. Columbia, in contrast, increased its elongation zone length and doubled its elongation rate and the density of lateral roots. PMID:21630041

  3. [Revealing the Cell Structure and Formation of Bamboo with Confocal Raman Microscopy].

    PubMed

    Li, Xiao-li; Zhou, Bin-xiong; Zhang, Yi; Yao, Yan-ming; He, Yong

    2016-02-01

    Parenchyma cell (PAC), transition tissue between parenchyma cell and fiber cell (TC) and fibre cell (FC) of bamboo were studied by confocal Raman microscopy in this paper. Partial least squares regression was applied to establish a quantitative differentiation model for the three types of cells. The result showed that the determination coefficients (R²) of calibration and validation were respectively 0.810 and 0.800, and the root mean square error (RMSE) were respectively 0.323 and 0.332. What's more, three raman bands of 1,095, 1,319 and 1,636 cm⁻¹, verified to the characteristic peaks of pectin, hemicellulose and lignin, were found to be the important bands for the differentiation. Subsequently, these three raman bands were used to establish a multiple linear regression (MLR) model, and the determination coefficients (R²) of calibration and validation of the model were respectively 0.644 and 0.643, and the root mean square error (RMSE) were respectively 0.442 and 0.443. This result showed that there existed obvious difference among the three types of cells in these three raman bands. Finally, the raman spectral signal processed by wavelet transform to eliminate baseline were used to chemical imaging analysis. These results showed a rather large microfibril angle between cellulose fibrils and fibre axis, which contributed to higher modulus and hardness of cells. Hemicellulose and cellulose have similar distribution in the raman chemical image, due to the connection of hemicellulose and cellulose microfiber through hydrogen bond and the closely combination under the action of van der Waals force. The cell corners (CC) and compound middle lamella (CML) were heavily lignified, and a gradual decrease of lignification from the outer layer to the inner layer of the three cells indicate that lignification was first occurred at the CC and CML, and the lignification was not fully completed. PMID:27209741

  4. Distribution of ALA metabolic products in esophageal carcinoma cells using spectrally resolved confocal laser microscopy

    NASA Astrophysics Data System (ADS)

    Smolka, Jozef; Mateasik, Anton

    2006-08-01

    Aminolevulinic acid (ALA) is an efficient substance used in photodynamic therapy (PDT). It is a precursor of light-sensitive products that can selectively accumulate in malignant cells following the altered activity of the heme biosynthetic pathway enzymes in such cells. These products are synthesized in mitochondria and distributed to various cellular structures [1]. The localization of ALA products in subcellular structures depends on their chemical characteristics as well as on the properties of the intracellular environment [2]. Characterization of such properties is possible by means of fluorescent probes like JC-1 and carboxy SNARF-1. However, the emission spectra of these probes are overlapped with spectral pattern of typical ALA product -protoporphyrin IX (PpIX). Spectral overlap of fluorescence signals prevents to clearly separate a distribution of probes from PpIX distribution what can completely mess the applicability of these probes in characterization of cell properties. The spectrally resolved confocal laser microscopy can be used to overcome this problem. In this study, a distribution of ALA metabolic products in relation to the mitochondrial membrane potential and intracellular pH was examined. Human cell lines (KYSE-450, KYSE-70) from esophageal squamous cell carcinoma were used. Cells were incubated with 1mM solution of ALA for four hours. Two fluorescent probes, carboxy SNARF-1 and JC-1 , were used to monitor intracellular pH levels and to determine membrane potential changes, respectively. The samples were scanned by spectrally resolved laser scanning microscope. Spectral linear unmixing method was used to discriminate and separate regions of accumulation of ALA metabolic products of JC-1 and carboxy SNARF-1.

  5. Second Harmonic Generation Confocal Microscopy of Collagen Type I from Rat Tendon Cryosections

    PubMed Central

    Theodossiou, Theodossis A.; Thrasivoulou, Christopher; Ekwobi, Chidi; Becker, David L.

    2006-01-01

    We performed second harmonic generation (SHG) imaging of collagen in rat-tendon cryosections, using femtosecond laser scanning confocal microscopy, both in backscattering and transmission geometries. SHG transmission images of collagen fibers were spatially resolved due to a coherent, directional SHG component. This effect was enhanced with the use of an index-matching fluid (ni = 1.52). The average SHG intensity oscillated with wavelength in the backscattered geometry (isotropic SHG component), whereas the spectral profile was consistent with quasi-phase-matching conditions in transmission geometry (forward propagating, coherent SHG component) around 440 nm (λp = 880 nm). Collagen type I from bovine Achilles tendon was imaged for SHG in the backscattered geometry and its first-order effective nonlinear coefficient was determined (\\documentclass[10pt]{article} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\pagestyle{empty} \\oddsidemargin -1.0in \\begin{document} \\begin{equation*}{\\vert}d_{{\\mathrm{eff}}}{\\vert}\\approx 0.085({\\pm}0.025){\\times}10^{-12}{\\mathrm{mV}}^{-1}\\end{equation*}\\end{document}) by comparison to samples of inorganic materials with known effective nonlinear coefficients (LiNbO3 and LiIO3). The SHG spectral response of collagen type I from bovine Achilles tendon matched that of the rat-tendon cryosections in backscattered geometry. Collagen types I, II, and VI powders (nonfibrous) did not show any detectable SHG, indicating a lack of noncentrosymmetric crystalline structure at the molecular level. The various stages of collagen thermal denaturation were investigated in rat-tendon cryosections using SHG and bright-field imaging. Thermal denaturation resulted in the gradual destruction of the SHG signal. PMID:17130233

  6. Small fiber neuropathy in Parkinson's disease: A clinical, pathological and corneal confocal microscopy study

    PubMed Central

    Kass-Iliyya, Lewis; Javed, Saad; Gosal, David; Kobylecki, Christopher; Marshall, Andrew; Petropoulos, Ioannis N.; Ponirakis, Georgios; Tavakoli, Mitra; Ferdousi, Maryam; Chaudhuri, Kallol Ray; Jeziorska, Maria; Malik, Rayaz A.; Silverdale, Monty A.

    2015-01-01

    Autonomic and somatic denervation is well established in Parkinson's disease (PD). Objectives (1) To determine whether corneal confocal microscopy (CCM) can non-invasively demonstrate small nerve fiber damage in PD. (2) To identify relationships between corneal nerve parameters, intraepidermal nerve fiber density (IENFD) and clinical features of PD. Methods Twenty-six PD patients and 26 controls underwent CCM of both eyes. 24/26 PD patients and 10/26 controls underwent skin biopsies from the dorsa of both feet. PD patients underwent assessment of parasympathetic function [deep breathing heart rate variability (DB-HRV)], autonomic symptoms [scale for outcomes in Parkinson's disease – autonomic symptoms (SCOPA-AUT)], motor symptoms [UPDRS-III “ON”] and cumulative Levodopa dose. Results PD patients had significantly reduced corneal nerve fiber density (CNFD) with increased corneal nerve branch density (CNBD) and corneal nerve fiber length (CNFL) compared to controls. CNBD and CNFL but not CNFD correlated inversely with UPDRS-III and SCOPA-AUT. All CCM parameters correlated strongly with DB-HRV. There was no correlation between CCM parameters and disease duration, cumulative Levodopa dose or pain. IENFD was significantly reduced in PD compared to controls and correlated with CNFD and UPDRS-III. However, unlike CCM measures, IENFD correlated with disease duration and cumulative Levodopa dose but not with autonomic dysfunction. Conclusion CCM identifies corneal nerve fiber pathology, which correlates with autonomic symptoms, parasympathetic deficits and motor scores in patients with PD. IENFD is also reduced and correlates with CNFD and motor symptoms but not parasympathetic deficits, indicating it detects different aspects of peripheral nerve pathology in PD. PMID:26578039

  7. Compressive sensing in reflectance confocal microscopy of skin images: a preliminary comparative study

    NASA Astrophysics Data System (ADS)

    Arias, Fernando X.; Sierra, Heidy; Rajadhyaksha, Milind; Arzuaga, Emmanuel

    2016-03-01

    Compressive Sensing (CS)-based technologies have shown potential to improve the efficiency of acquisition, manipulation, analysis and storage processes on signals and imagery with slight discernible loss in data performance. The CS framework relies on the reconstruction of signals that are presumed sparse in some domain, from a significantly small data collection of linear projections of the signal of interest. As a result, a solution to the underdetermined linear system resulting from this paradigm makes it possible to estimate the original signal with high accuracy. One common approach to solve the linear system is based on methods that minimize the L1-norm. Several fast algorithms have been developed for this purpose. This paper presents a study on the use of CS in high-resolution reflectance confocal microscopy (RCM) images of the skin. RCM offers a cell resolution level similar to that used in histology to identify cellular patterns for diagnosis of skin diseases. However, imaging of large areas (required for effective clinical evaluation) at such high-resolution can turn image capturing, processing and storage processes into a time consuming procedure, which may pose a limitation for use in clinical settings. We present an analysis on the compression ratio that may allow for a simpler capturing approach while reconstructing the required cellular resolution for clinical use. We provide a comparative study in compressive sensing and estimate its effectiveness in terms of compression ratio vs. image reconstruction accuracy. Preliminary results show that by using as little as 25% of the original number of samples, cellular resolution may be reconstructed with high accuracy.

  8. Calcium signalling in individual T-cells measured by confocal microscopy.

    PubMed

    Maltsev, V A; Wolff, B; Hess, J; Werner, G

    1994-09-01

    Laser-scanning confocal microscopy was used in conjunction with a highly fluorescent Ca2+ indicator fluo-3 to visualize real-time alterations in the intracellular Ca2+ concentration ([Ca2+]i) in individual living Jurkat T-cells during the first minutes of activation by phytohaemagglutinin (PHA) at the physiological temperature (37 degrees C). With a delay of 30-120 s, PHA induced a strong [Ca2+]i peak in the micromolar range (1-3 microM). The rise in [Ca2+]i lasted for 1-2 minutes, and was followed by a sustained plateau of elevated [Ca2+]i in the 0.2-0.5 microM range. Some cells (10-20%) responded with additional asynchronous 0.5-1.5 microM peaks during the plateau phase. These oscillations continued for 10-20 minutes. The spans of the peaks ranged from 30 to 100 s, intervals between peaks varied from 60 to 300 s. It was shown that the initial [Ca2+]i peak was associated with Ca2+ mobilisation from internal sources, whereas the plateau was maintained by an influx of Ca2+ from external medium. In K(+)-rich medium or in the presence of quinine, a K+ channel blocker, no secondary response to PHA-activation characterised by an elevated plateau was observed. The data suggest that the Ca2+ influx was dependent on the membrane potential and/or the extracellular K(+)-concentration. Optical sectioning showed that the intracellular Ca2+ distributed almost homogeneously throughout the cell volume both in control and in PHA-stimulated cells including those exhibiting Ca2+ oscillations. This suggests that Ca2+ signals are localized not only in cytoplasm at the cell plasma membrane but can be also transferred directly into the nucleus. PMID:7829128

  9. Toward Automated Analysis of Biofilm Architecture: Bias Caused by Extraneous Confocal Laser Scanning Microscopy Images▿

    PubMed Central

    Merod, Robin T.; Warren, Jennifer E.; McCaslin, Hope; Wuertz, Stefan

    2007-01-01

    An increasing number of studies utilize confocal laser scanning microscopy (CLSM) for in situ visualization of biofilms and rely on the use of image analysis programs to extract quantitative descriptors of architecture. Recently, designed programs have begun incorporating procedures to automatically determine threshold values for three-dimensional CLSM image stacks. We have found that the automated threshold calculation is biased when a stack contains images lacking pixels of biological significance. Consequently, we have created the novel program Auto PHLIP-ML to resolve this bias by iteratively excluding extraneous images based on their area coverage of biomass. A procedure was developed to identify the optimal percent area coverage value used for extraneous image removal (PACVEIR). The optimal PACVEIR was defined to occur when the standard deviation of mean thickness, determined from replicate image stacks, was at a maximum, because it more accurately reflected inherent structural variation. Ten monoculture biofilms of either Ralstonia eutropha JMP228n::gfp or Acinetobacter sp. strain BD413 were tested to verify the routine. All biofilms exhibited an optimal PACVEIR between 0 and 1%. Prior to the exclusion of extraneous images, JMP228n::gfp appeared to develop more homogeneous biofilms than BD413. However, after the removal of extraneous images, JMP228n::gfp biofilms were found to form more heterogeneous biofilms. Similarly, JMP228n::gfp biofilms grown on glass surfaces vis-à-vis polyethylene membranes produced significantly different architectures after extraneous images had been removed but not when such images were included in threshold calculations. This study shows that the failure to remove extraneous images skewed a seemingly objective analysis of biofilm architecture and significantly altered statistically derived conclusions. PMID:17545329

  10. Usefulness of confocal microscopy in distinguishing between basal cell carcinoma and intradermal melanocytic nevus on the face.

    PubMed

    Gamo, R; Floristan, U; Pampín, A; Caro, D; Pinedo, F; López-Estebaranz, J L

    2015-10-01

    The clinical distinction between basal cell carcinoma (BCC) and intradermal melanocytic nevus lesions on the face can be difficult, particularly in young patients or patients with multiple nevi. Dermoscopy is a useful tool for analyzing characteristic dermoscopic features of BCC, such as cartwheel structures, maple leaf-like areas, blue-gray nests and dots, and ulceration. It also reveals arborizing telangiectatic vessels and prominent curved vessels, which are typical of BCC, and comma vessels, which are typical of intradermal melanocytic nevi. It is, however, not always easy to distinguish between these 2 conditions, even when dermoscopy is used. We describe 2 facial lesions that posed a clinical and dermoscopic challenge in two 38-year-old patients; confocal microscopy showed separation between tumor nests and stroma and polarized nuclei, which are confocal microscopy features of basal cell carcinoma. PMID:26093995

  11. Dermoscopy, confocal laser microscopy, and hi-tech evaluation of vascular skin lesions: diagnostic and therapeutic perspectives.

    PubMed

    Grazzini, Marta; Stanganelli, Ignazio; Rossari, Susanna; Gori, Alessia; Oranges, Teresa; Longo, Anna Sara; Lotti, Torello; Bencini, Pier Luca; De Giorgi, Vincenzo

    2012-01-01

    Vascular skin lesions comprise a wide and heterogeneous group of malformations and tumors that can be correctly diagnosed based on natural history and physical examination. However, considering the high incidence of such lesions, a great number of them can be misdiagnosed. In addition, it is not so rare that an aggressive amelanotic melanoma can be misdiagnosed as a vascular lesion. In this regard, dermoscopy and confocal laser microscopy examination can play a central role in increasing the specificity of the diagnosis of such lesions. In fact, the superiority of these tools over clinical examination has encouraged dermatologists to adopt these devices for routine clinical practice, with a progressive spread of their use. In this review, we will go through the dermoscopic and the confocal laser microscopy of diagnosis of most frequent vascular lesions (i.e., hemangiomas angiokeratoma, pyogenic granuloma, angiosarcoma) taking into particular consideration the differential diagnosis with amelanotic melanoma. PMID:22950556

  12. Confocal laser scanning microscopy measurement of the morphology of vanadium pentoxide nanorods grown by electron beam irradiation or thermal oxidation

    NASA Astrophysics Data System (ADS)

    Kang, Manil; Hong, Donghyuk; Kim, Taesung; Chu, Minwoo; Kim, Sok Won

    2013-01-01

    In order to observe the morphology of nanostructures at the submicroscale, we use a confocal laser scanning (CLS) microscope built in our laboratory. The theoretical resolution of the hand-made CLS microscope is 150 nm and the performance of the microscope is evaluated by observing a USAF target. Vanadium pentoxide nanorods grown by electron beam irradiation and thermal oxidation methods are used as nanostructures and the morphologies of the nanorods observed by confocal laser scanning microscopy (CLSM) are compared with those obtained by scanning electron microscopy. The magnification and resolution of the CLSM were estimated to be approximately 1500 and 800 nm, respectively. From the results, we confirm that the CLSM can be used to measure nanostructures at the sub-micro-scale without a preconditioning process.

  13. Confocal laser scanning microscopy of liesegang rings in odontogenic cysts: analysis of three-dimensional image reconstruction.

    PubMed

    Scivetti, Michele; Lucchese, Alberta; Crincoli, Vito; Pilolli, Giovanni Pietro; Favia, Gianfranco

    2009-01-01

    Liesegang rings are concentric noncellular lamellar structures, occasionally found in inflammatory tissues. They have been confused with various parasites, algas, calcification, and psammoma bodies. The authors examined Liesegang rings from oral inflammatory cysts by both optical and confocal laser scanning microscopy, and perfomed a three-dimensional reconstruction. These investigations indicate that Liesegang rings are composed of multiple birefringent concentric rings, resulting from a progressive deposition of organic substances, with an unclear pathogenesis. PMID:19274580

  14. RELIABILITY OF CONFOCAL MICROSCOPY SPECTRAL IMAGING SYSTEMS: USE OF MULTISPECTRAL BEADS

    EPA Science Inventory

    Background: There is a need for a standardized, impartial calibration, and validation protocol on confocal spectral imaging (CSI) microscope systems. To achieve this goal, it is necessary to have testing tools to provide a reproducible way to evaluate instrument performance. ...

  15. Confocal Optical Imaging Systems and Their Applications in Microscopy and Range Sensing

    NASA Astrophysics Data System (ADS)

    Xiao, Guoqing

    1990-11-01

    Confocal optical imaging systems have been the subject of much recent studies. They have found their applications in biomedical imaging and integrated circuit metrology. Confocal systems differ from the standard optical imaging systems in their use of point illumination and point detection, gaining an improved transverse resolution and superior depth resolution. The depth discrimination capability allows confocal imaging systems to optically cross section translucent objects or to image three-dimensional structures. The improvement in transverse resolution permits them to image structures with more detail and better contrast. This thesis has focused on the design and implementation of the confocal optical imaging systems and their applications. A nonparaxial confocal optical imaging theory is developed based on the scalar Rayleigh-Sommerfeld diffraction theory and Sine Condition without the normally-used thin-lens approximation. Two confocal optical range sensors and a Real-time Confocal Scanning Optical Microscope (RSOM) are demonstrated. It is shown that our RSOM has tremendous advantages over other confocal microscopes both in scanning speed and in the ease of use and alignment. The dependence of the imaging characteristics on the pinhole size and the lens is fully discussed. Experimental measurements are compared with the theoretical calculations. Good agreement is obtained. Also demonstrated in this thesis are numerous applications of the RSOM in integrated circuit metrology and biomedical imaging. Deep trenches as narrow as 1 μm and deep as 6 mu m are observed with the RSOM. The RSOM is not only able to measure the trench depth but, is also able to inspect individual defects inside the trench. Linewidth measurement is also investigated. The RSOM is shown to have an excellent optical cross-sectioning capability. Sectioned images of bones, teeth, and the unprepared cornea of a rabbit eye have been observed. Well-defined sectioned images have been obtained

  16. Nanoscale residual stress-field mappingaround nanoindents in SiCby IR s-SNOM and confocal Raman microscopy.

    PubMed

    Gigler, Alexander M; Huber, Andreas J; Bauer, Michael; Ziegler, Alexander; Hillenbrand, Rainer; Stark, Robert W

    2009-12-01

    We map a nanoindent in a silicon carbide (SiC) crystal by infrared (IR) scattering-type scanning near-field optical microscopy (s-SNOM) and confocal Raman microscopy and interpret the resulting images in terms of local residual stress-fields. By comparing near-field IR and confocal Raman images, we find that the stress-induced shifts of the longitudinal optical phonon-frequencies (LO) and the related shift of the phonon-polariton near-field resonance give rise to Raman and s-SNOM image contrasts, respectively. We apply single-frequency IR s-SNOM for nanoscale resolved imaging of local stress-fields and confocal Raman microscopy to obtain the complete spectral information about stress-induced shifts of the phonon frequencies at diffraction limited spatial resolution. The spatial extension of the local stress-field around the nanoindent agrees well between both techniques. Our results demonstrate that both methods ideally complement each other, allowing for the detailed analysis of stress-fields at e.g. material and grain boundaries, in Micro-Electro-Mechanical-Systems (MEMS), or in engineered nanostructures. PMID:20052158

  17. Line-scanning confocal microscopy for high-resolution imaging of upconverting rare-earth-based contrast agents

    NASA Astrophysics Data System (ADS)

    Higgins, Laura M.; Zevon, Margot; Ganapathy, Vidya; Sheng, Yang; Tan, Mei Chee; Riman, Richard E.; Roth, Charles M.; Moghe, Prabhas V.; Pierce, Mark C.

    2015-11-01

    Rare-earth (RE) doped nanocomposites emit visible luminescence when illuminated with continuous wave near-infrared light, making them appealing candidates for use as contrast agents in biomedical imaging. However, the emission lifetime of these materials is much longer than the pixel dwell times used in scanning intravital microscopy. To overcome this limitation, we have developed a line-scanning confocal microscope for high-resolution, optically sectioned imaging of samples labeled with RE-based nanomaterials. Instrument performance is quantified using calibrated test objects. NaYF4:Er,Yb nanocomposites are imaged in vitro, and in ex vivo tissue specimens, with direct comparison to point-scanning confocal microscopy. We demonstrate that the extended pixel dwell time of line-scanning confocal microscopy enables subcellular-level imaging of these nanomaterials while maintaining optical sectioning. The line-scanning approach thus enables microscopic imaging of this emerging class of contrast agents for preclinical studies, with the potential to be adapted for real-time in vivo imaging in the clinic.

  18. Line-scanning confocal microscopy for high-resolution imaging of upconverting rare-earth-based contrast agents.

    PubMed

    Higgins, Laura M; Zevon, Margot; Ganapathy, Vidya; Sheng, Yang; Tan, Mei Chee; Riman, Richard E; Roth, Charles M; Moghe, Prabhas V; Pierce, Mark C

    2015-11-01

    Rare-earth (RE) doped nanocomposites emit visible luminescence when illuminated with continuous wave near-infrared light, making them appealing candidates for use as contrast agents in biomedical imaging. However, the emission lifetime of these materials is much longer than the pixel dwell times used in scanning intravital microscopy. To overcome this limitation, we have developed a line-scanning confocal microscope for high-resolution, optically sectioned imaging of samples labeled with RE-based nanomaterials. Instrument performance is quantified using calibrated test objects. NaYF4 : Er,Yb nanocomposites are imaged in vitro, and in ex vivo tissue specimens, with direct comparison to point-scanning confocal microscopy. We demonstrate that the extended pixel dwell time of line-scanning confocal microscopy enables subcellular-level imaging of these nanomaterials while maintaining optical sectioning. The line-scanning approach thus enables microscopic imaging of this emerging class of contrast agents for preclinical studies, with the potential to be adapted for real-time in vivo imaging in the clinic. PMID:26603495

  19. Advanced chemical imaging and comparison of human and porcine hair follicles for drug delivery by confocal Raman microscopy

    NASA Astrophysics Data System (ADS)

    Franzen, Lutz; Mathes, Christiane; Hansen, Steffi; Windbergs, Maike

    2013-06-01

    Hair follicles have recently gained a lot of interest for dermal drug delivery. They provide facilitated penetration into the skin and a high potential to serve as a drug depot. In this area of research, excised pig ear is a widely accepted in vitro model to evaluate penetration of drug delivery into hair follicles. However, a comparison of human and porcine follicles in terms of chemical composition has not been performed so far. In this study, we applied confocal Raman microscopy as a chemically selective imaging technique to compare human and porcine follicle composition and to visualize component distribution within follicle cross-sections. Based on the evaluation of human and porcine Raman spectra optical similarity for both species was successfully confirmed. Furthermore, cyanoacrylate skin surface biopsies, which are generally used to determine the extent of follicular penetration, were imaged by a novel complementary analytical approach combining confocal Raman microscopy and optical profilometry. This all-encompassing analysis allows investigation of intactness and component distribution of the excised hair bulb in three dimensions. Confocal Raman microscopy shows a high potential as a noninvasive and chemically selective technique for the analysis of trans-follicular drug delivery.

  20. Detection of living Sarcoptes scabiei larvae by reflectance mode confocal microscopy in the skin of a patient with crusted scabies

    NASA Astrophysics Data System (ADS)

    Levi, Assi; Mumcuoglu, Kosta Y.; Ingber, Arieh; Enk, Claes D.

    2012-06-01

    Scabies is an intensely pruritic disorder induced by a delayed type hypersensitivity reaction to infestation of the skin by the mite Sarcoptes scabiei. The diagnosis of scabies is established clinically and confirmed by identifying mites or eggs by microscopic examination of scrapings from the skin or by surface microscopy using a dermatoscope. Reflectance-mode confocal microscopy is a novel technique used for noninvasive imaging of skin structures and lesions at a resolution compatible to that of conventional histology. Recently, the technique was employed for the confirmation of the clinical diagnosis of scabies. We demonstrate the first ever documentation of a larva moving freely inside the skin of a patient infected with scabies.

  1. 3D Imaging of Porous Media Using Laser Scanning Confocal Microscopy with Application to Microscale Transport Processes

    SciTech Connect

    Fredrich, J.T.

    1999-02-10

    We present advances in the application of laser scanning confocal microscopy (LSCM) to image, reconstruct, and characterize statistically the microgeometry of porous geologic and engineering materials. We discuss technical and practical aspects of this imaging technique, including both its advantages and limitations. Confocal imaging can be used to optically section a material, with sub-micron resolution possible in the lateral and axial planes. The resultant volumetric image data, consisting of fluorescence intensities for typically {approximately}50 million voxels in XYZ space, can be used to reconstruct the three-dimensional structure of the two-phase medium. We present several examples of this application, including studying pore geometry in sandstone, characterizing brittle failure processes in low-porosity rock deformed under triaxial loading conditions in the laboratory, and analyzing the microstructure of porous ceramic insulations. We then describe approaches to extract statistical microgeometric descriptions from volumetric image data, and present results derived from confocal volumetric data sets. Finally, we develop the use of confocal image data to automatically generate a three-dimensional mesh for numerical pore-scale flow simulations.

  2. Enhanced quantitative confocal microscopy and its application for the measurement of tympanic membrane thickness

    NASA Astrophysics Data System (ADS)

    Kuypers, Liesbeth

    2005-11-01

    This work shows that confocal microscopy allows a quantitative study of delicate 3D-biotissue in fresh condition, thus avoiding histological preparation processes. The developed procedure results in exact and accurate thickness data for mum-sized objects with a measuring error of less than 1mum. It is, however, necessary to take into account the effect of focal shift in the case of refractive index mismatch to obtain such precise data. The use of the proposed method is advised instead of the use of a paraxial approximation for the axial scale correction because the method improves measurement precision by a factor of four. The axial scaling correction factors obtained in this work show that for most practical situations the correction cannot be ignored when one wants to obtain precise quantitative data. The thickness correction method can also be used to determine with high accuracy the index of refraction of biological tissue. The thickness measurement method was applied to fresh, untreated tympanic membranes of the gerbil, the cat and the human. Thickness had to be measured at many points as it differs strongly across the membrane. Similar thickness distributions were found in all pars tensas measured even across the species studied: (1) a very thin, central region with a rather constant thickness, curving as a horse shoe upwards around the manubrium (thickness: gerbil: about 7mum, cat: about 10mum, human: large inter-specimen variation: 40mum-120mum), (2) a thinnest zone at the inferior side, (3) a thicker zone at the supero-anterior side, (4) superior to the umbo, an anterior region thicker than the posterior region, (5) maximal thicknesses in a very small region near the entire manubrium and the entire annular periphery. The pars flaccida is found to be thicker than the pars tensa. It shows no central homogeneous zone: the thickness varies irregularly and very rapidly over short distances. Arbitrarily spaced bumps and notches are present over the entire pars

  3. Clinical features and in vivo confocal microscopy assessment in 12 patients with ocular cicatricial pemphigoid

    PubMed Central

    Long, Qin; Zuo, Ya-Gang; Yang, Xue; Gao, Ting-Ting; Liu, Jie; Li, Ying

    2016-01-01

    AIM To describe the clinical features and microstructural characteristics assessed by in vivo confocal microscopy (IVCM) in patients with ocular cicatricial pemphigoid (OCP). METHODS A descriptive, uncontrolled case series study. Patients diagnosed with OCP were examined by clinical history, slit-lamp biomicroscopy features and IVCM images. The results of direct immunofluorescence (DIF) biopsies and indirect immunofluorescence (IIF) were also recorded. Local and systemic immunosuppressive therapy were administered and adjusted according to response. RESULTS A total of 12 consecutive OCP patients (7 male, 5 female; mean age 60.42±10.39y) were recruited. All patients exhibited bilateral progressive conjunctival scarring and recurrent chronic conjunctivitis was the most frequent clinical pattern. The mean duration of symptoms prior to diagnosis of OCP was 2.95±2.85y (range: 5mo to 10y). The Foster classification varied from stage I to IV and 20 eyes (83%) were within or greater than Foster stage III on presentation. Two of the 12 patients (17%) demonstrated positive DIF; 3 of the 12 (25%) patients reported positive IIF. The mean duration of the follow-up period was 20.17±11.88mo (range: 6 to 48mo). IVCM showed variable degrees of abnormality in the conjuctiva-cornea and conjuctival scarring was detected in all the involved eyes. Corneal stromal cell activation and dendritic cell infiltration presented as ocular surface inflammation, ocular surface keratinization along with the destroyed Vogt palisades was noted in eyes with potential limbal stem cell deficiency. After treatment, remission of ocular surface inflammation was achieved in all the patients, 18 eyes (75%) remained stable, 6 eyes (25%) had recurrent conjunctivitis and cicatrization in 2 eyes (8%) was progressing. CONCLUSION As an autoimmune disease, OCP manifests as variable degrees of clinical and laboratory abnormalities with both local and systemic immunosuppressive treatment playing important roles

  4. Mapping the lignin distribution in pretreated sugarcane bagasse by confocal and fluorescence lifetime imaging microscopy

    PubMed Central

    2013-01-01

    Background Delignification pretreatments of biomass and methods to assess their efficacy are crucial for biomass-to-biofuels research and technology. Here, we applied confocal and fluorescence lifetime imaging microscopy (FLIM) using one- and two-photon excitation to map the lignin distribution within bagasse fibers pretreated with acid and alkali. The evaluated spectra and decay times are correlated with previously calculated lignin fractions. We have also investigated the influence of the pretreatment on the lignin distribution in the cell wall by analyzing the changes in the fluorescence characteristics using two-photon excitation. Eucalyptus fibers were also analyzed for comparison. Results Fluorescence spectra and variations of the decay time correlate well with the delignification yield and the lignin distribution. The decay dependences are considered two-exponential, one with a rapid (τ1) and the other with a slow (τ2) decay time. The fastest decay is associated to concentrated lignin in the bagasse and has a low sensitivity to the treatment. The fluorescence decay time became longer with the increase of the alkali concentration used in the treatment, which corresponds to lignin emission in a less concentrated environment. In addition, the two-photon fluorescence spectrum is very sensitive to lignin content and accumulation in the cell wall, broadening with the acid pretreatment and narrowing with the alkali one. Heterogeneity of the pretreated cell wall was observed. Conclusions Our results reveal lignin domains with different concentration levels. The acid pretreatment caused a disorder in the arrangement of lignin and its accumulation in the external border of the cell wall. The alkali pretreatment efficiently removed lignin from the middle of the bagasse fibers, but was less effective in its removal from their surfaces. Our results evidenced a strong correlation between the decay times of the lignin fluorescence and its distribution within the cell

  5. 3D Quantitative Confocal Laser Microscopy of Ilmenite Volume Distribution in Alpe Arami Olivine

    NASA Astrophysics Data System (ADS)

    Bozhilov, K. N.

    2001-12-01

    The deep origin of the Alpe Arami garnet lherzolite massif in the Swiss Alps proposed by Dobrzhinetskaya et al. (Science, 1996) has been a focus of heated debate. One of the lines of evidence supporting an exhumation from more than 200 km depth includes the abundance, distribution, and orientation of magnesian ilmenite rods in the oldest generation of olivine. This argument has been disputed in terms of the abundance of ilmenite and consequently the maximum TiO2 content in the discussed olivine. In order to address this issue, we have directly measured the volume fraction of ilmenite of the oldest generation of olivine by applying confocal laser scanning microscopy (CLSM). CLSM is a method which allows for three-dimensional imaging and quantitative volume determination by optical sectioning of the objects. The images for 3D reconstruction and measurements were acquired from petrographic thin sections in reflected laser light with 488 nm wavelength. Measurements of more than 80 olivine grains in six thin sections of our material yielded an average volume fraction of 0.31% ilmenite in the oldest generation of olivine from Alpe Arami. This translates into 0.23 wt.% TiO2 in olivine with error in determination of ±0.097 wt.%, a value significantly different from that of 0.02 to 0.03 wt.% TiO2 determined by Hacker et al. (Science, 1997) by a broad-beam microanalysis technique. During the complex geological history of the Alpe Arami massif, several events of metamorphism are recorded which all could have caused increased mobility of the mineral components. Evidence for loss of TiO2 from olivine is the tendency for high densities of ilmenite to be restricted to cores of old grains, the complete absence of ilmenite inclusions from the younger, recrystallized, generation of olivine, and reduction in ilmenite size and abundance in more serpentinized specimens. These observations suggest that only olivine grains with the highest concentrations of ilmenite are close to the

  6. Hybrid detectors improved time-lapse confocal microscopy of PML and 53BP1 nuclear body colocalization in DNA lesions.

    PubMed

    Foltánková, Veronika; Matula, Pavel; Sorokin, Dmitry; Kozubek, Stanislav; Bártová, Eva

    2013-04-01

    We used hybrid detectors (HyDs) to monitor the trajectories and interactions of promyelocytic leukemia (GFP-PML) nuclear bodies (NBs) and mCherry-53BP1-positive DNA lesions. 53BP1 protein accumulates in NBs that occur spontaneously in the genome or in γ-irradiation-induced foci. When we induced local DNA damage by ultraviolet irradiation, we also observed accumulation of 53BP1 proteins into discrete bodies, instead of the expected dispersed pattern. In comparison with photomultiplier tubes, which are used for standard analysis by confocal laser scanning microscopy, HyDs significantly eliminated photobleaching of GFP and mCherry fluorochromes during image acquisition. The low laser intensities used for HyD-based confocal analysis enabled us to observe NBs for the longer time periods, necessary for studies of the trajectories and interactions of PML and 53BP1 NBs. To further characterize protein interactions, we used resonance scanning and a novel bioinformatics approach to register and analyze the movements of individual PML and 53BP1 NBs. The combination of improved HyD-based confocal microscopy with a tailored bioinformatics approach enabled us to reveal damage-specific properties of PML and 53BP1 NBs. PMID:23410959

  7. Reflectance confocal microscopy of oral epithelial tissue using an electrically tunable lens

    NASA Astrophysics Data System (ADS)

    Jabbour, Joey M.; Malik, Bilal H.; Cuenca, Rodrigo; Cheng, Shuna; Jo, Javier A.; Cheng, Yi-Shing L.; Wright, John M.; Maitland, Kristen C.

    2014-02-01

    We present the use of a commercially available electrically tunable lens to achieve axial scanning in a reflectance confocal microscope. Over a 255 μm axial scan range, the lateral and axial resolutions varied from 1-2 μm and 4-14 μm, respectively, dependent on the variable focal length of the tunable lens. Confocal imaging was performed on normal human biopsies from the oral cavity ex vivo. Sub-cellular morphologic features were seen throughout the depth of the epithelium while axially scanning using the focus tunable lens.

  8. Cytogenetic Characterization of the TM4 Mouse Sertoli Cell Line. II. Chromosome Microdissection, FISH, Scanning Electron Microscopy, and Confocal Laser Scanning Microscopy.

    PubMed

    Schmid, Michael; Guttenbach, Martina; Steinlein, Claus; Wanner, Gerhard; Houben, Andreas

    2015-01-01

    The chromosomes and interphase cell nuclei of the permanent mouse Sertoli cell line TM4 were examined by chromosome microdissection, FISH, scanning electron microscopy, and confocal laser scanning microscopy. The already known marker chromosomes m1-m5 were confirmed, and 2 new large marker chromosomes m6 and m7 were characterized. The minute heterochromatic marker chromosomes m4 and m5 were microdissected and their DNA amplified by DOP-PCR. FISH of this DNA probe on TM4 metaphase chromosomes demonstrated that the m4 and m5 marker chromosomes have derived from the centromeric regions of normal telocentric mouse chromosomes. Ectopic pairing of the m4 and m5 marker chromosomes with the centromeric region of any of the other chromosomes (centromeric associations) was apparent in ∼60% of the metaphases. Scanning electron microscopy revealed DNA-protein bridges connecting the centromeric regions of normal chromosomes and the associated m4 and m5 marker chromosomes. Interphase cell nuclei of TM4 Sertoli cells did not exhibit the characteristic morphology of Sertoli cells in the testes of adult mice as shown by fluorescence microscopy and confocal laser scanning microscopy. PMID:26900862

  9. Resolution and signal-to-noise ratio improvement in confocal fluorescence microscopy using array detection and maximum-likelihood processing

    NASA Astrophysics Data System (ADS)

    Kakade, Rohan; Walker, John G.; Phillips, Andrew J.

    2016-08-01

    Confocal fluorescence microscopy (CFM) is widely used in biological sciences because of its enhanced 3D resolution that allows image sectioning and removal of out-of-focus blur. This is achieved by rejection of the light outside a detection pinhole in a plane confocal with the illuminated object. In this paper, an alternative detection arrangement is examined in which the entire detection/image plane is recorded using an array detector rather than a pinhole detector. Using this recorded data an attempt is then made to recover the object from the whole set of recorded photon array data; in this paper maximum-likelihood estimation has been applied. The recovered object estimates are shown (through computer simulation) to have good resolution, image sectioning and signal-to-noise ratio compared with conventional pinhole CFM images.

  10. Confocal Microscopy and Flow Cytometry System Performance: Assessment of QA Parameters that affect data Quanitification

    EPA Science Inventory

    Flow and image cytometers can provide useful quantitative fluorescence data. We have devised QA tests to be used on both a flow cytometer and a confocal microscope to assure that the data is accurate, reproducible and precise. Flow Cytometry: We have provided two simple perform...

  11. Novel Inter-Subunit Contacts in Barley Stripe Mosaic Virus Revealed by Cryo-Electron Microscopy

    PubMed Central

    Clare, Daniel Kofi; Pechnikova, Eugenia V.; Skurat, Eugene V.; Makarov, Valentin V.; Sokolova, Olga S.; Solovyev, Andrey G.; Orlova, Elena V.

    2015-01-01

    Summary Barley stripe mosaic virus (BSMV, genus Hordeivirus) is a rod-shaped single-stranded RNA virus similar to viruses of the structurally characterized and well-studied genus Tobamovirus. Here we report the first high-resolution structure of BSMV at 4.1 Å obtained by cryo-electron microscopy. We discovered that BSMV forms two types of virion that differ in the number of coat protein (CP) subunits per turn and interactions between the CP subunits. While BSMV and tobacco mosaic virus CP subunits have a similar fold and interact with RNA using conserved residues, the axial contacts between the CP of these two viral groups are considerably different. BSMV CP subunits lack substantial axial contacts and are held together by a previously unobserved lateral contact formed at the virion surface via an interacting loop, which protrudes from the CP hydrophobic core to the adjacent CP subunit. These data provide an insight into diversity in structural organization of helical viruses. PMID:26278173

  12. Atomic force microscopy investigation of Turnip Yellow Mosaic Virus capsid disruption and RNA extrusion

    SciTech Connect

    Kuznetsov, Yu. G.; McPherson, Alexander . E-mail: amcphers@uci.edu

    2006-09-01

    Turnip Yellow Mosaic Virus (TYMV) was subjected to a variety of procedures which disrupted the protein capsids and produced exposure of the ssRNA genome. The results of the treatments were visualized by atomic force microscopy (AFM). Both in situ and ex situ freeze-thawing produced RNA emission, though at low efficiency. The RNA lost from such particles was evident, in some cases in the process of exiting the virions. More severe disruption of TYMV and extrusion of intact RNA onto the substrate were produced by drying the virus and rehydrating with neutral buffer. Similar products were also obtained by heating TYMV to 70-75 deg. C and by exposure to alkaline pH. Experiments showed the nucleic acid to have an elaborate secondary structure distributed linearly along its length.

  13. Visualising fouling of a chromatographic matrix using confocal scanning laser microscopy.

    PubMed

    Siu, Sun Chau; Boushaba, Rihab; Topoyassakul, Vithaya; Graham, Alex; Choudhury, Sorwar; Moss, Guy; Titchener-Hooker, Nigel J

    2006-11-01

    Confocal scanning laser microscopy (CSLM) was used to visualise the spatial location of foulants during the fouling of Q Sepharose FF matrix in finite batch experiments and for examining the subsequent effectiveness of clean-in-place (CIP) treatments in cleaning the heavily fouled beads. Beads were severely fouled with partially clarified E. coli homogenate by contacting the beads with the foulant for contact times of 5 min, 1 or 12 h. The use of two different fluorescent dyes, PicoGreen and Cy5.5, for labelling genomic PicoGreen-labelled dsDNA and protein respectively, allowed the direct observation of the chromatographic beads. The extent of fouling was assessed by measuring the subsequent adsorption of Cy5.5-labelled BSA to the beads. Control studies established that the labelling of BSA did not affect significantly the protein properties. In the control case of contacting the unfouled matrix with Cy5.5-labelled BSA, protein was able to penetrate the entire matrix volume. After fouling, Cy5.5-labelled BSA was unable to penetrate the bead but only to bind near the bead surface where it slowly displaced PicoGreen-conjugated dsDNA, which bound only at the exterior of the beads. Labelled host cell proteins bound throughout the bead interior but considerably less at the core; suggesting that other species might have occupied that space. The gross levels of fouling achieved drastically reduced the binding capacity and maximum Cy5.5-labelled BSA uptake rate. The capacity of the resin was reduced by 2.5-fold when incubated with foulant for up to 1 h. However, when the resin was fouled for a prolonged time of 12 h a further sixfold decrease in capacity was seen. The uptake rate of Cy5.5-labelled BSA decreased with increased fouling time of the resin. Incubating the fouled beads in 1 M NaCl dissociated PicoGreen-labelled dsDNA from the bead exterior within 15 min of incubation but proved ineffective in removing all the foulant protein. Cy5.5-labelled BSA was still unable

  14. Detailed three-dimensional visualization of resilin in the exoskeleton of arthropods using confocal laser scanning microscopy.

    PubMed

    Michels, J; Gorb, S N

    2012-01-01

    Resilin is a rubber-like protein found in the exoskeleton of arthropods. It often contributes large proportions to the material of certain structures in movement systems. Accordingly, the knowledge of the presence and distribution of resilin is essential for the understanding of the functional morphology of these systems. Because of its specific autofluorescence, resilin can be effectively visualized using fluorescence microscopy. However, the respective excitation maximum is in the UV range, which is not covered by the lasers available in most of the modern commercial confocal laser scanning microscopes. The goal of this study was to test the potential of confocal laser scanning microscopy (CLSM) in combination with a 405 nm laser to visualize and analyse the presence and distribution of resilin in arthropod exoskeletons. The results clearly show that all resilin-dominated structures, which were visualized successfully using wide-field fluorescence microscopy (WFM) and a 'classical' UV excitation, could also be visualized efficiently with the proposed CLSM method. Furthermore, with the application of additional laser lines CLSM turned out to be very appropriate for studying differences in the material composition within arthropod exoskeletons in great detail. As CLSM has several advantages over WFM with respect to detailed morphological imaging, the application of the proposed CLSM method may reveal new information about the micromorphology and material composition of resilin-dominated exoskeleton structures leading to new insights into the functional morphology and biomechanics of arthropods. PMID:22142031

  15. Multiplex fluorescence in situ hybridization (M-FISH) and confocal laser scanning microscopy (CLSM) to analyze multispecies oral biofilms.

    PubMed

    Karygianni, Lamprini; Hellwig, Elmar; Al-Ahmad, Ali

    2014-01-01

    Multiplex fluorescence in situ hybridization (M-FISH) constitutes a favorable microbiological method for the analysis of spatial distribution of highly variable phenotypes found in multispecies oral biofilms. The combined use of confocal laser scanning microscopy (CLSM) produces high-resolution three-dimensional (3D) images of individual bacteria in their natural environment. Here, we describe the application of M-FISH on early (Streptococcus spp., Actinomyces naeslundii) and late colonizers (Fusobacterium nucleatum, Veillonella spp.) of in situ-formed oral biofilms, the acquisition of CLSM images, as well as the qualitative and quantitative analysis of these digitally obtained and processed images. PMID:24664826

  16. Study of hydroxyl carbonate apatite formation on bioactive glass coated dental ceramics by confocal laser scanning microscopy (CLSM)

    NASA Astrophysics Data System (ADS)

    Stanciu, G. A.; Savu, B.; Sandulescu, I.; Paraskevopoulos, K.; Koidis, P.

    2007-03-01

    Some dental ceramics were coated with a bioactive glass and resulted the formation of a stable and well bonded with the ceramic substrate thin layer. After immersion in a solution with ion concentrations similar to those of human blood plasma the development of hydroxy carbonate apatite layer on the surface of bioactive glass may be observed. The objective of this study was to investigate structural surface changes of bioactive glass, after exposure in a simulated body fluid for a different number of days. The roughness and topography of the hydroxyapatite surface were investigated by Confocal Scanning Laser Microscopy. The chemical composition was analyzed by Energy Dispersive Spectroscopy measurements.

  17. Combined reflectance confocal microscopy-optical coherence tomography for delineation of basal cell carcinoma margins: an ex vivo study

    NASA Astrophysics Data System (ADS)

    Iftimia, Nicusor; Peterson, Gary; Chang, Ernest W.; Maguluri, Gopi; Fox, William; Rajadhyaksha, Milind

    2016-01-01

    We present a combined reflectance confocal microscopy (RCM) and optical coherence tomography (OCT) approach, integrated within a single optical layout, for diagnosis of basal cell carcinomas (BCCs) and delineation of margins. While RCM imaging detects BCC presence (diagnoses) and its lateral spreading (margins) with measured resolution of ˜1 μm, OCT imaging delineates BCC depth spreading (margins) with resolution of ˜7 μm. When delineating margins in 20 specimens of superficial and nodular BCCs, depth could be reliably determined down to ˜600 μm, and agreement with histology was within about ±50 μm.

  18. 3D image restoration for confocal microscopy: toward a wavelet deconvolution for the study of complex biological structures

    NASA Astrophysics Data System (ADS)

    Boutet de Monvel, Jacques; Le Calvez, Sophie; Ulfendahl, Mats

    2000-05-01

    Image restoration algorithms provide efficient tools for recovering part of the information lost in the imaging process of a microscope. We describe recent progress in the application of deconvolution to confocal microscopy. The point spread function of a Biorad-MRC1024 confocal microscope was measured under various imaging conditions, and used to process 3D-confocal images acquired in an intact preparation of the inner ear developed at Karolinska Institutet. Using these experiments we investigate the application of denoising methods based on wavelet analysis as a natural regularization of the deconvolution process. Within the Bayesian approach to image restoration, we compare wavelet denoising with the use of a maximum entropy constraint as another natural regularization method. Numerical experiments performed with test images show a clear advantage of the wavelet denoising approach, allowing to `cool down' the image with respect to the signal, while suppressing much of the fine-scale artifacts appearing during deconvolution due to the presence of noise, incomplete knowledge of the point spread function, or undersampling problems. We further describe a natural development of this approach, which consists of performing the Bayesian inference directly in the wavelet domain.

  19. Concurrent Reflectance Confocal Microscopy and Laser Doppler Flowmetry to Improve Skin Cancer Imaging: A Monte Carlo Model and Experimental Validation.

    PubMed

    Mowla, Alireza; Taimre, Thomas; Lim, Yah Leng; Bertling, Karl; Wilson, Stephen J; Prow, Tarl W; Soyer, H Peter; Rakić, Aleksandar D

    2016-01-01

    Optical interrogation of suspicious skin lesions is standard care in the management of skin cancer worldwide. Morphological and functional markers of malignancy are often combined to improve expert human diagnostic power. We propose the evaluation of the combination of two independent optical biomarkers of skin tumours concurrently. The morphological modality of reflectance confocal microscopy (RCM) is combined with the functional modality of laser Doppler flowmetry, which is capable of quantifying tissue perfusion. To realize the idea, we propose laser feedback interferometry as an implementation of RCM, which is able to detect the Doppler signal in addition to the confocal reflectance signal. Based on the proposed technique, we study numerical models of skin tissue incorporating two optical biomarkers of malignancy: (i) abnormal red blood cell velocities and concentrations and (ii) anomalous optical properties manifested through tissue confocal reflectance, using Monte Carlo simulation. We also conduct a laboratory experiment on a microfluidic channel containing a dynamic turbid medium, to validate the efficacy of the technique. We quantify the performance of the technique by examining a signal to background ratio (SBR) in both the numerical and experimental models, and it is shown that both simulated and experimental SBRs improve consistently using this technique. This work indicates the feasibility of an optical instrument, which may have a role in enhanced imaging of skin malignancies. PMID:27598157

  20. Application of regularized Richardson-Lucy algorithm for deconvolution of confocal microscopy images.

    PubMed

    Laasmaa, M; Vendelin, M; Peterson, P

    2011-08-01

    Although confocal microscopes have considerably smaller contribution of out-of-focus light than widefield microscopes, the confocal images can still be enhanced mathematically if the optical and data acquisition effects are accounted for. For that, several deconvolution algorithms have been proposed. As a practical solution, maximum-likelihood algorithms with regularization have been used. However, the choice of regularization parameters is often unknown although it has considerable effect on the result of deconvolution process. The aims of this work were: to find good estimates of deconvolution parameters; and to develop an open source software package that would allow testing different deconvolution algorithms and that would be easy to use in practice. Here, Richardson-Lucy algorithm has been implemented together with the total variation regularization in an open source software package IOCBio Microscope. The influence of total variation regularization on deconvolution process is determined by one parameter. We derived a formula to estimate this regularization parameter automatically from the images as the algorithm progresses. To assess the effectiveness of this algorithm, synthetic images were composed on the basis of confocal images of rat cardiomyocytes. From the analysis of deconvolved results, we have determined under which conditions our estimation of total variation regularization parameter gives good results. The estimated total variation regularization parameter can be monitored during deconvolution process and used as a stopping criterion. An inverse relation between the optimal regularization parameter and the peak signal-to-noise ratio of an image is shown. Finally, we demonstrate the use of the developed software by deconvolving images of rat cardiomyocytes with stained mitochondria and sarcolemma obtained by confocal and widefield microscopes. PMID:21323670

  1. Confocal soft X-ray scanning transmission microscopy: setup, alignment procedure and limitations

    PubMed Central

    Späth, Andreas; Raabe, Jörg; Fink, Rainer H.

    2015-01-01

    Zone-plate-based scanning transmission soft X-ray microspectroscopy (STXM) is a well established technique for high-contrast imaging of sufficiently transparent specimens (e.g. ultrathin biological tissues, polymer materials, archaeometric specimens or magnetic thin films) with spatial resolutions in the regime of 20 nm and high spectroscopic or chemical sensitivity. However, due to the relatively large depth of focus of zone plates, the resolution of STXM along the optical axis so far stays unambiguously behind for thicker X-ray transparent specimens. This challenge can be addressed by the implementation of a second zone plate in the detection pathway of the beam, resulting in a confocal arrangement. Within this paper a first proof-of-principle study for a confocal STXM (cSTXM) and an elaborate alignment procedure in transmission and fluorescence geometry are presented. Based on first confocal soft X-ray micrographs of well known specimens, the advantage and limitation of cSTXM as well as further development potentials for future applications are discussed. PMID:25537596

  2. Real-time mapping of the corneal sub-basal nerve plexus by in vivo laser scanning confocal microscopy

    NASA Astrophysics Data System (ADS)

    Guthoff, Rudolf F.; Zhivov, Andrey; Stachs, Oliver

    2010-02-01

    The aim of the study was to produce two-dimensional reconstruction maps of the living corneal sub-basal nerve plexus by in vivo laser scanning confocal microscopy in real time. CLSM source data (frame rate 30Hz, 384x384 pixel) were used to create large-scale maps of the scanned area by selecting the Automatic Real Time (ART) composite mode. The mapping algorithm is based on an affine transformation. Microscopy of the sub-basal nerve plexus was performed on normal and LASIK eyes as well as on rabbit eyes. Real-time mapping of the sub-basal nerve plexus was performed in large-scale up to a size of 3.2mm x 3.2mm. The developed method enables a real-time in vivo mapping of the sub-basal nerve plexus which is stringently necessary for statistically firmed conclusions about morphometric plexus alterations.

  3. Biofilms on tracheoesophageal voice prostheses: a confocal laser scanning microscopy demonstration of mixed bacterial and yeast biofilms.

    PubMed

    Kania, Romain E; Lamers, Gerda E M; van de Laar, Nicole; Dijkhuizen, Marloes; Lagendijk, Ellen; Huy, Patrice Tran Ba; Herman, Philippe; Hiemstra, Pieter; Grote, Jan J; Frijns, Johan; Bloemberg, Guido V

    2010-07-01

    The aim of this study was to demonstrate the presence of yeast and bacterial biofilms on the surface of tracheoesophageal voice prostheses (TVPs) by a double-staining technique with confocal laser scanning microscopy (CLSM). Biofilms of 12 removed TVPs were visualized by scanning electron microscopy, then stained with ConA-FITC and propidium iodide for CLSM. Microbial identification was by partial 16S rRNA gene analysis and ITS-2 sequence analysis. Microbial biofilms on the TVPs consisted of bacteria and filamentous cells. Bacterial cells were attached to the filamentous and unicellular yeast cells, thus forming a network. Sequence analyses of six voice prostheses identified the presence of a variety of bacterial and yeast species. In vivo studies showed that Klebsiella oxytoca and Micrococcus luteus efficiently attached to Candida albicans. CLSM with double fluorescence staining can be used to demonstrate biofilm formations composed of a mixture of yeast and bacterial cells on the surface of TVPs. PMID:20473799

  4. Three-dimensional functional imaging of lung parenchyma using optical coherence tomography combined with confocal fluorescence microscopy

    NASA Astrophysics Data System (ADS)

    Gaertner, Maria; Cimalla, Peter; Knels, Lilla; Meissner, Sven; Koch, Edmund

    2011-03-01

    Optical coherence tomography (OCT), as a non-invasive technique for studying tissue morphology, is widely used in in vivo studies, requiring high resolution and fast three-dimensional imaging. Based on light scattering it reveals micrometer sized substructures of the samples due to changes in their optical properties and therefore allows quantification of the specimen's geometry. Utilizing fluorescence microscopy further information can be obtained from molecular compositions embedded in the investigated object. Fluorescent markers, specifically binding to the substance of interest, reveal the sample's chemical structure and give rise to functional studies. This research presents the application of a combined OCT and laser scanning confocal microscopy (LSCM) system to investigate structural details in lung tissue. OCT reveals the three-dimensional morphology of the alveoli whereas fluorescence detection, arising from the fluorophore Sulforhodamin B (SRB) which is binding to elastin, shows the elastic meshwork of the organs extracellular matrix. Different plains of fluorescence can be obtained by using a piezo driven objective and exploiting the confocal functionality of the setup. Both techniques combined in one optical system not only ease the experimental procedure but also contribute to a thorough description of tissue's morphology and chemical composition.

  5. In vivo Clonal Tracking of Hematopoietic Stem and Progenitor Cells Marked by Five Fluorescent Proteins using Confocal and Multiphoton Microscopy

    PubMed Central

    Malide, Daniela; Métais, Jean-Yves; Dunbar, Cynthia E.

    2014-01-01

    We developed and validated a fluorescent marking methodology for clonal tracking of hematopoietic stem and progenitor cells (HSPCs) with high spatial and temporal resolution to study in vivo hematopoiesis using the murine bone marrow transplant experimental model. Genetic combinatorial marking using lentiviral vectors encoding fluorescent proteins (FPs) enabled cell fate mapping through advanced microscopy imaging. Vectors encoding five different FPs: Cerulean, EGFP, Venus, tdTomato, and mCherry were used to concurrently transduce HSPCs, creating a diverse palette of color marked cells. Imaging using confocal/two-photon hybrid microscopy enables simultaneous high resolution assessment of uniquely marked cells and their progeny in conjunction with structural components of the tissues. Volumetric analyses over large areas reveal that spectrally coded HSPC-derived cells can be detected non-invasively in various intact tissues, including the bone marrow (BM), for extensive periods of time following transplantation. Live studies combining video-rate multiphoton and confocal time-lapse imaging in 4D demonstrate the possibility of dynamic cellular and clonal tracking in a quantitative manner. PMID:25145579

  6. Confocal reflectance and two-photon microscopy studies of a songbird skull for preparation of transcranial imaging

    NASA Astrophysics Data System (ADS)

    Abi-Haidar, Darine; Oliver, Thomas

    2009-05-01

    We present experiments and analyses of confocal reflectance and two-photon microscopy studies of zebra finch skull samples. The thin and hollow structure of these birds' skulls is quite translucent, which can allow in vivo transcranial two-photon imaging for brain activation monitoring. However, the skull structure is also quite complex, with high refractive index changes on a macroscopic scale. These studies aim at exploring the geometrical and scattering properties of these skull samples with the use of several confocal microscopy contrasts. Moreover, the study of the axial reflectance exponential decay is used to estimate the scattering coefficients of the bone. Finally, two-photon imaging experiments of a fluorescent object located beneath the skull are carried out. It reveals that two-photon fluorescence can be collected through the skull with a strong signal. It also reveals that the spatial resolution loss is quite high and cannot be fully explained by the bulk scattering properties of the bone, but also by the presence of the high refractive index inhomogeneity of this pneumatic skull structure. Even if the optical properties of the skull are different during in vivo experiments, these preliminary studies are aimed at preparing and optimizing transcranial brain activation monitoring experiments on songbirds.

  7. The Superficial Stromal Scar Formation Mechanism in Keratoconus: A Study Using Laser Scanning In Vivo Confocal Microscopy

    PubMed Central

    Song, Peng; Wang, Shuting; Zhang, Peicheng; Sui, Wenjie; Zhang, Yangyang; Liu, Ting; Gao, Hua

    2016-01-01

    To investigate the mechanism of superficial stromal scarring in advanced keratoconus using confocal microscopy, the keratocyte density, distribution, micromorphology of corneal stroma, and SNP in three groups were observed. Eight corneal buttons of advanced keratoconus were examined by immunohistochemistry. The keratocyte densities in the sub-Bowman's stroma, anterior stroma, and posterior stroma and the mean SNP density were significantly different among the three groups. In the mild-to-moderate keratoconus group, activated keratocyte nuclei and comparatively highly reflective ECM were seen in the sub-Bowman's stroma, while fibrotic structures with comparatively high reflection were visible in the anterior stroma in advanced keratoconus. The alternating dark and light bands in the anterior stroma of the mild-to-moderate keratoconus group showed great variability in width and direction. The wide bands were localized mostly in the posterior stroma that corresponded to the Vogt striae in keratoconus and involved the anterior stroma only in advanced keratoconus. Histopathologically, high immunogenicity of α-SMA, vimentin, and FAP was expressed in the region of superficial stromal scarring. In vivo confocal microscopy revealed microstructural changes in the keratoconic cone. The activation of superficial keratocytes and abnormal remodeling of ECM may both play a key role in the superficial stromal scar formation in advanced keratoconus. PMID:26885515

  8. Development of confocal immunofluorescence FRET microscopy to Investigate eNOS and GSNOR localization and interaction in pulmonary endothelial cells

    NASA Astrophysics Data System (ADS)

    Rehman, Shagufta; Brown-Steinke, Kathleen; Palmer, Lisa; Periasamy, Ammasi

    2015-03-01

    Confocal FRET microscopy is a widely used technique for studying protein-protein interactions in live or fixed cells. Endothelial nitric oxide synthase (eNOS) and S-nitrosoglutathione reductase (GSNOR) are enzymes involved in regulating the bioavailability of S-nitrosothiols (SNOs) in the pulmonary endothelium and have roles in the development of pulmonary arterial hypertension. Labeling of endogenous proteins to better understand a disease process can be challenging. We have used immunofluorescence to detect endogenous eNOS and GSNOR in primary pulmonary endothelial cells to co-localize these proteins as well as to study their interaction by FRET. The challenge has been in selecting the right immunofluorescence labeling condition, right antibody, the right blocking reagent, the right FRET pair and eliminating cross-reactivity of secondary antibodies. We have used Alexa488 and Alexa568 as a FRET pair. After a series of optimizations, the data from Confocal Laser Scanning Microscopy (CLSM) demonstrate co-localization of eNOS and GSNOR in the perinuclear region of the pulmonary endothelial cell primarily within the cis-Golgi with lower levels of co-localization seen within the trans-Golgi. FRET studies demonstrate, for the first time, interaction between eNOS and GSNOR in both murine and bovine pulmonary endothelial cells. Further characterization of eNOSGSNOR interaction and the subcellular location of this interaction will provide mechanistic insight into the importance of S-nitrosothiol signaling in pulmonary biology, physiology and pathology.

  9. Detecting cells in time varying intensity images in confocal microscopy for gene expression studies in living cells

    NASA Astrophysics Data System (ADS)

    Mitra, Debasis; Boutchko, Rostyslav; Ray, Judhajeet; Nilsen-Hamilton, Marit

    2015-03-01

    In this work we present a time-lapsed confocal microscopy image analysis technique for an automated gene expression study of multiple single living cells. Fluorescence Resonance Energy Transfer (FRET) is a technology by which molecule-to-molecule interactions are visualized. We analyzed a dynamic series of ~102 images obtained using confocal microscopy of fluorescence in yeast cells containing RNA reporters that give a FRET signal when the gene promoter is activated. For each time frame, separate images are available for three spectral channels and the integrated intensity snapshot of the system. A large number of time-lapsed frames must be analyzed to identify each cell individually across time and space, as it is moving in and out of the focal plane of the microscope. This makes it a difficult image processing problem. We have proposed an algorithm here, based on scale-space technique, which solves the problem satisfactorily. The algorithm has multiple directions for even further improvement. The ability to rapidly measure changes in gene expression simultaneously in many cells in a population will open the opportunity for real-time studies of the heterogeneity of genetic response in a living cell population and the interactions between cells that occur in a mixed population, such as the ones found in the organs and tissues of multicellular organisms.

  10. Effects of ethanol, formaldehyde, and gentle heat fixation in confocal resonance Raman microscopy of purple nonsulfur bacteria.

    PubMed

    Kniggendorf, Ann-Kathrin; Gaul, Tobias William; Meinhardt-Wollweber, Merve

    2011-02-01

    Resonance Raman microscopy is well suited to examine living bacterial samples without further preparation. Therefore, comparatively little thought has been given to its compatibility with common fixation methods. However, fixation of cell samples is a very important tool in the microbiological sciences, allowing the preservation of samples in a specific condition for further examination, future measurements, transport, or later reference. We examined the effects of three common fixatives-ethanol, formaldehyde solution, and gentle heat--on the resonant Raman spectrum of three generic bacteria species, Rhodobacter sphaeroides DSM 158(T), Rhodopseudomonas palustris DSM 123(T), and Rhodospirillum rubrum DSM 467(T), holding carotenoid- and heme-chromophores in confocal Raman microscopy. In addition, we analyzed the effect of poly-L-lysine coating of microscope slides, widely used for mounting biological and medical samples, on subsequent confocal Raman measurements of native and fixed samples. The results indicate that ethanol is preferable to formaldehyde as fixative if applied for less than 24 h, whereas heat fixation has a strong, detrimental effect on the resonant Raman spectrum of bacteria. Formaldehyde fixation excels at fixation times above 24 h, but causes an overall reduction in signal intensity. Poly-L-lysine coating has no discernable effect on the Raman spectra of samples fixed with ethanol or heat, but it further decreases the signal intensity, especially at higher wavenumbers, in the spectra of samples fixed with formaldehyde. PMID:20544803

  11. Filtering, reconstruction, and measurement of the geometry of nuclei from hippocampal neurons based on confocal microscopy data.

    PubMed

    Queisser, Gillian; Wittmann, Malte; Bading, Hilmar; Wittum, Gabriel

    2008-01-01

    The cell nucleus is often considered a spherical structure. However, the visualization of proteins associated with the nuclear envelope in rat hippocampal neurons indicates that the geometry of nuclei is far more complex. The shape of cell nuclei is likely to influence the nucleo-cytoplasmic exchange of macromolecules and ions, in particular calcium, a key regulator of neuronal gene expression. We developed a tool to retrieve the 3-D view of cell nuclei from laser scanning confocal microscopy data. By applying an inertia-based filter, based on a special structure detection mechanism, the signal-to-noise ratio of the image is enhanced, the signal is smoothed, gaps in the membrane are closed, while at the same time the geometric properties, such as diameters of the membrane, are preserved. After segmentation of the image data, the microscopy data are sufficiently processed to extract surface information of the membrane by creating an isosurface with a marching tetrahedra algorithm combined with a modified Dijkstra graph-search algorithm. All methods are tested on artificial data, as well as on real data, which are recorded with a laser scanning confocal microscope. Significant advantages of the inertia-based filter can be observed when comparing it to other state of the art nonlinear diffusion filters. An additional program is written to calculate surface and volume of cell nuclei. These results represent the first step toward establishing a geometry-based model of the-dynamics of cytoplasmic and nuclear calcium. PMID:18315367

  12. One shot confocal microscopy based on wavelength/space conversion by use of multichannel spectrometer

    NASA Astrophysics Data System (ADS)

    Miyamoto, Shuji; Hase, Eiji; Ichikawa, Ryuji; Mnamikawa, Takeo; Yasui, Takeshi; Yamamoto, Hirotugu

    2016-03-01

    Confocal laser microscope (CLM) has been widely used in the fields of the non-contact surface topography, biomedical imaging, and other applications, because of two-dimensional (2D) or three-dimensional (3D) imaging capability with the confocal effect and the stray light elimination. Although the conventional CLM has acquired the 2D image by mechanical scanning of the focused beam spot, further reduction of image acquisition time and the robustness to various disturbances are strongly required. To this end, it is essential to omit mechanical scanning for the image acquisition. In this article, we developed the scan-less, full-field CLM by combination of the line-focused CLM with the wavelength/1D-space conversion. This combination enables us to form the 2D focal array of a 2D rainbow beam on a sample and to encode the 2D image information of a sample on the 2D rainbow beam. The image-encoded 2D rainbow beam was decoded as a spectral line image by a multi-channel spectrometer equipped with a CMOS camera without the need for the mechanical scanning. The confocal full-field image was acquired during 0.23 ms with the lateral resolution of 26.3μm and 4.9μm for the horizontal and vertical directions, respectively, and the depth resolution of 34.9μm. We further applied this scan-less, full-field CLM for biomedical imaging of a sliced specimen and non-contact surface topography of an industry products. These demonstrations highlight a high potential of the proposed scan-less, full-field CLM.

  13. Reflectance confocal microscopy of red blood cells: simulation and experiment (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Zeidan, Adel; Yeheskely-Hayon, Daniella; Minai, Limor; Yelin, Dvir

    2016-03-01

    The properties of red blood cells are a remarkable indicator of the body's physiological condition; their density could indicate anemia or polycythemia, their absorption spectrum correlates with blood oxygenation, and their morphology is highly sensitive to various pathologic states including iron deficiency, ovalocytosis, and sickle cell disease. Therefore, measuring the morphology of red blood cells is important for clinical diagnosis, providing valuable indications on a patient's health. In this work, we simulated the appearance of normal red blood cells under a reflectance confocal microscope and discovered unique relations between the cells' morphological parameters and the resulting characteristic interference patterns. The simulation results showed good agreement with in vitro reflectance confocal images of red blood cells, acquired using spectrally encoded flow cytometry (SEFC) that imaged the cells during linear flow and without artificial staining. By matching the simulated patterns to the SEFC images of the cells, the cells' three-dimensional shapes were evaluated and their volumes were calculated. Potential applications include measurement of the mean corpuscular volume, cell morphological abnormalities, cell stiffness under mechanical stimuli, and the detection of various hematological diseases.

  14. Atomic force microscopy and laser confocal scanning microscopy analysis of callose fibers developed from protoplasts of embryogenic cells of a conifer.

    PubMed

    Fukumoto, Takeshi; Hayashi, Noriko; Sasamoto, Hamako

    2005-12-01

    Efficiency of novel fiber formation was much improved in protoplast culture of embryogenic cells (ECs) of a conifer, Larix leptolepis (Sieb. et Zucc.) Gord., by pre-culturing ECs in a medium containing a high concentration of glutamine (13.7 mM). The fibrillar substructures of large and elongated fibers of protoplasts isolated from Larix ECs were investigated by laser confocal scanning microscopy (LCSM) after Aniline Blue staining and atomic force microscopy (AFM) using a micromanipulator without any pre-treatment. Fibers were composed of bundles of fibrils and subfibrils, whose diameters were defined as 0.7 and 0.17 mum, respectively, by image analysis after LCSM and AFM. These fibers were proven to be composed of callose by using specific degrading enzymes for beta-1,4-glucan and beta-1,3-glucan. PMID:16034590

  15. Identification of different bacterial species in biofilms using confocal Raman microscopy

    NASA Astrophysics Data System (ADS)

    Beier, Brooke D.; Quivey, Robert G.; Berger, Andrew J.

    2010-11-01

    Confocal Raman microspectroscopy is used to discriminate between different species of bacteria grown in biofilms. Tests are performed using two bacterial species, Streptococcus sanguinis and Streptococcus mutans, which are major components of oral plaque and of particular interest due to their association with healthy and cariogenic plaque, respectively. Dehydrated biofilms of these species are studied as a simplified model of dental plaque. A prediction model based on principal component analysis and logistic regression is calibrated using pure biofilms of each species and validated on pure biofilms grown months later, achieving 96% accuracy in prospective classification. When biofilms of the two species are partially mixed together, Raman-based identifications are achieved within ~2 μm of the boundaries between species with 97% accuracy. This combination of spatial resolution and predication accuracy should be suitable for forming images of species distributions within intact two-species biofilms.

  16. Smart microscope: an adaptive optics learning system for aberration correction in multiphoton confocal microscopy.

    PubMed

    Albert, O; Sherman, L; Mourou, G; Norris, T B; Vdovin, G

    2000-01-01

    Off-axis aberrations in a beam-scanning multiphoton confocal microscope are corrected with a deformable mirror. The optimal mirror shape for each pixel is determined by a genetic learning algorithm, in which the second-harmonic or two-photon fluorescence signal from a reference sample is maximized. The speed of the convergence is improved by use of a Zernike polynomial basis for the deformable mirror shape. This adaptive optical correction scheme is implemented in an all-reflective system by use of extremely short (10-fs) optical pulses, and it is shown that the scanning area of an f:1 off-axis parabola can be increased by nine times with this technique. PMID:18059779

  17. Aerogel Track Morphology: Measurement, Three Dimensional Reconstruction and Particle Location using Confocal Laser Scanning Microscopy

    NASA Technical Reports Server (NTRS)

    Kearsley, A. T.; Ball, A. D.; Wozniakiewicz, P. A.; Graham, G. A.; Burchell, M. J.; Cole, M. J.; Horz, F.; See, T. H.

    2007-01-01

    The Stardust spacecraft returned the first undoubted samples of cometary dust, with many grains embedded in the silica aerogel collector . Although many tracks contain one or more large terminal particles of a wide range of mineral compositions , there is also abundant material along the track walls. To help interpret the full particle size, structure and mass, both experimental simulation of impact by shots and numerical modeling of the impact process have been attempted. However, all approaches require accurate and precise measurement of impact track size parameters such as length, width and volume of specific portions. To make such measurements is not easy, especially if extensive aerogel fracturing and discoloration has occurred. In this paper we describe the application and limitations of laser confocal imagery for determination of aerogel track parameters, and for the location of particle remains.

  18. Characterization of acoustic lenses with the Foucault test by confocal laser scanning microscopy

    NASA Astrophysics Data System (ADS)

    Ahmed Mohamed, E. T.; Abdelrahman, A.; Pluta, M.; Grill, W.

    2010-03-01

    In this work, the Foucault knife-edge test, which has traditionally been known as the classic test for optical imaging devices, is used to characterize an acoustic lens for operation at 1.2 GHz. A confocal laser scanning microscope (CLSM) was used as the illumination and detection device utilizing its pinhole instead of the classical knife edge that is normally employed in the Foucault test. Information about the geometrical characteristics, such as the half opening angle of the acoustic lens, were determined as well as the quality of the calotte of the lens used for focusing. The smallest focal spot size that could be achieved with the examined lens employed as a spherical reflector was found to be about 1 μm. By comparison to the idealized resolution a degradation of about a factor of 2 can be deduced. This limits the actual quality of the acoustic focus.

  19. Sensor and actuator conditioning for multiscale measurement systems on example of confocal microscopy

    NASA Astrophysics Data System (ADS)

    Lyda, W.; Zimmermann, J.; Burla, A.; Regin, J.; Osten, W.; Sawodny, O.; Westkämper, E.

    2009-06-01

    Multi-scale measurement systems utilise multiple sensors which differ in resolution and measurement field to pursue an active exploration strategy. The different sensor scales are linked by indicator algorithms for further measurement initiation. A major advantage of this strategy is a reduction of the conflict between resolution, time and field. This reduction is achieved by task specific conditioning of sensors, indicator algorithms and actuators using suitable uncertainty models. This contribution is focused on uncertainty models of sensors and actuators using the example of a prototype multi-scale measurement system. The influence of the sensor parameters, object characteristics and measurement conditions on the measurement reliability is investigated exemplary for the middle-scale sensor, a confocal microscope.

  20. The Application of Confocal Microscopy and Particle Size Analysis to Cartridge Case Examinations

    NASA Astrophysics Data System (ADS)

    McClorry, Shannon

    Although cross-correlation analysis is a convenient tool for image comparison, research shows that cross-correlation analysis of surface topographies is incapable of distinguishing between the large numbers of cartridge cases that would be necessary to create a national database. In this study, we manually overlay confocal images of primer face impressions and show that the size distribution of the regions of correspondence between two impressions has the potential to significantly improve the number of discernible topographies. Our results indicate that the average area of the individual regions of correspondence in an overlay provides a more abrupt distinction between matching and non-matching cartridge cases than does the overall extent of correspondence. In the 1950s, Biasotti discovered a similar trend in bullets, noting that the number of consecutive matching striae never exceed a particular number for non-matching bullets.

  1. An in vitro Comparative Evaluation of Three Remineralizing Agents using Confocal Microscopy

    PubMed Central

    Chokshi, Achala; Konde, Sapna; Shetty, Sunil Raj; Chandra, Kumar Narayan; Jana, Sinjana; Mhambrey, Sanjana; Thakur, Sneha

    2016-01-01

    Introduction The caries process has been thought to be irreversible, resulting in the permanent loss of tooth substance and eventually the development of a cavity. Recent approaches focused on application of remineralizing agents to incipient carious lesions, aim at controlling demineralization and promoting remineralization. Remineralizing agents create a supersaturated environment around the lesion; thus, preventing mineral loss and forces calcium and phosphate ions in the vacant areas. Aim To compare and evaluate the remineralization potential of Fluoride Varnish, CPP-ACP Paste (Casein Phosphopeptide-Amorphous Calcium Phosphate) and fTCP Paste (functionalized Tricalcium Phosphate) using confocal microscope. Materials and Methods Two windows of 3X3mm were created on the labial cervical and incisal thirds in 60 permanent maxillary central incisors. The teeth were demineralized to create artificial caries and divided into three groups of 20 each. Group I specimens were coated with Fluoride Varnish once whereas those in CPP-ACP paste group and fTCP group were brushed for 2 minutes, twice daily for 20 and 40 days. The specimens were stored in artificial saliva during the study period and were later sectioned and observed under confocal microscope. Data obtained was statistically analyzed using Fischer’s exact test, ANOVA and post-hoc Bonferroni’s test. Results Fluoride Varnish, CPP-ACP Paste and fTCP Paste showed remineralization of artificial carious lesions at both the time intervals. Fluoride varnish showed the highest remineralization followed by CPP-ACP Paste and fTCP Paste. A statistically significant increase in remineralization potential of CPP-ACP Paste and fTCP Paste was observed at the end of 40 days as compared to 20 days. Conclusion Fluoride varnish showed the greatest remineralization potential of artificial carious lesions followed by CPP-ACP Paste and fTCP Paste respectively. PMID:27504408

  2. Comparison of divided and full pupil configurations for line-scanning confocal microscopy in human skin and oral mucosa

    NASA Astrophysics Data System (ADS)

    Larson, Bjorg; Abeytunge, Sanjeewa; Glazowski, Chris; Rajadhyaksha, Milind

    2012-02-01

    Confocal point-scanning microscopy has been showing promise in the detection, diagnosing and mapping of skin lesions in clinical settings. The noninvasive technique allows provides optical sectioning and cellular resolution for in vivo diagnosis of melanoma and basal cell carcinoma and pre-operative and intra-operative mapping of margins. The imaging has also enabled more accurate "guided" biopsies while minimizing the otherwise large number of "blind" biopsies. Despite these translational advances, however, point-scanning technology remains relatively complex and expensive. Line-scanning technology may offer an alternative approach to accelerate translation to the clinic. Line-scanning, using fewer optical components, inexpensive linear-array detectors and custom electronics, may enable smaller, simpler and lower-cost confocal microscopes. A line is formed using a cylindrical lens and scanned through the back focal plane of the objective with a galvanometric scanner. A linear CCD is used for detection. Two pupil configurations were compared for performance in imaging human tissue. In the full-pupil configuration, illumination and detection is made through the full objective pupil. In the divided pupil approach, half the pupil is illuminated and the other half is used for detection. The divided pupil configuration loses spatial and axial resolution due to a diminished NA, but the sectioning capability and rejection of background is improved. Imaging in skin and oral mucosa illustrate the performance of the two configurations.

  3. Fibered confocal fluorescence microscopy for imaging apoptotic DNA fragmentation at the single-cell level in vivo

    SciTech Connect

    Al-Gubory, Kais H. . E-mail: kais.algubory@jouy.inra.fr

    2005-11-01

    The major characteristic of cell death by apoptosis is the loss of nuclear DNA integrity by endonucleases, resulting in the formation of small DNA fragments. The application of confocal imaging to in vivo monitoring of dynamic cellular events, like apoptosis, within internal organs and tissues has been limited by the accessibility to these sites. Therefore, the aim of the present study was to test the feasibility of fibered confocal fluorescence microscopy (FCFM) to image in situ apoptotic DNA fragmentation in surgically exteriorized sheep corpus luteum in the living animal. Following intra-luteal administration of a fluorescent DNA-staining dye, YO-PRO-1, DNA cleavage within nuclei of apoptotic cells was serially imaged at the single-cell level by FCFM. This imaging technology is sufficiently simple and rapid to allow time series in situ detection and visualization of cells undergoing apoptosis in the intact animal. Combined with endoscope, this approach can be used for minimally invasive detection of fluorescent signals and visualization of cellular events within internal organs and tissues and thereby provides the opportunity to study biological processes in the natural physiological environment of the cell in living animals.

  4. Investigation of metallurgical phenomena related to process and product development by means of High Temperature Confocal Scanning Laser Microscopy

    NASA Astrophysics Data System (ADS)

    Diéguez-Salgado, U.; Michelic, S.; Bernhard, C.

    2016-03-01

    An increased interest for high temperature metallurgical processes appeared during the last decades, in order to achieve the high quality requirements in steel products. A defined steel cleanness and microstructure essentially influence the final product quality. The high temperatures involved in metallurgical processes and the lack of in situ observations do not only complicate the verification of simulation model predictions but also make significant conclusions regarding the industrial processes difficult. For that reason, new tools and techniques are necessary to develop. By combining the advances of a laser, confocal optics and an infrared image furnace, the High Temperature Confocal Scanning Laser Microscopy (HTCSLM) is a strong tool which enables high temperature in situ observations of different metallurgical phenomena. Next to solidification processes and phase transformations also the behavior of inclusions at different interfaces in the system steel-slag-refractory can be observed. The present study focuses on the aspects of inclusion agglomeration in the liquid steel and the inclusion behavior at the steel/refractory interface in two different steel grades. Out of the obtained experimental data, attraction forces are calculated and compared. This information provides an important basis for a better understanding of inclusion behavior in industrial processes and the therewith related process optimization, like for example the clogging phenomenon during continuous casting.

  5. Mosaicing for fast wide-field-of-view optical resolution photoacoustic microscopy

    NASA Astrophysics Data System (ADS)

    Shao, Peng; Shi, Wei; Chee, Ryan K.; Forbrich, Alexander; Zemp, Roger J.

    2012-02-01

    The acquisition speed of previously reported mechanically-scanned Optical-Resolution Photoacoustic Microscopy (OR-PAM) systems has been limited by both laser pulse repetition rate and mechanical scanning speed. In this paper we introduce a mosaicing scheme wherein a grid of small sub-mm-scale field-of-view (FOV) patches are acquired in 0.5s per patch, and a 3-axis stepper-motor system is used to mechanically move the object to be imaged from patch-to-patch in less than 0.5s. Patch images are aligned and stitched to generate a large FOV image composite. This system retains the SNR-advantages of focused-transducer OR-PAM systems, and is a hybrid approach between optical-scanning and mechanical scanning. With this strategy we reduce the data acquisition time of previously reported large-FOV systems by a factor of around 23. SCID hairless mice are imaged. The wide-FOV, high-speed data acquisition OR-PAM system broadens the potential applications of the imaging modality.

  6. Influences of edges and steep slopes in 3D interference and confocal microscopy

    NASA Astrophysics Data System (ADS)

    Xie, Weichang; Hagemeier, Sebastian; Woidt, Carsten; Hillmer, Harmut; Lehmann, Peter

    2016-04-01

    Optical measurement techniques are widely applied in high-resolution contour, topography and roughness measurement. In this context vertical scanning white-light interferometers and confocal microscopes have become mature instruments over the last decades. The accuracy of measurement results is highly related not only to the type and physical properties of the measuring instruments, but also to the measurement object itself. This contribution focuses on measurement effects occurring at edges and height steps using white-light interferometers of different numerical apertures. If the edge is perfectly perpendicular, batwing effects appear at height steps. These batwings show maximum height if the height-to-wavelength-ratio (HWR) is about one forth or three forth, and they disappear if the HWR value is about an integer multiple of one half. The wavelength that is relevant in this context is the effective wavelength, i.e. the center wavelength of the illuminating light multiplied by a correction factor known as the numerical aperture correction. However, in practice the edges are usually not perfectly perpendicular. In this case, the measurement results depend also on the derivative of the surface height function and they may differ from theory and the prediction according to the HWR value. Measurements of such steps show systematical effects depending on the lateral resolution of the instrument. In this context, a Linnik interferometer with a magnification of 100x and NA = 0.9 is used to characterize the three dimensional topography of more or less rectangular calibration specimens and quasi-perpendicular structures produced by the nanoimprint technology. The Linnik interferometer is equipped with LED light sources emitting at different wavelengths, so that the HWR value can be changed. This is possible since the high NA objective lenses show a rather limited depth of focus such that the temporal coherence gating may be replaced by focal gating in this

  7. Assessment of possibilities of ceramic biomaterial fracture surface reconstruction using laser confocal microscopy and long working distance objective lenses.

    PubMed

    Stach, Sebastian; Sapota, Wiktoria; Wróbel, Zygmunt; Ţălu, Ştefan

    2016-05-01

    A numerical description of fracture is an important step in the search of the correlation between specific micromechanisms of decohesion and material characteristics designated with the use of fracture mechanics methods. This issue is essential for the proper orientation of the search for basic relationships between chemical composition, technology, structure, and properties of materials. It often happens that fracture surfaces are well developed, which can significantly hinder or even prevent the measurement and reconstruction of the tested material surface geometry. In this article, comparative measurements of a biomaterial surface were performed using laser confocal microscopy. To this end, short working distance lenses dedicated to a focused UV laser beam and long working distance objective lenses were used. The article includes a quantitative comparative analysis and interpretation of the obtained results. Microsc. Res. Tech. 79:385-392, 2016. © 2016 Wiley Periodicals, Inc. PMID:26918261

  8. Evaluation through in vivo reflectance confocal microscopy of the cutaneous neurogenic inflammatory reaction induced by capsaicin in human subjects

    NASA Astrophysics Data System (ADS)

    Căruntu, Constantin; Boda, Daniel

    2012-08-01

    We perform an in vivo analysis of the effects of capsaicin on cutaneous microvascularization. A total of 29 healthy subjects are administered a solution of capsaicin (CAP group) or a vehicle solution (nonCAP group) on the dorsal side of the nondominant hand. The evaluation is performed using in vivo reflectance confocal microscopy (RCM). Ten minutes after administration, the area of the section, the perimeter, and the Feret's diameter of the capillaries in the dermal papillae become significantly larger in the CAP group as against the nonCAP group, and this difference is maintained until the conclusion of the experiment. In vivo RCM allows the investigation of cutaneous vascular reactions induced by capsaicin. As such, this method may constitute an useful technique both for research and clinical practice.

  9. Analysis of micro-lens integrated flip-chip InGaN light-emitting diodes by confocal microscopy

    NASA Astrophysics Data System (ADS)

    Li, K. H.; Feng, C.; Choi, H. W.

    2014-02-01

    A hexagonally close-packed microlens array has been integrated onto the sapphire face of a flip-chip bonded InGaN light-emitting diode (LED). The micro-optics is formed by etching a self-assembled monolayer of 1-μm silica microspheres coated on the sapphire substrate, producing hemispherical sapphire lenses. Without degrading electrical characteristic, the light output power of the lensed LED is increased by more than a quarter compared with the unlensed LED. Enhanced light extraction via micro-optics is verified by rigorous coupled wave analysis. The focusing behavior of the micro-lenses, as well as the emission characteristics of the lensed LED, is studied by confocal microscopy.

  10. Advantages of microsphere-assisted super-resolution imaging technique over solid immersion lens and confocal microscopies

    NASA Astrophysics Data System (ADS)

    Darafsheh, Arash; Limberopoulos, Nicholaos I.; Derov, John S.; Walker, Dennis E.; Astratov, Vasily N.

    2014-02-01

    We demonstrate a series of advantages of microsphere-assisted imaging over confocal and solid immersion lens microscopies including intrinsic flexibility, better resolution, higher magnification, and longer working distances. We discerned minimal feature sizes of ˜50-60 nm in nanoplasmonic arrays at the illumination wavelength λ = 405 nm. It is demonstrated that liquid-immersed, high-index (n ˜ 1.9-2.1) spheres provide a superior image quality compared to that obtained by spheres with the same index contrast in an air environment. We estimate that using transparent microspheres at deep UV wavelengths of ˜200 nm might make possible imaging of various nanostructures with extraordinary high ˜30 nm resolution.

  11. In Vivo Confocal Microscopy of the Human Cornea in the Assessment of Peripheral Neuropathy and Systemic Diseases

    PubMed Central

    Wang, Ellen F.; Misra, Stuti L.; Patel, Dipika V.

    2015-01-01

    In vivo confocal microscopy (IVCM) of the living human cornea offers the ability to perform repeated imaging without tissue damage. Studies using corneal IVCM have led to significant contributions to scientific and clinical knowledge of the living cornea in health and pathological states. Recently the application of corneal IVCM beyond ophthalmology to wider clinical and research fields has been demonstrated. Abnormalities of the corneal subbasal nerve plexus have been associated with many forms of peripheral neuropathy and Langerhans cells correlate with systemic inflammatory states. There is a rapidly growing evidence base investigating the use of corneal IVCM in many systemic conditions and a well-established evidence base for IVCM imaging of the corneal subbasal plexus in diabetic peripheral neuropathy. This paper reviews the potential use of corneal IVCM in general clinical practice as a noninvasive method of assessing peripheral neuropathies, monitoring inflammatory states and clinical therapeutic response. PMID:26770980

  12. An innovative approach for investigating the ceramic bracket-enamel interface - optical coherence tomography and confocal microscopy

    NASA Astrophysics Data System (ADS)

    Romînu, Roxana Otilia; Sinescu, Cosmin; Romînu, Mihai; Negrutiu, Meda; Laissue, Philippe; Mihali, Sorin; Cuc, Lavinia; Hughes, Michael; Bradu, Adrian; Podoleanu, Adrian

    2008-09-01

    Bonding has become a routine procedure in several dental specialties - from prosthodontics to conservative dentistry and even orthodontics. In many of these fields it is important to be able to investigate the bonded interfaces to assess their quality. All currently employed investigative methods are invasive, meaning that samples are destroyed in the testing procedure and cannot be used again. We have investigated the interface between human enamel and bonded ceramic brackets non-invasively, introducing a combination of new investigative methods - optical coherence tomography (OCT) and confocal microscopy (CM). Brackets were conventionally bonded on conditioned buccal surfaces of teeth The bonding was assessed using these methods. Three dimensional reconstructions of the detected material defects were developed using manual and semi-automatic segmentation. The results clearly prove that OCT and CM are useful in orthodontic bonding investigations.

  13. Confocal microscopy to guide Erbium:yttrium aluminum garnet laser ablation of basal cell carcinoma: an ex vivo feasibility study

    PubMed Central

    Larson, Bjorg A.; Chen, Chih-Shan Jason; Rajadhyaksha, Milind

    2013-01-01

    Abstract. For the removal of superficial and nodular basal cell carcinomas (BCCs), laser ablation provides certain advantages relative to other treatment modalities. However, efficacy and reliability tend to be variable because tissue is vaporized such that none is available for subsequent histopathological examination for residual BCC (and to confirm complete removal of tumor). Intra-operative reflectance confocal microscopy (RCM) may provide a means to detect residual tumor directly on the patient and guide ablation. However, optimization of ablation parameters will be necessary to control collateral thermal damage and preserve sufficient viability in the underlying layer of tissue, so as to subsequently allow labeling of nuclear morphology with a contrast agent and imaging of residual BCC. We report the results of a preliminary study of two key parameters (fluence, number of passes) vis-à-vis the feasibility of labeling and RCM imaging in human skin ex vivo, following ablation with an erbium:yttrium aluminum garnet laser. PMID:24045654

  14. Micro- and nanodomain imaging in uniaxial ferroelectrics: Joint application of optical, confocal Raman, and piezoelectric force microscopy

    SciTech Connect

    Shur, V. Ya. Zelenovskiy, P. S.

    2014-08-14

    The application of the most effective methods of the domain visualization in model uniaxial ferroelectrics of lithium niobate (LN) and lithium tantalate (LT) family, and relaxor strontium-barium niobate (SBN) have been reviewed in this paper. We have demonstrated the synergetic effect of joint usage of optical, confocal Raman, and piezoelectric force microscopies which provide extracting of the unique information about formation of the micro- and nanodomain structures. The methods have been applied for investigation of various types of domain structures with increasing complexity: (1) periodical domain structure in LN and LT, (2) nanodomain structures in LN, LT, and SBN, (3) nanodomain structures in LN with modified surface layer, (4) dendrite domain structure in LN. The self-assembled appearance of quasi-regular nanodomain structures in highly non-equilibrium switching conditions has been considered.

  15. Analysis of micro-structural relaxation phenomena in laser-modified fused silica using confocal Raman microscopy

    SciTech Connect

    Matthews, M; Vignes, R; Cooke, J; Yang, S; Stolken, J

    2009-12-15

    Fused silica micro-structural changes associated with localized 10.6 {micro}m CO{sub 2} laser heating are reported. Spatially-resolved shifts in the high-frequency asymmetric stretch transverse-optic (TO) phonon mode of SiO{sub 2} were measured using confocal Raman microscopy, allowing construction of axial fictive temperature (T{sub f}) maps for various laser heating conditions. A Fourier conduction-based finite element model was employed to compute on-axis temperature-time histories, and, in conjunction with a Tool-Narayanaswamy form for structural relaxation, used to fit T{sub f}(z) profiles to extract relaxation parameters. Good agreement between the calculated and measured T{sub f} was found, yielding reasonable values for relaxation time and activation enthalpy in the laser-modified silica.

  16. Intracellular localization analysis of npAu-PpIX in HeLa cells using specific dyes and confocal microscopy

    NASA Astrophysics Data System (ADS)

    Roblero-Bartolón, Victoria Gabriela; Maldonado-Alvarado, Elizabeth; Galván-Mendoza, José Iván; Ramón-Gallegos, Eva

    2012-10-01

    Cervical carcinoma (CC) represents the second leading cause of cancer death in Mexican women. No conventional treatments are being developed such as photodynamic therapy (PDT), involving the simultaneous presence of a photosensitizer (Ps), light of a specific wavelength and tissue oxygen. On the other hand, it has seen that the use of gold nanoparticles coupled to protoporphyrin IX increases the effectiveness of PDT. The aim of this study was to determine the site of accumulation of the conjugate npAu-PpIX in cells of cervical cancer by the use of specific dyes and confocal microscopy. The results indicate that the gold nanoparticles coupled to protoporphyrin IX are accumulated in both the cytoplasm and nucleus of HeLa cells.

  17. In vivo confocal microscopy of the sclerocorneal limbus after limbal stem cell transplantation: Looking for limbal architecture modifications and cytological phenotype correlations

    PubMed Central

    Mastropasqua, Leonardo; Lanzini, Manuela; Nubile, Mario; Colabelli-Gisoldi, Rossella Annamaria; De Carlo, Luca; Pocobelli, Augusto

    2016-01-01

    Purpose To correlate a biomicroscopic evaluation, an in vivo confocal microscopy examination, and impression cytologic findings of the corneal center and sclerocorneal limbus after cultured limbal stem cell transplantation and to test the effectiveness of in vivo confocal microscopy as a diagnostic procedure in ocular surface cell therapy reconstructive surgery. Methods Six eyes of six patients affected by limbal stem cell deficiency after chemical burns underwent ex vivo expanded limbal stem cell transplantation (two eyes) and ex vivo expanded limbal stem cell transplantation with subsequent penetrating keratoplasty (four eyes) to restore corneal transparency. One year after surgery, all patients underwent a biomicroscopic evaluation, central cornea impression cytology to detect cytokeratin 12 (CK12) positivity, and in vivo confocal microscopy of the central cornea and the sclerocorneal limbus to investigate the epithelial cellular morphology, limbal architecture, and corneal inflammation level. Results Impression cytology analysis showed CK12 positivity in five of six cases, in concordance with the biomicroscopic evaluation. Confocal microscopy pointed out irregular limbal architecture with the absence of the palisades of Vogt in all cases; the central epithelial morphology presented clear corneal characteristics in three cases and irregular morphology in the remaining three. Conclusions After successful ex vivo expanded limbal stem cell transplantation, in the presence of a complete anatomic architecture subversion, documented by support of in vivo confocal microscopy, the sclerocorneal limbus seemed to maintain its primary function. In vivo confocal microscopy confirmed the procedure was a non-invasive, efficacious diagnostic ocular surface procedure in the case of cell therapy reconstructive surgery. PMID:27440993

  18. The nematode stoma: Homology of cell architecture with improved understanding by confocal microscopy of labeled cell boundaries.

    PubMed

    Jay Burr, A H; Baldwin, James G

    2016-09-01

    Nematode stomas vary widely in the cuticular structures evolved for different feeding strategies, yet the arrangement of the epithelial cell classes that form these structures may be conserved. This article addresses several issues that have impeded the full acceptance of this hypothesis including controversies arising from the structure of the Caenorhabditis elegans stoma. We investigated fluorescent antibody labeling of cell boundaries in conjunction with confocal microscopy as an alternative to transmission electron microscopy (TEM), using MH27 to label apical junctions in C. elegans and two other species. Accurately spaced optical sections collected by the confocal microscope provide a three-dimensional array of pixels (voxels) that, using image-processing software, can be rotated and sectioned at accurately chosen thicknesses and locations. Ribbons of fluorescence clearly identify cell boundaries along the luminal cuticle in C. elegans and Zeldia punctata and less clearly in Bunonema sp. The patterns render cell classes and their relationships readily identifiable. In the C. elegans stoma they correct a misreading of serial TEMs that was not congruent with architecture in other nematodes-the row of marginal cells is now seen to be continuous as in other nematodes, rather than being interrupted by encircling pm1 cells. Also impeding understanding, the reference to certain cell classes as 'epithelial' and others as "muscle" in the C. elegans literature is at variance with muscle expression in most other taxa. For consistent comparison among species, we propose that these cell class descriptors based on function be replaced by topological terms. With these and other confusing concepts and terminology removed, the homology of the cellular architecture among taxa becomes obvious. We provide a corrected description of the cell architecture of the C. elegans stoma and examples of how it is modified in other taxa with different feeding strategies. J. Morphol. 277

  19. In vivo analysis of THz wave irradiation induced acute inflammatory response in skin by laser-scanning confocal microscopy.

    PubMed

    Hwang, Yoonha; Ahn, Jinhyo; Mun, Jungho; Bae, Sangyoon; Jeong, Young Uk; Vinokurov, Nikolay A; Kim, Pilhan

    2014-05-19

    The recent development of THz sources in a wide range of THz frequencies and power levels has led to greatly increased interest in potential biomedical applications such as cancer and burn wound diagnosis. However, despite its importance in realizing THz wave based applications, our knowledge of how THz wave irradiation can affect a live tissue at the cellular level is very limited. In this study, an acute inflammatory response caused by pulsed THz wave irradiation on the skin of a live mouse was analyzed at the cellular level using intravital laser-scanning confocal microscopy. Pulsed THz wave (2.7 THz, 4 μs pulsewidth, 61.4 μJ per pulse, 3Hz repetition), generated using compact FEL, was used to irradiate an anesthetized mouse's ear skin with an average power of 260 mW/cm(2) for 30 minutes using a high-precision focused THz wave irradiation setup. In contrast to in vitro analysis using cultured cells at similar power levels of CW THz wave irradiation, no temperature change at the surface of the ear skin was observed when skin was examined with an IR camera. To monitor any potential inflammatory response, resident neutrophils in the same area of ear skin were repeatedly visualized before and after THz wave irradiation using a custom-built laser-scanning confocal microscopy system optimized for in vivo visualization. While non-irradiated control skin area showed no changes in the number of resident neutrophils, a massive recruitment of newly infiltrated neutrophils was observed in the THz wave irradiated skin area after 6 hours, which suggests an induction of acute inflammatory response by the pulsed THz wave irradiation on the skin via a non-thermal process. PMID:24921268

  20. In Situ Confocal Raman Microscopy of Hydrated Early Stages of Bacterial Biofilm Formation on Various Surfaces in a Flow Cell.

    PubMed

    Smith-Palmer, Truis; Lin, Sicheng; Oguejiofor, Ikenna; Leng, Tianyang; Pustam, Amanda; Yang, Jin; Graham, Lori L; Wyeth, Russell C; Bishop, Cory D; DeMont, M Edwin; Pink, David

    2016-02-01

    Bacterial biofilms are precursors to biofouling by other microorganisms. Understanding their initiation may allow us to design better ways to inhibit them, and thus to inhibit subsequent biofouling. In this study, the ability of confocal Raman microscopy to follow the initiation of biofouling by a marine bacterium, Pseudoalteromonas sp. NCIMB 2021 (NCIMB 2021), in a flow cell, using optical and confocal Raman microscopy, was investigated. The base of the flow cell comprised a cover glass. The cell was inoculated and the bacteria attached to, and grew on, the cover glass. Bright field images and Raman spectra were collected directly from the hydrated biofilms over several days. Although macroscopically the laser had no effect on the biofilm, within the first 24 h cells migrated away from the position of the laser beam. In the absence of flow, a buildup of extracellular substances occurred at the base of the biofilm. When different coatings were applied to cover glasses before they were assembled into the flow cells, the growth rate, structure, and composition of the resulting biofilm was affected. In particular, the ratio of Resonance Raman peaks from cytochrome c (CC) in the extracellular polymeric substances, to the Raman phenylalanine (Phe) peak from protein in the bacteria, depended on both the nature of the surface and the age of the biofilm. The ratios were highest for 24 h colonies on a hydrophobic surface. Absorption of a surfactant with an ethyleneoxy chain into the hydrophobic coating created a surface similar to that given with a simple PEG coating, where bacteria grew in colonies away from the surface rather than along the surface, and CC:Phe ratios were initially low but increased at least fivefold in the first 48 h. PMID:26903564

  1. 3-D laser confocal microscopy study of the oxidation of NdFeB magnets in atmospheric conditions

    NASA Astrophysics Data System (ADS)

    Meakin, J. P.; Speight, J. D.; Sheridan, R. S.; Bradshaw, A.; Harris, I. R.; Williams, A. J.; Walton, A.

    2016-08-01

    Neodymium iron boron (NdFeB) magnets are used in a number of important applications, such as generators in gearless wind turbines, motors in electric vehicles and electronic goods (e.g.- computer hard disk drives, HDD). Hydrogen can be used as a processing gas to separate and recycle scrap sintered Nd-Fe-B magnets from end-of-life products to form a powder suitable for recycling. However, the magnets are likely to have been exposed to atmospheric conditions prior to processing, and any oxidation could lead to activation problems for the hydrogen decrepitation reaction. Many previous studies on the oxidation of NdFeB magnets have been performed at elevated temperatures; however, few studies have been formed under atmospheric conditions. In this paper a combination of 3-D laser confocal microscopy and Raman spectroscopy have been used to assess the composition, morphology and rate of oxidation/corrosion on scrap sintered NdFeB magnets. Confocal microscopy has been employed to measure the growth of surface reaction products at room temperature, immediately after exposure to air. The results showed that there was a significant height increase at the triple junctions of the Nd-rich grain boundaries. Using Raman spectroscopy, the product was shown to consist of Nd2O3 and formed only on the Nd-rich triple junctions. The diffusion coefficient of the triple junction reaction product growth at 20 °C was determined to be approximately 4 × 10-13 cm2/sec. This value is several orders of magnitude larger than values derived from the diffusion controlled oxide growth observations at elevated temperatures in the literature. This indicates that the growth of the room temperature oxidation products are likely defect enhanced processes at the NdFeB triple junctions.

  2. Confocal microscopy of epithelial and langerhans cells of the cornea in patients using travoprost drops containing two different preservatives.

    PubMed

    Marsovszky, László; Resch, Miklós D; Visontai, Zsuzsanna; Németh, János

    2014-07-01

    The recently developed confocal cornea microscopy offers the opportunity to examine pathologies of the cornea and to gain insight into the activity of innate immunity. We aimed to investigate the corneal epithelial and Langerhans cell (LC) densities along with dry eye parameters in primary open-angle glaucoma (POAG) subjects, treated with either of two commercially available travoprost 0.004 % topical medications containing different preservatives. (1: benzalkonium chloride 0.015 % (TravBAK) and 2: polyquaternium-1 (PQ) 0.001 % (TravPQ). Consecutive case series of nineteen POAG patients on TravBAK (mean age: 64.8 ± 13.6 years), nineteen POAG patients on TravPQ (mean age: 66.8 ± 11.3 years) and nineteen age-matched healthy control subjects (63.8 ± 8.2 years). Ocular surface disease index (OSDI), lid parallel conjunctival folds (LIPCOF), Schirmer test (ST) and tear break up time (TBUT) were assessed, and then corneal epithelial and LC densities were investigated with confocal microscopy. Tear production was significantly reduced in both glaucoma patient groups compared to healthy individuals (p < 0.05). TBUT was significantly reduced and epithelial cell densities were significantly greater in patients treated with TravBAK compared to healthy individuals (p < 0.05 for all). LC densities were greater in both glaucoma groups compared to control subjects (p < 0.05 for all). Travoprost therapy may compromise ocular surface. The limited alertness of the corneal immune system found in patients with TravPQ can be considered as indicators of a less disturbed ocular surface and better controlled corneal homeostasis. PMID:24623372

  3. In vivo comparative documentation of skin hydration by confocal Raman microscopy, SkinSensor, Skicon, and NovaMeter

    NASA Astrophysics Data System (ADS)

    Zhang, Guojin; Papillon, Aline; Ruvolo, Eduardo, Jr.; Bargo, Paulo R.; Kollias, Nikiforos

    2010-02-01

    The stratum corneum provides a vital physical barrier that protects against external insults and excessive internal water loss. Water activity is thought as a key factor to maintain proper skin barrier integrity via regulating enzyme activities and lipid phase behavior. Consequently, maintenance of an optimal hydration level in SC becomes an important clinical and cosmetic concern. The objective methods to assess SC hydration are based on either electrical or optical measurements. Electrical techniques used in the current study include high frequency conductance (Skicon), impedance (Nova DPM) and DC I-V curve (Skinsensor). Confocal Raman Microscopy was utilized to document water profile versus depth, and this technique is based on inelastic scattering of monochromatic light from different chemical species of skin. Water patches were applied on the 14 subjects' forearm for 20 minutes and 1.5 hrs. Skin hydration levels for individuals were documented by utilizing the mentioned above instruments in vivo. Results show that patterns of water profiles upon the hydration are significantly different among the individuals and these differences may be related to skin barrier function integrity. The intrinsic water content and water absorption upon the hydration were summed corresponding to different depths (3 μm and 15 μm) from the data obtained by confocal Raman microscopy. These results were correlated to the readings from electrical approaches. Superficial (3 μm) but not deeper layer (15 μm) water contents correlated well with the readings from SkinSensor. Neither depth measurements correlate well with the Skicon. There is strong correlation between the data acquired with Skicon and SkinSensor.

  4. Cost-effective approaches for high-resolution bioimaging by time-stretched confocal microscopy at 1μm

    NASA Astrophysics Data System (ADS)

    Wong, Terence T. W.; Qiu, Yi; Lau, Andy K. S.; Xu, JingJiang; Chan, Antony C. S.; Wong, Kenneth K. Y.; Tsia, Kevin K.

    2012-12-01

    Optical imaging based on time-stretch process has recently been proven as a powerful tool for delivering ultra-high frame rate (< 1MHz) which is not achievable by the conventional image sensors. Together with the capability of optical image amplification for overcoming the trade-off between detection sensitivity and speed, this new imaging modality is particularly valuable in high-throughput biomedical diagnostic practice, e.g. imaging flow cytometry. The ultra-high frame rate in time-stretch imaging is attained by two key enabling elements: dispersive fiber providing the time-stretch process via group-velocity-dispersion (GVD), and electronic digitizer. It is well-known that many biophotonic applications favor the spectral window of ~1μm. However, reasonably high GVD (< 0.1 ns/nm) in this range can only be achieved by using specialty single-mode fiber (SMF) at 1μm. Moreover, the ultrafast detection has to rely on the state-of- the-art digitizer with significantly wide-bandwidth and high sampling rate (e.g. <10 GHz, <40 GS/s). These stringent requirements imply the prohibitively high-cost of the system and hinder its practical use in biomedical diagnostics. We here demonstrate two cost-effective approaches for realizing time-stretch confocal microscopy at 1μm: (i) using the standard telecommunication SMF (e.g. SMF28) to act as a few-mode fiber (FMF) at 1μm for the time-stretch process, and (ii) implementing the pixel super-resolution (SR) algorithm to restore the high-resolution (HR) image when using a lower-bandwidth digitizer. By using a FMF (with a GVD of ~ 0.15ns/nm) and a modified pixel-SR algorithm, we can achieve time-stretch confocal microscopy at 1μm with cellular resolution (~ 3μm) at a frame rate 1 MHz.

  5. Confocal microscopy evaluation of the effect of irrigants on Enterococcus faecalis biofilm: An in vitro study.

    PubMed

    Flach, Nicole; Böttcher, Daiana Elisabeth; Parolo, Clarissa Cavalcanti Fatturi; Firmino, Luciana Bitello; Malt, Marisa; Lammers, Marcelo Lazzaron; Grecca, Fabiana Soares

    2016-01-01

    The purpose of this study was to evaluate in vitro the effectiveness of two endodontic irrigants and their association against Enterococcus faecalis (E. faecalis) by confocal laser scanning microscope (CLSM). Twenty-four bovine incisors were inoculated in a monoculture of E. faecalis for 21 days. After this period, the teeth were divided into three test groups (n = 5) according to the chemical used. Group 1: 2.5% sodium hypochlorite (NaOCl), group 2: 2% chlorhexidine gel (CHX), group 3: 2.5% NaOCl + 2% CHX gel, and two control groups (n = 3): negative control group (NCG)-sterile and without root canals preparation and positive control group (PCG)-saline. Then, the samples were stained with SYTO9 and propidium iodide and subjected to analysis by CLSM. Bacterial viability was quantitatively analyzed by the proportions of dead and live bacteria in the biofilm remnants. Statistical analysis was performed by the One-way ANOVA test (p = 0.05). No statistical differences were observed to bacterial viability. According to CLSM analysis, none of the tested substances could completely eliminate E. faecalis from the root canal space. Until now, there are no irrigant solutions able to completely eliminate E. faecalis from the root canal. In this regard, the search for irrigants able to intensify the antimicrobial action is of paramount importance. SCANNING 38:57-62, 2016. © 2015 Wiley Periodicals, Inc. PMID:26153228

  6. Physiological and morphological characterization of honeybee olfactory neurons combining electrophysiology, calcium imaging and confocal microscopy.

    PubMed

    Galizia, C G; Kimmerle, B

    2004-01-01

    The insect antennal lobe is the first brain structure to process olfactory information. Like the vertebrate olfactory bulb the antennal lobe is substructured in olfactory glomeruli. In insects, glomeruli can be morphologically identified, and have characteristic olfactory response profiles. Local neurons interconnect glomeruli, and output (projection) neurons project to higher-order brain centres. The relationship between their elaborate morphology and their physiology is not understood. We recorded electrophysiologically from antennal lobe neurons, and iontophoretically injected a calcium-sensitive dye. We then measured their spatio-temporal calcium responses to a variety of odours. Finally, we confocally reconstructed the neurons, and identified the innervated glomeruli. An increase or decrease in spiking frequency corresponded to an intracellular calcium increase or decrease in the cell. While intracellular recordings generally lasted between 10 and 30 min, calcium imaging was stable for up to 2 h, allowing a more detailed physiological analysis. The responses indicate that heterogeneous local neurons get input in the glomerulus in which they branch most strongly. In many cases, the physiological response properties of the cells corresponded to the known response profile of the innervated glomerulus. In other words, the large variety of response profiles generally found when comparing antennal lobe neurons is reduced to a more predictable response profile when the innervated glomerulus is known. PMID:14639486

  7. Automated Confocal Laser Scanning Microscopy and Semiautomated Image Processing for Analysis of Biofilms

    PubMed Central

    Kuehn, Martin; Hausner, Martina; Bungartz, Hans-Joachim; Wagner, Michael; Wilderer, Peter A.; Wuertz, Stefan

    1998-01-01

    The purpose of this study was to develop and apply a quantitative optical method suitable for routine measurements of biofilm structures under in situ conditions. A computer program was designed to perform automated investigations of biofilms by using image acquisition and image analysis techniques. To obtain a representative profile of a growing biofilm, a nondestructive procedure was created to study and quantify undisturbed microbial populations within the physical environment of a glass flow cell. Key components of the computer-controlled processing described in this paper are the on-line collection of confocal two-dimensional (2D) cross-sectional images from a preset 3D domain of interest followed by the off-line analysis of these 2D images. With the quantitative extraction of information contained in each image, a three-dimensional reconstruction of the principal biological events can be achieved. The program is convenient to handle and was generated to determine biovolumes and thus facilitate the examination of dynamic processes within biofilms. In the present study, Pseudomonas fluorescens or a green fluorescent protein-expressing Escherichia coli strain, EC12, was inoculated into glass flow cells and the respective monoculture biofilms were analyzed in three dimensions. In this paper we describe a method for the routine measurements of biofilms by using automated image acquisition and semiautomated image analysis. PMID:9797255

  8. Improved volume rendering for the visualization of living cells examined with confocal microscopy

    NASA Astrophysics Data System (ADS)

    Enloe, L. Charity; Griffing, Lawrence R.

    2000-02-01

    This research applies recent advances in 3D isosurface reconstruction to images of test spheres and plant cells growing in suspension culture. Isosurfaces that represent object boundaries are constructed with a Marching Cubes algorithm applied to simple data sets, i.e., fluorescent test beads, and complex data sets, i.e., fluorescent plant cells, acquired with a Zeiss Confocal Laser Scanning Microscope (LSM). The marching cubes algorithm treats each pixel or voxel of the image as a separate entity when performing computations. To test the spatial accuracy of the reconstruction, control data representing the volume of a 25 micrometer test shaper was obtained with the LSM. This volume was then judged on the basis of uniformity and smoothness. Using polygon decimation and smoothing algorithms available through the visualization toolkit, 'voxellated' test spheres and cells were smoothed using several different smoothing algorithms after unessential polygons were eliminated. With these improvements, the shape of subcellular organelles could be modeled at various levels of accuracy. However, in order to accurately reconstruct these complex structures of interest to us, the subcellular organelles of the endosomal system or the endoplasmic reticulum of plant cells, measurements of the accuracy of connectedness of structures need to be developed.

  9. Efficacy of photodynamic therapy against larvae of Aedes aegypti: confocal microscopy and fluorescence-lifetime imaging

    NASA Astrophysics Data System (ADS)

    de Souza, L. M.; Pratavieira, S.; Inada, N. M.; Kurachi, C.; Corbi, J.; Guimarães, F. E. G.; Bagnato, V. S.

    2014-03-01

    Recently a few demonstration on the use of Photodynamic Reaction as possibility to eliminate larvae that transmit diseases for men has been successfully demonstrated. This promising tool cannot be vastly used due to many problems, including the lake of investigation concerning the mechanisms of larvae killing as well as security concerning the use of photosensitizers in open environment. In this study, we investigate some of the mechanisms in which porphyrin (Photogem) is incorporated on the Aedes aegypti larvae previously to illumination and killing. Larvae at second instar were exposed to the photosensitizer and after 30 minutes imaged by a confocal fluorescence microscope. It was observed the presence of photosensitizer in the gut and at the digestive tract of the larva. Fluorescence-Lifetime Imaging showed greater photosensitizer concentration in the intestinal wall of the samples, which produces a strong decrease of the Photogem fluorescence lifetime. For Photodynamic Therapy exposition to different light doses and concentrations of porphyrin were employed. Three different light sources (LED, Fluorescent lamp, Sun light) also were tested. Sun light and fluorescent lamp shows close to 100% of mortality after 24 hrs. of illumination. These results indicate the potential use of photodynamic effect against the LARVAE of Aedes aegypti.

  10. Real time confocal laser scanning microscopy: Potential applications in space medicine and cell biology

    NASA Astrophysics Data System (ADS)

    Rollan, Ana; Ward, Thelma; McHale, Anthony P.

    Photodynamic therapy (PDT), in which tissues may be rendered fatally light-sensitive represents a relatively novel treatment for cancer and other disorders such as cardiovascular disease. It offers significant application to disease control in an isolated environment such as space flight. In studying PDT in the laboratory, low energy lasers such as HeNe lasers are used to activate the photosensitized cellular target. A major problem associated with these studies is that events occurring during actual exposure of the target cells to the system cannot be examined in real time. In this study HeLa cells were photosensitized and photodynamic activation was accomplished using the scanning microbeam from a confocal laser scanning microscope. This form of activation allowed for simultaneous photoactivation and observation and facilitated the recording of events at a microscopic level during photoactivation. Effects of photodynamic activation on the target cells were monitored using the fluorophores rhodamine 123 and ethidium homodimer-1. Potential applications of these forms of analyses to space medicine and cell biology are discussed.

  11. [Lipid Composition of Different Breeds of Milk Fat Globules by Confocal Raman Microscopy].

    PubMed

    Luo, Jie; Wang, Zi-wei; Song, Jun-hong; Pang, Rui-peng; Ren, Fa-zheng

    2016-01-01

    Different breeds of cows affect the form of fat exist in dairy products and the final functionality, which depended mainly on the composition of the milk fat globules(MFG). However, the relationship between the composition and breeds has not been illuminated. In our study, differences in the lipid content and fatty acid composition of native bovine, buffalo and yak MFG were investigated by confocal Raman spectroscopy. The research offers the possibility of acquisition and analysis of the Raman signal without disruption of the structure of fat globule. The results showed that yak MFG had a higher ratio of band intensities at 2 885/2 850 cm(-1), indicating yak MFG tend to have a triglyceride core in a fluid state with a milk fat globule membrane in a crystalline state. The buffalo and yak MFG had a higher level of unsaturation compared to bovine MFG, shown by a higher ratio of band intensities at 1 655/1 744 cm(-1). The results indicate that small MFG of buffalo is more unsaturated than yak, while the large MFG of buffalo is less unsaturated than the yak. Thus, selective use of cream with yak MFG would allow a harder and more costly churning process but lead to a softer butter. Buffalo milk which contains larger MFG is more suitable for cream and MFG membrane separation. PMID:27228754

  12. Modeling enzymatic hydrolysis of lignocellulosic substrates using confocal fluorescence microscopy I: filter paper cellulose.

    PubMed

    Luterbacher, Jeremy S; Moran-Mirabal, Jose M; Burkholder, Eric W; Walker, Larry P

    2015-01-01

    Enzymatic hydrolysis is one of the critical steps in depolymerizing lignocellulosic biomass into fermentable sugars for further upgrading into fuels and/or chemicals. However, many studies still rely on empirical trends to optimize enzymatic reactions. An improved understanding of enzymatic hydrolysis could allow research efforts to follow a rational design guided by an appropriate theoretical framework. In this study, we present a method to image cellulosic substrates with complex three-dimensional structure, such as filter paper, undergoing hydrolysis under conditions relevant to industrial saccharification processes (i.e., temperature of 50°C, using commercial cellulolytic cocktails). Fluorescence intensities resulting from confocal images were used to estimate parameters for a diffusion and reaction model. Furthermore, the observation of a relatively constant bound enzyme fluorescence signal throughout hydrolysis supported our modeling assumption regarding the structure of biomass during hydrolysis. The observed behavior suggests that pore evolution can be modeled as widening of infinitely long slits. The resulting model accurately predicts the concentrations of soluble carbohydrates obtained from independent saccharification experiments conducted in bulk, demonstrating its relevance to biomass conversion work. PMID:25042118

  13. Quantification of fluorescent spots in time series of 3D confocal microscopy images of endoplasmic reticulum exit sites based on the HMAX transform

    NASA Astrophysics Data System (ADS)

    Matula, Petr; Verissimo, Fatima; Wörz, Stefan; Eils, Roland; Pepperkok, Rainer; Rohr, Karl

    2010-03-01

    We present an approach for the quantification of fluorescent spots in time series of 3-D confocal microscopy images of endoplasmic reticulum exit sites of dividing cells. Fluorescent spots are detected based on extracted image regions of highest response using the HMAX transform and prior convolution of the 3-D images with a Gaussian kernel. The sensitivity of the involved parameters was studied and a quantitative evaluation using both 3-D synthetic and 3-D real data was performed. The approach was successfully applied to more than one thousand 3-D confocal microscopy images.

  14. Correlated biofilm imaging, transport and metabolism measurements via combined nuclear magnetic resonance and confocal microscopy.

    PubMed

    McLean, Jeffrey S; Ona, Ositadinma N; Majors, Paul D

    2008-02-01

    Bacterial biofilms are complex, three-dimensional communities found nearly everywhere in nature and are also associated with many human diseases. Detailed metabolic information is critical to understand and exploit beneficial biofilms as well as combat antibiotic-resistant, disease-associated forms. However, most current techniques used to measure temporal and spatial metabolite profiles in these delicate structures are invasive or destructive. Here, we describe imaging, transport and metabolite measurement methods and their correlation for live, non-invasive monitoring of biofilm processes. This novel combination of measurements is enabled by the use of an integrated nuclear magnetic resonance (NMR) and confocal laser scanning microscope (CLSM). NMR methods provide macroscopic structure, metabolic pathway and rate data, spatially resolved metabolite concentrations and water diffusion profiles within the biofilm. In particular, current depth-resolved spectroscopy methods are applied to detect metabolites in 140-190 nl volumes within biofilms of the dissimilatory metal-reducing bacterium Shewanella oneidensis strain MR-1 and the oral bacterium implicated in caries disease, Streptococcus mutans strain UA159. The perfused sample chamber also contains a transparent optical window allowing for the collection of complementary fluorescence information using a unique, in-magnet CLSM. In this example, the entire three-dimensional biofilm structure was imaged using magnetic resonance imaging. This was then correlated to a fluorescent CLSM image by employing a green fluorescent protein reporter construct of S. oneidensis. Non-invasive techniques such as described here, which enable measurements of dynamic metabolic processes, especially in a depth-resolved fashion, are expected to advance our understanding of processes occurring within biofilm communities. PMID:18253132

  15. Deep high-resolution fluorescence microscopy of full organs: the benefit of ultraminiature confocal miniprobes

    NASA Astrophysics Data System (ADS)

    Schwarz, France; Le Nevez, Arnaud; Genet, Magalie; Osdoit, Anne; Lacombe, François

    2009-02-01

    Background: Confocal Laser Endomicroscopy (CLE) based on ultraminiature miniprobes (Cellvizio®, Mauna Kea Technologies, Paris, France) is able to image the inner microstructure of retroperitoneal full organs punctured during EUS-FNA procedures, such as pancreas, liver or lymph nodes. Therefore, pCLE can provide an easy-to-use and precise adjunct tool to ultrasonographic interventions in order to target suspicious areas for biopsies in EUS-FNA. Material and Methods: Probe-based CLE (pCLE) was performed on ex-vivo surgically resected specimens after topical application of fluorophores in standard 19G and 22G needles. Two prototype miniprobes ("S-probe" 300 microns diameter, field of view 400*280 microns, and "S-probe" 650 microns diameter, field of view 500*600 microns) were then inserted into the needles and enabled visualization of the inner microstructures of uterus, lung, kidney, stomach and esophagus, in both healthy and cancerous conditions. Then, pCLE was performed in-vivo on four pigs during three NOTES and one EUS-FNA procedures after intravenous injection of 2-7mL fluorescein 1-10% using the prototype "S-probe" 350 microns diameter inserted in 19G FNA needles. Liver, pancreas and spleen were imaged. Results: During the ex-vivo experiments, pCLE made it possible to distinguish microstructures, such as alveoli and macrophages in the lungs. During the in-vivo experiments, Cellvizio® video sequences showed hepatic lobules and the portal vein in the liver, and red and white pulp in the spleen. Conclusion: pCLE provides in vivo cellular information about full organs. It has the potential to help target biopsies during EUSFNA, which suffers from a high rate of false negatives, thus increasing its sensitivity.

  16. Correlated biofilm imaging, transport and metabolism measurements via combined nuclear magnetic resonance and confocal microscopy

    PubMed Central

    McLean, Jeffrey S; Ona, Ositadinma N; Majors, Paul D

    2015-01-01

    Bacterial biofilms are complex, three-dimensional communities found nearly everywhere in nature and are also associated with many human diseases. Detailed metabolic information is critical to understand and exploit beneficial biofilms as well as combat antibiotic-resistant, disease-associated forms. However, most current techniques used to measure temporal and spatial metabolite profiles in these delicate structures are invasive or destructive. Here, we describe imaging, transport and metabolite measurement methods and their correlation for live, non-invasive monitoring of biofilm processes. This novel combination of measurements is enabled by the use of an integrated nuclear magnetic resonance (NMR) and confocal laser scanning microscope (CLSM). NMR methods provide macroscopic structure, metabolic pathway and rate data, spatially resolved metabolite concentrations and water diffusion profiles within the biofilm. In particular, current depth-resolved spectroscopy methods are applied to detect metabolites in 140–190 nl volumes within biofilms of the dissimilatory metal-reducing bacterium Shewanella oneidensis strain MR-1 and the oral bacterium implicated in caries disease, Streptococcus mutans strain UA159. The perfused sample chamber also contains a transparent optical window allowing for the collection of complementary fluorescence information using a unique, in-magnet CLSM. In this example, the entire three-dimensional biofilm structure was imaged using magnetic resonance imaging. This was then correlated to a fluorescent CLSM image by employing a green fluorescent protein reporter construct of S. oneidensis. Non-invasive techniques such as described here, which enable measurements of dynamic metabolic processes, especially in a depth-resolved fashion, are expected to advance our understanding of processes occurring within biofilm communities. PMID:18253132

  17. Miniature injection-molded optics for fiber-optic, in vivo confocal microscopy

    NASA Astrophysics Data System (ADS)

    Chidley, Matthew D.; Liang, Chen; Descour, Michael R.; Sung, Kung-Bin; Richards-Kortum, Rebecca R.; Gillenwater, Ann

    2002-12-01

    In collaboration with the Department of Biomedical Engineering at the University of Texas at Austin and the UT MD Anderson Cancer Center, a laser scanning fiber confocal reflectance microscope (FCRM) system has been designed and tested for in vivo detection of cervical and oral pre-cancers. This system along with specially developed diagnosis algorithms and techniques can achieve an unprecedented specificity and sensitivity for the diagnosis of pre-cancers in epithelial tissue. The FCRM imaging system consists of an NdYAG laser (1064 nm), scanning mirrors/optics, precision pinhole, detector, and an endoscopic probe (the objective). The objective is connected to the rest of the imaging system via a fiber bundle. The fiber bundle allows the rest of the system to be remotely positioned in a convenient location. Only the objective comes into contact with the patient. It is our intent that inexpensive mass-produced disposable endoscopic probes would be produced for large clinical trials. This paper touches on the general design process of developing a miniature, high numerical aperture, injection-molded (IM) objective. These IM optical designs are evaluated and modified based on manufacturing and application constraints. Based on these driving criteria, one specific optical design was chosen and a detailed tolerance analysis was conducted. The tolerance analysis was custom built to create a realistic statistical analysis for integrated IM lens elements that can be stacked one on top of another using micro-spheres resting in tiny circular grooves. These configurations allow each lens element to be rotated and possibly help compensate for predicted manufacturing errors. This research was supported by a grant from the National Institutes of Health (RO1 CA82880). Special thanks go to Applied Image Group/Optics for the numerous fabrication meetings concerning the miniature IM objective.

  18. Short fatigue crack characterization and detection using confocal scanning laser microscopy (CSLM)

    SciTech Connect

    Varvani-Farahani, A.; Topper, T.H.

    1997-12-31

    This paper presents a new technique for studying the growth and morphology of fatigue cracks. The technique allows short fatigue crack growth, crack depth, aspect ratio (crack depth/half crack length), and crack front configuration to be measured using a Confocal Scanning Laser Microscope (CSLM). CSLM measurements of the initial stage of crack growth in Al 2024-T351 revealed that microstructurally short fatigue cracks grew initially along a plane inclined to the applied stress. The angle of the inclined plane (Stage I crack growth) was found to be about 45 degrees to the axis of the applied tensile load. Aspect ratio and the angle of maximum shear plane (Mode II), obtained using the CSLM technique, showed a good agreement with those obtained using a Surface Removal (SR) technique. The aspect ratios obtained using the CSLM technique were found to remain constant with increasing crack length in Al 2024-T351 and SAE 1045 Steel at 0.83 and 0.80, respectively. Optical sectioning along the length of a crack revealed that the crack front in the interior of the materials has a semi-elliptical shape. These results are in good agreement with results obtained using the SR technique. The CSLM technique was employed to characterize the fracture surface of fatigue cracks in an SAE 1045 Steel. CSLM image processing of the fracture surface near the crack tip constructed a three dimensional profile of fracture surface asperities. The heights of asperities were obtained from this profile. Optical sectioning from a post-image-processed crack provided crack depth and crack mouth width at every point along the crack length for each load level. The crack opening stress was taken as the stress level at which the crack depth stopped increasing with increases in a lied stress. 6 refs., 9 figs., 1 tab.

  19. Early and delayed afterdepolarizations in rabbit heart Purkinje cells viewed by confocal microscopy.

    PubMed

    Cordeiro, J M; Bridge, J H; Spitzer, K W

    2001-05-01

    We investigated action potentials and Ca(2+) transients in rabbit Purkinje myocytes using whole cell patch clamp recordings and a confocal microscope. Purkinje cells were loaded with 5 microM Fluo-3/AM for 30min. Action potentials were elicited by application of a stimulus delivered through the recording pipettes. When Purkinje cells were stimulated in 2.0mM Ca(2+), transverse XT line scans revealed a symmetrical 'U'-shaped Ca(2+) transient demonstrating that the transient was initiated at the cell periphery. When Purkinje cells were superfused with 1 microM isoprenaline, both early and delayed afterdepolarizations were induced. XT line scans of cells exhibiting early afterdepolarizations showed a second symmetrical 'U'-shaped transient. This Ca(2+) transient was initiated at the cell periphery suggesting reactivation of the Ca(2+) current. In contrast, in Purkinje cells exhibiting delayed afterdepolarizations and a corresponding transient inward current, XT line scans revealed a heterogenous rise in Ca(2+) at both peripheral and central regions of the cell. Immunofluorescence staining of Purkinje cells with an antibody to ryanodine receptors (RyRs) revealed that RyRs are located at regularly spaced intervals throughout the interior of Purkinje cells. These results suggest that, although RyRs are located throughout Purkinje cells, only peripheral RyRs are activated to produce transients, sparks and early afterdepolarizations. During delayed afterdepolarizations, we observed a heterogenous rise in Ca(2+) at both peripheral and central regions of the cell as well as large central increases in Ca(2+). Although the latter may result from central release, we cannot exclude the possibility that it reflects Ca(2+) diffusion from subsarcolemmal sites. PMID:11292386

  20. Multidimensional visualization of healthy and sensitized rabbit knee tissues by means of confocal microscopy.

    PubMed

    Rudys, Romualdas; Bagdonas, Saulius; Kirdaitė, Gailutė; Papečkienė, Jurga; Rotomskis, Ričardas

    2015-05-01

    This study combines several fluorescence detection methods to distinguish structural features of the synovium and cartilage tissues and to visualize the localization of endogenous porphyrins in the sensitized tissues. Specimens of synovium and cartilage tissues obtained from rabbits with antigen-induced monoarthritis after intra-articular 5-aminolevulinic acid methyl ester injection and those from healthy rabbits were investigated ex vivo by means of fluorescence spectroscopy, fluorescence intensity, and lifetime microscopy. The presence of endogenous porphyrins was confirmed with the fluorescence spectra measured on sliced sensitized specimens. Application of the lifetime-gating method on fast fluorescence lifetime imaging microscopy images, allowed separate visualization of tissue structures possessing different average lifetimes. The presence of the structures has been validated by histopathological imaging based on conventional rapid hematoxylin–eosin staining of the specimens. The fluorescence lifetime of endogenous protoporphyrin IX has been assessed and employed for visualization of sensitized tissues. PMID:25672969

  1. Multidimensional visualization of healthy and sensitized rabbit knee tissues by means of confocal microscopy

    NASA Astrophysics Data System (ADS)

    Rudys, Romualdas; Bagdonas, Saulius; Kirdaitė, Gailutė; Papečkienė, Jurga; Rotomskis, Ričardas

    2015-05-01

    This study combines several fluorescence detection methods to distinguish structural features of the synovium and cartilage tissues and to visualize the localization of endogenous porphyrins in the sensitized tissues. Specimens of synovium and cartilage tissues obtained from rabbits with antigen-induced monoarthritis after intra-articular 5-aminolevulinic acid methyl ester injection and those from healthy rabbits were investigated ex vivo by means of fluorescence spectroscopy, fluorescence intensity, and lifetime microscopy. The presence of endogenous porphyrins was confirmed with the fluorescence spectra measured on sliced sensitized specimens. Application of the lifetime-gating method on fast fluorescence lifetime imaging microscopy images, allowed separate visualization of tissue structures possessing different average lifetimes. The presence of the structures has been validated by histopathological imaging based on conventional rapid hematoxylin-eosin staining of the specimens. The fluorescence lifetime of endogenous protoporphyrin IX has been assessed and employed for visualization of sensitized tissues.

  2. FluoRender: An Application of 2D Image Space Methods for 3D and 4D Confocal Microscopy Data Visualization in Neurobiology Research

    PubMed Central

    Wan, Yong; Otsuna, Hideo; Chien, Chi-Bin; Hansen, Charles

    2013-01-01

    2D image space methods are processing methods applied after the volumetric data are projected and rendered into the 2D image space, such as 2D filtering, tone mapping and compositing. In the application domain of volume visualization, most 2D image space methods can be carried out more efficiently than their 3D counterparts. Most importantly, 2D image space methods can be used to enhance volume visualization quality when applied together with volume rendering methods. In this paper, we present and discuss the applications of a series of 2D image space methods as enhancements to confocal microscopy visualizations, including 2D tone mapping, 2D compositing, and 2D color mapping. These methods are easily integrated with our existing confocal visualization tool, FluoRender, and the outcome is a full-featured visualization system that meets neurobiologists’ demands for qualitative analysis of confocal microscopy data. PMID:23584131

  3. A study of embryonic development in eriophyoid mites (Acariformes, Eriophyoidea) with the use of the fluorochrome DAPI and confocal microscopy.

    PubMed

    Chetverikov, Philipp E; Desnitskiy, Alexey G

    2016-01-01

    The embryonic development of four eriophyoid mite species, Cecidophyopsis ribis, Phytoptus avellanae, Oziella liroi and Loboquintus subsquamatus, has been studied with the use of fluorochrome DAPI and confocal microscopy. The first three nuclear divisions occur on the egg periphery (the groups of 2, 4, and 6 nuclei have been recorded), while the biggest part of yolk remains undivided. After four or five nuclear divisions all nuclei are situated only in one sector of the embryo, while other sectors contain only yolk suggesting possible meroblastic cleavage. Later, the formation of superficial blastoderm takes place. A few large yolk cells are situated inside the embryo. Germ band formation initiates as funnel-like cell invagination and leads to formation of a typical stage with four paired prosomal buds (chelicerae, palps, legs I and II). Each palp contains two lobes (anterior and posterior), the adult subcapitulum is presumably a fusion product of the anterior pair of the lobes. Neither rudiments of legs III and IV, traces of opisthosomal segments nor remnants of the prelarval exuvium under the egg shell were detected. Overall, the pattern of embryonic development in eriophyoids re-emphasizes the peculiarity of this ancient group of miniaturized phytoparasitic animals, and invites researches to pursue a deeper investigation of various fundamental aspects of this aberrant group of Acari. Further studies using various fluorescent dyes and transmission electron microscopy are needed to visualize plasma membranes and clarify the pattern of early cleavage of eriophyoids. PMID:26530993

  4. Correlating confocal microscopy and atomic force indentation reveals metastatic cancer cells stiffen during invasion into collagen I matrices.

    PubMed

    Staunton, Jack R; Doss, Bryant L; Lindsay, Stuart; Ros, Robert

    2016-01-01

    Mechanical interactions between cells and their microenvironment dictate cell phenotype and behavior, calling for cell mechanics measurements in three-dimensional (3D) extracellular matrices (ECM). Here we describe a novel technique for quantitative mechanical characterization of soft, heterogeneous samples in 3D. The technique is based on the integration of atomic force microscopy (AFM) based deep indentation, confocal fluorescence microscopy, finite element (FE) simulations and analytical modeling. With this method, the force response of a cell embedded in 3D ECM can be decoupled from that of its surroundings, enabling quantitative determination of the elastic properties of both the cell and the matrix. We applied the technique to the quantification of the elastic properties of metastatic breast adenocarcinoma cells invading into collagen hydrogels. We found that actively invading and fully embedded cells are significantly stiffer than cells remaining on top of the collagen, a clear example of phenotypical change in response to the 3D environment. Treatment with Rho-associated protein kinase (ROCK) inhibitor significantly reduces this stiffening, indicating that actomyosin contractility plays a major role in the initial steps of metastatic invasion. PMID:26813872

  5. Non-invasive depth profile imaging of the stratum corneum using confocal Raman microscopy: first insights into the method.

    PubMed

    Ashtikar, Mukul; Matthäus, Christian; Schmitt, Michael; Krafft, Christoph; Fahr, Alfred; Popp, Jürgen

    2013-12-18

    The stratum corneum is a strong barrier that must be overcome to achieve successful transdermal delivery of a pharmaceutical agent. Many strategies have been developed to enhance the permeation through this barrier. Traditionally, drug penetration through the stratum corneum is evaluated by employing tape-stripping protocols and measuring the content of the analyte. Although effective, this method cannot provide a detailed information regarding the penetration pathways. To address this issue various microscopic techniques have been employed. Raman microscopy offers the advantage of label free imaging and provides spectral information regarding the chemical integrity of the drug as well as the tissue. In this paper we present a relatively simple method to obtain XZ-Raman profiles of human stratum corneum using confocal Raman microscopy on intact full thickness skin biopsies. The spectral datasets were analysed using a spectral unmixing algorithm. The spectral information obtained, highlights the different components of the tissue and the presence of drug. We present Raman images of untreated skin and diffusion patterns for deuterated water and beta-carotene after Franz-cell diffusion experiment. PMID:23764946

  6. Intense pulsed light therapy for superficial pigmented lesions evaluated by reflectance-mode confocal microscopy and optical coherence tomography.

    PubMed

    Yamashita, Toyonobu; Negishi, Kei; Hariya, Takeshi; Kunizawa, Naomi; Ikuta, Kaori; Yanai, Motohiro; Wakamatsu, Shingo

    2006-10-01

    Intense pulsed light (IPL) therapy is reported to be effective for pigment removal from pigmented lesions. However, the dynamic mechanism of pigment removal by IPL therapy is not completely understood. We investigated the mechanism of IPL therapy for the removal of pigmented skin lesions through non-invasive observation of the epidermis. Subjects with solar lentigines on the face were treated with three sessions of IPL therapy. The solar lentigines were observed on consecutive days after the treatments using reflectance-mode confocal microscopy (RCM) and optical coherence tomography (OCT). In addition, desquamated microcrusts that formed after the treatment were investigated by transmission electron microscopy (TEM). The images of RCM and OCT showed that the melanosomes in the epidermal basal layer rapidly migrated to the skin surface. The TEM images of the extruded microcrusts revealed numerous melanosomes together with cell debris. It was also found that the IPL irradiated melanocytes in the lesions seemed to be left intact and resumed their high activity after treatment. We conclude that IPL therapy effectively removed the dense melanosomes in the epidermal-basal layer. However, additional application of suppressive drugs such as hydroquinone or Q-switched laser irradiation is necessary to suppress the remaining active melanocytes. PMID:16741506

  7. Enhancing 3-D cell structures in confocal and STED microscopy: a joint model for interpolation, deblurring and anisotropic smoothing

    NASA Astrophysics Data System (ADS)

    Persch, Nico; Elhayek, Ahmed; Welk, Martin; Bruhn, Andrés; Grewenig, Sven; Böse, Katharina; Kraegeloh, Annette; Weickert, Joachim

    2013-12-01

    This paper proposes an advanced image enhancement method that is specifically tailored towards 3-D confocal and STED microscopy imagery. Our approach unifies image denoising, deblurring and interpolation in one joint method to handle the typical weaknesses of these advanced microscopy techniques: out-of-focus blur, Poisson noise and low axial resolution. In detail, we propose the combination of (i) Richardson-Lucy deconvolution, (ii) image restoration and (iii) anisotropic inpainting in one single scheme. To this end, we develop a novel PDE-based model that realizes these three ideas. First we consider a basic variational image restoration functional that is turned into a joint interpolation scheme by extending the regularization domain. Next, we integrate the variational representation of Richardson-Lucy deconvolution into our model, and illustrate its relation to Poisson distributed noise. In the following step, we supplement the components of our model with sub-quadratic penalization strategies that increase the robustness of the overall method. Finally, we consider the associated minimality conditions, where we exchange the occurring scalar-valued diffusivity function by a so-called diffusion tensor. This leads to an anisotropic regularization that is aligned with structures in the evolving image. As a further contribution of this paper, we propose a more efficient and faster semi-implicit iteration scheme that also increases the stability. Our experiments on real data sets demonstrate that this joint model achieves a superior reconstruction quality of the recorded cell.

  8. Correlating confocal microscopy and atomic force indentation reveals metastatic cancer cells stiffen during invasion into collagen I matrices

    PubMed Central

    Staunton, Jack R.; Doss, Bryant L.; Lindsay, Stuart; Ros, Robert

    2016-01-01

    Mechanical interactions between cells and their microenvironment dictate cell phenotype and behavior, calling for cell mechanics measurements in three-dimensional (3D) extracellular matrices (ECM). Here we describe a novel technique for quantitative mechanical characterization of soft, heterogeneous samples in 3D. The technique is based on the integration of atomic force microscopy (AFM) based deep indentation, confocal fluorescence microscopy, finite element (FE) simulations and analytical modeling. With this method, the force response of a cell embedded in 3D ECM can be decoupled from that of its surroundings, enabling quantitative determination of the elastic properties of both the cell and the matrix. We applied the technique to the quantification of the elastic properties of metastatic breast adenocarcinoma cells invading into collagen hydrogels. We found that actively invading and fully embedded cells are significantly stiffer than cells remaining on top of the collagen, a clear example of phenotypical change in response to the 3D environment. Treatment with Rho-associated protein kinase (ROCK) inhibitor significantly reduces this stiffening, indicating that actomyosin contractility plays a major role in the initial steps of metastatic invasion. PMID:26813872

  9. Correlating confocal microscopy and atomic force indentation reveals metastatic cancer cells stiffen during invasion into collagen I matrices

    NASA Astrophysics Data System (ADS)

    Staunton, Jack R.; Doss, Bryant L.; Lindsay, Stuart; Ros, Robert

    2016-01-01

    Mechanical interactions between cells and their microenvironment dictate cell phenotype and behavior, calling for cell mechanics measurements in three-dimensional (3D) extracellular matrices (ECM). Here we describe a novel technique for quantitative mechanical characterization of soft, heterogeneous samples in 3D. The technique is based on the integration of atomic force microscopy (AFM) based deep indentation, confocal fluorescence microscopy, finite element (FE) simulations and analytical modeling. With this method, the force response of a cell embedded in 3D ECM can be decoupled from that of its surroundings, enabling quantitative determination of the elastic properties of both the cell and the matrix. We applied the technique to the quantification of the elastic properties of metastatic breast adenocarcinoma cells invading into collagen hydrogels. We found that actively invading and fully embedded cells are significantly stiffer than cells remaining on top of the collagen, a clear example of phenotypical change in response to the 3D environment. Treatment with Rho-associated protein kinase (ROCK) inhibitor significantly reduces this stiffening, indicating that actomyosin contractility plays a major role in the initial steps of metastatic invasion.

  10. Reconstructing skeletal fiber arrangement and growth mode in the coral Porites lutea (Cnidaria, Scleractinia): a confocal Raman microscopy study

    NASA Astrophysics Data System (ADS)

    Wall, M.; Nehrke, G.

    2012-11-01

    Confocal Raman microscopy (CRM) mapping was used to investigate the microstructural arrangement and organic matrix distribution within the skeleton of the coral Porites lutea. Relative changes in the crystallographic orientation of crystals within the fibrous fan-system could be mapped, without the need to prepare thin sections, as required if this information is obtained by polarized light microscopy. Simultaneously, incremental growth lines can be visualized without the necessity of etching and hence alteration of sample surface. Using these methods two types of growth lines could be identified: one corresponds to the well-known incremental growth layers, whereas the second type of growth lines resemble denticle finger-like structures (most likely traces of former spines or skeletal surfaces). We hypothesize that these lines represent the outer skeletal surface before another growth cycle of elongation, infilling and thickening of skeletal areas continues. We show that CRM mapping with high spatial resolution can significantly improve our understanding of the micro-structural arrangement and growth patterns in coral skeletons.

  11. Noninvasive in vivo confocal laser scanning microscopy is effective in differentiating allergic from nonallergic equivocal patch test reactions.

    PubMed

    Slodownik, D; Levi, A; Lapidoth, M; Ingber, A; Horev, L; Enk, C D

    2015-04-01

    Patch testing is the gold standard for the validation of contact dermatitis. It relies on the subjective scoring by an evaluator of the inflammatory reaction induced by an allergen applied to the skin. Equivocal reactions imply faint erythema and could represent allergic, irritant, or negative reactions. They constitute approximately 1 % of the positive reactions encountered in patch test practice. Histological evaluation of the equivocal reaction has proven helpful for the correct interpretation but is however time consuming, and its invasive nature is often unacceptable to the patient. In vivo confocal laser scanning microscopy (CLSM) is a novel, noninvasive imaging technique which permits real-time visualization of skin structures and lesions at a resolution close to that obtained by conventional histology. CLSM has been successfully applied for the differentiation between clinically clear-cut allergic and irritant patch test reactions. The objective of this study is to determine the relevance of CLSM in differentiating between allergic, irritant, and negative equivocal patch test reactions. Fifteen patients who underwent patch testing in our clinic were observed as having 20 equivocal reactions. All 20 reactions were evaluated using in vivo CLSM and compared with adjacent normal skin. In vivo CLSM evaluation revealed that 8 of the 20 equivocal reactions (40 %) showed confocal patterns consistent with the patterns encountered in positive allergic reactions. Anamnestic exposure, i.e., detailed assessment of previous related contact with these allergens, confirmed high relevance rates. In vivo CLSM is useful in differentiating between allergic, irritant, and negative equivocal patch test reactions, a differentiation that cannot be made by conventional clinical patch test reading. PMID:25604734

  12. Confocal microscopy evidence of prion protein fragment hPrP[173-195] internalization in rat B104 neuroblastoma cell line.

    PubMed

    Urso, Emanuela; Acierno, Raffaele; Lionetto, Maria Giulia; Rizzello, Antonia; Papa, Andrea; Schettino, Trifone; Maffia, Michele

    2009-01-01

    The cytotoxicity of hPrP[173-195] prion peptide against a neuroblastoma cell model was found independent of its tendency to aggregate over time. Cytosolic and nuclear inclusions of peptide were highlighted by confocal microscopy, suggesting a role as a transcription factor in activating signal transduction pathways involved in cell toxicity. PMID:20001920

  13. Measuring NLR Oligomerization II: Detection of ASC Speck Formation by Confocal Microscopy and Immunofluorescence.

    PubMed

    Beilharz, Michael; De Nardo's, Dominic; Latz, Eicke; Franklin, Bernardo S

    2016-01-01

    Inflammasome assembly results in the formation of a large intracellular protein scaffold driven by the oligomerization of the adaptor protein apoptosis-associated speck-like protein containing a CARD (ASC). Following inflammasome activation, ASC polymerizes to form a large singular structure termed the ASC "speck," which is crucial for recruitment of caspase-1 and its inflammatory activity. Hence, due to the considerably large size of these structures, ASC specks can be easily visualized by microscopy as a simple upstream readout for inflammasome activation. Here, we provide two detailed protocols for imaging ASC specks: by (1) live-cell imaging of monocyte/macrophage cell lines expressing a fluorescently tagged version of ASC and (2) immunofluorescence of endogenous ASC in cell lines and human immune cells. In addition, we outline a protocol for increasing the specificity of ASC antibodies for use in immunofluorescence. PMID:27221487

  14. Characterization of Nanoscale Transformations in Polyelectrolyte Multilayers Fabricated from Plasmid DNA Using Laser Scanning Confocal Microscopy in Combination with Atomic Force Microscopy

    PubMed Central

    Fredin, Nathaniel J.; Flessner, Ryan M.; Jewell, Christopher M.; Bechler, Shane L.; Buck, Maren E.; Lynn, David M.

    2010-01-01

    Laser scanning confocal microscopy (LSCM) and atomic force microscopy (AFM) were used to characterize changes in nanoscale structure that occur when ultrathin polyelectrolyte multilayers (PEMs) are incubated in aqueous media. The PEMs investigated here were fabricated by the deposition of alternating layers of plasmid DNA and a hydrolytically degradable polyamine onto a precursor film composed of alternating layers of linear poly(ethylene imine) (LPEI) and sodium poly(styrene sulfonate) (SPS). Past studies of these materials in the context of gene delivery revealed transformations from a morphology that is smooth and uniform to one characterized by the formation of nanometer-scale particulate structures. We demonstrate that in-plane registration of LSCM and AFM images acquired from the same locations of films fabricated using fluorescently labeled polyelectrolytes allows the spatial distribution of individual polyelectrolyte species to be determined relative to the locations of topographic features that form during this transformation. Our results suggest that this physical transformation leads to a morphology consisting of a relatively less disturbed portion of film composed of polyamine and DNA juxtaposed over an array of particulate structures composed predominantly of LPEI and SPS. Characterization by scanning electron microscopy (SEM) and energy-dispersive X-ray (EDX) microanalysis provides additional support for this interpretation. The combination of these different microscopy techniques provides insight into the structures and dynamics of these multicomponent thin films that cannot be achieved using any one method alone, and that could prove useful for the further development of these assemblies as platforms for the surface-mediated delivery of DNA. PMID:20155860

  15. Confocal microscopy as a useful approach to describe gill rakers of Asian species of carp and native filter-feeding fishes of the upper Mississippi River system

    USGS Publications Warehouse

    Liza R. Walleser; D.R. Howard; Sandheinrich, Mark B.; Gaikowski, Mark P.; Amberg, Jon J.

    2014-01-01

    To better understand potential diet overlap among exotic Asian species of carp and native species of filter-feeding fishes of the upper Mississippi River system, microscopy was used to document morphological differences in the gill rakers. Analysing samples first with light microscopy and subsequently with confocal microscopy, the three-dimensional structure of gill rakers in Hypophthalmichthys molitrix,Hypophthalmichthys nobilis and Dorosoma cepedianum was more thoroughly described and illustrated than previous work with traditional microscopy techniques. The three-dimensional structure of gill rakers in Ictiobus cyprinellus was described and illustrated for the first time.

  16. The use of confocal microscopy in the investigation of cell structure and function in the heart, vascular endothelium and smooth muscle cells.

    PubMed

    Bkaily, G; Pothier, P; D'Orléans-Juste, P; Simaan, M; Jacques, D; Jaalouk, D; Belzile, F; Hassan, G; Boutin, C; Haddad, G; Neugebauer, W

    1997-07-01

    In recent years, fluorescence microscopy imaging has become an important tool for studying cell structure and function. This non invasive technique permits characterization, localisation and qualitative quantification of free ions, messengers, pH, voltage and a pleiad of other molecules constituting living cells. In this paper, we present results using various commercially available fluorescent probes as well as some developed in our laboratory and discuss the advantages and limitations of these probes in confocal microscopy studies of the cardiovascular system. PMID:9278244

  17. Confocal Raman microscopy in sclerochronology: A powerful tool to visualize environmental information in recent and fossil biogenic archives

    NASA Astrophysics Data System (ADS)

    Beierlein, Lars; Nehrke, Gernot; Brey, Thomas

    2015-01-01

    hard parts and skeletons of aquatic organisms often archive information of past environmental conditions. Deciphering such information forms an essential contribution to our understanding of past climate conditions and thus our ability to mitigate the climatic, ecological, and social impacts of a rapidly changing environment. Several established techniques enable the visualization and reliable use of the information stored in anatomical features of such biogenic archives, i.e., its growth patterns. Here, we test whether confocal Raman microscopy (CRM) is a suitable method to reliably identify growth patterns in the commonly used archive Arctica islandica and the extinct species Pygocardia rustica (both Bivalvia). A modern A. islandica specimen from Norway has been investigated to verify the general feasibility of CRM, resulting in highly correlated standardized growth indices (r > 0.96 p < 0.0001) between CRM-derived measurements and measurements derived from the established methods of fluorescence microscopy and Mutvei's solution staining. This demonstrates the general suitability of CRM as a method for growth pattern evaluation and cross-dating applications. Moreover, CRM may be of particular interest for paleoenvironmental reconstructions, as it yielded superior results in the analysis of fossil shell specimens (A. islandica and P. rustica) compared to both Mutvei staining and fluorescence microscopy. CRM is a reliable and valuable tool to visualize internal growth patterns in both modern and fossil calcium carbonate shells that notably also facilitates the assessment of possible diagenetic alteration prior to geochemical analysis without geochemically compromising the sample. We strongly recommend the CRM approach for the visualization of growth patterns in fossil biogenic archives, where conventional methods fail to produce useful results.

  18. Oral biofilm analysis of palatal expanders by fluorescence in-situ hybridization and confocal laser scanning microscopy.

    PubMed

    Klug, Barbara; Rodler, Claudia; Koller, Martin; Wimmer, Gernot; Kessler, Harald H; Grube, Martin; Santigli, Elisabeth

    2011-01-01

    Confocal laser scanning microscopy (CLSM) of natural heterogeneous biofilm is today facilitated by a comprehensive range of staining techniques, one of them being fluorescence in situ hybridization (FISH). We performed a pilot study in which oral biofilm samples collected from fixed orthodontic appliances (palatal expanders) were stained by FISH, the objective being to assess the three-dimensional organization of natural biofilm and plaque accumulation. FISH creates an opportunity to stain cells in their native biofilm environment by the use of fluorescently labeled 16S rRNA-targeting probes. Compared to alternative techniques like immunofluorescent labeling, this is an inexpensive, precise and straightforward labeling technique to investigate different bacterial groups in mixed biofilm consortia. General probes were used that bind to Eubacteria (EUB338 + EUB338II + EUB338III; hereafter EUBmix), Firmicutes (LGC354 A-C; hereafter LGCmix), and Bacteroidetes (Bac303). In addition, specific probes binding to Streptococcus mutans (MUT590) and Porphyromonas gingivalis (POGI) were used. The extreme hardness of the surface materials involved (stainless steel and acrylic resin) compelled us to find new ways of preparing the biofilm. As these surface materials could not be readily cut with a cryotome, various sampling methods were explored to obtain intact oral biofilm. The most workable of these approaches is presented in this communication. Small flakes of the biofilm-carrying acrylic resin were scraped off with a sterile scalpel, taking care not to damage the biofilm structure. Forceps were used to collect biofilm from the steel surfaces. Once collected, the samples were fixed and placed directly on polysine coated glass slides. FISH was performed directly on these slides with the probes mentioned above. Various FISH protocols were combined and modified to create a new protocol that was easy to handle. Subsequently the samples were analyzed by confocal laser scanning

  19. Visualizing G protein-coupled receptors in action through confocal microscopy techniques.

    PubMed

    Castillo-Badillo, Jean A; Cabrera-Wrooman, Alejandro; García-Sáinz, J Adolfo

    2014-05-01

    G protein-coupled receptors constitute one of the most abundant entities in cellular communication. Elucidation of their structure and function as well as of their regulation began 30-40 years ago and the advance has markedly increased during the last 15 years. They participate in a plethora of cell functions such as regulation of metabolic fluxes, contraction, secretion, differentiation, or proliferation, and in essentially all activities of our organism; these receptors are targets of a large proportion of prescribed and illegal drugs. Fluorescence techniques have been used to study receptors for many years. The experimental result was usually a two-dimensional (2D) micrograph. Today, the result can be a spatiotemporal (four-dimensional, 4D) movie. Advances in microscopy, fluorescent protein design, and computer-assisted analysis have been of great importance to increase our knowledge on receptor regulation and function and create opportunities for future research. In this review we briefly depict the state of the art of the G protein-coupled receptor field and the methodologies used to study G protein-coupled receptor location, trafficking, dimerization, and other types of receptor-protein interaction. Fluorescence techniques now permit the capture of receptor images with high resolution and, together with a variety of fluorescent dyes that color organelles (such as the plasma membrane or the nucleus) or the cytoskeleton, allow researchers to obtain a much clearer idea of what is taking place at the cellular level. These developments are changing the way we explore cell communication and signal transduction, permitting deeper understanding of the physiological and pathophysiological processes. PMID:24751328

  20. [PECULIAR PROPERTIES OF SOME COMPONENTS OF MORPHOLOGICAL STRUCTURE IN A PLANT CELL VACUOLE REVEALED BY CONFOCAL MICROSCOPY].

    PubMed

    Nurminsky, V N; Rakevich, A L; Martynovich, E F; Ozolina, N V; Nesterkina, I S; Kolesnikova, E V; Pilipchenko, A A; Salyaev, R K; Chernyshov, M Yu

    2015-01-01

    Results of investigations of peculiar properties related to the structure of plant cell vacuolar membranes are discussed. The study was carried out using confocal microscopy, which allowed us in the process of scanning to identify membrane tubes and vesicules in the preparations of isolated vacuoles. Such membrane tubes were found both inside and outside the vacuoles, and, in the case of scanning intermittently at equal time intervals, transition of vesicles with the membrane tube was observed. Furthermore, scanning of isolated vacuoles was conducted at various distances from the glass substrate. Each time, in the upper area of the isolated vacuole lying on the substrate, we observed a large segment of vacuolar membrane and registered the effect of highly intensive fluorescing of some of membrane segments. The distributions of laurdan fluorescence generalized polarization (GP) values for the vacuolar membrane on the whole and for the intensively fluorescing membrane segments have been obtained. We have found that the microviscosity of the intensively fluorescing membrane segments essentially differs from that of the rest part of the membrane. PMID:26495711

  1. Coupling Electrochemistry with Fluorescence Confocal Microscopy To Investigate Electrochemical Reactivity: A Case Study with the Resazurin-Resorufin Fluorogenic Couple.

    PubMed

    Doneux, Thomas; Bouffier, Laurent; Goudeau, Bertrand; Arbault, Stéphane

    2016-06-21

    The redox couple resazurin-resorufin exhibits electrofluorochromic properties which are investigated herein by absorption and fluorescence spectroelectrochemistry and by electrochemically coupled-fluorescence confocal laser scanning microscopy (EC-CLSM). At pH 10, the highly fluorescent resorufin dye is generated at the electrode surface by the electrochemical reduction of the poorly fluorescent resazurin. Performing EC-CLSM at electrode surfaces allows to monitor spatially resolved electrochemical processes in situ and in real time. Using a small (315 μm diameter) cylindrical electrode, a steady-state diffusion layer builds up under potentiostatic conditions at -0.45 V vs Ag|AgCl. Mapping the fluorescence intensity in 3D by CLSM enables us to reconstruct the relative concentration profile of resorufin around the electrode. The comparison of the experimental diffusion-profile with theoretical predictions demonstrates that spontaneous convection has a direct influence on the actual thickness of the diffusion layer, which is smaller than the value predicted for a purely diffusional transport. This study shows that combining fluorescence CLSM with electrochemistry is a powerful tool to study electrochemical reactivity at a spatially resolved level. PMID:27247989

  2. Studying DEHP migration in plasticized PVC used for blood bags by coupling Raman confocal microscopy to UV spectroscopy.

    PubMed

    Al Salloum, H; Saunier, J; Tfayli, A; Yagoubi, N

    2016-04-01

    Plasticized PVC is widely used to make medical devices such as tubing, perfusion bags and blood bags. By using confocal Raman microscopy on a PVC sheet plasticized with around 40% of di-(2-ethylhexyl)phthalate (DEHP), we propose a simple and sensitive approach to studying and understanding the diffusion of plasticizers from polymers into the surrounding media. Moreover, we sought to correlate our findings to standard measurements conducted by UV spectroscopy. This study showed differences in the concentration gradient observed due to the diffusion of the plasticizer inside a PVC sheet. We can thus follow the critical DEHP ratios that can impact the diffusion process. Water and ethanol were chosen as storage media: in ethanol, the lowest concentration of DEHP was observed at the surface resulting in the formation of a less plasticized layer near the interface; unlike ethanol, PVC sheets stored in water showed a greater concentration of DEHP on the film surface as an exudation of DEHP onto the surface. PMID:26838824

  3. Reflectance confocal microscopy and dermoscopy for in vivo, non-invasive skin imaging of superficial basal cell carcinoma

    PubMed Central

    GHITA, MIHAELA A.; CARUNTU, CONSTANTIN; ROSCA, ADRIAN E.; KALESHI, HARILLAQ; CARUNTU, ANA; MORARU, LILIANA; DOCEA, ANCA OANA; ZURAC, SABINA; BODA, DANIEL; NEAGU, MONICA; SPANDIDOS, DEMETRIOS A.; TSATSAKIS, ARISTIDIS M.

    2016-01-01

    Superficial basal cell carcinoma (sBCC) is the second most frequent histological type of basal cell carcinoma (BCC), usually requiring a skin biopsy to confirm the diagnosis. It usually appears on the upper trunk and shoulders as erythematous and squamous lesions. Although it has a slow growth and seldom metastasizes, early diagnosis and management are of crucial importance in preventing local invasion and subsequent disfigurement. Dermoscopy is nowadays an indispensable tool for the dermatologist when evaluating skin tumors. Reflectance confocal microscopy (RCM) is a novel imaging technique that allows the non-invasive, in vivo quasi-microscopic morphological and dynamic assessment of superficial skin tumors. Moreover, it offers the advantage of performing infinite repeatable determinations to monitor disease progression and non-surgical treatment for sBCC. Herein, we present three lesions of sBCC evaluated using in vivo and non-invasive imaging techniques, emphasizing the usefulness of combining RCM with dermoscopy for increasing the diagnostic accuracy of sBCC. PMID:27123056

  4. Relationship between Histological and Clinical Course of Psoriasis: A Pilot Investigation by Reflectance Confocal Microscopy during Goeckerman Treatment.

    PubMed

    Archid, Rami; Duerr, Hans Peter; Patzelt, Alexa; Philipp, Sandra; Röwert-Huber, Hans-Joachim; Ulrich, Martina; Meinke, Martina Claudia; Knorr, Fanny; Lademann, Jürgen

    2016-01-01

    Alterations of the skin microvasculature are known to play an important role in the development and maintenance of psoriatic skin lesions. In this study, we investigated lesional skin in 11 psoriatic patients during a modified Goeckerman treatment using reflectance confocal microscopy (RCM) to study the relationship between clinical clearance and histological normalization of psoriatic skin and the significance of histological abnormalities on the course of disease. The treatment regimen resulted in a significant reduction of the Psoriasis Area and Severity Index (PASI) as well as capillary and papillary diameters (p < 0.0001). The capillary and papillary diameters were still enlarged when compared to those in normal skin (p < 0.001). Capillary and papillary diameters correlated with each other prior to and after treatment (correlation coefficient = 0.63 and 0.64, p = 0.01 and 0.002, respectively) but not with the PASI. Capillary and papillary diameters after treatment and percentage reduction of the PASI during treatment seemed to be better predictors for the clinical course of relapse than the PASI after treatment. These findings make the subclinical changes of psoriatic skin vessels and dermal papillae a legitimate target for treatment. Further investigations of a large group of patients are needed to evaluate the potential of RCM findings as successor of the PASI in the monitoring of psoriasis. PMID:26841099

  5. Effect of clearing agents on scattering coefficient and anisotropy of scattering of dermis studied by reflectance confocal microscopy

    NASA Astrophysics Data System (ADS)

    Jacques, S. L.; Samatham, R.; Phillips, K. G.

    2011-03-01

    Optical clearing of mouse dermis by glycerol was tested by reflectance-mode confocal microscopy (rCSLM) using 488- nm light. The reflectance signal R(z) was acquired as a function of the depth of the focus (z) within the upper 100 μm of freshly excised mouse dermis. The results specify the scattering coefficient (μs [cm-1]) and the anisotropy of scattering (g [dimensionless]). The absorption is too low to exert an effect. The results, published in Samatham et al., Journal of Innovative Optical Health Sciences 2010, 3(3):183-188, described how the clearing effect of glycerol was to increase g toward nearly 1.0, while having only a modest effect on μs. In other words, glycerol caused light scattering to become very forward-directed, but did not strongly alter the number of scattering events per unit length of photon path. This paper discusses the possible mechanism of action that is responsible for this clearing effect.

  6. Direct observation of the asphaltene structure in paving-grade bitumen using confocal laser-scanning microscopy.

    PubMed

    Bearsley, S; Forbes, A; Haverkamp, R G

    2004-08-01

    The structure of the asphaltene phase in the bitumen is believed to have a significant effect on its rheological properties. It has traditionally been difficult to observe the asphaltene phase in unaltered samples of bitumen. The maltenes are thought to form a continuous phase in which the asphaltenes are 'dispersed'. In this study, confocal laser-scanning microscopy (CLSM) operating in fluorescence mode was used to examine the structure of paving-grade Safaniya and San Joaquin bitumen. The asphaltene fraction fluoresces in the 515-545 nm wavelength range when irradiated with light with a wavelength of 488 nm. The major advantages of CLSM are that the bitumen sample requires little pretreatment or preparation that may affect the original dispersion of asphaltenes and the bitumen is observed at ambient temperature and pressure. This reduces the possibility of producing images that are not representative of the original material. CLSM was able to show the distribution of maltene and asphaltene components in bitumen. The asphaltene aggregates in the bitumen were observed to be 2-7 micro m in size and formed a dispersed 'sol' structure in the continuous maltene matrix rather than a network 'gel' structure. Surprisingly, the structure and fluorescence of the asphaltene phase does not appear to alter radically upon oxidative ageing. The structure of the asphaltene phase of an AR4000 San Joaquin bitumen was found to be more homogeneous than that of Safaniya bitumen, illustrating the range of structures that can be observed in bitumens by this method. PMID:15315501

  7. Using confocal Raman microscopy to real-time monitor poplar cell wall swelling and dissolution during ionic liquid pretreatment.

    PubMed

    Zhang, Xun; Ma, Jing; Ji, Zhe; Yang, Gui-Hua; Zhou, Xia; Xu, Feng

    2014-08-01

    The ionic liquids (ILs) are recognized as the potential solvents for the pretreatment of lignocellulosic materials before biomass conversion. However, little knowledge of how the cell wall of biomass responds to the IL locally and dynamically during the pretreatment is available. In the current work, the process of IL pretreatment of poplar using 1-ethyl-3-methylimidazolium acetate ([C2 mim][OAc]) was real-time monitored on a cellular level by employing confocal Raman microscopy. The results showed that the biomass dissolution during the IL pretreatment can be clearly divided into two stages: (1) slow penetration of IL, and (2) rapid dissolution of lignin and carbohydrates. In this case, the onset of the dissolution of these compositions occurred only after the cell wall of biomass swelled to a certain extent. Because the first stage was a slow process which determined the process reaction rate, it can be deduced that enhancing the penetration capacity of IL was crucial for improving the pretreatment efficiency. Based on the obtained results, a model was proposed to better understand how the plant cell wall responds to the IL before, during, and after pretreatment. PMID:24861030

  8. Particle tracking using confocal microscopy to probe the microrheology in a phase-separating emulsion containing nonadsorbing polysaccharide.

    PubMed

    Moschakis, Thomas; Murray, Brent S; Dickinson, Eric

    2006-05-01

    Brownian diffusion of fluorescent microspheres (0.21, 0.5, and 0.89 microm diameter) in conjunction with confocal microscopy has been used to monitor the microrheology of phase-separated regions in a protein-stabilized oil-in-water emulsion containing various low concentrations of a nonadsorbing polysaccharide, xanthan gum. The sensitivity and reliability of the technique has been demonstrated in test experiments on (i) aqueous glycerol solutions and (ii) concentrated surfactant-stabilized emulsions (30-60 vol % oil, 1-2 wt % Tween 20). From particle tracking measurements on the caseinate-stabilized emulsions (30 vol % oil, 1.4 wt % sodium caseinate, pH 7) containing xanthan (0.03-0.07 wt %), the apparent viscosity in the oil-droplet-rich regions has been estimated to be up to 10(3) times higher than that in the phase-separated xanthan-rich regions. This means that our previously determined shape relaxation times for xanthan-containing blobs in the same systems can be attributed to the dominant viscoelasticity of the surrounding regions of concentrated oil droplets and not to the rheology of the xanthan-rich blobs themselves. These data provide clear and unequivocal evidence for the dominant role of the interconnected depletion-flocculated network of oil droplets in the physicochemical mechanism by which hydrocolloid thickeners control the creaming instability of concentrated oil-in-water emulsions. PMID:16649786

  9. Nano-zymography Using Laser-Scanning Confocal Microscopy Unmasks Proteolytic Activity of Cell-Derived Microparticles.

    PubMed

    Briens, Aurélien; Gauberti, Maxime; Parcq, Jérôme; Montaner, Joan; Vivien, Denis; Martinez de Lizarrondo, Sara

    2016-01-01

    Cell-derived microparticles (MPs) are nano-sized vesicles released by activated cells in the extracellular milieu. They act as vectors of biological activity by carrying membrane-anchored and cytoplasmic constituents of the parental cells. Although detection and characterization of cell-derived MPs may be of high diagnostic and prognostic values in a number of human diseases, reliable measurement of their size, number and biological activity still remains challenging using currently available methods. In the present study, we developed a protocol to directly image and functionally characterize MPs using high-resolution laser-scanning confocal microscopy. Once trapped on annexin-V coated micro-wells, we developed several assays using fluorescent reporters to measure their size, detect membrane antigens and evaluate proteolytic activity (nano-zymography). In particular, we demonstrated the applicability and specificity of this method to detect antigens and proteolytic activities of tissue-type plasminogen activator (tPA), urokinase and plasmin at the surface of engineered MPs from transfected cell-lines. Furthermore, we were able to identify a subset of tPA-bearing fibrinolytic MPs using plasma samples from a cohort of ischemic stroke patients who received thrombolytic therapy and in an experimental model of thrombin-induced ischemic stroke in mice. Overall, this method is promising for functional characterization of cell-derived MPs. PMID:27022410

  10. In Situ Analysis of a Silver Nanoparticle-Precipitating Shewanella Biofilm by Surface Enhanced Confocal Raman Microscopy

    PubMed Central

    Schkolnik, Gal; Schmidt, Matthias; Mazza, Marco G.; Harnisch, Falk; Musat, Niculina

    2015-01-01

    Shewanella oneidensis MR-1 is an electroactive bacterium, capable of reducing extracellular insoluble electron acceptors, making it important for both nutrient cycling in nature and microbial electrochemical technologies, such as microbial fuel cells and microbial electrosynthesis. When allowed to anaerobically colonize an Ag/AgCl solid interface, S. oneidensis has precipitated silver nanoparticles (AgNp), thus providing the means for a surface enhanced confocal Raman microscopy (SECRaM) investigation of its biofilm. The result is the in-situ chemical mapping of the biofilm as it developed over time, where the distribution of cytochromes, reduced and oxidized flavins, polysaccharides and phosphate in the undisturbed biofilm is monitored. Utilizing AgNp bio-produced by the bacteria colonizing the Ag/AgCl interface, we could perform SECRaM while avoiding the use of a patterned or roughened support or the introduction of noble metal salts and reducing agents. This new method will allow a spatially and temporally resolved chemical investigation not only of Shewanella biofilms at an insoluble electron acceptor, but also of other noble metal nanoparticle-precipitating bacteria in laboratory cultures or in complex microbial communities in their natural habitats. PMID:26709923

  11. <