Science.gov

Sample records for congenital myotonic dystrophy

  1. Paternal transmission of congenital myotonic dystrophy.

    PubMed Central

    Bergoffen, J; Kant, J; Sladky, J; McDonald-McGinn, D; Zackai, E H; Fischbeck, K H

    1994-01-01

    The congenital form of myotonic dystrophy is reported to be almost exclusively, if not exclusively, maternally transmitted. We present a case of congenital myotonic dystrophy which was inherited from a mildly affected father. This family illustrates that the congenital form of myotonic dystrophy can occur without intrauterine or other maternal factors related to the disease. The possibility of paternal transmission of the congenital form of myotonic dystrophy could be considered when counselling myotonic dystrophy patients and their families. Images PMID:7966187

  2. Myotonic Dystrophy and Facioscapulohumeral Muscular Dystrophy Registry

    ClinicalTrials.gov

    2016-08-26

    Myotonic Dystrophy; Facioscapulohumeral Muscular Dystrophy; Muscular Dystrophy; Myotonic Dystrophy Type 1; Myotonic Dystrophy Type 2; Congenital Myotonic Dystrophy; PROMM (Proximal Myotonic Myopathy); Steinert's Disease; Myotonic Muscular Dystrophy

  3. Myotonic Dystrophy Family Registry

    ClinicalTrials.gov

    2016-03-28

    Myotonic Dystrophy; Congenital Myotonic Dystrophy; Myotonic Dystrophy 1; Myotonic Dystrophy 2; Dystrophia Myotonica; Dystrophia Myotonica 1; Dystrophia Myotonica 2; Myotonia Dystrophica; Myotonic Dystrophy, Congenital; Myotonic Myopathy, Proximal; PROMM (Proximal Myotonic Myopathy); Proximal Myotonic Myopathy; Steinert Disease; Steinert Myotonic Dystrophy; Steinert's Disease; Myotonia Atrophica

  4. Paternal transmission of congenital myotonic dystrophy.

    PubMed Central

    de Die-Smulders, C E; Smeets, H J; Loots, W; Anten, H B; Mirandolle, J F; Geraedts, J P; Höweler, C J

    1997-01-01

    We report a rare case of paternally transmitted congenital myotonic dystrophy (DM). The proband is a 23 year old, mentally retarded male who suffers severe muscular weakness. He presented with respiratory and feeding difficulties at birth. His two sibs suffer from childhood onset DM. Their late father had the adult type of DM, with onset around 30 years. Only six other cases of paternal transmission of congenital DM have been reported recently. We review the sex related effects on transmission of congenital DM. Decreased fertility of males with adult onset DM and contraction of the repeat upon male transmission contribute to the almost absent occurrence of paternal transmission of congenital DM. Also the fathers of the reported congenitally affected children showed, on average, shorter CTG repeat lengths and hence less severe clinical symptoms than the mothers of children with congenital DM. We conclude that paternal transmission of congenital DM is rare and preferentially occurs with onset of DM past 30 years in the father. Images PMID:9391889

  5. Myotonic dystrophy.

    PubMed

    Jozefowicz, R F; Griggs, R C

    1988-08-01

    Myotonic dystrophy is an autosomal dominant disorder that results in skeletal muscle weakness and wasting, myotonia, and numerous nonmuscular manifestations including frontal balding, cataracts, gonadal dysfunction, cardiac conduction abnormalities, respiratory insufficiency, and hypersomnolence. Although the gene defect in myotonic dystrophy has been mapped to chromosome 19, the exact metabolic abnormalities responsible for this disorder are unknown. Skeletal muscle has been found to be relatively insulin-resistant in myotonic dystrophy, and a decrease in the anabolic action of insulin on skeletal muscle may be related to muscle wasting in this disorder. Laboratory studies, including electromyography, electrocardiography, and muscle biopsy, are helpful in evaluating patients for this disorder, but the clinical aspects and a careful family history remain the mainstays of diagnosis. A number of management strategies preserve function and prevent complications in myotonic dystrophy. PMID:3065594

  6. A case of paternally inherited congenital myotonic dystrophy.

    PubMed Central

    Nakagawa, M; Yamada, H; Higuchi, I; Kaminishi, Y; Miki, T; Johnson, K; Osame, M

    1994-01-01

    We report two sisters with congenital myotonic dystrophy (CDM) born to a normal mother and an affected father. The congenitally affected daughters had symptoms from birth. The age of onset of DM in the father was 39 years. Analysis of the CTG trinucleotide expansion in this family showed increase in the repeat length with increasing severity, with the smallest expansion in the grandfather and the largest expansion in the younger of the two CDM sisters. This family shows that exceptionally it is possible for CDM to be inherited paternally and refutes the hypothesis that CDM is exclusively of maternal origin. This contradicts several of the previous hypotheses concerning the mechanisms by which the CDM phenotype arises. Images PMID:8064819

  7. Myotonic Muscular Dystrophy

    MedlinePlus

    ... a Difference How to Get Involved Donate Myotonic Muscular Dystrophy (MMD) Share print email share facebook twitter google plus linkedin Myotonic Muscular Dystrophy (MMD) What is myotonic muscular dystrophy (MMD)? Myotonic ...

  8. Congenital myotonic dystrophy: molecular diagnosis and clinical study.

    PubMed

    Hojo, K; Yamagata, H; Moji, H; Fujita, T; Miki, T; Fujimura, M; Kidoguchi, K

    1995-05-01

    Recently, an unstable DNA fragment specific to myotonic dystrophy (MyD) was discovered. In affected individuals, a DNA fragment is found that is larger than in normal siblings. Our objectives were to show whether the results of DNA analysis agree with the disease severity and prognosis in congenital myotonic dystrophy (CMyD) by DNA analysis. We investigated three pregnancies (two studied retrospectively) in three families. We genotyped the family members with the Southern blots and the polymerase chain reaction (PCR) analysis. In one case a prenatal diagnosis was carried out using chorionic villus sampling. This report also presents the three cases of affected mothers and CMyD babies with their growth courses. We clarify four main problems in CMyD, namely, respiratory distress, delayed motor development, feeding difficulty, and delayed mental development. The allele size in the range of 10 to 13 kb tended to be present as the adult form of MyD, and 14 to 15 kb as the CMyD. The three CMyD cases whose alleles size in the range of 14 to 15 kb showed various forms of disease and prognosis. We reached the following conclusions: the disease severity and prognosis in babies with CMyD did not correlate with the result of DNA analysis. The DNA analysis is a useful test for prenatal diagnosis. However, it is impossible to predict the disease severity and prognosis in babies with CMyD. PMID:7612095

  9. Mitochondrial DNA does not appear to influence the congenital onset type of myotonic dystrophy.

    PubMed Central

    Poulton, J; Harley, H G; Dasmahapatra, J; Brown, G K; Potter, C G; Sykes, B

    1995-01-01

    Neither the maternal inheritance pattern nor the early onset of congenital myotonic dystrophy are fully explained. One possible mechanism is that mitochondrial DNA (mtDNA) mutations might interact with the DM gene product, producing an earlier onset than would otherwise occur. We have used Southern hybridisation to show that high levels of major rearrangements of mtDNA are not present in muscle of five and in blood of 35 patients with congenital myotonic dystrophy. We used sequence analysis to show that no one particular mtDNA morph appears to cosegregate with congenital onset. A minor degree of depletion of mtDNA compared with nuclear DNA was present in the muscle of five patients with congenital DM, but we propose that this is not the primary cause of the muscle pathology but secondary to it. We have not found evidence that mtDNA is involved in congenital myotonic dystrophy. PMID:8544195

  10. Myotonic Dystrophy

    PubMed Central

    Thornton, Charles A.

    2014-01-01

    Myotonic dystrophy (dystrophia myotonica, DM) is one of the most common lethal monogenic disorders in populations of European descent. Myotonic dystrophy type 1 (DM1) was first described over a century ago. DM1 is caused by expansion of a CTG triplet repeat in the 3' non-coding region of DMPK, the gene encoding the DM protein kinase. More recently a second form of the disease, myotonic dystrophy type 2 (DM2) was recognized, which results from repeat expansion in a different gene. The DM2 expansion involves a CCTG repeat in the first intron of Zinc Finger 9 (ZNF9). Both disorders have autosomal dominant inheritance and multisystem features, including myotonic myopathy, cataract, and cardiac conduction disease. Studies suggest that the shared clinical features of DM1 and DM2 involve a novel genetic mechanism in which repetitive RNA exerts a toxic effect. The RNA toxicity stems from the expanded repeat in the transcripts from the mutant DM alleles. This chapter will review the clinical presentation and pathophysiology of DM, and discuss current management and future potential for developing targeted therapies. PMID:25037086

  11. Successful use of BiPAP in infants with congenital myotonic dystrophy.

    PubMed

    Chau, Shuk-Kuen; Lee, So-Lun

    2013-04-01

    Reported herein are two cases of severe phenotype of congenital myotonic dystrophy (CDM) with presentation of respiratory insufficiency at birth. The infants were successfully managed with bi-level positive airway pressure (BiPAP) via nasal mask. The use of BiPAP in infants with CDM has not been reported before. The rationale for using BiPAP is discussed. BiPAP may be more effective than continuous positive airway pressure in managing respiratory insufficiency, especially in infants with the more severe phenotype of CDM. PMID:23679166

  12. Contribution of molecular analyses to the estimation of the risk of congenital myotonic dystrophy.

    PubMed Central

    Cobo, A M; Poza, J J; Martorell, L; López de Munain, A; Emparanza, J I; Baiget, M

    1995-01-01

    A molecular analysis of the maternal and child CTG repeat size and intergenerational amplification was performed in order to estimate the risk of having a child with congenital myotonic dystrophy (CMD). In a study of 124 affected mother-child pairs (42 mother-CMD and 82 mother-non-CMD) the mean maternal CTG allele in CMD cases was three times higher (700 repeats) than in non-CMD cases (236 repeats). When the maternal allele was in the 50-300 repeats range, 90% of children were non-CMD. In contrast, when the maternal allele was greater than 300 repeats, 59% inherited the congenital form. Furthermore, the risk of having a CMD child is also related to the intergenerational amplification, which was significantly greater in the mother-CMD pairs than in the mother-non-CMD pairs. Although the risk of giving birth to a CMD child always exists for affected mothers, our data show that such a risk is considerably higher if the maternal allele is greater than 300 repeats. Images PMID:7760317

  13. Congenital and childhood myotonic dystrophy: Current aspects of disease and future directions

    PubMed Central

    Ho, Genevieve; Cardamone, Michael; Farrar, Michelle

    2015-01-01

    Myotonic dystrophy type 1 (DM1) is multisystem disease arising from mutant CTG expansion in the non-translating region of the dystrophia myotonica protein kinase gene. While DM1 is the most common adult muscular dystrophy, with a worldwide prevalence of one in eight thousand, age of onset varies from before birth to adulthood. There is a broad spectrum of clinical severity, ranging from mild to severe, which correlates with number of DNA repeats. Importantly, the early clinical manifestations and management in congenital and childhood DM1 differ from classic adult DM1. In neonates and children, DM1 predominantly affects muscle strength, cognition, respiratory, central nervous and gastrointestinal systems. Sleep disorders are often under recognised yet a significant morbidity. No effective disease modifying treatment is currently available and neonates and children with DM1 may experience severe physical and intellectual disability, which may be life limiting in the most severe forms. Management is currently supportive, incorporating regular surveillance and treatment of manifestations. Novel therapies, which target the gene and the pathogenic mechanism of abnormal splicing are emerging. Genetic counselling is critical in this autosomal dominant genetic disease with variable penetrance and potential maternal anticipation, as is assisting with family planning and undertaking cascade testing to instigate health surveillance in affected family members. This review incorporates discussion of the clinical manifestations and management of congenital and childhood DM1, with a particular focus on hypersomnolence and sleep disorders. In addition, the molecular genetics, mechanisms of disease pathogenesis and development of novel treatment strategies in DM1 will be summarised. PMID:26566479

  14. Influence of the sex of the transmitting grandparent in congenital myotonic dystrophy.

    PubMed Central

    López de Munain, A; Cobo, A M; Poza, J J; Navarrete, D; Martorell, L; Palau, F; Emparanza, J I; Baiget, M

    1995-01-01

    To analyse the influence of the sex of the transmitting grandparents on the occurrence of the congenital form of myotonic dystrophy (CDM), we have studied complete three generation pedigrees of 49 CDM cases, analysing: (1) the sex distribution in the grandparents' generation, and (2) the intergenerational amplification of the CTG repeat, measured in its absolute and relative values, between grandparents and the mothers of CDM patients and between the latter and their CDM children. The mean relative intergenerational increase in the 32 grandparent-mother pairs was significantly greater than in the 56 mother-CDM pairs (Mann-Whitney U test, p < 0.001). The mean expansion of the grandfathers (103 CTG repeats) was also significantly different from that seen in the grandmothers' group (154 CTG repeats) (Mann-Whitney U test, p < 0.01). This excess of non-manifesting males between the CDM grandparents' generation with a smaller CTG length than the grandmothers could suggest that the premutation has to be transmitted by a male to reach the degree of instability responsible for subsequent intergenerational CTG expansions without size constraints characteristic of the CDM range. PMID:8544186

  15. The effect of rocuronium and sugammadex on neuromuscular blockade in a child with congenital myotonic dystrophy type 1.

    PubMed

    Pickard, Amelia; Lobo, Clinton; Stoddart, Peter A

    2013-09-01

    Myotonic dystrophy type 1 (MD1) is the commonest muscular dystrophy found in adults; however, it may present in the neonatal period with hypotonia, talipes, poor feeding, and respiratory failure. Inheritance is autosomal dominant with a defect in the DMPK gene found on the long arm of chromosome 19 with variable expansion of the cytosine-thymine-guanine (CTG) triplet repeat. A 14-month-old boy with congenital MD type 1 was scheduled for percutaneous endoscopic gastrostomy (PEG) insertion, orchidopexy, and division of tongue-tie. Following induction of anesthesia, acceleromyography was used to monitor neuromuscular function. This revealed a very rapid onset of profound neuromuscular block which lasted significantly longer than would be expected in a child without MD1. Sugammadex reversed the block rapidly. The anesthetic management of children with MD1 has been well described but not the acceleromyographic monitored use of rocuronium and its subsequent reversal with the new cyclodextrin sugammadex. PMID:23763618

  16. Segregation distortion in myotonic dystrophy.

    PubMed Central

    Magee, A C; Hughes, A E

    1998-01-01

    Myotonic dystrophy (DM) is an autosomal dominant disease which, in the typical pedigree, shows a three generation anticipation cascade. This results in infertility and congenital myotonic dystrophy (CDM) with the disappearance of DM in that pedigree. The concept of segregation distortion, where there is preferential transmission of the larger allele at the DM locus, has been put forward to explain partially the maintenance of DM in the population. In a survey of DM in Northern Ireland, 59 pedigrees were ascertained. Sibships where the status of all the members had been identified were examined to determine the transmission of the DM expansion from affected parents to their offspring. Where the transmitting parent was male, 58.3% of the offspring were affected, and in the case of a female transmitting parent, 68.7% were affected. Studies on meiotic drive in DM have shown increased transmission of the larger allele at the DM locus in non-DM heterozygotes for CTGn. This study provides further evidence that the DM expansion tends to be transmitted preferentially. PMID:9863607

  17. The Change of Grip Strength in a Patient with Congenital Myotonic Dystrophy Over a 4-year Period

    PubMed Central

    Kozuka, Naoki; Uchida, Eiji; Ninomiya, Takafumi; Tatsumi, Haruyuki; Takeda, Hidekatsu; Tachi, Nobutada

    2008-01-01

    Myotonic dystrophy (MyD) is a neuromuscular disease that is autosomal dominant and the most common form of muscular dystrophy affecting adults. The clinical features of MyD include a multisystemic disorder characterized by myotonia, progressive muscle weakness and wasting, cataracts, premature balding and mental retardation. The most severe type of MyD is classified as congenital MyD (CMyD). The muscle weakness in CMyD is very severe, but muscle development can be observed in the period of growth. However, no clinical case of this type has been reported yet. Therefore, we report on a girl with CMyD who had an increase in muscle strength over a four-year period. The girl with CMyD participated in this study from the age of 9 to the age of 12. The measurement of muscle strength was recorded as the maximum score of grip strength with the use of dynamometers. Grip strength was assessed once a year by the same two physical therapists. Grip strength of CMyD for each year was markedly weak when compared with the normal controls, but muscle strength changed within some specific growth areas. The muscle weakness in CMyD was remarkable, but the result showed that specific muscle strength of CMyD in childhood was actually increased. PMID:25792886

  18. Cognition and Adaptive Skills in Myotonic Dystrophy Type 1: A Study of 55 Individuals with Congenital and Childhood Forms

    ERIC Educational Resources Information Center

    Ekstrom, Anne-Berit; Hakenas-Plate, Louise; Tulinius, Mar; Wentz, Elisabet

    2009-01-01

    Aims: To investigate cognitive abilities and adaptive skills in children and adolescents with myotonic dystrophy type 1 (DM1) and correlate the findings to the cytosine-thymine-guanine (CTG) repeat expansion size. Method: Cognitive level was assessed in 55 children and adolescents with DM1 (31 males, 24 females; mean age 12y 1mo, SD 5y 1mo; range…

  19. Hypothesis: neoplasms in myotonic dystrophy

    PubMed Central

    Hilbert, James E.; Martens, William; Thornton, Charles A.; Moxley, Richard T.; Greene, Mark H.

    2011-01-01

    Tumorigenesis is a multi-step process due to an accumulation of genetic mutations in multiple genes in diverse pathways which ultimately lead to loss of control over cell growth. It is well known that inheritance of rare germline mutations in genes involved in tumorigenesis pathways confer high lifetime risk of neoplasia in affected individuals. Furthermore, a substantial number of multiple malformation syndromes include cancer susceptibility in their phenotype. Studies of the mechanisms underlying these inherited syndromes have added to the understanding of both normal development and the pathophysiology of carcinogenesis. Myotonic dystrophy (DM) represents a group of autosomal dominant, multisystemic diseases that share the clinical features of myotonia, muscle weakness, and early-onset cataracts. Myotonic dystrophy type 1 (DM1) and myotonic dystrophy type 2 (DM2) result from unstable nucleotide repeat expansions in their respective genes. There have been multiple reports of tumors in individuals with DM, most commonly benign calcifying cutaneous tumors known as pilomatricomas. We provide a summary of the tumors reported in DM and a hypothesis for a possible mechanism of tumorigenesis. We hope to stimulate further study into the potential role of DM genes in tumorigenesis, and help define DM pathogenesis, and facilitate developing novel treatment modalities. PMID:19642006

  20. Myotonic Dystrophy Type 1 or Steinert's disease.

    PubMed

    Romeo, Vincenzo

    2012-01-01

    Myotonic Dystrophy Type 1 (DM1) is the most common worldwide autosomal dominant muscular dystrophy due to polynucleotide [CTG]( n ) triplet expansion located on the 3'UTR of chromosome 19q13.3. A toxic gain-of-function of abnormally stored RNA in the nuclei of affected cells is assumed to be responsible for several clinical features of the disease. It plays a basic role in deregulating RNA binding protein levels and in several mRNA splicing processes of several genes, thus leading to the multisystemic features typical of DM1. In DM1, the musculoskeletal apparatus, heart, brain, eye, endocrine, respiratory and gastroenteric systems are involved with variable levels of severity. DM1 onset can be congenital, juvenile, adult or late. DM1 can be diagnosed on the grounds of clinical presentation (distal muscular atrophy and weakness, grip and percussion myotonia, ptosis, hatchet face, slurred speech, rhinolalia), EMG myotonic pattern, EKG (such as AV-blocks) or routine blood test abnormalities (such as increased CK values or hypogamma-globulinemia) and history of cataract. Its confirmation can come by DNA analysis. At present, only symptomatic therapy is possible and is addressed at correcting hormonal and glycemic balance, removing cataract, preventing respiratory failure and, above all, major cardiac disturbances. Efficacious therapies targeted at the pathogenic mechanism of DM1 are not yet available, while studies that seek to block toxic RNA intranuclear storage with specific molecules are still ongoing. PMID:22411247

  1. Cardiac involvement in myotonic dystrophy

    PubMed Central

    Khalighi, Koroush; Kodali, Archana; Thapamagar, Suman B.; Walker, Stanley R.

    2015-01-01

    Background Myotonic dystrophy (DM) is an inherited progressive muscle disorder caused by defects in muscle proteins. As the incidence of this condition is low, not many are familiar with the multisystem involvement. At times, cardiac disease may even be the predominant manifestation in the form of arrhythmias, conduction defects, and cardiomyopathies. The progression of the disease can lead to sudden, unpredictable death. Thus, it is important to identify this subgroup and treat accordingly. Objective To identify patients with DM and assess their risk for sudden cardiac death. Methods Nine patients previously diagnosed with muscular dystrophy were evaluated by cardiologists for various reasons, from a general follow-up to cardiac arrest. All of them had electrocardiograms (EKG) and 2-D echocardiograms, and seven of them had further electrophysiological (EP) studies. Results Of the nine patients with DM, eight had EKG evidence of conduction abnormalities ranging from first-degree heart block to complete heart block. Of the seven who had EP studies, five had inducible ventricular tachycardia requiring immediate cardioversion and implantable cardioverter defibrillator (ICD) implant. Two of them underwent permanent pacemaker placement due to complete heart block and infra-Hissian block. The remaining two patients opted for a conservative approach with yearly EKG monitoring. Conclusion Because one-third of the cardiac deaths in patients with DM are sudden, there is a strong need to identify these patients and intervene in those at high risk. Prophylactic pacemaker placement is recommended even in those with minimal conduction system abnormality. However, the common practice is to identify patients at high risk of conduction abnormalities by EP studies and then provide them with prophylactic invasive strategies. PMID:25656662

  2. Myotonic dystrophy protein kinase (DMPK) and its role in the pathogenesis of myotonic dystrophy 1.

    PubMed

    Kaliman, Perla; Llagostera, Esther

    2008-11-01

    Myotonic dystrophy 1 (DM1) is an autosomal, dominant inherited, neuromuscular disorder. The DM1 mutation consists in the expansion of an unstable CTG-repeat in the 3'-untranslated region of a gene encoding DMPK (myotonic dystrophy protein kinase). Clinical expression of DM1 is variable, presenting a progressive muscular dystrophy that affects distal muscles more than proximal and is associated with the inability to relax muscles appropriately (myotonia), cataracts, cardiac arrhythmia, testicular atrophy and insulin resistance. DMPK is a Ser/Thr protein kinase homologous to the p21-activated kinases MRCK and ROCK/rho-kinase/ROK. The most abundant isoform of DMPK is an 80 kDa protein mainly expressed in smooth, skeletal and cardiac muscles. Decreased DMPK protein levels may contribute to the pathology of DM1, as revealed by gene target studies. Here we review current understanding of the structural, functional and pathophysiological characteristics of DMPK. PMID:18583094

  3. Therapeutics Development in Myotonic Dystrophy Type I

    PubMed Central

    Foff, Erin Pennock; Mahadevan, Mani S.

    2011-01-01

    Myotonic dystrophy (DM1), the most common adult muscular dystrophy, is a multi-system, autosomal dominant genetic disorder caused by an expanded CTG repeat that leads to nuclear retention of a mutant RNA and subsequent RNA toxicity. Significant insights into the molecular mechanisms of RNA toxicity have led to the surprising possibility that treating DM1 is a viable prospect. In this review, we briefly present the clinical picture in DM1, and describe how the research in understanding the pathogenesis of RNA toxicity in DM1 has led to targeted approaches to therapeutic development at various steps in the pathogenesis of the disease. We discuss the promise and current limitations of each with an emphasis on RNA-based therapeutics and small molecules. We conclude with a discussion of the unmet need for clinical tools and outcome measures that are essential prerequisites to proceed in evaluating these potential therapies in clinical trials. PMID:21607985

  4. Diagnostic Odyssey of Patients with Myotonic Dystrophy

    PubMed Central

    Hilbert, James E.; Ashizawa, Tetsuo; Day, John W.; Luebbe, Elizabeth A.; Martens, William B.; McDermott, Michael P.; Tawil, Rabi; Thornton, Charles A.; Moxley, Richard T.

    2013-01-01

    The onset and symptoms of the myotonic dystrophies are diverse, complicating their diagnoses and limiting a comprehensive approach to their clinical care. This report analyzes the diagnostic delay (time from onset of first symptom to diagnosis) in a large sample of myotonic dystrophy (DM) patients enrolled in the US National Registry [679 DM type 1 (DM1) and 135 DM type 2 (DM2) patients]. Age of onset averaged 34.0 ± 14.1 years in DM2 patients compared to 26.1 ± 13.2 years in DM1 (p<0.0001). The most common initial symptom in DM2 patients was leg weakness (32.6%) compared to grip myotonia in DM1 (38.3%). Pain was reported as the first symptom in 11.1% of DM2 and 3.0% of DM1 patients (p<0.0001). Reaching the correct diagnosis in DM2 took 14 years on average (double the time compared to DM1) and a significantly higher percentage of patients underwent extended workup including electromyography, muscle biopsies, and finally genetic testing. DM patients who were index cases experienced similar diagnostic delays to non-index cases of DM. Further evaluation of how to shorten these diagnostic delays and limit their impact on burdens of disease, family planning, and symptom management is needed. PMID:23807151

  5. Gastrointestinal manifestations in myotonic muscular dystrophy

    PubMed Central

    Bellini, Massimo; Biagi, Sonia; Stasi, Cristina; Costa, Francesco; Mumolo, Maria Gloria; Ricchiuti, Angelo; Marchi, Santino

    2006-01-01

    Myotonic dystrophy (MD) is characterized by myotonic phenomena and progressive muscular weakness. Involvement of the gastrointestinal tract is frequent and may occur at any level. The clinical manifestations have previously been attributed to motility disorders caused by smooth muscle damage, but histologic evidence of alterations has been scarce and conflicting. A neural factor has also been hypothesized. In the upper digestive tract, dysphagia, heartburn, regurgitation and dyspepsia are the most common complaints, while in the lower tract, abdominal pain, bloating and changes in bowel habits are often reported. Digestive symptoms may be the first sign of dystrophic disease and may precede the musculo-skeletal features. The impairment of gastrointestinal function may be sometimes so gradual that the patients adapt to it with little awareness of symptoms. In such cases routine endoscopic and ultrasonographic evaluations are not sufficient and targeted techniques (electrogastrography, manometry, electromyography, functional ultrasonography, scintigraphy, etc.) are needed. There is a low correlation between the degree of skeletal muscle involvement and the presence and severity of gastrointestinal disturbances whereas a positive correlation with the duration of the skeletal muscle disease has been reported. The drugs recommended for treating the gastrointestinal complaints such as prokinetic, anti-dyspeptic drugs and laxatives, are mainly aimed at correcting the motility disorders. Gastrointestinal involvement in MD remains a complex and intriguing condition since many important problems are still unsolved. Further studies concentrating on genetic aspects, early diagnostic techniques and the development of new therapeutic strategies are needed to improve our management of the gastrointestinal manifestations of MD. PMID:16609987

  6. Skin features in myotonic dystrophy type 1: an observational study.

    PubMed

    Campanati, A; Giannoni, M; Buratti, L; Cagnetti, C; Giuliodori, K; Ganzetti, G; Silvestrini, M; Provinciali, L; Offidani, A

    2015-05-01

    Poor data regarding skin involvement in Myotonic Dystrophy, also named Dystrophia Myotonica type 1, have been reported. This study aimed to investigate the prevalence and types of skin disorders in adult patients with Myotonic Dystrophy type 1. Fifty-five patients and one hundred age- and sex-matched healthy subjects were referred to a trained dermatologist for a complete skin examination to check for potential cutaneous hallmarks of disease. No difference in prevalence of preneoplastic, neoplastic, and cutaneous lesions was detected between the two groups. Among morphofunctional, proliferative and inflammatory lesions, focal hyperhidrosis (p < 0.0001), follicular hyperkeratosis (p = 0.0003), early androgenic alopecia (p = 0.01), nail pitting (p = 0.003), pedunculus fibromas (p = 0. 01), twisted hair (p = 0.01), seborrheic dermatitis (p = 0.02), macules of hyperpigmentation (p = 0.03) were significantly more frequent in patients compared with controls. In patients with Myotonic Dystrophy type 1 significant differences according to sex were found for: early androgenic alopecia, twisted hair and seborrheic dermatitis, whose prevalence was higher in males (p < 0.0001). Our preliminary results seem to rule out an increased prevalence of pre-neoplastic, and neoplastic skin lesions in Myotonic Dystrophy type 1. On the other hand, an increased prevalence of morphofunctional, inflammatory, and proliferative diseases involving adnexal structures seems to characterize adult patients with Myotonic Dystrophy type 1. PMID:25813338

  7. Orofacial dysfunction in children and adolescents with myotonic dystrophy.

    PubMed

    Sjögreen, Lotta; Engvall, Monica; Ekström, Anne-Berit; Lohmander, Anette; Kiliaridis, Stavros; Tulinius, Már

    2007-01-01

    Myotonic dystrophy (DM) is a neuromuscular disorder caused by an expansion of a CTG repeat sequence on chromosome 19q13. The aim of the present study was to describe the characteristics and prevalence of oral motor dysfunction in a cohort of children and adolescents with DM and to correlate different aspects of oral motor function with the type of DM and sex. Fifty-six individuals with DM (30 males, 26 females; median age 13y 2mo; range 2y 6mo-21y 5mo) were compared with healthy controls. They were divided into four subgroups: severe congenital DM (n=18); mild congenital DM (n=18); childhood DM (n=18); and classical DM (n=2). A speech-language pathologist assessed different variables of oral motor function, intelligibility, and lip force. The families used a questionnaire to report on eating difficulties and drooling. All individuals with DM had impaired facial expression. Intelligibility was moderately or severely reduced in 30 patients (60%), excluding six patients without speech. Most had a moderate or severe impairment of lip motility (76.0%), tongue motility (52.2%), and lip force (69.2%), causing deviant production of bilabial and dental consonants. The families reported problems with eating (51.9%) and drooling (37.0%). Oral motor dysfunction was most prominent in congenital DM, and males were more affected than females. PMID:17209971

  8. [When do you implant a pacemaker in myotonic dystrophy?].

    PubMed

    Babuty, Dominique; Lallemand, Bénédicte; Laurent, Valérie; Clémenty, Nicolas; Pierre, Bertrand; Fauchier, Laurent; Raynaud, Martine; Pellieux, Sybille

    2011-01-01

    Myotonic dystrophy is the most frequent adult form of hereditary muscular dystrophy caused by a mutation on the DMPK gene. Myotonic dystrophy leads to multiple systemic complications related to weakness, respiratory failure, cardiac arrhythmias and cardiac conduction disturbances. Age of death is earlier in myotonic dystrophy patients than in general population with a high frequency of sudden death. Several mechanisms are involved in sudden death: atrio-ventricular block, severe ventricular arrhythmias or non-cardiac mechanism. The high degree of atrio-ventricular block is a well-recognized indication of pacemaker implantation but the prophylactic implantation of pacemaker should be considered to prevent sudden death in asymptomatic myotonic dystrophy patients. A careful clinical evaluation needs to be done for the identification of patients at high risk of sudden death. The resting ECG and SA ECG are non-invasive tools useful to select the patients who need an electrophysiologic study. In presence of prolonged HV interval more than or equal to 70 ms one can discuss the implantation of a prophylactic pacemaker. The choice of an implantable cardiac defibrillator is preferred in presence of spontaneous ventricular tachycardia or an alteration of the left ventricular ejection fraction. PMID:21549556

  9. Psychiatric and Cognitive Phenotype of Childhood Myotonic Dystrophy Type 1

    ERIC Educational Resources Information Center

    Douniol, Marie; Jacquette, Aurelia; Cohen, David; Bodeau, Nicolas; Rachidi, Linda; Angeard, Nathalie; Cuisset, Jean-Marie; Vallee, Louis; Eymard, Bruno; Plaza, Monique; Heron, Delphine; Guile, Jean-Marc

    2012-01-01

    Aim: To investigate the psychiatric and cognitive phenotype in young individuals with the childhood form of myotonic dystrophy type 1 (DM1). Method: Twenty-eight individuals (15 females, 13 males) with childhood DM1 (mean age 17y, SD 4.6, range 7-24y) were assessed using standardized instruments and cognitive testing of general intelligence,…

  10. Chronic Pain in Persons With Myotonic Dystrophy and Facioscapulohumeral Dystrophy

    PubMed Central

    Jensen, Mark P.; Hoffman, Amy J.; Stoelb, Brenda L.; Abresch, Richard T.; Carter, Gregory T.; McDonald, Craig M.

    2009-01-01

    Objective To determine the nature and scope of pain in working-aged adults with myotonic muscular dystrophy (MMD) and facioscapulohumeral muscular dystrophy (FSHD). Design Retrospective, cross-sectional survey. Setting Community-based survey. Participants Convenience sample of subjects with MMD and FSHD. Interventions Not applicable. Main Outcome Measures Overall intensity and duration of pain, pain inference, pain sites, pain treatments, and relief provided by pain treatments. Results More subjects with FSHD (82%) than with MMD (64%) reported pain. The most frequently reported pain sites for both diagnostic groups were lower back (66% MMD, 74% FSHD) and legs (60% MMD, 72% FSHD). Significant differences in pain intensity were found between the diagnostic groups in the hands, legs, knees, ankles, and feet, with patients with MMD reporting greater pain intensity at these sites than patients with FSHD. Age was related to the onset of pain (participants reporting pain were younger than those not reporting pain in the FSHD sample), but pain severity was not significantly associated with age in those reporting pain. Respondents with both diagnoses that reported mobility limitations and used assistive devices (eg, wheelchair, cane) reported more pain severity than those with mobility limitations who did not use assistive devices, who, in turn, reported more pain severity than respondents who reported no mobility limitations at all. The treatments that were reported to provide the greatest pain relief were not necessarily those that were the most frequently tried or still used. Conclusions The findings indicate that pain is a more common problem in persons with FSHD than in persons with MMD, although it is common in both populations. In addition, these pain problems are chronic, underscoring the need to identify and provide effective pain treatments for patients with these neuromuscular diseases. PMID:18226657

  11. Does modafinil enhance activity of patients with myotonic dystrophy?

    PubMed Central

    Lammers, G.J.; van Dijk, J.G.

    2007-01-01

    We performed a double-blind placebo-controlled crossover study in 13 patients with myotonic dystrophy to address the question whether modafinil, known to improve hypersomnolence in myotonic dystrophy, may improve levels of activity as well. We used the Epworth Sleepiness Scale as a measure of hypersomnolence and a structured interview of the patient and the partner or housemate as a measure of activity. We additionally used a restricted form of the RAND-36 to relate a possible improvement of activity to perceived general health. We confirmed earlier positive findings of modafinil regarding reduced somnolence (p = 0.015), but no significant effects were seen regarding activity levels (p = 0.2 for patients’ self-reports and 0.5 for partners’ reports). PMID:17285226

  12. NIH study shows increased risk for two types of myotonic muscular dystrophy

    Cancer.gov

    Adults with a form of muscular dystrophy called myotonic muscular dystrophy (MMD) may be at increased risk of developing cancer, according to a study by investigators at the National Cancer Institute (NCI), part of the National Institutes of Health.

  13. Effect of maternal transmissions on clinical manifestations of myotonic dystrophy

    SciTech Connect

    Eguchi, I.; Koike, R.; Onodera, O.

    1994-09-01

    The mutation of myotonic dystrophy (DM) has been identified as unstable expansions of trinucleotide CTG repeat, located on chromosome 19q13-3. Although previous investigations have emphasized the strong association of the sizes of the CTG repeat with ages of onset as well as the clinical manifestations, effects of the paternal or maternal transmissions other than CTG repeats on the clinical manifestations in DM have not been evaluated in detail. To investigate how parental transmission affect the DM phenotype, we analyzed 15 cases of paternal transmission and 25 cases of maternal transmission. We have classified DM patients into 4 clinical grades. As in accordance with previous reports, there is a good correlation on sizes of the CTG repeat with their clinical features. The sizes of the CTG repeat in congenital DM patients (4.13{plus_minus}0.221 kbp) (Mean {plus_minus}SEM), who inherited mutant genes from their mothers, were not significantly larger than those of non-congenital DM patients (3.65 {plus_minus}0.36 kbp). As it has been well established that congenital DM patients are born to affected mothers, we investigated to see if there are any parental bias on the clinical manifestations in non-congenital DM. We classified each case into 4 classes depending on the size ranges of the CTG repeat (0 to 1.5 kbp, 1.5 to 3.0 kbp, 3.0 to 4.5 kbp, 4.5 kbp<). In each group of the size ranges of the CTG repeat, the distribution of cases among grades I to III were compared between paternally and maternally transmitted cases. There were statistically significant differences in the distributions of cases among grades I to III for the size ranges of 3 to 4.5 kbp expansions (p<0.01) and over 4.5 kbp expansions (p<0.05) on {chi}{sup 2} test, respectively. The results revealed that maternally transmitted cases tend to show severe phenotypes compared to paternally transmitted ones even if they have similar sizes of CTG repeat.

  14. Warming up Improves Speech Production in Patients with Adult Onset Myotonic Dystrophy

    ERIC Educational Resources Information Center

    de Swart, B.J.M.; van Engelen, B.G.M.; Maassen, B.A.M.

    2007-01-01

    This investigation was conducted to study whether warming up decreases myotonia (muscle stiffness) during speech production or causes adverse effects due to fatigue or exhaustion caused by intensive speech activity in patients with adult onset myotonic dystrophy. Thirty patients with adult onset myotonic dystrophy (MD) and ten healthy controls…

  15. Myotonic dystrophy: molecular windows on a complex etiology.

    PubMed Central

    Korade-Mirnics, Z; Babitzke, P; Hoffman, E

    1998-01-01

    Myotonic dystrophy (DM) is the most common form of adult onset muscular dystrophy, with an incidence of approximately 1 in 8500 adults. DM is caused by an expanded number of trinucleotide repeats in the 3'-untranslated region (UTR) of a cAMP-dependent protein kinase (DM protein kinase, DMPK). Although a large number of transgenic animals have been generated with different gene constructions and knock-outs, none of them faithfully recapitulates the multisystemic and often severe phenotype seen in human patients. The transgenic data suggest that myotonic dystrophy is not caused simply by a biochemical deficiency or abnormality in the DM kinase gene product. Emerging studies suggest that two novel pathogenetic mechanisms may play a role in the disease: the expanded repeats appear to cause haploinsufficiency of a neighboring homeobox gene and also abnormal DMPK RNA appears to have a detrimental effect on RNA homeostasis. The complex, multisystemic phenotype may reflect an underlying multifaceted molecular pathophysiology: the facial dysmorphology may be due to pattern defects caused by haploinsufficiency of the homeobox gene, while the muscle disease and endocrine abnormalities may be due to both altered RNA metabolism and deficiency of the cAMP DMPK protein. PMID:9490778

  16. Negative expansion of the myotonic dystrophy unstable sequence.

    PubMed Central

    Abeliovich, D; Lerer, I; Pashut-Lavon, I; Shmueli, E; Raas-Rothschild, A; Frydman, M

    1993-01-01

    We have analyzed the unstable fragment of the myotonic dystrophy (DM) gene in a pregnancy at 50% risk for DM. The affected father in this family had a 3.0-kb expansion of the DM unstable region. The fetus inherited the mutated gene, but with an expansion of 0.5 kb. This case represented a counseling problem in light of the absence of data concerning "negative expansion." Analysis of the DM gene in 17 families with 72 affected individuals revealed four more cases of negative expansions, all of them in paternal transmissions. The possible significance of this finding is discussed. Images Figure 2 PMID:8503449

  17. Segmental myofiber necrosis in myotonic dystrophy - An immunoperoxidase study of immunoglobulins in skeletal muscle.

    PubMed Central

    Silver, M. M.; Banerjee, D.; Hudson, A. J.

    1983-01-01

    Because serum immunoglobulin G levels are low in patients with myotonic dystrophy, it was hypothesized that it might be catabolized within abnormal muscle fibers. Accordingly, immunohistochemical stains for immunoglobulins were performed on muscle sections derived at biopsy or autopsy from patients with myotonic dystrophy, other forms of muscular dystrophy, nondystrophic muscle disease, or normal muscle. Positive staining for immunoglobulins was found only in necrotic segments of myofibers (in 7 of 19 dystrophic and 6 of 27 nondystrophic subjects), and it is believed that the staining was due to nonspecific diffusion. However, staining reactions distinguished between incipient necrosis and artifactual contraction bands and allowed us to study segmental myofiber necrosis, comparing its frequency in the various muscle diseases. Segmental myofiber necrosis was present in 4 of 16 cases of myotonic dystrophy. The relevance of this finding to the clinical and morphologic features of myotonic dystrophy is discussed. Images Figure 1 Figure 2 Figure 3 Figure 4 PMID:6351629

  18. Size of the unstable CTG repeat sequence in relation to phenotype and parental transmission in myotonic dystrophy

    SciTech Connect

    Harley, H.G.; Rundle, S.A.; MacMillan, J.C.; Myring, J.; Brook, J.D.; Crow, S.; Reardon, W.; Fenton, I.; Shaw, D.J.; Harper, P.S. )

    1993-06-01

    A clinical and molecular analysis of 439 individuals affected with myotonic dystrophy, from 101 kindreds, has shown that the size of the unstable CTG repeat detected in nearly all cases of myotonic dystrophy is related both to age at onset of the disorder and to the severity of the phenotype. The largest repeat sizes (1.5--6.0 kb) are seen in patients with congenital myotonic dystrophy, while the minimally affected patients have repeat sizes of < 0.5 kb. Comparison of parent-child pairs has shown that most offspring have an earlier age at onset and a larger repeat size than their parents, with only 4 of 182 showing a definite decrease in repeat size, accompanied by a later age at onset or less severe phenotype. Increase in repeat size from parent to child is similar for both paternal and maternal transmissions when the increase is expressed as a proportion of the parental repeat size. Analysis of congenitally affected cases shows not only that they have, on average, the largest repeat sizes but also that their mothers have larger mean repeat sizes, supporting previous suggestions that a maternal effect is involved in the pathogenesis of this form of the disorder. 23 refs., 5 figs.

  19. Myotonic dystrophy: genetic, clinical, and molecular analysis of patients from 41 Brazilian families.

    PubMed Central

    Passos-Bueno, M R; Cerqueira, A; Vainzof, M; Marie, S K; Zatz, M

    1995-01-01

    Results of genealogical, DNA, and clinical findings in 41 families with 235 patients affected with myotonic dystrophy (DM) led to the following observations. (1) The relative proportion of affected patients among blacks is apparently lower than among whites or orientals. (2) A significant excess of males was observed. (3) The frequency of DM patients who did not reproduce was similar for males and females; however, female patients had on average 25% fewer children than male patients. (4) There was a significant intergenerational increase in the mean length of the CTG repeat which was also correlated with the severity of the phenotype. (5) No significant difference was observed in the mean size of the CTG repeat in offspring of male as compared to female transmitters. (6) With the exception of the congenital cases of maternal origin, the largest expansions were paternally inherited, but did not lead to congenital DM. Images PMID:7897620

  20. Myotonic Dystrophy: Increased expression of the normal allele in CDM infants muscle

    SciTech Connect

    Radvanyi, H.H.; Gourdon, G.; Junien, C. |

    1994-09-01

    Myotonic dystrophy (DM) is an autosomal dominant multisystemic disorder characterized by a highly variable clinical phenotype. The mutation has been identified as an unstable trinucleotide CTG repeat in the 3{prime} untranslated region of the myotonin-protein kinase (MT-PK) gene. Congenital myotonic dystrophy (CDM), which represents the most severe phenotype, is exclusively maternally inherited. Recent studies, analysis by Northern blots and RT-PCR provided apparently conflicting results on the mutated allele expression in samples from congenitally affected children. The level of expression of the mutant allele depends on the extent of the repeat in the adult form and is no longer expressed when over 800-1300 repeats, whether in adult forms or in CDM. Could this decrease account for the late onset forms? However, the differences between the two phenotypes cannot be explained by the same mechanism. Alternatively, these differences could be due to differences in expression of the normal allele. We analyzed by quantitative RT-PCR the expression of the MT-PK gene in muscle samples from four CDM infants and two aged-matched normal controls. In two of these, the mutant allele (3.3 and 8 kb) was undetectable on Northern blots. We observed an increased expression of the MT-PK gene (10- to 20-fold) in tissues of severely affected congenital patients which can be attributed to the normal allele. Since expression of the normal allele is either normal or slightly decreased in the adult form, the dramatic increase in the congenital form could reflect a disturbance in muscle differentiation. Expression studies of MT-PK at different stages of development and, especially after the 20th week, are therefore required.

  1. Genomic organization and transcriptional units at the myotonic dystrophy locus

    SciTech Connect

    Shaw, D.J.; Rundle, S.A.; Harley, H.G.; Crow, S.R.; Harper, P.S. ); McCurrach, M.; Sohn, R.; Thirion, J.P.; Buckler, A.J.; Housman, D.E.; Brook, J.D. ); Hamshere, M.G. )

    1993-12-01

    The genomic structure and apparently complete coding sequence of the myotonic dystrophy protein kinase gene have been determined. The gene contains 15 exons distributed over about 13 kb of genomic DNA. It codes for a protein of 624 amino acids with an N-terminal domain highly homologous to cAMP-dependent serine-threonine protein kinases, an intermediate domain with a high [alpha]-helical content and weak similarity to various filamentous proteins, and a hydrophobic C-terminal segment. Located in close proximity is a second gene, coding for a transcript of about 3 kb, that is homologous to the gene DMR-N9 in the corresponding mouse locus, but has no homologies to other known genes or proteins. Strong expression of the latter gene in brain suggests that it may have a role in the development of mental symptoms in severe cases of the disease. 23 refs., 5 figs., 1 tab.

  2. Myotonic dystrophy as a cause of colonic pseudoobstruction: not just another constipated child

    PubMed Central

    Glaser, Andrea M; Johnston, Jennifer H; Gleason, Wallace A; Rhoads, J Marc

    2015-01-01

    Key Clinical Message Muscular dystrophy has been traditionally associated with common gastrointestinal symptoms such as reflux, constipation, and dysphasia. In myotonic dystrophy, there are rare reports of chronic intestinal pseudoobstruction (CIPOS). We herein present a case of CIPOS requiring colectomy and with good results. PMID:26185641

  3. Depression in Myotonic Dystrophy type 1: clinical and neuronal correlates

    PubMed Central

    2010-01-01

    Background This study was designed to investigate the prevalence and correlates of depression in Myotonic dystrophy type 1 (DM1). Methods Thirty-one patients with DM1 and 47 subjects in a clinical contrast group, consisting of other neuromuscular disorders, including Spinal muscular atrophy, Limb girdle muscle atrophy and Facioscapulohumeral dystrophy, completed Beck Depression Inventory (BDI). We aimed to establish whether different factors associated with DM1 correlated with ratings in the BDI. Results Signs of a clinical depression were prevalent in 32% of the patients with DM1, which was comparable with ratings in the clinical contrast group. The depressive condition was mild to moderate in both groups. In DM1, a longer duration of clinical symptoms was associated with lower scores on the BDI and higher educational levels were correlated with higher scores on depression. We also found a negative association with brain white matter lesions. Conclusions Findings indicate significantly more DM1 patients than normative collectives showing signs of a clinical depression. The depressive condition is however mild to moderate and data indicate that the need for intervention is at hand preferentially early during the disease process. PMID:20482818

  4. Symptom Burden in Persons with Myotonic and Facioscapulohumeral Muscular Dystrophy

    PubMed Central

    Smith, Amanda E.; McMullen, Kara; Jensen, Mark P.; Carter, Gregory T.; Molton, Ivan R.

    2013-01-01

    Objective This study examines the prevalence of pain, fatigue, imbalance, memory impairment and vision loss in persons with myotonic and facioscapulohumeral dystrophy, and their association with functioning. Design A survey (n=170) included measures of severity (0–10 scales) and course of these symptoms, as well as measures of social integration, home competency, mental health and productive activity. Descriptive and regression analyses examined the associations between symptoms and functioning. Results Fatigue (91%), imbalance (82%) and pain (77%) were most commonly reported. The most severe symptom was fatigue (mean severity 5.14 ± 2.81), followed by imbalance (4.95 ± 3.25). Symptoms were most likely to stay the same or worsen since onset. Controlling for potential medical and demographic confounds, symptoms were associated with 17% of the mental health variance, 10% of home competency, 10% of social integration, 16% of productive activity for DM1 and 12% of productive activity for FSHD. Conclusions Pain, fatigue and imbalance are common in persons with muscular dystrophy. Interventions may be useful to mitigate their impact on functioning. Further research should examine these relationships to guide clinical practices. PMID:24247759

  5. Cardiac involvement in myotonic muscular dystrophy (Steinert's disease): a prospective study of 25 patients

    SciTech Connect

    Perloff, J.K.; Stevenson, W.G.; Roberts, N.K.; Cabeen, W.; Weiss, J.

    1984-11-01

    The presence, degree and frequency of disorders of cardiac conduction and rhythm and of regional or global myocardial dystrophy or myotonia have not previously been studied prospectively and systematically in the same population of patients with myotonic dystrophy. Accordingly, 25 adults with classic Steinert's disease underwent electrocardiography, 24-hour ambulatory electrocardiography, vectorcardiography, chest x-rays, echocardiography, electrophysiologic studies, and technetium-99m angiography. Clinically important cardiac manifestations of myotonic dystrophy reside in specialized tissues rather than in myocardium. Involvement is relatively specific, primarily assigned to the His-Purkinje system. The cardiac muscle disorder takes the form of dystrophy rather than myotonia, and is not selective, appearing with approximately equal distribution in all 4 chambers. Myocardial dystrophy seldom results in clinically overt ventricular failure, but may be responsible for atrial and ventricular arrhythmias. Since myotonic dystrophy is genetically transmitted, a primary biochemical defect has been proposed with complete expression of the gene toward striated muscle tissue, whether skeletal or cardiac. Specialized cardiac tissue and myocardium have close, if not identical, embryologic origins, so it is not surprising that the genetic marker affects both. Cardiac involvement is therefore an integral part of myotonic dystrophy, targeting particularly the infranodal conduction system, to a lesser extent the sinus node, and still less specifically, the myocardium.

  6. Myotonic dystrophy type 1, daytime sleepiness and REM sleep dysregulation.

    PubMed

    Dauvilliers, Yves A; Laberge, Luc

    2012-12-01

    Myotonic dystrophy type 1 (DM1), or Steinert's disease, is the most common adult-onset form of muscular dystrophy. DM1 also constitutes the neuromuscular condition with the most significant sleep disorders including excessive daytime sleepiness (EDS), central and obstructive sleep apneas, restless legs syndrome (RLS), periodic leg movements in wake (PLMW) and periodic leg movements in sleep (PLMS) as well as nocturnal and diurnal rapid eye movement (REM) sleep dysregulation. EDS is the most frequent non-muscular complaint in DM1, being present in about 70-80% of patients. Different phenotypes of sleep-related problems may mimic several sleep disorders, including idiopathic hypersomnia, narcolepsy without cataplexy, sleep apnea syndrome, and periodic leg movement disorder. Subjective and objective daytime sleepiness may be associated with the degree of muscular impairment. However, available evidence suggests that DM1-related EDS is primarily caused by a central dysfunction of sleep regulation rather than by sleep fragmentation, sleep-related respiratory events or periodic leg movements. EDS also tends to persist despite successful treatment of sleep-disordered breathing in DM1 patients. As EDS clearly impacts on physical and social functioning of DM1 patients, studies are needed to identify the best appropriate tools to identify hypersomnia, and clarify the indications for polysomnography (PSG) and multiple sleep latency test (MSLT) in DM1. In addition, further structured trials of assisted nocturnal ventilation and randomized trials of central nervous system (CNS) stimulant drugs in large samples of DM1 patients are required to optimally treat patients affected by this progressive, incurable condition. PMID:22465566

  7. Evidence for meiotic drive at the myotonic dystrophy locus

    SciTech Connect

    Shaw, A.M.; Barnetson, R.A.; Phillips, M.F.

    1994-09-01

    Myotonic dystrophy (DM), an autosomal dominant disorder, is the most common form of adult muscular dystrophy, affecting at least 1 in 8000 of the population. It is a multisystemic disorder, primarily characterized by myotonia, muscle wasting and cataract. The molecular basis of DM is an expanded CTG repeat located within the 3{prime} untranslated region of a putative serine-threonine protein kinase on chromosome 19q13.3. DM exhibits anticipation, that is, with successive generations there is increasing disease severity and earlier age of onset. This mechanism and the fact that the origin of the disease has been attributed to one or a small number of founder chromosomes suggests that, in time, DM should die out. Meiotic drive has been described as a way in which certain alleles are transmitted to succeeding generations in preference to others: preferential transmission of large CTG alleles may account for their continued existence in the gene pool. There is evidence that a CTG allele with > 19 repeats may gradually increase in repeat number over many generations until it is sufficiently large to give a DM phenotype. We report a study of 495 transmissions from individuals heterozygous for the CTG repeat and with repeat numbers within the normal range (5-30). Alleles were simply classified as large or small relative to the other allele in an individual. Of 242 male meioses, 126 transmissions from parent to child were of the larger allele to their offspring (57.7%, p=0.014). This shows that there is strong evidence for meiotic drive favoring the transmission of the larger DM allele in unaffected individuals. Contrary to a previous report of meiotic drive in the male, we have shown that females preferentially transmit the larger DM allele. Taken together, the data suggest the occurrence of meiotic drive in both males and females in this locus.

  8. In vitro mapping of Myotonic Dystrophy (DM) gene promoter

    SciTech Connect

    Storbeck, C.J.; Sabourin, L.; Baird, S.

    1994-09-01

    The Myotonic Dystrophy Kinase (DMK) gene has been cloned and shared homology to serine/threonine protein kinases. Overexpression of this gene in stably transfected mouse myoblasts has been shown to inhibit fusion into myotubes while myoblasts stably transfected with an antisense construct show increased fusion potential. These experiments, along with data showing that the DM gene is highly expressed in muscle have highlighted the possibility of DMK being involved in myogenesis. The promoter region of the DM gene lacks a consensus TATA box and CAAT box, but harbours numerous transcription binding sites. Clones containing extended 5{prime} upstream sequences (UPS) of DMK only weakly drive the reporter gene chloramphenicol acetyl transferase (CAT) when transfected into C2C12 mouse myoblasts. However, four E-boxes are present in the first intron of the DM gene and transient assays show increased expression of the CAT gene when the first intron is present downstream of these 5{prime} UPS in an orientation dependent manner. Comparison between mouse and human sequence reveals that the regions in the first intron where the E-boxes are located are highly conserved. The mapping of the promoter and the importance of the first intron in the control of DMK expression will be presented.

  9. [Social Cognitive Impairment in Myotonic Dystrophy Type 1].

    PubMed

    Kobayakawa, Mutsutaka

    2016-02-01

    Myotonic dystrophy type 1 (DM 1) is a heritable, multisystem disease that affects not only the muscles but also the brain. DM 1 is often accompanied by developmental behavioral disorders, such as autism spectrum disorders. The autistic traits in DM 1 may be related to social cognitive dysfunction. The social cognitive function of patients with DM 1 was examined with respect to facial emotion recognition and theory of mind, which is the specific cognitive ability to understand the mental states of other people. With respect to facial emotion recognition, the sensitivities to disgust and anger were lower among patients with DM 1 than among healthy subjects, and this difference could not be attributed to visual impairment. To examine the theory of mind ability, the "Reading the Mind in the Eyes" test and the faux pas recognition test were used. Patients with DM 1 were found to be impaired in both tests, but the results were not attributed to visual ability and lexical comprehension. The possible causes of social cognitive dysfunction in DM 1 are the l cerebral atrophy and white matter abnormalities in the temporal, frontal, and insular cortex. Dysfunctions in these areas may affect the emotional and theory of mind abilities in DM 1, which result in the behavioral and communication disorders. PMID:26873233

  10. Compound loss of muscleblind-like function in myotonic dystrophy

    PubMed Central

    Lee, Kuang-Yung; Li, Moyi; Manchanda, Mini; Batra, Ranjan; Charizanis, Konstantinos; Mohan, Apoorva; Warren, Sonisha A; Chamberlain, Christopher M; Finn, Dustin; Hong, Hannah; Ashraf, Hassan; Kasahara, Hideko; Ranum, Laura P W; Swanson, Maurice S

    2013-01-01

    Myotonic dystrophy (DM) is a multi-systemic disease that impacts cardiac and skeletal muscle as well as the central nervous system (CNS). DM is unusual because it is an RNA-mediated disorder due to the expression of toxic microsatellite expansion RNAs that alter the activities of RNA processing factors, including the muscleblind-like (MBNL) proteins. While these mutant RNAs inhibit MBNL1 splicing activity in heart and skeletal muscles, Mbnl1 knockout mice fail to recapitulate the full-range of DM symptoms in these tissues. Here, we generate mouse Mbnl compound knockouts to test the hypothesis that Mbnl2 functionally compensates for Mbnl1 loss. Although Mbnl1−/−; Mbnl2−/− double knockouts (DKOs) are embryonic lethal, Mbnl1−/−; Mbnl2+/− mice are viable but develop cardinal features of DM muscle disease including reduced lifespan, heart conduction block, severe myotonia and progressive skeletal muscle weakness. Mbnl2 protein levels are elevated in Mbnl1−/− knockouts where Mbnl2 targets Mbnl1-regulated exons. These findings support the hypothesis that compound loss of MBNL function is a critical event in DM pathogenesis and provide novel mouse models to investigate additional pathways disrupted in this RNA-mediated disease. PMID:24293317

  11. Therapeutic Approaches for Dominant Muscle Diseases: Highlight on Myotonic Dystrophy.

    PubMed

    Klein, A F; Dastidar, S; Furling, D; Chuah, M K

    2015-01-01

    Myotonic Dystrophy (DM), one of the most common neuromuscular disorders in adults, comprises two genetically distinct forms triggered by unstable expanded repeats in non-coding regions. The most common DM1 is caused by expanded CTG repeats in the 3'UTR of the DMPK gene, whereas DM2 is due to large expanded CCTG repeats in the first intron of the CNBP gene. Both mutations induce a pathogenic RNA gain-of-function mechanism. Mutant RNAs containing CUG or CCUG expanded repeats, which are retained in the nuclei as aggregates alter activities of alternative splicing regulators such as MBNL proteins and CELF1. As a consequence, alternative splicing misregulations of several pre-mRNAs are associated with DM clinical symptoms. Currently, there is no available cure for this dominant neuromuscular disease. Nevertheless, promising therapeutic strategies have been developed in the last decade. Preclinical progress in DM research prompted the first DM1 clinical trial based on antisense oligonucleotides promoting a RNase-H-mediated degradation of the expanded CUG transcripts. The ongoing Phase 1/2a clinical trial will hopefully give further insights into the quest to find a bona fide cure for DM1. In this review, we will provide an overview of the different strategies that were developed to neutralize the RNA toxicity in DM1. Different approaches including antisense oligonucleotide technologies, gene therapies or small molecules have been tested and validated in cellular and animal models. Remaining challenges and additional avenues to explore will be discussed. PMID:26122101

  12. Targeting nuclear RNA for in vivo correction of myotonic dystrophy.

    PubMed

    Wheeler, Thurman M; Leger, Andrew J; Pandey, Sanjay K; MacLeod, A Robert; Nakamori, Masayuki; Cheng, Seng H; Wentworth, Bruce M; Bennett, C Frank; Thornton, Charles A

    2012-08-01

    Antisense oligonucleotides (ASOs) hold promise for gene-specific knockdown in diseases that involve RNA or protein gain-of-function effects. In the hereditary degenerative disease myotonic dystrophy type 1 (DM1), transcripts from the mutant allele contain an expanded CUG repeat and are retained in the nucleus. The mutant RNA exerts a toxic gain-of-function effect, making it an appropriate target for therapeutic ASOs. However, despite improvements in ASO chemistry and design, systemic use of ASOs is limited because uptake in many tissues, including skeletal and cardiac muscle, is not sufficient to silence target messenger RNAs. Here we show that nuclear-retained transcripts containing expanded CUG (CUG(exp)) repeats are unusually sensitive to antisense silencing. In a transgenic mouse model of DM1, systemic administration of ASOs caused a rapid knockdown of CUG(exp) RNA in skeletal muscle, correcting the physiological, histopathologic and transcriptomic features of the disease. The effect was sustained for up to 1 year after treatment was discontinued. Systemically administered ASOs were also effective for muscle knockdown of Malat1, a long non-coding RNA (lncRNA) that is retained in the nucleus. These results provide a general strategy to correct RNA gain-of-function effects and to modulate the expression of expanded repeats, lncRNAs and other transcripts with prolonged nuclear residence. PMID:22859208

  13. [Myotonic dystrophy: magnetic resonance tomography and clinico-genetic correlations].

    PubMed

    Damian, M S; Koch, M C; Bachmann, G; Schilling, G; Fach, B; Stöppler, S; Trittmacher, S; Dorndorf, W

    1995-06-01

    Myotonic dystrophy (DM) is an autosomal dominant multisystem disorder involving muscle, brain, heart, eyes and endocrine organs, among others. The molecular basis is an unstable trinucleotide repeat at the 3'-untranslated end of the myotonin protein kinase gene on chromosome 19 q 13.3, and the number of repeats correlates with the severity of muscle weakness. We performed a clinical, psychometric and MRI study on 43 patients with DM and correlated findings with the molecular analysis. Nineteen patients had mild distal muscle weakness, 17 moderate und 7 severe weakness. Thirteen had marked cognitive deficits with reduced speed of cognition, low IQ, and apathy. MRI showed pathological muscle signal in 35 cases with a characteristic mosaic involving distal muscle groups, often sparing the posterior tibial muscle. Cerebral MRI showed significant subcortical white matter lesions in 20 cases and brain atrophy in 15 cases. Clinical and MRI findings of CNS and muscle both correlated with CTG repeat length, but did not parallel each other. DM is a significant disease of the brain as well as muscle, and several aspects of the disease correlate with molecular findings, with a threshold effect for repeats exceeding 1000 trinucleotides. The individual predominance of specific organ involvement probably depends on variable somatic mosaicism of the molecular defect. PMID:7637829

  14. Myotonic dystrophy type 1: frequency of ophthalmologic findings.

    PubMed

    Ikeda, Karin Suzete; Iwabe-Marchese, Cristina; França, Marcondes Cavalcante; Nucci, Anamarli; Carvalho, Keila Monteiro de

    2016-03-01

    The purpose of the study was to evaluate the frequency of ophthalmologic abnormalities in a cohort of myotonic dystrophy type 1 (DM1) patients and to correlate them with motor function. We reviewed the pathophysiology of cataract and low intraocular pressure (IOP). Method Patients were included after clinical and laboratory diagnosis and after signed informed consent. They were evaluated by Motor Function Measure scale, Portuguese version (MFM-P) and ophthalmic protocol. Results We evaluated 42 patients aged 17 to 64 years (mean 40.7 ± 12.5), 22 of which were men. IOP (n = 41) was reduced in all but one. We found cataract or positivity for surgery in 38 (90.48%) and ptosis in 23 (54.76%). These signs but not IOP were significantly correlated with severity of motor dysfunction. Abnormalities in ocular motility and stereopsis were observed. Conclusion Cataract and ptosis are frequent in DM1 and associated to motor dysfunction. Reduced IOP is also common, but appears not to be related with motor impairment. PMID:27050845

  15. Two Cases of Endometrial Cancer in Twin Sisters with Myotonic Dystrophy

    PubMed Central

    2016-01-01

    We describe two cases of endometrial cancer (EC) occurring in nulligravid twin sisters with myotonic dystrophy. Both tested negative for Lynch syndrome and both were treated with laparoscopic hysterectomy with bilateral salpingooophorectomy and adjuvant radiotherapy. Although EC tends to run in families, the diagnosis in itself is not considered sufficient cause for screening or prophylactic measures in close relatives. However, the presence of additional risk factors, such as nulligravidity and myotonic dystrophy in the underlying cases, may call for extra vigilance in first-degree family members. PMID:27595026

  16. Cardiac conduction abnormalities and Stokes-Adams attacks in myotonic dystrophy.

    PubMed Central

    Noel, C.; Gagnon, R. M.

    1978-01-01

    Myotonic dystrophy is a well known cause of cardiomyopathy. While various cardiac conduction abnormalities have been described in patients with myotonic dystrophy, so far only sporadic cases of Stokes-Adams attacks have been reported. Of 27 patients with this disease various conduction disturbances were detected in 17 (63%), 5 of whom presented with Stokes-Adams attacks and were found to have intracardiac conduction defects. The prognosis in four of the five patients was greatly improved with permanent pacemaker implantation. Images FIG. 1 FIG. 2 PMID:657033

  17. Endoplasmic reticulum stress in myotonic dystrophy type 1 muscle.

    PubMed

    Ikezoe, Koji; Nakamori, Masayuki; Furuya, Hirokazu; Arahata, Hajime; Kanemoto, Soshi; Kimura, Takashi; Imaizumi, Kazunori; Takahashi, Masanori P; Sakoda, Saburo; Fujii, Naoki; Kira, Jun-ichi

    2007-11-01

    In myotonic dystrophy type 1 (DM1), alternative splicing of ryanodine receptor 1 (RyR1) and sarcoplasmic/endoplasmic reticulum Ca2+ ATPase (SERCA) genes has been reported. These proteins are essential for maintaining intracellular Ca2+ in skeletal muscle. To clarify involvement of endoplasmic reticulum (ER) stress in DM1 muscles, we examined the activation of ER stress-related proteins by immunohistochemistry, western blot analysis and RT-PCR. In four of five DM1 muscle biopsies, except for a muscle biopsy from a patient with the shortest CTG expansion and no myotonia, increased expression of GRP78 and calnexin, and phosphorylation of PERK and eIF-2 alpha were revealed in fibers with sarcoplasmic masses and in highly atrophic fibers with pyknotic nuclear clumps. Caspase-3 and -7 were also expressed in these fibers. Increased expression of GRP78 in these DM1 muscles was confirmed by western blot analysis. GRP78 mRNA and spliced isoform of XBP1 mRNA were also increased in DM1 muscle biopsies. Furthermore, we demonstrated increased expression of GRP78 in highly atrophic fibers with pyknotic nuclear clumps in all three muscle biopsies from neurogenic muscular atrophies. However, five muscle biopsies from central core disease presumably with disturbed intracellular Ca2+ homeostasis and a muscle biopsy from paramyotonia congenita with myotonia showed no activation of these proteins. Taken together, ER stress is involved in muscle wasting in DM1. However, it seems to be evoked not only by disrupted intracellular Ca2+ homeostasis. PMID:17661063

  18. Muscle wasting in myotonic dystrophies: a model of premature aging

    PubMed Central

    Mateos-Aierdi, Alba Judith; Goicoechea, Maria; Aiastui, Ana; Fernández-Torrón, Roberto; Garcia-Puga, Mikel; Matheu, Ander; López de Munain, Adolfo

    2015-01-01

    Myotonic dystrophy type 1 (DM1 or Steinert’s disease) and type 2 (DM2) are multisystem disorders of genetic origin. Progressive muscular weakness, atrophy and myotonia are the most prominent neuromuscular features of these diseases, while other clinical manifestations such as cardiomyopathy, insulin resistance and cataracts are also common. From a clinical perspective, most DM symptoms are interpreted as a result of an accelerated aging (cataracts, muscular weakness and atrophy, cognitive decline, metabolic dysfunction, etc.), including an increased risk of developing tumors. From this point of view, DM1 could be described as a progeroid syndrome since a notable age-dependent dysfunction of all systems occurs. The underlying molecular disorder in DM1 consists of the existence of a pathological (CTG) triplet expansion in the 3′ untranslated region (UTR) of the Dystrophia Myotonica Protein Kinase (DMPK) gene, whereas (CCTG)n repeats in the first intron of the Cellular Nucleic acid Binding Protein/Zinc Finger Protein 9 (CNBP/ZNF9) gene cause DM2. The expansions are transcribed into (CUG)n and (CCUG)n-containing RNA, respectively, which form secondary structures and sequester RNA-binding proteins, such as the splicing factor muscleblind-like protein (MBNL), forming nuclear aggregates known as foci. Other splicing factors, such as CUGBP, are also disrupted, leading to a spliceopathy of a large number of downstream genes linked to the clinical features of these diseases. Skeletal muscle regeneration relies on muscle progenitor cells, known as satellite cells, which are activated after muscle damage, and which proliferate and differentiate to muscle cells, thus regenerating the damaged tissue. Satellite cell dysfunction seems to be a common feature of both age-dependent muscle degeneration (sarcopenia) and muscle wasting in DM and other muscle degenerative diseases. This review aims to describe the cellular, molecular and macrostructural processes involved in the

  19. Abnormal Splicing of NEDD4 in Myotonic Dystrophy Type 2

    PubMed Central

    Screen, Mark; Jonson, Per Harald; Raheem, Olayinka; Palmio, Johanna; Laaksonen, Reijo; Lehtimäki, Terho; Sirito, Mario; Krahe, Ralf; Hackman, Peter; Udd, Bjarne

    2015-01-01

    Myotonic dystrophy type 2 (DM2) is a multisystemic disorder caused by a (CCTG)n repeat expansion in intron 1 of CNBP. Transcription of the repeats causes a toxic RNA gain of function involving their accumulation in ribonuclear foci. This leads to sequestration of splicing factors and alters pre-mRNA splicing in a range of downstream effector genes, which is thought to contribute to the diverse DM2 clinical features. Hyperlipidemia is frequent in DM2 patients, but the treatment is problematic because of an increased risk of statin-induced adverse reactions. Hypothesizing that shared pathways lead to the increased risk, we compared the skeletal muscle expression profiles of DM2 patients and controls with patients with hyperlipidemia on statin therapy. Neural precursor cell expressed, developmentally downregulated-4 (NEDD4), an ubiquitin ligase, was one of the dysregulated genes identified in DM2 patients and patients with statin-treated hyperlipidemia. In DM2 muscle, NEDD4 mRNA was abnormally spliced, leading to aberrant NEDD4 proteins. NEDD4 was down-regulated in persons taking statins, and simvastatin treatment of C2C12 cells suppressed NEDD4 transcription. Phosphatase and tensin homologue (PTEN), an established NEDD4 target, was increased and accumulated in highly atrophic DM2 muscle fibers. PTEN ubiquitination was reduced in DM2 myofibers, suggesting that the NEDD4-PTEN pathway is dysregulated in DM2 skeletal muscle. Thus, this pathway may contribute to the increased risk of statin-adverse reactions in patients with DM2. PMID:24907641

  20. Two cases of myotonic dystrophy manifesting various ophthalmic findings with genetic evaluation.

    PubMed

    Kang, Min Ji; Yim, Hye Bin; Hwang, Hyung Bin

    2016-07-01

    We report two cases of myotonic dystrophy in one family; both diagnosed from genetic analysis following ophthalmic indications, but before the manifestation of systemic symptoms. A 39-year-old female visited our clinic for routine examination. Mild ptosis, sluggish pupillary response, and bilateral snowflake cataracts were found. Fundus examination revealed an increased cup-to-disc ratio (CDR) in both eyes and a defect in the retinal nerve fiber layer in the right eye. Intraocular pressure was low, but within the normal range in both eyes. Because cataracts are characteristic of myotonic dystrophy, we suggested that her 14-year-old daughter, who did not have any systemic complaints, undergo ophthalmic examination. She also had mild ptosis and snowflake cataracts. Both patients underwent genetic evaluation and were diagnosed with myotonic dystrophy caused by unstable expansion of cytosine-thymine-guanine trinucleotide repeats in the dystrophia myotonica-protein kinase gene. Ophthalmologists can diagnose myotonic dystrophy based on clinical and genetic findings, before the manifestation of systemic abnormalities. PMID:27609169

  1. Myotonic dystrophy CTG expansion affects synaptic vesicle proteins, neurotransmission and mouse behaviour

    PubMed Central

    Hernández-Hernández, Oscar; Guiraud-Dogan, Céline; Sicot, Géraldine; Huguet, Aline; Luilier, Sabrina; Steidl, Esther; Saenger, Stefanie; Marciniak, Elodie; Obriot, Hélène; Chevarin, Caroline; Nicole, Annie; Revillod, Lucile; Charizanis, Konstantinos; Lee, Kuang-Yung; Suzuki, Yasuhiro; Kimura, Takashi; Matsuura, Tohru; Cisneros, Bulmaro; Swanson, Maurice S.; Trovero, Fabrice; Buisson, Bruno; Bizot, Jean-Charles; Hamon, Michel; Humez, Sandrine; Bassez, Guillaume; Metzger, Friedrich; Buée, Luc; Munnich, Arnold; Sergeant, Nicolas; Gourdon, Geneviève

    2013-01-01

    Myotonic dystrophy type 1 is a complex multisystemic inherited disorder, which displays multiple debilitating neurological manifestations. Despite recent progress in the understanding of the molecular pathogenesis of myotonic dystrophy type 1 in skeletal muscle and heart, the pathways affected in the central nervous system are largely unknown. To address this question, we studied the only transgenic mouse line expressing CTG trinucleotide repeats in the central nervous system. These mice recreate molecular features of RNA toxicity, such as RNA foci accumulation and missplicing. They exhibit relevant behavioural and cognitive phenotypes, deficits in short-term synaptic plasticity, as well as changes in neurochemical levels. In the search for disease intermediates affected by disease mutation, a global proteomics approach revealed RAB3A upregulation and synapsin I hyperphosphorylation in the central nervous system of transgenic mice, transfected cells and post-mortem brains of patients with myotonic dystrophy type 1. These protein defects were associated with electrophysiological and behavioural deficits in mice and altered spontaneous neurosecretion in cell culture. Taking advantage of a relevant transgenic mouse of a complex human disease, we found a novel connection between physiological phenotypes and synaptic protein dysregulation, indicative of synaptic dysfunction in myotonic dystrophy type 1 brain pathology. PMID:23404338

  2. Intestinal non-rotation and pseudoobstruction in myotonic dystrophy: case report and review of the literature.

    PubMed

    Sartoretti, C; Sartoretti, S; DeLorenzi, D; Buchmann, P

    1996-01-01

    Myotonic dystrophy is an autosomal dominant inherited disease of the skeletal and cardiac musculature that involves the pharyngeal and gastrointestinal smooth and striated muscles, resulting in velopharyngeal insufficiency, Swallowing difficulties, gastrointestinal motility disorders and anal incontinence. Gastrointestinal symptoms are found in a large proportion of patients suffering from this disease and may herald the onset of muscular disorders, in rare cases they are even the predominant feature of the disorder. We report on a 31-years-old patient with formerly undiagnosed myotonic dystrophy in combination with a non-rotation of the intestinal tract, an association of disorders that to our knowledge never has been reported before. Our patient was admitted as an emergency with signs of an acute abdomen with ileus, associated with acute aspiration pneumonia. Surgical intervention was avoided once the diagnosis of myotonic dystrophy had been confirmed and the patient was treated successfully by conservative therapy. A review of the literature indicates that conservative treatment of motility disorders of the bowel in patients with myotonic dystrophy is to be recommended. PMID:8919334

  3. Anesthetic management of a patient with myotonic dystrophy for laparoscopic cholecystectomy--a case report.

    PubMed

    El-Dawlatly, Abdelazeem; Aldohayan, Abdullah; Nawaz, Sayeed; Alshutry, Abdullah

    2008-06-01

    Myotonic dystrophy (MD) is rare disease that offers challenges to anesthesiologists. We report a case of adult patient with myotonic dystrophy who underwent laparoscopic cholecystectomy. A 48-year-old male patient, known case of MD, was presented for laparoscopic cholecystectomy. Physical examination revealed, young man, calm, quite, cooperative, not in pain or distress with frontal baldness, temporal bone recession, elongated face, mild degree of ptosis and swan neck. Under complete aseptic conditions, thoracic epidural T6-7 with catheter insertion was performed while the patient was placed on left lateral side. Plain bupivacaine 0.5% 7cc was injected through the catheter. Level of analgesia tested with ice reached up to T4. Intravenous sedation was achieved with midazolam 2 mg and ketamine 50 mg. The patient was comfortably lying supine on warm heated mattress, except of bilateral shoulder pains which was relieved with midazolam and ketamine. In conclusion, regional anesthesia, spinal or epidural, is preferable in MD patients. Shoulder pains is the main intraoperative problem encountered in our patient. Therefore, studies are needed for treating shoulder pain. To the best of our knowledge, this is the first case report in a patient with MD who underwent laparoscopic cholecystectomy under thoracic epidural analgesia. Myotonic dystrophy (M) is rare disease and represents challenges to anesthesiologists. We report a case of adult patient with myotonic dystrophy who underwent laparoscopic cholecystectomy. PMID:18637613

  4. Genetics Home Reference: Fukuyama congenital muscular dystrophy

    MedlinePlus

    ... and walking. Fukuyama congenital muscular dystrophy also impairs brain development. People with this condition have a brain abnormality ... cobblestones). These changes in the structure of the brain lead to significantly delayed development of speech and motor skills and moderate to ...

  5. Modeling Myotonic Dystrophy 1 in C2C12 Myoblast Cells.

    PubMed

    Liang, Rui; Dong, Wei; Shen, Xiaopeng; Peng, Xiaoping; Aceves, Angie G; Liu, Yu

    2016-01-01

    Myotonic dystrophy 1 (DM1) is a common form of muscular dystrophy. Although several animal models have been established for DM1, myoblast cell models are still important because they offer an efficient cellular alternative for studying cellular and molecular events. Though C2C12 myoblast cells have been widely used to study myogenesis, resistance to gene transfection, or viral transduction, hinders research in C2C12 cells. Here, we describe an optimized protocol that includes daily maintenance, transfection and transduction procedures to introduce genes into C2C12 myoblasts and the induction of myocyte differentiation. Collectively, these procedures enable best transfection/transduction efficiencies, as well as consistent differentiation outcomes. The protocol described in establishing DM1 myoblast cell models would benefit the study of myotonic dystrophy, as well as other muscular diseases. PMID:27501221

  6. The myotonic dystrophy kinase 3{prime}-untranslated region and its effect on gene expression

    SciTech Connect

    Ang, C.W.Y.; Sabourin, L.A.; Narang, M.A.

    1994-09-01

    Myotonic dystrophy (DM) is an autosomal dominant neuromuscular disease involving the expansion of an unstable CTG repeat in the 3{prime}-untranslated (3{prime}-UTR) region of the DM kinase (DMK) gene. Increased levels of mRNA in congenital compared to normal tissue have been shown, suggesting elevated DMK levels may be responsible for the disease phenotype. To study the effect of the DMK 3{prime}UTR on gene expression, a reporter gene system was constructed using the constitutive CMV promoter with the chloramphenicol acetyl transferase (CAT) open reading frame and the DMK 3{prime}UTR containing from 5 repeats up to 90 repeats. Transient transfection into a rhabdomyosarcoma cell line shows a three-fold increase in CAT activity from constructs containing a wildtype 3{prime}UTR (5 and 20 repeats) compared to a control construct containing only a poly(A) signal. Reporter constructs with repeats in the protomutation (50 repeats) and mutation (90 repeats) range show a greater than 10-fold increase over control CAT activity. These results suggest the presence of elements in the DMK 3{prime}UTR capable of conferring increased gene expression. We are currently investigating cell-specific activity of the constructs and conducting deletion mapping to identify regulatory elements in the 3{prime}-UTR.

  7. Direct molecular analysis of myotonic dystrophy in the German population: important considerations in genetic counselling.

    PubMed Central

    Meiner, A; Wolf, C; Carey, N; Okitsu, A; Johnson, K; Shelbourne, P; Kunath, B; Sauermann, W; Thiele, H; Kupferling, P

    1995-01-01

    Myotonic dystrophy (DM) is associated with the expansion and instability of a trinucleotide (CTG) repeat at the DM locus on chromosome 19. Direct genomic analysis in the German population was carried out on 18 DM families, six families with equivocal diagnosis, 69 subjects with equivocal clinical diagnosis, and 100 controls using the polymerase chain reaction (PCR) and a refined Southern protocol. In the majority of the cases molecular analysis confirmed the clinical diagnosis. These included seven cases of congenital DM (CDM) with widely differing gene expansions and instabilities. In most DM families the expanded fragment became larger in successive generations, but we also identified four families with contractions and two families that showed stability of the enlarged fragment during transmission. In four clinically defined DM patients we were unable to detect enlarged CTG repeats. Sequencing of each exon of the DM gene in two of these patients failed to show any mutations. Our cases have important implications for genetic counselling of DM families, highlighting both the diagnostic value of direct genomic analysis and its limitations. PMID:7473660

  8. Experienced fatigue in facioscapulohumeral dystrophy, myotonic dystrophy, and HMSN-I

    PubMed Central

    Kalkman, J; Schillings, M; van der Werf, S P; Padberg, G; Zwarts, M; van Engelen, B G M; Bleijenberg, G

    2005-01-01

    Objective: To assess the prevalence of severe fatigue and its relation to functional impairment in daily life in patients with relatively common types of neuromuscular disorders. Methods: 598 patients with a neuromuscular disease were studied (139 with facioscapulohumeral dystrophy, 322 with adult onset myotonic dystrophy, and 137 with hereditary motor and sensory neuropathy type I). Fatigue severity was assessed with Checklist Individual Strength (CIS-fatigue). Functional impairments in daily life were measured with the short form 36 item health questionnaire (SF-36). Results: The three different neuromuscular patient groups were of similar age and sex. Severe experienced fatigue was reported by 61–74% of the patients. Severely fatigued patients had more problems with physical functioning, social functioning, mental health, bodily pain, and general health perception. There were some differences between the three disorders in the effects of fatigue. Conclusions: Severe fatigue is reported by the majority of patients with relatively common types of neuromuscular disorders. Because experienced fatigue severity is associated with the severity of various functional impairments in daily life, it is a clinically and socially relevant problem in this group of patients. PMID:16170086

  9. Somatic heterogeneity of the CTG repeat in myotonic dystrophy is age and size dependent.

    PubMed Central

    Wong, L J; Ashizawa, T; Monckton, D G; Caskey, C T; Richards, C S

    1995-01-01

    The most common form of adult muscular dystrophy, myotonic dystrophy (DM), is caused by the abnormal expansion of the CTG repeat, located in the 3' UTR of the DM gene. The expanded-CTG allele often presents as a diffused band on Southern blot analysis, suggesting somatic mosaicism. In order to study the somatic instability of the CTG repeat, we have investigated the dynamics of the size heterogeneity of the CTG expansion. Size heterogeneity is shown as a smear on Southern blot and is measured by the midpeak-width ratio of the expanded allele to the normal sized allele. The ratio is also corrected for compression in the higher-molecular-weight region. It is found that the size heterogeneity of the expanded-CTG repeats, of 173 DM patients, correlates well with the age of the patient (r = .81, P << .001). The older patients show larger size variation. This correlation is independent of the sex of either the patient or the transmitting parent. The size heterogeneity of the expansion, based on age groups, is also dependent on the size of the expanded trinucleotide repeat. However, obvious size heterogeneity is not observed in congenital cases, regardless of the size of expansion. Comparison of individual patient samples collected at two different times has confirmed that the degree of size heterogeneity increases with age and has revealed a subtle but definite upward shift in the size of the expanded-CTG allele. The progression of the CTG repeat toward larger expansion with age is further confirmed by small-pool PCR assay that resolved the heterogeneous fragments into discrete bands.(ABSTRACT TRUNCATED AT 250 WORDS) Images Figure 1 Figure 4 Figure 5 PMID:7825566

  10. Rac-1 and Raf-1 kinases, components of distinct signaling pathways, activate myotonic dystrophy protein kinase

    NASA Technical Reports Server (NTRS)

    Shimizu, M.; Wang, W.; Walch, E. T.; Dunne, P. W.; Epstein, H. F.

    2000-01-01

    Myotonic dystrophy protein kinase (DMPK) is a serine-threonine protein kinase encoded by the myotonic dystrophy (DM) locus on human chromosome 19q13.3. It is a close relative of other kinases that interact with members of the Rho family of small GTPases. We show here that the actin cytoskeleton-linked GTPase Rac-1 binds to DMPK, and coexpression of Rac-1 and DMPK activates its transphosphorylation activity in a GTP-sensitive manner. DMPK can also bind Raf-1 kinase, the Ras-activated molecule of the MAP kinase pathway. Purified Raf-1 kinase phosphorylates and activates DMPK. The interaction of DMPK with these distinct signals suggests that it may play a role as a nexus for cross-talk between their respective pathways and may partially explain the remarkable pleiotropy of DM.

  11. Bilateral Adduction Palsy in a Patient with Myotonic Dystrophy Type 1

    PubMed Central

    Kim, Hong-Jeon; Oh, Jung-Hwan

    2016-01-01

    Myotonic dystrophy type 1 (DM1) is caused by CTG repeat expansion in the DMPK gene in chromosome 19q13.3. External ophthalmoplegia is a rare manifestation in DM1. We report a DM1 patient confirmed by the presence of 650 CTG triplet expansions in the DMPK gene and had limitation of adduction gaze bilaterally. Brain MRI showed bilateral medial rectus muscles atrophy. Our patient provides additional evidence of ocular motor muscle involvement in DM1. PMID:27358583

  12. Expansion of the myotonic dystrophy gene in Italian and Spanish patients.

    PubMed Central

    Melchionda, S; Cobo, A; Gennarelli, M; Martorell, L; Fattorini, C; Baiget, M; Lopez de Munain, A; Johnson, K; Shelbourne, P; Novelli, G

    1992-01-01

    Myotonic dystrophy results from expansion of a (CTG)n repeat at the 3' untranslated region of the myotonin-protein kinase gene. We show here the genomic analysis of 322 symptomatic patients with the cDNA-25 probe detecting disease specific EcoRI restriction fragments. The expansion was found in the majority of Italian and Spanish patients (92%). The implications of these results for the detection of symptomatic patients in southern Europe are discussed. PMID:1453428

  13. A 5-year follow-up study of an atypical case of myotonic dystrophy.

    PubMed

    Macniven, J A B; Graham, N L; Davies, R R; Wilson, B A

    2005-12-20

    This study presents 5-year follow-up data on NG, a woman with adult onset myotonic dystrophy and progressive cognitive decline who was first described by Wilson et al. The extent of the cognitive impairment is atypical of symptom-onset in adulthood and of paternal inheritance, both of which apply to this case. Together, the present and earlier studies report the results of regular neuropsychological assessments over a 16-year period. Severe impairment in executive functioning, episodic and semantic memory were apparent early in the history, while visuospatial skills and working memory were only mildly impaired after 16 years of follow-up. There was also a progressive dyslexia, initially characterized by the regularization errors typical of surface dyslexia, but subsequently dominated by visual/phonological reading errors. This pattern of impairment is not typical of myotonic dystrophy but resembles semantic dementia. Whilst the deficits may be attributable wholly to myotonic dystrophy pathology, the co-existence of a form of semantic dementia is also possible. It is noted that the aggregation of tau protein is a neuropathological feature common to both diseases. PMID:16286337

  14. Prevalence of congenital muscular dystrophy in Italy

    PubMed Central

    Graziano, Alessandra; Bianco, Flaviana; D'Amico, Adele; Moroni, Isabella; Messina, Sonia; Bruno, Claudio; Pegoraro, Elena; Mora, Marina; Astrea, Guja; Magri, Francesca; Comi, Giacomo P.; Berardinelli, Angela; Moggio, Maurizio; Morandi, Lucia; Pini, Antonella; Petillo, Roberta; Tasca, Giorgio; Monforte, Mauro; Minetti, Carlo; Mongini, Tiziana; Ricci, Enzo; Gorni, Ksenija; Battini, Roberta; Villanova, Marcello; Politano, Luisa; Gualandi, Francesca; Ferlini, Alessandra; Muntoni, Francesco; Santorelli, Filippo Maria; Bertini, Enrico; Pane, Marika

    2015-01-01

    Objective: We provide a nationwide population study of patients with congenital muscular dystrophy in Italy. Methods: Cases were ascertained from the databases in all the tertiary referral centers for pediatric neuromuscular disorders and from all the genetic diagnostic centers in which diagnostic tests for these forms are performed. Results: The study includes 336 patients with a point prevalence of 0.563 per 100,000. Mutations were identified in 220 of the 336 (65.5%). The cohort was subdivided into diagnostic categories based on the most recent classifications on congenital muscular dystrophies. The most common forms were those with α-dystroglycan glycosylation deficiency (40.18%) followed by those with laminin α2 deficiency (24.11%) and collagen VI deficiency (20.24%). The forms of congenital muscular dystrophy related to mutations in SEPN1 and LMNA were less frequent (6.25% and 5.95%, respectively). Conclusions: Our study provides for the first time comprehensive epidemiologic information and point prevalence figures for each of the major diagnostic categories on a large cohort of congenital muscular dystrophies. The study also reflects the diagnostic progress in this field with an accurate classification of the cases according to the most recent gene discoveries. PMID:25653289

  15. Computer method for the analysis of evoked motor unit potentials. 2. Duchenne, limb-girdle, facioscapulohumeral and myotonic muscular dystrophies.

    PubMed Central

    Ballantyne, J P; Hansen, S

    1975-01-01

    Single motor unit potentials recorded from surface electrodes over the extensor digitorum brevis muscle and evoked by stimulation of the anterior tibial nerve at the ankle were obtained by a computer subtraction method. Their latencies, durations, amplitudes, and areas were measured in control subjects and patients with Duchenne, limb-girdle, facioscapulohumeral, and myotonic muscular dystrophy. Lateral popliteal motor nerve conduction velocities were also recorded. In the muscular dystrophies there was a significant increase in both the latencies and durations of motor unit potentials, the latter in notable contrast with the findings of conventional needle electromyography. Fastest motor conduction velocities were significantly reduced in the limb-girdle, facioscapulohumeral, and myotonic muscular dystrophy patients, while the shortest distal motor latencies were significantly prolonged in these patients and those with Duchenne muscular dystrophy. The results support the presence of a definitive neurogenic influence in the muscular dystrophies. PMID:1151411

  16. Clinical and genetic analysis of the first known Asian family with myotonic dystrophy type 2.

    PubMed

    Nakayama, Takahiro; Nakamura, Harumasa; Oya, Yasushi; Kimura, Takashi; Imahuku, Ichiro; Ohno, Kinji; Nishino, Ichizo; Abe, Koji; Matsuura, Tohru

    2014-03-01

    Myotonic dystrophy type 2 (DM2) is more common than DM1 in Europe and is considered a rare cause of myotonic dystrophies in Asia. Its clinical course is also milder with more phenotypic variability than DM1. We herein describe the first known Asian family (three affected siblings) with DM2 based on clinical and genetic analyses. Notably, two of the affected siblings were previously diagnosed with limb-girdle muscular dystrophy. Myotonia (the inability of the muscle to relax) was absent or only faintly present in these individuals. The third sibling had grip myotonia and is the first known Asian DM2 patient. The three DM2 siblings share several systemic characteristics, including late-onset, proximal-dominant muscle weakness, diabetes, cataracts and asthma. Repeat-primed PCR across the DM2 repeat revealed a characteristic ladder pattern of a CCTG expansion in all siblings. Southern blotting analysis identified the presence of 3400 repeats. Further DM2 studies in Asian populations are needed to define the clinical presentation of Asian DM2 and as yet unidentified phenotypic differences from Caucasian patients. PMID:24430576

  17. Preferential Nucleosome Assembly at DNA Triplet Repeats from the Myotonic Dystrophy Gene

    NASA Astrophysics Data System (ADS)

    Wang, Yuh-Hwa; Amirhaeri, Sorour; Kang, Seongman; Wells, Robert D.; Griffith, Jack D.

    1994-07-01

    The expansion of CTG repeats in DNA occurs in or near genes involved in several human diseases, including myotonic dystrophy and Huntington's disease. Nucleosomes, the basic structural element of chromosomes, consist of 146 base pairs of DNA coiled about an octamer of histone proteins and mediate general transcriptional repression. Electron microscopy was used to examine in vitro the nucleosome assembly of DNA containing repeating CTG triplets. The efficiency of nucleosome formation increased with expanded triplet blocks, suggesting that such blocks may repress transcription through the creation of stable nucleosomes.

  18. A journey in bioinspired supramolecular chemistry: from molecular tweezers to small molecules that target myotonic dystrophy

    PubMed Central

    2016-01-01

    Summary This review summarizes part of the author’s research in the area of supramolecular chemistry, beginning with his early life influences and early career efforts in molecular recognition, especially molecular tweezers. Although designed to complex DNA, these hosts proved more applicable to the field of host–guest chemistry. This early experience and interest in intercalation ultimately led to the current efforts to develop small molecule therapeutic agents for myotonic dystrophy using a rational design approach that heavily relies on principles of supramolecular chemistry. How this work was influenced by that of others in the field and the evolution of each area of research is highlighted with selected examples. PMID:26877815

  19. Altered β-adrenergic response in mice lacking myotonic dystrophy protein kinase.

    PubMed

    Llagostera, Esther; Álvarez López, María Jesús; Scimia, Cecilia; Catalucci, Daniele; Párrizas, Marcelina; Ruiz-Lozano, Pilar; Kaliman, Perla

    2012-01-01

    The protein kinase product of the gene mutated in myotonic dystrophy 1 (DMPK) is reported to play a role in cardiac pathophysiology. To gain insight into the molecular mechanisms modulated by DMPK, we characterize the impact of DMPK ablation in the context of cardiac β-adrenergic function. Our data demonstrate that DMPK knockout mice present altered β-agonist-induced responses and suggest that this is due, at least in part, to a reduced density of β(1)-adrenergic receptors in cardiac plasma membranes. PMID:22190319

  20. Altered β-adrenergic response in mice lacking myotonic dystrophy protein kinase (DMPK)

    PubMed Central

    Llagostera, Esther; López, María Jesús Álvarez; Scimia, Cecilia; Catalucci, Daniele; Párrizas, Marcelina; Ruiz-Lozano, Pilar; Kaliman, Perla

    2011-01-01

    The protein kinase product of the gene mutated in myotonic dystrophy 1 (DMPK) is reported to play a role in cardiac pathophysiology. To gain insight into the molecular mechanisms modulated by DMPK, we characterize the impact of DMPK ablation in the context of cardiac β-adrenergic function. Our data demonstrate that DMPK knock-out mice present altered β-agonist-induced responses and suggest that this is due, at least in part, to a reduced density of β1-adrenergic receptors in cardiac plasma membranes. PMID:22190319

  1. Comparison of mechanomyography and acceleromyography for the assessment of rocuronium induced neuromuscular block in myotonic dystrophy type 1.

    PubMed

    Vanlinthout, L E H; Booij, L H D J; van Egmond, J; Robertson, E N

    2010-06-01

    We measured acceleromyography and mechanomyography simultaneously with monitoring of rocuronium-induced neuromuscular block in four patients with myotonic dystrophy type 1. Furthermore, we compared neuromuscular block measures from these patients with those from normal controls from previous studies. In myotonic dystrophy type 1 patients, the dose-response curve obtained with acceleromyography was steeper and right-shifted compared with that obtained using mechanomyography. However, the effective doses to produce 95% neuromuscular block determined with both acceleromyography and mechanomyography were similar to each other and to values found in normal patients. In the three myotonic dystrophy type 1 patients with mild to moderate disease, times to recovery from block were similar to those observed in normal controls. In both patients and normal controls, neuromuscular block recovered faster with acceleromyography. However, in one patient with severe muscle wasting, recovery of neuromuscular block was prolonged. We conclude that mechanomyography and acceleromyography cannot be used interchangeably to monitor neuromuscular block in myotonic dystrophy type 1 patients. PMID:20565393

  2. Brain pathology in myotonic dystrophy: when tauopathy meets spliceopathy and RNAopathy

    PubMed Central

    Caillet-Boudin, Marie-Laure; Fernandez-Gomez, Francisco-Jose; Tran, Hélène; Dhaenens, Claire-Marie; Buee, Luc; Sergeant, Nicolas

    2013-01-01

    Myotonic dystrophy (DM) of type 1 and 2 (DM1 and DM2) are inherited autosomal dominant diseases caused by dynamic and unstable expanded microsatellite sequences (CTG and CCTG, respectively) in the non-coding regions of the genes DMPK and ZNF9, respectively. These mutations result in the intranuclear accumulation of mutated transcripts and the mis-splicing of numerous transcripts. This so-called RNA gain of toxic function is the main feature of an emerging group of pathologies known as RNAopathies. Interestingly, in addition to these RNA inclusions, called foci, the presence of neurofibrillary tangles (NFT) in patient brains also distinguishes DM as a tauopathy. Tauopathies are a group of nearly 30 neurodegenerative diseases that are characterized by intraneuronal protein aggregates of the microtubule-associated protein Tau (MAPT) in patient brains. Furthermore, a number of neurodegenerative diseases involve the dysregulation of splicing regulating factors and have been characterized as spliceopathies. Thus, myotonic dystrophies are pathologies resulting from the interplay among RNAopathy, spliceopathy, and tauopathy. This review will describe how these processes contribute to neurodegeneration. We will first focus on the tauopathy associated with DM1, including clinical symptoms, brain histology, and molecular mechanisms. We will also discuss the features of DM1 that are shared by other tauopathies and, consequently, might participate in the development of a tauopathy. Moreover, we will discuss the determinants common to both RNAopathies and spliceopathies that could interfere with tau-related neurodegeneration. PMID:24409116

  3. Ambulatory electrocardiographic monitoring in myotonic dystrophy (Steinert's Disease). A study of 22 patients.

    PubMed

    Fragola, P V; Ruscitti, G C; Autore, C; Antonini, G; Capria, A; Fiorito, S; Vichi, R; Pennisi, E; Cannata, D

    1987-01-01

    Ambulatory electrocardiographic monitoring (AEM) was performed in 22 patients (range 13-62 years; mean age 38.2 +/- 12.7) with grades I, II and III of myotonic dystrophy in order to evaluate the occurrence of potentially dangerous cardiac arrhythmias and conduction disturbances. All patients had previously undergone echocardiographic examination to determine whether structure and function abnormalities were present. In 6 patients with normal resting electrocardiogram, AEM revealed: first degree A-V block (4 cases), class IVa Lown ventricular arrhythmias (3 cases) and episodes of atrial fibrillation (4 cases). In 2 of 3 cases with abnormal scalar electrocardiogram new abnormalities (first degree A-V block and further prolongation of P-R interval) were demonstrated by AEM. Only 1 patient had mild signs of left ventricular dysfunction at echo. Disorders of cardiac conduction and rhythm are characteristic of myotonic dystrophy and can predispose to severe cardiac events. In this respect AEM is shown to be an early and sensitive tool in identifying patients at risk. PMID:3652080

  4. Analysis of meiotic segregation, using single-sperm typing: meiotic drive at the myotonic dystrophy locus.

    PubMed Central

    Leeflang, E. P.; McPeek, M. S.; Arnheim, N.

    1996-01-01

    Meiotic drive at the myotonic dystrophy (DM) locus has recently been suggested as being responsible for maintaining the frequency, in the human population, of DM chromosomes capable of expansion to the disease state. In order to test this hypothesis, we have studied samples of single sperm from three individuals heterozygous at the DM locus, each with one allele larger and one allele smaller than 19 CTG repeats. To guard against the possible problem of differential PCR amplification rates based on the lengths of the alleles, the sperm were also typed at another closely linked marker whose allele size was unrelated to the allele size at the DM locus. Using statistical models specifically designed to study single-sperm segregation data, we find no evidence of meiotic segregation distortion. The upper limit of the two-sided 95% confidence interval for the estimate of the common segregation probability for the three donors is at or below .515 for all models considered, and no statistically significant difference from .5 is detected in any of the models. This suggests that any greater amount of segregation distortion at the myotonic dystrophy locus must result from events following sperm ejaculation. The mathematical models developed make it possible to study segregation distortion with high resolution by using sperm-typing data from any locus. PMID:8808606

  5. Analysis of meiotic segregation, using single-sperm typing: Meiotic drive at the myotonic dystrophy locus

    SciTech Connect

    Leeflang, E.P.; Arnheim, N.; McPeek, M.S.

    1996-10-01

    Meiotic drive at the myotonic dystrophy (DM) locus has recently been suggested as being responsible for maintaining the frequency, in the human population, of DM chromosomes capable of expansion to the disease state. In order to test this hypothesis, we have studied samples of single sperm from three individuals heterozygous at the DM locus, each with one allele larger and one allele smaller than 19 CTG repeats. To guard against the possible problem of differential PCR amplification rates based on the lengths of the alleles, the sperm were also typed at another closely linked marker whose allele size was unrelated to the allele size at the DM locus. Using statistical models specifically designed to study single-sperm segregation data, we find no evidence of meiotic segregation distortion. The upper limit of the two-sided 95% confidence interval for the estimate of the common segregation probability for the three donors is at or below .515 for all models considered, and no statistically significant difference from .5 is detected in any of the models. This suggests that any greater amount of segregation distortion at the myotonic dystrophy locus must result from events following sperm ejaculation. The mathematical models developed make it possible to study segregation distortion with high resolution by using sperm-typing data from any locus. 26 refs., 1 fig., 8 tabs.

  6. Mexiletine is an effective antimyotonia treatment in myotonic dystrophy type 1(LOE Classification)

    PubMed Central

    Logigian, E.L.; Martens, W.B.; Moxley, R.T.; McDermott, M.P.; Dilek, N.; Wiegner, A.W.; Pearson, A.T.; Barbieri, C.A.; Annis, C.L.; Thornton, C.A.; Moxley, R.T.

    2010-01-01

    Objective: To determine if mexiletine is safe and effective in reducing myotonia in myotonic dystrophy type 1 (DM1). Background: Myotonia is an early, prominent symptom in DM1 and contributes to decreased dexterity, gait instability, difficulty with speech/swallowing, and muscle pain. A few preliminary trials have suggested that the antiarrhythmic drug mexiletine is useful, symptomatic treatment for nondystrophic myotonic disorders and DM1. Methods: We performed 2 randomized, double-blind, placebo-controlled crossover trials, each involving 20 ambulatory DM1 participants with grip or percussion myotonia on examination. The initial trial compared 150 mg of mexiletine 3 times daily to placebo, and the second trial compared 200 mg of mexiletine 3 times daily to placebo. Treatment periods were 7 weeks in duration separated by a 4- to 8-week washout period. The primary measure of myotonia was time for isometric grip force to relax from 90% to 5% of peak force after a 3-second maximum grip contraction. EKG measurements and adverse events were monitored in both trials. Results: There was a significant reduction in grip relaxation time with both 150 and 200 mg dosages of mexiletine. Treatment with mexiletine at either dosage was not associated with any serious adverse events, or with prolongation of the PR or QTc intervals or of QRS duration. Mild adverse events were observed with both placebo and mexiletine treatment. Conclusions: Mexiletine at dosages of 150 and 200 mg 3 times daily is effective, safe, and well-tolerated over 7 weeks as an antimyotonia treatment in DM1. Classification of Evidence: This study provides Class I evidence that mexiletine at dosages of 150 and 200 mg 3 times daily over 7 weeks is well-tolerated and effective in reducing handgrip relaxation time in DM1. GLOSSARY DM1 = myotonic dystrophy type 1; MVIC = maximal voluntary isometric contraction; PF = peak force; RT = relaxation time; TID = 3 times daily. PMID:20439846

  7. Consensus statement on standard of care for congenital muscular dystrophies.

    PubMed

    Wang, Ching H; Bonnemann, Carsten G; Rutkowski, Anne; Sejersen, Thomas; Bellini, Jonathan; Battista, Vanessa; Florence, Julaine M; Schara, Ulrike; Schuler, Pamela M; Wahbi, Karim; Aloysius, Annie; Bash, Robert O; Béroud, Christophe; Bertini, Enrico; Bushby, Kate; Cohn, Ronald D; Connolly, Anne M; Deconinck, Nicolas; Desguerre, Isabelle; Eagle, Michelle; Estournet-Mathiaud, Brigitte; Ferreiro, Ana; Fujak, Albert; Goemans, Nathalie; Iannaccone, Susan T; Jouinot, Patricia; Main, Marion; Melacini, Paola; Mueller-Felber, Wolfgang; Muntoni, Francesco; Nelson, Leslie L; Rahbek, Jes; Quijano-Roy, Susana; Sewry, Caroline; Storhaug, Kari; Simonds, Anita; Tseng, Brian; Vajsar, Jiri; Vianello, Andrea; Zeller, Reinhard

    2010-12-01

    Congenital muscular dystrophies are a group of rare neuromuscular disorders with a wide spectrum of clinical phenotypes. Recent advances in understanding the molecular pathogenesis of congenital muscular dystrophy have enabled better diagnosis. However, medical care for patients with congenital muscular dystrophy remains very diverse. Advances in many areas of medical technology have not been adopted in clinical practice. The International Standard of Care Committee for Congenital Muscular Dystrophy was established to identify current care issues, review literature for evidence-based practice, and achieve consensus on care recommendations in 7 areas: diagnosis, neurology, pulmonology, orthopedics/rehabilitation, gastroenterology/ nutrition/speech/oral care, cardiology, and palliative care. To achieve consensus on the care recommendations, 2 separate online surveys were conducted to poll opinions from experts in the field and from congenital muscular dystrophy families. The final consensus was achieved in a 3-day workshop conducted in Brussels, Belgium, in November 2009. This consensus statement describes the care recommendations from this committee. PMID:21078917

  8. Modifications to toxic CUG RNAs induce structural stability, rescue mis-splicing in a myotonic dystrophy cell model and reduce toxicity in a myotonic dystrophy zebrafish model

    SciTech Connect

    deLorimier, Elaine; Coonrod, Leslie A.; Copperman, Jeremy; Taber, Alex; Reister, Emily E.; Sharma, Kush; Todd, Peter K.; Guenza, Marina G.; Berglund, J. Andrew

    2014-10-10

    In this study, CUG repeat expansions in the 3' UTR of dystrophia myotonica protein kinase (DMPK) cause myotonic dystrophy type 1 (DM1). As RNA, these repeats elicit toxicity by sequestering splicing proteins, such as MBNL1, into protein–RNA aggregates. Structural studies demonstrate that CUG repeats can form A-form helices, suggesting that repeat secondary structure could be important in pathogenicity. To evaluate this hypothesis, we utilized structure-stabilizing RNA modifications pseudouridine (Ψ) and 2'-O-methylation to determine if stabilization of CUG helical conformations affected toxicity. CUG repeats modified with Ψ or 2'-O-methyl groups exhibited enhanced structural stability and reduced affinity for MBNL1. Molecular dynamics and X-ray crystallography suggest a potential water-bridging mechanism for Ψ-mediated CUG repeat stabilization. Ψ modification of CUG repeats rescued mis-splicing in a DM1 cell model and prevented CUG repeat toxicity in zebrafish embryos. This study indicates that the structure of toxic RNAs has a significant role in controlling the onset of neuromuscular diseases.

  9. Modifications to toxic CUG RNAs induce structural stability, rescue mis-splicing in a myotonic dystrophy cell model and reduce toxicity in a myotonic dystrophy zebrafish model

    DOE PAGESBeta

    deLorimier, Elaine; Coonrod, Leslie A.; Copperman, Jeremy; Taber, Alex; Reister, Emily E.; Sharma, Kush; Todd, Peter K.; Guenza, Marina G.; Berglund, J. Andrew

    2014-10-10

    In this study, CUG repeat expansions in the 3' UTR of dystrophia myotonica protein kinase (DMPK) cause myotonic dystrophy type 1 (DM1). As RNA, these repeats elicit toxicity by sequestering splicing proteins, such as MBNL1, into protein–RNA aggregates. Structural studies demonstrate that CUG repeats can form A-form helices, suggesting that repeat secondary structure could be important in pathogenicity. To evaluate this hypothesis, we utilized structure-stabilizing RNA modifications pseudouridine (Ψ) and 2'-O-methylation to determine if stabilization of CUG helical conformations affected toxicity. CUG repeats modified with Ψ or 2'-O-methyl groups exhibited enhanced structural stability and reduced affinity for MBNL1. Molecular dynamicsmore » and X-ray crystallography suggest a potential water-bridging mechanism for Ψ-mediated CUG repeat stabilization. Ψ modification of CUG repeats rescued mis-splicing in a DM1 cell model and prevented CUG repeat toxicity in zebrafish embryos. This study indicates that the structure of toxic RNAs has a significant role in controlling the onset of neuromuscular diseases.« less

  10. Modifications to toxic CUG RNAs induce structural stability, rescue mis-splicing in a myotonic dystrophy cell model and reduce toxicity in a myotonic dystrophy zebrafish model.

    PubMed

    deLorimier, Elaine; Coonrod, Leslie A; Copperman, Jeremy; Taber, Alex; Reister, Emily E; Sharma, Kush; Todd, Peter K; Guenza, Marina G; Berglund, J Andrew

    2014-11-10

    CUG repeat expansions in the 3' UTR of dystrophia myotonica protein kinase (DMPK) cause myotonic dystrophy type 1 (DM1). As RNA, these repeats elicit toxicity by sequestering splicing proteins, such as MBNL1, into protein-RNA aggregates. Structural studies demonstrate that CUG repeats can form A-form helices, suggesting that repeat secondary structure could be important in pathogenicity. To evaluate this hypothesis, we utilized structure-stabilizing RNA modifications pseudouridine (Ψ) and 2'-O-methylation to determine if stabilization of CUG helical conformations affected toxicity. CUG repeats modified with Ψ or 2'-O-methyl groups exhibited enhanced structural stability and reduced affinity for MBNL1. Molecular dynamics and X-ray crystallography suggest a potential water-bridging mechanism for Ψ-mediated CUG repeat stabilization. Ψ modification of CUG repeats rescued mis-splicing in a DM1 cell model and prevented CUG repeat toxicity in zebrafish embryos. This study indicates that the structure of toxic RNAs has a significant role in controlling the onset of neuromuscular diseases. PMID:25303993

  11. Modifications to toxic CUG RNAs induce structural stability, rescue mis-splicing in a myotonic dystrophy cell model and reduce toxicity in a myotonic dystrophy zebrafish model

    PubMed Central

    deLorimier, Elaine; Coonrod, Leslie A.; Copperman, Jeremy; Taber, Alex; Reister, Emily E.; Sharma, Kush; Todd, Peter K.; Guenza, Marina G.; Berglund, J. Andrew

    2014-01-01

    CUG repeat expansions in the 3′ UTR of dystrophia myotonica protein kinase (DMPK) cause myotonic dystrophy type 1 (DM1). As RNA, these repeats elicit toxicity by sequestering splicing proteins, such as MBNL1, into protein–RNA aggregates. Structural studies demonstrate that CUG repeats can form A-form helices, suggesting that repeat secondary structure could be important in pathogenicity. To evaluate this hypothesis, we utilized structure-stabilizing RNA modifications pseudouridine (Ψ) and 2′-O-methylation to determine if stabilization of CUG helical conformations affected toxicity. CUG repeats modified with Ψ or 2′-O-methyl groups exhibited enhanced structural stability and reduced affinity for MBNL1. Molecular dynamics and X-ray crystallography suggest a potential water-bridging mechanism for Ψ-mediated CUG repeat stabilization. Ψ modification of CUG repeats rescued mis-splicing in a DM1 cell model and prevented CUG repeat toxicity in zebrafish embryos. This study indicates that the structure of toxic RNAs has a significant role in controlling the onset of neuromuscular diseases. PMID:25303993

  12. The effect of myotonic dystrophy transcript levels and location on muscle differentiation

    SciTech Connect

    Mastroyiannopoulos, Nikolaos P.; Chrysanthou, Elina; Kyriakides, Tassos C.; Uney, James B.; Mahadevan, Mani S.; Phylactou, Leonidas A.

    2008-12-12

    In myotonic dystrophy type I (DM1), nuclear retention of mutant DMPK transcripts compromises muscle cell differentiation. Although several reports have identified molecular defects in myogenesis, it remains still unclear how exactly the retention of the mutant transcripts induces this defect. We have recently created a novel cellular model in which the mutant DMPK 3' UTR transcripts were released to the cytoplasm of myoblasts by using the WPRE genetic element. As a result, muscle cell differentiation was repaired. In this paper, this cellular model was further exploited to investigate the effect of the levels and location of the mutant transcripts on muscle differentiation. Results show that the levels of these transcripts were proportional to the inhibition of both the initial fusion of myoblasts and the maturity of myotubes. Moreover, the cytoplasmic export of the mutant RNAs to the cytoplasm caused less inhibition only in the initial fusion of myoblasts.

  13. Lower limb muscle impairment in myotonic dystrophy type 1: the need for better guidelines.

    PubMed

    Petitclerc, Émilie; Hébert, Luc J; Desrosiers, Johanne; Gagnon, Cynthia

    2015-04-01

    In myotonic dystrophy type 1 (DM1), leg muscle weakness is a major impairment. There are challenges to obtaining a clear portrait of muscle strength impairment. A systematic literature review was conducted on lower limb strength impairment in late-onset and adult phenotypes to document variables which affect strength measurement. Thirty-two articles were reviewed using the COSMIN guidelines. Only a third of the studies described a reproducible protocol. Only 2 muscle groups have documented reliability for quantitative muscle testing and only 1 total score for manual muscle testing. Variables affecting muscle strength impairment are not described in most studies. This review illustrates the variability in muscle strength assessment in relation to DM1 characteristics and the questionable validity of the results with regard to undocumented methodological properties. There is therefore a clear need to adopt a consensus on the use of a standardized muscle strength assessment protocol. PMID:25399769

  14. Homozygous myotonic dystrophy: clinical and molecular studies of three unrelated cases.

    PubMed Central

    Martorell, L; Illa, I; Rosell, J; Benitez, J; Sedano, M J; Baiget, M

    1996-01-01

    We report the clinical and molecular study of three unrelated homozygous myotonic dystrophy patients. In the first family, the homozygous patient shows the classical form of the disease with two DM alleles of very different expansion sizes (1000 and 60 repeats). In the second family, the homozygous patient is mildly affected and carries a minimally expanded allele (64 repeats) and a "normal" allele (38 repeats) that increases in size when transmitted. Such an intergenerational expansion of an allele in this range of repeats has not been reported to date. The third homozygous case has late onset bilateral cataracts as the only symptom. She has two minimally expanded alleles (51 and 120 repeats) that showed different intergenerational enlargement during transmission to the next generation. Images PMID:8880582

  15. Therapeutic impact of systemic AAV-mediated RNA interference in a mouse model of myotonic dystrophy.

    PubMed

    Bisset, Darren R; Stepniak-Konieczna, Ewa A; Zavaljevski, Maja; Wei, Jessica; Carter, Gregory T; Weiss, Michael D; Chamberlain, Joel R

    2015-09-01

    RNA interference (RNAi) offers a promising therapeutic approach for dominant genetic disorders that involve gain-of-function mechanisms. One candidate disease for RNAi therapy application is myotonic dystrophy type 1 (DM1), which results from toxicity of a mutant mRNA. DM1 is caused by expansion of a CTG repeat in the 3' UTR of the DMPK gene. The expression of DMPK mRNA containing an expanded CUG repeat (CUG(exp)) leads to defects in RNA biogenesis and turnover. We designed miRNA-based RNAi hairpins to target the CUG(exp) mRNA in the human α-skeletal muscle actin long-repeat (HSA(LR)) mouse model of DM1. RNAi expression cassettes were delivered to HSA(LR) mice using recombinant adeno-associated viral (rAAV) vectors injected intravenously as a route to systemic gene therapy. Vector delivery significantly reduced disease pathology in muscles of the HSA(LR) mice, including a reduction in the CUG(exp) mRNA, a reduction in myotonic discharges, a shift toward adult pre-mRNA splicing patterns, reduced myofiber hypertrophy and a decrease in myonuclear foci containing the CUG(exp) mRNA. Significant reversal of hallmarks of DM1 in the rAAV RNAi-treated HSA(LR) mice indicate that defects characteristic of DM1 can be mitigated with a systemic RNAi approach targeting the nuclei of terminally differentiated myofibers. Efficient rAAV-mediated delivery of RNAi has the potential to provide a long-term therapy for DM1 and other dominant muscular dystrophies. PMID:26082468

  16. High-fat diet induced adiposity and insulin resistance in mice lacking the myotonic dystrophy protein kinase.

    PubMed

    Llagostera, Esther; Carmona, Mari Carmen; Vicente, Meritxell; Escorihuela, Rosa María; Kaliman, Perla

    2009-06-18

    Myotonic dystrophy 1 (MD1) is caused by a CTG expansion in the 3'-unstranslated region of the myotonic dystrophy protein kinase (DMPK) gene. MD1 patients frequently present insulin resistance and increased visceral adiposity. We examined whether DMPK deficiency is a genetic risk factor for high-fat diet-induced adiposity and insulin resistance using the DMPK knockout mouse model. We found that high-fat fed DMPK knockout mice had significantly increased body weights, hypertrophic adipocytes and whole-body insulin resistance compared with wild-type mice. This nutrient-genome interaction should be considered by physicians given the cardiometabolic risks and sedentary lifestyle associated with MD1 patients. PMID:19482024

  17. Gastrobronchial fistula following minimally invasive esophagectomy for esophageal cancer in a patient with myotonic dystrophy: Case report

    PubMed Central

    Hugin, Silje; Johnson, Egil; Johannessen, Hans-Olaf; Hofstad, Bjørn; Olafsen, Kjell; Mellem, Harald

    2015-01-01

    Introduction Myotonic dystrophies are inherited multisystemic diseases characterized by musculopathy, cardiac arrythmias and cognitive disorders. These patients are at increased risk for fatal post-surgical complications from pulmonary hypoventilation. We present a case with myotonic dystrophy and esophageal cancer who had a minimally invasive esophagectomy complicated with gastrobronchial fistulisation. Presentation of case A 44-year-old male with myotonic dystrophy type 1 and esophageal cancer had a minimally invasive esophagectomy performed instead of open surgery in order to reduce the risk for pulmonary complications. At day 15 respiratory failure occurred from a gastrobronchial fistula between the right intermediary bronchus (defect 7–8 mm) and the esophagogastric anastomosis (defect 10 mm). In order to minimize large leakage of air into the gastric conduit the anastomosis was stented and ventilation maintained at low airway pressures. His general condition improved and allowed extubation at day 29 and stent removal at day 35. Bronchoscopy confirmed that the fistula was healed. The patient was discharged from hospital at day 37 without further complications. Discussion The fistula was probably caused by bronchial necrosis from thermal injury during close dissection using the Ligasure instrument. Fistula treatment by non-surgical intervention was considered safer than surgery which could be followed by potentially life-threatening respiratory complications. Indications for stenting of gastrobronchial fistulas will be discussed. Conclusions Minimally invasive esophagectomy was performed instead of open surgery in a myotonic dystrophy patient as these patients are particularly vulnerable to respiratory complications. Gastrobronchial fistula, a major complication, was safely treated by stenting and low airway pressure ventilation. PMID:26520033

  18. Splicing misregulation of SCN5A contributes to cardiac-conduction delay and heart arrhythmia in myotonic dystrophy.

    PubMed

    Freyermuth, Fernande; Rau, Frédérique; Kokunai, Yosuke; Linke, Thomas; Sellier, Chantal; Nakamori, Masayuki; Kino, Yoshihiro; Arandel, Ludovic; Jollet, Arnaud; Thibault, Christelle; Philipps, Muriel; Vicaire, Serge; Jost, Bernard; Udd, Bjarne; Day, John W; Duboc, Denis; Wahbi, Karim; Matsumura, Tsuyoshi; Fujimura, Harutoshi; Mochizuki, Hideki; Deryckere, François; Kimura, Takashi; Nukina, Nobuyuki; Ishiura, Shoichi; Lacroix, Vincent; Campan-Fournier, Amandine; Navratil, Vincent; Chautard, Emilie; Auboeuf, Didier; Horie, Minoru; Imoto, Keiji; Lee, Kuang-Yung; Swanson, Maurice S; Lopez de Munain, Adolfo; Inada, Shin; Itoh, Hideki; Nakazawa, Kazuo; Ashihara, Takashi; Wang, Eric; Zimmer, Thomas; Furling, Denis; Takahashi, Masanori P; Charlet-Berguerand, Nicolas

    2016-01-01

    Myotonic dystrophy (DM) is caused by the expression of mutant RNAs containing expanded CUG repeats that sequester muscleblind-like (MBNL) proteins, leading to alternative splicing changes. Cardiac alterations, characterized by conduction delays and arrhythmia, are the second most common cause of death in DM. Using RNA sequencing, here we identify novel splicing alterations in DM heart samples, including a switch from adult exon 6B towards fetal exon 6A in the cardiac sodium channel, SCN5A. We find that MBNL1 regulates alternative splicing of SCN5A mRNA and that the splicing variant of SCN5A produced in DM presents a reduced excitability compared with the control adult isoform. Importantly, reproducing splicing alteration of Scn5a in mice is sufficient to promote heart arrhythmia and cardiac-conduction delay, two predominant features of myotonic dystrophy. In conclusion, misregulation of the alternative splicing of SCN5A may contribute to a subset of the cardiac dysfunctions observed in myotonic dystrophy. PMID:27063795

  19. Splicing misregulation of SCN5A contributes to cardiac-conduction delay and heart arrhythmia in myotonic dystrophy

    PubMed Central

    Freyermuth, Fernande; Rau, Frédérique; Kokunai, Yosuke; Linke, Thomas; Sellier, Chantal; Nakamori, Masayuki; Kino, Yoshihiro; Arandel, Ludovic; Jollet, Arnaud; Thibault, Christelle; Philipps, Muriel; Vicaire, Serge; Jost, Bernard; Udd, Bjarne; Day, John W.; Duboc, Denis; Wahbi, Karim; Matsumura, Tsuyoshi; Fujimura, Harutoshi; Mochizuki, Hideki; Deryckere, François; Kimura, Takashi; Nukina, Nobuyuki; Ishiura, Shoichi; Lacroix, Vincent; Campan-Fournier, Amandine; Navratil, Vincent; Chautard, Emilie; Auboeuf, Didier; Horie, Minoru; Imoto, Keiji; Lee, Kuang-Yung; Swanson, Maurice S.; de Munain, Adolfo Lopez; Inada, Shin; Itoh, Hideki; Nakazawa, Kazuo; Ashihara, Takashi; Wang, Eric; Zimmer, Thomas; Furling, Denis; Takahashi, Masanori P.; Charlet-Berguerand, Nicolas

    2016-01-01

    Myotonic dystrophy (DM) is caused by the expression of mutant RNAs containing expanded CUG repeats that sequester muscleblind-like (MBNL) proteins, leading to alternative splicing changes. Cardiac alterations, characterized by conduction delays and arrhythmia, are the second most common cause of death in DM. Using RNA sequencing, here we identify novel splicing alterations in DM heart samples, including a switch from adult exon 6B towards fetal exon 6A in the cardiac sodium channel, SCN5A. We find that MBNL1 regulates alternative splicing of SCN5A mRNA and that the splicing variant of SCN5A produced in DM presents a reduced excitability compared with the control adult isoform. Importantly, reproducing splicing alteration of Scn5a in mice is sufficient to promote heart arrhythmia and cardiac-conduction delay, two predominant features of myotonic dystrophy. In conclusion, misregulation of the alternative splicing of SCN5A may contribute to a subset of the cardiac dysfunctions observed in myotonic dystrophy. PMID:27063795

  20. RNA toxicity in myotonic muscular dystrophy induces NKX2-5 expression

    PubMed Central

    Yadava, Ramesh S; Frenzel-McCardell, Carla D; Yu, Qing; Srinivasan, Varadamurthy; Tucker, Amy L; Puymirat, Jack; Thornton, Charles A; Prall, Owen W; Harvey, Richard P; Mahadevan, Mani S

    2010-01-01

    Myotonic muscular dystrophy (DM1) is the most common inherited neuromuscular disorder in adults and is considered the first example of a disease caused by RNA toxicity. Using a reversible transgenic mouse model of RNA toxicity in DM1, we provide evidence that DM1 is associated with induced NKX2-5 expression. Transgene expression resulted in cardiac conduction defects, increased expression of the cardiac-specific transcription factor NKX2-5 and profound disturbances in connexin 40 and connexin 43. Notably, overexpression of the DMPK 3′ UTR mRNA in mouse skeletal muscle also induced transcriptional activation of Nkx2-5 and its targets. In human muscles, these changes were specific to DM1 and were not present in other muscular dystrophies. The effects on NKX2-5 and its downstream targets were reversed by silencing toxic RNA expression. Furthermore, using Nkx2-5+/− mice, we show that NKX2-5 is the first genetic modifier of DM1-associated RNA toxicity in the heart. PMID:18084293

  1. Congenital Muscular Dystrophies: A Brief Review

    PubMed Central

    Bertini, Enrico; D'Amico, Adele; Gualandi, Francesca; Petrini, Stefania

    2011-01-01

    Congenital muscular dystrophies (CMDs) are clinically and genetically heterogeneous neuromuscular disorders with onset at birth or in infancy in which the muscle biopsy is compatible with a dystrophic myopathy. In the past 10 years, knowledge of neuromuscular disorders has dramatically increased, particularly with the exponential boost of disclosing the genetic background of CMDs. This review will highlight the clinical description of the most important forms of CMD, paying particular attention to the main keys for diagnostic approach. The diagnosis of CMDs requires the concurrence of expertise in multiple specialties (neurology, morphology, genetics, neuroradiology) available in a few centers worldwide that have achieved sufficient experience with the different CMD subtypes. Currently, molecular diagnosis is of paramount importance not only for phenotype-genotype correlations, genetic and prenatal counseling, and prognosis and aspects of management, but also concerning the imminent availability of clinical trials and treatments. PMID:22172424

  2. Cardiac findings in congenital muscular dystrophies.

    PubMed

    Finsterer, Josef; Ramaciotti, Claudio; Wang, Ching H; Wahbi, Karim; Rosenthal, David; Duboc, Denis; Melacini, Paola

    2010-09-01

    Cardiac involvement (CI) in congenital muscular dystrophies (CMDs) has been only rarely investigated so far. By means of a systematic literature search we reviewed the literature about CI in CMD and found that CI is apparently absent in Ullrich CMD or CMD with integrin deficiency and only mild in Bethlem CMD. CI in merosin deficiency includes dilated cardiomyopathy and systolic dysfunction. CI in dystroglycanopathies seems most prevalent among all CMDs and includes dilated cardiomyopathy, systolic dysfunction, and myocardial fibrosis in Fukuyama CMD. Among the nonspecified dystroglycanopathies, CI manifests as dilated cardiomyopathy, hypertrophic cardiomyopathy (CMP) or systolic dysfunction. With CMD type 1C, as well as with limb-girdle muscular dystrophy 2I, up to half of the patients develop dilated cardiomyopathy. In rigid-spine syndrome, predominantly the right heart is affected secondary to thoracic deformity. In patients who carry LMNA mutations, CI may manifest as dilated cardiomyopathy, hypertrophic cardiomyopathy, or fatal ventricular arrhythmias. Overall, CI in patients with CMD varies considerably between the different CMD types from absent or mild CI to severe cardiac disease, particularly in merosin deficiency, dystroglycanopathies, and laminopathies. Patients with CMD with CI require regular cardiologic surveillance so that severe, treatable cardiac disease is not overlooked. PMID:20679303

  3. Congenital muscular dystrophy with inflammation: Diagnostic considerations

    PubMed Central

    Konkay, Kaumudi; Kannan, Meena Angamuthu; Lingappa, Lokesh; Uppin, Megha S.; Challa, Sundaram

    2016-01-01

    Background and Purpose: Muscle biopsy features of congenital muscular dystrophies (CMD) vary from usual dystrophic picture to normal or nonspecific myopathic picture or prominent fibrosis or striking inflammatory infiltrate, which may lead to diagnostic errors. A series of patients of CMD with significant inflammatory infiltrates on muscle biopsy were correlated with laminin α2 deficiency on immunohistochemistry (IHC). Material and Methods: Cryostat sections of muscle biopsies from the patients diagnosed as CMD on clinical and muscle biopsy features from 1996 to 2014 were reviewed with hematoxylin and eosin(H&E), enzyme and immunohistochemistry (IHC) with laminin α2. Muscle biopsies with inflammatory infiltrate were correlated with laminin α2 deficiency. Results: There were 65 patients of CMD, with inflammation on muscle biopsy in 16. IHC with laminin α2 was available in nine patients, of which six showed complete absence along sarcolemma (five presented with floppy infant syndrome and one with delayed motor milestones) and three showed discontinuous, and less intense staining. Conclusions: CMD show variable degrees of inflammation on muscle biopsy. A diagnosis of laminin α2 deficient CMD should be considered in patients of muscular dystrophy with inflammation, in children with hypotonia/delayed motor milestones. PMID:27570388

  4. Expanded CTG repeat demarcates a boundary for abnormal CpG methylation in myotonic dystrophy patient tissues

    PubMed Central

    López Castel, Arturo; Nakamori, Masayuki; Tomé, Stephanie; Chitayat, David; Gourdon, Geneviève; Thornton, Charles A.; Pearson, Christopher E.

    2011-01-01

    Myotonic dystrophy (DM1) affects multiple organs, shows age-dependent progression and is caused by CTG expansions at the DM1 locus. We determined the DM1 CpG methylation profile and CTG length in tissues from DM1 foetuses, DM1 adults, non-affected individuals and transgenic DM1 mice. Analysis included CTCF binding sites upstream and downstream of the CTG tract, as methylation-sensitive CTCF binding affects chromatinization and transcription of the DM1 locus. In humans, in a given foetus, expansions were largest in heart and smallest in liver, differing by 40–400 repeats; in adults, the largest expansions were in heart and cerebral cortex and smallest in cerebellum, differing by up to 5770 repeats in the same individual. Abnormal methylation was specific to the mutant allele. In DM1 adults, heart, liver and cortex showed high-to-moderate methylation levels, whereas cerebellum, kidney and skeletal muscle were devoid of methylation. Methylation decreased between foetuses and adults. Contrary to previous findings, methylation was not restricted to individuals with congenital DM1. The expanded repeat demarcates an abrupt boundary of methylation. Upstream sequences, including the CTCF site, were methylated, whereas the repeat itself and downstream sequences were not. In DM1 mice, expansion-, tissue- and age-specific methylation patterns were similar but not identical to those in DM1 individuals; notably in mice, methylation was present up- and downstream of the repeat, but greater upstream. Thus, in humans, the CpG-free expanded CTG repeat appears to maintain a highly polarized pattern of CpG methylation at the DM1 locus, which varies markedly with age and tissues. PMID:21044947

  5. Anticipation resulting in elimination of the myotonic dystrophy gene: a follow up study of one extended family.

    PubMed Central

    de Die-Smulders, C E; Höweler, C J; Mirandolle, J F; Brunner, H G; Hovers, V; Brüggenwirth, H; Smeets, H J; Geraedts, J P

    1994-01-01

    We have re-examined an extended myotonic dystrophy (DM) family, previously described in 1955, in order to study the long term effects of anticipation in DM and in particular the implications for families affected by this disease. This follow up study provides data on 35 gene carriers and 46 asymptomatic at risk family members in five generations. Clinical anticipation, defined as the cascade of mild, adult, childhood, or congenital disease in subsequent generations, appeared to be a relentless process, occurring in all affected branches of the family. The cascade was found to proceed asynchronously in the different branches, mainly because of an unequal number of generations with mild disease. The transition from the mild to the adult type was associated with transmission through a male parent. Stable transmission of the asymptomatic/mild phenotype showed a female transmission bias. We further examined the extent and causes of gene loss in this pedigree. Gene loss in the patient group was complete, owing to infertility of the male patients with adult onset disease and the fact that mentally retarded patients did not procreate. Out of the 46 at risk subjects in the two youngest generations, only one was found to have a full mutation. This is the only subject who may transmit the gene to the sixth generation. No protomutation carriers were found in the fourth and fifth generations. Therefore it is highly probable that the DM gene will be eliminated from this pedigree within one generation. The high population frequency of DM can at present not be explained by the contribution of asymptomatic cases in the younger generations of known families, but is probably caused by the events in the ancestral generations. PMID:7815415

  6. Cell Membrane Integrity in Myotonic Dystrophy Type 1: Implications for Therapy

    PubMed Central

    González-Barriga, Anchel; Kranzen, Julia; Croes, Huib J. E.; Bijl, Suzanne; van den Broek, Walther J. A. A.; van Kessel, Ingeborg D. G.; van Engelen, Baziel G. M.; van Deutekom, Judith C. T.; Wieringa, Bé; Mulders, Susan A. M.; Wansink, Derick G.

    2015-01-01

    Myotonic Dystrophy type 1 (DM1) is a multisystemic disease caused by toxic RNA from a DMPK gene carrying an expanded (CTG•CAG)n repeat. Promising strategies for treatment of DM1 patients are currently being tested. These include antisense oligonucleotides and drugs for elimination of expanded RNA or prevention of aberrant binding to RNP proteins. A significant hurdle for preclinical development along these lines is efficient systemic delivery of compounds across endothelial and target cell membranes. It has been reported that DM1 patients show elevated levels of markers of muscle damage or loss of sarcolemmal integrity in their serum and that splicing of dystrophin, an essential protein for muscle membrane structure, is abnormal. Therefore, we studied cell membrane integrity in DM1 mouse models commonly used for preclinical testing. We found that membranes in skeletal muscle, heart and brain were impermeable to Evans Blue Dye. Creatine kinase levels in serum were similar to those in wild type mice and expression of dystrophin protein was unaffected. Also in patient muscle biopsies cell surface expression of dystrophin was normal and calcium-positive fibers, indicating elevated intracellular calcium levels, were only rarely seen. Combined, our findings indicate that cells in DM1 tissues do not display compromised membrane integrity. Hence, the cell membrane is a barrier that must be overcome in future work towards effective drug delivery in DM1 therapy. PMID:25799359

  7. Abnormal splicing switch of DMD's penultimate exon compromises muscle fibre maintenance in myotonic dystrophy.

    PubMed

    Rau, Frédérique; Lainé, Jeanne; Ramanoudjame, Laetitita; Ferry, Arnaud; Arandel, Ludovic; Delalande, Olivier; Jollet, Arnaud; Dingli, Florent; Lee, Kuang-Yung; Peccate, Cécile; Lorain, Stéphanie; Kabashi, Edor; Athanasopoulos, Takis; Koo, Taeyoung; Loew, Damarys; Swanson, Maurice S; Le Rumeur, Elisabeth; Dickson, George; Allamand, Valérie; Marie, Joëlle; Furling, Denis

    2015-01-01

    Myotonic Dystrophy type 1 (DM1) is a dominant neuromuscular disease caused by nuclear-retained RNAs containing expanded CUG repeats. These toxic RNAs alter the activities of RNA splicing factors resulting in alternative splicing misregulation and muscular dysfunction. Here we show that the abnormal splicing of DMD exon 78 found in dystrophic muscles of DM1 patients is due to the functional loss of MBNL1 and leads to the re-expression of an embryonic dystrophin in place of the adult isoform. Forced expression of embryonic dystrophin in zebrafish using an exon-skipping approach severely impairs the mobility and muscle architecture. Moreover, reproducing Dmd exon 78 missplicing switch in mice induces muscle fibre remodelling and ultrastructural abnormalities including ringed fibres, sarcoplasmic masses or Z-band disorganization, which are characteristic features of dystrophic DM1 skeletal muscles. Thus, we propose that splicing misregulation of DMD exon 78 compromises muscle fibre maintenance and contributes to the progressive dystrophic process in DM1. PMID:26018658

  8. Atrial flutter in myotonic dystrophy type 1: Patient characteristics and clinical outcome.

    PubMed

    Wahbi, Karim; Sebag, Frederic A; Lellouche, Nicolas; Lazarus, Arnaud; Bécane, Henri-Marc; Bassez, Guillaume; Stojkovic, Tanya; Fayssoil, Abdallah; Laforêt, Pascal; Béhin, Anthony; Meune, Christophe; Eymard, Bruno; Duboc, Denis

    2016-03-01

    The prevalence and the incidence of atrial flutter in patients with myotonic dystrophy type 1 (DM1) and the most appropriate strategies for its management are unknown. We retrospectively included in the DM1 Heart Registry 929 adult patients with DM1 admitted to our Institutions between January 2000 and September 2013. We selected patients presenting with atrial flutter and analysed data relative to the occurrence of arterial thromboembolism, severe bradyarrhythmias and atrial flutter recurrences. Atrial flutter was present in 79 of the 929 patients included in our Registry, representing a 8.5% prevalence. Patients with atrial flutter were older, had a higher muscular disability rating scale score and had higher prevalence of other cardiac manifestations of DM1. Sixty patients presented with a first episode of atrial flutter, representing a 4.6% incidence. Severe bradyarrhythmias requiring permanent pacing were present in 4 patients (6.7%). Over a 53 ± 28 months mean follow-up duration, 2 patients (3.3%) had ischaemic stroke and 12 (20%) had atrial flutter recurrences. Patients who underwent radiofrequency ablation were more frequently free of atrial flutter recurrence than other patients (95 vs. 61%; HR = 0.17; P = 0.04). Atrial flutter is a common manifestation of DM1, potentially complicated by arterial thromboembolism or severe bradyarrhythmias. Radiofrequency catheter ablation is associated with a lower risk for recurrences. PMID:26948709

  9. Abnormal splicing switch of DMD's penultimate exon compromises muscle fibre maintenance in myotonic dystrophy

    PubMed Central

    Rau, Frédérique; Lainé, Jeanne; Ramanoudjame, Laetitita; Ferry, Arnaud; Arandel, Ludovic; Delalande, Olivier; Jollet, Arnaud; Dingli, Florent; Lee, Kuang-Yung; Peccate, Cécile; Lorain, Stéphanie; Kabashi, Edor; Athanasopoulos, Takis; Koo, Taeyoung; Loew, Damarys; Swanson, Maurice S.; Le Rumeur, Elisabeth; Dickson, George; Allamand, Valérie; Marie, Joëlle; Furling, Denis

    2015-01-01

    Myotonic Dystrophy type 1 (DM1) is a dominant neuromuscular disease caused by nuclear-retained RNAs containing expanded CUG repeats. These toxic RNAs alter the activities of RNA splicing factors resulting in alternative splicing misregulation and muscular dysfunction. Here we show that the abnormal splicing of DMD exon 78 found in dystrophic muscles of DM1 patients is due to the functional loss of MBNL1 and leads to the re-expression of an embryonic dystrophin in place of the adult isoform. Forced expression of embryonic dystrophin in zebrafish using an exon-skipping approach severely impairs the mobility and muscle architecture. Moreover, reproducing Dmd exon 78 missplicing switch in mice induces muscle fibre remodelling and ultrastructural abnormalities including ringed fibres, sarcoplasmic masses or Z-band disorganization, which are characteristic features of dystrophic DM1 skeletal muscles. Thus, we propose that splicing misregulation of DMD exon 78 compromises muscle fibre maintenance and contributes to the progressive dystrophic process in DM1. PMID:26018658

  10. Actinomycin D Specifically Reduces Expanded CUG Repeat RNA in Myotonic Dystrophy Models

    PubMed Central

    Siboni, Ruth B.; Nakamori, Masayuki; Wagner, Stacey D.; Struck, Adam J.; Coonrod, Leslie A.; Harriott, Shanee A.; Cass, Daniel M.; Tanner, Matthew K.

    2015-01-01

    Summary Myotonic Dystrophy type 1 (DM1) is an inherited disease characterized by the inability to relax contracted muscles. Affected individuals carry large CTG expansions that are toxic when transcribed. One possible treatment approach is to reduce or eliminate transcription of CTG repeats. Actinomycin D (ActD) is a potent transcription inhibitor and FDA-approved chemotherapeutic that binds GC-rich DNA with high affinity. Here, we report that ActD decreased CUG transcript levels in a dose-dependent manner in DM1 cell and mouse models at significantly lower concentrations (nanomolar) compared to its use as a general transcription inhibitor or chemotherapeutic. ActD also significantly reversed DM1-associated splicing defects in a DM1 mouse model, and did so within the currently approved human treatment range. RNA-seq analyses showed that low concentrations of ActD did not globally inhibit transcription in a DM1 mouse model. These results indicate that transcription inhibition of CTG expansions is a promising treatment approach for DM1. PMID:26686629

  11. Staufen1 impairs stress granule formation in skeletal muscle cells from myotonic dystrophy type 1 patients

    PubMed Central

    Ravel-Chapuis, Aymeric; Klein Gunnewiek, Amanda; Bélanger, Guy; Crawford Parks, Tara E.; Côté, Jocelyn; Jasmin, Bernard J.

    2016-01-01

    Myotonic dystrophy (DM1) is caused by an expansion of CUG repeats (CUGexp) in the DMPK mRNA 3′UTR. CUGexp-containing mRNAs become toxic to cells by misregulating RNA-binding proteins. Here we investigated the consequence of this RNA toxicity on the cellular stress response. We report that cell stress efficiently triggers formation of stress granules (SGs) in proliferating, quiescent, and differentiated muscle cells, as shown by the appearance of distinct cytoplasmic TIA-1– and DDX3-containing foci. We show that Staufen1 is also dynamically recruited into these granules. Moreover, we discovered that DM1 myoblasts fail to properly form SGs in response to arsenite. This blockage was not observed in DM1 fibroblasts, demonstrating a cell type–specific defect. DM1 myoblasts display increased expression and sequestration of toxic CUGexp mRNAs compared with fibroblasts. Of importance, down-regulation of Staufen1 in DM1 myoblasts rescues SG formation. Together our data show that Staufen1 participates in the inhibition of SG formation in DM1 myoblasts. These results reveal that DM1 muscle cells fail to properly respond to stress, thereby likely contributing to the complex pathogenesis of DM1. PMID:27030674

  12. How genetics affects the brain to produce higher-level dysfunctions in myotonic dystrophy type 1

    PubMed Central

    Serra, Laura; Petrucci, Antonio; Spanò, Barbara; Torso, Mario; Olivito, Giusy; Lispi, Ludovico; Costanzi-Porrini, Sandro; Giulietti, Giovanni; Koch, Giacomo; Giacanelli, Manlio; Caltagirone, Carlo; Cercignani, Mara; Bozzali, Marco

    2015-01-01

    Summary Myotonic dystrophy type 1 (DM1) is a multisystemic disorder dominated by muscular impairment and brain dysfunctions. Although brain damage has previously been demonstrated in DM1, its associations with the genetics and clinical/neuropsychological features of the disease are controversial. This study assessed the differential role of gray matter (GM) and white matter (WM) damage in determining higher-level dysfunctions in DM1. Ten patients with genetically confirmed DM1 and 16 healthy matched controls entered the study. The patients underwent a neuropsychological assessment and quantification of CTG triplet expansion. All the subjects underwent MR scanning at 3T, with studies including T1-weighted volumes and diffusion-weighted images. Voxel-based morphometry and tract-based spatial statistics were used for unbiased quantification of regional GM atrophy and WM integrity. The DM1 patients showed widespread involvement of both tissues. The extent of the damage correlated with CTG triplet expansion and cognition. This study supports the idea that genetic abnormalities in DM1 mainly target the WM, but GM involvement is also crucial in determining the clinical characteristics of DM1. PMID:26214024

  13. Segregation distortion of the CTG repeats at the myotonic dystrophy locus.

    PubMed Central

    Chakraborty, R.; Stivers, D. N.; Deka, R.; Yu, L. M.; Shriver, M. D.; Ferrell, R. E.

    1996-01-01

    Myotonic dystrophy (DM), an autosomal dominant neuromuscular disease, is caused by a CTG-repeat expansion, with affected individuals having > or = 50 repeats of this trinucleotide, at the DMPK locus of human chromosome 19q13.3. Severely affected individuals die early in life; the milder form of this disease reduces reproductive ability. Alleles in the normal range of CTG repeats are not as unstable as the (CTG)(> or = 50) alleles. In the DM families, anticipation and parental bias of allelic expansions have been noted. However, data on mechanism of maintenance of DM in populations are conflicting. We present a maximum-likelihood model for examining segregation distortion of CTG-repeat alleles in normal families. Analyzing 726 meiotic events in 95 nuclear families from the CEPH panel pedigrees, we find evidence of preferential transmission of larger alleles (of size < or = 29 repeats) from females (the probability of transmission of larger alleles is .565 +/- 0.03, different from .5 at P approximately equal .028). There is no evidence of segregation distortion during male meiosis. We propose a hypothesis that preferential transmission of larger CTG-repeat alleles during female meiosis can compensate for mutational contraction of repeats within the normal allelic size range, and reduced viability and fertility of affected individuals. Thus, the pool of premutant alleles at the DM locus can be maintained in populations, which can subsequently mutate to the full mutation status to give rise to DM. PMID:8659513

  14. Founder effect and prevalence of myotonic dystrophy in South Africans: molecular studies.

    PubMed Central

    Goldman, A.; Krause, A.; Ramsay, M.; Jenkins, T.

    1996-01-01

    A high prevalence of myotonic dystrophy (DM) has been described in South African Caucasoid Afrikaans-speaking families in the northern Transvaal. Evidence is presented for a strong founder effect, with a single haplotype occurring on 68% of all Caucasoid DM chromosomes; among the Afrikaans speakers, the proportion was 83%. In addition to this major haplotype, five minor DM haplotypes in the Caucasoids and two minor haplotypes in DM individuals of mixed ancestry were found. All DM chromosomes, however, had a common haplotype core, namely, Alu (ins), HinfI-2 (intron 9), and TaqI-2 (D19S463). We have detected significant linkage disequilibrium between the DM mutation and particular alleles of the extragenic markers D19S112 and D19S207. Significant differences were found in allele and haplotype distributions in the Caucasoid DM and non-DM chromosomes and Negroid non-DM chromosomes. These findings together with the strong association of allele 3 at the D19S63 locus on 93% (14/15) of the South African DM chromosomes suggest that the majority of present-day DM mutations in South African Caucasoids may have originated from a common initial founder who introduced one of the European ancestral mutations. PMID:8755933

  15. Six Serum miRNAs Fail to Validate as Myotonic Dystrophy Type 1 Biomarkers.

    PubMed

    Fernandez-Costa, Juan M; Llamusi, Beatriz; Bargiela, Ariadna; Zulaica, Miren; Alvarez-Abril, M Carmen; Perez-Alonso, Manuel; Lopez de Munain, Adolfo; Lopez-Castel, Arturo; Artero, Ruben

    2016-01-01

    Myotonic dystrophy type 1 (DM1) is an autosomal dominant genetic disease caused by expansion of a CTG microsatellite in the 3' untranslated region of the DMPK gene. Despite characteristic muscular, cardiac, and neuropsychological symptoms, CTG trinucleotide repeats are unstable both in the somatic and germinal lines, making the age of onset, clinical presentation, and disease severity very variable. A molecular biomarker to stratify patients and to follow disease progression is, thus, an unmet medical need. Looking for a novel biomarker, and given that specific miRNAs have been found to be misregulated in DM1 heart and muscle tissues, we profiled the expression of 175 known serum miRNAs in DM1 samples. The differences detected between patients and controls were less than 2.6 fold for all of them and a selection of six candidate miRNAs, miR-103, miR-107, miR-21, miR-29a, miR-30c, and miR-652 all failed to show consistent differences in serum expression in subsequent validation experiments. PMID:26919350

  16. Detection of linkage disequilibrium between the myotonic dystrophy locus and a new polymorphic DNA marker.

    PubMed Central

    Harley, H G; Brook, J D; Floyd, J; Rundle, S A; Crow, S; Walsh, K V; Thibault, M C; Harper, P S; Shaw, D J

    1991-01-01

    We have examined the linkage of two new polymorphic DNA markers (D19S62 and D19S63) and a previously unreported polymorphism with an existing DNA marker (ERCC1) to the myotonic dystrophy (DM) locus. In addition, we have used pulsed-field gel electrophoresis to obtain a fine-structure map of this region. The detection of linkage disequilibrium between DM and one of these markers (D19S63) is the first demonstration of this phenomenon in a heterogeneous DM population. The results suggest that at least 58% of DM patients in the British population, as well as those in a French-Canadian subpopulation, are descended from the same ancestral DM mutation. We discuss the implications of this finding in terms of strategies for cloning the DM gene, for a possible role in modification of risk for prenatal and presymptomatic testing, and we speculate on the origin and number of existing mutations which may result in a DM phenotype. PMID:2063878

  17. Brain Connectomics' Modification to Clarify Motor and Nonmotor Features of Myotonic Dystrophy Type 1

    PubMed Central

    Serra, Laura; Mancini, Matteo; Silvestri, Gabriella; Petrucci, Antonio; Masciullo, Marcella; Spanò, Barbara; Torso, Mario; Mastropasqua, Chiara; Giacanelli, Manlio; Caltagirone, Carlo; Cercignani, Mara; Meola, Giovanni; Bozzali, Marco

    2016-01-01

    The adult form of myotonic dystrophy type 1 (DM1) presents with paradoxical inconsistencies between severity of brain damage, relative preservation of cognition, and failure in everyday life. This study, based on the assessment of brain connectivity and mechanisms of plasticity, aimed at reconciling these conflicting issues. Resting-state functional MRI and graph theoretical methods of analysis were used to assess brain topological features in a large cohort of patients with DM1. Patients, compared to controls, revealed reduced connectivity in a large frontoparietal network that correlated with their isolated impairment in visuospatial reasoning. Despite a global preservation of the topological properties, peculiar patterns of frontal disconnection and increased parietal-cerebellar connectivity were also identified in patients' brains. The balance between loss of connectivity and compensatory mechanisms in different brain networks might explain the paradoxical mismatch between structural brain damage and minimal cognitive deficits observed in these patients. This study provides a comprehensive assessment of brain abnormalities that fit well with both motor and nonmotor clinical features experienced by patients in their everyday life. The current findings suggest that measures of functional connectivity may offer the possibility of characterizing individual patients with the potential to become a clinical tool. PMID:27313901

  18. Overweight Is an Independent Risk Factor for Reduced Lung Volumes in Myotonic Dystrophy Type 1

    PubMed Central

    Seijger, Charlotte G. W.; Drost, Gea; Posma, Joram M.; van Engelen, Baziel G. M.; Heijdra, Yvonne F.

    2016-01-01

    Background In this large observational study population of 105 myotonic dystrophy type 1 (DM1) patients, we investigate whether bodyweight is a contributor of total lung capacity (TLC) independent of the impaired inspiratory muscle strength. Methods Body composition was assessed using the combination of body mass index (BMI) and fat-free mass index. Pulmonary function tests and respiratory muscle strength measurements were performed on the same day. Patients were stratified into normal (BMI < 25 kg/m2) and overweight (BMI ≥ 25 kg/m2) groups. Multiple linear regression was used to find significant contributors for TLC. Results Overweight was present in 59% of patients, and body composition was abnormal in almost all patients. In overweight patients, TLC was significantly (p = 2.40×10−3) decreased, compared with normal-weight patients, while inspiratory muscle strength was similar in both groups. The decrease in TLC in overweight patients was mainly due to a decrease in expiratory reserve volume (ERV) further illustrated by a highly significant (p = 1.33×10−10) correlation between BMI and ERV. Multiple linear regression showed that TLC can be predicted using only BMI and the forced inspiratory volume in 1 second, as these were the only significant contributors. Conclusions This study shows that, in DM1 patients, overweight further reduces lung volumes, as does impaired inspiratory muscle strength. Additionally, body composition is abnormal in almost all DM1 patients. PMID:27015655

  19. Rational design of bioactive, modularly assembled aminoglycosides targeting the RNA that causes myotonic dystrophy type 1.

    PubMed

    Childs-Disney, Jessica L; Parkesh, Raman; Nakamori, Masayuki; Thornton, Charles A; Disney, Matthew D

    2012-12-21

    Myotonic dystrophy type 1 (DM1) is caused when an expanded r(CUG) repeat (r(CUG)(exp)) binds the RNA splicing regulator muscleblind-like 1 protein (MBNL1) as well as other proteins. Previously, we reported that modularly assembled small molecules displaying a 6'-N-5-hexynoate kanamycin A RNA-binding module (K) on a peptoid backbone potently inhibit the binding of MBNL1 to r(CUG)(exp). However, these parent compounds are not appreciably active in cell-based models of DM1. The lack of potency was traced to suboptimal cellular permeability and localization. To improve these properties, second-generation compounds that are conjugated to a d-Arg(9) molecular transporter were synthesized. These modified compounds enter cells in higher concentrations than the parent compounds and are efficacious in cell-based DM1 model systems at low micromolar concentrations. In particular, they improve three defects that are the hallmarks of DM1: a translational defect due to nuclear retention of transcripts containing r(CUG)(exp); pre-mRNA splicing defects due to inactivation of MBNL1; and the formation of nuclear foci. The best compound in cell-based studies was tested in a mouse model of DM1. Modest improvement of pre-mRNA splicing defects was observed. These studies suggest that a modular assembly approach can afford bioactive compounds that target RNA. PMID:23130637

  20. Structure of the myotonic dystrophy type 2 RNA and designed small molecules that reduce toxicity.

    PubMed

    Childs-Disney, Jessica L; Yildirim, Ilyas; Park, HaJeung; Lohman, Jeremy R; Guan, Lirui; Tran, Tuan; Sarkar, Partha; Schatz, George C; Disney, Matthew D

    2014-02-21

    Myotonic dystrophy type 2 (DM2) is an incurable neuromuscular disorder caused by a r(CCUG) expansion (r(CCUG)(exp)) that folds into an extended hairpin with periodically repeating 2×2 nucleotide internal loops (5'CCUG/3'GUCC). We designed multivalent compounds that improve DM2-associated defects using information about RNA-small molecule interactions. We also report the first crystal structure of r(CCUG) repeats refined to 2.35 Å. Structural analysis of the three 5'CCUG/3'GUCC repeat internal loops (L) reveals that the CU pairs in L1 are each stabilized by one hydrogen bond and a water-mediated hydrogen bond, while CU pairs in L2 and L3 are stabilized by two hydrogen bonds. Molecular dynamics (MD) simulations reveal that the CU pairs are dynamic and stabilized by Na(+) and water molecules. MD simulations of the binding of the small molecule to r(CCUG) repeats reveal that the lowest free energy binding mode occurs via the major groove, in which one C residue is unstacked and the cross-strand nucleotides are displaced. Moreover, we modeled the binding of our dimeric compound to two 5'CCUG/3'GUCC motifs, which shows that the scaffold on which the RNA-binding modules are displayed provides an optimal distance to span two adjacent loops. PMID:24341895

  1. Rational Design of Bioactive, Modularly Assembled Aminoglycosides Targeting the RNA that Causes Myotonic Dystrophy Type 1

    PubMed Central

    Childs-Disney, Jessica L.; Parkesh, Raman; Nakamori, Masayuki; Thornton, Charles A.; Disney, Matthew D.

    2012-01-01

    Myotonic dystrophy type 1 (DM1) is caused when an expanded r(CUG) repeat (r(CUG)exp) binds the RNA splicing regulator muscleblind-like 1 protein (MBNL1) as well as other proteins. Previously, we reported that modularly assembled small molecules displaying a 6′-N-5-hexynoate kanamycin A RNA-binding module (K) on a peptoid backbone potently inhibit the binding of MBNL1 to r(CUG)exp. However, these parent compounds are not appreciably active in cell-based models of DM1. The lack of potency was traced to suboptimal cellular permeability and localization. To improve these properties, second-generation compounds that are conjugated to a D-Arg9 molecular transporter were synthesized. These modified compounds enter cells in higher concentrations than the parent compounds and are efficacious in cell-based DM1 model systems at low micromolar concentrations. In particular, they improve three defects that are the hallmarks of DM1: a translational defect due to nuclear retention of transcripts containing r(CUG)exp; pre-mRNA splicing defects due to inactivation of MBNL1; and the formation of nuclear foci. The best compound in cell-based studies was tested in a mouse model of DM1. Modest improvement of pre-mRNA splicing defects was observed. These studies suggest that a modular assembly approach can afford bioactive compounds that target RNA. PMID:23130637

  2. Structure of the Myotonic Dystrophy Type 2 RNA and Designed Small Molecules That Reduce Toxicity

    PubMed Central

    Park, HaJeung; Lohman, Jeremy R.; Guan, Lirui; Tran, Tuan; Sarkar, Partha; Schatz, George C.; Disney, Matthew D.

    2014-01-01

    Myotonic dystrophy type 2 (DM2) is an untreatable neuromuscular disorder caused by a r(CCUG) expansion (r(CCUG)exp) that folds into an extended hairpin with periodically repeating 2×2 nucleotide internal loops (5’CCUG/3’GUCC). We designed multivalent compounds that improve DM2-associated defects using information about RNA-small molecule interactions. We also report the first crystal structure of r(CCUG)exp refined to 2.35 Å. Structural analysis of the three 5’CCUG/3’GUCC repeat internal loops (L) reveals that the CU pairs in L1 are each stabilized by one hydrogen bond and a water-mediated hydrogen bond while CU pairs in L2 and L3 are stabilized by two hydrogen bonds. Molecular dynamics (MD) simulations reveal that the CU pairs are dynamic and stabilized by Na+ and water molecules. MD simulations of the binding of the small molecule to r(CCUG) repeats reveal that the lowest free energy binding mode occurs via the major groove, in which one C residue is unstacked and the cross-strand nucleotides are displaced. Moreover, we modeled the binding of our dimeric compound to two 5’CCUG/3’GUCC motifs, which shows that the scaffold on which the RNA-binding modules are displayed provides an optimal distance to span two adjacent loops. PMID:24341895

  3. Role of myotonic dystrophy protein kinase (DMPK) in glucose homeostasis and muscle insulin action.

    PubMed

    Llagostera, Esther; Catalucci, Daniele; Marti, Luc; Liesa, Marc; Camps, Marta; Ciaraldi, Theodore P; Kondo, Richard; Reddy, Sita; Dillmann, Wolfgang H; Palacin, Manuel; Zorzano, Antonio; Ruiz-Lozano, Pilar; Gomis, Ramon; Kaliman, Perla

    2007-01-01

    Myotonic dystrophy 1 (DM1) is caused by a CTG expansion in the 3'-unstranslated region of the DMPK gene, which encodes a serine/threonine protein kinase. One of the common clinical features of DM1 patients is insulin resistance, which has been associated with a pathogenic effect of the repeat expansions. Here we show that DMPK itself is a positive modulator of insulin action. DMPK-deficient (dmpk-/-) mice exhibit impaired insulin signaling in muscle tissues but not in adipocytes and liver, tissues in which DMPK is not expressed. Dmpk-/- mice display metabolic derangements such as abnormal glucose tolerance, reduced glucose uptake and impaired insulin-dependent GLUT4 trafficking in muscle. Using DMPK mutants, we show that DMPK is required for a correct intracellular trafficking of insulin and IGF-1 receptors, providing a mechanism to explain the molecular and metabolic phenotype of dmpk-/- mice. Taken together, these findings indicate that reduced DMPK expression may directly influence the onset of insulin-resistance in DM1 patients and point to dmpk as a new candidate gene for susceptibility to type 2-diabetes. PMID:17987120

  4. Myotonic dystrophy protein kinase phosphorylates phospholamban and regulates calcium uptake in cardiomyocyte sarcoplasmic reticulum.

    PubMed

    Kaliman, Perla; Catalucci, Daniele; Lam, Jason T; Kondo, Richard; Gutiérrez, José Carlos Paz; Reddy, Sita; Palacín, Manuel; Zorzano, Antonio; Chien, Kenneth R; Ruiz-Lozano, Pilar

    2005-03-01

    Myotonic dystrophy (DM) is caused by a CTG expansion in the 3'-untranslated region of a protein kinase gene (DMPK). Cardiovascular disease is one of the most prevalent causes of death in DM patients. Electrophysiological studies in cardiac muscles from DM patients and from DMPK(-/-) mice suggested that DMPK is critical to the modulation of cardiac contractility and to the maintenance of proper cardiac conduction activity. However, there are no data regarding the molecular signaling pathways involved in DM heart failure. Here we show that DMPK expression in cardiac myocytes is highly enriched in the sarcoplasmic reticulum (SR) where it colocalizes with the ryanodine receptor and phospholamban (PLN), a muscle-specific SR Ca(2+)-ATPase (SERCA2a) inhibitor. Coimmunoprecipitation studies showed that DMPK and PLN can physically associate. Furthermore, purified wild-type DMPK, but not a kinase-deficient mutant (K110A DMPK), phosphorylates PLN in vitro. Subsequent studies using the DMPK(-/-) mice demonstrated that PLN is hypo-phosphorylated in SR vesicles from DMPK(-/-) mice compared with wild-type mice both in vitro and in vivo. Finally, we show that Ca(2+) uptake in SR is impaired in ventricular homogenates from DMPK(-/-) mice. Together, our data suggest the existence of a novel regulatory DMPK pathway for cardiac contractility and provide a molecular mechanism for DM heart pathology. PMID:15598648

  5. Role of Myotonic Dystrophy Protein Kinase (DMPK) in Glucose Homeostasis and Muscle Insulin Action

    PubMed Central

    Marti, Luc; Liesa, Marc; Camps, Marta; Ciaraldi, Theodore P.; Kondo, Richard; Reddy, Sita; Dillmann, Wolfgang H.; Palacin, Manuel; Zorzano, Antonio; Ruiz-Lozano, Pilar; Gomis, Ramon; Kaliman, Perla

    2007-01-01

    Myotonic dystrophy 1 (DM1) is caused by a CTG expansion in the 3′-unstranslated region of the DMPK gene, which encodes a serine/threonine protein kinase. One of the common clinical features of DM1 patients is insulin resistance, which has been associated with a pathogenic effect of the repeat expansions. Here we show that DMPK itself is a positive modulator of insulin action. DMPK-deficient (dmpk−/−) mice exhibit impaired insulin signaling in muscle tissues but not in adipocytes and liver, tissues in which DMPK is not expressed. Dmpk−/− mice display metabolic derangements such as abnormal glucose tolerance, reduced glucose uptake and impaired insulin-dependent GLUT4 trafficking in muscle. Using DMPK mutants, we show that DMPK is required for a correct intracellular trafficking of insulin and IGF-1 receptors, providing a mechanism to explain the molecular and metabolic phenotype of dmpk−/− mice. Taken together, these findings indicate that reduced DMPK expression may directly influence the onset of insulin-resistance in DM1 patients and point to dmpk as a new candidate gene for susceptibility to type 2-diabetes. PMID:17987120

  6. No relevant excess prevalence of myotonic dystrophy type 2 in patients with suspected fibromyalgia syndrome.

    PubMed

    van Vliet, J; Verrips, A; Tieleman, A A; Scheffer, H; Cats, H A; den Broeder, A A; van Engelen, B G M

    2016-06-01

    Myotonic dystrophy type 2 (DM2) is a rare, autosomal dominant, multisystem disorder with proximal weakness, myotonia, pain and cataract as important symptoms. Given the assumed underreporting of DM2 in the Netherlands combined with the predominant role of pain in DM2 as well as in fibromyalgia syndrome (FMS), we hypothesized there will be an excess prevalence of DM2 in patients with (suspected) FMS. Our objective was to determine the prevalence of DM2 in patients with suspected FMS. A prevalence of 2% was considered a relevant excess frequency. Between November 2011 and April 2014, 398 patients with suspected FMS who had been assessed by a rheumatologist participated in this cross-sectional study. 95% of the study population was female, with a mean age of 42 years. The final ICD-9 diagnoses were collected, in 96% the diagnosis was FMS. 92% met the 2010 American College of Rheumatology (ACR) diagnostic criteria for FMS. A questionnaire including neuromuscular symptoms was completed. Creatine kinase was determined, and genetic testing for DM2 was conducted in all patients. DM2 was established in only one patient (0.25%, 95% CI 0.04-1.4%), thus disapproving our hypothesis of a relevant prevalence of 2%. Our results suggest that patients with suspected FMS should not routinely be tested for DM2. PMID:27132119

  7. Segregation distortion of the CTG repeats at the myotonic dystrophy locus

    SciTech Connect

    Chakraborty, R.; Stivers, D.N.; Deka, R.; Yu, Ling M.; Shriver, M.D.; Ferrell, R.E.

    1996-07-01

    Myotonic dystrophy (DM), an autosomal dominant neuromuscular disease, is caused by a CTG-repeat expansion, with affected individuals having {ge}50 repeats of this trinucleotide, at the DMPK locus of human chromosome 19q13.3. Severely affected individuals die early in life; the milder form of this disease reduces reproductive ability. Alleles in the normal range of CTG repeats are not as unstable as the (CTG){sub {ge}50} alleles. In the DM families, anticipation and parental bias of allelic expansions have been noted. However, data on mechanism of maintenance of DM in populations are conflicting. We present a maximum-likelihood model for examining segregation distortion of CTG-repeat alleles in normal families. Analyzing 726 meiotic events in 95 nuclear families from the CEPH panel pedigrees, we find evidence of preferential transmission of larger alleles (of size {le}29 repeats) from females (the probability of transmission of larger alleles is .565 {plus_minus} 0.03, different from .5 at P {approx} .028). There is no evidence of segregation distortion during male meiosis. We propose a hypothesis that preferential transmission of larger CTG-repeat alleles during female meiosis can compensate for mutational contraction of repeats within the normal allelic size range, and reduced viability and fertility of affected individuals. Thus, the pool of premutant alleles at the DM locus can be maintained in populations, which can subsequently mutate to the full mutation status to give rise to DM. 31 refs., 1 fig., 5 tabs.

  8. Renal dysfunction can be a common complication in patients with myotonic dystrophy 1.

    PubMed

    Matsumura, Tsuyoshi; Saito, Toshio; Yonemoto, Naohiro; Nakamori, Masayuki; Sugiura, Toshihiro; Nakamori, Aya; Fujimura, Harutoshi; Sakoda, Saburo

    2016-09-15

    Although renal failure can be a life-threatening complication even in neuromuscular disorders (NMDs), renal dysfunction is easily overlooked because muscle atrophy decreases the serum creatinine level. Renal function was retrospectively assessed using cystatin C (CysC) in various NMDs to clarify the differences among diseases. As is in the general population, age was correlated to CysC, and female patients showed lower CysC levels. Although elevated CysC was frequent in myotonic dystrophy 1 (DM1: MIM 160900) and motor neuron disorders, an inter-disease comparison by sex adjusted for age showed that only DM1 had a higher CysC compared to other diseases. Multivariate linear regression with the stepwise method also suggested that the number of CTG repeats had an impact on CysC levels. In two autopsy DM1 cases, nephrosclerotic changes were observed even though they were in their forties. These facts suggested a disease-specific pathomechanism for renal dysfunction in DM1. Although further study is required, renal function should be carefully monitored in patients with DM1. PMID:27538647

  9. Increased autophagy and apoptosis contribute to muscle atrophy in a myotonic dystrophy type 1 Drosophila model

    PubMed Central

    Bargiela, Ariadna; Cerro-Herreros, Estefanía; Fernandez-Costa, Juan M.; Vilchez, Juan J.; Llamusi, Beatriz; Artero, Ruben

    2015-01-01

    ABSTRACT Muscle mass wasting is one of the most debilitating symptoms of myotonic dystrophy type 1 (DM1) disease, ultimately leading to immobility, respiratory defects, dysarthria, dysphagia and death in advanced stages of the disease. In order to study the molecular mechanisms leading to the degenerative loss of adult muscle tissue in DM1, we generated an inducible Drosophila model of expanded CTG trinucleotide repeat toxicity that resembles an adult-onset form of the disease. Heat-shock induced expression of 480 CUG repeats in adult flies resulted in a reduction in the area of the indirect flight muscles. In these model flies, reduction of muscle area was concomitant with increased apoptosis and autophagy. Inhibition of apoptosis or autophagy mediated by the overexpression of DIAP1, mTOR (also known as Tor) or muscleblind, or by RNA interference (RNAi)-mediated silencing of autophagy regulatory genes, achieved a rescue of the muscle-loss phenotype. In fact, mTOR overexpression rescued muscle size to a size comparable to that in control flies. These results were validated in skeletal muscle biopsies from DM1 patients in which we found downregulated autophagy and apoptosis repressor genes, and also in DM1 myoblasts where we found increased autophagy. These findings provide new insights into the signaling pathways involved in DM1 disease pathogenesis. PMID:26092529

  10. Brain Connectomics' Modification to Clarify Motor and Nonmotor Features of Myotonic Dystrophy Type 1.

    PubMed

    Serra, Laura; Mancini, Matteo; Silvestri, Gabriella; Petrucci, Antonio; Masciullo, Marcella; Spanò, Barbara; Torso, Mario; Mastropasqua, Chiara; Giacanelli, Manlio; Caltagirone, Carlo; Cercignani, Mara; Meola, Giovanni; Bozzali, Marco

    2016-01-01

    The adult form of myotonic dystrophy type 1 (DM1) presents with paradoxical inconsistencies between severity of brain damage, relative preservation of cognition, and failure in everyday life. This study, based on the assessment of brain connectivity and mechanisms of plasticity, aimed at reconciling these conflicting issues. Resting-state functional MRI and graph theoretical methods of analysis were used to assess brain topological features in a large cohort of patients with DM1. Patients, compared to controls, revealed reduced connectivity in a large frontoparietal network that correlated with their isolated impairment in visuospatial reasoning. Despite a global preservation of the topological properties, peculiar patterns of frontal disconnection and increased parietal-cerebellar connectivity were also identified in patients' brains. The balance between loss of connectivity and compensatory mechanisms in different brain networks might explain the paradoxical mismatch between structural brain damage and minimal cognitive deficits observed in these patients. This study provides a comprehensive assessment of brain abnormalities that fit well with both motor and nonmotor clinical features experienced by patients in their everyday life. The current findings suggest that measures of functional connectivity may offer the possibility of characterizing individual patients with the potential to become a clinical tool. PMID:27313901

  11. Short antisense-locked nucleic acids (all-LNAs) correct alternative splicing abnormalities in myotonic dystrophy

    PubMed Central

    Wojtkowiak-Szlachcic, Agnieszka; Taylor, Katarzyna; Stepniak-Konieczna, Ewa; Sznajder, Lukasz J.; Mykowska, Agnieszka; Sroka, Joanna; Thornton, Charles A.; Sobczak, Krzysztof

    2015-01-01

    Myotonic dystrophy type 1 (DM1) is an autosomal dominant multisystemic disorder caused by expansion of CTG triplet repeats in 3′-untranslated region of DMPK gene. The pathomechanism of DM1 is driven by accumulation of toxic transcripts containing expanded CUG repeats (CUGexp) in nuclear foci which sequester several factors regulating RNA metabolism, such as Muscleblind-like proteins (MBNLs). In this work, we utilized very short chemically modified antisense oligonucleotides composed exclusively of locked nucleic acids (all-LNAs) complementary to CUG repeats, as potential therapeutic agents against DM1. Our in vitro data demonstrated that very short, 8- or 10-unit all-LNAs effectively bound the CUG repeat RNA and prevented the formation of CUGexp/MBNL complexes. In proliferating DM1 cells as well as in skeletal muscles of DM1 mouse model the all-LNAs induced the reduction of the number and size of CUGexp foci and corrected MBNL-sensitive alternative splicing defects with high efficacy and specificity. The all-LNAs had low impact on the cellular level of CUGexp-containing transcripts and did not affect the expression of other transcripts with short CUG repeats. Our data strongly indicate that short all-LNAs complementary to CUG repeats are a promising therapeutic tool against DM1. PMID:25753670

  12. Six Serum miRNAs Fail to Validate as Myotonic Dystrophy Type 1 Biomarkers

    PubMed Central

    Fernandez-Costa, Juan M.; Llamusi, Beatriz; Bargiela, Ariadna; Zulaica, Miren; Alvarez-Abril, M. Carmen; Perez-Alonso, Manuel; Lopez de Munain, Adolfo

    2016-01-01

    Myotonic dystrophy type 1 (DM1) is an autosomal dominant genetic disease caused by expansion of a CTG microsatellite in the 3’ untranslated region of the DMPK gene. Despite characteristic muscular, cardiac, and neuropsychological symptoms, CTG trinucleotide repeats are unstable both in the somatic and germinal lines, making the age of onset, clinical presentation, and disease severity very variable. A molecular biomarker to stratify patients and to follow disease progression is, thus, an unmet medical need. Looking for a novel biomarker, and given that specific miRNAs have been found to be misregulated in DM1 heart and muscle tissues, we profiled the expression of 175 known serum miRNAs in DM1 samples. The differences detected between patients and controls were less than 2.6 fold for all of them and a selection of six candidate miRNAs, miR-103, miR-107, miR-21, miR-29a, miR-30c, and miR-652 all failed to show consistent differences in serum expression in subsequent validation experiments. PMID:26919350

  13. Reconstructing the Rasch-Built Myotonic Dystrophy Type 1 Activity and Participation Scale

    PubMed Central

    Hermans, Mieke C. E.; Hoeijmakers, Janneke G. J.; Faber, Catharina G.; Merkies, Ingemar S. J.

    2015-01-01

    Introduction A previously published Rasch-built activity and participation scale specifically designed for patients with myotonic dystrophy type 1 (DM1) was criticized for having been constructed in a relatively small cohort of patients and containing items too broadly phrased for DM1 patients, thus hampering its clinical use. Methods We report the results of the reconstructed Rasch-built DM1 activity and participation scale for clinical use (DM1-ActivC) through Rasch analyses using an expanded questionnaire containing 146 more simply phrased activity and participation inquiries completed by 340 patients with DM1. Results Through stepwise investigation including data quality control, model fit, response category ordering, local dependency and item bias, we succeeded in reconstructing the DM1-ActivC consisting of 25 items that showed good Rasch model fit, including construct convergent validity, items’ weights and persons’ locations reliability, and unidimensionality. Conclusion The DM1-ActivC scale has been reconstructed and fulfills all modern clinimetric requirements. Its use is recommended in future longitudinal trials in patients with DM1 to determine its responsiveness. PMID:26484877

  14. DMPK-associated myotonic dystrophy and CTG repeats in Alabama African Americans.

    PubMed

    Acton, R T; Rivers, C A; Watson, B; Oh, S J

    2007-11-01

    Myotonic dystrophy type 1 (DM1) is a result of a CTG expansion in the 3'-untranslated region of the DMPK gene. DM1 is rare among African blacks who have fewer large CTG repeats in the normal range than other racial/ethnic groups. Neither the prevalence of DM1 nor the relationship of CTG expansion to clinical status in African Americans (AAs) is well documented. We describe two AA brothers with DM1, each of whom had CTG repeats of 5/639; their father was reported to have DM1 and had CTG repeats of 5/60. Other family members had CTG repeats of 5-14. An unrelated AA patient from a second kinship also had DM1; an analysis revealed CTG repeats of 27/191. In 161 Alabama AA control subjects, we observed 18 CTG alleles from 5 to 28 repeats; the most common allele had five CTG repeats. The frequency of CTG repeats >or=15 were greater (p < 0.0003) in Pygmy, Amhara Ethiopian, Ashkenazi Jewish, North African Jewish, Israeli Muslim Arab, European white, and Japanese populations than in the Alabama AA population. These data suggest that the risk for DM1 in AAs is intermediate between that of African blacks and whites of European descent. PMID:17877752

  15. Evaluation of information-processing speed and neuropsychological functioning in patients with myotonic dystrophy.

    PubMed

    Stuss, D T; Kates, M H; Poirier, C A; Hylton, D; Humphreys, P; Keene, D; Laflèche, G

    1987-04-01

    Patients with myotonic dystrophy (MD) were compared to a control group, matched to the patients in important demographic variables including IQ, on the Sternberg Memory Scanning procedure, to investigate the hypothesis of a selective change in speed of information processing in MD patients. The neuropsychological functioning of these MD patients was also compared to normative data to provide a descriptive picture of their abilities; these results were correlated to the factors of age of onset and duration of the disease. Finally, the MD patients were also compared to the defined control group on the neuropsychological measures. There was little evidence of selective slowness of information processing or particular deficit independent of overall IQ. Neuropsychologically, the MD patients as a group performed at the low average level. There was, however, a wide range of abilities, suggesting that MD patients are not a unitary group in terms of neuropsychological functioning. Age of onset of the disease was important, at least for certain results. Further research of the neuropsychological functioning of MD patients must account for the wide range of results, with more precise measures of actual onset of the disease and muscular weakness, in a longitudinal evaluation. PMID:3558745

  16. Impact of Biopsychosocial Factors on Chronic Pain in Persons With Myotonic and Facioscapulohumeral Muscular Dystrophy

    PubMed Central

    Miró, Jordi; Raichle, Katherine A.; Carter, Gregory T.; O’Brien, Sarah A.; Abresch, Richard T.; McDonald, Craig M.; Jensen, Mark P.

    2010-01-01

    To assess the role of biopsychosocial factors in patients with type 1 myotonic and facioscapulohumeral muscular dystrophy (MMD1/FSHD) with chronic pain. Associations between psychosocial factors were found to be important in other samples of persons with pain and both psychological functioning and pain interference in a sample of patients suffering from MMD/FSHD. Prospective, multiple group, survey study of 182 patients with confirmed MMD1 and FSHD. Participants completed surveys assessing pain interference and psychological functioning, as well as psychosocial, demographic, and injury-related variables. Analyses indicated that greater catastrophizing was associated with increased pain interference and poorer psychological functioning, pain attitudes were significantly related to both pain interference and psychological functioning, and coping responses were significantly related only to pain interference. In addition, greater perceived social support was associated with better psychological functioning. The results support the use of studying pain in persons with MMD/FSHD from a biopsychosocial perspective, and the importance of identifying psychosocial factors that may play a role in the adjustment to and response to pain secondary to MMD/FSHD. PMID:19414560

  17. [Fukuyama congenital muscular dystrophy and related alpha-dystroglycanopathies].

    PubMed

    Murakami, Terumi; Nishino, Ichizo

    2008-10-01

    Alpha-dystroglycan (alpha-DG) is a glycoprotein that binds to laminin in the basal lamina and helps provide mechanical support. A group of muscular dystrophies are caused by glycosylation defects of alpha-DG and are hence collectively called alpha-dystroglycanopathy (alpha-DGP). Alpha-DGP is clinically characterized by a combination of muscular dystrophies, structural brain anomalies, and ocular involvement. So far, 6 causative genes have been identified: LARGE, POMGNT1, POMT1, POMT2, FKRP, and FKTN. Initially, alpha-DGP was classified under congenital muscular dystrophies; however, the clinical phenotype is now expanded to include a markedly wide spectrum ranging from the most severe, lethal congenital muscular dystrophy with severe brain deformity to the mildest limb girdle muscular dystrophy with minimal muscle weakness. This is exemplified by Fukuyama congenital muscular dystrophy (FCMD), which is the most prevalent alpha-DGP in Japan, and is caused by mutations in FKTN. FCMD is clinically characterized by a triad of mental retardation, brain deformities, and congenital muscular dystrophy, and a majority of FCMD patients have a homozygous 3-kb retrotransposal insertion in the 3'non-coding region. Typically, they are able to sit but never attain independent ambulation in their lives. Recently, a patient from Turkey harboring homozygous 1-bp insertion reportedly showed a severe brain deformity with hydrocephalus and died 10 days after birth. In contrast, the mildest FKTN phenotype, LGMD2L, was identified in 6 cases from 4 families in Japan. These patients harbored compound heterozygous mutation with 3-kb retrotransposal insertion in the 3'non-coding region and a novel missense mutation in the coding region. Clinically, these patients presented with minimal muscle weakness and dilated cardiomyopathy and had normal intelligence. These data clearly indicate that FKTN mutations can cause a broad spectrum of muscular dystrophies. Therefore, clinicians should always

  18. Congenital muscular dystrophy: from muscle to brain.

    PubMed

    Falsaperla, Raffaele; Praticò, Andrea D; Ruggieri, Martino; Parano, Enrico; Rizzo, Renata; Corsello, Giovanni; Vitaliti, Giovanna; Pavone, Piero

    2016-01-01

    Congenital muscular dystrophies (CMDs) are a wide group of muscular disorders that manifest with very early onset of muscular weakness, sometime associated to severe brain involvement.The histologic pattern of muscle anomalies is typical of dystrophic lesions but quite variable depending on the different stages and on the severity of the disorder.Recent classification of CMDs have been reported most of which based on the combination of clinical, biochemical, molecular and genetic findings, but genotype/phenotype correlation are in constant progression due to more diffuse utilization of the molecular analysis.In this article, the Authors report on CMDs belonging to the group of dystroglycanopathies and in particular on the most severe forms represented by the Fukuyama CMD, Muscle-Eye-Brain disease and Walker Walburg syndrome.Clinical diagnosis of infantile hypotonia is particularly difficult considering the different etiologic factors causing the lesions, the difficulty in localizing the involved CNS area (central vs. peripheral) and the limited role of the diagnostic procedures at this early age.The diagnostic evaluation is not easy mainly in differentiating the various types of CMDs, and represents a challenge for the neonatologists and pediatricians. Suggestions are reported on the way to reach a correct diagnosis with the appropriate use of the diagnostic means. PMID:27576556

  19. Is it possible to identify infrahissian cardiac conduction abnormalities in myotonic dystrophy by non-invasive methods?

    PubMed Central

    Babuty, D; Fauchier, L; Tena-Carbi, D; Poret, P; Leche, J; Raynaud, M; Fauchier, J; Cosnay, P

    1999-01-01

    OBJECTIVE—To identify intracardiac conduction abnormalities in patients with myotonic dystrophy from their clinical, ECG, and genetic features.
METHODS—39 consecutive patients (mean (SD) age 42.9 (12.1) years; 16 female, 23 male) underwent clinical examination, genetic studies, resting and 24 hour ambulatory ECG, signal averaged ECG, and electrophysiological studies.
RESULTS—23 patients suffered from cardiac symptoms, 23 had one or more cardiac conduction abnormality on resting ECG, one had sinus deficiency, and 21 (53.8%) had prolonged HV intervals. No correlation was found between the severity of the neurological symptoms, onset of disease, cardiac conduction abnormalities on ECG, and the intracardiac conduction abnormalities on electrophysiological study. The size of the DNA mutation was longer in the abnormal HV interval group than in the normal HV interval group (3.5 (1.8) v 2.2 (1.0) kb, p < 0.02). Signal averaged ECG parameters (total QRS duration (QRSD) and duration of low amplitude signals ⩽ 40 µV (LAS 40)) were greater in patients with an abnormal HV interval than in those with a normal HV interval (123.4 (24.6) v 102.8 (12.3) ms and 47.5 (12.8) v 35.3 (8.8) ms, respectively; p < 0.005). Only the association of QRSD ⩾ 100 ms with LAS 40 ⩾ 36 ms identified patients with an abnormal HV interval with good sensitivity (80%) and specificity (83.3%).
CONCLUSIONS—Infrahissian conduction abnormalities are common in myotonic dystrophy and can be identified using signal averaged electrocardiography.


Keywords: myotonic dystrophy; atrioventricular block; genetic factors; signal averaged ECG PMID:10525524

  20. The evolution of infrahissian conduction time in myotonic dystrophy patients: clinical implications

    PubMed Central

    Lallemand, Bénédicte; Clementy, Nicolas; Bernard-Brunet, Anne; Pierre, Bertrand; Corcia, Philippe; Fauchier, Laurent; Raynaud, Martine; Pellieux, Sybille

    2011-01-01

    Background Myotonic dystrophy (MD1) is a hereditary autosomal dominant disease with variable penetrance. Cardiac conduction disturbances are frequent and may be responsible for sudden death, but its progression was heretofore unknown. Aims The aim of the study was to analyse the natural history of infrahissian conduction time in patients with a normal first electrophysiological test, and to identify the predictive value of the clinical and ECG factors accompanying an alteration of infrahissian conduction. Methods Among 127 consecutive screened MD patients, 25 were enrolled and underwent a second electrophysiological testing. The second electrophysiological test was carried out on patients showing new symptoms, new atrioventricular conduction disturbances on ECG, or significant modifications of signal-averaged (SA)-ECG, and on asymptomatic patients with a follow-up of at least 60 months since the first electrophysiological test. Results Among the 25 patients, four had new clinical symptoms, four others developed new atrioventricular conduction abnormalities on ECG and six had significant modifications of the SA-ECG. The mean His-ventricle (HV) interval increased significantly between the two electrophysiological studies (initial HV interval 52.1 ms±1.6 ms, final HV interval 61.4 ms±2.2 ms, p<0.005), with a mean increase of 1.2 ms/year. The five patients with HV interval of 70 ms or greater were implanted with a prophylactic dual-chamber pacemaker. Modifications of resting ECG and SA-ECG were strongly associated with HV interval prolongation. Conclusion In patients with a normal initial electrophysiological study, modifications on the resting ECG and/or SA-ECG, on annual check-up, were associated with an alteration of infrahissian conduction. PMID:22038543

  1. Frontostriatal dysexecutive syndrome: a core cognitive feature of myotonic dystrophy type 2.

    PubMed

    Peric, Stojan; Mandic-Stojmenovic, Gorana; Stefanova, Elka; Savic-Pavicevic, Dusanka; Pesovic, Jovan; Ilic, Vera; Dobricic, Valerija; Basta, Ivana; Lavrnic, Dragana; Rakocevic-Stojanovic, Vidosava

    2015-01-01

    The aim of this study was to assess cognitive status in a large group of patients with myotonic dystrophy type 2 (DM2) compared to type 1 (DM1) subjects matched for gender and age, using a comprehensive battery of neuropsychological tests. Thirty-four genetically confirmed adult DM2 patients were recruited and matched for gender and age with 34 adult-onset DM1 subjects. All patients underwent detailed classic pen and pencil neuropsychological investigation and also computerized automated battery-CANTAB. More than half of DM2 patients had abnormal results on executive tests [Intra/Extradimensional Set Shift (IED), Stockings of Cambridge (SOC)] and verbal episodic memory (Ray Auditory Verbal Learning Test). Regarding DM1, abnormal results in more than 50 % of subjects were achieved in even ten tests, including visuospatial, language, executive, cognitive screening and visual memory tests. Direct comparison between patient groups showed that lower percentage of DM2 patients had abnormal results on following tests: Addenbrooke's Cognitive Examination-Revised, Raven Standard Progressive Matrices, Block Design, copy and recall of Rey-Osterieth Complex Figure, number of categories and perseverative responses on Wisconsin Card Sorting Test and Boston Naming Test (p < 0.01), as well as Trail Making Test-B and Spatial Span (p < 0.05). Our results showed significant dysexecutive syndrome and certain impairment of episodic verbal memory in DM2 patients that are reflective of frontal (especially frontostriatal) and temporal lobe dysfunction. On the other hand, dysexecutive and visuospatial/visuoconstructional deficits predominate in DM1 which correspond to the frontal, parietal (and occipital) lobe dysfunction. PMID:25346064

  2. Characteristics of Intergenerational Contractions of the CTG Repeat in Myotonic Dystrophy

    PubMed Central

    Ashizawa, T.; Anvret, M.; Baiget, M.; Barceló, J. M.; Brunner, H.; Cobo, A. M.; Dallapiccola, B.; Fenwick, R. G.; Grandell, U.; Harley, H.; Junien, C.; Koch, M. C.; Korneluk, R. G.; Lavedan, C.; Miki, T.; Mulley, J. C.; de Munain, A. López; Novelli, G.; Roses, A. D.; Seltzer, W. K.; Shaw, D. J.; Smeets, H.; Sutherland, G. R.; Yamagata, H.; Harper, P. S.

    1994-01-01

    In myotonic dystrophy (DM), the size of a CTG repeat in the DM kinase gene generally increases in successive generations with clinical evidence of anticipation. However, there have also been cases with an intergenerational contraction of the repeat. We examined 1,489 DM parent-offspring pairs, of which 95 (6.4%) showed such contractions in peripheral blood leukocytes (PBL). In 56 of the 95 pairs, clinical data allowed an analysis of their anticipation status. It is surprising that anticipation occurred in 27 (48%) of these 56 pairs, while none clearly showed a later onset of DM in the symptomatic offspring. The contraction occurred in 76 (10%) of 753 paternal transmissions and in 19 (3%) of 736 maternal transmissions. Anticipation was observed more frequently in maternal (85%) than in paternal (37%) transmissions (P < .001). The parental repeat size correlated with the size of intergenerational contraction (r2 = .50, P « .001), and the slope of linear regression was steeper in paternal (–.62) than in maternal (–.30) transmissions (P « .001). Sixteen DM parents had multiple DM offspring with the CTG repeat contractions. This frequency was higher than the frequency expected from the probability of the repeat contractions (6.4%) and the size of DM sib population (1.54 DM offspring per DM parent, in 968 DM parents). We conclude that (1) intergenerational contraction of the CTG repeat in leukocyte DNA frequently accompanies apparent anticipation, especially when DM is maternally transmitted, and (2) the paternal origin of the repeat and the presence of the repeat contraction in a sibling increase the probability of the CTG repeat contraction. PMID:8116611

  3. Pentamidine rescues contractility and rhythmicity in a Drosophila model of myotonic dystrophy heart dysfunction

    PubMed Central

    Chakraborty, Mouli; Selma-Soriano, Estela; Magny, Emile; Couso, Juan Pablo; Pérez-Alonso, Manuel; Charlet-Berguerand, Nicolas; Artero, Ruben; Llamusi, Beatriz

    2015-01-01

    ABSTRACT Up to 80% of individuals with myotonic dystrophy type 1 (DM1) will develop cardiac abnormalities at some point during the progression of their disease, the most common of which is heart blockage of varying degrees. Such blockage is characterized by conduction defects and supraventricular and ventricular tachycardia, and carries a high risk of sudden cardiac death. Despite its importance, very few animal model studies have focused on the heart dysfunction in DM1. Here, we describe the characterization of the heart phenotype in a Drosophila model expressing pure expanded CUG repeats under the control of the cardiomyocyte-specific driver GMH5-Gal4. Morphologically, expression of 250 CUG repeats caused abnormalities in the parallel alignment of the spiral myofibrils in dissected fly hearts, as revealed by phalloidin staining. Moreover, combined immunofluorescence and in situ hybridization of Muscleblind and CUG repeats, respectively, confirmed detectable ribonuclear foci and Muscleblind sequestration, characteristic features of DM1, exclusively in flies expressing the expanded CTG repeats. Similarly to what has been reported in humans with DM1, heart-specific expression of toxic RNA resulted in reduced survival, increased arrhythmia, altered diastolic and systolic function, reduced heart tube diameters and reduced contractility in the model flies. As a proof of concept that the fly heart model can be used for in vivo testing of promising therapeutic compounds, we fed flies with pentamidine, a compound previously described to improve DM1 phenotypes. Pentamidine not only released Muscleblind from the CUG RNA repeats and reduced ribonuclear formation in the Drosophila heart, but also rescued heart arrhythmicity and contractility, and improved fly survival in animals expressing 250 CUG repeats. PMID:26515653

  4. Muscleblind, BSF and TBPH are mislocalized in the muscle sarcomere of a Drosophila myotonic dystrophy model.

    PubMed

    Llamusi, Beatriz; Bargiela, Ariadna; Fernandez-Costa, Juan M; Garcia-Lopez, Amparo; Klima, Raffaella; Feiguin, Fabian; Artero, Ruben

    2013-01-01

    Myotonic dystrophy type 1 (DM1) is a genetic disease caused by the pathological expansion of a CTG trinucleotide repeat in the 3' UTR of the DMPK gene. In the DMPK transcripts, the CUG expansions sequester RNA-binding proteins into nuclear foci, including transcription factors and alternative splicing regulators such as MBNL1. MBNL1 sequestration has been associated with key features of DM1. However, the basis behind a number of molecular and histological alterations in DM1 remain unclear. To help identify new pathogenic components of the disease, we carried out a genetic screen using a Drosophila model of DM1 that expresses 480 interrupted CTG repeats, i(CTG)480, and a collection of 1215 transgenic RNA interference (RNAi) fly lines. Of the 34 modifiers identified, two RNA-binding proteins, TBPH (homolog of human TAR DNA-binding protein 43 or TDP-43) and BSF (Bicoid stability factor; homolog of human LRPPRC), were of particular interest. These factors modified i(CTG)480 phenotypes in the fly eye and wing, and TBPH silencing also suppressed CTG-induced defects in the flight muscles. In Drosophila flight muscle, TBPH, BSF and the fly ortholog of MBNL1, Muscleblind (Mbl), were detected in sarcomeric bands. Expression of i(CTG)480 resulted in changes in the sarcomeric patterns of these proteins, which could be restored by coexpression with human MBNL1. Epistasis studies showed that Mbl silencing was sufficient to induce a subcellular redistribution of TBPH and BSF proteins in the muscle, which mimicked the effect of i(CTG)480 expression. These results provide the first description of TBPH and BSF as targets of Mbl-mediated CTG toxicity, and they suggest an important role of these proteins in DM1 muscle pathology. PMID:23118342

  5. Identification of Plant-derived Alkaloids with Therapeutic Potential for Myotonic Dystrophy Type I.

    PubMed

    Herrendorff, Ruben; Faleschini, Maria Teresa; Stiefvater, Adeline; Erne, Beat; Wiktorowicz, Tatiana; Kern, Frances; Hamburger, Matthias; Potterat, Olivier; Kinter, Jochen; Sinnreich, Michael

    2016-08-12

    Myotonic dystrophy type I (DM1) is a disabling neuromuscular disease with no causal treatment available. This disease is caused by expanded CTG trinucleotide repeats in the 3' UTR of the dystrophia myotonica protein kinase gene. On the RNA level, expanded (CUG)n repeats form hairpin structures that sequester splicing factors such as muscleblind-like 1 (MBNL1). Lack of available MBNL1 leads to misregulated alternative splicing of many target pre-mRNAs, leading to the multisystemic symptoms in DM1. Many studies aiming to identify small molecules that target the (CUG)n-MBNL1 complex focused on synthetic molecules. In an effort to identify new small molecules that liberate sequestered MBNL1 from (CUG)n RNA, we focused specifically on small molecules of natural origin. Natural products remain an important source for drugs and play a significant role in providing novel leads and pharmacophores for medicinal chemistry. In a new DM1 mechanism-based biochemical assay, we screened a collection of isolated natural compounds and a library of over 2100 extracts from plants and fungal strains. HPLC-based activity profiling in combination with spectroscopic methods were used to identify the active principles in the extracts. The bioactivity of the identified compounds was investigated in a human cell model and in a mouse model of DM1. We identified several alkaloids, including the β-carboline harmine and the isoquinoline berberine, that ameliorated certain aspects of the DM1 pathology in these models. Alkaloids as a compound class may have potential for drug discovery in other RNA-mediated diseases. PMID:27298317

  6. Rational and Modular Design of Potent Ligands Targeting the RNA that Causes Myotonic Dystrophy 2

    PubMed Central

    Lee, Melissa M.; Pushechnikov, Alexei; Disney, Matthew D.

    2009-01-01

    Most ligands targeting RNA are identified through screening a therapeutic target for binding members of a ligand library. A potential alternative way to construct RNA binders is through rational design using information about the RNA motifs ligands prefer to bind. Herein, we describe such an approach to design modularly assembled ligands targeting the RNA that causes myotonic dystrophy type 2 (DM2), a currently untreatable disease. A previous study identified that 6′-N-5-hexynoate kanamycin A (1) prefers to bind 2×2 nucleotide, pyrimidine-rich RNA internal loops. Multiple copies of such loops were found in the RNA hairpin that causes DM2. The 1 ligand was then modularly displayed on a peptoid scaffold with varied number and spacing to target several internal loops simultaneously. Modularly assembled ligands were tested for binding to a series of RNAs and for inhibiting the formation of the toxic DM2 RNA-muscleblind protein (MBNL-1) interaction. The most potent ligand displays three 1 modules, each separated by four spacing submonomers, and inhibits the formation of the RNA-protein complex with an IC50 of 25 nM. This ligand is higher affinity and more specific for binding DM2 RNA than MBNL-1. It binds the DM2 RNA at least 20-times more tightly than related RNAs and 15-fold more tightly than MBNL-1. A related control peptoid displaying 6′-N-5-hexynoate neamine (2) is >100-fold less potent at inhibiting the RNA-protein interaction and binds to DM2 RNA >125-fold more weakly. Uptake studies into a mouse myoblast cell line also show that the most potent ligand is cell permeable. PMID:19348464

  7. Rationally designed small molecules targeting the RNA that causes myotonic dystrophy type 1 are potently bioactive.

    PubMed

    Childs-Disney, Jessica L; Hoskins, Jason; Rzuczek, Suzanne G; Thornton, Charles A; Disney, Matthew D

    2012-05-18

    RNA is an important drug target, but it is difficult to design or discover small molecules that modulate RNA function. In the present study, we report that rationally designed, modularly assembled small molecules that bind the RNA that causes myotonic dystrophy type 1 (DM1) are potently bioactive in cell culture models. DM1 is caused when an expansion of r(CUG) repeats, or r(CUG)(exp), is present in the 3' untranslated region (UTR) of the dystrophia myotonica protein kinase (DMPK) mRNA. r(CUG)(exp) folds into a hairpin with regularly repeating 5'CUG/3'GUC motifs and sequesters muscleblind-like 1 protein (MBNL1). A variety of defects are associated with DM1, including (i) formation of nuclear foci, (ii) decreased translation of DMPK mRNA due to its nuclear retention, and (iii) pre-mRNA splicing defects due to inactivation of MBNL1, which controls the alternative splicing of various pre-mRNAs. Previously, modularly assembled ligands targeting r(CUG)(exp) were designed using information in an RNA motif-ligand database. These studies showed that a bis-benzimidazole (H) binds the 5'CUG/3'GUC motif in r(CUG)(exp.) Therefore, we designed multivalent ligands to bind simultaneously multiple copies of this motif in r(CUG)(exp). Herein, we report that the designed compounds improve DM1-associated defects including improvement of translational and pre-mRNA splicing defects and the disruption of nuclear foci. These studies may establish a foundation to exploit other RNA targets in genomic sequence. PMID:22332923

  8. Rationally Designed Small Molecules Targeting the RNA That Causes Myotonic Dystrophy Type 1 Are Potently Bioactive

    PubMed Central

    Childs-Disney, Jessica L.; Hoskins, Jason; Rzuczek, Suzanne G.; Thornton, Charles A.; Disney, Matthew D.

    2012-01-01

    RNA is an important drug target, but it is difficult to design or discover small molecules that modulate RNA function. In the present study, we report that rationally designed, modularly assembled small molecules that bind the RNA that causes myotonic dystrophy type 1 (DM1) are potently bioactive in cell culture models. DM1 is caused when an expansion of r(CUG) repeats, or r(CUG)exp, is present in the 3′ untranslated region (UTR) of the dystrophia myotonica protein kinase (DMPK) mRNA. r(CUG)exp folds into a hairpin with regularly repeating 5′CUG/3′GUC motifs and sequester muscleblind-like 1 protein (MBNL1). A variety of defects are associated with DM1 including: (i) formation of nuclear foci, (ii) decreased translation of DMPK mRNA due to its nuclear retention, and (iii) pre-mRNA splicing defects due to inactivation of MBNL1, which controls the alternative splicing of various pre-mRNAs. Previously, modularly assembled ligands targeting r(CUG)exp were designed using information in an RNA motif-ligand database. These studies showed that a bis-benzimidazole (H) binds the 5′CUG/3′GUC motif in r(CUG)exp. Therefore, we designed multivalent ligands to bind multiple copies of this motif simultaneously in r(CUG)exp. Herein, we report that the designed compounds improve DM1-associated defects including improvement of translational and pre-mRNA splicing defects and the disruption of nuclear foci. These studies may establish a foundation to exploit other RNA targets in genomic sequence. PMID:22332923

  9. Identification of intracellular signaling pathways that induce myotonic dystrophy protein kinase expression during myogenesis.

    PubMed

    Carrasco, Marta; Canicio, Judith; Palacín, Manuel; Zorzano, Antonio; Kaliman, Perla

    2002-08-01

    Myotonic dystrophy (DM) is the most common inherited adult neuromuscular disorder. DM is caused by a CTG expansion in the 3'-untranslated region of a protein kinase gene (DMPK). Decreased DMPK protein levels may contribute to the pathology of DM, as revealed by gene target studies. However, the postnatal regulation of DMPK expression and its pathophysiological role remain undefined. We studied the regulation of DMPK protein and mRNA expression during myogenesis in rat L6E9 myoblasts, mouse C2C12 myoblasts, and 10T1/2 fibroblasts stably expressing the myogenic transcription factor MyoD (10T1/2-MyoD). We detected DMPK as an 80-kDa protein mainly localized to the cytosolic fraction of skeletal muscle cells. DMPK expression and protein kinase activity were enhanced in IGF-II-differentiated cells. In L6E9 and C2C12 cells, DMPK expression was regulated through the same signaling pathways (i.e. phosphatidylinositol 3-kinase, nuclear factor-kappaB, nitric oxide synthase, and p38 mitogen-activated protein kinase) that had been described as being crucial for the myogenesis induced by either low serum or IGF-II. However, in 10T1/2-MyoD cells, p38 MAPK inhibition blocked cell fusion and caveolin-3 expression without affecting DMPK up-regulation. These results suggest that although DMPK is induced during myogenesis, its expression cannot be totally associated with the development of a fully differentiated phenotype. PMID:12130568

  10. Abnormal splicing of NEDD4 in myotonic dystrophy type 2: possible link to statin adverse reactions.

    PubMed

    Screen, Mark; Jonson, Per Harald; Raheem, Olayinka; Palmio, Johanna; Laaksonen, Reijo; Lehtimäki, Terho; Sirito, Mario; Krahe, Ralf; Hackman, Peter; Udd, Bjarne

    2014-08-01

    Myotonic dystrophy type 2 (DM2) is a multisystemic disorder caused by a (CCTG)n repeat expansion in intron 1 of CNBP. Transcription of the repeats causes a toxic RNA gain of function involving their accumulation in ribonuclear foci. This leads to sequestration of splicing factors and alters pre-mRNA splicing in a range of downstream effector genes, which is thought to contribute to the diverse DM2 clinical features. Hyperlipidemia is frequent in DM2 patients, but the treatment is problematic because of an increased risk of statin-induced adverse reactions. Hypothesizing that shared pathways lead to the increased risk, we compared the skeletal muscle expression profiles of DM2 patients and controls with patients with hyperlipidemia on statin therapy. Neural precursor cell expressed, developmentally downregulated-4 (NEDD4), an ubiquitin ligase, was one of the dysregulated genes identified in DM2 patients and patients with statin-treated hyperlipidemia. In DM2 muscle, NEDD4 mRNA was abnormally spliced, leading to aberrant NEDD4 proteins. NEDD4 was down-regulated in persons taking statins, and simvastatin treatment of C2C12 cells suppressed NEDD4 transcription. Phosphatase and tensin homologue (PTEN), an established NEDD4 target, was increased and accumulated in highly atrophic DM2 muscle fibers. PTEN ubiquitination was reduced in DM2 myofibers, suggesting that the NEDD4-PTEN pathway is dysregulated in DM2 skeletal muscle. Thus, this pathway may contribute to the increased risk of statin-adverse reactions in patients with DM2. PMID:24907641

  11. Living with myotonic dystrophy; what can be learned from couples? a qualitative study

    PubMed Central

    2011-01-01

    Background Myotonic dystrophy type 1 (MD1) is one of the most prevalent neuromuscular diseases, yet very little is known about how MD1 affects the lives of couples and how they themselves manage individually and together. To better match health care to their problems, concerns and needs, it is important to understand their perspective of living with this hereditary, systemic disease. Methods A qualitative study was carried out with a purposive sample of five middle-aged couples, including three men and two women with MD1 and their partners. Fifteen in-depth interviews with persons with MD1, with their partners and with both of them as a couple took place in the homes of the couples in two cities and three villages in the Netherlands in 2009. Results People with MD1 associate this progressive, neuromuscular condition with decreasing abilities, describing physical, cognitive and psychosocial barriers to everyday activities and social participation. Partners highlighted the increasing care giving burden, giving directions and using reminders to compensate for the lack of initiative and avoidant behaviour due to MD1. Couples portrayed the dilemmas and frustrations of renegotiating roles and responsibilities; stressing the importance of achieving a balance between individual and shared activities. All participants experienced a lack of understanding from relatives, friends, and society, including health care, leading to withdrawal and isolation. Health care was perceived as fragmentary, with specialists focusing on specific aspects of the disease rather than seeking to understand the implications of the systemic disorder on daily life. Conclusions Learning from these couples has resulted in recommendations that challenge the tendency to treat MD1 as a condition with primarily physical impairments. It is vital to listen to couples, to elicit the impact of MD1, as a multisystem disorder that influences every aspect of their life together. Couple management, supporting the

  12. Patient-reported impact of symptoms in myotonic dystrophy type 1 (PRISM-1)

    PubMed Central

    Bode, Rita; Johnson, Nicholas; Quinn, Christine; Martens, William; McDermott, Michael P.; Rothrock, Nan; Thornton, Charles; Vickrey, Barbara; Victorson, David; Moxley, Richard

    2012-01-01

    Objective: To determine the most critical symptoms in a national myotonic dystrophy type 1 (DM1) population and to identify the modifying factors that have the greatest effect on the severity of these symptoms. Methods: We performed a cross-sectional study of 278 adult patients with DM1 from the national registry of patients with DM1 between April and August 2010. We assessed the prevalence and relative significance of 221 critical DM1 symptoms and 14 disease themes. These symptoms and themes were chosen for evaluation based on prior interviews with patients with DM1. Responses were categorized by age, CTG repeat length, gender, and duration of symptoms. Results: Participants with DM1 provided symptom rating survey responses to address the relative frequency and importance of each DM1 symptom. The symptomatic themes with the highest prevalence in DM1 were problems with hands or arms (93.5%), fatigue (90.8%), myotonia (90.3%), and impaired sleep or daytime sleepiness (87.9%). Participants identified fatigue and limitations in mobility as the symptomatic themes that have the greatest effect on their lives. We found an association between age and the average prevalence of all themes (p < 0.01) and between CTG repeat length and the average effect of all symptomatic themes on participant lives (p < 0.01). Conclusions: There are a wide range of symptoms that significantly affect the lives of patients with DM1. These symptoms, some previously underrecognized, have varying levels of importance in the DM1 population and are nonlinearly dependent on patient age and CTG repeat length. PMID:22786587

  13. Induction and reversal of myotonic dystrophy type 1 pre-mRNA splicing defects by small molecules.

    PubMed

    Childs-Disney, Jessica L; Stepniak-Konieczna, Ewa; Tran, Tuan; Yildirim, Ilyas; Park, HaJeung; Chen, Catherine Z; Hoskins, Jason; Southall, Noel; Marugan, Juan J; Patnaik, Samarjit; Zheng, Wei; Austin, Chris P; Schatz, George C; Sobczak, Krzysztof; Thornton, Charles A; Disney, Matthew D

    2013-01-01

    The ability to control pre-mRNA splicing with small molecules could facilitate the development of therapeutics or cell-based circuits that control gene function. Myotonic dystrophy type 1 is caused by the dysregulation of alternative pre-mRNA splicing due to sequestration of muscleblind-like 1 protein (MBNL1) by expanded, non-coding r(CUG) repeats (r(CUG)(exp)). Here we report two small molecules that induce or ameliorate alternative splicing dysregulation. A thiophene-containing small molecule (1) inhibits the interaction of MBNL1 with its natural pre-mRNA substrates. Compound (2), a substituted naphthyridine, binds r(CUG)(exp) and displaces MBNL1. Structural models show that 1 binds MBNL1 in the Zn-finger domain and that 2 interacts with UU loops in r(CUG)(exp). This study provides a structural framework for small molecules that target MBNL1 by mimicking r(CUG)(exp) and shows that targeting MBNL1 causes dysregulation of alternative splicing, suggesting that MBNL1 is thus not a suitable therapeutic target for the treatment of myotonic dystrophy type 1. PMID:23806903

  14. Computational Investigation of RNA CUG Repeats Responsible for Myotonic Dystrophy 1

    PubMed Central

    2015-01-01

    Myotonic Dystrophy 1 (DM1) is a genetic disease caused by expansion of CTG repeats in DNA. Once transcribed, these repeats form RNA hairpins with repeating 1×1 nucleotide UU internal loop motifs, r(CUG)n, which attract muscleblind-like 1 (MBNL1) protein leading to the disease. In DM1 CUG can be repeated thousands of times, so these structures are intractable to characterization using structural biology. However, inhibition of MBNL1-r(CUG)n binding requires a detailed analysis of the 1×1 UU internal loops. In this contribution we employ regular and umbrella sampling molecular dynamics (MD) simulations to describe the structural and thermodynamic properties of 1×1 UU internal loops. Calculations were run on a reported crystal structure and a designed system, which mimics an infinitely long RNA molecule with continuous CUG repeats. Two-dimensional (2D) potential of mean force (PMF) surfaces were created by umbrella sampling, and the discrete path sampling (DPS) method was utilized to investigate the energy landscape of 1×1 UU RNA internal loops, revealing that 1×1 UU base pairs are dynamic and strongly prefer the anti–anti conformation. Two 2D PMF surfaces were calculated for the 1×1 UU base pairs, revealing several local minima and three syn–anti ↔ anti–anti transformation pathways. Although at room temperature the syn–anti ↔ anti–anti transformation is not observed on the MD time scale, one of these pathways dominates the dynamics of the 1×1 UU base pairs in temperature jump MD simulations. This mechanism has now been treated successfully using the DPS approach. Our results suggest that local minima predicted by umbrella sampling calculations could be stabilized by small molecules, which is of great interest for future drug design. Furthermore, distorted GC/CG conformations may be important in understanding how MBNL1 binds to RNA CUG repeats. Hence we provide new insight into the dynamic roles of RNA loops and their contributions to presently

  15. Primary Hyperparathyroidism and Hyperthyroidism in a Patient with Myotonic Dystrophy: A Case Report and Review of the Literature

    PubMed Central

    Cherif, Yosra; Zantour, Baha; Alaya, Wafa; Berriche, Olfa; Younes, Samia; Sfar, Mohamed Habib

    2015-01-01

    Various endocrine manifestations are commonly described in myotonic dystrophy (MD), including primary hypogonadism, diabetes mellitus, and thyroid and parathyroid dysfunction. We describe a 46-year-old woman with a family history of MD with her son. She was diagnosed with cardiac arrhythmia and required the implantation of a pacemaker. She was noted to have a bilateral cataract. She complained of muscle weakness, diffuse myalgia, and palpitation. The electromyography (EMG) showed myotonic discharges. Laboratory tests showed high serum calcium 2.83 mmol/L, serum phosphate 1.2 mmol/L, parathormone 362.5 pg/mL, thyroid stimulating hormone TSH 0.02 mIU/L (normal range: 0.34–5.6 mIU/L), FT4 21.17 ng/mL, and negative anti-thyroperoxidase antibodies. Cervical ultrasound revealed a multinodular goiter. The 99mTc-MIBI scintigraphy localized a lower right parathyroid adenoma. The clinical data, the family history of MD, EMG data, and endocrine disturbances were strongly suggestive of MD associated with hyperthyroidism and primary hyperparathyroidism. PMID:26175917

  16. Bilateral cloudy cornea: is the usual suspect congenital hereditary endothelial dystrophy or stromal dystrophy?

    PubMed

    Acar, Banu Torun; Bozkurt, Kansu Tahir; Duman, Erkan; Acar, Suphi

    2016-01-01

    We provide the diagnosis, treatment and follow-up period of a patient with cloudy cornea in both eyes from birth. A 4-year-old girl presented with blurring in both eyes. Penetrating keratoplasty (PK) was performed with the preliminary diagnosis of congenital hereditary endothelial dystrophy in June 2012. According to the pathology report for extracted host tissue, the Descemet's membrane (DM) and endothelium were healthy and diagnosis was reported to be congenital hereditary stromal dystrophy. Deep anterior lamellar keratoplasty was performed on the left eye. The DM was transparent at follow-up. Cornea transplantation is the only choice to provide visual rehabilitation in children with congenital cloudy cornea. However, it is known that the prognosis of traditional PK in the paediatric age group is not good. Therefore, when using alternative keratoplasty (deep anterior lamellar keratoplasty, Descemet's stripping automated endothelial keratoplasty) options, pathological examination of the host tissue should be made. PMID:27107055

  17. Comparison of CTG repeat length expansion and clinical progression of myotonic dystrophy over a five year period.

    PubMed Central

    Martorell, L; Martinez, J M; Carey, N; Johnson, K; Baiget, M

    1995-01-01

    Myotonic dystrophy (DM) is associated with an underlying CTG trinucleotide repeat expansion at a locus on chromosome 19q13.3. We have determined the repeat length in 23 DM patients with varying clinical severity of symptoms and various sizes of repeat amplification. We confirm that as in previous studies there is no strong correlation between repeat length and clinical symptoms but find that the repeat length in peripheral blood cells of patients increases over a time span of five years indicating continuing mitotic instability of the repeat throughout life. Repeat length progression does not appear to be indicative of clinical progression but age probably is. The degree of expansion correlates with the initial repeat size and 50% of the patients with continuing expansions showed clinical progression of their disease symptoms over the five year study period. Images PMID:7473648

  18. Tibialis Anterior Muscle Needle Biopsy and Sensitive Biomolecular Methods: A Useful Tool in Myotonic Dystrophy Type 1

    PubMed Central

    Iachettini, S.; Valaperta, R.; Marchesi, A.; Perfetti, A.; Cuomo, G.; Fossati, B.; Vaienti, L.; Costa, E.; Meola, G.

    2015-01-01

    Myotonic dystrophy type 1 (DM1) is a neuromuscular disorder caused by a CTG repeat expansion in 3’UTR of DMPK gene. This mutation causes accumulation of toxic RNA in nuclear foci leading to splicing misregulation of specific genes. In view of future clinical trials with antisense oligonucleotides in DM1 patients, it is important to set up sensitive and minimally-invasive tools to monitor the efficacy of treatments on skeletal muscle. A tibialis anterior (TA) muscle sample of about 60 mg was obtained from 5 DM1 patients and 5 healthy subjects through a needle biopsy. A fragment of about 40 mg was used for histological examination and a fragment of about 20 mg was used for biomolecular analysis. The TA fragments obtained with the minimally-invasive needle biopsy technique is enough to perform all the histopathological and biomolecular evaluations useful to monitor a clinical trial on DM1 patients. PMID:26708183

  19. Comparison of Pulmonary Functions at Onset of Ventilatory Insufficiency in Patients With Amyotrophic Lateral Sclerosis, Duchenne Muscular Dystrophy, and Myotonic Muscular Dystrophy

    PubMed Central

    Cho, Han Eol; Lee, Jang Woo; Kang, Seong Woong; Choi, Won Ah; Oh, Hyeonjun

    2016-01-01

    Objective To evaluate pulmonary functions of patients with amyotrophic lateral sclerosis (ALS), Duchenne muscular dystrophy (DMD), and myotonic muscular dystrophy (MMD) at the onset of ventilatory insufficiency. Methods This retrospective study included ALS, DMD, and MMD patients with regular outpatient clinic follow-up in the Department of Rehabilitation Medicine at Gangnam Severance Hospital before the application of non-invasive positive pressure ventilation (NIPPV). The patients were enrolled from August 2001 to March 2014. If patients experienced ventilatory insufficiency, they were treated with NIPPV, and their pulmonary functions were subsequently measured. Results Ninety-four DMD patients, 41 ALS patients, and 21 MMD patients were included in the study. The mean SpO2 was lower in the MMD group than in the other two groups. The mean forced vital capacity (FVC) in the supine position was approximately low to mid 20% on average in DMD and ALS patients, whereas it was 10% higher in MMD patients. ALS patients showed a significantly lower FVC in the supine position than in the sitting position. Maximal insufflation capacity, unassisted peak cough flow, maximum inspiratory pressure (MIP), and maximum expiratory pressure (MEP) were significantly higher in MMD group than in the other groups. MEP was significantly the lowest in DMD patients, followed by in ALS, and MMD patients, in order. Conclusion Disease-specific values of pulmonary function, including FVC, MEP, and MIP, can be accurately used to assess the onset of ventilatory insufficiency in patients with ALS, DMD, and MMD. PMID:26949672

  20. Muscular Dystrophy

    MedlinePlus

    ... in Duchenne muscular dystrophy. Dev. Med. Child Neurol. Mar 1995;37(3):260-269. 4. Centers for ... DM1) . The International Myotonic Dystrophy Consortium (IDMC). Neurology. Mar 28 2000;54(6):1218-1221. 5. Harper ...

  1. Muscular myopathies other than myotonic dystrophy also associated with (CTG)n expansion at the DMPK locus

    PubMed Central

    Mohan, Vasavi; Ahuja, Y. R.; Hasan, Qurratulain

    2012-01-01

    Objective: Assess triplet repeat expansion (CTG)n at the ‘dystrophia-myotonica protein kinase’ (DMPK) locus in muscular myopathies to elucidate its role in myopathic symptoms and enable genetic counseling and prenatal diagnosis in families. Methods and Results: Individuals with symptoms of myopathy, hypotonia and controls selected randomly from the population were evaluated for triplet repeat expansion of (CTG)n repeats in the 3’untranslated region (UTR) of DMPK gene, the causative mutation in myotonic dystrophy (DM). DNA was isolated from peripheral blood of 40 individuals; they presented symptoms of muscle myopathy (n = 11), muscle hypotonia (n = 4), members of their families (n = 5) and control individuals from random population (n = 20). Molecular analysis of genomic DNA by polymerase chain reaction (PCR) using primers specific for the DMPK gene encompassing the triplet repeat expansion, showed that all controls (n = 20) gave a 2.1 kb band indicating normal triplet repeat number. Three out of 11 cases (two clinically diagnosed DM and one muscular dystrophy) had an expansion of the (CTG)n repeat in the range of 1000-2100 repeats corresponding to the repeat number in cases of severe DM. Other two of these 11 cases, showed a mild expansion of ~ 66 repeats. Three samples, which included two cases of hypotonia and the father of a subject with muscular dystrophy, also gave a similar repeat expansion (~66 repeats). Conclusion: Results suggest a role of (CTG)n expansion at the DMPK locus in unexplained hypotonias and muscular myopathies other than DM. This calls for screening of the triplet repeat expansion at the DMPK locus in cases of idiopathic myopathies and hypotonia. PMID:23560000

  2. Gonosomal mosaicism in myotonic dystrophy patients: Involvement of mitotic events in (CTG)[sub n] repeat variation and selection against extreme expansion in sperm

    SciTech Connect

    Jansen, G.; Coerwinkel, M.; Wieringa, B.; Nillesen, W.; Smeets, H.; Brunner, H.; Wieringa, B. ); Willems, P.; Vits, L. ); Hoeweler, C. )

    1994-04-01

    Myotonic dystrophy (DM) is caused by abnormal expansion of a polymorphic (CTG)[sub n] repeat, located in the DM protein kinase gene. The authors determined the (CTG)[sub n] repeat lengths in a broad range of tissue DNAs from patients with mild, classical, or congenital manifestation of DM. Differences in the repeat length were seen in somatic tissues from single DM individuals and twins. Repeats appeared to expand to a similar extent in tissues originating from the same embryonal origin. In most male patients carrying intermediate- or small-sized expansions in blood, the repeat lengths covered a markedly wider range in sperm. In contrast, male patients with large allele expansions in blood (>700 CTGs) had similar or smaller repeats in sperm, when detectable. Sperm alleles with >1,000 CTGs were not seen. The authors conclude that DM patients can be considered gonosomal mosaics, i.e., combined somatic and germ-line tissue mosaics. Most remarkably, they observed multiple cases where the length distributions of intermediate- or small-sized alleles in fathers' sperm were significantly different from that in their offspring's blood. The combined findings indicate that intergenerational length changes in the unstable CTG repeat are most likely to occur during early embryonic mitotic divisions in both somatic and germ-line tissue formation. Both the initial CTG length, the overall number of cell divisions involved in tissue formation, and perhaps a specific selection process in spermatogenesis may influence the dynamics of this process. A model explaining mitotic instability and sex-dependent segregation phenomena in DM manifestation is discussed. 59 refs., 5 figs.

  3. Merosin-negative congenital muscular dystrophy: Report of five cases

    PubMed Central

    Incecik, Faruk; Herguner, Ozlem M.; Ceylaner, Serdar; Altunbasak, Sakir

    2015-01-01

    Context: Congenital muscular dystrophy type 1A (MDC1A) is caused by mutations in the laminin α-2 gene encoding laminin-a2. Aims: The purpose of this study is to determine clinical and genetic results in five Turkish patients with MDC1A. Setting and Designs: Five children with MDC1A were retrospectively analyzed. Results: Three (60%) were boys, and 2 (40%) were girls. Parental consanguinity was found in all the families. In all the patients, hypotonia, weakness, delayed motor milestones, markedly elevated creatine phosphokinase (CPK) concentration, and brain white matter abnormalities on magnetic resonance imaging were detected. Mutation analysis was performed in all the patients, and 3 different mutations were detected. However, a mutation in patient 1 and 2 has not been previously described in the literature. Conclusions: When a patient presents with severe congenital hypotonia, muscle weakness, high serum CPK levels, and white matter abnormalities, should be suspected as MDC1A. PMID:26962340

  4. Relationship between neuropsychological impairment and grey and white matter changes in adult-onset myotonic dystrophy type 1.

    PubMed

    Baldanzi, Sigrid; Cecchi, Paolo; Fabbri, Serena; Pesaresi, Ilaria; Simoncini, Costanza; Angelini, Corrado; Bonuccelli, Ubaldo; Cosottini, Mirco; Siciliano, Gabriele

    2016-01-01

    Myotonic dystrophy type 1 (DM1) has a wide phenotypic spectrum and potentially may affect central nervous system with mild to severe involvement. Our aim was to investigate grey matter (GM) and white matter (WM) structural alterations in a sample of adult-onset DM1 patients and to evaluate relationship with clinical and cognitive variables. Thirty DM1 patients underwent neuropsychological investigation and 3T-MRI protocol. GM and WM changes were evaluated calculating brain parenchymal fraction (BPF), voxel-based morphometry (VBM), white matter lesion load (LL% and Fazekas scale) and tract based spatial statistical (TBSS). Patients showed main impairment in tests exploring executive and mnesic domains with visuo-spatial involvement, significantly related to BPF. VBM revealed clusters of widespread GM reduction and TBSS revealed areas of decreased fractional anisotropy (FA) and increased radial diffusivity (RD), mean diffusivity (MD) and axial diffusivity (AD) in patients compared to a group of matched healthy controls. Multiple regression analyses showed areas of significant negative relationship between left temporal atrophy and verbal memory, between RD and mnesic and visuo-spatial cognitive domains, and between AD and verbal memory. TBSS results indicate that the involvement of normal appearance WM, beyond the signal changes detected with conventional MR imaging (Fazekas scale and LL%), was associated with neuropsychological deficit. These data suggest that disrupted complex neuronal networks can underlie cognitive-behavioural dysfunctions in DM1. PMID:27437180

  5. Muscleblind-like 3 deficit results in a spectrum of age-associated pathologies observed in myotonic dystrophy.

    PubMed

    Choi, Jongkyu; Dixon, Donald M; Dansithong, Warunee; Abdallah, Walid F; Roos, Kenneth P; Jordan, Maria C; Trac, Brandon; Lee, Han Shin; Comai, Lucio; Reddy, Sita

    2016-01-01

    Myotonic dystrophy type I (DM1) exhibits distinctive disease specific phenotypes and the accelerated onset of a spectrum of age-associated pathologies. In DM1, dominant effects of expanded CUG repeats result in part from the inactivation of the muscleblind-like (MBNL) proteins. To test the role of MBNL3, we deleted Mbnl3 exon 2 (Mbnl3(ΔE2)) in mice and examined the onset of age-associated diseases over 4 to 13 months of age. Accelerated onset of glucose intolerance with elevated insulin levels, cardiac systole deficits, left ventricle hypertrophy, a predictor of a later onset of heart failure and the development of subcapsular and cortical cataracts is observed in Mbnl3(ΔE2) mice. Retention of embryonic splice isoforms in adult organs, a prominent defect in DM1, is not observed in multiple RNAs including the Insulin Receptor (Insr), Cardiac Troponin T (Tnnt2), Lim Domain Binding 3 (Ldb3) RNAs in Mbnl3(ΔE2) mice. Although rare DM1-like splice errors underlying the observed phenotypes cannot be excluded, our data in conjunction with the reported absence of alternative splice errors in embryonic muscles of a similar Mbnl3(ΔE2) mouse by RNA-seq studies, suggest that mechanisms distinct from the adult retention of embryonic splice patterns may make important contributions to the onset of age-associated pathologies in DM1. PMID:27484195

  6. Far field R-wave sensing in Myotonic Dystrophy type 1: right atrial appendage versus Bachmann's bundle region lead placement.

    PubMed

    Russo, Vincenzo; Nigro, Gerardo; Antonio Papa, Andrea; Rago, Anna; Di Meo, Federica; Cristiano, Anna; Molino, Antonio; Calabrò, Raffaele; Giovanna Russo, Maria; Politano, Luisa

    2014-10-01

    Aim of the present study was to investigate far field R-wave sensing (FFRS) timing and characteristics in 34 Myotonic Dystrophy type 1 (DM1) patients undergoing dual chamber pacemaker implantation, comparing Bachmann's bundle (BB) stimulation (16 patients) site with the conventional right atrial appendage (RAA) pacing site (18 patients). All measurements were done during sinus rhythm and in supine position, with unipolar (UP) and bipolar (BP) sensing configuration. The presence, amplitude threshold (FFRS trsh) and FFRS timing were determined. There were no differences between both atrial sites in the Pmin and Pmean values of sensed P-wave amplitudes, as well as between UP and BP sensing configurations. The FFRS trsh was lower at the BB region in comparison to the RAA site. The mean BP FFRS trsh was significantly lower than UP configuration in both atrial locations. There were no significant differences in atrial pacing threshold, sensing threshold and atrial lead impedances at the implant time and at FFRS measurements. Bachmann's bundle area is an optimal atrial lead position for signal sensing as well as conventional RAA, but it offers the advantage of reducing the oversensing of R-wave on the atrial lead, thus improving functioning of standard dual chamber pacemakers in DM1 patients. PMID:25709379

  7. Natural history of cardiac involvement in myotonic dystrophy (Steinert's disease): a 13-year follow-up study.

    PubMed

    Mammarella, A; Paradiso, M; Antonini, G; Paoletti, V; De Matteis, A; Basili, S; Donnarumma, L; Labbadia, G; Di Franco, M; Musca, A

    2000-01-01

    Myotonic dystrophy (MD) is associated with a wide spectrum of cardiac abnormalities, but only a few longitudinal studies have investigated the natural course of heart disease in MD. To assess whether neuromuscular involvement significantly predicts cardiac disorders in MD, 83 patients with various grades of disease severity were enrolled in a 13-year follow-up study (mean, 60.6 +/- 37.8 months) that included periodic physical and instrumental cardiac examinations (standard and Holter electrocardiography, echocardiography). During follow-up, muscular disease worsened clinically in 9 patients (11%) whose baseline severity grade changed accordingly; only 3 of them demonstrated parallel worsening of cardiac disturbance, however, compared with a large number of patients who showed additional cardiac abnormalities. These included further worsening of pre-existing pathologic features (19/83) and the appearance de novo of serious arrhythmias and/or conduction defects (23/83). Pacemaker implantation was necessary in 11 of 83 patients (13.2%) who had symptomatic bradyarrhythmias, bifascicular block, and P-R prolongation with a His-to-ventricle interval exceeding 55 ms, as documented by electrophysiologic study. Eight (9.6%) patients died: 2 from noncardiac and 1 from unknown causes, 1 from heart failure, and 4 from sudden death closely related to documented ventricular tachycardia. The incidence and seriousness of arrhythmic and conduction disturbances correlated with the severity of the muscular involvement. Nevertheless, cardiac and muscular disease did not show a linear progression. Cardiac involvement generally worsened more rapidly than did skeletal muscle disease. PMID:11186144

  8. Brain MRI abnormalities in the adult form of myotonic dystrophy type 1: A longitudinal case series study.

    PubMed

    Conforti, Renata; de Cristofaro, Mario; Cristofano, Adriana; Brogna, Barbara; Sardaro, Angela; Tedeschi, Gioacchino; Cirillo, Sossio; Di Costanzo, Alfonso

    2016-02-01

    This study aimed to verify whether brain abnormalities, previously described in patients with myotonic dystrophy type 1 (DM1) by magnetic resonance imaging (MRI), progressed over time and, if so, to characterize their progression. Thirteen DM1 patients, who had at least two MRI examinations, were retrospectively evaluated and included in the study. The mean duration (± standard deviation) of follow-up was 13.4 (±3.8) years, over a range of 7-20 years. White matter lesions (WMLs) were rated by semi-quantitative method, the signal intensity of white matter poster-superior to trigones (WMPST) by reference to standard images and brain atrophy by ventricular/brain ratio (VBR). At the end of MRI follow-up, the scores relative to lobar, temporal and periventricular WMLs, to WMPST signal intensity and to VBR were significantly increased compared to baseline, and MRI changes were more evident in some families than in others. No correlation was found between the MRI changes and age, onset, disease duration, muscular involvement, CTG repetition and follow-up duration. These results demonstrated that white matter involvement and brain atrophy were progressive in DM1 and suggested that progression rate varied from patient to patient, regardless of age, disease duration and genetic defect. PMID:26755488

  9. Muscleblind-like 3 deficit results in a spectrum of age-associated pathologies observed in myotonic dystrophy

    PubMed Central

    Choi, Jongkyu; Dixon, Donald M.; Dansithong, Warunee; Abdallah, Walid F.; Roos, Kenneth P.; Jordan, Maria C.; Trac, Brandon; Lee, Han Shin; Comai, Lucio; Reddy, Sita

    2016-01-01

    Myotonic dystrophy type I (DM1) exhibits distinctive disease specific phenotypes and the accelerated onset of a spectrum of age-associated pathologies. In DM1, dominant effects of expanded CUG repeats result in part from the inactivation of the muscleblind-like (MBNL) proteins. To test the role of MBNL3, we deleted Mbnl3 exon 2 (Mbnl3ΔE2) in mice and examined the onset of age-associated diseases over 4 to 13 months of age. Accelerated onset of glucose intolerance with elevated insulin levels, cardiac systole deficits, left ventricle hypertrophy, a predictor of a later onset of heart failure and the development of subcapsular and cortical cataracts is observed in Mbnl3ΔE2 mice. Retention of embryonic splice isoforms in adult organs, a prominent defect in DM1, is not observed in multiple RNAs including the Insulin Receptor (Insr), Cardiac Troponin T (Tnnt2), Lim Domain Binding 3 (Ldb3) RNAs in Mbnl3ΔE2 mice. Although rare DM1-like splice errors underlying the observed phenotypes cannot be excluded, our data in conjunction with the reported absence of alternative splice errors in embryonic muscles of a similar Mbnl3ΔE2 mouse by RNA-seq studies, suggest that mechanisms distinct from the adult retention of embryonic splice patterns may make important contributions to the onset of age-associated pathologies in DM1. PMID:27484195

  10. Induction and Reversal of Myotonic Dystrophy Type 1 Pre-mRNA Splicing Defects by Small Molecules

    PubMed Central

    Childs-Disney, Jessica L.; Stepniak-Konieczna, Ewa; Tran, Tuan; Yildirim, Ilyas; Park, HaJeung; Chen, Catherine Z.; Hoskins, Jason; Southall, Noel; Marugan, Juan J.; Patnaik, Samarjit; Zheng, Wei; Austin, Chris P.; Schatz, George C.; Sobczak, Krzysztof; Thornton, Charles A.; Disney, Matthew D.

    2013-01-01

    The ability to control pre-mRNA splicing with small molecules could facilitate the development of therapeutics or cell-based circuits that control gene function. Myotonic dystrophy type 1 (DM1) is caused by the dysregulation of alternative pre-mRNA splicing due to sequestration of muscleblind-like 1 protein (MBNL1) by expanded, non-coding r(CUG) repeats (r(CUG)exp). Here we report two small molecules that induce or ameliorate alternative splicing dysregulation. The thiophene-containing small molecule (1) inhibits the interaction of MBNL1 with its natural pre-mRNA substrates. Compound (2), a substituted naphthyridine, binds r(CUG)exp and displaces MBNL1. Structural models show that 1 binds MBNL1 in the Zn-finger domain and that 2 interacts with UU loops in r(CUG)exp. This study provides a structural framework for small molecules that target MBNL1 by mimicking r(CUG)exp and shows that targeting MBNL1 causes dysregulation of alternative splicing, suggesting that MBNL1 is thus not a suitable therapeutic target for the treatment of DM1. PMID:23806903

  11. Abnormal sodium current properties contribute to cardiac electrical and contractile dysfunction in a mouse model of myotonic dystrophy type 1.

    PubMed

    Algalarrondo, Vincent; Wahbi, Karim; Sebag, Frédéric; Gourdon, Geneviève; Beldjord, Chérif; Azibi, Kamel; Balse, Elise; Coulombe, Alain; Fischmeister, Rodolphe; Eymard, Bruno; Duboc, Denis; Hatem, Stéphane N

    2015-04-01

    Myotonic dystrophy type 1 (DM1) is the most common neuromuscular disorder and is associated with cardiac conduction defects. However, the mechanisms of cardiac arrhythmias in DM1 are unknown. We tested the hypothesis that abnormalities in the cardiac sodium current (INa) are involved, and used a transgenic mouse model reproducing the expression of triplet expansion observed in DM1 (DMSXL mouse). The injection of the class-I antiarrhythmic agent flecainide induced prominent conduction abnormalities and significantly lowered the radial tissular velocities and strain rate in DMSXL mice compared to WT. These abnormalities were more pronounced in 8-month-old mice than in 3-month-old mice. Ventricular action potentials recorded by standard glass microelectrode technique exhibited a lower maximum upstroke velocity [dV/dt](max) in DMSXL. This decreased [dV/dt](max) was associated with a 1.7 fold faster inactivation of INa in DMSXL myocytes measured by the whole-cell patch-clamp technique. Finally in the DMSXL mouse, no mutation in the Scn5a gene was detected and neither cardiac fibrosis nor abnormalities of expression of the sodium channel protein were observed. Therefore, alterations in the sodium current markedly contributed to electrical conduction block in DM1. This result should guide pharmaceutical and clinical research toward better therapy for the cardiac arrhythmias associated with DM1. PMID:25613807

  12. Reliable and versatile immortal muscle cell models from healthy and myotonic dystrophy type 1 primary human myoblasts.

    PubMed

    Pantic, Boris; Borgia, Doriana; Giunco, Silvia; Malena, Adriana; Kiyono, Tohru; Salvatori, Sergio; De Rossi, Anita; Giardina, Emiliano; Sangiuolo, Federica; Pegoraro, Elena; Vergani, Lodovica; Botta, Annalisa

    2016-03-01

    Primary human skeletal muscle cells (hSkMCs) are invaluable tools for deciphering the basic molecular mechanisms of muscle-related biological processes and pathological alterations. Nevertheless, their use is quite restricted due to poor availability, short life span and variable purity of the cells during in vitro culture. Here, we evaluate a recently published method of hSkMCs immortalization, relying on ectopic expression of cyclin D1 (CCND1), cyclin-dependent kinase 4 (CDK4) and telomerase (TERT) in myoblasts from healthy donors (n=3) and myotonic dystrophy type 1 (DM1) patients (n=2). The efficacy to maintain the myogenic and non-transformed phenotype, as well as the main pathogenetic hallmarks of DM1, has been assessed. Combined expression of the three genes i) maintained the CD56(NCAM)-positive myoblast population and differentiation potential; ii) preserved the non-transformed phenotype and iii) maintained the CTG repeat length, amount of nuclear foci and aberrant alternative splicing in immortal muscle cells. Moreover, immortal hSkMCs displayed attractive additional features such as structural maturation of sarcomeres, persistence of Pax7-positive cells during differentiation and complete disappearance of nuclear foci following (CAG)7 antisense oligonucleotide (ASO) treatment. Overall, the CCND1, CDK4 and TERT immortalization yields versatile, reliable and extremely useful human muscle cell models to investigate the basic molecular features of human muscle cell biology, to elucidate the molecular pathogenetic mechanisms and to test new therapeutic approaches for DM1 in vitro. PMID:26905645

  13. Motor unit reorganization in progressive muscular dystrophies and congenital myopathies.

    PubMed

    Szmidt-Sałkowska, Elżbieta; Gaweł, Małgorzata; Lipowska, Marta

    2015-01-01

    The aim of this study was to analyze motor unit reorganization in different types of progressive muscular dystrophies and congenital myopathies. The study population consisted of patients with genetically verified progressive muscular dystrophies: Duchenne (DMD) (n=54), Becker (BMD) (n=30), facio-scapulo-humeral (FSHD) (n=37), and Emery-Dreifuss (E-DD) (n=26). Patients with probable limb-girdle dystrophy (L-GD) (n=58) and congenital myopathies (n=35) were also included in the study. Quantitative EMG recordings were obtained from 469 muscles. Muscle activity at rest and during slight voluntary and maximal muscle contraction was analyzed. The motor unit activity potential (MUAP) duration, amplitude, area, size index (SI), polyphasicity, and the presence of "outliers" were evaluated. Diminished values of MUAP parameters and decreased maximal amplitude of maximal muscle contraction were recorded most frequently in DMD and mainly in the biceps brachii muscles. SI was the most frequently changed EMG parameter. "Outliers" with amplitude below the normal range were recorded more frequently then a decreased mean MUAP amplitude (what could indicate a very high sensitivity of this EMG parameter). Pathological interference pattern was recorded in 34.7% of biceps brachii and in 21.2% of rectus femoris muscles. In FSHD, decreased MUAP duration and SI and pathological interference pattern with low amplitude were recorded most frequently in the tibial anterior and deltoid muscles. The presence of potentials with reduced parameters is a result of decreasing motor unit area (reduced number and size of muscle fibers), while high amplitude potentials recorded in BMD and E-DD could indicate a slow and mild course of disease and muscle regeneration. PMID:26188938

  14. A Potent Inhibitor of Protein Sequestration by Expanded Triplet (CUG) Repeats that Shows Phenotypic Improvements in a Drosophila Model of Myotonic Dystrophy.

    PubMed

    Luu, Long M; Nguyen, Lien; Peng, Shaohong; Lee, JuYeon; Lee, Hyang Yeon; Wong, Chun-Ho; Hergenrother, Paul J; Chan, H Y Edwin; Zimmerman, Steven C

    2016-07-01

    Myotonic dystrophy is the most common form of adult-onset muscular dystrophy, originating in a CTG repeat expansion in the DMPK gene. The expanded CUG transcript sequesters MBNL1, a key regulator of alternative splicing, leading to the misregulation of numerous pre-mRNAs. We report an RNA-targeted agent as a possible lead compound for the treatment of myotonic dystrophy type 1 (DM1) that reveals both the promise and challenges for this type of small-molecule approach. The agent is a potent inhibitor of the MBNL1-rCUG complex with an inhibition constant (Ki ) of 25±8 nm, and is also relatively nontoxic to HeLa cells, able to dissolve nuclear foci, and correct the insulin receptor splicing defect in DM1 model cells. Moreover, treatment with this compound improves two separate disease phenotypes in a Drosophila model of DM1: adult external eye degeneration and larval crawling defect. However, the compound has a relatively low maximum tolerated dose in mice, and its cell uptake may be limited, providing insight into directions for future development. PMID:27245480

  15. NMR Spectroscopy and Molecular Dynamics Simulation of r(CCGCUGCGG)2 Reveal a Dynamic UU Internal Loop Found in Myotonic Dystrophy Type 1†

    PubMed Central

    Parkesh, Raman; Fountain, Matthew; Disney, Matthew D.

    2011-01-01

    The NMR structure of an RNA with a copy of the 5′CUG/3′GUC motif found in the triplet repeating disorder myotonic dystrophy type 1 (DM1) is disclosed. The lowest energy conformation of the UU pair is a single hydrogen bonded structure; however, the UU protons undergo exchange indicating structural dynamics. Molecular dynamics simulations show that the single hydrogen bonded structure is the most populated one but the UU pair interconverts between 0, 1, and 2 hydrogen bonded pairs. These studies have implications for the recognition of the DM1 RNA by small molecules and proteins. PMID:21204525

  16. Mechanisms of disease: congenital muscular dystrophies-glycosylation takes center stage.

    PubMed

    Martin, Paul T

    2006-04-01

    Recent studies have defined a group of muscular dystrophies, now termed the dystroglycanopathies, as novel disorders of glycosylation. These conditions include Walker-Warburg syndrome, muscle-eye-brain disease, Fukuyama-type congenital muscular dystrophy, congenital muscular dystrophy types 1C and 1D, and limb-girdle muscular dystrophy type 2I. Although clinical findings can be highly variable, dystroglycanopathies are all characterized by cortical malformations and ocular defects at the more severe end of the clinical spectrum, in addition to muscular dystrophy. All of these disorders are defined by the underglycosylation of alpha-dystroglycan. Defective glycosylation of dystroglycan severs the link between this important cell adhesion molecule and the extracellular matrix, thereby contributing to cellular pathology. Recent experiments indicate that glycosylation might not only define forms of muscular dystrophy but also provide an avenue to the development of therapies for these disorders. PMID:16932553

  17. [Central Nervous Involvement in Patients with Fukuyama Congenital Muscular Dystrophy].

    PubMed

    Ishigaki, Keiko

    2016-02-01

    Fukuyama congenital muscular dystrophy (FCMD), the second most common muscular dystrophy in the Japanese population, is an autosomal recessive disorder caused by mutations in the fukutin (FKTN) gene. The main features of FCMD are a combination of infantile-onset hypotonia, generalized muscle weakness, eye abnormalities and central nervous system involvement with mental retardation and seizures associated with cortical migration defects. The FKTN gene product is thought to be necessary for maintaining migrating neurons in an immature state during migration, and for supporting migration via α-dystroglycan in the central nervous system. Typical magnetic resonance imaging findings in FCMD patients are cobblestone lissencephaly and cerebellar cystic lesions. White matter abnormalities with hyperintensity on T(2)-weighted images are seen especially in younger patients and those with severe phenotypes. Most FCMD patients are mentally retarded and the level is moderate to severe, with IQs ranging from 30 to 50. In our recent study, 62% of patients developed seizures. Among them, 71% had only febrile seizures, 6% had afebrile seizures from the onset, and 22% developed afebrile seizures following febrile seizures. Most patients had seizures that were controllable with just 1 type of antiepileptic drug, but 18% had intractable seizures that must be treated with 3 medications. PMID:26873231

  18. Congenital Muscular Dystrophy and Generalized Epilepsy Caused by GMPPB Mutations

    PubMed Central

    Raphael, Alya R.; Couthouis, Julien; Sakamuri, Sarada; Siskind, Carly; Vogel, Hannes; Day, John W.; Gitler, Aaron D.

    2014-01-01

    The alpha-dystroglycanopathies are genetically heterogeneous muscular dystrophies that result from hypoglycosylation of alpha-dystroglycan (α-DG). Alpha-dystroglycan is an essential link between the extracellular matrix and the muscle fiber sarcolemma, and proper glycosylation is critical for its ability to bind to ligands in the extracellular matrix. We sought to identify the genetic basis of alpha-dystroglycanopathy in a family wherein the affected individuals presented with congenital muscular dystrophy, brain abnormalities and generalized epilepsy. We performed whole exome sequencing and identified compound heterozygous GMPPB mutations in the affected children. GMPPB is an enzyme in the glycosylation pathway, and GMPPB mutation were recently linked to eight cases of alpha-dystroglycanopathy with a range of symptoms. We identified a novel mutation in GMPPB (p.I219T) as well as a previously published mutation (p.R287Q). Thus, our work further confirms a role for GMPPB defects in alpha-dystroglycanopathy, and suggests that glycosylation may play a role in the neuronal membrane channels or networks involved in the physiology of generalized epilepsy syndromes. PMID:24780531

  19. Structure and dynamics of the DNA hairpins formed by tandemly repeated CTG triplets associated with myotonic dystrophy.

    PubMed Central

    Mariappan, S V; Garcoa, A E; Gupta, G

    1996-01-01

    Anomalous expansion of the DNA triplet (CTG)n causes myotonic dystrophy. Structural studies have been carried out on (CTG)n repeats in an attempt to better understand the molecular mechanism of repeat expansion. NMR and gel electrophoretic studies demonstrate the presence of hairpin structures for (CTG)5 and (CTG)6 in solution. The monomeric hairpin structure remains invariant over a wide range of salt concentrations (10-200 mM NaCl), DNA concentrations (micromolar to millimolar in DNA strand) and pH (6.0-7.5). The (CTG)n hairpin contains three bases in the loop when n is odd and four bases when n is even. For both odd and even n the stacking and pairing in the stem remain the same, i.e, two hydrogen bond T.T pairs stack with the neighboring G.C pairs. All the nucleotides in (CTG)5 and (CTG)6 adopt C2'-endo, anti conformations. Full-relaxation matrix analysis has been performed to derive the NOE distance constraints from NOESY experiments at seven different mixing times (25, 50, 75, 100, 125, 200 and 500 ms). NOESY-derived distance constraints were subsequently used in restrained molecular dynamics simulations to obtain a family of structures consistent with the NMR data. The theoretical order parameters are computed for H5-H6(cytosines) and H2'-H2" dipolar correlations for both (CTG)5 and (CTG)6 by employing the Lipari-Szabo formalism. Experimental data show that the cytosine in the loop of the (CTG)5 hairpin is slightly more flexible than those in the stem. The cytosine in the loop of the (CTG)6 hairpin is extremely flexible, implying that the dynamics of the four base loop is intrinsically different from that of the three base loop. PMID:8604323

  20. Functional and histopathological identification of the respiratory failure in a DMSXL transgenic mouse model of myotonic dystrophy

    PubMed Central

    Panaite, Petrica-Adrian; Kuntzer, Thierry; Gourdon, Geneviève; Lobrinus, Johannes Alexander; Barakat-Walter, Ibtissam

    2013-01-01

    SUMMARY Acute and chronic respiratory failure is one of the major and potentially life-threatening features in individuals with myotonic dystrophy type 1 (DM1). Despite several clinical demonstrations showing respiratory problems in DM1 patients, the mechanisms are still not completely understood. This study was designed to investigate whether the DMSXL transgenic mouse model for DM1 exhibits respiratory disorders and, if so, to identify the pathological changes underlying these respiratory problems. Using pressure plethysmography, we assessed the breathing function in control mice and DMSXL mice generated after large expansions of the CTG repeat in successive generations of DM1 transgenic mice. Statistical analysis of breathing function measurements revealed a significant decrease in the most relevant respiratory parameters in DMSXL mice, indicating impaired respiratory function. Histological and morphometric analysis showed pathological changes in diaphragmatic muscle of DMSXL mice, characterized by an increase in the percentage of type I muscle fibers, the presence of central nuclei, partial denervation of end-plates (EPs) and a significant reduction in their size, shape complexity and density of acetylcholine receptors, all of which reflect a possible breakdown in communication between the diaphragmatic muscles fibers and the nerve terminals. Diaphragm muscle abnormalities were accompanied by an accumulation of mutant DMPK RNA foci in muscle fiber nuclei. Moreover, in DMSXL mice, the unmyelinated phrenic afferents are significantly lower. Also in these mice, significant neuronopathy was not detected in either cervical phrenic motor neurons or brainstem respiratory neurons. Because EPs are involved in the transmission of action potentials and the unmyelinated phrenic afferents exert a modulating influence on the respiratory drive, the pathological alterations affecting these structures might underlie the respiratory impairment detected in DMSXL mice

  1. Myotonic Dystrophy Type 1 RNA Crystal Structures Reveal Heterogeneous 1 × 1 Nucleotide UU Internal Loop Conformations

    SciTech Connect

    Kumar, Amit; Park, HaJeung; Fang, Pengfei; Parkesh, Raman; Guo, Min; Nettles, Kendall W.; Disney, Matthew D.

    2012-03-27

    RNA internal loops often display a variety of conformations in solution. Herein, we visualize conformational heterogeneity in the context of the 5'CUG/3'GUC repeat motif present in the RNA that causes myotonic dystrophy type 1 (DM1). Specifically, two crystal structures of a model DM1 triplet repeating construct, 5'r[{und UU}GGGC(C{und U}G){sub 3}GUCC]{sub 2}, refined to 2.20 and 1.52 {angstrom} resolution are disclosed. Here, differences in the orientation of the 5' dangling UU end between the two structures induce changes in the backbone groove width, which reveals that noncanonical 1 x 1 nucleotide UU internal loops can display an ensemble of pairing conformations. In the 2.20 {angstrom} structure, CUGa, the 5' UU forms a one hydrogen-bonded pair with a 5' UU of a neighboring helix in the unit cell to form a pseudoinfinite helix. The central 1 x 1 nucleotide UU internal loop has no hydrogen bonds, while the terminal 1 x 1 nucleotide UU internal loops each form a one-hydrogen bond pair. In the 1.52 {angstrom} structure, CUGb, the 5' UU dangling end is tucked into the major groove of the duplex. While the canonically paired bases show no change in base pairing, in CUGb the terminal 1 x 1 nucleotide UU internal loops now form two hydrogen-bonded pairs. Thus, the shift in the major groove induced by the 5' UU dangling end alters noncanonical base patterns. Collectively, these structures indicate that 1 x 1 nucleotide UU internal loops in DM1 may sample multiple conformations in vivo. This observation has implications for the recognition of this RNA, and other repeating transcripts, by protein and small molecule ligands.

  2. Studying a Drug-like, RNA-Focused Small Molecule Library Identifies Compounds That Inhibit RNA Toxicity in Myotonic Dystrophy.

    PubMed

    Rzuczek, Suzanne G; Southern, Mark R; Disney, Matthew D

    2015-12-18

    There are many RNA targets in the transcriptome to which small molecule chemical probes and lead therapeutics are desired. However, identifying compounds that bind and modulate RNA function in cellulo is difficult. Although rational design approaches have been developed, they are still in their infancies and leave many RNAs "undruggable". In an effort to develop a small molecule library that is biased for binding RNA, we computationally identified "drug-like" compounds from screening collections that have favorable properties for binding RNA and for suitability as lead drugs. As proof-of-concept, this collection was screened for binding to and modulating the cellular dysfunction of the expanded repeating RNA (r(CUG)(exp)) that causes myotonic dystrophy type 1. Hit compounds bind the target in cellulo, as determined by the target identification approach Competitive Chemical Cross-Linking and Isolation by Pull-down (C-ChemCLIP), and selectively improve several disease-associated defects. The best compounds identified from our 320-member library are more potent in cellulo than compounds identified by high-throughput screening (HTS) campaigns against this RNA. Furthermore, the compound collection has a higher hit rate (9% compared to 0.01-3%), and the bioactive compounds identified are not charged; thus, RNA can be "drugged" with compounds that have favorable pharmacological properties. Finally, this RNA-focused small molecule library may serve as a useful starting point to identify lead "drug-like" chemical probes that affect the biological (dys)function of other RNA targets by direct target engagement. PMID:26414664

  3. Myotonic dystrophy type 1 RNA crystal structures reveal heterogeneous 1 × 1 nucleotide UU internal loop conformations.

    PubMed

    Kumar, Amit; Park, HaJeung; Fang, Pengfei; Parkesh, Raman; Guo, Min; Nettles, Kendall W; Disney, Matthew D

    2011-11-15

    RNA internal loops often display a variety of conformations in solution. Herein, we visualize conformational heterogeneity in the context of the 5'CUG/3'GUC repeat motif present in the RNA that causes myotonic dystrophy type 1 (DM1). Specifically, two crystal structures of a model DM1 triplet repeating construct, 5'r[UUGGGC(CUG)(3)GUCC](2), refined to 2.20 and 1.52 Å resolution are disclosed. Here, differences in the orientation of the 5' dangling UU end between the two structures induce changes in the backbone groove width, which reveals that noncanonical 1 × 1 nucleotide UU internal loops can display an ensemble of pairing conformations. In the 2.20 Å structure, CUGa, the 5' UU forms a one hydrogen-bonded pair with a 5' UU of a neighboring helix in the unit cell to form a pseudoinfinite helix. The central 1 × 1 nucleotide UU internal loop has no hydrogen bonds, while the terminal 1 × 1 nucleotide UU internal loops each form a one-hydrogen bond pair. In the 1.52 Å structure, CUGb, the 5' UU dangling end is tucked into the major groove of the duplex. While the canonically paired bases show no change in base pairing, in CUGb the terminal 1 × 1 nucleotide UU internal loops now form two hydrogen-bonded pairs. Thus, the shift in the major groove induced by the 5' UU dangling end alters noncanonical base patterns. Collectively, these structures indicate that 1 × 1 nucleotide UU internal loops in DM1 may sample multiple conformations in vivo. This observation has implications for the recognition of this RNA, and other repeating transcripts, by protein and small molecule ligands. PMID:21988728

  4. The Role of Flexibility in the Rational Design of Modularly Assembled Ligands Targeting the RNAs that Cause the Myotonic Dystrophies

    PubMed Central

    Lee, Melissa M.; Pushechnikov, Alexei; Childs-Disney, Jessica L.

    2010-01-01

    Modularly assembled ligands were designed to target the RNAs that cause two currently untreatable neuromuscular disorders, myotonic dystrophy types 1 (DM1) and 2 (DM2). DM1 is caused by an expanded repeating sequence of CUG, and DM2 is caused by expanded CCUG repeats. Both are present in non-coding regions and fold into hairpins with either repeating 1×1 nucleotide UU (DM1) or 2×2 nucleotide 5′CU/3′UC (DM2) internal loops separated by two GC pairs. The repeats are toxic because they sequester the RNA splicing regulator Muscleblind-like 1 protein (MBNL1). Rational design of ligands targeting these RNAs was enabled by a database of RNA motif-ligand partners compiled using Two-Dimensional Combinatorial Screening (2DCS). One 2DCS study found that the 6″-azido-kanamycin A module binds internal loops similar to those found in DM1 and DM2. In order to further enhance affinity, the ligand was assembled on a peptoid backbone to precisely control the valency and the distance between ligand modules. Designed compounds are more potent and specific binders to the toxic RNAs than MBNL1 and inhibit the formation of the RNA-protein complexes with nanomolar IC50’s. This study shows that three important factors govern potent inhibition: (1) the surface area sequestered by the assembled ligands; (2) the spacing between ligand modules since a longer distance is required to target DM2 RNAs than DM1 RNAs; and, (3) flexibility in the modular assembly scaffold used to display the RNA-binding module. These results have impacts on the general design of assembled ligands targeting RNAs present in genomic sequence. PMID:20058255

  5. Myotonic Dystrophy Type 1 RNA Crystal Structures Reveal Heterogeneous 1×1 Nucleotide UU Internal Loop Conformations⊥

    PubMed Central

    Kumar, Amit; Park, HaJeung; Fang, Pengfei; Parkesh, Raman; Guo, Min; Nettles, Kendall W.; Disney, Matthew D.

    2011-01-01

    RNA internal loops often display a variety of conformations in solution. Herein, we visualize conformational heterogeneity in the context of the 5′CUG/3′GUC repeat motif present in the RNA that causes myotonic dystrophy type 1 (DM1). Specifically, two crystal structures are disclosed of a model DM1 triplet repeating construct, 5′r(UUGGGC(CUG)3GUCC)2, refined to 2.20 Å and 1.52 Å resolution. Here, differences in orientation of the 5′ dangling UU end between the two structures induce changes in the backbone groove width, which reveals that non-canonical 1×1 nucleotide UU internal loops can display an ensemble of pairing conformations. In the 2.20 Å structure, CUGa, the 5′UU forms one hydrogen-bonded pairs with a 5′UU of a neighboring helix in the unit cell to form a pseudo-infinite helix. The central 1×1 nucleotide UU internal loop has no hydrogen bonds, while the terminal 1×1 nucleotide UU internal loops each form a one hydrogen-bonded pair. In the 1.52 Å structure, CUGb, the 5′ UU dangling end is tucked into the major groove of the duplex. While the canonical paired bases show no change in base pairing, in CUGb the terminal 1×1 nucleotide UU internal loops form now two hydrogen-bonded pairs. Thus, the shift in major groove induced by the 5′UU dangling end alters non-canonical base patterns. Collectively, these structures indicate that 1×1 nucleotide UU internal loops in DM1 may sample multiple conformations in vivo. This observation has implications for the recognition of this RNA, and other repeating transcripts, by protein and small molecule ligands. PMID:21988728

  6. A low absolute number of expanded transcripts is involved in myotonic dystrophy type 1 manifestation in muscle.

    PubMed

    Gudde, Anke E E G; González-Barriga, Anchel; van den Broek, Walther J A A; Wieringa, Bé; Wansink, Derick G

    2016-04-15

    Muscular manifestation of myotonic dystrophy type 1 (DM1), a common inheritable degenerative multisystem disorder, is mainly caused by expression of RNA from a (CTG·CAG)n-expanded DM1 locus. Here, we report on comparative profiling of expression of normal and expanded endogenous or transgenic transcripts in skeletal muscle cells and biopsies from DM1 mouse models and patients in order to help us in understanding the role of this RNA-mediated toxicity. In tissue ofHSA(LR)mice, the most intensely used 'muscle-only' model in the DM1 field, RNA from the α-actin (CTG)250 transgene was at least 1000-fold more abundant than that from theDmpkgene, or theDMPKgene in humans. Conversely, theDMPKtransgene in another line, DM500/DMSXL mice, was expressed ∼10-fold lower than the endogenous gene. Temporal regulation of expanded RNA expression differed between models. Onset of expression occurred remarkably late inHSA(LR)myoblasts duringin vitromyogenesis whereasDmpkorDMPK(trans)genes were expressed throughout proliferation and differentiation phases. Importantly, quantification of absolute transcript numbers revealed that normal and expandedDmpk/DMPKtranscripts in mouse models and DM1 patients are low-abundance RNA species. Northern blotting, reverse transcriptase-quantitative polymerase chain reaction, RNA-sequencing and fluorescentin situhybridization analyses showed that they occur at an absolute number between one and a few dozen molecules per cell. Our findings refine the current RNA dominance theory for DM1 pathophysiology, as anomalous factor binding to expanded transcripts and formation of soluble or insoluble ribonucleoprotein aggregates must be nucleated by only few expandedDMPKtranscripts and therefore be a small numbers game. PMID:26908607

  7. Relationship between muscle impairments, postural stability, and gait parameters assessed with lower-trunk accelerometry in myotonic dystrophy type 1.

    PubMed

    Bachasson, Damien; Moraux, Amélie; Ollivier, Gwenn; Decostre, Valérie; Ledoux, Isabelle; Gidaro, Teresa; Servais, Laurent; Behin, Anthony; Stojkovic, Tanya; Hébert, Luc J; Puymirat, Jack; Eymard, Bruno; Bassez, Guillaume; Hogrel, Jean-Yves

    2016-07-01

    This study evaluated gait using lower-trunk accelerometry and investigated relationships between gait abnormalities, postural instability, handgrip myotonia, and weakness in lower-limb and axial muscle groups commonly affected in myotonic dystrophy type 1 (DM1). Twenty-two patients (11 men, 11 women; age = 42 years (range: 26-51)) with DM1 and twenty healthy controls (9 men, 11 women; age = 44 years (range: 24-50)) participated in this study. Gait analysis using lower-trunk accelerometry was performed at self-selected walking pace. Postural stability was measured via center of pressure displacement analysis using a force platform during eyes-closed normal stance. Handgrip myotonia was quantified using force-relaxation curve modeling. Patients displayed lower walking speed, stride frequency, stride length, gait regularity, and gait symmetry. Strength of ankle plantar flexors, ankle dorsal flexors and neck flexors correlated with interstride regularity in the vertical direction (ρ = 0.57, ρ = 0.59, and ρ = 0.44, respectively; all P < 0.05). Knee extension strength correlated with gait symmetry in the anteroposterior direction (ρ = 0.45, P < 0.05). Center of pressure velocity was greater in patients and correlated with neck flexion and ankle plantar flexion weakness (ρ = -0.51 and ρ = -0.62, respectively; both P < 0.05), and with interstride regularity in the vertical direction (ρ = -0.58, P < 0.05). No correlation was found between handgrip myotonia and any other variable studied. Lower-trunk accelerometry allows the characterization of gait pattern abnormalities in patients with DM1. Further studies are required to determine the relevance of systematic gait analysis using lower-trunk accelerometry for patient follow-up and intervention planning. PMID:27234310

  8. A low absolute number of expanded transcripts is involved in myotonic dystrophy type 1 manifestation in muscle

    PubMed Central

    Gudde, Anke E. E. G.; González-Barriga, Anchel; van den Broek, Walther J. A. A.; Wieringa, Bé; Wansink, Derick G.

    2016-01-01

    Muscular manifestation of myotonic dystrophy type 1 (DM1), a common inheritable degenerative multisystem disorder, is mainly caused by expression of RNA from a (CTG·CAG)n-expanded DM1 locus. Here, we report on comparative profiling of expression of normal and expanded endogenous or transgenic transcripts in skeletal muscle cells and biopsies from DM1 mouse models and patients in order to help us in understanding the role of this RNA-mediated toxicity. In tissue of HSALR mice, the most intensely used ‘muscle-only’ model in the DM1 field, RNA from the α-actin (CTG)250 transgene was at least 1000-fold more abundant than that from the Dmpk gene, or the DMPK gene in humans. Conversely, the DMPK transgene in another line, DM500/DMSXL mice, was expressed ∼10-fold lower than the endogenous gene. Temporal regulation of expanded RNA expression differed between models. Onset of expression occurred remarkably late in HSALR myoblasts during in vitro myogenesis whereas Dmpk or DMPK (trans)genes were expressed throughout proliferation and differentiation phases. Importantly, quantification of absolute transcript numbers revealed that normal and expanded Dmpk/DMPK transcripts in mouse models and DM1 patients are low-abundance RNA species. Northern blotting, reverse transcriptase–quantitative polymerase chain reaction, RNA-sequencing and fluorescent in situ hybridization analyses showed that they occur at an absolute number between one and a few dozen molecules per cell. Our findings refine the current RNA dominance theory for DM1 pathophysiology, as anomalous factor binding to expanded transcripts and formation of soluble or insoluble ribonucleoprotein aggregates must be nucleated by only few expanded DMPK transcripts and therefore be a small numbers game. PMID:26908607

  9. Myotonic dystrophy protein kinase (DMPK) prevents ROS-induced cell death by assembling a hexokinase II-Src complex on the mitochondrial surface

    PubMed Central

    Pantic, B; Trevisan, E; Citta, A; Rigobello, M P; Marin, O; Bernardi, P; Salvatori, S; Rasola, A

    2013-01-01

    The biological functions of myotonic dystrophy protein kinase (DMPK), a serine/threonine kinase whose gene mutations cause myotonic dystrophy type 1 (DM1), remain poorly understood. Several DMPK isoforms exist, and the long ones (DMPK-A/B/C/D) are associated with the mitochondria, where they exert unknown activities. We have studied the isoform A of DMPK, which we have found to be prevalently associated to the outer mitochondrial membrane. The kinase activity of mitochondrial DMPK protects cells from oxidative stress and from the ensuing opening of the mitochondrial permeability transition pore (PTP), which would otherwise irreversibly commit cells to death. We observe that DMPK (i) increases the mitochondrial localization of hexokinase II (HK II), (ii) forms a multimeric complex with HK II and with the active form of the tyrosine kinase Src, binding its SH3 domain and (iii) it is tyrosine-phosphorylated by Src. Both interaction among these proteins and tyrosine phosphorylation of DMPK are increased under oxidative stress, and Src inhibition selectively enhances death in DMPK-expressing cells after HK II detachment from the mitochondria. Down-modulation of DMPK abolishes the appearance of muscle markers in in vitro myogenesis, which is rescued by oxidant scavenging. Our data indicate that, together with HK II and Src, mitochondrial DMPK is part of a multimolecular complex endowed with antioxidant and pro-survival properties that could be relevant during the function and differentiation of muscle fibers. PMID:24136222

  10. Tendon Extracellular Matrix Alterations in Ullrich Congenital Muscular Dystrophy.

    PubMed

    Sardone, Francesca; Traina, Francesco; Bondi, Alice; Merlini, Luciano; Santi, Spartaco; Maraldi, Nadir Mario; Faldini, Cesare; Sabatelli, Patrizia

    2016-01-01

    Collagen VI (COLVI) is a non-fibrillar collagen expressed in skeletal muscle and most connective tissues. Mutations in COLVI genes cause two major clinical forms, Bethlem myopathy and Ullrich congenital muscular dystrophy (UCMD). In addition to congenital muscle weakness, patients affected by COLVI myopathies show axial and proximal joint contractures and distal joint hypermobility, which suggest the involvement of the tendon function. We examined a peroneal tendon biopsy and tenocyte culture of a 15-year-old patient affected by UCMD with compound heterozygous COL6A2 mutations. In patient's tendon biopsy, we found striking morphological alterations of tendon fibrils, consisting in irregular profiles and reduced mean diameter. The organization of the pericellular matrix of tenocytes, the primary site of collagen fibril assembly, was severely affected, as determined by immunoelectron microscopy, which showed an abnormal accumulation of COLVI and altered distribution of collagen I (COLI) and fibronectin (FBN). In patient's tenocyte culture, COLVI web formation and cell surface association were severely impaired; large aggregates of COLVI, which matched with COLI labeling, were frequently detected in the extracellular matrix. In addition, metalloproteinase MMP-2, an extracellular matrix-regulating enzyme, was increased in the conditioned medium of patient's tenocytes, as determined by gelatin zymography and western blot. Altogether, these data indicate that COLVI deficiency may influence the organization of UCMD tendon matrix, resulting in dysfunctional fibrillogenesis. The alterations of tendon matrix may contribute to the complex pathogenesis of COLVI related myopathies. PMID:27375477

  11. Novel Mutations in Two Saudi Patients with Congenital Retinal Dystrophy

    PubMed Central

    Safieh, Leen Abu; Al-Otaibi, Humoud M.; Lewis, Richard Alan; Kozak, Igor

    2016-01-01

    To report novel mutations in two Saudi children with clinical features of Leber congenital amaurosis (LCA) and Alström syndrome. Case reports. Case 1 was a child with phenotypic features of LCA including oculodigital sign, bilateral enophthalmos, nystagmus, pale disc, and retinal changes. Direct sequencing of the coding sequence of GUCY2D revealed a missense mutation affecting highly conserved position (c. 743C > T; p.S248 L). Case 2 describes a girl with marked nystagmus, photophobia, and retinal changes in both eyes with short and stubby fingers tapering at the distal phalanges. The electroretinograms were nonrecordable in each eye. She had a hearing aid in the left ear, mid-facial hypoplasia, bilateral enophthalmos, and insulin dependent diabetes. Mutation screening of candidates genes revealed a pathogenic mutation in ALMS1 gene (c. 8441C > A, p.S2814*). Two novel mutations causing phenotypic LCA and Alström syndrome in Saudi patients from consanguineous families expand the genotypic spectrum of congenital retinal dystrophies PMID:26957854

  12. Tendon Extracellular Matrix Alterations in Ullrich Congenital Muscular Dystrophy

    PubMed Central

    Sardone, Francesca; Traina, Francesco; Bondi, Alice; Merlini, Luciano; Santi, Spartaco; Maraldi, Nadir Mario; Faldini, Cesare; Sabatelli, Patrizia

    2016-01-01

    Collagen VI (COLVI) is a non-fibrillar collagen expressed in skeletal muscle and most connective tissues. Mutations in COLVI genes cause two major clinical forms, Bethlem myopathy and Ullrich congenital muscular dystrophy (UCMD). In addition to congenital muscle weakness, patients affected by COLVI myopathies show axial and proximal joint contractures and distal joint hypermobility, which suggest the involvement of the tendon function. We examined a peroneal tendon biopsy and tenocyte culture of a 15-year-old patient affected by UCMD with compound heterozygous COL6A2 mutations. In patient’s tendon biopsy, we found striking morphological alterations of tendon fibrils, consisting in irregular profiles and reduced mean diameter. The organization of the pericellular matrix of tenocytes, the primary site of collagen fibril assembly, was severely affected, as determined by immunoelectron microscopy, which showed an abnormal accumulation of COLVI and altered distribution of collagen I (COLI) and fibronectin (FBN). In patient’s tenocyte culture, COLVI web formation and cell surface association were severely impaired; large aggregates of COLVI, which matched with COLI labeling, were frequently detected in the extracellular matrix. In addition, metalloproteinase MMP-2, an extracellular matrix-regulating enzyme, was increased in the conditioned medium of patient’s tenocytes, as determined by gelatin zymography and western blot. Altogether, these data indicate that COLVI deficiency may influence the organization of UCMD tendon matrix, resulting in dysfunctional fibrillogenesis. The alterations of tendon matrix may contribute to the complex pathogenesis of COLVI related myopathies. PMID:27375477

  13. Ventricular fibrillation induced by coagulating mode bipolar electrocautery during pacemaker implantation in Myotonic Dystrophy type 1 patient.

    PubMed

    Russo, Vincenzo; Rago, Anna; DI Meo, Federica; Cioppa, Nadia Della; Papa, Andrea Antonio; Russo, Maria Giovanna; Nigro, Gerardo

    2014-12-01

    The occurrence of ventricular fibrillation, induced by bipolar electrocautery during elective dual chamber pacemaker implantation, is reported in a patient affected by Myotonic Distrophy type 1 with normal left ventricular ejection fraction. PMID:25873784

  14. A Congenital Muscular Dystrophy with Mitochondrial Structural Abnormalities Caused by Defective De Novo Phosphatidylcholine Biosynthesis

    PubMed Central

    Mitsuhashi, Satomi; Ohkuma, Aya; Talim, Beril; Karahashi, Minako; Koumura, Tomoko; Aoyama, Chieko; Kurihara, Mana; Quinlivan, Ros; Sewry, Caroline; Mitsuhashi, Hiroaki; Goto, Kanako; Koksal, Burcu; Kale, Gulsev; Ikeda, Kazutaka; Taguchi, Ryo; Noguchi, Satoru; Hayashi, Yukiko K.; Nonaka, Ikuya; Sher, Roger B.; Sugimoto, Hiroyuki; Nakagawa, Yasuhito; Cox, Gregory A.; Topaloglu, Haluk; Nishino, Ichizo

    2011-01-01

    Congenital muscular dystrophy is a heterogeneous group of inherited muscle diseases characterized clinically by muscle weakness and hypotonia in early infancy. A number of genes harboring causative mutations have been identified, but several cases of congenital muscular dystrophy remain molecularly unresolved. We examined 15 individuals with a congenital muscular dystrophy characterized by early-onset muscle wasting, mental retardation, and peculiar enlarged mitochondria that are prevalent toward the periphery of the fibers but are sparse in the center on muscle biopsy, and we have identified homozygous or compound heterozygous mutations in the gene encoding choline kinase beta (CHKB). This is the first enzymatic step in a biosynthetic pathway for phosphatidylcholine, the most abundant phospholipid in eukaryotes. In muscle of three affected individuals with nonsense mutations, choline kinase activities were undetectable, and phosphatidylcholine levels were decreased. We identified the human disease caused by disruption of a phospholipid de novo biosynthetic pathway, demonstrating the pivotal role of phosphatidylcholine in muscle and brain. PMID:21665002

  15. Myotonic disorders: A review article

    PubMed Central

    Hahn, Chris; Salajegheh, Mohammad Kian

    2016-01-01

    The myotonic disorders are a heterogeneous group of genetically determined diseases that are unified by the presence of myotonia, which is defined as failure of muscle relaxation after activation. The presentation of these disorders can range from asymptomatic electrical myotonia, as seen in some forms of myotonia congenita (MC), to severe disability with muscle weakness, cardiac conduction defects, and other systemic features as in myotonic dystrophy type I (DM1). In this review, we describe the clinical features and pathophysiology of the different myotonic disorders, their laboratory and electrophysiologic findings and briefly review the currently available treatments. PMID:27141276

  16. In vivo discovery of a peptide that prevents CUG–RNA hairpin formation and reverses RNA toxicity in myotonic dystrophy models

    PubMed Central

    García-López, Amparo; Llamusí, Beatriz; Orzáez, Mar; Pérez-Payá, Enrique; Artero, Ruben D.

    2011-01-01

    Myotonic dystrophy type 1 (DM1) is caused by the expansion of noncoding CTG repeats in the dystrophia myotonica-protein kinase gene. Mutant transcripts form CUG hairpins that sequester RNA-binding factors into nuclear foci, including Muscleblind-like-1 protein (MBNL1), which regulate alternative splicing and gene expression. To identify molecules that target toxic CUG transcripts in vivo, we performed a positional scanning combinatorial peptide library screen using a Drosophila model of DM1. The screen identified a D-amino acid hexapeptide (ABP1) that reduced CUG foci formation and suppressed CUG-induced lethality and muscle degeneration when administered orally. Transgenic expression of natural, L-amino acid ABP1 analogues reduced CUG-induced toxicity in fly eyes and muscles. Furthermore, ABP1 reversed muscle histopathology and splicing misregulation of MBNL1 targets in DM1 model mice. In vitro, ABP1 bound to CUG hairpins and induced a switch to a single-stranded conformation. Our findings demonstrate that ABP1 shows antimyotonic dystrophy activity by targeting the core of CUG toxicity. PMID:21730182

  17. Learning about Myotonic Dystrophy

    MedlinePlus

    ... for Patient Care Education All About the Human Genome Project Fact Sheets Genetic Education Resources for Teachers ... Education Kit Online Genetics Education Resources Smithsonian NHGRI Genome Exhibition Talking Glossary: English Talking Glossary: Español Issues ...

  18. Analysing regenerative potential in zebrafish models of congenital muscular dystrophy.

    PubMed

    Wood, A J; Currie, P D

    2014-11-01

    The congenital muscular dystrophies (CMDs) are a clinically and genetically heterogeneous group of muscle disorders. Clinically hypotonia is present from birth, with progressive muscle weakness and wasting through development. For the most part, CMDs can mechanistically be attributed to failure of basement membrane protein laminin-α2 sufficiently binding with correctly glycosylated α-dystroglycan. The majority of CMDs therefore arise as the result of either a deficiency of laminin-α2 (MDC1A) or hypoglycosylation of α-dystroglycan (dystroglycanopathy). Here we consider whether by filling a regenerative medicine niche, the zebrafish model can address the present challenge of delivering novel therapeutic solutions for CMD. In the first instance the readiness and appropriateness of the zebrafish as a model organism for pioneering regenerative medicine therapies in CMD is analysed, in particular for MDC1A and the dystroglycanopathies. Despite the recent rapid progress made in gene editing technology, these approaches have yet to yield any novel zebrafish models of CMD. Currently the most genetically relevant zebrafish models to the field of CMD, have all been created by N-ethyl-N-nitrosourea (ENU) mutagenesis. Once genetically relevant models have been established the zebrafish has several important facets for investigating the mechanistic cause of CMD, including rapid ex vivo development, optical transparency up to the larval stages of development and relative ease in creating transgenic reporter lines. Together, these tools are well suited for use in live-imaging studies such as in vivo modelling of muscle fibre detachment. Secondly, the zebrafish's contribution to progress in effective treatment of CMD was analysed. Two approaches were identified in which zebrafish could potentially contribute to effective therapies. The first hinges on the augmentation of functional redundancy within the system, such as upregulating alternative laminin chains in the candyfloss

  19. Congenital muscular dystrophy with glycosylation defects of alpha-dystroglycan in Japan.

    PubMed

    Matsumoto, Hiroshi; Hayashi, Yukiko K; Kim, Dae-Son; Ogawa, Megumu; Murakami, Terumi; Noguchi, Satoru; Nonaka, Ikuya; Nakazawa, Tomoyuki; Matsuo, Takiko; Futagami, Satoshi; Campbell, Kevin P; Nishino, Ichizo

    2005-05-01

    Glycosylation defects of alpha-dystroglycan (alpha-DG) cause various muscular dystrophies. We performed clinical, pathological and genetic analyses of 62 Japanese patients with congenital muscular dystrophy, whose skeletal muscle showed deficiency of glycosylated form of alpha-DG. We found, the first Japanese patient with congenital muscular dystrophy 1C with a novel compound heterozygous mutation in the fukutin-related protein gene. Fukuyama-type congenital muscular dystrophy was genetically confirmed in 54 of 62 patients. Two patients with muscle-eye-brain disease and one Walker-Warburg syndrome were also genetically confirmed. Four patients had no mutation in any known genes associated with glycosylation of alpha-DG. Interestingly, the molecular mass of alpha-DG in the skeletal muscle was similar and was reduced to approximately 90 kDa among these patients, even though the causative gene and the clinico-pathological severity were different. This result suggests that other factors can modify clinical features of the patients with glycosylation defects of alpha-DG. PMID:15833426

  20. Identification and characterization of modified antisense oligonucleotides targeting DMPK in mice and nonhuman primates for the treatment of myotonic dystrophy type 1.

    PubMed

    Pandey, Sanjay K; Wheeler, Thurman M; Justice, Samantha L; Kim, Aneeza; Younis, Husam S; Gattis, Danielle; Jauvin, Dominic; Puymirat, Jack; Swayze, Eric E; Freier, Susan M; Bennett, C Frank; Thornton, Charles A; MacLeod, A Robert

    2015-11-01

    Myotonic dystrophy type 1 (DM1) is the most common form of muscular dystrophy in adults. DM1 is caused by an expanded CTG repeat in the 3'-untranslated region of DMPK, the gene encoding dystrophia myotonica protein kinase (DMPK). Antisense oligonucleotides (ASOs) containing 2',4'-constrained ethyl-modified (cEt) residues exhibit a significantly increased RNA binding affinity and in vivo potency relative to those modified with other 2'-chemistries, which we speculated could translate to enhanced activity in extrahepatic tissues, such as muscle. Here, we describe the design and characterization of a cEt gapmer DMPK ASO (ISIS 486178), with potent activity in vitro and in vivo against mouse, monkey, and human DMPK. Systemic delivery of unformulated ISIS 486718 to wild-type mice decreased DMPK mRNA levels by up to 90% in liver and skeletal muscle. Similarly, treatment of either human DMPK transgenic mice or cynomolgus monkeys with ISIS 486178 led to up to 70% inhibition of DMPK in multiple skeletal muscles and ∼50% in cardiac muscle in both species. Importantly, inhibition of DMPK was well tolerated and was not associated with any skeletal muscle or cardiac toxicity. Also interesting was the demonstration that the inhibition of DMPK mRNA levels in muscle was maintained for up to 16 and 13 weeks post-treatment in mice and monkeys, respectively. These results demonstrate that cEt-modified ASOs show potent activity in skeletal muscle, and that this attractive therapeutic approach warrants further clinical investigation to inhibit the gain-of-function toxic RNA underlying the pathogenesis of DM1. PMID:26330536

  1. [Genetic Variability and Structure of SNP Haplotypes in the DMPK Gene in Yakuts and Other Ethnic Groups of Northern Eurasia in Relation to Myotonic Dystrophy].

    PubMed

    Swarovskaya, M G; Stepanova, S K; Marussin, A V; Sukhomyasova, A L; Maximova, N R; Stepanov, V A

    2015-06-01

    The genetic variability of the DMPK locus has been studied in relation to six SNP markers (rs2070736, rs572634, rs1799894, rs527221, rs915915, and rs10415988) in Yakuts with myotonic dystrophy (MD) in the Yakut population and in populations of northern Eurasia. Significant differences were observed in the allele frequencies between patients and a population sample of Yakuts for three SNP loci (rs915915, rs1799894, and rs10415988) associated with a high chance of disease manifestation. The odds ratios (OR) of MD development in representatives of the Yakut population for these three loci were 2.59 (95% CI, p = 0,004), 4.99 (95% CI, p = 0.000), and 3.15 (95% CI, p = 0.01), respectively. Haplotype TTTCTC, which is associated with MD, and haplotype GTCCTT, which was observed only in Yakut MD patients (never in MD patients of non-Yakut origin), were revealed. A low level of variability in the locus of DMRK gene in Yakuts (H(e) = 0.283) compared with other examined populations was noted. An analysis of pairwise genetic relationships between populations revealed their significant differentiation for all the examined loci. In addition, a low level of differentiation in territorial groups of Yakut populations (F(ST) = 0.79%), which was related to the high subdivision of the northern Eurasian population (F(ST) = 11.83%), was observed. PMID:26310035

  2. A putative role of ribonuclear inclusions and MBNL1 in the impairment of gallbladder smooth muscle contractility with cholelithiasis in myotonic dystrophy type 1.

    PubMed

    Cardani, R; Mancinelli, E; Saino, G; Bonavina, L; Meola, G

    2008-08-01

    Myotonic dystrophy type 1 (DM1) is an autosomal dominant multisystemic disorder caused by expansion of unstable trinucleotide (CTG) repeats at 3' untranslated region of the DMPK gene on chromosome 19q13.3. Mutant transcripts are retained in muscle nuclei as ribonuclear inclusions and interact with RNA-binding proteins, such as muscleblind-like protein 1 (MBNL1), leading to a reduction in their activity. The reduced MBNL1 activity has been associated to skeletal and cardiac muscle dysfunction. However, other organs and systems may be involved. It has been reported that 25-50% of DM1 patients have abdominal symptoms due to cholelithiasis or gallstones. Since impaired gallbladder motility plays an important role in gallstones formation, we have analyzed by FISH combined with MBNL1-immunofluorescence, the gallbladder obtained from a woman affected by DM1 who required a cholecystectomy at the age of 30. Gallbladders obtained from two no-DM1 subjects have been used as controls. Ribonuclear inclusions and MBNL1 foci accumulate and colocalize in nuclei of DM1 gallbladder smooth muscle cells. On the contrary, no ribonuclear inclusions are detectable in cell nuclei of control gallbladders and MBNL1 is uniformly distributed in smooth muscle cell nuclei. These results suggest that nuclear accumulation of MBNL1 and ribonuclear inclusions may have a direct adverse effect on gallbladder smooth muscle contractility and thus contribute to gallstones formation in DM1 patients. PMID:18653337

  3. The small GTP-binding protein Rho binds to and activates a 160 kDa Ser/Thr protein kinase homologous to myotonic dystrophy kinase.

    PubMed Central

    Ishizaki, T; Maekawa, M; Fujisawa, K; Okawa, K; Iwamatsu, A; Fujita, A; Watanabe, N; Saito, Y; Kakizuka, A; Morii, N; Narumiya, S

    1996-01-01

    The small GTP-binding protein Rho functions as a molecular switch in the formation of focal adhesions and stress fibers, cytokinesis and transcriptional activation. The biochemical mechanism underlying these actions remains unknown. Using a ligand overlay assay, we purified a 160 kDa platelet protein that bound specifically to GTP-bound Rho. This protein, p160, underwent autophosphorylation at its serine and threonine residues and showed the kinase activity to exogenous substrates. Both activities were enhanced by the addition of GTP-bound Rho. A cDNA encoding p160 coded for a 1354 amino acid protein. This protein has a Ser/Thr kinase domain in its N-terminus, followed by a coiled-coil structure approximately 600 amino acids long, and a cysteine-rich zinc finger-like motif and a pleckstrin homology region in the C-terminus. The N-terminus region including a kinase domain and a part of coiled-coil structure showed strong homology to myotonic dystrophy kinase over 500 residues. When co-expressed with RhoA in COS cells, p160 was co-precipitated with the expressed Rho and its kinase activity was activated, indicating that p160 can associate physically and functionally with Rho both in vitro and in vivo. Images PMID:8617235

  4. Phenylbutazone induces expression of MBNL1 and suppresses formation of MBNL1-CUG RNA foci in a mouse model of myotonic dystrophy

    PubMed Central

    Chen, Guiying; Masuda, Akio; Konishi, Hiroyuki; Ohkawara, Bisei; Ito, Mikako; Kinoshita, Masanobu; Kiyama, Hiroshi; Matsuura, Tohru; Ohno, Kinji

    2016-01-01

    Myotonic dystrophy type 1 (DM1) is caused by abnormal expansion of CTG repeats in the 3′ untranslated region of the DMPK gene. Expanded CTG repeats are transcribed into RNA and make an aggregate with a splicing regulator, MBNL1, in the nucleus, which is called the nuclear foci. The nuclear foci sequestrates and downregulates availability of MBNL1. Symptomatic treatments are available for DM1, but no rational therapy is available. In this study, we found that a nonsteroidal anti-inflammatory drug (NSAID), phenylbutazone (PBZ), upregulated the expression of MBNL1 in C2C12 myoblasts as well as in the HSALR mouse model for DM1. In the DM1 mice model, PBZ ameliorated aberrant splicing of Clcn1, Nfix, and Rpn2. PBZ increased expression of skeletal muscle chloride channel, decreased abnormal central nuclei of muscle fibers, and improved wheel-running activity in HSALR mice. We found that the effect of PBZ was conferred by two distinct mechanisms. First, PBZ suppressed methylation of an enhancer region in Mbnl1 intron 1, and enhanced transcription of Mbnl1 mRNA. Second, PBZ attenuated binding of MBNL1 to abnormally expanded CUG repeats in cellulo and in vitro. Our studies suggest that PBZ is a potent therapeutic agent for DM1 that upregulates availability of MBNL1. PMID:27126921

  5. Structural analysis of slipped-strand DNA (S-DNA) formed in (CTG)n. (CAG)n repeats from the myotonic dystrophy locus.

    PubMed Central

    Pearson, C E; Wang, Y H; Griffith, J D; Sinden, R R

    1998-01-01

    The mechanism of disease-associated trinucleotide repeat length variation may involve slippage of the triplet-containing strand at the replication fork, generating a slipped-strand DNA structure. We recently reported formation in vitro of slipped-strand DNA (S-DNA) structures when DNAs containing triplet repeat blocks of myotonic dystrophy or fragile X diseases were melted and allowed to reanneal to form duplexes. Here additional evidence is presented that is consistent with the existence of S-DNA structures. We demonstrate that S-DNA structures can form between two complementary strands containing equal numbers of repeats. In addition, we show that both the propensity for S-DNA formation and the structural complexity of S-DNAs formed increase with increasing repeat length. S-DNA structures were also analyzed by electron microscopy, confirming that the two strands are slipped out of register with respect to each other and confirming the structural polymorphism expected within long tracts of trinucleotide repeats. For (CTG)50.(CAG)50 two distinct populations of slipped structures have been identified: those involving 10 repeats, which have multiple loops or hairpins indicative of complex alternative DNA secondary structures. PMID:9443975

  6. Phenylbutazone induces expression of MBNL1 and suppresses formation of MBNL1-CUG RNA foci in a mouse model of myotonic dystrophy.

    PubMed

    Chen, Guiying; Masuda, Akio; Konishi, Hiroyuki; Ohkawara, Bisei; Ito, Mikako; Kinoshita, Masanobu; Kiyama, Hiroshi; Matsuura, Tohru; Ohno, Kinji

    2016-01-01

    Myotonic dystrophy type 1 (DM1) is caused by abnormal expansion of CTG repeats in the 3' untranslated region of the DMPK gene. Expanded CTG repeats are transcribed into RNA and make an aggregate with a splicing regulator, MBNL1, in the nucleus, which is called the nuclear foci. The nuclear foci sequestrates and downregulates availability of MBNL1. Symptomatic treatments are available for DM1, but no rational therapy is available. In this study, we found that a nonsteroidal anti-inflammatory drug (NSAID), phenylbutazone (PBZ), upregulated the expression of MBNL1 in C2C12 myoblasts as well as in the HSA(LR) mouse model for DM1. In the DM1 mice model, PBZ ameliorated aberrant splicing of Clcn1, Nfix, and Rpn2. PBZ increased expression of skeletal muscle chloride channel, decreased abnormal central nuclei of muscle fibers, and improved wheel-running activity in HSA(LR) mice. We found that the effect of PBZ was conferred by two distinct mechanisms. First, PBZ suppressed methylation of an enhancer region in Mbnl1 intron 1, and enhanced transcription of Mbnl1 mRNA. Second, PBZ attenuated binding of MBNL1 to abnormally expanded CUG repeats in cellulo and in vitro. Our studies suggest that PBZ is a potent therapeutic agent for DM1 that upregulates availability of MBNL1. PMID:27126921

  7. From dynamic combinatorial ‘hit’ to lead: in vitro and in vivo activity of compounds targeting the pathogenic RNAs that cause myotonic dystrophy

    PubMed Central

    Ofori, Leslie O.; Hoskins, Jason; Nakamori, Masayuki; Thornton, Charles A.; Miller, Benjamin L.

    2012-01-01

    The myotonic dystrophies (DM) are human diseases in which the accumulation of toxic RNA (CUG or CCUG) repeats in the cell causes sequestration of splicing factors, including MBNL1, leading to clinical symptoms such as muscle wasting and myotonia. We previously used Dynamic Combinatorial Chemistry to identify the first compounds known to inhibit (CUG)-MBNL1 binding in vitro. We now report transformation of those compounds into structures with activity in vivo. Introduction of a benzo[g]quinoline substructure previously unknown in the context of RNA recognition, as well as other modifications, provided several molecules with enhanced binding properties, including compounds with strong selectivity for CUG repeats over CAG repeats or CAG–CUG duplex RNA. Compounds readily penetrate cells, and improve luciferase activity in a mouse myoblast assay in which enzyme function is coupled to a release of nuclear CUG–RNA retention. Most importantly, two compounds are able to partially restore splicing in a mouse model of DM1. PMID:22492623

  8. Muscle weakness in myotonic dystrophy associated with misregulated splicing and altered gating of CaV1.1 calcium channel

    PubMed Central

    Tang, Zhen Zhi; Yarotskyy, Viktor; Wei, Lan; Sobczak, Krzysztof; Nakamori, Masayuki; Eichinger, Katy; Moxley, Richard T.; Dirksen, Robert T.; Thornton, Charles A.

    2012-01-01

    Myotonic dystrophy type 1 and type 2 (DM1 and DM2) are genetic diseases in which mutant transcripts containing expanded CUG or CCUG repeats cause cellular dysfunction by altering the processing or metabolism of specific mRNAs and miRNAs. The toxic effects of mutant RNA are mediated partly through effects on proteins that regulate alternative splicing. Here we show that alternative splicing of exon 29 (E29) of CaV1.1, a calcium channel that controls skeletal muscle excitation–contraction coupling, is markedly repressed in DM1 and DM2. The extent of E29 skipping correlated with severity of weakness in tibialis anterior muscle of DM1 patients. Two splicing factors previously implicated in DM1, MBNL1 and CUGBP1, participated in the regulation of E29 splicing. In muscle fibers of wild-type mice, the CaV1.1 channel conductance and voltage sensitivity were increased by splice-shifting oligonucleotides that induce E29 skipping. In contrast to human DM1, expression of CUG-expanded RNA caused only a modest increase in E29 skipping in mice. However, forced skipping of E29 in these mice, to levels approaching those observed in human DM1, aggravated the muscle pathology as evidenced by increased central nucleation. Together, these results indicate that DM-associated splicing defects alter CaV1.1 function, with potential for exacerbation of myopathy. PMID:22140091

  9. A syndrome of congenital retinal dystrophy and saccade palsy--a subset of Leber's amaurosis.

    PubMed Central

    Moore, A. T.; Taylor, D. S.

    1984-01-01

    Three children who presented in infancy with a severe visual defect and absent or barely recordable electroretinograms, with relatively well preserved visually evoked cortical potentials, were subsequently found to have vertical and horizontal saccade palsies with head thrusts but relatively good visual acuity. These children, who were clearly different from other infants with congenital retinal dystrophy, were also developmentally delayed and had systemic motor and speech defects, but their visual prognosis was relatively good. The recognition of their saccade palsy was delayed because their poor visual attention in infancy was ascribed purely to the tapetoretinal degeneration. We consider these patients represent a clear subset of those patients who are diagnosed as having congenital retinal dystrophy or Leber's amaurosis. Images PMID:6722075

  10. Importance of Skin Changes in the Differential Diagnosis of Congenital Muscular Dystrophies

    PubMed Central

    Yis, Uluç; Baydan, Figen; Karakaya, Mert; Hız Kurul, Semra; Cirak, Sebahattin

    2016-01-01

    Megaconial congenital muscular dystrophy (OMIM 602541) is characterized with early-onset hypotonia, muscle wasting, proximal weakness, cardiomyopathy, mildly elevated serum creatine kinase (CK) levels, and mild-to-moderate intellectual disability. We report two siblings in a consanguineous family admitted for psychomotor delay. Physical examination revealed proximal muscle weakness, contractures in the knee of elder sibling, diffuse mild generalized muscle atrophy, and dry skin with ichthyosis together with multiple nummular eczema in both siblings. Serum CK values were elevated up to 500 U/L. For genetic work-up, we performed whole exome sequencing (WES) after Nimblegen enrichment on the Illumina platform. The WES revealed a novel homozygous missense mutation in the Choline Kinase-Beta (CHKB) gene c.1031G>A (p.R344Q) in exon 9. Ichthyosis-like skin changes with intense pruritus and nummular eczema may lead to clinical diagnosis in cases with megaconial congenital muscular dystrophy. PMID:27123443

  11. Gender as a Modifying Factor Influencing Myotonic Dystrophy Type 1 Phenotype Severity and Mortality: A Nationwide Multiple Databases Cross-Sectional Observational Study

    PubMed Central

    Hamroun, Dalil; Varet, Hugo; Fabbro, Marianne; Rougier, Felix; Amarof, Khadija; Arne Bes, Marie-Christine; Bedat-Millet, Anne-Laure; Behin, Anthony; Bellance, Remi; Bouhour, Françoise; Boutte, Celia; Boyer, François; Campana-Salort, Emmanuelle; Chapon, Françoise; Cintas, Pascal; Desnuelle, Claude; Deschamps, Romain; Drouin-Garraud, Valerie; Ferrer, Xavier; Gervais-Bernard, Helene; Ghorab, Karima; Laforet, Pascal; Magot, Armelle; Magy, Laurent; Menard, Dominique; Minot, Marie-Christine; Nadaj-Pakleza, Aleksandra; Pellieux, Sybille; Pereon, Yann; Preudhomme, Marguerite; Pouget, Jean; Sacconi, Sabrina; Sole, Guilhem; Stojkovich, Tanya; Tiffreau, Vincent; Urtizberea, Andoni; Vial, Christophe; Zagnoli, Fabien; Caranhac, Gilbert; Bourlier, Claude; Riviere, Gerard; Geille, Alain; Gherardi, Romain K.; Eymard, Bruno; Puymirat, Jack; Katsahian, Sandrine; Bassez, Guillaume

    2016-01-01

    Background Myotonic Dystrophy type 1 (DM1) is one of the most heterogeneous hereditary disease in terms of age of onset, clinical manifestations, and severity, challenging both medical management and clinical trials. The CTG expansion size is the main factor determining the age of onset although no factor can finely predict phenotype and prognosis. Differences between males and females have not been specifically reported. Our aim is to study gender impact on DM1 phenotype and severity. Methods We first performed cross-sectional analysis of main multiorgan clinical parameters in 1409 adult DM1 patients (>18y) from the DM-Scope nationwide registry and observed different patterns in males and females. Then, we assessed gender impact on social and economic domains using the AFM-Téléthon DM1 survey (n = 970), and morbidity and mortality using the French National Health Service Database (n = 3301). Results Men more frequently had (1) severe muscular disability with marked myotonia, muscle weakness, cardiac, and respiratory involvement; (2) developmental abnormalities with facial dysmorphism and cognitive impairment inferred from low educational levels and work in specialized environments; and (3) lonely life. Alternatively, women more frequently had cataracts, dysphagia, digestive tract dysfunction, incontinence, thyroid disorder and obesity. Most differences were out of proportion to those observed in the general population. Compared to women, males were more affected in their social and economic life. In addition, they were more frequently hospitalized for cardiac problems, and had a higher mortality rate. Conclusion Gender is a previously unrecognized factor influencing DM1 clinical profile and severity of the disease, with worse socio-economic consequences of the disease and higher morbidity and mortality in males. Gender should be considered in the design of both stratified medical management and clinical trials. PMID:26849574

  12. Design of a bioactive small molecule that targets the myotonic dystrophy type 1 RNA via an RNA motif-ligand database and chemical similarity searching.

    PubMed

    Parkesh, Raman; Childs-Disney, Jessica L; Nakamori, Masayuki; Kumar, Amit; Wang, Eric; Wang, Thomas; Hoskins, Jason; Tran, Tuan; Housman, David; Thornton, Charles A; Disney, Matthew D

    2012-03-14

    Myotonic dystrophy type 1 (DM1) is a triplet repeating disorder caused by expanded CTG repeats in the 3'-untranslated region of the dystrophia myotonica protein kinase (DMPK) gene. The transcribed repeats fold into an RNA hairpin with multiple copies of a 5'CUG/3'GUC motif that binds the RNA splicing regulator muscleblind-like 1 protein (MBNL1). Sequestration of MBNL1 by expanded r(CUG) repeats causes splicing defects in a subset of pre-mRNAs including the insulin receptor, the muscle-specific chloride ion channel, sarco(endo)plasmic reticulum Ca(2+) ATPase 1, and cardiac troponin T. Based on these observations, the development of small-molecule ligands that target specifically expanded DM1 repeats could be of use as therapeutics. In the present study, chemical similarity searching was employed to improve the efficacy of pentamidine and Hoechst 33258 ligands that have been shown previously to target the DM1 triplet repeat. A series of in vitro inhibitors of the RNA-protein complex were identified with low micromolar IC(50)'s, which are >20-fold more potent than the query compounds. Importantly, a bis-benzimidazole identified from the Hoechst query improves DM1-associated pre-mRNA splicing defects in cell and mouse models of DM1 (when dosed with 1 mM and 100 mg/kg, respectively). Since Hoechst 33258 was identified as a DM1 binder through analysis of an RNA motif-ligand database, these studies suggest that lead ligands targeting RNA with improved biological activity can be identified by using a synergistic approach that combines analysis of known RNA-ligand interactions with chemical similarity searching. PMID:22300544

  13. Design of a Bioactive Small Molecule that Targets the Myotonic Dystrophy Type 1 RNA Via an RNA Motif-Ligand Database & Chemical Similarity Searching

    PubMed Central

    Parkesh, Raman; Childs-Disney, Jessica L.; Nakamori, Masayuki; Kumar, Amit; Wang, Eric; Wang, Thomas; Hoskins, Jason; Tran, Tuan; Housman, David; Thornton, Charles A.; Disney, Matthew D.

    2012-01-01

    Myotonic dystrophy type 1 (DM1) is a triplet repeating disorder caused by expanded CTG repeats in the 3′ untranslated region of the dystrophia myotonica protein kinase (DMPK) gene. The transcribed repeats fold into an RNA hairpin with multiple copies of a 5′CUG/3′GUC motif that binds the RNA splicing regulator muscleblind-like 1 protein (MBNL1). Sequestration of MBNL1 by expanded r(CUG) repeats causes splicing defects in a subset of pre-mRNAs including the insulin receptor, the muscle-specific chloride ion channel, Sarco(endo)plasmic reticulum Ca2+ ATPase 1 (Serca1/Atp2a1), and cardiac troponin T (cTNT). Based on these observations, the development of small molecule ligands that target specifically expanded DM1 repeats could serve as therapeutics. In the present study, computational screening was employed to improve the efficacy of pentamidine and Hoechst 33258 ligands that have been shown previously to target the DM1 triplet repeat. A series of inhibitors of the RNA-protein complex with low micromolar IC50’s, which are >20-fold more potent than the query compounds, were identified. Importantly, a bis-benzimidazole identified from the Hoechst query improves DM1-associated pre-mRNA splicing defects in cell and mouse models of DM1 (when dosed with 1 mM and 100 mg/kg, respectively). Since Hoechst 33258 was identified as a DM1 binder through analysis of an RNA motif-ligand database, these studies suggest that lead ligands targeting RNA with improved biological activity can be identified by using a synergistic approach that combines analysis of known RNA-ligand interactions with virtual screening. PMID:22300544

  14. ISPD gene mutations are a common cause of congenital and limb-girdle muscular dystrophies

    PubMed Central

    Cirak, Sebahattin; Foley, Aileen Reghan; Herrmann, Ralf; Willer, Tobias; Yau, Shu; Stevens, Elizabeth; Torelli, Silvia; Brodd, Lina; Kamynina, Alisa; Vondracek, Petr; Roper, Helen; Longman, Cheryl; Korinthenberg, Rudolf; Marrosu, Gianni; Nürnberg, Peter; Michele, Daniel E.; Plagnol, Vincent; Hurles, Matt; Moore, Steven A.; Sewry, Caroline A.; Campbell, Kevin P.; Voit, Thomas

    2013-01-01

    Dystroglycanopathies are a clinically and genetically diverse group of recessively inherited conditions ranging from the most severe of the congenital muscular dystrophies, Walker–Warburg syndrome, to mild forms of adult-onset limb-girdle muscular dystrophy. Their hallmark is a reduction in the functional glycosylation of α-dystroglycan, which can be detected in muscle biopsies. An important part of this glycosylation is a unique O-mannosylation, essential for the interaction of α-dystroglycan with extracellular matrix proteins such as laminin-α2. Mutations in eight genes coding for proteins in the glycosylation pathway are responsible for ∼50% of dystroglycanopathy cases. Despite multiple efforts using traditional positional cloning, the causative genes for unsolved dystroglycanopathy cases have escaped discovery for several years. In a recent collaborative study, we discovered that loss-of-function recessive mutations in a novel gene, called isoprenoid synthase domain containing (ISPD), are a relatively common cause of Walker–Warburg syndrome. In this article, we report the involvement of the ISPD gene in milder dystroglycanopathy phenotypes ranging from congenital muscular dystrophy to limb-girdle muscular dystrophy and identified allelic ISPD variants in nine cases belonging to seven families. In two ambulant cases, there was evidence of structural brain involvement, whereas in seven, the clinical manifestation was restricted to a dystrophic skeletal muscle phenotype. Although the function of ISPD in mammals is not yet known, mutations in this gene clearly lead to a reduction in the functional glycosylation of α-dystroglycan, which not only causes the severe Walker–Warburg syndrome but is also a common cause of the milder forms of dystroglycanopathy. PMID:23288328

  15. Congenital Hereditary Endothelial Dystrophy Caused by SLC4A11 Mutations Progresses to Harboyan Syndrome

    PubMed Central

    Siddiqui, Salina; Zenteno, Juan Carlos; Rice, Aine; Chacón-Camacho, Oscar; Naylor, Steven G.; Rivera-de la Parra, David; Spokes, David M.; James, Nigel; Toomes, Carmel; Inglehearn, Chris F.

    2013-01-01

    Purpose: Homozygous mutations in SLC4A11 cause 2 rare recessive conditions: congenital hereditary endothelial dystrophy (CHED), affecting the cornea alone, and Harboyan syndrome consisting of corneal dystrophy and sensorineural hearing loss. In addition, adult-onset Fuchs endothelial corneal dystrophy (FECD) is associated with dominant mutations in SLC4A11. In this report, we investigate whether patients with CHED go on to develop hearing loss and whether their parents, who are carriers of an SLC4A11 mutation, show signs of having FECD. Methods: Patients with CHED were screened for mutations in the SLC4A11 gene and underwent audiometric testing. The patients and their parents underwent a clinical examination and specular microscopy. Results: Molecular analyses confirmed SLC4A11 mutations in 4 affected individuals from 3 families. All the patients were found to have varying degrees of sensorineural hearing loss at a higher frequency range. Guttate lesions were seen in 2 of the 4 parents who were available for examination. Conclusions: Our observations suggest that CHED caused by homozygous SLC4A11 mutations progresses to Harboyan syndrome, but the severity of this may vary considerably. Patients with CHED should therefore be monitored for progressive hearing loss. We could not determine conclusively whether the parents of the patients with CHED were at increased risk of developing late-onset FECD. PMID:24351571

  16. Cortical and Subcortical Grey and White Matter Atrophy in Myotonic Dystrophies Type 1 and 2 Is Associated with Cognitive Impairment, Depression and Daytime Sleepiness

    PubMed Central

    Prehn, Christian; Krogias, Christos; Schneider, Ruth; Klein, Jan; Gold, Ralf; Lukas, Carsten

    2015-01-01

    Objectives Central nervous system involvement is one important clinical aspect of myotonic dystrophy type 1 and 2 (DM1 and DM2). We assessed CNS involvement DM1 and DM2 by 3T MRI and correlated clinical and neuocognitive symptoms with brain volumetry and voxel-based morphometry (VBM). Methods 12 patients with juvenile or classical DM1 and 16 adult DM2 patients underwent 3T MRI, a thorough neurological and neuropsychological examination and scoring of depression and daytime sleepiness. Volumes of brain, ventricles, cerebellum, brainstem, cervical cord, lesion load and VBM results of the patient groups were compared to 33 matched healthy subjects. Results Clinical symptoms were depression (more pronounced in DM2), excessive daytime sleepiness (more pronounced in DM1), reduced attention and flexibility of thinking, and deficits of short-term memory and visuo-spatial abilities in both patient groups. Both groups showed ventricular enlargement and supratentorial GM and WM atrophy, with prevalence for more GM atrophy and involvement of the motor system in DM1 and more WM reduction and affection of limbic structures in DM2. White matter was reduced in DM1 in the splenium of the corpus callosum and in left-hemispheric WM adjacent to the pre- and post-central gyrus. In DM2, the bilateral cingulate gyrus and subgyral medio-frontal and primary somato-sensory WM was affected. Significant structural-functional correlations of morphological MRI findings (global volumetry and VBM) with clinical findings were found for reduced flexibility of thinking and atrophy of the left secondary visual cortex in DM1 and of distinct subcortical brain structures in DM2. In DM2, depression was associated with brainstem atrophy, Daytime sleepiness correlated with volume decrease in the middle cerebellar peduncles, pons/midbrain and the right medio-frontal cortex. Conclusion GM and WM atrophy was significant in DM1 and DM2. Specific functional-structural associations related morphological changes

  17. Rational design of ligands targeting triplet repeating transcripts that cause RNA dominant disease: Application to myotonic muscular dystrophy type 1 and spinocerebellar ataxia type 3

    PubMed Central

    Pushechnikov, Alexei; Lee, Melissa M.; Childs-Disney, Jessica L.; Sobczak, Krzysztof; French, Jonathan M.; Thornton, Charles A.; Disney, Matthew D.

    2009-01-01

    Herein, we describe the design of high affinity ligands that bind expanded rCUG- and rCAG-repeat RNAs expressed in myotonic dystrophy and spinocerebellar ataxia. These ligands also inhibit, with nanomolar IC50's, the formation of RNA-protein complexes that are implicated in both disorders. The expanded rCUG and rCAG repeats form stable RNA hairpins with regularly repeating internal loops in the stem and have deleterious effects on cell function. The ligands that bind the repeats display a derivative of the bis-benzimidazole Hoechst 33258, which was identified by searching known RNA-ligand interactions. A series of 13 modularly assembled ligands with defined valencies and distances between ligand modules was synthesized to target multiple motifs in these RNAs simultaneously. The most avid binder, a pentamer, binds the rCUG-repeat hairpin with a Kd of 13 nM. As compared to a series of related RNAs, the pentamer binds to rCUG-repeats with 4.4- to >200-fold specificity. Furthermore, the affinity of binding to rCUG-repeats shows incremental gains with increasing valency while the background binding to genomic DNA is correspondingly reduced. Then, it was determined whether the multivalent ligands inhibit the recognition of RNA repeats by Muscleblind-like 1 (MBNL1) protein, the expanded-rCUG binding protein whose sequestration leads to splicing defects in DM1. Among several compounds with nanomolar IC50's, the most potent inhibitor is the pentamer, which also inhibits the formation of rCAG repeat-MBNL1 complexes. Comparison of the binding data of the designed synthetic ligands and MBNL1 to repeating RNAs shows that the synthetic ligand is 23-fold higher affinity and more specific to DM1 RNAs than MBNL1. Further studies show that the designed ligands are cell permeable to mouse myoblasts. Thus, cell permeable ligands that bind repetitive RNAs have been designed that exhibit higher affinity and specificity for binding RNA than natural proteins. These studies suggest a

  18. Merosin-deficient congenital muscular dystrophy with cerebral white matter changes: a clue to its diagnosis beyond infancy.

    PubMed

    Kumar, Sandeep; Aroor, Shrikiran; Mundkur, Suneel; Kumar, Maneesh

    2014-01-01

    A 6-year-old boy born by a third-degree consanguineous marriage presented with progressive muscle weakness and delayed motor milestones noticed in early infancy with preserved language and social milestones. Examination revealed generalised hypotonia and hyporeflexia. Baseline haematological and biochemical investigations were normal except for mildly elevated creatine kinase. Provisional diagnosis of congenital myopathy was entertained. We performed brain imaging to look for abnormalities associated with congenital muscular dystrophy even though there were only features of myopathy with normal mentation. An MRI of the brain revealed periventricular and subcortical white matter hyperintensities suggestive of leucoencephalopathy. Muscle biopsy findings were consistent with degenerative muscle changes and immunohistochemical staining for merosin was negative, thus confirming the diagnosis of merosin-deficient congenital muscular dystrophy. Supportive care in the form of physiotherapy was initiated. The family was offered genetic counselling in their second pregnancy and immunohistochemistry at 12 weeks confirmed the fetus to be affected, which was then terminated. PMID:24604798

  19. Amelioration of laminin-alpha2-deficient congenital muscular dystrophy by somatic gene transfer of miniagrin.

    PubMed

    Qiao, Chunping; Li, Jianbin; Zhu, Tong; Draviam, Romesh; Watkins, Simon; Ye, Xiaojing; Chen, Chunlian; Li, Juan; Xiao, Xiao

    2005-08-23

    Congenital muscular dystrophy (CMD) is characterized by severe muscle wasting, premature death in early childhood, and lack of effective treatment. Most of the CMD cases are caused by genetic mutations of laminin-alpha2, which is essential for the structural integrity of muscle extracellular matrix. Here, we report that somatic gene delivery of a structurally unrelated protein, a miniature version of agrin, functionally compensates for laminin-alpha2 deficiency in the murine models of CMD. Adeno-associated virus-mediated overexpression of miniagrin restored the structural integrity of myofiber basal lamina, inhibited interstitial fibrosis, and ameliorated dystrophic pathology. Furthermore, systemic gene delivery of miniagrin into multiple vital muscles significantly improved whole body growth and motility and quadrupled the lifespan (50% survival) of the dystrophic mice. Thus, our study demonstrated the efficacy of somatic gene therapy in a mouse model of CMD. PMID:16103356

  20. Molecular etiopathogenesis of limb girdle muscular and congenital muscular dystrophies: boundaries and contiguities.

    PubMed

    Guglieri, Michela; Magri, Francesca; Comi, Giacomo P

    2005-11-01

    The muscular dystrophies are a heterogeneous group of inherited disorders characterized by progressive muscle wasting and weakness. These disorders present a large clinical variability regarding age of onset, patterns of skeletal muscle involvement, heart damage, rate of progression and mode of inheritance. Difficulties in classification are often caused by the relatively common sporadic occurrence of autosomal recessive forms as well as by intrafamilial clinical variability. Furthermore recent discoveries, particularly regarding the proteins linking the sarcolemma to components of the extracellular matrix, have restricted the gap existing between limb girdle (LGMD) and congenital muscular dystrophies (CMD). Therefore a renewed definition of boundaries between these two groups is required. Molecular genetic studies have demonstrated different causative mutations in the genes encoding a disparate collection of proteins involved in all aspects of muscle cell biology. These novel skeletal muscle genes encode highly diverse proteins with different localization within or at the surface of the skeletal muscle fibre, such as the sarcolemmal muscle membrane (dystrophin, sarcoglycans, dysferlin, caveolin-3), the extracellular matrix (alpha2 laminin, collagen VI), the sarcomere (telethonin, myotilin, titin, nebulin and ZASP), the muscle cytosol (calpain-3, TRIM32), the nucleus (emerin, lamin A/C) and the glycosilation pathway enzymes (fukutin and fukutin related proteins). The accumulating knowledge about the role of these different proteins in muscle pathology has led to a profound change in the original phenotype-based classification and shed new light on the molecular pathogenesis of these disorders. PMID:16002060

  1. Evidence-based guideline summary: Evaluation, diagnosis, and management of congenital muscular dystrophy

    PubMed Central

    Kang, Peter B.; Morrison, Leslie; Iannaccone, Susan T.; Graham, Robert J.; Bönnemann, Carsten G.; Rutkowski, Anne; Hornyak, Joseph; Wang, Ching H.; North, Kathryn; Oskoui, Maryam; Getchius, Thomas S.D.; Cox, Julie A.; Hagen, Erin E.; Gronseth, Gary; Griggs, Robert C.

    2015-01-01

    Objective: To delineate optimal diagnostic and therapeutic approaches to congenital muscular dystrophy (CMD) through a systematic review and analysis of the currently available literature. Methods: Relevant, peer-reviewed research articles were identified using a literature search of the MEDLINE, EMBASE, and Scopus databases. Diagnostic and therapeutic data from these articles were extracted and analyzed in accordance with the American Academy of Neurology classification of evidence schemes for diagnostic, prognostic, and therapeutic studies. Recommendations were linked to the strength of the evidence, other related literature, and general principles of care. Results: The geographic and ethnic backgrounds, clinical features, brain imaging studies, muscle imaging studies, and muscle biopsies of children with suspected CMD help predict subtype-specific diagnoses. Genetic testing can confirm some subtype-specific diagnoses, but not all causative genes for CMD have been described. Seizures and respiratory complications occur in specific subtypes. There is insufficient evidence to determine the efficacy of various treatment interventions to optimize respiratory, orthopedic, and nutritional outcomes, and more data are needed regarding complications. Recommendations: Multidisciplinary care by experienced teams is important for diagnosing and promoting the health of children with CMD. Accurate assessment of clinical presentations and genetic data will help in identifying the correct subtype-specific diagnosis in many cases. Multiorgan system complications occur frequently; surveillance and prompt interventions are likely to be beneficial for affected children. More research is needed to fill gaps in knowledge regarding this category of muscular dystrophies. PMID:25825463

  2. Fukuyama-type congenital muscular dystrophy and defective glycosylation of α-dystroglycan

    PubMed Central

    2011-01-01

    Fukuyama-type congenital muscular dystrophy (FCMD) is a severe form of muscular dystrophy accompanied by abnormalities in the eye and brain. The incidence of FCMD is particularly high in the Japanese population. Mutations in the fukutin gene have been identified in patients with FCMD. Fukutin is predicted to be a Golgi apparatus resident protein and to be involved in the post-translational modification of cell-surface proteins. Recently, progress has been made in our understanding of the molecular mechanisms by which the mutation of fukutin leads to the phenotype of FCMD. Loss of function of fukutin results in defective glycosylation of α-dystroglycan, a central component of the dystrophin-glycoprotein complex, leading to disruption of the linkage between basal lamina and cytoskeleton. This disruption is implicated in the pathogenesis of both the MD and brain anomalies in FCMD. Furthermore, genetic analyses have revealed that the spectrum of the FCMD phenotype is much wider than originally thought. In this review, we summarize the diverging clinical phenotype of FCMD and its molecular pathomechanisms.

  3. Deficiency of merosin in dystrophic dy mouse homologue of congenital muscular dystrophy

    SciTech Connect

    Sunada, Y.; Campbell, K.P.; Bernier, S.M.

    1994-09-01

    Merosin (laminin M chain) is the predominant laminin isoform in the basal lamina of striated muscle and peripheral nerve and is a native ligand for {alpha}-dystroglycan, a novel laminin receptor. Merosin is linked to the subsarcolemmal actin cytoskeleton via the dystrophin-glycoprotein complex (DGC), which plays an important role for maintenance of normal muscle function. We have mapped the mouse merosin gene, Lamm, to the region containing the dystrophia muscularis (dy) locus on chromosome 10. This suggested the possibility that a mutation in the merosin gene could be responsible for the dy mouse, an animal model for autosomal recessive muscular dystrophy, and prompted us to test this hypothesis. We analyzed the status of merosin expression in dy mouse by immunofluorescence and immunoblotting. In dy mouse skeletal and cardiac muscle and peripheral nerve, merosin was reduced greater than 90% as compared to control mice. However, the expression of laminin B1/B2 chains and collagen type IV was smaller to that in control mice. These findings strongly suggest that merosin deficiency may be the primary defect in the dy mouse. Furthermore, we have identified two patients afflicted with congenital muscular dystrophy with merosin deficiency, providing the basis for future studies of molecular pathogenesis and gene therapy.

  4. Controlling the Specificity of Modularly Assembled Small Molecules for RNA via Ligand Module Spacing: Targeting the RNAs that Cause Myotonic Muscular Dystrophy

    PubMed Central

    Lee, Melissa M.; Childs-Disney, Jessica L.; Pushechnikov, Alexei; French, Jonathan M.; Sobczak, Krzysztof; Thornton, Charles A.; Disney, Matthew D.

    2009-01-01

    Myotonic muscular dystrophy types 1 and 2 (DM1 and DM2, respectively) are caused by expansions of repeating nucleotides in non-coding regions of RNA. In DM1, the expansion is an rCUG triplet repeat whereas the DM2 expansion is an rCCUG quadruplet repeat, both of which fold into hairpin structures with periodically repeating internal loops separated by two 5′GC/3′CG base pairs. The sizes of the loops, however, are different: the DM1 repeat forms 1 × 1 nucleotide UU loops while the DM2 repeat forms 2 × 2 nucleotide 5′CU/3′UC loops. DM is caused when the expanded repeats bind the RNA splicing regulator Muscleblind-like 1 protein (MBNL1), thus compromising its function. Therefore, one potential therapeutic strategy for these diseases is to prevent MBNL1 from binding the toxic RNA repeats. Previously, we designed nanomolar inhibitors of the DM2-MBNL1 interaction by modularly assembling 6′-N-5-hexyonate kanamycin A (K) onto a peptoid backbone. The K ligand binds the 2 × 2 pyrimidine-rich internal loops found in the DM2 RNA with high affinity. The best compound identified from that study contains three K modules separated by four propylamine spacing modules and is 20-fold selective over the DM1 RNA. Because the modularly assembled K-containing compounds also bound the DM1 RNA, albeit with lower affinity, and because the loop size is different, we hypothesized that the optimal DM1 RNA binder may display K modules separated by shorter distance between ligand modules. Indeed, the ideal DM1 RNA binder has only two propylamine spacing modules separating the K ligands. Peptoids displaying three and four K modules on a peptoid scaffold bind the DM1 RNA with Kd's of 20 (3-fold selective for DM1 over DM2) and 4 nM (6-fold selective for DM1 over DM2) and inhibit the RNA-protein interaction with IC50's of 40 and 7 nM, respectively. Importantly, by coupling the two studies together, we have determined that appropriate spacing can affect binding selectivity by 60-fold (20

  5. Model organisms in the fight against muscular dystrophy: lessons from drosophila and Zebrafish.

    PubMed

    Plantié, Emilie; Migocka-Patrzałek, Marta; Daczewska, Małgorzata; Jagla, Krzysztof

    2015-01-01

    Muscular dystrophies (MD) are a heterogeneous group of genetic disorders that cause muscle weakness, abnormal contractions and muscle wasting, often leading to premature death. More than 30 types of MD have been described so far; those most thoroughly studied are Duchenne muscular dystrophy (DMD), myotonic dystrophy type 1 (DM1) and congenital MDs. Structurally, physiologically and biochemically, MDs affect different types of muscles and cause individual symptoms such that genetic and molecular pathways underlying their pathogenesis thus remain poorly understood. To improve our knowledge of how MD-caused muscle defects arise and to find efficacious therapeutic treatments, different animal models have been generated and applied. Among these, simple non-mammalian Drosophila and zebrafish models have proved most useful. This review discusses how zebrafish and Drosophila MD have helped to identify genetic determinants of MDs and design innovative therapeutic strategies with a special focus on DMD, DM1 and congenital MDs. PMID:25859781

  6. Genetics Home Reference: myotonic dystrophy

    MedlinePlus

    ... mutated gene produces an expanded version of messenger RNA , which is a molecular blueprint of the gene ... the production of proteins. The abnormally long messenger RNA forms clumps inside the cell that interfere with ...

  7. Mutations in B3GALNT2 Cause Congenital Muscular Dystrophy and Hypoglycosylation of α-Dystroglycan

    PubMed Central

    Stevens, Elizabeth; Carss, Keren J.; Cirak, Sebahattin; Foley, A. Reghan; Torelli, Silvia; Willer, Tobias; Tambunan, Dimira E.; Yau, Shu; Brodd, Lina; Sewry, Caroline A.; Feng, Lucy; Haliloglu, Goknur; Orhan, Diclehan; Dobyns, William B.; Enns, Gregory M.; Manning, Melanie; Krause, Amanda; Salih, Mustafa A.; Walsh, Christopher A.; Hurles, Matthew; Campbell, Kevin P.; Manzini, M. Chiara; Stemple, Derek; Lin, Yung-Yao; Muntoni, Francesco

    2013-01-01

    Mutations in several known or putative glycosyltransferases cause glycosylation defects in α-dystroglycan (α-DG), an integral component of the dystrophin glycoprotein complex. The hypoglycosylation reduces the ability of α-DG to bind laminin and other extracellular matrix ligands and is responsible for the pathogenesis of an inherited subset of muscular dystrophies known as the dystroglycanopathies. By exome and Sanger sequencing we identified two individuals affected by a dystroglycanopathy with mutations in β-1,3-N-acetylgalactosaminyltransferase 2 (B3GALNT2). B3GALNT2 transfers N-acetyl galactosamine (GalNAc) in a β-1,3 linkage to N-acetyl glucosamine (GlcNAc). A subsequent study of a separate cohort of individuals identified recessive mutations in four additional cases that were all affected by dystroglycanopathy with structural brain involvement. We show that functional dystroglycan glycosylation was reduced in the fibroblasts and muscle (when available) of these individuals via flow cytometry, immunoblotting, and immunocytochemistry. B3GALNT2 localized to the endoplasmic reticulum, and this localization was perturbed by some of the missense mutations identified. Moreover, knockdown of b3galnt2 in zebrafish recapitulated the human congenital muscular dystrophy phenotype with reduced motility, brain abnormalities, and disordered muscle fibers with evidence of damage to both the myosepta and the sarcolemma. Functional dystroglycan glycosylation was also reduced in the b3galnt2 knockdown zebrafish embryos. Together these results demonstrate a role for B3GALNT2 in the glycosylation of α-DG and show that B3GALNT2 mutations can cause dystroglycanopathy with muscle and brain involvement. PMID:23453667

  8. Ullrich congenital muscular dystrophy: clinicopathological features, natural history and pathomechanism(s).

    PubMed

    Yonekawa, Takahiro; Nishino, Ichizo

    2015-03-01

    Collagen VI is widely distributed throughout extracellular matrices (ECMs) in various tissues. In skeletal muscle, collagen VI is particularly concentrated in and adjacent to basement membranes of myofibers. Ullrich congenital muscular dystrophy (UCMD) is caused by mutations in either COL6A1, COL6A2 or COL6A3 gene, thereby leading to collagen VI deficiency in the ECM. It is known to occur through either recessive or dominant genetic mechanism, the latter most typically by de novo mutations. UCMD is well defined by the clinicopathological hallmarks including distal hyperlaxity, proximal joint contractures, protruding calcanei, scoliosis and respiratory insufficiency. Recent reports have depicted the robust natural history of UCMD; that is, loss of ambulation by early teenage years, rapid decline in respiratory function by 10 years of age and early-onset, rapidly progressive scoliosis. Muscle pathology is characterised by prominent interstitial fibrosis disproportionate to the relative paucity of necrotic and regenerating fibres. To date, treatment for patients is supportive for symptoms such as joint contractures, respiratory failure and scoliosis. There have been clinical trials based on the theory of mitochondrion-mediated myofiber apoptosis or impaired autophagy. Furthermore, the fact that collagen VI producing cells in skeletal muscle are interstitial mesenchymal cells can support proof of concept for stem cell-based therapy. PMID:24938411

  9. Role of Decorin Core Protein in Collagen Organisation in Congenital Stromal Corneal Dystrophy (CSCD)

    PubMed Central

    Kamma-Lorger, Christina S.; Pinali, Christian; Martínez, Juan Carlos; Harris, Jon; Young, Robert D.; Bredrup, Cecilie; Crosas, Eva; Malfois, Marc; Rødahl, Eyvind

    2016-01-01

    The role of Decorin in organising the extracellular matrix was examined in normal human corneas and in corneas from patients with Congenital Stromal Corneal Dystrophy (CSCD). In CSCD, corneal clouding occurs due to a truncating mutation (c.967delT) in the decorin (DCN) gene. Normal human Decorin protein and the truncated one were reconstructed in silico using homology modelling techniques to explore structural changes in the diseased protein. Corneal CSCD specimens were also examined using 3-D electron tomography and Small Angle X-ray diffraction (SAXS), to image the collagen-proteoglycan arrangement and to quantify fibrillar diameters, respectively. Homology modelling showed that truncated Decorin had a different spatial geometry to the normal one, with the truncation removing a major part of the site that interacts with collagen, compromising its ability to bind effectively. Electron tomography showed regions of abnormal stroma, where collagen fibrils came together to form thicker fibrillar structures, showing that Decorin plays a key role in the maintenance of the order in the normal corneal extracellular matrix. Average diameter of individual fibrils throughout the thickness of the cornea however remained normal. PMID:26828927

  10. SLC4A11 and the Pathophysiology of Congenital Hereditary Endothelial Dystrophy.

    PubMed

    Patel, Sangita P; Parker, Mark D

    2015-01-01

    Congenital hereditary endothelial dystrophy (CHED) is a rare autosomal recessive disorder of the corneal endothelium characterized by nonprogressive bilateral corneal edema and opacification present at birth. Here we review the current knowledge on the role of the SLC4A11 gene, protein, and its mutations in the pathophysiology and clinical presentation of CHED. Individuals with CHED have mutations in SLC4A11 which encodes a transmembrane protein in the SLC4 family of bicarbonate transporters. The expression of SLC4A11 in the corneal endothelium and inner ear patterns the deficits seen in CHED with corneal edema and hearing loss (Harboyan syndrome). slc4a11-null-mouse models recapitulate the CHED disease phenotype, thus establishing a functional role for SLC4A11 in CHED. However, the transport function of SLC4A11 remains unsettled. Some of the roles that have been attributed to SLC4A11 include H(+) and NH4 (+) permeation, electrogenic Na(+)-H(+) exchange, and water transport. Future studies of the consequences of SLC4A11 dysfunction as well as further understanding of corneal endothelial ion transport will help clarify the involvement of SLC4A11 in the pathophysiology of CHED. PMID:26451371

  11. SLC4A11 and the Pathophysiology of Congenital Hereditary Endothelial Dystrophy

    PubMed Central

    Patel, Sangita P.; Parker, Mark D.

    2015-01-01

    Congenital hereditary endothelial dystrophy (CHED) is a rare autosomal recessive disorder of the corneal endothelium characterized by nonprogressive bilateral corneal edema and opacification present at birth. Here we review the current knowledge on the role of the SLC4A11 gene, protein, and its mutations in the pathophysiology and clinical presentation of CHED. Individuals with CHED have mutations in SLC4A11 which encodes a transmembrane protein in the SLC4 family of bicarbonate transporters. The expression of SLC4A11 in the corneal endothelium and inner ear patterns the deficits seen in CHED with corneal edema and hearing loss (Harboyan syndrome). slc4a11-null-mouse models recapitulate the CHED disease phenotype, thus establishing a functional role for SLC4A11 in CHED. However, the transport function of SLC4A11 remains unsettled. Some of the roles that have been attributed to SLC4A11 include H+ and NH4+ permeation, electrogenic Na+-H+ exchange, and water transport. Future studies of the consequences of SLC4A11 dysfunction as well as further understanding of corneal endothelial ion transport will help clarify the involvement of SLC4A11 in the pathophysiology of CHED. PMID:26451371

  12. Ovine congenital progressive muscular dystrophy: clinical syndrome and distribution of lesions.

    PubMed

    Richards, R B; Passmore, I K; Bretag, A H; Kakulas, B A; McQuade, N C

    1986-12-01

    The distribution and severity of lesions in the skeletal muscles of 37 Merino sheep with congenital progressive muscular dystrophy (CPMD) are described. An explanation for the clinical signs is offered on the basis of functional defects in regional muscle groups. Lesions in the extensors of the hip, stifle and hock joints and flexors of the digits are primarily responsible for the progressive abnormality of hind limb gait that is characteristic of the clinical syndrome. Lesions in extensors of the elbow and flexors of the shoulder, carpus and digits affected fore limb function in advanced cases. The tendency for some affected sheep to develop ruminal tympany is probably caused by lesions in the diaphragmatic crus. Clinically affected sheep had higher resting and post-exercise concentrations of serum creatine phosphokinase and lactic dehydrogenase than unaffected control sheep. The rise in serum creatine phosphokinase after exercise was greater in affected sheep than in controls. Myotonia was not demonstrated in electromyographic studies in one sheep. PMID:3800794

  13. High-content screening identifies small molecules that remove nuclear foci, affect MBNL distribution and CELF1 protein levels via a PKC-independent pathway in myotonic dystrophy cell lines.

    PubMed

    Ketley, Ami; Chen, Catherine Z; Li, Xin; Arya, Sukrat; Robinson, Thelma E; Granados-Riveron, Javier; Udosen, Inyang; Morris, Glenn E; Holt, Ian; Furling, Denis; Chaouch, Soraya; Haworth, Ben; Southall, Noel; Shinn, Paul; Zheng, Wei; Austin, Christopher P; Hayes, Christopher J; Brook, J David

    2014-03-15

    Myotonic dystrophy (DM) is a multi-system neuromuscular disorder for which there is no treatment. We have developed a medium throughput phenotypic assay, based on the identification of nuclear foci in DM patient cell lines using in situ hybridization and high-content imaging to screen for potentially useful therapeutic compounds. A series of further assays based on molecular features of DM have also been employed. Two compounds that reduce and/or remove nuclear foci have been identified, Ro 31-8220 and chromomycin A3. Ro 31-8220 is a PKC inhibitor, previously shown to affect the hyperphosphorylation of CELF1 and ameliorate the cardiac phenotype in a DM1 mouse model. We show that the same compound eliminates nuclear foci, reduces MBNL1 protein in the nucleus, affects ATP2A1 alternative splicing and reduces steady-state levels of CELF1 protein. We demonstrate that this effect is independent of PKC activity and conclude that this compound may be acting on alternative kinase targets within DM pathophysiology. Understanding the activity profile for this compound is key for the development of targeted therapeutics in the treatment of DM. PMID:24179176

  14. Elevated serum creatine kinase and small cerebellum prompt diagnosis of congenital muscular dystrophy due to FKRP mutations.

    PubMed

    Trovato, Rosanna; Astrea, Guja; Bartalena, Laura; Ghirri, Paolo; Baldacci, Jacopo; Giampietri, Matteo; Battini, Roberta; Santorelli, Filippo M; Fiorillo, Chiara

    2014-03-01

    Fukutin-related protein (FKRP) is a putative glycosyltransferase that mediate O-linked glycosylation of the α-dystroglycan. Mutations in the FKRP gene cause a spectrum of diseases ranging from a limb girdle muscular dystrophy 2I (LGMD2I), to severe Walker-Warburg or muscle-eye-brain forms and a congenital muscular dystrophy (with or without mental retardation) termed MDC1C. This article reports on a Moroccan infant who presented at birth with moderate floppiness, high serum creatine kinase (CK) levels, and brain ultrasonograph suggestive of widening of the posterior fossa. Muscle biopsy displayed moderate dystrophic pattern with complete absence of α-distroglycan and genetic studies identified a homozygous missense variant in FKRP. Mutations in FKRP should be looked for in forms of neonatal-onset hyperCKaemia with floppiness and small cerebellum. PMID:23420653

  15. Nutritional status evaluation in patients affected by bethlem myopathy and ullrich congenital muscular dystrophy.

    PubMed

    Toni, Silvia; Morandi, Riccardo; Busacchi, Marcello; Tardini, Lucia; Merlini, Luciano; Battistini, Nino Carlo; Pellegrini, Massimo

    2014-01-01

    Collagen VI mutations lead to disabling myopathies like Bethlem myopathy (BM) and Ullrich congenital muscular dystrophy (UCMD). We have investigated the nutritional and metabolic status of one UCMD and seven BM patients (five female, three male, mean age 31 ± 9 years) in order to find a potential metabolic target for nutritional intervention. For this study, we used standard anthropometric tools, such as BMI evaluation and body circumference measurements. All results were compared to dual-energy X-ray absorptiometry (DXA), considered the "gold standard" method. Energy intake of each patient was evaluated through longitudinal methods (7-day food diary) while resting energy expenditure (REE) was predicted using specific equations and measured by indirect calorimetry. Clinical evaluation included general and nutritional blood and urine laboratory analyses and quantitative muscle strength measurement by hand-held dynamometry. BM and UCMD patients showed an altered body composition, characterized by low free fat mass (FFM) and high fat mass (FM), allowing us to classify them as sarcopenic, and all but one as sarcopenic-obese. Another main result was the negative correlation between REE/FFM ratio (basal energy expenditure per kilograms of fat-free mass) and the severity of the disease, as defined by the muscle megascore (correlation coefficient -0.955, P-value <0.001). We postulate that the increase of the REE/FFM ratio in relation to the severity of the disease may be due to an altered and pathophysiological loss of energetic efficiency at the expense of skeletal muscle. We show that a specific metabolic disequilibrium is related to the severity of the disease, which may represent a target for a nutritional intervention in these patients. PMID:25477818

  16. Nutritional Status Evaluation in Patients Affected by Bethlem Myopathy and Ullrich Congenital Muscular Dystrophy

    PubMed Central

    Toni, Silvia; Morandi, Riccardo; Busacchi, Marcello; Tardini, Lucia; Merlini, Luciano; Battistini, Nino Carlo; Pellegrini, Massimo

    2014-01-01

    Collagen VI mutations lead to disabling myopathies like Bethlem myopathy (BM) and Ullrich congenital muscular dystrophy (UCMD). We have investigated the nutritional and metabolic status of one UCMD and seven BM patients (five female, three male, mean age 31 ± 9 years) in order to find a potential metabolic target for nutritional intervention. For this study, we used standard anthropometric tools, such as BMI evaluation and body circumference measurements. All results were compared to dual-energy X-ray absorptiometry (DXA), considered the “gold standard” method. Energy intake of each patient was evaluated through longitudinal methods (7-day food diary) while resting energy expenditure (REE) was predicted using specific equations and measured by indirect calorimetry. Clinical evaluation included general and nutritional blood and urine laboratory analyses and quantitative muscle strength measurement by hand-held dynamometry. BM and UCMD patients showed an altered body composition, characterized by low free fat mass (FFM) and high fat mass (FM), allowing us to classify them as sarcopenic, and all but one as sarcopenic-obese. Another main result was the negative correlation between REE/FFM ratio (basal energy expenditure per kilograms of fat-free mass) and the severity of the disease, as defined by the muscle megascore (correlation coefficient −0.955, P-value <0.001). We postulate that the increase of the REE/FFM ratio in relation to the severity of the disease may be due to an altered and pathophysiological loss of energetic efficiency at the expense of skeletal muscle. We show that a specific metabolic disequilibrium is related to the severity of the disease, which may represent a target for a nutritional intervention in these patients. PMID:25477818

  17. Refined mapping of a gene responsible for Fukuyama-type congenital muscular dystrophy: Evidence for strong linkage disequilibrium

    SciTech Connect

    Toda, Tatsushi; Ikegawa, Shiro; Okui, Keiko; Nakamura, Yusuke; Kanazawa, Ichiro; Kondo, Eri; Saito, Kayoko; Fukuyama, Yukio; Yoshioka, Mieko; Kumagai, Toshiyuki

    1994-11-01

    Fukuyama-type congenital muscular dystrophy (FCMD), the second most common form of childhood muscular dystrophy in Japan, is an autosomal recessive severe muscular dystrophy associated with an anomaly of the brain. After our initial mapping of the FCMD locus to chromosome 9q31-33, we further defined the locus within a region of {approximately}5 cM between loci D9S127 and CA246, by homozygosity mapping in patients born to consanguineous marriages and by recombination analyses in other families. We also found evidence for strong linkage disequilibrium between FCMD and a polymorphic microsatellite marker, mfd220, which showed no recombination and a lod score of (Z) 17.49. A {open_quotes}111-bp{close_quotes} allele for the mfd220 was observed in 22 (34%) of 64 FCMD chromosomes, but it was present in only 1 of 120 normal chromosomes. This allelic association with FCMD was highly significant ({chi}{sup 2} = 50.7; P < .0001). Hence, we suspect that the FCMD gene could lie within a few hundred kilobases of the mfd220 locus. 32 refs., 2 figs., 2 tabs.

  18. Whole Exome Sequencing Reveals DYSF, FKTN, and ISPD Mutations in Congenital Muscular Dystrophy Without Brain or Eye Involvement

    PubMed Central

    Ceyhan-Birsoy, Ozge; Talim, Beril; Swanson, Lindsay C.; Karakaya, Mert; Graff, Michelle A.; Beggs, Alan H.; Topaloglu, Haluk

    2015-01-01

    Background Congenital muscular dystrophies (CMDs) are a genetically and clinically heterogeneous group of neuromuscular disorders. Several genes encoding extracellular matrix, nuclear envelope, sarcolemmal proteins and glycosylation enzymes have been implicated in CMDs. The large overlap of clinical presentations due to mutations in different genes poses a challenge for clinicians in determining disease etiology for each patient. Objective We investigated the use of whole exome sequencing (WES) in identifying the genetic cause of disease in 5 CMD patients from 3 families who presented with highly similar clinical features, including early-onset rapidly progressive weakness without brain or eye abnormalities. Methods Whole exome sequencing was performed on DNA from affected individuals. Potential functional impacts of mutations were investigated by immunostaining on available muscle biopsies. Results Pathogenic mutations in 3 different genes, DYSF, FKTN, and ISPD were identified in each family. Mutation in DYSF led to absence of dysferlin protein in patient muscle. Mutations in ISPD led to impaired ISDP function, as demonstrated by deficiency of α-dystroglycan glycosylation in patient muscle. Conclusions This study highlights the benefit of unbiased genomic approaches in molecular diagnosis of neuromuscular disorders with high clinical heterogeneity, such as the phenotypes observed in our patients. Our results suggest that dysferlin deficiency should be in the differential diagnosis of congenital and rapidly progressive muscular dystrophy, and therefore dysferlin antibody should be in the standard immunohistochemistry panel for muscle biopsies in cases with suspected CMD. PMID:25821721

  19. Assessment of Target Enrichment Platforms Using Massively Parallel Sequencing for the Mutation Detection for Congenital Muscular Dystrophy

    PubMed Central

    Valencia, C. Alexander; Rhodenizer, Devin; Bhide, Shruti; Chin, Ephrem; Littlejohn, Martin Robert; Keong, Lisa Mari; Rutkowski, Anne; Bonnemann, Carsten; Hegde, Madhuri

    2012-01-01

    Sequencing individual genes by Sanger sequencing is a time-consuming and costly approach to resolve clinically heterogeneous genetic disorders. Panel testing offers the ability to efficiently and cost-effectively screen all of the genes for a particular genetic disorder. We assessed the analytical sensitivity and specificity of two different enrichment technologies, solution-based hybridization and microdroplet-based PCR target enrichment, in conjunction with next-generation sequencing (NGS), to identify mutations in 321 exons representing 12 different genes involved with congenital muscular dystrophies. Congenital muscular dystrophies present diagnostic challenges due to phenotypic variability, lack of standard access to and inherent difficulties with muscle immunohistochemical stains, and a general lack of clinician awareness. NGS results were analyzed across several parameters, including sequencing metrics and genotype concordance with Sanger sequencing. Genotyping data showed that both enrichment technologies produced suitable calls for use in clinical laboratories. However, microdroplet-based PCR target enrichment is more appropriate for a clinical laboratory, due to excellent sequence specificity and uniformity, reproducibility, high coverage of the target exons, and the ability to distinguish the active gene versus known pseudogenes. Regardless of the method, exons with highly repetitive and high GC regions are not well enriched and require Sanger sequencing for completeness. Our study demonstrates the successful application of targeted sequencing in conjunction with NGS to screen for mutations in hundreds of exons in a genetically heterogeneous human disorder. PMID:22426012

  20. Fukutin mutations in non-Japanese patients with congenital muscular dystrophy: less severe mutations predominate in patients with a non-Walker-Warburg phenotype.

    PubMed

    Yis, Uluc; Uyanik, Gökhan; Heck, Pinar Bambul; Smitka, Martin; Nobel, Hannes; Ebinger, Friedrich; Dirik, Eray; Feng, Lucy; Kurul, Semra H; Brocke, Katja; Unalp, Aycan; Özer, Erdener; Cakmakci, Handan; Sewry, Caroline; Cirak, Sebahattin; Muntoni, Francesco; Hehr, Ute; Morris-Rosendahl, Deborah J

    2011-01-01

    Six genes including POMT1, POMT2, POMGNT1, FKRP, Fukutin (FKTN) and LARGE encode proteins involved in the glycosylation of α-dystroglycan (α-DG). Abnormal glycosylation of α-DG is a common finding in Walker-Warburg syndrome (WWS), muscle-eye-brain disease (MEB), Fukuyama congenital muscular dystrophy (FCMD), congenital muscular dystrophy types 1C and 1D and some forms of autosomal recessive limb-girdle muscular dystrophy (LGMD2I, LGMD2K, LGMD2M), and is associated with mutations in the above genes. FCMD, caused by mutations in Fukutin (FKTN), is most frequent in Japan, but an increasing number of FKTN mutations are being reported outside of Japan. We describe four new patients with FKTN mutations and phenotypes ranging from: severe WWS in a Greek-Croatian patient, to congenital muscular dystrophy and cobblestone lissencephaly resembling MEB-FCMD in two Turkish patients, and limb-girdle muscular dystrophy and no mental retardation in a German patient. Four of the five different FKTN mutations have not been previously described. PMID:20961758

  1. A polymorphism in the MSH3 mismatch repair gene is associated with the levels of somatic instability of the expanded CTG repeat in the blood DNA of myotonic dystrophy type 1 patients.

    PubMed

    Morales, Fernando; Vásquez, Melissa; Santamaría, Carolina; Cuenca, Patricia; Corrales, Eyleen; Monckton, Darren G

    2016-04-01

    Somatic mosaicism of the expanded CTG repeat in myotonic dystrophy type 1 is age-dependent, tissue-specific and expansion-biased, contributing toward the tissue-specificity and progressive nature of the symptoms. Previously, using regression modelling of repeat instability we showed that variation in the rate of somatic expansion in blood DNA contributes toward variation in age of onset, directly implicating somatic expansion in the disease pathway. Here, we confirm these results using a larger more genetically homogenous Costa Rican DM1 cohort (p<0.001). Interestingly, we also provide evidence that supports subtle sex-dependent differences in repeat length-dependent age at onset and somatic mutational dynamics. Previously, we demonstrated that variation in the rate of somatic expansion was a heritable quantitative trait. Given the important role that DNA mismatch repair genes play in mediating expansions in mouse models, we tested for modifier gene effects with 13 DNA mismatch gene polymorphisms (one each in MSH2, PMS2, MSH6 and MLH1; and nine in MSH3). After correcting for allele length and age effects, we identified three polymorphisms in MSH3 that were associated with variation in somatic instability: Rs26279 (p=0.003); Rs1677658 (p=0.009); and Rs10168 (p=0.031). However, only the association with Rs26279 remained significant after multiple testing correction. Although we revealed a statistically significant association between Rs26279 and somatic instability, we did not detect an association with the age at onset. Individuals with the A/A genotype for Rs26279 tended to show a greater propensity to expand the CTG repeat than other genotypes. Interestingly, this SNP results in an amino acid change in the critical ATPase domain of MSH3 and is potentially functionally dimorphic. These data suggest that MSH3 is a key player in generating somatic variation in DM1 patients and further highlight MSH3 as a potential therapeutic target. PMID:26994442

  2. Mutations in GDP-Mannose Pyrophosphorylase B Cause Congenital and Limb-Girdle Muscular Dystrophies Associated with Hypoglycosylation of α-Dystroglycan

    PubMed Central

    Carss, Keren J.; Stevens, Elizabeth; Foley, A. Reghan; Cirak, Sebahattin; Riemersma, Moniek; Torelli, Silvia; Hoischen, Alexander; Willer, Tobias; van Scherpenzeel, Monique; Moore, Steven A.; Messina, Sonia; Bertini, Enrico; Bönnemann, Carsten G.; Abdenur, Jose E.; Grosmann, Carla M.; Kesari, Akanchha; Punetha, Jaya; Quinlivan, Ros; Waddell, Leigh B.; Young, Helen K.; Wraige, Elizabeth; Yau, Shu; Brodd, Lina; Feng, Lucy; Sewry, Caroline; MacArthur, Daniel G.; North, Kathryn N.; Hoffman, Eric; Stemple, Derek L.; Hurles, Matthew E.; van Bokhoven, Hans; Campbell, Kevin P.; Lefeber, Dirk J.; Lin, Yung-Yao; Muntoni, Francesco

    2013-01-01

    Congenital muscular dystrophies with hypoglycosylation of α-dystroglycan (α-DG) are a heterogeneous group of disorders often associated with brain and eye defects in addition to muscular dystrophy. Causative variants in 14 genes thought to be involved in the glycosylation of α-DG have been identified thus far. Allelic mutations in these genes might also cause milder limb-girdle muscular dystrophy phenotypes. Using a combination of exome and Sanger sequencing in eight unrelated individuals, we present evidence that mutations in guanosine diphosphate mannose (GDP-mannose) pyrophosphorylase B (GMPPB) can result in muscular dystrophy variants with hypoglycosylated α-DG. GMPPB catalyzes the formation of GDP-mannose from GTP and mannose-1-phosphate. GDP-mannose is required for O-mannosylation of proteins, including α-DG, and it is the substrate of cytosolic mannosyltransferases. We found reduced α-DG glycosylation in the muscle biopsies of affected individuals and in available fibroblasts. Overexpression of wild-type GMPPB in fibroblasts from an affected individual partially restored glycosylation of α-DG. Whereas wild-type GMPPB localized to the cytoplasm, five of the identified missense mutations caused formation of aggregates in the cytoplasm or near membrane protrusions. Additionally, knockdown of the GMPPB ortholog in zebrafish caused structural muscle defects with decreased motility, eye abnormalities, and reduced glycosylation of α-DG. Together, these data indicate that GMPPB mutations are responsible for congenital and limb-girdle muscular dystrophies with hypoglycosylation of α-DG. PMID:23768512

  3. Melanocytes from Patients Affected by Ullrich Congenital Muscular Dystrophy and Bethlem Myopathy have Dysfunctional Mitochondria That Can be Rescued with Cyclophilin Inhibitors

    PubMed Central

    Zulian, Alessandra; Tagliavini, Francesca; Rizzo, Erika; Pellegrini, Camilla; Sardone, Francesca; Zini, Nicoletta; Maraldi, Nadir Mario; Santi, Spartaco; Faldini, Cesare; Merlini, Luciano; Petronilli, Valeria; Bernardi, Paolo; Sabatelli, Patrizia

    2014-01-01

    Ullrich congenital muscular dystrophy and Bethlem myopathy are caused by mutations in collagen VI (ColVI) genes, which encode an extracellular matrix protein; yet, mitochondria play a major role in disease pathogenesis through a short circuit caused by inappropriate opening of the permeability transition pore, a high-conductance channel, which causes a shortage in ATP production. We find that melanocytes do not produce ColVI yet they bind it at the cell surface, suggesting that this protein may play a trophic role and that its absence may cause lesions similar to those seen in skeletal muscle. We show that mitochondria in melanocytes of Ullrich congenital muscular dystrophy and Bethlem myopathy patients display increased size, reduced matrix density, and disrupted cristae, findings that suggest a functional impairment. In keeping with this hypothesis, mitochondria (i) underwent anomalous depolarization after inhibition of the F-ATP synthase with oligomycin, and (ii) displayed decreased respiratory reserve capacity. The non-immunosuppressive cyclophilin inhibitor NIM811 prevented mitochondrial depolarization in response to oligomycin in melanocytes from both Ullrich congenital muscular dystrophy and Bethlem myopathy patients, and partially restored the respiratory reserve of melanocytes from one Bethlem myopathy patient. These results match our recent findings on melanocytes from patients affected by Duchenne muscular dystrophy (Pellegrini et al., 2013), and suggest that skin biopsies may represent a minimally invasive tool to investigate mitochondrial dysfunction and to evaluate drug efficacy in ColVI-related myopathies and possibly in other muscle wasting conditions like aging sarcopenia. PMID:25477819

  4. Melanocytes from Patients Affected by Ullrich Congenital Muscular Dystrophy and Bethlem Myopathy have Dysfunctional Mitochondria That Can be Rescued with Cyclophilin Inhibitors.

    PubMed

    Zulian, Alessandra; Tagliavini, Francesca; Rizzo, Erika; Pellegrini, Camilla; Sardone, Francesca; Zini, Nicoletta; Maraldi, Nadir Mario; Santi, Spartaco; Faldini, Cesare; Merlini, Luciano; Petronilli, Valeria; Bernardi, Paolo; Sabatelli, Patrizia

    2014-01-01

    Ullrich congenital muscular dystrophy and Bethlem myopathy are caused by mutations in collagen VI (ColVI) genes, which encode an extracellular matrix protein; yet, mitochondria play a major role in disease pathogenesis through a short circuit caused by inappropriate opening of the permeability transition pore, a high-conductance channel, which causes a shortage in ATP production. We find that melanocytes do not produce ColVI yet they bind it at the cell surface, suggesting that this protein may play a trophic role and that its absence may cause lesions similar to those seen in skeletal muscle. We show that mitochondria in melanocytes of Ullrich congenital muscular dystrophy and Bethlem myopathy patients display increased size, reduced matrix density, and disrupted cristae, findings that suggest a functional impairment. In keeping with this hypothesis, mitochondria (i) underwent anomalous depolarization after inhibition of the F-ATP synthase with oligomycin, and (ii) displayed decreased respiratory reserve capacity. The non-immunosuppressive cyclophilin inhibitor NIM811 prevented mitochondrial depolarization in response to oligomycin in melanocytes from both Ullrich congenital muscular dystrophy and Bethlem myopathy patients, and partially restored the respiratory reserve of melanocytes from one Bethlem myopathy patient. These results match our recent findings on melanocytes from patients affected by Duchenne muscular dystrophy (Pellegrini et al., 2013), and suggest that skin biopsies may represent a minimally invasive tool to investigate mitochondrial dysfunction and to evaluate drug efficacy in ColVI-related myopathies and possibly in other muscle wasting conditions like aging sarcopenia. PMID:25477819

  5. YAC and cosmid contigs encompassing the Fukuyama-type congenital muscular dystrophy (FCMD) candidate region on 9q31

    SciTech Connect

    Miyake, Masashi; Nakahori, Yutaka; Matsushita, Ikumi

    1997-03-01

    Fukuyama-type congenital muscular dystrophy (FCMD), the second most common form of childhood muscular dystrophy in Japan, is an autosomal recessive severe muscular dystrophy associated with an anomaly of the brain. We had mapped the FCMD gene to an approximately 5-cM interval between D9S127 and D9S2111 on 9q31-q33 and had also found evidence for linkage disequilibrium between FCMD and D9S306 in this candidate region. Through further analysis, we have defined another marker, D9S172, which showed stronger linkage disequilibrium than D9S306. A yeast artificial chromosome (YAC) contig spanning 3.5 Mb, which includes this D9S306-D9S172 interval on 9q31, has been constructed by a combination of sequence-tagged site, Alu-PCR, and restriction mapping. Also, cosmid clones subcloned from the YAC were assembled into three contigs, one of which contains D9S2107, which showed the strongest linkage disequilibrium with FCMD. These contigs also allowed us to order the markers as follows: cen-D9S127-({approximately}800 kb)-D9S306 (identical to D9S53)-({approximately}700 kb)-A107XF9-({approximately}500 kb)-D9S172-({approximately}30 kb)-D9S299 (identical to D9S774)-({approximately}120 kb)-WI2269-tel. Thus, we have constructed the first high-resolution physical map of the FCMD candidate region. The YAC and cosmid contigs established here will be a crucial resource for identification of the FCMD gene and other genes in this region. 37 refs., 7 figs., 2 tabs.

  6. Transcriptome Analysis of Ullrich Congenital Muscular Dystrophy Fibroblasts Reveals a Disease Extracellular Matrix Signature and Key Molecular Regulators

    PubMed Central

    Rodríguez, Maria Angels; Jou, Cristina; Puigdelloses, Montserrat; Ortez, Carlos I.; Diaz-Manera, Jordi; Gallardo, Eduardo; Colomer, Jaume; Nascimento, Andrés; Kalko, Susana G.; Jimenez-Mallebrera, Cecilia

    2015-01-01

    Background Collagen VI related myopathies encompass a range of phenotypes with involvement of skeletal muscle, skin and other connective tissues. They represent a severe and relatively common form of congenital disease for which there is no treatment. Collagen VI in skeletal muscle and skin is produced by fibroblasts. Aims & Methods In order to gain insight into the consequences of collagen VI mutations and identify key disease pathways we performed global gene expression analysis of dermal fibroblasts from patients with Ullrich Congenital Muscular Dystrophy with and without vitamin C treatment. The expression data were integrated using a range of systems biology tools. Results were validated by real-time PCR, western blotting and functional assays. Findings We found significant changes in the expression levels of almost 600 genes between collagen VI deficient and control fibroblasts. Highly regulated genes included extracellular matrix components and surface receptors, including integrins, indicating a shift in the interaction between the cell and its environment. This was accompanied by a significant increase in fibroblasts adhesion to laminin. The observed changes in gene expression profiling may be under the control of two miRNAs, miR-30c and miR-181a, which we found elevated in tissue and serum from patients and which could represent novel biomarkers for muscular dystrophy. Finally, the response to vitamin C of collagen VI mutated fibroblasts significantly differed from healthy fibroblasts. Vitamin C treatment was able to revert the expression of some key genes to levels found in control cells raising the possibility of a beneficial effect of vitamin C as a modulator of some of the pathological aspects of collagen VI related diseases. PMID:26670220

  7. Sternohyoid muscle fatigue properties of dy/dy dystrophic mice, an animal model of merosin-deficient congenital muscular dystrophy.

    PubMed

    van Lunteren, Erik; Moyer, Michelle

    2003-10-01

    Humans with merosin-deficient congenital muscular dystrophy have both sucking problems during infancy and sleep-disordered breathing during childhood. We hypothesized that merosin-deficient pharyngeal muscles fatigue faster than normal muscles. This was tested in vitro using sternohyoid muscle from an animal model of this disease, the dy/dy dystrophic mouse. Isometric twitch contraction and half-relaxation times were similar for dy/dy and normal sternohyoid. However, rate of force loss during repetitive 25-Hz train stimulation was markedly diminished in dystrophic compared with normal sternohyoid muscle. Furthermore, force potentiation, which occurred during the early portion of the fatigue-inducing stimulation, had a longer duration in dystrophic compared with normal muscle (approximately 60 versus 20 s). As a result of these two processes, at the end of 2 min of stimulation, force of dystrophic muscle had decreased by 8 +/- 5% and that of normal muscle by 69 +/- 4% (p < 0.0001). The potassium-channel blocker, 3,4-diaminopyridine, increased force of dy/dy sternohyoid muscle during twitch and 25-Hz contractions by 148 +/- 20% (p < 0.00001) and 109 +/- 18% (p < 0.00002), respectively. During repetitive 25-Hz stimulation, force of 3,4-diaminopyridine-treated dystrophic muscle remained significantly higher than that of untreated muscle, despite the early force potentiation being eliminated and fatigue being accelerated. Thus, merosin deficiency reduces fatigue and prolongs the duration of force potentiation. The latter alterations may partially preserve the integrity of upper airway muscle function, without which the severity of pharyngeal complications (feeding problems, sleep-related respiratory dysfunction) might be even more pronounced in the human merosin-deficient congenital muscular dystrophies. PMID:12840158

  8. Limb–Girdle and Congenital Muscular Dystrophies: Current Diagnostics, Management, and Emerging Technologies

    PubMed Central

    Rocha, Carolina Tesi; Hoffman, Eric P.

    2014-01-01

    The muscular dystrophies show muscle degeneration and regeneration (necrotizing myopathy) on muscle biopsy, typically associated with elevated serum creatine kinase, and muscle weakness. In 1986, the first causative gene was identified for the most prevalent and best-characterized form of muscular dystrophy, Duchenne muscular dystrophy. Over the past 25 years, the number of other genes determined to cause different subtypes has grown rapidly. This review gives a synopsis of the 45 genetically defined types of muscular dystrophies and describes the clinical, pathologic, and molecular aspects of each disease. DNA diagnosis remains the most sensitive and specific method for differential diagnosis, but molecular diagnostics can be expensive and complex (because of multiple genes at multiple testing facilities) and reimbursement may be challenging to obtain. However, emerging DNA sequencing technologies (eg, single-molecule thirdgeneration sequencing units) promise to dramatically reduce the complexity and costs of DNA diagnostics. Treatment for nearly all forms remains supportive and is aimed at preventing complications. However, several promising approaches have entered clinical trials, providing tangible hope that quality of life will improve for many patients in the near future. PMID:20467841

  9. An Open-Label Trial of Recombinant Human Insulin-Like Growth Factor-I/Recombinant Human Insulin-Like Growth Factor Binding Protein-3 (rhIGF-1/rhIGFBP-3) in Myotonic Dystrophy Type 1

    PubMed Central

    Heatwole, Chad R.; Eichinger, Katy J.; Friedman, Deborah I.; Hilbert, James E.; Jackson, Carlayne E.; Logigian, Eric L.; Martens, William B.; McDermott, Michael P.; Pandya, Shree K.; Quinn, Christine; Smirnow, Alexis M.; Thornton, Charles A.; Moxley, Richard T.

    2012-01-01

    Objective To evaluate the safety and tolerability of recombinant human insulin-like growth factor-1 (rhIGF-1) complexed with IGF binding protein-3 (rhIGF-1/rhIGFBP-3) in patients with myotonic dystrophy type 1 (DM1). Design Open-label dose-escalation clinical trial. Setting University medical center. Participants Fifteen moderately affected ambulatory participants with genetically-proven DM1. Intervention Participants received escalating dosages of subcutaneous rhIGF-1/rhIGFBP-3 over 24 weeks followed by a 16 week washout period. Outcome Measures Serial assessments of safety, muscle mass, muscle function, and metabolic state were performed. The primary outcome variable was the ability of participants to complete 24 weeks on rhIGF-1/rhIGFBP-3 treatment. Results All participants tolerated rhIGF-1/rhIGFBP-3. There were no significant changes in muscle strength or functional outcomes measures. Lean body muscle mass measured by dual energy x-ray absorptiometry increased by 1.95 kg (p=0.0007) after treatment. Participants also experienced a mean reduction in triglyceride levels of 47 mg/dL (p=0.002), a mean increase in HDL levels of 5.0 mg/dL (p=0.03), a mean reduction in HbA1c of 0.15% (p=0.03), and a mean increase in testosterone level (in men) of 203 ng/dL (p=0.002) while on rhIGF-1/rhIGFBP-3. Mild reactions at the injection site occurred (n=9 participants), as did mild transient hypoglycemia (n=3), lightheadedness (n=2), and transient papilledema (n=1). Conclusions rhIGF-1/rhIGFBP-3 treatment was generally well tolerated in DM1. rhIGF-1/rhIGFBP-3 was associated with increased lean body mass and improvements in metabolism, but not with increased muscle strength or function. Larger randomized controlled trials would be needed to further evaluate the efficacy and safety of this medication in patients with neuromuscular disease. PMID:20837825

  10. Clinical characteristics of megaconial congenital muscular dystrophy due to choline kinase beta gene defects in a series of 15 patients.

    PubMed

    Haliloglu, Goknur; Talim, Beril; Sel, Cigdem Genc; Topaloglu, Haluk

    2015-11-01

    A new form of congenital muscular dystrophy (CMD) with multisystem involvement and characteristic mitochondrial structural changes, due to choline kinase beta (CHKB) gene defects has been characterized by intellectual disability, autistic features, ichthyosis-like skin changes, and dilated cardiomyopathy. We define the clinical characteristics in 15 patients, from 14 unrelated families with so-called 'megaconial CMD', all having mutations in CHKB. Core clinical phenotype included global developmental delay prominent in gross-motor and language domains, severe intellectual disability (ID), and/or muscle weakness in all cases. Muscle biopsies were equivocally 'megaconial' in all. Other peculiarities were: ichthyosis-like skin changes (n = 11), increased serum CK levels (n = 12), microcephaly (n = 6), dysmorphic facial features (n = 7), neonatal hypotonia (n = 3), seizures (n = 3), epileptiform activity without clinically overt seizures (n = 2), dilated cardiomyopathy (n = 2), decreased left ventricular systolic function (n = 2), congenital heart defects (n = 3), sensorineural (n = 1), and conductive hearing loss (n = 1). Ten patients had cranial neuroimaging (MRI-MRS) study, which was notably normal in all, other than one patient having a decreased choline: creatine peak. Intra-familial variability in clinical expression of the disease is noted in four families. Two siblings from the same family, one presenting with global developmental delay and dilated cardiomyopathy, and the other with ichthyosis, ID and proximal weakness without cardiomyopathy died at the ages of 2 years 1 month, and 7 years 4 months respectively. Evolution was progressive (n = 13) and static (n = 2). PMID:26067811

  11. Air stacking: effects on pulmonary function in patients with spinal muscular atrophy and in patients with congenital muscular dystrophy*,**

    PubMed Central

    Marques, Tanyse Bahia Carvalho; Neves, Juliana de Carvalho; Portes, Leslie Andrews; Salge, João Marcos; Zanoteli, Edmar; Reed, Umbertina Conti

    2014-01-01

    OBJECTIVE: Respiratory complications are the main causes of morbidity and mortality in patients with neuromuscular disease (NMD). The objectives of this study were to determine the effects that routine daily home air-stacking maneuvers have on pulmonary function in patients with spinal muscular atrophy (SMA) and in patients with congenital muscular dystrophy (CMD), as well as to identify associations between spinal deformities and the effects of the maneuvers. METHODS: Eighteen NMD patients (ten with CMD and eight with SMA) were submitted to routine daily air-stacking maneuvers at home with manual resuscitators for four to six months, undergoing pulmonary function tests before and after that period. The pulmonary function tests included measurements of FVC; PEF; maximum insufflation capacity (MIC); and assisted and unassisted peak cough flow (APCF and UPCF, respectively) with insufflations. RESULTS: After the use of home air-stacking maneuvers, there were improvements in the APCF and UPCF. In the patients without scoliosis, there was also a significant increase in FVC. When comparing patients with and without scoliosis, the increases in APCF and UPCF were more pronounced in those without scoliosis. CONCLUSIONS: Routine daily air-stacking maneuvers with a manual resuscitator appear to increase UPCF and APCF in patients with NMD, especially in those without scoliosis. PMID:25410841

  12. European Home Mechanical Ventilation Registry

    ClinicalTrials.gov

    2014-12-08

    Pulmonary Disease, Chronic Obstructive; Amyotrophic Lateral Sclerosis; Spinal Cord Injury; Muscular Dystrophies; Obesity Hypoventilation Syndrome; Kyphoscoliosis; Congenital Central Hypoventilation Syndrome; Duchenne Muscular Dystrophy; Myopathies; Myotonic Dystrophy

  13. Fukutin-related protein mutations that cause congenital muscular dystrophy result in ER-retention of the mutant protein in cultured cells.

    PubMed

    Esapa, Christopher T; McIlhinney, R A Jeffrey; Blake, Derek J

    2005-01-15

    Mutations in the gene encoding fukutin-related protein (FKRP) cause a spectrum of diseases including congenital muscular dystrophy type 1C (MDC1C), limb girdle muscular dystrophy 2I (LGMD2I) and congenital muscular dystrophies (CMDs) with brain malformations and mental retardation. Although these diseases are associated with abnormal dystroglycan processing, the cellular consequences of the idiosyncratic FKRP mutations have not been determined. Here we show, in cultured cells, that FKRP mutants associated with the more severe disease phenotypes (S221R, A455D, P448L) are retained in the endoplasmic reticulum (ER), whereas the wild-type protein and the mutant L276I that causes LGMD2I are found predominantly in the Golgi apparatus. The ER-retained proteins have a shorter half-life than the wild-type FKRP and are preferentially degraded by the proteasome. Furthermore, calnexin binds preferentially to the ER-retained mutants suggesting that it may participate in the quality control pathway for FKRP. These data provide the first evidence that the ER-retention of mutant FKRP may play a role in the pathogenesis of CMD and potentially explain why the allelic disorder LGMD2I is milder, because the mutated protein is able to reach the Golgi apparatus. PMID:15574464

  14. Possible influences on the expression of X chromosome-linked dystrophin abnormalities by heterozygosity for autosomal recessive Fukuyama congenital muscular dystrophy.

    PubMed Central

    Beggs, A H; Neumann, P E; Arahata, K; Arikawa, E; Nonaka, I; Anderson, M S; Kunkel, L M

    1992-01-01

    Abnormalities of dystrophin, a cytoskeletal protein of muscle and nerve, are generally considered specific for Duchenne and Becker muscular dystrophy. However, several patients have recently been identified with dystrophin deficiency who, before dystrophin testing, were considered to have Fukuyama congenital muscular dystrophy (FCMD) on the basis of clinical findings. Epidemiologic data suggest that only 1/3500 males with autosomal recessive FCMD should have abnormal dystrophin. To explain the observation of 3/23 FCMD males with abnormal dystrophin, we propose that dystrophin and the FCMD gene product interact and that the earlier onset and greater severity of these patients' phenotype (relative to Duchenne muscular dystrophy) are due to their being heterozygous for the FCMD mutation in addition to being hemizygous for Duchenne muscular dystrophy, a genotype that is predicted to occur in 1/175,000 Japanese males. This model may help explain the genetic basis for some of the clinical and pathological variability seen among patients with FCMD, and it has potential implications for understanding the inheritance of other autosomal recessive disorders in general. For example, sex ratios for rare autosomal recessive disorders caused by mutations in proteins that interact with X chromosome-linked gene products may display predictable deviation from 1:1. Images PMID:1731332

  15. Possible influences on the expression of X chromosome-linked dystrophin abnormalities by heterozygosity for autosomal recessive Fukuyama congenital muscular dystrophy

    SciTech Connect

    Beggs, A.H.; Neumann, P.E.; Anderson, M.S.; Kunkel, L.M. ); Arahata, Kiichi; Arikawa, Eri; Nonaka, Ikuya )

    1992-01-15

    Abnormalities of dystrophin, a cytoskeletal protein of muscle and nerve, are generally considered specific for Duchenne and Becker muscular dystrophy. However, several patients have recently been identified with dystrophin deficiency who, before dystrophin testing, were considered to have Fukuyama congenital muscular dystrophy (FCMD) on the basis of clinical findings. Epidemiologic data suggest that only 1/3,500 males with autosomal recessive FCMD should have abnormal dystrophin. To explain the observation of 3/23 FCMD males with abnormal dystrophin, the authors propose that dystrophin and the FCMD gene product interact and that the earlier onset and greater severity of these patients' phenotype (relative to Duchenne muscular dystrophy) are due to their being heterozygous for the FCMD mutation in addition to being hemizygous for Duchenne muscular dystrophy, a genotype that is predicted to occur in 1/175,000 Japanese males. This model may help explain the genetic basis for some of the clinical and pathological variability seen among patients with FCMD, and it has potential implications for understanding the inheritance of other autosomal recessive disorders in general. For example, sex ratios for rare autosomal recessive disorders caused by mutations in proteins that interact with X chromosome-linked gene products may display predictable deviation from 1:1.

  16. Human adipose-derived stem cell transplantation as a potential therapy for collagen VI-related congenital muscular dystrophy

    PubMed Central

    2014-01-01

    Introduction Congenital muscular dystrophies (CMD) are a clinically and genetically heterogeneous group of neuromuscular disorders characterized by muscle weakness within the first two years of life. Collagen VI-related muscle disorders have recently emerged as one of the most common types of CMD. COL6 CMD is caused by deficiency and/or dysfunction of extracellular matrix (ECM) protein collagen VI. Currently, there is no specific treatment for this disabling and life-threatening disease. The primary cellular targets for collagen VI CMD therapy are fibroblasts in muscle, tendon and skin, as opposed to muscle cells for other types of muscular dystrophies. However, recent advances in stem cell research have raised the possibility that use of adult stem cells may provide dramatic new therapies for treatment of COL6 CMD. Methods Here, we developed a procedure for isolation of human stem cells from the adipose layer of neonatal skin. The adipose-derived stem cells (ADSC) were examined for expression of ECM and related genes using gene expression array analysis. The therapeutic potential of ADSC was assessed after a single intramuscular transplantation in collagen VI-deficient mice. Results Analysis of primary cultures confirmed that established ADSC represent a morphologically homogenous population with phenotypic and functional features of adult mesenchymal stem cells. A comprehensive gene expression analysis showed that ADSC express a vast array of ECM genes. Importantly, it was observed that ADSC synthesize and secrete all three collagen VI chains, suggesting suitability of ADSC for COL6 CMD treatment. Furthermore, we have found that a single intramuscular transplantation of ADSC into Col6a1−/−Rag1−/− mice under physiological and cardiotoxin-induced injury/regeneration conditions results in efficient engraftment and migration of stem cells within the skeletal muscle. Importantly, we showed that ADSC can survive long-term and continuously secrete the

  17. NIM811, a cyclophilin inhibitor without immunosuppressive activity, is beneficial in collagen VI congenital muscular dystrophy models.

    PubMed

    Zulian, Alessandra; Rizzo, Erika; Schiavone, Marco; Palma, Elena; Tagliavini, Francesca; Blaauw, Bert; Merlini, Luciano; Maraldi, Nadir Mario; Sabatelli, Patrizia; Braghetta, Paola; Bonaldo, Paolo; Argenton, Francesco; Bernardi, Paolo

    2014-10-15

    Ullrich congenital muscular dystrophy (UCMD) and Bethlem myopathy (BM) are inherited muscle diseases due to mutations in the genes encoding the extracellular matrix protein collagen (Col) VI. Opening of the cyclosporin A-sensitive mitochondrial permeability transition pore (PTP) is a causative event in disease pathogenesis, and a potential target for therapy. Here, we have tested the effect of N-methyl-4-isoleucine-cyclosporin (NIM811), a non-immunosuppressive cyclophilin inhibitor, in a zebrafish model of ColVI myopathy obtained by deletion of the N-terminal region of the ColVI α1 triple helical domain, a common mutation of UCMD. Treatment with antisense morpholino sequences targeting col6a1 exon 9 at the 1-4 cell stage (within 1 h post fertilization, hpf) caused severe ultrastructural and motor abnormalities as assessed by electron and fluorescence microscopy, birefringence, spontaneous coiling events and touch-evoked responses measured at 24-48 hpf. Structural and functional abnormalities were largely prevented when NIM811--which proved significantly more effective than cyclosporin A--was administered at 21 hpf, while FK506 was ineffective. Beneficial effects of NIM811 were also detected (i) in primary muscle-derived cell cultures from UCMD and BM patients, where the typical mitochondrial alterations and depolarizing response to rotenone and oligomycin were significantly reduced; and (ii) in the Col6a1(-/-) myopathic mouse model, where apoptosis was prevented and muscle strength was increased. Since the PTP of zebrafish shares its key regulatory features with the mammalian pore, our results suggest that early treatment with NIM811 should be tested as a potential therapy for UCMD and BM. PMID:24852368

  18. Molecular and Genetic Studies of Congenital Myopathies

    ClinicalTrials.gov

    2015-10-26

    Central Core Disease; Centronuclear Myopathy; Congenital Fiber Type Disproportion; Multiminicore Disease; Myotubular Myopathy; Nemaline Myopathy; Rigid Spine Muscular Dystrophy; Undefined Congenital Myopathy

  19. Alternative splicing and muscular dystrophy

    PubMed Central

    Pistoni, Mariaelena; Ghigna, Claudia; Gabellini, Davide

    2013-01-01

    Alternative splicing of pre-mRNAs is a major contributor to proteomic diversity and to the control of gene expression in higher eukaryotic cells. For this reasons, alternative splicing is tightly regulated in different tissues and developmental stages and its disruption can lead to a wide range of human disorders. The aim of this review is to focus on the relevance of alternative splicing for muscle function and muscle disease. We begin by giving a brief overview of alternative splicing, muscle-specific gene expression and muscular dystrophy. Next, to illustrate these concepts we focus on two muscular dystrophy, myotonic muscular dystrophy and facioscapulohumeral muscular dystrophy, both associated to disruption of splicing regulation in muscle. PMID:20603608

  20. Novel Use of Tolvaptan in a Pediatric Patient With Congestive Heart Failure Due to Duchenne Muscular Dystrophy and Congenital Adrenal Hyperplasia

    PubMed Central

    Sami, Sarah A.; Moffett, Brady S.; Karlsten, Melissa L.; Cabrera, Antonio G.; Price, Jack F.; Dreyer, William J.; Denfield, Susan W.

    2015-01-01

    Successful management of hyponatremia in heart failure patients requires a multifaceted approach in order to preserve end-organ function. We describe the novel use of a selective vasopressin receptor antagonist, tolvaptan, for management of hyponatremia in a 17-year-old Caucasian male with severe Duchenne muscular dystrophy, congestive heart failure (CHF), and congenital adrenal hyperplasia. The medical history was significant for recurrent admissions for hyponatremia secondary to adrenal crises, which was also exacerbated by his CHF. After initiation of tolvaptan and its extended administration, he had no further hyponatremia-related admissions and no adverse reactions. The complexity of this combination of conditions is presented, and the efficacy of the drug and the rationale behind the treatment approach is discussed. PMID:26472954

  1. Results of a two-year pilot study of clinical outcome measures in collagen VI- and laminin alpha2-related congenital muscular dystrophies.

    PubMed

    Meilleur, Katherine G; Jain, Minal S; Hynan, Linda S; Shieh, Ching-Yi; Kim, Eunice; Waite, Melissa; McGuire, Michelle; Fiorini, Courtney; Glanzman, Allan M; Main, Marion; Rose, Kristy; Duong, Tina; Bendixen, Roxanna; Linton, Melody M; Arveson, Irene C; Nichols, Carmel; Yang, Kelly; Fischbeck, Kenneth H; Wagner, Kathryn R; North, Kathryn; Mankodi, Ami; Grunseich, Christopher; Hartnett, Elizabeth J; Smith, Michaele; Donkervoort, Sandra; Schindler, Alice; Kokkinis, Angela; Leach, Meganne; Foley, A Reghan; Collins, James; Muntoni, Francesco; Rutkowski, Anne; Bönnemann, Carsten G

    2015-01-01

    Potential therapies are currently under development for two congenital muscular dystrophy (CMD) subtypes: collagen VI-related muscular dystrophy (COL6-RD) and laminin alpha 2-related dystrophy (LAMA2-RD). However, appropriate clinical outcome measures to be used in clinical trials have not been validated in CMDs. We conducted a two-year pilot study to evaluate feasibility, reliability, and validity of various outcome measures, particularly the Motor Function Measure 32, in 33 subjects with COL6-RD and LAMA2-RD. In the first year, outcome measures tested included: Motor Function Measure 32 (MFM32), forced vital capacity (FVC) percent predicted sitting, myometry, goniometry, 10-meter walk, Egen Klassification 2, and PedsQL(TM) Generic and Neuromuscular Cores. In the second year, we added the North Star Ambulatory Assessment (NSAA), Hammersmith Functional Motor Scale (HFMS), timed functional tests, Measure of Activity Limitations (ACTIVLIM), Quality of Upper Extremity Skills Test (QUEST), and Patient-Reported Outcomes Measurement Information System (PROMIS) fatigue subscale. The MFM32 showed strong inter-rater (0.92) and internal consistency (0.96) reliabilities. Concurrent validity for the MFM32 was supported by large correlations (range 0.623-0.936) with the following: FVC, NSAA, HFMS, timed functional tests, ACTIVLIM, and QUEST. Significant correlations of the MFM32 were also found with select myometry measurements, mainly of the proximal extremities and domains of the PedsQL(TM) scales focusing on physical health and neuromuscular disease. Goniometry measurements were less reliable. The Motor Function Measure is reliable and valid in the two specific subtypes of CMD evaluated, COL6-RD and LAMA2-RD. The NSAA is useful as a complementary outcome measure in ambulatory individuals. Preliminary concurrent validity of several other clinical outcome measures was also demonstrated for these subtypes. PMID:25307854

  2. A novel missense mutation in POMT1 modulates the severe congenital muscular dystrophy phenotype associated with POMT1 nonsense mutations.

    PubMed

    Wallace, Stephanie E; Conta, Jessie H; Winder, Thomas L; Willer, Tobias; Eskuri, Jamie M; Haas, Richard; Patterson, Kathleen; Campbell, Kevin P; Moore, Steven A; Gospe, Sidney M

    2014-04-01

    Mutations in POMT1 lead to a group of neuromuscular conditions ranging in severity from Walker-Warburg syndrome to limb girdle muscular dystrophy. We report two male siblings, ages 19 and 14, and an unrelated 6-year old female with early onset muscular dystrophy and intellectual disability with minimal structural brain anomalies and no ocular abnormalities. Compound heterozygous mutations in POMT1 were identified including a previously reported nonsense mutation (c.2167dupG; p.Asp723Glyfs*8) associated with Walker-Warburg syndrome and a novel missense mutation in a highly conserved region of the protein O-mannosyltransferase 1 protein (c.1958C>T; p.Pro653Leu). This novel variant reduces the phenotypic severity compared to patients with homozygous c.2167dupG mutations or compound heterozygous patients with a c.2167dupG mutation and a wide range of other mutant POMT1 alleles. PMID:24491487

  3. A Novel Missense Mutation in POMT1 Modulates the Severe Congenital Muscular Dystrophy Phenotype Associated with POMT1 Nonsense Mutations

    PubMed Central

    Wallace, Stephanie E.; Conta, Jessie H.; Winder, Thomas L.; Willer, Tobias; Eskuri, Jamie M.; Haas, Richard; Patterson, Kathleen; Campbell, Kevin P.; Moore, Steven A.; Gospe, Sidney M.

    2014-01-01

    Mutations in POMT1 lead to a group of neuromuscular conditions ranging in severity from Walker-Warburg syndrome to limb girdle muscular dystrophy. We report two male siblings, ages 19 and 14, and an unrelated 6-year old female with early onset muscular dystrophy and intellectual disability with minimal structural brain anomalies and no ocular abnormalities. Compound heterozygous mutations in POMT1 were identified including a previously reported nonsense mutation (c.2167dupG; p.Asp723Glyfs*8) associated with Walker-Warburg syndrome and a novel missense mutation in a highly conserved region of the protein O-mannosyltransferase 1 protein (c.1958C>T; p.Pro653Leu). This novel variant reduces the phenotypic severity compared to patients with homozygous c.2167dupG mutations or compound heterozygous patients with a c.2167dupG mutation and a wide range of other mutant POMT1 alleles. PMID:24491487

  4. COL6A3 protein deficiency in mice leads to muscle and tendon defects similar to human collagen VI congenital muscular dystrophy.

    PubMed

    Pan, Te-Cheng; Zhang, Rui-Zhu; Markova, Dessislava; Arita, Machiko; Zhang, Yejia; Bogdanovich, Sasha; Khurana, Tejvir S; Bönnemann, Carsten G; Birk, David E; Chu, Mon-Li

    2013-05-17

    Collagen VI is a ubiquitously expressed extracellular microfibrillar protein. Its most common molecular form is composed of the α1(VI), α2(VI), and α3(VI) collagen α chains encoded by the COL6A1, COL6A2, and COL6A3 genes, respectively. Mutations in any of the three collagen VI genes cause congenital muscular dystrophy types Bethlem and Ullrich as well as intermediate phenotypes characterized by muscle weakness and connective tissue abnormalities. The α3(VI) collagen α chain has much larger N- and C-globular domains than the other two chains. Its most C-terminal domain can be cleaved off after assembly into microfibrils, and the cleavage product has been implicated in tumor angiogenesis and progression. Here we characterize a Col6a3 mutant mouse that expresses a very low level of a non-functional α3(VI) collagen chain. The mutant mice are deficient in extracellular collagen VI microfibrils and exhibit myopathic features, including decreased muscle mass and contractile force. Ultrastructurally abnormal collagen fibrils were observed in tendon, but not cornea, of the mutant mice, indicating a distinct tissue-specific effect of collagen VI on collagen I fibrillogenesis. Overall, the mice lacking normal α3(VI) collagen chains displayed mild musculoskeletal phenotypes similar to mice deficient in the α1(VI) collagen α chain, suggesting that the cleavage product of the α3(VI) collagen does not elicit essential functions in normal growth and development. The Col6a3 mouse mutant lacking functional α3(VI) collagen chains thus serves as an animal model for COL6A3-related muscular dystrophy. PMID:23564457

  5. Highly efficient in vivo delivery of PMO into regenerating myotubes and rescue in laminin-α2 chain-null congenital muscular dystrophy mice.

    PubMed

    Aoki, Yoshitsugu; Nagata, Tetsuya; Yokota, Toshifumi; Nakamura, Akinori; Wood, Matthew J A; Partridge, Terence; Takeda, Shin'ichi

    2013-12-15

    Phosphorodiamidate morpholino oligomer (PMO)-mediated exon skipping is among the more promising approaches to the treatment of several neuromuscular disorders including Duchenne muscular dystrophy. The main weakness of this approach arises from the low efficiency and sporadic nature of the delivery of charge-neutral PMO into muscle fibers, the mechanism of which is unknown. In this study, to test our hypothesis that muscle fibers take up PMO more efficiently during myotube formation, we induced synchronous muscle regeneration by injection of cardiotoxin into the tibialis anterior muscle of Dmd exon 52-deficient mdx52 and wild-type mice. Interestingly, by in situ hybridization, we detected PMO mainly in embryonic myosin heavy chain-positive regenerating fibers. In addition, we showed that PMO or 2'-O-methyl phosphorothioate is taken up efficiently into C2C12 myotubes when transfected 24-72 h after the induction of differentiation but is poorly taken up into undifferentiated C2C12 myoblasts suggesting efficient uptake of PMO in the early stages of C2C12 myotube formation. Next, we tested the therapeutic potential of PMO for laminin-α2 chain-null dy(3K)/dy(3K) mice: a model of merosin-deficient congenital muscular dystrophy (MDC1A) with active muscle regeneration. We confirmed the recovery of laminin-α2 chain and slightly prolonged life span following skipping of the mutated exon 4 in dy(3K)/dy(3K) mice. These findings support the idea that PMO entry into fibers is dependent on a developmental stage in myogenesis rather than on dystrophinless muscle membranes and provide a platform for developing PMO-mediated therapies for a variety of muscular disorders, such as MDC1A, that involve active muscle regeneration. PMID:23882132

  6. Non-Coding RNAs in Muscle Dystrophies

    PubMed Central

    Erriquez, Daniela; Perini, Giovanni; Ferlini, Alessandra

    2013-01-01

    ncRNAs are the most recently identified class of regulatory RNAs with vital functions in gene expression regulation and cell development. Among the variety of roles they play, their involvement in human diseases has opened new avenues of research towards the discovery and development of novel therapeutic approaches. Important data come from the field of hereditary muscle dystrophies, like Duchenne muscle dystrophy and Myotonic dystrophies, rare diseases affecting 1 in 7000–15,000 newborns and is characterized by severe to mild muscle weakness associated with cardiac involvement. Novel therapeutic approaches are now ongoing for these diseases, also based on splicing modulation. In this review we provide an overview about ncRNAs and their behavior in muscular dystrophy and explore their links with diagnosis, prognosis and treatments, highlighting the role of regulatory RNAs in these pathologies. PMID:24084719

  7. Substitution of a conserved cysteine-996 in a cysteine-rich motif of the laminin {alpha}2-chain in congenital muscular dystrophy with partial deficiency of the protein

    SciTech Connect

    Nissinen, M.; Xu Zhang; Tryggvason, K.

    1996-06-01

    Congenital muscular dystrophies (CMDs) are autosomal recessive muscle disorders of early onset. Approximately half of CMD patients present laminin {alpha}2-chain (merosin) deficiency in muscle biopsies, and the disease locus has been mapped to the region of the LAMA2 gene (6q22-23) in several families. Recently, two nonsense mutations in the laminin {alpha}2-chain gene were identified in CMD patients exhibiting complete deficiency of the laminin {alpha}2-chain in muscle biopsies. However, a subset of CMD patients with linkage to LAMA2 show only partial absence of the laminin {alpha}2-chain around muscle fibers, by immunocytochemical analysis. In the present study we have identified a homozygous missense mutation in the {alpha}2-chain gene of a consanguineous Turkish family with partial laminin {alpha}2-chain deficiency. The T{r_arrow}C transition at position 3035 in the cDNA sequence results in a Cys996{r_arrow}Arg substitution. The mutation that affects one of the conserved cysteine-rich repeats in the short arm of the laminin {alpha}2-chain should result in normal synthesis of the chain and in formation and secretion of a heterotrimeric laminin molecule. Muscular dysfunction is possibly caused either by abnormal disulfide cross-links and folding of the laminin repeat, leading to the disturbance of an as yet unknown binding function of the laminin {alpha}2-chain and to shorter half-life of the muscle-specific laminin-2 and laminin-4 isoforms, or by increased proteolytic sensitivity, leading to truncation of the short arm. 42 refs., 7 figs.

  8. Muscular dystrophy

    MedlinePlus

    ... this page: //medlineplus.gov/ency/article/001190.htm Muscular dystrophy To use the sharing features on this page, please enable JavaScript. Muscular dystrophy is a group of inherited disorders that cause ...

  9. Muscular Dystrophy

    MedlinePlus

    Muscular dystrophy (MD) is a group of more than 30 inherited diseases. They all cause muscle weakness and ... ability to walk. There is no cure for muscular dystrophy. Treatments can help with the symptoms and prevent ...

  10. Emerging strategies for cell and gene therapy of the muscular dystrophies

    PubMed Central

    Muir, Lindsey A.; Chamberlain, Jeffrey S.

    2016-01-01

    The muscular dystrophies are a heterogeneous group of over 40 disorders that are characterised by muscle weakness and wasting. The most common are Duchenne muscular dystrophy and Becker muscular dystrophy, which result from mutations within the gene encoding dystrophin; myotonic dystrophy type 1, which results from an expanded trinucleotide repeat in the myotonic dystrophy protein kinase gene; and facioscapulohumeral dystrophy, which is associated with contractions in the subtelomeric region of human chromosome 1. Currently the only treatments involve clinical management of symptoms, although several promising experimental strategies are emerging. These include gene therapy using adeno-associated viral, lentiviral and adenoviral vectors and nonviral vectors, such as plasmid DNA. Exon-skipping and cell-based therapies have also shown promise in the effective treatment and regeneration of dystrophic muscle. The availability of numerous animal models for Duchenne muscular dystrophy has enabled extensive testing of a wide range of therapeutic approaches for this type of disorder. Consequently, we focus here on the therapeutic developments for Duchenne muscular dystrophy as a model of the types of approaches being considered for various types of dystrophy. We discuss the advantages and limitations of each therapeutic strategy, as well as prospects and recent successes in the context of future clinical applications. PMID:19555515

  11. [Dilated cardiomyopathy and visceral anomalies in myotonic dystrophy].

    PubMed

    Pentimone, F; Del Corso, L; Vannini, A; Mori, L; Moruzzo, D

    1990-05-01

    In dystrophia myotonica clinical evidence of cardiac involvement usually appears several years after the onset of neuromuscular symptoms. In more than 90% of cases there is damage to the specialized cardiac tissues and in about 7% of cases there are alterations to the myocardium. We report a case characterized by early and spread deterioration of the pump function developing into refractory congestive heart failure. The contemporary involvement of the smooth muscle of gallbladder and colon confirms the hypothesis that dystrophia myotonica is a pan-muscle disease. PMID:2234457

  12. Erythrocytes in muscular dystrophy. Investigation with 31P nuclear magnetic resonance spectroscopy

    SciTech Connect

    Sarpel, G.; Lubansky, H.J.; Danon, M.J.; Omachi, A.

    1981-05-01

    Phosphorus 31 nuclear magnetic resonance (31P NMR) signals were recorded from intact human erythrocytes for 16 hours. Total phosphate concentration, which was estimated as the sum of the individual 31P signals, was 25% lower in erythrocytes from men with myotonic dystrophy than in control erythrocytes. The inorganic-phosphate fraction contained the highest average phosphate concentration over the 16-hour period, and made the major contribution to the difference in total phosphate between the two groups. This result was not observed in erythrocytes from either women with myotonic dystrophy or patients with Duchenne's dystrophy and may be due to a change in cell membrane permeability to inorganic phosphate, which lead to lower steady-state concentrations of the intracellular phosphates.

  13. Erythrocytes in muscular dystrophy. Investigation with /sup 31/P nuclear magnetic resonance spectroscopy

    SciTech Connect

    Sarpel, G.; Lubansky, H.J.; Danon, M.J.; Omachi, A.

    1981-05-01

    Phosphorus 31 nuclear magnetic resonance (/sup 31/P NMR) signals were recorded from intact human erythrocytes for 16 hours. Total phosphate concentration, which was estimated as the sum of the individual /sup 31/P signals, was 25% lower in erythrocytes from men with myotonic dystrophy than in control erythrocytes. The inorganic-phosphate fraction contained the highest average phosphate concentration over the 16-hour period, and made the major contribution to the difference in total phosphate between the two groups. This result was not observed in erythrocytes from either women with myotonic dystrophy or patients with Duchenne's dystrophy and may be due to a change in cell membrane permeability to inorganic phosphate, which leads to lower steady-state concentrations of the intracellular phosphates.

  14. Journey into muscular dystrophies caused by abnormal glycosylation.

    PubMed

    Muntoni, Francesco

    2004-09-01

    An increasing number of genes encoding for putative or demonstrated glycosyltransferases are being associated with muscular dystrophies of variable severity, ranging from severe congenital onset and associated structural eye and brain changes, to relatively mild forms with onset into adulthood. Five of these genes (POMT1; POMGnT1; FXRP; Fukutin; LARGE) encode for proteins involved in the glycosylation of alpha-dystroglycan and, indeed, abnormal glycosylation of this molecule is a common finding in all the respective conditions (Walker Warburg syndrome; Muscle-Eye-Brain disease; congenital muscular dystrophy type 1C and Limb girdle muscular dystrophy type 21; Fukuyama muscular dystrophy; congenital muscular dystrophy type 1D). A 6th gene, GNE, responsible for the hereditary form of inclusion body myositis, encodes for a glycosyltransferase the substrate(s) of which is, however, still unclear. This article provides an overview of the clinical, biochemical and genetic features of this group of disorders. PMID:15605948

  15. Meaning of Muscular Dystrophy

    MedlinePlus

    ... Help White House Lunch Recipes The Meaning of Muscular Dystrophy KidsHealth > For Kids > The Meaning of Muscular Dystrophy ... you know someone who has MD. What Is Muscular Dystrophy? Muscular dystrophy (say: MUS-kyoo-lur DIS-troh- ...

  16. Corneal dystrophies

    PubMed Central

    Klintworth, Gordon K

    2009-01-01

    The term corneal dystrophy embraces a heterogenous group of bilateral genetically determined non-inflammatory corneal diseases that are restricted to the cornea. The designation is imprecise but remains in vogue because of its clinical value. Clinically, the corneal dystrophies can be divided into three groups based on the sole or predominant anatomical location of the abnormalities. Some affect primarily the corneal epithelium and its basement membrane or Bowman layer and the superficial corneal stroma (anterior corneal dystrophies), the corneal stroma (stromal corneal dystrophies), or Descemet membrane and the corneal endothelium (posterior corneal dystrophies). Most corneal dystrophies have no systemic manifestations and present with variable shaped corneal opacities in a clear or cloudy cornea and they affect visual acuity to different degrees. Corneal dystrophies may have a simple autosomal dominant, autosomal recessive or X-linked recessive Mendelian mode of inheritance. Different corneal dystrophies are caused by mutations in the CHST6, KRT3, KRT12, PIP5K3, SLC4A11, TACSTD2, TGFBI, and UBIAD1 genes. Knowledge about the responsible genetic mutations responsible for these disorders has led to a better understanding of their basic defect and to molecular tests for their precise diagnosis. Genes for other corneal dystrophies have been mapped to specific chromosomal loci, but have not yet been identified. As clinical manifestations widely vary with the different entities, corneal dystrophies should be suspected when corneal transparency is lost or corneal opacities occur spontaneously, particularly in both corneas, and especially in the presence of a positive family history or in the offspring of consanguineous parents. Main differential diagnoses include various causes of monoclonal gammopathy, lecithin-cholesterol-acyltransferase deficiency, Fabry disease, cystinosis, tyrosine transaminase deficiency, systemic lysosomal storage diseases (mucopolysaccharidoses

  17. Muscular Dystrophy

    MedlinePlus

    ... be affected. Limb-girdle muscular dystrophy (LGMD) affects boys and girls equally, weakening muscles in the shoulders and upper ... weakness and poor muscle tone. Occurring in both girls and boys, it can have different symptoms. It varies in ...

  18. Genetics Home Reference: congenital myasthenic syndrome

    MedlinePlus

    ... Advocacy Resources (2 links) Muscular Dystrophy Association Myasthenia Gravis Foundation of America: Congenital Myasthenia GeneReviews (1 link) ... for professional medical care or advice. Users with questions about a personal health condition should consult with ...

  19. Immunohistochemical Characterization of Facioscapulohumeral Muscular Dystrophy Muscle Biopsies

    PubMed Central

    Statland, Jeffrey M; Odrzywolski, Karen J; Shah, Bharati; Henderson, Don; Fricke, Alex F.; van der Maarel, Silvère M; Tapscott, Stephen J; Tawil, Rabi

    2015-01-01

    Background Posited pathological mechanisms in Facioscapulohumeral Muscular Dystrophy (FSHD) include activation in somatic tissue of normally silenced genes, increased susceptibility to oxidative stress, and induction of apoptosis. Objective To determine the histopathological changes in FSHD muscle biopsies and compare to possible pathological mechanisms of disease. Methods We performed a cross-sectional study on quadriceps muscle biopsies from 32 genetically confirmed FSHD participants, compared to healthy volunteers and myotonic dystrophy type 1 as disease controls. Biopsies were divided into groups to evaluate apoptosis rates, capillary density, myonuclear and satellite cell counts. Results Apoptosis rates were increased in FSHD (n=10, 0.74%) compared to myotonic dystrophy type 1 (n=10, 0.14%, P=0.003) and healthy volunteers (n=14, 0.13%, P=0.002). Apoptosis was higher in FSHD patients with the smallest residual D4Z4 fragments. Capillary density was decreased in FSHD1 (n=10, 316 capillaries/mm2) compared to healthy volunteers (n=15, 448 capillaries/mm2, P=0.001). No differences were seen in myonuclear or satellite cell counts. Conclusions Preliminary evidence for increased apoptosis rates and reduced capillary density may reflect histopathological correlates of disease activity in FSHD. The molecular-pathological correlates to these changes warrants further investigation. PMID:26345300

  20. Facioscapulohumeral Dystrophy.

    PubMed

    Wang, Leo H; Tawil, Rabi

    2016-07-01

    Facioscapulohumeral muscular dystrophy (FSHD) is a clinically recognizable and relatively common muscular dystrophy. It is inherited mostly as an autosomal dominant disease or in a minority of cases, in a digenic pattern. The disease manifestation is variable and most likely dependent on genetic and epigenetic factors. We review the history, epidemiology, clinical presentation, and genetics of the disease, present the recently elucidated molecular pathogenesis, discuss the pathology and the possible consequence of the inflammation seen in the muscle biopsies, and consider future treatments. PMID:27215221

  1. The Myotonic Plot Thickens: Electrical Myotonia in Antimuscle-Specific Kinase Myasthenia Gravis

    PubMed Central

    Magnussen, Marcus; Karakis, Ioannis; Harrison, Taylor B.

    2015-01-01

    Electrical myotonia is known to occur in a number of inherited and acquired disorders including myotonic dystrophies, channelopathies, and metabolic, toxic, and inflammatory myopathies. Yet, electrical myotonia in myasthenia gravis associated with antibodies against muscle-specific tyrosine kinase (MuSK) has not been previously reported. We describe two such patients, both of whom had a typical presentation of proximal muscle weakness with respiratory failure in the context of a significant electrodecrement in repetitive nerve stimulation. In both cases, concentric needle examination revealed electrical myotonia combined with myopathic motor unit morphology and early recruitment. These findings suggest that MuSK myasthenia should be included within the differential diagnosis of disorders with electrical myotonia. PMID:26770848

  2. Is muscle spindle proprioceptive function spared in muscular dystrophies? A muscle tendon vibration study.

    PubMed

    Ribot-Ciscar, Edith; Tréfouret, Sylvie; Aimonetti, Jean-Marc; Attarian, Shahram; Pouget, Jean; Roll, Jean-Pierre

    2004-06-01

    Muscular dystrophies (MDs) are characterized by the degeneration of skeletal muscle fibers. The aim of the present study was to determine whether the intrafusal fibers of muscle spindles are also affected in MD. The functional integrity of muscle spindles was tested by analyzing their involvement in the perception of body segment movements and in the control of posture. Twenty MD patients (4 with dystrophinopathy, 5 with myotonic dystrophies, 5 with fascioscapulohumeral MD, and 6 with limb-girdle dystrophies) and 10 healthy subjects participated in the study. The MD patients perceived passive movements and experienced illusory movements similar to those perceived by healthy subjects in terms of their direction and velocity. Vibratory stimulation applied to the neck and ankle muscle tendons induced postural responses in MD patients with spatial and temporal characteristics similar to those produced by healthy subjects. These results suggest that the proprioceptive function of muscle spindles is spared in muscular dystrophies. PMID:15170619

  3. Developmental Defects in a Zebrafish Model for Muscular Dystrophies Associated with the Loss of Fukutin-Related Protein (FKRP)

    ERIC Educational Resources Information Center

    Thornhill, Paul; Bassett, David; Lochmuller, Hanns; Bushby, Kate; Straub, Volker

    2008-01-01

    A number of muscular dystrophies are associated with the defective glycosylation of [alpha]-dystroglycan and many are now known to result from mutations in a number of genes encoding putative or known glycosyltransferases. These diseases include severe forms of congenital muscular dystrophy (CMD) such as Fukuyama type congenital muscular dystrophy…

  4. Muscular dystrophy - resources

    MedlinePlus

    Resources - muscular dystrophy ... The following organizations are good resources for information on muscular dystrophy : Muscular Dystrophy Association -- www.mdausa.org National Institute of Neurological Disorders and Stroke -- www.ninds.nih. ...

  5. Congenital Muscle Disease Study of Patient and Family Reported Medical Information

    ClinicalTrials.gov

    2016-07-27

    Muscular Dystrophy; Congenital Muscular Dystrophy; Fukutin-related Protein Gene; Limb Girdle; FKRP Gene; Childhood Onset LGMD; Adult Onset LGMD; POMT1; POMT2; POMGnT1; LARGE; Alpha Dystroglycan; Dystroglycanopathy; Centronuclear; Multiminicore; Multicore; Minicore; Congenital Fiber Type Disproportion; Myotubular; Nemaline; Congenital Myopathy; Neuromuscular; Rigid Spine; Phenotype-Genotype Correlation; Cough Assisted Device; Neuromuscular Disease; Respiratory Exacerbation; Invasive Ventilation; Chest Physiotherapy; Congenital Myopathies; Genetic Mutations; Hypertrophic Cardiomyopathy; Wheelchair Use; Cataract; Opthalmoplegia; Ullrich Congenital Muscular Dystrophy; Intermediate Collagen VI Myopathy; Laminin Alpha 2 Related Congenital Muscular Dystrophy; MDC1A; Merosin Deficient Congenital Muscular Dystrophy; Congenital Muscular Dystrophy Undiagnosed; Congenital Muscular Dystrophy Merosin Positive; Walker Warburg Syndrome; Muscle Eye Brain Disease; Fukuyama; Integrin Alpha 7 Deficiency; Integrin Alpha 9 Deficiency; Laminopathy; Lamin AC; SEPN 1 Related Myopathies; Bethlem Myopathy; Dystroglycanopathies; LGMD2K; LGMD2I; LGMD2L; LGMD2N; Actin Aggregation Myopathy; Cap Disease; Central Core Disease; Centronuclear Myopathy; Core Rod Myopathy; Hyaline Body Myopathy; Multiminicore Myopathy; Myotubular Myopathy; Nemaline Myopathy; Tubular Aggregate Myopathy; Zebra Body Disease Myopathy; Congenital Myopathy Other; Reducing Body Myopathy; Sarcotubular Myopathy; Spheroid Body Myopathy

  6. Muscular dystrophies due to glycosylation defects.

    PubMed

    Muntoni, Francesco; Torelli, Silvia; Brockington, Martin

    2008-10-01

    In the last few years, muscular dystrophies due to reduced glycosylation of alpha-dystroglycan (ADG) have emerged as a common group of conditions, now referred to as dystroglycanopathies. Mutations in six genes (POMT1, POMT2, POMGnT1, Fukutin, FKRP and LARGE) have so far been identified in patients with a dystroglycanopathy. Allelic mutations in each of these genes can result in a wide spectrum of clinical conditions, ranging from severe congenital onset with associated structural brain malformations (Walker Warburg syndrome; muscle-eye-brain disease; Fukuyama muscular dystrophy; congenital muscular dystrophy type 1D) to a relatively milder congenital variant with no brain involvement (congenital muscular dystrophy type 1C), and to limb-girdle muscular dystrophy (LGMD) type 2 variants with onset in childhood or adult life (LGMD2I, LGMD2L, and LGMD2N). ADG is a peripheral membrane protein that undergoes multiple and complex glycosylation steps to regulate its ability to effectively interact with extracellular matrix proteins, such as laminin, agrin, and perlecan. Although the precise composition of the glycans present on ADG are not known, it has been demonstrated that the forced overexpression of LARGE, or its paralog LARGE2, is capable of increasing the glycosylation of ADG in normal cells. In addition, its overexpression is capable of restoring dystroglycan glycosylation and laminin binding properties in primary cell cultures of patients affected by different genetically defined dystroglycanopathy variants. These observations suggest that there could be a role for therapeutic strategies to overcome the glycosylation defect in these conditions via the overexpression of LARGE. PMID:19019316

  7. Other limb-girdle muscular dystrophies.

    PubMed

    Amato, Anthony A

    2011-01-01

    The secondary α-dystroglycanopathies usually present in infancy as congenital muscular dystrophies but may manifest later in childhood or adult life (limb-girdle muscular dystrophy (LGMD) 2I, LGMD2K, LGMD2M, LGMD2N, and LGMD2O). Patients with telethoninopathy (LGMD2B) may present with mainly proximal or distal lower extremity weakness, and notably the muscle biopsies may demonstrate rimmed vacuoles. LGMD2L is caused by newly described mutations in ANO5 and can sometimes present with distal weakness resembling Miyoshi myopathy. PMID:21496628

  8. Neurotrophins, cytokines, oxidative parameters and funcionality in Progressive Muscular Dystrophies.

    PubMed

    Comim, Clarissa M; Mathia, Gisiane B; Hoepers, Andreza; Tuon, Lisiane; Kapczinski, Flávio; Dal-Pizzol, Felipe; Quevedo, João; Rosa, Maria I

    2015-09-01

    We investigated the levels of brain derived-neurotrophic factor (BDNF), cytokines and oxidative parameters in serum and tried to correlate them with the age and functionality of patients with Progressive Muscle Dystrophies (PMD). The patients were separated into six groups (case and controls pared by age and gender), as follows: Duchenne Muscular Dystrophy (DMD); Steinert Myotonic Dystrophy (SMD); and Limb-girdle Muscular Dystrophy type-2A (LGMD2A). DMD patients (± 17.9 years old) had a decrease of functionality, an increase in the IL-1β and TNF-α levels and a decrease of IL-10 levels and superoxide dismutase activity in serum. SMD patients (± 25.8 years old) had a decrease of BDNF and IL-10 levels and superoxide dismutase activity and an increase of IL-1β levels in serum. LGMD2A patients (± 27.7 years old) had an decrease only in serum levels of IL-10. This research showed the first evidence of BDNF involvement in the SMD patients and a possible unbalance between pro-inflammatory and anti-inflammatory cytokine levels, along with decreased superoxide dismutase activity in serum of DMD and SMD patients. PMID:25910175

  9. Genetics Home Reference: congenital stromal corneal dystrophy

    MedlinePlus

    ... of decorin. This abnormal protein interferes with the organization of collagen fibrils in the cornea. As poorly arranged collagen fibrils accumulate, the cornea becomes cloudy. These corneal changes lead to reduced visual acuity and related eye ...

  10. Zebrafish models for human FKRP muscular dystrophies.

    PubMed

    Kawahara, Genri; Guyon, Jeffrey R; Nakamura, Yukio; Kunkel, Louis M

    2010-02-15

    Various muscular dystrophies are associated with the defective glycosylation of alpha-dystroglycan and are known to result from mutations in genes encoding glycosyltransferases. Fukutin-related protein (FKRP) was identified as a homolog of fukutin, the defective protein in Fukuyama-type congenital muscular dystrophy (FCMD), that is thought to function as a glycosyltransferase. Mutations in FKRP have been linked to a variety of phenotypes including Walker-Warburg syndrome (WWS), limb girdle muscular dystrophy (LGMD) 2I and congenital muscular dystrophy 1C (MDC1C). Zebrafish are a useful animal model to reveal the mechanism of these diseases caused by mutations in FKRP gene. Downregulating FKRP expression in zebrafish by two different morpholinos resulted in embryos which had developmental defects similar to those observed in human muscular dystrophies associated with mutations in FKRP. The FKRP morphants showed phenotypes involving alterations in somitic structure and muscle fiber organization, as well as defects in developing eye morphology. Additionally, they were found to have a reduction in alpha-dystroglycan glycosylation and a shortened myofiber length. Moreover, co-injection of fish or human FKRP mRNA along with the morpholino restored normal development, alpha-dystroglycan glycosylation and laminin binding activity of alpha-dystroglycan in the morphants. Co-injection of the human FKRP mRNA containing causative mutations found in human patients of WWS, MDC1C and LGMD2I could not restore their phenotypes significantly. Interestingly, these morphant fish having human FKRP mutations showed a wide phenotypic range similar to that seen in humans. PMID:19955119

  11. Zebrafish models for human FKRP muscular dystrophies

    PubMed Central

    Kawahara, Genri; Guyon, Jeffrey R.; Nakamura, Yukio; Kunkel, Louis M.

    2010-01-01

    Various muscular dystrophies are associated with the defective glycosylation of α-dystroglycan and are known to result from mutations in genes encoding glycosyltransferases. Fukutin-related protein (FKRP) was identified as a homolog of fukutin, the defective protein in Fukuyama-type congenital muscular dystrophy (FCMD), that is thought to function as a glycosyltransferase. Mutations in FKRP have been linked to a variety of phenotypes including Walker–Warburg syndrome (WWS), limb girdle muscular dystrophy (LGMD) 2I and congenital muscular dystrophy 1C (MDC1C). Zebrafish are a useful animal model to reveal the mechanism of these diseases caused by mutations in FKRP gene. Downregulating FKRP expression in zebrafish by two different morpholinos resulted in embryos which had developmental defects similar to those observed in human muscular dystrophies associated with mutations in FKRP. The FKRP morphants showed phenotypes involving alterations in somitic structure and muscle fiber organization, as well as defects in developing eye morphology. Additionally, they were found to have a reduction in α-dystroglycan glycosylation and a shortened myofiber length. Moreover, co-injection of fish or human FKRP mRNA along with the morpholino restored normal development, α-dystroglycan glycosylation and laminin binding activity of α-dystroglycan in the morphants. Co-injection of the human FKRP mRNA containing causative mutations found in human patients of WWS, MDC1C and LGMD2I could not restore their phenotypes significantly. Interestingly, these morphant fish having human FKRP mutations showed a wide phenotypic range similar to that seen in humans. PMID:19955119

  12. Congenital Hypothyroidism

    MedlinePlus

    ... Body in Balance › Congenital Hypothyroidism Fact Sheet Congenital Hypothyroidism March, 2012 Download PDFs English Espanol Editors Rosalind S. ... MD Susan R. Rose, MD What is congenital hypothyroidism? Newborn babies who are unable to make enough ...

  13. Genetic basis of limb-girdle muscular dystrophies: the 2014 update.

    PubMed

    Nigro, Vincenzo; Savarese, Marco

    2014-05-01

    Limb-girdle muscular dystrophies (LGMD) are a highly heterogeneous group of muscle disorders, which first affect the voluntary muscles of the hip and shoulder areas. The definition is highly descriptive and less ambiguous by exclusion: non-Xlinked, non-FSH, non-myotonic, non-distal, nonsyndromic, and non-congenital. At present, the genetic classification is becoming too complex, since the acronym LGMD has also been used for a number of other myopathic disorders with overlapping phenotypes. Today, the list of genes to be screened is too large for the gene-by-gene approach and it is well suited for targeted next generation sequencing (NGS) panels that should include any gene that has been so far associated with a clinical picture of LGMD. The present review has the aim of recapitulating the genetic basis of LGMD ordering and of proposing a nomenclature for the orphan forms. This is useful given the pace of new discoveries. Thity-one loci have been identified so far, eight autosomal dominant and 23 autosomal recessive. The dominant forms (LGMD1) are: LGMD1A (myotilin), LGMD1B (lamin A/C), LGMD1C (caveolin 3), LGMD1D (DNAJB6), LGMD1E (desmin), LGMD1F (transportin 3), LGMD1G (HNRPDL), LGMD1H (chr. 3). The autosomal recessive forms (LGMD2) are: LGMD2A (calpain 3), LGMD2B (dysferlin), LGMD2C (γ sarcoglycan), LGMD2D (α sarcoglycan), LGMD2E (β sarcoglycan), LGMD2F (δ sarcoglycan), LGMD2G (telethonin), LGMD2H (TRIM32), LGMD2I (FKRP), LGMD2J (titin), LGMD2K (POMT1), LGMD2L (anoctamin 5), LGMD2M (fukutin), LGMD2N (POMT2), LGMD2O (POMTnG1), LGMD2P (dystroglycan), LGMD2Q (plectin), LGMD2R (desmin), LGMD2S (TRAPPC11), LGMD2T (GMPPB), LGMD2U (ISPD), LGMD2V (Glucosidase, alpha ), LGMD2W (PINCH2). PMID:24843229

  14. Different types of fatigue in patients with facioscapulohumeral dystrophy, myotonic dystrophy and HMSN-I. Experienced fatigue and physiological fatigue.

    PubMed

    Kalkman, Joke S; Zwarts, Machiel J; Schillings, Maartje L; van Engelen, Baziel G M; Bleijenberg, Gijs

    2008-09-01

    Although fatigue is a common symptom in neuromuscular disorders, little is known about different types of fatigue. Sixty-five FSHD, 79 adult-onset MD and 73 HMSN type I patients were studied. Experienced fatigue was assessed with the CIS-fatigue subscale. Physiological fatigue was measured during a 2-min sustained maximal voluntary contraction of the biceps brachii muscle using the twitch interpolation technique to assess central activation failure (CAF) and peripheral fatigue. Experienced fatigue, CAF and peripheral fatigue appeared to be predominantly separate types of fatigue. PMID:18690504

  15. Evaluation of Limb-Girdle Muscular Dystrophy

    ClinicalTrials.gov

    2014-03-06

    Becker Muscular Dystrophy; Limb-Girdle Muscular Dystrophy, Type 2A (Calpain-3 Deficiency); Limb-Girdle Muscular Dystrophy, Type 2B (Miyoshi Myopathy, Dysferlin Deficiency); Limb-Girdle Muscular Dystrophy, Type 2I (FKRP-deficiency)

  16. Computational investigation of RNA CUG repeats responsible for myotonic dystrophy 1.

    PubMed

    Yildirim, Ilyas; Chakraborty, Debayan; Disney, Matthew D; Wales, David J; Schatz, George C

    2015-10-13

    Despite the importance of the knowledge of molecular hydration entropy (ΔShyd) in chemical and biological processes, the exact calculation of ΔShyd is very difficult, because of the complexity in solute–water interactions. Although free-energy perturbation (FEP) methods have been employed quite widely in the literature, the poor convergent behavior of the van der Waals interaction term in the potential function limited the accuracy and robustness. In this study, we propose a new method for estimating ΔShyd by means of combining the FEP approach and the scaled particle theory (or information theory) to separately calculate the electrostatic solute–water interaction term (ΔSelec) and the hydrophobic contribution approximated by the cavity formation entropy (ΔScav), respectively. Decomposition of ΔShyd into ΔScav and ΔSelec terms is found to be very effective with a substantial accuracy enhancement in ΔShyd estimation, when compared to the conventional full FEP calculations. ΔScav appears to dominate over ΔSelec in magnitude, even in the case of polar solutes, implying that the major contribution to the entropic cost for hydration comes from the formation of a solvent-excluded volume. Our hybrid scaled particle theory and FEP method is thus found to enhance the accuracy of ΔShyd prediction by effectively complementing the conventional full FEP method. PMID:26500461

  17. An empiric comparison of linkage disequilibrium parameters in disease gene localizations; the myotonic dystrophy experience

    SciTech Connect

    Podolsky, L.; Baird, S.; Korneluk, R.G.

    1994-09-01

    Analyses of linkage disequilibrium (LD) between markers of known location and disease phenotypes often provide valuable information in efforts to clone the causative genes. However, there exist a number of factors which may attenuate a consistent inverse relationship between physical distance and LD for a given pairing of a genetic marker and a human disease gene. Chief among these is the effect of the general population frequency of an allele which demonstrates LD with a disease gene. Possibly as a result of this, a number of methods of calculating LD has been proposed. We have calculated seven such LD parameters for twelve physically mapped RFLP`s from a 1.3 Mb DM gene containing region of 19q13.3 using 107 DM and 213 non-DM chromosomes. Correlation of the DM-marker physical distance with LD for the 12 loci reveals the Yule coefficient and Dij{prime} parameter to give the most consistent relationship. The D{prime} parameter shown to have a relative allele frequency independence gave only a weak correlation. A similar analysis is being carried out on published cystic fibrosis genetic and physical mapping data. The parameters identified in this study may be the most appropriate for future LD based localizations of disease genes.

  18. Facioscapulohumeral muscular dystrophy

    MedlinePlus

    ... of cases, the parents do not carry the gene. Facioscapulohumeral muscular dystrophy affects about 5 out of 100,000 people. ... Treatment There is no ... worse. Physical therapy may help maintain muscle strength. Other possible treatments ...

  19. Becker muscular dystrophy

    MedlinePlus

    ... and wheelchairs may improve movement and self-care. Genetic counseling may be recommended. Daughters of a man with ... Genetic counseling may be advised if there is a family history of Becker muscular dystrophy.

  20. How Is Muscular Dystrophy Diagnosed?

    MedlinePlus

    ... Information Clinical Trials Resources and Publications How is muscular dystrophy diagnosed? Skip sharing on social media links Share this: Page Content The first step in diagnosing muscular dystrophy (MD) is a visit with a health care ...

  1. Congenital hemangiomas.

    PubMed

    Boull, Christina; Maguiness, Sheilagh M

    2016-03-01

    Congenital hemangiomas are rare solitary vascular tumors that do not proliferate after birth. They are characterized as either rapidly involuting congenital hemangiomas (RICHs) or noninvoluting congenital hemangiomas (NICHs) based on their clinical progression. NICHs have no associated complications, but are persistent. RICH, while usually asymptomatic, may ulcerate or bleed early in their presentation, but involute quickly during the first few months of life. Hepatic RICHs are not associated with cutaneous RICHs, but may result in high-output cardiac failure due to arteriovenous or portovenous shunting. In the following review, the clinical characteristics and current management specific to congenital hemangiomas is discussed. PMID:27607320

  2. Congenital fiber type disproportion.

    PubMed

    Kissiedu, Juliana; Prayson, Richard A

    2016-04-01

    Type I muscle fiber atrophy in childhood can be encountered in a variety of neuromuscular disorders. Congenital fiber type disproportion (CFTD) is one such condition which presents as a nonprogressive muscle weakness. The diagnosis is often made after excluding other differential diagnostic considerations. We present a 2-year-9-month-old full term boy who presented at 2 months with an inability to turn his head to the right. Over the next couple of years, he showed signs of muscle weakness, broad based gait and a positive Gower's sign. He had normal levels of creatine kinase and normal electromyography. A biopsy of the vastus lateralis showed a marked variation in muscle fiber type. The adenosine triphosphate (ATP)-ase stains highlighted a marked type I muscle atrophy with rare scattered atrophic type II muscle fibers. No abnormalities were observed on the nicotinamide adenine dinucleotide (NADH), succinate dehydrogenase (SDH) or cytochrome oxidase stained sections. Ragged red fibers were not present on the trichrome stain. Abnormalities of glycogen or lipid deposition were not observed on the periodic acid-Schiff or Oil-Red-O stains. Immunostaining for muscular dystrophy associated proteins showed normal staining. Ultrastructural examination showed a normal arrangement of myofilaments, and a normal number and morphology for mitochondria. A diagnosis of CFTD was made after excluding other causes of type I atrophy including congenital myopathy. The lack of specific clinical and genetic disorder associated with CFTD suggests that it is a spectrum of a disease process and represents a diagnosis of exclusion. PMID:26526626

  3. Duchenne muscular dystrophy.

    PubMed

    Yiu, Eppie M; Kornberg, Andrew J

    2015-08-01

    Duchenne muscular dystrophy, an X-linked disorder, has an incidence of one in 5000 boys and presents in early childhood with proximal muscle weakness. Untreated boys become wheelchair bound by the age of 12 years and die of cardiorespiratory complications in their late teens to early 20s. The use of corticosteroids, non-invasive respiratory support, and active surveillance and management of associated complications have improved ambulation, function, quality of life and life expectancy. The clinical features, investigations and management of Duchenne muscular dystrophy are reviewed, as well as the latest in some of the novel therapies. PMID:25752877

  4. Genetics Home Reference: tibial muscular dystrophy

    MedlinePlus

    ... Names for This Condition tardive tibial muscular dystrophy TMD Udd distal myopathy Udd-Markesbery muscular dystrophy Udd ... titin may cause more severe tibial muscular dystrophy (TMD). Neuromuscul Disord. 2008 Dec;18(12):922-8. ...

  5. [Congenital thrombophilia].

    PubMed

    Kojima, Tetsuhito

    2016-03-01

    Congenital thrombophilia is a thrombotic diathesis caused by a variety of genetic abnormalities in blood coagulation factors or their inhibitory factors associated with physiological thrombus formation. Patients with congenital thrombophilia often present with unusual clinical episodes of venous thrombosis (occasionally combined with pulmonary embolism, known as venous thromboembolism) at a young age and recurrence in atypical vessels, such as the mesenteric vein and superior sagittal sinus, often with a family history of this condition. Studies in Japan as well as in western countries have shown congenital thrombophilia to be caused by a wide variety of genetic abnormalities in natural anticoagulant proteins, such as antithrombin, protein C, and protein S. However, there may still be many unknown causes of hereditary thrombosis. We recently reported a case of hereditary thrombosis induced by a novel mechanism of antithrombin resistance, that is, congenital thrombophilia caused by a gain-of-function mutation in the gene encoding the coagulation factor prothrombin. PMID:27076244

  6. Congenital toxoplasmosis

    MedlinePlus

    Congenital toxoplasmosis is a group of symptoms that occur when an unborn baby (fetus) is infected with the parasite ... Toxoplasmosis infection can be passed to a developing baby if the mother becomes infected while pregnant. The ...

  7. Congenital Myopathy

    MedlinePlus

    ... arms and legs, droopy eyelids, and problems with eye movements. Weakness often gets worse with time. Central core ... difficulties occur as well. Some children have weakened eye movements. Congenital fiber-type disproportion myopathy is a rare ...

  8. Congenital cataract

    MedlinePlus

    ... of the following birth defects: Chondrodysplasia syndrome Congenital rubella Conradi-Hünermann syndrome Down syndrome (trisomy 21) Ectodermal ... Images Eye Cataract - close-up of the eye Rubella syndrome Cataract References Dahan E. Pediatric cataract surgery. ...

  9. Congenital syphilis

    MedlinePlus

    ... fact that this disease can be cured with antibiotics if caught early, rising rates of syphilis among pregnant women in the United States have increased the number of infants born with congenital syphilis.

  10. Congenital rubella

    MedlinePlus

    ... mother is infected with the virus that causes German measles. Congenital means the condition is present at ... Gershon AA. Rubella virus (German measles). In: Mandell GL, Bennett JE, ... of Infectious Diseases . 8th ed. Philadelphia, PA: Elsevier ...

  11. Congenital rubella

    MedlinePlus

    ... is infected with the virus that causes German measles. Congenital means the condition is present at birth. ... Gershon AA. Rubella virus (German measles). In: Mandell GL, Bennett JE, ... . 8th ed. Philadelphia, PA: Elsevier Churchill Livingstone; ...

  12. Age-dependent chloride channel expression in skeletal muscle fibres of normal and HSALR myotonic mice

    PubMed Central

    DiFranco, Marino; Yu, Carl; Quiñonez, Marbella; Vergara, Julio L

    2013-01-01

    We combine electrophysiological and optical techniques to investigate the role that the expression of chloride channels (ClC-1) plays on the age-dependent electrical properties of mammalian muscle fibres. To this end, we comparatively evaluate the magnitude and voltage dependence of chloride currents (ICl), as well as the resting resistance, in fibres isolated from control and human skeletal actin (HSA)LR mice (a model of myotonic dystrophy) of various ages. In control mice, the maximal peak chloride current ([peak-ICl]max) increases from −583 ± 126 to −956 ± 260 μA cm−2 (mean ± SD) between 3 and 6 weeks old. Instead, in 3-week-old HSALR mice, ICl are significantly smaller (−153 ± 33 μA cm−2) than in control mice, but after a long period of ∼14 weeks they reach statistically comparable values. Thus, the severe ClC-1 channelopathy in young HSALR animals is slowly reversed with aging. Frequency histograms of the maximal chloride conductance (gCl,max) in fibres of young HSALR animals are narrow and centred in low values; alternatively, those from older animals show broad distributions, centred at larger gCl,max values, compatible with mosaic expressions of ClC-1 channels. In fibres of both animal strains, optical data confirm the age-dependent increase in gCl, and additionally suggest that ClC-1 channels are evenly distributed between the sarcolemma and transverse tubular system membranes. Although gCl is significantly depressed in fibres of young HSALR mice, the resting membrane resistance (Rm) at −90 mV is only slightly larger than in control mice due to upregulation of a Rb-sensitive resting conductance (gK,IR). In adult animals, differences in Rm are negligible between fibres of both strains, and the contributions of gCl and gK,IR are less altered in HSALR animals. We surmise that while hyperexcitability in young HSALR mice can be readily explained on the basis of reduced gCl, myotonia in adult HSALR animals may be explained on the basis of a

  13. [Congenital syphilis].

    PubMed

    Tabák, Réka; Tabák, Adám; Várkonyi, Viktória

    2010-01-10

    Syphilis has been a re-emerging disease in the past few decades. As a consequence, the prevalence of congenital syphilis is expected to be on the rise. Maternal syphilis may be related to several pathologies, such as miscarriage, stillbirth, or congenital syphilis in the child. Infants that acquire syphilis in utero are frequently asymptomatic, and the organ damage caused by the infection may be apparent only years later. Syphilis is a curable disease, and most of its complications in the infant can be prevented by screening and treating the mother. Every newborn potentially infected should be treated with penicillin immediately starting on the day of birth. PMID:20061233

  14. Glycosylation defects: a new mechanism for muscular dystrophy?

    PubMed

    Grewal, Prabhjit K; Hewitt, Jane E

    2003-10-15

    Recently, post-translational modification of proteins has been defined as a new area of focus for muscular dystrophy research by the identification of a group of disease genes that encode known or putative glycosylation enzymes. Walker-Warburg Syndrome (WWS) and muscle-eye-brain disease (MEB) are caused by mutations in two genes involved in O-mannosylation, POMT1 and POMGnT1, respectively. Fukuyama muscular dystrophy (FCMD) is due to mutations in fukutin, a putative phospholigand transferase. Congenital muscular dystrophy type 1C and limb girdle muscular dystrophy type 2I are allelic, both being due to mutations in the gene-encoding fukutin-related protein (FKRP). Finally, the causative gene in the myodystrophy (myd) mouse is a putative bifunctional glycosyltransferase (Large). WWS, MEB, FCMD and the myd mouse are also associated with neuronal migration abnormalities (often type II lissencephaly) and ocular or retinal defects. A deficiency in post-translational modification of alpha-dystroglycan is a common feature of all these muscular dystrophies and is thought to involve O-glycosylation pathways. This abnormally modified alpha-dystroglycan is deficient in binding to extracellular matrix ligands, including laminin and agrin. Selective deletion of dystroglycan in the central nervous system (CNS) produces brain abnormalities with striking similarities to WWS, MEB, FCMD and the myd mouse. Thus, impaired dystroglycan function is strongly implicated in these diseases. However, it is unlikely that these five glycosylation enzymes only have a role in glycosylation of alpha-dystroglycan and it is important that other protein targets are identified. PMID:12925572

  15. Congenital Defects.

    ERIC Educational Resources Information Center

    Goldman, Allen S.; And Others

    There are two general categories (not necessarily mutually exclusive) of congenital defects: (1) abnormalities that have an hereditary basis, such as single and multiple genes, or chromosomal abberration; and (2) abnormalities that are caused by nonhereditary factors, such as malnutrition, maternal disease, radiation, infections, drugs, or…

  16. Congenital amusias.

    PubMed

    Tillmann, B; Albouy, P; Caclin, A

    2015-01-01

    In contrast to the sophisticated music processing reported in the general population, individuals with congenital amusia show deficits in music perception and production. Congenital amusia occurs without brain damage, sensory or cognitive deficits, and has been suggested as a lifelong deficit with genetic origin. Even though recognized for a long time, this disorder has been systematically studied only relatively recently for its behavioral and neural correlates. The currently most investigated hypothesis about the underlying deficits concerns the pitch dimension, notably with impaired pitch discrimination and memory. Anatomic and functional investigations of pitch processing revealed that the amusic brain presents abnormalities in the auditory and inferior frontal cortices, associated with decreased connectivity between these structures. The deficit also impairs processing of pitch in speech material and processing of the time dimension in music for some of the amusic individuals, but does not seem to affect spatial processing. Some studies suggest at least partial dissociation in the disorder between perception and production. Recent studies revealed spared implicit pitch perception in congenital amusia, supporting the power of implicit cognition in the music domain. Current challenges consist in defining different subtypes of congenital amusia as well as developing rehabilitation programs for this "musical handicap." PMID:25726292

  17. Progressive cone dystrophies.

    PubMed

    François, J; De Rouck, A; De Laey, J J

    1976-01-01

    Patients with progressive generalized cone dystrophy often present nystagmus (or strabism) and complain of photophobia, decrease in visual acuity or disturbances in colour perception. The most classic fundus abnormality is the bull's eye maculopathy or a pallor of the optic disc. Minimal macular changes are sometimes seen, which may progress to a bull's eye type of macular degeneration. The photopic ERG is always very affected, whereas at first the scotopic ERG seems normal. Progressive deterioration of the visual functions is accompanied by increasing fundus lesions and rod involvement, as suggested by the modifications of the dark adaptation curve and the scotopic ERG. However, the progression of typical generalized cone dysfunction is very slow. On the contrary, in some cases of so-called Stargardt's disease with peripheral participation, a very rapid progression has been observed. In such cases a normal ERG does not necessarily mean that the disease will remain localized to the macular area. No definite prognosis can be made on one single ERG. In 3 cases with sector pigmentary retinopathy the photopic ERG was more affected than the scotopic ERG. However, these cases are probably primary cone-rod dystrophies. Although there is no electrophysiological control, our clinical impression is that the evolution, if possible, is very slow. PMID:1066593

  18. Congenital Hydrocephalus.

    PubMed

    Estey, Chelsie M

    2016-03-01

    There are several types of hydrocephalus, which are characterized based on the location of the cerebrospinal fluid (CSF) accumulation. Physical features of animals with congenital hydrocephalus may include a dome-shaped skull, persistent fontanelle, and bilateral ventrolateral strabismus. Medical therapy involves decreasing the production of CSF. The most common surgical treatment is placement of a ventriculoperitoneal shunt. Postoperative complications may include infection, blockage, drainage abnormalities, and mechanical failure. PMID:26704658

  19. Evaluation of myocardial involvement in muscular dystrophy with Thallium-201 emission computed tomography

    SciTech Connect

    Yamamoto, S.; Kawai, N.; Matsushima, H.; Okada, M.; Yamauchi, K.; Yokota, M.; Hayashi, H.; Sotobata, I.; Sakuma, S.

    1985-05-01

    The clinical usefulness of quantitative analysis of thallium-201 emission computed tomography (ECT) for evaluation of left ventricular myocardial fibrosis was assessed on 45 patients with Duchenne(D), facioscapulohumeral(FSH), limbgirdle(LG) and myotonic(M) dystrophy. Trans-,long- and short-axial images were interpreted quantitatively using circumferential profile analysis, and the fibrotic tissue size (%FIB) was estimated by integration of hypoperfused areas in 6 to 8 consecutive short-axial slices. Lung/mediastinum count ratios (L/M ratio) were also assessed. Distinct ECT defects were found in 42 patients (all cases of D, FSH and LG, and 2 of 5 MTs). ECT defects were observed specifically in the posterolateral wall (71%) and apex (58%) in D, and were scattered in all LV walls in FSHG, LG and MT. ECG and VCG underestimated the extent of myocardial fibrosis in 17 patients (40%). Percent FIBs coincided with fibrotic tissue sizes proven by autopsy. Body-surface ECG should be influenced by cardiac position and rotation in the thorax, which were often observed in these disease entities. These factors were also assessed with ECT. The authors conclude; ECT to be useful for non-invasive evaluation of myocardial fibrosis in patients with various types of muscular dystrophy.

  20. Molecular Signatures of Membrane Protein Complexes Underlying Muscular Dystrophy.

    PubMed

    Turk, Rolf; Hsiao, Jordy J; Smits, Melinda M; Ng, Brandon H; Pospisil, Tyler C; Jones, Kayla S; Campbell, Kevin P; Wright, Michael E

    2016-06-01

    Mutations in genes encoding components of the sarcolemmal dystrophin-glycoprotein complex (DGC) are responsible for a large number of muscular dystrophies. As such, molecular dissection of the DGC is expected to both reveal pathological mechanisms, and provides a biological framework for validating new DGC components. Establishment of the molecular composition of plasma-membrane protein complexes has been hampered by a lack of suitable biochemical approaches. Here we present an analytical workflow based upon the principles of protein correlation profiling that has enabled us to model the molecular composition of the DGC in mouse skeletal muscle. We also report our analysis of protein complexes in mice harboring mutations in DGC components. Bioinformatic analyses suggested that cell-adhesion pathways were under the transcriptional control of NFκB in DGC mutant mice, which is a finding that is supported by previous studies that showed NFκB-regulated pathways underlie the pathophysiology of DGC-related muscular dystrophies. Moreover, the bioinformatic analyses suggested that inflammatory and compensatory mechanisms were activated in skeletal muscle of DGC mutant mice. Additionally, this proteomic study provides a molecular framework to refine our understanding of the DGC, identification of protein biomarkers of neuromuscular disease, and pharmacological interrogation of the DGC in adult skeletal muscle https://www.mda.org/disease/congenital-muscular-dystrophy/research. PMID:27099343

  1. Wasting Mechanisms in Muscular Dystrophy

    PubMed Central

    Shin, Jonghyun; Tajrishi, Marjan M.; Ogura, Yuji; Kumar, Ashok

    2013-01-01

    Muscular dystrophy is a group of more than 30 different clinical genetic disorders that are characterized by progressive skeletal muscle wasting and degeneration. Primary deficiency of specific extracellular matrix, sarcoplasmic, cytoskeletal, or nuclear membrane protein results in several secondary changes such as sarcolemmal instability, calcium influx, fiber necrosis, oxidative stress, inflammatory response, breakdown of extracellular matrix, and eventually fibrosis which leads to loss of ambulance and cardiac and respiratory failure. A number of molecular processes have now been identified which hasten disease progression in human patients and animal models of muscular dystrophy. Accumulating evidence further suggests that aberrant activation of several signaling pathways aggravate pathological cascades in dystrophic muscle. Although replacement of defective gene with wild-type is paramount to cure, management of secondary pathological changes has enormous potential to improving the quality of life and extending lifespan of muscular dystrophy patients. In this article, we have reviewed major cellular and molecular mechanisms leading to muscle wasting in muscular dystrophy. PMID:23669245

  2. Clinical Trials in Retinal Dystrophies

    PubMed Central

    Grob, Seanna R.; Finn, Avni; Papakostas, Thanos D.; Eliott, Dean

    2016-01-01

    Research development is burgeoning for genetic and cellular therapy for retinal dystrophies. These dystrophies are the focus of many research efforts due to the unique biology and accessibility of the eye, the transformative advances in ocular imaging technology that allows for in vivo monitoring, and the potential benefit people would gain from success in the field – the gift of renewed sight. Progress in the field has revealed the immense complexity of retinal dystrophies and the challenges faced by researchers in the development of this technology. This study reviews the current trials and advancements in genetic and cellular therapy in the treatment of retinal dystrophies and also discusses the current and potential future challenges. PMID:26957839

  3. Congenital Adrenal Hyperplasia

    MedlinePlus

    MENU Return to Web version Congenital Adrenal Hyperplasia Overview What is congenital adrenal hyperplasia? Congenital adrenal hyperplasia, or CAH, is a disorder that affects the adrenal glands. The adrenal ...

  4. Fuchs’ corneal dystrophy

    PubMed Central

    Eghrari, Allen O; Gottsch, John D

    2010-01-01

    Fuchs’ corneal dystrophy (FCD) is a progressive, hereditary disease of the cornea first described a century ago by the Austrian ophthalmologist Ernst Fuchs. Patients often present in the fifth to sixth decade of life with blurry morning vision that increases in duration as the disease progresses. Primarily a condition of the posterior cornea, characteristic features include the formation of focal excrescences of Descemet membrane termed ‘guttae’, loss of endothelial cell density and end-stage disease manifested by corneal edema and the formation of epithelial bullae. Recent advances in our understanding of the genetic and pathophysiological mechanisms of the disease, as well as the application of new imaging modalities and less invasive surgical procedures, present new opportunities for improved outcomes among patients with FCD. PMID:20625449

  5. What Are the Treatments for Muscular Dystrophy?

    MedlinePlus

    ... Resources and Publications What are the treatments for muscular dystrophy? Skip sharing on social media links Share this: ... available to stop or reverse any form of muscular dystrophy (MD). Instead, certain therapies and medications aim to ...

  6. Congenital Anomalies in Infant with Congenital Hypothyroidism

    PubMed Central

    Razavi, Zahra; Yavarikia, Alireza; Torabian, Saadat

    2012-01-01

    Objective Congenital hypothyroidism is characterized by inadequate thyroid hormone production in newborn infants. Many infants with CH have co-occurring congenital malformations. This is an investigation on the frequency and types of congenital anomalies in infants with congenital hypothyroidism born from May 2006-2010 in Hamadan, west province of Iran. Methods The Iranian neonatal screening program for congenital hypothyroidism was initiated in May 2005. This prospective descriptive study was conducted in infants diagnosed with congenital hypothyroidism being followed up in Pediatric Endocrinology Clinic of Besat Hospital, a tertiary care centre in Hamadan. Cases included all infants with congenital hypothyroidism diagnosed through newborn screening program or detected clinically. Anomalies were identified by clinical examination, echocardiography, and X-ray of the hip during the infant’s first year of life. Results A total of 150 infants with biochemically confirmed primary congenital hypothyroidism (72 females and 78 males) were recruited during the period between May 2006-2010. Overall, 30 (20%) infants had associated congenital anomalies. The most common type of anomaly was Down syndrome. Seven infants (3.1%) had congenital cardiac anomalies such as: ASD (n=3), VSD (n=2), PS (n =1), PDA (n=1). Three children (2.6%) had developmental dysplasia of the hip (n=3). Conclusion The overall frequency of Down syndrome, cardiac malformation and other birth defect was high in infants with CH. This reinforces the need to examine all infants with congenital hypothyroidism for the presence of associated congenital anomalies. PMID:23074545

  7. Congenital Toxoplasmosis

    PubMed Central

    McAuley, James B.

    2014-01-01

    Toxoplasmosis is caused by infection with the parasite Toxoplasma gondii. It is one of the most common parasitic infections in humans and is most typically asymptomatic. However, primary infection in a pregnant woman can cause severe and disabling disease in the developing fetus. Recent developments have included increased understanding of the role of parasite genotype in determining infectivity and disease severity. Risk factors for acquisition of infection have been better defined, and the important role of foodborne transmission has been further delineated. In addition, strategies have emerged to decrease mother-to-child transmission through prompt identification of acutely infected pregnant women followed by appropriate treatment. Refined diagnostic tools, particularly the addition of immunoglobulin G avidity testing, allow for more accurate timing of maternal infection and hence better decision making during pregnancy. Congenitally infected children can be treated, beginning in utero and continuing through the first year of life, to ameliorate the severity of disease. However, despite these many advances in our understanding of congenital toxoplasmosis prevention and treatment, significant areas of study remain: we need better drugs, well defined strategies for screening of pregnant women, improved food safety, and improved diagnostic tests. PMID:25232475

  8. Isotonic contractile impairment due to genetic CLC-1 chloride channel deficiency in myotonic mouse diaphragm muscle.

    PubMed

    van Lunteren, Erik; Pollarine, Jennifer; Moyer, Michelle

    2007-07-01

    The hallmark of genetic CLC-1 chloride channel deficiency in myotonic humans, goats and mice is delayed muscle relaxation resulting from persistent electrical discharges. In addition to the ion channel defect, muscles from myotonic humans and mice also have major changes in fibre type and myosin isoform composition, but the extent to which this affects isometric contractions remains controversial. Many muscles, including the diaphragm, shorten considerably during normal activities, but shortening contractions have never been assessed in myotonic muscle. The present study tested the hypothesis that CLC-1 deficiency leads to an impairment of muscle isotonic contractile performance. This was tested in vitro on diaphragm muscle from SWR/J-Clcn1(adr-mto)/J myotonic mice. The CLC-1-deficient muscle demonstrated delayed relaxation, as expected. During the contractile phase, there were significant reductions in power and work across a number of stimulation frequencies and loads in CLC-1-deficient compared with normal muscle, the magnitude of which in many instances exceeded 50%. Reductions in shortening and velocity of shortening occurred, and were more pronounced when calculated as a function of absolute than relative load. However, the maximal unloaded shortening velocity calculated from Hill's equation was not altered significantly. The impaired isotonic contractile performance of CLC-1-deficient muscle persisted during fatigue-inducing stimulation. These data indicate that genetic CLC-1 chloride channel deficiency in mice not only produces myotonia but also substantially worsens the isotonic contractile performance of diaphragm muscle. PMID:17483199

  9. Rare Muscular Dystrophies: Congenital, Distal, Emery-Dreifuss and Oculopharyngeal Muscular Dystrophies

    MedlinePlus

    ... to live with muscles that grow weaker over time, but you don’t have to let MD keep you from pursuing an education, career, family, travel — anything you want. People with disabilities have more ...

  10. Myotonic dystrophy protein kinase (DMPK) induces actin cytoskeletal reorganization and apoptotic-like blebbing in lens cells

    NASA Technical Reports Server (NTRS)

    Jin, S.; Shimizu, M.; Balasubramanyam, A.; Epstein, H. F.

    2000-01-01

    DMPK, the product of the DM locus, is a member of the same family of serine-threonine protein kinases as the Rho-associated enzymes. In DM, membrane inclusions accumulate in lens fiber cells producing cataracts. Overexpression of DMPK in cultured lens epithelial cells led to apoptotic-like blebbing of the plasma membrane and reorganization of the actin cytoskeleton. Enzymatically active DMPK was necessary for both effects; inactive mutant DMPK protein did not produce either effect. Active RhoA but not constitutive GDP-state mutant protein produced similar effects as DMPK. The similar actions of DMPK and RhoA suggest that they may function in the same regulatory network. The observed effects of DMPK may be relevant to the removal of membrane organelles during normal lens differentiation and the retention of intracellular membranes in DM lenses. Copyright 2000 Wiley-Liss, Inc.

  11. [First North African observation of Leber congenital amaurosis secondary to CEP290 gene mutation].

    PubMed

    Aboussair, N; Berahou, A; Perrault, I; Elalaoui, S Chafai; Megzari, A; Rozet, J M; Kaplan, J; Sefiani, A

    2010-02-01

    Leber congenital amaurosis (LCA) is a the earliest and most severe form of retinal dystrophy responsible for congenital blindness. LCA has genetic heterogeneity and the study of this disease is elucidating the genetics and molecular interactions involved in the development of the retina. To date, 11 LCA genes have been mapped, ten of which have been identified. The CEP290 gene has been shown to account for Joubert and Senior-Loken syndromes and to be a frequent cause of nonsyndromic LCA. We report here the first Arab patient, born to consanguineous parents, with Leber congenital amaurosis attributable to mutation of the CEP290 gene. PMID:20056295

  12. Congenital neuroblastoma

    PubMed Central

    Evans, A. R.

    1965-01-01

    The clinical histories and post-mortem findings in five cases of neuroblastoma are described, and an account given of the microscopic characteristics of the tumours. In four of the cases the tumour was present at birth and was probably so in the fifth case. In only one case was the presence of the malignant tumour a significant factor in causing death. The differential diagnosis of such tumours is discussed. The accumulated evidence of many recorded cases suggests that neuroblastoma, becoming manifest in the early months or weeks of life, and congenital tumour, would be included in such a group, and has an appreciably better prognosis than has this same tumour when it becomes manifest in later childhood. The literature is briefly reviewed to illustrate this aspect of prognosis and possible reasons for it are indicated. Images PMID:14247705

  13. Congenital Cholesteatoma.

    PubMed

    Walker, David; Shinners, Michael J

    2016-05-01

    Congenital cholesteatoma is one of the more common causes of the onset of childhood conductive hearing loss unrelated to middle ear effusion. If undiagnosed, the disease can progress to irreversibly destroy the conductive hearing architecture, as well as the surrounding skull base of the lateral temporal bone. When diagnosed early, the growth can be removed and the conductive hearing mechanism preserved in the vast majority of patients. Because most children are asymptomatic, the burden falls on primary care providers to perform pneumatic otoscopy and visualize all quadrants of the tympanic membrane even in young children who frequently resist attempts to conduct a thorough examination to rule out suspicious lesions. [Pediatr Ann. 2016;45(5):e167-e170.]. PMID:27171804

  14. Congenital amusia.

    PubMed

    Williamson, Victoria J; Stewart, Lauren

    2013-01-01

    For most people, music, like language, is acquired effortlessly in early life. But a few percent of the population have lifelong difficulties in the perception and production of music. In this chapter we discuss psycho-acoustic and behavioral studies that have attempted to delineate the nature of the auditory perceptual deficits in this group and consider whether these difficulties extend outside the musical domain. Finally, we review structural imaging studies in this group which point to subtle anomalies in temporal and frontal areas. We suggest that amusia can be considered a disorder of neural development, which has relatively specific consequences at the behavioral level. Studies of congenital amusia provide a unique window on the neurocognitive architecture of music processing. PMID:23622169

  15. [Reflex sympathetic dystrophy].

    PubMed

    Oliveira, Marta; Manuela, Manuela; Cantinho, Guilhermina

    2011-01-01

    Reflex Sympathetic Dystrophy is rare in pediatrics. It is a complex regional pain syndrome, of unknown etiology, usually post-traumatic, characterized by dysfunctions of the musculoskeletal, vascular and skin systems: severe persistent pain of a limb, sensory and vascular alterations, associated disability and psychosocial dysfunction. The diagnosis is based in high clinical suspection. In children and adolescents there are aspects that are different from the adult ones. Excessive tests may result in worsening of the clinical symptoms. Bone scintigraphy can help. Pain treatment is difficult, not specific. Physical therapies and relaxation technics give some relief. Depression must be treated. This syndrome includes fibromyalgia and complex regional pain syndrome type I. We present a clinical report of an adolescent girl, referred for pain, cold temperature, pallor and functional disability of an inferior limb, all signals disclosed by a minor trauma. She had been diagnosed depression the year before. The bone scintigraphy was a decisive test. The treatment with gabapentin, C vitamin, physiotherapy and pshycotherapy has been effective. PMID:22713207

  16. Congenital hypothyroidism

    PubMed Central

    Agrawal, Pankaj; Philip, Rajeev; Saran, Sanjay; Gutch, Manish; Razi, Mohd Sayed; Agroiya, Puspalata; Gupta, Keshavkumar

    2015-01-01

    Congenital hypothyroidism (CH) is the one of the most common preventable cause of mental retardation. In the majority of patients, CH is caused by an abnormal development of the thyroid gland (thyroid dysgenesis) that is a sporadic disorder and accounts for 85% of cases and the remaining 15% of cases are caused by dyshormonogenesis. The clinical features of congenital hypothyroidism are so subtle that many newborn infants remain undiagnosed at birth and delayed diagnosis leads to the most severe outcome of CH, mental retardation, emphasizing the importance of neonatal screening. Dried capillary blood is used for screening and it is taken from heel prick optimally between 2 and 5 days of age. Blood spot TSH or thyroxine (T4) or both are being used for CH screening in different programs around the world. Neonates with abnormal thyroid screening tests should be recalled immediately for examination and a venipuncture blood sample should be drawn for confirmatory serum testing. Confirmatory serum should be tested for TSH and free T4, or total T4. Serum TSH and T4 undergo dynamic changes in the first weeks of life; it is important to compare serum results with age-normal reference ranges. Treatment should be started promptly and infant should be rendered euthyroid as early as possible, as there is an inverse relationship between intelligence quotient (IQ) and the age at diagnosis. Levothyroxine (l-thyroxine) is the treatment of choice and American academy of pediatrics and European society of pediatric endocrinology recommend 10-15μgm/kg/day as initial dose. The immediate goal of therapy is to normalize T4 within 2 weeks and TSH within one month. The overall goal of treatment is to ensure growth and neurodevelopmental outcomes as close as possible to their genetic potential. PMID:25729683

  17. A Nonsense Variant in COL6A1 in Landseer Dogs with Muscular Dystrophy.

    PubMed

    Steffen, Frank; Bilzer, Thomas; Brands, Jan; Golini, Lorenzo; Jagannathan, Vidhya; Wiedmer, Michaela; Drögemüller, Michaela; Drögemüller, Cord; Leeb, Tosso

    2015-12-01

    A novel canine muscular dystrophy in Landseer dogs was observed. We had access to five affected dogs from two litters. The clinical signs started at a few weeks of age, and the severe progressive muscle weakness led to euthanasia between 5 and 15 months of age. The pedigrees of the affected dogs suggested a monogenic autosomal-recessive inheritance of the trait. Linkage and homozygosity mapping indicated two potential genome segments for the causative variant on chromosomes 10 and 31 harboring a total of 4.8 Mb of DNA or 0.2% of the canine genome. Using the Illumina sequencing technology, we obtained a whole-genome sequence from one affected Landseer. Variants were called with respect to the dog reference genome and compared with the genetic variants of 170 control dogs from other breeds. The affected Landseer dog was homozygous for a single, private nonsynonymous variant in the critical intervals, a nonsense variant in the COL6A1 gene (Chr31:39,303,964G>T; COL6A1:c.289G>T; p.E97*). Genotypes at this variant showed perfect concordance with the muscular dystrophy phenotype in all five cases and more than 1000 control dogs. Variants in the human COL6A1 gene cause Bethlem myopathy or Ullrich congenital muscular dystrophy. We therefore conclude that the identified canine COL6A1 variant is most likely causative for the observed muscular dystrophy in Landseer dogs. On the basis of the nature of the genetic variant in Landseer dogs and their severe clinical phenotype these dogs represent a model for human Ullrich congenital muscular dystrophy. PMID:26438297

  18. A Nonsense Variant in COL6A1 in Landseer Dogs with Muscular Dystrophy

    PubMed Central

    Steffen, Frank; Bilzer, Thomas; Brands, Jan; Golini, Lorenzo; Jagannathan, Vidhya; Wiedmer, Michaela; Drögemüller, Michaela; Drögemüller, Cord; Leeb, Tosso

    2015-01-01

    A novel canine muscular dystrophy in Landseer dogs was observed. We had access to five affected dogs from two litters. The clinical signs started at a few weeks of age, and the severe progressive muscle weakness led to euthanasia between 5 and 15 months of age. The pedigrees of the affected dogs suggested a monogenic autosomal-recessive inheritance of the trait. Linkage and homozygosity mapping indicated two potential genome segments for the causative variant on chromosomes 10 and 31 harboring a total of 4.8 Mb of DNA or 0.2% of the canine genome. Using the Illumina sequencing technology, we obtained a whole-genome sequence from one affected Landseer. Variants were called with respect to the dog reference genome and compared with the genetic variants of 170 control dogs from other breeds. The affected Landseer dog was homozygous for a single, private nonsynonymous variant in the critical intervals, a nonsense variant in the COL6A1 gene (Chr31:39,303,964G>T; COL6A1:c.289G>T; p.E97*). Genotypes at this variant showed perfect concordance with the muscular dystrophy phenotype in all five cases and more than 1000 control dogs. Variants in the human COL6A1 gene cause Bethlem myopathy or Ullrich congenital muscular dystrophy. We therefore conclude that the identified canine COL6A1 variant is most likely causative for the observed muscular dystrophy in Landseer dogs. On the basis of the nature of the genetic variant in Landseer dogs and their severe clinical phenotype these dogs represent a model for human Ullrich congenital muscular dystrophy. PMID:26438297

  19. Facioscapulohumeral muscular dystrophy.

    PubMed

    Sacconi, Sabrina; Salviati, Leonardo; Desnuelle, Claude

    2015-04-01

    Facioscapulohumeral muscular dystrophy (FSHD) is characterized by a typical and asymmetric pattern of muscle involvement and disease progression. Two forms of FSHD, FSHD1 and FSHD2, have been identified displaying identical clinical phenotype but different genetic and epigenetic basis. Autosomal dominant FSHD1 (95% of patients) is characterized by chromatin relaxation induced by pathogenic contraction of a macrosatellite repeat called D4Z4 located on the 4q subtelomere (FSHD1 patients harbor 1 to 10 D4Z4 repeated units). Chromatin relaxation is associated with inappropriate expression of DUX4, a retrogene, which in muscles induces apoptosis and inflammation. Consistent with this hypothesis, individuals carrying zero repeat on chromosome 4 do not develop FSHD1. Not all D4Z4 contracted alleles cause FSHD. Distal to the last D4Z4 unit, a polymorphic site with two allelic variants has been identified: 4qA and 4qB. 4qA is in cis with a functional polyadenylation consensus site. Only contractions on 4qA alleles are pathogenic because the DUX4 transcript is polyadenylated and translated into stable protein. FSHD2 is instead a digenic disease. Chromatin relaxation of the D4Z4 locus is caused by heterozygous mutations in the SMCHD1 gene encoding a protein essential for chromatin condensation. These patients also harbor at least one 4qA allele in order to express stable DUX4 transcripts. FSHD1 and FSHD2 may have an additive effect: patients harboring D4Z4 contraction and SMCHD1 mutations display a more severe clinical phenotype than with either defect alone. Knowledge of the complex genetic and epigenetic defects causing these diseases is essential in view of designing novel therapeutic strategies. This article is part of a Special Issue entitled: Neuromuscular Diseases: Pathology and Molecular Pathogenesis. PMID:24882751

  20. Congenital hypothyroidism.

    PubMed

    Rastogi, Maynika V; LaFranchi, Stephen H

    2010-01-01

    Congenital hypothyroidism (CH) occurs in approximately 1:2,000 to 1:4,000 newborns. The clinical manifestations are often subtle or not present at birth. This likely is due to trans-placental passage of some maternal thyroid hormone, while many infants have some thyroid production of their own. Common symptoms include decreased activity and increased sleep, feeding difficulty, constipation, and prolonged jaundice. On examination, common signs include myxedematous facies, large fontanels, macroglossia, a distended abdomen with umbilical hernia, and hypotonia. CH is classified into permanent and transient forms, which in turn can be divided into primary, secondary, or peripheral etiologies. Thyroid dysgenesis accounts for 85% of permanent, primary CH, while inborn errors of thyroid hormone biosynthesis (dyshormonogeneses) account for 10-15% of cases. Secondary or central CH may occur with isolated TSH deficiency, but more commonly it is associated with congenital hypopitiutarism. Transient CH most commonly occurs in preterm infants born in areas of endemic iodine deficiency. In countries with newborn screening programs in place, infants with CH are diagnosed after detection by screening tests. The diagnosis should be confirmed by finding an elevated serum TSH and low T4 or free T4 level. Other diagnostic tests, such as thyroid radionuclide uptake and scan, thyroid sonography, or serum thyroglobulin determination may help pinpoint the underlying etiology, although treatment may be started without these tests. Levothyroxine is the treatment of choice; the recommended starting dose is 10 to 15 mcg/kg/day. The immediate goals of treatment are to rapidly raise the serum T4 above 130 nmol/L (10 ug/dL) and normalize serum TSH levels. Frequent laboratory monitoring in infancy is essential to ensure optimal neurocognitive outcome. Serum TSH and free T4 should be measured every 1-2 months in the first 6 months of life and every 3-4 months thereafter. In general, the prognosis

  1. Porcine models of muscular dystrophy

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Duchenne muscular dystrophy is a progressive, fatal, X-linked disease caused by a failure to accumulate the cytoskeletal protein, dystrophin. This disease is modeled by a variety of animal models including several fish models, mice, rats, and dogs. While these models have contributed substantially t...

  2. Modifying muscular dystrophy through TGFβ

    PubMed Central

    Ceco, Ermelinda; McNally, Elizabeth M.

    2013-01-01

    Muscular dystrophy arises from ongoing muscle degeneration and insufficient regeneration. This imbalance leads to loss of muscle with replacement by scar or fibrosis resulting in muscle weakness and, eventually, loss of muscle function. Human muscular dystrophy is characterized by a wide range of disease severity, even when the same genetic mutation is present. This variability implies that other factors, both genetic and environmental, modify the disease outcome. There has been an ongoing effort to define the genetic and molecular bases that influence muscular dystrophy onset and progression. Modifier genes for muscle disease have been identified through candidate gene approaches as well as genomewide surveys. Multiple lines of experimental evidence have now converged on the TGFβ pathway as a modifier for muscular dystrophy. TGFβ signaling is upregulated in dystrophic muscle as a result of a destabilized plasma membrane and/or altered extracellular matrix. Given the important biological role of the TGFβ pathway, and its role beyond muscle homeostasis, we review modifier genes that alter the TGFβ pathway and approaches to modulate TGFβ activity to ameliorate muscle disease. PMID:23551962

  3. Wasting mechanisms in muscular dystrophy.

    PubMed

    Shin, Jonghyun; Tajrishi, Marjan M; Ogura, Yuji; Kumar, Ashok

    2013-10-01

    Muscular dystrophy is a group of more than 30 different clinical genetic disorders that are characterized by progressive skeletal muscle wasting and degeneration. Primary deficiency of specific extracellular matrix, sarcoplasmic, cytoskeletal, or nuclear membrane protein results in several secondary changes such as sarcolemmal instability, calcium influx, fiber necrosis, oxidative stress, inflammatory response, breakdown of extracellular matrix, and eventually fibrosis which leads to loss of ambulance and cardiac and respiratory failure. A number of molecular processes have now been identified which hasten disease progression in human patients and animal models of muscular dystrophy. Accumulating evidence further suggests that aberrant activation of several signaling pathways aggravate pathological cascades in dystrophic muscle. Although replacement of defective gene with wild-type is paramount to cure, management of secondary pathological changes has enormous potential to improving the quality of life and extending lifespan of muscular dystrophy patients. In this article, we have reviewed major cellular and molecular mechanisms leading to muscle wasting in muscular dystrophy. This article is part of a Directed Issue entitled: Molecular basis of muscle wasting. PMID:23669245

  4. Genetics Home Reference: Emery-Dreifuss muscular dystrophy

    MedlinePlus

    ... Health Conditions Emery-Dreifuss muscular dystrophy Emery-Dreifuss muscular dystrophy Enable Javascript to view the expand/collapse boxes. ... PDF Open All Close All Description Emery-Dreifuss muscular dystrophy is a condition that chiefly affects muscles used ...

  5. Genetics Home Reference: Duchenne and Becker muscular dystrophy

    MedlinePlus

    ... Duchenne and Becker muscular dystrophy Duchenne and Becker muscular dystrophy Enable Javascript to view the expand/collapse boxes. Download PDF Open All Close All Description Muscular dystrophies are a group of genetic conditions characterized by ...

  6. Congenital hypothyroidism.

    PubMed

    Abduljabbar, Mohammad A; Afifi, Ashraf M

    2012-01-01

    Congenital hypothyroidism (CH) is defined as thyroid hormone deficiency present at birth. Babies with CH who are not identified and treated promptly develop severe mental retardation. Most of the babies with CH do not manifest the typical known signs and symptoms of hypothyroidism, and this is most likely due to transplacental passage of some maternal thyroid hormone in addition to some residual neonatal thyroid function, as might be seen with thyroid hypoplasia, an ectopic gland, or mild dyshormonogenesis. Screening for CH has enabled the virtual eradication of the devastating effects of mental retardation due to sporadic CH in most developed countries of the world. CH is classified into permanent and transient forms, which in turn can be divided into primary, secondary, or peripheral etiologies. Permanent CH refers to a persistent deficiency of thyroid hormone that requires life-long treatment. Transient CH refers to a temporary deficiency of thyroid hormone that is discovered at birth but recovers to normal in the first few months or years of life. In the last several decades, there have been exciting advances in our understanding of fetal and neonatal thyroid physiology. In addition, advances in molecular biology have helped in understanding the early events in thyroid gland embryogenesis, mechanisms of thyroid action in the brain, the molecular basis for many of the inborn errors of thyroid hormonogenesis, and thyroid hormone action. However, many questions and challenges are still not answered. For example, the increasing numbers of surviving small and premature neonates with abnormalities in thyroid function need definite diagnostic criteria and whether they require medical therapy. Another challenge is the dilemma of finding the best screening methodology that is sensitive and cost effective. PMID:22570946

  7. Congenital myopathies

    PubMed Central

    Colombo, Irene; Scoto, Mariacristina; Manzur, Adnan Y.; Robb, Stephanie A.; Maggi, Lorenzo; Gowda, Vasantha; Cullup, Thomas; Yau, Michael; Phadke, Rahul; Sewry, Caroline; Jungbluth, Heinz

    2015-01-01

    Objective: To assess the natural history of congenital myopathies (CMs) due to different genotypes. Methods: Retrospective cross-sectional study based on case-note review of 125 patients affected by CM, followed at a single pediatric neuromuscular center, between 1984 and 2012. Results: Genetic characterization was achieved in 99 of 125 cases (79.2%), with RYR1 most frequently implicated (44/125). Neonatal/infantile onset was observed in 76%. At birth, 30.4% required respiratory support, and 25.2% nasogastric feeding. Twelve percent died, mainly within the first year, associated with mutations in ACTA1, MTM1, or KLHL40. All RYR1-mutated cases survived and did not require long-term ventilator support including those with severe neonatal onset; however, recessive cases were more likely to require gastrostomy insertion (p = 0.0028) compared with dominant cases. Independent ambulation was achieved in 74.1% of all patients; 62.9% were late walkers. Among ambulant patients, 9% eventually became wheelchair-dependent. Scoliosis of variable severity was reported in 40%, with 1/3 of (both ambulant and nonambulant) patients requiring surgery. Bulbar involvement was present in 46.4% and required gastrostomy placement in 28.8% (at a mean age of 2.7 years). Respiratory impairment of variable severity was a feature in 64.1%; approximately half of these patients required nocturnal noninvasive ventilation due to respiratory failure (at a mean age of 8.5 years). Conclusions: We describe the long-term outcome of a large cohort of patients with CMs. While overall course is stable, we demonstrate a wide clinical spectrum with motor deterioration in a subset of cases. Severity in the neonatal/infantile period is critical for survival, with clear genotype-phenotype correlations that may inform future counseling. PMID:25428687

  8. Giant congenital nevus

    MedlinePlus

    ... A congenital pigmented or melanocytic nevus is a dark-colored, often hairy, patch of skin. A congenital ... rare. Symptoms A nevus will appear as a dark-colored patch with any of the following: Brown ...

  9. Congenital heart disease

    MedlinePlus

    Congenital heart disease is a problem with the heart's structure and function that is present at birth. ... Congenital heart disease (CHD) can describe a number of different problems affecting the heart. It is the most common ...

  10. Adult Congenital Heart Association

    MedlinePlus

    ... to ACHA Search The futures of adults with congenital heart disease made brighter by their pasts Get Involved 2016 ... conference theme is "The Changing Landscape of Adult Congenital Heart Disease." Join Us Help us improve the quality of ...

  11. Congenital Heart Information Network

    MedlinePlus

    ... heart defects. Important Notice The Congenital Heart Information Network website is temporarily out of service. Please join ... and Uwe Baemayr for The Congenital Heart Information Network Exempt organization under Section 501(c)3. Copyright © ...

  12. Pregnancy and delivery in Leyden-Möbius muscular dystrophy. Case Report.

    PubMed

    Vavrinkova, Blanka; Binder, Tomas

    2015-01-01

    Leyden-Möbius muscular dystrophy is an autosomal recessive hereditary disease of unknown aetiology; it is a congenital disorder of protein metabolism primarily affecting proximal muscle groups leading to progressive muscular dystrophy. It later spreads to the muscles of the pelvic floor and lower extremities. The estimated incidence is 1:200,000. This paper describe a case of pregnancy and delivery in woman with progressive Leyden-Moebius muscular dystrophy. Cesarean section was performed due to progression of the underlying disease. First postoperative day DIC occure and surgical revision of abdominal cavity was performed. Although the uterine suture was strong, diffuse bleeding was present. Blood was not coagulating. Supravaginal amputation of the uterus was performed including left-sided adnexectomy due to bleeding from the left ovarium. Due to the severity of the condition and assumed necessity of long-term controlled ventilation, the patient was transferred to the intensive medicine department. She was dismissed home after 91 days of hospitalisation. Gravidity in advanced muscular dystrophy is rare and associated with a high risk. Due to muscle weakness, diaphragm weakness, atrophy of individual muscle groups, spine deformities and often dislocation of thoracic organs, these patients cannot avoid the caesarean section to end their pregnancy, followed by prolonged intubation and controlled ventilation. During pregnancy, the growing uterus elevates the diaphragm and impairs breathing. Therefore, pregnancies in such patients will probably always have to be ended prematurely. PMID:26313391

  13. Congenital Intralabyrinthine Cholesteatoma

    PubMed Central

    Prasad, Sanjay; Prasad, Kiran; Azadarmaki, Roya

    2014-01-01

    A patient with a congenital intralabyrinthine cholesteatoma is presented. High-resolution computerized tomographic scans and intraoperative photomicrographs display features of intralabyrinthine extension. We discuss pathogenetic theories for the development of congenital intralabyrinthine cholesteatoma. The distinction of this condition from congenital cholesteatoma with labyrinthine erosion is discussed. PMID:25057421

  14. Congenital sternoclavicular dermoid sinus.

    PubMed

    Willaert, Annelore; Bruninx, Liesje; Hens, Greet; Hauben, Esther; Devriendt, Koen; Vander Poorten, Vincent

    2016-02-01

    We report a case series of 8 patients, presenting with a congenital sinus in the region of the sternoclavicular joint. This rare malformation has only been reported in the Japanese dermatological literature under the name of "congenital dermoid fistula of the anterior chest region". It has to be distinguished from other congenital anomalies and requires complete excision. PMID:26810293

  15. Zebrafish orthologs of human muscular dystrophy genes

    PubMed Central

    Steffen, Leta S; Guyon, Jeffrey R; Vogel, Emily D; Beltre, Rosanna; Pusack, Timothy J; Zhou, Yi; Zon, Leonard I; Kunkel, Louis M

    2007-01-01

    Background Human muscular dystrophies are a heterogeneous group of genetic disorders which cause decreased muscle strength and often result in premature death. There is no known cure for muscular dystrophy, nor have all causative genes been identified. Recent work in the small vertebrate zebrafish Danio rerio suggests that mutation or misregulation of zebrafish dystrophy orthologs can also cause muscular degeneration phenotypes in fish. To aid in the identification of new causative genes, this study identifies and maps zebrafish orthologs for all known human muscular dystrophy genes. Results Zebrafish sequence databases were queried for transcripts orthologous to human dystrophy-causing genes, identifying transcripts for 28 out of 29 genes of interest. In addition, the genomic locations of all 29 genes have been found, allowing rapid candidate gene discovery during genetic mapping of zebrafish dystrophy mutants. 19 genes show conservation of syntenic relationships with humans and at least two genes appear to be duplicated in zebrafish. Significant sequence coverage on one or more BAC clone(s) was also identified for 24 of the genes to provide better local sequence information and easy updating of genomic locations as the zebrafish genome assembly continues to evolve. Conclusion This resource supports zebrafish as a dystrophy model, suggesting maintenance of all known dystrophy-associated genes in the zebrafish genome. Coupled with the ability to conduct genetic screens and small molecule screens, zebrafish are thus an attractive model organism for isolating new dystrophy-causing genes/pathways and for use in high-throughput therapeutic discovery. PMID:17374169

  16. Weakness

    MedlinePlus

    ... spine) Stroke MUSCLE DISEASES Becker muscular dystrophy Dermatomyositis Muscular dystrophy (Duchenne) Myotonic dystrophy POISONING Botulism Poisoning ( insecticides , nerve gas) Shellfish poisoning OTHER Anemia Myasthenia gravis Polio

  17. [Current status and future prospects of research on Fukuyama muscular dystrophy].

    PubMed

    Toda, Tatsushi

    2015-08-01

    Fukuyama congenital muscular dystrophy(FCMD) is a second common childhood muscular dystrophy in Japan. All FCMD patients have ancestral insertion of the SVA retrotransposal element into fukutin. We show that aberrant mRNA splicing induced by SVA exon-trapping caused FCMD. Introduction of 3 cocktailed antisense oligonucleotides(AONs) targeting around these splice sites prevented pathogenic splicing in FCMD patient cells and model mice, and normalized protein production and functions of Fukutin as well as O-glycosylation of α-dystroglycan. We show the promise of splicing modulation therapy as the first radical clinical treatment for FCMD in the near future. We also show that fukutin is prerequisite to ameliorate muscular dystrophic phenotype by myofiber-selective LARGE expression. Recent advances in FCMD are discussed. PMID:26281700

  18. A gene for autosomal dominant progressive cone dystrophy (CORD5) maps to chromosome 17p12-p13

    SciTech Connect

    Balciuniene, J.; Holmgren, G.; Forsman, K.

    1995-11-20

    Inherited retinal dystrophy is a common cause of visual impairment. Cone dystrophy affects the cone function and is manifested as progressive loss of the central vision, defective color vision, and photophobia. Linkage was demonstrated between progressive cone dystrophy (CORD5) and genetic markers on chromosome 17p12-p13 in a five-generation family. Multipoint analysis gave a maximum lod score of 7.72 at the marker D17S938. Recombinant haplotypes in the family suggest that the cone dystrophy locus is located in a 25-cM interval between the markers D17S926/D17S849 and D17S804/D17S945. Furthermore, one recombination was detected between the disease locus and a microsatellite marker in the candidate gene RCV1, encoding the retinal protein recoverin. Two additional candidate genes encoding retinal guanylate cyclase (GUC2D) and pigment epithelium-derived factor (PEDF) are located at 17p13.1. Moreover, loci for retinitis pigmentosa and Leber congenital amaurosis have been mapped to the same region. Identification of the cone dystrophy locus may be of importance not only for identifying functional genes in the cone system, but also for identifying genes for other retinal disorders. 34 refs., 3 figs., 2 tabs.

  19. Genetics Home Reference: congenital hypothyroidism

    MedlinePlus

    ... Understand Genetics Home Health Conditions congenital hypothyroidism congenital hypothyroidism Enable Javascript to view the expand/collapse boxes. Download PDF Open All Close All Description Congenital hypothyroidism is a partial or complete loss of function ...

  20. [Duodenal dystrophy: An interdisciplinary problem].

    PubMed

    Vinokurova, L V; Khatkov, I E; Izrailov, R E; Bordin, D S; Dubtsova, E A; Nikolskaya, K A; Agafonov, M A; Andrianov, A V

    2016-01-01

    Duodenal dystrophy (DD) is the pathological change in the wall of the duodenum, which is caused by chronic inflammation in its ectopic pancreatic tissue. The most common complications of DD are acute or chronic pancreatitis and impaired duodenal patency, which along with severe pain are an indication for surgical treatment. Pancreaticoduodenal resection is recognized as the operation of choice. The paper describes a clinical case demonstrating the efficiency and safety of minimally invasive (laparoscopic) surgical technologies in this category of patients. Resectional interventions of this volume are also shown to be accompanied by the development of pancreatic insufficiency that necessitates continuous enzyme replacement therapy. PMID:27030187

  1. Arrhythmias in the muscular dystrophies.

    PubMed

    Rajdev, Archana; Groh, William J

    2015-06-01

    In patients with muscular dystrophies, cardiac involvement leading to cardiomyopathy and arrhythmias occurs with variable prevalence, mirroring the phenotypic variability seen among and within the various hereditary myopathies. Knowledge of the incidence of arrhythmias and predictors of sudden death in the various hereditary myopathies can help guide screening and appropriate management of these patients, thereby improving survival. The noncardiac manifestations can lead to delayed recognition of symptoms, affect the decision to implant a prophylactic device, and once a decision is made to proceed with device implant, increase peri-procedural respiratory and anesthesia-related complications. PMID:26002394

  2. Duchenne muscular dystrophy: current cell therapies

    PubMed Central

    Sienkiewicz, Dorota; Okurowska-Zawada, Bożena; Paszko-Patej, Grażyna; Kawnik, Katarzyna

    2015-01-01

    Duchenne muscular dystrophy is a genetically determined X-linked disease and the most common, progressive pediatric muscle disorder. For decades, research has been conducted to find an effective therapy. This review presents current therapeutic methods for Duchenne muscular dystrophy, based on scientific articles in English published mainly in the period 2000 to 2014. We used the PubMed database to identify and review the most important studies. An analysis of contemporary studies of stem cell therapy and the use of granulocyte colony-stimulating factor (G-CSF) in muscular dystrophy was performed. PMID:26136844

  3. Giant congenital nevus

    MedlinePlus

    A congenital pigmented or melanocytic nevus is a dark-colored, often hairy, patch of skin. A congenital ... A nevus will appear as a dark-colored patch with any of the ... Hair Regular or uneven borders Smaller affected areas near the ...

  4. Congenital CMV Infection

    MedlinePlus

    ... CMV Babies Born with CMV (Congenital CMV Infection) Language: English Español (Spanish) Recommend on Facebook Tweet Share Compartir ... Detection and Intervention Helping Children With Congenital CMV Language: English Español (Spanish) File Formats Help: How do I ...

  5. Congenital heat disease

    SciTech Connect

    Higgins, C.B.; Silverman, N.H.; Kersting-Somerhoff, B.A.

    1990-01-01

    The book covers the tomographic anatomy of the normal and congenitally malformed heart and tomographic imaging of the normal heat. It then compares echocardiographic evaluation and the use of MR imaging in the diagnosis and evaluation of individual congenital cardiac malformations.

  6. Comparative study of thallium-201 single-photon emission computed tomography and electrocardiography in Duchenne and other types of muscular dystrophy

    SciTech Connect

    Yamamoto, S.; Matsushima, H.; Suzuki, A.; Sotobata, I.; Indo, T.; Matsuoka, Y.

    1988-04-01

    Single-photon emission computed tomography (SPECT) using thallium-201 was compared with 12-lead electrocardiography (ECG) in patients with Duchenne (29), facioscapulohumeral (7), limb-girdle (6) and myotonic (5) dystrophies, by dividing the left ventricular (LV) wall into 5 segments. SPECT showed thallium defects (37 patients, mostly in the posteroapical wall), malrotation (23), apical aneurysm (5) and dilatation (7). ECG showed abnormal QRS (36 patients), particularly as a posterolateral pattern (13). Both methods of assessment were normal in only 7 patients. The Duchenne type frequently showed both a thallium defect (particularly in the posteroapical wall) and an abnormal QRS (predominantly in the posterolateral wall); the 3 other types showed abnormalities over the 5 LV wall segments in both tests. The percent of agreement between the 2 tests was 64, 66, 70, 72 and 72 for the lateral, apical, anteroseptal, posterior and inferior walls, respectively. The 2 tests were discordant in 31% of the LV wall, with SPECT (+) but ECG (-) in 21% (mostly in the apicoinferior wall) and SPECT (-) but ECG (+) in 10% (mostly in the lateral wall). Some patients showed large SPECT hypoperfusion despite minimal electrocardiographic changes. ECG thus appeared to underestimate LV fibrosis and to reflect posteroapical rather than posterolateral dystrophy in its posterolateral QRS pattern. In this disease, extensive SPECT hypoperfusion was also shown, irrespective of clinical subtype and skeletal involvement.

  7. Scapuloperoneal muscular dystrophy phenotype due to TRIM32-sarcotubular myopathy in South Dakota Hutterite.

    PubMed

    Liewluck, Teerin; Tracy, Jennifer A; Sorenson, Eric J; Engel, Andrew G

    2013-02-01

    Scapuloperoneal muscular dystrophy is a group of genetically heterogeneous disorders that share the phenotype of progressive weakness of scapular and anterior distal leg muscles. Recessive mutations in C-terminal domains of TRIM32 result in limb-girdle muscular dystrophy 2H and sarcotubular myopathy, a rare congenital myopathy commonly seen in Hutterites. A scapuloperoneal phenotype has never been reported in sarcotubular myopathy. We here report a 23-year-old Hutterite man with a one-year history of progressive weakness predominantly involving the anterior tibial and left scapular muscles, and hyperCKemia. Biopsy of the anterior tibial muscle showed an active myopathy with non-rimmed vacuoles and mild denervation atrophy associated with reinnervation. The vacuoles are similar to those described in sarcotubular myopathy. TRIM32 sequencing revealed the common c.1459G>A mutation at homozygosity. A search for mutations in TRIM32 should be considered in patients with scapuloperoneal muscular dystrophy, and especially in patients of Hutterite origin or with an atypical vacuolar myopathy. PMID:23142638

  8. Laminin alpha1 chain reduces muscular dystrophy in laminin alpha2 chain deficient mice.

    PubMed

    Gawlik, Kinga; Miyagoe-Suzuki, Yuko; Ekblom, Peter; Takeda, Shin'ichi; Durbeej, Madeleine

    2004-08-15

    Laminin (LN) alpha2 chain deficiency in humans and mice leads to severe forms of congenital muscular dystrophy (CMD). Here, we investigated whether LNalpha1 chain in mice can compensate for the absence of LNalpha2 chain and prevent the development of muscular dystrophy. We generated mice expressing a LNalpha1 chain transgene in skeletal muscle of LNalpha2 chain deficient mice. LNalpha1 is not normally expressed in muscle, but the transgenically produced LNalpha1 chain was incorporated into muscle basement membranes, and normalized the compensatory changes of expression of certain other laminin chains (alpha4, beta2). In 4-month-old mice, LNalpha1 chain could fully prevent the development of muscular dystrophy in several muscles, and partially in others. The LNalpha1 chain transgene not only reversed the appearance of histopathological features of the disease to a remarkable degree, but also greatly improved health and longevity of the mice. Correction of LNalpha2 chain deficiency by LNalpha1 chain may serve as a paradigm for gene therapy of CMD in patients. PMID:15213105

  9. Physical Therapy and Facioscapulohumeral Muscular Dystrophy (FSHD)

    MedlinePlus

    Physical Therapy & FSHD Facioscapulohumeral Muscular Dystrophy A Guide for Patients & Physical Therapists Authors: Wendy M. King, P.T., ... expertise and patient preferences. The goals of any physical therapy plan of care are to assist patients to:  ...

  10. Genetics Home Reference: Bietti crystalline dystrophy

    MedlinePlus

    ... on PubMed Central Mansour AM, Uwaydat SH, Chan CC. Long-term follow-up in Bietti crystalline dystrophy. ... VD, Zhang J, Gesualdo C, Corte MD, Chan CC, Fielding Hejtmancik J, Simonelli F. An atypical form ...

  11. [Muscular Dystrophies Involving the Retinal Function].

    PubMed

    Jägle, H

    2016-03-01

    Muscular dystrophies are rare disorders, with an incidence of approx. 20 in 100 000. Some dystrophies also affect retinal or optic nerve function. In such cases, the ophthalmological findings may be critical for differential diagnosis or patient counseling. For example in Duchenne muscular dystrophy, where the alteration in retinal function seems to reflect cerebral involvement. Other important forms are mitochondrial and metabolic disorders, such as the Kearns-Sayre syndrome and the Refsum syndrome. Molecular genetic analysis has become a major tool for differential diagnosis, but may be complex and demanding. This article gives an overview of major muscular dystrophies involving retinal function and their genetic origin, in order to guide differential diagnosis. PMID:27011029

  12. Genetics Home Reference: vitelliform macular dystrophy

    MedlinePlus

    ... faces. Vitelliform macular dystrophy causes a fatty yellow pigment (lipofuscin) to build up in cells underlying the ... structures in these cells that contain light-sensing pigments. It is unclear why PRPH2 mutations affect only ...

  13. The Muscular Dystrophies: From Genes to Therapies

    PubMed Central

    Porter, Neil C; Bloch, Robert J

    2015-01-01

    The genetic basis of many muscular disorders, including many of the more common muscular dystrophies, is now known. Clinically, the recent genetic advances have improved diagnostic capabilities, but they have not yet provided clues about treatment or management. Thanks to better management strategies and therapeutic interventions, however, many patients with a muscular dystrophy are more active and are living longer. Physical therapists, therefore, are more likely to see a patient with a muscular dystrophy, so understanding these muscle disorders and their management is essential. Physical therapy offers the most promise in caring for the majority of patients with these conditions, because it is unlikely that advances in gene therapy will significantly alter their clinical treatment in the near future. This perspective covers some of the basic molecular biological advances together with the clinical manifestations of the muscular dystrophies and the latest approaches to their management. PMID:16305275

  14. Mutations in GMPPB cause congenital myasthenic syndrome and bridge myasthenic disorders with dystroglycanopathies

    PubMed Central

    Belaya, Katsiaryna; Rodríguez Cruz, Pedro M.; Liu, Wei Wei; Maxwell, Susan; McGowan, Simon; Farrugia, Maria E.; Petty, Richard; Walls, Timothy J.; Sedghi, Maryam; Basiri, Keivan; Yue, Wyatt W.; Sarkozy, Anna; Bertoli, Marta; Pitt, Matthew; Kennett, Robin; Schaefer, Andrew; Bushby, Kate; Parton, Matt; Lochmüller, Hanns; Palace, Jacqueline; Muntoni, Francesco

    2015-01-01

    Congenital myasthenic syndromes are inherited disorders that arise from impaired signal transmission at the neuromuscular junction. Mutations in at least 20 genes are known to lead to the onset of these conditions. Four of these, ALG2, ALG14, DPAGT1 and GFPT1, are involved in glycosylation. Here we identify a fifth glycosylation gene, GMPPB, where mutations cause congenital myasthenic syndrome. First, we identified recessive mutations in seven cases from five kinships defined as congenital myasthenic syndrome using decrement of compound muscle action potentials on repetitive nerve stimulation on electromyography. The mutations were present through the length of the GMPPB, and segregation, in silico analysis, exon trapping, cell transfection followed by western blots and immunostaining were used to determine pathogenicity. GMPPB congenital myasthenic syndrome cases show clinical features characteristic of congenital myasthenic syndrome subtypes that are due to defective glycosylation, with variable weakness of proximal limb muscle groups while facial and eye muscles are largely spared. However, patients with GMPPB congenital myasthenic syndrome had more prominent myopathic features that were detectable on muscle biopsies, electromyography, muscle magnetic resonance imaging, and through elevated serum creatine kinase levels. Mutations in GMPPB have recently been reported to lead to the onset of muscular dystrophy dystroglycanopathy. Analysis of four additional GMPPB-associated muscular dystrophy dystroglycanopathy cases by electromyography found that a defective neuromuscular junction component is not always present. Thus, we find mutations in GMPPB can lead to a wide spectrum of clinical features where deficit in neuromuscular transmission is the major component in a subset of cases. Clinical recognition of GMPPB-associated congenital myasthenic syndrome may be complicated by the presence of myopathic features, but correct diagnosis is important because affected

  15. Mutations in GMPPB cause congenital myasthenic syndrome and bridge myasthenic disorders with dystroglycanopathies.

    PubMed

    Belaya, Katsiaryna; Rodríguez Cruz, Pedro M; Liu, Wei Wei; Maxwell, Susan; McGowan, Simon; Farrugia, Maria E; Petty, Richard; Walls, Timothy J; Sedghi, Maryam; Basiri, Keivan; Yue, Wyatt W; Sarkozy, Anna; Bertoli, Marta; Pitt, Matthew; Kennett, Robin; Schaefer, Andrew; Bushby, Kate; Parton, Matt; Lochmüller, Hanns; Palace, Jacqueline; Muntoni, Francesco; Beeson, David

    2015-09-01

    Congenital myasthenic syndromes are inherited disorders that arise from impaired signal transmission at the neuromuscular junction. Mutations in at least 20 genes are known to lead to the onset of these conditions. Four of these, ALG2, ALG14, DPAGT1 and GFPT1, are involved in glycosylation. Here we identify a fifth glycosylation gene, GMPPB, where mutations cause congenital myasthenic syndrome. First, we identified recessive mutations in seven cases from five kinships defined as congenital myasthenic syndrome using decrement of compound muscle action potentials on repetitive nerve stimulation on electromyography. The mutations were present through the length of the GMPPB, and segregation, in silico analysis, exon trapping, cell transfection followed by western blots and immunostaining were used to determine pathogenicity. GMPPB congenital myasthenic syndrome cases show clinical features characteristic of congenital myasthenic syndrome subtypes that are due to defective glycosylation, with variable weakness of proximal limb muscle groups while facial and eye muscles are largely spared. However, patients with GMPPB congenital myasthenic syndrome had more prominent myopathic features that were detectable on muscle biopsies, electromyography, muscle magnetic resonance imaging, and through elevated serum creatine kinase levels. Mutations in GMPPB have recently been reported to lead to the onset of muscular dystrophy dystroglycanopathy. Analysis of four additional GMPPB-associated muscular dystrophy dystroglycanopathy cases by electromyography found that a defective neuromuscular junction component is not always present. Thus, we find mutations in GMPPB can lead to a wide spectrum of clinical features where deficit in neuromuscular transmission is the major component in a subset of cases. Clinical recognition of GMPPB-associated congenital myasthenic syndrome may be complicated by the presence of myopathic features, but correct diagnosis is important because affected

  16. Reflex sympathetic dystrophy following traumatic myelopathy.

    PubMed

    Wainapel, S F

    1984-04-01

    Two cases of reflex sympathetic dystrophy in the upper extremity of patients with traumatic cervical spinal cord injuries are reported. Both patients had very incomplete lesions with early neurological recovery, suggesting an underlying central cord syndrome. Although reflex sympathetic dystrophy is often seen following stroke, it has only rarely been documented in traumatic myelopathy, and it should be considered in the differential diagnosis of unexplained pain syndromes in the extremities of paraplegic or quadriplegic patients. PMID:6728500

  17. Flicker fusion thresholds in Best macular dystrophy.

    PubMed

    Massof, R W; Fleischman, J A; Fine, S L; Yoder, F

    1977-06-01

    Flicker fusion threshold intensities were measured as a function of flicker frequency for patients with Best macular dystrophy having normal or near-normal Snellen visual acuity. These data were found to differ from normal in ways that may be interpreted to be an abnormal elevation of the foveal cone threshold, a loss of cone temporal resolution, or both. The results led to the conclusion that Best macular dystrophy affects the neurosensory retina even when Snellen visual acuity is normal. PMID:869758

  18. Further evidence of Fukutin mutations as a cause of childhood onset limb-girdle muscular dystrophy without mental retardation

    PubMed Central

    Puckett, Rebecca L.; Moore, Steven A.; Winder, Thomas L.; Willer, Tobias; Romansky, Stephen G.; Covault, Kelly King; Campbell, Kevin P.; Abdenur, Jose E.

    2009-01-01

    The dystroglycanopathies comprise a clinically and genetically heterogeneous group of muscular dystrophies characterized by deficient glycosylation of α-dystroglycan. Mutations in the fukutin (FKTN) gene have primarily been identified among patients with classic Fukuyama congenital muscular dystrophy (FCMD), a severe form of dystroglycanopathy characterized by CMD, cobblestone lissencephaly and ocular defects. We describe two brothers of Caucasian and Japanese ancestry with normal intelligence and limb-girdle muscular dystrophy (LGMD) due to compound heterozygous FKTN mutations. Muscle biopsy showed a dystrophy with selectively reduced α-dystroglycan glycoepitope immunostaining. Immunoblots revealed hypoglycosylation of α-dystroglycan and loss of laminin binding. FKTN gene sequencing identified two variants: c.340G>A and c.527T>C, predicting missense mutations p.A114T and p.F176S, respectively. Our results provide further evidence for ethnic and allelic heterogeneity and the presence of milder phenotypes in FKTN-dystroglycanopathy despite a substantial degree of α-dystroglycan hypoglycosylation in skeletal muscle. PMID:19342235

  19. Treatment of facioscapulohumeral muscular dystrophy with Denosumab

    PubMed Central

    Lefkowitz, Stanley S.; Lefkowitz, Doris L.; Kethley, Jeremy

    2012-01-01

    Summary Background: Facioscapulohumeral muscular dystrophy (FSHD) is the 3rd most common form of muscular dystrophy. Effective treatments for any of the muscular dystrophies have yet to be realized. This report describes such a treatment. Case Report: A 66 year old female was diagnosed with osteoporosis. She had been diagnosed with FSHD muscular dystrophy a number of years previously by both genetic and clinical studies. Following a 2 year course with Forteo for osteoporosis, she was given an injection of Denosumab (Prolia) to maintain her bone density. By 24 hours, she exhibited increased strength and a dramatic reduction of her dystrophic symptoms e.g. she could walk unassisted in high heels. She was able to accomplish other things that had not been possible for a number of years. After approximately 5 weeks she gradually lost the newfound strength with a complete loss by about 6 weeks. A second injection of Denosumab resulted in the same effect, i.e. reversal of symptoms and increased functionality. A number of measurements and videos were taken to establish the beneficial effects of Prolia for future studies. This was repeated with a 3rd and 4th injection in order to establish the unequivocal beneficial effects on muscular dystrophy. Conclusions: Further studies will be required to establish Denosumab as a major “front line” treatment for this disease and possibly other muscular dystrophies. PMID:23569491

  20. Animal Models of Muscular Dystrophy

    PubMed Central

    Ng, Rainer; Banks, Glen B.; Hall, John K.; Muir, Lindsey A.; Ramos, Julian N.; Wicki, Jacqueline; Odom, Guy L.; Konieczny, Patryk; Seto, Jane; Chamberlain, Joel R.; Chamberlain, Jeffrey S.

    2016-01-01

    The muscular dystrophies (MDs) represent a diverse collection of inherited human disorders, which affect to varying degrees skeletal, cardiac, and sometimes smooth muscle (Emery, 20021). To date, more than 50 different genes have been implicated as causing one or more types of MD (Bansal et al., 20032). In many cases, invaluable insights into disease mechanisms, structure and function of gene products, and approaches for therapeutic interventions have benefited from the study of animal models of the different MDs (Arnett et al., 20093). The large number of genes that are associated with MD and the tremendous number of animal models that have been developed preclude a complete discussion of each in the context of this review. However, we summarize here a number of the more commonly used models together with a mixture of different types of gene and MD, which serves to give a general overview of the value of animal models of MD for research and therapeutic development. PMID:22137430

  1. Arrhythmias in the Muscular Dystrophies

    PubMed Central

    Rajdev, Archana; Groh, William J.

    2015-01-01

    Synopsis In patients with muscular dystrophies, cardiac involvement leading to cardiomyopathy and arrhythmias occur with variable prevalence mirroring the phenotypic variability seen among and within the various hereditary myopathies. These patients are at risk for development for bradyarrhythmias and tachyarrhythmias including sudden cardiac death. Knowledge of the incidence of arrhythmias and predictors of sudden death in the various hereditary myopathies can help guide screening and appropriate management of these patients, thereby improving survival. The non-cardiac manifestations can lead to delayed recognition of symptoms (limited mobility and respiratory weakness masking cardiac manifestations), affect decision to implant prophylactic device (quantity vs. quality of life) and once a decision is made to proceed with device implant, increase peri-procedural respiratory and anesthesia-related complications. PMID:26002394

  2. Congenital myasthenia gravis.

    PubMed

    Nizamani, Noor Bakht; Talpur, Khalid Iqbal; Memon, Mariya Nazish

    2013-07-01

    Congenital myasthenia gravis is caused by genetic mutations affecting neuromuscular transmission, characterized by muscle weakness usually starting in childhood. A two and a half years old male child presented with bilateral ptosis and hoarseness of voice. The symptoms progressed giving the clinical impression of congenital myasthenia gravis. A series of tests were done including Ice Pack Test, acetylcholine receptor antibody test, trial of steroids and finally neostigmine test which confirmed the diagnosis. This case illustrates the challenges in diagnosing congenital myasthenia gravis and highlights the potential benefits of neostigmine test in its diagnosis. PMID:23823963

  3. Abnormalities of dystrophin, the sarcoglycans, and laminin alpha2 in the muscular dystrophies.

    PubMed Central

    Jones, K J; Kim, S S; North, K N

    1998-01-01

    Abnormalities of dystrophin, the sarcoglycans, and laminin alpha2 are responsible for a subset of the muscular dystrophies. In this study we aim to characterise the nature and frequency of abnormalities of these proteins in an Australian population and to formulate an investigative algorithm to aid in approaching the diagnosis of the muscular dystrophies. To reduce ascertainment bias, biopsies with dystrophic (n=131) and non-dystrophic myopathic (n=71) changes were studied with antibodies to dystrophin, alpha, beta, and gamma sarcoglycan, beta dystroglycan, and laminin alpha2, and results were correlated with clinical phenotype. Abnormalities of dystrophin, the sarcoglycans, or laminin alpha2 were present in 61/131 (47%) dystrophic biopsies and in 0/71 myopathic biopsies, suggesting that immunocytochemical study of dystrophin, the sarcoglycans, and laminin alpha2 may, in general, be restricted to patients with dystrophic biopsies. Two patients with mutations identified in gamma sarcoglycan had abnormal dystrophin (by immunocytochemistry and immunoblot), showing that abnormalities of dystrophin may be a secondary phenomenon. Therefore, biopsies should not be excluded from sarcoglycan analysis on the basis of abnormal dystrophin alone. The diagnostic yield was highest in those with severe, rapidly progressive limb-girdle weakness (92%). Laminin alpha2 deficiency was identified in 5/131 (4%) patients; 215 patients presented after infancy, indicating that abnormalities of laminin alpha2 are not limited to the congenital muscular dystrophy phenotype. Overall patterns of immunocytochemistry and immunoblotting provided a guide to mutation analysis and, on the basis of this study, we have formulated a diagnostic algorithm to guide the investigation of patients with muscular dystrophy. Images PMID:9610800

  4. Congenital heart disease

    MedlinePlus

    ... about genetic counseling and screening if you have a family history of cogenital heart disease. ... Fraser CD, Carberry KE. Congenital heart disease. In: Townsend CM ... Textbook of Cardiovascular Medicine . 10th ed. Philadelphia, PA: ...

  5. Adult Congenital Heart Association

    MedlinePlus

    ... survivable, manageable, yet in the routine years between infancy and adulthood, sometimes forgettable. The Adult Congenital Heart ... understand the continuum of the disease from its infancy. The Adult Congential Heart Association brings together valuable ...

  6. Congenital nephrotic syndrome

    MedlinePlus

    ... may be high. There may be signs of malnutrition. A urinalysis reveals fat and large amounts of ... The disorder often leads to infection, malnutrition, and kidney failure. ... die within the first year. Congenital nephrotic syndrome ...

  7. Differential diagnosis of Schnyder corneal dystrophy.

    PubMed

    Weiss, Jayne S; Khemichian, Arbi J

    2011-01-01

    Schnyder corneal dystrophy (SCD) is a rare corneal dystrophy characterized by abnormally increased deposition of cholesterol and phospholipids in the cornea leading to progressive vision loss. SCD is inherited as an autosomal dominant trait with high penetrance and has been mapped to the UBIAD1 gene on chromosome 1p36.3. Although 2/3 of SCD patients also have systemic hypercholesterolemia, the incidence of hypercholesterolemia is also increased in unaffected members of SCD pedigrees. Consequently, SCD is thought to result from a local metabolic defect in the cornea. The corneal findings in SCD are very predictable depending on the age of the individual, with initial central corneal haze and/or crystals, subsequent appearance of arcus lipoides in the third decade and formation of midperipheral haze in the late fourth decade. Because only 50% of affected patients have corneal crystals, the International Committee for Classification of Corneal Dystrophies recently changed the original name of this dystrophy from Schnyder crystalline corneal dystrophy to Schnyder corneal dystrophy. Diagnosis of affected individuals without crystalline deposits is often delayed and these individuals are frequently misdiagnosed. The differential diagnosis of the SCD patient includes other diseases with crystalline deposits such as cystinosis, tyrosinemia, Bietti crystalline dystrophy, hyperuricemia/gout, multiple myeloma, monoclonal gammopathy, infectious crystalline keratopathy, and Dieffenbachia keratitis. Depositions from drugs such as gold in chrysiasis, chlorpromazine, chloroquine, and clofazamine can also result in corneal deposits and are different from SCD. Diseases of systemic lipid metabolism that cause corneal opacification, such as lecithin-cholesterol acyltransferase deficiency, fish eye disease and Tangier disease, should also be considered although these are autosomal recessive disorders. PMID:21540632

  8. Mouse fukutin deletion impairs dystroglycan processing and recapitulates muscular dystrophy

    PubMed Central

    Beedle, Aaron M.; Turner, Amy J.; Saito, Yoshiaki; Lueck, John D.; Foltz, Steven J.; Fortunato, Marisa J.; Nienaber, Patricia M.; Campbell, Kevin P.

    2012-01-01

    Dystroglycan is a transmembrane glycoprotein that links the extracellular basement membrane to cytoplasmic dystrophin. Disruption of the extensive carbohydrate structure normally present on α-dystroglycan causes an array of congenital and limb girdle muscular dystrophies known as dystroglycanopathies. The essential role of dystroglycan in development has hampered elucidation of the mechanisms underlying dystroglycanopathies. Here, we developed a dystroglycanopathy mouse model using inducible or muscle-specific promoters to conditionally disrupt fukutin (Fktn), a gene required for dystroglycan processing. In conditional Fktn-KO mice, we observed a near absence of functionally glycosylated dystroglycan within 18 days of gene deletion. Twenty-week-old KO mice showed clear dystrophic histopathology and a defect in glycosylation near the dystroglycan O-mannose phosphate, whether onset of Fktn excision driven by muscle-specific promoters occurred at E8 or E17. However, the earlier gene deletion resulted in more severe phenotypes, with a faster onset of damage and weakness, reduced weight and viability, and regenerating fibers of smaller size. The dependence of phenotype severity on the developmental timing of muscle Fktn deletion supports a role for dystroglycan in muscle development or differentiation. Moreover, given that this conditional Fktn-KO mouse allows the generation of tissue- and timing-specific defects in dystroglycan glycosylation, avoids embryonic lethality, and produces a phenotype resembling patient pathology, it is a promising new model for the study of secondary dystroglycanopathy. PMID:22922256

  9. Feasibility of monitoring muscle health in microgravity environments using Myoton technology.

    PubMed

    Schneider, Stefan; Peipsi, Aleko; Stokes, Maria; Knicker, Axel; Abeln, Vera

    2015-01-01

    Physical exercise is important for people living under extreme environmental conditions to stay healthy. Particularly in space, exercise can partially counteract the loss of muscle mass and muscle strength caused by microgravity. Monitoring the adaptation of the musculoskeletal system to assess muscle quality and devise individual training programmes is highly desirable but is restricted by practical, technical and time constraints on board the International Space Station. This study aimed to test the feasibility of using myometric measurements to monitor the mechanical properties of skeletal muscles and tendons in weightlessness during parabolic flights. The mechanical properties (frequency, decrement, stiffness relaxation time and creep) of the m. gastrocnemius, m. erector spinae and Achilles tendon were assessed using the hand-held MyotonPRO device in 11 healthy participants (aged 47 ± 9 years) in normal gravity as well as in microgravity during two parabolic flight campaigns. Results showed significant (p < .05-.001) changes in all mechanical properties of both muscles and the Achilles tendon, indicating a more relaxed tissue state in microgravity. Recordings from a phantom rubber material with the device in a test rig confirmed that the device itself was not affected by gravity, as changes between gravity conditions that were too small (<1 %) to explain the changes observed in the tissues. It is concluded that myometric measurements are a feasible, easy-to-use and non-invasive approach to monitor muscle health in extreme conditions that prohibit many other methods. Real-time assessment of the quality of a muscle being exposed to the negative effect of microgravity and also the positive effects of muscular training could be achieved using Myoton technology. PMID:25331739

  10. [The heartache of muscular dystrophy].

    PubMed

    Hoogerwaard, E M; Ginjaar, H B; Wilde, A A; Leschot, N J; de Voogt, W G; de Visser, M

    2000-11-11

    Duchenne and Becker muscular dystrophy are caused by a mutation in the dystrophin gene, located on the short arm of the X chromosome. Three so called dystrophinopathy patients, a women aged 54 and two men aged 23 and 21 years, suffered from a severe dilated cardiomyopathy. Such a cardiomyopathy can develop in both carriers and patients. In addition, it is often more important for prognosis than muscle weakness. For these two reasons it is important to screen both groups for (early) cardiological abnormalities. If these are present, regular follow-up is necessary to start timely therapy. When cardiological investigations yield normal results, it is advised to screen carriers with a five-year interval. Dystrophinopathy patients should be checked every year, because the cardiomyopathy sometimes develops and deteriorates over a short period of time. Patients with dilated cardiomyopathy and with a positive family history for dilated cardiomyopathy, muscle weakness or high serum creatine kinase activity should be screened for a mutation in the dystrophin gene. PMID:11103252

  11. Genetics of Bietti Crystalline Dystrophy.

    PubMed

    Ng, Danny S C; Lai, Timothy Y Y; Ng, Tsz Kin; Pang, Chi Pui

    2016-01-01

    Bietti crystalline dystrophy (BCD) is an inherited retinal degenerative disease characterized by crystalline deposits in the retina, followed by progressive atrophy of the retinal pigment epithelium (RPE), choriocapillaris, and photoreceptors. CYP4V2 has been identified as the causative gene for BCD. The CYP4V2 gene belongs to the cytochrome P450 superfamily and encodes for fatty acid ω-hydroxylase of both saturated and unsaturated fatty acids. The CYP4V2 protein is localized most abundantly within the endoplasmic reticulum in the RPE and is postulated to play a role in the physiological lipid recycling system between the RPE and photoreceptors to maintain visual function. Electroretinographic assessments have revealed progressive dysfunction of rod and cone photoreceptors in patients with BCD. Several genotypes have been associated with more severe phenotypes based on clinical and electrophysiological findings. With the advent of multimodal imaging with spectral domain optical coherence tomography, fundus autofluorescence, and adaptive optics scanning laser ophthalmoscopy, more precise delineation of BCD severity and progression is now possible, allowing for the potential future development of targets for gene therapy. PMID:27228076

  12. Myoglobin in Primary Muscular Disease: I. Duchenne Muscular Dystrophy: and: II. Muscular Dystrophy of Distal Type

    PubMed Central

    Romero-Herrera, A. E.; Lehmann, H.; Tomlinson, B. E.; Walton, J. N.

    1973-01-01

    Skeletal myoglobin from two cases of muscular dystrophy, one of Duchenne muscular dystrophy, and one of muscular dystrophy of distal type, have been examined and no differences from normal human myoglobin were found. The opportunity has been taken to discuss the nature of minor fractions of myoglobin-like material which are found when human skeletal myoglobin is isolated. Those which have been observed in the present study have been artefacts and it was possible to demonstrate that they were due to deamidation of certain glutamine and asparagine residues. Images PMID:4590363

  13. Median Nail Dystrophy Involving the Thumb Nail

    PubMed Central

    Kota, Rahulkrishna; Pilani, Abhishek; Nair, Pragya Ashok

    2016-01-01

    Median canaliform dystrophy of Heller is a rare entity characterized by a midline or a paramedian ridge or split and canal formation in nail plate of one or both the thumb nails. It is an acquired condition resulting from a temporary defect in the matrix that interferes with nail formation. Habitual picking of the nail base may be responsible for some cases. Histopathology classically shows parakeratosis, accumulation of melanin within and between the nail bed keratinocytes. Treatment of median nail dystrophy includes injectable triamcinalone acetonide, topical 0.1% tacrolimus, and tazarotene 0.05%, which is many a times challenging for a dermatologist. Psychiatric opinion should be taken when associated with the depressive, obsessive-compulsive, or impulse-control disorder. We report a case of 19-year-old male diagnosed as median nail dystrophy. PMID:26955129

  14. Genetics of Congenital Cataract.

    PubMed

    Pichi, Francesco; Lembo, Andrea; Serafino, Massimiliano; Nucci, Paolo

    2016-01-01

    Congenital cataract is a type of cataract that presents at birth or during early childhood, and it is one of the most easily treatable causes of visual impairment and blindness during infancy, with an estimated prevalence of 1-6 cases per 10,000 live births. Approximately 50% of all congenital cataract cases may have a genetic cause, and such cases are quite heterogeneous. Although congenital nuclear cataract can be caused by multiple factors, genetic mutation remains the most common cause. All three types of Mendelian inheritance have been reported for cataract; however, autosomal dominant transmission seems to be the most frequent. The transparency and high refractive index of the lens are achieved by the precise architecture of fiber cells and homeostasis of the lens proteins in terms of their concentrations, stabilities, and supramolecular organization. Research on hereditary congenital cataract has led to the identification of several classes of candidate genes that encode proteins such crystallins, lens-specific connexins, aquaporin, cytoskeletal structural proteins, and developmental regulators. In this review, we highlight the identified genetic mutations that account for congenital nuclear cataract. PMID:27043388

  15. Adults with Congenital Heart Defects

    MedlinePlus

    ... Pressure High Blood Pressure Tools & Resources Stroke More Web Booklet: Adults With Congenital Heart Defects Updated:Apr ... topic from the list below to learn more. Web Booklet: Adults With Congenital Heart Defects Introduction Introduction: ...

  16. Congenital heart defect - corrective surgery

    MedlinePlus

    ... born with one or more heart defects has congenital heart disease . Surgery is needed if the defect could harm ... 2008 Guidelines for the Management of Adults with Congenital Heart Disease: a report of the American College of Cardiology/ ...

  17. Impact of Congenital Heart Defects

    MedlinePlus

    ... complex lesions, limitations are common. Some children with congenital heart disease have developmental delay or other learning difficulties. What ... defects? Successful treatment requires highly specialized care. Severe congenital heart disease requires extensive financial resources both in and out ...

  18. Advances in gene therapy for muscular dystrophies

    PubMed Central

    Abdul-Razak, Hayder; Malerba, Alberto; Dickson, George

    2016-01-01

    Duchenne muscular dystrophy (DMD) is a recessive lethal inherited muscular dystrophy caused by mutations in the gene encoding dystrophin, a protein required for muscle fibre integrity. So far, many approaches have been tested from the traditional gene addition to newer advanced approaches based on manipulation of the cellular machinery either at the gene transcription, mRNA processing or translation levels. Unfortunately, despite all these efforts, no efficient treatments for DMD are currently available. In this review, we highlight the most advanced therapeutic strategies under investigation as potential DMD treatments. PMID:27594988

  19. Advances in gene therapy for muscular dystrophies.

    PubMed

    Abdul-Razak, Hayder; Malerba, Alberto; Dickson, George

    2016-01-01

    Duchenne muscular dystrophy (DMD) is a recessive lethal inherited muscular dystrophy caused by mutations in the gene encoding dystrophin, a protein required for muscle fibre integrity. So far, many approaches have been tested from the traditional gene addition to newer advanced approaches based on manipulation of the cellular machinery either at the gene transcription, mRNA processing or translation levels. Unfortunately, despite all these efforts, no efficient treatments for DMD are currently available. In this review, we highlight the most advanced therapeutic strategies under investigation as potential DMD treatments. PMID:27594988

  20. Cellular and molecular mechanisms underlying muscular dystrophy

    PubMed Central

    2013-01-01

    The muscular dystrophies are a group of heterogeneous genetic diseases characterized by progressive degeneration and weakness of skeletal muscle. Since the discovery of the first muscular dystrophy gene encoding dystrophin, a large number of genes have been identified that are involved in various muscle-wasting and neuromuscular disorders. Human genetic studies complemented by animal model systems have substantially contributed to our understanding of the molecular pathomechanisms underlying muscle degeneration. Moreover, these studies have revealed distinct molecular and cellular mechanisms that link genetic mutations to diverse muscle wasting phenotypes. PMID:23671309

  1. Congenital tracheobronchial stenosis.

    PubMed

    Hewitt, Richard J; Butler, Colin R; Maughan, Elizabeth F; Elliott, Martin J

    2016-06-01

    Congenital tracheobronchial stenosis is a rare disease characterized by complete tracheal rings that can affect variable lengths of the tracheobronchial tree. It causes high levels of morbidity and mortality both due to the stenosis itself and to the high incidence of other associated congenital malformations. Successful management of this complex condition requires a highly individualized approach delivered by an experienced multidisciplinary team, which is best delivered within centralized units with the necessary diverse expertise. In such settings, surgical correction by slide tracheoplasty has become increasingly successful over the past 2 decades such that long-term survival now exceeds 88%, with normalization of quality of life scores for patients with non-syndrome-associated congenital tracheal stenosis. Careful assessment and planning of treatment strategies is of paramount importance for both successful management and the provision of patients and carers with accurate and realistic treatment counseling. PMID:27301600

  2. Congenital hyperinsulinism with hyperammonaemia

    PubMed Central

    Pschibul, Alex; Müller, Jörg; Fahnenstich, Hubert

    2010-01-01

    Congenital hyperinsulinism is considered to be the most frequent cause of persistent recurrent hypoglycaemia in infants. The clinical presentation and response to pharmacological treatment may vary significantly depending on the underlying pathology. We report a case of a female infant with mild but early onset of recurrent hypoglycaemia. Metabolic workup revealed hyperinsulinism combined with mild hyperammonaemia as well as elevation of α-ketoglutarate in urine. Genetic testing demonstrated a de novo mutation in exon 7 of the glutamate dehydrogenase gene on chromosome 10. Episodes of hypoglycaemia responded to treatment with diazoxide. The differential diagnosis, pathophysiology and treatment of congenital hyperinsulinism is discussed. PMID:22315648

  3. Congenital Adrenal Hyperplasia

    PubMed Central

    Speiser, Phyllis W.

    2015-01-01

    Congenital adrenal hyperplasia associated with deficiency of steroid 21-hydroxylase is the most common inborn error in adrenal function and the most common cause of adrenal insufficiency in the pediatric age group. As patients now survive into adulthood, adult health-care providers must also be familiar with this condition. Over the past several years, F1000 has published numerous commentaries updating research and practical guidelines for this condition. The purposes of this review are to summarize basic information defining congenital adrenal hyperplasia and to highlight current knowledge and controversies in management. PMID:26339484

  4. Congenital midline nasofrontal masses.

    PubMed

    Saettele, Megan; Alexander, Alan; Markovich, Brian; Morelli, John; Lowe, Lisa H

    2012-09-01

    Congenital midline nasal masses are uncommon anomalies including nasal dermoids/epidermoids, nasal glial heterotopias and encephaloceles. These lesions can occur at the nasal bridge, extend intranasally and have intracranial extension with communication to the subarachnoid space. Therefore, accurate diagnosis of these lesions is critically important for presurgical planning and prevention of potentially fatal complications. Neuroimaging is essential in the evaluation of congenital midline nasal masses to identify the specific type of lesion, evaluate for the presence of intracranial extension and allow for appropriate presurgical planning. PMID:22648391

  5. Congenital muscular torticollis.

    PubMed

    Nilesh, Kumar; Mukherji, Srijon

    2013-07-01

    Congenital muscular torticollis (CMT) is a rare congenital musculoskeletal disorder characterized by unilateral shortening of the sternocleidomastoid muscle (SCM). It presents in newborn infants or young children with reported incidence ranging from 0.3% to 2%. Owing to effective shortening of SCM on the involved side there is ipsilateral head tilt and contralateral rotation of the face and chin. This article reports a case of CMT in a 3½-year-old male child successfully managed by surgical release of the involved SCM followed by physiotherapy. PMID:24205484

  6. Congenital muscular torticollis

    PubMed Central

    Nilesh, Kumar; Mukherji, Srijon

    2013-01-01

    Congenital muscular torticollis (CMT) is a rare congenital musculoskeletal disorder characterized by unilateral shortening of the sternocleidomastoid muscle (SCM). It presents in newborn infants or young children with reported incidence ranging from 0.3% to 2%. Owing to effective shortening of SCM on the involved side there is ipsilateral head tilt and contralateral rotation of the face and chin. This article reports a case of CMT in a 3½-year-old male child successfully managed by surgical release of the involved SCM followed by physiotherapy. PMID:24205484

  7. Distal Myopathies: Case Studies.

    PubMed

    Shaibani, Aziz

    2016-08-01

    About 15% of myopathies present with distal weakness. Lack of sensory deficit, and preservation of sensory responses and deep tendon reflexes, favors a myopathic cause for distal weakness. Electromyogram confirms this diagnosis. Profuse spontaneous discharges are common in inflammatory, metabolic, and myofibrillar myopathy (MFM). If the clinical picture indicates a specific disease such as facioscapulohumeral muscular dystrophy (FSHD), genetic testing provides the quickest diagnosis. Otherwise, muscle biopsy can distinguish specific features. The common causes of myopathic distal weakness are FSHD, myotonic dystrophy, and inclusion body myositis. Other causes include MFM, distal muscular dystrophies, metabolic myopathies, and congenital myopathies. PMID:27445241

  8. Genetics Home Reference: facioscapulohumeral muscular dystrophy

    MedlinePlus

    ... Padberg GW, Lunt PW, van der Maarel SM. Best practice guidelines on genetic diagnostics of Facioscapulohumeral muscular dystrophy: ... Reviewed : August 2014 Published : August 30, 2016 The resources on this site should not be used as a ... of Health & Human Services National Institutes of Health National Library of ...

  9. Cardiomyopathy in becker muscular dystrophy: Overview.

    PubMed

    Ho, Rady; Nguyen, My-Le; Mather, Paul

    2016-06-26

    Becker muscular dystrophy (BMD) is an X-linked recessive disorder involving mutations of the dystrophin gene. Cardiac involvement in BMD has been described and cardiomyopathy represents the number one cause of death in these patients. In this paper, the pathophysiology, clinical evaluations and management of cardiomyopathy in patients with BMD will be discussed. PMID:27354892

  10. Exon Snipping in Duchenne Muscular Dystrophy.

    PubMed

    Kemaladewi, Dwi U; Cohn, Ronald D

    2016-03-01

    Duchenne muscular dystrophy (DMD) is a life-limiting neuromuscular disorder caused by mutations in the DMD gene encoding dystrophin. We discuss very recent studies that used CRISPR/Cas9 technology to 'snip out' mutated exons in DMD, restoring the reading frame of the gene. We also present cautionary aspects of translating this exciting technology into clinical practice. PMID:26856237

  11. Nutrition Considerations in Duchenne Muscular Dystrophy.

    PubMed

    Davis, Jillian; Samuels, Emily; Mullins, Lucille

    2015-08-01

    Duchenne muscular dystrophy (DMD) is a serious degenerative muscular disease affecting males. Diagnosis usually occurs in childhood and is confirmed through genetic testing and/or muscle biopsy. Accompanying the disease are several nutrition-related concerns: growth, body composition, energy and protein requirements, constipation, swallowing difficulties, bone health, and complementary medicine. This review article addresses the nutrition aspects of DMD. PMID:25977513

  12. Visuospatial Attention Disturbance in Duchenne Muscular Dystrophy

    ERIC Educational Resources Information Center

    De Moura, Maria Clara Drummond Soares; do Valle, Luiz Eduardo Ribeiro; Resende, Maria Bernadete Dutra; Pinto, Katia Osternack

    2010-01-01

    Aim: The cognitive deficits present in the Duchenne muscular dystrophy (DMD) are not yet well characterized. Attention, considered to be the brain mechanism responsible for the selection of sensory stimuli, could be disturbed in DMD, contributing, at least partially, to the observed global cognitive deficit. The aim of this study was to…

  13. Cardiomyopathy in becker muscular dystrophy: Overview

    PubMed Central

    Ho, Rady; Nguyen, My-Le; Mather, Paul

    2016-01-01

    Becker muscular dystrophy (BMD) is an X-linked recessive disorder involving mutations of the dystrophin gene. Cardiac involvement in BMD has been described and cardiomyopathy represents the number one cause of death in these patients. In this paper, the pathophysiology, clinical evaluations and management of cardiomyopathy in patients with BMD will be discussed. PMID:27354892

  14. Imaging of congenital pulmonary malformations.

    PubMed

    Praticò, Francesco Emanuele; Corrado, Michele; Della Casa, Giovanni; Parziale, Raffaele; Russo, Giuseppe; Gazzani, Silvia Eleonora; Rossi, Enrica; Borgia, Daniele; Mostardi, Maurizio; Bacchini, Emanuele; Cella, Simone; De Filippo, Massimo

    2016-01-01

    Congenital pulmonary malformations represent a broad spectrum of anomalies that may result in varied clinical and pathologic pictures, ranging from recurrent pulmonary infections and acute respiratory distress syndrome, which require timely drug therapy, up to large space-occupying lesions needing surgical treatment. This classification includes three distinct anatomical and pathological entities, represented by Congenital Cystic Adenomatoid Malformation, Bronchopulmonary Sequestration and Congenital Lobar Emphysema. The final result in terms of embryological and fetal development of these alterations is a Congenital Lung Hypoplasia. Since even Bronchial Atresia, Pulmonary Bronchogenic Cysts and Congenital Diaphragmatic Hernias are due to Pulmonary Hypoplasia, these diseases will be discussed in this review (1, 2). PMID:27467867

  15. The congenital cranial dysinnervation disorders.

    PubMed

    Gutowski, N J; Chilton, J K

    2015-07-01

    Congenital cranial dysinnervation disorders (CCDD) encompass a number of related conditions and includes Duane syndrome, congenital fibrosis of the external ocular muscles, Möbius syndrome, congenital ptosis and hereditary congenital facial paresis. These are congenital disorders where the primary findings are non-progressive and are caused by developmental abnormalities of cranial nerves/nuclei with primary or secondary dysinnervation. Several CCDD genes have been found, which enhance our understanding of the mechanisms involved in brain stem development and axonal guidance. PMID:25633065

  16. Congenital alopecia universalis.

    PubMed

    Saraswat, P K; Laha, N N

    1989-09-01

    A case of congenital alopecia universalis without any other ectodermal defect and mental abnormality is described in a girl of eight years. There was no family history in any of the members. The child was born of a non-consanguineous marriage. PMID:2632563

  17. OPERATION FOR CONGENITAL CATARACT

    PubMed Central

    Barkan, Otto

    1949-01-01

    The traditional treatment of needling or discission of congenital cataract or membrane is open to many serious objections. Removal of the cataract by a modified form of linear extraction is recommended. The technique, with recent improvements which further assure extraction without hazard in early infancy, is described. PMID:18125222

  18. Congenital adrenal hyperplasia

    MedlinePlus

    ... or inappropriately). Congenital adrenal hyperplasia can affect both boys and girls. About 1 in 10,000 to 18,000 ... penis but normal testes Well-developed muscles Both boys and girls will be tall as children, but much shorter ...

  19. Congenital Midline Cervical Cleft

    PubMed Central

    Villanueva-Meyer, Javier; Glastonbury, Christine; Marcovici, Peter

    2015-01-01

    Congenital midline cervical cleft is a rare anomaly that typically presents in the neonatal period as a thin suprasternal vertical band of erythematous skin with a nipple-like projection superiorly, which may exude fluid. We present the clinical and pathophysiologic features and the imaging findings of this uncommon, and rarely described entity in a newborn girl. PMID:25926928

  20. Congenital myasthenic syndromes in childhood: diagnostic and management challenges.

    PubMed

    Kinali, M; Beeson, D; Pitt, M C; Jungbluth, H; Simonds, A K; Aloysius, A; Cockerill, H; Davis, T; Palace, J; Manzur, A Y; Jimenez-Mallebrera, C; Sewry, C; Muntoni, F; Robb, S A

    2008-09-15

    The Congenital Myasthenic Syndromes (CMS), a group of heterogeneous genetic disorders of neuromuscular transmission, are often misdiagnosed as congenital muscular dystrophy (CMD) or myopathies and present particular management problems. We present our experience of 46 children with CMS, referred to us between 1992-2007 with provisional diagnoses of congenital myopathy (22/46), CMS or limb-girdle myasthenia (9/46), central hypotonia or neurometabolic disease (5/46), myasthenia gravis (4/46), limb-girdle or congenital muscular dystrophy (4/46) and SMA (2/46). Diagnosis was often considerably delayed (up to 18y4 m), despite the early symptoms in most cases. Diagnostic clues in the neonates were feeding difficulties (29/46), hypotonia with or without limb weakness (21/46), ptosis (19/46), respiratory insufficiency (12/46), contractures (4/46) and stridor (6/46). Twenty-five children had delayed motor milestones. Fatigability developed in 43 and a variable degree of ptosis was eventually present in 40. Over the period of the study, the mainstay of EMG diagnosis evolved from repetitive nerve stimulation to stimulation single fibre EMG. The patients were studied by several different operators. 66 EMGs were performed in 40 children, 29 showed a neuromuscular junction abnormality, 7 were myopathic, 2 had possible neurogenic changes and 28 were normal or inconclusive. A repetitive CMAP was detected in only one of seven children with a COLQ mutation and neither of the two children with Slow Channel Syndrome mutations. Mutations have been identified so far in 32/46 children: 10 RAPSN, 7 COLQ, 6 CHRNE, 7 DOK7, 1 CHRNA1 and 1 CHAT. 24 of 25 muscle biopsies showed myopathic changes with fibre size variation; 14 had type-1 fibre predominance. Three cases showed small type-1 fibres resembling fibre type disproportion, and four showed core-like lesions. No specific myopathic features were associated with any of the genes. Twenty children responded to Pyridostigmine treatment alone

  1. Homozygous missense variant in the human CNGA3 channel causes cone-rod dystrophy

    PubMed Central

    Shaikh, Rehan S; Reuter, Peggy; Sisk, Robert A; Kausar, Tasleem; Shahzad, Mohsin; Maqsood, Muhammad I; Yousif, Ateeq; Ali, Muhammad; Riazuddin, Saima; Wissinger, Bernd; Ahmed, Zubair M

    2015-01-01

    We assessed a large consanguineous Pakistani family (PKAB157) segregating early onset low vision problems. Funduscopic and electroretinographic evaluation of affected individuals revealed juvenile cone-rod dystrophy (CRD) with maculopathy. Other clinical symptoms included loss of color discrimination, photophobia and nystagmus. Whole-exome sequencing, segregation and haplotype analyses demonstrated that a transition variant (c.955T>C; p.(Cys319Arg)) in CNGA3 co-segregated with the CRD phenotype in family PKAB157. The ability of CNGA3 channel to influx calcium in response to agonist, when expressed either alone or together with the wild-type CNGB3 subunit in HEK293 cells, was completely abolished due to p.Cys319Arg variant. Western blotting and immunolocalization studies suggest that a decreased channel density in the HEK293 cell membrane due to impaired folding and/or trafficking of the CNGA3 protein is the main pathogenic effect of the p.Cys319Arg variant. Mutant alleles of the human cone photoreceptor cyclic nucleotide-gated channel (CNGA3) are frequently associated with achromatopsia. In rare cases, variants in CNGA3 are also associated with cone dystrophy, Leber's congenital amaurosis and oligo cone trichromacy. The identification of predicted p.(Cys319Arg) missense variant in CNGA3 expands the repertoire of the known genetic causes of CRD and phenotypic spectrum of CNGA3 alleles. PMID:25052312

  2. Homozygous missense variant in the human CNGA3 channel causes cone-rod dystrophy.

    PubMed

    Shaikh, Rehan S; Reuter, Peggy; Sisk, Robert A; Kausar, Tasleem; Shahzad, Mohsin; Maqsood, Muhammad I; Yousif, Ateeq; Ali, Muhammad; Riazuddin, Saima; Wissinger, Bernd; Ahmed, Zubair M

    2015-04-01

    We assessed a large consanguineous Pakistani family (PKAB157) segregating early onset low vision problems. Funduscopic and electroretinographic evaluation of affected individuals revealed juvenile cone-rod dystrophy (CRD) with maculopathy. Other clinical symptoms included loss of color discrimination, photophobia and nystagmus. Whole-exome sequencing, segregation and haplotype analyses demonstrated that a transition variant (c.955T>C; p.(Cys319Arg)) in CNGA3 co-segregated with the CRD phenotype in family PKAB157. The ability of CNGA3 channel to influx calcium in response to agonist, when expressed either alone or together with the wild-type CNGB3 subunit in HEK293 cells, was completely abolished due to p.Cys319Arg variant. Western blotting and immunolocalization studies suggest that a decreased channel density in the HEK293 cell membrane due to impaired folding and/or trafficking of the CNGA3 protein is the main pathogenic effect of the p.Cys319Arg variant. Mutant alleles of the human cone photoreceptor cyclic nucleotide-gated channel (CNGA3) are frequently associated with achromatopsia. In rare cases, variants in CNGA3 are also associated with cone dystrophy, Leber's congenital amaurosis and oligo cone trichromacy. The identification of predicted p.(Cys319Arg) missense variant in CNGA3 expands the repertoire of the known genetic causes of CRD and phenotypic spectrum of CNGA3 alleles. PMID:25052312

  3. Limb-girdle muscular dystrophy type 2I is not rare in Taiwan.

    PubMed

    Liang, Wen-Chen; Hayashi, Yukiko K; Ogawa, Megumu; Wang, Chien-Hua; Huang, Wan-Ting; Nishino, Ichizo; Jong, Yuh-Jyh

    2013-08-01

    Alpha-dystroglycanopathy is caused by the glycosylation defects of α-dystroglycan (α-DG). The clinical spectrum ranges from severe congenital muscular dystrophy (CMD) to later-onset limb girdle muscular dystrophy (LGMD). Among all α-dystroglycanopathies, LGMD type 2I caused by FKRP mutations is most commonly seen in Europe but appears to be rare in Asia. We screened uncategorized 40 LGMD and 10 CMD patients by immunohistochemistry for α-DG and found 7 with reduced α-DG immunostaining. Immunoblotting with laminin overlay assay confirmed the impaired glycosylation of α-DG. Among them, five LGMD patients harbored FKRP mutations leading to the diagnosis of LGMD2I. One common mutation, c.948delC, was identified and cardiomyopathy was found to be very common in our cohort. Muscle images showed severe involvement of gluteal muscles and posterior compartment at both thigh and calf levels, which is helpful for the differential diagnosis. Due to the higher frequency of LGMD2I with cardiomyopathy in our series, the early introduction of mutation analysis of FKRP in undiagnosed Taiwanese LGMD patients is highly recommended. PMID:23800702

  4. Abnormalities in alpha-dystroglycan expression in MDC1C and LGMD2I muscular dystrophies.

    PubMed

    Brown, Susan C; Torelli, Silvia; Brockington, Martin; Yuva, Yeliz; Jimenez, Cecilia; Feng, Lucy; Anderson, Louise; Ugo, Isabella; Kroger, Stephan; Bushby, Kate; Voit, Thomas; Sewry, Caroline; Muntoni, Francesco

    2004-02-01

    We recently identified mutations in the fukutin related protein (FKRP) gene in patients with congenital muscular dystrophy type 1C (MDC1C) and limb girdle muscular dystrophy type 2I (LGMD2I). The sarcolemma of these patients typically displays an immunocytochemical reduction of alpha-dystroglycan. In this report we extend these observations and report a clear correlation between the residual expression of alpha-dystroglycan and the phenotype. Three broad categories were identified. Patients at the severe end of the clinical spectrum (MDC1C) were compound heterozygote between a null allele and a missense mutation or carried two missense mutations and displayed a profound depletion of alpha-dystroglycan. Patients with LGMD with a Duchenne-like severity typically had a moderate reduction in alpha-dystroglycan and were compound heterozygotes between a common C826A (Leu276Ileu) FKRP mutation and either a missense or a nonsense mutation. Individuals with the milder form of LGMD2I were almost invariably homozygous for the Leu276Ile FKRP mutation and showed a variable but subtle alteration in alpha-dystroglycan immunolabeling. Our data therefore suggest a correlation between a reduction in alpha-dystroglycan, the mutation and the clinical phenotype in MDC1C and LGMD2I which supports the hypothesis that dystroglycan plays a central role in the pathogenesis of these disorders. PMID:14742276

  5. Where do we stand in trial readiness for autosomal recessive limb girdle muscular dystrophies?

    PubMed

    Straub, Volker; Bertoli, Marta

    2016-02-01

    Autosomal recessive limb girdle muscular dystrophies (LGMD2) are a group of genetically heterogeneous diseases that are typically characterised by progressive weakness and wasting of the shoulder and pelvic girdle muscles. Many of the more than 20 different conditions show overlapping clinical features with other forms of muscular dystrophy, congenital, myofibrillar or even distal myopathies and also with acquired muscle diseases. Although individually extremely rare, all types of LGMD2 together form an important differential diagnostic group among neuromuscular diseases. Despite improved diagnostics and pathomechanistic insight, a curative therapy is currently lacking for any of these diseases. Medical care consists of the symptomatic treatment of complications, aiming to improve life expectancy and quality of life. Besides well characterised pre-clinical tools like animal models and cell culture assays, the determinants of successful drug development programmes for rare diseases include a good understanding of the phenotype and natural history of the disease, the existence of clinically relevant outcome measures, guidance on care standards, up to date patient registries, and, ideally, biomarkers that can help assess disease severity or drug response. Strong patient organisations driving research and successful partnerships between academia, advocacy, industry and regulatory authorities can also help accelerate the elaboration of clinical trials. All these determinants constitute aspects of translational research efforts and influence patient access to therapies. Here we review the current status of determinants of successful drug development programmes for LGMD2, and the challenges of translating promising therapeutic strategies into effective and accessible treatments for patients. PMID:26810373

  6. Phase 3 Study of Ataluren in Patients With Nonsense Mutation Duchenne Muscular Dystrophy

    ClinicalTrials.gov

    2016-08-02

    Muscular Dystrophy, Duchenne; Muscular Dystrophies; Muscular Disorders, Atrophic; Muscular Diseases; Musculoskeletal Diseases; Neuromuscular Diseases; Nervous System Diseases; Genetic Diseases, X-Linked; Genetic Diseases, Inborn

  7. B4GALNT2 (GALGT2) Gene Therapy Reduces Skeletal Muscle Pathology in the FKRP P448L Mouse Model of Limb Girdle Muscular Dystrophy 2I.

    PubMed

    Thomas, Paul J; Xu, Rui; Martin, Paul T

    2016-09-01

    Overexpression of B4GALNT2 (previously GALGT2) inhibits the development of muscle pathology in mouse models of Duchenne muscular dystrophy, congenital muscular dystrophy 1A, and limb girdle muscular dystrophy 2D. In these models, muscle GALGT2 overexpression induces the glycosylation of α dystroglycan with the cytotoxic T cell glycan and increases the overexpression of dystrophin and laminin α2 surrogates known to inhibit disease. Here, we show that GALGT2 gene therapy significantly reduces muscle pathology in FKRP P448Lneo(-) mice, a model for limb girdle muscular dystrophy 2I. rAAVrh74.MCK.GALGT2-treated FKRP P448Lneo(-) muscles showed reduced levels of centrally nucleated myofibers, reduced variance, increased size of myofiber diameters, reduced myofiber immunoglobulin G uptake, and reduced muscle wasting at 3 and 6 months after treatment. GALGT2 overexpression in FKRP P448Lneo(-) muscles did not cause substantial glycosylation of α dystroglycan with the cytotoxic T cell glycan or increased expression of dystrophin and laminin α2 surrogates in mature skeletal myofibers, but it increased the number of embryonic myosin-positive regenerating myofibers. These data demonstrate that GALGT2 overexpression can reduce the extent of muscle pathology in FKRP mutant muscles, but that it may do so via a mechanism that differs from its ability to induce surrogate gene expression. PMID:27561302

  8. Congenital hemifacial hyperplasia.

    PubMed

    Deshingkar, S A; Barpande, S R; Bhavthankar, J D

    2011-07-01

    Congenital hemifacial hyperplasia (CHH) is a rare congenital malformation characterized by marked unilateral overdevelopment of hard and soft tissues of the face. Asymmetry in CHH is usually evident at birth and accentuated with age, especially at puberty. The affected side grows at a rate proportional to the nonaffected side so that the disproportion is maintained thr oughout the life. Multisystem involvement has resulted in etiological heterogeneity including heredity, chromosomal abnormalities, atypical forms of twinning, altered intrauterine environment, and endocrine dysfunctions; however, no single theory explains the etiology adequately. Deformities of all tissues of face, including teeth and their related tissues in the jaw, are key findings for correct diagnosis of CHH. Here an attempt has been made to present a case of CHH with its archetypal features and to supplement existing clinical knowledge. PMID:22090778

  9. Congenital hemophagocytic reticulosis.

    PubMed

    Koto, A; Morecki, R; Santorineou, M

    1976-04-01

    A fatal case of an apparently congenital form of hemophagocytic reticulosis is reported. The onset was manifested by hyperbilirubinemia and hepatosplenomegaly which were present at birth and persisted throughout life. Fever, anemia and pancytopenia developed at 1 month of age and became progressively worse. A splenectomy was performed at the age of 3 months, but the child died one day later with disseminated intravascular coagulation and pulmonary hemorrhage. The literature is reviewed with regard to the relationship of this case to (familial) hemophagocytic reticulosis and malignant histiocytosis (histiocytic medullary reticulosis). It is suggested that congenital hemophagocytic reticulosis, as described here, (familial) hemophagocytic reticulosis in infants, and malignant histiocytosis in adults all represent the same basic disorder with different ages of onset and clinicopathologic manifestations. PMID:1266810

  10. Update on congenital glaucoma

    PubMed Central

    Mandal, Anil K; Chakrabarti, Debasis

    2011-01-01

    Congenital glaucoma is a global problem and poses a diagnostic and therapeutic challenge to the ophthalmologist. A detailed evaluation under general anesthesia is advisable to establish the diagnosis and plan for management. Medical therapy has a limited role and surgery remains the primary therapeutic modality. While goniotomy or trabeculotomy ab externo is valuable in the management of congenital glaucoma, primary combined trabeculotomy–trabeculectomy offers the best hope of success in advanced cases. Trabeculectomy with antifibrotic agent and glaucoma drainage devices has a role in the management of refractory cases, and cyclodestructive procedures should be reserved for patients where these procedures have failed. Early diagnosis, prompt therapeutic intervention and proper refractive correction are keys to success. Management of residual vision and visual rehabilitation should be an integral part of the management of children with low vision and lifelong follow-up is a must. PMID:21150027

  11. Congenital scoliosis - Quo vadis?

    PubMed

    Debnath, Ujjwal K; Goel, Vivek; Harshavardhana, Nanjanduppa; Webb, John K

    2010-04-01

    Congenital spinal vertebral anomalies can present as scoliosis or kyphosis or both. The worldwide prevalence of the vertebral anomalies is 0.5-1 per 1000 live births. Vertebral anomalies can range from hemi vertebrae (HV) which may be single or multiple, vertebral bar with or without HV, block vertebrae, wedge shaped or butterfly vertebrae. Seventy per cent of congenital vertebral anomalies result in progressive deformities. The risk factors for progression include: type of defect, site of defect (junctional regions) and patient's age at the time of diagnosis. The key to success in managing these spinal deformities is early diagnosis and anticipation of progression. One must intervene surgically to halt the progression of deformity and prevent further complications associated with progressive deformity. Planning for surgery includes a preoperative MRI scan to rule out spinal anomalies such as diastematomyelia. The goals of surgical treatment for congenital spinal deformity are to achieve a straight growing spine, a normal standing sagittal profile, and a short fusion segment. The options of surgery include in situ fusion, convex hemi epiphysiodesis and hemi vertebra excision. These basic surgical procedures can be combined with curve correction, instrumentation and short segment fusion. Most surgeons prefer posterior (only) surgery for uncomplicated HV excision and short segment fusion. These surgical procedures can be performed through posterior, anterior or combined approaches. The advocates of combined approaches suggest greater deformity correction possibilities with reduced incidence of pseudoarthrosis and minimize crankshaft phenomenon. We recommend posterior surgery for curves involving only an element of kyphosis or modest deformity, whereas combined anterior and posterior approach is indicated for large or lordotic deformities. In the last decade, the use of growing rods and vertebral expandable prosthetic titanium rib has improved the armamentarium of the

  12. Congenital midline cervical cleft.

    PubMed

    Agag, Richard; Sacks, Justin; Silver, Lester

    2007-01-01

    Congenital midline cervical cleft (CMCC) is a rare disorder of the ventral neck that is clinically evident at birth and must be differentiated from the more common thyroglossal duct cyst. The case of CMCC presented here was associated with chromosomes 13/14 de novo Robertsonian translocations as well as midline deformities including a sacral tuft and a minor tongue-tie. The case is presented as well as discussion of histopathology, embryology, and surgical treatment. PMID:17214531

  13. Other congenital abnormalities.

    PubMed

    Cobbett, J R

    1974-06-29

    The plastic surgeon is not a miracle worker, as so many of his patients believe. Nevertheless, he can do much to minimize the functional and cosmetic effect of many congenital deformities. If a moral can be drawn from this article it must be that the plastic surgeon should be given an early opportunity to see and assess the patients described here, if only to ease the anxiety in the minds of their parents by appropriate reassurance and discussion. PMID:4853507

  14. Congenital Cataract Screening.

    PubMed

    Rajavi, Zhale; Sabbaghi, Hamideh

    2016-01-01

    Congenital cataract is a leading cause of visual deprivation which can damage the developing visual system of a child; therefore early diagnosis, management and long-term follow-up are essential. It is recommended that all neonates be screened by red reflex examination at birth and suspected cases be referred to ophthalmic centers. Early surgery (<6 weeks of age, based on general neonatal health) is important for achieving the best visual outcome particularly in unilateral cases. In bilateral cases, surgery is highly recommended before appearance of strabismus or nystagmus (<10 weeks of age) with no longer than a one-week interval between the fellow eyes. Parents should be informed that surgery is a starting point and not the endpoint of treatment. Appropriate postoperative management including immediate optical correction in the form of aphakic glasses or contact lenses, or intraocular lens (IOL) implantation at the appropriate age (>1 year) is highly recommended. After surgery, amblyopia treatment and periodic follow-up examinations should be started as soon as possible to achieve a satisfactory visual outcome. Practitioners should consider the possibility of posterior capsular opacity, elevated intraocular pressure and amblyopia during follow-up, especially in eyes with microphthalmia and/or associated congenital anomalies. All strabismic children should undergo slit lamp examination prior to strabismus surgery to rule out congenital lens opacities. From a social point of view, equal and fair medical care should be provided to all children regardless of gender. PMID:27621790

  15. Congenital Cataract Screening

    PubMed Central

    Rajavi, Zhale; Sabbaghi, Hamideh

    2016-01-01

    Congenital cataract is a leading cause of visual deprivation which can damage the developing visual system of a child; therefore early diagnosis, management and long-term follow-up are essential. It is recommended that all neonates be screened by red reflex examination at birth and suspected cases be referred to ophthalmic centers. Early surgery (<6 weeks of age, based on general neonatal health) is important for achieving the best visual outcome particularly in unilateral cases. In bilateral cases, surgery is highly recommended before appearance of strabismus or nystagmus (<10 weeks of age) with no longer than a one-week interval between the fellow eyes. Parents should be informed that surgery is a starting point and not the endpoint of treatment. Appropriate postoperative management including immediate optical correction in the form of aphakic glasses or contact lenses, or intraocular lens (IOL) implantation at the appropriate age (>1 year) is highly recommended. After surgery, amblyopia treatment and periodic follow-up examinations should be started as soon as possible to achieve a satisfactory visual outcome. Practitioners should consider the possibility of posterior capsular opacity, elevated intraocular pressure and amblyopia during follow-up, especially in eyes with microphthalmia and/or associated congenital anomalies. All strabismic children should undergo slit lamp examination prior to strabismus surgery to rule out congenital lens opacities. From a social point of view, equal and fair medical care should be provided to all children regardless of gender.

  16. What Are the Types of Muscular Dystrophy?

    MedlinePlus

    ... means "present from birth." Congenital MD affects both boys and girls, who often require support to sit or stand ... lordosis (pronounced lawr-DOH-sis ) FSHD affects teen boys and girls typically but may occur as late as age ...

  17. Limb Girdle Muscular Dystrophy (LGMD): Case Report.

    PubMed

    Kanitkar, Shubhangi A; Kalyan, Meenakshi; Gaikwad, Anu N; Makadia, Ankit; Shah, Harshad

    2015-01-01

    We report a young male of autosomal recessive limb girdle muscular dystrophy (LGMD) with positive family history presented with gradual onset proximal muscle weakness in all four limbs since eight years and thinning of shoulders, arms and thighs. Neurological examination revealed atrophy of both shoulders with wasting of both deltoids thinning of thighs and pseudo hypertrophy of both calves, hypotonia in all four limbs. Gower's sign was positive. Winging of scapula was present. Power was 3/5 at both shoulders, 4/5 at both elbows, 5/5 at both wrists, 3/5 at both hip joints, 3/5 at both knees, 5/5 at both ankles. All deep tendon reflexes and superficial reflexes were present with plantars bilateral flexors. Electromyography (EMG) showed myopathic pattern. He had elevated creatinine phosphokinase levels and muscle biopsy findings consistent with muscular dystrophy. PMID:25738022

  18. Fuchs endothelial corneal dystrophy: current perspectives

    PubMed Central

    Vedana, Gustavo; Villarreal, Guadalupe; Jun, Albert S

    2016-01-01

    Fuchs endothelial corneal dystrophy (FECD) is the most common corneal dystrophy and frequently results in vision loss. Hallmarks of the disease include loss of corneal endothelial cells and formation of excrescences of Descemet’s membrane. Later stages involve all layers of the cornea. Impairment of endothelial barrier and pump function and cell death from oxidative and unfolded protein stress contribute to disease progression. The genetic basis of FECD includes numerous genes and chromosomal loci, although alterations in the transcription factor 4 gene are associated with the majority of cases. Definitive treatment of FECD is corneal transplantation. In this paper, we highlight advances that have been made in understanding FECD’s clinical features, pathophysiology, and genetics. We also discuss recent advances in endothelial keratoplasty and potential future treatments. PMID:26937169

  19. Caveolae and caveolin-3 in muscular dystrophy.

    PubMed

    Galbiati, F; Razani, B; Lisanti, M P

    2001-10-01

    Caveolae are vesicular invaginations of the plasma membrane, and function as 'message centers' for regulating signal transduction events. Caveolin-3, a muscle-specific caveolin-related protein, is the principal structural protein of caveolar membrane domains in skeletal muscle and in the heart. Several mutations within the coding sequence of the human caveolin-3 gene (located at 3p25) have been identified. Mutations that lead to a loss of approximately 95% of caveolin-3 protein expression are responsible for a novel autosomal dominant form of limb-girdle muscular dystrophy (LGMD-1C) in humans. By contrast, upregulation of the caveolin-3 protein is associated with Duchenne muscular dystrophy (DMD). Thus, tight regulation of caveolin-3 appears essential for maintaining normal muscle health and homeostasis. PMID:11597517

  20. Limb Girdle Muscular Dystrophy (LGMD): Case Report

    PubMed Central

    Kalyan, Meenakshi; Gaikwad, Anu N.; Makadia, Ankit; Shah, Harshad

    2015-01-01

    We report a young male of autosomal recessive limb girdle muscular dystrophy (LGMD) with positive family history presented with gradual onset proximal muscle weakness in all four limbs since eight years and thinning of shoulders, arms and thighs. Neurological examination revealed atrophy of both shoulders with wasting of both deltoids thinning of thighs and pseudo hypertrophy of both calves, hypotonia in all four limbs. Gower’s sign was positive. Winging of scapula was present. Power was 3/5 at both shoulders, 4/5 at both elbows, 5/5 at both wrists, 3/5 at both hip joints, 3/5 at both knees, 5/5 at both ankles. All deep tendon reflexes and superficial reflexes were present with plantars bilateral flexors. Electromyography (EMG) showed myopathic pattern. He had elevated creatinine phosphokinase levels and muscle biopsy findings consistent with muscular dystrophy. PMID:25738022

  1. Facioscapulohumeral Dystrophy: Case Report and Discussion

    PubMed Central

    Feinberg, Joseph; Michaels, Jennifer

    2008-01-01

    Facioscapulohumeral dystrophy (FSHD) is often cited as the third most common form of muscular dystrophy. Therefore, it should be considered in patients with complaints of progressive weakness. We present the case of a man with facial, truncal, and leg weakness that initially sought medical attention for lower back pain. Electrodiagnostic testing revealed findings in the trapezius, serratus anterior, biceps, triceps, pectoralis major, tibialis anterior, and gastrocnemius muscles consistent with a myopathic disorder. Subsequent genetic testing identified a FSHD allele size consistent with a FSHD deletion mutation. Therefore, confirming the diagnosis of FSHD. Unfortunately, no effective treatments currently exist for FSHD. However, supportive measures involving physical therapy and the use of orthotics may aid in improving function and mobility. PMID:18815862

  2. Radiology of congenital heart disease

    SciTech Connect

    Amplatz, K.

    1986-01-01

    This is a text on the radiologic diagnosis of congenital heart disease and its clinical manifestations. The main thrust of the book is the logical approach which allows an understanding of the complex theory of congenital heart disease. The atlas gives a concise overview of the entire field of congenital heart disease. Emphasis is placed on the understanding of the pathophysiology and its clinical and radiological consequences. Surgical treatment is included since it provides a different viewpoint of the anatomy.

  3. A case of fascioscapulohumeral muscular dystrophy misdiagnosed as Becker's muscular dystrophy for 20 years.

    PubMed

    Ramos, Vesper Fe Marie Llaneza; Thaisetthawatkul, Pariwat

    2012-03-01

    A 60-year-old man diagnosed clinically with Becker's muscular dystrophy 20 years ago by another physician presented with gradually progressive proximal muscle weakness since teenage years. Family history revealed a strong paternal familial inheritance pattern of similar distribution of weakness-face, forearm flexion, knee extension and foot dorsiflexion. Work-ups revealed B12 deficiency and allele 1 deletion in fascioscapulohumeral muscular dystrophy (FSHD) DNA testing. FSHD is the third most common muscular dystrophy. Clinical diagnosis is made from the distinctive pattern of weakness, autosomal-dominant inheritance, and confirmed by genetic testing. This case strongly demonstrates the importance of a thorough and careful clinical evaluation even in a case with a long standing diagnosis. PMID:21795275

  4. Dog models for blinding inherited retinal dystrophies.

    PubMed

    Petersen-Jones, Simon M; Komáromy, András M

    2015-03-01

    Spontaneous canine models exist for several inherited retinal dystrophies. This review will summarize the models and indicate where they have been used in translational gene therapy trials. The RPE65 gene therapy trials to treat childhood blindness are a good example of how studies in dogs have contributed to therapy development. Outcomes in human clinical trials are compared and contrasted with the result of the preclinical dog trials. PMID:25671556

  5. Dog Models for Blinding Inherited Retinal Dystrophies

    PubMed Central

    Komáromy, András M.

    2015-01-01

    Abstract Spontaneous canine models exist for several inherited retinal dystrophies. This review will summarize the models and indicate where they have been used in translational gene therapy trials. The RPE65 gene therapy trials to treat childhood blindness are a good example of how studies in dogs have contributed to therapy development. Outcomes in human clinical trials are compared and contrasted with the result of the preclinical dog trials. PMID:25671556

  6. Genetics Home Reference: congenital hepatic fibrosis

    MedlinePlus

    ... Home Health Conditions congenital hepatic fibrosis congenital hepatic fibrosis Enable Javascript to view the expand/collapse boxes. ... PDF Open All Close All Description Congenital hepatic fibrosis is a disease of the liver that is ...

  7. Genetics Home Reference: Leber congenital amaurosis

    MedlinePlus

    ... Registry: Leber congenital amaurosis 9 National Eye Institute: Gene Therapy for Leber Congenital Amaurosis These resources from MedlinePlus ... Additional NIH Resources (1 link) National Eye Institute: Gene Therapy for Leber Congenital Amaurosis Educational Resources (3 links) ...

  8. Mitochondrial dysfunction and defective autophagy in the pathogenesis of collagen VI muscular dystrophies.

    PubMed

    Bernardi, Paolo; Bonaldo, Paolo

    2013-05-01

    Ullrich Congenital Muscular Dystrophy (UCMD), Bethlem Myopathy (BM), and Congenital Myosclerosis are diseases caused by mutations in the genes encoding the extracellular matrix protein collagen VI. A dystrophic mouse model, where collagen VI synthesis was prevented by targeted inactivation of the Col6a1 gene, allowed the investigation of pathogenesis, which revealed the existence of a Ca(2+)-mediated dysfunction of mitochondria and sarcoplasmic reticulum, and of defective autophagy. Key events are dysregulation of the mitochondrial permeability transition pore, an inner membrane high-conductance channel that for prolonged open times causes mitochondrial dysfunction, and inadequate removal of defective mitochondria, which amplifies the damage. Consistently, the Col6a1(-/-) myopathic mice could be cured through inhibition of cyclophilin D, a matrix protein that sensitizes the pore to opening, and through stimulation of autophagy. Similar defects contribute to disease pathogenesis in patients irrespective of the genetic lesion causing the collagen VI defect. These studies indicate that permeability transition pore opening and defective autophagy represent key elements for skeletal muscle fiber death, and provide a rationale for the use of cyclosporin A and its nonimmunosuppressive derivatives in patients affected by collagen VI myopathies, a strategy that holds great promise for treatment. PMID:23580791

  9. Congenital limb deficiency disorders.

    PubMed

    Wilcox, William R; Coulter, Colleen P; Schmitz, Michael L

    2015-06-01

    Congenital limb deficiency disorders (LDDs) are birth defects characterized by the aplasia or hypoplasia of bones of the limbs. Limb deficiencies are classified as transverse, those due to intrauterine disruptions of previously normal limbs, or longitudinal, those that are isolated or associated with certain syndromes as well as chromosomal anomalies. Consultation with a medical geneticist is advisable. Long-term care should occur in a specialized limb deficiency center with expertise in orthopedics, prosthetics, and occupational and physical therapy and provide emotional support and contact with other families. With appropriate care, most children with LDDs can lead productive lives. PMID:26042905

  10. [Congenital myasthenic syndrome].

    PubMed

    Araga, Shigeru

    2008-06-01

    Congenital myasthenic syndromes (CMS) are rare heterogeneous disorders in which neuromuscular transmission is compromised by one or more specific mechanisms. CMS are clinically diagnosed by a history of fatigability and muscle weakness since infancy or early childhood, a decremental EMG response and the absence of acetylcholine receptor antibodies. CMS form a heterogeneous group of disorders which are classified as originating from presynaptic, synaptic or postsynaptic defects. Molecular genetic studies reveal a various type of mutations in synapse-associated genes. However, the genetic abnormalities of many CMS are still unresolved. This article outlines the classification of CMS and etiology of individual forms. PMID:18540366

  11. Precalcaneal Congenital Fibrolipomatous Hamartoma

    PubMed Central

    Yang, Ji-Hye; Park, Oun-Jae; Kim, Jeong-Eun; Won, Chong-Hyun; Chang, Sung-Eun; Choi, Jee-Ho; Moon, Kee-Chan

    2011-01-01

    Precalcaneal congenital fibrolipomatous hamartomas (PCFHs) are characterized clinically by the presence of unilateral or bilateral, asymptomatic nodules in the medial precalcaneal plantar region of the heel. They are skin colored and usually painless nodules. In most patients, the lesions appear within the first few months of life, but they may also be present at birth. Generally PCFHs are benign, but they can grow in proportion to the growth of the infants. Here, we report the case of a 4-month-old boy with a solitary, localized skin-colored nodule on the precalcaneal plantar region of his right heel, diagnosed as a PCFH. PMID:21738373

  12. Nonclassic Congenital Adrenal Hyperplasia

    PubMed Central

    Witchel, Selma Feldman; Azziz, Ricardo

    2010-01-01

    Nonclassic congenital adrenal hyperplasia (NCAH) due to P450c21 (21-hydroxylase deficiency) is a common autosomal recessive disorder. This disorder is due to mutations in the CYP21A2 gene which is located at chromosome 6p21. The clinical features predominantly reflect androgen excess rather than adrenal insufficiency leading to an ascertainment bias favoring diagnosis in females. Treatment goals include normal linear growth velocity and “on-time” puberty in affected children. For adolescent and adult women, treatment goals include regularization of menses, prevention of progression of hirsutism, and fertility. This paper will review key aspects regarding pathophysiology, diagnosis, and treatment of NCAH. PMID:20671993

  13. Congenital nephrotic syndrome.

    PubMed

    Begolli, Mirije; Begolli, Ilir; Gojani, Xhenane; Arenliu-Qosaj, Fatime; Berisha, Merita

    2011-01-01

    The aim of this case is to present a case of a two month old female with congenital nephritic syndrome, which is very rare. On admission, the baby showed marked edema and distended abdomen. She was diagnosed and treated with daily albumin infusions, antibiotics, diuretic, gamma globulin replacement, ACEI and NSAIDs. Parents were informed about the nature of the disease, prognosis, and advised for further medical care in a more advanced kidney transplantation centre. This was the first treatment of this condition in the Pediatric Clinic in Kosovo and it presented a challenge for us. PMID:22299306

  14. CONGENITAL DIAPHRAGMATIC HERNIA

    PubMed Central

    Adams, Burton E.

    1954-01-01

    Treatment of congenital diaphragmatic hernia in infants is a matter of semi-emergency and should be done as soon as adequate preparations can be made because sometimes fatal complications develop swiftly. In preoperative preparation there is great advantage in thorough decompression of the abdominal viscera, stomach, bowel and bladder. As to operation, the author believes the abdominal approach has most to recommend it. In the postoperative period, continued gastric suction for a brief time, parenteral administration of fluids and use of a Mistogen tent with a high moist oxygen content will facilitate rapid recovery. ImagesFigure 1. PMID:13209363

  15. Congenital protein hypoglycosylation diseases

    PubMed Central

    Sparks, Susan E

    2012-01-01

    Glycosylation is an essential process by which sugars are attached to proteins and lipids. Complete lack of glycosylation is not compatible with life. Because of the widespread function of glycosylation, inherited disorders of glycosylation are multisystemic. Since the identification of the first defect on N-linked glycosylation in the 1980s, there are over 40 different congenital protein hypoglycosylation diseases. This review will include defects of N-linked glycosylation, O-linked glycosylation and disorders of combined N- and O-linked glycosylation. PMID:23776380

  16. Congenital anterior urethral diverticulum.

    PubMed

    Singh, Sanjeet Kumar; Ansari, Ms

    2014-09-01

    Congenital anterior urethral diverticulum (CAUD) may be found all along the anterior urethra and may present itself at any age, from infant to adult. Most children with this condition present with difficulty in initiating micturition, dribbling of urine, poor urinary stream, or urinary tract infection. A careful history will reveal that these children never had a good urinary stream since birth, and the telltale sign is a cystic swelling of the penile urethra. In this paper, we present two cases of CAUD that were managed by excision of the diverticulum with primary repair. PMID:26328174

  17. Mutational spectrum of Korean patients with corneal dystrophy.

    PubMed

    Chae, H; Kim, M; Kim, Y; Kim, J; Kwon, A; Choi, H; Park, J; Jang, W; Lee, Y S; Park, S H; Kim, M S

    2016-06-01

    Corneal dystrophy typically refers to a group of rare hereditary disorders with a heterogeneous genetic background. A comprehensive molecular genetic analysis was performed to characterize the genetic spectrum of corneal dystrophies in Korean patients. Patients with various corneal dystrophies underwent thorough ophthalmic examination, histopathologic examination, and Sanger sequencing. A total of 120 probands were included, with a mean age of 50 years (SD = 18 years) and 70% were female. A total of 26 mutations in five genes (14 clearly pathogenic and 12 likely pathogenic) were identified in 49 probands (41%). Epithelial-stromal TGFBI dystrophies, macular corneal dystrophy and Schnyder corneal dystrophy (SCD) showed 100% mutation detection rates, while endothelial corneal dystrophies showed lower detection rates of 3%. Twenty six non-duplicate mutations including eight novel mutations were identified and mutations associated with SCD were identified genetically for the first time in this population. This study provides a comprehensive characterization of the genetic aberrations in Korean patients and also highlights the diagnostic value of molecular genetic analysis in corneal dystrophies. PMID:26748743

  18. Characteristics of intergenerational contractions of the CTG repeat in myotonic dystropy

    SciTech Connect

    Ashizawa, T.; Anvret, M.; Grandell, U.; Baiget, M.; Cobo, A.M.; Barcelo, J.M.; Korneluk, R.G.; Dallapiccola, B.; Novelli, G.; Fenwick, R.G. Jr.

    1994-03-01

    In myotonic dystropy (DM), the size of a CTG repeat in the DM kinase gene generally increases in successive generations with clinical evidence of anticipation. However, there have also been cases with an intergenerational contraction of the repeat. The authors have examined 1,489 DM parent-offspring pairs, of which 95 (6.4%) showed such contractions in peripheral blood leukocytes (PBL). In 56 of th 95 pairs, clinical data allowed an analysis of their anticipation status. It is surprising that anticipation occurred in 27 (48%) of these 56 pairs, while none clearly showed a later onset of DM in the asymptomatic offspring. The contraction occurred in 76 (10%) of 753 paternal transmission and in 19 (3%) of 736 maternal transmissions. Anticipation was observed more frequently in maternal (85%) than in paternal (37%) transmissions (P<.001). The parental repeat size correlated with the size of intergenerational contraction (r[sup 2] = .50, P [much lt].001), and the slope of linear regression was steeper in paternal ([minus].62) than in maternal ([minus].30) transmissions (P [much lt].001). Sixteen DM parents had multiple DM offspring with the CTG repeat contractions. This frequency was higher than the frequency expected from the probability of the repeat contractions (6.4%) and the size of DM sib population (1.54 DM offspring per DM parent, in 968 DM parents). The authors conclude that (1) intergenerational contraction of the CTG repeat in leukocyte DNA frequently accompanies apparent anticipation, especially when DM is maternally transmitted, and (2) the paternal origin of the repeat and the presence of the repeat contraction in a sibling increase the probability of the CTG repeat contraction. 43 refs., 1 fig., 4 tabs.

  19. Congenital Median Upper Lip Fistula

    PubMed Central

    al Aithan, Bandar

    2012-01-01

    Congenital median upper lip fistula (MULF) is an extremely rare condition resulting from abnormal fusion of embryologic structures. We present a new case of congenital medial upper lip fistula located in the midline of the philtrum of a 6 year old girl. PMID:22953305

  20. First Identification of a Triple Corneal Dystrophy Association: Keratoconus, Epithelial Basement Membrane Corneal Dystrophy and Fuchs’ Endothelial Corneal Dystrophy

    PubMed Central

    Mazzotta, Cosimo; Traversi, Claudio; Raiskup, Frederik; Rizzo, Caterina Lo; Renieri, Alessandra

    2014-01-01

    Purpose To report the observation of a triple corneal dystrophy association consisting of keratoconus (KC), epithelial basement membrane corneal dystrophy (EBMCD) and Fuchs’ endothelial corneal dystrophy (FECD). Methods A 55-year-old male patient was referred to our cornea service for blurred vision and recurrent foreign body sensation. He reported bilateral recurrent corneal erosions with diurnal visual fluctuations. He underwent corneal biomicroscopy, Scheimpflug tomography, in vivo HRT confocal laser scanning microscopy and genetic testing for TGFBI and ZEB1 mutations using direct DNA sequencing. Results Biomicroscopic examination revealed the presence of subepithelial central and paracentral corneal opacities. The endothelium showed a bilateral flecked appearance, and the posterior corneal curvature suggested a possible concomitant ectatic disorder. Corneal tomography confirmed the presence of a stage II KC in both eyes. In vivo confocal laser scanning microscopy revealed a concomitant bilateral EBMCD with hyperreflective deposits in basal epithelial cells, subbasal Bowman's layer microfolds and ridges with truncated subbasal nerves as pseudodendritic elements. Stromal analysis revealed honeycomb edematous areas, and the endothelium showed a strawberry surface configuration typical of FECD. The genetic analysis resulted negative for TGFBI mutations and positive for a heterozygous mutation in exon 7 of the gene ZEB1. Conclusion This is the first case reported in the literature in which KC, EBMCD and FECD are present in the same patient and associated with ZEB1 gene mutation. The triple association was previously established by means of morphological analysis of the cornea using corneal Scheimpflug tomography and in vivo HRT II confocal laser scanning microscopy. PMID:25408666

  1. [Genetics of congenital lipodystrophies].

    PubMed

    Buffet, A; Lombes, M; Caron, P

    2015-10-01

    Congenital lipodystrophies are heterogeneous genetic diseases, leading to the loss of adipose tissue. This loss of adipose tissue can be generalized or partial, thus defining different phenotypes. These lipodystrophies have a major metabolic impact, secondary to lipotoxicity. This lipotoxicity is responsible for insulin resistance, dyslipidemia and hepatic steatosis. The severity of the metabolic impact correlates with the severity of the loss of adipose tissue. Mutations in 15 predisposition genes are currently described; BSCL2 and AGPT2 genes are the major genes in the generalized forms. On the contrary, LMNA and PPARG gene mutations are recovered in partial lipodystrophies forms. These different genes encode for proteins involved in adipocyte physiology, altering adipocyte differentiation, triglycerides synthesis and lysis or playing a major role in the lipid droplet formation. Congenital lipodystrophies treatment is based on the management of metabolic comorbidities but recombinant leptin therapy appears to have promising results. These different points have been recently discussed during the 2015 Endocrine Society Congress, notably by S. O'Rahilly and are highlighted in this review. PMID:26776286

  2. [Congenital defects and incapacity].

    PubMed

    Jouve de la Barreda, Nicolás

    2009-01-01

    As a whole the congenital defects constitute an important section of the medical attention affecting near 3% of the population. A 15% of spontaneous abortions take place of which the greater frequency corresponds to the chromosome anomalies (25%) and the monogenic mutations (20%) and in a lesser extent to the effects of teratogenic agents. Between the genetic causes determining the congenital defects the mutations that affect genes acting in the early stages of development occupy a main place. These alterations can affect to homeotic genes or monogenic systems that act during the critical phases of the organogenesis. It seems evident that an alteration in the expression of a necessary gene for the appearance of a morphogenetic change constitutes the angular stone to understand resurging of a malformation or discapacity. In the last years has been demonstrated the importance of the teratogenic or environmental agents on the delicate internal physiological balance during the critical stages of the development. In this context must be included the inductive environmental factors inducing epigenetic modifications in the early stage of the development of the embryos produced by fertilization in vitro. PMID:19799481

  3. [Congenital multiple arthrogryposis].

    PubMed

    Parsch, Klaus; Pietrzak, Szymon

    2007-03-01

    From 1975 to 2004 a total of 38 children handicapped by congenital multiple arthrogryposis were cared for. The congenital joint contractures demand a major effort in terms of surgical reconstruction. In the case of distal arthrogryposis the chances that patients will be able to walk without help are good, while those with amyoplasia are likely to be dependent on mobility aids throughout their lives. The ultimate goal of treatment for patients is to develop into self-confident adults who can cope with life despite their handicaps. The hip in arthrogryposis shows variable forms of pathology, ranging from the almost normal hip to hip contractures with dislocation. Its treatment has some limited advantages, but hardly improves mobility. The knee contractures are actively treated to allow patients to sit, stand and walk better. The club foot and the rocker-bottom foot need sophisticated conservative and operative treatments. If conservative manipulation of bilateral extension contractures of the elbow fails operative treatment is carried out on the dominant side. For shoulder, hand and finger contractures conservative manipulation brings about little improvement, and surgical approaches help hardly at all. PMID:17323063

  4. Cataracts in Congenital Toxoplasmosis

    PubMed Central

    Arun, Veena; Noble, A. Gwendolyn; Latkany, Paul; Troia, Robert N.; Jalbrzikowski, Jessica; Kasza, Kristen; Karrison, Ted; Cezar, Simone; Sautter, Mari; Greenwald, Mark J.; Mieler, William; Mets, Marilyn B.; Alam, Ambereen; Boyer, Kenneth; Swisher, Charles N.; Roizen, Nancy; Rabiah, Peter; Del Monte, Monte A.; McLeod, Rima

    2008-01-01

    Purpose To determine the incidence and natural history of cataracts in children with congenital toxoplasmosis. Methods Children referred to the National Collaborative Chicago-based Congenital Toxoplasmosis Study (NCCCTS) between 1981 and 2005 were examined by ophthalmologists at predetermined times according to a specific protocol. The clinical course and treatment of patients who developed cataracts was reviewed. Results In the first year of life, 134 of 173 children examined were treated with pyrimethamine, sulfadiazine, and Leucovorin, while the remaining 39 were not treated. Cataracts occurred in 27 eyes of 20 patients (11.6%, 95% confidence interval [7.2%, 17.3%]). Fourteen cataracts were present at birth, and 13 developed postnatally. Locations of the cataracts included anterior polar (3 eyes), anterior subcapsular (6), nuclear (5), posterior subcapsular (7), and unknown (6). Thirteen cataracts were partial, 9 total, and 5 with unknown complexity. Twelve cataracts remained stable, 12 progressed, and progression was not known for 3. Five of 27 eyes had cataract surgery, with 2 of these developing glaucoma. Sixteen eyes of 11 patients had retinal detachment and cataract. All eyes with cataracts had additional ocular lesions. Conclusions In the NCCCTS cohort, 11.6% of patients were diagnosed with cataracts. There was considerable variability in the presentation, morphology, and progression of the cataracts. Associated intraocular pathology was an important cause of morbidity. PMID:18086432

  5. [Enzymopathic congenital hyperlactacidemia].

    PubMed

    Leroux, J P; Marsac, C; Saudubray, J M

    1976-01-01

    Congenital enzymopathic hyperlactacidemia results from a defect of utilisation of pyruvate either at the level of the pyruvate junction (pyruvate-carboxylase, pyruvate-dehydrogenase and Kreb's cycle), or at the level of the unidirectional enzymes on neo-glucogenesis and of neo-glycogenogenesis, e.g. glucose-6-phosphatase, phosphoenol-pyruvate-carboxykinase and glycogen synthetase. The enzymopathies which affect neoglucogenesis associate hyper-lactacidemia and fasting hypoglycemia and more or less marked hepatomegaly. Type I glycogenesis (von Gierke's disease) is the best known example. Enzymopathies which affect the pyruvate junction and the Krebs cycle, may be manifested in addition by: --either chronic neuropathies, e.g. Leigh's disease, recurrent ataxia, and moderate hyperalactacidemia,--or, as in congenital lactic acidoses, which have a rapid and severe prognosis with major hyperlactacidemia. Functional investigation, in particular, loading tests are of great value in orientation and justify the practice of tissue biopsy which permits the enzyme diagnosis. Recent, still unconfirmed knowledge of the pathogenesis of these diseases emphasizes the considerable importance of estimation of blood lactic acid in the investigation of metabolic acidoses of hereditary origin. PMID:184725

  6. [Treatment progress of Duchenne Muscular Dystrophy (DMD)].

    PubMed

    Smogorzewska, Elzbieta Monika; Weinberg, Kenneth I

    2004-01-01

    Duchenne muscular dystrophy (DMD) is a common lethal disease for which no effective treatment is currently available. There exists a mouse model of the disease in which the usefulness of gene therapy was established. However, no progress towards human application was made due to the lack of a proper method for gene delivery. During the past several years, researchers acquired data which led them to believe that bone marrow stem cells are capable of generating not only blood cells, but also liver, heart, skin, muscle, and other tissue. Although the term "stem cell plasticity" became very popular, other studies have suggested that bone marrow might contain different types of stem cells that can produce non-hematopoietic cells. For example, mesenchymal stem cell (MSC) in bone marrow give rise to osteocytes, chondrocytes, adipocytes, and skeletal muscle. Recently, researchers have been able to show that transplanted bone marrow cells can contribute to muscle cells in a human patient who was diagnosed with two genetic diseases: severe combined immunodeficiency (SCID) and Duchenne muscular dystrophy. The odds of this happening is estimated at one in seven million. The results of studying this patient's medical history were reported by collaborating researchers at Children's Hospital, Los Angeles and Children's Hospital, Boston in an article titled "Long-term persistence of donor nuclei in a Duchenne muscular dystrophy (DMD) patient receiving bone marrow transplantation" published in the September 2002 issue of the Journal of Clinical Investigation. This patient was transplanted 15 years ago at Children's Hospital Los Angeles with paternal HLA-haploidentical T cell-depleted bone marrow. He engrafted and became a hematopoietic chimera having T and NK lymphocytes of donor origin. Studies performed on the muscle biopsy from the patient 13 years after transplantation demonstrated that the muscle showed evidence of donor derived nuclei. In addition, analysis of his bone marrow

  7. Dynamic thoracoplasty for asphyxiating thoracic dystrophy.

    PubMed

    Kaddoura, I L; Obeid, M Y; Mroueh, S M; Nasser, A A

    2001-11-01

    The life-saving procedures to expand the chests of infants born with Jeune asphyxiating thoracic dystrophy provide a static solution incapable of responding to the growth demands of thriving patients. We describe an instrument that provided a dynamic solution for an infant, where an initial methyl methacrylate midsternotomy spacer placed at 4 months of age was followed at 11 months with recurrence of his difficulties. At 8 months after the second operation the patient was stable and thriving with no recurrence of symptoms. The instrument modifications, limitations, and possible complications are described. PMID:11722089

  8. Exon skipping therapy for Duchenne muscular dystrophy.

    PubMed

    Kole, Ryszard; Krieg, Arthur M

    2015-06-29

    Duchenne muscular dystrophy (DMD) is caused mostly by internal deletions in the gene for dystrophin, a protein essential for maintaining muscle cell membrane integrity. These deletions abrogate the reading frame and the lack of dystrophin results in progressive muscle deterioration. DMD patients experience progressive loss of ambulation, followed by a need for assisted ventilation, and eventual death in mid-twenties. By the method of exon skipping in dystrophin pre-mRNA the reading frame is restored and the internally deleted but functional dystrophin is produced. Two oligonucleotide drugs that induce desired exon skipping are currently in advanced clinical trials. PMID:25980936

  9. Noncoding RNAs: Emerging Players in Muscular Dystrophies

    PubMed Central

    2014-01-01

    The fascinating world of noncoding RNAs has recently come to light, thanks to the development of powerful sequencing technologies, revealing a variety of RNA molecules playing important regulatory functions in most, if not all, cellular processes. Many noncoding RNAs have been implicated in regulatory networks that are determinant for skeletal muscle differentiation and disease. In this review, we outline the noncoding RNAs involved in physiological mechanisms of myogenesis and those that appear dysregulated in muscle dystrophies, also discussing their potential use as disease biomarkers and therapeutic targets. PMID:24729974

  10. Bietti crystalline retinal dystrophy with subfoveal neurosensory detachment and congenital tortuosity of retinal vessels: case report.

    PubMed

    Padhi, Tapas Ranjan; Kesarwani, Siddharth; Jalali, Subhadra

    2011-06-01

    A 34-year-old man presented with reduction and distortion of vision in both the eyes. The best-corrected vision was 20/20 parts, N6 in either eye. The external and slit lamp examination of both the eyes was unremarkable. The fundus examination showed multiple intraretinal crystalline deposits at the posterior pole, extending up to midperiphery, tortuous retinal blood vessels with S-shaped deflections, and absent foveal reflex in both the eyes. There were no corneal crystals, and the color vision was defective in both the eyes. Fundus autofluorescence and fundus fluorescein angiogram (FFA) were suggestive of geographic areas of retinal pigment epithelium (RPE) and choriocapillary (CC) loss. OCT revealed subfoveal neurosensory detachment. Flash ERG and EOG were normal except for a slight decrease in amplitude and delay in latency of pattern ERG waveforms. The Humphrey's visual field showed paracentral scotoma with reduction in the amplitude of waveforms from the corresponding area in the multifocal ERG in both the eyes. Systemic evaluation for crystalline retinopathy was unremarkable. He was diagnosed to be a case of Bietti crystalline retinopathy (local/regional variant). The subfoveal neurosensory detachment could represent early RPE dysfunction caused by these crystals and could account for the mild visual disturbance in both the eyes. Retinal vascular tortuosity and neurosensory detachment seen in this case is the first time to be reported in literature. PMID:21611771

  11. Successful treatment of atelectasis with Dornase alpha in a patient with congenital muscular dystrophy.

    PubMed

    Crescimanno, G; Marrone, O

    2014-01-01

    A 28-year-old neuromuscular patient chronically treated with nocturnal noninvasive ventilation developed pulmonary lobar atelectasis and daytime hypoxemia. Twenty four-hour 5L/min oxygen was begun, while mechanical cough assist aids were applied for seven days. In the following three days, treatment with nebulized Dornase alpha (rhDNase) b.i.d. was tested, without any significant improvement. On 11 and 13th days rhDNase was instilled by flexible bronchoscopy. A rapid resolution of the atelectasis was observed with relief of hypoxemia, without significant side effects. On day 16 the patient was discharged without oxygen requirements. In non-intubated neuromuscular patients with atelectasis who do not respond successfully to non-invasive treatments intrabronchial instillation of rhDNase may safely help to improve airway clearance. PMID:24095150

  12. A novel POMT2 mutation causes mild congenital muscular dystrophy with normal brain MRI

    PubMed Central

    MURAKAMI, Terumi; HAYASHI, Yukiko K.; OGAWA, Megumu; NOGUCHI, Satoru; CAMPBELL, Kevin P.; TOGAWA, Masami; INOUE, Takehiko; OKA, Akira; OHNO, Kousaku; NONAKA, Ikuya; NISHINO, Ichizo

    2009-01-01

    We report a patient harboring a novel homozygous mutation of c.604T>G (p.F202V) in POMT2. He showed delayed psychomotor development but acquired the ability to walk at the age of 3 years and 10 months. His brain MRI was normal. No ocular abnormalities were seen. Biopsied skeletal muscle revealed markedly decreased but still detectable glycosylated forms of alpha-dystroglycan (α-DG). Our results indicate that mutations in POMT2 can cause a wide spectrum of clinical phenotypes as observed in other genes associated with alpha-dystroglycanopathy. Presence of small amounts of partly glycosylated α-DG may have a role in reducing the clinical symptoms of alpha-dystroglycanopathy. PMID:18804929

  13. Genetics Home Reference: T-cell immunodeficiency, congenital alopecia, and nail dystrophy

    MedlinePlus

    ... Accessibility FOIA Viewers & Players U.S. Department of Health & Human Services National Institutes of Health National Library of Medicine Lister Hill National Center for Biomedical Communications 8600 Rockville Pike, Bethesda, MD 20894, USA HONCode ...

  14. Congenital sensorineural hearing loss

    SciTech Connect

    Mafee, M.F.; Selis, J.E.; Yannias, D.A.; Valvassori, G.E.; Pruzansky, S.; Applebaum, E.L.; Capek, V.

    1984-02-01

    The ears of 47 selected patients with congenital sensorineural hearing loss were examined with complex-motion tomography. The patients were divided into 3 general categories: those with a recognized syndrome, those with sensorineural hearing loss unrelated to any known syndrome, and those with microtia. A great variety of inner ear anomalies was detected, but rarely were these characteristic of a particular clinical entity. The most common finding was the Mondini malformation or one of its variants. Isolated dysplasia of the internal auditory canal or the vestibular aqueduct may be responsible for sensorineural hearing loss in some patients. Patients with microtia may also have severe inner ear abnormalities despite the fact that the outer and inner ears develop embryologically from completely separate systems.

  15. Congenital adrenal hyperplasia

    PubMed Central

    Dessinioti, Cleo; Katsambas, Andreas

    2009-01-01

    Congenital adrenal hyperplasia consists of a heterogenous group of inherited disorders due to enzymatic defects in the biosynthetic pathway of cortisol and/or aldosterone. This results in glucocorticoid deficiency, mineralocorticoid deficiency, and androgen excess. 95% of CAH cases are due to 21-hydroxylase deficiency. Clinical forms range from the severe, classical CAH associated with complete loss of enzyme function, to milder, non-classical forms (NCAH). Androgen excess affects the pilosebaceous unit, causing cutaneous manifestations such as acne, androgenetic alopecia and hirsutism. Clinical differential diagnosis between NCAH and polycystic ovary syndrome may be difficult. In this review, the evaluation of patients with suspected CAH, the clinical presentation of CAH forms, with emphasis on the cutaneous manifestations of the disease, and available treatment options, will be discussed. PMID:22523607

  16. Multicystic congenital mesoblastic nephroma.

    PubMed

    Drut, Ricardo

    2002-01-01

    This report describes an unusual example of congenital mesoblastic nephroma cellular variant that presented in a 1-week-old neonate as a multicystic tumor of the kidney. Extensive pseudocystic cavitation resulted from progressive accumulation of ground substance in a loosely myxoid tissue composed of stellate- and spindle-shaped cells that compressed and infiltrated renal tissue. The cells of the tumor were positive for vimentin and smooth muscle actin. The patient is alive and well 16 years after surgery. Differential diagnosis from segmental cystic dysplasia, cystic intralobar nephrogenic rest, cystic nephroma, cystic partially differentiated nephroblastoma, cystic nephroblastoma, and cystic clear cell sarcoma of the kidney, all of which may present at this age, is discussed. PMID:11927972

  17. Congenital mirror movements.

    PubMed Central

    Schott, G D; Wyke, M A

    1981-01-01

    In this report are described seven patients assessed clinically and neuropsychologically in whom mirror movements affecting predominantly the hands occurred as a congenital disorder. These mirror movements, representing a specific type of abnormal synkinesia, may arise as a hereditary condition, in the presence of a recognisable underlying neurological abnormality, and sporadically, and the seven patients provide more or less satisfactory examples of each of these three groups. Despite the apparent uniformity of the disorder, the heterogeneity and variability may be marked, examples in some of our patients including the pronounced increase in tone that developed with arm movement, and the capacity for modulation of the associated movement by alteration of neck position and bio-feedback. Various possible mechanisms are considered; these include impaired cerebral inhibition of unwanted movements, and functioning of abnormal motor pathways. Emphasis has been placed on the putative role of the direct, crossed corticomotoneurone pathways and on the unilateral and bilateral cerebral events that precede movement. PMID:7288446

  18. Congenital vertical talus: a review.

    PubMed

    McKie, Janay; Radomisli, Timothy

    2010-01-01

    Congenital vertical talus, also known as congenital convex pes valgus, is an uncommon disorder of the foot, manifested as a rigid rocker-bottom flatfoot. Radiographically, it is defined by dorsal dislocation of the navicular on the talus. This condition requires surgical correction. If left untreated, this foot deformity results in a painful and rigid flatfoot with weak push-off power. This article provides an overview of this rare foot deformity, outlines appropriate workup of the disorder, and details current treatment options, with emphasis on the evolution of treatment of congenital vertical talus. PMID:19963176

  19. Emerging Drugs for Duchenne Muscular Dystrophy

    PubMed Central

    Malik, Vinod; Rodino-Klapac, Louise; Mendell, Jerry R.

    2012-01-01

    Introduction Duchenne muscular dystrophy (DMD) is the most common, severe childhood form of muscular dystrophy. Treatment is limited to glucocorticoids that have the benefit of prolonging ambulation by approximately 2 years and preventing scoliosis. Finding a more satisfactory treatment should focus on maintaining long-term efficacy with a minimal side effect profile. Areas covered Authors discuss different therapeutic strategies that have been used in pre-clinical and clinical settings. Expert opinion Multiple treatment approaches have emerged. Most attractive are molecular-based therapies that can express the missing dystrophin protein (exon skipping or mutation suppression) or a surrogate gene product (utrophin). Other approaches include increasing the strength of muscles (myostatin inhibitors), reducing muscle fibrosis, and decreasing oxidative stress. Additional targets include inhibiting NF-κB to reduce inflammation, or promoting skeletal muscle blood flow and muscle contractility using phosphodiesterase inhibitors or nitric oxide (NO) donors. The potential for each of these treatment strategies to enter clinical trials is a central theme of discussion. The review emphasizes that the goal of treatment should be to find a product at least as good as glucocorticoids with a lower side effect profile or with a significant glucocorticoid sparing effect. PMID:22632414

  20. Upper Girdle Imaging in Facioscapulohumeral Muscular Dystrophy

    PubMed Central

    Tasca, Giorgio; Monforte, Mauro; Iannaccone, Elisabetta; Laschena, Francesco; Ottaviani, Pierfrancesco; Leoncini, Emanuele; Boccia, Stefania; Galluzzi, Giuliana; Pelliccioni, Marco; Masciullo, Marcella; Frusciante, Roberto; Mercuri, Eugenio; Ricci, Enzo

    2014-01-01

    Background In Facioscapulohumeral muscular dystrophy (FSHD), the upper girdle is early involved and often difficult to assess only relying on physical examination. Our aim was to evaluate the pattern and degree of involvement of upper girdle muscles in FSHD compared with other muscle diseases with scapular girdle impairment. Methods We propose an MRI protocol evaluating neck and upper girdle muscles. One hundred-eight consecutive symptomatic FSHD patients and 45 patients affected by muscular dystrophies and myopathies with prominent upper girdle involvement underwent this protocol. Acquired scans were retrospectively analyzed. Results The trapezius (100% of the patients) and serratus anterior (85% of the patients) were the most and earliest affected muscles in FSHD, followed by the latissimus dorsi and pectoralis major, whilst spinati and subscapularis (involved in less than 4% of the patients) were consistently spared even in late disease stages. Asymmetry and hyperintensities on short-tau inversion recovery (STIR) sequences were common features, and STIR hyperintensities could also be found in muscles not showing signs of fatty replacement. The overall involvement appears to be disease-specific in FSHD as it significantly differed from that encountered in the other myopathies. Conclusions The detailed knowledge of single muscle involvement provides useful information for correctly evaluating patients' motor function and to set a baseline for natural history studies. Upper girdle imaging can also be used as an additional tool helpful in supporting the diagnosis of FSHD in unclear situations, and may contribute with hints on the currently largely unknown molecular pathogenesis of this disease. PMID:24932477

  1. Antisense Oligonucleotide Therapy for Inherited Retinal Dystrophies.

    PubMed

    Gerard, Xavier; Garanto, Alejandro; Rozet, Jean-Michel; Collin, Rob W J

    2016-01-01

    Inherited retinal dystrophies (IRDs) are an extremely heterogeneous group of genetic diseases for which currently no effective treatment strategies exist. Over the last decade, significant progress has been made utilizing gene augmentation therapy for a few genetic subtypes of IRD, although several technical challenges so far prevent a broad clinical application of this approach for other forms of IRD. Many of the mutations leading to these retinal diseases affect pre-mRNA splicing of the mutated genes . Antisense oligonucleotide (AON)-mediated splice modulation appears to be a powerful approach to correct the consequences of such mutations at the pre-mRNA level , as demonstrated by promising results in clinical trials for several inherited disorders like Duchenne muscular dystrophy, hypercholesterolemia and various types of cancer. In this mini-review, we summarize ongoing pre-clinical research on AON-based therapy for a few genetic subtypes of IRD , speculate on other potential therapeutic targets, and discuss the opportunities and challenges that lie ahead to translate splice modulation therapy for retinal disorders to the clinic. PMID:26427454

  2. Developments in gene therapy for muscular dystrophy.

    PubMed

    Hartigan-O'Connor, D; Chamberlain, J S

    Gene therapy for muscular dystrophy (MD) presents significant challenges, including the large amount of muscle tissue in the body, the large size of many genes defective in different muscular dystrophies, and the possibility of a host immune response against the therapeutic gene. Overcoming these challenges requires the development and delivery of suitable gene transfer vectors. Encouraging progress has been made in modifying adenovirus (Ad) vectors to reduce immune response and increase capacity. Recently developed gutted Ad vectors can deliver full-length dystrophin cDNA expression vectors to muscle tissue. Using muscle-specific promoters to drive dystrophin expression, a strong immune response has not been observed in mdx mice. Adeno-associated virus (AAV) vectors can deliver small genes to muscle without provocation of a significant immune response, which should allow long-term expression of several MD genes. AAV vectors have also been used to deliver sarcoglycan genes to entire muscle groups. These advances and others reviewed here suggest that barriers to gene therapy for MD are surmountable. PMID:10679969

  3. [Gene therapy for inherited retinal dystrophies].

    PubMed

    Côco, Monique; Han, Sang Won; Sallum, Juliana Maria Ferraz

    2009-01-01

    The inherited retinal dystrophies comprise a large number of disorders characterized by a slow and progressive retinal degeneration. They are the result of mutations in genes that express in either the photoreceptor cells or the retinal pigment epithelium. The mode of inheritance can be autosomal dominant, autosomal recessive, X linked recessive, digenic or mitochondrial DNA inherited. At the moment, there is no treatment for these conditions and the patients can expect a progressive loss of vision. Accurate genetic counseling and support for rehabilitation are indicated. Research into the molecular and genetic basis of disease is continually expanding and improving the prospects for rational treatments. In this way, gene therapy, defined as the introduction of exogenous genetic material into human cells for therapeutic purposes, may ultimately offer the greatest treatment for the inherited retinal dystrophies. The eye is an attractive target for gene therapy because of its accessibility, immune privilege and translucent media. A number of retinal diseases affecting the eye have known gene defects. Besides, there is a well characterized animal model for many of these conditions. Proposals for clinical trials of gene therapy for inherited retinal degenerations owing to defects in the gene RPE65, have recently received ethical approval and the obtained preliminary results brought large prospects in the improvement on patient's quality of life. PMID:19820803

  4. Benign muscular dystrophy: risk calculation in families with consanguinity.

    PubMed Central

    Wolff, G; Müller, C R; Grimm, T

    1989-01-01

    This report concerns two families in which the index patients are sporadic cases of a benign form of muscular dystrophy. In both families the sisters of the patients have married a close relative. The respective risks for a child of these consanguineous marriages being affected with either X linked Becker muscular dystrophy or autosomal recessive limb girdle muscular dystrophy is calculated using pedigree information, results of serum creatine kinase determinations, and also, in one family, results of DNA typing using RFLPs from the short arm of the X chromosome. PMID:2732990

  5. Birdshot chorioretinopathy in a male patient with facioscapulohumeral muscular dystrophy.

    PubMed

    Papavasileiou, Evangelia; Lobo, Ann-Marie

    2015-01-01

    We report a case of birdshot chorioretinopathy (BSCR) in a patient with facioscapulohumeral muscular dystrophy (FSHD). A 40-year-old male with history of facioscapulohumeral muscular dystrophy with significant facial diplegia and lagophthalmos presents for an evaluation of bilateral choroiditis with vasculitis and optic disc edema. Clinical examination included fundus and autofluorescence photographs, fluorescein angiography, and optical coherence tomography. To our knowledge, this patient represents the first reported case of birdshot chorioretinopathy with facioscapulohumeral muscular dystrophy. Patients with FSHD can present with ocular findings and should be screened with dilated fundus examinations for retinal vascular changes and posterior uveitis. PMID:25861398

  6. Congenital adrenal hypoplasia, myopathy, and glycerol kinase deficiency: Molecular genetic evidence for deletions

    PubMed Central

    Francke, Uta; Harper, John F.; Darras, Basil T.; Cowan, Janet M.; McCabe, Edward R. B.; Kohlschütter, Alfried; Seltzer, William K.; Saito, Fumiko; Goto, Jun; Harpey, Jean-Paul; Wise, Joyce E.

    1987-01-01

    Glycerol kinase deficiency (GKD) is an X-linked recessive trait that occurs in association with congenital adrenal hypoplasia (AH) and developmental delay with or without congenital dystrophic myopathy. Several such patients have recently been reported to have cytological deletions of chromosome region Xp21 and/or of DNA markers that map near the locus for Duchenne muscular dystrophy (DMD) in band Xp21. We have examined the initial family reported in the literature and, using prometaphase chromosome studies and Southern blot analysis with 13 different DNA probes derived from band Xp21, have found no deletions within this region of the X chromosome. When DNA samples from six other unrelated affected males were analyzed, four of them were found to have different-size deletions within Xp21. Thus, the form of GKD associated with AH and dystrophic myopathy exhibits significant genetic heterogeneity at the DNA level. No deletions were detected in two patients with isolated GK deficiency. Comparison of our molecular studies of unrelated patients with deletions of DNA segments allows us to define the region of Xp21 (between probes J-Bir and L1.4) that most likely contains the genes for GKD and AH. This location is distal to the DMD locus. The patients with progressive muscular dystrophy tended to have larger deletions that include markers known to derive from the DMD locus, while GKD/AH/dystrophic-myopathy patients without current evidence of deletion seemed to have a milder, nonprogressive form of congenital myopathy. ImagesFig. 1Fig. 2 PMID:2883886

  7. [Inflammatory myopathies. New concepts].

    PubMed

    López Longo, Francisco Javier

    2008-03-01

    Myopathies are diseases characterized by the primary affection of skeletal muscle. In general they present with muscle weakness, pain, contracture, paresthesias, rigidity, or fatigue. They can be hereditary, such as muscle dystrophies, congenital, myotonic, metabolic, and myasthenic, or acquired. Among the latter ones we include idiopathic inflammatory myopathies (IIM), toxic, endocrine, or infectious myopathies and myasthenia gravis. There is a current acceptance of considerable clinical and histopathological overlap among some muscle dystrophies and some IIM. However, the molecular profile is different and characteristic in each myopathy and the study into the patterns of expression of genes in the muscle can be useful in their differential diagnosis, including that of IIM. PMID:21794553

  8. Human muscle proteins: analysis by two-dimensional electrophoresis

    SciTech Connect

    Giometti, C.S.; Danon, M.J.; Anderson, N.G.

    1983-09-01

    Proteins from single frozen sections of human muscle were separated by two-dimensional gel electrophoresis and detected by fluorography or Coomassie Blue staining. The major proteins were identical in different normal muscles obtained from either sex at different ages, and in Duchenne and myotonic dystrophy samples. Congenital myopathy denervation atrophy, polymyositis, and Becker's muscular dystrophy samples, however, showed abnormal myosin light chain compositions, some with a decrease of fast-fiber myosin light chains and others with a decrease of slow-fiber light chains. These protein alterations did not correlate with any specific disease, and may be cause by generalized muscle-fiber damage.

  9. Genetics Home Reference: limb-girdle muscular dystrophy

    MedlinePlus

    ... most common form of limb-girdle muscular dystrophy , accounting for about 30 percent of cases. Dysferlinopathy, also ... be inherited? More about Inheriting Genetic Conditions Diagnosis & Management These resources address the diagnosis or management of ...

  10. Hypotrichosis with juvenile macular dystrophy is caused by a mutation in CDH3, encoding P-cadherin.

    PubMed

    Sprecher, E; Bergman, R; Richard, G; Lurie, R; Shalev, S; Petronius, D; Shalata, A; Anbinder, Y; Leibu, R; Perlman, I; Cohen, N; Szargel, R

    2001-10-01

    Congenital hypotrichosis associated with juvenile macular dystrophy (HJMD; MIM601553) is an autosomal recessive disorder of unknown etiology, characterized by hair loss heralding progressive macular degeneration and early blindness. We used homozygosity mapping in four consanguineous families to localize the gene defective in HJMD to 16q22.1. This region contains CDH3, encoding P-cadherin, which is expressed in the retinal pigment epithelium and hair follicles. Mutation analysis shows in all families a common homozygous deletion in exon 8 of CDH3. These results establish the molecular etiology of HJMD and implicate for the first time a cadherin molecule in the pathogenesis of a human hair and retinal disorder. PMID:11544476

  11. An integrated approach in a case of facioscapulohumeral dystrophy

    PubMed Central

    2014-01-01

    Background Muscle fatigue, weakness and atrophy are basilar clinical features that accompany facioscapulohumeral dystrophy (FSHD) the third most common muscular dystrophy. No therapy is available for FSHD. Case presentation We describe the effects of 6mo exercise therapy and nutritional supplementation in a 43-year-old woman severely affected by FSHD. Conclusion A mixed exercise program combined with nutritional supplementation can be safely used with beneficial effects in selected patients with FSHD. PMID:24886582

  12. [Congenital lumbar hernia].

    PubMed

    Peláez Mata, D J; Alvarez Muñoz, V; Fernández Jiménez, I; García Crespo, J M; Teixidor de Otto, J L

    1998-07-01

    Hernias in the lumbar region are abdominal wall defects that appear in two possible locations: the superior lumbar triangle of Grynfelt-Lesshaft and the inferior lumbar triangle of Petit. There are 40 cases reported in the pediatric literature, and only 16 are considered congenital, associated with the lumbocostovertebral syndrome and/or meningomyelocele. A new case is presented. A premature newborn with a mass in the left flank that increases when the patient cries and reduces easily. The complementary studies confirm the diagnosis of lumbar hernia and reveal the presence of lumbocostovertebral syndrome associated. At the time of operation a well defined fascial defect at the superior lumbar triangle of Grynfelt-Lesshaft is primarily closed. The diagnosis of lumbar hernia is not difficult to establish but it is necessary the screening of the lumbocostovertebral syndrome. We recommend the surgical treatment before 12 months of age; the objective is to close the defect primarily or to use prosthetic material if necessary. PMID:12602034

  13. [Congenital Esophageal Atresia].

    PubMed

    Suzuki, Makoto; Kuwano, Hiroyuki

    2015-07-01

    In this report, we describe the esophageal atresia in terms of current surgical management on the basis of our experience and literatures. Traditionally, infants with esophageal atresia have presented shortly after birth because of an inability to pass an orogastric tube, respiratory distress, or an inability to tolerate feeding. And also, an isolated trachea-esophageal fistula (TEF) usually cases coughing, recurrent pneumonia, or choking during feedings. To ignore these symptoms is to risk a delayed diagnosis. The condition may be associated with other major congenital anomalies such as those seen in the vertebral, anal, cardiac, tracheo-esophageal, renal/radial (VACTER) association, or it may be an isolated defect. Therapeutic strategies for esophageal atresia are a prevention of pulmonary complication by TEF closing and an early establishment of enteral alimentation. We promptly repair healthy infants without performing a gastrostomy and delay repair in infants with high-risk factors such as associated severe cardiac anomaly and respiratory insufficiency. Esophageal atresia has been classically approached through a thoracotomy. The disadvantages of such a thoracotomy have been recognized for a long time, for example winged scapula, elevation of fixation of shoulder, asymmetry of the chest wall, rib fusion, scoliosis, and breast and pectoral muscle maldevelopment. To avoid such disadvantages, thoracoscopic repair was recently reported. PMID:26197921

  14. Congenital parotid fistula.

    PubMed

    Natasha, Shiggaon

    2014-01-01

    Parotid fistula is a cause of great distress and embarrassment to the patient. Parotid fistula is most commonly a post-traumatic situation. Congenital parotid salivary fistulas are unusual entities that can arise from accessory parotid glands or even more infrequently, from normal parotid glands through an aberrant Stensen's duct. The treatment of fistulous tract is usually surgical and can be successfully excised after making a skin incision along the skin tension line around the fistula opening. This report describes a case of right accessory parotid gland fistula of a 4-year-old boy with discharge of pus from right cheek. Computed tomography (CT) fistulography and CT sialography demonstrated fistulous tract arising from accessory parotid gland. Both CT fistulography and CT sialography are very helpful in the diagnosis and surgical planning. In this case, superficial parotidectomy is the treatment of choice. A detailed history, clinical and functional examination, proper salivary gland investigations facilitates in correct diagnosis followed by immediate surgical intervention helps us to restore physical, psychological health of the child patient. PMID:25231049

  15. Congenital Diaphragmatic Hernia

    PubMed Central

    2012-01-01

    Congenital Diaphragmatic Hernia (CDH) is defined by the presence of an orifice in the diaphragm, more often left and posterolateral that permits the herniation of abdominal contents into the thorax. The lungs are hypoplastic and have abnormal vessels that cause respiratory insufficiency and persistent pulmonary hypertension with high mortality. About one third of cases have cardiovascular malformations and lesser proportions have skeletal, neural, genitourinary, gastrointestinal or other defects. CDH can be a component of Pallister-Killian, Fryns, Ghersoni-Baruch, WAGR, Denys-Drash, Brachman-De Lange, Donnai-Barrow or Wolf-Hirschhorn syndromes. Some chromosomal anomalies involve CDH as well. The incidence is < 5 in 10,000 live-births. The etiology is unknown although clinical, genetic and experimental evidence points to disturbances in the retinoid-signaling pathway during organogenesis. Antenatal diagnosis is often made and this allows prenatal management (open correction of the hernia in the past and reversible fetoscopic tracheal obstruction nowadays) that may be indicated in cases with severe lung hypoplasia and grim prognosis. Treatment after birth requires all the refinements of critical care including extracorporeal membrane oxygenation prior to surgical correction. The best hospital series report 80% survival but it remains around 50% in population-based studies. Chronic respiratory tract disease, neurodevelopmental problems, neurosensorial hearing loss and gastroesophageal reflux are common problems in survivors. Much more research on several aspects of this severe condition is warranted. PMID:22214468

  16. Congenital diaphragmatic hernia.

    PubMed

    Tovar, Juan A

    2012-01-01

    Congenital Diaphragmatic Hernia (CDH) is defined by the presence of an orifice in the diaphragm, more often left and posterolateral that permits the herniation of abdominal contents into the thorax. The lungs are hypoplastic and have abnormal vessels that cause respiratory insufficiency and persistent pulmonary hypertension with high mortality. About one third of cases have cardiovascular malformations and lesser proportions have skeletal, neural, genitourinary, gastrointestinal or other defects. CDH can be a component of Pallister-Killian, Fryns, Ghersoni-Baruch, WAGR, Denys-Drash, Brachman-De Lange, Donnai-Barrow or Wolf-Hirschhorn syndromes. Some chromosomal anomalies involve CDH as well. The incidence is < 5 in 10,000 live-births. The etiology is unknown although clinical, genetic and experimental evidence points to disturbances in the retinoid-signaling pathway during organogenesis. Antenatal diagnosis is often made and this allows prenatal management (open correction of the hernia in the past and reversible fetoscopic tracheal obstruction nowadays) that may be indicated in cases with severe lung hypoplasia and grim prognosis. Treatment after birth requires all the refinements of critical care including extracorporeal membrane oxygenation prior to surgical correction. The best hospital series report 80% survival but it remains around 50% in population-based studies. Chronic respiratory tract disease, neurodevelopmental problems, neurosensorial hearing loss and gastroesophageal reflux are common problems in survivors. Much more research on several aspects of this severe condition is warranted. PMID:22214468

  17. Congenital Triangular Alopecia.

    PubMed

    Yin Li, Vincent Chum; Yesudian, Paul Devakar

    2015-01-01

    Congenital triangular alopecia (CTA) also known as temporal triangular alopecia is a benign noncicatricial pattern of hair loss. It typically affects the frontotemporal region and rarely involves the temporoparietal or occipital scalp. It is a nonprogressive disorder that presents as a triangular, oval or lancet-shaped patch of alopecia. CTA can manifest at birth or develop later in life. The exact etiology of this condition remains unknown. Rarely, it may be associated with other disorders such as Down's syndrome and phakomatosis pigmentovascularis. The diagnosis is based on its distinct clinical appearance. Histologically, hair follicles are miniaturized and replaced by sparse vellus hair follicles. Tricoscopy using a polarized light handheld dermatoscope can be a useful diagnostic tool. CTA is often asymptomatic and remains unchanged throughout the life. No treatment is required. Surgical intervention with follicular unit hair transplantation can provide a satisfactory cosmetic result. In this paper, we have identified 126 cases of CTA in the published literature cited on PubMed between 1905 and 2015. From the available evidence, 79% of patients with CTA presented with unilateral hair loss, 18.5% with bilateral involvement and rarely, with occipital alopecia (2.5%). There was no gender predilection. These figures are entirely consistent with previously published data. Physicians should remember to consider CTA as a potential diagnosis in any patient presenting with a nonscarring alopecia in order to avoid unnecessary investigations and treatments. PMID:26180448

  18. Congenital Rhabdomyosarcoma of Shoulder

    PubMed Central

    Khaleghnejad-Tabari, Ahmad; Mirshemirani, Alireza; Rouzrokh, Mohsen; Nariman, Shahin; Hassas-Yeganeh, Shaghayegh; Gharib, Atoosa; Khaleghnejad-Tabari, Nasibeh

    2012-01-01

    A 16-day-old female was referred with congenital swelling on her right shoulder. On examination, there was a hard, round, ecchymotic, nontender, slightly movable, warm and shiny 10x15 cm mass on the right axillary pits which was extended to the right side of neck and chest wall. The mass separated the shoulder from the chest wall causing paralysis of right hand. Chest X-ray, ultrasound and MRI with contrast demonstrated a soft tissue mass suspected to be a hemangioma. The mass rapidly increased in size despite aggressive steroid therapy with rupture and bleeding. On the 45th post natal day the baby was taken to operating room to control the bleeding and if possible total excision of the mass. The mass was separated easily from the surrounding tissue and was excised along with right upper extremity. At the end of surgery the baby had cardiac arrest, and apparently died of Disseminated Intravascular Coagulation (DIC). The final pathology report was Rhabdomyosarcoma (RMS). PMID:25628836

  19. [Congenital foot abnormalities].

    PubMed

    Delpont, M; Lafosse, T; Bachy, M; Mary, P; Alves, A; Vialle, R

    2015-03-01

    The foot may be the site of birth defects. These abnormalities are sometimes suspected prenatally. Final diagnosis depends on clinical examination at birth. These deformations can be simple malpositions: metatarsus adductus, talipes calcaneovalgus and pes supinatus. The prognosis is excellent spontaneously or with a simple orthopedic treatment. Surgery remains outstanding. The use of a pediatric orthopedist will be considered if malposition does not relax after several weeks. Malformations (clubfoot, vertical talus and skew foot) require specialized care early. Clubfoot is characterized by an equine and varus hindfoot, an adducted and supine forefoot, not reducible. Vertical talus combines equine hindfoot and dorsiflexion of the forefoot, which is performed in the midfoot instead of the ankle. Skew foot is suspected when a metatarsus adductus is resistant to conservative treatment. Early treatment is primarily orthopedic at birth. Surgical treatment begins to be considered after walking age. Keep in mind that an abnormality of the foot may be associated with other conditions: malposition with congenital hip, malformations with syndromes, neurological and genetic abnormalities. PMID:25524290

  20. Singing in congenital amusia.

    PubMed

    Dalla Bella, Simone; Giguère, Jean-François; Peretz, Isabelle

    2009-07-01

    Congenital amusia is a musical disorder characterized by impaired pitch perception. To examine to what extent this perceptual pitch deficit may compromise singing, 11 amusic individuals and 11 matched controls were asked to sing a familiar tune with lyrics and on the syllable /la/. Acoustical analysis of sung renditions yielded measures of pitch accuracy (e.g., number of pitch errors) and time accuracy (e.g., number of time errors). The results revealed that 9 out of 11 amusics were poor singers, mostly on the pitch dimension. Poor singers made an anomalously high number of pitch interval and contour errors, produced pitch intervals largely deviating from the score, and lacked pitch stability; however, more than half of the amusics sang in-time. Amusics' variability in singing proficiency was related to their residual pitch perceptual ability. Thus, their singing deficiency might be a consequence of their perceptual deficit. Nevertheless, there were notable exceptions. Two amusic individuals, despite their impoverished perception, sang proficiently. The latter findings are consistent with the existence of separate neural pathways for auditory perception and action. PMID:19603898