Science.gov

Sample records for conifers

  1. Ecophysiological controls of conifer distributions

    SciTech Connect

    Woodward, F.I.

    1995-07-01

    The boreal forest covers the most extensive worldwide area of conifer-dominated vegetation, with a total global area of about 12 million km{sup 2}. This large area is very species poor; in North America there are only nine widespread and dominant species of trees, of which six are conifers-Picea mariana, Picea glauca, Abies balsamea, Larix laricina, Pinus contorta, and Pinus banksiana. The remaining three angiosperms are Betula papyrifera, Populus tremuloides, and Populus balsamifera. In Fennoscandia and the former Soviet Union, 14 species dominate the boreal forest, 10 of which are conifers-Abies sibirica, Larix gmelinii, Larix sibirica, Larix sukaczewii, Picea abies, Picea ajanensis, Picea obovata, Pinus pumila, Pinus sibifica, and Pinus sylvestris. The dominant angiosperm trees are Betula pendula, Betula pubescens, Chosenia arbutifolia, and Populus tremula. Such species paucity detracts from realizing the remarkable capacity of these species to endure the harshest forest climates of the world. Both the short-term geological history and the current climate are major causes of the species paucity in the boreal forest. In general, the boreal forest has been present in its current distribution only since the Holocene era. In most cases, the dominant species of the boreal forest completed their postglacial expansion to their current distributions only over the past 2000 years. So the ecology of the forest is very young, in comparison with forests in warmer climates. It might be expected that over subsequent millennia, with no climatic change, there could be a slow influx of new species to the boreal zone; however, the extreme climatic, edaphic, and disturbance characteristics of the area are likely to set insurmountable limits on this influx of diversity.

  2. Defense Mechanisms of Conifers 1

    PubMed Central

    Lewinsohn, Efraim; Gijzen, Mark; Savage, Thomas J.; Croteau, Rodney

    1991-01-01

    Cell-free extracts from Pinus ponderosa Lawson (ponderosa pine) and Pinus sylvestris L. (Scotch pine) wood exhibited high levels of monoterpene synthase (cyclase) activity, whereas bark extracts of these species contained no detectable activity, and they inhibited cyclase activity when added to extracts from wood, unless polyvinylpyrrolidone was included in the preparation. The molecular mass of the polyvinylpyrrolidone added was of little consequence; however, polyvinylpolypyrrolidone (a cross-linked insoluble form of the polymer) was ineffective in protecting enzyme activity. Based on these observations, methods were developed for the efficient extraction and assay of monoterpene cyclase activity from conifer stem (wood and bark) tissue. The level of monoterpene cyclase activity for a given conifer species was shown to correlate closely with the monoterpene content of the oleoresin and with the degree of anatomical complexity of the specialized resin-secreting structures. Cyclase activity and monoterpene content were lowest in the stems of species containing only isolated resin cells, such as western red cedar (Thuja plicata D. Don). Increasing levels of cyclase activity and oleoresin monoterpenes were observed in advancing from species with multicellular resin blisters (true firs [Abies]) to those with organized resin passages, such as western larch (Larix occidentalis Nutt.), Colorado blue spruce (Picea pungens Engelm.) and Douglas-fir (Pseudotsuga menziesii [Mirb.] Franco). The highest levels of cyclase activity and oleoresin monoterpenes were noted in Pinus species that contain the most highly developed resin duct systems. The relationship between biosynthetic capacity, as measured by cyclase activity, monoterpene content, and the degree of organization of the secretory structures for a given species, may reflect the total number of specialized resin-producing cells per unit mass of stem tissue. PMID:16668182

  3. Insights into conifer giga-genomes.

    PubMed

    De La Torre, Amanda R; Birol, Inanc; Bousquet, Jean; Ingvarsson, Pär K; Jansson, Stefan; Jones, Steven J M; Keeling, Christopher I; MacKay, John; Nilsson, Ove; Ritland, Kermit; Street, Nathaniel; Yanchuk, Alvin; Zerbe, Philipp; Bohlmann, Jörg

    2014-12-01

    Insights from sequenced genomes of major land plant lineages have advanced research in almost every aspect of plant biology. Until recently, however, assembled genome sequences of gymnosperms have been missing from this picture. Conifers of the pine family (Pinaceae) are a group of gymnosperms that dominate large parts of the world's forests. Despite their ecological and economic importance, conifers seemed long out of reach for complete genome sequencing, due in part to their enormous genome size (20-30 Gb) and the highly repetitive nature of their genomes. Technological advances in genome sequencing and assembly enabled the recent publication of three conifer genomes: white spruce (Picea glauca), Norway spruce (Picea abies), and loblolly pine (Pinus taeda). These genome sequences revealed distinctive features compared with other plant genomes and may represent a window into the past of seed plant genomes. This Update highlights recent advances, remaining challenges, and opportunities in light of the publication of the first conifer and gymnosperm genomes. PMID:25349325

  4. Conifer-Derived Monoterpenes and Forest Walking

    PubMed Central

    Sumitomo, Kazuhiro; Akutsu, Hiroaki; Fukuyama, Syusei; Minoshima, Akiho; Kukita, Shin; Yamamura, Yuji; Sato, Yoshiaki; Hayasaka, Taiki; Osanai, Shinobu; Funakoshi, Hiroshi; Hasebe, Naoyuki; Nakamura, Masao

    2015-01-01

    Conifer and broadleaf trees emit volatile organic compounds in the summer. The major components of these emissions are volatile monoterpenes. Using solid phase microextraction fiber as the adsorbant, monoterpenes were successfully detected and identified in forest air samples. Gas chromatography/mass chromatogram of monoterpenes in the atmosphere of a conifer forest and that of serum from subjects who were walking in a forest were found to be similar each other. The amounts of α-pinene in the subjects became several folds higher after forest walking. The results indicate that monoterpenes in the atmosphere of conifer forests are transferred to and accumulate in subjects by inhalation while they are exposed to this type of environment. PMID:26819913

  5. ACID FOG EFFECTS ON CONIFER SEEDLINGS

    EPA Science Inventory

    Experiments were performed to assess the effects of acid fog on foliar injury, biomass production, and nutrient leaching in selected conifers. ne-year old seedlings of Pseudotsuga menzieii, Pinus ponderosa, Tsuga heterophylla and Thuja plicata were exposed episodically to fog eve...

  6. Insights into Conifer Giga-Genomes1

    PubMed Central

    De La Torre, Amanda R.; Birol, Inanc; Bousquet, Jean; Ingvarsson, Pär K.; Jansson, Stefan; Jones, Steven J.M.; Keeling, Christopher I.; MacKay, John; Nilsson, Ove; Ritland, Kermit; Street, Nathaniel; Yanchuk, Alvin; Zerbe, Philipp; Bohlmann, Jörg

    2014-01-01

    Insights from sequenced genomes of major land plant lineages have advanced research in almost every aspect of plant biology. Until recently, however, assembled genome sequences of gymnosperms have been missing from this picture. Conifers of the pine family (Pinaceae) are a group of gymnosperms that dominate large parts of the world’s forests. Despite their ecological and economic importance, conifers seemed long out of reach for complete genome sequencing, due in part to their enormous genome size (20–30 Gb) and the highly repetitive nature of their genomes. Technological advances in genome sequencing and assembly enabled the recent publication of three conifer genomes: white spruce (Picea glauca), Norway spruce (Picea abies), and loblolly pine (Pinus taeda). These genome sequences revealed distinctive features compared with other plant genomes and may represent a window into the past of seed plant genomes. This Update highlights recent advances, remaining challenges, and opportunities in light of the publication of the first conifer and gymnosperm genomes. PMID:25349325

  7. Diseases of Pacific Coast conifers. Agriculture handbook

    SciTech Connect

    Scharpf, R.F.

    1993-06-01

    The handbook provides basic information needed to identify the common diseases of Pacific Coast conifers. Hosts, distribution, disease cycles, and identifying characteristics are described for more than 150 diseases, including cankers, diebacks, galls, rusts, needle diseases, root diseases, mistletoes, and rots. Diseases in which abiotic factors are involved are also described. For some groups of diseases, a descriptive key to field identification is included.

  8. Genetics and the physiological ecology of conifers

    SciTech Connect

    Mitton, J.B.

    1995-07-01

    Natural selection acts on the diversity of genotypes, adapting populations to their specific environments and driving evolution in response to changes in climate. Genetically based differences in physiology and demography adapt species to alternate environments and produce, along with historical accidents, the present distribution of species. The sorting of conifer species by elevation is so marked that conifers help to define plant communities arranged in elevational bands in the Rocky Mountains. For these reasons, a genetic perspective is necessary to appreciate the evolution of ecophysiological patterns in the coniferous forests of the Rocky Mountains. The fascinating natural history and the economic importance of western conifers have stimulated numerous studies of their ecology, ecological genetics, and geographic variation. These studies yield some generalizations, and present some puzzling contradictions. This chapter focuses on the genetic variability associated with the physiological differences among genotypes in Rocky Mountain conifers. Variation among genotypes in survival, growth, and resistance to herbivores is used to illustrate genetically based differences in physiology, and to suggest the mechanistic studies needed to understand the relationships between genetic and physiological variation.

  9. Fuel bed characteristics of Sierra Nevada conifers

    USGS Publications Warehouse

    van Wagtendonk, J.W.; Benedict, J.M.; Sydoriak, W.M.

    1998-01-01

    A study of fuels in Sierra Nevada conifer forests showed that fuel bed depth and fuel bed weight significantly varied by tree species and developmental stage of the overstory. Specific values for depth and weight of woody, litter, and duff fuels are reported. There was a significant positive relationship between fuel bed depth and weight. Estimates of woody fuel weight using the planar intercept method were significantly related to sampled values. These relationships can be used to estimate fuel weights in the field.

  10. Carbon allocation and accumulation in conifers

    SciTech Connect

    Gower, S.T.; Isebrands, J.G.; Sheriff, D.W.

    1995-07-01

    Forests cover approximately 33% of the land surface of the earth, yet they are responsible for 65% of the annual carbon (C) accumulated by all terrestrial biomes. In general, total C content and net primary production rates are greater for forests than for other biomes, but C budgets differ greatly among forests. Despite several decades of research on forest C budgets, there is still an incomplete understanding of the factors controlling C allocation. Yet, if we are to understand how changing global events such as land use, climate change, atmospheric N deposition, ozone, and elevated atmospheric CO{sub 2} affect the global C budget, a mechanistic understanding of C assimilation, partitioning, and allocation is necessary. The objective of this chapter is to review the major factors that influence C allocation and accumulation in conifer trees and forests. In keeping with the theme of this book, we will focus primarily on evergreen conifers. However, even among evergreen conifers, leaf, canopy, and stand-level C and nutrient allocation patterns differ, often as a function of leaf development and longevity. The terminology related to C allocation literature is often inconsistent, confusing and inadequate for understanding and integrating past and current research. For example, terms often used synonymously to describe C flow or movement include translocation, transport, distribution, allocation, partitioning, apportionment, and biomass allocation. A common terminology is needed because different terms have different meanings to readers. In this paper we use C allocation, partitioning, and accumulation according to the definitions of Dickson and Isebrands (1993). Partitioning is the process of C flow into and among different chemical, storage, and transport pools. Allocation is the distribution of C to different plant parts within the plant (i.e., source to sink). Accumulation is the end product of the process of C allocation.

  11. Conifer health classification for Colorado, 2008

    USGS Publications Warehouse

    Cole, Christopher J.; Noble, Suzanne M.; Blauer, Steven L.; Friesen, Beverly A.; Curry, Stacy E.; Bauer, Mark A.

    2010-01-01

    Colorado has undergone substantial changes in forests due to urbanization, wildfires, insect-caused tree mortality, and other human and environmental factors. The U.S. Geological Survey Rocky Mountain Geographic Science Center evaluated and developed a methodology for applying remotely-sensed imagery for assessing conifer health in Colorado. Two classes were identified for the purposes of this study: healthy and unhealthy (for example, an area the size of a 30- x 30-m pixel with 20 percent or greater visibly dead trees was defined as ?unhealthy?). Medium-resolution Landsat 5 Thematic Mapper imagery were collected. The normalized, reflectance-converted, cloud-filled Landsat scenes were merged to form a statewide image mosaic, and a Normalized Difference Vegetation Index (NDVI) and Renormalized Difference Infrared Index (RDII) were derived. A supervised maximum likelihood classification was done using the Landsat multispectral bands, the NDVI, the RDII, and 30-m U.S. Geological Survey National Elevation Dataset (NED). The classification was constrained to pixels identified in the updated landcover dataset as coniferous or mixed coniferous/deciduous vegetation. The statewide results were merged with a separate health assessment of Grand County, Colo., produced in late 2008. Sampling and validation was done by collecting field data and high-resolution imagery. The 86 percent overall classification accuracy attained in this study suggests that the data and methods used successfully characterized conifer conditions within Colorado. Although forest conditions for Lodgepole Pine (Pinus contorta) are easily characterized, classification uncertainty exists between healthy/unhealthy Ponderosa Pine (Pinus ponderosa), Pi?on (Pinus edulis), and Juniper (Juniperus sp.) vegetation. Some underestimation of conifer mortality in Summit County is likely, where recent (2008) cloud-free imagery was unavailable. These classification uncertainties are primarily due to the spatial and

  12. Plant hormones and ecophysiology of conifers

    SciTech Connect

    Davies, W.J.

    1995-07-01

    Over the past 30 years, there have been very substantial fluctuations in the interests of plant scientists in the involvement of plant growth regulators in the control of physiology, growth, and development of plants. In the years following the identification of the five major classes of growth regulators and identification of other groups of compounds of somewhat more restricted interest, an enormous number of papers reported the effects of hormones applied externally to a very wide range of plants. During this period, it became very fashionable to compare effects of hormones with the effects of the environment on developmental and physiological phenomena and to suggest a regulatory role for the hormone(s) in the processes under consideration. Ross et al. (1983) have published a very comprehensive survey of the effects of growth regulators applied externally to conifers, and even 10 years later, it is difficult to improve on what they have done. Nevertheless, in the light of recent changes in our understanding of how growth regulators may work, it is necessary to reexamine this field and ask what we really know about the involvement of growth regulators in the ecophysiology of conifers.

  13. AmeriFlux US-Vcm Valles Caldera Mixed Conifer

    DOE Data Explorer

    Litvak, Marcy [University of New Mexico

    2016-01-01

    This is the AmeriFlux version of the carbon flux data for the site US-Vcm Valles Caldera Mixed Conifer. Site Description - The Valles Caldera Mixed Conifer site is located in the 1200 km2 Jemez River basin in north-central New Mexico. Common to elevations ranging from 3040 to 2740 m in the region, the mixed conifer stand, within the entirety of the tower footprint in all directions, provides an excellent setting for studying the seasonal interaction between snow and vegetation.

  14. Western Conifers Research Cooperative 1987 research plan

    SciTech Connect

    Olson, R.K.

    1987-08-01

    The Western Conifers Research Cooperative is part of the national Forest Response Program (FRP). The FRP is a federal program designed to determine the current and potential effects of atmospheric deposition on forests in the United States. Research is conducted regionally within four research Cooperatives. The Western Cooperative is concerned with the effects of atmospheric deposition on coniferous forests in the eleven conterminous western states. The 1987 Research Plan first outlines the objectives and research strategy of the FRP. The objectives and strategy of the Western Cooperative are then described in the context of the parent organization. The 1986 Western Cooperative program is reviewed followed by a description of the 1987 program. Brief descriptions of each of the individual 1987 research projects are also given.

  15. Conifer Decline and Mortality in Siberia

    NASA Astrophysics Data System (ADS)

    Kharuk, V.; Im, S.; Ranson, K.

    2015-12-01

    "Dark needle conifer" (DNC: Abies sibirica, Pinus sibirica and Picea obovata) decline and mortality increase were documented in Russia during recent decades. Here we analyzed causes and scale of Siberian pine and fir mortality in Altai-Sayan and Baikal Lake Regions and West Siberian Plane based on in situdata and remote sensing (QuickBird, Landsat, GRACE). Geographically, mortality began on the margins of the DNC range (i.e., within the forest-steppe and conifer-broadleaf ecotones) and on terrain features with maximal water stress risk (narrow-shaped hilltops, convex steep south facing slopes, shallow well-drained soils). Within ridges, mortality occurred mainly along mountain passes, where stands faced drying winds. Regularly mortality was observed to decrease with elevation increase with the exception of Baikal Lake Mountains, where it was minimal near the lake shore and increased with elevation (up to about 1000 m a.s.l.). Siberian pine and fir mortality followed a drying trend with consecutive droughts since the 1980s. Dendrochronology analysis showed that mortality was correlated with vapor pressure deficit increase, drought index, soil moisture decrease and occurrence of late frosts. In Baikal region Siberian pine mortality correlated with Baikal watershed meteorological variables. An impact of previous year climate conditions on the current growth was found (r2 = 0.6). Thus, water-stressed trees became sensitive to bark beetles and fungi impact (including Polygraphus proximus and Heterobasidion annosum). At present, an increase in mortality is observed within the majority of DNC range. Results obtained also showed a primary role of water stress in that phenomenon with a secondary role of bark beetles and fungi attacks. In future climate with increased drought severity and frequency Siberian pine and fir will partly disappear from its current range, and will be substituted by drought-tolerant species (e.g., Pinus silvestris, Larix sibirica).

  16. Line-scan inspection of conifer seedlings

    NASA Astrophysics Data System (ADS)

    Rigney, Michael P.; Kranzler, Glenn A.

    1993-05-01

    Almost two billion conifer seedlings are produced in the U.S. each year to support reforestation efforts. Seedlings are graded manually to improve viability after transplanting. Manual grading is labor-intensive and subject to human variability. Our previous research demonstrated the feasibility of automated tree seedling inspection with machine vision. Here we describe a system based on line-scan imaging, providing a three-fold increase in resolution and inspection rate. A key aspect of the system is automatic recognition of the seedling root collar. Root collar diameter, shoot height, and projected shoot and root areas are measured. Sturdiness ratio and shoot/root ratio are computed. Grade is determined by comparing measured features with pre-defined set points. Seedlings are automatically sorted. The precision of machine vision and manual measurements was determined in tests at a commercial forest nursery. Manual measurements of stem diameter, shoot height, and sturdiness ratio had standard deviations three times those of machine vision measurements. Projected shoot area was highly correlated (r2 equals 0.90) with shoot volume. Projected root area had good correlation (r2 equals 0.80) with root volume. Seedlings were inspected at rates as high as ten per second.

  17. Early genome duplications in conifers and other seed plants

    PubMed Central

    Li, Zheng; Baniaga, Anthony E.; Sessa, Emily B.; Scascitelli, Moira; Graham, Sean W.; Rieseberg, Loren H.; Barker, Michael S.

    2015-01-01

    Polyploidy is a common mode of speciation and evolution in angiosperms (flowering plants). In contrast, there is little evidence to date that whole genome duplication (WGD) has played a significant role in the evolution of their putative extant sister lineage, the gymnosperms. Recent analyses of the spruce genome, the first published conifer genome, failed to detect evidence of WGDs in gene age distributions and attributed many aspects of conifer biology to a lack of WGDs. We present evidence for three ancient genome duplications during the evolution of gymnosperms, based on phylogenomic analyses of transcriptomes from 24 gymnosperms and 3 outgroups. We use a new algorithm to place these WGD events in phylogenetic context: two in the ancestry of major conifer clades (Pinaceae and cupressophyte conifers) and one in Welwitschia (Gnetales). We also confirm that a WGD hypothesized to be restricted to seed plants is indeed not shared with ferns and relatives (monilophytes), a result that was unclear in earlier studies. Contrary to previous genomic research that reported an absence of polyploidy in the ancestry of contemporary gymnosperms, our analyses indicate that polyploidy has contributed to the evolution of conifers and other gymnosperms. As in the flowering plants, the evolution of the large genome sizes of gymnosperms involved both polyploidy and repetitive element activity. PMID:26702445

  18. Early genome duplications in conifers and other seed plants.

    PubMed

    Li, Zheng; Baniaga, Anthony E; Sessa, Emily B; Scascitelli, Moira; Graham, Sean W; Rieseberg, Loren H; Barker, Michael S

    2015-11-01

    Polyploidy is a common mode of speciation and evolution in angiosperms (flowering plants). In contrast, there is little evidence to date that whole genome duplication (WGD) has played a significant role in the evolution of their putative extant sister lineage, the gymnosperms. Recent analyses of the spruce genome, the first published conifer genome, failed to detect evidence of WGDs in gene age distributions and attributed many aspects of conifer biology to a lack of WGDs. We present evidence for three ancient genome duplications during the evolution of gymnosperms, based on phylogenomic analyses of transcriptomes from 24 gymnosperms and 3 outgroups. We use a new algorithm to place these WGD events in phylogenetic context: two in the ancestry of major conifer clades (Pinaceae and cupressophyte conifers) and one in Welwitschia (Gnetales). We also confirm that a WGD hypothesized to be restricted to seed plants is indeed not shared with ferns and relatives (monilophytes), a result that was unclear in earlier studies. Contrary to previous genomic research that reported an absence of polyploidy in the ancestry of contemporary gymnosperms, our analyses indicate that polyploidy has contributed to the evolution of conifers and other gymnosperms. As in the flowering plants, the evolution of the large genome sizes of gymnosperms involved both polyploidy and repetitive element activity. PMID:26702445

  19. Inference of higher-order conifer relationships from a multi-locus plastid data set.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We reconstructed the broad backbone of conifer phylogeny from a survey of 15–17 plastid loci and associated noncoding regions from exemplar conifer species. Parsimony and likelihood analyses recover the same higher-order relationships, and we find strong support for most of the deep splits in conife...

  20. Resource physiology of conifers: Acquisition, allocation, and utilization

    SciTech Connect

    Smith, W.K.; Hinckley, T.M.

    1995-03-01

    This book focuses on a synthetic view of the resource physiology of conifer trees with an emphasis on developing a perspective that can integrate across the biological hierarchy. This objective is in concert with more scientific goals of maintaining biological diversity and the sustainability of forest systems. The preservation of coniferous forest ecosystems is a major concern today. This volume deals with the topics of resource acquisition, allocation, and utilization in conifers. Selected papers are indexed separately for inclusion in the Energy Science and Technology Database.

  1. PHOTOCHEMICAL AIR POLLUTANT EFFECTS ON MIXED CONIFER ECOSYSTEMS

    EPA Science Inventory

    In 1972, a multi-disciplinary team of ecologists assembled to monitor and analyze some of the ecological consequences of photochemical oxidant air pollutants in California Mixed Conifer Forest ecosystems of the San Bernardino Mountains east of Los Angeles. The purposes included g...

  2. A Simple Computer Application for the Identification of Conifer Genera

    ERIC Educational Resources Information Center

    Strain, Steven R.; Chmielewski, Jerry G.

    2010-01-01

    The National Science Education Standards prescribe that an understanding of the importance of classifying organisms be one component of a student's educational experience in the life sciences. The use of a classification scheme to identify organisms is one way of addressing this goal. We describe Conifer ID, a computer application that assists…

  3. Ethanol accumulation in drought-stressed conifer seedlings.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In this study, we investigated the effect of drought-stress on ethanol production and accumulation in tissues of three conifer species (Douglas-fir, ponderosa pine, and lodgepole pine). Significant ethanol accumulation was observed for all three species at severe levels of drought stress (pre-dawn ...

  4. Antifungal Activity of Extractable Conifer Heartwood Compounds Toward Phytophthora ramorum

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Individual compounds and ethyl acetate extracts from heartwood of seven conifer species were tested for fungicidal activity against Phytophthora ramorum. Extracts from incense and western redcedar exhibited the strongest activity (EC50 589 and 646 ppm, respectively), yellow-cedar, western juniper, ...

  5. Analysis of conifer forest regeneration using Landsat Thematic Mapper data

    NASA Technical Reports Server (NTRS)

    Fiorella, Maria; Ripple, William J.

    1995-01-01

    Landsat Thematic Mapper (TM) data were used to evaluate young conifer stands in the western Cascade Mountains of Oregon. Regression and correlation analyses were used to describe the relationships between TM band values and age of young Douglas-fir stands (2 to 35 years old). Spectral data from well regenerated Douglas-fir stands were compared to those of poorly regenerated conifer stands. TM bands 1, 2, 3, 5, 6, and 7 were inversely correlated with the age (r greater than or equal to -0.80) of well regenerated Douglas-fir stands. Overall, the 'structural index' (TM 4/5 ratio) had the highest correlation to age of Douglas-fir stands (r = 0.96). Poorly regenerated stands were spectrally distinct from well regenerated Douglas-fir stands after the stands reached an age of approximately 15 years.

  6. Predation and protection in the macroevolutionary history of conifer cones

    PubMed Central

    Leslie, Andrew B.

    2011-01-01

    Conifers are an excellent group in which to explore how changing ecological interactions may have influenced the allocation of reproductive tissues in seed plants over long time scales, because of their extensive fossil record and their important role in terrestrial ecosystems since the Palaeozoic. Measurements of individual conifer pollen-producing and seed-producing cones from the Pennsylvanian to the Recent show that the relative amount of tissue invested in pollen cones has remained constant through time, while seed cones show a sharp increase in proportional tissue investment in the Jurassic that has continued to intensify to the present day. Since seed size in conifers has remained similar through time, this increase reflects greater investment in protective cone tissues such as robust, tightly packed scales. This shift in morphology and tissue allocation is broadly concurrent with the appearance of new vertebrate groups capable of browsing in tree canopies, as well as a diversification of insect-feeding strategies, suggesting that an important change in plant–animal interactions occurred over the Mesozoic that favoured an increase in seed cone protective tissues. PMID:21345864

  7. L-Band Radiometer Measurements of Conifer Forests

    NASA Technical Reports Server (NTRS)

    Lang, R.; LeVine, D.; Chauhan, N.; deMatthaeis, P.; Bidwell, S.; Haken, M.

    2000-01-01

    Airborne radiometer measurements have been made at L-band over conifer forests in Virginia to study radiometric response to biomass and soil moisture. The horizontally polarized synthetic aperture radiometer, ESTAR, has been deployed abroad a NASA-P3 aircraft which is based at the Goddard Space Flight Center's Wallops Flight Facility. The instrument has been mounted in the bomb bay of the P-3 and images data in the cross track direction. Aircraft and surface measurements were made in July, August and November of 1999 over relatively homogeneous conifer stands of varying biomass. The surface measurements included soil moisture measurements in several stands. The soil moisture was low during the July flight and highest in November after heavy rains had occurred. The microwave images clearly distinguished between the different forest stands. Stand age, obtained from International Paper Corporation which owns the stands, showed a strong correlation between brightness temperature and stand age. This agrees with previous simulation studies of conifer forests which show that the brightness temperature increases with increasing stand biomass. Research is continuing to seek a quantitative correlation between the observed brightness temperature of the stands and their biomass and surface soil moisture.

  8. Tipping point of a conifer forest ecosystem under severe drought

    NASA Astrophysics Data System (ADS)

    Huang, Kaicheng; Yi, Chuixiang; Wu, Donghai; Zhou, Tao; Zhao, Xiang; Blanford, William J.; Wei, Suhua; Wu, Hao; Ling, Du; Li, Zheng

    2015-02-01

    Drought-induced tree mortality has recently received considerable attention. Questions have arisen over the necessary intensity and duration thresholds of droughts that are sufficient to trigger rapid forest declines. The values of such tipping points leading to forest declines due to drought are presently unknown. In this study, we have evaluated the potential relationship between the level of tree growth and concurrent drought conditions with data of the tree growth-related ring width index (RWI) of the two dominant conifer species (Pinus edulis and Pinus ponderosa) in the Southwestern United States (SWUS) and the meteorological drought-related standardized precipitation evapotranspiration index (SPEI). In this effort, we determined the binned averages of RWI and the 11 month SPEI within the month of July within each bin of 30 of RWI in the range of 0-3000. We found a significant correlation between the binned averages of RWI and SPEI at the regional-scale under dryer conditions. The tipping point of forest declines to drought is predicted by the regression model as SPEItp = -1.64 and RWItp = 0, that is, persistence of the water deficit (11 month) with intensity of -1.64 leading to negligible growth for the conifer species. When climate conditions are wetter, the correlation between the binned averages of RWI and SPEI is weaker which we believe is most likely due to soil water and atmospheric moisture levels no longer being the dominant factor limiting tree growth. We also illustrate a potential application of the derived tipping point (SPEItp = -1.64) through an examination of the 2002 extreme drought event in the SWUS conifer forest regions. Distinguished differences in remote-sensing based NDVI anomalies were found between the two regions partitioned by the derived tipping point.

  9. Explaining the distribution of breeding and dispersal syndromes in conifers

    PubMed Central

    Leslie, Andrew B.; Beaulieu, Jeremy M.; Crane, Peter R.; Donoghue, Michael J.

    2013-01-01

    The evolution of plants exhibiting different sexes, or dioecy, is correlated with a number of ecological and life-history traits such as woody growth form and animal-dispersed seeds, but the underlying causes of these associations are unclear. Previous work in seed plants has suggested that the evolution of fleshy cones or seeds may favour dioecy. In this study, we use a well-sampled molecular phylogeny of conifers to show that although dioecy and fleshiness strongly co-occur at the species level, this relationship has not resulted from numerous separate origins of this trait combination or from differential rates of diversification. Instead, we suggest that two character combinations—the ancestral dry-monoecious condition and the derived fleshy-dioecious condition—have persisted in conifers longer than other combinations over evolutionary time. The persistence of these trait combinations appears to reflect differences in the rate of successful transition into and out of these character states over time, as well as the geographical restriction of species with rare combinations and their consequent vulnerability to extinction. In general, we argue that such persistence explanations should be considered alongside ‘key innovation’ hypotheses in explaining the phylogenetic distribution of traits. PMID:24026822

  10. Antioxidant Potential of Bark Extracts from Boreal Forest Conifers.

    PubMed

    Legault, Jean; Girard-Lalancette, Karl; Dufour, Dominic; Pichette, André

    2013-01-01

    The bark of boreal forest conifers has been traditionally used by Native Americans to treat various ailments and diseases. Some of these diseases involve reactive oxygen species (ROS) that can be prevented by the consumption of antioxidants such as phenolic compounds that can be found in medicinal plants. In this study, ultrasonic assisted extraction has been performed under various solvent conditions (water:ethanol mixtures) on the bark of seven boreal forest conifers used by Native Americans including: Pinus strobus, Pinus resinosa, Pinus banksiana, Picea mariana, Picea glauca, Larix laricina, and Abies balsamea. The total phenolic content, as well as ORACFL potency and cellular antioxidant activity (IC50), were evaluated for all bark extracts, and compared with the standardized water extract of Pinus maritima bark (Pycnogenol), which showed clinical efficiency to prevent ROS deleterious effects. The best overall phenolic extraction yield and antioxidant potential was obtained with Picea glauca and Picea mariana. Interestingly, total phenolic content of these bark extracts was similar to Pycnogenol but their antioxidant activity were higher. Moreover, most of the extracts did not inhibit the growth of human skin fibroblasts, WS1. A significant correlation was found between the total phenolic content and the antioxidant activity for water extracts suggesting that these compounds are involved in the activity. PMID:26784337

  11. Sequenced genomes and rapidly emerging technologies pave the way for conifer evolutionary developmental biology

    PubMed Central

    Uddenberg, Daniel; Akhter, Shirin; Ramachandran, Prashanth; Sundström, Jens F.; Carlsbecker, Annelie

    2015-01-01

    Conifers, Ginkgo, cycads and gnetophytes comprise the four groups of extant gymnosperms holding a unique position of sharing common ancestry with the angiosperms. Comparative studies of gymnosperms and angiosperms are the key to a better understanding of ancient seed plant morphologies, how they have shifted over evolution to shape modern day species, and how the genes governing these morphologies have evolved. However, conifers and other gymnosperms have been notoriously difficult to study due to their long generation times, inaccessibility to genetic experimentation and unavailable genome sequences. Now, with three draft genomes from spruces and pines, rapid advances in next generation sequencing methods for genome wide expression analyses, and enhanced methods for genetic transformation, we are much better equipped to address a number of key evolutionary questions relating to seed plant evolution. In this mini-review we highlight recent progress in conifer developmental biology relevant to evo-devo questions. We discuss how genome sequence data and novel techniques might allow us to explore genetic variation and naturally occurring conifer mutants, approaches to reduce long generation times to allow for genetic studies in conifers, and other potential upcoming research avenues utilizing current and emergent techniques. Results from developmental studies of conifers and other gymnosperms in comparison to those in angiosperms will provide information to trace core molecular developmental control tool kits of ancestral seed plants, but foremost they will greatly improve our understanding of the biology of conifers and other gymnosperms in their own right. PMID:26579190

  12. Low Elevation Riparian Environments: Warm-Climate Refugia for Conifers in the Great Basin, USA?

    NASA Astrophysics Data System (ADS)

    Millar, C.; Charlet, D. A.; Westfall, R. D.; Delany, D.

    2015-12-01

    The Great Basin, USA, contains hundreds of small to large mountain ranges. Many reach alpine elevations, which are separated from each other by low-elevation basins currently inhospitable to conifer growth. Many of these ranges support montane and subalpine conifer species that have affinities to the Sierra Nevada or Rocky Mountains, and from which these conifers migrated during cool periods of the Pleistocene. Under Holocene climates, the Great Basin geography became a terrestrial island-archipelago, wherein conifer populations are isolated among ranges, and inter-range migration is highly limited. During warm intervals of the Holocene, conifers would be expected to have migrated upslope following favorable conditions, and extirpation would be assumed to result from continued warming. Independent patterns, repeating across multiple species' distributions, however, suggest that refugia were present in these ranges during warm periods, and that low elevation environments below the current main distributions acted as climatic refugia. We hypothesize that cool, narrow, and north-aspect ravines, which during cool climates support persistent or seasonal creeks and deciduous riparian communities, become available as conifer habitat when warming climates desiccate creeks and deplete riparian species. We further speculate that cold-air drainage, reduced solar insolation, lower wind exposure, and higher water tables in these topographic positions support populations of montane and subalpine conifers even during warm climate intervals when high elevations are unfavorable for conifer persistence. On return to cool climates, low elevation refugia become sources for recolonizing higher slopes, and/or continue to persist as relictual populations. We present several lines of evidence supporting this hypothesis, and speculate that low-elevation, extramarginal riparian environments might act as climate refugia for Great Basin conifers in the future as well.

  13. Evidence of Intense Chromosomal Shuffling during Conifer Evolution

    PubMed Central

    de Miguel, Marina; Bartholomé, Jérôme; Ehrenmann, François; Murat, Florent; Moriguchi, Yoshinari; Uchiyama, Kentaro; Ueno, Saneyoshi; Tsumura, Yoshihiko; Lagraulet, Hélène; de Maria, Nuria; Cabezas, José-Antonio; Cervera, María-Teresa; Gion, Jean Marc; Salse, Jérôme; Plomion, Christophe

    2015-01-01

    Although recent advances have been gained on genome evolution in angiosperm lineages, virtually nothing is known about karyotype evolution in the other group of seed plants, the gymnosperms. Here, we used high-density gene-based linkage mapping to compare the karyotype structure of two families of conifers (the most abundant group of gymnosperms) separated around 290 Ma: Pinaceae and Cupressaceae. We propose for the first time a model based on the fusion of 20 ancestral chromosomal blocks that may have shaped the modern karyotpes of Pinaceae (with n = 12) and Cupressaceae (with n = 11). The considerable difference in modern genome organization between these two lineages contrasts strongly with the remarkable level of synteny already reported within the Pinaceae. It also suggests a convergent evolutionary mechanism of chromosomal block shuffling that has shaped the genomes of the spermatophytes. PMID:26400405

  14. In-vitro Antimicrobial Activities of Some Iranian Conifers.

    PubMed

    Afsharzadeh, Maryam; Naderinasab, Mahboobe; Tayarani Najaran, Zahra; Barzin, Mohammad; Emami, Seyed Ahmad

    2013-01-01

    Male and female leaves and fruits of eleven different taxons of Iranian conifers (Cupressus sempervirens var. horizontalis, C. sempervirens var. sempervirens, C. sempervirens cv. Cereifeormis, Juniperus communis subsp. hemisphaerica, J. excelsa subsp. excelsa, J. excelsa subsp. polycarpos, J. foetidissima, J. oblonga, J. sabina, Platycladus orientalis and Taxus baccata) were collected from different localities of Iran, dried and extracted with methanol. The extracts were tested for their antimicrobial activity against Pseudomonas aeruginosa, Staphylococcus aureus, Escherichia coli and Candida albicans. The extracts were screened qualitatively using four different methods, the disc diffusion, hole plate, cylinder agar diffusion and agar dilution methods, whereas the minimum inhibitory concentrations (MIC) of each extract were determined by the agar dilution method. The best result was obtained by means of hole plate method in qualitative determination of antimicrobial activities of extracts and the greatest activity was found against S. aureus in all tested methods. PMID:24250573

  15. In-vitro Antimicrobial Activities of Some Iranian Conifers

    PubMed Central

    Afsharzadeh, Maryam; Naderinasab, Mahboobe; Tayarani Najaran, Zahra; Barzin, Mohammad; Emami, Seyed Ahmad

    2013-01-01

    Male and female leaves and fruits of eleven different taxons of Iranian conifers (Cupressus sempervirens var. horizontalis, C. sempervirens var. sempervirens, C. sempervirens cv. Cereifeormis, Juniperus communis subsp. hemisphaerica, J. excelsa subsp. excelsa, J. excelsa subsp. polycarpos, J. foetidissima, J. oblonga, J. sabina, Platycladus orientalis and Taxus baccata) were collected from different localities of Iran, dried and extracted with methanol. The extracts were tested for their antimicrobial activity against Pseudomonas aeruginosa, Staphylococcus aureus, Escherichia coli and Candida albicans. The extracts were screened qualitatively using four different methods, the disc diffusion, hole plate, cylinder agar diffusion and agar dilution methods, whereas the minimum inhibitory concentrations (MIC) of each extract were determined by the agar dilution method. The best result was obtained by means of hole plate method in qualitative determination of antimicrobial activities of extracts and the greatest activity was found against S. aureus in all tested methods. PMID:24250573

  16. Controls over hydrocarbon emissions from boreal forest conifers

    SciTech Connect

    Lerdau, M.; Litvak, M.; Monson, R. |

    1995-06-01

    The emissions of monoterpenes and isoprene were measured from two species of conifers native to the boreal forest of Canada, jack pine, Pinus rigida, and black spruce, Picea Mariana. We examined the effects of phenology and needle age on the emissions of these compounds, and the variations in tissue concentrations of monoterpenes. We measured photosynthetic carbon uptake and hydrocarbon emissions at two sites in northern Saskatchewan under controlled light, temperatures, and CO{sub 2} concentrations, and analyzed carbon uptake rates using an infra-red gas analyzer and hydrocarbon emissions using a solid sorbent/thermal desorption system coupled to a gas chromatograph with a mass spectrometer. Our data indicate a strong effect of temperature and seasonality on emissions but only small effects of site conditions. These results suggest that regional models of hydrocarbon emissions from boreal forests should focus on temperature and phenology as the most important controlling variables.

  17. Uniform versus Asymmetric Shading Mediates Crown Recession in Conifers

    PubMed Central

    Schoonmaker, Amanda L.; Lieffers, Victor J.; Landhäusser, Simon M.

    2014-01-01

    In this study we explore the impact of asymmetrical vs. uniform crown shading on the mortality and growth of upper and lower branches within tree crowns, for two conifer species: shade intolerant lodgepole pine (Pinus contorta) and shade tolerant white spruce (Picea glauca). We also explore xylem hydraulics, foliar nutrition, and carbohydrate status as drivers for growth and expansion of the lower and upper branches in various types of shading. This study was conducted over a two-year period across 10 regenerating forest sites dominated by lodgepole pine and white spruce, in the lower foothills of Alberta, Canada. Trees were assigned to one of four shading treatments: (1), complete uniform shading of the entire tree, (2) light asymmetric shading where the lower 1/4–1/3 of the tree crown was shaded, (3) heavy asymmetric shading as in (2) except with greater light reduction and (4) control in which no artificial shading occurred and most of the entire crown was exposed to full light. Asymmetrical shading of only the lower crown had a larger negative impact on the bud expansion and growth than did uniform shading, and the effect was stronger in pine relative to spruce. In addition, lower branches in pine also had lower carbon reserves, and reduced xylem-area specific conductivity compared to spruce. For both species, but particularly the pine, the needles of lower branches tended to store less C than upper branches in the asymmetric shade, which could suggest a movement of reserves away from the lower branches. The implications of these findings correspond with the inherent shade tolerance and self-pruning behavior of these conifers and supports a carbon based mechanism for branch mortality – mediated by an asymmetry in light exposure of the crown. PMID:25136823

  18. Morphological and functional stasis in mycorrhizal root nodules as exhibited by a Triassic conifer.

    PubMed

    Schwendemann, Andrew B; Decombeix, Anne-Laure; Taylor, Thomas N; Taylor, Edith L; Krings, Michael

    2011-08-16

    Mycorrhizal root nodules occur in the conifer families Araucariaceae, Podocarpaceae, and Sciadopityaceae. Although the fossil record of these families can be traced back into the early Mesozoic, the oldest fossil evidence of root nodules previously came from the Cretaceous. Here we report on cellularly preserved root nodules of the early conifer Notophytum from Middle Triassic permineralized peat of Antarctica. These fossil root nodules contain fungal arbuscules, hyphal coils, and vesicles in their cortex. Numerous glomoid-type spores are found in the peat matrix surrounding the nodules. This discovery indicates that mutualistic associations between conifer root nodules and arbuscular mycorrhizal fungi date back to at least the early Mesozoic, the period during which most of the modern conifer families first appeared. Notophytum root nodules predate the next known appearance of this association by 100 million years, indicating that this specialized form of mycorrhizal symbiosis has ancient origins. PMID:21808011

  19. PHOTOCHEMICAL OXIDANT AIR POLLUTION EFFECTS ON A MIXED CONIFER FOREST FOREST ECOSYSTEM - A PROGRESS REPORT

    EPA Science Inventory

    Since 1972, twelve scientists representing several research disciplines have collaborated in integrated studies to determine the chronic effects of photochemical oxidant air pollutants on a western mixed conifer forest ecosystem. An enormous amount of data has been collected, des...

  20. Biomass in conifer plantations of northeastern Minnesota. Forest Service research paper

    SciTech Connect

    Ohmann, L.F.

    1985-10-01

    The report provides biomass estimates for vegetative strata and herb-low shrub species for 53 conifer plantations in NE Minnesota. The estimates are analyzed by plantation age and silvicultural practices used to establish and release the plantations.

  1. Morphological and functional stasis in mycorrhizal root nodules as exhibited by a Triassic conifer

    PubMed Central

    Schwendemann, Andrew B.; Decombeix, Anne-Laure; Taylor, Thomas N.; Krings, Michael

    2011-01-01

    Mycorrhizal root nodules occur in the conifer families Araucariaceae, Podocarpaceae, and Sciadopityaceae. Although the fossil record of these families can be traced back into the early Mesozoic, the oldest fossil evidence of root nodules previously came from the Cretaceous. Here we report on cellularly preserved root nodules of the early conifer Notophytum from Middle Triassic permineralized peat of Antarctica. These fossil root nodules contain fungal arbuscules, hyphal coils, and vesicles in their cortex. Numerous glomoid-type spores are found in the peat matrix surrounding the nodules. This discovery indicates that mutualistic associations between conifer root nodules and arbuscular mycorrhizal fungi date back to at least the early Mesozoic, the period during which most of the modern conifer families first appeared. Notophytum root nodules predate the next known appearance of this association by 100 million years, indicating that this specialized form of mycorrhizal symbiosis has ancient origins. PMID:21808011

  2. Ungulate exclusion, conifer thinning and mule deer forage in northeastern New Mexico

    USGS Publications Warehouse

    Kramer, David W.; Sorensen, Grant E.; Taylor, Chase A.; Cox, Robert D.; Gipson, Philip S.; Cain, James W.

    2015-01-01

    The southwestern United States has experienced expansion of conifer species (Juniperus spp. and Pinus ponderosa) into areas of semi-arid grassland over the past century. The expansion of conifers can limit palatable forage and reduce grass and forb communities. Conifer species are sometimes thinned through hydraulic mulching or selective cutting. We assessed the effects of these treatments on mule deer (Odocoileus hemionus) habitat in northeastern New Mexico to determine if conifer thinning improved cover of preferred forage species for mule deer in areas with and without ungulates. We measured plant cover and occurrence of preferred forage species in the summers of 2011 and 2012. An ongoing regional drought probably reduced vegetation response, with preferred forage species and herbaceous cover responding to conifer thinning or ungulate exclusion immediately following treatment, but not the following year. In 2011, areas that received thinning treatments had a higher abundance of preferred forage when compared to sites with no treatment. Grass coverage exhibited an immediate response in 2011, with ungulate exclosures containing 8% more coverage than areas without exclosures. The results suggest that conifer thinning and ungulate exclusion may elicit a positive response, however in the presence of drought; the positive effects are only short-term.

  3. Vigor loss in conifers due to dwarf mistletoe

    NASA Technical Reports Server (NTRS)

    Meyer, M. P.; French, D. W.; Latham, R. P.; Nelson, C. A.

    1970-01-01

    Practical remote sensing techniques were developed for detecting and evaluating vigor loss in forest conifers due to dwarf mistletoe. Eastern dwarf mistletoe (Arceuthobium pusillum) infection of black spruce (Picea mariana) was investigated. A tower-tramway system, 100 feet high, was erected over an infected stand in northeast Minnesota in June and multiband/multidate photography was initiated in July and is continuing. Four 70mm film-filter combinations were used in a multicamera unit: Plus-X/Wratten 58, Plus-X/Wratten 25A, Aero Infrared/Wratten 89B, and Ektachrome Infrared/Wratten 12. The stand of mistletoe-infected black spruce under the tramway was photographed three times per day (0900, 1200 and 1500 local sun time) at approximately 10 day intervals. An extensive test site, several square miles in area, was selected in north-central Minnesota for the purpose of testing photographic specifications developed on the tramway test site. One aerial photographic flight at a variety of altitudes was accomplished over the extensive test site in August. Data analyses are not available at this time.

  4. Biosynthesis and Metabolic Fate of Phenylalanine in Conifers.

    PubMed

    Pascual, María B; El-Azaz, Jorge; de la Torre, Fernando N; Cañas, Rafael A; Avila, Concepción; Cánovas, Francisco M

    2016-01-01

    The amino acid phenylalanine (Phe) is a critical metabolic node that plays an essential role in the interconnection between primary and secondary metabolism in plants. Phe is used as a protein building block but it is also as a precursor for numerous plant compounds that are crucial for plant reproduction, growth, development, and defense against different types of stresses. The metabolism of Phe plays a central role in the channeling of carbon from photosynthesis to the biosynthesis of phenylpropanoids. The study of this metabolic pathway is particularly relevant in trees, which divert large amounts of carbon into the biosynthesis of Phe-derived compounds, particularly lignin, an important constituent of wood. The trunks of trees are metabolic sinks that consume a considerable percentage of carbon and energy from photosynthesis, and carbon is finally immobilized in wood. This paper reviews recent advances in the biosynthesis and metabolic utilization of Phe in conifer trees. Two alternative routes have been identified: the ancient phenylpyruvate pathway that is present in microorganisms, and the arogenate pathway that possibly evolved later during plant evolution. Additionally, an efficient nitrogen recycling mechanism is required to maintain sustained growth during xylem formation. The relevance of phenylalanine metabolic pathways in wood formation, the biotic interactions, and ultraviolet protection is discussed. The genetic manipulation and transcriptional regulation of the pathways are also outlined. PMID:27468292

  5. Conifer flavonoid compounds inhibit detoxification enzymes and synergize insecticides.

    PubMed

    Wang, Zhiling; Zhao, Zhong; Cheng, Xiaofei; Liu, Suqi; Wei, Qin; Scott, Ian M

    2016-02-01

    Detoxification by glutathione S-transferases (GSTs) and esterases are important mechanisms associated with insecticide resistance. Discovery of novel GST and esterase inhibitors from phytochemicals could provide potential new insecticide synergists. Conifer tree species contain flavonoids, such as taxifolin, that inhibit in vitro GST activity. The objectives were to test the relative effectiveness of taxifolin as an enzyme inhibitor and as an insecticide synergist in combination with the organophosphorous insecticide, Guthion (50% azinphos-methyl), and the botanical insecticide, pyrethrum, using an insecticide-resistant Colorado potato beetle (CPB) Leptinotarsa decemlineata (Say) strain. Both taxifolin and its isomer, quercetin, increased the mortality of 1(st) instar CPB larvae after 48h when combined with Guthion, but not pyrethrum. Taxifolin had greater in vitro esterase inhibition compared with the commonly used esterase inhibitor, S, S, S-tributyl phosphorotrithioate (DEF). An in vivo esterase and GST inhibition effect after ingestion of taxifolin was measured, however DEF caused a greater suppression of esterase activity. This study demonstrated that flavonoid compounds have both in vitro and in vivo esterase inhibition, which is likely responsible for the insecticide synergism observed in insecticide-resistant CPB. PMID:26821651

  6. Effects of acid fog and ozone on conifers. Final report

    SciTech Connect

    Bytnerowicz, A.; Olszyk, D.M.; Takemoto, B.K.; McCool, P.M.; Musselman, R.C.

    1989-05-01

    This study evaluated the effects of acidic fog (pH 2.0, 3.0, or 4.0) on the physiological, biochemical, and growth responses of two coniferous tree species (Pinus ponderosa and Abies concolor), and determined if exposure to acidic fog predisposed the tree seedlings to the phytotoxic effects of ozone (O{sub 3}). Results provide evidence that the growth and metabolic responses of two coniferous tree species could be altered by multiple applications of acidic fog, and by exposure to ambient O{sub 3}. In general, the alterations were slight to modest, which may be attributed to the low degree of stress severity, and the slow rate of tree growth. The findings indicate that exposure to acidic fog followed by O{sub 3} does not cause detectable changes in conifer seedling growth within a single-growing season. Nevertheless, it is clear that acidic fog and O{sub 3} cause temporal alterations in seedling physiology and biochemistry.

  7. Biosynthesis and Metabolic Fate of Phenylalanine in Conifers

    PubMed Central

    Pascual, María B.; El-Azaz, Jorge; de la Torre, Fernando N.; Cañas, Rafael A.; Avila, Concepción; Cánovas, Francisco M.

    2016-01-01

    The amino acid phenylalanine (Phe) is a critical metabolic node that plays an essential role in the interconnection between primary and secondary metabolism in plants. Phe is used as a protein building block but it is also as a precursor for numerous plant compounds that are crucial for plant reproduction, growth, development, and defense against different types of stresses. The metabolism of Phe plays a central role in the channeling of carbon from photosynthesis to the biosynthesis of phenylpropanoids. The study of this metabolic pathway is particularly relevant in trees, which divert large amounts of carbon into the biosynthesis of Phe-derived compounds, particularly lignin, an important constituent of wood. The trunks of trees are metabolic sinks that consume a considerable percentage of carbon and energy from photosynthesis, and carbon is finally immobilized in wood. This paper reviews recent advances in the biosynthesis and metabolic utilization of Phe in conifer trees. Two alternative routes have been identified: the ancient phenylpyruvate pathway that is present in microorganisms, and the arogenate pathway that possibly evolved later during plant evolution. Additionally, an efficient nitrogen recycling mechanism is required to maintain sustained growth during xylem formation. The relevance of phenylalanine metabolic pathways in wood formation, the biotic interactions, and ultraviolet protection is discussed. The genetic manipulation and transcriptional regulation of the pathways are also outlined. PMID:27468292

  8. Conservative water management in the widespread conifer genus Callitris

    PubMed Central

    Brodribb, Timothy J.; Bowman, David M. J. S.; Grierson, Pauline F.; Murphy, Brett P.; Nichols, Scott; Prior, Lynda D.

    2013-01-01

    Water management by woody species encompasses characters involved in seeking, transporting and evaporating water. Examples of adaptation of individual characters to water availability are common, but little is known about the adaptability of whole-plant water management. Here we use plant hydration and growth to examine variation in whole-plant water management characteristics within the conifer genus Callitris. Using four species that cover the environmental extremes in the Australian continent, we compare seasonal patterns of growth and hydration over 2 years to determine the extent to which species exhibit adaptive variation to the local environment. Detailed measurements of gas exchange in one species are used to produce a hydraulic model to predict changes in leaf water potential throughout the year. This same model, when applied to the remaining three species, provided a close representation of the measured patterns of water potential gradient at all sites, suggesting strong conservation in water management, a conclusion supported by carbon and oxygen isotope measurements in Callitris from across the continent. We conclude that despite its large range in terms of rainfall, Callitris has a conservative water management strategy, characterized by a high sensitivity of growth to rainfall and a delayed (anisohydric) closure of stomata during soil drying.

  9. Advances in Conifer Somatic Embryogenesis Since Year 2000.

    PubMed

    Klimaszewska, Krystyna; Hargreaves, Catherine; Lelu-Walter, Marie-Anne; Trontin, Jean-François

    2016-01-01

    This review compiles research results published over the last 14 years on conifer somatic embryogenesis (SE). Emphasis is placed on the newest findings that affect the response of seed embryos (typical explants) and shoot primordia (rare explants) to the induction of SE and long-term culture of early somatic embryos. Much research in recent years has focused on maturation of somatic embryos, with respect to both yield and quality, as an important stage for the production of a large number of vigorous somatic seedlings. Attempts to scale up somatic embryo production numbers and handling have resulted in a few bioreactor designs, the utility of which may prove beneficial for an industrial application. A few simplified cryopreservation methods for embryonal masses (EM) were developed as a means to ensure cost-efficient long-term storage of genotypes during clonal field testing. Finally, recent long-term studies on the growth of somatic trees in the field, including seed production yield and comparison of seed parameters produced by somatic versus seed-derived trees, are described. PMID:26619862

  10. Complete tylosis formation in a latest Permian conifer stem

    PubMed Central

    Feng, Zhuo; Wang, Jun; Rößler, Ronny; Kerp, Hans; Wei, Hai-Bo

    2013-01-01

    Background and Aims Our knowledge of tylosis formation is mainly based on observations of extant plants; however, its developmental and functional significance are less well understood in fossil plants. This study, for the first time, describes a complete tylosis formation in a fossil woody conifer and discusses its ecophysiological implications. Methods The permineralized stem of Shenoxylon mirabile was collected from the upper Permian (Changhsingian) Sunjiagou Formation of Shitanjing coalfield, northern China. Samples from different portions of the stem were prepared by using the standard thin-sectioning technique and studied in transmitted light. Key Results The outgrowth of ray parenchyma cells protruded into adjacent tracheids through pits initially forming small pyriform or balloon-shaped structures, which became globular or slightly elongated when they reached their maximum size. The tracheid luminae were gradually occluded by densely spaced tyloses. The host tracheids are arranged in distinct concentric zones representing different growth phases of tylosis formation within a single growth ring. Conclusions The extensive development of tyloses from the innermost heartwood (metaxylem) tracheids to the outermost sapwood tracheids suggests that the plant was highly vulnerable and reacted strongly to environmental stress. Based on the evidence available, the tyloses were probably not produced in response to wound reaction or pathogenic infection, since evidence of wood traumatic events or fungal invasion are not recognizable. Rather, they may represent an ecophysiological response to the constant environmental stimuli. PMID:23532049

  11. The Earliest Evidence of Holometabolan Insect Pupation in Conifer Wood

    PubMed Central

    Tapanila, Leif; Roberts, Eric M.

    2012-01-01

    Background The pre-Jurassic record of terrestrial wood borings is poorly resolved, despite body fossil evidence of insect diversification among xylophilic clades starting in the late Paleozoic. Detailed analysis of borings in petrified wood provides direct evidence of wood utilization by invertebrate animals, which typically comprises feeding behaviors. Methodology/Principal Findings We describe a U-shaped boring in petrified wood from the Late Triassic Chinle Formation of southern Utah that demonstrates a strong linkage between insect ontogeny and conifer wood resources. Xylokrypta durossi new ichnogenus and ichnospecies is a large excavation in wood that is backfilled with partially digested xylem, creating a secluded chamber. The tracemaker exited the chamber by way of a small vertical shaft. This sequence of behaviors is most consistent with the entrance of a larva followed by pupal quiescence and adult emergence — hallmarks of holometabolous insect ontogeny. Among the known body fossil record of Triassic insects, cupedid beetles (Coleoptera: Archostemata) are deemed the most plausible tracemakers of Xylokrypta, based on their body size and modern xylobiotic lifestyle. Conclusions/Significance This oldest record of pupation in fossil wood provides an alternative interpretation to borings once regarded as evidence for Triassic bees. Instead Xylokrypta suggests that early archostematan beetles were leaders in exploiting wood substrates well before modern clades of xylophages arose in the late Mesozoic. PMID:22355387

  12. Detection of aspen/conifer forest mixes from multitemporal LANDSAT digital data. [Bear River Range, Rocky Mountains

    NASA Technical Reports Server (NTRS)

    Merola, J. A.; Jaynes, R. A.; Harniss, R. O.

    1983-01-01

    Aspen, conifer and mixed aspen/conifer forests were mapped for a 15-quadrangle study area in the Utah-Idaho Bear River Range using LANDSAT multispectral scanner (MSS) data. The digital MSS data were utilized to devise quantitative indices which correlate with apparently stable and seral aspen forests. The extent to which a two-date LANDSAT MSS analysis may permit the delineation of different categories of aspen/conifer forest mix was explored. Multitemporal analyses of MSS data led to the identification of early, early to mid, mid to late, and late seral stages of aspen/conifer forest mixing.

  13. Mediterranean climate effects. I. Conifer water use across a Sierra Nevada ecotone.

    PubMed

    Royce, E B; Barbour, M G

    2001-05-01

    Xylem water potential of the midelevation conifers Pinus jeffreyi, Pinus lambertiana, Abies concolor, and Calocedrus decurrens, the higher elevation Pinus monticola and Abies magnifica, and co-occurring evergreen angiosperm shrubs, together with soil moisture under these plants, were monitored at three sites on the Kern Plateau in the southernmost Sierra Nevada Range of California. Site locations spanned the ecotone between the mid- and upper montane forests at elevations of 2230-2820 m. Measurements were made through a low-snowfall year and a heavy-snowfall year.In the Mediterranean climate of the Sierra Nevada, the heavy winter snowpack persists into late spring, after precipitation has effectively stopped. We found the subsequent depletion of soil moisture due to plant water uptake to result in predawn xylem water potentials for conifers more negative by 0.6-1.4 MPa than those for shrubs or inferred soil potentials. Shrubs generally depleted soil moisture more rapidly and ultimately extracted a greater fraction of the available soil moisture than did the conifers. This depletion of soil moisture by shrubs, particularly Arctostaphylos patula, may limit conifer growth and regeneration by prematurely terminating growth on the shallow soils studied. The conifers all generally showed similar patterns of soil moisture use, except that A. magnifica extracted moisture more rapidly early in the season. PMID:11353716

  14. Estimating terpene and terpenoid emissions from conifer oleoresin composition

    NASA Astrophysics Data System (ADS)

    Flores, Rosa M.; Doskey, Paul V.

    2015-07-01

    The following algorithm, which is based on the thermodynamics of nonelectrolyte partitioning, was developed to predict emission rates of terpenes and terpenoids from specific storage sites in conifers: Ei =xoriγoripi∘ where Ei is the emission rate (μg C gdw-1 h-1) and pi∘ is the vapor pressure (mm Hg) of the pure liquid terpene or terpenoid, respectively, and xori and γori are the mole fraction and activity coefficient (on a Raoult's law convention), respectively, of the terpene and terpenoid in the oleoresin. Activity coefficients are calculated with Hansen solubility parameters that account for dispersive, polar, and H-bonding interactions of the solutes with the oleoresin matrix. Estimates of pi∘ at 25 °C and molar enthalpies of vaporization are made with the SIMPOL.1 method and are used to estimate pi∘ at environmentally relevant temperatures. Estimated mixing ratios of terpenes and terpenols were comparatively higher above resin-acid- and monoterpene-rich oleoresins, respectively. The results indicated a greater affinity of terpenes and terpenols for the non-functionalized and carboxylic acid containing matrix through dispersive and H-bonding interactions, which are expressed in the emission algorithm by the activity coefficient. The correlation between measured emission rates of terpenes and terpenoids for Pinus strobus and emission rates predicted with the algorithm were very good (R = 0.95). Standard errors for the range and average of monoterpene emission rates were ±6 - ±86% and ±54%, respectively, and were similar in magnitude to reported standard deviations of monoterpene composition of foliar oils (±38 - ±51% and ±67%, respectively).

  15. Machine vision system for measuring conifer seedling morphology

    NASA Astrophysics Data System (ADS)

    Rigney, Michael P.; Kranzler, Glenn A.

    1995-01-01

    A PC-based machine vision system providing rapid measurement of bare-root tree seedling morphological features has been designed. The system uses backlighting and a 2048-pixel line- scan camera to acquire images with transverse resolutions as high as 0.05 mm for precise measurement of stem diameter. Individual seedlings are manually loaded on a conveyor belt and inspected by the vision system in less than 0.25 seconds. Designed for quality control and morphological data acquisition by nursery personnel, the system provides a user-friendly, menu-driven graphical interface. The system automatically locates the seedling root collar and measures stem diameter, shoot height, sturdiness ratio, root mass length, projected shoot and root area, shoot-root area ratio, and percent fine roots. Sample statistics are computed for each measured feature. Measurements for each seedling may be stored for later analysis. Feature measurements may be compared with multi-class quality criteria to determine sample quality or to perform multi-class sorting. Statistical summary and classification reports may be printed to facilitate the communication of quality concerns with grading personnel. Tests were conducted at a commercial forest nursery to evaluate measurement precision. Four quality control personnel measured root collar diameter, stem height, and root mass length on each of 200 conifer seedlings. The same seedlings were inspected four times by the machine vision system. Machine stem diameter measurement precision was four times greater than that of manual measurements. Machine and manual measurements had comparable precision for shoot height and root mass length.

  16. Simulation of growth of Adirondack conifers in relation to global climate change

    SciTech Connect

    Pan, Y.; Raynal, D.J. )

    1993-06-01

    Several conifer species grown in plantations in the southeastern Adirondack mountains of New York were chosen to model tree growth. In the models, annual xylem growth was decomposed into several components that reflect various intrinsic or extrinsic factors. Growth signals indicative of climatic effects were used to construct response functions using both multivariate analysis and Kalman filter methods. Two models were used to simulate tree growth response to future CO[sub 2]-induced climate change projected by GCMs. The comparable results of both models indicate that different conifer species have individualistic growth responses to future climatic change. The response behaviors of trees are affected greatly by local stand conditions. The results suggest possible changes in future growth and distributions of naturally occurring conifers in this region.

  17. Infrared radiation from hot cones on cool conifers attracts seed-feeding insects

    PubMed Central

    Takács, Stephen; Bottomley, Hannah; Andreller, Iisak; Zaradnik, Tracy; Schwarz, Joseph; Bennett, Robb; Strong, Ward; Gries, Gerhard

    2008-01-01

    Foraging animals use diverse cues to locate resources. Common foraging cues have visual, auditory, olfactory, tactile or gustatory characteristics. Here, we show a foraging herbivore using infrared (IR) radiation from living plants as a host-finding cue. We present data revealing that (i) conifer cones are warmer and emit more near-, mid- and long-range IR radiation than needles, (ii) cone-feeding western conifer seed bugs, Leptoglossus occidentalis (Hemiptera: Coreidae), possess IR receptive organs and orient towards experimental IR cues, and (iii) occlusion of the insects' IR receptors impairs IR perception. The conifers' cost of attracting cone-feeding insects may be offset by occasional mast seeding resulting in cone crops too large to be effectively exploited by herbivores. PMID:18945664

  18. The problem of conifer species migration lag in the Pacific Northwest region since the last glaciation

    NASA Astrophysics Data System (ADS)

    Elias, Scott A.

    2013-10-01

    Multiproxy evidence indicates that warmer-than-present summers became established in Eastern Beringia as early as 14,000-13,000 years ago, but the dispersal of spruces, pines, cedars and hemlocks across the Pacific Northwest (PNW) region of southern Alaska did not begin until at least 1500 years afterwards, and took many thousands of years to be completed. There are many potential reasons for this slow spread of PNW conifers towards their modern range limits. The absence of mycorrhizae in the soils of southern Alaska may have slowed conifer establishment. The availability of soil moisture was another limiting factor. With the exception of Pinus contorta, the other PNW conifers become established most readily from seeds that fall on moist, shaded substrates, thus they are not good pioneering species. Competition with alder and birch played an important role, especially along Prince William Sound and the Kenai Peninsula. Alder or alder and birch dominated these regions until the mid- to late Holocene. The other key element for most PNW conifer species is the precipitation regime. The hemlocks, cedars and Sitka spruce are not drought-hardy. So although the PNW temperature regime may have been warm enough in early postglacial times to support the growth of PNW conifers, it was probably too dry for them to successfully become established in new regions. The conflation of these environmental factors limits our present understanding of the problem, but the recent trend of multi-proxy analysis in Quaternary paleoecology will certainly sharpen our reconstructions. Such proxies as conifer needle stomata and insect fossil remains hold significant promise.

  19. Three centuries of managing introduced conifers in South Africa: Benefits, impacts, changing perceptions and conflict resolution.

    PubMed

    van Wilgen, Brian W; Richardson, David M

    2012-09-15

    Alien conifers, mainly pines, have been planted in South Africa for a range of purposes for over 300 years. Formal plantations cover 660,000 ha of the country, and invasive stands of varying density occur on a further 2.9 million ha. These trees have brought many benefits but have also caused unintended problems. The management of alien conifers has evolved in response to emerging problems such as excessive water use by plantations of conifers, changing values and markets, and the realities of a new ecological order brought about by invasive alien conifers. This paper reviews the history of conifer introductions to South Africa, the benefits and impacts with which they are associated, and the ongoing and evolving research that has been conducted to inform their management. The South African approach has included taking courageous steps to address the problem of highly invasive species that are also an important commercial crop. These interventions have not, however, had the desired effect of both retaining benefits from formal plantations while simultaneously reversing the trend of growing impacts associated with self-sown invasive stands. We suggest that different approaches need to be considered, including the systematic phasing out of commercial forestry in zones where it delivers low returns, and the introduction of more effective, focussed and integrated, region-specific approaches to the management of invasive stands of conifers. These steps would deliver much improved economic outcomes by protecting valuable ecosystem services, but will require political commitment to policies that could be unpopular in certain sectors of society. PMID:22562012

  20. Detection of aspen-conifer forest mixes from LANDSAT digital data. [Utah-Idaho Bear River Range

    NASA Technical Reports Server (NTRS)

    Jaynes, R. A.; Merola, J. A.

    1982-01-01

    Aspen, conifer and mixed aspen/conifer forests were mapped for a 15-quadrangle study area in the Utah-Idaho Bear River Range using LANDSAT multispectral scanner data. Digital classification and statistical analysis of LANDSAT data allowed the identification of six groups of signatures which reflect different types of aspen/conifer forest mixing. Photo interpretations of the print symbols suggest that such classes are indicative of mid to late seral aspen forests. Digital print map overlays and acreage calculations were prepared for the study area quadrangles. Further field verification is needed to acquire additional information about the nature of the forests. Single date LANDSAT analysis should be a cost effective means to index aspen forests which are at least in the mid seral phase of conifer invasion. Since aspen canopies tend to obscure understory conifers for early seral forests, a second date analysis, using data taken when aspens are leafless, could provide information about early seral aspen forests.

  1. Detection of aspen/conifer forest mixes from multitemporal Landsat digital data. [Utah-Idaho Bear River Range

    NASA Technical Reports Server (NTRS)

    Merola, J. A.; Jaynes, R. A.; Harniss, R. O.

    1984-01-01

    Aspen, conifer and mixed aspen/conifer forests were mapped for a 15-quadrangle study area in the Utah-Idaho Bear River Range using Landsat multispectral scanner data. Digital classification and statistical analysis of Landsat data allowed the identification of six groups of signatures which reflect different types of aspen/conifer forest mixing. Photo interpretations of the print symbols suggest that such classes are indicative of mid to late seral aspen forests. Digital print map overlayes and acreage calculations were prepared for the study area quadrangles. Further field verification is needed to acquire additional information about the nature of the forests. Single data Landsat analysis should be a cost effective means to index aspen forests which are at least in the mid seral phase of conifer invasion. Since aspen canopies tend to obscure understory conifers for early seral forests, a second data analysis, using data taken when aspens are leafless, could provide information about early seral aspen forests.

  2. Diagenesis of conifer needles in a coastal marine environment

    NASA Astrophysics Data System (ADS)

    Hedges, John I.; Weliky, K.

    1989-10-01

    (C/V) of the deepest sedimentary fir/hemlock needles to 20% of the original value and almost tripled the carbon-normalized yield of total vanillyl plus cinnamyl phenols (Λ). The net result of these compositional variations was to make the lignin component of the buried conifer needles resemble lignin in gymnosperm wood, thereby leading to underestimates of needle input and mass.

  3. Assessing Conifer Ray Parenchyma for Ecological Studies: Pitfalls and Guidelines

    PubMed Central

    von Arx, Georg; Arzac, Alberto; Olano, José M.; Fonti, Patrick

    2015-01-01

    provided the least accurate PERPAR estimates. This evaluation of ray parenchyma in conifers and the presented guidelines regarding data accuracy as a function of measured wood surface and number of samples represent an important methodological reference for ray quantification, which will ultimately improve the understanding of the fundamental role of ray parenchyma tissue for the performance and survival of trees growing in stressed environments. PMID:26635842

  4. Response of conifer-encroached shrublands in the Great Basin to prescribed fire and mechanical treatments

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In response to the recent expansion of piñon and juniper woodlands into sagebrush steppe communities in the northern Great Basin region, numerous conifer removal projects have been implemented at sites having a wide range of environmental conditions. Response has varied from successful restoration t...

  5. The sage-grouse habitat mortgage: effective conifer management in space and time

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Management of conservation-reliant species can be complicated by the need to manage ecosystem processes that operate at extended temporal horizons. One such process is the role of fire in regulating abundance of expanding conifers that disrupt sage-grouse habitat in the northern Great Basin of the ...

  6. PHOTOCHEMICAL OXIDANT AIR POLLUTION EFFECTS ON A MIXED CONIFER FOREST ECOSYSTEM

    EPA Science Inventory

    EPA contract 68-03-2442 provided support for three years of the studies to determine the chronic effects of photochemical oxidant air pollutants on a western mixed conifer forest ecosystem. This report deals with the year 1976-77 and is the final publication on EPA contract 68-03...

  7. Antifungal activity of extracts and select compounds in heartwood of seven western conifers toward Phytophthora ramorum

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Individual compounds and ethyl acetate extracts from heartwood of seven conifer species were tested for fungicidal activity against Phytophthora ramorum. Extracts from incense and western red cedar exhibited the strongest activity (EC50 589 and 646 ppm, respectively), yellow-cedar, western juniper,...

  8. Specific and sensitive detection of the conifer pathogen Gremmeniella abietina by nested PCR

    PubMed Central

    Zeng, Qing-Yin; Hansson, Per; Wang, Xiao-Ru

    2005-01-01

    Background Gremmeniella abietina (Lagerb.) Morelet is an ascomycete fungus that causes stem canker and shoot dieback in many conifer species. The fungus is widespread and causes severe damage to forest plantations in Europe, North America and Asia. To facilitate early diagnosis and improve measures to control the spread of the disease, rapid, specific and sensitive detection methods for G. abietina in conifer hosts are needed. Results We designed two pairs of specific primers for G. abietina based on the 18S rDNA sequence variation pattern. These primers were validated against a wide range of fungi and 14 potential conifer hosts. Based on these specific primers, two nested PCR systems were developed. The first system employed universal fungal primers to enrich the fungal DNA targets in the first round, followed by a second round selective amplification of the pathogen. The other system employed G. abietina-specific primers in both PCR steps. Both approaches can detect the presence of G. abietina in composite samples with high sensitivity, as little as 7.5 fg G. abietina DNA in the host genomic background. Conclusion The methods described here are rapid and can be applied directly to a wide range of conifer species, without the need for fungal isolation and cultivation. Therefore, it represents a promising alternative to disease inspection in forest nurseries, plantations and quarantine control facilities. PMID:16280082

  9. NUTRIENT LEACHING FROM CONIFER NEEDLES IN RELATION TO FOLIAR APOPLAST CATION EXCHANGE CAPACITY

    EPA Science Inventory

    Limited evidence to date suggests that acidic precipitation promotes leaching of nutrient cations from conifer foliage. n order to evaluate the relative contribution of the apoplast cation exchange complex and symplast nutrient pools to the leached ions, the magnitude of potentia...

  10. In vivo 13C NMR metabolite profiling: potential for understanding and assessing conifer seed quality.

    PubMed

    Terskikh, Victor V; Feurtado, J Allan; Borchardt, Shane; Giblin, Michael; Abrams, Suzanne R; Kermode, Allison R

    2005-08-01

    High-resolution 13C MAS NMR spectroscopy was used to profile a range of primary and secondary metabolites in vivo in intact whole seeds of eight different conifer species native to North America, including six of the Pinaceae family and two of the Cupressaceae family. In vivo 13C NMR provided information on the total seed oil content and fatty acid composition of the major storage lipids in a non-destructive manner. In addition, a number of monoterpenes were identified in the 13C NMR spectra of conifer seeds containing oleoresin; these compounds showed marked variability in individual seeds of Pacific silver fir within the same seed lot. In imbibed conifer seeds, the 13C NMR spectra showed the presence of considerable amounts of dissolved sucrose presumed to play a protective role in the desiccation-tolerance of seeds. The free amino acids arginine and asparagine, generated as a result of storage protein mobilization, were detected in vivo during seed germination and early seedling growth. The potential for NMR to profile metabolites in a non-destructive manner in single conifer seeds and seed populations is discussed. It is a powerful tool to evaluate seed quality because of its ability to assess reserve accumulation during seed development or at seed maturity; it can also be used to monitor reserve mobilization, which is critical for seedling emergence. PMID:15996983

  11. Bird communities associated with succession and management of lowland conifer forests

    USGS Publications Warehouse

    Dawson, D.K.

    1979-01-01

    Data from published bird censuses were used to determine changes in avian communities in relation to plant succession, fire, type conversion, and timber management practices in lowland conifer forests in the northeastern United States. With modifications in current logging practices, habitat for the bird species that nest in undisturbed stands can be provided. Management guidelines are recommended.

  12. Seedlings of temperate rainforest conifer and angiosperm trees differ in leaf area display

    PubMed Central

    Lusk, Christopher H.; Pérez-Millaqueo, Manuel M.; Saldaña, Alfredo; Burns, Bruce R.; Laughlin, Daniel C.; Falster, Daniel S.

    2012-01-01

    Background and Aims The contemporary relegation of conifers mainly to cold or infertile sites has been ascribed to low competitive ability, as a result of the hydraulic inefficiency of tracheids and their seedlings' initial dependence on small foliage areas. Here it is hypothesized that, in temperate rainforests, the larger leaves of angiosperms also reduce self-shading and thus enable display of larger effective foliage areas than the numerous small leaves of conifers. Methods This hypothesis was tested using 3-D modelling of plant architecture and structural equation modelling to compare self-shading and light interception potential of seedlings of six conifers and 12 angiosperm trees from temperate rainforests. The ratio of displayed leaf area to plant mass (LARd) was used to indicate plant light interception potential: LARd is the product of specific leaf area, leaf mass fraction, self-shading and leaf angle. Results Angiosperm seedlings self-shaded less than conifers, mainly because of differences in leaf number (more than leaf size), and on average their LARd was about twice that of conifers. Although specific leaf area was the most pervasive influence on LARd, differences in self-shading also significantly influenced LARd of large seedlings. Conclusions The ability to deploy foliage in relatively few, large leaves is advantageous in minimizing self-shading and enhancing seedling light interception potential per unit of plant biomass. This study adds significantly to evidence that vegetative traits may be at least as important as reproductive innovations in explaining the success of angiosperms in productive environments where vegetation is structured by light competition. PMID:22585929

  13. Leaf wax composition and carbon isotopes vary among major conifer groups

    NASA Astrophysics Data System (ADS)

    Diefendorf, Aaron F.; Leslie, Andrew B.; Wing, Scott L.

    2015-12-01

    Leaf waxes (e.g. n-alkanes, n-alkanoic acids) and their carbon isotopes (δ13C) are commonly used to track past changes in the carbon cycle, water availability, and plant ecophysiology. Previous studies indicated that conifers have lower n-alkane concentrations than angiosperms and that 13C fractionation during n-alkane synthesis (εn-alkane) is smaller than in angiosperms. These prior studies, however, sampled a limited phylogenetic and geographic subset of conifers, leaving out many important subtropical and Southern Hemisphere groups that were once widespread and common components of fossil assemblages. To expand on previous work, we collected 43 conifer species (and Ginkgo biloba) from the University of California Botanical Garden at Berkeley, sampling all extant conifer families and almost two-thirds of extant genera. We find that Pinaceae, including many North American species used in previous studies, have very low or no n-alkanes. However, other conifer groups have significant concentrations of n-alkanes, especially Southern Hemisphere Araucariaceae and Podocarpaceae (monkey puzzles, Norfolk Island pines, and yellowwoods), and many species of Cupressaceae (junipers and relatives). Within the Cupressaceae, we find total n-alkane concentrations are high in subfamilies Cupressoideae and Callitroideae, but significantly lower in the early diverging taxodioid lineages (including bald cypress and redwood). Individual n-alkane chain lengths have a weak phylogenetic signal, except for n-C29 alkane, but when combined using average chain length (ACL), a strong phylogenetic signal emerges. The strong phylogenetic signal in ACL, observed in the context of a common growth environment for all plants we sampled, suggests that ACL is strongly influenced by factors other than climate. An analysis of εn-alkane indicates a strong phylogenetic signal in which the smallest biosynthetic fractionation occurs in Pinaceae and the largest in Taxaceae (yews and relatives). The

  14. IDENTIFICATION AND EMISSION FACTORS OF MOLECULAR TRACERS IN ORGANIC AEROSOLS FROM BIOMASS BURNING PART 1. TEMPERATE CLIMATE CONIFERS. (R823990)

    EPA Science Inventory

    Smoke particulate matter from conifers subjected to controlled burning, both under smoldering and flaming conditions, was sampled by high volume air filtration on precleaned quartz fiber filters. The filtered particles were extracted with dichloromethane and the crude extracts...

  15. A comparative field study of growth and survival of Sierran conifer seedlings

    SciTech Connect

    Kern, R.A.

    1996-12-31

    This study is a comparison of seedling growth and survival of seven species of conifers that make up the mid-elevation Sierra Nevada mixed conifer forest--Abies concolor, Abies magnifica, Calocedrus decurrens, Pinus jeffreyi, Pinus lambertiana, Pinus ponderosa, and Sequoiadendron giganteum. The field experiment was designed to test the hypothesis that seedling demography is affected by the study species` relatively shade and drought tolerances. Six discrete treatments were created in the first experiment by using three elevations (1,600 m, 1,900, m, and 2,200 m) and two natural light levels (closed canopy shade and open gap sun) at each elevation. One or two-year old seedlings were planted in the ground in replicate plots in each treatment and followed for two growing seasons. Four responses were analyzed--survival, height growth, diameter growth, and mass growth (total mass as well as root mass and shoot mass separately).

  16. The heterogeneous levels of linkage disequilibrium in white spruce genes and comparative analysis with other conifers.

    PubMed

    Pavy, N; Namroud, M-C; Gagnon, F; Isabel, N; Bousquet, J

    2012-03-01

    In plants, knowledge about linkage disequilibrium (LD) is relevant for the design of efficient single-nucleotide polymorphism arrays in relation to their use in population and association genomics studies. Previous studies of conifer genes have shown LD to decay rapidly within gene limits, but exceptions have been reported. To evaluate the extent of heterogeneity of LD among conifer genes and its potential causes, we examined LD in 105 genes of white spruce (Picea glauca) by sequencing a panel of 48 haploid megagametophytes from natural populations and further compared it with LD in other conifer species. The average pairwise r(2) value was 0.19 (s.d.=0.19), and LD dropped quickly with a half-decay being reached at a distance of 65 nucleotides between sites. However, LD was significantly heterogeneous among genes. A first group of 29 genes had stronger LD (mean r(2)=0.28), and a second group of 38 genes had weaker LD (mean r(2)=0.12). While a strong relationship was found with the recombination rate, there was no obvious relationship between LD and functional classification. The level of nucleotide diversity, which was highly heterogeneous across genes, was also not significantly correlated with LD. A search for selection signatures highlighted significant deviations from the standard neutral model, which could be mostly attributed to recent demographic changes. Little evidence was seen for hitchhiking and clear relationships with LD. When compared among conifer species, on average, levels of LD were similar in genes from white spruce, Norway spruce and Scots pine, whereas loblolly pine and Douglas fir genes exhibited a significantly higher LD. PMID:21897435

  17. A Water Budget Approach to Study the Hydrologic Response of Mountain Meadow Restoration Following Conifer Removal

    NASA Astrophysics Data System (ADS)

    Van Oosbree, G. F.; Surfleet, C. G.; Jasbinsek, J. J.

    2014-12-01

    Mountain meadows are important ecological habitats that have degraded in quality and distribution due to fire suppression and poor land use practices in the Sierra Nevada Mountains. Conifer encroachment in mountain meadows has accelerated and is one of the reasons for the decline of meadow habitat. To date there are few studies which quantify the hydrologic response of meadow restoration due to vegetation or conifer removal. This study is using a before after control intervention (BACI) study design to determine the hydrologic response of restoration to a historic meadow encroached by conifers (study meadow). A water budget approach has been developed to quantify the hydrology of the control and study meadow before and after restoration. Measurements of groundwater depth and soil moisture are currently being taken on the control and study meadows. A total of 14 Odyssey water level capacitance instruments were installed to a 1.5 meter depth and 14 soil moisture instruments were installed to a 30 cm depth using a spatially balanced random sampling approach. Electrical resistivity imaging (ERI) was used to determine soil moisture and depth to groundwater across forest-meadow ecotones present on the meadows. Additionally, ERI was used to extrapolate point measurements of groundwater depth and soil moisture across the study and control areas. The weekly water budget indicates differences between the control meadow and study meadow in the first year prior to conifer removal. The ERI indicated differences in sub surface geology, soil moisture, and groundwater depth both between the control and study meadows and along the forest-meadow ecotones. ERI was demonstrated to improve the spatial extrapolation of soil moisture and groundwater point measurements.

  18. Fine root dynamics and forest production across a calcium gradient in northern hardwood and conifer ecosystems

    USGS Publications Warehouse

    Park, B.B.; Yanai, R.D.; Fahey, T.J.; Bailey, S.W.; Siccama, T.G.; Shanley, J.B.; Cleavitt, N.L.

    2008-01-01

    Losses of soil base cations due to acid rain have been implicated in declines of red spruce and sugar maple in the northeastern USA. We studied fine root and aboveground biomass and production in five northern hardwood and three conifer stands differing in soil Ca status at Sleepers River, VT; Hubbard Brook, NH; and Cone Pond, NH. Neither aboveground biomass and production nor belowground biomass were related to soil Ca or Ca:Al ratios across this gradient. Hardwood stands had 37% higher aboveground biomass (P = 0.03) and 44% higher leaf litter production (P < 0.01) than the conifer stands, on average. Fine root biomass (<2 mm in diameter) in the upper 35 cm of the soil, including the forest floor, was very similar in hardwoods and conifers (5.92 and 5.93 Mg ha-1). The turnover coefficient (TC) of fine roots smaller than 1 mm ranged from 0.62 to 1.86 y-1 and increased significantly with soil exchangeable Ca (P = 0.03). As a result, calculated fine root production was clearly higher in sites with higher soil Ca (P = 0.02). Fine root production (biomass times turnover) ranged from 1.2 to 3.7 Mg ha-1 y-1 for hardwood stands and from 0.9 to 2.3 Mg ha-1 y -1 for conifer stands. The relationship we observed between soil Ca availability and root production suggests that cation depletion might lead to reduced carbon allocation to roots in these ecosystems. ?? 2008 Springer Science+Business Media, LLC.

  19. Agroforestry: Conifers. (Latest citations from the Cab Abstracts database). NewSearch

    SciTech Connect

    Not Available

    1994-10-01

    The bibliography contains citations concerning the use of lands forested with conifers for crop and livestock production. Citations cover the grazing of livestock and the production of crops, including tomatoes, soybeans, lespedeza, wheat, rape, taro, cotton, cabbages, ginger, watermelons, and strawberries. Livestock discussed include cattle, sheep, geese, and horses. Economic analyses and economic models are presented. (Contains a minimum of 147 citations and includes a subject term index and title list.)

  20. Cone selection by Eurasian red squirrels in mixed conifer forests in the Italian Alps

    NASA Astrophysics Data System (ADS)

    Molinari, A.; Wauters, L. A.; Airoldi, G.; Cerinotti, F.; Martinoli, A.; Tosi, G.

    2006-07-01

    Tree squirrels are arboreal granivores that harvest and consume tree seeds both prior to and after seed-dispersal. Inter- and intraspecific patterns of seed predation suggest that squirrels may exert strong selective pressure on cone morphology and patterns of cone production, and suggest coevolutionary interactions between squirrels and conifers. In some pine species (genus Pinus), mutualistic relationships have evolved between cone (seed) traits and seed-dispersal behaviour by birds and rodents. In other species, feeding by seed predators has selected for cone traits that decrease intensity of seed consumption. In mixed conifer forests, red squirrels ( Sciurus vulgaris) feed intensively in some (target) trees but avoid others (nontarget trees). Here we explore defensive cone traits and seed traits correlated with tree selection for conifer species with different seed-dispersal strategies. No selection for cone traits existed in Pinus cembra, which has large wingless seeds, dispersed by birds and rodents. In Picea abies, the most favoured species, target trees had cones with more seeds per cone than nontarget trees, and number of seeds increased with cone length. Cone selection was most pronounced in Pinus sylvestris, where target trees had bigger cones with more seeds and higher total seed mass than nontarget trees. However, ratio of seed mass on cone mass did not differ among target and nontarget trees, suggesting that bigger cones also had more protective tissue, probably increasing difficulties for seed predators to gain access to seeds. Our results suggest that cone and seed traits of P. cembra facilitate seed consumption by squirrels, but that defensive cone traits of small-seeded conifers, in combination with annual differences in seed production (masting), might be the result of coevolution with seed-eating squirrels.

  1. Biomolecules preserved in ca. 168 million year old fossil conifer wood

    NASA Astrophysics Data System (ADS)

    Marynowski, Leszek; Otto, Angelika; Zatoń, Michał; Philippe, Marc; Simoneit, Bernd R. T.

    2007-03-01

    Biomarkers are widely known to occur in the fossil record, but the unaltered biomolecules are rarely reported from sediments older than Paleogene. Polar terpenoids, the natural products most resistant to degradation processes, were reported mainly from the Tertiary conifers, and the oldest known are Cretaceous in age. In this paper, we report the occurrence of relatively high concentrations of ferruginol derivatives and other polar diterpenoids, as well as their diagenetic products, in a conifer wood Protopodocarpoxylon from the Middle Jurassic of Poland. Thus, the natural product terpenoids reported in this paper are definitely the oldest polar biomolecules detected in geological samples. The extracted phenolic abietanes like ferruginol and its derivatives (6,7-dehydroferruginol, sugiol, 11,14-dioxopisiferic acid) are produced only by distinct conifer families (Cupressaceae s. l., Podocarpaceae and Araucariaceae), to which Protopodocarpoxylon could belong based on anatomical characteristics. Therefore, the natural product terpenoids are of great advantage in systematics of fossil plant remains older than Paleogene and lacking suitable anatomical preservation.

  2. Electrodeposited Nanolaminated CoNiFe Cores for Ultracompact DC-DC Power Conversion

    SciTech Connect

    Kim, J; Kim, M; Herrault, F; Park, JY; Allen, MG

    2015-09-01

    Laminated metallic alloy cores (i.e., alternating layers of thin film metallic alloy and insulating material) of appropriate lamination thickness enable suppression of eddy current losses at high frequencies. Magnetic cores comprised of many such laminations yield substantial overall magnetic volume, thereby enabling high-power operation. Previously, we reported nanolaminated permalloy (Ni-80 Fe-20) cores based on a sequential electrodeposition technique, demonstrating negligible eddy current losses at peak flux densities up to 0.5 T and operating at megahertz frequencies. This paper demonstrates improved performance of nanolaminated cores comprising tens to hundreds of layers of 300-500-nm-thick CoNiFe films that exhibit superior magnetic properties (e.g., higher saturation flux density and lower coercivity) than permalloy. Nanolaminated CoNiFe cores can be operated up to a peak flux density of 0.9 T, demonstrating improved power handling capacity and exhibiting 30% reduced volumetric core loss, attributed to lowered hysteresis losses compared to the nanolaminated permalloy core of the same geometry. Operating these cores in a buck dc-dc power converter at a switching frequency of 1 MHz, the nanolaminated CoNiFe cores achieved a conversion efficiency exceeding 90% at output power levels up to 7 W, compared to an achieved permalloy core conversion efficiency below 86% at 6 W.

  3. An Ancient Transkingdom Horizontal Transfer of Penelope-Like Retroelements from Arthropods to Conifers.

    PubMed

    Lin, Xuan; Faridi, Nurul; Casola, Claudio

    2016-01-01

    Comparative genomics analyses empowered by the wealth of sequenced genomes have revealed numerous instances of horizontal DNA transfers between distantly related species. In eukaryotes, repetitive DNA sequences known as transposable elements (TEs) are especially prone to move across species boundaries. Such horizontal transposon transfers, or HTTs, are relatively common within major eukaryotic kingdoms, including animals, plants, and fungi, while rarely occurring across these kingdoms. Here, we describe the first case of HTT from animals to plants, involving TEs known as Penelope-like elements, or PLEs, a group of retrotransposons closely related to eukaryotic telomerases. Using a combination of in situ hybridization on chromosomes, polymerase chain reaction experiments, and computational analyses we show that the predominant PLE lineage, EN(+)PLEs, is highly diversified in loblolly pine and other conifers, but appears to be absent in other gymnosperms. Phylogenetic analyses of both protein and DNA sequences reveal that conifers EN(+)PLEs, or Dryads, form a monophyletic group clustering within a clade of primarily arthropod elements. Additionally, no EN(+)PLEs were detected in 1,928 genome assemblies from 1,029 nonmetazoan and nonconifer genomes from 14 major eukaryotic lineages. These findings indicate that Dryads emerged following an ancient horizontal transfer of EN(+)PLEs from arthropods to a common ancestor of conifers approximately 340 Ma. This represents one of the oldest known interspecific transmissions of TEs, and the most conspicuous case of DNA transfer between animals and plants. PMID:27190138

  4. Biogeography of Pleistocene conifer species from the Ziegler Reservoir fossil site, Snowmass Village, Colorado

    NASA Astrophysics Data System (ADS)

    Miller, Dane M.; Miller, Ian M.; Jackson, Stephen T.

    2014-11-01

    Pleistocene biogeography of conifer species is poorly known in much of western North America. We conducted morphological studies on 201 conifer cones and cone fragments recovered from Pleistocene sediments at the Ziegler Reservoir fossil site (2705 m) near Snowmass Village, Colorado. The basin, formed ~ 155-130 ka, contains fossil-bearing lacustrine, palustrine, and colluvial sediments spanning approximately 85 ka. Using a suite of morphological characters, particularly cone-scale bracts, we differentiated species of Abies, Picea, and Pseudotsuga. All fossil Abies specimens were assignable based on bract morphology to Abies concolor, which is currently absent from central Colorado (nearest populations are 160 km southwest of the site). A. concolor occurs only in sediments of MIS 5d and 5c. Pseudotsuga menziesii and Picea engelmannii cones occurred in sediments corresponding to MIS 5e, 5d, 5c, and 5a. A fourth conifer species, occurring in sediments of MIS 5e, 5d, 5c, and 5a, is difficult to assign to any extant species. Bract morphology is similar to Picea pungens, which grows near the site today, but scale morphology is unlike P. pungens. These fossils may represent ancestral P. pungens, an extinct variant, or an extinct sister species.

  5. An Ancient Transkingdom Horizontal Transfer of Penelope-Like Retroelements from Arthropods to Conifers

    PubMed Central

    Lin, Xuan; Faridi, Nurul; Casola, Claudio

    2016-01-01

    Comparative genomics analyses empowered by the wealth of sequenced genomes have revealed numerous instances of horizontal DNA transfers between distantly related species. In eukaryotes, repetitive DNA sequences known as transposable elements (TEs) are especially prone to move across species boundaries. Such horizontal transposon transfers, or HTTs, are relatively common within major eukaryotic kingdoms, including animals, plants, and fungi, while rarely occurring across these kingdoms. Here, we describe the first case of HTT from animals to plants, involving TEs known as Penelope-like elements, or PLEs, a group of retrotransposons closely related to eukaryotic telomerases. Using a combination of in situ hybridization on chromosomes, polymerase chain reaction experiments, and computational analyses we show that the predominant PLE lineage, EN(+)PLEs, is highly diversified in loblolly pine and other conifers, but appears to be absent in other gymnosperms. Phylogenetic analyses of both protein and DNA sequences reveal that conifers EN(+)PLEs, or Dryads, form a monophyletic group clustering within a clade of primarily arthropod elements. Additionally, no EN(+)PLEs were detected in 1,928 genome assemblies from 1,029 nonmetazoan and nonconifer genomes from 14 major eukaryotic lineages. These findings indicate that Dryads emerged following an ancient horizontal transfer of EN(+)PLEs from arthropods to a common ancestor of conifers approximately 340 Ma. This represents one of the oldest known interspecific transmissions of TEs, and the most conspicuous case of DNA transfer between animals and plants. PMID:27190138

  6. A comparative study of modern and fossil cone scales and seeds of conifers: A geochemical approach

    USGS Publications Warehouse

    Artur, Stankiewicz B.; Mastalerz, Maria; Kruge, M.A.; Van Bergen, P. F.; Sadowska, A.

    1997-01-01

    Modern cone scales and seeds of Pinus strobus and Sequoia sempervirens, and their fossil (Upper Miocene, c. 6 Mar) counterparts Pinus leitzii and Sequoia langsdorfi have been studied using pyrolysis-gas chromatography/mass spectrometry (Py-GC/MS), electron-microprobe and scanning electron microscopy. Microscopic observations revealed only minor microbial activity and high-quality structural preservation of the fossil material. The pyrolysates of both modern genera showed the presence of ligno-cellulose characteristic of conifers. However, the abundance of (alkylated)phenols and 1,2-benzenediols in modern S. sempervirens suggests the presence of non-hydrolysable tannins or abundant polyphenolic moieties not previously reported in modern conifers. The marked differences between the pyrolysis products of both modern genera are suggested to be of chemosystematic significance. The fossil samples also contained ligno-cellulose which exhibited only partial degradation, primarily of the carbohydrate constituents. Comparison between the fossil cone scale and seed pyrolysates indicated that the ligno-cellulose complex present in the seeds is chemically more resistant than that in the cone scales. Principal component analysis (PCA) of the pyrolysis data allowed for the determination of the discriminant functions used to assess the extent of degradation and the chemosystematic differences between both genera and between cone scales and seeds. Elemental composition (C, O, S), obtained using electron-microprobe, corroborated the pyrolysis results. Overall, the combination of chemical, microscopic and statistical methods allowed for a detailed characterization and chemosystematic interpretations of modern and fossil conifer cone scales and seeds.

  7. The photochemical reflectance index provides an optical indicator of spring photosynthetic activation in evergreen conifers.

    PubMed

    Wong, Christopher Y S; Gamon, John A

    2015-04-01

    In evergreens, the seasonal down-regulation and reactivation of photosynthesis is largely invisible and difficult to assess with remote sensing. This invisible phenology may be changing as a result of climate change. To better understand the mechanism and timing of these hidden physiological transitions, we explored several assays and optical indicators of spring photosynthetic activation in conifers exposed to a boreal climate. The photochemical reflectance index (PRI), chlorophyll fluorescence, and leaf pigments for evergreen conifer seedlings were monitored over 1 yr of a boreal climate with the addition of gas exchange during the spring. PRI, electron transport rate, pigment levels, light-use efficiency and photosynthesis all exhibited striking seasonal changes, with varying kinetics and strengths of correlation, which were used to evaluate the mechanisms and timing of spring activation. PRI and pigment pools were closely timed with photosynthetic reactivation measured by gas exchange. The PRI provided a clear optical indicator of spring photosynthetic activation that was detectable at leaf and stand scales in conifers. We propose that PRI might provide a useful metric of effective growing season length amenable to remote sensing and could improve remote-sensing-driven models of carbon uptake in evergreen ecosystems. PMID:25641209

  8. Oviposition strategies of conifer seed chalcids in relation to host phenology

    NASA Astrophysics Data System (ADS)

    Rouault, Gaëlle; Turgeon, Jean; Candau, Jean-Noël; Roques, Alain; Aderkas, Patrick

    2004-10-01

    Insects are considered the most important predators of seed cones, the female reproductive structures of conifers, prior to seed dispersal. Slightly more than 100 genera of insects are known to parasitize conifer seed cones. The most diverse (i.e., number of species) of these genera is Megastigmus (Hymenoptera: Torymidae), which comprises many important seed pests of native and exotic conifers. Seed chalcids, Megastigmus spp., lay eggs inside the developing ovules of host conifers and, until recently, oviposition was believed to occur only in fertilized ovules. Ovule development begins just after pollination, but stops if cells are not fertilized. The morphological stage of cone development at the time of oviposition by seed chalcids has been established for many species; however, knowledge of ovule development at that time has been documented for only one species, M. spermotrophus. Megastigmus spermotrophus oviposits in Douglas-fir ovules after pollination but before fertilization. Unlike the unfertilized ovules, those containing a M. spermotrophus larva continue to develop, whether fertilized or not, stressing the need to broaden our understanding of the insect plant interactions for this entire genus. To achieve this task, we reviewed the scientific literature and assembled information pertaining to the timing of oviposition and to the pollination and fertilization periods of their respective host(s). More specifically, we were searching for circumstantial evidence that other species of Megastigmus associated with conifers could behave (i.e., oviposit before ovule fertilization) and impact on female gametophyte (i.e., prevent abortion) like M. spermotrophus. The evidence from our compilation suggests that seed chalcids infesting Pinaceae may also oviposit before ovule fertilization, just like M. spermotrophus, whereas those infesting Cupressaceae seemingly oviposit after ovule fertilization. Based on this evidence, we hypothesize that all species of Megastigmus

  9. Nuclear DNA content affects the productivity of conifer forests by altering hydraulic architecture

    NASA Astrophysics Data System (ADS)

    Alday, Josu; Resco de Dios, Víctor

    2014-05-01

    Predictions of future global climate rely on feedbacks between terrestrial vegetation and the global carbon cycle, but the exact mechanisms underlying this relationship are still being discussed. One of the key knowledge gaps lies on the scaling of cellular processes to the ecosystem level. Here we examine whether an under-explored plant trait, inter-specific variation in the bulk amount of DNA in unreplicated somatic cells (2C DNA content), can explain inter-specific variation in the maximum productivity of conifer forests. We expected 2C DNA content to be negatively related to conifer productivity because: 1) it is positively correlated with cell volume (which, in turn, potentially affects structural features such as leaf mass area, a strong predictor of photosynthetic capacity); 2) it is positively correlated with stomatal size (with larger stomata leading to lower overall stomatal conductance and, by extension, lower CO2 uptake); and 3) larger genome sizes may reduce P availability in RNA (which has been hypothesized to slow growth). We present the results of regression and independent contrasts in different monospecific forests encompassing a 52º latitudinal gradient, each being dominated by 1 of 35 different conifer species. Contrary to expectations, we observed a positive correlation between genome size and maximum Gross Primary Productivity (R2 = 0.47) and also between genome size maximum tree height (R2 = 0.27). This correlation was apparently driven by the effects of genome size on stem hydraulics, since 2C DNA was positively correlated with wood density (R2 = 0.40) and also with resistance to cavitation (P50, R2 = 0.28). That is, increased genome sizes have a positive effect on the productivity of conifer forests by affecting the vascular tissues to increase their capacity for water transport. Our results shed a new light on the evolution of the vascular system of conifer forests and how they affect ecosystem productivity, and indicate the potential to

  10. Some conifer clades contribute substantial amounts of leaf waxes to sedimentary archives

    NASA Astrophysics Data System (ADS)

    Diefendorf, A. F.; Wing, S. L.; Leslie, A. B.; Freeman, K. H.

    2014-12-01

    Leaf waxes (i.e. n-alkanes, n-alkanoic acids) and their carbon isotopes (δ13C) are commonly used to track past changes in the carbon cycle or plant ecophysiology. Previous studies indicated that conifer n-alkane concentrations are lower than in angiosperms and that 13C fractionation during n-alkane synthesis (ɛlipid) is smaller than in angiosperms. These prior studies, however, sampled a limited phylogenetic and geographic subset of conifers, leaving out many important subtropical and Southern Hemisphere groups that were once widespread and common components of fossil assemblages. To expand on previous work, we collected 44 conifer species from the University of California Botanical Garden at Berkeley, capturing all extant conifer families and most extant genera. By collecting all specimens at a common site we attempted to minimize the confounding effects of climate, allowing phylogenetic patterns in the δ13C of leaf waxes to be expressed more strongly. We find that Pinaceae, including many North American species used in previous studies, have very low or no n-alkanes. However, other conifer groups have significant concentrations of n-alkanes, especially the Araucariaceae (Norfolk Island pines), Podocarpaceae (common in the Southern Hemisphere), and many species of Cupressaceae (junipers and relatives). Within the Cupressaceae, we find total n-alkane concentrations are high in subfamilies Cupressoideae and Callitroideae, but significantly lower in the early diverging taxodioid lineages (including bald cypress and redwood). Individual n-alkane chain lengths have a weak phylogenetic signal, except for n-C29 alkane, but when combined using average chain length (ACL), a strong phylogenetic signal emerges. The strong phylogenetic signal in ACL reinforces that it is strongly influenced by factors other than climate. An analysis of ɛlipid indicates a strong phylogenetic signal in which the smallest biosynthetic fractionation occurs in Pinaceae and the largest in

  11. The enigma of effective pathlength for 18O enrichment in leaf water of conifers

    NASA Astrophysics Data System (ADS)

    Roden, J. S.; Kahmen, A.; Buchmann, N. C.; Siegwolf, R. T.

    2013-12-01

    The stable isotopes of oxygen (δ18O) in tree ring cellulose provide valuable proxy information about past environments and climate. Mechanistic models have been used to clarify the important drivers of isotope fractionation and help interpret δ18O variation in tree rings. A critical component to these models is an estimate of leaf water enrichment. However, standard models seldom accurately predict 18O enrichment in conifer needles and Péclet corrections often require effective pathlengths (L) that seem unreasonable from the perspective of needle morphology (>0.5 m). To analyze the potential role of path length on the Péclet effect in conifers we carried out experiments in controlled environment chambers. We exposed seedlings of six species of conifer (Abies alba, Larix decidua, Picea abies, Pinus cembra, P. sylvestris, Taxus bacata), that differ in needle morphology, to four different vapor pressure deficits (VPD), in order to modify transpiration rates (E) and leaf water 18O enrichment. Environmental and δ18O data (leaf, stem and chamber water vapor) were collected to parameterize leaf water models. Cross-sections of needles were sampled for an analysis of needle anatomy. Conifer needles have a single strand of vascular tissue making pathlength determinations through anatomical assessments possible. The six species differed in mesophyll distance (measured from endodermis to epidermis) and cell number, with Pinus and Picea species having the shortest distance and Abies and Taxus the longest (flat needle morphology). Other anatomical measures (transfusion distance, cell size etc.) did not differ significantly. A suberized strip was apparent in the endodermis of all species except Taxus and Abies. Conifer needles have a large proportion (from 0.2 to 0.4) of needle cross-sectional area in vascular tissues that may not be subject to evaporative enrichment. As expected, leaf water δ18O and E responded strongly to VPD and standard models (Craig

  12. The Paleocene Eocene carbon isotope excursion in higher plant organic matter: Differential fractionation of angiosperms and conifers in the Arctic

    NASA Astrophysics Data System (ADS)

    Schouten, Stefan; Woltering, Martijn; Rijpstra, W. Irene C.; Sluijs, Appy; Brinkhuis, Henk; Sinninghe Damsté, Jaap S.

    2007-06-01

    A study of upper Paleocene-lower Eocene (P-E) sediments deposited on the Lomonosov Ridge in the central Arctic Ocean reveals relatively high abundances of terrestrial biomarkers. These include dehydroabietane and simonellite derived from conifers (gymnosperms) and a tetra-aromatic triterpenoid derived from angiosperms. The relative percentage of the angiosperm biomarker of the summed angiosperm + conifer biomarkers was increased at the end of the Paleocene-Eocene thermal maximum (PETM), different when observed with pollen counts which showed a relative decrease in angiosperm pollen. Stable carbon isotopic analysis of these biomarkers shows that the negative carbon isotope excursion (CIE) during the PETM amounts to 3‰ for both conifer biomarkers, dehydroabietane and simonellite, comparable to the magnitude of the CIE inferred from marine carbonates, but significantly lower than the 4.5‰ of the terrestrial C 29n-alkane [M. Pagani, N. Pedentchouk, M. Huber, A. Sluijs, S. Schouten, H. Brinkhuis, J.S. Sinninghe Damsté, G.R. Dickens, and the IODP Expedition 302 Expedition Scientists (2006), Arctic's hydrology during global warming at the Paleocene-Eocene thermal maximum. Nature, 442, 671-675.], which is a compound sourced by both conifers and angiosperms. Conspicuously, the angiosperm-sourced aromatic triterpane shows a much larger CIE of 6‰ and suggests that angiosperms increased in their carbon isotopic fractionation during the PETM. Our results thus indicate that the 4.5‰ C 29n-alkane CIE reported previously represents the average CIE of conifers and angiosperms at this site and suggest that the large and variable CIE observed in terrestrial records may be partly explained by the variable contributions of conifers and angiosperms. The differential response in isotopic fractionation of angiosperms and conifers points to different physiological responses of these vegetation types to the rise in temperature, humidity, and greenhouse gases during the PETM.

  13. Anisotropic nanolaminated CoNiFe cores integrated into microinductors for high-frequency dc-dc power conversion

    NASA Astrophysics Data System (ADS)

    Kim, Jooncheol; Kim, Minsoo; Kim, Jung-Kwun; Herrault, Florian; Allen, Mark G.

    2015-11-01

    This paper presents a rectangular, anisotropic nanolaminated CoNiFe core that possesses a magnetically hard axis in the long geometric axis direction. Previously, we have developed nanolaminated cores comprising tens to hundreds of layers of 300-1000 nm thick metallic alloys (i.e. Ni80Fe20 or Co44Ni37Fe19) based on sequential electrodeposition, demonstrating suppressed eddy-current losses at MHz frequencies. In this work, magnetic anisotropy was induced to the nanolaminated CoNiFe cores by applying an external magnetic field (50-100 mT) during CoNiFe film electrodeposition. The fabricated cores comprised tens to hundreds of layers of 500-1000 nm thick CoNiFe laminations that have the hard-axis magnetic property. Packaged in a 22-turn solenoid test inductor, the anisotropic core showed 10% increased effective permeability and 25% reduced core power losses at MHz operation frequency, compared to an isotropic core of the identical geometry. Operating the anisotropic nanolaminated CoNiFe core in a step-down dc-dc converter (15 V input to 5 V output) demonstrated 81% converter efficiency at a switching frequency of 1.1 MHz and output power of 6.5 W. A solenoid microinductor with microfabricated windings integrated with the anisotropic nanolaminated CoNiFe core was fabricated, demonstrating a constant inductance of 600 nH up to 10 MHz and peak quality factor exceeding 20 at 4 MHz. The performance of the microinductor with the anisotropic nanolaminated CoNiFe core is compared with other previously reported microinductors.

  14. High-frequency permeability of electroplated CoNiFe and CoNiFe-C alloys

    NASA Astrophysics Data System (ADS)

    Rhen, Fernando M. F.; McCloskey, Paul; O'Donnell, Terence; Roy, Saibal

    We have investigated CoNiFe and CoNiFe-C electrodeposited by pulse reverse plating (PRP) and direct current (DC) techniques. CoNiFe(PRP) films with composition Co 59.4Fe 27.7Ni 12.8 show coercivity of 95 A m -1 (1.2 Oe) and magnetization saturation flux ( μ0Ms) of 1.8 T. Resistivity of CoNiFe (PRP) is about 24 μΩ cm and permeability remains almost constant μr' ˜475 up to 30 MHz with a quality factor ( Q) larger than 10. Additionally, the permeability spectra analysis shows that CoNiFe exhibits a classical eddy current loss at zero bias field and ferromagnetic resonance (FMR) when biased with 0.05 T. Furthermore, a crossover between eddy current and FMR loss is observed for CoNiFe-PRP when baised with 0.05 T. DC and PRP plated CoNiFe-C, which have resistivity and permeability of 85, 38 μΩ cm, μr'=165 and 35 with Q>10 up to 320 MHz, respectively, showed only ferromagnetic resonance losses. The ferromagnetic resonance peaks in CoNiFe and CoNiFe-C are broad and resembles a Gaussian distribution of FMR frequencies. The incorporation of C to CoNiFe reduces eddy current loss, but also reduces the FMR frequency.

  15. Headwater riparian invertebrate communities associated with red alder and conifer wood and leaf litter in southeastern Alaska

    USGS Publications Warehouse

    LeSage, C.M.; Merritt, R.W.; Wipfli, M.S.

    2005-01-01

    We examined how management of young upland forests in southeastern Alaska affect riparian invertebrate taxa richness, density, and biomass, in turn, potentially influencing food abundance for fish and wildlife. Southeastern Alaska forests are dominated by coniferous trees including Sitka spruce (Picea sitchensis (Bong.) Carr.), western hemlock (Tsuga heterophylla (Raf.) Sarg.), with mixed stands of red cedar (Thuja plicata Donn.). Red alder (Alnus rubra Bong.) is hypothesized to influence the productivity of young-growth conifer forests and through forest management may provide increased riparian invertebrate abundance. To compare and contrast invertebrate densities between coniferous and alder riparian habitats, leaf litter and wood debris (early and late decay classes) samples were collected along eleven headwater streams on Prince of Wales Island, Alaska, during the summers of 2000 and 2001. Members of Acarina and Collembola were the most abundant taxa collected in leaf litter with alder litter having significantly higher mean taxa richness than conifer litter. Members of Acarina were the most abundant group collected on wood debris and alder wood had significantly higher mean taxa richness and biomass than conifer wood. Alder wood debris in more advanced decay stages had the highest mean taxa richness and biomass, compared to other wood types, while conifer late decay wood debris had the highest densities of invertebrates. The inclusion of alder in young-growth conifer forests can benefit forest ecosystems by enhancing taxa richness and biomass of riparian forest invertebrates. ?? 2005 by the Northwest Scientific Association. All rights reserved.

  16. Canopy structure of tropical and sub-tropical rain forests in relation to conifer dominance analysed with a portable LIDAR system

    PubMed Central

    Aiba, Shin-ichiro; Akutsu, Kosuke; Onoda, Yusuke

    2013-01-01

    Background and Aims Globally, conifer dominance is restricted to nutient-poor habitats in colder, drier or waterlogged environments, probably due to competition with angiosperms. Analysis of canopy structure is important for understanding the mechanism of plant coexistence in relation to competition for light. Most conifers are shade intolerant, and often have narrow, deep, conical crowns. In this study it is predicted that conifer-admixed forests have less distinct upper canopies and more undulating canopy surfaces than angiosperm-dominated forests. Methods By using a ground-based, portable light detection and ranging (LIDAR) system, canopy structure was quantified for old-growth evergreen rainforests with varying dominance of conifers along altitudinal gradients (200–3100 m a.s.l.) on tropical and sub-tropical mountains (Mount Kinabalu, Malaysian Borneo and Yakushima Island, Japan) that have different conifer floras. Key Results Conifers dominated at higher elevations on both mountains (Podocarpaceae and Araucariaceae on Kinabalu and Cupressaceae and Pinaceae on Yakushima), but conifer dominance also varied with soil/substrate conditions on Kinabalu. Conifer dominance was associated with the existence of large-diameter conifers. Forests with higher conifer dominance showed a canopy height profile (CHP) more skewed towards the understorey on both Kinabalu and Yakushima. In contrast, angiosperm-dominated forests had a CHP skewed towards upper canopy, except for lowland dipterocarp forests and a sub-alpine scrub dominated by small-leaved Leptospermum recurvum (Myrtaceae) on Kinabalu. Forests with a less dense upper canopy had more undulating outer canopy surfaces. Mixed conifer–angiosperm forests on Yakushima and dipterocarp forests on Kinabalu showed similar canopy structures. Conclusions The results generally supported the prediction, suggesting that lower growth of angiosperm trees (except L. recurvum on Kinabalu) in cold and nutrient-poor environments

  17. Nitric acid dry deposition to conifer forests: Niwot Ridge spruce-fir-pine study

    USGS Publications Warehouse

    Sievering, H.; Kelly, T.; McConville, G.; Seibold, C.; Turnipseed, A.

    2001-01-01

    The dry deposition velocity of nitric acid, Vd(HNO3), over a 12-m (mean height) spruce-fir forest at Niwot Ridge, Colorado was estimated during 13 daytime periods using the flux-gradient approach. Turbulence intensity at this site is high (mean u* of 0.65ms-1 with u of 2.9ms-1) and contributed to the large observed Vd(HNO3). The overriding contributor is identified to be the small aerodynamic needle width of the conifer trees. Two cases had inflated Vd(HNO3) due to height-differentiated nitric acid loss to soil-derived particle surfaces. Not considering these cases, the mean Vd(HNO3) was 7.6cms-1. The mean laminar boundary layer resistance (Rb) was found to be 7.8sm-1 (of similar magnitude to that of the aerodynamic resistance, 8.5sm-1). The data-determined Rb is bracketed by two theoretical estimates of the mean Rb, 5.9 and 8.6sm-1, that include consideration of the small canopy length scale (aerodynamic needle width), 1mm or less, at this conifer forest. However, the poor correlation of data-determined Rb values with both sets of theoretical estimates indicates that measurement error needs to be reduced and/or improved formulations of theoretical Rb values are in order. The large observed Vd(HNO3) at this conifer forest site is attributed to high turbulence intensity, and, especially, to small aerodynamic needle width. Copyright ?? 2001 Elsevier Science Ltd.

  18. Conifer density within lake catchments predicts fish mercury concentrations in remote subalpine lakes.

    PubMed

    Eagles-Smith, Collin A; Herring, Garth; Johnson, Branden; Graw, Rick

    2016-05-01

    Remote high-elevation lakes represent unique environments for evaluating the bioaccumulation of atmospherically deposited mercury through freshwater food webs, as well as for evaluating the relative importance of mercury loading versus landscape influences on mercury bioaccumulation. The increase in mercury deposition to these systems over the past century, coupled with their limited exposure to direct anthropogenic disturbance make them useful indicators for estimating how changes in mercury emissions may propagate to changes in Hg bioaccumulation and ecological risk. We evaluated mercury concentrations in resident fish from 28 high-elevation, sub-alpine lakes in the Pacific Northwest region of the United States. Fish total mercury (THg) concentrations ranged from 4 to 438 ng/g wet weight, with a geometric mean concentration (±standard error) of 43 ± 2 ng/g ww. Fish THg concentrations were negatively correlated with relative condition factor, indicating that faster growing fish that are in better condition have lower THg concentrations. Across the 28 study lakes, mean THg concentrations of resident salmonid fishes varied as much as 18-fold among lakes. We used a hierarchal statistical approach to evaluate the relative importance of physiological, limnological, and catchment drivers of fish Hg concentrations. Our top statistical model explained 87% of the variability in fish THg concentrations among lakes with four key landscape and limnological variables: catchment conifer density (basal area of conifers within a lake's catchment), lake surface area, aqueous dissolved sulfate, and dissolved organic carbon. Conifer density within a lake's catchment was the most important variable explaining fish THg concentrations across lakes, with THg concentrations differing by more than 400 percent across the forest density spectrum. These results illustrate the importance of landscape characteristics in controlling mercury bioaccumulation in fish. PMID:26854697

  19. Mapping and monitoring conifer mortality using remote sensing in the Lake Tahoe Basin

    SciTech Connect

    Macomber, S.A.; Woodcock, C.E. )

    1994-12-01

    A prolonged drought in the western US has resulted in alarming levels of mortality in conifer forests. Satellite remote sensing holds the potential for mapping and monitoring the effects of such environmental changes over large geographic areas in a timely manner. Results from the application of a forest canopy reflectance model using multitemporal Landsat TM imagery and field measurements, indicate conifer mortality can be effectively mapped and inventoried. The test area for this project is the Lake Tahoe Basin Management Unit in the Sierra Nevada of California. The Landsat TM images are from the summers of 1988 and 1991. The Li-Strahler canopy model estimates several forest stand parameters, including tree size and canopy cover for each conifer stand, from reflectance values in satellite imagery. The difference in cover estimates between the dates forms the basis for stratifying stands into mortality classes, which are used as both themes in a map and the basis of the field sampling design. Field measurements from 61 stands collected in the summer of 1992 indicate 15% of the original timber volume in the true fir zone died between 1988 and 1992. The resulting low standard error of 11% for this estimate indicates the utility of these mortality classes for detecting areas of high mortality. Also, the patterns in the estimated mean timber volume loss for each class follow the expected trends. The results of this project are immediately useful for fire hazard management, by providing both estimates of the degree of overall mortality and maps showing its location. They also indicate current remote sensing technology may be useful for monitoring the changes in vegetation that are expected to result from climate change.

  20. A White Spruce Gene Catalog for Conifer Genome Analyses1[W][OA

    PubMed Central

    Rigault, Philippe; Boyle, Brian; Lepage, Pierre; Cooke, Janice E.K.; Bousquet, Jean; MacKay, John J.

    2011-01-01

    Several angiosperm plant genomes, including Arabidopsis (Arabidopsis thaliana), rice (Oryza sativa), poplar (Populus trichocarpa), and grapevine (Vitis vinifera), have been sequenced, but the lack of reference genomes in gymnosperm phyla reduces our understanding of plant evolution and restricts the potential impacts of genomics research. A gene catalog was developed for the conifer tree Picea glauca (white spruce) through large-scale expressed sequence tag sequencing and full-length cDNA sequencing to facilitate genome characterizations, comparative genomics, and gene mapping. The resource incorporates new and publicly available sequences into 27,720 cDNA clusters, 23,589 of which are represented by full-length insert cDNAs. Expressed sequence tags, mate-pair cDNA clone analysis, and custom sequencing were integrated through an iterative process to improve the accuracy of clustering outcomes. The entire catalog spans 30 Mb of unique transcribed sequence. We estimated that the P. glauca nuclear genome contains up to 32,520 transcribed genes owing to incomplete, partially sequenced, and unsampled transcripts and that its transcriptome could span up to 47 Mb. These estimates are in the same range as the Arabidopsis and rice transcriptomes. Next-generation methods confirmed and enhanced the catalog by providing deeper coverage for rare transcripts, by extending many incomplete clusters, and by augmenting the overall transcriptome coverage to 38 Mb of unique sequence. Genomic sample sequencing at 8.5% of the 19.8-Gb P. glauca genome identified 1,495 clusters representing highly repeated sequences among the cDNA clusters. With a conifer transcriptome in full view, functional and protein domain annotations clearly highlighted the divergences between conifers and angiosperms, likely reflecting their respective evolutionary paths. PMID:21730200

  1. Conifer density within lake catchments predicts fish mercury concentrations in remote subalpine lakes

    USGS Publications Warehouse

    Eagles-Smith, Collin A.; Herring, Garth; Johnson, Branden L.; Graw, Rick

    2016-01-01

    Remote high-elevation lakes represent unique environments for evaluating the bioaccumulation of atmospherically deposited mercury through freshwater food webs, as well as for evaluating the relative importance of mercury loading versus landscape influences on mercury bioaccumulation. The increase in mercury deposition to these systems over the past century, coupled with their limited exposure to direct anthropogenic disturbance make them useful indicators for estimating how changes in mercury emissions may propagate to changes in Hg bioaccumulation and ecological risk. We evaluated mercury concentrations in resident fish from 28 high-elevation, sub-alpine lakes in the Pacific Northwest region of the United States. Fish total mercury (THg) concentrations ranged from 4 to 438 ng/g wet weight, with a geometric mean concentration (±standard error) of 43 ± 2 ng/g ww. Fish THg concentrations were negatively correlated with relative condition factor, indicating that faster growing fish that are in better condition have lower THg concentrations. Across the 28 study lakes, mean THg concentrations of resident salmonid fishes varied as much as 18-fold among lakes. We used a hierarchal statistical approach to evaluate the relative importance of physiological, limnological, and catchment drivers of fish Hg concentrations. Our top statistical model explained 87% of the variability in fish THg concentrations among lakes with four key landscape and limnological variables: catchment conifer density (basal area of conifers within a lake's catchment), lake surface area, aqueous dissolved sulfate, and dissolved organic carbon. Conifer density within a lake's catchment was the most important variable explaining fish THg concentrations across lakes, with THg concentrations differing by more than 400 percent across the forest density spectrum. These results illustrate the importance of landscape characteristics in controlling mercury bioaccumulation in fish.

  2. Quantifying thermal constraints on carbon and water fluxes in a mixed-conifer sky island ecosystem

    NASA Astrophysics Data System (ADS)

    Braun, Z.; Minor, R. L.; Potts, D. L.; Barron-Gafford, G. A.

    2012-12-01

    Western North American forests represent a potential, yet uncertain, sink for atmospheric carbon. Revealing how predicted climatic conditions of warmer temperatures and longer inter-storm periods of moisture stress might influence the carbon status of these forests requires a fuller understanding of plant functional responses to abiotic stress. While data related to snow dominated montane ecosystems has become more readily available to parameterize ecosystem function models, there is a paucity of data available for Madrean sky island mixed-conifer forests, which receive about one third of their precipitation from the North American Monsoon. Thus, we quantified ecophysiological responses to moisture and temperature stress in a Madrean mixed-conifer forest near Tucson, Arizona, within the footprint of the Mt. Bigelow Eddy Covariance Tower. In measuring a series of key parameters indicative of carbon and water fluxes within the dominant species across pre-monsoon and monsoon conditions, we were able to develop a broader understanding of what abiotic drivers are most restrictive to plant performance in this ecosystem. Within Pinus ponderosa (Ponderosa Pine), Pseudotsuga menziesii (Douglas Fir), and Pinus strobiformis (Southwestern White Pine) we quantified: (i) the optimal temperature (Topt) for maximum photosynthesis (Amax), (ii) the range of temperatures over which photosynthesis was at least 50% of Amax (Ω50), and (iii) each conifer's water use efficiency (WUE) to relate to the balance between carbon uptake and water loss in this high elevation semiarid ecosystem. Our findings support the prediction that photosynthesis decreases under high temperatures (>30°C) among the three species we measured, regardless of soil moisture status. However, monsoon moisture reduced sensitivity to temperature extremes and fluctuations (Ω50), which substantially magnified total photosynthetic productivity. In particular, wet conditions enhanced Amax the most dramatically for P

  3. Preliminary studies of elevated atmospheric CO/sub 2/ on conifers, May 1-December 30, 1985

    SciTech Connect

    Helms, J.A.

    1985-01-01

    The original scope of work consisted of two parts: Intensive physiological studies of Pinus ponderosa seedlings and saplings that were continuously exposed to various levels of CO/sub 2/ and SO/sub 2/ in open-topped chambers. Site selection and preparation in anticipation of DOE approval of a proposed 5-year project on effects of long-term exposure of forest vegetation to enhanced CO/sub 2/. Establishment of 5 Nelder-type plots utilizing 5 western conifers to permit fundamental studies on the physiological bases of tree-to-tree competition. Because the DOE project was not funded, site selection was abandoned.

  4. Molecular Characterization of Fusarium oxysporum and Fusarium commune Isolates from a Conifer Nursery.

    PubMed

    Stewart, Jane E; Kim, Mee-Sook; James, Robert L; Dumroese, R Kasten; Klopfenstein, Ned B

    2006-10-01

    ABSTRACT Fusarium species can cause severe root disease and damping-off in conifer nurseries. Fusarium inoculum is commonly found in most container and bareroot nurseries on healthy and diseased seedlings, in nursery soils, and on conifer seeds. Isolates of Fusarium spp. can differ in virulence; however, virulence and colony morphology are not correlated. Forty-one isolates of Fusarium spp., morphologically indistinguishable from F. oxysporum, were collected from nursery samples (soils, healthy seedlings, and diseased seedlings). These isolates were characterized by amplified fragment length polymorphism (AFLP) and DNA sequencing of nuclear rDNA (internal transcribed spacer including 5.8S rDNA), mitochon-drial rDNA (small subunit [mtSSU]), and nuclear translation elongation factor 1-alpha. Each isolate had a unique AFLP phenotype. Out of 121 loci, 111 (92%) were polymorphic; 30 alleles were unique to only highly virulent isolates and 33 alleles were unique to only isolates nonpathogenic on conifers. Maximum parsimony and Bayesian analyses of DNA sequences from all three regions and the combined data set showed that all highly virulent isolates clearly separated into a common clade that contained F. commune, which was recently distinguished from its sister taxon, F. oxysporum. Interestingly, all but one of the nonpathogenic isolates grouped into a common clade and were genetically similar to F. oxysporum. The AFLP cladograms had similar topologies when compared with the DNA-based phylograms. Although all tested isolates were morphologically indistinguishable from F. oxysporum based on currently available monographs, some morphological traits can be plastic and unreliable for identification of Fusarium spp. We consider the highly virulent isolates to be F. commune based on strong genetic evidence. To our knowledge, this is the first reported evidence that shows F. commune is a cause of Fusarium disease (root rot and dampingoff) on Douglas-fir seedlings. Furthermore

  5. Spatial structure of periodicity in the conifer tree radial increment in the Republic of Komi

    NASA Astrophysics Data System (ADS)

    Raspopov, O. M.; Lopatin, E. V.; Kolström, T.; Dergachev, V. A.; Dmitriev, P. B.; Kahle, H.-P.; Spiecker, H.

    2013-12-01

    Spectral analysis of tree ring data sets of Siberian spruce ( Picea obovata) and Scots pine ( Pinus sylvestris L.) was carried out to study the effects of climatic factors on the conifer tree radial growth in the territory of the Komi Republic. Analyses were performed for different natural subzones in the Komi Republic: the forest-tundra transition zone and the northern, middle, and southern taiga. The results show that several groups of periodicities can be found in the tree radial growth. One from groups of periodicities is related to internal processes in the atmosphere-ocean system; the other is related to the fluctuations in solar activity.

  6. Measuring near infrared spectral reflectance changes from water stressed conifer stands with AIS-2

    NASA Technical Reports Server (NTRS)

    Riggs, George; Running, Steven W.

    1987-01-01

    Airborne Imaging Spectrometer-2 (AIS-2) data was acquired over two paired conifer stands for the purpose of detecting differences in spectral reflectance between stressed and natural canopies. Water stress was induced in a stand of Norway spruce and white pine by severing the sapwood near the ground. Water stress during the AIS flights was evaluated through shoot water potential and relative water content measurements. Preliminary analysis with raw AIS-2 data using SPAM indicates that there were small, inconsistent differences in absolute spectral reflectance in the near infrared 0.97 to 1.3 micron between the stressed and natural canopies.

  7. An Improved Method of RNA Isolation from Loblolly Pine (P. taeda L.) and Other Conifer Species

    PubMed Central

    Lorenz, W. Walter; Yu, Yuan-Sheng; Dean, Jeffrey F. D.

    2010-01-01

    Tissues isolated from conifer species, particularly those belonging to the Pinaceae family, such as loblolly pine (Pinus taeda L.), contain high concentrations of phenolic compounds and polysaccharides that interfere with RNA purification. Isolation of high-quality RNA from these species requires rigorous tissue collection procedures in the field and the employment of an RNA isolation protocol comprised of multiple organic extraction steps in order to isolate RNA of sufficient quality for microarray and other genomic analyses. The isolation of high-quality RNA from field-collected loblolly pine samples can be challenging, but several modifications to standard tissue and RNA isolation procedures greatly improve results. The extent of general RNA degradation increases if samples are not properly collected and transported from the field, especially during large-scale harvests. Total RNA yields can be increased significantly by pulverizing samples in a liquid nitrogen freezer mill prior to RNA isolation, especially when samples come from woody tissues. This is primarily due to the presence of oxidizing agents, such as phenolic compounds, and polysaccharides that are both present at high levels in extracts from the woody tissues of most conifer species. If not removed, these contaminants can carry over leading to problems, such as RNA degradation, that result in low yields and a poor quality RNA sample. Carryover of phenolic compounds, as well as polysaccharides, can also reduce or even completely eliminate the activity of reverse transcriptase or other polymerases commonly used for cDNA synthesis. In particular, RNA destined to be used as template for double-stranded cDNA synthesis in the generation of cDNA libraries, single-stranded cDNA synthesis for PCR or qPCR's, or for the synthesis of microarray target materials must be of the highest quality if researchers expect to obtain optimal results. RNA isolation techniques commonly employed for many other plant species

  8. The species of Cortinarius, section Bovini, associated with conifers in northern Europe.

    PubMed

    Niskanen, Tuula; Kytövuori, Ilkka; Liimatainen, Kare; Lindström, Håkan

    2013-01-01

    Cortinarius bovinus and morphologically similar conifer-associated species were studied using material mainly from northern Europe. To stabilize the nomenclature, relevant types were examined. Phylogenetic relationships and species limits were investigated with rDNA ITS and nuclear rpb2 sequences as well as morphological data. We recognize seven species: C. bovinus (neotypified) and six new species, C. anisochrous, C. bovinaster, C. bovinatus, C. fuscobovinus, C. fuscobovinaster and C. oulankaënsis. Their taxonomy, ecology, distribution and relationships are discussed, and a key to species is provided. Based on our phylogeny and morphological data the species were placed in section Bovini. PMID:23709480

  9. [Effect of Trichoderma species fungi on soil micromycetes, causing infectious conifer seedling lodging in Siberian tree nurseries].

    PubMed

    Iakimenko, E E; Grodinitskaia, I D

    2000-01-01

    Soils in the tree nurseries studied were characterized by a lower species diversity of fungi than adjacent virgin soils. In particular, the relative abundances of representatives of the genera Mucor, Chaetomium, and Trichoderma in the nursery soil were two times lower than in adjacent virgin soils. On the other hand, the nursery soil exhibited greater abundances of fungi of the genus Fusarium, which are causative agents of many diseases of conifer seedlings. To appreciate the efficiency of biocontrol of the infectious diseases of conifer seedlings, we introduced several indigenous Trichoderma strains into the nursery soil and found that this affected the species composition of soil microflora considerably. Changes in the species composition of mycobiota beneficially influenced the phytosanitary state of soils and reduced the infectious lodging of conifer seedlings. PMID:11195586

  10. Specialised emission pattern of leaf trace in a late Permian (253 million-years old) conifer.

    PubMed

    Wei, Hai-Bo; Feng, Zhuo; Yang, Ji-Yuan; Chen, Yu-Xuan; Shen, Jia-Jia; He, Xiao-Yuan

    2015-01-01

    Leaf traces are important structures in higher plants that connect leaves and the stem vascular system. The anatomy and emission pattern of leaf traces are well studied in extant vascular plants, but remain poorly understood in fossil lineages. We quantitatively analysed the leaf traces in the late Permian conifer Ningxiaites specialis from Northwest China based on serial sections through pith, primary and secondary xylems. A complete leaf traces emission pattern of a conifer is presented for the first time from the late Palaeozoic. Three to five monarch leaf traces are grouped in clusters, arranged in a helical phyllotaxis. The leaf traces in each cluster can be divided into upper, middle and lower portions, and initiate at the pith periphery and cross the wood horizontally. The upper leaf trace increases its diameter during the first growth increment and then diminishes completely, which indicates leaf abscission at the end of the first year. The middle trace immediately bifurcates once or twice to form two or three vascular bundles. The lower trace persists as a single bundle during its entire length. The intricate leaf trace dynamics indicates this fossil plant had a novel evolutionary habit by promoting photosynthetic capability for the matured plant. PMID:26198410

  11. Expression Divergence Is Correlated with Sequence Evolution but Not Positive Selection in Conifers.

    PubMed

    Hodgins, Kathryn A; Yeaman, Sam; Nurkowski, Kristin A; Rieseberg, Loren H; Aitken, Sally N

    2016-06-01

    The evolutionary and genomic determinants of sequence evolution in conifers are poorly understood, and previous studies have found only limited evidence for positive selection. Using RNAseq data, we compared gene expression profiles to patterns of divergence and polymorphism in 44 seedlings of lodgepole pine (Pinus contorta) and 39 seedlings of interior spruce (Picea glauca × engelmannii) to elucidate the evolutionary forces that shape their genomes and their plastic responses to abiotic stress. We found that rapidly diverging genes tend to have greater expression divergence, lower expression levels, reduced levels of synonymous site diversity, and longer proteins than slowly diverging genes. Similar patterns were identified for the untranslated regions, but with some exceptions. We found evidence that genes with low expression levels had a larger fraction of nearly neutral sites, suggesting a primary role for negative selection in determining the association between evolutionary rate and expression level. There was limited evidence for differences in the rate of positive selection among genes with divergent versus conserved expression profiles and some evidence supporting relaxed selection in genes diverging in expression between the species. Finally, we identified a small number of genes that showed evidence of site-specific positive selection using divergence data alone. However, estimates of the proportion of sites fixed by positive selection (α) were in the range of other plant species with large effective population sizes suggesting relatively high rates of adaptive divergence among conifers. PMID:26873578

  12. Acid mist and ozone effects on the leaf chemistry of two western conifer species

    NASA Technical Reports Server (NTRS)

    Westman, Walter E.; Temple, Patrick J.

    1989-01-01

    The effects of ozone and acid-mist exposures on the leaf chemistry of Jeffrey pine and giant sequoia seedlings grown in filtered-air greenhouses were investigated. Acid-mist treatments (pH 4.1, 3.4, 2.7, or 2.0) were administered for 3 h, and ozone exposures (0, 0.10, and 0.20 microliter/liter), which followed acid-mist treatments, for 4 h, each for three days a week for six to nine weeks. It was found that seedlings were more susceptible to acid-mist and acid mist/ozone combinations, than to ozone alone. Acid mist treatment resulted in higher levels of nitrogen and sulfur (both present in acid mist) as well as Na. Leaves of giant sequoia exhibited increased K and decreased Mn, while Jeffrey pine showed increases in Fe and Mn. In sequoia leaves, concentrations of Ca, Mg, and Ba decreased. Acid treatment also reduced chlorophyll b concentrations in both conifer species. Extensive changes induced by acid mist are consistent with earlier observations of changes in spectral reflectance of conifer seedlings observed after three weeks of fumigation.

  13. Stable Water Use Efficiency under Climate Change of Three Sympatric Conifer Species at the Alpine Treeline.

    PubMed

    Wieser, Gerhard; Oberhuber, Walter; Gruber, Andreas; Leo, Marco; Matyssek, Rainer; Grams, Thorsten Erhard Edgar

    2016-01-01

    The ability of treeline associated conifers in the Central Alps to cope with recent climate warming and increasing CO2 concentration is still poorly understood. We determined tree ring stable carbon and oxygen isotope ratios of Pinus cembra, Picea abies, and Larix decidua trees from 1975 to 2010. Stable isotope ratios were compared with leaf level gas exchange measurements carried out in situ between 1979 and 2007. Results indicate that tree ring derived intrinsic water-use efficiency (iWUE) of P. cembra, P. abies and L. decidua remained constant during the last 36 years despite climate warming and rising atmospheric CO2. Temporal patterns in Δ(13)C and Δ(18)O mirrored leaf level gas exchange assessments, suggesting parallel increases of CO2-fixation and stomatal conductance of treeline conifer species. As at the study site soil water availability was not a limiting factor iWUE remained largely stable throughout the study period. The stability in iWUE was accompanied by an increase in basal area increment (BAI) suggesting that treeline trees benefit from both recent climate warming and CO2 fertilization. Finally, our results suggest that iWUE may not change species composition at treeline in the Austrian Alps due to similar ecophysiological responses to climatic changes of the three sympatric study species. PMID:27375653

  14. Damping-off in conifer seedling nurseries in Noshahr and Kelardasht.

    PubMed

    Zad, S J; Koshnevice, M

    2001-01-01

    To study the damping-off of conifer seedlings, we have collected samples from the roots of conifer seedlings (Pinus nigra, Picea excelsa, Abieces spp, Cupressus arizonica, Cupressus sempervirens) from nurseries in the south of Iran (Noshahr and Kelardasht). After disinfecting the samples, we have used standard media like PDA, MA and CLA. The following fungi were identified: Fusarium solani, Fusarium oxysporum, Fusarium sambucinum, Clamydosporium, Rhizoctonia solani, Cylindrocarpon spp., Alternaria spp, Macrophomina phaseoli. Amongst the above mentioned fungi, Fusarium spp. were the commonest ones. Pathogenecity tests of Fusarium spp. and Rhizoctonia solani on seedlings were done. Isolated fungal colonies were purified using single mycelium and single spore methods. Fungal isolates were identified after subculturing on PDA and CLA media by Nelson method. These isolates were Fusarium solani, F. oxysporium, F. sambucinum and F. clamydosporum. Other fungal isolates were Rhizoctonia spp. In order to determine the infectivity of Fusarium on their hosts, seeds of Pinus nigra, Cupressus arizonica and Cupressus sempervirens var. horizontalis were cultured in four repetitions each containing 2 seedlings. After a seasonal growth, seedlings were inoculated with a suspension of Fusarium spores (4.5 +/- 0.3 x 1016 spore/ml). Infection of P. nigra, Cupressus arizonica and Cupressus sempervirens var. horizontalis with F. solani and Pinus nigra and Cupressus semperivirens var. horizontalis with F. oxysporum was high whereas that of Cupressus arizonica with F. sambucinum, F. mondiforme and F. clamydosporum was moderate. PMID:12425024

  15. Stable Water Use Efficiency under Climate Change of Three Sympatric Conifer Species at the Alpine Treeline

    PubMed Central

    Wieser, Gerhard; Oberhuber, Walter; Gruber, Andreas; Leo, Marco; Matyssek, Rainer; Grams, Thorsten Erhard Edgar

    2016-01-01

    The ability of treeline associated conifers in the Central Alps to cope with recent climate warming and increasing CO2 concentration is still poorly understood. We determined tree ring stable carbon and oxygen isotope ratios of Pinus cembra, Picea abies, and Larix decidua trees from 1975 to 2010. Stable isotope ratios were compared with leaf level gas exchange measurements carried out in situ between 1979 and 2007. Results indicate that tree ring derived intrinsic water-use efficiency (iWUE) of P. cembra, P. abies and L. decidua remained constant during the last 36 years despite climate warming and rising atmospheric CO2. Temporal patterns in Δ13C and Δ18O mirrored leaf level gas exchange assessments, suggesting parallel increases of CO2-fixation and stomatal conductance of treeline conifer species. As at the study site soil water availability was not a limiting factor iWUE remained largely stable throughout the study period. The stability in iWUE was accompanied by an increase in basal area increment (BAI) suggesting that treeline trees benefit from both recent climate warming and CO2 fertilization. Finally, our results suggest that iWUE may not change species composition at treeline in the Austrian Alps due to similar ecophysiological responses to climatic changes of the three sympatric study species. PMID:27375653

  16. Conifer species adapt to low-rainfall climates by following one of two divergent pathways

    PubMed Central

    Brodribb, Timothy J.; McAdam, Scott A.M.; Jordan, Gregory J.; Martins, Samuel C.V.

    2014-01-01

    Water stress is one of the primary selective forces in plant evolution. There are characters often cited as adaptations to water stress, but links between the function of these traits and adaptation to drying climates are tenuous. Here we combine distributional, climatic, and physiological evidence from 42 species of conifers to show that the evolution of drought resistance follows two distinct pathways, both involving the coordinated evolution of tissues regulating water supply (xylem) and water loss (stomatal pores) in leaves. Only species with very efficient stomatal closure, and hence low minimum rates of water loss, inhabit dry habitats, but species diverged in their apparent mechanism for maintaining closed stomata during drought. An ancestral mechanism found in Pinaceae and Araucariaceae species relies on high levels of the hormone abscisic acid (ABA) to close stomata during water stress. A second mechanism, found in the majority of Cupressaceae species, uses leaf desiccation rather than high ABA levels to close stomata during sustained water stress. Species in the latter group were characterized by xylem tissues with extreme resistance to embolism but low levels of foliar ABA after 30 d without water. The combination of low levels of ABA under stress with cavitation-resistant xylem enables these species to prolong stomatal opening during drought, potentially extending their photosynthetic activity between rainfall events. Our data demonstrate a surprising simplicity in the way conifers evolved to cope with water shortage, indicating a critical interaction between xylem and stomatal tissues during the process of evolution to dry climates. PMID:25246559

  17. A multiproxy environmental investigation of Holocene wood from a submerged conifer forest in Lake Huron, USA

    NASA Astrophysics Data System (ADS)

    Hunter, R. Douglas; Panyushkina, Irina P.; Leavitt, Steven W.; Wiedenhoeft, Alex C.; Zawiskie, John

    2006-07-01

    Remains of a Holocene drowned forest in southern Lake Huron discovered in 12.5 m of water (164 m above sea level), 4.5 km east of Lexington, Michigan USA (Sanilac site), provided wood to investigate environment and lake history using several proxies. Macrofossil evidence indicates a forest comprised primarily of conifers equivalent to the modern "rich conifer swamp" community, despite generally low regional abundance of these species in pollen records. Ages range from 7095 ± 50 to 6420 ± 70 14C yr BP, but the clustering of stump dates and the development of 2 floating tree-ring chronologies suggest a briefer forest interval of no more than c. 400 years. Dendrochronological analysis indicates an environment with high inter-annual climate variability. Stable-carbon isotope composition falls within the range of modern trees from this region, but the stable-oxygen composition is consistent with warmer conditions than today. Both our tree-ring and isotope data provide support for a warmer environment in this region, consistent with a mid-Holocene thermal maximum. This drowned forest also provides a dated elevation in the Nipissing transgression at about 6420 14C yr BP (7350 cal yr BP) in the southern Lake Huron basin, a few hundred years before reopening of the St. Clair River drainage.

  18. Specialised emission pattern of leaf trace in a late Permian (253 million-years old) conifer

    PubMed Central

    Wei, Hai-Bo; Feng, Zhuo; Yang, Ji-Yuan; Chen, Yu-Xuan; Shen, Jia-Jia; He, Xiao-Yuan

    2015-01-01

    Leaf traces are important structures in higher plants that connect leaves and the stem vascular system. The anatomy and emission pattern of leaf traces are well studied in extant vascular plants, but remain poorly understood in fossil lineages. We quantitatively analysed the leaf traces in the late Permian conifer Ningxiaites specialis from Northwest China based on serial sections through pith, primary and secondary xylems. A complete leaf traces emission pattern of a conifer is presented for the first time from the late Palaeozoic. Three to five monarch leaf traces are grouped in clusters, arranged in a helical phyllotaxis. The leaf traces in each cluster can be divided into upper, middle and lower portions, and initiate at the pith periphery and cross the wood horizontally. The upper leaf trace increases its diameter during the first growth increment and then diminishes completely, which indicates leaf abscission at the end of the first year. The middle trace immediately bifurcates once or twice to form two or three vascular bundles. The lower trace persists as a single bundle during its entire length. The intricate leaf trace dynamics indicates this fossil plant had a novel evolutionary habit by promoting photosynthetic capability for the matured plant. PMID:26198410

  19. Leaf evolution in Southern Hemisphere conifers tracks the angiosperm ecological radiation

    PubMed Central

    Biffin, Ed; Brodribb, Timothy J.; Hill, Robert S.; Thomas, Philip; Lowe, Andrew J.

    2012-01-01

    The angiosperm radiation has been linked to sharp declines in gymnosperm diversity and the virtual elimination of conifers from the tropics. The conifer family Podocarpaceae stands as an exception with highest species diversity in wet equatorial forests. It has been hypothesized that efficient light harvesting by the highly flattened leaves of several podocarp genera facilitates persistence with canopy-forming angiosperms, and the angiosperm ecological radiation may have preferentially favoured the diversification of these lineages. To test these ideas, we develop a molecular phylogeny for Podocarpaceae using Bayesian-relaxed clock methods incorporating fossil time constraints. We find several independent origins of flattened foliage types, and that these lineages have diversified predominantly through the Cenozoic and therefore among canopy-forming angiosperms. The onset of sustained foliage flattening podocarp diversification is coincident with a declining diversification rate of scale/needle-leaved lineages and also with ecological and climatic transformations linked to angiosperm foliar evolution. We demonstrate that climatic range evolution is contingent on the underlying state for leaf morphology. Taken together, our findings imply that as angiosperms came to dominate most terrestrial ecosystems, competitive interactions at the foliar level have profoundly shaped podocarp geography and as a consequence, rates of lineage diversification. PMID:21653584

  20. Syringyl lignin production in conifers: Proof of concept in a Pine tracheary element system

    PubMed Central

    Wagner, Armin; Tobimatsu, Yuki; Phillips, Lorelle; Flint, Heather; Geddes, Barbara; Lu, Fachuang; Ralph, John

    2015-01-01

    Conifers (softwoods) naturally lack syringyl units in their lignins, rendering lignocellulosic materials from such species more difficult to process than syringyl-rich hardwood species. Using a transformable Pinus radiata tracheary element (TE) system as an experimental platform, we investigated whether metabolic engineering can be used to create syringyl lignin in conifers. Pyrolysis-GC/MS and 2D-NMR analysis of P. radiata TE cultures transformed to express ferulate 5-hydroxylase (F5H) and caffeic acid O-methyltransferase (COMT) from Liquidambar styraciflua confirmed the production and incorporation of sinapyl alcohol into the lignin polymer. Transformation with F5H was sufficient for the production of syringyl lignin in TEs, but cotransformation with COMT improved its formation. In addition, lower levels of the pathway intermediate 5-hydroxyconiferyl alcohol were evidenced in cotransformation experiments, indicating that the introduction of the COMT overcame the inefficiency of the native pine methyltransferases for supporting sinapyl alcohol production.Our results provide the proof of concept that it is possible to generate a lignin polymer that contains syringyl units in softwood species such as P. radiata, suggesting that it might be possible to retain the outstanding fiber properties of softwoods while imbuing them with the lignin characteristics of hardwoods that are more favorable for industrial processing. PMID:25902506

  1. Conifer species adapt to low-rainfall climates by following one of two divergent pathways.

    PubMed

    Brodribb, Timothy J; McAdam, Scott A M; Jordan, Gregory J; Martins, Samuel C V

    2014-10-01

    Water stress is one of the primary selective forces in plant evolution. There are characters often cited as adaptations to water stress, but links between the function of these traits and adaptation to drying climates are tenuous. Here we combine distributional, climatic, and physiological evidence from 42 species of conifers to show that the evolution of drought resistance follows two distinct pathways, both involving the coordinated evolution of tissues regulating water supply (xylem) and water loss (stomatal pores) in leaves. Only species with very efficient stomatal closure, and hence low minimum rates of water loss, inhabit dry habitats, but species diverged in their apparent mechanism for maintaining closed stomata during drought. An ancestral mechanism found in Pinaceae and Araucariaceae species relies on high levels of the hormone abscisic acid (ABA) to close stomata during water stress. A second mechanism, found in the majority of Cupressaceae species, uses leaf desiccation rather than high ABA levels to close stomata during sustained water stress. Species in the latter group were characterized by xylem tissues with extreme resistance to embolism but low levels of foliar ABA after 30 d without water. The combination of low levels of ABA under stress with cavitation-resistant xylem enables these species to prolong stomatal opening during drought, potentially extending their photosynthetic activity between rainfall events. Our data demonstrate a surprising simplicity in the way conifers evolved to cope with water shortage, indicating a critical interaction between xylem and stomatal tissues during the process of evolution to dry climates. PMID:25246559

  2. Syringyl lignin production in conifers: Proof of concept in a Pine tracheary element system.

    PubMed

    Wagner, Armin; Tobimatsu, Yuki; Phillips, Lorelle; Flint, Heather; Geddes, Barbara; Lu, Fachuang; Ralph, John

    2015-05-12

    Conifers (softwoods) naturally lack syringyl units in their lignins, rendering lignocellulosic materials from such species more difficult to process than syringyl-rich hardwood species. Using a transformable Pinus radiata tracheary element (TE) system as an experimental platform, we investigated whether metabolic engineering can be used to create syringyl lignin in conifers. Pyrolysis-GC/MS and 2D-NMR analysis of P. radiata TE cultures transformed to express ferulate 5-hydroxylase (F5H) and caffeic acid O-methyltransferase (COMT) from Liquidambar styraciflua confirmed the production and incorporation of sinapyl alcohol into the lignin polymer. Transformation with F5H was sufficient for the production of syringyl lignin in TEs, but cotransformation with COMT improved its formation. In addition, lower levels of the pathway intermediate 5-hydroxyconiferyl alcohol were evidenced in cotransformation experiments, indicating that the introduction of the COMT overcame the inefficiency of the native pine methyltransferases for supporting sinapyl alcohol production.Our results provide the proof of concept that it is possible to generate a lignin polymer that contains syringyl units in softwood species such as P. radiata, suggesting that it might be possible to retain the outstanding fiber properties of softwoods while imbuing them with the lignin characteristics of hardwoods that are more favorable for industrial processing. PMID:25902506

  3. Causes and consequences of variation in conifer leaf life-span

    SciTech Connect

    Reich, P.B.; Koike, T.; Gower, S.T.; Schoettle, A.W.

    1995-07-01

    Species with mutually supporting traits, such as high N{sub mass}, SLA, and A{sub mass}, and short leaf life-span, tend to inhabit either generally resource-rich environments or spatial and/or temporal microhabitats that are resource-rich in otherwise more limited habitats (e.g., {open_quotes}precipitation{close_quotes} ephemerals in warm deserts or spring ephemerals in the understory of temperate deciduous forests). In contrast, species with long leaf life-span often support foliage with low SLA, N{sub mass}, and A{sub mass}, and often grow in low-temperature limited, dry, and/or nutrient-poor environments. The contrast between evergreen and deciduous species, and the implications that emerge from such comparisons, can be considered a paradigm of modern ecological theory. However, based on the results of Reich et al. (1992) and Gower et al. (1993), coniferous species with foliage that persists for 9-10 years are likely to assimilate and allocate carbon and nutrients differently than other evergreen conifers that retain foliage for 2-3 years. Thus, attempts to contrast ecophysiological or ecosystem characteristics of evergreen versus deciduous life forms may be misleading, and pronounced differences among evergreen conifers may be ignored. Clearly, the deciduous-evergreen contrast, although useful in several ways, should be viewed from the broader perspective of a gradient in leaf life-span.

  4. Spectral changes in conifers subjected to air pollution and water stress: Experimental studies

    NASA Technical Reports Server (NTRS)

    Westman, Walter E.; Price, Curtis V.

    1988-01-01

    The roles of leaf anatomy, moisture and pigment content, and number of leaf layers on spectral reflectance in healthy, pollution-stressed, and water-stressed conifer needles were examined experimentally. Jeffrey pine (Pinus jeffreyi) and giant sequoia (Sequoiadendron gigantea) were exposed to ozone and acid mist treatments in fumigation chambers; red pine (Pinus resinosa) needles were artificially dried. Infrared reflectance from stacked needles rose with free water loss. In an air-drying experiment, cell volume reductions induced by loss of turgor caused near-infrared reflectance (TM band 4) to drop after most free water was lost. Under acid mist fumigation, stunting of tissue development similarly reduced band 4 reflectance. Both artificial drying and pollutant fumigation caused a blue shift of the red edge of spectral reflectance curves in conifers, attributable to chlorophyll denaturation. Thematic mapper band ratio 4/3 fell and 5/4 rose with increasing pollution stress on artificial drying. Loss of water by air-drying, freeze-drying, or oven-drying enhanced spectral features, due in part to greater scattering and reduced water absorption. Grinding of the leaf tissue further enhanced the spectral features by increasing reflecting surfaces and path length. In a leaf-stacking experiment, an asymptote in visible and infrared reflectance was reached at 7-8 needle layers of red pine.

  5. Eriosomatine aphids (Hemiptera, Aphididae, Eriosomatinae) associated with moss and roots of conifer and willow in forests of the Pacific Northwest

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Apterous adult morphs of eriosomatine aphids (Hemiptera, Aphididae, Eriosomatinae) associated with moss and/or roots of conifer or willow in forests of the Pacific Northwest including Alaska are described, illustrated, and keyed. In total, seven species (Clydesmithia canadensis Danielsson, Melaphis ...

  6. PATTERNS OF NITROGEN AND CARBON STABLE ISOTOPE RATIOS IN MACROFUNGI, PLANTS AND SOILS IN TWO OLD-GROWTH CONIFER FORESTS

    EPA Science Inventory

    Natural abundance stable isotope ratios represent a potentially valuable tool for studying fungal ecology. We measured 15N and 13C in ectomycorrhizal and saprotrophic macrofungi from two old-growth conifer forests, and in plants, woody debris, and soils. Fungi, plants, and so...

  7. Effects of thinning, residue mastication, and prescribed fire on soil and nutrient budgets in a Sierra Nevada mixed conifer forest

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The effects of thinning followed by residue mastication (THIN), prescribed fire (BURN), and thinning plus residue mastication plus burning (T+B) on nutrient budgets and resin-based (plant root simulator [PRS] probe) measurements of soil nutrient availability in a mixed-conifer forest were measured. ...

  8. Sirococcus conigenus, Sirococcus piceicola, sp. nov. and Sirococcus tsugae sp. nov. on conifers: anamorphic fungi in the Gnomoniaceae, Diaporthales

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Sirococcus is a genus of asexually reproducing fungi that includes important pathogens causing shoot blight and tip dieback of conifers. In this paper the type species of Sirococcus, S. conigenus, is redescribed, illustrated, and an epitype designated. In addition, two new species are recognized....

  9. A Catskill Flora and Economic Botany, II: Coniferales. The Conifers. Bulletin No. 441, New York State Museum.

    ERIC Educational Resources Information Center

    Brooks, Karl L.

    This section of the Catskill Flora provides an overview to three families within the Coniferales: the Taxaceae, Pinaceae, and Cupressaceae. Included are keys to the local species of conifers, description of each species, nomenclatural data, botanical illustrations, and a brief discussion of each species which often mentions medical and food uses…

  10. Passive Microwave Measurements Over Conifer Forests at L-Band and C-Band

    NASA Technical Reports Server (NTRS)

    LeVine, D. M.; Lang, R.; Chauhan, N.; Kim, E.; Bidwell, S.; Goodberlet, M.; Haken, M.; deMatthaeis, P.

    2000-01-01

    Measurements have been made at L-band and C-band over conifer forests in Virginia to study the response of passive microwave instruments to biomass and soil moisture. A series of aircraft measurements were made in July, August and November, 1999 over relatively homogenous conifer forests of varying biomass. Three radiometers participated in these measurements. These were: 1) the L-band radiometer ESTAR, a horizontally polarized synthetic aperture radiometer which has been used extensively in past measurements of soil moisture; 2) the L-band radiometer SLFMR, a vertically polarized cross-track scanner which has been used successfully in the past for mapping sea surface salinity; and 3) The ACMR, a new C-band radiometer which operates at V- and H-polarization and in the configuration for these experiments did not scan. All three radiometers were flown on the NASA P-3 aircraft based at the Goddard Space Flight Center's Wallops Flight Facility. The ESTAR and SLFMR were mounted in the bomb bay of the P-3 and imaged across track whereas the ACMR was mounted to look aft at 54 degrees up from nadir. Data was collected at altitudes of 915 meters and 457 meters. The forests consisted of relatively homogeneous "managed" stands of conifer located near Waverly, Virginia. This is a relatively flat area about 30 miles southeast of Richmond, VA with numerous stands of trees being grown for the forestry industry. The stands selected for study consisted of areas of regrowth and mature stands of pine. In addition, a small stand of very large trees was observed. Soil moisture sampling was done in each stand during the aircraft over flights. Data was collected on July 7, August 27, November 15 and November 30, 1999. Measurements were made with ESTAR on all days. The ACMR flew on the summer missions and the SLFMR was present only on the August 27 flight. Soil moisture varied from quite dry on July 7 to quite moist on November 30 (which was shortly after a period of rain). The microwave

  11. Holocene vegetation and fire regimes in subalpine and mixed conifer forests, southern Rocky Mountains, USA

    USGS Publications Warehouse

    Anderson, R. Scott; Allen, C.D.; Toney, J.L.; Jass, R.B.; Bair, A.N.

    2008-01-01

    Our understanding of the present forest structure of western North America hinges on our ability to determine antecedent forest conditions. Sedimentary records from lakes and bogs in the southern Rocky Mountains of Colorado and New Mexico provide information on the relationships between climate and vegetation change, and fire history since deglaciation. We present a new pollen record from Hunters Lake (Colorado) as an example of a high-elevation vegetation history from the southern Rockies. We then present a series of six sedimentary records from ???2600 to 3500-m elevation, including sites presently at the alpine?subalpine boundary, within the Picea engelmannii?Abies lasiocarpa forest and within the mixed conifer forest, to determine the history of fire in high-elevation forests there. High Artemisia and low but increasing percentages of Picea and Pinus suggest vegetation prior to 13 500 calendar years before present (cal yr BP) was tundra or steppe, with open spruce woodland to ???11 900 cal yr BP. Subalpine forest (Picea engelmannii, Abies lasiocarpa) existed around the lake for the remainder of the Holocene. At lower elevations, Pinus ponderosa and/or contorta expanded 11 900 to 10 200 cal yr BP; mixed conifer forest expanded ???8600 to 4700 cal yr BP; and Pinus edulis expanded after ???4700 cal yr BP. Sediments from lake sites near the alpine?subalpine transition contained five times less charcoal than those entirely within subalpine forests, and 40 times less than bog sites within mixed conifer forest. Higher fire episode frequencies occurred between ???12 000 and 9000 cal yr BP (associated with the initiation or expansion of south-west monsoon and abundant lightning, and significant biomass during vegetation turnover) and at ???2000?1000 cal yr BP (related to periodic droughts during the long-term trend towards wetter conditions and greater biomass). Fire episode frequencies for subalpine?alpine transition and subalpine sites were on average 5 to 10 fire

  12. Chemosystematics and diagenesis of terpenoids in fossil conifer species and sediment from the Eocene Zeitz formation, Saxony, Germany

    NASA Astrophysics Data System (ADS)

    Otto, Angelika; Simoneit, Bernd R. T.

    2001-10-01

    The biomarker contents of three fossil conifer species ( Athrotaxis couttsiae, Taxodium balticum, Pinus palaeostrobus) and the clay sediment from the Eocene Zeitz formation, Germany, have been analyzed by gas chromatography-mass spectrometry. Triterpenoids of the oleanane, ursane and lupane series and aliphatic wax lipids are the major compounds in the total extracts of the sediment indicating a major angiosperm input. In contrast, diterpenoids (abietanes, phenolic abietanes, pimaranes, isopimaranes, kauranes, phyllocladanes, totaranes) and lignin degradation products are predominant in the conifer fossil extracts. Polar diterpenoids (ferruginol and derivatives, dehydroabietic acid) are preserved as major compounds in the conifers, accompained by saturated and aromatic diterpenoid products. The extracts of the fossil conifer species show characteristic biomarker patterns and contain terpenoids of chemosystematic value. The terpenoid composition of the fossil conifers is similar to that of related modern species. Phenolic abietanes (ferruginol, 6,7-dehydroferruginol, hydroxyferruginols, sugiol) which are known from modern species of the Cupressaceae and Podocarpaceae are the major terpenoids in shoots of Athrotaxis couttsiae and a cone of Taxodium balticum (both Cupressaceae). Sesquiterpenoids characteristic for Cupressaceae (cuparene, α-cedrene) are also present in Athrotaxis. Abietane-type acids (dehydroabietic acid, abietic acid) and saturated abietanes [fichtelite, 13α(H)-fichtelite] predominate in the extracts of a Pinus palaeostrobus cone and phenolic abietanes are not detectable. A diagenetic pathway for the degradation of abietic acid is proposed based on the presence of abietane-type acids and a series of their presumed degradation products in the Pinus cone. The formation of diagenetic products from the phenolic abietanes is also discussed.

  13. Phylogeny of seed plants based on all three genomic compartments: Extant gymnosperms are monophyletic and Gnetales' closest relatives are conifers

    PubMed Central

    Bowe, L. Michelle; Coat, Gwénaële; dePamphilis, Claude W.

    2000-01-01

    Efforts to resolve Darwin's “abominable mystery”—the origin of angiosperms—have led to the conclusion that Gnetales and various fossil groups are sister to angiosperms, forming the “anthophytes.” Morphological homologies, however, are difficult to interpret, and molecular data have not provided clear resolution of relationships among major groups of seed plants. We introduce two sequence data sets from slowly evolving mitochondrial genes, cox1 and atpA, which unambiguously reject the anthophyte hypothesis, favoring instead a close relationship between Gnetales and conifers. Parsimony- and likelihood-based analyses of plastid rbcL and nuclear 18S rDNA alone and with cox1 and atpA also strongly support a gnetophyte–conifer grouping. Surprisingly, three of four genes (all but nuclear rDNA) and combined three-genome analyses also suggest or strongly support Gnetales as derived conifers, sister to Pinaceae. Analyses with outgroups screened to avoid long branches consistently identify all gymnosperms as a monophyletic sister group to angiosperms. Combined three- and four-gene rooted analyses resolve the branching order for the remaining major groups—cycads separate from other gymnosperms first, followed by Ginkgo and then (Gnetales + Pinaceae) sister to a monophyletic group with all other conifer families. The molecular phylogeny strongly conflicts with current interpretations of seed plant morphology, and implies that many similarities between gnetophytes and angiosperms, such as “flower-like” reproductive structures and double fertilization, were independently derived, whereas other characters could emerge as synapomorphies for an expanded conifer group including Gnetales. An initial angiosperm–gymnosperm split implies a long stem lineage preceding the explosive Mesozoic radiation of flowering plants and suggests that angiosperm origins and homologies should be sought among extinct seed plant groups. PMID:10760278

  14. A low diversity, seasonal tropical landscape dominated by conifers and peltasperms: Early Permian Abo Formation, New Mexico

    USGS Publications Warehouse

    DiMichele, W.A.; Chaney, D.S.; Nelson, W.J.; Lucas, S.G.; Looy, C.V.; Quick, K.; Jun, W.

    2007-01-01

    Walchian conifers (Walchia piniformis Sternberg, 1825) and peltasperms similar to Supaia thinnfeldioides White and cf. Supaia anomala White dominate floodplain deposits of a narrow stratigraphic interval of the middle Abo Formation, Lower Permian of central New Mexico. The plant fossils occur in thinly bedded units up to two meters thick, consisting of coarse siltstone to very fine sandstone with clay partings. Bedding is primarily tabular, thin, and bears rare ripple marks and trough cross beds. Bedding surfaces display mud cracks, raindrop imprints, horizontal and vertical burrows of invertebrates, and footprints of terrestrial vertebrates. These features indicate intermittent and generally unchannelized stream flow, with repeated exposure to air. Channels appear to have cannibalized one another on a slowly subsiding coastal plain. Conifers are dominant at three collecting sites and at three others Supaia dominates. Although each of these genera occurs in assemblages dominated by the other, there are no truly co-dominant assemblages. This pattern suggests alternative explanations. Landscapes could have consisted of a small-scale vegetational patchwork dominated almost monospecifically in any one patch, meaning that these plants could have coexisted across the landscape. On the other hand, conifer and supaioid dominance could have been temporally distinct, occurring during different episodes of sedimentation; although in the field there are no noticeable sedimentological differences between conifer-dominated and Supaia-dominated channel deposits, they may represent slightly different climatic regimes. The considerable morphological differences between conifers and Supaia suggest that the floristic patterns are not a taphonomic effect of the loss of a significant part of the original biodiversity. In general, the climate under which this vegetation developed appears to have been relatively warm and arid, based on the geology (pervasive red color [oxidation

  15. The conifer biomarkers dehydroabietic and abietic acids are widespread in Cyanobacteria

    NASA Astrophysics Data System (ADS)

    Costa, Maria Sofia; Rego, Adriana; Ramos, Vitor; Afonso, Tiago B.; Freitas, Sara; Preto, Marco; Lopes, Viviana; Vasconcelos, Vitor; Magalhães, Catarina; Leão, Pedro N.

    2016-03-01

    Terpenes, a large family of natural products with important applications, are commonly associated with plants and fungi. The diterpenoids dehydroabietic and abietic acids are defense metabolites abundant in resin, and are used as biomarkers for conifer plants. We report here for the first time that the two diterpenoid acids are produced by members of several genera of cyanobacteria. Dehydroabietic acid was isolated from two cyanobacterial strains and its identity was confirmed spectroscopically. One or both of the diterpenoids were detected in the cells of phylogenetically diverse cyanobacteria belonging to four cyanobacterial ‘botanical orders’, from marine, estuarine and inland environments. Dehydroabietic acid was additionally found in culture supernatants. We investigated the natural role of the two resin acids in cyanobacteria using ecologically-relevant bioassays and found that the compounds inhibited the growth of a small coccoid cyanobacterium. The unexpected discovery of dehydroabietic and abietic acids in a wide range of cyanobacteria has implications for their use as plant biomarkers.

  16. Lichen communities on conifers in Southern California mountains: an ecological survey relative to oxidant air pollution

    SciTech Connect

    Sigal, L.L.; Nash, T.H. III

    1983-01-01

    In comparison with collections from the early 1900's when oxidant air pollution was essentially absent, 50% fewer lichen species were found on conifers during 3 yr (1976-1979) of collecting and sampling in the mountains of Southern California. Among the five mountain ranges studied, the San Bernardino Mountains, the region with the highest oxidant levels, had lower lichen frequency and cover values. Within the San Bernardino study sites, lichen cover was inversely related to estimated oxidant doses. Furthermore, at sites with high oxidant levels, marked morphological deterioration of the common species Hypogymnia enteromorpha was documented. Transplants of this species from the relatively unpolluted Cuyamaca Rancho State Park into the San Bernardino Mountains exhibited similar deterioration after a year's exposure. 4 figures, 9 tables.

  17. Lichen communities on conifers in Southern California mountains: an ecological survey relative to oxidant air pollution

    SciTech Connect

    Sigal, L.L.; Nash T.H. III

    1983-01-01

    In comparison with collections from the early 1900's when oxidant air pollution was essentially absent, 50% fewer lichen species were found on conifers during 3 yr (1976-1979) of collecting and sampling in the mountains of Southern California. Among the five mountain ranges studied, the San Bernardino Mountains, the region with the highest oxidant levels, had lower lichen frequency and cover values. Within the San Bernardino study sites, lichen cover was inversely related to estimated oxidant doses. Furthermore, at sites with high oxidant levels, marked morphological deterioration of the common species Hypogymnia enteromorpha was documented. Transplants of this species from the relatively unpolluted Cuyamaca Rancho State Park in the San Bernardino Mountains exhibited similar deterioration after a year's exposure.

  18. The conifer biomarkers dehydroabietic and abietic acids are widespread in Cyanobacteria

    PubMed Central

    Costa, Maria Sofia; Rego, Adriana; Ramos, Vitor; Afonso, Tiago B.; Freitas, Sara; Preto, Marco; Lopes, Viviana; Vasconcelos, Vitor; Magalhães, Catarina; Leão, Pedro N.

    2016-01-01

    Terpenes, a large family of natural products with important applications, are commonly associated with plants and fungi. The diterpenoids dehydroabietic and abietic acids are defense metabolites abundant in resin, and are used as biomarkers for conifer plants. We report here for the first time that the two diterpenoid acids are produced by members of several genera of cyanobacteria. Dehydroabietic acid was isolated from two cyanobacterial strains and its identity was confirmed spectroscopically. One or both of the diterpenoids were detected in the cells of phylogenetically diverse cyanobacteria belonging to four cyanobacterial ‘botanical orders’, from marine, estuarine and inland environments. Dehydroabietic acid was additionally found in culture supernatants. We investigated the natural role of the two resin acids in cyanobacteria using ecologically-relevant bioassays and found that the compounds inhibited the growth of a small coccoid cyanobacterium. The unexpected discovery of dehydroabietic and abietic acids in a wide range of cyanobacteria has implications for their use as plant biomarkers. PMID:26996104

  19. Epiphytic lichen diversity on dead and dying conifers under different levels of atmospheric pollution.

    PubMed

    Hauck, Markus

    2005-05-01

    Based on literature data, epiphytic lichen abundance was comparably studied in montane woodlands on healthy versus dead or dying conifers of Europe and North America in areas with different levels of atmospheric pollution. Study sites comprised Picea abies forests in the Harz Mountains and in the northern Alps, Germany, Picea rubens-Abies balsamea forests on Whiteface Mountain, Adirondacks, New York, U.S.A. and Picea engelmannii-Abies lasiocarpa forests in the Salish Mountains, Montana, U.S.A. Detrended correspondence analysis showed that epiphytic lichen vegetation differed more between healthy and dead or dying trees at high- versus low-polluted sites. This is attributed to greater differences in chemical habitat conditions between trees of different vitality in highly polluted areas. Based on these results, a hypothetical model of relative importance of site factors for small-scale variation of epiphytic lichen abundance versus atmospheric pollutant load is discussed. PMID:15701398

  20. Highly Laminated Soft Magnetic Electroplated CoNiFe Thick Films

    SciTech Connect

    Kim, J; Kim, M; Herrault, F; Park, J; Allen, MG

    2013-01-01

    The fabrication and characterization of highly laminated (similar to 40 layers), thick (similar to 40 mu m) films of magnetically soft cobalt-nickel-iron are presented. Thick film fabrication is based on automated sequential electrodeposition of alternating CoNiFe and copper layers, followed by selective copper removal. The film, comprised tens of 1 mu m thick laminations, exhibits saturation flux density of 1.8 T and coercivity of approximately 1.3 Oe. High-frequency film characterization took place in a 36-turn test inductor, which demonstrated constant inductance of 1.6 mu H up to 10 MHz, indicating suppressed eddy-current loss. Quality factor exceeding 40 at 1 MHz, surpassing the performance of similarly fabricated Permalloy (Ni80Fe20) films.

  1. A homeobox gene with potential developmental control function in the meristem of the conifer Picea abies

    PubMed Central

    Sundås-Larsson, A.; Svenson, M.; Liao, H.; Engström, P.

    1998-01-01

    Many homeobox genes control essential developmental processes in animals and plants. In this report, we describe the first cDNA corresponding to a homeobox gene isolated from a gymnosperm, the HBK1 gene from the conifer Picea abies (L.) Karst (Norway spruce). The sequence shows distinct similarities specifically to the KNOX (knotted-like homeobox) class of homeobox genes known from different angiosperm plants. The deduced amino acid sequence of HBK1 is strikingly similar within the homeodomain (84% identical) to the maize gene Knotted1 (Kn1), which acts to regulate cell differentiation in the shoot meristem. This similarity suggested that the phylogenetic association of HBK1 with the KNOX genes might be coupled to a conservation of gene function. In support of this suggestion, we have found HBK1 to be expressed in the apical meristem in the central population of nondifferentiated stem cells, but not in organ primordia developing at the flanks of the meristem. This pattern of expression is similar to that of Kn1 in the maize meristem. We show further that HBK1, when expressed ectopically in transgenic Arabidopsis plants, causes aberrations in leaf development that are similar to the effects of ectopic expression of angiosperm KNOX genes on Arabidopsis development. Taken together, these data suggest that HBK1 has a role, similar to the KNOX genes in angiosperms, in the control of cellular differentiation in the apical meristem of spruce. The data also indicate that KNOX-gene regulation of vegetative development is an ancient feature of seed plants that was present in the last common ancestor of conifers and angiosperms. PMID:9844025

  2. Toward meaningful snag-management guidelines for postfire salvage logging in North American conifer forests.

    PubMed

    Hutto, Richard L

    2006-08-01

    The bird species in western North America that are most restricted to, and therefore most dependent on, severely burned conifer forests during the first years following afire event depend heavily on the abundant standing snags for perch sites, nest sites, and food resources. Thus, it is critical to develop and apply appropriate snag-management guidelines to implement postfire timber harvest operations in the same locations. Unfortunately, existing guidelines designed for green-tree forests cannot be applied to postfire salvage sales because the snag needs of snag-dependent species in burned forests are not at all similar to the snag needs of snag-dependent species in green-tree forests. Birds in burned forests have very different snag-retention needs from those cavity-nesting bird species that have served as the focus for the development of existing snag-management guidelines. Specifically, many postfire specialists use standing dead trees not only for nesting purposes but for feeding purposes as well. Woodpeckers, in particular specialize on wood-boring beetle larvae that are superabundant in fire-killed trees for several years following severe fire. Species such as the Black-backed Woodpecker (Picoides arcticus) are nearly restricted in their habitat distribution to severely burned forests. Moreover existing postfire salvage-logging studies reveal that most postfire specialist species are completely absent from burned forests that have been (even partially) salvage logged. I call for the long-overdue development and use of more meaningful snag-retention guidelines for postfire specialists, and I note that the biology of the most fire-dependent bird species suggests that even a cursory attempt to meet their snag needs would preclude postfire salvage logging in those severely burned conifer forests wherein the maintenance of biological diversity is deemed important. PMID:16922215

  3. De Novo Transcriptome Assembly and Characterization for the Widespread and Stress-Tolerant Conifer Platycladus orientalis.

    PubMed

    Hu, Xian-Ge; Liu, Hui; Jin, YuQing; Sun, Yan-Qiang; Li, Yue; Zhao, Wei; El-Kassaby, Yousry A; Wang, Xiao-Ru; Mao, Jian-Feng

    2016-01-01

    Platycladus orientalis, of the family Cupressaceae, is a widespread conifer throughout China and is extensively used for ecological reforestation, horticulture, and in medicine. Transcriptome assemblies are required for this ecologically important conifer for understanding genes underpinning adaptation and complex traits for breeding programs. To enrich the species' genomic resources, a de novo transcriptome sequencing was performed using Illumina paired-end sequencing. In total, 104,073,506 high quality sequence reads (approximately 10.3 Gbp) were obtained, which were assembled into 228,948 transcripts and 148,867 unigenes that were longer than 200 nt. Quality assessment using CEGMA showed that the transcriptomes obtained were mostly complete for highly conserved core eukaryotic genes. Based on similarity searches with known proteins, 62,938 (42.28% of all unigenes), 42,158 (28.32%), and 23,179 (15.57%) had homologs in the Nr, GO, and KOG databases, 25,625 (17.21%) unigenes were mapped to 322 pathways by BLASTX comparison against the KEGG database and 1,941 unigenes involved in environmental signaling and stress response were identified. We also identified 43 putative terpene synthase (TPS) functional genes loci and compared them with TPSs from other species. Additionally, 5,296 simple sequence repeats (SSRs) were identified in 4,715 unigenes, which were assigned to 142 motif types. This is the first report of a complete transcriptome analysis of P. orientalis. These resources provide a foundation for further studies of adaptation mechanisms and molecular-based breeding programs. PMID:26881995

  4. Seasonal photosynthetic activity in evergreen conifer leaves monitored with spectral reflectance

    NASA Astrophysics Data System (ADS)

    Wong, C. Y.; Gamon, J. A.

    2013-12-01

    Boreal evergreen conifers must maintain photosynthetic systems in environments where temperatures vary greatly across seasons from high temperatures in the summer to freezing levels in the winter. This involves seasonal downregulation and photoprotection during periods of extreme temperatures. To better understand this downregulation, seasonal dynamics of photosynthesis of lodgepole (Pinus contorta D.) and ponderosa pine (Pinus ponderosa D.) were monitored in Edmonton, Canada over two years. Spectral reflectance at the leaf and stand scales was measured weekly and the Photochemical Reflectance Index (PRI), often used as a proxy for chlorophyll and carotenoid pigment levels and photosynthetic light-use efficiency (LUE), was used to track the seasonal dynamics of photosynthetic activity. Additional physiological measurements included leaf pigment content, chlorophyll fluorescence, and gas exchange. All the metrics indicate large seasonal changes in photosynthetic activity, with a sharp transition from winter downregulation to active photosynthesis in the spring and a more gradual fall transition into winter. The PRI was a good indicator of several other variables including seasonally changing photosynthetic activity, chlorophyll fluorescence, photosynthetic LUE, and pigment pool sizes. Over the two-year cycle, PRI was primarily driven by changes in constitutive (chlorophyll:carotenoid) pigment levels correlated with seasonal photosynthetic activity, with a much smaller variation caused by diurnal changes in xanthophyll cycle activity (conversion between violaxanthin & zeaxanthin). Leaf and canopy scale PRI measurements exhibited parallel responses during the winter-spring transition. Together, our findings indicate that evergreen conifers photosynthetic system possesses a remarkable degree of resilience in response to large temperature changes across seasons, and that optical remote sensing can be used to observe the seasonal effects on photosynthesis and

  5. Impact of Conifer Forest Litter on Microwave Emission at L-Band

    NASA Technical Reports Server (NTRS)

    Kurum, Mehmet; O'Neill, Peggy E.; Lang, Roger H.; Cosh, Michael H.; Joseph, Alicia T.; Jackson, Thomas J.

    2011-01-01

    This study reports on the utilization of microwave modeling, together with ground truth, and L-band (1.4-GHz) brightness temperatures to investigate the passive microwave characteristics of a conifer forest floor. The microwave data were acquired over a natural Virginia Pine forest in Maryland by a ground-based microwave active/passive instrument system in 2008/2009. Ground measurements of the tree biophysical parameters and forest floor characteristics were obtained during the field campaign. The test site consisted of medium-sized evergreen conifers with an average height of 12 m and average diameters at breast height of 12.6 cm. The site is a typical pine forest site in that there is a surface layer of loose debris/needles and an organic transition layer above the mineral soil. In an effort to characterize and model the impact of the surface litter layer, an experiment was conducted on a day with wet soil conditions, which involved removal of the surface litter layer from one half of the test site while keeping the other half undisturbed. The observations showed detectable decrease in emissivity for both polarizations after the surface litter layer was removed. A first-order radiative transfer model of the forest stands including the multilayer nature of the forest floor in conjunction with the ground truth data are used to compute forest emission. The model calculations reproduced the major features of the experimental data over the entire duration, which included the effects of surface litter and ground moisture content on overall emission. Both theory and experimental results confirm that the litter layer increases the observed canopy brightness temperature and obscure the soil emission.

  6. De Novo Transcriptome Assembly and Characterization for the Widespread and Stress-Tolerant Conifer Platycladus orientalis

    PubMed Central

    Jin, YuQing; Sun, Yan-Qiang; Li, Yue; Zhao, Wei; El-Kassaby, Yousry A.; Wang, Xiao-Ru; Mao, Jian-Feng

    2016-01-01

    Platycladus orientalis, of the family Cupressaceae, is a widespread conifer throughout China and is extensively used for ecological reforestation, horticulture, and in medicine. Transcriptome assemblies are required for this ecologically important conifer for understanding genes underpinning adaptation and complex traits for breeding programs. To enrich the species’ genomic resources, a de novo transcriptome sequencing was performed using Illumina paired-end sequencing. In total, 104,073,506 high quality sequence reads (approximately 10.3 Gbp) were obtained, which were assembled into 228,948 transcripts and 148,867 unigenes that were longer than 200 nt. Quality assessment using CEGMA showed that the transcriptomes obtained were mostly complete for highly conserved core eukaryotic genes. Based on similarity searches with known proteins, 62,938 (42.28% of all unigenes), 42,158 (28.32%), and 23,179 (15.57%) had homologs in the Nr, GO, and KOG databases, 25,625 (17.21%) unigenes were mapped to 322 pathways by BLASTX comparison against the KEGG database and 1,941 unigenes involved in environmental signaling and stress response were identified. We also identified 43 putative terpene synthase (TPS) functional genes loci and compared them with TPSs from other species. Additionally, 5,296 simple sequence repeats (SSRs) were identified in 4,715 unigenes, which were assigned to 142 motif types. This is the first report of a complete transcriptome analysis of P. orientalis. These resources provide a foundation for further studies of adaptation mechanisms and molecular-based breeding programs. PMID:26881995

  7. Climate Effects on Soil Carbon Sequestration in a Grass, Oak and Conifer Ecosystem of California

    NASA Astrophysics Data System (ADS)

    Pittiglio, S. L.; Zasoski, R.

    2007-12-01

    Dissolved organic matter (DOM) leaching from decomposing detritus accumulated above mineral soils is an important carbon (C) and nitrogen (N) flux that influences biogeochemical processes, C sequestration and the health of individual ecosystems. Previous studies have shown that the main process controlling DOM mobility in soils is sorption in the mineral horizons that adds to stabilized organic matter pools. The objective of this study was to determine the effect of temperature and incubation time on DOC and DON biodegradation and sorption in the mineral soil. Surface litter from a grass, oak and a conifer site were leached with deionized water for 5, 15 or 96 hours at 4, 20 or 30oC. The resulting DOM solutions were characterized using 13C NMR, XAD-8 resin and UV-vis spectroscopy. The biodegradable fraction (BDOC) of these solutions was quantified using inoculum from A horizon soils. The DOM solutions were also used in sorption experiments on A horizon soils. Supernatant from the A horizon sorption experiment was then used in a sorption experiment on Bt horizon soils and analyzed for BDOC using Bt horizon inoculum. The ability of the soils to adsorb DOC increased with increasing aromaticity in the DOC solution. Therefore, conifer DOM exhibited greater sorption than oak and grass DOM due to higher aromaticity. In all horizons, we observed net release of indigenous OM when OM-free solution was added. Net release of OM was greatest from the soils from the pine site, which had the greatest OM content among the soils we studied. ***Results still pending***

  8. Bat Response to Differing Fire Severity in Mixed-Conifer Forest California, USA

    PubMed Central

    Heady, Paul A.; Hayes, John P.; Frick, Winifred F.

    2013-01-01

    Wildlife response to natural disturbances such as fire is of conservation concern to managers, policy makers, and scientists, yet information is scant beyond a few well-studied groups (e.g., birds, small mammals). We examined the effects of wildfire severity on bats, a taxon of high conservation concern, at both the stand (<1 ha) and landscape scale in response to the 2002 McNally fire in the Sierra Nevada region of California, USA. One year after fire, we conducted surveys of echolocation activity at 14 survey locations, stratified in riparian and upland habitat, in mixed-conifer forest habitats spanning three levels of burn severity: unburned, moderate, and high. Bat activity in burned areas was either equivalent or higher than in unburned stands for all six phonic groups measured, with four groups having significantly greater activity in at least one burn severity level. Evidence of differentiation between fire severities was observed with some Myotis species having higher levels of activity in stands of high-severity burn. Larger-bodied bats, typically adapted to more open habitat, showed no response to fire. We found differential use of riparian and upland habitats among the phonic groups, yet no interaction of habitat type by fire severity was found. Extent of high-severity fire damage in the landscape had no effect on activity of bats in unburned sites suggesting no landscape effect of fire on foraging site selection and emphasizing stand-scale conditions driving bat activity. Results from this fire in mixed-conifer forests of California suggest that bats are resilient to landscape-scale fire and that some species are preferentially selecting burned areas for foraging, perhaps facilitated by reduced clutter and increased post-fire availability of prey and roosts. PMID:23483936

  9. Antioxidant Activity of Leaves and Fruits of Cultivated Conifers in Iran

    PubMed Central

    Emami, Sayed Ahmad; Shahani, Ali; Hassanzadeh Khayyat, Mohammad

    2013-01-01

    Background Use of antioxidants is a means of reducing rancidity of fats and oils in food stuffs. The commercial synthetic antioxidants in food industry have been suspected to cause negative health effects. Therefore as alternatives, there is a strong need in finding new effective and safe antioxidants from natural sources to prevent deterioration of foods, drugs and cosmetics. Objectives In order to investigate the antioxidant activity from natural sources as alternatives of commercial antioxidants, the antioxidant activity of the extracts of leaves and fruits of six different species of Iranian common conifers: Cupressus arizonica, Pinus halepensis, Pinus nigra, Pinus brutia var. elderica, Pinus wallichiana and Cedrus deodara were investigated in the current study. Materials and Methods The leaves and fruits of these plants were collected from different areas of the country. Methanol extracts of leaves and fruits of Iranian common conifers (six species) were prepared. Antioxidant activity of the samples was measured using ferric thiocyante (FTC) and thiobarbituric acid (TBA) tests. Results The results of the study, using the two methods, showed that all methanol extracts of leaves and fruits of the six species possessed antioxidant activity. The antioxidant activity of the samples was compared with the antioxidant activities of butylatedhydroxytoluene (BHT), as a synthetic antioxidant and α-tocopherol as a natural antioxidant. Methanol extractions of Pinus spp. leaves and fruits showed the highest antioxidant activity (quite higher than α- tocopherol). Among the extracts examined, the leaves of P. halpensis methanol extract showed the lowest activity. Conclusions At this stage it can be concluded that methanol extracts of these plants can be considered as strong antioxidant agents. However more investigation is necessary in order to evaluate the antioxidant activity of the components separate from each extracted sample using several different antioxidant methods

  10. Remote sensing of fire severity: linking post-fire reflectance data with physiological responses in two western conifer species

    NASA Astrophysics Data System (ADS)

    Sparks, A. M.; Smith, A. M.; Kolden, C.; Apostol, K. G.; Boschetti, L.

    2014-12-01

    Fire is a common disturbance in forested ecosystems in the western U.S. and can be responsible for long-term impacts on vegetation and soil. An improved understanding of how ecosystems recover after fire is necessary so that land managers can plan for and mitigate the effects of these disturbances. Although several studies have attempted to link fire intensity with severity, direct links between spectral indices of severity and key physiological changes in vegetation are not well understood. We conducted an assessment of how two western conifer species respond to four fire radiative energy treatments, with spectra acquired pre- and up to a month post-burn. After transforming the spectral data into Landsat 8 equivalent reflectance, burn severity indices commonly used in the remote sensing community were compared to concurrent physiological measurements including gas exchange and photosynthetic rate. Preliminary results indicate significant relationships between several fire severity indices and physiological responses measured in the conifer seedlings.

  11. Black-backed woodpecker habitat suitability mapping using conifer snag basal area estimated from airborne laser scanning

    NASA Astrophysics Data System (ADS)

    Casas Planes, Á.; Garcia, M.; Siegel, R.; Koltunov, A.; Ramirez, C.; Ustin, S.

    2015-12-01

    Occupancy and habitat suitability models for snag-dependent wildlife species are commonly defined as a function of snag basal area. Although critical for predicting or assessing habitat suitability, spatially distributed estimates of snag basal area are not generally available across landscapes at spatial scales relevant for conservation planning. This study evaluates the use of airborne laser scanning (ALS) to 1) identify individual conifer snags and map their basal area across a recently burned forest, and 2) map habitat suitability for a wildlife species known to be dependent on snag basal area, specifically the black-backed woodpecker (Picoides arcticus). This study focuses on the Rim Fire, a megafire that took place in 2013 in the Sierra Nevada Mountains of California, creating large patches of medium- and high-severity burned forest. We use forest inventory plots, single-tree ALS-derived metrics and Gaussian processes classification and regression to identify conifer snags and estimate their stem diameter and basal area. Then, we use the results to map habitat suitability for the black-backed woodpecker using thresholds for conifer basal area from a previously published habitat suitability model. Local maxima detection and watershed segmentation algorithms resulted in 75% detection of trees with stem diameter larger than 30 cm. Snags are identified with an overall accuracy of 91.8 % and conifer snags are identified with an overall accuracy of 84.8 %. Finally, Gaussian process regression reliably estimated stem diameter (R2 = 0.8) using height and crown area. This work provides a fast and efficient methodology to characterize the extent of a burned forest at the tree level and a critical tool for early wildlife assessment in post-fire forest management and biodiversity conservation.

  12. The gut microbiota of the pine weevil is similar across Europe and resembles that of other conifer-feeding beetles.

    PubMed

    Berasategui, Aileen; Axelsson, Karolin; Nordlander, Göran; Schmidt, Axel; Borg-Karlson, Anna-Karin; Gershenzon, Jonathan; Terenius, Olle; Kaltenpoth, Martin

    2016-08-01

    The pine weevil (Hylobius abietis, Coleoptera: Curculionidae) is an important pest of conifer seedlings in Europe. Despite its economic importance, little is known about the composition of its gut microbial community and the role it plays in mediating the weevil's ability to utilize conifers as a food source. Here, we characterized the gut bacterial communities of different populations of H. abietis across Europe and compared them to those of other beetles that occupy similar ecological niches. We demonstrate that the microbial community of H. abietis is similar at higher taxonomic levels (family and genus) across locations in Europe, with Wolbachia as the dominant microbe, followed by Enterobacteria and Firmicutes. Despite this similarity, we observed consistent differences between countries and locations, but not sexes. Our meta-analysis demonstrates that the gut bacterial community of the pine weevil is very similar to that of bark beetles that also exploit conifers as a food source. The Enterobacteriaceae symbionts of both host taxa are especially closely related phylogenetically. Conversely, the microbiota of H. abietis is distinct from that of closely related weevils feeding on nonconifer food sources, suggesting that the microbial community of the pine weevil is determined by the environment and may be relevant to host ecology. Furthermore, several H. abietis-associated members of the Enterobacteriaceae family are known to contain genes involved in terpenoid degradation. As such, we hypothesize that the gut microbial community is important for the utilization of conifer seedlings as a food source, either through the detoxification of plant secondary metabolites or through the supplementation of essential nutrients. PMID:27199034

  13. Regeneration patterns of a long-lived dominant conifer and the effects of logging in southern South America

    NASA Astrophysics Data System (ADS)

    Souza, Alexandre F.; Forgiarini, Cristiane; Longhi, Solon Jonas; Brena, Doádi Antônio

    2008-09-01

    The regeneration ecology of the long-lived conifer Araucaria angustifolia was studied in São Francisco de Paula, southern Brazil. We evaluated the expectations that: (i) size distribution of populations of Araucaria angustifolia, a large conifer that dominates southern Brazil's mixed forests, is left-skewed in old-growth forests but right-skewed in logged forests, indicating chronic recruitment failure in the first kind of habitat as well as a recruitment pulse in the second; (ii) seedlings and juveniles are found under more open-canopy microsites than would be expected by chance; and (iii) reproductive females would be aggregated at the coarse spatial scales in which past massive recruitment events are expected to have occurred, and young plants would be spatially associated with females due to the prevalence of vertebrate and large-bird seed dispersers. Data were collected in the threatened mixed conifer-hardwood forests in southern Brazil in ten 1-ha plots and one 0.25-ha plot that was hit by a small tornado in 2003. Five of these plots corresponded to unlogged old-growth forests, three to forests where A. angustifolia was selectively logged ca. 60 years ago and two to forests selectively logged ca. 20 years ago. For the first time, ontogenetic life stages of this important conifer are identified and described. The first and second expectations were fulfilled, and the third was partially fulfilled, since seedlings and juveniles were hardly ever associated with reproductive females. These results confirm the generalization of the current conceptual model of emergent long-lived pioneer regeneration to Araucaria angustifolia and associate its regeneration niche to the occupation of large-scale disturbances with long return times.

  14. Local adaptation to temperature and precipitation in naturally fragmented populations of Cephalotaxus oliveri, an endangered conifer endemic to China

    PubMed Central

    Wang, Ting; Wang, Zhen; Xia, Fan; Su, Yingjuan

    2016-01-01

    Cephalotaxus oliveri is an endangered tertiary relict conifer endemic to China. The species survives in a wide range from west to east with heterogeneous climatic conditions. Precipitation and temperature are main restrictive factors for distribution of C. oliveri. In order to comprehend the mechanism of adaptive evolution to climate variation, we employed ISSR markers to detect adaptive evolution loci, to identify the association between variation in temperature and precipitation and adaptive loci, and to investigate the genetic structure for 22 C. oliveri natural populations. In total, 14 outlier loci were identified, of which five were associated with temperature and precipitation. Among outlier loci, linkage disequilibrium (LD) was high (42.86%), which also provided strong evidence for selection. In addition, C. oliveri possessed high genetic variation (93.31%) and population differentiation, which may provide raw material to evolution and accelerate local adaptation, respectively. Ecological niche modeling showed that global warming will cause a shift for populations of C. oliveri from south to north with a shrinkage of southern areas. Our results contribute to understand the potential response of conifers to climatic changes, and provide new insights for conifer resource management and conservation strategies. PMID:27113970

  15. Local adaptation to temperature and precipitation in naturally fragmented populations of Cephalotaxus oliveri, an endangered conifer endemic to China.

    PubMed

    Wang, Ting; Wang, Zhen; Xia, Fan; Su, Yingjuan

    2016-01-01

    Cephalotaxus oliveri is an endangered tertiary relict conifer endemic to China. The species survives in a wide range from west to east with heterogeneous climatic conditions. Precipitation and temperature are main restrictive factors for distribution of C. oliveri. In order to comprehend the mechanism of adaptive evolution to climate variation, we employed ISSR markers to detect adaptive evolution loci, to identify the association between variation in temperature and precipitation and adaptive loci, and to investigate the genetic structure for 22 C. oliveri natural populations. In total, 14 outlier loci were identified, of which five were associated with temperature and precipitation. Among outlier loci, linkage disequilibrium (LD) was high (42.86%), which also provided strong evidence for selection. In addition, C. oliveri possessed high genetic variation (93.31%) and population differentiation, which may provide raw material to evolution and accelerate local adaptation, respectively. Ecological niche modeling showed that global warming will cause a shift for populations of C. oliveri from south to north with a shrinkage of southern areas. Our results contribute to understand the potential response of conifers to climatic changes, and provide new insights for conifer resource management and conservation strategies. PMID:27113970

  16. Molecular Aspects of Conifer Zygotic and Somatic Embryo Development: A Review of Genome-Wide Approaches and Recent Insights.

    PubMed

    Trontin, Jean-François; Klimaszewska, Krystyna; Morel, Alexandre; Hargreaves, Catherine; Lelu-Walter, Marie-Anne

    2016-01-01

    Genome-wide profiling (transcriptomics, proteomics, metabolomics) is providing unprecedented opportunities to unravel the complexity of coordinated gene expression during embryo development in trees, especially conifer species harboring "giga-genome." This knowledge should be critical for the efficient delivery of improved varieties through seeds and/or somatic embryos in fluctuating markets and to cope with climate change. We reviewed "omics" as well as targeted gene expression studies during both somatic and zygotic embryo development in conifers and tentatively puzzled over the critical processes and genes involved at the specific developmental and transition stages. Current limitations to the interpretation of these large datasets are going to be lifted through the ongoing development of comprehensive genome resources in conifers. Nevertheless omics already confirmed that master regulators (e.g., transcription and epigenetic factors) play central roles. As in model angiosperms, the molecular regulation from early to late embryogenesis may mainly arise from spatiotemporal modulation of auxin-, gibberellin-, and abscisic acid-mediated responses. Omics also showed the potential for the development of tools to assess the progress of embryo development or to build genotype-independent, predictive models of embryogenesis-specific characteristics. PMID:26619863

  17. The Ty1-copia LTR retroelement family PARTC is highly conserved in conifers over 200 MY of evolution.

    PubMed

    Zuccolo, Andrea; Scofield, Douglas G; De Paoli, Emanuele; Morgante, Michele

    2015-08-15

    Long Terminal Repeat retroelements (LTR-RTs) are a major component of many plant genomes. Although well studied and described in angiosperms, their features and dynamics are poorly understood in gymnosperms. Representative complete copies of a Ty1-copia element isolate in Picea abies and named PARTC were identified in six other conifer species (Picea glauca, Pinus sylvestris, Pinus taeda, Abies sibirica, Taxus baccata and Juniperus communis) covering more than 200 million years of evolution. Here we characterized the structure of this element, assessed its abundance across conifers, studied the modes and timing of its amplification, and evaluated the degree of conservation of its extant copies at nucleotide level over distant species. We demonstrated that the element is ancient, abundant, widespread and its paralogous copies are present in the genera Picea, Pinus and Abies as an LTR-RT family. The amplification leading to the extant copies of PARTC occurred over long evolutionary times spanning 10s of MY and mostly took place after the speciation of the conifers analyzed. The level of conservation of PARTC is striking and may be explained by low substitution rates and limited removal mechanisms for LTR-RTs. These PARTC features and dynamics are representative of a more general scenario for LTR-RTs in gymnosperms quite different from that characterizing the vast majority of LTR-RT elements in angiosperms. PMID:25982862

  18. Parallel δ 13C and Conifer Physiognomic Trends Across the Triassic-Jurassic Boundary

    NASA Astrophysics Data System (ADS)

    Whiteside, J. H.; Olsen, P. E.; Sambrotto, R. N.; Cornet, B.

    2003-12-01

    The Triassic-Jurassic mass extinction event ( ˜200 Ma) had a profound effect on biotic evolution, and herein we describe trends in cheirolepidaceous conifer leaf physiognomy from the Pangean tropics (present northeastern USA) that at least broadly parallel a negative δ 13C excursion recorded in the same strata. The physiognomic changes appear at an abrupt (<10 ky) negative carbon isotope excursion (1) synchronous with a previously described palynological extinction level, fern spike, and Ir anomaly (2), and continue through a prolonged negative excursion, lasting 900 ky (through all three CAMP basaltic extrusive events), encompassing most of the Hettangian age. The physiognomic changes seen in the cheirolepidaceous conifer leafy shoot forms Brachyphyllum and Pagiophyllum through the δ 13C excursions include primarily the development of microphyllous leaves with thickened cuticle and sunken papillate stomata (3). These floral modifications are consistent with intense thermal stress plausibly due to very high atmospheric CO2 concentrations and corroborate McElwain's (4) thermal damage hypothesis for the Triassic-Jurassic transition that was originally based on different plant taxa from the higher Pangean latitudes in present Greenland and Sweden. Subsequently, a 2- to 5-fold increase in the area of leafy shoots in strata of latest Hettangian age suggest a return to lower thermal stress levels perhaps due to lower CO2, despite the fact that eastern North America continued to drift into more arid latitudes. The floral physiognomic changes associated with the negative δ 13C excursion and likely very elevated CO2 levels is in many ways a microcosm of the Mesozoic in which the dominance of cheiroleps apparently overlaps with the highest CO2 levels of the Mesozoic (5). References. (1) Whiteside JH, Olsen PE, Sambrotto RN. 2003. Geol. Soc. Amer. Abst. Prog. (in press). (2) Olsen PE et al., Science 296:1305-1307 (3) Cornet B. 1989. in Olsen PE, Schlische RW, Gore PJW

  19. Improvements of palaeochemotaxonomy as a palaeofloristic proxy using artificial maturation of extant conifers

    NASA Astrophysics Data System (ADS)

    Lu, Y.; Hautevelle, Y.; Michels, R.

    2012-04-01

    Numerous studies of the molecular composition of terrestrial plants show that many organic compounds have a chemotaxonomic value. This means that these biomolecules are synthesized by a restricted number of taxa and can be used as specific biomarkers. Some of these biomolecules, like terpenoids, are poorly altered and preserved in sediments where they are then transformed into geomolecules. Thus, the distribution of vascular plant biomarkers preserved in sedimentary rocks could serve as proxy for terrestrial palaeoflora assessment. Furthermore, as flora association may reflect climatic conditions, vascular plant biomarkers may also serve as palaeoclimatic proxies. Botanical palaeochemotaxonomy presents some specific attributes compared to palaeobotany and palynology in the reconstruction of palaeofloristic and palaeoclimatic evolutions through geological time : 1) plant biomarkers are more widespread in the stratigraphic record than well preserved plant macrofossils, 2) on the contrary to palynomorphs they can be directly linked to specific plant taxa, 3) biomarkers are readily analyzed by usual organic geochemistry procedures. However, our knowledge in botanical palaeochemotaxonomy, allowing to link geomolecular markers to botanical taxa, is still incomplete. Difficulties are related to 1) extrapolation of information from extant plants to their fossil counterparts, 2) the scarcity of well preserved and identifiable fossils. In order to help fill these gaps, we use an experimental method based on artificial maturation of extant plants by confined pyrolysis (*Hautevelle et al. 2006). This technique allows to simulate conversion of biomolecules into diagenetized compounds. The objective of this study is to clarify the molecular signature of fossil conifer families. 69 species belonging to seven families of extant conifers (Araucariaceae, Cupressaceae, Pinaceae, Podocarpaceae, Sciadopityaceae, Taxaceae and Taxodiaceae) were pyrolyzed. Extractable organic matter is

  20. Interactions of tissue and fertilizer nitrogen on decomposition dynamics of lignin-rich conifer litter

    USGS Publications Warehouse

    Perakis, Steven S.; Matkins, Joselin J.; Hibbs, David E.

    2012-01-01

    High tissue nitrogen (N) accelerates decomposition of high-quality leaf litter in the early phases of mass loss, but the influence of initial tissue N variation on the decomposition of lignin-rich litter is less resolved. Because environmental changes such as atmospheric N deposition and elevated CO2 can alter tissue N levels within species more rapidly than they alter the species composition of ecosystems, it is important to consider how within-species variation in tissue N may shape litter decomposition and associated N dynamics. Douglas-fir (Pseudotsuga menziesii ) is a widespread lignin-rich conifer that dominates forests of high carbon (C) storage across western North America, and displays wide variation in tissue and litter N that reflects landscape variation in soil N. We collected eight unique Douglas-fir litter sources that spanned a two-fold range in initial N concentrations (0.67–1.31%) with a narrow range of lignin (29–35%), and examined relationships between initial litter chemistry, decomposition, and N dynamics in both ambient and N fertilized plots at four sites over 3 yr. High initial litter N slowed decomposition rates in both early (0.67 yr) and late (3 yr) stages in unfertilized plots. Applications of N fertilizer to litters accelerated early-stage decomposition, but slowed late-stage decomposition, and most strongly affected low-N litters, which equalized decomposition rates across litters regardless of initial N concentrations. Decomposition of N-fertilized litters correlated positively with initial litter manganese (Mn) concentrations, with litter Mn variation reflecting faster turnover of canopy foliage in high N sites, producing younger litterfall with high N and low Mn. Although both internal and external N inhibited decomposition at 3 yr, most litters exhibited net N immobilization, with strongest immobilization in low-N litter and in N-fertilized plots. Our observation for lignin-rich litter that high initial N can slow decomposition

  1. Quantifying cambial activity of high-elevation conifers in the Great Basin, Nevada, USA

    NASA Astrophysics Data System (ADS)

    Ziaco, E.; Biondi, F.; Rossi, S.; Deslauriers, A.

    2013-12-01

    Understanding the physiological mechanisms that control the formation of tree rings provides the necessary biological basis for developing dendroclimatic reconstructions and dendroecological histories. Studies of wood formation in the Great Basin are now being conducted in connection with the Nevada Climate-ecohydrological Assessment Network (NevCAN), a recently established transect of valley-to-mountaintop instrumented stations in the Snake and Sheep Ranges of the Great Basin. Automated sensors record meteorological, soil, and vegetational variables at these sites, providing unique opportunities for ecosystem science, and are being used to investigate the ecological implications of xylogenesis. We present here an initial study based on microcores collected during summer 2013 from mountain and subalpine conifers (including Great Basin bristlecone pine, Pinus longaeva) growing on the west slope of Mt. Washington. Samples were taken from the mountain west (SM; 2810 m elevation) and the subalpine west (SS, 3355 m elevation) NevCAN sites on June 16th and 27th, 2013. The SS site was further subdivided in a high (SSH) and a low (SSL) group of trees, separated by about 10 m in elevation. Microscopic analyses showed the effect of elevation on cambial activity, as annual ring formation was more advanced at the lower (mountain) site compared to the higher (subalpine) one. At all sites cambium size showed little variations between the two sampling dates. The number of xylem cells in the radial enlargement phase decreased between the two sampling dates at the mountain site but increased at the subalpine site, confirming a delayed formation of wood at the higher elevations. Despite relatively high within-site variability, a general trend of increasing number of cells in the lignification phase was found at all sites. Mature cells were present only at the mountain site on June 27th. Spatial differences in the xylem formation process emerged at the species level and, within

  2. Effects of fire and harvest on soil respiration in a mixed-conifer forest

    NASA Astrophysics Data System (ADS)

    Dore, S.; Fry, D.; Stephens, S.

    2012-12-01

    Forest ecosystems, and in particular forest soils, constitute a major reservoir of global terrestrial carbon and soil respiration is the largest carbon loss from these ecosystems. Disturbances can affect soil respiration, causing physical and chemical changes in soil characteristics, adding both, above and belowground necromass, and changing microclimatic conditions. This could signify an important and long term carbon loss, even higher than the carbon directly removed by the harvest or during fire. These losses need to be included when quantifying the net carbon balance of forests. We measured the impacts of prescribed fire and clear-cut tree harvest on soil respiration in a mixed-conifer forest in the central Sierra Nevada. The prescribed fire treatment was implemented in 2002 and again in 2009. Four areas were clear-cut harvested in 2010. In half of these units the soils were mechanically ripped to reduce soil compaction, a common practice in the Sierra Nevada industrial forest lands. Soil respiration was measured using two different techniques: the chamber method and the gradient method. Soil respiration was affected by treatments in two different ways. First, treatments changed soil temperature and soil water content, the main abiotic factors controlling soil respiration. The clear cut and the prescribed fire treatments created higher maximum soil temperature and more available soil water content, environmental conditions favorable to soil respiration. However, the loss of trees and thus fine roots, and the decrease of soil litter and organic layers, because of their combustion or removal, had a negative effect on soil respiration that was stronger than the positive effect due to more favorable post disturbance environmental conditions. Soil respiration rates remained steady 1-2 years after treatments and no increase or spikes of soil respiration were measured after treatments. Continuous measurements of CO2 concentrations at different soil depths improved our

  3. Intraspecific variation in the use of water sources by the circum-Mediterranean conifer Pinus halepensis.

    PubMed

    Voltas, Jordi; Lucabaugh, Devon; Chambel, Maria Regina; Ferrio, Juan Pedro

    2015-12-01

    The relevance of interspecific variation in the use of plant water sources has been recognized in drought-prone environments. By contrast, the characterization of intraspecific differences in water uptake patterns remains elusive, although preferential access to particular soil layers may be an important adaptive response for species along aridity gradients. Stable water isotopes were analysed in soil and xylem samples of 56 populations of the drought-avoidant conifer Pinus halepensis grown in a common garden test. We found that most populations reverted to deep soil layers as the main plant water source during seasonal summer droughts. More specifically, we detected a clear geographical differentiation among populations in water uptake patterns even under relatively mild drought conditions (early autumn), with populations originating from more arid regions taking up more water from deep soil layers. However, the preferential access to deep soil water was largely independent of aboveground growth. Our findings highlight the high plasticity and adaptive relevance of the differential access to soil water pools among Aleppo pine populations. The observed ecotypic patterns point to the adaptive relevance of resource investment in deep roots as a strategy towards securing a source of water in dry environments for P. halepensis. PMID:26193768

  4. Determination of the molecular signature of fossil conifers by experimental palaeochemotaxonomy - Part 1: The Araucariaceae family

    NASA Astrophysics Data System (ADS)

    Lu, Y.; Hautevelle, Y.; Michels, R.

    2013-03-01

    Twelve species of the conifer family Araucariaceae, including Araucaria (6 species), Agathis (3 species) and Wollemia (1 species) genera, were submitted to artificial maturation by confined pyrolysis. The aim of these experiments is to transform the biomolecules synthesized by these species into their homologous geomolecules in laboratory conditions. Determination of the diagenetic molecular signatures of Araucariaceae through experimentation on extant representatives allows us to complete our knowledge in botanical palaeochemotaxonomy. Such knowledge is relevant to palaeoenvironmental, environmental and archaeology purposes. All artificially diagenetic species of Araucariaceae are firstly characterized by a predominance of saturated tetracyclic diterpenoids including ent-beyerane, phyllocladanes and ent-kauranes. Moreover, Araucaria genus shows a high relative abundance of bicyclic sesquiterpenoids, particularly the cadalane-type compounds accompanied by those of eudesmane and bisabolane types as well as chamazulene and pentamethyl-dihydroindenes. Diterpenoids are of labdane, isopimarane and abietane types (essentially derived from abietanoic acids) as well as isohexyl alkylaromatic hydrocarbons. Compared to the tetracyclic diterpenoids, these compounds show a relatively lower abundance, reaching trace levels in the case of saturated abietanes. Distributions of sesquiterpenoids and diterpenoids of Agathis show some similarities to that of Araucaria, with the exception of one species, in which the tetracyclic compounds are absent and the abietane type (essentially derived from abietanoic acids) predominant. High similarities between the Wollemia and Araucaria genera are observed. Both are characterized by some high relative abundance of tetracyclic compounds with no predominance of other specific diterpenoids.

  5. Predicting Impacts of Future Climate Change on the Distribution of the Widespread Conifer Platycladus orientalis.

    PubMed

    Hu, Xian-Ge; Jin, Yuqing; Wang, Xiao-Ru; Mao, Jian-Feng; Li, Yue

    2015-01-01

    Chinese thuja (Platycladus orientalis) has a wide but fragmented distribution in China. It is an important conifer tree in reforestation and plays important roles in ecological restoration in the arid mountains of northern China. Based on high-resolution environmental data for current and future scenarios, we modeled the present and future suitable habitat for P. orientalis, evaluated the importance of environmental factors in shaping the species' distribution, and identified regions of high risk under climate change scenarios. The niche models showed that P. orientalis has suitable habitat of ca. 4.2×106 km2 across most of eastern China and identified annual temperature, monthly minimum and maximum ultraviolet-B radiation and wet-day frequency as the critical factors shaping habitat availability for P. orientalis. Under the low concentration greenhouse gas emissions scenario, the range of the species may increase as global warming intensifies; however, under the higher concentrations of emissions scenario, we predicted a slight expansion followed by contraction in distribution. Overall, the range shift to higher latitudes and elevations would become gradually more significant. The information gained from this study should be an useful reference for implementing long-term conservation and management strategies for the species. PMID:26132163

  6. Remote sensing aided procedure for conifer growth modeling in the northeastern Sierra Nevada

    NASA Technical Reports Server (NTRS)

    Smith, H. G.; Khorram, S.

    1981-01-01

    The objective of this study was to use remotely-sensed data with ground-acquired data for preparing inputs to a mathematical model for generation of a potential conifer growth map of a wildland area. The study area, jointly selected by the resource managers of the U.S. Forest Service at the Plumas National Forest and researchers, covers approximately 500 sq km in the northeastern scrapment of Sierra Nevada. The approach involved a computerized databank based on both remotely-sensed and ground-acquired data. The remotely-sensed data included Landsat Multispectral Scanner (MSS) data, NOAA-5 Very High Resolution Radiometer (VHRR) data and U-2 Color infrared photography. The ground data included U.S. Geological Survey (USGS) topographic maps, Defense Mapping Agency (DMA)/USGS digital terrain data, soil maps, and vegetation data. The results included a series of maps for the final product as well as the intermediate products. The intermediate products were potential evapotranspiration, aspect, and soil plant available water.

  7. Evaluation of secretome of highly efficient lignocellulolytic Penicillium sp. Dal 5 isolated from rhizosphere of conifers.

    PubMed

    Rai, Rohit; Kaur, Baljit; Singh, Surender; Di Falco, Macros; Tsang, Adrian; Chadha, B S

    2016-09-01

    Penicillium sp. (Dal 5) isolated from rhizosphere of conifers from Dalhousie (Himachal Pradesh, India) was found to be an efficient cellulolytic strain. The culture under shake flask on CWR (cellulose, wheat bran and rice straw) medium produced appreciably higher levels of endoglucanase (35.69U/ml), β-glucosidase (4.20U/ml), cellobiohydrolase (2.86U/ml), FPase (1.2U/ml) and xylanase (115U/ml) compared to other Penicillium strains reported in literature. The mass spectroscopy analysis of Penicillium sp. Dal 5 secretome identified 108 proteins constituting an array of CAZymes including glycosyl hydrolases (GH) belonging to 24 different families, polysaccharide lyases (PL), carbohydrate esterases (CE), lytic polysaccharide mono-oxygenases (LPMO) in addition to swollenin and a variety of carbohydrate binding modules (CBM) indicating an elaborate genetic potential of this strain for hydrolysis of lignocellulosics. Further, the culture extract was evaluated for hydrolysis of alkali treated rice straw, wheat straw, bagasse and corn cob at 10% substrate loading rate. PMID:27341464

  8. Multi-scale predictions of massive conifer mortality due to chronic temperature rise

    USGS Publications Warehouse

    McDowell, Nathan G.; Williams, A.P.; Xu, C.; Pockman, W. T.; Dickman, L. T.; Sevanto, S.; Pangle, R.; Limousin, J.; Plaut, J.J.; Mackay, D.S.; Ogee, J.; Domec, Jean-Christophe; Allen, Craig D.; Fisher, Rosie A.; Jiang, X.; Muss, J.D.; Breshears, D.D.; Rauscher, Sara A.; Koven, C.

    2015-01-01

    Global temperature rise and extremes accompanying drought threaten forests and their associated climatic feedbacks. Our ability to accurately simulate drought-induced forest impacts remains highly uncertain in part owing to our failure to integrate physiological measurements, regional-scale models, and dynamic global vegetation models (DGVMs). Here we show consistent predictions of widespread mortality of needleleaf evergreen trees (NET) within Southwest USA by 2100 using state-of-the-art models evaluated against empirical data sets. Experimentally, dominant Southwest USA NET species died when they fell below predawn water potential (Ψpd) thresholds (April–August mean) beyond which photosynthesis, hydraulic and stomatal conductance, and carbohydrate availability approached zero. The evaluated regional models accurately predicted NET Ψpd, and 91% of predictions (10 out of 11) exceeded mortality thresholds within the twenty-first century due to temperature rise. The independent DGVMs predicted ≥50% loss of Northern Hemisphere NET by 2100, consistent with the NET findings for Southwest USA. Notably, the global models underestimated future mortality within Southwest USA, highlighting that predictions of future mortality within global models may be underestimates. Taken together, the validated regional predictions and the global simulations predict widespread conifer loss in coming decades under projected global warming.

  9. Climate controls on anomalously high productivity in the mixed conifer forests of the Sierra Nevada

    NASA Astrophysics Data System (ADS)

    Kelly, A. E.; Goulden, M. L.

    2009-12-01

    The Mediterranean climate of California’s Sierra Nevada Mountains supports a dense conifer forest that contains some of the largest trees in the world. Well-established ecological relationships, such as the Miami Model, predict relatively low NPPs for these forests (~250 g/m2/yr to 1300 g/m2/yr) due to winter cold limitation and summer drought. However, the observed rates of NPPs are quite high (up to 2000 g/m2/yr), raising the question of what environmental conditions and plant adaptations promote such a high NPP. We hypothesize that the trees in these forests are neither as cold-limited nor water-limited as surface weather station data suggest. Eddy covariance observations at the top of a 55 m tall micrometeorological tower located at 2050 m elevation indicate daytime CO2 uptake continues year round, and is not limited by winter cold or summer drought. Comparisons of temperature measurements on the tower with operational balloon soundings indicate that tree canopies are often in the free troposphere, which buffers the temperatures they experience and moderates winter cold limitation and summer evapotranspiration.

  10. Capturing spiral radial growth of conifers using the superellipse to model tree-ring geometric shape

    PubMed Central

    Shi, Pei-Jian; Huang, Jian-Guo; Hui, Cang; Grissino-Mayer, Henri D.; Tardif, Jacques C.; Zhai, Li-Hong; Wang, Fu-Sheng; Li, Bai-Lian

    2015-01-01

    Tree-rings are often assumed to approximate a circular shape when estimating forest productivity and carbon dynamics. However, tree rings are rarely, if ever, circular, thereby possibly resulting in under- or over-estimation in forest productivity and carbon sequestration. Given the crucial role played by tree ring data in assessing forest productivity and carbon storage within a context of global change, it is particularly important that mathematical models adequately render cross-sectional area increment derived from tree rings. We modeled the geometric shape of tree rings using the superellipse equation and checked its validation based on the theoretical simulation and six actual cross sections collected from three conifers. We found that the superellipse better describes the geometric shape of tree rings than the circle commonly used. We showed that a spiral growth trend exists on the radial section over time, which might be closely related to spiral grain along the longitudinal axis. The superellipse generally had higher accuracy than the circle in predicting the basal area increment, resulting in an improved estimate for the basal area. The superellipse may allow better assessing forest productivity and carbon storage in terrestrial forest ecosystems. PMID:26528316

  11. The complete chloroplast genome of Armand pine Pinus armandii, an endemic conifer tree species to China.

    PubMed

    Li, Zhong-Hu; Qian, Zeng-Qiang; Liu, Zhan-Lin; Deng, Tuan-Tuan; Zu, Yu-Meng; Zhao, Peng; Zhao, Gui-Fang

    2016-07-01

    The complete chloroplast genome (cpDNA) sequence of an endemic conifer species, Armand pine Pinus armandii Franch., is determined in this study. The cpDNA was 117,265 bp in length, containing a pair of 475 bp inverted repeat (IR) regions those distinguished in large and small single copy (LSC and SSC) regions of 64,548 and 51,767 bp in length, respectively. The cpDNA contained 114 genes, including 74 protein-coding genes (74 PCG species), 4 ribosomal RNA genes (four rRNA species) and 36 transfer RNA genes (33 tRNA species). Out of these genes, 12 harbor a single intron and most of the genes occurred in a single copy. The overall AT content of the Armand pine cpDNA was 61.2%, while the corresponding values of the LSC, SSC and IR regions were 62.0%, 60.2% and 62.7%, respectively. A phylogenetic analysis revealed that P. armandii chloroplast genome is closely related to that of the P. koraiensis within the genus Pinus. PMID:26024147

  12. Recent growth of conifer species of western North America: Assessing spatial patterns of radial growth trends

    USGS Publications Warehouse

    McKenzie, D.; Hessl, Amy E.; Peterson, D.L.

    2001-01-01

    We explored spatial patterns of low-frequency variability in radial tree growth among western North American conifer species and identified predictors of the variability in these patterns. Using 185 sites from the International Tree-Ring Data Bank, each of which contained 10a??60 raw ring-width series, we rebuilt two chronologies for each site, using two conservative methods designed to retain any low-frequency variability associated with recent environmental change. We used factor analysis to identify regional low-frequency patterns in site chronologies and estimated the slope of the growth trend since 1850 at each site from a combination of linear regression and time-series techniques. This slope was the response variable in a regression-tree model to predict the effects of environmental gradients and species-level differences on growth trends. Growth patterns at 27 sites from the American Southwest were consistent with quasi-periodic patterns of drought. Either 12 or 32 of the 185 sites demonstrated patterns of increasing growth between 1850 and 1980 A.D., depending on the standardization technique used. Pronounced growth increases were associated with high-elevation sites (above 3000 m) and high-latitude sites in maritime climates. Future research focused on these high-elevation and high-latitude sites should address the precise mechanisms responsible for increased 20th century growth.

  13. Long-term effect on some chemical parameter and microbial diversity in a conifer forest soil

    NASA Astrophysics Data System (ADS)

    Iglesias, T.; Iglesias, M.; Francisco-Álvarez, R.; Ramírez, M.; Fernández-Bermejo, M. C.

    2009-04-01

    Soil microbiota are one of the soil components most affected by wildfires. The data from the present study were obtained from a conifer forest soil at Sierra de Gredos (Ávila, central Spain) twenty years after fire of low-to-moderate intensity. A set of soil characteristics indicated the extent to which the spontaneous recovery of the soil is produced as a result of vegetation regrowth. Ten months after fire a strong increase in soil pH, organic C and N, and exchangeable Ca and K, with respect the control soil. Eighteen years after this fire it was observed a decrease of soil organic C and N, whereas other variables such as pH, exchangeable Ca and K were slightly increased with respect to control soil. Is summe a change in soil microbiota was observed due to wildfire, with a decrease in fungi and bacteria population, Also some changes in microbial community was detected, Key words: Forest Fire, soil microbiology, chemical soil properties

  14. Contrasting patterns of nucleotide diversity for four conifers of Alpine European forests

    PubMed Central

    Mosca, Elena; Eckert, Andrew J; Liechty, John D; Wegrzyn, Jill L; La Porta, Nicola; Vendramin, Giovanni G; Neale, David B

    2012-01-01

    A candidate gene approach was used to identify levels of nucleotide diversity and to identify genes departing from neutral expectations in coniferous species of the Alpine European forest. Twelve samples were collected from four species that dominate montane and subalpine forests throughout Europe: Abies alba Mill, Larix decidua Mill, Pinus cembra L., and Pinus mugo Turra. A total of 800 genes, originally resequenced in Pinus taeda L., were resequenced across 12 independent trees for each of the four species. Genes were assigned to two categories, candidate and control, defined through homology-based searches to Arabidopsis. Estimates of nucleotide diversity per site varied greatly between polymorphic candidate genes (range: 0.0004–0.1295) and among species (range: 0.0024–0.0082), but were within the previously established ranges for conifers. Tests of neutrality using stringent significance thresholds, performed under the standard neutral model, revealed one to seven outlier loci for each species. Some of these outliers encode proteins that are involved with plant stress responses and form the basis for further evolutionary enquiries. PMID:23144662

  15. Mega-fire Recovery in Dry Conifer Forests of the Interior West

    NASA Astrophysics Data System (ADS)

    Malone, S. L.; Fornwalt, P.; Chambers, M. E.; Battaglia, M.

    2015-12-01

    Wildfire is a complex landscape process with great uncertainty in whether trends in size and severity are shifting trajectories for ecosystem recovery that are outside of the historical range of variability. Considering that wildfire size and severity is likely to increase into the future with a drier climate, it is important that we understand wildfire effects and ecosystem recovery. To evaluate how ecosystems recover from wildfire we measured spatial patterns in regeneration and mapped tree refugia within mega-fire perimeters (Hayman, Jasper, Bobcat, and Grizzly Gulch) in ponderosa pine (Pinus ponderosa) dominated forest. On average, high severity fire effects accounted for > 15% of burned area and increased with fire size. Areas with high severity fire effects contained 1 - 15% tree refugia cover, compared to 37 - 70% observed in low severity areas . Large high severity patches with low coverage of tree refugia, were more frequent in larger fires and regeneration distances required to initiate forest recovery far exceeded 1.5 canopy height or 200 m, distances where the vast majority of regeneration is likely to arise. Using a recovery model driven by distance, we estimate recovery times between 300 to > 1000 years for these mega-fires. In Western dry conifer forests, large patches of stand replacing fire are likely to lead to uneven aged forest and very long recovery times.

  16. Sea sand disruption method (SSDM) as a valuable tool for isolating essential oil components from conifers.

    PubMed

    Dawidowicz, Andrzej L; Czapczyńska, Natalia B

    2011-11-01

    Essential oils are one of nature's most precious gifts with surprisingly potent and outstanding properties. Coniferous oils, for instance, are nowadays being used extensively to treat or prevent many types of infections, modify immune responses, soothe inflammations, stabilize moods, and to help ease all forms of non-acute pain. Given the broad spectrum of usage of coniferous essential oils, a fast, safe, simple, and efficient sample-preparation method is needed in the estimation procedure of essential oil components in fresh plant material. Generally, the time- and energy-consuming steam distillation (SD) is applied for this purpose. This paper will compare SD, pressurized liquid extraction (PLE), matrix solid-phase dispersion (MSPD), and the sea sand disruption method (SSDM) as isolation techniques to obtain aroma components from Scots pine (Pinus sylvestris), spruce (Picea abies), and Douglas fir (Pseudotsuga menziesii). According to the obtained data, SSDM is the most efficient sample preparation method in determining the essential oil composition of conifers. Moreover, SSDM requires small organic solvent amounts and a short extraction time, which makes it an advantageous alternative procedure for the routine analysis of coniferous oils. The superiority of SSDM over MSPD efficiency is ascertained, as there are no chemical interactions between the plant cell components and the sand. This fact confirms the reliability and efficacy of SSDM for the analysis of volatile oil components. PMID:22083917

  17. A broad survey of hydraulic and mechanical safety in the xylem of conifers

    PubMed Central

    Bouche, Pauline S.; Larter, Maximilien; Domec, Jean-Christophe; Burlett, Régis; Gasson, Peter; Jansen, Steven; Delzon, Sylvain

    2014-01-01

    Drought-induced forest dieback has been widely reported over the last decades, and the evidence for a direct causal link between survival and hydraulic failure (xylem cavitation) is now well known. Because vulnerability to cavitation is intimately linked to the anatomy of the xylem, the main objective of this study was to better understand the xylem anatomical properties associated with cavitation resistance. An extensive data set of cavitation resistance traits and xylem anatomical properties was developed for 115 conifer species, with special attention given to the micro-morphology of bordered pits. The ratio of torus to pit aperture diameter, so-called torus overlap, increased with increasing cavitation resistance, while the flexibility of the margo does not seem to play a role, suggesting that air-seeding is located at the seal between the aspirated torus and pit aperture. Moreover, punctured tori were reported in various Pinaceae species. Species resistant to cavitation had thicker tracheid walls, while their lumen diameter (conduit size) was only slightly reduced, minimizing the impact on hydraulic conductance. The results also demonstrated (i) the existence of an indirect trade-off between hydraulic safety and mechanical strength; and (ii) a consistency between species distribution and xylem anatomy: species with a wide torus overlap and high valve effects are found in arid environments such as the Mediterranean region. PMID:24916072

  18. Scaling of phloem structure and optimality of photoassimilate transport in conifer needles

    PubMed Central

    Ronellenfitsch, Henrik; Liesche, Johannes; Jensen, Kaare H.; Holbrook, N. Michele; Schulz, Alexander; Katifori, Eleni

    2015-01-01

    The phloem vascular system facilitates transport of energy-rich sugar and signalling molecules in plants, thus permitting long-range communication within the organism and growth of non-photosynthesizing organs such as roots and fruits. The flow is driven by osmotic pressure, generated by differences in sugar concentration between distal parts of the plant. The phloem is an intricate distribution system, and many questions about its regulation and structural diversity remain unanswered. Here, we investigate the phloem structure in the simplest possible geometry: a linear leaf, found, for example, in the needles of conifer trees. We measure the phloem structure in four tree species representing a diverse set of habitats and needle sizes, from 1 (Picea omorika) to 35 cm (Pinus palustris). We show that the phloem shares common traits across these four species and find that the size of its conductive elements obeys a power law. We present a minimal model that accounts for these common traits and takes into account the transport strategy and natural constraints. This minimal model predicts a power law phloem distribution consistent with transport energy minimization, suggesting that energetics are more important than translocation speed at the leaf level. PMID:25567645

  19. Predicting Impacts of Future Climate Change on the Distribution of the Widespread Conifer Platycladus orientalis

    PubMed Central

    Hu, Xian-Ge; Jin, Yuqing; Wang, Xiao-Ru; Mao, Jian-Feng; Li, Yue

    2015-01-01

    Chinese thuja (Platycladus orientalis) has a wide but fragmented distribution in China. It is an important conifer tree in reforestation and plays important roles in ecological restoration in the arid mountains of northern China. Based on high-resolution environmental data for current and future scenarios, we modeled the present and future suitable habitat for P. orientalis, evaluated the importance of environmental factors in shaping the species´ distribution, and identified regions of high risk under climate change scenarios. The niche models showed that P. orientalis has suitable habitat of ca. 4.2×106 km2 across most of eastern China and identified annual temperature, monthly minimum and maximum ultraviolet-B radiation and wet-day frequency as the critical factors shaping habitat availability for P. orientalis. Under the low concentration greenhouse gas emissions scenario, the range of the species may increase as global warming intensifies; however, under the higher concentrations of emissions scenario, we predicted a slight expansion followed by contraction in distribution. Overall, the range shift to higher latitudes and elevations would become gradually more significant. The information gained from this study should be an useful reference for implementing long-term conservation and management strategies for the species. PMID:26132163

  20. Scaling of phloem structure and optimality of sugar transport in conifer needles

    NASA Astrophysics Data System (ADS)

    Jensen, Kaare H.; Ronellenfitsch, Henrik; Liesche, Johannes; Holbrook, N. Michele; Schulz, Alexander; Katifori, Eleni

    2015-11-01

    The phloem vascular system facilitates transport of energy-rich sugar and signalling molecules in plants, thus permitting long-range communication within the organism and growth of non-photosynthesizing organs such as roots and fruits. The flow is driven by osmotic pressure, generated by differences in sugar concentration between distal parts of the plant. The phloem is an intricate distribution system, and many questions about its regulation and structural diversity remain unanswered. Here, we investigate the phloem structure in the simplest possible geometry: a linear leaf, found, for example, in the needles of conifer trees. We measure the phloem structure in four tree species representing a diverse set of habitats and needle sizes, from 1 cm (Picea omorika) to 35 cm (Pinus palustris). We show that the phloem shares common traits across these four species and find that the size of its conductive elements obeys a power law. We present a minimal model that accounts for these common traits and takes into account the transport strategy and natural constraints. This minimal model predicts a power law phloem distribution consistent with transport energy minimization, suggesting that energetics are more important than translocation speed at the leaf level.

  1. Histology and cell wall biochemistry of stone cells in the physical defence of conifers against insects.

    PubMed

    Whitehill, Justin G A; Henderson, Hannah; Schuetz, Mathias; Skyba, Oleksandr; Yuen, Macaire Man Saint; King, John; Samuels, A Lacey; Mansfield, Shawn D; Bohlmann, Jörg

    2016-08-01

    Conifers possess an array of physical and chemical defences against stem-boring insects. Stone cells provide a physical defence associated with resistance against bark beetles and weevils. In Sitka spruce (Picea sitchensis), abundance of stone cells in the cortex of apical shoots is positively correlated with resistance to white pine weevil (Pissodes strobi). We identified histological, biochemical and molecular differences in the stone cell phenotype of weevil resistant (R) or susceptible (S) Sitka spruce genotypes. R trees displayed significantly higher quantities of cortical stone cells near the apical shoot node, the primary site for weevil feeding. Lignin, cellulose, xylan and mannan were the most abundant components of stone cell secondary walls, respectively. Lignin composition of stone cells isolated from R trees contained a higher percentage of G-lignin compared with S trees. Transcript profiling revealed higher transcript abundance in the R genotype of coumarate 3-hydroxylase, a key monolignol biosynthetic gene. Developing stone cells in current year apical shoots incorporated fluorescent-tagged monolignol into the secondary cell wall, while mature stone cells of previous year apical shoots did not. Stone cell development is an ephemeral process, and fortification of shoot tips in R trees is an effective strategy against insect feeding. PMID:26474726

  2. Mixed conifer forest mortality and establishment before and after prescribed fire in Sequoia National Park, California

    USGS Publications Warehouse

    Mutch, L.S.; Parsons, D.J.

    1998-01-01

    Pre-and post-burn tree mortality rates, size structure, basal area, and ingrowth were determined for four 1.0 ha mixed conifer forest stands in the Log Creek and Tharp's Creek watersheds of Sequoia National Park. Mean annual mortality between 1986 and 1990 was 0.8% for both watersheds. In the fall of 1990, the Tharp's Creek watershed was treated with a prescribed burn. Between 1991 and 1995, mean annual mortality was 1.4% in the unburned Log Creek watershed and 17.2% in the burned Tharp's Creek watershed. A drought from 1987 to 1992 likely contributed to the mortality increase in the Log Creek watershed. The high mortality in the Tharp's Creek watershed was primarily related to crown scorch from the 1990 fire and was modeled with logistic regression for white fir (Abies concolor [Gord. and Glend.]) and sugar pine (Pinus lambertiana [Dougl.]). From 1989 to 1994, basal area declined an average of 5% per year in the burned Tharp's Creek watershed, compared to average annual increases of less than 1% per year in the unburned Log Creek watershed and in the Tharp's watershed prior to burning. Post-burn size structure was dramatically changed in the Tharp's Creek stands: 75% of trees ???50 cm and 25% of trees >50 cm were killed by the fire.

  3. Incised channel fills containing conifers indicate that seasonally dry vegetation dominated Pennsylvanian tropical lowlands

    USGS Publications Warehouse

    Falcon-Lang, H. J.; Nelson, W.J.; Elrick, S.; Looy, C.V.; Ames, P.R.; DiMichele, W.A.

    2009-01-01

    The idea that the Pennsylvanian tropical lowlands were temporally dominated by rainforest (i.e., the Coal Forest) is deeply ingrained in the literature. Here we challenge two centuries of research by suggesting that this concept is based on a taphonomic artifact, and that seasonally dry vegetation dominated instead. This controversial finding arises from the discovery of a new middle Pennsylvanian (Moscovian) fossil plant assemblage in southeast Illinois, United States. The assemblage, which contains xerophytic walchian conifers, occurs in channels incised into a calcic Vertisol below the Baker Coal. These plants grew on seasonally dry tropical lowlands inferred to have developed during a glacial phase. This xerophytic flora differs markedly from that of the typical clubmoss-dominated Coal Forest developed during deglaciation events. Although preserved only very rarely, we argue that such xerophytic floras were temporally as dominant, and perhaps more dominant, than the iconic Coal Forests, which are overrepresented in the fossil record due to taphonomic megabias. These findings require the iconography of Pennsylvanian tropical lowlands to be redrawn. ?? 2009 Geological Society of America.

  4. The effect of elevation, light and water availability on the growth of Sierran conifer seedlings

    SciTech Connect

    Kern, R.A.; Dale, V.H.; Beauchamp, J.J. Oak Ridge National Lab., TN )

    1994-06-01

    The composition of many plant communities will be altered with global change, and this will depend on individual species' abilities to reproduce and to survive under new climate conditions. Two experiments are underday to test the hypothesis that seedling demography is affected by the relative drought and shade tolerances of seven co-occurring species of Sierran conifers. The first experiment is being conducted at three sites in Sequoia National Park, California, elevations 1600 m, 1900 m and 2200 m. At each site, closed canopy [open quotes]shade[close quotes] plots and open canopy [open quotes]gap[close quotes] plots are being used. Seedling growth of each species is compared between light levels and elevations. The second experiment also measures seedling growth in low and high levels, but with four levels of water availability at one elevation (1900 m). Microenvironmental monitoring (soil and air temperature, relative humidity, radiation, and soil moisture) by surrounding mature trees are also being measured in order to develop a mechanistic model of seedling growth and survival.

  5. Multi-scale predictions of massive conifer mortality due to chronic temperature rise

    NASA Astrophysics Data System (ADS)

    McDowell, N. G.; Williams, A. P.; Xu, C.; Pockman, W. T.; Dickman, L. T.; Sevanto, S.; Pangle, R.; Limousin, J.; Plaut, J.; Mackay, D. S.; Ogee, J.; Domec, J. C.; Allen, C. D.; Fisher, R. A.; Jiang, X.; Muss, J. D.; Breshears, D. D.; Rauscher, S. A.; Koven, C.

    2016-03-01

    Global temperature rise and extremes accompanying drought threaten forests and their associated climatic feedbacks. Our ability to accurately simulate drought-induced forest impacts remains highly uncertain in part owing to our failure to integrate physiological measurements, regional-scale models, and dynamic global vegetation models (DGVMs). Here we show consistent predictions of widespread mortality of needleleaf evergreen trees (NET) within Southwest USA by 2100 using state-of-the-art models evaluated against empirical data sets. Experimentally, dominant Southwest USA NET species died when they fell below predawn water potential (Ψpd) thresholds (April-August mean) beyond which photosynthesis, hydraulic and stomatal conductance, and carbohydrate availability approached zero. The evaluated regional models accurately predicted NET Ψpd, and 91% of predictions (10 out of 11) exceeded mortality thresholds within the twenty-first century due to temperature rise. The independent DGVMs predicted >=50% loss of Northern Hemisphere NET by 2100, consistent with the NET findings for Southwest USA. Notably, the global models underestimated future mortality within Southwest USA, highlighting that predictions of future mortality within global models may be underestimates. Taken together, the validated regional predictions and the global simulations predict widespread conifer loss in coming decades under projected global warming.

  6. Negligible influence of spatial autocorrelation in the assessment of fire effects in a mixed conifer forest

    USGS Publications Warehouse

    van Mantgem, P.J.; Schwilk, D.W.

    2009-01-01

    Fire is an important feature of many forest ecosystems, although the quantification of its effects is compromised by the large scale at which fire occurs and its inherent unpredictability. A recurring problem is the use of subsamples collected within individual burns, potentially resulting in spatially autocorrelated data. Using subsamples from six different fires (and three unburned control areas) we show little evidence for strong spatial autocorrelation either before or after burning for eight measures of forest conditions (both fuels and vegetation). Additionally, including a term for spatially autocorrelated errors provided little improvement for simple linear models contrasting the effects of early versus late season burning. While the effects of spatial autocorrelation should always be examined, it may not always greatly influence assessments of fire effects. If high patch scale variability is common in Sierra Nevada mixed conifer forests, even following more than a century of fire exclusion, treatments designed to encourage further heterogeneity in forest conditions prior to the reintroduction of fire will likely be unnecessary.

  7. Contrasting patterns of nucleotide diversity for four conifers of Alpine European forests.

    PubMed

    Mosca, Elena; Eckert, Andrew J; Liechty, John D; Wegrzyn, Jill L; La Porta, Nicola; Vendramin, Giovanni G; Neale, David B

    2012-11-01

    A candidate gene approach was used to identify levels of nucleotide diversity and to identify genes departing from neutral expectations in coniferous species of the Alpine European forest. Twelve samples were collected from four species that dominate montane and subalpine forests throughout Europe: Abies alba Mill, Larix decidua Mill, Pinus cembra L., and Pinus mugo Turra. A total of 800 genes, originally resequenced in Pinus taeda L., were resequenced across 12 independent trees for each of the four species. Genes were assigned to two categories, candidate and control, defined through homology-based searches to Arabidopsis. Estimates of nucleotide diversity per site varied greatly between polymorphic candidate genes (range: 0.0004-0.1295) and among species (range: 0.0024-0.0082), but were within the previously established ranges for conifers. Tests of neutrality using stringent significance thresholds, performed under the standard neutral model, revealed one to seven outlier loci for each species. Some of these outliers encode proteins that are involved with plant stress responses and form the basis for further evolutionary enquiries. PMID:23144662

  8. Effects of conifer release with glyphosate on summer forage abundance for deer in Maine

    USGS Publications Warehouse

    Vreeland, J.K.; Servello, F.A.; Griffith, B.

    1998-01-01

    Effects of conifer release with glyphosate on summer forage availability for large herbivores in northern forests have received relatively little study. We determined effects of glyphosate treatment of clearcuts on abundance of summer foods for white-tailed deer (Odocoileus virginianus) at 1 and 7-10 years posttreatment. We measured the abundance (percent cover in a 0- to 1.8-m height stratum) of five forage classes for deer (leaves of deciduous trees, leaves of deciduous shrubs, forbs, grasses, ferns) on 12 clearcuts (six treated, six untreated) to determine 1-year effects and on 10 clearcuts (five treated, five untreated) to determine 7- to 10-year effects. Abundance of leaves of deciduous trees was greater on untreated sites (38 versus 11%) at 1 year posttreatment, but the difference was less (18 versus 12%) at 7-10 years posttreatment (age x treatment interaction, P = 0.005). Leaves of deciduous shrubs exhibited a similar pattern. Abundance of forbs was similar (13-14%) at 1 year posttreatment but greater on treated sites (29 versus 15%) at 7-10 years posttreatment (P = 0.03). Grasses and ferns were less abundant than other forage classes. Overall, glyphosate application initially decreased the abundance of leaves of deciduous trees and shrubs used as food in summer, but the longer term positive effects on forb abundance may result in little net change in overall habitat value.

  9. Aberrant Classopollis pollen reveals evidence for unreduced (2n) pollen in the conifer family Cheirolepidiaceae during the Triassic–Jurassic transition

    PubMed Central

    Kürschner, Wolfram M.; Batenburg, Sietske J.; Mander, Luke

    2013-01-01

    Polyploidy (or whole-genome doubling) is a key mechanism for plant speciation leading to new evolutionary lineages. Several lines of evidence show that most species among flowering plants had polyploidy ancestry, but it is virtually unknown for conifers. Here, we study variability in pollen tetrad morphology and the size of the conifer pollen type Classopollis extracted from sediments of the Triassic–Jurassic transition, 200 Ma. Classopollis producing Cheirolepidiaceae were one of the most dominant and diverse groups of conifers during the Mesozoic. We show that aberrant pollen Classopollis tetrads, triads and dyads, and the large variation in pollen size indicates the presence of unreduced (2n) pollen, which is one of the main mechanisms in modern polyploid formation. Polyploid speciation may explain the high variability of growth forms and adaptation of these conifers to different environments and their resistance to extreme growth conditions. We suggest that polyploidy may have also reduced the extinction risk of these conifers during the End-Triassic biotic crisis. PMID:23926159

  10. Aberrant Classopollis pollen reveals evidence for unreduced (2n) pollen in the conifer family Cheirolepidiaceae during the Triassic-Jurassic transition.

    PubMed

    Kürschner, Wolfram M; Batenburg, Sietske J; Mander, Luke

    2013-10-01

    Polyploidy (or whole-genome doubling) is a key mechanism for plant speciation leading to new evolutionary lineages. Several lines of evidence show that most species among flowering plants had polyploidy ancestry, but it is virtually unknown for conifers. Here, we study variability in pollen tetrad morphology and the size of the conifer pollen type Classopollis extracted from sediments of the Triassic-Jurassic transition, 200 Ma. Classopollis producing Cheirolepidiaceae were one of the most dominant and diverse groups of conifers during the Mesozoic. We show that aberrant pollen Classopollis tetrads, triads and dyads, and the large variation in pollen size indicates the presence of unreduced (2n) pollen, which is one of the main mechanisms in modern polyploid formation. Polyploid speciation may explain the high variability of growth forms and adaptation of these conifers to different environments and their resistance to extreme growth conditions. We suggest that polyploidy may have also reduced the extinction risk of these conifers during the End-Triassic biotic crisis. PMID:23926159

  11. A test of the hydraulic vulnerability segmentation hypothesis in angiosperm and conifer tree species.

    PubMed

    Johnson, Daniel M; Wortemann, Remi; McCulloh, Katherine A; Jordan-Meille, Lionel; Ward, Eric; Warren, Jeffrey M; Palmroth, Sari; Domec, Jean-Christophe

    2016-08-01

    Water transport from soils to the atmosphere is critical for plant growth and survival. However, we have a limited understanding about many portions of the whole-tree hydraulic pathway, because the vast majority of published information is on terminal branches. Our understanding of mature tree trunk hydraulic physiology, in particular, is limited. The hydraulic vulnerability segmentation hypothesis (HVSH) stipulates that distal portions of the plant (leaves, branches and roots) should be more vulnerable to embolism than trunks, which are nonredundant organs that require a massive carbon investment. In the current study, we compared vulnerability to loss of hydraulic function, leaf and xylem water potentials and the resulting hydraulic safety margins (in relation to the water potential causing 50% loss of hydraulic conductivity) in leaves, branches, trunks and roots of four angiosperms and four conifer tree species. Across all species, our results supported strongly the HVSH as leaves and roots were less resistant to embolism than branches or trunks. However, branches were consistently more resistant to embolism than any other portion of the plant, including trunks. Also, calculated whole-tree vulnerability to hydraulic dysfunction was much greater than vulnerability in branches. This was due to hydraulic dysfunction in roots and leaves at less negative water potentials than those causing branch or trunk dysfunction. Leaves and roots had narrow or negative hydraulic safety margins, but trunks and branches maintained positive safety margins. By using branch-based hydraulic information as a proxy for entire plants, much research has potentially overestimated embolism resistance, and possibly drought tolerance, for many species. This study highlights the necessity to reconsider past conclusions made about plant resistance to drought based on branch xylem only. This study also highlights the necessity for more research of whole-plant hydraulic physiology to better

  12. Determination of the molecular signature of fossil conifers by experimental palaeochemotaxonomy - Part 1: The Araucariaceae family

    NASA Astrophysics Data System (ADS)

    Lu, Y.; Hautevelle, Y.; Michels, R.

    2012-08-01

    Several extant species of the Araucariaceae family (one of the families of conifers) were invested for the experimental artificial maturation by confined pyrolysis, in order to realize the transformation of biomolecules to geomolecules in laboratory conditions. The experimental study of diagenetized molecular signatures of the Araucariaceae species (common, inter- and infra-generic characteristics) allow to complete our knowledge in botanical palaeochemotaxonomy. Such knowledge is relevant to the reconstitution of palaeoflora and palaeoclimatic reconstruction, archaeology and environmental studies. In this work, major carbon skeleton types of Araucariaceae are detected in the organic solvent extracts of fresh and pyrolyzed plants using gas chromatography-mass spectrometry. The results show that all species of Araucariaceae are firstly characterized by a predominance of saturated tetracyclic diterpenoids. Moreover, the Araucaria genus shows a high relative abundance of bicyclic sesquiterpenoids, particularly compounds of the cadalane-type compounds accompanied by those of eudesmane-type, bisabolane-type as well as chamazulene, pentamethyl-dihydroindenes. Diterpenoids are of the labdane-type, isopimarane, abietane-type (essentially derived from abietanoic acids) as well as isohexyl alkylaromatic hydrocarbons. Compared to the tetracyclic diterpenoids, these compounds show a relatively lower abundance, reaching trace levels in the case of saturated abietanes. Distribution of sesqui- and diterpenoids of Agathis shows some similarities to that of Araucaria, with the exception of one species, in which the tetracyclic compounds are absent and the abietane-type (essentially derived from abietanoic acids) predominant. High similarities between the Wollemia and Araucaria genera are observed. Both are characterized by some high relative abundance of tetracyclic compounds with no predominance of other specific diterpenoids.

  13. Management Impacts on Carbon Dynamics in a Sierra Nevada Mixed Conifer Forest

    PubMed Central

    Dore, Sabina; Fry, Danny L.; Collins, Brandon M.; Vargas, Rodrigo; York, Robert A.; Stephens, Scott L.

    2016-01-01

    Forest ecosystems can act as sinks of carbon and thus mitigate anthropogenic carbon emissions. When forests are actively managed, treatments can alter forests carbon dynamics, reducing their sink strength and switching them from sinks to sources of carbon. These effects are generally characterized by fast temporal dynamics. Hence this study monitored for over a decade the impacts of management practices commonly used to reduce fire hazards on the carbon dynamics of mixed-conifer forests in the Sierra Nevada, California, USA. Soil CO2 efflux, carbon pools (i.e. soil carbon, litter, fine roots, tree biomass), and radial tree growth were compared among un-manipulated controls, prescribed fire, thinning, thinning followed by fire, and two clear-cut harvested sites. Soil CO2 efflux was reduced by both fire and harvesting (ca. 15%). Soil carbon content (upper 15 cm) was not significantly changed by harvest or fire treatments. Fine root biomass was reduced by clear-cut harvest (60–70%) but not by fire, and the litter layer was reduced 80% by clear-cut harvest and 40% by fire. Thinning effects on tree growth and biomass were concentrated in the first year after treatments, whereas fire effects persisted over the seven-year post-treatment period. Over this period, tree radial growth was increased (25%) by thinning and reduced (12%) by fire. After seven years, tree biomass returned to pre-treatment levels in both fire and thinning treatments; however, biomass and productivity decreased 30%-40% compared to controls when thinning was combined with fire. The clear-cut treatment had the strongest impact, reducing ecosystem carbon stocks and delaying the capacity for carbon uptake. We conclude that post-treatment carbon dynamics and ecosystem recovery time varied with intensity and type of treatments. Consequently, management practices can be selected to minimize ecosystem carbon losses while increasing future carbon uptake, resilience to high severity fire, and climate related

  14. Water stress deforms tracheids peripheral to the leaf vein of a tropical conifer.

    PubMed

    Brodribb, Tim J; Holbrook, N Michele

    2005-03-01

    Just as a soggy paper straw is prone to yielding under the applied suction of a thirsty drinker, the xylem tracheids in leaves seem prone to collapse as water potential declines, impeding their function. Here we describe the collapse, under tension, of lignified cells peripheral to the leaf vein of a broad-leaved rainforest conifer, Podocarpus grayi de Laub. Leaves of Podocarpus are characterized by an array of cylindrical tracheids aligned perpendicular to the leaf vein, apparently involved in the distribution of water radially through the mesophyll. During leaf desiccation the majority of these tracheids collapsed from circular to flat over the water potential range -1.5 to -2.8 MPa. An increase in the percentage of tracheids collapsed during imposed water stress was mirrored by declining leaf hydraulic conductivity (K(leaf)), implying a direct effect on water transport efficiency. Stomata responded to water stress by closing at -2.0 MPa when 45% of cells were collapsed and K(leaf) had declined by 25%. This was still substantially before the initial indications of cavitation-induced loss of hydraulic conductance in the leaf vein, at -3 MPa. Plants droughted until 49% of tracheids had collapsed were found to fully recover tracheid shape and leaf function 1 week after rewatering. A simple mechanical model of tracheid collapse, derived from the theoretical buckling pressure for pipes, accurately predicted the collapse dynamics observed in P. grayi, substantiating estimates of cell wall elasticity and measured leaf water potential. The possible adaptive advantages of collapsible vascular tissue are discussed. PMID:15734905

  15. Forest management effects on snow, runoff and evapotranspiration in Sierra Nevada mixed-conifer headwater catchments

    NASA Astrophysics Data System (ADS)

    Ray, R. L.; Saksa, P. C.; Bales, R. C.; Conklin, M. H.

    2012-12-01

    We used intensive field measurements and data-intensive hydro-ecological modeling to investigate the impact of forest vegetation management on the sensitivity of snow accumulation, evapotranspiration and discharge at seven headwater catchments in the Sierra Nevada. Catchments are located in dense mixed-conifer forest, at elevations of 1500 - 2100 m, and receive a mix of rain and snow precipitation. Management scenarios for reducing forest density by uniform thinning and forest clearings were implemented in the Regional Hydro-ecological Simulation System (RHESSys). Results obtained using inherent model equations to separate total precipitation into snow and rain underestimated snow water content in some of the catchments, requiring manual input of snow and rain for accurate simulations. Modeling precipitation phase accurately was critical for the current forest condition, as the change in vegetation has differing effects on rain, snow and snowmelt. Results using RHESSys show that light, uniform thinning alone (<20% canopy) may not be enough to change water yield significantly, but this threshold of canopy reduction is lowered by creating gaps in the forest alone or in combination with uniform thinning, and has potential to measurably increase water yield beyond background variation. Clarifying these specific impacts of forest vegetation on snow processes and water yield is essential for simulating forest management in the Sierra Nevada and it shows the forest structure has significant influence on the catchment water balance. However, modifying forest canopy density and canopy cover to calculate average levels of snow water equivalent at a basin-scale may not be detailed enough to incorporate all the complex forest structure effects on snow processes in mountain watersheds.

  16. Responses of litter invertebrate communities to litter manipulation in a Japanese conifer plantation

    NASA Astrophysics Data System (ADS)

    Yoshida, Tomohiro; Takito, Yuki; Soga, Masashi; Hijii, Naoki

    2013-08-01

    We examined how the litter invertebrate communities were affected by the temporal changes in the mass and structural complexity of the litter resources by adding and removing litter on the forest floor of a temperate conifer plantation (Cryptomeria japonica) in Japan. We showed that litter mass and depth in the litter-addition (L+) plots changed rapidly into a steady-state condition similar to those in the control plots, mainly due to accelerated decomposition processes during the rainy season. Higher area-based densities of litter invertebrates in the L+ plots, similar mass-based densities between the L+ and control plots, and significant positive correlations between litter mass and the number of individuals implied that the abundance of litter invertebrates would be governed by litter mass rather than by the litter depth. Many litter invertebrates including detritivores were collected even in the litter-removal (L-) area. The relative abundances of invertebrate predators collecting pitfall traps were higher in the L- plots and lower in the L+ plots compared to those in the control plots, whereas those collecting Tullgren funnels were higher in the L+ plots than in the control plots. In the L+ plots, the range of variation in the community compositions among the samples decreased significantly over time in response to a drastic decrease in litter mass, in contrast to the control plots, which showed a relatively constant community composition during the study period. Our litter manipulation experiment reveals some of the mechanisms responsible for maintaining an equilibrium state of forest-floor litter mass and for the responses of litter invertebrate communities to temporal changes in the litter.

  17. Litter dynamics in two Sierran mixed conifer forests. II. Nutrient release in decomposing leaf litter

    USGS Publications Warehouse

    Stohlgren, Thomas J.

    1988-01-01

    The factors influencing leaf litter decomposition and nutrient release patterns were investigated for 3.6 years in two mixed conifer forests in the southern Sierra Nevada of California. The giant sequoia–fir forest was dominated by giant sequoia (Sequoiadendrongiganteum (Lindl.) Buchh.), white fir (Abiesconcolor Lindl. & Gord.), and sugar pine (Pinuslambertiana Dougl.). The fir–pine forest was dominated by white fir, sugar pine, and incense cedar (Calocedrusdecurrens (Torr.) Florin). Initial concentrations of nutrients and percent lignin, cellulose, and acid detergent fiber vary considerably in freshly abscised leaf litter of the studied species. Giant sequoia had the highest concentration of lignin (20.3%) and the lowest concentration of nitrogen (0.52%), while incense cedar had the lowest concentration of lignin (9.6%) and second lowest concentration of nitrogen (0.63%). Long-term (3.6 years) foliage decomposition rates were best correlated with initial lignin/N (r2 = 0.94, p r2 = 0.92, p r2 = 0.80, p < 0.05). Patterns of nutrient release were highly variable. Giant sequoia immobilized N and P, incense cedar immobilized N and to a lesser extent P, while sugar pine immobilized Ca. Strong linear or negative exponential relationships existed between initial concentrations of N, P, K, and Ca and percent original mass remaining of those nutrients after 3.6 years. This suggests efficient retention of these nutrients in the litter layer of these ecosystems. Nitrogen concentrations steadily increase in decomposing leaf litter, effectively reducing the C/N ratios from an initial range of 68–96 to 27–45 after 3.6 years.

  18. DNA Barcode Identification of Podocarpaceae—The Second Largest Conifer Family

    PubMed Central

    Little, Damon P.; Knopf, Patrick; Schulz, Christian

    2013-01-01

    We have generated matK, rbcL, and nrITS2 DNA barcodes for 320 specimens representing all 18 extant genera of the conifer family Podocarpaceae. The sample includes 145 of the 198 recognized species. Comparative analyses of sequence quality and species discrimination were conducted on the 159 individuals from which all three markers were recovered (representing 15 genera and 97 species). The vast majority of sequences were of high quality (B30 = 0.596–0.989). Even the lowest quality sequences exceeded the minimum requirements of the BARCODE data standard. In the few instances that low quality sequences were generated, the responsible mechanism could not be discerned. There were no statistically significant differences in the discriminatory power of markers or marker combinations (p = 0.05). The discriminatory power of the barcode markers individually and in combination is low (56.7% of species at maximum). In some instances, species discrimination failed in spite of ostensibly useful variation being present (genotypes were shared among species), but in many cases there was simply an absence of sequence variation. Barcode gaps (maximum intraspecific p–distance > minimum interspecific p–distance) were observed in 50.5% of species when all three markers were considered simultaneously. The presence of a barcode gap was not predictive of discrimination success (p = 0.02) and there was no statistically significant difference in the frequency of barcode gaps among markers (p = 0.05). In addition, there was no correlation between number of individuals sampled per species and the presence of a barcode gap (p = 0.27). PMID:24312258

  19. Management Impacts on Carbon Dynamics in a Sierra Nevada Mixed Conifer Forest.

    PubMed

    Dore, Sabina; Fry, Danny L; Collins, Brandon M; Vargas, Rodrigo; York, Robert A; Stephens, Scott L

    2016-01-01

    Forest ecosystems can act as sinks of carbon and thus mitigate anthropogenic carbon emissions. When forests are actively managed, treatments can alter forests carbon dynamics, reducing their sink strength and switching them from sinks to sources of carbon. These effects are generally characterized by fast temporal dynamics. Hence this study monitored for over a decade the impacts of management practices commonly used to reduce fire hazards on the carbon dynamics of mixed-conifer forests in the Sierra Nevada, California, USA. Soil CO2 efflux, carbon pools (i.e. soil carbon, litter, fine roots, tree biomass), and radial tree growth were compared among un-manipulated controls, prescribed fire, thinning, thinning followed by fire, and two clear-cut harvested sites. Soil CO2 efflux was reduced by both fire and harvesting (ca. 15%). Soil carbon content (upper 15 cm) was not significantly changed by harvest or fire treatments. Fine root biomass was reduced by clear-cut harvest (60-70%) but not by fire, and the litter layer was reduced 80% by clear-cut harvest and 40% by fire. Thinning effects on tree growth and biomass were concentrated in the first year after treatments, whereas fire effects persisted over the seven-year post-treatment period. Over this period, tree radial growth was increased (25%) by thinning and reduced (12%) by fire. After seven years, tree biomass returned to pre-treatment levels in both fire and thinning treatments; however, biomass and productivity decreased 30%-40% compared to controls when thinning was combined with fire. The clear-cut treatment had the strongest impact, reducing ecosystem carbon stocks and delaying the capacity for carbon uptake. We conclude that post-treatment carbon dynamics and ecosystem recovery time varied with intensity and type of treatments. Consequently, management practices can be selected to minimize ecosystem carbon losses while increasing future carbon uptake, resilience to high severity fire, and climate related

  20. Litter dynamics in two Sierran mixed conifer forests. I. Litterfall and decomposition rates

    USGS Publications Warehouse

    Stohlgren, Thomas J.

    1988-01-01

    Litterfall was measured for 4 years and leaf litter decomposition rates were studied for 3.6 years in two mixed conifer forest (giant sequoia-fir and fir-pine) in the southern Sierra Nevada of California. The giant sequoia-fir forest (GS site) was dominated by giant sequoia (Sequoiadendron giganteum (Lindl.) Buchh.), white fir (Abies concolor Lindl. & Gord.), and sugar pine (Pinus lambertiana Dougl.). The fir-pine forest (FP site) was dominated by white fir, sugar pine, and incense cedar (Calocedrus decurrens (Torr.) Florin). Litterfall, including large woody debris -1•year-1 compared with 4355 kg•ha-1•year-1 at the FP site (3.4:1). In the GS site, leaf litter decomposition after 3.6 years was slowest for giant sequoia (28.2% mass loss), followed by sugar pine (34.3%) and white fie (45.1%). In the FP site, mass loss was slowest for sugar pine (40.0%), followed by white fir (45.1%), while incense cedar showed the greatest mass loss (56.9%) after 3.6 years. High litterfall rates of large woody debris (i.e., 2.5-15.2 cm diameter) and slow rates of leaf litter decomposition in the giant sequoia-fir forest type may result in higher litter accumulation rates than in the fir-pine type. Leaf litter times to 95% decay for the GS and FP sites were 30 and 27 years, respectively, if the initial 0.7-year period (a short period of rapid mass decay) was ignored in the calculation. A mass balance approach for total litterfall (<15.2 cm diameter) decomposition yielded lower decay constants than did the litterbag study and therefore longer times to 95% decay (57 years for the GS site and 62 years for the FP site).

  1. Linking microbial comunity composition and soil processes in acalifornia annual grassland and mixed-conifer forest

    SciTech Connect

    Balser, T.C.; Firestone, M.K.

    2003-07-21

    To investigate the potential role of microbial community composition in soil carbon and nitrogen cycling, we transplanted soil cores between a grassland and a conifer ecosystem in the Sierra Nevada California and measured soil process rates (N-mineralization, nitrous oxide and carbon dioxide flux, nitrification potential), soil water and temperature, and microbial community parameters (PLFA and substrate utilization profiles) over a 2 year period. Our goal was to assess whether microbial community composition could be related to soil process rates independent of soil temperature and water content. We performed multiple regression analyses using microbial community parameters and soil water and temperature as X-variables and soil process rates and inorganic N concentrations as Y-variables. We found that field soil temperature had the strongest relationship with CO2 production and soil NH4+ concentration, while microbial community characteristics correlated with N2O production, nitrification potential, gross N-mineralization, and soil NO3 concentration, independent of environmental controllers. We observed a relationship between specific components of the microbial community (as determined by PLFA) and soil processes, particularly processes tightly linked to microbial phylogeny (e.g. nitrification). The most apparent change in microbial community composition in response to the 2 year transplant was a change in relative abundance of fungi (there was only one significant change in PLFA biomarkers for bacteria during 2years). The relationship between microbial community composition and soil processes suggests that prediction of ecosystem response to environmental change may be improved by recognizing and accounting for changes in microbial community composition and physiological ecology.

  2. Interactive control of minerals, wildfire, and erosion on soil carbon stabilization in conifer ecosystems of the western U.S.

    NASA Astrophysics Data System (ADS)

    Rasmussen, C.

    2014-12-01

    Answering the question of what controls the fate and stabilization of organic carbon in forest soils is central to understanding the role of western US ecosystems in mitigating climate change, optimizing forest management, and quantifying local and regional terrestrial carbon budgets. Over half of forest soil C is stored belowground, stabilized by a number of separate, but interacting physical, chemical and biological mechanisms. Here we synthesize data from a series of field and laboratory studies focused on identifying mineral, physical, and landscape position controls on belowground C stabilization mechanisms in western U.S. conifer ecosystems. Results from these studies demonstrate an important for role for short-range-order Fe- and Al-oxyhydroxides and Al-humus complexes in C stabilization, and that the soil mineral assemblage moderates C cycling via control on partitioning of C into physical fractions ("free", "occluded", "mineral") with varying MRT and chemistry. Measures of occluded fraction chemical composition by 13C-NMR indicate this fraction is 2-5 times more enriched in pyrogenic C than the bulk soil and that this fraction is on the order of ~25 to 65% charred materials. Radiocarbon analyses of a large set of conifer soil samples from California and Arizona further indicate the occluded fraction is generally older than either the free light or mineral fraction. In particular, soil C in convergent, water and sediment gathering portions of the landscape are enriched in long MRT charred materials. These results indicate an important role for the interaction of soil mineral assemblage, wildfire, and erosion in controlling belowground C storage and stabilization in western conifer forests. Drought and wildfire are expected to increase with climate change and thus may exert significant control on belowground C storage directly through biochemical and physical changes in aboveground biomass, production of charred materials, and indirectly via post

  3. Genomic exploration and molecular marker development in a large and complex conifer genome using RADseq and mRNAseq.

    PubMed

    Karam, M-J; Lefèvre, F; Dagher-Kharrat, M Bou; Pinosio, S; Vendramin, G G

    2015-05-01

    We combined restriction site associated DNA sequencing (RADseq) using a hypomethylation-sensitive enzyme and messenger RNA sequencing (mRNAseq) to develop molecular markers for the 16 gigabase genome of Cedrus atlantica, a conifer tree species. With each method, Illumina(®) reads from one individual were used to generate de novo assemblies. SNPs from the RADseq data set were detected in a panel of one single individual and three pools of three individuals each. We developed a flexible script to estimate the ascertainment bias in SNP detection considering the pooling and sampling effects on the probability of not detecting an existing polymorphism. Gene Ontology (GO) and transposable element (TE) search analyses were applied to both data sets. The RADseq and the mRNAseq assemblies represented 0.1% and 0.6% of the genome, respectively. Genome complexity reduction resulted in 17% of the RADseq contigs potentially coding for proteins. This rate was doubled in the mRNAseq data set, suggesting that RADseq also explores noncoding low-repeat regions. The two methods gave very similar GO-slim profiles. As expected, the two assemblies were poor in TE-like sequences (<4% of contigs length). We identified 17,348 single nucleotide polymorphisms (SNPs) in the RADseq data set and 5,714 simple sequence repeats (SSRs) in the transcriptome. A subset of 282 SNPs was validated using the Fluidigm genotyping technology, giving a conversion rate of 50.4%, falling within the expected range for conifers. Increasing sample size had the greatest effect for ascertainment bias reduction. These results validated the utility of the RADseq approach for highly complex genomes such as conifers. PMID:25224750

  4. A spruce gene map infers ancient plant genome reshuffling and subsequent slow evolution in the gymnosperm lineage leading to extant conifers

    PubMed Central

    2012-01-01

    Background Seed plants are composed of angiosperms and gymnosperms, which diverged from each other around 300 million years ago. While much light has been shed on the mechanisms and rate of genome evolution in flowering plants, such knowledge remains conspicuously meagre for the gymnosperms. Conifers are key representatives of gymnosperms and the sheer size of their genomes represents a significant challenge for characterization, sequencing and assembling. Results To gain insight into the macro-organisation and long-term evolution of the conifer genome, we developed a genetic map involving 1,801 spruce genes. We designed a statistical approach based on kernel density estimation to analyse gene density and identified seven gene-rich isochors. Groups of co-localizing genes were also found that were transcriptionally co-regulated, indicative of functional clusters. Phylogenetic analyses of 157 gene families for which at least two duplicates were mapped on the spruce genome indicated that ancient gene duplicates shared by angiosperms and gymnosperms outnumbered conifer-specific duplicates by a ratio of eight to one. Ancient duplicates were much more translocated within and among spruce chromosomes than conifer-specific duplicates, which were mostly organised in tandem arrays. Both high synteny and collinearity were also observed between the genomes of spruce and pine, two conifers that diverged more than 100 million years ago. Conclusions Taken together, these results indicate that much genomic evolution has occurred in the seed plant lineage before the split between gymnosperms and angiosperms, and that the pace of evolution of the genome macro-structure has been much slower in the gymnosperm lineage leading to extent conifers than that seen for the same period of time in flowering plants. This trend is largely congruent with the contrasted rates of diversification and morphological evolution observed between these two groups of seed plants. PMID:23102090

  5. Investigating the impacts of recycled water on long-lived conifers

    PubMed Central

    Nackley, Lloyd L.; Barnes, Corey; Oki, Lorence R.

    2015-01-01

    maintaining healthy verdant landscapes that include coast redwoods and other long-lived conifers. PMID:25876628

  6. Towards scaling interannual ecohydrological responses of conifer forests to bark beetle infestations from individuals to landscapes

    NASA Astrophysics Data System (ADS)

    Mackay, D. S.; Ewers, B. E.; Peckham, S. D.; Savoy, P.; Reed, D. E.; Frank, J. M.

    2013-12-01

    Widespread epidemics of forest-damaging insects have severe implications for the interconnections between water and ecosystem processes under present-day climate. How these systems respond to future climates is highly uncertain, and so there is a need for a better understanding of the effects of such disturbances on plant hydraulics, and the consequent effects on ecosystem processes. Moreover, large-scale manifestations of such disturbances require scaling knowledge obtained from individual trees or stands up to a regional extent. This requires a conceptual framework that integrates physical and biological processes that are immutable and scalable. Indeed, in Western North America multiple conifer species have been impacted by the bark beetle epidemic, but the prediction of such widespread outbreaks under changing environmental conditions must be generalized from a relatively small number of ground-based observations. Using model-data fusion we examine the fundamental principles that drive ecological and hydrological responses to bark beetles infestation from individuals to regions. The study includes a mid-elevation (2750 m a.s.l) lodgepole pine forest and higher (3190 m a.s.l.) elevation Engelmann spruce - fir forest in southern Wyoming. The study included a suite of observations, comprising leaf gas exchange, non-structural carbon (NSC), plant hydraulics, including sap flux transpiration (E), vulnerability to cavitation, leaf water potentials, and eddy covariance, were made pre-, during-, and post-disturbance, as the bark beetle infestation moved through these areas. Numerous observations tested hypotheses generated by the Terrestrial Regional Ecosystem Exchange Simulator (TREES), which integrates soil hydraulics and dynamic tree hydraulics (cavitation) with canopy energy and gas exchange, and operates at scales from individuals to landscapes. TREES accurately predicted E and NSC dynamics among individuals spanning pre- and post-disturbance periods, with the 95

  7. Natural 'background' soil water repellency in conifer forests: its prediction and relationship to wildfire occurrence

    NASA Astrophysics Data System (ADS)

    Doerr, Stefan; Woods, Scott; Martin, Deborah; Casimiro, Marta

    2013-04-01

    Soils under a wide range of vegetation types exhibit water repellency following the passage of a fire. This is viewed by many as one of the main causes for accelerated post-fire runoff and soil erosion and it has often been assumed that strong soil water repellency present after wildfire is fire-induced. However, high levels of repellency have also been reported under vegetation types not affected by fire, and the question arises to what degree the water repellency observed at burnt sites actually results from fire. This study aimed at determining 'natural background' water repellency in common coniferous forest types in the north-western USA. Mature or semi-mature coniferous forest sites (n = 81), which showed no evidence of recent fires and had at least some needle cast cover, were sampled across six states. After careful removal of litter and duff at each site, soil water repellency was examined in situ at the mineral soil surface using the Water Drop Penetration Time (WDPT) method for three sub-sites, followed by col- lecting near-surface mineral soil layer samples (0-3 cm depth). Following air-drying, samples were fur- ther analyzed for repellency using WDPT and contact angle (hsl) measurements. Amongst other variables examined were dominant tree type, ground vegetation, litter and duff layer depth, slope angle and aspect, elevation, geology, and soil texture, organic carbon content and pH. 'Natural background' water repellency (WDPT > 5 s) was detected in situ and on air-dry samples at 75% of all sites examined irrespective of dominant tree species (Pinus ponderosa, Pinus contorta, Picea engelma- nii and Pseudotsuga menziesii). These findings demonstrate that the soil water repellency commonly observed in these forest types following burning is not necessarily the result of recent fire but can instead be a natural characteristic. The notion of a low background water repellency being typical for long- unburnt conifer forest soils of the north-western USA is

  8. CO2-induced decrease of canopy stomatal conductance of mature conifer and broadleaved trees

    NASA Astrophysics Data System (ADS)

    Tor-ngern, P.; Oren, R.; Ward, E. J.; Palmroth, S.; McCarthy, H. R.; domec, J.

    2013-12-01

    Together with canopy leaf area, mean canopy stomatal conductance (GS) controls forest-atmosphere exchanges of energy and mass. Expectations for stomatal response to elevated atmospheric [CO2] (CO2E) based on seedling studies range from large decreases of conductance in foliage of broadleaved species to little or no response in conifers. These responses are not directly translatable to forest canopies, and their underlying mechanisms are ill-defined. The uncertainty of canopy-scale stomatal response to CO2E reduces confidence in modeled predictions of future forest productivity and carbon sequestration, and of partitioning of net radiation between latent and sensible heat flux. Thus, debates on the potential effects of CO2E-induced stomatal closure continue. We used a Free-Air CO2 Enrichment (FACE) experiment in a 27-year-old, 25 m tall forest, to generate a whole-canopy CO2-response and test whether canopy-scale GS response to CO2E of widely distributed, fast growing shade-intolerant species, Pinus taeda (L.) and co-occurring broadleaved species dominated by Liquidambar styraciflua (L.), was indirectly affected by slow changes such as hydraulic adjustments and canopy development, as opposed to quickly responding to CO2 concentrations in the leaf-internal air space. Our results show indirect CO2E-induced reductions of GS of 10% and 30%, respectively, and no signs of a direct stomatal response even as CO2E was pushed to 685 μmol mol-1 (~1.8 of ambient). Modeling the effect of CO2E on the water, energy and carbon cycles of forests must consider slow-response indirect mechanisms producing large variation in the reduction of GS, such as the previously observed inconsistent CO2E effect on canopy leaf area and plant hydraulics. Moreover, the new generation of CO2E studies in forests must allow indirect effects caused by, e.g., hydraulic adjustments and canopy development, to play out. Such acclimation will be particularly prolonged in slowly developing ecosystems, such

  9. Stem demography and post-fire recruitment of a resprouting serotinous conifer

    USGS Publications Warehouse

    Keeley, J.E.; Keeley, M.B.; Bond, W.J.

    1999-01-01

    The contribution of resprouts and seedling recruitment to post-fire regeneration of the South African fynbos conifer Widdringtonia nodiflora was compared eight months after wildfires in 1990. Stems on all trees were killed by fire but resprouting success was > 90 % at all but one site. A demographic study of burned skeletons revealed that prior to these fires, nearly all plants were multi-stemmed (4 - 9 stems/plant) and multi-aged, indicating continuous sprout production between fires. All stems were killed by these 1990 fires and at most sites > 90 % of the stems were burned to ground level. All diameter stems were susceptible to such incineration as, at most sites, there was no difference in average diameter of stems burned to ground level and those left standing. Individual genets usually had all ramets incinerated to ground level or all ramets charred, but intact, suggesting certain micro-sites burned hotter, whereas other sites were somewhat protected. Although not true of the 1990 fires, there was evidence that occasionally Widdringtonia stems may survive fire. At one site, four of the 16 plants sampled had a burned stem twice as old as the oldest burned stem on the other 12 plants at the site, suggesting some stems had survived the previous fire (ca. 1970) and this conclusion was supported by fire-scars on these four stems that dated to ca. 1970. Based on the highly significant correlation between stem diameter and cone density left standing after the 1990 fries, we calculated that for most sites > 80 % of the initial cone crop was incinerated by fire. This is important because we observed a strong relationship between size of the canopy cone crop surviving fire and post-fire seedling recruitment. Under these conditions we hypothesize that sprouting confers a selective advantage to genets when fires cause heavy losses of seed. The infrequent occurrence of sprouting in the Cupressaceae suggests the hypothesis that resprouting is an apomorphic or derived trait

  10. Comparing growth phenology of co-occurring deciduous and evergreen conifers exposed to drought.

    PubMed

    Swidrak, Irene; Schuster, Roman; Oberhuber, Walter

    2013-12-01

    indicate sink competition for carbohydrates to belowground organs. This is supported by completion of apical growth in mid June in all species, except for needle growth of Pinus sylvestris, which lasted until early August. Phenological observations of conifers exposed to drought revealed that tree water status early during the growing season determines total annual aboveground growth and besides temperature, species-specific endogenous and/or environmental factors (most likely photoperiod and/or different threshold temperatures) are involved in controlling apical and lateral growth resumption after winter dormancy. PMID:24273375

  11. Evaluating Historic Carbon Budget in Temperate Pacific Northwestern Conifer Forest Landscape Using CN-CLASS Model

    NASA Astrophysics Data System (ADS)

    Chen, B.; Arain, M. A.; Black, T. A.

    2009-05-01

    We used carbon and nitrogen coupled Canadian Land Surface Scheme (CN-CLASS), a process-based model, to simulate the historic carbon stocks and fluxes in a 2500 ha temperate Pacific Northwest conifer forest landscape from 1920 to 2004. Hourly meteorological data was provided from historic climate records. Site maps of soils, topography, vegetation and disturbance type (logging, fire events) were provided by the historic carbon modeling project of the Canadian Carbon Program (CCP). The initial aboveground tree biomass in 1920 and the disturbance matrices were produced by the Carbon Budget Model of the Canadian Forest Sector (CBM-CFS3). Over the study period from 1920-2004, CN-CLASS simulated 188 Mg C ha-1 loss of ecosystem carbon as compared to 200 Mg C ha-1 loss suggested by CBM-CFS3. From 1928 to 1944, burning, historic harvest and slash burning resulted in large losses of carbon to the atmosphere. In this period, the study area was a large carbon source with simulated net carbon loss of 282 Mg C ha-1. From 1945 to 1989, there were very few disturbance events and the study area started to recover with simulated net carbon uptake of 87 Mg C ha-1. During this period, CN-CLASS modeled annual Net Biome Productivity (NBP) ranged from 27 g C m-2 y-1 in 1945 to 590 g C m-2 y-1 in 1964. CN-CLASS simulated summer (July-September) NEP deviations during the undisturbed period (1945-1989), showed a negative relationship with the daily maximum air temperature and precipitation. As harvest of second-growth stands began in 1990s, disturbance again had significant impact on the landscape's carbon budget, and this effect was partially offset by ongoing C uptake in recovering young stands. CN-CLASS underestimated NEP as compared to observed eddy covariance flux measurements because of high temperature sensitivity of its soil respiration algorithm. Simulated mean annual NEP from 1998 to 2004 was 190 g C m-2 y-1 as compared to observed eddy covariance value of 352 g C m-2 y-1. This

  12. The impacts of conifer harvesting on runoff water quality: a regional survey for Wales

    NASA Astrophysics Data System (ADS)

    Neal, C.; Reynolds, B.; Wilkinson, J.; Hill, T.; Neal, M.; Hill, S.; Harrow, M.

    Major, minor and trace element chemistry of runoff at stormflow and baseflow from 67 catchments (2 to 5 ha in area) has been determined to investigate the effects of clear felling and replanting of conifers on stream water quality across Wales. Samples, collected by local forestry workers (Forest Enterprise staff) on a campaign basis on up to eight occasions, were for 16 mature first rotation standing forest: the remainder represented areas completely clear felled from less than one to up to forty years previously. As the waters drain acidic and acid sensitive soils, acidic runoff is often encountered. However, higher pH values with associated positive alkalinities and base cation enrichments are observed due to the influence of weathering reactions within the bedrock. There is little systematic variation in water quality between baseflow and stormflow for each site indicating a complex and erratic contribution of waters from the soil and underlying parent material. 80% or more of the data points show hardly any changes with felling time, but there are a few outlier points with much higher concentrations that provide important information on the processes operative. The clearest outlier felling response is for nitrate at five of the more recently felled sites on brown earth, gley and podzolic soil types. ANC, the prime indicator of stream acidity, shows a diverse response from both high to low outlier values (>+400 to -300 μEq/l). In parallel to nitrate, aluminium, potassium and barium concentrations are higher in waters sampled up to 4 years post felling, but the time series response is even less clear than that for nitrate. Cadmium, zinc and lead and lanthanides/actinides show large variations from site to site due to localized vein ore-mineralization in the underlying bedrock. The survey provides a strong indication that forest harvesting can have marked local effects on some chemical components of runoff for the first four years after felling but that this is

  13. Ecological importance of large-diameter trees in a temperate mixed-conifer forest.

    PubMed

    Lutz, James A; Larson, Andrew J; Swanson, Mark E; Freund, James A

    2012-01-01

    Large-diameter trees dominate the structure, dynamics and function of many temperate and tropical forests. Although both scaling theory and competition theory make predictions about the relative composition and spatial patterns of large-diameter trees compared to smaller diameter trees, these predictions are rarely tested. We established a 25.6 ha permanent plot within which we tagged and mapped all trees ≥1 cm dbh, all snags ≥10 cm dbh, and all shrub patches ≥2 m(2). We sampled downed woody debris, litter, and duff with line intercept transects. Aboveground live biomass of the 23 woody species was 507.9 Mg/ha, of which 503.8 Mg/ha was trees (SD = 114.3 Mg/ha) and 4.1 Mg/ha was shrubs. Aboveground live and dead biomass was 652.0 Mg/ha. Large-diameter trees comprised 1.4% of individuals but 49.4% of biomass, with biomass dominated by Abies concolor and Pinus lambertiana (93.0% of tree biomass). The large-diameter component dominated the biomass of snags (59.5%) and contributed significantly to that of woody debris (36.6%). Traditional scaling theory was not a good model for either the relationship between tree radii and tree abundance or tree biomass. Spatial patterning of large-diameter trees of the three most abundant species differed from that of small-diameter conspecifics. For A. concolor and P. lambertiana, as well as all trees pooled, large-diameter and small-diameter trees were spatially segregated through inter-tree distances <10 m. Competition alone was insufficient to explain the spatial patterns of large-diameter trees and spatial relationships between large-diameter and small-diameter trees. Long-term observations may reveal regulation of forest biomass and spatial structure by fire, wind, pathogens, and insects in Sierra Nevada mixed-conifer forests. Sustaining ecosystem functions such as carbon storage or provision of specialist species habitat will likely require different management strategies when the functions are performed primarily by

  14. Patch to landscape patterns in post fire recruitment of a serotinous conifer

    USGS Publications Warehouse

    Ne'eman, G.; Fotheringham, C.J.; Keeley, J.E.

    1999-01-01

    Obligate seeding species are highly specialized to fire disturbance and many conifers such as cypress, which are adapted to high intensity stand-replacing fires, have canopy seed banks stored in serotinous cones. Resilience of these trees to fire disturbance is a function of disturbance frequency and one focus of this study was to determine the effect of patch age on postfire recruitment. A second focus was to determine the extent to which fire induced a landscape level change in the location of the forest boundary. Prior to a fire in 1994, a large Cupressus sargentii forest was a mosaic landscape of different aged patches of nearly pure cypress bordered by chaparral. Patches less than 60 years of age were relatively dense with roughly one tree every 1-2 m2 but older patches had thinned to one tree every 3-15 m2. Older trees had substantially greater canopy cone crops but the stand level seed bank size was not significantly correlated with stand age. Fire-dependent obligate seeding species are sensitive to fire return interval because of potential changes in the size of seed banks - facing both a potential 'immaturity risk' and a 'senescence risk'. At our site, C. sargentii regeneration was substantial in stands as young as 20 years, suggesting that fire return interval would need to be shorter than this to pose any significant risk. Reduced seedling recruitment in stands nearly 100 years of age may indicate risk from senescence is greater, however, even the lowest density seedling recruitment was many times greater than the density of mature forests - thus this cypress would appear to be resilient to a wide range of fire return intervals. Changes in landscape patterning of forest and chaparral are unlikely except after fire. Factors that inhibit tree establishment within the shrubland, as well as factors that affect shrub establishment within the forest border likely affect the 'permeability' of this ecotone. After the 1994 fire this boundary appeared to be stable

  15. Comparing growth phenology of co-occurring deciduous and evergreen conifers exposed to drought

    PubMed Central

    Swidrak, Irene; Schuster, Roman; Oberhuber, Walter

    2013-01-01

    indicate sink competition for carbohydrates to belowground organs. This is supported by completion of apical growth in mid June in all species, except for needle growth of Pinus sylvestris, which lasted until early August. Phenological observations of conifers exposed to drought revealed that tree water status early during the growing season determines total annual aboveground growth and besides temperature, species-specific endogenous and/or environmental factors (most likely photoperiod and/or different threshold temperatures) are involved in controlling apical and lateral growth resumption after winter dormancy. PMID:24273375

  16. Investigating the impacts of recycled water on long-lived conifers.

    PubMed

    Nackley, Lloyd L; Barnes, Corey; Oki, Lorence R

    2015-01-01

    healthy verdant landscapes that include coast redwoods and other long-lived conifers. PMID:25876628

  17. Atmospheric deposition and solute export in giant sequoia: mixed conifer watersheds in the Sierra Nevada, California

    USGS Publications Warehouse

    Stohlgren, Thomas J.; Melack, John M.; Esperanza, Anne M.; Parsons, David J.

    1991-01-01

    Atmospheric depostion and stream discharge and solutes were measured for three years (September 1984 - August 1987) in two mixed conifer watersheds in Sequoia National Park, in the southern Sierra Nevada of California. The Log Creek watershed (50 ha, 2067-2397 m elev.) is drained by a perennial stream, while Tharp's Creek watershed (13 ha, 2067-2255 m elev.) contains an intermittent stream. Dominant trees in the area include Abies concolor (white fir), Sequoiadendron giganteum (giant sequoia), A. magnifica (red fir), and Pinus lambertiana (sugar pine). Bedrock is predominantly granite and granodiorite, and the soils are mostly Pachic Xerumbrepts. Over the three year period, sulfate (SO42-), nitrate (NO3-), and chloride (Cl-) were the major anions in bulk precipitation with volume-weighted average concentrations of 12.6, 12.3 and 10.0 μeq/1, respectively. Annual inputs of NO3-N, NH4-N and SO4-S from wet deposition were about 60 to 75% of those reported from bulk deposition collectors. Discharge from the two watersheds occurs primarily during spring snowmelt. Solute exports from Log and Tharp's Creeks were dominated by HCO3-, Ca2+ and Na+, while H+, NO3-, NH4+ and PO43- outputs were relatively small. Solute concentrations were weakly correlated with instantaneous stream flow for all solutes (r2 3- (Log Cr. r2=0.72; Tharp's Cr. r2=0.38), Na+ (Log Cr. r2=0.56; Tharp's Cr. r2=0.47), and silicate (Log Cr. r2=0.71; Tharp's Cr. r2=0.49). Mean annual atmospheric contributions of NO3-N (1.6 kg ha-1), NH4-N (1.7 kg ha-1), and SO4-S (1.8 kg ha-1), which are associated with acidic deposition, greatly exceed hydrologic losses. Annual watershed yields (expressed as eq ha-1) of HCO3- exceeded by factors of 2.5 to 37 the annual atmospheric deposition of H+.

  18. New datasets for quantifying snow-vegetation-atmosphere interactions in boreal birch and conifer forests

    NASA Astrophysics Data System (ADS)

    Reid, T. D.; Essery, R.; Rutter, N.; Huntley, B.; Baxter, R.; Holden, R.; King, M.; Hancock, S.; Carle, J.

    2012-12-01

    Boreal forests exert a strong influence on weather and climate by modifying the surface energy and radiation balance. However, global climate and numerical weather prediction models use forest parameter values from simple look-up tables or maps that are derived from limited satellite data, on large grid scales. In reality, Arctic landscapes are inherently heterogeneous, with highly variable land cover types and structures on a variety of spatial scales. There is value in collecting detailed field data for different areas of vegetation cover, to assess the accuracy of large-scale assumptions. To address these issues, a consortium of researchers funded by the UK's Natural Environment Research Council have collected extensive data on radiation, meteorology, snow cover and canopy structure at two contrasting Arctic forest sites. The chosen study sites were an area of boreal birch forest near Abisko, Sweden in March/April 2011 and mixed conifer forest at Sodankylä, Finland in March/April 2012. At both sites, arrays comprising ten shortwave pyranometers and four longwave pyrgeometers were deployed for periods of up to 50 days, under forest plots of varying canopy structures and densities. In addition, downwelling longwave irradiance and global and diffuse shortwave irradiances were recorded at nearby open sites representing the top-of-canopy conditions. Meteorological data were recorded at all sub-canopy and open sites using automatic weather stations. Over the same periods, tree skin temperatures were measured on selected trees using contact thermocouples, infrared thermocouples and thermal imagery. Canopy structure was accurately quantified through manual surveys, extensive hemispherical photography and terrestrial laser scans of every study plot. Sub-canopy snow depth and snow water equivalent were measured on fine-scale grids at each study plot. Regular site maintenance ensured a high quality dataset covering the important Arctic spring period. The data have several

  19. Ecological Importance of Large-Diameter Trees in a Temperate Mixed-Conifer Forest

    PubMed Central

    Lutz, James A.; Larson, Andrew J.; Swanson, Mark E.; Freund, James A.

    2012-01-01

    Large-diameter trees dominate the structure, dynamics and function of many temperate and tropical forests. Although both scaling theory and competition theory make predictions about the relative composition and spatial patterns of large-diameter trees compared to smaller diameter trees, these predictions are rarely tested. We established a 25.6 ha permanent plot within which we tagged and mapped all trees ≥1 cm dbh, all snags ≥10 cm dbh, and all shrub patches ≥2 m2. We sampled downed woody debris, litter, and duff with line intercept transects. Aboveground live biomass of the 23 woody species was 507.9 Mg/ha, of which 503.8 Mg/ha was trees (SD = 114.3 Mg/ha) and 4.1 Mg/ha was shrubs. Aboveground live and dead biomass was 652.0 Mg/ha. Large-diameter trees comprised 1.4% of individuals but 49.4% of biomass, with biomass dominated by Abies concolor and Pinus lambertiana (93.0% of tree biomass). The large-diameter component dominated the biomass of snags (59.5%) and contributed significantly to that of woody debris (36.6%). Traditional scaling theory was not a good model for either the relationship between tree radii and tree abundance or tree biomass. Spatial patterning of large-diameter trees of the three most abundant species differed from that of small-diameter conspecifics. For A. concolor and P. lambertiana, as well as all trees pooled, large-diameter and small-diameter trees were spatially segregated through inter-tree distances <10 m. Competition alone was insufficient to explain the spatial patterns of large-diameter trees and spatial relationships between large-diameter and small-diameter trees. Long-term observations may reveal regulation of forest biomass and spatial structure by fire, wind, pathogens, and insects in Sierra Nevada mixed-conifer forests. Sustaining ecosystem functions such as carbon storage or provision of specialist species habitat will likely require different management strategies when the functions are performed primarily by a

  20. Evidence from sequence-tagged-site markers of a recent progenitor-derivative species pair in conifers

    PubMed Central

    Perron, Martin; Perry, Daniel J.; Andalo, Christophe; Bousquet, Jean

    2000-01-01

    Black spruce (Picea mariana [B.S.P.] Mill.) and red spruce (Picea rubens Sarg.) are two conifer species known to hybridize naturally in northeastern North America. We hypothesized that there is a progenitor-derivative relationship between these two taxa and conducted a genetic investigation by using sequence-tagged-site markers of expressed genes. Based on the 26 sequence-tagged-site loci assayed in this study, the unbiased genetic identity between the two taxa was quite high with a value of 0.920. The mean number of polymorphic loci, the mean number of alleles per polymorphic locus, and the average observed heterozygosity were lower in red spruce (P = 35%, AP = 2.1, Ho = 0.069) than in black spruce (P = 54%, AP = 2.9, Ho = 0.103). No unique alleles were found in red spruce, and the observed patterns of allele distribution indicated that the genetic diversity of red spruce was essentially a subset of that found in black spruce. When considered in combination with ecological evidence and simulation results, these observations clearly support the existence of a progenitor-derivative relationship and suggest that the reduced level of genetic diversity in red spruce may result from allopatric speciation through glaciation-induced isolation of a preexisting black spruce population during the Pleistocene era. Our observations signal a need for a thorough reexamination of several conifer species complexes in which natural hybridization is known to occur. PMID:11016967

  1. A biophysical gradient analysis of climate for understanding conifer establishment in mountain ecosystems of the western U.S.

    NASA Astrophysics Data System (ADS)

    Littell, J. S.; Graumlich, L. J.

    2007-12-01

    Establishment of conifer trees at upper treeline is controlled by both physical and ecological phenomena. The physical limitations on tree establishment and growth as well as the ecological and edaphic factors moderating climate vary significantly across western mountain ranges, from the more maritime Cascades through the basin- and-range to the heavily continental central Rockies. In order to understand the factors limiting tree establishment and estimate rates of ecosystem change under future climate change, it is critical to understand the climatic factors limiting tree establishment. We use a multiscale approach to identify climatic patterns associated with upper treeline in nine mountain ranges: the north Cascades, central Cascades, Eagle Cap, Beaverhead, Teton, Beartooth, Wind River, Snowy, and Zirkel mountain ranges. We examined NCDC divisional, SNOTEL, snowcourse, and DAYMET seasonal averages/totals for temperature and precipitation variables to compare the climates at treeline sites identified for conifer establishment research. Divisional data from 1948-2004 indicate a strong geographical gradient in winter precipitation/PDO correlations, but according to SNOTEL data from all mountain ranges, these differences are much weaker in the more recent past. Snow water equivalent at all the sites near the PDO dipole evident in the 1948-2004 correlations appears negatively correlated with PDO. We present DAYMET, SNOTEL, and snowcourse normals for the mountain environments near the treeline sites and relate them to species composition and the nature of recent establishment.

  2. Calculation of theoretical and empirical nutrient N critical loads in the mixed conifer ecosystems of southern California.

    PubMed

    Breiner, Joan; Gimeno, Benjamin S; Fenn, Mark

    2007-01-01

    Edaphic, foliar, and hydrologic forest nutrient status indicators from 15 mixed conifer forest stands in the Sierra Nevada, San Gabriel Mountains, and San Bernardino National Forest were used to estimate empirical or theoretical critical loads (CL) for nitrogen (N) as a nutrient. Soil acidification response to N deposition was also evaluated. Robust empirical relationships were found relating N deposition to plant N uptake (N in foliage), N fertility (litter C/N ratio), and soil acidification. However, no consistent empirical CL were obtained when the thresholds for parameters indicative of N excess from other types of ecosystems were used. Similarly, the highest theoretical CL for nutrient N calculated using the simple mass balance steady state model (estimates ranging from 1.4-8.8 kg N/ha/year) was approximately two times lower than the empirical observations. Further research is needed to derive the thresholds for indicators associated with the impairment of these mixed conifer forests exposed to chronic N deposition within a Mediterranean climate. Further development or parameterization of models for the calculation of theoretical critical loads suitable for these ecosystems will also be an important aspect of future critical loads research. PMID:17450298

  3. Areas of Agreement and Disagreement Regarding Ponderosa Pine and Mixed Conifer Forest Fire Regimes: A Dialogue with Stevens et al.

    PubMed Central

    Odion, Dennis C.; Hanson, Chad T.; Baker, William L.; DellaSala, Dominick A.; Williams, Mark A.

    2016-01-01

    In a recent PLOS ONE paper, we conducted an evidence-based analysis of current versus historical fire regimes and concluded that traditionally defined reference conditions of low-severity fire regimes for ponderosa pine (Pinus ponderosa) and mixed-conifer forests were incomplete, missing considerable variability in forest structure and fire regimes. Stevens et al. (this issue) agree that high-severity fire was a component of these forests, but disagree that one of the several sources of evidence, stand age from a large number of forest inventory and analysis (FIA) plots across the western USA, support our findings that severe fire played more than a minor role ecologically in these forests. Here we highlight areas of agreement and disagreement about past fire, and analyze the methods Stevens et al. used to assess the FIA stand-age data. We found a major problem with a calculation they used to conclude that the FIA data were not useful for evaluating fire regimes. Their calculation, as well as a narrowing of the definition of high-severity fire from the one we used, leads to a large underestimate of conditions consistent with historical high-severity fire. The FIA stand age data do have limitations but they are consistent with other landscape-inference data sources in supporting a broader paradigm about historical variability of fire in ponderosa and mixed-conifer forests than had been traditionally recognized, as described in our previous PLOS paper. PMID:27195808

  4. Development of the mixed conifer forest in northern New Mexico and its relationship to Holocene environmental change

    USGS Publications Warehouse

    Anderson, R. Scott; Jass, R.B.; Toney, J.L.; Allen, C.D.; Cisneros-Dozal, L. M.; Hess, M.; Heikoop, Jeff; Fessenden, J.

    2008-01-01

    Chihuahuen??os Bog (2925??m) in the Jemez Mountains of northern New Mexico contains one of the few records of late-glacial and postglacial development of the mixed conifer forest in southwestern North America. The Chihuahuen??os Bog record extends to over 15,000??cal yr BP. An Artemisia steppe, then an open Picea woodland grew around a small pond until ca. 11,700??cal yr BP when Pinus ponderosa became established. C/N ratios, ??13C and ??15N values indicate both terrestrial and aquatic organic matter was incorporated into the sediment. Higher percentages of aquatic algae and elevated C/N ratios indicate higher lake levels at the opening of the Holocene, but a wetland developed subsequently as climate warmed. From ca. 8500 to 6400??cal yr BP the pond desiccated in what must have been the driest period of the Holocene there. C/N ratios declined to their lowest Holocene levels, indicating intense decomposition in the sediment. Wetter conditions returned after 6400??cal yr BP, with conversion of the site to a sedge bog as groundwater levels rose. Higher charcoal influx rates after 6400??cal yr BP probably result from greater biomass production rates. Only minor shifts in the overstory species occurred during the Holocene, suggesting that mixed conifer forest dominated throughout the record. ?? 2008 University of Washington.

  5. Zonobiomes, forests, and major forest-forming conifers across Northern Eurasia by the end of the century under climate warming

    NASA Astrophysics Data System (ADS)

    Tchebakova, N.; Parfenova, E. I.; Shvetsov, E.; Soja, A. J.; Conard, S. G.

    2012-12-01

    Simulations of terrestrial ecosystems demonstrated globally the profound effects of the GCM-predicted climate change on their distribution at all hierarchical levels: zonobiomes, forests, and forest-forming tree species. We investigated progressions of potential vegetation cover, forest cover and ranges of forest-forming conifers across Northern Eurasia and Russia in the warming climate during the current century. We developed envelope-type static large-scale bioclimatic models predicting zonobiomes NEBioCliM, forests (ForCliM) and primary forest-forming conifer trees (TreeCliM)) from three bioclimatic indices (1) growing degree-days above 5oC, GDD5; (2) negative degree-days below 0oC, NDDo; and (3) an annual moisture index (ratio of growing degree days above 5oC to annual precipitation), AMI. No soil conditions except presence/absence of permafrost were taken into account in our models. Continuous permafrost was included in the models as limiting the forests and tree species distribution in interior Siberia. Each zonobiome, forest type and conifer distribution was mapped for the basic period 1960-1990 and for 2080 by coupling our bioclimatic models with bioclimatic indices and the permafrost distribution for the 1960-1990 and 2080 simulations. Climatic departures for the 2080 climate were derived from two climate change scenarios, the HadCM3 A2 and B1 (IPCC, 2007). Kappa (K) statistics were used to compare both the modeled vegetation and the conifer distributions in the contemporary climate to actual vegetation and forest maps. K-statistics proved that NEBioCliM accomplished a fair work in modeling zonobiomes across Russia. The tree species distributions also showed good match with the modeled ranges: 41% (Abies sibirica), 46% (Pinus sibirica), 71% (Pinus sylvestris), 75% (Picea spp.) and 78% (Larix spp.). Those matches might be higher because historically part of the primary conifer forests were replaced by secondary birch and aspen forests after large

  6. A 14,000 year vegetation history of a hypermaritime island on the outer Pacific coast of Canada based on fossil pollen, spores and conifer stomata

    NASA Astrophysics Data System (ADS)

    Lacourse, Terri; Delepine, J. Michelle; Hoffman, Elizabeth H.; Mathewes, Rolf W.

    2012-11-01

    Pollen and conifer stomata analyses of lake sediments from Hippa Island on the north coast of British Columbia were used to reconstruct the vegetation history of this small hypermaritime island. Between 14,000 and 13,230 cal yr BP, the island supported diverse herb-shrub communities dominated by Cyperaceae, Artemisia and Salix. Pinus contorta and Picea sitchensis stomata indicate that these conifers were present among the herb-shrub communities, likely as scattered individuals. Transition to open P. contorta woodland by 13,000 cal yr BP was followed by increases in Alnus viridis, Alnus rubra and P. sitchensis. After 12,000 cal yr BP, Pinus-dominated communities were replaced by dense P. sitchensis and Tsuga heterophylla forest with Lysichiton americanus and fern understory. Thuja plicata stomata indicate that this species was present by 8700 cal yr BP, but the pollen record suggests that its populations did not expand to dominate regional rainforests, along with Tsuga and Picea, until after 6600 cal yr BP. Conifer stomata indicate that species may be locally present for hundreds to thousands of years before pollen exceed thresholds routinely used to infer local species arrival. When combined, pollen and conifer stomata can provide a more accurate record of paleovegetation than either when used alone.

  7. Key to conifer-infesting species of Lepidosaphes Schimer (Hemiptera: Coccoidea: Diaspididae) with descriptions of two new species and a redescription of L. pallidula (Williams)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A dichotomus key is presented for the identification of adult females of the 25 species of Lepidosaphes that occur on conifers. Two new species are described, including L. caribaeae Williams and Miller from Trinidad and Jamaica and L. murreeana Williams and Miller from Pakistan. Lepidosaphes palli...

  8. Effects of thinning, residue mastication, and prescribed fire on soil and nutrient budgets in a Sierra Nevada mixed-conifer forest

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The effects of thinning followed by residue mastication (THIN), prescribed fire (BURN), and thinning plus residue mastication plus burning (T+B) on nutrient budgets and resin-based (plant root simulator [PRS] probe) measurements of soil nutrient availability in a mixed-conifer forest were measured. ...

  9. Simulating stand-level water and carbon fluxes in beetle-attacked conifer forests in the Western U.S

    NASA Astrophysics Data System (ADS)

    Peckham, S. D.; Ewers, B. E.; Mackay, D. S.; Pendall, E. G.; Frank, J. M.; Massman, W. J.

    2013-12-01

    In recent decades, forest mortality due to bark beetle infestation in conifer forests of western North America has reached epidemic levels, which may have profound effects on both present and future water and carbon cycling. The responses of evaporation, transpiration, and net photosynthesis to changing climate and disturbance are a major concern as they control the carbon balance of forests and the hydrologic cycle in a region that relies on water from montane and subalpine forest systems. Tree mortality during bark beetle infestation in this region is due to hydraulic failure resulting from fungal infection spread by the beetles. We modified the terrestrial regional ecosystem exchange simulator (TREES) model to incorporate xylem-occlusion effects on hydraulic conductance to simulate beetle attack over the period 2005-2012 in a subalpine conifer forest at the Glacier Lakes Ecosystem Experiment Site (GLEES) and over 2008-2012 at a lodgepole pine dominated site in southeast Wyoming. Model simulations with and without beetle effects were compared to eddy-covariance and sap-flux data measured at the sites. The simulations were run at a 30-minute time step and covered the pre- to post-beetle infestation period. Simulated NEE at GLEES ranged from 200 to -625 g C m-2 yr-1, annual ET ranged from 250 to 800 mm yr-1 over the seven years and standard error in predicted half-hourly NEE was <3 μmol CO2 m-2 s-1 and <2e-05 mm s-1 for ET. The stand transitioned from a C sink to C source during the beetle attack and our modified model captured this dynamic, while simulations without the beetle effect did not (i.e. continued C sink). However, simulated NEE was underestimated compared to flux data later in the infestation period (2011) by over 100 g C m-2 yr-1. ET decreased during beetle attack in both the observed and simulated data, but the modified model underestimated ET in the later phase of attack (2010-2011). These results suggest that ET and NEE in these conifer forests may

  10. The annealing temperature dependences of microstructures and magnetic properties in electro-chemical deposited CoNiFe thin films

    NASA Astrophysics Data System (ADS)

    Suharyadi, Edi; Riyanto, Agus; Abraha, Kamsul

    2016-04-01

    CoNiFe thin films with various compositions had been successfully fabricated using electro-chemical deposition method. The crystal structure of Co65Ni15Fe20, Co62Ni15Fe23, and Co55Ni15Fe30 thin films was fcc, bcc-fcc mix, and bcc, respectively. The difference crystal structure results the difference in magnetic properties. The saturation magnetic flux density (Bs) of Co65Ni15Fe20, Co62Ni15Fe23, and Co55Ni15Fe30 thin films was 1.89 T, 1.93 T, and 2.05 T, respectively. An optimal annealing temperature was determined for controlling the microstructure and magnetic properties of CoNiFe thin films. Depending on annealing temperature, the ratio of bcc and fcc structure varied without changing the film composition. By annealing at temperature of T ≥ 350°C, the intensity ratio of X-ray diffraction peaks for bcc(110) to fcc(111) increased. The increase of phase ratio of bcc(110) to fcc(111) caused the increase of Bs, from 1.89 T to 1.95 T. Coercivity (Hc) also increased after annealing, from 2.6 Oe to 18.6 Oe for fcc phase thin films, from 2.0 Oe to 12.0 Oe for fcc-bcc mix phase thin films, and 7.8 Oe to 8 Oe for bcc phase thin films. The changing crystal structures during annealing process indicated that the thermal treatment at high temperature cause the changing crystallinity and atomic displacement. The TEM bright-field images with corresponding selected-area electron diffraction (SAED) patterns showed that there are strongly effects of thermal annealing on the size of fcc and bcc phase crystalline grain as described by size of individual spot and discontinuous rings. The size of crystalline grains increased by thermal annealing. The evolution of bcc and fcc structures of CoNiFe during annealing is though to be responsible for the change of magnetic properties.

  11. Decomposition of conifer tree bark under field conditions: effects of nitrogen and phosphorus additions

    NASA Astrophysics Data System (ADS)

    Lopes de Gerenyu, Valentin; Kurganova, Irina; Kapitsa, Ekaterina; Shorokhova, Ekaterina

    2016-04-01

    In forest ecosystems, the processes of decomposition of coarse woody debris (CWD) can contribute significantly to the emission component of carbon (C) cycle and thus accelerate the greenhouse effect and global climate change. A better understanding of decomposition of CWD is required to refine estimates of the C balance in forest ecosystems and improve biogeochemical models. These estimates will in turn contribute to assessing the role of forests in maintaining their long-term productivity and other ecosystems services. We examined the decomposition rate of coniferous bark with added nitrogen (N) and phosphorus (P) fertilizers in experiment under field conditions. The experiment was carried out in 2015 during 17 weeks in Moscow region (54o50'N, 37o36'E) under continental-temperate climatic conditions. The conifer tree bark mixture (ca. 70% of Norway spruce and 30% of Scots pine) was combined with soil and placed in piles of soil-bark substrate (SBS) with height of ca. 60 cm and surface area of ca. 3 m2. The dry mass ratio of bark to soil was 10:1. The experimental design included following treatments: (1) soil (Luvisols Haplic) without bark, (S), (2) pure SBS, (3) SBS with N addition in the amount of 1% of total dry bark mass (SBS-N), and (4) SBS with N and P addition in the amount of 1% of total dry bark mass for each element (SBS-NP). The decomposition rate expressed as CO2 emission flux, g C/m2/h was measured using closed chamber method 1-3 times per week from July to early November using LiCor 6400 (Nebraska, USA). During the experiment, we also controlled soil temperature at depths of 5, 20, 40, and 60 cm below surface of SBS using thermochrons iButton (DS1921G, USA). The pattern of CO2 emission rate from SBS depended strongly on fertilizing. The highest decomposition rates (DecR) of 2.8-5.6 g C/m2/h were observed in SBS-NP treatment during the first 6 weeks of experiment. The decay process of bark was less active in the treatment with only N addition. In this

  12. Modularity of Conifer Diterpene Resin Acid Biosynthesis: P450 Enzymes of Different CYP720B Clades Use Alternative Substrates and Converge on the Same Products1[OPEN

    PubMed Central

    Yuen, Macaire M.S.; Bohlmann, Jörg

    2016-01-01

    Cytochrome P450 enzymes of the CYP720B subfamily play a central role in the biosynthesis of diterpene resin acids (DRAs), which are a major component of the conifer oleoresin defense system. CYP720Bs exist in families of up to a dozen different members in conifer genomes and fall into four different clades (I–IV). Only two CYP720B members, loblolly pine (Pinus taeda) PtCYP720B1 and Sitka spruce (Picea sitchensis) PsCYP720B4, have been characterized previously. Both are multisubstrate and multifunctional clade III enzymes, which catalyze consecutive three-step oxidations in the conversion of diterpene olefins to DRAs. These reactions resemble the sequential diterpene oxidations affording ent-kaurenoic acid from ent-kaurene in gibberellin biosynthesis. Here, we functionally characterized the CYP720B clade I enzymes CYP720B2 and CYP720B12 in three different conifer species, Sitka spruce, lodgepole pine (Pinus contorta), and jack pine (Pinus banksiana), and compared their activities with those of the clade III enzymes CYP720B1 and CYP720B4 of the same species. Unlike the clade III enzymes, clade I enzymes were ultimately found not to be active with diterpene olefins but converted the recently discovered, unstable diterpene synthase product 13-hydroxy-8(14)-abietene. Through alternative routes, CYP720B enzymes of both clades produce some of the same profiles of conifer oleoresin DRAs (abietic acid, neoabietic acid, levopimaric acid, and palustric acid), while clade III enzymes also function in the formation of pimaric acid, isopimaric acid, and sandaracopimaric acid. These results highlight the modularity of the specialized (i.e. secondary) diterpene metabolism, which produces conifer defense metabolites through variable combinations of different diterpene synthase and CYP720B enzymes. PMID:26936895

  13. Contrasting trait syndromes in angiosperms and conifers are associated with different responses of tree growth to temperature on a large scale

    PubMed Central

    Carnicer, Jofre; Barbeta, Adrià; Sperlich, Dominik; Coll, Marta; Peñuelas, Josep

    2013-01-01

    Recent large-scale studies of tree growth in the Iberian Peninsula reported contrasting positive and negative effects of temperature in Mediterranean angiosperms and conifers. Here we review the different hypotheses that may explain these trends and propose that the observed contrasting responses of tree growth to temperature in this region could be associated with a continuum of trait differences between angiosperms and conifers. Angiosperm and conifer trees differ in the effects of phenology in their productivity, in their growth allometry, and in their sensitivity to competition. Moreover, angiosperms and conifers significantly differ in hydraulic safety margins, sensitivity of stomatal conductance to vapor-pressure deficit (VPD), xylem recovery capacity or the rate of carbon transfer. These differences could be explained by key features of the xylem such as non-structural carbohydrate content (NSC), wood parenchymal fraction or wood capacitance. We suggest that the reviewed trait differences define two contrasting ecophysiological strategies that may determine qualitatively different growth responses to increased temperature and drought. Improved reciprocal common garden experiments along altitudinal or latitudinal gradients would be key to quantify the relative importance of the different hypotheses reviewed. Finally, we show that warming impacts in this area occur in an ecological context characterized by the advance of forest succession and increased dominance of angiosperm trees over extensive areas. In this context, we examined the empirical relationships between the responses of tree growth to temperature and hydraulic safety margins in angiosperm and coniferous trees. Our findings suggest a future scenario in Mediterranean forests characterized by contrasting demographic responses in conifer and angiosperm trees to both temperature and forest succession, with increased dominance of angiosperm trees, and particularly negative impacts in pines. PMID

  14. Modularity of Conifer Diterpene Resin Acid Biosynthesis: P450 Enzymes of Different CYP720B Clades Use Alternative Substrates and Converge on the Same Products.

    PubMed

    Geisler, Katrin; Jensen, Niels Berg; Yuen, Macaire M S; Madilao, Lina; Bohlmann, Jörg

    2016-05-01

    Cytochrome P450 enzymes of the CYP720B subfamily play a central role in the biosynthesis of diterpene resin acids (DRAs), which are a major component of the conifer oleoresin defense system. CYP720Bs exist in families of up to a dozen different members in conifer genomes and fall into four different clades (I-IV). Only two CYP720B members, loblolly pine (Pinus taeda) PtCYP720B1 and Sitka spruce (Picea sitchensis) PsCYP720B4, have been characterized previously. Both are multisubstrate and multifunctional clade III enzymes, which catalyze consecutive three-step oxidations in the conversion of diterpene olefins to DRAs. These reactions resemble the sequential diterpene oxidations affording ent-kaurenoic acid from ent-kaurene in gibberellin biosynthesis. Here, we functionally characterized the CYP720B clade I enzymes CYP720B2 and CYP720B12 in three different conifer species, Sitka spruce, lodgepole pine (Pinus contorta), and jack pine (Pinus banksiana), and compared their activities with those of the clade III enzymes CYP720B1 and CYP720B4 of the same species. Unlike the clade III enzymes, clade I enzymes were ultimately found not to be active with diterpene olefins but converted the recently discovered, unstable diterpene synthase product 13-hydroxy-8(14)-abietene. Through alternative routes, CYP720B enzymes of both clades produce some of the same profiles of conifer oleoresin DRAs (abietic acid, neoabietic acid, levopimaric acid, and palustric acid), while clade III enzymes also function in the formation of pimaric acid, isopimaric acid, and sandaracopimaric acid. These results highlight the modularity of the specialized (i.e. secondary) diterpene metabolism, which produces conifer defense metabolites through variable combinations of different diterpene synthase and CYP720B enzymes. PMID:26936895

  15. Analysis of the dielectric properties of trunk wood in dominant conifer species from New England and Siberia

    NASA Technical Reports Server (NTRS)

    Ranson, K. J.; Rock, B. N.; Salas, W. A.; Smith, K.; Williams, D. L.

    1992-01-01

    Data were collected for dominant conifer species. Dielectric properties of trunk wood were measured using a C-band dielectric probe. For certain specimens, electrical resistance was also measured using a shigometer. The water status of the trees studies was determined either by use of a Scholander pressure chamber on branch samples collected simultaneously with dielectric measurements or by fresh-weight/dry-weight assessment of wood core samples extracted and analyzed with the dielectric probe and shigometer. Diurnal delectric properties and xylem water column tension are inversely correlated such that real and imaginary dielectric values drop as tension increases. The dielectric properties were positively correlated with wood core moisture content while electrical resistance was poorly correlated with wood core moisture content in one species studied. Results support the view that dielectric properties are strongly correlated with moisture status in trunk wood, and possibly ion concentrations associated with decay processes in damaged specimens.

  16. Spatial and temporal population genetic variation and structure of Nothotsuga longibracteata (Pinaceae), a relic conifer species endemic to subtropical China

    PubMed Central

    Qiu, Yingjun; Liu, Yifei; Kang, Ming; Yi, Guanmei; Huang, Hongwen

    2013-01-01

    Nothotsuga longibracteata, a relic and endangered conifer species endemic to subtropical China, was studied for examining the spatial-temporal population genetic variation and structure to understand the historical biogeographical processes underlying the present geographical distribution. Ten populations were sampled over the entire natural range of the species for spatial analysis, while three key populations with large population sizes and varied age structure were selected for temporal analyses using both nuclear microsatellites (nSSR) and chloroplast microsatellites (cpSSR). A recent bottleneck was detected in the natural populations of N. longibracteata. The spatial genetic analysis showed significant population genetic differentiation across its total geographical range. Notwithstanding, the temporal genetic analysis revealed that the level of genetic diversity between different age class subpopulations remained constant over time. Eleven refugia of the Last Glacial Maximum were identified, which deserve particular attention for conservation management. PMID:24385864

  17. Differences in the response sensitivity of stomatal index to atmospheric CO2 among four genera of Cupressaceae conifers

    PubMed Central

    Haworth, Matthew; Heath, James; McElwain, Jennifer C.

    2010-01-01

    Background and Aims The inverse relationship between stomatal density (SD: number of stomata per mm2 leaf area) and atmospheric concentration of CO2 ([CO2]) permits the use of plants as proxies of palaeo-atmospheric CO2. Many stomatal reconstructions of palaeo-[CO2] are based upon multiple fossil species. However, it is unclear how plants respond to [CO2] across genus, family or ecotype in terms of SD or stomatal index (SI: ratio of stomata to epidermal cells). This study analysed the stomatal numbers of conifers from the ancient family Cupressaceae, in order to examine the nature of the SI–[CO2] relationship, and potential implications for stomatal reconstructions of palaeo-[CO2]. Methods Stomatal frequency measurements were taken from historical herbarium specimens of Athrotaxis cupressoides, Tetraclinis articulata and four Callitris species, and live A. cupressoides grown under CO2-enrichment (370, 470, 570 and 670 p.p.m. CO2). Key Results T. articulata, C. columnaris and C. rhomboidea displayed significant reductions in SI with rising [CO2]; by contrast, A. cupressoides, C. preissii and C. oblonga show no response in SI. However, A. cupressoides does reduce SI to increases in [CO2] above current ambient (approx. 380 p.p.m. CO2). This dataset suggests that a shared consistent SI–[CO2] relationship is not apparent across the genus Callitris. Conclusions The present findings suggest that it is not possible to generalize how conifer species respond to fluctuations in [CO2] based upon taxonomic relatedness or habitat. This apparent lack of a consistent response, in conjunction with high variability in SI, indicates that reconstructions of absolute palaeo-[CO2] based at the genus level, or upon multiple species for discrete intervals of time are not as reliable as those based on a single or multiple temporally overlapping species. PMID:20089556

  18. Acaricidal activity of essential oils from five endemic conifers of New Caledonia on the cattle tick Rhipicephalus (Boophilus) microplus.

    PubMed

    Lebouvier, Nicolas; Hue, Thomas; Hnawia, Edouard; Lesaffre, Leïla; Menut, Chantal; Nour, Mohammed

    2013-04-01

    The aim of the present study was to demonstrate acaricidal activity on the cattle tick Rhipicephalus (Boophilus) microplus of essential oils from endemic conifers of New Caledonia in the context of the development of natural alternatives. Acaricidal activity of essential oils extracted from resin and heartwood of five endemic conifers of New Caledonia (Araucaria columnaris, Agathis moorei, Agathis ovata, Callitris sulcata, and Neocallitropsis pancheri) was evaluated on 14- to 21-day-old Rhipicephalus microplus tick larvae using the Larval Packal Test bioassay. A first screening with 5% dilute solution was carried out and the oils with 100% of mortality at this rate were diluted until no activity was shown. The heartwood oils of the two Cupressaceae were the most active with LC50 value of 0.65% for C. sulcata and 0.55% for N. pancheri while resin oil of A. columnaris (LC50=1.62%) was the most active of the Araucariaceae family. Negative control (ethanol) was not toxic to the larvae. The chemical composition of essential oil from resin of A. columnaris was analyzed by gas chromatography-mass spectrometry. The essential oil was characterized by high level of sesquiterpene hydrocarbons and oxygenated sesquiterpenes and was composed mainly of aromadendrene (23.1%) and bicyclogermacrene (16.0%). In order to compare different plant resources in a sustainable program of natural acaricide, an "essential oil efficiency EOE" can be measured as the ratio between the yield of extraction and LC50 value. This study shows that A. columnaris (EOE=2.36) and N. pancheri (EOE=3.51) could provide valuable and effective natural acaricides for control of the cattle tick R. microplus. PMID:23371495

  19. Evolution of gene structure in the conifer Picea glauca: a comparative analysis of the impact of intron size

    PubMed Central

    2014-01-01

    Background A positive relationship between genome size and intron length is observed across eukaryotes including Angiosperms plants, indicating a co-evolution of genome size and gene structure. Conifers have very large genomes and longer introns on average than most plants, but impacts of their large genome and longer introns on gene structure has not be described. Results Gene structure was analyzed for 35 genes of Picea glauca obtained from BAC sequencing and genome assembly, including comparisons with A. thaliana, P. trichocarpa and Z. mays. We aimed to develop an understanding of impact of long introns on the structure of individual genes. The number and length of exons was well conserved among the species compared but on average, P. glauca introns were longer and genes had four times more intronic sequence than Arabidopsis, and 2 times more than poplar and maize. However, pairwise comparisons of individual genes gave variable results and not all contrasts were statistically significant. Genes generally accumulated one or a few longer introns in species with larger genomes but the position of long introns was variable between plant lineages. In P. glauca, highly expressed genes generally had more intronic sequence than tissue preferential genes. Comparisons with the Pinus taeda BACs and genome scaffolds showed a high conservation for position of long introns and for sequence of short introns. A survey of 1836 P. glauca genes obtained by sequence capture mostly containing introns <1 Kbp showed that repeated sequences were 10× more abundant in introns than in exons. Conclusion Conifers have large amounts of intronic sequence per gene for seed plants due to the presence of few long introns and repetitive element sequences are ubiquitous in their introns. Results indicate a complex landscape of intron sizes and distribution across taxa and between genes with different expression profiles. PMID:24734980

  20. Conifer Encroachment into Tuolumne Meadows, Yosemite National Park: How Anthropogenic Impacts to Local Hydrology Affect Meadow Habitat

    NASA Astrophysics Data System (ADS)

    Roche, J. W.; Lundquist, J. L.; Cooper, D. J.; King, J. C.; Flint, L. E.; Flint, A. L.

    2006-12-01

    Tuolumne Meadows, at 2600 m in Yosemite National Park, is one of the most popular sub-alpine destinations in the Sierra Nevada of California and, as such, one of the most impacted by current and historic use. Conifer (lodgepole pine) encroachment into the meadow has been managed for over 70 years to maintain vistas and to protect potentially impacted meadow vegetation. This study seeks to characterize hydrologic, soil, and vegetation assemblages throughout the affected area, document departures from expected relationships, and identify causative disruptive mechanisms. The snowmelt-dominated Tuolumne River, an integral part of the meadow system, drains 200 km{2} of the Sierra Nevada crest above the meadows. Much of the meadow area consists of recently glaciated granitic bedrock overlain by 1-2 meters of alluvial sand and gravel topped with 30-40 cm of organic-rich meadow soil. Almost all areas examined to date reveal plant assemblages and hydrologic regimes that are inconsistent with the formation of these meadow soils. In upland sites, this is characterized by groundwater conditions that are incapable of supporting meadow forming vegetation and soils. In lower areas, where groundwater levels remain close to the surface throughout the summer, the vegetation present lacks plant species with high below ground biomass production, and could not have formed the existing meadow soils. Potential mechanisms for these disruptions include ditching associated with road construction and drainage, changes in river morphology due to loss of willow riparian vegetation, and lingering impacts of intensive grazing more than a century ago. Patterns of conifer invasion as well as tree-ring and fire scar chronologies were also documented and appear to reflect similar responses to the impacts mentioned above. Results of this study are intended to inform future management and possible restoration of the area.

  1. Contrasting Spatial Patterns in Active-Fire and Fire-Suppressed Mediterranean Climate Old-Growth Mixed Conifer Forests

    PubMed Central

    Fry, Danny L.; Stephens, Scott L.; Collins, Brandon M.; North, Malcolm P.; Franco-Vizcaíno, Ernesto; Gill, Samantha J.

    2014-01-01

    In Mediterranean environments in western North America, historic fire regimes in frequent-fire conifer forests are highly variable both temporally and spatially. This complexity influenced forest structure and spatial patterns, but some of this diversity has been lost due to anthropogenic disruption of ecosystem processes, including fire. Information from reference forest sites can help management efforts to restore forests conditions that may be more resilient to future changes in disturbance regimes and climate. In this study, we characterize tree spatial patterns using four-ha stem maps from four old-growth, Jeffrey pine-mixed conifer forests, two with active-fire regimes in northwestern Mexico and two that experienced fire exclusion in the southern Sierra Nevada. Most of the trees were in patches, averaging six to 11 trees per patch at 0.007 to 0.014 ha−1, and occupied 27–46% of the study areas. Average canopy gap sizes (0.04 ha) covering 11–20% of the area were not significantly different among sites. The putative main effects of fire exclusion were higher densities of single trees in smaller size classes, larger proportion of trees (≥56%) in large patches (≥10 trees), and decreases in spatial complexity. While a homogenization of forest structure has been a typical result from fire exclusion, some similarities in patch, single tree, and gap attributes were maintained at these sites. These within-stand descriptions provide spatially relevant benchmarks from which to manage for structural heterogeneity in frequent-fire forest types. PMID:24586472

  2. Role of acid and aluminum-rich media in the growth and nutrition of Pacific Northwest conifers

    SciTech Connect

    Ryan, P.J.

    1983-01-01

    Forest soils of coastal Washington and Oregon tend to be very acidic with large accumulations of organic matter. Yet the productivity of forest species on these sites can attain record levels. The effect of acid and aluminum-rich media on the growth and nutrition of Pacific Northwest conifer species was investigated for western hemlock, Douglas-fir, western redcedar, and Sitka spruce. The four different types of growth media utilized were solution cultures, sand cultures, mineral soils, and forest floor organic matter. Hydroponic nutrient solutions and sand cultures were used in experiments designed to differentiate the effect of aluminum ions from the hydrogen ions generated by hydrolysis of Al/sup 3 +/. Relative to agronomic plants, all the conifers were found tolerant of the acid solutions and high levels of aluminum. Species differed in their relative tolerance to H/sup +/ and Al/sup 3/ ions. Western hemlock seedling growth was superior to Douglas-fir in the acidified soils and forest floor media, while Ca(OH)/sub 2/ amendment favored Douglas-fir. The marginal increase in western hemlock growth in N + P treated soils was highest in acidified soils. Western hemlock exhibited an ability to absorb nutrients in the presence of excess solution H/sup +/ ions, maintain growth with low tissue requirements of Ca and Mg, and accumulate high levels of aluminum in its roots and foliage without major adverse effect. These attributes are considered to make western hemlock the most acid and Al-tolerant of the four Pacific Northwest forest species studied. Western redcedar was second in acid tolerance to western hemlock. This species' ability to accumulate Ca minimized Al absorption and H/sup +/ damage to its roots.

  3. Historical dominance of low-severity fire in dry and wet mixed-conifer forest habitats of the endangered terrestrial Jemez Mountains salamander (Plethodon neomexicanus)

    USGS Publications Warehouse

    Margolis, Ellis; Malevich, Steven B.

    2016-01-01

    Anthropogenic alteration of ecosystem processes confounds forest management and conservation of rare, declining species. Restoration of forest structure and fire hazard reduction are central goals of forest management policy in the western United States, but restoration priorities and treatments have become increasingly contentious. Numerous studies have documented changes in fire regimes, forest stand structure and species composition following a century of fire exclusion in dry, frequent-fire forests of the western U.S. (e.g., ponderosa pine and dry mixed-conifer). In contrast, wet mixed-conifer forests are thought to have historically burned infrequently with mixed- or high-severity fire—resulting in reduced impacts from fire exclusion and low restoration need—but data are limited. In this study we quantified the current forest habitat of the federally endangered, terrestrial Jemez Mountains salamander (Plethodon neomexicanus) and compared it to dendroecological reconstructions of historical habitat (e.g., stand structure and composition), and fire regime parameters along a gradient from upper ponderosa pine to wet mixed-conifer forests. We found that current fire-free intervals in Jemez Mountains salamander habitat (116–165 years) are significantly longer than historical intervals, even in wet mixed-conifer forests. Historical mean fire intervals ranged from 10 to 42 years along the forest gradient. Low-severity fires were historically dominant across all forest types (92 of 102 fires). Although some mixed- or highseverity fire historically occurred at 67% of the plots over the last four centuries, complete mortality within 1.0 ha plots was rare, and asynchronous within and among sites. Climate was an important driver of temporal variability in fire severity, such that mixed- and high-severity fires were associated with more extreme drought than low-severity fires. Tree density in dry conifer forests historically ranged from open (90 trees/ha) to

  4. Factors affecting distribution of wood, detritus, and sediment in headwater streams draining managed young-growth red alder - Conifer forests in southeast Alaska

    USGS Publications Warehouse

    Gomi, T.; Johnson, A.C.; Deal, R.L.; Hennon, P.E.; Orlikowska, E.H.; Wipfli, M.S.

    2006-01-01

    Factors (riparian stand condition, management regimes, and channel properties) affecting distributions of wood, detritus (leaves and branches), and sediment were examined in headwater streams draining young-growth red alder (Alnus rubra Bong.) - conifer riparian forests (40 years old) remained in channels and provided sites for sediment and organic matter storage. Despite various alder-conifer mixtures and past harvesting effects, the abundance of large wood, fine wood, and detritus accumulations significantly decreased with increasing channel bank-full width (0.5-3.5 m) along relatively short channel distances (up to 700 m). Changes in wood, detritus, and sediment accumulations together with changes in riparian stand characteristics create spatial and temporal variability of in-channel conditions in headwater systems. A component of alder within young-growth riparian forests may benefit both wood production and biological recovery in disturbed headwater stream channels. ?? 2006 NRC.

  5. A Long-Term Assessment of the Variability in Winter Use of Dense Conifer Cover by Female White-Tailed Deer

    PubMed Central

    DelGiudice, Glenn D.; Fieberg, John R.; Sampson, Barry A.

    2013-01-01

    Backgound Long-term studies allow capture of a wide breadth of environmental variability and a broader context within which to maximize our understanding of relationships to specific aspects of wildlife behavior. The goal of our study was to improve our understanding of the biological value of dense conifer cover to deer on winter range relative to snow depth and ambient temperature. Methodology/Principal Findings We examined variation among deer in their use of dense conifer cover during a 12-year study period as potentially influenced by winter severity and cover availability. Female deer were fitted with a mixture of very high frequency (VHF, n = 267) and Global Positioning System (GPS, n = 24) collars for monitoring use of specific cover types at the population and individual levels, respectively. We developed habitat composites for four study sites. We fit multinomial response models to VHF (daytime) data to describe population-level use patterns as a function of snow depth, ambient temperature, and cover availability. To develop alternative hypotheses regarding expected spatio-temporal patterns in the use of dense conifer cover, we considered two sets of competing sub-hypotheses. The first set addressed whether or not dense conifer cover was limiting on the four study sites. The second set considered four alternative sub-hypotheses regarding the potential influence of snow depth and ambient temperature on space use patterns. Deer use of dense conifer cover increased the most with increasing snow depth and most abruptly on the two sites where it was most available, suggestive of an energy conservation strategy. Deer use of dense cover decreased the most with decreasing temperatures on the sites where it was most available. At all four sites deer made greater daytime use (55 to >80% probability of use) of open vegetation types at the lowest daily minimum temperatures indicating the importance of thermal benefits afforded from increased exposure to solar

  6. Examining historical and current mixed-severity fire regimes in ponderosa pine and mixed-conifer forests of western North America.

    PubMed

    Odion, Dennis C; Hanson, Chad T; Arsenault, André; Baker, William L; Dellasala, Dominick A; Hutto, Richard L; Klenner, Walt; Moritz, Max A; Sherriff, Rosemary L; Veblen, Thomas T; Williams, Mark A

    2014-01-01

    There is widespread concern that fire exclusion has led to an unprecedented threat of uncharacteristically severe fires in ponderosa pine (Pinus ponderosa Dougl. ex. Laws) and mixed-conifer forests of western North America. These extensive montane forests are considered to be adapted to a low/moderate-severity fire regime that maintained stands of relatively old trees. However, there is increasing recognition from landscape-scale assessments that, prior to any significant effects of fire exclusion, fires and forest structure were more variable in these forests. Biota in these forests are also dependent on the resources made available by higher-severity fire. A better understanding of historical fire regimes in the ponderosa pine and mixed-conifer forests of western North America is therefore needed to define reference conditions and help maintain characteristic ecological diversity of these systems. We compiled landscape-scale evidence of historical fire severity patterns in the ponderosa pine and mixed-conifer forests from published literature sources and stand ages available from the Forest Inventory and Analysis program in the USA. The consensus from this evidence is that the traditional reference conditions of low-severity fire regimes are inaccurate for most forests of western North America. Instead, most forests appear to have been characterized by mixed-severity fire that included ecologically significant amounts of weather-driven, high-severity fire. Diverse forests in different stages of succession, with a high proportion in relatively young stages, occurred prior to fire exclusion. Over the past century, successional diversity created by fire decreased. Our findings suggest that ecological management goals that incorporate successional diversity created by fire may support characteristic biodiversity, whereas current attempts to "restore" forests to open, low-severity fire conditions may not align with historical reference conditions in most ponderosa

  7. Examining Historical and Current Mixed-Severity Fire Regimes in Ponderosa Pine and Mixed-Conifer Forests of Western North America

    PubMed Central

    Odion, Dennis C.; Hanson, Chad T.; Arsenault, André; Baker, William L.; DellaSala, Dominick A.; Hutto, Richard L.; Klenner, Walt; Moritz, Max A.; Sherriff, Rosemary L.; Veblen, Thomas T.; Williams, Mark A.

    2014-01-01

    There is widespread concern that fire exclusion has led to an unprecedented threat of uncharacteristically severe fires in ponderosa pine (Pinus ponderosa Dougl. ex. Laws) and mixed-conifer forests of western North America. These extensive montane forests are considered to be adapted to a low/moderate-severity fire regime that maintained stands of relatively old trees. However, there is increasing recognition from landscape-scale assessments that, prior to any significant effects of fire exclusion, fires and forest structure were more variable in these forests. Biota in these forests are also dependent on the resources made available by higher-severity fire. A better understanding of historical fire regimes in the ponderosa pine and mixed-conifer forests of western North America is therefore needed to define reference conditions and help maintain characteristic ecological diversity of these systems. We compiled landscape-scale evidence of historical fire severity patterns in the ponderosa pine and mixed-conifer forests from published literature sources and stand ages available from the Forest Inventory and Analysis program in the USA. The consensus from this evidence is that the traditional reference conditions of low-severity fire regimes are inaccurate for most forests of western North America. Instead, most forests appear to have been characterized by mixed-severity fire that included ecologically significant amounts of weather-driven, high-severity fire. Diverse forests in different stages of succession, with a high proportion in relatively young stages, occurred prior to fire exclusion. Over the past century, successional diversity created by fire decreased. Our findings suggest that ecological management goals that incorporate successional diversity created by fire may support characteristic biodiversity, whereas current attempts to “restore” forests to open, low-severity fire conditions may not align with historical reference conditions in most ponderosa

  8. The Complete Chloroplast Genome Sequence of a Relict Conifer Glyptostrobus pensilis: Comparative Analysis and Insights into Dynamics of Chloroplast Genome Rearrangement in Cupressophytes and Pinaceae

    PubMed Central

    Zheng, Renhua; Xu, Haibin; Zhou, Yanwei; Li, Meiping; Lu, Fengjuan; Dong, Yini; Liu, Xin; Chen, Jinhui; Shi, Jisen

    2016-01-01

    Glyptostrobus pensilis, belonging to the monotypic genus Glyptostrobus (Family: Cupressaceae), is an ancient conifer that is naturally distributed in low-lying wet areas. Here, we report the complete chloroplast (cp) genome sequence (132,239 bp) of G. pensilis. The G. pensilis cp genome is similar in gene content, organization and genome structure to the sequenced cp genomes from other cupressophytes, especially with respect to the loss of the inverted repeat region A (IRA). Through phylogenetic analysis, we demonstrated that the genus Glyptostrobus is closely related to the genus Cryptomeria, supporting previous findings based on physiological characteristics. Since IRs play an important role in stabilize cp genome and conifer cp genomes lost different IR regions after splitting in two clades (cupressophytes and Pinaceae), we performed cp genome rearrangement analysis and found more extensive cp genome rearrangements among the species of cupressophytes relative to Pinaceae. Additional repeat analysis indicated that cupressophytes cp genomes contained less potential functional repeats, especially in Cupressaceae, compared with Pinaceae. These results suggested that dynamics of cp genome rearrangement in conifers differed since the two clades, Pinaceae and cupressophytes, lost IR copies independently and developed different repeats to complement the residual IRs. In addition, we identified 170 perfect simple sequence repeats that will be useful in future research focusing on the evolution of genetic diversity and conservation of genetic variation for this endangered species in the wild. PMID:27560965

  9. Metabolite changes in conifer buds and needles during forced bud break in Norway spruce (Picea abies) and European silver fir (Abies alba)

    PubMed Central

    Dhuli, Priyanka; Rohloff, Jens; Strimbeck, G. Richard

    2014-01-01

    Environmental changes such as early spring and warm spells induce bud burst and photosynthetic processes in cold-acclimated coniferous trees and consequently, cellular metabolism in overwintering needles and buds. The purpose of the study was to examine metabolism in conifers under forced deacclimation (artificially induced spring) by exposing shoots of Picea abies (boreal species) and Abies alba (temperate species) to a greenhouse environment (22°C, 16/8 h D/N cycle) over a 9 weeks period. Each week, we scored bud opening and collected samples for GC/MS–based metabolite profiling. We detected a total of 169 assigned metabolites and 80 identified metabolites, comprising compounds such as mono- and disaccharides, Krebs cycle acids, amino acids, polyols, phenolics, and phosphorylated structures. Untargeted multivariate statistical analysis based on PCA and cluster analysis segregated samples by species, tissue type, and stage of tissue deacclimations. Similar patterns of metabolic regulation in both species were observed in buds (amino acids, Krebs cycle acids) and needles (hexoses, pentoses, and Krebs cycle acids). Based on correlation of bud opening score with compound levels, distinct metabolites could be associated with bud and shoot development, including amino acids, sugars, and acids with known osmolyte function, and secondary metabolites. This study has shed light on how elevated temperature affects metabolism in buds and needles of conifer species during the deacclimation phase, and contributes to the discussion about how phenological characters in conifers may respond to future global warming. PMID:25566281

  10. The Complete Chloroplast Genome Sequence of a Relict Conifer Glyptostrobus pensilis: Comparative Analysis and Insights into Dynamics of Chloroplast Genome Rearrangement in Cupressophytes and Pinaceae.

    PubMed

    Hao, Zhaodong; Cheng, Tielong; Zheng, Renhua; Xu, Haibin; Zhou, Yanwei; Li, Meiping; Lu, Fengjuan; Dong, Yini; Liu, Xin; Chen, Jinhui; Shi, Jisen

    2016-01-01

    Glyptostrobus pensilis, belonging to the monotypic genus Glyptostrobus (Family: Cupressaceae), is an ancient conifer that is naturally distributed in low-lying wet areas. Here, we report the complete chloroplast (cp) genome sequence (132,239 bp) of G. pensilis. The G. pensilis cp genome is similar in gene content, organization and genome structure to the sequenced cp genomes from other cupressophytes, especially with respect to the loss of the inverted repeat region A (IRA). Through phylogenetic analysis, we demonstrated that the genus Glyptostrobus is closely related to the genus Cryptomeria, supporting previous findings based on physiological characteristics. Since IRs play an important role in stabilize cp genome and conifer cp genomes lost different IR regions after splitting in two clades (cupressophytes and Pinaceae), we performed cp genome rearrangement analysis and found more extensive cp genome rearrangements among the species of cupressophytes relative to Pinaceae. Additional repeat analysis indicated that cupressophytes cp genomes contained less potential functional repeats, especially in Cupressaceae, compared with Pinaceae. These results suggested that dynamics of cp genome rearrangement in conifers differed since the two clades, Pinaceae and cupressophytes, lost IR copies independently and developed different repeats to complement the residual IRs. In addition, we identified 170 perfect simple sequence repeats that will be useful in future research focusing on the evolution of genetic diversity and conservation of genetic variation for this endangered species in the wild. PMID:27560965

  11. delta13C and water-use efficiency in Australian grasstrees and South African conifers over the last century.

    PubMed

    Swanborough, Perry W; Lamont, Byron B; February, Edmund C

    2003-07-01

    Annual or biannual time courses of plant delta13C (delta13C(p)) over the last century (70-100 years) were recorded for leafbases of four grasstrees (Xanthorrhoea preissii) at four sites in mediterranean Australia and wood of four conifers (Widdringtonia cedarbergensis) at two sites in mediterranean South Africa. There was a strong downward trend of 2-5.5(per thousand ) from 1935 to 1940 to the present in the eight plants. Trends were more variable from 1900 to 1940 with plants at two sites of each species showing an upward trend of 1-2.5 per thousand. Accepting that delta13C of the air (delta13C(a)) fell by almost 2 per thousand over the last century, the ratio of leaf intercellular CO2 to atmospheric CO2 (c(i)/c(a)) rose in five plants and remained unchanged in three over that period. Changes in c(i)/c(a) rather than delta13C(a) were more closely correlated with changes in delta13C(p) and accounted for 6.7-71.8% (22.6 c(i)/c(a)) and 28.2-93.3% (delta13C(a)) of the variation in delta13C(p). We doubt that possible changing patterns of rainfall, water availability, temperature, shade, air pollution or clearing for agriculture have contributed to the overall trend for c(i)/c(a) to rise over time. Instead, we provide evidence (concentrations of Fe and Mn in the grasstree leafbases) that decreasing photosynthetic capacity associated with falling nutrient availability due to the reduced occurrence of fire may have contributed to rising c(i)/c(a). Intrinsic water-use efficiency (W(i)) as a function of (c(a)-c(i)) usually increased linearly over the period, with the two exceptions explained by their marked increase in c(i)/c(a). We conclude that grasstrees may provide equivalent delta13C(p )and W(i) data to long-lived conifers and that their interpretation requires a consideration of the causes of variation in both c(i)/c(a )and delta13C(a). PMID:12728309

  12. MADS goes genomic in conifers: towards determining the ancestral set of MADS-box genes in seed plants

    PubMed Central

    Gramzow, Lydia; Weilandt, Lisa; Theißen, Günter

    2014-01-01

    Background and Aims MADS-box genes comprise a gene family coding for transcription factors. This gene family expanded greatly during land plant evolution such that the number of MADS-box genes ranges from one or two in green algae to around 100 in angiosperms. Given the crucial functions of MADS-box genes for nearly all aspects of plant development, the expansion of this gene family probably contributed to the increasing complexity of plants. However, the expansion of MADS-box genes during one important step of land plant evolution, namely the origin of seed plants, remains poorly understood due to the previous lack of whole-genome data for gymnosperms. Methods The newly available genome sequences of Picea abies, Picea glauca and Pinus taeda were used to identify the complete set of MADS-box genes in these conifers. In addition, MADS-box genes were identified in the growing number of transcriptomes available for gymnosperms. With these datasets, phylogenies were constructed to determine the ancestral set of MADS-box genes of seed plants and to infer the ancestral functions of these genes. Key Results Type I MADS-box genes are under-represented in gymnosperms and only a minimum of two Type I MADS-box genes have been present in the most recent common ancestor (MRCA) of seed plants. In contrast, a large number of Type II MADS-box genes were found in gymnosperms. The MRCA of extant seed plants probably possessed at least 11–14 Type II MADS-box genes. In gymnosperms two duplications of Type II MADS-box genes were found, such that the MRCA of extant gymnosperms had at least 14–16 Type II MADS-box genes. Conclusions The implied ancestral set of MADS-box genes for seed plants shows simplicity for Type I MADS-box genes and remarkable complexity for Type II MADS-box genes in terms of phylogeny and putative functions. The analysis of transcriptome data reveals that gymnosperm MADS-box genes are expressed in a great variety of tissues, indicating diverse roles of MADS

  13. Whole genome duplication in coast redwood (Sequoia sempervirens) and its implications for explaining the rarity of polyploidy in conifers.

    PubMed

    Scott, Alison Dawn; Stenz, Noah W M; Ingvarsson, Pär K; Baum, David A

    2016-07-01

    Polyploidy is common and an important evolutionary factor in most land plant lineages, but it is rare in gymnosperms. Coast redwood (Sequoia sempervirens) is one of just two polyploid conifer species and the only hexaploid. Evidence from fossil guard cell size suggests that polyploidy in Sequoia dates to the Eocene. Numerous hypotheses about the mechanism of polyploidy and parental genome donors have been proposed, based primarily on morphological and cytological data, but it remains unclear how Sequoia became polyploid and why this lineage overcame an apparent gymnosperm barrier to whole-genome duplication (WGD). We sequenced transcriptomes and used phylogenetic inference, Bayesian concordance analysis and paralog age distributions to resolve relationships among gene copies in hexaploid coast redwood and close relatives. Our data show that hexaploidy in coast redwood is best explained by autopolyploidy or, if there was allopolyploidy, it happened within the Californian redwood clade. We found that duplicate genes have more similar sequences than expected, given the age of the inferred polyploidization. Conflict between molecular and fossil estimates of WGD can be explained if diploidization occurred very slowly following polyploidization. We extrapolate from this to suggest that the rarity of polyploidy in gymnosperms may be due to slow diploidization in this clade. PMID:26996245

  14. [Spatial heterogeneity of natural regeneration in a spruce-fir mixed broadleaf-conifer forest in Changbai Mountains].

    PubMed

    Li, Yan-Li; Yang, Hua; Kang, Xin-Gang; Wang, Yan; Yue, Gang; Shen, Lin

    2014-02-01

    Based on fieldwork on a plot of 60 m x 60 m in the Changbai Mountain area of Northeast China in August 2012, the spatial distribution pattern and heterogeneity of natural regeneration in the spruce-fir mixed broadleaf-conifer forest were analyzed using semi-variograms, fractal dimensions and Kriging interpolation methods. The results showed that Abies nephrolepis and Acer mono were the most common regeneration species, accounting for 87.4% of the total. The regeneration seedlings and saplings presented an aggregate distribution pattern with the biggest radius of 9.93 m. Distinct spatial autocorrelation existed among regeneration seedlings and saplings, with 88.7% of variation coming from structure factors (biological and ecological properties and environmental heterogeneity) and 11.3% from random factors. The spatial distribution of the regeneration seedlings and saplings presented anisotropy, with the smallest fractal dimension and strongest spatial heterogeneity from north to south, and the highest fractal dimension and weakest spatial heterogeneity from northeast to southwest. The spatial heterogeneity of heights of seedlings and saplings was greater than that of root collar diameters. The distance of spatial autocorrelation for tree root collar diameters was 29.97 m, and that for heights was 31.86 m. Random factors and structure factors were found to contribute equally to the spatial heterogeneity. PMID:24830227

  15. Geohydrologic, geochemical, and geologic controls on the occurrence of radon in ground water near Conifer, Colorado, USA

    USGS Publications Warehouse

    Lawrence, E.; Poeter, E.; Wanty, R.

    1991-01-01

    Integrated studies of geohydrology, geochemistry, and geology of crystalline rocks in the vicinity of Conifer, Colorado, reveal that radon concentrations do not correlate with variations in concentrations of other dissolved species. Concentrations of major ions show systematic variations along selected groundwater flowpaths, whereas radon concentrations are dependent on local geochemical and geologic phenomena (such as localized uranium concentration in the rock or the presence of faults or folds). When radon enters the flow system, concentrations do not increase along flowpaths because its decay rate is fast relative to groundwater flow rates. Radon-222 is not in secular equilibrium with 238U and 226Ra in the water. Therefore, most of the 238U and 226Ra necessary to support the waterborne 222Rn must be present locally in the rock. High concentrations of dissolved radon are not found in zones of high transmissivity, and transmissivity is not correlated with rock type in the study area. A higher transmissivity can be indicative of higher water-volume to rock-surface-area ratios, which could effectively dilute 222Rn entering the water and/or may indicate that emanated radon is carried away more rapidly. Water samples collected from individual wells over periods of several months showed significant fluctuations in the dissolved 222Rn content. This fluctuation may be controlled by changes in the contributions of water-producing zones within the well resulting from seasonal fluctuations of the water table and/or pumping stresses. ?? 1991.

  16. Climate, not Aboriginal landscape burning, controlled the historical demography and distribution of fire-sensitive conifer populations across Australia

    PubMed Central

    Sakaguchi, Shota; Bowman, David M. J. S.; Prior, Lynda D.; Crisp, Michael D.; Linde, Celeste C.; Tsumura, Yoshihiko; Isagi, Yuji

    2013-01-01

    Climate and fire are the key environmental factors that shape the distribution and demography of plant populations in Australia. Because of limited palaeoecological records in this arid continent, however, it is unclear as to which factor impacted vegetation more strongly, and what were the roles of fire regime changes owing to human activity and megafaunal extinction (since ca 50 kya). To address these questions, we analysed historical genetic, demographic and distributional changes in a widespread conifer species complex that paradoxically grows in fire-prone regions, yet is very sensitive to fire. Genetic demographic analysis showed that the arid populations experienced strong bottlenecks, consistent with range contractions during the Last Glacial Maximum (ca 20 kya) predicted by species distribution models. In southern temperate regions, the population sizes were estimated to have been mostly stable, followed by some expansion coinciding with climate amelioration at the end of the last glacial period. By contrast, in the flammable tropical savannahs, where fire risk is the highest, demographic analysis failed to detect significant population bottlenecks. Collectively, these results suggest that the impact of climate change overwhelmed any modifications to fire regimes by Aboriginal landscape burning and megafaunal extinction, a finding that probably also applies to other fire-prone vegetation across Australia. PMID:24174110

  17. Late Holocene geomorphic record of fire in ponderosa pine and mixed-conifer forests, Kendrick Mountain, northern Arizona, USA

    USGS Publications Warehouse

    Jenkins, S.E.; Hull, Sieg C.; Anderson, D.E.; Kaufman, D.S.; Pearthree, P.A.

    2011-01-01

    Long-term fire history reconstructions enhance our understanding of fire behaviour and associated geomorphic hazards in forested ecosystems. We used 14C ages on charcoal from fire-induced debris-flow deposits to date prehistoric fires on Kendrick Mountain, northern Arizona, USA. Fire-related debris-flow sedimentation dominates Holocene fan deposition in the study area. Radiocarbon ages indicate that stand-replacing fire has been an important phenomenon in late Holocene ponderosa pine (Pinus ponderosa) and ponderosa pine-mixed conifer forests on steep slopes. Fires have occurred on centennial scales during this period, although temporal hiatuses between recorded fires vary widely and appear to have decreased during the past 2000 years. Steep slopes and complex terrain may be responsible for localised crown fire behaviour through preheating by vertical fuel arrangement and accumulation of excessive fuels. Holocene wildfire-induced debris flow events occurred without a clear relationship to regional climatic shifts (decadal to millennial), suggesting that interannual moisture variability may determine fire year. Fire-debris flow sequences are recorded when (1) sufficient time has passed (centuries) to accumulate fuels; and (2) stored sediment is available to support debris flows. The frequency of reconstructed debris flows should be considered a minimum for severe events in the study area, as fuel production may outpace sediment storage. ?? IAWF 2011.

  18. Altered community flammability in Florida's Apalachicola ravines and implications for the persistence of the endangered conifer Torreya taxifolia.

    PubMed

    Mola, John M; Varner, J Morgan; Jules, Erik S; Spector, Tova

    2014-01-01

    Plant species and communities often reflect historic fire regimes via ecological and evolutionary responses to recurrent fires. Plant communities of the southeastern USA experience a wide array of fire regimes, perhaps nowhere more marked than the juxtaposition of fire-prone uplands and adjacent mesic ravines along Florida's Apalachicola River. The ravines contain many endemic and disjunct species, most notably the endangered endemic conifer Torreya taxifolia. A rapid decline in T. taxifolia over the past 60 years has been associated with widespread replacement by other tree species. To understand the changes accompanying the shift in ravine composition, we compared leaf litter flammability of nine historic and contemporary species. We measured maximum flame height, flame duration, smoldering duration, mass loss, absorptive capacity, and drying rate. Ordination and perMANOVA suggest the nine species segregated into three distinct groups: the fire-impeding T. taxifolia and Taxus floridana; an intermediate group of three deciduous angiosperms; and a mixed cluster of four flammable species. Results suggest T. taxifolia and T. floridana were fire-impeding species in these communities, while contemporary dominants burn similarly to the upslope pyric species. The increasing presence of fire-facilitating species may portend a shifting fire regime that further imperils T. taxifolia and other rare species in the formerly fire-safe ravines. PMID:25084166

  19. DNA barcoding reveals a mysterious high species diversity of conifer-feeding aphids in the mountains of southwest China.

    PubMed

    Chen, Rui; Jiang, Li-Yun; Chen, Jing; Qiao, Ge-Xia

    2016-01-01

    The mountains of southwest China are one of the hot spots of biodiversity in the world. However, the high-altitude fauna that inhabit these mountains remain a mystery. In this study, the species diversity of the aphids of the genus Cinara from the high-altitude coniferous forests was first assessed, and then the processes and the mechanisms of speciation were discussed. Three hundreds and four aphid samples that contained 3040 individuals were collected during fourteen field surveys. The molecular clusters derived from the DNA barcodes were used to explore the species diversity. Notably, the aphid alpha-diversity was high, with as many as 94 candidate species, and furthermore, 86.2% of the species collected had not been previously recorded. The centers of aphid species richness corresponded to the distributional pattern of the diversity of the host conifer plant species. The divergence time revealed that following the uplift of the Qinghai-Tibetan Plateau during the Pleistocene, the changes in the climate, ecology and host habitats were likely the most important factors that drove the rapid process of evolutionary radiation in the aphids. Our findings revealed the high species diversity of the aphids with DNA barcoding. PMID:26838797

  20. Relevance of the Sea Sand Disruption Method (SSDM) for the biometrical differentiation of the essential-oil composition from conifers.

    PubMed

    Dawidowicz, Andrzej L; Czapczyńska, Natalia B; Wianowska, Dorota

    2013-02-01

    Sea Sand Disruption Method (SSDM) is a simple and cheap sample-preparation procedure allowing the reduction of organic solvent consumption, exclusion of sample component degradation, improvement of extraction efficiency and selectivity, and elimination of additional sample clean-up and pre-concentration step before chromatographic analysis. This article deals with the possibility of SSDM application for the differentiation of essential-oils components occurring in the Scots pine (Pinus sylvestris L.) and cypress (Cupressus sempervirens L.) needles from Madrid (Spain), Laganas (Zakhyntos, Greece), Cala Morell (Menorca, Spain), Lublin (Poland), Helsinki (Finland), and Oradea (Romania). The SSDM results are related to the analogous - obtained applying two other sample preparation methods - steam distillation and Pressurized Liquid Extraction (PLE). The results presented established that the total amount and the composition of essential-oil components revealed by SSDM are equivalent or higher than those obtained by one of the most effective extraction technique, PLE. Moreover, SSDM seems to provide the most representative profile of all essential-oil components as no heat is applied. Thus, this environmentally friendly method is suggested to be used as the main extraction procedure for the differentiation of essential-oil components in conifers for scientific and industrial purposes. PMID:23418171

  1. The ectomycorrhizal community of conifer stands on peat soils 12 years after fertilization with wood ash.

    PubMed

    Klavina, Darta; Pennanen, Taina; Gaitnieks, Talis; Velmala, Sannakajsa; Lazdins, Andis; Lazdina, Dagnija; Menkis, Audrius

    2016-02-01

    We studied long-term effects of fertilization with wood ash on biomass, vitality and mycorrhizal colonization of fine roots in three conifer forest stands growing in Vacciniosa turf. mel. (V), Myrtillosa turf. mel. (M) and Myrtillosa turf. mel./Caricoso-phragmitosa (MC) forest types on peat soils. Fertilization trials amounting 5 kg/m(2) of wood ash were established 12 years prior to this study. A total of 63 soil samples with roots were collected and analysed. Ectomycorrhizal (ECM) fungi in roots were identified by morphotyping and sequencing of the fungal internal transcribed spacer (ITS) region. In all forest types, fine root biomass was higher in fertilized plots than in control plots. In M forest type, proportion of living fine roots was greater in fertilized plots than in control plots, while in V and MC, the result was opposite. Fifty ECM species were identified, of which eight were common to both fertilized and control plots. Species richness and Shannon diversity index were generally higher in fertilized plots than in control plots. The most common species in fertilized plots were Amphinema byssoides (17.8%) and Tuber cf. anniae (12.2%), while in control plots, it was Tylospora asterophora (18.5%) and Lactarius tabidus (20.3%). Our results showed that forest fertilization with wood ash has long-lasting effect on diversity and composition of ECM fungal communities. PMID:26208815

  2. DNA barcoding reveals a mysterious high species diversity of conifer-feeding aphids in the mountains of southwest China

    PubMed Central

    Chen, Rui; Jiang, Li-Yun; Chen, Jing; Qiao, Ge-Xia

    2016-01-01

    The mountains of southwest China are one of the hot spots of biodiversity in the world. However, the high-altitude fauna that inhabit these mountains remain a mystery. In this study, the species diversity of the aphids of the genus Cinara from the high-altitude coniferous forests was first assessed, and then the processes and the mechanisms of speciation were discussed. Three hundreds and four aphid samples that contained 3040 individuals were collected during fourteen field surveys. The molecular clusters derived from the DNA barcodes were used to explore the species diversity. Notably, the aphid alpha-diversity was high, with as many as 94 candidate species, and furthermore, 86.2% of the species collected had not been previously recorded. The centers of aphid species richness corresponded to the distributional pattern of the diversity of the host conifer plant species. The divergence time revealed that following the uplift of the Qinghai-Tibetan Plateau during the Pleistocene, the changes in the climate, ecology and host habitats were likely the most important factors that drove the rapid process of evolutionary radiation in the aphids. Our findings revealed the high species diversity of the aphids with DNA barcoding. PMID:26838797

  3. Conflicting selection from fire and seed predation drives fine-scaled phenotypic variation in a widespread North American conifer

    PubMed Central

    Talluto, Matthew V.; Benkman, Craig W.

    2014-01-01

    Recent work has demonstrated that evolutionary processes shape ecological dynamics on relatively short timescales (eco-evolutionary dynamics), but demonstrating these effects at large spatial scales in natural landscapes has proven difficult. We used empirical studies and modeling to investigate how selective pressures from fire and predispersal seed predation affect the evolution of serotiny, an ecologically important trait. Serotiny is a highly heritable key reproductive trait in Rocky Mountain lodgepole pine (Pinus contorta subsp. latifolia), a conifer that dominates millions of hectares in western North America. In these forests, the frequency of serotiny determines postfire seedling density with corresponding community- and ecosystem-level effects. We found that serotinous individuals have a selective advantage at high fire frequencies and low predation pressure; however, very high seed predation shifted the selective advantage to nonserotinous individuals even at high fire frequencies. Simulation modeling suggests that spatial variation in the frequency of serotiny results from heterogeneity in these two selective agents. These results, combined with previous findings showing a negative association between the density of seed predators and the frequency of serotiny at both landscape and continental scales, demonstrate that contemporary patterns in serotiny reflect an evolutionary response to conflicting selection pressures from fire and seed predation. Thus, we show that variation in the frequency of a heritable polygenic trait depends on spatial variation in two dominant selective agents, and, importantly, the effects of the local trait variation propagate with profound consequences to the structure and function of communities and ecosystems across a large landscape. PMID:24979772

  4. Establishing a Wild, Ex Situ Population of a Critically Endangered Shade-Tolerant Rainforest Conifer: A Translocation Experiment.

    PubMed

    Zimmer, Heidi C; Offord, Catherine A; Auld, Tony D; Baker, Patrick J

    2016-01-01

    Translocation can reduce extinction risk by increasing population size and geographic range, and is increasingly being used in the management of rare and threatened plant species. A critical determinant of successful plant establishment is light environment. Wollemia nobilis (Wollemi pine) is a critically endangered conifer, with a wild population of 83 mature trees and a highly restricted distribution of less than 10 km2. We used under-planting to establish a population of W. nobilis in a new rainforest site. Because its optimal establishment conditions were unknown, we conducted an experimental translocation, planting in a range of different light conditions from deeply shaded to high light gaps. Two years after the experimental translocation, 85% of plants had survived. There were two distinct responses: very high survival (94%) but very low growth, and lower survival (69%) and higher growth, associated with initial plant condition. Overall survival of translocated W. nobilis was strongly increased in planting sites with higher light, in contrast to previous studies demonstrating long-term survival of wild W. nobilis juveniles in deep shade. Translocation by under-planting may be useful in establishing new populations of shade-tolerant plant species, not least by utilizing the range of light conditions that occur in forest understories. PMID:27403527

  5. Establishing a Wild, Ex Situ Population of a Critically Endangered Shade-Tolerant Rainforest Conifer: A Translocation Experiment

    PubMed Central

    Zimmer, Heidi C.; Offord, Catherine A.; Auld, Tony D.; Baker, Patrick J.

    2016-01-01

    Translocation can reduce extinction risk by increasing population size and geographic range, and is increasingly being used in the management of rare and threatened plant species. A critical determinant of successful plant establishment is light environment. Wollemia nobilis (Wollemi pine) is a critically endangered conifer, with a wild population of 83 mature trees and a highly restricted distribution of less than 10 km2. We used under-planting to establish a population of W. nobilis in a new rainforest site. Because its optimal establishment conditions were unknown, we conducted an experimental translocation, planting in a range of different light conditions from deeply shaded to high light gaps. Two years after the experimental translocation, 85% of plants had survived. There were two distinct responses: very high survival (94%) but very low growth, and lower survival (69%) and higher growth, associated with initial plant condition. Overall survival of translocated W. nobilis was strongly increased in planting sites with higher light, in contrast to previous studies demonstrating long-term survival of wild W. nobilis juveniles in deep shade. Translocation by under-planting may be useful in establishing new populations of shade-tolerant plant species, not least by utilizing the range of light conditions that occur in forest understories. PMID:27403527

  6. The periodic wetting of leaves enhances water relations and growth of the long-lived conifer Araucaria angustifolia.

    PubMed

    Cassana, F F; Dillenburg, L R

    2013-01-01

    The importance of foliar absorption of water and atmospheric solutes in conifers was recognised in the 1970s, and the importance of fog as a water source in forest environments has been recently demonstrated. Araucaria angustifolia (Araucariaceae) is an emergent tree species that grows in montane forests of southern Brazil, where rainfall and fog are frequent events, leading to frequent wetting of the leaves. Despite anatomical evidence in favour of leaf water absorption, there is no information on the existence and physiological significance of a such process. In this study, we test the hypothesis that the use of atmospheric water by leaves takes place and is physiologically relevant for the species, by comparing growth, water relations and nutritional status between plants grown under two conditions of soil water (well-watered and water-stressed plants) and three types of leaf spraying (none, water and nutrient solution spray). Leaf spraying had a greater effect in improving plant water relations when plants were under water stress. Plant growth was more responsive to water available to the leaves than to the roots, and was equally increased by both types of leaf spraying, with no interaction with soil water status. Spraying leaves with nutrient solution increased shoot ramification and raised the concentrations of N, P, K, Zn, Cu and Fe in the roots. Our results provide strong indications that water and nutrients are indeed absorbed by leaves of A. angustifolia, and that this process might be as important as water uptake by its roots. PMID:22672733

  7. Uptake of Water via Branches Helps Timberline Conifers Refill Embolized Xylem in Late Winter1[C][W][OPEN

    PubMed Central

    Mayr, Stefan; Schmid, Peter; Laur, Joan; Rosner, Sabine; Charra-Vaskou, Katline; Dämon, Birgit; Hacke, Uwe G.

    2014-01-01

    Xylem embolism is a limiting factor for woody species worldwide. Conifers at the alpine timberline are exposed to drought and freeze-thaw stress during winter, which induce potentially lethal embolism. Previous studies indicated that timberline trees survive by xylem refilling. In this study on Picea abies, refilling was monitored during winter and spring seasons and analyzed in the laboratory and in situ experiments, based on hydraulic, anatomical, and histochemical methods. Refilling started in late winter, when the soil was frozen and soil water not available for the trees. Xylem embolism caused up to 86.2% ± 3.1% loss of conductivity and was correlated with the ratio of closed pits. Refilling of xylem as well as recovery in shoot conductance started in February and corresponded with starch accumulation in secondary phloem and in the mesophyll of needles, where we also observed increasing aquaporin densities in the phloem and endodermis. This indicates that active, cellular processes play a role for refilling even under winter conditions. As demonstrated by our experiments, water for refilling was thereby taken up via the branches, likely by foliar water uptake. Our results suggest that refilling is based on water shifts to embolized tracheids via intact xylem, phloem, and parenchyma, whereby aquaporins reduce resistances along the symplastic pathway and aspirated pits facilitate isolation of refilling tracheids. Refilling must be taken into account as a key process in plant hydraulics and in estimating future effects of climate change on forests and alpine tree ecosystems. PMID:24521876

  8. Paleoecology of late-glacial terrestrial deposits with in situ conifers from the submerged continental shelf of western canada

    NASA Astrophysics Data System (ADS)

    Lacourse, Terri; Mathewes, Rolf W.; Fedje, Daryl W.

    2003-09-01

    Extensive portions of the continental shelf off the coast of British Columbia were subaerially exposed during Late Wisconsinan deglaciation due to lowering of relative sea level by as much as 150 m. Paleoecological analyses were conducted at two sites on the emergent continental shelf where terrestrial surfaces with in situ conifers are preserved. The woody plant remains confirm that, during the latest period of subaerial exposure, terrestrial vegetation was established on the continental shelf. Microscopic identification of fossil wood, and analyses of pollen and plant macrofossils from the associated paleosols and overlying shallow pond sediments indicate that productive Pinus contorta-dominated communities with abundant Alnus crispa and ferns grew on the shelf adjacent to and on the Queen Charlotte Islands around 12,200 14C yr B.P. Dwarf shrubs including Salix and Empetrum, and herbaceous plants such as Heracleum lanatum and Hippuris vulgaris, were also important components of the shelf vegetation. Near northern Vancouver Island, mixed coniferous forests dominated by Pinus contorta with Picea, Tsuga spp., Alnus spp., and ferns occupied the shelf at 10,500 14C yr B.P.

  9. Climatic influences on wood anatomy and tree-ring features of Great Basin conifers at a new mountain observatory1

    PubMed Central

    Ziaco, Emanuele; Biondi, Franco; Rossi, Sergio; Deslauriers, Annie

    2014-01-01

    • Premise of the study: A network of mountain observing stations has been installed in the Great Basin of North America. NevCAN (Nevada Climate-ecohydrological Assessment Network), which spans a latitudinal range of 2.5° and two elevation ranges of about 2000 m each, enabled us to investigate tree growth in relation to climate. • Methods: We analyzed wood anatomy and tree-ring characteristics of four conifer species in response to different levels of water availability by comparing a low- and a high-elevation population. Chronologies of earlywood and latewood widths, as well as cellular parameters, were developed from the year 2000 to 2012. • Results: At the southern (drier and warmer) sites, Pinus monophylla had smaller cell lumen, tracheid diameter, and cell wall thickness. Pinus monophylla and P. flexilis showed bigger cellular elements at the higher elevations, whereas the opposite pattern was found in Picea engelmannii and Pinus longaeva. When all species and sites were pooled together, stem diameter was positively related with earlywood anatomical parameters. • Discussion: We have provided a glimpse of the applications that NevCAN, as a new scientific tool, could allow in the general field of botany. In particular, we were able to investigate how differences in water stress related to elevation lead to changes in xylem anatomy. PMID:25309838

  10. Role of burning season on initial understory vegetation response to prescribed fire in a mixed conifer forest

    USGS Publications Warehouse

    Knapp, E.E.; Schwilk, D.W.; Kane, J.M.; Keeley, J.E.

    2007-01-01

    Although the majority of fires in the western United States historically occurred during the late summer or early fall when fuels were dry and plants were dormant or nearly so, early-season prescribed burns are often ignited when fuels are still moist and plants are actively growing. The purpose of this study was to determine if burn season influences postfire vegetation recovery. Replicated early-season burn, late-season burn, and unburned control units were established in a mixed conifer forest, and understory vegetation was evaluated before and after treatment. Vegetation generally recovered rapidly after prescribed burning. However, late-season burns resulted in a temporary but significant drop in cover and a decline in species richness at the 1 m 2 scale in the following year. For two of the several taxa that were negatively affected by burning, the reduction in frequency was greater after late-season than early-season burns. Early-season burns may have moderated the effect of fire by consuming less fuel and lessening the amount of soil heating. Our results suggest that, when burned under high fuel loading conditions, many plant species respond more strongly to differences in fire intensity and severity than to timing of the burn relative to stage of plant growth. ?? 2007 NRC.

  11. Long-term effects of prescribed fire on mixed conifer forest structure in the Sierra Nevada, California

    USGS Publications Warehouse

    van Mantgem, Phillip J.; Stephenson, Nathan L.; Knapp, Eric; Keeley, Jon E.

    2011-01-01

    The capacity of prescribed fire to restore forest conditions is often judged by changes in forest structure within a few years following burning. However, prescribed fire might have longer-term effects on forest structure, potentially changing treatment assessments. We examined annual changes in forest structure in five 1 ha old-growth plots immediately before prescribed fire and up to eight years after fire at Sequoia National Park, California. Fire-induced declines in stem density (67% average decrease at eight years post-fire) were nonlinear, taking up to eight years to reach a presumed asymptote. Declines in live stem biomass were also nonlinear, but smaller in magnitude (32% average decrease at eight years post-fire) as most large trees survived the fires. The preferential survival of large trees following fire resulted in significant shifts in stem diameter distributions. Mortality rates remained significantly above background rates up to six years after the fires. Prescribed fire did not have a large influence on the representation of dominant species. Fire-caused mortality appeared to be spatially random, and therefore did not generally alter heterogeneous tree spatial patterns. Our results suggest that prescribed fire can bring about substantial changes to forest structure in old-growth mixed conifer forests in the Sierra Nevada, but that long-term observations are needed to fully describe some measures of fire effects.

  12. Conflicting selection from fire and seed predation drives fine-scaled phenotypic variation in a widespread North American conifer.

    PubMed

    Talluto, Matthew V; Benkman, Craig W

    2014-07-01

    Recent work has demonstrated that evolutionary processes shape ecological dynamics on relatively short timescales (eco-evolutionary dynamics), but demonstrating these effects at large spatial scales in natural landscapes has proven difficult. We used empirical studies and modeling to investigate how selective pressures from fire and predispersal seed predation affect the evolution of serotiny, an ecologically important trait. Serotiny is a highly heritable key reproductive trait in Rocky Mountain lodgepole pine (Pinus contorta subsp. latifolia), a conifer that dominates millions of hectares in western North America. In these forests, the frequency of serotiny determines postfire seedling density with corresponding community- and ecosystem-level effects. We found that serotinous individuals have a selective advantage at high fire frequencies and low predation pressure; however, very high seed predation shifted the selective advantage to nonserotinous individuals even at high fire frequencies. Simulation modeling suggests that spatial variation in the frequency of serotiny results from heterogeneity in these two selective agents. These results, combined with previous findings showing a negative association between the density of seed predators and the frequency of serotiny at both landscape and continental scales, demonstrate that contemporary patterns in serotiny reflect an evolutionary response to conflicting selection pressures from fire and seed predation. Thus, we show that variation in the frequency of a heritable polygenic trait depends on spatial variation in two dominant selective agents, and, importantly, the effects of the local trait variation propagate with profound consequences to the structure and function of communities and ecosystems across a large landscape. PMID:24979772

  13. Altered Community Flammability in Florida’s Apalachicola Ravines and Implications for the Persistence of the Endangered Conifer Torreya taxifolia

    PubMed Central

    Mola, John M.; Varner, J. Morgan; Jules, Erik S.; Spector, Tova

    2014-01-01

    Plant species and communities often reflect historic fire regimes via ecological and evolutionary responses to recurrent fires. Plant communities of the southeastern USA experience a wide array of fire regimes, perhaps nowhere more marked than the juxtaposition of fire-prone uplands and adjacent mesic ravines along Florida’s Apalachicola River. The ravines contain many endemic and disjunct species, most notably the endangered endemic conifer Torreya taxifolia. A rapid decline in T. taxifolia over the past 60 years has been associated with widespread replacement by other tree species. To understand the changes accompanying the shift in ravine composition, we compared leaf litter flammability of nine historic and contemporary species. We measured maximum flame height, flame duration, smoldering duration, mass loss, absorptive capacity, and drying rate. Ordination and perMANOVA suggest the nine species segregated into three distinct groups: the fire-impeding T. taxifolia and Taxus floridana; an intermediate group of three deciduous angiosperms; and a mixed cluster of four flammable species. Results suggest T. taxifolia and T. floridana were fire-impeding species in these communities, while contemporary dominants burn similarly to the upslope pyric species. The increasing presence of fire-facilitating species may portend a shifting fire regime that further imperils T. taxifolia and other rare species in the formerly fire-safe ravines. PMID:25084166

  14. Why Seedlings Die: Linking Carbon and Water Limitations to Mechanisms of Mortality During Establishment in Conifer Seedlings

    NASA Astrophysics Data System (ADS)

    Reinhardt, K.; Germino, M. J.; Kueppers, L. M.; Mitton, J.; Castanha, C.

    2012-12-01

    BACKGROUND Recent ecophysiological studies aimed at explaining adult tree mortality during drought have examined the carbon (C)-exhaustion compared to the hydraulic-failure hypotheses for death. Prolonged drought leads to durations of stomatal closure (and thus limited C gain), which could result in long periods of negative C balance and fatal reductions in whole-plant C reserves (i.e., available non-structural carbohydrates ["NSC"]). Alternatively, C reserves may not decrease much but could become increasingly inaccessible to sink tissues in long dry-periods due to impediments to translocation of photosynthate (e.g., through disruption of hydrostatic pressure flow in phloem). As C reserves decline or become inaccessible, continued maintenance respiration has been hypothesized to lead to exhaustion of NSC after extended durations of drought, especially in isohydric plant species. On the other hand, hydraulic failure (e.g., catastrophic xylem embolisms) during drought may be the proximate cause of death, occurring before true C starvation occurs. Few studies have investigated specifically the mechanism(s) of tree death, and no published studies that we know of have quantified changes in NSC during mortality. EXPERIMENTAL DESIGN AND HYPOTHESES We conducted two studies that investigated whole-tree and tissue-specific C relations (photosynthetic C gain, respiration, dry-mass gain, and NSC pools) in Pinus flexilis seedlings during the initial establishment phase, which is characterized by progressive drought during summer. We measured survival, growth and biomass allocation, and C-balance physiology (photosynthetic C-gain and chlorophyll fluorescence, respiration C-use, and NSC concentrations) from germination to mortality. We hypothesized that 1) stomatal and biochemical limitations to C gain would constrain seedling survival (through inadequate seasonal C-balance), as has been shown for conifer seedlings near alpine treeline; 2) hydraulic constraints (embolisms and

  15. Different growth sensitivity to climate of the conifer Juniperus thurifera on both sides of the Mediterranean Sea

    NASA Astrophysics Data System (ADS)

    DeSoto, Lucía; Varino, Filipa; Andrade, José P.; Gouveia, Celia M.; Campelo, Filipe; Trigo, Ricardo M.; Nabais, Cristina

    2014-12-01

    Mediterranean plants cope with cold wet winters and dry hot summers, with a drought gradient from northwest to southeast. Limiting climatic conditions have become more pronounced in the last decades due to the warming trend and rainfall decrease. Juniperus thurifera L., a long-lived conifer tree endemic to the western Mediterranean region, has a disjunct distribution in Europe and Africa, making it a suitable species to study sensitivity to climate in both sides of the Mediterranean Basin. Tree-ring width chronologies were built for three J. thurifera stands at Spain (Europe) and three in Morocco (Africa) and correlated with monthly temperature and precipitation. The temporal stability of climate-growth relationships was assessed using moving correlations; the drought effect on growth was calculated using the monthly standardized precipitation-evapotranspiration index (SPEI) at different temporal scales. In the wettest stands, increasing spring temperature and summer precipitation enhanced growth, while in the driest stands, growth was enhanced by higher spring precipitation and lower summer temperature. The climate-growth correlations shifted during the twentieth century, especially since the 1970s. Particularly noticeable is the recent negative correlation with previous autumn and winter precipitation in the wettest stands of J. thurifera, probably related with an effect of cloud cover or flooding on carbon storage depletion for next year growth. The driest stands were affected by drought at long time scales, while the wettest stands respond to drought at short time scales. This reveals a different strategy to cope with drought conditions, with populations from drier sites able to cope with short periods of water deficit.

  16. Calcium Oxalate Crystals as an Indicator of Plant Stress in Conifers at two elevations on Mount Moosilauke, NH

    NASA Astrophysics Data System (ADS)

    Allen, M. N.; Rock, B. N.; Hale, S. R.; Graham, K. J.

    2007-12-01

    The research presented was conducted as part of Watershed Watch, a two-week hands-on summer program for undeclared entry-level undergraduates, designed to recruit and retain students in Science, Technology, Engineering, and Mathematics (STEM) disciplines. The research was conducted on needles of red spruce (Picea rubens) and balsam fir (Abies balsamea) at the University of New Hampshire. The presence of calcium oxalate crystals (CaOx) in the cell walls of spruce mesophyll cells has been reported as an indicator of environmental stress. To assess this, first and third year needles of both species were collected from Mt. Moosilauke (Woodstock, NH) at two elevations (790m and 960m). Needles were analyzed using reflectance spectroscopy and scanning electron microscopy (SEM). Estimates of chlorophyll and water were made using the Red Edge Inflection Point and the Moisture Stress Index. These were compared to SEM images of needle sections to visually correlate the amount of CaOx with the reflectance indices. Balsam fir from 790m have a higher occurrence of CaOx in their first and third year needles than from the 960m site, while spectroscopy results indicated less stress (i.e., higher chlorophyll and more water) at the lower site. This does not support a correlation between CaOx and stress factors in balsam fir. In red spruce, those needles with fewest CaOx had higher estimates of chlorophyll and water, supporting the correlation. Based on these results, more research is needed to fully understand the relationship between CaOx and plant stress in different species of conifers.

  17. Conifer seedling recruitment across a gradient from forest to alpine tundra: effects of species, provenance, and site

    USGS Publications Warehouse

    Castanha, C.; Torn, M.S.; Germino, M.J.; Weibel, B.; Kueppers, L.M.

    2013-01-01

    Background: Seedling germination and survival is a critical control on forest ecosystem boundaries, such as at the alpine–treeline ecotone. In addition, while it is known that species respond individualistically to the same suite of environmental drivers, the potential additional effect of local adaptation on seedling success has not been evaluated. Aims: To determine whether local adaptation may influence the position and movement of forest ecosystem boundaries, we quantified conifer seedling recruitment in common gardens across a subalpine forest to alpine tundra gradient at Niwot Ridge, Colorado, USA. Methods: We studied Pinus flexilis and Picea engelmannii grown from seed collected locally at High (3400 m a.s.l.) and Low (3060 m a.s.l.) elevations. We monitored emergence and survival of seeds sown directly into plots and survival of seedlings germinated indoors and transplanted after snowmelt. Results: Emergence and survival through the first growing season was greater for P. flexilis than P. engelmannii and for Low compared with High provenances. Yet survival through the second growing season was similar for both species and provenances. Seedling emergence and survival tended to be greatest in the subalpine forest and lowest in the alpine tundra. Survival was greater for transplants than for field-germinated seedlings. Conclusions: These results suggest that survival through the first few weeks is critical to the establishment of natural germinants. In addition, even small distances between seed sources can have a significant effect on early demographic performance – a factor that has rarely been considered in previous studies of tree recruitment and species range shifts.

  18. Drought, Frost, Rain and Sunshine. Four Years of Sap Flow Measurements for One of the World's Largest Conifers

    NASA Astrophysics Data System (ADS)

    Macinnis-Ng, C.; Taylor, D. T.; Kaplick, J.; Clearwater, M.

    2015-12-01

    Amongst the largest and longest lived conifers in the world, the endemic New Zealand kauri, Agathis australis, provides a proxy-climate record dating back 4000 y. Tree-ring widths provide a strong indicator of the occurrence of El Niño Southern Oscillation (ENSO) events. We are measuring physiological processes, including carbon uptake and loss, leaf-scale gas exchange and sap flow together with meteorological data to explore the mechanisms of the climate response of this iconic and culturally significant species. In this continuous 15 min time interval sap flow dataset spanning four years, we have captured very wet and very dry summer periods. Winter flow rates peaked lower than summer flow rates and winter flow also started later and finished earlier in the day, resulting in less water use. Larger, canopy dominant trees (DBH up to 176 cm) had large sapwood area (sapwood depth up to 18 cm) and faster flow rates and therefore dominated stand water use. During dry periods, smaller trees (DBH 20-80 cm) were more responsive to dry soils than larger trees, suggesting access to deeper soil water stores. Leaf-scale gas exchange rates were low with very low stomatal conductance values reflecting known vulnerability to xylem embolism. Night-time refilling of sapwood was particularly evident during the summer drought with evidence that refilling was incomplete as the drought progressed. Photosynthetically active radiation and vapour pressure deficit are strongly correlated with sap flow across all seasons, a promising indicator for future modelling work on this dataset. Water saving strategies and stand-scale water budgets are discussed.

  19. Is ecological speciation a major trend in aphids? Insights from a molecular phylogeny of the conifer-feeding genus Cinara

    PubMed Central

    2013-01-01

    Introduction In the past decade ecological speciation has been recognized as having an important role in the diversification of plant-feeding insects. Aphids are host-specialised phytophagous insects that mate on their host plants and, as such, they are prone to experience reproductive isolation linked with host plant association that could ultimately lead to species formation. The generality of such a scenario remains to be tested through macroevolutionary studies. To explore the prevalence of host-driven speciation in the diversification of the aphid genus Cinara and to investigate alternative modes of speciation, we reconstructed a phylogeny of this genus based on mitochondrial, nuclear and Buchnera aphidicola DNA sequence fragments and applied a DNA-based method of species delimitation. Using a recent software (PhyloType), we explored evolutionary transitions in host-plant genera, feeding sites and geographic distributions in the diversification of Cinara and investigated how transitions in these characters have accompanied speciation events. Results The diversification of Cinara has been constrained by host fidelity to conifer genera sometimes followed by sequential colonization onto different host species and by feeding-site specialisation. Nevertheless, our analyses suggest that, at the most, only half of the speciation events were accompanied by ecological niche shifts. The contribution of geographical isolation in the speciation process is clearly apparent in the occurrence of species from two continents in the same clades in relatively terminal positions in our phylogeny. Furthermore, in agreement with predictions from scenarios in which geographic isolation accounts for speciation events, geographic overlap between species increased significantly with time elapsed since their separation. Conclusions The history of Cinara offers a different perspective on the mode of speciation of aphids than that provided by classic models such as the pea aphid. In this

  20. Avian community responses to post-fire forest structure: Implications for fire management in mixed conifer forests

    USGS Publications Warehouse

    White, Angela M.; Manley, Patricia N.; Tarbill, Gina; Richardson, T.L.; Russell, Robin E.; Safford, Hugh D.; Dobrowski, Solomon Z.

    2015-01-01

    Fire is a natural process and the dominant disturbance shaping plant and animal communities in many coniferous forests of the western US. Given that fire size and severity are predicted to increase in the future, it has become increasingly important to understand how wildlife responds to fire and post-fire management. The Angora Fire burned 1243 hectares of mixed conifer forest in South Lake Tahoe, California. We conducted avian point counts for the first 3 years following the fire in burned and unburned areas to investigate which habitat characteristics are most important for re-establishing or maintaining the native avian community in post-fire landscapes. We used a multi-species occurrence model to estimate how avian species are influenced by the density of live and dead trees and shrub cover. While accounting for variations in the detectability of species, our approach estimated the occurrence probabilities of all species detected including those that were rare or observed infrequently. Although all species encountered in this study were detected in burned areas, species-specific modeling results predicted that some species were strongly associated with specific post-fire conditions, such as a high density of dead trees, open-canopy conditions or high levels of shrub cover that occur at particular burn severities or at a particular time following fire. These results indicate that prescribed fire or managed wildfire which burns at low to moderate severity without at least some high-severity effects is both unlikely to result in the species assemblages that are unique to post-fire areas or to provide habitat for burn specialists. Additionally, the probability of occurrence for many species was associated with high levels of standing dead trees indicating that intensive post-fire harvest of these structures could negatively impact habitat of a considerable proportion of the avian community.

  1. Biogeochemical legacy of prescribed fire in a giant sequoia - Mixed conifer forest: A 16-year record of watershed balances

    USGS Publications Warehouse

    Engle, D.L.; Sickman, J.O.; Moore, C.M.; Esperanza, A.M.; Melack, J.M.; Keeley, J.E.

    2008-01-01

    The effects of prescription burning on watershed balances of major ions in mixed conifer forest were examined in a 16-year paired catchment study in Sequoia National Park, California. The objective was to determine whether fire-related changes in watershed balances persist as long as estimated low-end natural fire-return intervals (???10 years), and whether cumulative net export caused by fire could deplete nutrient stocks between successive fires. Inputs (wet + dry deposition) and outputs (stream export) of N, S, Cl-, HCO3-, Ca2+, Mg2+, Na+, K+, H+, and SiO2 were measured for 7 years preceding, and 9 years following, a prescribed burn of one of the catchments. After fire, runoff coefficients increased by 7% (in dry years) to 35% (in wet years). Inorganic N was elevated in stream water for 3 years after fire. Increased export of water, SO42-, Cl-,SiO2, and base cations continued through the end of the study. Pools and processes attributed to fire led to the cumulative loss, per hectare, of 1.2 kg N, 16 kg S, 25 kg Cl-, 130 kg Ca2+, 19 kg Mg2+, 71 kg Na+, 29 kg K+ and 192 kg Si, above that predicted by prefire regression equations relating export in the paired catchments. This additional export equaled <1% of the N, up to one-third of the Ca and Mg, and up to three-fourths of the K, contained in the forest floor prior to combustion. Changes in watershed balances indicated that low-end natural fire-return intervals may prevent complete reaccumulation of several elements between fires. Copyright 2008 by the American Geophysical Union.

  2. Tree Morphologic Plasticity Explains Deviation from Metabolic Scaling Theory in Semi-Arid Conifer Forests, Southwestern USA.

    PubMed

    Swetnam, Tyson L; O'Connor, Christopher D; Lynch, Ann M

    2016-01-01

    A significant concern about Metabolic Scaling Theory (MST) in real forests relates to consistent differences between the values of power law scaling exponents of tree primary size measures used to estimate mass and those predicted by MST. Here we consider why observed scaling exponents for diameter and height relationships deviate from MST predictions across three semi-arid conifer forests in relation to: (1) tree condition and physical form, (2) the level of inter-tree competition (e.g. open vs closed stand structure), (3) increasing tree age, and (4) differences in site productivity. Scaling exponent values derived from non-linear least-squares regression for trees in excellent condition (n = 381) were above the MST prediction at the 95% confidence level, while the exponent for trees in good condition were no different than MST (n = 926). Trees that were in fair or poor condition, characterized as diseased, leaning, or sparsely crowned had exponent values below MST predictions (n = 2,058), as did recently dead standing trees (n = 375). Exponent value of the mean-tree model that disregarded tree condition (n = 3,740) was consistent with other studies that reject MST scaling. Ostensibly, as stand density and competition increase trees exhibited greater morphological plasticity whereby the majority had characteristically fair or poor growth forms. Fitting by least-squares regression biases the mean-tree model scaling exponent toward values that are below MST idealized predictions. For 368 trees from Arizona with known establishment dates, increasing age had no significant impact on expected scaling. We further suggest height to diameter ratios below MST relate to vertical truncation caused by limitation in plant water availability. Even with environmentally imposed height limitation, proportionality between height and diameter scaling exponents were consistent with the predictions of MST. PMID:27391084

  3. Carbon fluxes acclimate more strongly to elevated growth temperatures than to elevated CO2 concentrations in a northern conifer.

    PubMed

    Kroner, Yulia; Way, Danielle A

    2016-08-01

    Increasing temperatures and atmospheric CO2 concentrations will affect tree carbon fluxes, generating potential feedbacks between forests and the global climate system. We studied how elevated temperatures and CO2 impacted leaf carbon dynamics in Norway spruce (Picea abies), a dominant northern forest species, to improve predictions of future photosynthetic and respiratory fluxes from high-latitude conifers. Seedlings were grown under ambient (AC, c. 435 μmol mol(-1) ) or elevated (EC, 750 μmol mol(-1) ) CO2 concentrations at ambient, +4 °C, or +8 °C growing temperatures. Photosynthetic rates (Asat ) were high in +4 °C/EC seedlings and lowest in +8 °C spruce, implying that moderate, but not extreme, climate change may stimulate carbon uptake. Asat , dark respiration (Rdark ), and light respiration (Rlight ) rates acclimated to temperature, but not CO2 : the thermal optimum of Asat increased, and Rdark and Rlight were suppressed under warming. In all treatments, the Q10 of Rlight (the relative increase in respiration for a 10 °C increase in leaf temperature) was 35% higher than the Q10 of Rdark , so the ratio of Rlight to Rdark increased with rising leaf temperature. However, across all treatments and a range of 10-40 °C leaf temperatures, a consistent relationship between Rlight and Rdark was found, which could be used to model Rlight in future climates. Acclimation reduced daily modeled respiratory losses from warm-grown seedlings by 22-56%. When Rlight was modeled as a constant fraction of Rdark , modeled daily respiratory losses were 11-65% greater than when using measured values of Rlight . Our findings highlight the impact of acclimation to future climates on predictions of carbon uptake and losses in northern trees, in particular the need to model daytime respiratory losses from direct measurements of Rlight or appropriate relationships with Rdark . PMID:26728638

  4. Different growth sensitivity to climate of the conifer Juniperus thurifera on both sides of the Mediterranean Sea.

    PubMed

    DeSoto, Lucía; Varino, Filipa; Andrade, José P; Gouveia, Celia M; Campelo, Filipe; Trigo, Ricardo M; Nabais, Cristina

    2014-12-01

    Mediterranean plants cope with cold wet winters and dry hot summers, with a drought gradient from northwest to southeast. Limiting climatic conditions have become more pronounced in the last decades due to the warming trend and rainfall decrease. Juniperus thurifera L., a long-lived conifer tree endemic to the western Mediterranean region, has a disjunct distribution in Europe and Africa, making it a suitable species to study sensitivity to climate in both sides of the Mediterranean Basin. Tree-ring width chronologies were built for three J. thurifera stands at Spain (Europe) and three in Morocco (Africa) and correlated with monthly temperature and precipitation. The temporal stability of climate-growth relationships was assessed using moving correlations; the drought effect on growth was calculated using the monthly standardized precipitation-evapotranspiration index (SPEI) at different temporal scales. In the wettest stands, increasing spring temperature and summer precipitation enhanced growth, while in the driest stands, growth was enhanced by higher spring precipitation and lower summer temperature. The climate-growth correlations shifted during the twentieth century, especially since the 1970s. Particularly noticeable is the recent negative correlation with previous autumn and winter precipitation in the wettest stands of J. thurifera, probably related with an effect of cloud cover or flooding on carbon storage depletion for next year growth. The driest stands were affected by drought at long time scales, while the wettest stands respond to drought at short time scales. This reveals a different strategy to cope with drought conditions, with populations from drier sites able to cope with short periods of water deficit. PMID:24659114

  5. Tree Morphologic Plasticity Explains Deviation from Metabolic Scaling Theory in Semi-Arid Conifer Forests, Southwestern USA

    PubMed Central

    O’Connor, Christopher D.; Lynch, Ann M.

    2016-01-01

    A significant concern about Metabolic Scaling Theory (MST) in real forests relates to consistent differences between the values of power law scaling exponents of tree primary size measures used to estimate mass and those predicted by MST. Here we consider why observed scaling exponents for diameter and height relationships deviate from MST predictions across three semi-arid conifer forests in relation to: (1) tree condition and physical form, (2) the level of inter-tree competition (e.g. open vs closed stand structure), (3) increasing tree age, and (4) differences in site productivity. Scaling exponent values derived from non-linear least-squares regression for trees in excellent condition (n = 381) were above the MST prediction at the 95% confidence level, while the exponent for trees in good condition were no different than MST (n = 926). Trees that were in fair or poor condition, characterized as diseased, leaning, or sparsely crowned had exponent values below MST predictions (n = 2,058), as did recently dead standing trees (n = 375). Exponent value of the mean-tree model that disregarded tree condition (n = 3,740) was consistent with other studies that reject MST scaling. Ostensibly, as stand density and competition increase trees exhibited greater morphological plasticity whereby the majority had characteristically fair or poor growth forms. Fitting by least-squares regression biases the mean-tree model scaling exponent toward values that are below MST idealized predictions. For 368 trees from Arizona with known establishment dates, increasing age had no significant impact on expected scaling. We further suggest height to diameter ratios below MST relate to vertical truncation caused by limitation in plant water availability. Even with environmentally imposed height limitation, proportionality between height and diameter scaling exponents were consistent with the predictions of MST. PMID:27391084

  6. The stomatal CO2 proxy does not saturate at high atmospheric CO2 concentrations: evidence from stomatal index responses of Araucariaceae conifers.

    PubMed

    Haworth, Matthew; Elliott-Kingston, Caroline; McElwain, Jennifer C

    2011-09-01

    The inverse relationship between the number of stomata on a leaf surface and the atmospheric carbon dioxide concentration ([CO(2)]) in which the leaf developed allows plants to optimise water-use efficiency (WUE), but it also permits the use of fossil plants as proxies of palaeoatmospheric [CO(2)]. The ancient conifer family Araucariaceae is often represented in fossil floras and may act as a suitable proxy of palaeo-[CO(2)], yet little is known regarding the stomatal index (SI) responses of extant Araucariaceae to [CO(2)]. Four Araucaria species (Araucaria columnaris, A. heterophylla, A. angustifolia and A. bidwillii) and Agathis australis displayed no significant relationship in SI to [CO(2)] below current ambient levels (~380 ppm). However, representatives of the three extant genera within the Araucariaceae (A. bidwillii, A. australis and Wollemia nobilis) all exhibited significant reductions in SI when grown in atmospheres of elevated [CO(2)] (1,500 ppm). Stomatal conductance was reduced and WUE increased when grown under elevated [CO(2)]. Stomatal pore length did not increase alongside reduced stomatal density (SD) and SI in the three araucariacean conifers when grown at elevated [CO(2)]. These pronounced SD and SI reductions occur at higher [CO(2)] levels than in other species with more recent evolutionary origins, and may reflect an evolutionary legacy of the Araucariaceae in the high [CO(2)] world of the Mesozoic Era. Araucariacean conifers may therefore be suitable stomatal proxies of palaeo-[CO(2)] during periods of "greenhouse" climates and high [CO(2)] in the Earth's history. PMID:21461935

  7. Xylem Embolism in Response to Freeze-Thaw Cycles and Water Stress in Ring-Porous, Diffuse-Porous, and Conifer Species 1

    PubMed Central

    Sperry, John S.; Sullivan, June E. M.

    1992-01-01

    Vulnerability to xylem embolism by freeze-thaw cycles and water stress was quantified in ring-porous (Quercus gambelii Nutt.), diffuse-porous (Populus tremuloides Michx., Betula occidentalis Hook.), and conifer species (Abies lasiocarpa Nutt., Juniperus scopulorum Sarg.). Embolism was measured by its reduction of xylem hydraulic conductivity; it was induced by xylem tension (water-stress response) and by a tension plus a freeze-thaw cycle (freeze response). Conifers showed little (Juniperus) or no (Abies) freeze response even to repeated cycles. In contrast, Quercus embolized more than 90% by freezing at tensions below 0.2 MPa, whereas similar embolism without freezing required tensions above 4.5 MPa. Diffuse-porous trees (Betula, Populus) showed an intermediate freeze response. The magnitude of the freeze response was correlated with conduit volume but occurred at higher tensions than predicted from theory. Large early-wood vessels (2.8 × 10−9 m3) in oak were most vulnerable to embolism by freezing, small vessels in Populus and Betula were intermediate (approximately 7 × 10−11 m3), and tracheids in conifers (about 3 × 10−13 m3) were most resistant. The same trend was found within a stem: embolism by freeze-thawing occurred preferentially in wider conduits. The water-stress response was not correlated with conduit volume; previous work indicates it is a function of interconduit pit membrane structure. Native embolism levels during winter corroborated laboratory results on freezing: Quercus embolized 95% with the first fall freeze, Populus and Betula showed gradual increases to more than 90% embolism by winter's end, and Abies remained below 30%. PMID:16653035

  8. Forest Cover and Topographic Influences on Snow Distribution in a Mixed Hardwood-Conifer Forest of the Northeastern U.S.

    NASA Astrophysics Data System (ADS)

    Larsen, T. A.; Wemple, B.; Keeton, W.

    2007-12-01

    Forested landscapes of the northeastern U.S. face increasing pressure from development and recreational uses. Changes in forest structure and the distribution of canopy openings may have measurable impacts on hydrology, particularly in high elevation terrain where gradients in atmospheric inputs are great. Here, we report findings of a pilot study conducted in spring 2007 to examine the effects of forest stand and canopy structure, canopy openings and topography on snow distribution. Our sampling sites are located within on-going studies of canopy development following silvicultural treatments and forest clearings from recreational development (i.e. alpine skiing) in the mixed hardwood-conifer forests of northwestern Vermont. Our findings indicate that snow water equivalent (SWE) was significantly related to key forest metrics including conifer abundance and mean diameter at breast height (dbh). SWE exhibited strong elevational trends over three sampling dates and was more spatially variable on south-facing slopes than on all other aspects. Comparisons between forested and open sampling sites showed no differences in SWE for early (DOY 60 and 68) sampling dates, but differences were significant for later sampling dates (DOY 71 and 82) at high elevation sites. Along ski trail clearings, surveys using ground-penetrating (GPR) radar showed significant differences in SWE for trails covered with man- made snow, relative to those covered with natural snow. Collectively, our findings suggest that (1) mixed forests of the Northeast have limited ability to influence snowpacks through interception when some conifer component exists in the stand, (2) these forests have detectable effects on snowmelt dynamics relative to clearings, (3) topography exerts strong controls on snow distribution, and (4) man-made snow on recreational ski trails introduces an additional layer of variability in snowpack distribution. We speculate on the hydrologic consequences of these findings using

  9. Evolution of Conifer Diterpene Synthases: Diterpene Resin Acid Biosynthesis in Lodgepole Pine and Jack Pine Involves Monofunctional and Bifunctional Diterpene Synthases1[W][OA

    PubMed Central

    Hall, Dawn E.; Zerbe, Philipp; Jancsik, Sharon; Quesada, Alfonso Lara; Dullat, Harpreet; Madilao, Lina L.; Yuen, Macaire; Bohlmann, Jörg

    2013-01-01

    Diterpene resin acids (DRAs) are major components of pine (Pinus spp.) oleoresin. They play critical roles in conifer defense against insects and pathogens and as a renewable resource for industrial bioproducts. The core structures of DRAs are formed in secondary (i.e. specialized) metabolism via cycloisomerization of geranylgeranyl diphosphate (GGPP) by diterpene synthases (diTPSs). Previously described gymnosperm diTPSs of DRA biosynthesis are bifunctional enzymes that catalyze the initial bicyclization of GGPP followed by rearrangement of a (+)-copalyl diphosphate intermediate at two discrete class II and class I active sites. In contrast, similar diterpenes of gibberellin primary (i.e. general) metabolism are produced by the consecutive activity of two monofunctional class II and class I diTPSs. Using high-throughput transcriptome sequencing, we discovered 11 diTPS from jack pine (Pinus banksiana) and lodgepole pine (Pinus contorta). Three of these were orthologous to known conifer bifunctional levopimaradiene/abietadiene synthases. Surprisingly, two sets of orthologous PbdiTPSs and PcdiTPSs were monofunctional class I enzymes that lacked functional class II active sites and converted (+)-copalyl diphosphate, but not GGPP, into isopimaradiene and pimaradiene as major products. Diterpene profiles and transcriptome sequences of lodgepole pine and jack pine are consistent with roles for these diTPSs in DRA biosynthesis. The monofunctional class I diTPSs of DRA biosynthesis form a new clade within the gymnosperm-specific TPS-d3 subfamily that evolved from bifunctional diTPS rather than monofunctional enzymes (TPS-c and TPS-e) of gibberellin metabolism. Homology modeling suggested alterations in the class I active site that may have contributed to their functional specialization relative to other conifer diTPSs. PMID:23370714

  10. Impacts of forest thinning and climate change on transpiration and runoff rates in Sierra Nevada mixed-conifer headwater catchments

    NASA Astrophysics Data System (ADS)

    Saksa, P. C.; Ray, R. L.; Bales, R. C.; Conklin, M. H.

    2013-12-01

    Using a spatially explicit hydro-ecological model, impacts from forest thinning and climate change on snowpack, evapotranspiration (ET) rates, soil moisture storage, and runoff were investigated in Sierra Nevada headwater catchments spanning elevations of 1,500 to 2,000-m. Along this elevation gradient, precipitation changes from rain-dominated to snow-dominated, so precipitation phase will be strongly impacted by increases in temperature. Mixed-conifer forests in the Sierra Nevada near the 2,000-m elevation band also transpire at a high rate relative to upper elevation forests that are more restricted by colder winter temperatures and lower elevation forests that are more restricted by lower summer soil moisture, increasing the potential of reduced transpiration with vegetation thinning. Forest treatment and climate change scenarios were modeled using the Regional Hydro-Ecological Simulation System (RHESSys), calibrated with two years of snow, soil moisture, and streamflow observations. Simulations of forest thinning at moderate (66% of current vegetation density) and restoration (33% density) levels were combined with precipitation changes up to 20% and temperature increases up to 6οC for projecting impacts on ET and runoff rates. Model results indicated that moderate thinning alone could increase runoff by 3%, but additional temperature increases of 2-4οC could increase runoff rates another 6% - similar to a restoration level thinning. Modifying temperature and precipitation separately showed that the two methods of climate forcing both led to fluctuations in soil moisture, caused by changes in precipitation phase (snow/rain) and final day of snowpack melt. The snowmelt timing affected runoff rates by causing changes in the spring soil moisture recession, and showed that it may be one of the critical processes that affects annual runoff rates, not just runoff timing. Simulations of precipitation and temperature changes together showed that precipitation would

  11. Forest Fuel Reduction and Wildfire Effects on Runoff and Evapotranspiration in Sierra Nevada Mixed-Conifer Forest

    NASA Astrophysics Data System (ADS)

    Saksa, P. C.; Bales, R. C.; Conklin, M. H.

    2015-12-01

    Large, high-intensity wildfire risk in the western United States is growing, fueled by increasing vegetation density from a century of fire suppression and climatic shifts resulting in extended dry seasons. Strategically Placed Landscape Treatments (SPLATs) are a fuel reduction method designed to reduce fire risk on the entire landscape by treating only a fraction of the area. During 2011 and 2012, SPLATs were implemented in the mixed-conifer zone of the Tahoe (Last Chance study area, American River Basin) and Sierra (Sugar Pine study area, Merced River Basin) National Forests. Wildfire events were then simulated for both treated and untreated conditions. We integrated the vegetation changes with the Regional Hydro-Ecological Simulation System (RHESSys) to project impacts of fuel treatments and wildfire on runoff and evapotranspiration for the period of observed data, water years 2010-2013. Results from the model simulations show that vegetation treatments in the Last Chance study area, which removed 8.0% of the total biomass by treating 25% of the area, increased mean annual runoff by 12.0% and decreased mean annual evapotranspiration by 4.1%. Vegetation treatments in the Sugar Pine study area, which removed 7.5% of the total biomass by treating 33% of the area, increased runoff by 2.7% and decreased ET by 0.5%. Compared to pre-treatment conditions, wildfire simulations in Last Chance reduced total biomass by 38-50% when fuel treatments were not applied, resulting in a 55-67% runoff increase and a 19-23% evapotranspiration decrease. In Sugar Pine, fire simulation reduced biomass 39-43%, increasing runoff and decreasing ET by 13-15% and 1.8-2.7% respectively. Applying the same magnitude of biomass reductions equally over the entire watershed, in contrast to the localized areas of vegetation reductions due to treatment or fire, resulted in smaller impacts on runoff and evapotranspiration rates. Vegetation effects on hydrologic fluxes are greater in Last Chance than

  12. Macro-Particle Charcoal C Content following Prescribed Burning in a Mixed-Conifer Forest, Sierra Nevada, California

    PubMed Central

    Wiechmann, Morgan L.; Hurteau, Matthew D.; Kaye, Jason P.; Miesel, Jessica R.

    2015-01-01

    Fire suppression and changing climate have resulted in increased large wildfire frequency and severity in the western United States, causing carbon cycle impacts. Forest thinning and prescribed burning reduce high-severity fire risk, but require removal of biomass and emissions of carbon from burning. During each fire a fraction of the burning vegetation and soil organic matter is converted into charcoal, a relatively stable carbon form. We sought to quantify the effects of pre-fire fuel load and type on charcoal carbon produced by biomass combusted in a prescribed burn under different thinning treatments and to identify more easily measured predictors of charcoal carbon mass in a historically frequent-fire mixed-conifer forest. We hypothesized that charcoal carbon produced from coarse woody debris (CWD) during prescribed burning would be greater than that produced from fine woody debris (FWD). We visually quantified post-treatment charcoal carbon content in the O-horizon and the A-horizon beneath CWD (> 30 cm diameter) and up to 60 cm from CWD that was present prior to treatment. We found no difference in the size of charcoal carbon pools from CWD (treatment means ranged from 0.3–2.0 g m-2 of A-horizon and 0.0–1.7 g m-2 of O-horizon charcoal) and FWD (treatment means ranged from 0.2–1.7 g m-2 of A-horizon and 0.0–1.5 g m-2 of O-horizon charcoal). We also compared treatments and found that the burn-only, understory-thin and burn, and overstory-thin and burn treatments had significantly more charcoal carbon than the control. Charcoal carbon represented 0.29% of total ecosystem carbon. We found that char mass on CWD was an important predictor of charcoal carbon mass, but only explained 18–35% of the variation. Our results help improve our understanding of the effects forest restoration treatments have on ecosystem carbon by providing additional information about charcoal carbon content. PMID:26258533

  13. Macro-particle charcoal C content following prescribed burning in a mixed-conifer forest, Sierra Nevada, California.

    PubMed

    Wiechmann, Morgan L; Hurteau, Matthew D; Kaye, Jason P; Miesel, Jessica R

    2015-01-01

    Fire suppression and changing climate have resulted in increased large wildfire frequency and severity in the western United States, causing carbon cycle impacts. Forest thinning and prescribed burning reduce high-severity fire risk, but require removal of biomass and emissions of carbon from burning. During each fire a fraction of the burning vegetation and soil organic matter is converted into charcoal, a relatively stable carbon form. We sought to quantify the effects of pre-fire fuel load and type on charcoal carbon produced by biomass combusted in a prescribed burn under different thinning treatments and to identify more easily measured predictors of charcoal carbon mass in a historically frequent-fire mixed-conifer forest. We hypothesized that charcoal carbon produced from coarse woody debris (CWD) during prescribed burning would be greater than that produced from fine woody debris (FWD). We visually quantified post-treatment charcoal carbon content in the O-horizon and the A-horizon beneath CWD (> 30 cm diameter) and up to 60 cm from CWD that was present prior to treatment. We found no difference in the size of charcoal carbon pools from CWD (treatment means ranged from 0.3-2.0 g m-2 of A-horizon and 0.0-1.7 g m-2 of O-horizon charcoal) and FWD (treatment means ranged from 0.2-1.7 g m-2 of A-horizon and 0.0-1.5 g m-2 of O-horizon charcoal). We also compared treatments and found that the burn-only, understory-thin and burn, and overstory-thin and burn treatments had significantly more charcoal carbon than the control. Charcoal carbon represented 0.29% of total ecosystem carbon. We found that char mass on CWD was an important predictor of charcoal carbon mass, but only explained 18-35% of the variation. Our results help improve our understanding of the effects forest restoration treatments have on ecosystem carbon by providing additional information about charcoal carbon content. PMID:26258533

  14. Revision of the Cretaceous fossil plant-assemblage from Gardeshwar (Gujarat, India): A conifer dominated floral association from an Upper Gondwana sequence on the West Coast of India

    NASA Astrophysics Data System (ADS)

    Jana, Brajendra Nath; King, Sarah C.; Hilton, Jason

    2013-09-01

    A small but diverse fossil plant assemblage from Gardeshwar in Gujarat Province of western India is reinvestigated, based on analysis of recently collected specimens that represent previously unrecognised taxa in combination with a critical review of previously reported taxa from the site. The assemblage is dominated by conifers including Brachyphyllum Brongniart, Elatocladus Halle, Pagiophyllum Heer, the cone Conites Sternberg, and ovulate scales of an araucarian conifer. Other plant groups are rare but include notable occurrences of the pteridophytes Lycopodites Lindley and Hutton and Gleichenia Smith, and the seed fern Sphenopteris (Brongniart) Sternberg. This assemblage is important as it represents the only datable fossils available from the Gardeshwar Formation and from the information presented we conclude it belongs to the Lower Cretaceous Allocladus-Brachyphyllum-Pagiophyllum floral biozone. The Gardeshwar assemblage association is unusual as it lacks the distinctive genus Allocladus but includes other taxa more typical of the Lower Cretaceous fern-dominated Weichselia-Onychiopsis-Gleichenia floral biozone, and may represent a transitional assemblage with characters of both biozones. However, this investigation highlights the lack of detailed stratigraphic analyses on the Lower Cretaceous sedimentary sequences of the west coast of India from which it remains uncertain if these two ‘biozones' are of different ages or whether they represent stratigraphically contemporaneous but ecologically distinct environments.

  15. Stomatal dynamics are limited by leaf hydraulics in ferns and conifers: results from simultaneous measurements of liquid and vapour fluxes in leaves.

    PubMed

    Martins, Samuel C V; McAdam, Scott A M; Deans, Ross M; DaMatta, Fábio M; Brodribb, Tim J

    2016-03-01

    Stomatal responsiveness to vapour pressure deficit (VPD) results in continuous regulation of daytime gas-exchange directly influencing leaf water status and carbon gain. Current models can reasonably predict steady-state stomatal conductance (gs ) to changes in VPD but the gs dynamics between steady-states are poorly known. Here, we used a diverse sample of conifers and ferns to show that leaf hydraulic architecture, in particular leaf capacitance, has a major role in determining the gs response time to perturbations in VPD. By using simultaneous measurements of liquid and vapour fluxes into and out of leaves, the in situ fluctuations in leaf water balance were calculated and appeared to be closely tracked by changes in gs thus supporting a passive model of stomatal control. Indeed, good agreement was found between observed and predicted gs when using a hydropassive model based on hydraulic traits. We contend that a simple passive hydraulic control of stomata in response to changes in leaf water status provides for efficient stomatal responses to VPD in ferns and conifers, leading to closure rates as fast or faster than those seen in most angiosperms. PMID:26510650

  16. Evolutionary rate variation in two conifer species, Taxodium distichum (L.) Rich. var. distichum (baldcypress) and Cryptomeria japonica (Thunb. ex L.f.) D. Don (Sugi, Japanese cedar).

    PubMed

    Kusumi, Junko; Tsumura, Yoshihiko; Tachida, Hidenori

    2016-03-23

    With the advance of sequencing technologies, large-scale data of expressed sequence tags and full-length cDNA sequences have been reported for several conifer species. Comparative analyses of evolutionary rates among diverse taxa provide insights into taxon-specific molecular evolutionary features and into the origin of variation in evolutionary rates within genomes and between species. Here, we estimated evolutionary rates in two conifer species, Taxodium distichum and Cryptomeria japonica, to illuminate the molecular evolutionary features of these species, using hundreds of genes and employing Chamaecyparis obtusa as an outgroup. Our results show that the mutation rates based on synonymous substitution rates (dS) of T. distichum and C. japonica are approximately 0.67 × 10(-9) and 0.59 × 10(-9)/site/year, respectively, which are 15-25 times lower than those of annual angiosperms. We found a significant positive correlation between dS and GC3. This implies that a local mutation bias, such as context dependency of the mutation bias, exists within the genomes of T. distichum and C. japonica, and/or that selection acts on synonymous sites in these species. In addition, the means of the ratios of synonymous to nonsynonymous substitution rate in the two species are almost the same, suggesting that the average intensity of functional constraint is constant between the lineages. Finally, we tested the possibility of positive selection based on the site model, and detected one candidate gene for positive selection. PMID:26687861

  17. Projected impacts of 21st century climate change on the distribution of potential habitat for vegetation, forest types and major conifer species across Russia.

    NASA Astrophysics Data System (ADS)

    Tchebakova, Nadezda; Parfenova, Elena; Cantin, Alan; Shvetsov, Eugene; Soja, Amber; Conard, Susane

    2013-04-01

    Global simulations have demonstrated the potential for profound effects of GCM-projected climate change on the distribution of terrestrial ecosystems and individual species at all hierarchical levels. We modeled progressions of potential vegetation cover, forest cover and forest types in Russia in the warming climate during the 21st century. We used large-scale bioclimatic models to predict zonal vegetation (RuBCliM), and forest cover (ForCliM) and forest types. A forest type was defined as a combination of a dominant tree conifer and a ground layer. Distributions of vegetation zones (zonobiomes), conifer species and forest types were simulated based on three bioclimatic indices (1) growing degree-days above 5oC ; (2) negative degree-days below 0oC; and (3) an annual moisture index (ratio of growing degree days to annual precipitation). Additionally, the presence/absence of continuous permafrost, identified by active layer depth of 2 m, was explicitly included in the models as limiting the forests and tree species distribution in Siberia. All simulations to predict vegetation change across Russia were run by coupling our bioclimatic models with bioclimatic indices and the permafrost distribution for the baseline period 1971-2000 and for the future decades of 2011-2020, 2041-2050 and 2091-2100. To provide a range of warming we used three global climate models (CGCM3.1, HadCM3 and IPSLCM4) and three climate change scenarios (A1B, A2 and B1). The CGCM model and the B1 scenario projected the smallest temperature increases, and the IPSL model and the A2 scenario projected the greatest temperature increases. We compared the modeled vegetation and the modeled tree species distributions in the contemporary climate to actual vegetation and forest maps using Kappa (K) statistics. RuBioCliM models of Russian zonal vegetation were fairly accurate (K= 0.40). Contemporary major conifer species (Pinus sibirica, Pinus sylvestris, Larix spp., Abies sibirica and Picea obovata

  18. Direct in situ measurement of Carbon Allocation to Mycorrhizal Fungi in a California Mixed-Conifer Forest

    NASA Astrophysics Data System (ADS)

    Allen, M. F.

    2011-12-01

    Mycorrhizal fungi represent a large allocation of C to ecosystems, based on indirect measurements (tree girdling) and glasshouse extrapolations. However, we have no direct measures carbon (C) sink, in part because technologies for studying belowground dynamics on time scales at which roots and microbes grow and die have not existed. We initiated new sensor and observation platforms belowground to characterize and quantify belowground dynamics in a California mixed-conifer ecosystem. For the first time, we directly observed growth and mortality of mycorrhizal fungi in situ. We measured soil CO2, T and θ at 5-min intervals into the soil profile. Using our automated minirhizotron (AMR) for hyphal dynamics and the Bartz minirhizotron for longer-term and spatial variation in roots and rhizomorphs, we measured root, rhizomorph, hyphal growth, and belowground phenology up to 4x daily. These data are coupled with sensors measuring eddy flux of water and CO2, sapflow for water fluxes and C fixation activity, and photographs for leaf phenology. Because our data were collected at short intervals, we can describe integrative C exchange using the DayCent model for NPP and measured NPP of rhizomorphs, and fungal hyphae. Here, we focused on an arbuscular mycorrhiza dominated meadow and an ectomycorrhizal pine/oak forest at the James Reserve, in southern California. By daily measuring hyphal growth and mortality, we constructed life-span estimates of mycorrhizal hyphae, and from these, C allocation estimates. In the meadow, the NPP was 141g/m2/y, with a productivity of fine root+internal AM fungi of 76.5g C/m2/y, and an estimated 10% of which is AM fungal C allocation (7.7 g/m2/y). Extramatrical AM hyphal peak standing crop was 10g/m2, with a lifespan of 46 days (with active hyphae persisting for ~240 days per year days). Thus, the annual AM fungal allocation was 7.7g C/m2/y internal and 52g/m2/y external, for a net allocation of 84g C/m2/y, or 60% of the estimated NPP. In the

  19. Direct in situ measurement of Carbon Allocation to Mycorrhizal Fungi in a California Mixed-Conifer Forest

    NASA Astrophysics Data System (ADS)

    Allen, M.

    2012-04-01

    Mycorrhizal fungi consume fixed C in ecosystems in exchange for soil resources. We used sensor and observation platforms belowground to quantify belowground dynamics in a California mixed-conifer ecosystem. We directly observed growth and mortality of mycorrhizal fungi in situ on a daily basis using an automated minirhizotron. We measured soil CO2, T and soil moisture at 5-min intervals into the soil profile. These data are coupled with sensors measuring eddy flux of water and CO2, sapflow for water fluxes and C fixation activity, and photographs for leaf phenology. We used DayCent modeling for net primary productivity (NPP) and measured NPP of rhizomorphs, and fungal hyphae. In an arbuscular mycorrhizal (AM) meadow, NPP was 141g/m2/y, with a productivity of fine root NPP of 76.5g C/m2/y, an estimated 10 percent of which is AM fungal C (7.7 g/m2/y). Extramatrical AM hyphal peak standing crop was 4.4g/m2, with a lifespan of 46 days, with active hyphae persisting for 240 days per year. The extramatrical AM fungal hyphal C was 22.9g/m2/y, for a total net allocation to AM fungi of 30.5 C/m2/y, or 22 percent of the estimated NPP. In the ectomycorrhizal (EM) forest, root standing crop (200g C/m2/y) and rhizomorph (2mg C/m2/y) was 33 percent of the NPP (600g C/m2/y). EM fungal hyphae standing crop was 18g/m2/y, with a 48day lifespan, persisting throughout the year, or 59 g C/m2/y. EM root tips and rhizomorph life spans were nearly a year. Assuming that EM fungi represent 40 percent of the fine root EM NPP (of 200g C/m2/y) or 80g C/m2/y, most of the rhizomorph (in the mineral soil) mass being EM (or 2mg C), and 57 percent of the soil fungal NPP or 80 g C/m2/y, then the EM NPP is 139 C/m2/y, or 23 percent of the estimated NPP (600g C/m2/y). As an independent check on the allocation of C, we applied the Hobbie and Hobbie isotopic fractionation d15N model to C allocation. Using d15N of Chantarellus sp. (10.6) and Rhizopogon sp. (9.1), with a leaf d15N of -4.9, we estimated

  20. Combustion efficiency and emission factors for wildfire-season fires in mixed conifer forests of the northern Rocky Mountains, US

    NASA Astrophysics Data System (ADS)

    Urbanski, S. P.

    2013-07-01

    In the US, wildfires and prescribed burning present significant challenges to air regulatory agencies attempting to achieve and maintain compliance with air quality regulations. Fire emission factors (EF) are essential input for the emission models used to develop wildland fire emission inventories. Most previous studies quantifying wildland fire EF of temperate ecosystems have focused on emissions from prescribed burning conducted outside of the wildfire season. Little information is available on EF for wildfires in temperate forests of the conterminous US. The goal of this work is to provide information on emissions from wildfire-season forest fires in the northern Rocky Mountains, US. In August 2011, we deployed airborne chemistry instruments and sampled emissions over eight days from three wildfires and a prescribed fire that occurred in mixed conifer forests of the northern Rocky Mountains. We measured the combustion efficiency, quantified as the modified combustion efficiency (MCE), and EF for CO2, CO, and CH4. Our study average values for MCE, EFCO2, EFCO, and EFCH4 were 0.883, 1596 g kg-1, 135 g kg-1, 7.30 g kg-1, respectively. Compared with previous field studies of prescribed fires in temperate forests, the fires sampled in our study had significantly lower MCE and EFCO2 and significantly higher EFCO and EFCH4. The fires sampled in this study burned in areas reported to have moderate to heavy components of standing dead trees and down dead wood due to insect activity and previous fire, but fuel consumption data was not available. However, an analysis of MCE and fuel consumption data from 18 prescribed fires reported in the literature indicates that the availability of coarse fuels and conditions favorable for the combustion of these fuels favors low MCE fires. This analysis suggests that fuel composition was an important factor contributing to the low MCE of the fires measured in this study. This study only measured EF for CO2, CO, and CH4; however, we

  1. Extraction and Chromatographic Determination of Shikimic Acid in Chinese Conifer Needles with 1-Benzyl-3-methylimidazolium Bromide Ionic Liquid Aqueous Solutions

    PubMed Central

    Chen, Fengli; Hou, Kexin; Li, Shuangyang; Zu, Yuangang; Yang, Lei

    2014-01-01

    An ionic liquids-based ultrasound-assisted extraction (ILUAE) method was successfully developed for extracting shikimic acid from conifer needles. Eleven 1-alkyl-3-methylimidazolium ionic liquids with different cations and anions were investigated and 1-benzyl-3-methylimidazolium bromide solution was selected as the solvent. The conditions for ILUAE, including the ionic liquid concentration, ultrasound power, ultrasound time, and liquid-solid ratio, were optimized. The proposed method had good recovery (99.37%–100.11%) and reproducibility (RSD, n = 6; 3.6%). ILUAE was an efficient, rapid, and simple sample preparation technique that showed high reproducibility. Based on the results, a number of plant species, namely, Picea koraiensis, Picea meyeri, Pinus elliottii, and Pinus banksiana, were identified as among the best resources of shikimic acid. PMID:24782942

  2. Relationships of inside and outside bark diameters for young-growth mixed-conifer species in the Sierra Nevada. Forest Service research note (final). [Firs, cedars, pines

    SciTech Connect

    Dolph, K.L.

    1984-09-01

    The linear relationship of inside to outside bark diameter at breast height provides a basis for estimating diameter inside bark from diameter outside bark. Estimates of diameter inside bark and past diameter outside bark are useful in predicting growth and yield. During field seasons 1979-1982, data were obtained from stem analysis of 931 trees in young-growth stands of the mixed-conifer type on the westside Sierra Nevada of California. Species included were coast Douglas-fir, California white fir, incense-cedar, sugar pine, ponderosa pine, and Jeffrey pine. This note provides equations for estimating inside bark diameters, double bark thickness, and past outside bark diameters for each of the species studied.

  3. Atomic force microscopy and laser confocal scanning microscopy analysis of callose fibers developed from protoplasts of embryogenic cells of a conifer.

    PubMed

    Fukumoto, Takeshi; Hayashi, Noriko; Sasamoto, Hamako

    2005-12-01

    Efficiency of novel fiber formation was much improved in protoplast culture of embryogenic cells (ECs) of a conifer, Larix leptolepis (Sieb. et Zucc.) Gord., by pre-culturing ECs in a medium containing a high concentration of glutamine (13.7 mM). The fibrillar substructures of large and elongated fibers of protoplasts isolated from Larix ECs were investigated by laser confocal scanning microscopy (LCSM) after Aniline Blue staining and atomic force microscopy (AFM) using a micromanipulator without any pre-treatment. Fibers were composed of bundles of fibrils and subfibrils, whose diameters were defined as 0.7 and 0.17 mum, respectively, by image analysis after LCSM and AFM. These fibers were proven to be composed of callose by using specific degrading enzymes for beta-1,4-glucan and beta-1,3-glucan. PMID:16034590

  4. The induction of apoptosis in human melanoma, breast and ovarian cancer cell lines using an essential oil extract from the conifer Tetraclinis articulata.

    PubMed

    Buhagiar, J A; Podesta, M T; Wilson, A P; Micallef, M J; Ali, S

    1999-01-01

    The cytotoxic effect of conifer Tetraclinis articulata essential oil (TAEO) on a number of human cancer cell lines and peripheral blood lymphocytes was assessed at various concentrations and time exposures. The cytotoxic effect showed the hallmarks of apoptosis confirmed by a variety of techniques including flow cytometry, an apoptosis- specific marker combined to fluorescent staining and DNA laddering. All cell lines tested were inhibited in a dose-dependent fashion and within a contact time of less than eight hours for the higher concentrations. Melanoma, breast and ovarian cancer cells gave IC50s of around 80 micrograms/ml whilst the IC50s on peripheral blood lymphocytes was almost double this value. We conclude that the essential oil contains components that are effective at inducing apoptosis. The advantages of using a mixture of monoterpenes (C10) as present in an EO over a single component, are discussed. PMID:10697574

  5. Ectomycorrhizal Community Structure and Soil Characteristics of Mature Lodgepole Pine (Pinus Contorta) and Adjacent Stands of Old Growth Mixed Conifer in Yellowstone National Park, Wyoming USA

    NASA Technical Reports Server (NTRS)

    Douglas, Robert B.; Parker, V. Thomas; Cullings, Kenneth W.; Sun, Sidney (Technical Monitor)

    2003-01-01

    Forest development patterns following disturbance are known to influence the physical and chemical attributes of soils at different points in time. Changes in soil resources are thought to have a corresponding effect on ectomycorrhizal (ECM) community structure. We used molecular methods to compare below-ground ECM species richness, composition, and abundance between adjacent stands of homogenous lodgepole pine and old growth mixed conifer in Yellowstone National Park (YNP). In each stand-type we collected soil cores to both identify mycorrhizae and assess soil chemistry. Although no statistical difference was observed in the mean number of ECM root tips per core between stand types, the total number of species identified (85 versus 35) and the mean number of species per core (8.8 +/- 0.6 versus 2.5 +/- 0.3) were significantly higher in lodgepole pine. Differences between the actual and estimated species richness levels indicated that these forest types support a high number of ECM species and that undersampling was severe. Species compositions were widely disparate between stands where only four species were shared out of a total of 116. Soil analysis also revealed that mixed conifer was significantly lower in pH, but higher in organic matter, potassium, phosphorus, and ammonium when compared to lodgepole pine stands. Species richness per core was correlated with these chemical data, however, analysis of covariance indicated that stand type was the only statistically significant factor in the observed difference in species richness. Our data suggest that ECM fungal richness increases as homogenous lodgepole pine stands grow and mature, but declines after Engelmann spruce and subalpine fir colonize. Despite difficulties linking species composition with soil chemistry, there are a variety of physical and chemical factors that could be influencing ECM community structure. Future field experiments are necessary to test some of the mechanisms potentially operating

  6. Species-specific and seasonal differences in chlorophyll fluorescence and photosynthetic light response among three evergreen species in a Madrean sky island mixed conifer forest

    NASA Astrophysics Data System (ADS)

    Potts, D. L.; Minor, R. L.; Braun, Z.; Barron-Gafford, G. A.

    2012-12-01

    Unlike the snowmelt-dominated hydroclimate of more northern mountainous regions, the hydroclimate of the Madrean sky islands is characterized by snowmelt and convective storms associated with the North American Monsoon. These mid-summer storms trigger biological activity and are important drivers of primary productivity. For example, at the highest elevations where mixed conifer forests occur, ecosystem carbon balance is influenced by monsoon rains. Whereas these storms' significance is increasingly recognized at the ecosystem scale, species-specific physiological responses to the monsoon are poorly known. Prior to and following monsoon onset, we measured pre-dawn and light-adapted chlorophyll fluorescence as well as photosynthetic light response in southwestern white pine (Pinus strobiformis), ponderosa pine (Pinus ponderosa), and Douglas fir (Pseudotsuga menziesii) in a Madrean sky island mixed conifer forest near Tucson, Arizona. Photochemical quenching (qp), an indicator of the proportion of open PSII reaction centers, was greatest in P. strobiformis and least in P. menziesii and increased in response to monsoon rains (repeated-measures ANOVA; species, F2,14 = 6.17, P = 0.012; time, F2,14= 8.17, P = 0.013). In contrast, non-photochemical quenching (qN), an indicator of heat dissipation ability, was greatest in P. ponderosa and least in P. menziesii, but was not influenced by monsoon onset (repeated-measures ANOVA; species, F2,12 = 4.18, P = 0.042). Estimated from leaf area-adjusted photosynthetic light response curves, maximum photosynthetic rate (Amax) was greatest in P. ponderosa and least in P. menziesii (repeated-measures ANOVA; species, F2,8= 40.8, P = 0.001). Surprisingly, while the monsoon positively influenced Amax among P. ponderosa and P. strobiformis, Amax of P. menziesii declined with monsoon onset (repeated-measures ANOVA; species x time, F2,8 = 13.8, P = 0.002). Calculated as the initial slope of the photosynthetic light response curve, light

  7. Zeaxanthin-independent energy quenching and alternative electron sinks cause a decoupling of the relationship between the photochemical reflectance index (PRI) and photosynthesis in an evergreen conifer during spring

    PubMed Central

    Fréchette, Emmanuelle; Wong, Christopher Y. S.; Junker, Laura Verena; Chang, Christine Yao-Yun; Ensminger, Ingo

    2015-01-01

    In evergreen conifers, the winter down-regulation of photosynthesis and its recovery during spring are the result of a reorganization of the chloroplast and adjustments of energy-quenching mechanisms. These phenological changes may remain undetected by remote sensing, as conifers retain green foliage during periods of photosynthetic down-regulation. The aim was to assess if the timing of the spring recovery of photosynthesis and energy-quenching characteristics are accurately monitored by the photochemical reflectance index (PRI) in the evergreen conifer Pinus strobus. The recovery of photosynthesis was studied using chlorophyll fluorescence, leaf gas exchange, leaf spectral reflectance, and photosynthetic pigment measurements. To assess if climate change might affect the recovery of photosynthesis, seedlings were exposed to cold spring conditions or warm spring conditions with elevated temperature. An early spring decoupling of the relationship between photosynthesis and PRI in both treatments was observed. This was caused by differences between the timing of the recovery of photosynthesis and the timing of carotenoid and chlorophyll pool size adjustments which are the main factors controlling PRI during spring. It was also demonstrated that zeaxanthin-independent NPQ mechanisms undetected by PRI further contributed to the early spring decoupling of the PRI–LUE relationship. An important mechanism undetected by PRI seems to involve increased electron transport around photosystem I, which was a significant energy sink during the entire spring transition, particularly in needles exposed to a combination of high light and cold temperatures. PMID:26386258

  8. High-performance liquid chromatography-atmospheric pressure chemical ionization mass spectrometry and gas chromatography-flame ionization detection characterization of Delta5-polyenoic fatty acids in triacylglycerols from conifer seed oils.

    PubMed

    Lísa, Miroslav; Holcapek, Michal; Rezanka, Tomás; Kabátová, Nadezda

    2007-03-30

    Edible conifer seeds can serve as a source of triacylglycerols (TGs) with unusual Delta5 unsaturated polymethylene interrupted fatty acids (UPIFAs), such as cis-5,9-octadecadienoic (taxoleic), cis-5,9,12-octadecatrienoic (pinolenic), cis-5,11-eicosadienoic (keteleeronic) and cis-5,11,14-eicosatrienoic acids (sciadonic). Conifer seed oils from European Larch (Larix decidua), Norway Spruce (Picea abies) and European Silver Fir (Abies alba) have been analyzed by non-aqueous reversed-phase high-performance liquid chromatography (NARP-HPLC) with atmospheric pressure chemical ionisation (APCI)-MS detection. The influence of different positions of double bonds in Delta5-UPIFAs on the retention and fragmentation behavior is described and used for the successful identification of TGs in each oil. TGs containing Delta5-UPIFAs have a higher retention in comparison with common TGs found in plant oils with single methylene interrupted Delta6(9)-FAs and also significantly changed relative abundances of fragment ions in APCI mass spectra. Results obtained from HPLC/MS analyses are supported by validated GC/FID analyses of fatty acid methyl esters after the transesterification. The total content of Delta5-UPIFAs is about 32% for European Larch, 27% for Norway Spruce and 20% for European Silver Fir. In total, 20 FAs with acyl chain lengths from 16 to 24 carbon atoms and from 0 to 3 double bonds have been identified in 64 triacylglycerols from 3 conifer seed oils. PMID:17307191

  9. Zeaxanthin-independent energy quenching and alternative electron sinks cause a decoupling of the relationship between the photochemical reflectance index (PRI) and photosynthesis in an evergreen conifer during spring.

    PubMed

    Fréchette, Emmanuelle; Wong, Christopher Y S; Junker, Laura Verena; Chang, Christine Yao-Yun; Ensminger, Ingo

    2015-12-01

    In evergreen conifers, the winter down-regulation of photosynthesis and its recovery during spring are the result of a reorganization of the chloroplast and adjustments of energy-quenching mechanisms. These phenological changes may remain undetected by remote sensing, as conifers retain green foliage during periods of photosynthetic down-regulation. The aim was to assess if the timing of the spring recovery of photosynthesis and energy-quenching characteristics are accurately monitored by the photochemical reflectance index (PRI) in the evergreen conifer Pinus strobus. The recovery of photosynthesis was studied using chlorophyll fluorescence, leaf gas exchange, leaf spectral reflectance, and photosynthetic pigment measurements. To assess if climate change might affect the recovery of photosynthesis, seedlings were exposed to cold spring conditions or warm spring conditions with elevated temperature. An early spring decoupling of the relationship between photosynthesis and PRI in both treatments was observed. This was caused by differences between the timing of the recovery of photosynthesis and the timing of carotenoid and chlorophyll pool size adjustments which are the main factors controlling PRI during spring. It was also demonstrated that zeaxanthin-independent NPQ mechanisms undetected by PRI further contributed to the early spring decoupling of the PRI-LUE relationship. An important mechanism undetected by PRI seems to involve increased electron transport around photosystem I, which was a significant energy sink during the entire spring transition, particularly in needles exposed to a combination of high light and cold temperatures. PMID:26386258

  10. Mountain pine beetle-caused mortality over eight years in two pine hosts in mixed conifer stands of the southern Rocky Mountains

    USGS Publications Warehouse

    West, Daniel R.; Briggs, Jennifer S.; Jacobi, William R.; Negrón, José F.

    2014-01-01

    Eruptive mountain pine beetle (Dendroctonus ponderosae, MPB) populations have caused widespread mortality of pines throughout western North America since the late 1990s. Early work by A.D. Hopkins suggested that when alternate host species are available, MPB will prefer to breed in the host to which it has become adapted. In Colorado, epidemic MPB populations that originated in lodgepole pine expanded into mixed-conifer stands containing ponderosa pine, a related host. We evaluated the susceptibility of both hosts to successful MPB colonization in a survey of 19 sites in pine-dominated mixed-conifer stands spanning 140 km of the Front Range, CO, USA. In each of three 0.2-ha plots at each site, we (1) assessed trees in the annual flights of 2008–2011 to compare MPB-caused mortality between lodgepole and ponderosa pine; (2) recorded previous MPB-caused tree mortality from 2004–2007 to establish baseline mortality levels; and (3) measured characteristics of the stands (e.g. tree basal area) and sites (e.g. elevation, aspect) that might be correlated with MPB colonization. Uninfested average live basal area of lodgepole and ponderosa pine was 74% of total basal area before 2004. We found that for both species, annual percent basal area of attacked trees was greatest in one year (2009), and was lower in all other years (2004–2007, 2008, 2010, and 2011). Both pine species had similar average total mortality of 38–39% by 2011. Significant predictors of ponderosa pine mortality in a given year were basal area of uninfested ponderosa pine and the previous year’s mortality levels in both ponderosa and lodgepole pine. Lodgepole pine mortality was predicted by uninfested basal areas of both lodgepole and ponderosa pine, and the previous year’s lodgepole pine mortality. These results indicate host selection by MPB from lodgepole pine natal hosts into ponderosa pine the following year, but not the reverse. In both species, diameters of attacked trees within each year

  11. Linking wood anatomy and xylogenesis allows pinpointing of climate and drought influences on growth of coexisting conifers in continental Mediterranean climate.

    PubMed

    Pacheco, Arturo; Camarero, J Julio; Carrer, Marco

    2016-04-01

    Forecasted warmer and drier conditions will probably lead to reduced growth rates and decreased carbon fixation in long-term woody pools in drought-prone areas. We therefore need a better understanding of how climate stressors such as drought constrain wood formation and drive changes in wood anatomy. Drying trends could lead to reduced growth if they are more intense in spring, when radial growth rates of conifers in continental Mediterranean climates peak. Since tree species from the aforementioned areas have to endure dry summers and also cold winters, we chose two coexisting species: Aleppo pine (Pinus halepensisMill., Pinaceae) and Spanish juniper (Juniperus thuriferaL., Cupressaceae) (10 randomly selected trees per species), to analyze how growth (tree-ring width) and wood-anatomical traits (lumen transversal area, cell-wall thickness, presence of intra-annual density fluctuations-IADFs-in the latewood) responded to climatic variables (minimum and maximum temperatures, precipitation, soil moisture deficit) calculated for different time intervals. Tree-ring width and mean lumen area showed similar year-to-year variability, which indicates that they encoded similar climatic signals. Wet and cool late-winter to early-spring conditions increased lumen area expansion, particularly in pine. In juniper, cell-wall thickness increased when early summer conditions became drier and the frequency of latewood IADFs increased in parallel with late-summer to early-autumn wet conditions. Thus, latewood IADFs of the juniper capture increased water availability during the late growing season, which is reflected in larger tracheid lumens. Soil water availability was one of the main drivers of wood formation and radial growth for the two species. These analyses allow long-term (several decades) growth and wood-anatomical responses to climate to be inferred at intra-annual scales, which agree with the growing patterns already described by xylogenesis approaches for the same

  12. Data from camera surveys identifying co-occurrence and occupancy linkages between fishers (Pekania pennanti), rodent prey, mesocarnivores, and larger predators in mixed-conifer forests.

    PubMed

    Sweitzer, Rick A; Furnas, Brett J

    2016-03-01

    These data provide additional information relevant to the frequency of fisher detections by camera traps, and single-season occupancy and local persistence of fishers in small patches of forest habitats detailed elsewhere, "Landscape Fuel Reduction, Forest Fire, and Biophysical Linkages to Local Habitat Use and Local Persistence of Fishers (Pekania pennanti) in Sierra Nevada Mixed-conifer Forests" [10]. The data provides insight on camera trap detections of 3 fisher predators (bobcat [Lynx rufus]). Coyote [Canis latrans], mountain lion [Puma concolor], 5 mesocarnivores in the same foraging guild as fishers (gray fox [Urocyon cinereoargenteus]) ringtail [Bassariscus astutus], marten [Martes americana], striped skunk [Mephitis mephitis] spotted skunk [Spilogale gracilis], and 5 Sciuridae rodents that fishers consume as prey (Douglas squirrel [Tamiasciurus douglasii]), gray squirrel [Sciurus griseus], northern flying squirrel [Glaucomys sabrinus], long-eared chipmunk [Neotamias quadrimaculatus], California ground squirrel [Spermophilus beecheyi]. We used these data to identify basic patterns of co-occurrence with fishers, and to evaluate the relative importance of presence of competing mesocarnivores, rodent prey, and predators for fisher occupancy of small, 1 km(2) grid cells of forest habitat. PMID:26937448

  13. Hormonally regulated overexpression of Arabidopsis WUS and conifer LEC1 (CHAP3A) in transgenic white spruce: implications for somatic embryo development and somatic seedling growth.

    PubMed

    Klimaszewska, Krystyna; Pelletier, Gervais; Overton, Catherine; Stewart, Don; Rutledge, Robert G

    2010-07-01

    Adult conifers are still recalcitrant in clonal propagation despite significant advances in forest tree biotechnology. Plant regeneration through somatic embryogenesis from explants older than mature zygotic embryos is either difficult or impossible to achieve. To investigate if ectopic expression of transcription factors involved in the induction of the embryogenic process would induce somatic embryogenesis in Picea glauca (white spruce) somatic plants, we used the LEAFY-COTYLEDON1 homolog cloned from Picea mariana, CHAP3A, and Arabidopsis thaliana WUS to transform embryonal mass of P. glauca. Ectopic gene expression was induced by 17-beta-estradiol during stages of somatic embryogenesis (early embryogenesis and late embryogenesis) and somatic seedling growth in the transgenics. Of the two transcription factors, only WUS produced severe phenotypes by disrupting the development of somatic embryos on the maturation medium and inhibiting germination. However, none of the transgenes induced ectopic somatic embryogenesis even in the presence of plant growth regulators. Absolute quantitative PCR confirmed the expression of both CHAP3A and WUS in transgenic embryonal mass and in all parts of somatic seedlings. A high expression of the transgenes did not influence expression profiles of any of the ten other transcription factors tested, some of which have been known to be involved in the process of embryogenesis. Implications of these results for further work are discussed. PMID:20424847

  14. Data from camera surveys identifying co-occurrence and occupancy linkages between fishers (Pekania pennanti), rodent prey, mesocarnivores, and larger predators in mixed-conifer forests

    PubMed Central

    Sweitzer, Rick A.; Furnas, Brett J.

    2016-01-01

    These data provide additional information relevant to the frequency of fisher detections by camera traps, and single-season occupancy and local persistence of fishers in small patches of forest habitats detailed elsewhere, “Landscape Fuel Reduction, Forest Fire, and Biophysical Linkages to Local Habitat Use and Local Persistence of Fishers (Pekania pennanti) in Sierra Nevada Mixed-conifer Forests” [10]. The data provides insight on camera trap detections of 3 fisher predators (bobcat [Lynx rufus]). Coyote [Canis latrans], mountain lion [Puma concolor], 5 mesocarnivores in the same foraging guild as fishers (gray fox [Urocyon cinereoargenteus]) ringtail [Bassariscus astutus], marten [Martes americana], striped skunk [Mephitis mephitis] spotted skunk [Spilogale gracilis], and 5 Sciuridae rodents that fishers consume as prey (Douglas squirrel [Tamiasciurus douglasii]), gray squirrel [Sciurus griseus], northern flying squirrel [Glaucomys sabrinus], long-eared chipmunk [Neotamias quadrimaculatus], California ground squirrel [Spermophilus beecheyi]. We used these data to identify basic patterns of co-occurrence with fishers, and to evaluate the relative importance of presence of competing mesocarnivores, rodent prey, and predators for fisher occupancy of small, 1 km2 grid cells of forest habitat. PMID:26937448

  15. Applying microCT and 3D visualization to Jurassic silicified conifer seed cones: A virtual advantage over thin-sectioning1

    PubMed Central

    Gee, Carole T.

    2013-01-01

    • Premise of the study: As an alternative to conventional thin-sectioning, which destroys fossil material, high-resolution X-ray computed tomography (also called microtomography or microCT) integrated with scientific visualization, three-dimensional (3D) image segmentation, size analysis, and computer animation is explored as a nondestructive method of imaging the internal anatomy of 150-million-year-old conifer seed cones from the Late Jurassic Morrison Formation, USA, and of recent and other fossil cones. • Methods: MicroCT was carried out on cones using a General Electric phoenix v|tome|x s 240D, and resulting projections were processed with visualization software to produce image stacks of serial single sections for two-dimensional (2D) visualization, 3D segmented reconstructions with targeted structures in color, and computer animations. • Results: If preserved in differing densities, microCT produced images of internal fossil tissues that showed important characters such as seed phyllotaxy or number of seeds per cone scale. Color segmentation of deeply embedded seeds highlighted the arrangement of seeds in spirals. MicroCT of recent cones was even more effective. • Conclusions: This is the first paper on microCT integrated with 3D segmentation and computer animation applied to silicified seed cones, which resulted in excellent 2D serial sections and segmented 3D reconstructions, revealing features requisite to cone identification and understanding of strobilus construction. PMID:25202495

  16. Improving assessments of tropospheric ozone injury to Mediterranean montane conifer forests in California (USA) and Catalonia (Spain) with GIS models related to plant water relations

    NASA Astrophysics Data System (ADS)

    Kefauver, Shawn C.; Peñuelas, Josep; Ustin, Susan L.

    2012-12-01

    The impacts of tropospheric ozone on conifer health in the Sierra Nevada of California, USA, and the Pyrenees of Catalonia, Spain, were measured using field assessments and GIS variables of landscape gradients related to plant water relations, stomatal conductance and hence to ozone uptake. Measurements related to ozone injury included visible chlorotic mottling, needle retention, needle length, and crown depth, which together compose the Ozone Injury Index (OII). The OII values observed in Catalonia were similar to those in California, but OII alone correlated poorly to ambient ozone in all sites. Combining ambient ozone with GIS variables related to landscape variability of plant hydrological status, derived from stepwise regressions, produced models with R2 = 0.35, p = 0.016 in Catalonia, R2 = 0.36, p < 0.001 in Yosemite and R2 = 0.33, p = 0.007 in Sequoia/Kings Canyon National Parks in California. Individual OII components in Catalonia were modeled with improved success compared to the original full OII, in particular visible chlorotic mottling (R2 = 0.60, p < 0.001). The results show that ozone is negatively impacting forest health in California and Catalonia and also that modeling ozone injury improves by including GIS variables related to plant water relations.

  17. Pit membrane structure is highly variable and accounts for a major resistance to water flow through tracheid pits in stems and roots of two boreal conifer species.

    PubMed

    Schulte, Paul J; Hacke, Uwe G; Schoonmaker, Amanda L

    2015-10-01

    The flow of xylem sap in conifers is strongly dependent on the presence of a low resistance path through bordered pits, particularly through the pores present in the margo of the pit membrane. A computational fluid dynamics approach was taken, solving the Navier-Stokes equation for models based on the geometry of pits observed in tracheids from stems and roots of Picea mariana (black spruce) and Picea glauca (white spruce). Model solutions demonstrate a close, inverse relationship between the total resistance of bordered pits and the total area of margo pores. Flow through the margo was dominated by a small number of the widest pores. Particularly for pits where the margo component of flow resistance was low relative to that of the torus, pore location near the inner edge of the margo allowed for greater flow than that occurring through similar-sized pores near the outer edge of the margo. Results indicate a surprisingly large variation in pit structure and flow characteristics. Nonetheless, pits in roots have lower resistance to flow than those in stems because the pits were wider and consisted of a margo with a larger area in pores. PMID:25944400

  18. Comparison of Lichen, Conifer Needles, Passive Air Sampling Devices, and Snowpack as Passive Sampling Media to Measure Semi-Volatile Organic Compounds in Remote Atmospheres

    PubMed Central

    SCHRLAU, JILL E.; GEISER, LINDA; HAGEMAN, KIMBERLY J.; LANDERS, DIXON H.

    2011-01-01

    A wide range of semi-volatile organic compounds (SOCs), including pesticides and polycyclic aromatic hydrocarbons (PAHs), were measured in lichen, conifer needles, snowpack and XAD-based passive air sampling devices (PASDs) collected from 19 different U.S. national parks in order to compare the magnitude and mechanism of SOC accumulation in the different passive sampling media. Lichen accumulated the highest SOC concentrations, in part because of its long (and unknown) exposure period, while PASDs accumulated the lowest concentrations. However, only the PASD SOC concentrations can be used to calculate an average atmospheric gas-phase SOC concentration because the sampling rates are known and the media is uniform. Only the lichen and snowpack SOC accumulation profiles were statistically significantly correlated (r = 0.552, p-value <0.0001) because they both accumulate SOCs present in the atmospheric particle-phase. This suggests that needles and PASDs represent a different composition of the atmosphere than lichen and snowpack and that the interpretation of atmospheric SOC composition is dependent on the type of passive sampling media used. All four passive sampling media preferentially accumulated SOCs with relatively low air-water partition coefficients, while snowpack accumulated SOCs with higher log KOA values compared to the other media. Lichen accumulated more SOCs with log KOA > 10 relative to needles and showed a greater accumulation of particle-phase PAHs. PMID:22087860

  19. Modeling of Soil and Tree Water Status Dynamics in a Mixed-Conifer Forest of the Southern Sierra Critical Zone Observatory

    NASA Astrophysics Data System (ADS)

    Hopmans, J. W.; Rings, J.; Kamai, T.; Mollaei Kandelous, M.; Hartsough, P. C.; Vrugt, J. A.

    2012-12-01

    Trees play a key role in controlling the water and energy balance at the land-air surface. By changing water content of soil and atmosphere, trees influence meteorological, climatological and hydrological cycles. Numerical models allow simulating the relevant hydrological processes; most importantly the movement of water as it is transported through the soil, taken up by roots into the tree and ultimately transpired into the atmosphere along water potential gradients across the soil-root-tree-atmosphere continuum (SPAC). The results of a multi-year deployment of soil moisture sensors to study the hydrologic/biotic interactions in a mixed-conifer forest in the Southern Sierra Critical Zone Observatory (CZO) will be presented. To better understand root-soil water interactions, a mature white fir (Abies concolor) and the surrounding root zone was continuously monitored (sap flow, canopy stem water potential, soil moisture, soil water potential and temperature), to characterize the hydraulics SPAC. In addition, we present a hydrodynamic model, simulating unsaturated flow in the soil and tree with stress functions controlling spatially distributed root uptake and canopy transpiration. To parameterize the in-situ tree water relationships, we combine the numerical model with observational data in an optimization framework, minimizing residuals between modeled and measured observational data.

  20. Relating the temporal change observed by AIRSAR to surface and canopy properties of mixed conifer and hardwood forests of northern Michigan

    NASA Technical Reports Server (NTRS)

    Dobson, M. Craig; Mcdonald, Kyle; Ulaby, Fawwaz T.; Sharik, Terry

    1991-01-01

    The mixed hardwood and conifer forests of northern Michigan were overflown by a 3-frequency airborne imaging radar in Apr. and Jul. 1990. A set of 10 x 10 km test sites near the University of Michigan Biological Station at Douglas Lake and within the Hiawatha National Forest in the upper peninsula of Michigan contained training stands representing the various forest species typical of forest communities across the ecotone between the coniferous boreal forest and mid-latitude hardwood and coniferous forests. The polarimetric radar data were externally calibrated to allow interdate comparisons. The Apr. flight was prior to bud-break of deciduous species and patchy snowcover was present. The Jul. flights occurred during and 2 days after heavy rain showers, and provide a unique opportunity to examine the differences in radar backscatter attributable to intercepted precipitation. Analyses show that there are significant changes in backscattering between biophysically dissimilar forest stands on any given date and also between dates for a given forest stand. These differences in backscattering can be related to moisture properties of the forest floor and the overlying canopy and also to the quantity and organizational structure of the above-ground biomass.

  1. How do cold-sensitive species endure ice ages? Phylogeographic and paleodistribution models of postglacial range expansion of the mesothermic drought-tolerant conifer Austrocedrus chilensis.

    PubMed

    Souto, Cintia P; Kitzberger, Thomas; Arbetman, Marina P; Premoli, Andrea C

    2015-11-01

    In view of global climate change, it is important to understand the responses of tree species to climate changes in the past. Combinations of phylogeographic analysis of genetic evidence, coupled with species distribution models (SDMs), are improving our understanding on this subject. We combined SDMs and microsatellite data from populations of the entire range of Austrocedrus chilensis, a dominant mesotherm (cold-sensitive) conifer of dryland forests of the southern Andes, to test the hypothesis of long-distance postglacial migration from northern and warmer refugia at the Last Glacial Maximum (LGM). The SDM indicated suitable conditions for Austrocedrus in northern Chile (western) at the LGM and largely unsuitable conditions in Argentina (eastern). Population genetic diversity and effective population sizes within populations decreased southward along the Andes, consistent with the hypothesis of long-distance dispersal from a northern refugium. Results support the hypothesis of one (or a few) warmer (low latitude) refugia in Chile for Austrocedrus. On balance, the evidence suggests that in contrast to cold-tolerant tree taxa with the capacity to fast-track postglacial warming thanks to local refugia, cold-sensitive species might have undergone long-distance range expansion, lagging behind progressive climate change throughout the Holocene. PMID:26079667

  2. Incidence and effects of endemic populations of forest pests in young mixed-conifer forests of the Sierra Nevada. Forest Service research paper (Final)

    SciTech Connect

    Williams, C.B.; Azuma, D.L.; Ferrell, G.T.

    1992-05-01

    Approximately 3,200 trees in young mixed-conifer stands were examined for pest activity and human-caused or mechanical injuries, and approximately 25 percent of these trees were randomly selected for stem analyses. The examination of trees felled for stem analyses showed that 409 (47 percent) were free of pests and 466 (53 percent) had one or more pest categories. Incense-cedar contained the fewest number of pests with 133 out of 193 trees (69 percent) free of pests, and 60 trees or .31 percent with one or more pests. White fir and ponderosa pine trees had the highest percentage of pests and mechanical injuries: 64 percent (252 trees out of 395), and 62 percent (93 trees out of 151), respectively. Top injury and disease were the two most frequent pest/damage categories recorded among all tree species. White fir blister rust and cedar rust were the most frequent disease recorded on sugar pine and incense-cedar. Bark beetles were an important pest category for white fir, ponderosa pine, and incense-cedars.

  3. Partitioning Direct and Indirect Human-induced Carbon Sequestration in Managed Conifer Forests in Central Europe Using Model Simulations and Forest Inventories.

    NASA Astrophysics Data System (ADS)

    Vetter, M.; Wirth, C.; Böttcher, H.; Churkina, G.; Schulze, E. D.; Schwalbe, G.

    2003-12-01

    Forest ecosystems have long been known to be an important sink in the global carbon budget. The factors responsible for the strength of the sinks and their permanence, however, are not so clear. To distinguish between direct and indirect impact on the carbon sequestration we have to work on spatial and temporal scales where humans have a major impact on the ecosystem. In this paper we contrast the effects of indirect human induced environmental changes and forest age on carbon sequestration as well as direct human induced effects on carbon accumulation such as forest management of coniferous forests in central Europe from the end of 19-th century until present. Ecosystem process model BIOME-BGC has been used to study these effects and results have been corroborated with forest inventories. We focused on conifer forests of Thuringia as a study case, because these forests are representative of central European forests and good forest inventories were available. Grouping the forests in three different strata differing in annual average temperatures and precipitation allowed us also to study the effect of elevation on carbon sequestration. Forests in all elevational strata showed an increase in vegetation carbon accumulation in all age classes as a result of environmental changes in the last 20 years (1982-2001). Young and old trees had the highest annual changes in the vegetation carbon during this period. Under pre-industrial conditions, trees older than 80 years showed almost no annual increase in vegetation C carbon accumulation. With industrial climate scenario those trees were still carbon sinks. Trees older than 100 years in the low elevations were an atmospheric carbon source in the pre-industrial case, but carbon sinks in the industrial case. Nitrogen-deposition had the highest impact on the net ecosystem production (NEP) for the high and middle elevations, whereas CO2 fertilization was most responsible for NEP changes in the low elevations. Under current

  4. Effects of simulated acid rain on soil respiration and its components in a subtropical mixed conifer and broadleaf forest in southern China.

    PubMed

    Liang, Guohua; Hui, Dafeng; Wu, Xiaoying; Wu, Jianping; Liu, Juxiu; Zhou, Guoyi; Zhang, Deqiang

    2016-02-01

    Soil respiration is a major pathway in the global carbon cycle and its response to environmental changes is an increasing concern. Here we explored how total soil respiration (RT) and its components respond to elevated acid rain in a mixed conifer and broadleaf forest, one of the major forest types in southern China. RT was measured twice a month in the first year under four treatment levels of simulated acid rain (SAR: CK, the local lake water, pH 4.7; T1, water pH 4.0; T2, water pH 3.25; and T3, water pH 2.5), and in the second year, RT, litter-free soil respiration (RS), and litter respiration (RL) were measured simultaneously. The results indicated that the mean rate of RT was 2.84 ± 0.20 μmol CO2 m(-2) s(-1) in the CK plots, and RS and RL contributed 60.7% and 39.3% to RT, respectively. SAR marginally reduced (P = 0.08) RT in the first year, but significantly reduced RT and its two components in the second year (P < 0.05). The negative effects were correlated with the decrease in soil microbial biomass and fine root biomass due to soil acidification under the SAR. The temperature coefficients (Q10) of RT and its two components generally decreased with increasing levels of the SAR, but only the decrease of RT and RL was significant (P < 0.05). In addition, the contribution of RL to RT decreased significantly under the SAR, indicating that RL was more sensitive to the SAR than RS. In the context of elevated acid rain, the decline trend of RT in the forests in southern China appears to be attributable to the decline of soil respiration in the litter layer. PMID:26755128

  5. Average Stand Age from Forest Inventory Plots Does Not Describe Historical Fire Regimes in Ponderosa Pine and Mixed-Conifer Forests of Western North America

    PubMed Central

    Stevens, Jens T.; Safford, Hugh D.; North, Malcolm P.; Fried, Jeremy S.; Gray, Andrew N.; Brown, Peter M.; Dolanc, Christopher R.; Dobrowski, Solomon Z.; Falk, Donald A.; Farris, Calvin A.; Franklin, Jerry F.; Fulé, Peter Z.; Hagmann, R. Keala; Knapp, Eric E.; Miller, Jay D.; Smith, Douglas F.; Swetnam, Thomas W.; Taylor, Alan H.

    2016-01-01

    Quantifying historical fire regimes provides important information for managing contemporary forests. Historical fire frequency and severity can be estimated using several methods; each method has strengths and weaknesses and presents challenges for interpretation and verification. Recent efforts to quantify the timing of historical high-severity fire events in forests of western North America have assumed that the “stand age” variable from the US Forest Service Forest Inventory and Analysis (FIA) program reflects the timing of historical high-severity (i.e. stand-replacing) fire in ponderosa pine and mixed-conifer forests. To test this assumption, we re-analyze the dataset used in a previous analysis, and compare information from fire history records with information from co-located FIA plots. We demonstrate that 1) the FIA stand age variable does not reflect the large range of individual tree ages in the FIA plots: older trees comprised more than 10% of pre-stand age basal area in 58% of plots analyzed and more than 30% of pre-stand age basal area in 32% of plots, and 2) recruitment events are not necessarily related to high-severity fire occurrence. Because the FIA stand age variable is estimated from a sample of tree ages within the tree size class containing a plurality of canopy trees in the plot, it does not necessarily include the oldest trees, especially in uneven-aged stands. Thus, the FIA stand age variable does not indicate whether the trees in the predominant size class established in response to severe fire, or established during the absence of fire. FIA stand age was not designed to measure the time since a stand-replacing disturbance. Quantification of historical “mixed-severity” fire regimes must be explicit about the spatial scale of high-severity fire effects, which is not possible using FIA stand age data. PMID:27196621

  6. Expression analysis of the impact of culture filtrates from the biocontrol agent, Phlebiopsis gigantea on the conifer pathogen, Heterobasidion annosum s.s. Transcriptome.

    PubMed

    Mgbeahuruike, Anthony C; Kohler, Annegret; Asiegbu, Frederick O

    2013-10-01

    Phlebiopsis gigantea has been routinely used as the biological control agent for the conifer pathogen Heterobasidion annosum sensu lato, but the actual mechanism for the biocontrol process is not known. To investigate the effect of secreted molecules from culture filtrate produced by P. gigantea on the gene expression profile of H. annosum s.s., microarray analysis was used. Analysis of the differentially expressed genes led to the identification of genes with diverse functions. A major proportion of the up- and downregulated genes were either uncharacterized or genes whose functions were not known. A number of genes coding for proteins involved in metabolism, transport, and signal transduction were differentially downregulated; comparatively lower number of such genes were upregulated. Some genes involved in transport (polyamine transporters, 2573-fold, P = 0.002) and metabolism (endoglucanase, 622.5-fold, P = 0.002, cytochrome P450, 133.2-fold, P = 0.05) showed high transcript fold changes and were statistically significantly upregulated. Genes encoding defense-related proteins such as hydrophobins were either downregulated or expressed at relatively low levels. Further analysis of the effect of the culture filtrate on glucose metabolism showed downregulation of some key enzymes at the early stage of the glycolytic pathway while some genes were upregulated at the later stage of the pathway. A subset of the genes were selected and used to validate the micro-array result by quantitative real time polymerase chain reaction (qPCR) method. Generally, the high transcript levels of genes encoding several biochemically important genes (protein kinases, major facilitator superfamily polyamine transporters, endoglucanase, cytochrome P450, endoglucanase) suggests their potential functional relevance in signal perception, stress tolerance, cell defenses, and detoxification of toxic molecules during competitive interaction. These results have provided further

  7. Source characterization of biomass burning particles: The combustion of selected European conifers, African hardwood, savanna grass, and German and Indonesian peat

    NASA Astrophysics Data System (ADS)

    Iinuma, Y.; Brüggemann, E.; Gnauk, T.; Müller, K.; Andreae, M. O.; Helas, G.; Parmar, R.; Herrmann, H.

    2007-04-01

    We carried out a detailed size-resolved chemical characterization of particle emissions from the combustion of European conifer species, savanna grass, African hardwood, and German and Indonesian peat. Combustion particles were sampled using two sets of five-stage Berner-type cascade impactors after a buffer volume and a dilution tunnel. We determined the emission factors of water-soluble organic carbon (WSOC, 46-6700 mg kg-1, sum of five stages), water-insoluble organic carbon (WISOC, 1300-6100 mg kg-1), (apparent) elemental carbon (ECa, 490-1800 mg kg-1), inorganic ions (68-400 mg kg-1), n-alkanes (0.38-910 mg kg-1), n-alkenes (0.45-180 mg kg-1), polycyclic aromatic hydrocarbons (PAHs) (1.4-28 mg kg-1), oxy-PAHs (0.08-1.0 mg kg-1), lignin decomposition products (59-620 mg kg-1), nitrophenols (1.4-31 mg kg-1), resin acids (0-110 mg kg-1), and cellulose and hemicellulose decomposition products (540-5900 mg kg-1). The combustion and particle emission characteristics of both of peat were significantly different from those of the other biofuels. Peat burning yielded significantly higher emission factors of total fine particles in comparison to the other biofuels. Very high emission factors of n-alkanes and n-alkenes were observed from peat combustion, which may be connected to the concurrently observed "missing" CCN in peat smoke. A high level of monosaccharide anhydrides, especially levoglucosan, was detected from all types of biofuel combustion. The fractions of monosaccharide anhydrides in the emitted total carbon were higher in smaller particles (aerodynamic diameter, Dpa < 0.42 μm).

  8. Survival, growth and vulnerability to drought in fire refuges: implications for the persistence of a fire-sensitive conifer in northern Patagonia.

    PubMed

    Landesmann, Jennifer B; Gowda, Juan H; Garibaldi, Lucas A; Kitzberger, Thomas

    2015-12-01

    Fire severity and extent are expected to increase in many regions worldwide due to climate change. Therefore, it is crucial to assess the relative importance of deterministic vs. stochastic factors producing remnant vegetation to understand their function in the persistence of fire-sensitive plants. Vegetation remnants (areas within the landscape that have not burned for a considerable amount of time) may occur stochastically or in more predictable locations (fire refuges) where physical conditions decrease fire severity. Our aim was to determine if remnant forests of the fire-sensitive conifer Austrocedrus chilensis are associated with biophysical attributes that allow persistence in a fire-prone Patagonian landscape. We conducted a multi-scale approach, determining attributes of forest remnants and their surroundings (matrices) through remote sensing and field-based biophysical and functional characteristics, and quantifying how tree survival probability relates to microsite conditions. Trees within remnants displayed abundant fire scars, were twofold older and had threefold larger growth rates than matrix trees. Remnants were associated with high rocky cover and elevated topographical positions. Tree survival increased in hilltops, eastern aspects, and with sparse vegetation. Trees within remnants experienced severe reductions in growth during droughts. Our results suggest that A. chilensis remnants are mainly the result of refuges, where environmental conditions increase fire survival, but also increase susceptibility to drought. A trade-off between fire survival and drought vulnerability may imply that under increasing drought and fire severity, locations that in the past have served as refuges may reduce their ability to allow the persistence of fire-sensitive taxa. PMID:26334864

  9. The Imprint of Extreme Climate Events in Century-Long Time Series of Wood Anatomical Traits in High-Elevation Conifers

    PubMed Central

    Carrer, Marco; Brunetti, Michele; Castagneri, Daniele

    2016-01-01

    Extreme climate events are of key importance for forest ecosystems. However, both the inherent infrequency, stochasticity and multiplicity of extreme climate events, and the array of biological responses, challenges investigations. To cope with the long life cycle of trees and the paucity of the extreme events themselves, our inferences should be based on long-term observations. In this context, tree rings and the related xylem anatomical traits represent promising sources of information, due to the wide time perspective and quality of the information they can provide. Here we test, on two high-elevation conifers (Larix decidua and Picea abies sampled at 2100 m a.s.l. in the Eastern Alps), the associations among temperature extremes during the growing season and xylem anatomical traits, specifically the number of cells per ring (CN), cell wall thickness (CWT), and cell diameter (CD). To better track the effect of extreme events over the growing season, tree rings were partitioned in 10 sectors. Climate variability has been reconstructed, for 1800–2011 at monthly resolution and for 1926–2011 at daily resolution, by exploiting the excellent availability of very long and high quality instrumental records available for the surrounding area, and taking into account the relationship between meteorological variables and site topographical settings. Summer temperature influenced anatomical traits of both species, and tree-ring anatomical profiles resulted as being associated to temperature extremes. Most of the extreme values in anatomical traits occurred with warm (positive extremes) or cold (negative) conditions. However, 0–34% of occurrences did not match a temperature extreme event. Specifically, CWT and CN extremes were more clearly associated to climate than CD, which presented a bias to track cold extremes. Dendroanatomical analysis, coupled to high-quality daily-resolved climate records, seems a promising approach to study the effects of extreme events on

  10. Model-based analysis on the relationship between production and tree-ring growth in Japanese conifer-hardwood mixed forests

    NASA Astrophysics Data System (ADS)

    Koide, D.; Ito, A.

    2015-12-01

    Forest productivity is a basic and important component of terrestrial material flow and its importance increases according to recent climate warming and the increase in atmospheric-CO2 concentrations. Forest productivity study progresses through measurement by eddy-covariance data from flux tower and prediction by terrestrial ecosystem models. However, flux tower observation has spatiotemporal bias and limitation. On the other hand, tree-ring data have a close connection with forest ecosystem productivity. Compared to flux tower observation, we can collect tree-ring data from a larger number of sites and longer time scales. Comparisons between tree-ring observation and model-estimated productivity is important to reveal underlying mechanisms of forest ecosystem productivity and growth in wide spatiotemporal scale. This study aimed at revealing the relationship between temporal changes in tree-ring data and estimated forest ecosystem productivity in Japanese conifer-hardwood mixed forest. We also addressed climatic bias in the relationship by comparing between sites at different climatic conditions. Tree-ring data of Sakhalin spruce (Picea glehnii) were obtained from the International Tree Ring Data Bank. Six sites on the Hokkaido island (northern island of Japan) were selected for the present analysis. The Vegetation Integrated SImulator for Trace gasses (VISIT) model was validated by comparing with carbon flux data from Asia flux network sites. Past climatic parameters were obtained from ERA-20C reanalysis data from the European Center for Medium-range Weather Forecasts. Correlation between basal area increment and net ecosystem productivity was highest in the coldest site but this correlation weakened in warmer sites. This result implies that long-term growth trend was mainly restricted by cold stress associated with productivity reduction in colder sites but this factor is less important and other factors exert influence in warmer sites.

  11. Photochemical smog effects in mixed conifer forests along a natural gradient of ozone and nitrogen deposition in the San Bernardino Mountains.

    PubMed

    Arbaugh, Michael; Bytnerowicz, Andrzej; Grulke, Nancy; Fenn, Mark; Poth, Mark; Temple, Patrick; Miller, Paul

    2003-06-01

    Toxic effects of photochemical smog on ponderosa and Jeffrey pines in the San Bernardino Mountains were discovered in the 1950s. It was revealed that ozone is the main cause of foliar injury manifested as chlorotic mottle and premature needle senescence. Various morphological, physiological and biochemical alterations in the affected plants have been reported over a period of about 40 years of multidisciplinary research. Recently, the focus of research has shifted from studying the effects of ozone to multiple pollutant effects. Recent studies have indicated that the combination of ozone and nitrogen may alter biomass allocation in pines towards that of deciduous trees, accelerate litter accumulation, and increase carbon sequestration rates in heavily polluted forests. Further study of the effects of multiple pollutants, and their long-term consequences on the mixed conifer ecosystem, cannot be adequately done using the original San Bernardino Mountains Air Pollution Gradient network. To correct deficiencies in the design, the new site network is being configured for long-term studies on multiple air pollutant concentrations and deposition, physiological and biochemical changes in trees, growth and composition of over-story species, biogeochemical cycling including carbon cycling and sequestration, water quality, and biodiversity of forest ecosystems. Eleven sites have been re-established. A comparison of 1974 stand composition with data from 2000 stand composition indicate that significant changes in species composition have occurred at some sites with less change at other sites. Moist, high-pollution sites have experienced the greatest amount of forest change, while dryer low-pollution sites have experienced the least amount of stand change. In general, ponderosa pine had the lowest basal area increases and the highest mortality across the San Bernardino Mountains. PMID:12676233

  12. Average Stand Age from Forest Inventory Plots Does Not Describe Historical Fire Regimes in Ponderosa Pine and Mixed-Conifer Forests of Western North America.

    PubMed

    Stevens, Jens T; Safford, Hugh D; North, Malcolm P; Fried, Jeremy S; Gray, Andrew N; Brown, Peter M; Dolanc, Christopher R; Dobrowski, Solomon Z; Falk, Donald A; Farris, Calvin A; Franklin, Jerry F; Fulé, Peter Z; Hagmann, R Keala; Knapp, Eric E; Miller, Jay D; Smith, Douglas F; Swetnam, Thomas W; Taylor, Alan H

    2016-01-01

    Quantifying historical fire regimes provides important information for managing contemporary forests. Historical fire frequency and severity can be estimated using several methods; each method has strengths and weaknesses and presents challenges for interpretation and verification. Recent efforts to quantify the timing of historical high-severity fire events in forests of western North America have assumed that the "stand age" variable from the US Forest Service Forest Inventory and Analysis (FIA) program reflects the timing of historical high-severity (i.e. stand-replacing) fire in ponderosa pine and mixed-conifer forests. To test this assumption, we re-analyze the dataset used in a previous analysis, and compare information from fire history records with information from co-located FIA plots. We demonstrate that 1) the FIA stand age variable does not reflect the large range of individual tree ages in the FIA plots: older trees comprised more than 10% of pre-stand age basal area in 58% of plots analyzed and more than 30% of pre-stand age basal area in 32% of plots, and 2) recruitment events are not necessarily related to high-severity fire occurrence. Because the FIA stand age variable is estimated from a sample of tree ages within the tree size class containing a plurality of canopy trees in the plot, it does not necessarily include the oldest trees, especially in uneven-aged stands. Thus, the FIA stand age variable does not indicate whether the trees in the predominant size class established in response to severe fire, or established during the absence of fire. FIA stand age was not designed to measure the time since a stand-replacing disturbance. Quantification of historical "mixed-severity" fire regimes must be explicit about the spatial scale of high-severity fire effects, which is not possible using FIA stand age data. PMID:27196621

  13. Evolution of Diterpene Metabolism: Sitka Spruce CYP720B4 Catalyzes Multiple Oxidations in Resin Acid Biosynthesis of Conifer Defense against Insects1[C][W][OA

    PubMed Central

    Hamberger, Björn; Ohnishi, Toshiyuki; Hamberger, Britta; Séguin, Armand; Bohlmann, Jörg

    2011-01-01

    Diterpene resin acids (DRAs) are specialized (secondary) metabolites of the oleoresin defense of conifers produced by diterpene synthases and cytochrome P450s of the CYP720B family. The evolution of DRA metabolism shares common origins with the biosynthesis of ent-kaurenoic acid, which is highly conserved in general (primary) metabolism of gibberellin biosynthesis. Transcriptome mining in species of spruce (Picea) and pine (Pinus) revealed CYP720Bs of four distinct clades. We cloned a comprehensive set of 12 different Sitka spruce (Picea sitchensis) CYP720Bs as full-length cDNAs. Spatial expression profiles, methyl jasmonate induction, and transcript enrichment in terpenoid-producing resin ducts suggested a role of CYP720B4 in DRA biosynthesis. CYP720B4 was characterized as a multisubstrate, multifunctional enzyme by the formation of oxygenated diterpenoids in metabolically engineered yeast, yeast in vivo transformation of diterpene substrates, in vitro assays with CYP720B4 protein produced in Escherichia coli, and alteration of DRA profiles in RNA interference-suppressed spruce seedlings. CYP720B4 was active with 24 different diterpenoid substrates, catalyzing consecutive C-18 oxidations in the biosynthesis of an array of diterpene alcohols, aldehydes, and acids. CYP720B4 was most active in the formation of dehydroabietic acid, a compound associated with insect resistance of Sitka spruce. We identified patterns of convergent evolution of CYP720B4 in DRA metabolism and ent-kaurene oxidase CYP701 in gibberellin metabolism and revealed differences in the evolution of specialized and general diterpene metabolism in a gymnosperm. The genomic and functional characterization of the gymnosperm CYP720B family highlights that the evolution of specialized metabolism involves substantial diversification relative to conserved, general metabolism. PMID:21994349

  14. Drought-induced increase in water-use efficiency reduces secondary tree growth and tracheid wall thickness in a Mediterranean conifer.

    PubMed

    Olano, José Miguel; Linares, Juan Carlos; García-Cervigón, Ana I; Arzac, Alberto; Delgado, Antonio; Rozas, Vicente

    2014-09-01

    In order to understand the impact of drought and intrinsic water-use efficiency (iWUE) on tree growth, we evaluated the relative importance of direct and indirect effects of water availability on secondary growth and xylem anatomy of Juniperus thurifera, a Mediterranean anisohydric conifer. Dendrochronological techniques, quantitative xylem anatomy, and (13)C/(12)C isotopic ratio were combined to develop standardized chronologies for iWUE, BAI (basal area increment), and anatomical variables on a 40-year-long annually resolved series for 20 trees. We tested the relationship between iWUE and secondary growth at short-term (annual) and long-term (decadal) temporal scales to evaluate whether gains in iWUE may lead to increases in secondary growth. We obtained a positive long-term correlation between iWUE and BAI, simultaneously with a negative short-term correlation between them. Furthermore, BAI and iWUE were correlated with anatomical traits related to carbon sink or storage (tracheid wall thickness and ray parenchyma amount), but no significant correlation with conductive traits (tracheid lumen) was found. Water availability during the growing season significantly modulated tree growth at the xylem level, where growth rates and wood anatomical traits were affected by June precipitation. Our results are consistent with a drought-induced limitation of tree growth response to rising CO2, despite the trend of rising iWUE being maintained. We also remark the usefulness of exploring this relationship at different temporal scales to fully understand the actual links between iWUE and secondary growth dynamics. PMID:24958369

  15. The Imprint of Extreme Climate Events in Century-Long Time Series of Wood Anatomical Traits in High-Elevation Conifers.

    PubMed

    Carrer, Marco; Brunetti, Michele; Castagneri, Daniele

    2016-01-01

    Extreme climate events are of key importance for forest ecosystems. However, both the inherent infrequency, stochasticity and multiplicity of extreme climate events, and the array of biological responses, challenges investigations. To cope with the long life cycle of trees and the paucity of the extreme events themselves, our inferences should be based on long-term observations. In this context, tree rings and the related xylem anatomical traits represent promising sources of information, due to the wide time perspective and quality of the information they can provide. Here we test, on two high-elevation conifers (Larix decidua and Picea abies sampled at 2100 m a.s.l. in the Eastern Alps), the associations among temperature extremes during the growing season and xylem anatomical traits, specifically the number of cells per ring (CN), cell wall thickness (CWT), and cell diameter (CD). To better track the effect of extreme events over the growing season, tree rings were partitioned in 10 sectors. Climate variability has been reconstructed, for 1800-2011 at monthly resolution and for 1926-2011 at daily resolution, by exploiting the excellent availability of very long and high quality instrumental records available for the surrounding area, and taking into account the relationship between meteorological variables and site topographical settings. Summer temperature influenced anatomical traits of both species, and tree-ring anatomical profiles resulted as being associated to temperature extremes. Most of the extreme values in anatomical traits occurred with warm (positive extremes) or cold (negative) conditions. However, 0-34% of occurrences did not match a temperature extreme event. Specifically, CWT and CN extremes were more clearly associated to climate than CD, which presented a bias to track cold extremes. Dendroanatomical analysis, coupled to high-quality daily-resolved climate records, seems a promising approach to study the effects of extreme events on trees

  16. Effects of redox fluctuations on microbial community ecology post-wildfire in a high elevation mixed-conifer catchment in northern New Mexico.

    NASA Astrophysics Data System (ADS)

    Fairbanks, D.; Green, K.; Murphy, M. A.; Shepard, C.; Chorover, J.; Rich, V. I.; Gallery, R. E.

    2015-12-01

    Wildfires are increasing in size and severity across the western United States with impacts on regional biogeochemical cycling. The resiliency of resident soil microbial communities determines rates of nutrient transformations as well as forest structure and recovery. Redox conditions in soil determine metabolic activities of microorganisms, which first consume oxygen and a succession of alternative terminal electron acceptors to support growth and metabolism using a variety of carbon sources. Controls on redox zonation are largely unknown in dominantly oxic soils, and microbial community adaptation and response to fluctuations in redox potential in a sub-alpine forested post-disturbance catchment has not been studied. Previous work has shown that fluctuating or rising water tables result in redox-dynamic sites, which can be 'hot spots' of biogeochemical activity depending on landscape position. Fire-induced tree mortality results in altered hydrologic flow paths and decreased evapotranspiration, leading to potential for intensified hot spot activity. We are testing such coupling of microbial activity with fluctuations in redox status using field measurements and laboratory incubation experiments. The 2013 Thompson Ridge Fire in the Jemez River Basin (NM) Critical Zone Observatory provides a highly-contextualized opportunity to examine how disturbance regime affects changes in soil microbial community dynamics and fluctuations in reduction-oxidation potential (as quantified by continuous CZO measurements of O2, CO2 and Eh as a function of soil depth and landscape location). We hypothesize that areas of depositional convergence in the catchment, which have been shown to exhibit more reducing conditions, will host microbial communities that are better adapted to fluctuating redox conditions and exhibit a greater diversity in functional capabilities. In these mixed conifer forests we find shifts in redox potential status in relation to depth and topography where more

  17. Fuel reduction and coarse woody debris dynamics with early season and late season prescribed fire in a Sierra Nevada mixed conifer forest

    USGS Publications Warehouse

    Knapp, E.E.; Keeley, J.E.; Ballenger, E.A.; Brennan, T.J.

    2005-01-01

    Fire exclusion has led to an unnatural accumulation and greater spatial continuity of organic material on the ground in many forests. This material serves both as potential fuel for forest fires and habitat for a large array of forest species. Managers must balance fuel reduction to reduce wildfire hazard with fuel retention targets to maintain other forest functions. This study reports fuel consumption and changes to coarse woody debris attributes with prescribed burns ignited under different fuel moisture conditions. Replicated early season burn, late season burn, and unburned control plots were established in old-growth mixed conifer forest in Sequoia National Park that had not experienced fire for more than 120 years. Early season burns were ignited during June 2002 when fuels were relatively moist, and late season burns were ignited during September/October 2001 when fuels were dry. Fuel loading and coarse woody debris abundance, cover, volume, and mass were evaluated prior to and after the burns. While both types of burns reduced fuel loading, early season burns consumed significantly less of the total dead and down organic matter than late season burns (67% versus 88%). This difference in fuel consumption between burning treatments was significant for most all woody fuel components evaluated, plus the litter and duff layers. Many logs were not entirely consumed - therefore the number of logs was not significantly changed by fire - but burning did reduce log length, cover, volume, and mass. Log cover, volume, and mass were reduced to a lesser extent by early season burns than late season burns, as a result of higher wood moisture levels. Early season burns also spread over less of the ground surface within the burn perimeter (73%) than late season burns (88%), and were significantly patchier. Organic material remaining after a fire can dam sediments and reduce erosion, while unburned patches may help mitigate the impact of fire on fire-sensitive species by

  18. Forest management for water: a hydro-ecological modeling exercise of headwater catchments in the mixed-conifer belt of the Sierra Nevada

    NASA Astrophysics Data System (ADS)

    Saksa, P. C.; Bales, R. C.; Ray, R. L.

    2011-12-01

    Hydro-ecological modeling provides a cost-effective method for evaluating the effects of vegetation change on water cycling within a catchment. In mountain watersheds, change in forest vegetation not only has direct effects on transpiration rates, but also energy exchanges that influence patterns of snow ablation. In this study, treatment scenarios were implemented using the Regional Hydro-Ecological Simulation System (RHESSys) to estimate impacts on key elements of the hydrologic cycle affected by forest harvesting - snowpack accumulation, ablation, transpiration, and streamflow. Twelve headwater catchments (0.5 - 2.6 km2, 1460 - 2450m) in the mixed-conifer zone of the central Sierra Nevada, within the Sierra and Tahoe National Forests, were included for analysis. These research sites are part of the Sierra Nevada Adaptive Management Project (SNAMP), located in the headwaters of the American and Merced Rivers, and the Southern Sierra Critical Zone Observatory (CZO) in the Kings River basin. Two methods of forest harvesting were simulated in the study watersheds: 1) uniform canopy thinning, through reduction of Leaf Area Index (LAI) values and 2) strip-cut treatments, suggested as the best method for retaining snowpack. Results from this study compare the influence of vegetation on water cycle dynamics through the two harvesting treatments, initial vegetation densities, and individual catchment size. Model simulations for pre-treatment snow depth, soil moisture, and streamflow were validated with SNAMP and CZO in-situ measurements. Preliminary results show that a linear reduction of forest canopy reduces transpiration accordingly, but produces a non-linear increase in streamflow. Peak discharges also increased, occurring earlier in the spring and having more pronounced effects in the smaller catchments. Based on these results, harvesting thresholds required for obtaining increases in water yield are evaluated. Investigating the impact of forest management on these

  19. Does woodland encroachment impact water?: An ecohydrology study of western juniper (Juniperus occidentalis) and other semi-arid conifers in the western U.S.

    NASA Astrophysics Data System (ADS)

    Niemeyer, R. J.; Link, T. E.; Heinse, R.; Seyfried, M. S.; Flerchinger, G. N.; Klos, P. Z.

    2015-12-01

    Semi-arid conifer species including western juniper (Juniperus occidentalis) among other pinyon and juniper (P-J) species have expanded into grass and shrub-dominated landscapes in the western U.S. Despite the importance of land cover changes to hydrological fluxes in these water-limited systems, there have been few process-based ecohydrology studies of western juniper encroachment. Furthermore, many conclusions about the impact of P-J encroachment on streamflow are limited to several studies in the southwestern U.S. Our objectives are to: a) assess how western juniper will impact above-ground hydrological processes, b) assess how western juniper will alter below-ground hydrological processes, c) assess how changes in P-J cover alters deep drainage across diverse climates of the western U.S. To accomplish these objectives we used a combination of continuous lysimeter and soil moisture measurements, periodic snow surveys, electrical resistivity tomography (ERT) and electromagnetic induction (EMI) surveys, simulations with the Simultaneous Heat and Water (SHAW) model and broad, spatially-coarse simulations with the atmosphere-vegetation-soil component of the HBV model. Juniper trees by both intercepting snow and increasing below-canopy snow melt caused tree wells to form throughout the winter. These tree wells increased snow redistribution to the base of the trees. Soil moisture in the interspace dominated by sagebrush, forbes, and grasses drops early in the season, but late season soil moisture changes are moderated by juniper. There is evidence that junipers continue to transpire soil moisture both late into the summer and at up to 3 meters deep. HBV simulations revealed that the potential for increases in deep drainage with a change from P-J to grass cover is principally controlled by the timing instead of the total precipitation. Simulations confirm previous empirical studies that landscapes in monsoon-dominated climates of the southwestern U.S. show negligible

  20. Factors promoting larch dominance in central Siberia: fire versus growth performance and implications for carbon dynamics at the boundary of evergreen and deciduous conifers

    NASA Astrophysics Data System (ADS)

    Schulze, E.-D.; Wirth, C.; Mollicone, D.; von Lüpke, N.; Ziegler, W.; Achard, F.; Mund, M.; Prokushkin, A.; Scherbina, S.

    2012-04-01

    The relative role of fire and of climate in determining canopy species composition and aboveground carbon stocks were investigated. Measurements were made along a transect extending from the dark taiga zone of central Siberia, where Picea and Abies dominate the canopy, into the Larix zone of eastern Siberia. We test the hypotheses that the change in canopy species composition is based (1) on climate-driven performance only, (2) on fire only, or (3) on fire-performance interactions. We show that the evergreen conifers Picea obovata and Abies sibirica are the natural late-successional species both in central and eastern Siberia, provided there has been no fire for an extended period of time. There are no changes in performance of the observed species along the transect. Fire appears to be the main factor explaining the dominance of Larix and of soil carbon. Of lesser influence were longitude as a proxy for climate, local hydrology and active-layer thickness. We can only partially explain fire return frequency, which is not only related to climate and land cover, but also to human behavior. Stand-replacing fires decreased from 300 to 50 yrs between the Yenisei Ridge and the upper Tunguska. Repeated non-stand-replacing surface fires eliminated the regeneration of Abies and Picea. With every 100 yrs since the last fire, the percentage of Larix decreased by 20%. Biomass of stems of single trees did not show signs of age-related decline. Relative diameter increment was 0.41 ± 0.20% at breast height and stem volume increased linearly over time with a rate of about 0.36 t C ha-1 yr-1 independent of age class and species. Stand biomass reached about 130 t C ha-1(equivalent to about 520 m3 ha-1). Individual trees of Larix were older than 600 yrs. The maximum age and biomass seemed to be limited by fungal rot of heart wood. 60% of old Larix and Picea and 30% of Pinus sibirica trees were affected by stem rot. Implications for the future role of fire and of plant diseases are

  1. 'Natural background' soil water repellency in conifer forests of the north-western USA: Its prediction and relationship to wildfire occurrence

    USGS Publications Warehouse

    Doerr, S.H.; Woods, S.W.; Martin, D.A.; Casimiro, M.

    2009-01-01

    Soils under a wide range of vegetation types exhibit water repellency following the passage of a fire. This is viewed by many as one of the main causes for accelerated post-fire runoff and soil erosion and it has often been assumed that strong soil water repellency present after wildfire is fire-induced. However, high levels of repellency have also been reported under vegetation types not affected by fire, and the question arises to what degree the water repellency observed at burnt sites actually results from fire. This study aimed at determining 'natural background' water repellency in common coniferous forest types in the north-western USA. Mature or semi-mature coniferous forest sites (n = 81), which showed no evidence of recent fires and had at least some needle cast cover, were sampled across six states. After careful removal of litter and duff at each site, soil water repellency was examined in situ at the mineral soil surface using the Water Drop Penetration Time (WDPT) method for three sub-sites, followed by collecting near-surface mineral soil layer samples (0-3 cm depth). Following air-drying, samples were further analyzed for repellency using WDPT and contact angle (??sl) measurements. Amongst other variables examined were dominant tree type, ground vegetation, litter and duff layer depth, slope angle and aspect, elevation, geology, and soil texture, organic carbon content and pH. 'Natural background' water repellency (WDPT > 5 s) was detected in situ and on air-dry samples at 75% of all sites examined irrespective of dominant tree species (Pinus ponderosa, Pinus contorta, Picea engelmanii and Pseudotsuga menziesii). These findings demonstrate that the soil water repellency commonly observed in these forest types following burning is not necessarily the result of recent fire but can instead be a natural characteristic. The notion of a low background water repellency being typical for long-unburnt conifer forest soils of the north-western USA is

  2. Increased air temperature during simulated autumn conditions does not increase photosynthetic carbon gain but affects the dissipation of excess energy in seedlings of the evergreen conifer Jack pine.

    PubMed

    Busch, Florian; Hüner, Norman P A; Ensminger, Ingo

    2007-03-01

    Temperature and daylength act as environmental signals that determine the length of the growing season in boreal evergreen conifers. Climate change might affect the seasonal development of these trees, as they will experience naturally decreasing daylength during autumn, while at the same time warmer air temperature will maintain photosynthesis and respiration. We characterized the down-regulation of photosynthetic gas exchange and the mechanisms involved in the dissipation of energy in Jack pine (Pinus banksiana) in controlled environments during a simulated summer-autumn transition under natural conditions and conditions with altered air temperature and photoperiod. Using a factorial design, we dissected the effects of daylength and temperature. Control plants were grown at either warm summer conditions with 16-h photoperiod and 22 degrees C or conditions representing a cool autumn with 8 h/7 degrees C. To assess the impact of photoperiod and temperature on photosynthesis and energy dissipation, plants were also grown under either cold summer (16-h photoperiod/7 degrees C) or warm autumn conditions (8-h photoperiod/22 degrees C). Photosynthetic gas exchange was affected by both daylength and temperature. Assimilation and respiration rates under warm autumn conditions were only about one-half of the summer values but were similar to values obtained for cold summer and natural autumn treatments. In contrast, photosynthetic efficiency was largely determined by temperature but not by daylength. Plants of different treatments followed different strategies for dissipating excess energy. Whereas in the warm summer treatment safe dissipation of excess energy was facilitated via zeaxanthin, in all other treatments dissipation of excess energy was facilitated predominantly via increased aggregation of the light-harvesting complex of photosystem II. These differences were accompanied by a lower deepoxidation state and larger amounts of beta-carotene in the warm autumn

  3. Effects of fire and post-fire salvage logging on avian communities in conifer-dominated forests of the western United States

    USGS Publications Warehouse

    Kotliar, N.B.; Hejl, S.J.; Hutto, R.L.; Saab, V.A.; Melcher, C.P.; McFadzen, M.E.

    2002-01-01

    Historically, fire was one of the most widespread natural disturbances in the western United States. More recently, however, significant anthropogenic activities, especially fire suppression and silvicultural practices, have altered fire regimes; as a result, landscapes and associated communities have changed as well. Herein, we review current knowledge of how fire and post-fire salvaging practices affect avian communities in conifer-dominated forests of the western United States. Specifically, we contrast avian communities in (1) burned vs. unburned forest, and (2) unsalvaged vs. salvage-logged burns. We also examine how variation in burn characteristics (e.g., severity, age, size) and salvage logging can alter avian communities in burns. Of the 41 avian species observed in three or more studies comparing early post-fire and adjacent unburned forests, 22% are consistently more abundant in burned forests, 34% are usually more abundant in unburned forests, and 44% are equally abundant in burned and unburned forests or have varied responses. In general, woodpeckers and aerial foragers are more abundant in burned forest, whereas most foliage-gleaning species are more abundant in unburned forests. Bird species that are frequently observed in stand-replacement burns are less common in understory burns; similarly, species commonly observed in unburned forests often decrease in abundance with increasing burn severity. Granivores and species common in open-canopy forests exhibit less consistency among studies. For all species, responses to fire may be influenced by a number of factors including burn severity, fire size and shape, proximity to unburned forests, pre- and post-fire cover types, and time since fire. In addition, post-fire management can alter species' responses to burns. Most cavity-nesting species do not use severely salvaged burns, whereas some cavity-nesters persist in partially salvaged burns. Early post-fire specialists, in particular, appear to prefer

  4. Hydrogen Apparent Fractionation between Precipitation and Leaf Wax n-Alkanes from Conifers and Deciduous Angiosperms along a Longitudinal Transect in Eurasia

    NASA Astrophysics Data System (ADS)

    Pedentchouk, Nikolai; Fisher, Katherine; Wagner, Thomas

    2010-05-01

    D/H composition of individual organic compounds derived from leaf wax may provide a wealth of information regarding plant-water relations in studies of plant ecology and climate change. Extracting that information from the organic D/H signal requires a thorough understanding of hydrogen isotope fractionation between environmental water and organic compounds. The purpose of this project is to investigate the importance of plant types and local climatic conditions on hydrogen apparent fractionation in higher terrestrial plants. We determined D/H composition of n-alkanes derived from leaf wax extracted from several extant plants representing common evergreen and deciduous conifer (Pinus and Larix) and deciduous angiosperm (Betula, Salix, and Sorbus) genera along a longitudinal transect from the UK to central Siberia at 10 different locations. These data were used to calculate the apparent fractionation factor (epsilon) between source water, estimated using the Online Isotopes in Precipitation Calculator, and n-alkanes. Our initial results show the following. First, we found large differences in the epsilon values among different genera at each location, e.g. Betula -63‰ vs. Salix -115‰ in Norwich, UK, and Betula -86‰ vs. Salix -146‰ in Novosibirsk, Russia. Assuming the plants at individual locations utilized soil water of very similar deltaD values, variations in the epsilon values are likely to be explained by differences in plant physiology and biochemistry. Second, we identified extensive shifts in the epsilon values in individual species along the transect from the UK to central Siberia, e.g. Betula -63‰ in Norwich vs. -104‰ in Zotino, Krasnoyarsk Krai, central Siberia and Salix -115‰ in Norwich vs. -164‰ in Sodankyla, Finland. With the exception of Sorbus, there is a positive relationship between the MAT (mean annual temperature) and epsilon values at locations above 2 °C MAT, suggesting a possible climatic effect on isotopic fractionation

  5. Review of the Parasa undulata (Cai, 1983) species group with the first conifer-feeding larva for Limacodidae and descriptions of two new species from China and Taiwan (Lepidoptera, Limacodidae)

    PubMed Central

    Wu, Shipher; Chang, Weichun

    2013-01-01

    Abstract Although the caterpillars are well-known for the stings and magnificent coloration, the systematics of Limacodidae is historically neglected and chaotic due to the difficulty in matching the larval with adult stages as well as the very conservative and convergent adult morphology. One of the biggest taxonomic problems surrounds a collective group from Southeastern Asia, termed the “green limacodid moths”, which harbours at least 90 species placed in the genus Parasa Walker, 1859 and 14 “subunits”. The P. undulata group was previously composed of 3 species from China and Taiwan, and characterized only by wing pattern. This species group is extensively studied herein with two new species described, i.e. P. viridiflamma sp. n. (Taiwan) and P. minwangi sp. n. (S. China), and discovery of female genitalia of three species, presenting new phylogenetic insights in this potentially paraphyletic genus. In addition, one limacodid larva was found to be feeding exclusively on Picea (Pinaceae) in Taiwan. Its identity, Parasa pygmy Solovyev, 2010 in P. undulata group, is confirmed through matching its COI sequence to the adult. This discovery is also biologically significant because the previous known host breadth of Parasa was of polyphagy on various angiosperm plant families. This case, therefore, represents the first record of conifer-feeding behavior in this family as well as the first of specialized herbivory in the genus. Meanwhile, the background match between Picea leaves and larval coloration is shared with other Picea-feeding insects. This phenomenon is worth of further investigation in the aspect of convergent evolution of crypsis associated with a particular plant. PMID:24194663

  6. Increased Air Temperature during Simulated Autumn Conditions Does Not Increase Photosynthetic Carbon Gain But Affects the Dissipation of Excess Energy in Seedlings of the Evergreen Conifer Jack Pine1[OA

    PubMed Central

    Busch, Florian; Hüner, Norman P.A.; Ensminger, Ingo

    2007-01-01

    Temperature and daylength act as environmental signals that determine the length of the growing season in boreal evergreen conifers. Climate change might affect the seasonal development of these trees, as they will experience naturally decreasing daylength during autumn, while at the same time warmer air temperature will maintain photosynthesis and respiration. We characterized the down-regulation of photosynthetic gas exchange and the mechanisms involved in the dissipation of energy in Jack pine (Pinus banksiana) in controlled environments during a simulated summer-autumn transition under natural conditions and conditions with altered air temperature and photoperiod. Using a factorial design, we dissected the effects of daylength and temperature. Control plants were grown at either warm summer conditions with 16-h photoperiod and 22°C or conditions representing a cool autumn with 8 h/7°C. To assess the impact of photoperiod and temperature on photosynthesis and energy dissipation, plants were also grown under either cold summer (16-h photoperiod/7°C) or warm autumn conditions (8-h photoperiod/22°C). Photosynthetic gas exchange was affected by both daylength and temperature. Assimilation and respiration rates under warm autumn conditions were only about one-half of the summer values but were similar to values obtained for cold summer and natural autumn treatments. In contrast, photosynthetic efficiency was largely determined by temperature but not by daylength. Plants of different treatments followed different strategies for dissipating excess energy. Whereas in the warm summer treatment safe dissipation of excess energy was facilitated via zeaxanthin, in all other treatments dissipation of excess energy was facilitated predominantly via increased aggregation of the light-harvesting complex of photosystem II. These differences were accompanied by a lower deepoxidation state and larger amounts of β-carotene in the warm autumn treatment as well as by changes in

  7. Remote detection of insect epidemics in conifers

    NASA Technical Reports Server (NTRS)

    Heller, R. C.

    1970-01-01

    With properly exposed color or infrared color film, discolored foliage caused by insect infestations in ponderosa pine is detectable on moderately small-scale photographs with acceptable accuracies. Black and white photographs which matched the wavebands of the ERTS multispectral scanner were combined into one additive color photo. This imagery was not as useful as photographs taken on color, color infrared, or color film with a minus blue filter. Based on the high-altitude color and color infrared photos obtained, it is concluded that only insect infestations larger than 100 meters in diameter are detectable on ERTS imagery.

  8. Geometric-optical Modeling of a Conifer Forest Canopy

    NASA Technical Reports Server (NTRS)

    Strahler, A. H. (Principal Investigator)

    1985-01-01

    The objective of this research is to explore how the geometry of trees in forest stands influences the reflectance of the forest as imaged from space. Most plant canopy modeling has viewed the canopy as an assemblage of plane-parallel layers on top of a soil surface. For these models, leaf angle distribution, leaf area index, and the angular transmittance and reflectance of leaves are the primary optical and geometric parameters. Such models are now sufficiently well developed to explain most of the variance in angular reflectance measurements observed from homogeneous plant canopies. However, forest canopies as imaged by airborne and spaceborne scanners exhibit considerable variance at quite a different scale. Brightness values vary strongly from one pixel to the next primarily as a function of the number of trees they contain. At this scale, the forest canopy is nonuniform and discontinuous. This research focuses on a discrete-element, geometric-optical view of the forest canopy.

  9. Recovery of ectomycorrhiza after 'nitrogen saturation' of a conifer forest.

    PubMed

    Högberg, Peter; Johannisson, Christian; Yarwood, Stephanie; Callesen, Ingeborg; Näsholm, Torgny; Myrold, David D; Högberg, Mona N

    2011-01-01

    Trees reduce their carbon (C) allocation to roots and mycorrhizal fungi in response to high nitrogen (N) additions, which should reduce the N retention capacity of forests. The time needed for recovery of mycorrhizas after termination of N loading remains unknown. Here, we report the long-term impact of N loading and the recovery of ectomycorrhiza after high N loading on a Pinus sylvestris forest. We analysed the N% and abundance of the stable isotope (15) N in tree needles and soil, soil microbial fatty acid biomarkers and fungal DNA. Needles in N-loaded plots became enriched in (15) N, reflecting decreased N retention by mycorrhizal fungi and isotopic discrimination against (15) N during loss of N. Meanwhile, needles in N-limited (control) plots became depleted in (15) N, reflecting high retention of (15) N by mycorrhizal fungi. N loading was terminated after 20yr. The δ(15) N and N% of the needles decreased 6yr after N loading had been terminated, and approached values in control plots after 15yr. This decrease, and the larger contributions compared with N-loaded plots of a fungal fatty acid biomarker and ectomycorrhizal sequences, suggest recovery of ectomycorrhiza. High N loading rapidly decreased the functional role of ectomycorrhiza in the forest N cycle, but significant recovery occurred within 6-15yr after termination of N loading. PMID:20880225

  10. Light rings in subarctic conifers as a dendrochronological tool

    SciTech Connect

    Filion, L.; Payette, S.; Gauthier, L.; Boutin, Y.

    1986-01-01

    Light rings are characterized by one or a very few latewood-cell layers, an indication of shortened growing seasons, and are particularly frequent in black spruce (Picea mariana (Mill.) BSP) at the treeline in Quebec. The construction of a light-ring chronology spanning the period AD 1398-1982 showed that the highest frequency (>25%) of light rings among 160 trees and krummholz occurred in 1593, 1620, 1634, 1784, 1816, 1817, 1853, 1969, and 1972. These diagnostic rings may be a useful cross-dating tool for dendroecologists working with living and dead krummholz with a low-growth variability. About two-thirds of the 65 light-ring years coincide with years (or triads) of major volcanic eruptions. The climatic conditions (low temperature) occurring at the end of the growing season, in part induced by the climatic effect of volcanism, seem to initiate light rings.

  11. Novel Insights into Regulation of Asparagine Synthetase in Conifers

    PubMed Central

    Canales, Javier; Rueda-López, Marina; Craven-Bartle, Blanca; Avila, Concepción; Cánovas, Francisco M.

    2012-01-01

    Asparagine, a key amino acid for nitrogen storage and transport in plants, is synthesized via the ATP-dependent reaction catalyzed by the enzyme asparagine synthetase (AS; EC 6.3.5.4). In this work, we present the molecular analysis of two full-length cDNAs that encode asparagine synthetase in maritime pine (Pinus pinaster Ait.), PpAS1, and PpAS2. Phylogenetic analyses of the deduced amino acid sequences revealed that both genes are class II AS, suggesting an ancient origin of these genes in plants. A comparative study of PpAS1 and PpAS2 gene expression profiles showed that PpAS1 gene is highly regulated by developmental and environmental factors, while PpAS2 is expressed constitutively. To determine the molecular mechanisms underpinning the differential expression of PpAS1, the promoter region of the gene was isolated and putative binding sites for MYB transcription factors were identified. Gel mobility shift assays showed that a MYB protein from Pinus taeda (PtMYB1) was able to interact with the promoter region of PpAS1. Furthermore, transient expression analyses in pine cells revealed a negative effect of PtMYB1 on PpAS1 expression. The potential role of MYB factors in the transcriptional regulation of PpAS1 in vascular cells is discussed. PMID:22654888

  12. How fast do European conifers overgrow wounds inflicted by rockfall?

    PubMed

    Schneuwly-Bollschweiler, Michelle; Schneuwly, Dominique M

    2012-08-01

    The capacity of trees to recover from mechanical disturbance is of crucial importance for tree survival but has been primarily investigated in saplings using artificially induced wounds. In this study, mature Larix decidua Mill., Picea abies (L.) Karst. and Abies alba Mill. trees growing on alpine slopes that were wounded by naturally occurring rockfall were analyzed to determine their efficiency in overgrowing wounds. In total 43 L. decidua, P. abies and A. alba trees were sampled. First, 106 samples from 27 L. decidua and P. abies trees were analyzed to reconstruct yearly and overall overgrowth rates. Cross sections were taken at the maximum extension of the injury and overgrowth rates were determined on a yearly basis. Results clearly showed that L. decidua overgrew wounds more efficiently than P. abies with an average overgrowth rate of 19° and 11.8° per year, respectively. The higher on the stem the injury was located, the faster the wound was closed. Young and small trees overgrew wounds more efficiently than older or thicker trees. In contrast, no correlation was observed between injury size or increment before/after wounding and wound closure. Second, cross sections from 16 L. decidua, P. abies and A. alba (54 injuries) were used to assess closure rates at different heights around the injury. Overgrowth was generally smallest at the height of the maximum lateral extension of the injury and increased at the upper and lower end of the injury. The efficiency with which L. decidua closes wounds inflicted by rockfall makes this species highly adapted to sites with this type of mechanical disturbance. PMID:22826380

  13. The Conifers of the Northern Rockies. Bulletin, 1917, No. 53

    ERIC Educational Resources Information Center

    Kirkwood, J. F.

    1918-01-01

    The purpose of this bulletin is to enable persons not technically trained in botany to identify the coniferous species of the northern Rocky Mountain region lying within the United States. Forest trees of all kinds have interest for all people. Familiar and affection knowledge of them has culture value of a very fine kind. For the people of some…

  14. A new drought tipping point for conifer mortality

    NASA Astrophysics Data System (ADS)

    Kolb, Thomas E.

    2015-03-01

    (Huang et al 2015 Environ. Res. Lett. 10 024011) present a method for predicting mortality of ponderosa pine (Pinus ponderosa) and pinyon pine (Pinus edulis) in the Southwestern US during severe drought based on the relationship between the standardized precipitation-evapotranspiration index (SPEI) and annual tree ring growth. Ring growth was zero when SPEI for September to July was -1.64. The threshold SPEI of -1.64 was successful in distinguishing areas with high tree mortality during recent severe drought from areas with low mortality, and is proposed to be a tipping point of drought severity leading to tree mortality. Below, I discuss this work in more detail.

  15. Physiological limitation at alpine treeline: relationships of threshold responses of conifers to their establishment patterns

    NASA Astrophysics Data System (ADS)

    Germino, M. J.; Lazarus, B.; Castanha, C.; Moyes, A. B.; Kueppers, L. M.

    2014-12-01

    An understanding of physiological limitations to tree establishment at alpine treeline form the basis for predicting how this climate-driven boundary will respond to climate shifts. Most research on this topic has focused on limitations related to carbon balance and growth of trees. Carbon balance could limit survival and establishment primarily through slow-acting, chronic means. We asked whether tree survival and thus establishment patterns reflect control by chronic effects in comparison to acute, threshold responses, such as survival of frost events. Seedling survivorship patterns were compared to thresholds in freezing (temperature causing leaf freezing, or freezing point, FP; and physiological response to freezing) and water status (turgor loss point, TLP; and related physiological adjustments). Subject seedlings were from forest, treeline, and alpine sites in the Alpine Treeline Warming Experiment in Colorado, and included limber and lodgepole pine (a low-elevation species), and Engelmann Spruce. Preliminary results show survival increases with seedling age, but the only corresponding increase in stress acclimation was photosynthetic resistance to freezing and TLP, not FP. Differences in survivorship among the species were not consistent with variation in FP but they generally agreed with variation in photosynthetic resistance to deep freezing and to early-season drought avoidance. Mortality of limber pine increased 35% when minimum temperatures decreased below -9C, which compares with FPs of >-8.6C, and about 1/3 of its mortality occurred during cold/wet events, particularly in the alpine. The other major correlate of mortality is midsummer drying events, as previously reported. Also in limber pine, the TLP for year-old seedlings (-2.5 MPa) corresponded with seasonal-drought mortality. In summary, we show several examples of correspondence in physiological thresholds to mortality events within a species, although the relationships are not strong. Across species, photosynthetic resistance to freezing and early-season drought avoidance related well to mortality patterns. These results are generally more supportive of the role of chronic rather than acute climate effects in broad patterns of tree seedling establishment at treeline.

  16. Synchronisms and correlations of spring phenology between apical and lateral meristems in two boreal conifers.

    PubMed

    Antonucci, Serena; Rossi, Sergio; Deslauriers, Annie; Lombardi, Fabio; Marchetti, Marco; Tognetti, Roberto

    2015-10-01

    Phenological synchronisms between apical and lateral meristems could clarify some aspects related to the physiological relationships among the different organs of trees. This study correlated the phenological phases of bud development and xylem differentiation during spring 2010-14 in balsam fir (Abies balsamea Mill.) and black spruce [(Picea mariana Mill. (BSP)] of the Monts-Valin National Park (Quebec, Canada) by testing the hypothesis that bud development occurs after the reactivation of xylem growth. From May to September, we conducted weekly monitoring of xylem differentiation using microcores and bud development with direct observations on terminal branches. Synchronism between the beginning of bud development and xylem differentiation was found in both species with significant correlations between the phases of bud and xylem phenology. Degree-day sum was more appropriate in assessing the date of bud growth resumption, while thermal thresholds were more suitable for cambium phenology. Our results provide new knowledge on the dynamics of spring phenology and novel information on the synchronisms between two meristems in coniferous trees. The study demonstrates the importance of precisely defining the phases of bud development in order to correctly analyse the relationships with xylem phenology. PMID:26377874

  17. Empirical and simulated critical loads for nitrogen deposition in California mixed conifer forests.

    PubMed

    Fenn, M E; Jovan, S; Yuan, F; Geiser, L; Meixner, T; Gimeno, B S

    2008-10-01

    Empirical critical loads (CL) for N deposition were determined from changes in epiphytic lichen communities, elevated NO(3)(-) leaching in streamwater, and reduced fine root biomass in ponderosa pine (Pinus ponderosa Dougl. ex Laws.) at sites with varying N deposition. The CL for lichen community impacts of 3.1 kg ha(-1) year(-1) is expected to protect all components of the forest ecosystem from the adverse effects of N deposition. Much of the western Sierra Nevada is above the lichen-based CL, showing significant changes in lichen indicator groups. The empirical N deposition threshold and that simulated by the DayCent model for enhanced NO(3)(-)leaching were 17 kg N ha(-1) year(-1). DayCent estimated that elevated NO(3)(-) leaching in the San Bernardino Mountains began in the late 1950s. Critical values for litter C:N (34.1), ponderosa pine foliar N (1.1%), and N concentrations (1.0%) in the lichen Letharia vulpina ((L.) Hue) are indicative of CL exceedance. PMID:18499320

  18. RESPONSE OF CONIFER SEEDLINGS TO MEADOWFOAM (LIMNANTHES ALBA L.) SEED MEAL

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Meadowfoam (Limnanthes alba L.) is grown in Oregon because of its high quality seed oil used in cosmetics and lubricants. The seed meal (MSM) remaining after oil extraction has been shown to have plant growth-stimulating properties as well as glucosinolates that can release biocidal breakdown produ...

  19. A new tool for exploring climate change induced range shifts of conifer species in China.

    PubMed

    Kou, Xiaojun; Li, Qin; Beierkuhnlein, Carl; Zhao, Yiheng; Liu, Shirong

    2014-01-01

    It is inevitable that tree species will undergo considerable range shifts in response to anthropogenic induced climate change, even in the near future. Species Distribution Models (SDMs) are valuable tools in exploring general temporal trends and spatial patterns of potential range shifts. Understanding projections to future climate for tree species will facilitate policy making in forestry. Comparative studies for a large number of tree species require the availability of suitable and standardized indices. A crucial limitation when deriving such indices is the threshold problem in defining ranges, which has made interspecies comparison problematic until now. Here we propose a set of threshold-free indices, which measure range explosion (I), overlapping (O), and range center movement in three dimensions (Dx, Dy, Dz), based on fuzzy set theory (Fuzzy Set based Potential Range Shift Index, F-PRS Index). A graphical tool (PRS_Chart) was developed to visualize these indices. This technique was then applied to 46 Pinaceae species that are widely distributed and partly common in China. The spatial patterns of the modeling results were then statistically tested for significance. Results showed that range overlap was generally low; no trends in range size changes and longitudinal movements could be found, but northward and poleward movement trends were highly significant. Although range shifts seemed to exhibit huge interspecies variation, they were very consistent for certain climate change scenarios. Comparing the IPCC scenarios, we found that scenario A1B would lead to a larger extent of range shifts (less overlapping and more latitudinal movement) than the A2 and the B1 scenarios. It is expected that the newly developed standardized indices and the respective graphical tool will facilitate studies on PRS's for other tree species groups that are important in forestry as well, and thus support climate adaptive forest management. PMID:25268604

  20. Nitrogen availability is a primary determinant of conifer mycorrhizas across complex environmental gradients.

    PubMed

    Cox, Filipa; Barsoum, Nadia; Lilleskov, Erik A; Bidartondo, Martin I

    2010-09-01

    Global environmental change has serious implications for functional biodiversity in temperate and boreal forests. Trees depend on mycorrhizal fungi for nutrient uptake, but predicted increases in nitrogen availability may alter fungal communities. To address a knowledge gap regarding the effects of nitrogen availability on mycorrhizal communities at large scales, we examine the relationship between nitrogen and ectomycorrhizas in part of a European biomonitoring network of pine forest plots. Our analyses show that increased nitrogen reduces fungal diversity and causes shifts in mycorrhizal community composition across plots, but we do not find strong evidence that within-plot differences in nitrogen availability affect ectomycorrhizal communities. We also carry out exploratory analyses to determine the relative importance of other environmental variables in structuring mycorrhizal communities, and discuss the potential use of indicator species to predict nitrogen-induced shifts in fungal communities. PMID:20545731

  1. Kin recognition by roots occurs in cycads and probably in conifers

    PubMed Central

    Gorelick, Root; Marler, Thomas E

    2014-01-01

    Kin recognition by the roots of Cycas edentata was recently demonstrated. Our extensive literature search revealed this to be the first report of kin recognition in any spermatophyte other than angiosperms. Based on this new validation that the phenomenon occurs among phylogenetically diverse taxa, we conclude that kin recognition by roots may be an ancient phenomenon. PMID:24778761

  2. Alteration of belowground carbon dynamics by nitrogen addition in southern California mixed conifer forests

    SciTech Connect

    Nowinski, Nicole S.; Trumbore, Susan E.; Jimenez, Gloria; Fenn, Mark E.

    2009-04-01

    Nitrogen deposition rates in southern California are the highest in North America and have had substantial effects on ecosystem functioning. We document changes in the belowground C cycle near ponderosa pine trees experiencing experimental nitrogen (N) addition (50 and 150 kg N ha 1 a 1 as slow release urea since 1997) at two end member sites along a pollution gradient in the San Bernardino Mountains, California. Despite considerable differences in N deposition between the two sites, we observed parallel changes in microbial substrate use and soil enzyme activity with N addition. 14C measurements indicate that the mean age of C respired by the Oa horizon declined 10 15 years with N addition at both sites. N addition caused an increase in cellulolytic enzyme activity at the polluted site and a decrease in ligninolytic enzyme activity at the unpolluted site. Given the likely differences in lignin and cellulose ages, this could explain the difference in the age of microbial respiration with N addition. Measurements of fractionated soil organic matter did not show the same magnitude of changes in response to N addition as were observed for respired C. This lesser response was likely because the soils are mostly composed of C having turnover times of decades to centuries, and 9 years of N amendment were not enough to affect this material. Consequently, 14C of respired CO2 provided a more sensitive indicator of the effects of N addition than other methods. Results suggest that enhanced N deposition alone may not result in increased soil C storage in xeric ecosystems.

  3. Conifer removal in the sagebrush steppe: why, when, where, and how?

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Over the past 150 years, juniper and pine woodlands have increased in both distribution and density across the sagebrush steppe of the Intermountain West. To restore sagebrush steppe plant communities the application of mechanical and prescribed fire treatments are used to remove the influence of e...

  4. The short and long term effects of conifer afforestation on a sensitive freshwater system

    NASA Astrophysics Data System (ADS)

    Shah, Nadeem; Nisbet, Thomas; Broadmeadow, Samantha

    2014-05-01

    Our study was driven by concerns that afforesting the headwater catchments of the Upper Halladale River in the Scottish Highlands would affect water quality and the local salmon fishery. The main uncertainty, on the sensitivity of the catchment to acid deposition, led to a preliminary study in 1993 by a consortium of research organisations; they concluded that the site was not significantly acidified and not at risk of acidification from the planned afforestation. The planting, therefore, went ahead and presented us with an opportunity to look at the short, medium and long-term effects of afforestation on the chemistry and biology of a sensitive freshwater system, to review the conclusions of the preliminary report and assess the efficacy of good management practices employed. Water samples were taken from six sites in the Upper Halladale Catchment and analysed for a wide range of chemical parameters to monitor changes in water quality due to cultivation (ploughing, drainage, road building and planting), fertiliser application and forest growth. The results demonstrate that water quality remained high during site preparation with little or no adverse chemical or biological impacts in the short-term (4 years) after planting. We do find significant changes in hydrochemistry in the long-term data (15+ years); some of these were expected, a decrease in non-marine sulphate and a general increasing trend for dissolved organic carbon, for example, but there are fluctuations within the long-term data for these and other parameters that warrant further explanation and discussion. We found that the most significant changes in hydrochemistry occur after marked meteorological events and that the effects are not always short-lived, sometimes lasting for years; the results indicate that climate, not land use, exerts the greatest control on chemistry within the Upper Halladale catchment.

  5. Maximum height in a conifer is associated with conflicting requirements for xylem design

    SciTech Connect

    Domec, Jean-Christophe; Lachenbruch, Barbara; McCulloh, Katherine A.; Meinzer, Rick; Woodruff, David R.; Warren, Jeffrey M.

    2008-08-01

    Despite renewed interest in the nature of limitations on maximum tree height, the mechanisms governing ultimate and species-specific height limits are not yet understood, but they likely involve water transport dynamics. Tall trees experience increased risk of xylem embolism from air-seeding because tension in their water column increases with height because of path-length resistance and gravity. We used morphological measurements to estimate the hydraulic properties of the bordered pits between tracheids in Douglas-fir trees along a height gradient of 85 m. With increasing height, the xylem structural modifications that satisfied hydraulic requirements for avoidance of runaway embolism imposed increasing constraints on water transport efficiency. In the branches and trunks, the pit aperture diameter of tracheids decreases steadily with height, whereas torus diameter remains relatively constant. The resulting increase in the ratio of torus to pit aperture diameter allows the pits to withstand higher tensions before air-seeding but at the cost of reduced pit aperture conductance. Extrapolations of vertical trends for trunks and branches show that water transport across pits will approach zero at a heights of 109 m and 138 m, respectively, which is consistent with historic height records of 100 127 m for this species. Likewise, the twig water potential corresponding to the threshold for runaway embolism would be attained at a height of 107 m. Our results suggest that the maximum height of Douglas-fir trees may be limited in part by the conflicting requirements for water transport and water column safety

  6. Evidence for Air-Seeding: Watching the Formation of Embolism in Conifer Xylem

    PubMed Central

    Mayr, S.; Kartusch, B.; Kikuta, S.

    2016-01-01

    Water transport in plants is based on a metastable system as the xylem “works” at negative water potentials (ψ). At critically low ψ, water columns can break and cause embolism. According to the air-seeding hypothesis, this occurs by air entry via the pits. We studied the formation of embolism in dehydrating xylem sections of Juniperus virginiana (Cupressaceae), which were monitored microscopically and via ultrasonic emission analyses. After replacement of water by air in outer tracheid layers, a complex movement of air-water menisci into tracheids was found. With decreasing ψ, pits started to aspirate and the speed of menisci movements increased. In one experiment, an airseeding event could be detected at a pit. The onset of ultrasonic activity was observed when pits started to close, and ultrasonic emission ceased at intense dehydration. Experiments clearly indicated that predictions of the air-seeding hypothesis are correct: At low ψ, pit mechanisms to prevent air entry failed and air spread into tracheids. ψ fluctuations caused complex movements of air-water menisci and pits, and at low ψ, air-seeding caused ultrasonic emissions. Main insights are presented in a video.

  7. The contribution of dynamic changes in photosynthesis to shade tolerance of two conifer species.

    PubMed

    Ma, Ziyu; Behling, Shawn; Ford, E David

    2014-07-01

    Generally 'shade tolerance' refers to the capacity of a plant to exist at low light levels but characteristics of shade can vary and must be taken into account in defining the term. We studied Abies amabilis Dougl. ex J.Forbes and Tsuga heterophylla (Raf.) Sarg. under a forest canopy in the northwest of the Olympic Peninsula, USA, which has low annual sunshine hours and frequent overcast days. Using BF3 sunshine sensors, we surveyed diffuse and total light received by saplings growing under a range of canopy openness up to 30%. We measured variation in photosynthetic capacity over the growing season and within days and estimated photosynthesis induction in relation to ambient light. Three components of shade tolerance are associated with variation in light climate: (i) Total light on the floor of an 88-year stand of naturally regenerated T. heterophylla was greater on overcast than clear days. Light on overcast days varied throughout the day sometimes with a cyclical pattern. (ii) Photosynthetic capacity, Amax, varied both through the growing season and within days. Amax was generally greater in the latter part of the growing season, being limited by temperature and stomatal conductance, gs, at times during the early part. Saplings in more shaded areas had lower Amax and in the latter part of the growing season Amax was found to decline from mid-afternoon. (iii) Two patterns of photosynthesis induction to increased light were found. In a mean ambient light of 139 μmol m(-2) s(-1), induction had a curvilinear response to a step increase in light with a mean time constant, τ, of 112.3 s. In a mean ambient light of 74 μmol m(-2) s(-1), induction had a two-part increase: one with τ1 of 11.3 s and the other with τ2 of 184.0 s. These are the smallest published values of τ to date. (iv) Both variation in photosynthetic capacity and induction are components of shade tolerance where light varies over time. Amax acclimates to seasonal and diurnal changes in light and varies between microenvironments. The rapid induction processes can cause a rapid response of photosynthesis to changes in diffuse or direct light. PMID:25070983

  8. Evidence for foliar endophytic nitrogen fixation in a widely distributed subalpine conifer

    DOE PAGESBeta

    Moyes, Andrew B.; Kueppers, Lara M.; Pett-Ridge, Jennifer; Carper, Dana L.; Vandehey, Nick; O'Neil, James; Frank, A. Carolin

    2016-02-01

    Coniferous forest nitrogen (N) budgets indicate unknown sources of N. A consistent association between limber pine (Pinus flexilis) and potential N2-fixing acetic acid bacteria (AAB) indicates that native foliar endophytes may supply subalpine forests with N.

  9. Evolutionary history of the conifer root rot fungus Heterobasidion annosum sensu lato.

    PubMed

    Dalman, K; Olson, A; Stenlid, J

    2010-11-01

    We investigated two hypotheses for the origin of the root rot fungus Heterobasidion annosum species complex: (i) that geology has been an important factor for the speciation (ii) that co-evolutionary processes with the hosts drove the divergence of the pathogen species. The H. annosum species complex consists of five species: three occur in Europe, H. annosum s.s., Heterobasidion parviporum and Heterobasidion abietinum, and two in North America, Heterobasidion irregulare and Heterobasidion occidentale; all with different but partially overlapping host preferences. The evolution of the H. annosum species complex was studied using six partially sequenced genes, between 10 and 30 individuals of each species were analysed. Neighbour-joining trees were constructed for each gene, and a Bayesian tree was built for the combined data set. In addition, haplotype networks were constructed to illustrate the species relationships. For three of the genes, H. parviporum and H. abietinum share haplotypes supporting recent divergence and/or possible gene flow. We propose that the H. annosum species complex originated in Laurasia and that the H. annosum s.s./H. irregulare and H. parviporum/H. abietinum/H. occidentale ancestral species emerged between 45 and 60 Ma in the Palaearctic, well after the radiation of the host genera. Our data imply that H. irregulare and H. occidentale were colonizing North America via different routes. In conclusion, plate tectonics are likely to have been the main factor influencing Heterobasidion speciation and biogeography. PMID:20964759

  10. Inhibition of insect glutathione S-transferase (GST) by conifer extracts.

    PubMed

    Wang, Zhiling; Zhao, Zhong; Abou-Zaid, Mamdouh M; Arnason, John T; Liu, Rui; Walshe-Roussel, Brendan; Waye, Andrew; Liu, Suqi; Saleem, Ammar; Cáceres, Luis A; Wei, Qin; Scott, Ian M

    2014-12-01

    Insecticide synergists biochemically inhibit insect metabolic enzyme activity and are used both to increase the effectiveness of insecticides and as a diagnostic tool for resistance mechanisms. Considerable attention has been focused on identifying new synergists from phytochemicals with recognized biological activities, specifically enzyme inhibition. Jack pine (Pinus banksiana Lamb.), black spruce (Picea mariana (Mill.) BSP.), balsam fir (Abies balsamea (L.) Mill.), and tamarack larch (Larix laricina (Du Roi) Koch) have been used by native Canadians as traditional medicine, specifically for the anti-inflammatory and antioxidant properties based on enzyme inhibitory activity. To identify the potential allelochemicals with synergistic activity, ethanol crude extracts and methanol/water fractions were separated by Sephadex LH-20 chromatographic column and tested for in vitro glutathione S-transferase (GST) inhibition activity using insecticide-resistant Colorado potato beetle, Leptinotarsa decemlineata (Say) midgut and fat-body homogenate. The fractions showing similar activity were combined and analyzed by ultra pressure liquid chromatography-mass spectrometry. A lignan, (+)-lariciresinol 9'-p-coumarate, was identified from P. mariana cone extracts, and L. laricina and A. balsamea bark extracts. A flavonoid, taxifolin, was identified from P. mariana and P. banksiana cone extracts and L. laricina bark extracts. Both compounds inhibit GST activity with taxifolin showing greater activity compared to (+)-lariciresinol 9'-p-coumarate and the standard GST inhibitor, diethyl maleate. The results suggested that these compounds can be considered as potential new insecticide synergists. PMID:25270601

  11. The impact of beetle-induced conifer death on stand-scale canopy snow interception

    NASA Astrophysics Data System (ADS)

    Pugh, E. T.; Small, E. E.

    2011-12-01

    Snow that falls on a forest either passes through the canopy to the ground or is intercepted by the canopy on needles, branches or bark. The interception of snowfall in forest canopies impacts the water budget because intercepted snow is more likely to sublimate than subcanopy snow. Because forest canopy characteristics are a primary control of canopy snow interception, which in turn controls subcanopy snow accumulation, reductions in canopy density have important implications for snow accumulation on the forest floor. Forest structure can be drastically and rapidly altered by forest disturbance, such as insect attack, wildfire and blowdown. Here, we look at the impact that changing forest characteristics associated with beetle infestation have on canopy snow interception. The mountain pine beetle is currently impacting more than 100,000 km2 of pine forest in western North America. Trees killed by bark beetles eventually lose the majority of their canopy material. We hypothesize that tree death significantly reduces available interception platforms, leading to greater subcanopy snow accumulation than pre-infestation conditions. These potential impacts on snow accumulation are especially important for water resources in the western U.S., where the hydrologic cycle is dominated by snowmelt. We test this hypothesis using extensive data collected from adjacent living and grey phase dead stands. We employ multiple methods to measure canopy snow interception, at both the storm- and season-scales. During the winter of 2011, we made more than 10,000 spatially distributed measurements of subcanopy snow accumulation in three living and two dead lodgepole pine stands as well as three clearings. Measurements were made daily as well as immediately prior to and following storm events, allowing us to calculate storm-scale canopy interception. Interception is estimated by comparing subcanopy snow accumulation in clearings and forests. Additionally, by taking repeated daily measurements for the two month study period, we were able to calculate season-scale losses in subcanopy snow water equivalent resulting from combined canopy processes. The canopies of living stands intercepted 24% of incoming precipitation. In comparison, the canopies of needle-less dead stands only intercepted 10% of snowfall. Interception amounts varied with storm magnitude, as predicted from earlier studies. However, very different parameters are needed to simulate this fundamental relationship between storm size and interception in dead/living stands. By comparing accumulation from individual precipitation events to season-scale subcanopy snow accumulation, we predict 69% of snow intercepted in living canopies sublimated and 83% of snow caught in dead canopies sublimated.

  12. Conifer somatic embryogenesis: improvements by supplementation of medium with oxidation-reduction agents.

    PubMed

    Pullman, Gerald S; Zeng, Xiaoyan; Copeland-Kamp, Brandi; Crockett, Jonathan; Lucrezi, Jacob; May, Sheldon W; Bucalo, Kylie

    2015-02-01

    A major barrier to the commercialization of somatic embryogenesis technology in loblolly pine (Pinus taeda L.) is recalcitrance of some high-value crosses to initiate embryogenic tissue (ET) and continue early-stage somatic embryo growth. Developing initiation and multiplication media that resemble the seed environment has been shown to decrease this recalcitrance. Glutathione (GSH), glutathione disulfide (GSSG), ascorbic acid and dehydroascorbate analyses were performed weekly throughout the sequence of seed development for female gametophyte and zygotic embryo tissues to determine physiological concentrations. Major differences in stage-specific oxidation-reduction (redox) agents were observed. A simple bioassay was used to evaluate potential growth-promotion of natural and inorganic redox agents added to early-stage somatic embryo growth medium. Compounds showing statistically significant increases in early-stage embryo growth were then tested for the ability to increase initiation of loblolly pine. Low-cost reducing agents sodium dithionite and sodium thiosulfate increased ET initiation for loblolly pine and Douglas fir (Mirb) Franco. Germination medium supplementation with GSSG increased somatic embryo germination. Early-stage somatic embryos grown on medium with or without sodium thiosulfate did not differ in GSH or GSSG content, suggesting that sodium thiosulfate-mediated growth stimulation does not involve GSH or GSSG. We have developed information demonstrating that alteration of the redox environment in vitro can improve ET initiation, early-stage embryo development and somatic embryo germination in loblolly pine. PMID:25716878

  13. Biogeochemical prospecting for uranium with conifers: results from the Midnite Mine area, Washington

    USGS Publications Warehouse

    Nash, J. Thomas; Ward, Frederick Norville

    1977-01-01

    The ash of needles, cones, and duff from Ponderosa pine (Pinus ponderosa Laws) growing near uranium deposits of the Midnite mine, Stevens County, Wash., contain as much as 200 parts per million (ppm) uranium. Needle samples containing more than 10 ppm uranium define zones that correlate well with known uranium deposits or dumps. Dispersion is as much as 300 m but generally is less. Background is about 1 ppm. Tree roots are judged to be sampling ore, low-grade uranium halo, or ground water to a depth of about 15 m. Uptake of uranium by Douglas fir (Pseudotsuga menziesii (Mirb.) Franco) needles appears to be about the same as by Ponderosa pine needles. Cones and duff are generally enriched in uranium relate to needles. Needles, cones, and duff are recommended as easily collected, uncomplicated sample media for geochemical surveys. Samples can be analyzed by standard methods and total cost per sample kept to about $6.

  14. Effect of tree structure on X-band microwave signature of conifers

    NASA Technical Reports Server (NTRS)

    Mougin, Eric; Lopes, Armand; Karam, Mostafa A.; Fung, Adrian K.

    1993-01-01

    Experimental studies are performed on some coniferous trees (Austrian pine, Nordmann spruce, and Norway spruce) to investigate the relation between the tree architecture and radar signal at X-band. For a single tree, the RCS is measured as a function of the scatterer location at 90 deg incidence. It is found that the main scatterers are the leafy branches and the difference between sigma(vv) and sigma(hh) is significant at the upper portion of the tree. At the lower portion of the tree, sigma(vv) and sigma(hh) have almost the same level. For a group of trees the angular trends of sigma(vv) and sigma(hh) are measured. It is found that the levels of sigma(vv) and sigma(hh) are of the same order, but their angular trends vary from one tree species to the other depending on the tree species structure. The interpretation of these experimental results is carried out with the help of a theoretical model which accounts for the structure of the tree. According to this theoretical study, the major scattering trend is due to the leaves, while the perturbation to the angular trend and the level difference between sigma(vv) and sigma(hh) are due to the branch orientation distributions (i.e., the tree architecture).

  15. Subalpine conifers in different geographical locations host highly similar foliar bacterial endophyte communities.

    PubMed

    Carrell, Alyssa A; Carper, Dana L; Frank, A Carolin

    2016-08-01

    Pines in the subalpine environment at Niwot Ridge, CO, have been found to host communities of acetic acid bacteria (AAB) within their needles. The significance and ubiquity of this pattern is not known, but recent evidence of nitrogen (N)-fixing activity in Pinus flexilis (limber pine) foliage calls for a better understanding of the processes that regulate endophytic communities in forest tree canopies. Here, to test if AAB dominate the foliar bacterial microbiota in other subalpine locations, we compared the 16S rRNA community in needles from P. flexilis and P. contorta (lodgepole pine) growing in the Eastern Sierra Nevada, CA, and Niwot Ridge, CO. AAB made up the majority of the bacterial community in both species at both sites. Multiple distinct AAB taxa, resolved at the single nucleotide level, were shared across host species and sites, with dominant OTUs identical or highly similar to database sequences from cold environments, including high altitude air sampled in Colorado, and the endosphere of Arctic plants. Our results suggest strong selection for community composition, potentially amplified by the long lifespan of individual Pinus needles, along with low dispersal constraints on canopy bacteria. PMID:27267931

  16. Mycorrhiza Reduces Adverse Effects of Dark Septate Endophytes (DSE) on Growth of Conifers

    PubMed Central

    Reininger, Vanessa; Sieber, Thomas N.

    2012-01-01

    Mycorrhizal roots are frequently colonized by fungi of the Phialocephala fortinii s.l. – Acephala applanata species complex (PAC). These ascomycetes are common and widespread colonizers of tree roots. Some PAC strains reduce growth increments of their hosts but are beneficial in protecting roots against pathogens. Nothing is known about the effects of PAC on mycorrhizal fungi and the PAC-mycorrhiza association on plant growth, even though these two fungal groups occur closely together in natural habitats. We expect reduced colonization rates and reduced negative effects of PAC on host plants if roots are co-colonized by an ectomycorrhizal fungus (ECM). Depending on the temperature regime interactions among the partners in this tripartite ECM-PAC-plant system might also change. To test our hypotheses, effects of four PAC genotypes (two pathogenic and two non-pathogenic on the Norway spruce), mycorrhization by Laccaria bicolor (strain S238N) and two temperature regimes (19°C and 25°C) on the biomass of the Douglas-fir (Pseudotsuga menziesii) and Norway spruce (Picea abies) seedlings were studied. Mycorrhization compensated the adverse effects of PAC on the growth of the Norway spruce at both temperatures. The growth of the Douglas-fir was not influenced either by PAC or mycorrhization at 19°C, but at 25°C mycorrhization had a similar protective effect as in the Norway spruce. The compensatory effects probably rely on the reduction of the PAC-colonization density by mycorrhizae. Temperature and the PAC strain only had a differential effect on the biomass of the Norway spruce but not on the Douglas-fir. Higher temperature reduced mycorrhization of both hosts. We conclude that ectomycorrhizae form physical and/or physiological barriers against PAC leading to reduced PAC-colonization of the roots. Additionally, our results indicate that global warming could cause a general decrease of mycorrhization making primary roots more accessible to other symbionts and pathogens. PMID:22900058

  17. Incipient silicification of recent conifer wood at a Yellowstone hot spring

    NASA Astrophysics Data System (ADS)

    Hellawell, Jo; Ballhaus, Chris; Gee, Carole T.; Mustoe, George E.; Nagel, Thorsten J.; Wirth, Richard; Rethemeyer, Janet; Tomaschek, Frank; Geisler, Thorsten; Greef, Karin; Mansfeldt, Tim

    2015-01-01

    A branch of lodgepole pine (Pinus contorta) from a silica sinter apron of Cistern Spring, Yellowstone National Park, is partially mineralized with silica gel. The distribution of Si mapped in transverse sections of the branch suggests that mineralization was episodic. Early silica-rich solutions used the cellular structures in the wood as pathways, in particular the axial tracheids and rays. Later solutions infiltrated into the branch through shrinkage cracks along the decorticated branch's periphery. Among the tracheids, a distinct preference is noted for silica precipitates to line lumina of the earlywood tracheids, suggesting that this differential concentration in silica may reflect seasonal growth and water uptake in a live tree. Raman spectroscopy identifies the silica phases as amorphous silica gel. Secondary electron images of radial sections along the tracheids demonstrate that the distribution of silica is heterogeneous on a micrometer scale. Silica gel precipitates form micro spheroids with a spherical substructure that extends down to the sub-nanometer scale. All cell walls are templated with a monolayer consisting of closely spaced silica gel nano spheres around 100 nm in diameter. Transmission electron microscopy of focused ion beam sections through cell walls of partially mineralized tracheids reveals that the permineralization of cellular structures and the replacement of organic material by silica are processes that go hand in hand. The branch is dated with the 14C chronometer to 140 ± 33 years, underlining that the silicification reactions that preserve wood in the fossil record can be very rapid. Textural considerations of Si distribution in the wood suggest that the early stages of silicification in this branch date from a time when the pine tree was still alive.

  18. EPICUTICULAR WAS COMPOSITIONS FOR PREDOMINANT CONIFERS OF WESTERN NORTH AMERICA. (R823990)

    EPA Science Inventory

    The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...

  19. Environmental effects on stem water deficit in co-occurring conifers exposed to soil dryness

    NASA Astrophysics Data System (ADS)

    Oberhuber, Walter; Kofler, Werner; Schuster, Roman; Wieser, Gerhard

    2015-04-01

    We monitored dynamics of stem water deficit (Δ W) and needle water potential ( Ψ) during two consecutive growing seasons (2011 and 2012) in a dry inner Alpine environment (750 m above sea level, Tyrol, Austria), where Pinus sylvestris, Picea abies and Larix decidua form mixed stands. Δ W was extracted from stem circumference variations, which were continuously recorded by electronic band dendrometers (six trees per species) and correlations with environmental variables were performed. Results revealed that (i) Δ W reached highest and lowest values in P. abies and L. decidua, respectively, while mean minimum water potential ( Ψ ea) amounted to -3.0 MPa in L. decidua and -1.8 MPa in P. abies and P. sylvestris. (ii) Δ W and Ψ ea were significantly correlated in P. abies ( r = 0.630; P = 0.038) and L. decidua ( r = 0.646; P = 0.032). (iii) In all species, Δ W reached highest values in late summer and was most closely related to temperature ( P < 0.001). Results indicate that all species were undergoing water limitations as measured by increasing Δ W throughout the growing season, whereby P. abies most strongly drew upon water reserves in the living tissues of the bark. Quite similar Δ W developed in drought-sensitive L. decidua and drought-tolerant P. sylvestris indicate that various water storage locations are depleted in species showing different strategies of water status regulation, i.e. anisohydric vs. isohydric behavior, respectively, and/or water uptake efficiency differs among these species. Close coupling of Δ W to temperature suggests that climate warming affects plant water status through its effect on atmospheric demand for moisture.

  20. DYNAMICS OF WATER TRANSPORT AND STORAGE IN CONIFERS STUDIED WITH DEUTERIUM AND HEAT TRACING TECHNIQUES

    EPA Science Inventory

    The volume and complexity of their vascular systems make the dynamics of long-distance water transport difficult to study. We used heat and deuterated water (D2O) as tracers to characterize whole-tree water transport and storage properties in individual trees belonging to the co...

  1. A novel Fusarium species causes a canker disease of the critically endangered conifer, Torreya taxifolia

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A canker disease of Florida torreya (Torreya taxifolia), here designated CDFT, has been implicated in the decline of this critically endangered species in its native range of northern Florida and southeastern Georgia. In our current surveys of eight Florida torreya sites, cankers were present on all...

  2. [Biogeochemical cycles in natural forest and conifer plantations in the high mountains of Colombia].

    PubMed

    León, Juan Diego; González, María Isabel; Gallardo, Juan Fernando

    2011-12-01

    Plant litter production and decomposition are two important processes in forest ecosystems, since they provide the main organic matter input to soil and regulate nutrient cycling. With the aim to study these processes, litterfall, standing litter and nutrient return were studied for three years in an oak forest (Quercus humboldtii), pine (Pinus patula) and cypress (Cupressus lusitanica) plantations, located in highlands of the Central Cordillera of Colombia. Evaluation methods included: fine litter collection at fortnightly intervals using litter traps; the litter layer samples at the end of each sampling year and chemical analyses of both litterfall and standing litter. Fine litter fall observed was similar in oak forest (7.5 Mg ha/y) and in pine (7.8 Mg ha/y), but very low in cypress (3.5 Mg ha/y). Litter standing was 1.76, 1.73 and 1.3 Mg ha/y in oak, pine and cypress, respectively. The mean residence time of the standing litter was of 3.3 years for cypress, 2.1 years for pine and 1.8 years for oak forests. In contrast, the total amount of retained elements (N, P, S, Ca, Mg, K, Cu, Fe, Mn and Zn) in the standing litter was higher in pine (115 kg/ha), followed by oak (78 kg/ha) and cypress (24 kg/ha). Oak forests showed the lowest mean residence time of nutrients and the highest nutrients return to the soil as a consequence of a faster decomposition. Thus, a higher nutrient supply to soils from oaks than from tree plantations, seems to be an ecological advantage for recovering and maintaining the main ecosystem functioning features, which needs to be taken into account in restoration programs in this highly degraded Andean mountains. PMID:22208100

  3. The effect of soil water deficit on the reflectance of conifer seedling canopies

    NASA Technical Reports Server (NTRS)

    Fox, L.

    1977-01-01

    The effects of soil water deficit on spruce and pine seedling canopy reflectance, needle reflectance and transmittance, and canopy density were measured in a greenhouse with a diffuse source of radiant flux. A potential for early or pre-visual detection of plant water stress was not supported by these measurements made at visible, and reflected infrared wavelengths to 1950 nm. Needles were found to transmit approximately thirty percent of the radiant flux incident on them at 780 nm, ten percent at 700 nm, and were found to be opaque at 450, 550, 600 and 650 nm.

  4. Seed and vegetative production of shrubs and growth of understory conifer regeneration

    USGS Publications Warehouse

    Wender, B.; Harrington, C.; Tappeiner, J.C.

    2004-01-01

    We observed flower and fruit production for nine understory shrub species in western Washington and Oregon and examined the relationships between shrub reproductive output and plant size, plant age, site factors, and overstory density to determine the factors that control flowering or fruiting in understory shrubs. In Washington, 50 or more shrubs or microplots (for rhizomatous species) were sampled for each of eight species. The variables examined were more useful for explaining abundance of flowers or fruit on shrubs than they were for explaining the probability that a shrub would produce flowers or fruit. Plant size was consistently the most useful predictor of flower/fruit abundance in all species; plant age was also a good predictor of abundance and was strongly correlated with plant size. Site variables (e.g., slope) and overstory competition variables (e.g., presence/absence of a canopy gap) also helped explain flower/fruit abundance for some species. At two Oregon sites, the responses of five species to four levels of thinning were observed for 2-4 yr (15 shrubs or microplots per treatment per year). Thinning increased the probability and abundance of flowering/fruiting for two species, had no effect on one species, and responses for two other species were positive but inconsistent between sites or from year to year. We believe reducing overstory density or creating canopy gaps may be useful tools for enhancing shrub size and vigor, thus, increasing the probability and abundance of fruiting in some understory shrub species.

  5. Analysis of hyper-spectral AVIRIS image data over a mixed-conifer forest in Maine

    NASA Technical Reports Server (NTRS)

    Lawrence, William T.; Shimabukuro, Yosio E.; Gao, Bo-Cai

    1993-01-01

    An introduction to some of the potential uses of hyperspectral data for ecosystem analysis is presented. The examples given are derived from a digital dataset acquired over a sub-boreal forest in central Maine in 1990 by the NASA-JPL Airborne Visible and Infrared Imaging Spectrometer (AVIRIS) instrument gathers data from 400 to 2500 nm in 224 channels at bandwidths of approximately 10 nm. As a preview to the uses of the hyperspectral data, several products from this dataset were extracted. They range from the traditional false color composite made from simulated Thematic Mapper bands and the well known normalized difference vegetation index to much more exotic products such as fractions of vegetation, soil and shade based on linear spectral mixing models and estimates of the leaf water content at the landscape level derived using spectrum-matching techniques. Our research and that of many others indicates that the hyperspectral datasets carry much important information which is only beginning to be understood. This analysis gives an initial indication of the utility of hyperspectral data. Much work still remains to be done in algorithm development and in understanding the physics behind the complex information signal carried in the hyperspectral datasets. This work must be carried out to provide the fullest science support for high spectral resolution data to be acquired by many of the instruments to be launched as part of the Earth Observing System program in the mid-1990's.

  6. Fire and Climate History of Mixed Conifer Woodlands in the Great Basin, USA

    NASA Astrophysics Data System (ADS)

    Biondi, F.; Bradley, M.; Cheek, J.; Jamieson, L.; Kilpatrick, M.; Sibold, J.; Strachan, S. D.

    2010-12-01

    We investigated climate, fire, and species dynamics before and after Euro-American settlement at two locations in Lincoln County, Nevada. Both the Mt. Irish and Clover Mountains sites are isolated high ranges in the southern Great Basin Desert, not far from the floristic boundary with the northern Mojave Desert. At Mt. Irish, non-scarred ponderosa pines and single-leaf piñons were used to develop a tree-ring reconstruction of drought (mean PDSI for May-July, NV Clim. Div. 3) from 1396 to 2003. Fire-scarred ponderosas found at both study areas were then sampled, and crossdated fire-scar records were used to generate the fire history. A total of 12 plots, each 0.1 ha in size, was sampled at each site to quantify stand structure, age of surviving trees, and fuel loads. Additional information on species dynamics were collected at regularly spaced grid points. Density of pinyon pine at both sites has more than doubled since Euro-American settlement, with peak survivorship occurring in 1900-1940 at Mount Irish and 1930-1970 at the Clover Mountains. Pre-settlement trees occur throughout each site, particularly at Mount Irish, where in 1550-1860 fires that scarred at least two trees were very frequent (mean fire return interval: 4 years), while fires that scarred at least 10% of the recorder trees were relatively rare (mean fire return interval: 66 years). At the Clover Mountains, for the period 1785-2007, fires that scarred at least two trees and fires that scarred at least 10% of the recorder trees had more similar mean fire return intervals: 7 and 12 years. Fire frequency did not decrease during the 1780-1840 period, when fire was reduced or absent in other areas of the western United States. Much lower fire frequency was noted after Euro-American settlement at Mt. Irish, most likely because of less favorable climatic conditions, while the difference was less pronounced, and also affected by fire suppression activity, at the Clover Mountains. Fuel loads at the two sites were different, with those at the Clover Mountains favoring a higher rate of surface fire spread compared to Mount Irish, which however is currently at a greater risk for a high-intensity crown fire. In addition, based on fuel reconstructions, a potential change in fire behavior from a surface to a crown fire occurred after settlement at the Clover Mountains and prior to settlement at Mount Irish.

  7. Conifer encroachment and hydrology: Altered above and below ground hydrologic fluxes in western juniper (Juniperus occidentalis)

    NASA Astrophysics Data System (ADS)

    Niemeyer, R. J.; Link, T. E.; Heinse, R.; Seyfried, M. S.

    2013-12-01

    Western juniper (Juniperus occidentalis) occupy 9 million acres in Oregon, California, Idaho, and Nevada. In many of these areas juniper has expanded 10-fold since Euro-American settlement into what was mostly sagebrush steppe due to grazing, changes in fire regimes, and climate. Despite the importance of elucidating if juniper encroachment appreciably changes semi-arid hydrology, there have been few process-based studies linking above and below ground hydrologic fluxes or that assess variations across a gradient of shrub to tree-dominated areas. Our objectives are to determine: A) the differences in interception and throughfall at a lower density juniper stand dominated by low sagebrush (Artemisia arbuscula) and a moderate density juniper stand dominated by juniper, B) soil moisture dynamics between lower and moderate density juniper stands, and C) how those above and below ground processes are linked. Our study area was located at the USDA-ARS Reynolds Creek Experimental Watershed in the Owyhee Mountains of southwestern Idaho. We used multiple methods to measure and estimate above and below ground hydrologic fluxes. Above ground precipitation was estimated with large (approximately 5.5 m2) precipitation lysimeters; two located under tree canopies and two in the open. Soil moisture was measured continuously at four trees and across both plots once every 1 - 2 months once snow melted. Continuous measurements under the canopy consisted of four soil moisture probes each; two outside and under the canopy at 15 cm and 60 cm. Plot wide soil moisture changes were estimated based on changes in conductivity measured with electromagnetic induction (EMI) at both 0-75 cm and 0-150 cm. Results show some clear patterns in differences in hydrologic fluxes across the two stands. Rain and snow throughfall from mid-October through mid-April under the canopy was 289 mm, compared to 381 mm outside the canopy, therefore interception was 24% of incoming precipitation. Snowmelt rates from when melt began in January to the end of snowmelt in mid-April were lower under the canopy at 2.0mm/day than outside the canopy at 3.0 mm/day. The highest melt rate in a day was 37.1 mm and 47.2 mm under and outside the canopy, respectively. Soil moisture dynamics followed a more complex pattern. Fall rainstorms produced greater spikes in soil moisture near the surface (15 cm) outside of the canopy compared to under the canopy. Spring snowmelt produced similar fluctuations in near surface soil moisture outside and under the canopy in the dense stand. However, once snow had entirely melted from the dense juniper stand in mid-April, soil moisture decreased at a greater rate than under the canopy than outside. EMI surveys revealed at both shallow (0-75 cm) and deep (75-150 cm) soil moisture loss was greater in the early spring in the lower density stand. We theorize that deep soil moisture loss will be greater in the dense stands later in the summer due to more juniper transpiration and these data will be collected later this year and presented. These results represent an initial step toward a comprehensive understanding of the hydrologic impacts of juniper encroachment in snow-dominated sage-steppe areas, which have important implications for land managers in the semi-arid western U.S.

  8. Ozone distribution and phytotoxic potential in mixed conifer forests of the San Bernardino Mountains, southern California.

    PubMed

    Bytnerowicz, Andrzej; Arbaugh, Michael; Schilling, Susan; Fraczek, Witold; Alexander, Diane

    2008-10-01

    In the San Bernardino Mountains of southern California, ozone (O(3)) concentrations have been elevated since the 1950s with peaks reaching 600 ppb and summer seasonal averages >100 ppb in the 1970s. During that period increased mortality of ponderosa and Jeffrey pines occurred. Between the late 1970s and late1990s, O(3) concentrations decreased with peaks approximately 180 ppb and approximately 60 ppb seasonal averages. However, since the late 1990s concentrations have not changed. Monitoring during summers of 2002-2006 showed that O(3) concentrations (2-week averages) for individual years were much higher in western sites (58-69 ppb) than eastern sites (44-50 ppb). Potential O(3) phytotoxicity measured as various exposure indices was very high, reaching SUM00 - 173.5 ppmh, SUM60 - 112.7 ppmh, W126 - 98.3 ppmh, and AOT40 - 75 ppmh, representing the highest values reported for mountain areas in North America and Europe. PMID:18359541

  9. The complete chloroplast genome of Cupressus gigantea, an endemic conifer species to Qinghai-Tibetan Plateau.

    PubMed

    Li, Huie; Guo, Qiqiang; Zheng, Weilie

    2016-09-01

    The complete chloroplast genome of the wild Cupressus gigantea (Cupressaceae) is determined in this study. The circular genome is 128 244 bp in length with 115 single copy genes and two duplicated genes (trnI-CAU and trnQ-UUG). This genome contains 82 protein-coding genes, four ribosomal RNA genes and 31 transfer RNA genes. In these genes, eight genes (atpF, rpoC1, ndhA, ndhB, petB, petD, rpl16 and rpl2) harbor a single intron and two genes (rps12 and ycf3) harbor two introns. This genome does not contain canonical IRs, and the overall GC content is 34.7%. A maximum parsimony phylogenetic analysis revealed that C. gigantea and C. sempervirens are more closely related. PMID:26359779

  10. Carbon and oxygen isotope signatures in conifers from the Swiss National Park

    NASA Astrophysics Data System (ADS)

    Churakova (Sidorova), Olga; Saurer, Matthias; Siegwolf, Rolf; Bryukhanova, Marina; Bigler, Christof

    2015-04-01

    Our study investigates the physiological response and plasticity of trees under climatic changes for larch (Larix decidua) and mountain pine (Pinus mugo var. uncinata) in the Swiss National Park.This research was done in the context of investigation tree mortality and their potential to survive under the harsh mountainous conditions. For the stable isotope analysis we selected four mountain pine and four larch trees from each a south- and north-facing slope. Oxygen isotope ratios can give insight into water sources and evaporative processes. To understand the differential response of mountain pine and larch to short-term climatic changes we measured 18O/16O in water extracted from twigs and needles as well as soil samples for each species at both sites. The seasonal variabilities in 18O/16O needles and twigs of mountain pine and larch trees as well as soil samples were related to changes in climate conditions from end of May until middle of October. To reveal the main climatic factors driving tree growth of pine and larch trees in the long-term, tree-ring width chronologies were built and bulk 18O/16O, 13C/12C wood chronologies were analyzed and correlated with climatic parameters over the last 100 years. The results indicate a strong influence of spring and summer temperatures for larch trees, while variation of spring and summer precipitations is more relevant for mountain pine trees. This work is supported by the Swiss National Science Foundation, Marie-Heim Vögtlin Program PMPDP-2 145507

  11. Alteration of belowground carbon dynamics by nitrogen addition in southern California mixed conifer forests

    NASA Astrophysics Data System (ADS)

    Nowinski, Nicole S.; Trumbore, Susan E.; Jimenez, Gloria; Fenn, Mark E.

    2009-06-01

    Nitrogen deposition rates in southern California are the highest in North America and have had substantial effects on ecosystem functioning. We document changes in the belowground C cycle near ponderosa pine trees experiencing experimental nitrogen (N) addition (50 and 150 kg N ha-1 a-1 as slow release urea since 1997) at two end-member sites along a pollution gradient in the San Bernardino Mountains, California. Despite considerable differences in N deposition between the two sites, we observed parallel changes in microbial substrate use and soil enzyme activity with N addition. Δ14C measurements indicate that the mean age of C respired by the Oa horizon declined 10-15 years with N addition at both sites. N addition caused an increase in cellulolytic enzyme activity at the polluted site and a decrease in ligninolytic enzyme activity at the unpolluted site. Given the likely differences in lignin and cellulose ages, this could explain the difference in the age of microbial respiration with N addition. Measurements of fractionated soil organic matter did not show the same magnitude of changes in response to N addition as were observed for respired C. This lesser response was likely because the soils are mostly composed of C having turnover times of decades to centuries, and 9 years of N amendment were not enough to affect this material. Consequently, Δ14C of respired CO2 provided a more sensitive indicator of the effects of N addition than other methods. Results suggest that enhanced N deposition alone may not result in increased soil C storage in xeric ecosystems.

  12. [Characteristics of morphogenesis and growth processes of conifers in the Chernobyl nuclear accident zone].

    PubMed

    Kozubov, G M; Taskaev, A I

    2007-01-01

    In the article we present data on the study of morphogenesis and of growth processes of Scotch pine (Pinus sylvestris L.) and of Norwey spruce (Picea abies (L.) Karst.) vegetative organs after radiation exposure in the Chernobyl nuclear accident zone. The anomalies in morphogenesis processes at different absorbed doses are described in detail. It is established that the death of pine forest began under absorbed dose 80-100 Gy and more, mass yellowing of needles at 50-60 Gy, and maximal morphosis at 8-12 Gy. Inhibition phenomenon of growth processes under acute irradiation and giantism under durable chronic irradiation were also put under investigation. Features of radiation exposure on pine and fir growth processes at different ontogeny phases were characterized. High radio-sensitivity of Norwey spruce is established. PMID:17571730

  13. Acid mist and ozone effects on the leaf chemistry of two western conifer species.

    PubMed

    Westman, W E; Temple, P J

    1989-01-01

    Seedlings of Jeffrey pine (Pinus jeffreyi) and giant sequoia (Sequoiadendron gigantea) were more susceptible to leaf chemical changes following exposure to acid mist (pH 3.4-2.0) or acid mist/ozone combinations, than to ozone alone (0.1-0.2 microl/litre), when plants were exposed to alternating doses of these pollutants for 6-9 weeks. Under acid mist treatment, leaves exhibited higher levels of nitrogen and sulfur, two elements applied in acid mist. In addition, levels of foliar sodium, and, in the case of giant sequia, potassium, as well, increased under acid mist treatment. Iron and manganese were also mobilized, resulting in significant increases in these elements in pine, and decreases in manganese in giant sequoia foliage. The acid treatment also reduced chlorophyll b concentrations in pine, and, to a less significant extent, in giant sequoia. Calcium, magnesium, barium and strontium were differentially accumulated in giant sequoia compared to Jeffrey pine. Under acid mist treatment, all of these elements (except strontium) declined in concentration in giant sequoia, with calcium showing the most significant trend. The more extensive changes in leaf chemistry induced by acid mist are consistent with earlier observations of significant changes in spectral reflectance of these seedlings after 3 weeks of fumigation. Limited foliage samples collected from these two species in 1985 and 1986 in Sequoia/Kings Canyon National Parks in the southern Sierra Nevada do not in themselves indicate any clearcut or severe effects of ozone alone on leaf chemistry of these species, but a mild influence of nitrate-laden acid deposition, possibly in combination with ozone, is consistent with the rise in nitrogen and lignin levels in Jeffrey pine on sites observed to have moderate visible injury symptoms. No firm conclusions about effects of pollutants on leaf chemistry in these field sites is possible without further study. PMID:15092463

  14. Remote sensing applications to forest vegetation classification and conifer vigor loss due to dwarf mistletoe

    NASA Technical Reports Server (NTRS)

    Douglass, R. W.; Meyer, M. P.; French, D. W.

    1972-01-01

    Criteria was established for practical remote sensing of vegetation stress and mortality caused by dwarf mistletoe infections in black spruce subboreal forest stands. The project was accomplished in two stages: (1) A fixed tower-tramway site in an infected black spruce stand was used for periodic multispectral photo coverage to establish basic film/filter/scale/season/weather parameters; (2) The photographic combinations suggested by the tower-tramway tests were used in low, medium, and high altitude aerial photography.

  15. Seasonal dynamics of mobile carbohydrate pools in phloem and xylem of two alpine timberline conifers

    PubMed Central

    GRUBER, A.; PIRKEBNER, D.; OBERHUBER, W.

    2016-01-01

    Recent studies on non-structural carbohydrate (NSC) reserves in trees focused on xylem NSC reserves, while still little is known about changes in phloem carbohydrate pools, where NSC charging might be significantly different. To gain insight on NSC dynamics in xylem and phloem, we monitored NSC concentrations in stems and roots of Pinus cembra and Larix decidua growing at the alpine timberline throughout 2011. Species-specific differences affected tree phenology and carbon allocation in the course of the year. After a delayed start in spring, NSC concentrations in Larix decidua were significantly higher in all sampled tissues from August until end of growing season. In both species NSC concentrations were five to seven times higher in phloem than in xylem. However, significant correlations between xylem and phloem starch content found for both species indicate a close linkage between long term carbon reserves in both tissues. In Larix decidua also free sugar concentrations in xylem and phloem were significantly correlated throughout the year, while missing correlations between xylem and phloem free sugar pools in Pinus cembra indicate a decline of phloem soluble carbohydrate pools during periods of high sink demand. PMID:24186941

  16. A New Tool for Exploring Climate Change Induced Range Shifts of Conifer Species in China

    PubMed Central

    Kou, Xiaojun; Li, Qin; Beierkuhnlein, Carl; Zhao, Yiheng; Liu, Shirong

    2014-01-01

    It is inevitable that tree species will undergo considerable range shifts in response to anthropogenic induced climate change, even in the near future. Species Distribution Models (SDMs) are valuable tools in exploring general temporal trends and spatial patterns of potential range shifts. Understanding projections to future climate for tree species will facilitate policy making in forestry. Comparative studies for a large number of tree species require the availability of suitable and standardized indices. A crucial limitation when deriving such indices is the threshold problem in defining ranges, which has made interspecies comparison problematic until now. Here we propose a set of threshold-free indices, which measure range explosion (I), overlapping (O), and range center movement in three dimensions (Dx, Dy, Dz), based on fuzzy set theory (Fuzzy Set based Potential Range Shift Index, F-PRS Index). A graphical tool (PRS_Chart) was developed to visualize these indices. This technique was then applied to 46 Pinaceae species that are widely distributed and partly common in China. The spatial patterns of the modeling results were then statistically tested for significance. Results showed that range overlap was generally low; no trends in range size changes and longitudinal movements could be found, but northward and poleward movement trends were highly significant. Although range shifts seemed to exhibit huge interspecies variation, they were very consistent for certain climate change scenarios. Comparing the IPCC scenarios, we found that scenario A1B would lead to a larger extent of range shifts (less overlapping and more latitudinal movement) than the A2 and the B1 scenarios. It is expected that the newly developed standardized indices and the respective graphical tool will facilitate studies on PRS's for other tree species groups that are important in forestry as well, and thus support climate adaptive forest management. PMID:25268604

  17. Evaluation of relationships between cable logging system parameters and damage to residual mixed conifer stands

    SciTech Connect

    Miles, J.; Burk, J.

    1984-01-01

    Cable logging practices were observed on a production logging operation. Using a marked leave tree stand, damage at each phase of the operation was quantified. Log stability, motion and sweep area were also observed for each turn. These variables were evaluated in relation to the system geometry, terrain and logging practices. The results identify variables which influence log stability, motion and sweep area. Logging damage was closely related to operator log control, both for felling and for yarding. Good control could usually be maintained on slopes of less than 35% but special techniques and equipment were required on slopes of more than 35%. Silvicultural prescription, marking quality, planning and layout also affected the level of logging damage.

  18. Warming delays autumn declines in photosynthetic capacity in a boreal conifer, Norway spruce (Picea abies).

    PubMed

    Stinziano, Joseph R; Hüner, Norman P A; Way, Danielle A

    2015-12-01

    Climate change, via warmer springs and autumns, may lengthen the carbon uptake period of boreal tree species, increasing the potential for carbon sequestration in boreal forests, which could help slow climate change. However, if other seasonal cues such as photoperiod dictate when photosynthetic capacity declines, warmer autumn temperatures may have little effect on when carbon uptake capacity decreases in these species. We investigated whether autumn warming would delay photosynthetic decline in Norway spruce (Picea abies (L.) H. Karst.) by growing seedlings under declining weekly photoperiods and weekly temperatures either at ambient temperature or a warming treatment 4 °C above ambient. Photosynthetic capacity was relatively constant in both treatments when weekly temperatures were >8 °C, but declined rapidly at lower temperatures, leading to a delay in the autumn decline in photosynthetic capacity in the warming treatment. The decline in photosynthetic capacity was not related to changes in leaf nitrogen or chlorophyll concentrations, but was correlated with a decrease in the apparent fraction of leaf nitrogen invested in Rubisco, implicating a shift in nitrogen allocation away from the Calvin cycle at low autumn growing temperatures. Our data suggest that as the climate warms, the period of net carbon uptake will be extended in the autumn for boreal forests dominated by Norway spruce, which could increase total carbon uptake in these forests. PMID:26543154

  19. δ18O in the Tropical Conifer Agathis robusta Records ENSO-Related Precipitation Variations

    PubMed Central

    Boysen, Bjorn M. M.; Evans, Michael N.; Baker, Patrick J.

    2014-01-01

    Long-lived trees from tropical Australasia are a potential source of information about internal variability of the El Niño-Southern Oscillation (ENSO), because they occur in a region where precipitation variability is closely associated with ENSO activity. We measured tree-ring width and oxygen isotopic composition (O) of -cellulose from Agathis robusta (Queensland Kauri) samples collected in the Atherton Tablelands, Queensland, Australia. Standard ring-width chronologies yielded low internal consistency due to the frequent presence of false ring-like anatomical features. However, in a detailed examination of the most recent 15 years of growth (1995–2010), we found significant correlation between O and local precipitation, the latter associated with ENSO activity. The results are consistent with process-based forward modeling of the oxygen isotopic composition of -cellulose. The O record also enabled us to confirm the presence of a false growth ring in one of the three samples in the composite record, and to determine that it occurred as a consequence of anomalously low rainfall in the middle of the 2004/5 rainy season. The combination of incremental growth and isotopic measures may be a powerful approach to development of long-term (150+ year) ENSO reconstructions from the terrestrial tropics of Australasia. PMID:25062034

  20. Delayed conifer mortality after fuel reduction treatments: Interactive effects of fuel, fire intensity, and bark beetles

    USGS Publications Warehouse

    Youngblood, A.; Grace, J.B.; Mciver, J.D.

    2009-01-01

    Many low-elevation dry forests of the western United States contain more small trees and fewer large trees, more down woody debris, and less diverse and vigorous understory plant communities compared to conditions under historical fire regimes. These altered structural conditions may contribute to increased probability of unnaturally severe wildfires, susceptibility to uncharacteristic insect outbreaks, and drought-related mortality. Broad-scale fuel reduction and restoration treatments are proposed to promote stand development on trajectories toward more sustainable structures. Little research to date, however, has quantified the effects of these treatments on the ecosystem, especially delayed and latent tree mortality resulting directly or indirectly from treatments. In this paper, we explore complex hypotheses relating to the cascade of effects that influence ponderosa pine (Pinus ponderosa) and Douglas-fir (Pseudotsuga menziesii) mortality using structural equation modeling (SEM). We used annual census and plot data through six growing seasons after thinning and four growing seasons after burning from a replicated, operational-scale, completely randomized experiment conducted in northeastern Oregon, USA, as part of the national Fire and Fire Surrogate study. Treatments included thin, burn, thin followed by burn (thin+burn), and control. Burn and thin+burn treatments increased the proportion of dead trees while the proportion of dead trees declined or remained constant in thin and control units, although the density of dead trees was essentially unchanged with treatment. Most of the new mortality (96%) occurred within two years of treatment and was attributed to bark beetles. Bark beetle-caused tree mortality, while low overall, was greatest in thin + burn treatments. SEM results indicate that the probability of mortality of large-diameter ponderosa pine from bark beetles and wood borers was directly related to surface fire severity and bole charring, which in turn depended on fire intensity, which was greater in units where thinning increased large woody fuels. These results have implications when deciding among management options for restoring ecosystem health in similar ponderosa pine and Douglas-fir forests. ?? 2009 by the Ecological Society of America.

  1. EFFECTS OF ELEVATED CO2 AND OTHER ENVIRONMENTAL STRESSES ON WESTERN CONIFER SEEDLINGS

    EPA Science Inventory

    The future productivity of forests will be affected by increased levels of atmospheric CO2 which will likely be associated with climate change and regional air pollutants such as O3. We have conducted two long-term experiments to determine the effects of elevated CO2 and other s...

  2. Estimating aboveground biomass for broadleaf woody plants and young conifers in Sierra Nevada, California forests.

    USGS Publications Warehouse

    McGinnis, Thomas W.; Shook, Christine D.; Keeley, Jon E.

    2010-01-01

    Quantification of biomass is fundamental to a wide range of research and natural resource management goals. An accurate estimation of plant biomass is essential to predict potential fire behavior, calculate carbon sequestration for global climate change research, assess critical wildlife habitat, and so forth. Reliable allometric equations from simple field measurements are necessary for efficient evaluation of plant biomass. However, allometric equations are not available for many common woody plant taxa in the Sierra Nevada. In this report, we present more than 200 regression equations for the Sierra Nevada western slope that relate crown diameter, plant height, crown volume, stem diameter, and both crown diameter and height to the dry weight of foliage, branches, and entire aboveground biomass. Destructive sampling methods resulted in regression equations that accurately predict biomass from one or two simple, nondestructive field measurements. The tables presented here will allow researchers and natural resource managers to easily choose the best equations to fit their biomass assessment needs.

  3. Estimating aboveground biomass for broadleaf woody plants and young conifers in Sierra Nevada, California, forests

    USGS Publications Warehouse

    McGinnis, T.W.; Shook, C.D.; Keeley, J.E.

    2010-01-01

    Quantification of biomass is fundamental to a wide range of research and natural resource management goals. An accurate estimation of plant biomass is essential to predict potential fire behavior, calculate carbon sequestration for global climate change research, assess critical wildlife habitat, and so forth. Reliable allometric equations from simple field measurements are necessary for efficient evaluation of plant biomass. However, allometric equations are not available for many common woody plant taxa in the Sierra Nevada. In this report, we present more than 200 regression equations for the Sierra Nevada western slope that relate crown diameter, plant height, crown volume, stem diameter, and both crown diameter and height to the dry weight of foliage, branches, and entire aboveground biomass. Destructive sampling methods resulted in regression equations that accurately predict biomass from one or two simple, nondestructive field measurements. The tables presented here will allow researchers and natural resource managers to easily choose the best equations to fit their biomass assessment needs.

  4. MODIFYING LIGNIN IN CONIFERS: THE ROLE OF HCT DURING TRACHEARY ELEMENT FORMATION IN PINUS RADIATA

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The enzyme hydroxycinnamoyl-CoA: shikimate hydroxycinnamoyltransferase (HCT) is involved in the production of methoxylated monolignols that are precursors to guaiacyl and syringyl lignin in angiosperm species. We identified and cloned a putative HCT gene from Pinus radiata, a coniferous gymnosperm, ...

  5. Assessing Surface Fuel Hazard in Coastal Conifer Forests through the Use of LiDAR Remote Sensing

    NASA Astrophysics Data System (ADS)

    Koulas, Christos

    The research problem that this thesis seeks to examine is a method of predicting conventional fire hazards using data drawn from specific regions, namely the Sooke and Goldstream watershed regions in coastal British Columbia. This thesis investigates whether LiDAR data can be used to describe conventional forest stand fire hazard classes. Three objectives guided this thesis: to discuss the variables associated with fire hazard, specifically the distribution and makeup of fuel; to examine the relationship between derived LiDAR biometrics and forest attributes related to hazard assessment factors defined by the Capitol Regional District (CRD); and to assess the viability of the LiDAR biometric decision tree in the CRD based on current frameworks for use. The research method uses quantitative datasets to assess the optimal generalization of these types of fire hazard data through discriminant analysis. Findings illustrate significant LiDAR-derived data limitations, and reflect the literature in that flawed field application of data modelling techniques has led to a disconnect between the ways in which fire hazard models have been intended to be used by scholars and the ways in which they are used by those tasked with prevention of forest fires. It can be concluded that a significant trade-off exists between computational requirements for wildfire simulation models and the algorithms commonly used by field teams to apply these models with remote sensing data, and that CRD forest management practices would need to change to incorporate a decision tree model in order to decrease risk.

  6. Ungulate Browsing Maintains Shrub Diversity in the Absence of Episodic Disturbance in Seasonally-Arid Conifer Forest

    PubMed Central

    Pekin, Burak K.; Wisdom, Michael J.; Endress, Bryan A.; Naylor, Bridgett J.; Parks, Catherine G.

    2014-01-01

    Ungulates exert a strong influence on the composition and diversity of vegetation communities. However, little is known about how ungulate browsing pressure interacts with episodic disturbances such as fire and stand thinning. We assessed shrub responses to variable browsing pressure by cattle and elk in fuels treated (mechanical removal of fuels followed by prescribed burning) and non-fuels treated forest sites in northeastern Oregon, US. Seven treatment paddocks were established at each site; three with cattle exclusion and low, moderate and high elk browsing pressure, three with elk exclusion and low, moderate and high cattle browsing pressure, and one with both cattle and elk exclusion. The height, cover and number of stems of each shrub species were recorded at multiple plots within each paddock at the time of establishment and six years later. Changes in shrub species composition over the six year period were explored using multivariate analyses. Generalized Linear Mixed Models were used to determine the effect of browsing pressure on the change in shrub diversity and evenness. Vegetation composition in un-browsed paddocks changed more strongly and in different trajectories than in browsed paddocks at sites that were not fuels treated. In fuels treated sites, changes in composition were minimal for un-browsed paddocks. Shrub diversity and evenness decreased strongly in un-browsed paddocks relative to paddocks with low, moderate and high browsing pressure at non-fuels treated sites, but not at fuels treated sites. These results suggest that in the combined absence of fire, mechanical thinning and ungulate browsing, shrub diversity is reduced due to increased dominance by certain shrub species which are otherwise suppressed by ungulates and/or fuels removal. Accordingly, ungulate browsing, even at low intensities, can be used to suppress dominant shrub species and maintain diversity in the absence of episodic disturbance events. PMID:24466006

  7. Ungulate browsing maintains shrub diversity in the absence of episodic disturbance in seasonally-arid conifer forest.

    PubMed

    Pekin, Burak K; Wisdom, Michael J; Endress, Bryan A; Naylor, Bridgett J; Parks, Catherine G

    2014-01-01

    Ungulates exert a strong influence on the composition and diversity of vegetation communities. However, little is known about how ungulate browsing pressure interacts with episodic disturbances such as fire and stand thinning. We assessed shrub responses to variable browsing pressure by cattle and elk in fuels treated (mechanical removal of fuels followed by prescribed burning) and non-fuels treated forest sites in northeastern Oregon, US. Seven treatment paddocks were established at each site; three with cattle exclusion and low, moderate and high elk browsing pressure, three with elk exclusion and low, moderate and high cattle browsing pressure, and one with both cattle and elk exclusion. The height, cover and number of stems of each shrub species were recorded at multiple plots within each paddock at the time of establishment and six years later. Changes in shrub species composition over the six year period were explored using multivariate analyses. Generalized Linear Mixed Models were used to determine the effect of browsing pressure on the change in shrub diversity and evenness. Vegetation composition in un-browsed paddocks changed more strongly and in different trajectories than in browsed paddocks at sites that were not fuels treated. In fuels treated sites, changes in composition were minimal for un-browsed paddocks. Shrub diversity and evenness decreased strongly in un-browsed paddocks relative to paddocks with low, moderate and high browsing pressure at non-fuels treated sites, but not at fuels treated sites. These results suggest that in the combined absence of fire, mechanical thinning and ungulate browsing, shrub diversity is reduced due to increased dominance by certain shrub species which are otherwise suppressed by ungulates and/or fuels removal. Accordingly, ungulate browsing, even at low intensities, can be used to suppress dominant shrub species and maintain diversity in the absence of episodic disturbance events. PMID:24466006

  8. Large-scale canopy opening causes decreased photosynthesis in the saplings of shade-tolerant conifer, Abies veitchii.

    PubMed

    Mitamura, Masako; Yamamura, Yasuo; Nakano, Takashi

    2009-01-01

    Although the environmental change by canopy gap formation in a forest improves the light availability for the saplings on the forest floor, it may result in stresses on the saplings due to high radiation and drought. In large-scale gaps, the photosynthesis of shade-tolerant species may be inhibited by high radiation and drought stress if they lack effective tolerance or avoidance mechanisms for the stresses. We investigated the photosynthetic traits and water relations of Abies veitchii Lindl. saplings in an open habitat created by an avalanche and in a nearby forest floor habitat undisturbed by the avalanche. We analyzed the influence of exposed conditions on sapling photosynthesis. The maximum photosynthetic rate of the saplings in the open habitat was lower than that in the forest habitat. The ratio of variable to maximum chlorophyll fluorescence (F(v)/F(m)) was lower in the open habitat than that in the forest habitat during the late growing season, indicating that the open habitat saplings suffer photoinhibition of photosystem II for a long period. A lower Rubisco concentration in needles in the open habitat indicated the breakdown of this photosynthetic protein because of excess solar energy resulting from serious photoinhibition. The shoot water potential of the saplings in the open habitat at daytime was higher than that of the saplings in the forest habitat because of less transpiration caused by the remarkable stomatal closure in the open habitat. Although these acclimations to high radiation improve the tolerance of A. veitchii saplings to high radiation and drought stress, they would result in low gain of daily carbon and a reduction in growth in the open habitat. PMID:19203939

  9. Root dipping of conifer seedlings shows little benefit in the northern Rocky Mountains. Forest Service research paper

    SciTech Connect

    Sloan, J.P.

    1994-07-01

    In the growth chamber, in the greenhouse, and in field studies, root dipping of bareroot lodgepole pine, ponderosa pine, Douglas-fir, and Engelmann spruce seedlings did not improve seedling survival, shoot growth, or root growth under dry soil conditions. Seedling root growth varied with tree species, soil type, and type of rood dip.

  10. Role of nurse shrubs for restoration planting of two conifers in southeast of Mu Us Sandland, China.

    PubMed

    Tian, Li; Wang, Xiaoan

    2015-01-01

    Two-year-old pine seedlings, Pinus tabulaeformis and Pinus sylvestris were planted under the canopies of three shrub species and in open areas to test for facilitation during seedling establishment in southeast of Mu Us Sandland in northern part of Shaanxi, China. Pine seedlings establishment were assessed three times within three consecutive growing seasons. Height, area and volume of shrubs were measured. Microclimate conditions (light intensity, air temperature and soil temperature and moisture) were recorded in four microhabitats. Near surface light intensity, air temperature and soil temperature were lower under shrubs, which led to higher soil moisture and pine seedlings under the canopy of shrub species. Pine seedlings survival was remarkably higher when planted under the canopy of shrub species (65.7% for P. tabulaeformis and 60.6% for P. sylvestris) as compared with open areas (22.4% for P. tabulaeformis and 38% for P. sylvestris). P. tabulaeformis with shade-tolerance trait expressed high survival of seedlings as compared to that of P. sylvestris seedlings under the canopy of shrub species (Tukey test, P < 0.05). Leguminous shrub (Caragana korshinskii and Amorpha fruticosa) showed continuously facilitation during moderate drought stress (summer 2012, 2013 and 2014), but dense and small shrub (Caragana korshinskii) reduced the establishment of seedlings possibly for light competition. Salix cheilophila showed a facilitation effect in growing seasons, but the effect of allelopathy led to high mortality of seedlings under their canopy. in addition, two pine growths were not inhibited when planted under three shrubs. In conclusions, nurse-shrub facilitation can be used as an effective restoration strategy in this sandland. However, use of shrubs as nurse plants depends on their canopy structure and ecological impacts; the selection of target species depends on their shade tolerance traits. PMID:26536812

  11. Cell Wall Ultrastructure of Stem Wood, Roots, and Needles of a Conifer Varies in Response to Moisture Availability

    DOE PAGESBeta

    Pattathil, Sivakumar; Ingwers, Miles W.; Victoriano, Olivia L.; Kandemkavil, Sindhu; McGuire, Mary Anne; Teskey, Robert O.; Aubrey, Doug P.

    2016-06-24

    The composition, integrity, and architecture of the macromolecular matrix of cell walls, collectively referred to as cell wall ultrastructure, exhibits variation across species and organs and among cell types within organs. Indirect approaches have suggested that modifications to cell wall ultrastructure occur in response to abiotic stress; however, modifications have not been directly observed. Glycome profiling was used to study cell wall ultrastructure by examining variation in composition and extractability of non-cellulosic glycans in cell walls of stem wood, roots, and needles of loblolly pine saplings exposed to high and low soil moisture. Soil moisture influenced physiological processes and themore » overall composition and extractability of cell wall components differed as a function of soil moisture treatments. The strongest response of cell wall ultrastructure to soil moisture was increased extractability of pectic backbone epitopes in the low soil moisture treatment. The higher abundance of these pectic backbone epitopes in the oxalate extract indicate that the loosening of cell wall pectic components could be associated with the release of pectic signals as a stress response. The increased extractability of pectic backbone epitopes in response to low soil moisture availability was more pronounced in stem wood than in roots or needles. Additional responses to low soil moisture availability were observed in lignin associated carbohydrates released in chlorite extracts of stem wood, including an increased abundance of pectic arabinogalactan epitopes. Overall, these results indicate that cell walls of loblolly pine organs undergo changes in their ultrastructural composition and extractability as a response to soil moisture availability and that cell walls of the stem wood are more responsive to low soil moisture availability compared to cell walls of roots and needles. In conclusion, to our knowledge, this is the first direct evidence, delineated by glycomic analyses, that abiotic stress affects cell wall ultrastructure. This study is also unique in that glycome profiling of pine needles has never before been reported.« less

  12. Responses of two semiarid conifer tree species to reduced precipitation and warming reveal new perspectives for stomatal regulation

    DOE PAGESBeta

    Garcia-Forner, Nuria; Adams, Henry D.; Sevanto, Sanna; Collins, Adam D.; Dickman, Lee T.; Hudson, Patrick J.; Zeppel, Melanie J. B.; Jenkins, Michael W.; Powers, Heath; Martinez-Vilalta, Jordi; et al

    2015-08-08

    Here, relatively anisohydric species are predicted to be more predisposed to hydraulic failure than relatively isohydric species, as they operate with narrower hydraulic safety margins. We subjected co-occurring anisohydric Juniperus monosperma and isohydric Pinus edulis trees to warming, reduced precipitation, or both, and measured their gas exchange and hydraulic responses. We found that reductions in stomatal conductance and assimilation by heat and drought were more frequent during relatively moist periods, but these effects were not exacerbated in the combined heat and drought treatment. Counter to expectations, both species exhibited similar gs temporal dynamics in response to drought. Further, whereas P.more » edulis exhibited chronic embolism, J. monosperma showed very little embolism due to its conservative stomatal regulation and maintenance of xylem water potential above the embolism entry point. This tight stomatal control and low levels of embolism experienced by juniper refuted the notion that very low water potentials during drought are associated with loose stomatal control and with the hypothesis that anisohydric species are more prone to hydraulic failure than isohydric species. Because direct association of stomatal behaviour with embolism resistance can be misleading, we advocate consideration of stomatal behaviour relative to embolism resistance for classifying species drought response strategies.« less

  13. Responses of two semiarid conifer tree species to reduced precipitation and warming reveal new perspectives for stomatal regulation

    SciTech Connect

    Garcia-Forner, Nuria; Adams, Henry D.; Sevanto, Sanna; Collins, Adam D.; Dickman, Lee T.; Hudson, Patrick J.; Zeppel, Melanie J. B.; Jenkins, Michael W.; Powers, Heath; Martinez-Vilalta, Jordi; Mcdowell, Nate G.

    2015-08-08

    Here, relatively anisohydric species are predicted to be more predisposed to hydraulic failure than relatively isohydric species, as they operate with narrower hydraulic safety margins. We subjected co-occurring anisohydric Juniperus monosperma and isohydric Pinus edulis trees to warming, reduced precipitation, or both, and measured their gas exchange and hydraulic responses. We found that reductions in stomatal conductance and assimilation by heat and drought were more frequent during relatively moist periods, but these effects were not exacerbated in the combined heat and drought treatment. Counter to expectations, both species exhibited similar gs temporal dynamics in response to drought. Further, whereas P. edulis exhibited chronic embolism, J. monosperma showed very little embolism due to its conservative stomatal regulation and maintenance of xylem water potential above the embolism entry point. This tight stomatal control and low levels of embolism experienced by juniper refuted the notion that very low water potentials during drought are associated with loose stomatal control and with the hypothesis that anisohydric species are more prone to hydraulic failure than isohydric species. Because direct association of stomatal behaviour with embolism resistance can be misleading, we advocate consideration of stomatal behaviour relative to embolism resistance for classifying species drought response strategies.

  14. Fate of spinosad in litter and soils of a mixed conifer stand in the Acadian forest region of New Brunswick.

    PubMed

    Thompson, Dean G; Harris, Brenda J; Lanteigne, Leonard J; Buscarini, Teresa M; Chartrand, Derek T

    2002-02-13

    Spinosad is a natural insecticide, produced via fermentation culture of the actinomycete Saccharopolyspora spinosa, with potential use against a number of forest pests including spruce budworm (Choristoneura fumiferana [Clem]). Persistence of spinosad was determined in terrestrial fate experiments conducted within a semimature stand of black spruce (Picea mariana [Mill.]) and balsam fir (Abies balsamea [L]) in the Acadian forest region of New Brunswick, Canada. Results of experiments established under full coniferous canopy and in a canopy opening indicated that spinosad dissipated rapidly following hyperbolic kinetics in both litter and soils and was not susceptible to leaching. Time to 50% dissipation estimates for spinosyn A ranged from 2.0 to 12.4 days depending upon matrix and experimental conditions. Spinosyn D dissipated to levels below quantitation limits (0.02 microg/g of dry mass) within 7 days in all cases. Sporadic low-level detection of the demethylated metabolites suggested that parent compounds were degraded in situ. PMID:11829646

  15. Trials of mixed-conifer plantings for increasing diversity in the lodgepole pine type. Forest Service research note

    SciTech Connect

    Cole, D.M.

    1993-03-01

    Greater forest diversity is needed in the lodgepole pine forest cover type--particularly, along and east of the Continental Divide in Montana--if large-scale losses from cyclical bark beetle outbreaks and subsequent wildfires are to be reduced. Three species were compared to lodgepole pine in a test of mixed-species planting in three ecological habitat types of the lodgepole pine type. Differences in seedling survival, condition, and growth were observed among species and among habitat types by the fifth year after planting. The results indicate Englemann spruce and Douglas-fir can be used to attain mixed-species stands by interplanting naturally regenerated lodgepole pine seedling stands. Western larch probably can succeed only when planted in moist Douglas-fir, spruce, or the warmer subalpine fir habitat types east of the Continental Divide. Because of greater frost tolerance, western larch x alpine larch hybrids are promising for increasing forest diversity in some of the colder subalpine fir habitat types.

  16. Changes in tracheid and ray traits in fire scars of North American conifers and their ecophysiological implications

    PubMed Central

    Arbellay, Estelle; Stoffel, Markus; Sutherland, Elaine K.; Smith, Kevin T.; Falk, Donald A.

    2014-01-01

    Background and Aims Fire scars have been widely used as proxies for the reconstruction of fire history; however, little is known about the impact of fire injury on wood anatomy. This study investigates changes in tracheid and ray traits in fire scars of Douglas fir (Pseudotsuga menziesii), western larch (Larix occidentalis) and ponderosa pine (Pinus ponderosa), and discusses their ecophysiological implications for tree recovery from fire. Methods Transverse and tangential microsections were prepared for light microscopy and image analysis. Measurements of tracheids and rays were made in the three spatial dimensions: axially (at different section heights), radially (in different rings) and tangentially (with increasing distance from the wound margin). Key Results Changes were strongest in the first year after fire injury, with a decrease in tracheid size (by 25–30 %) and an increase in tracheid density (by 21–53 %) for the three species. In addition, an increase in ray size (by 5–27 %) and an increase in ray density (by 19–36 %) were found in P. menziesii and L. occidentalis. Changes were comparable along the fire-injured stem and were often most marked close to the fire scar. Conclusions The differentiation after fire injury of narrower and more numerous tracheids expresses a trade-off between hydraulic safety and hydraulic efficiency, while that of larger and more numerous rays serves compartmentalization and wound closure, mechanical strength and defence responses. Pinus ponderosa does not generally produce more ray tissue after fire injury and thus appears to be more adapted to fire. PMID:24941999

  17. SENSITIVITY OF IMPORTANT WESTERN CONIFER SPECIES TO SO2 AND SEASONAL INTERACTION OF ACID FOG AND OZONE

    EPA Science Inventory

    The increased concern for forest health and the role of anthropogenic deposition, including acidic/wet deposition and gaseous air pollutants, has led to the need to understand which forest species face the highest risk from atmospheric deposition. n order to address this issue fo...

  18. Cell Wall Ultrastructure of Stem Wood, Roots, and Needles of a Conifer Varies in Response to Moisture Availability.

    PubMed

    Pattathil, Sivakumar; Ingwers, Miles W; Victoriano, Olivia L; Kandemkavil, Sindhu; McGuire, Mary Anne; Teskey, Robert O; Aubrey, Doug P

    2016-01-01

    The composition, integrity, and architecture of the macromolecular matrix of cell walls, collectively referred to as cell wall ultrastructure, exhibits variation across species and organs and among cell types within organs. Indirect approaches have suggested that modifications to cell wall ultrastructure occur in response to abiotic stress; however, modifications have not been directly observed. Glycome profiling was used to study cell wall ultrastructure by examining variation in composition and extractability of non-cellulosic glycans in cell walls of stem wood, roots, and needles of loblolly pine saplings exposed to high and low soil moisture. Soil moisture influenced physiological processes and the overall composition and extractability of cell wall components differed as a function of soil moisture treatments. The strongest response of cell wall ultrastructure to soil moisture was increased extractability of pectic backbone epitopes in the low soil moisture treatment. The higher abundance of these pectic backbone epitopes in the oxalate extract indicate that the loosening of cell wall pectic components could be associated with the release of pectic signals as a stress response. The increased extractability of pectic backbone epitopes in response to low soil moisture availability was more pronounced in stem wood than in roots or needles. Additional responses to low soil moisture availability were observed in lignin-associated carbohydrates released in chlorite extracts of stem wood, including an increased abundance of pectic arabinogalactan epitopes. Overall, these results indicate that cell walls of loblolly pine organs undergo changes in their ultrastructural composition and extractability as a response to soil moisture availability and that cell walls of the stem wood are more responsive to low soil moisture availability compared to cell walls of roots and needles. To our knowledge, this is the first direct evidence, delineated by glycomic analyses, that abiotic stress affects cell wall ultrastructure. This study is also unique in that glycome profiling of pine needles has never before been reported. PMID:27446114

  19. Rock outcrops reduce temperature-induced stress for tropical conifer by decoupling regional climate in the semiarid environment

    NASA Astrophysics Data System (ADS)

    Locosselli, Giuliano Maselli; Cardim, Ricardo Henrique; Ceccantini, Gregório

    2016-05-01

    We aimed to understand the effect of rock outcrops on the growth of Podocarpus lambertii within a microrefuge. Our hypothesis holds that the growth and survival of this species depend on the regional climate decoupling provided by rock outcrops. To test this hypothesis, we characterized the microclimate of (1) surrounding vegetation, (2) rock outcrop corridors, and (3) adjacencies. We assessed population structure by collecting data of specimen stem diameter and height. We also assessed differences between vegetation associated or not with outcrops using satellite imaging. For dendrochronological analyses, we sampled 42 individuals. Tree rings of 31 individuals were dated, and climate-growth relationships were tested. Rock outcrops produce a favorable microclimate by reducing average temperature by 4.9 °C and increasing average air humidity by 12 %. They also reduce the variability of atmospheric temperature by 42 % and air humidity by 20 % supporting a vegetation with higher leaf area index. Within this vegetation, specimen height was strongly constrained by the outcrop height. Although temperature and precipitation modulate this species growth, temperature-induced stress is the key limiting growth factor for this population of P. lambertii. We conclude that this species growth and survival depend on the presence of rock outcrops. These topography elements decouple regional climate in a favorable way for this species growth. However, these benefits are restricted to the areas sheltered by rock outcrops. Although this microrefuge supported P. lambertii growth so far, it is unclear whether this protection would be sufficient to withstand the stress of future climate changes.

  20. Subalpine Conifer Seedling Demographics: Species Responses to Climate Manipulations Across an Elevational Gradient at Niwot Ridge, Colorado

    NASA Astrophysics Data System (ADS)

    Castanha, C.; Germino, M. J.; Torn, M. S.; Ferrenberg, S.; Harte, J.; Kueppers, L. M.

    2010-12-01

    The effect of climate change on future ranges of treeline species is poorly understood. For example, it is not known whether trees will recruit into the alpine, above the current treeline, and whether population-level differences in trees will mediate range shifts. At Niwot Ridge, Colorado, we used common gardens and climate manipulations to test predictions that warming will lead to greater recruitment at and beyond the cold edge of these species ranges, and will reduce recruitment at the warm edge. Seed from local populations of limber pine and Englemann spruce was harvested and reciprocally planted in 3 experimental sites spanning an elevation gradient from lower subalpine forest (10,000’), to the upper subalpine treeline ecotone (11,000’), to the alpine tundra (11,300’). In Fall 2009 seeds were sown into 20 plots at each site. Overhead infrared heaters targeted increases in growing season surface soil temperature of 4-5°C. The heating treatment, which began in October 2009, was crossed with manual watering, which was initiated following snowmelt in 2010. Over the 2010 growing season, we surveyed seedling germination and mortality weekly. Germination began in early May at the forest site, in early June at the krummholz site, and in early July at the alpine site. Depending on the site and plot, heating accelerated germination by 1 to 4 weeks. Seed source elevation, species, and site all affected germination, with effects for the two species also depending on site. At all sites, lower elevation, warm-edge populations had higher germination rates than high-elevation, cool-edge populations, indicating a potential bottleneck for germination of the high elevation seed sources in the adjacent alpine tundra. At all sites, survival was generally higher for pine than for spruce. Watering tended to enhance pine germinant survival while heating tended to depress spruce germinant survival. Our results indicate that the alpine tundra, generally considered an inhospitable environment, was not favorable for Englemann spruce, even with warming. In contrast, once seeds were introduced, the alpine tundra proved favorable to limber pine germination, irrespective of the climate manipulation.

  1. Responses Of Subalpine Conifer Seedling Germination And Survival To Soil Microclimate In The Alpine Treeline Warming Experiment

    NASA Astrophysics Data System (ADS)

    Castanha, C.; Moyes, A. B.; Torn, M. S.; Germino, M. J.; Kueppers, L. M.

    2011-12-01

    At Niwot Ridge, Colorado, we used common gardens and climate manipulations to investigate potential subalpine tree species range shifts due to climate change. In Fall 2009 we harvested seed from local populations of limber pine and Englemann spruce, which we sowed in 3 experimental sites spanning an elevation gradient from lower subalpine forest (3080m asl), to the upper subalpine treeline ecotone (3400m asl), to the alpine tundra (3550m asl). In October we turned on overhead infrared heaters designed to increase growing season surface soil temperature by 4-5°C, and following snowmelt in 2010 we crossed this heating treatment with manual watering, adding 3mm of water each week. Here we report on the species, site, and treatment effects on seedling emergence and survival as mediated by snowmelt date, soil temperature, and soil moisture. Depending on the site and plot, heating accelerated germination by 1 to 4 weeks. Germination degree days (heat accumulation required for seed germination) were greater for pine than for spruce and greater in drier plots. Seedling survival was explained by date of emergence, with older seedlings more likely to survive the season. Survival was also explained by drought degree days -- the number of days below critical soil moisture thresholds compounded by high temperature -- with lower thresholds for spruce than for pine. Our preliminary results indicate that a warmer environment will stimulate germination for both species, but that, survival - especially for spruce - will be critically modulated by summer soil moisture.

  2. Differential effects of conifer and broadleaf litter inputs on soil organic carbon chemical composition through altered soil microbial community composition.

    PubMed

    Wang, Hui; Liu, Shi-Rong; Wang, Jing-Xin; Shi, Zuo-Min; Xu, Jia; Hong, Pi-Zheng; Ming, An-Gang; Yu, Hao-Long; Chen, Lin; Lu, Li-Hua; Cai, Dao-Xiong

    2016-01-01

    A strategic selection of tree species will shift the type and quality of litter input, and subsequently magnitude and composition of the soil organic carbon (SOC) through soil microbial community. We conducted a manipulative experiment in randomized block design with leaf litter inputs of four native subtropical tree species in a Pinus massoniana plantation in southern China and found that the chemical composition of SOC did not differ significantly among treatments until after 28 months of the experiment. Contrasting leaf litter inputs had significant impacts on the amounts of total microbial, Gram-positive bacterial, and actinomycic PLFAs, but not on the amounts of total bacterial, Gram-negative bacterial, and fungal PLFAs. There were significant differences in alkyl/O-alkyl C in soils among the leaf litter input treatments, but no apparent differences in the proportions of chemical compositions (alkyl, O-alkyl, aromatic, and carbonyl C) in SOC. Soil alkyl/O-alkyl C was significantly related to the amounts of total microbial, and Gram-positive bacterial PLFAs, but not to the chemical compositions of leaf litter. Our findings suggest that changes in forest leaf litter inputs could result in changes in chemical stability of SOC through the altered microbial community composition. PMID:27256545

  3. Analysis of diterpenic compounds by GC-MS/MS: contribution to the identification of main conifer resins.

    PubMed

    Azemard, Clara; Menager, Matthieu; Vieillescazes, Catherine

    2016-09-01

    The three principal types of molecules composing diterpenic resins are the abietanes, pimaranes and labdanes. The study of their fragmentation was performed by gas chromatography coupled to an ion trap mass spectrometer, on standards and resins used in paint varnishes: colophony and sandarac. We found that the general fragmentation pattern was mostly governed by the location of the double bonds on the different cycles and the presence of functional groups, and not by the nature of the C13 group in the case of abietanes and pimaranes. As for the labdanes, the loss of their alkyl chain is very specific. This study develops an analytical strategy using tandem mass spectrometry (MS/MS) experiments to validate the proposed mechanisms of fragmentation and to find the ions of interest for the identification of diterpenic molecules. Graphical Abstract Analysis of diterpenic compounds by GC-MS/MS. PMID:27449645

  4. Rainforest birds: A land manager's guide to breeding bird habitat in young conifer forests in the Pacific Northwest

    USGS Publications Warehouse

    Altman, Bob; Hagar, Joan

    2007-01-01

    An underlying premise of the Guide is that forest management has a direct and significant influence on bird populations. Consequently, manipulation of forest conditions as part of forest management can be designed and implemented to achieve bird conservation objectives (Busing and Garman, 2002; Lehmkuhl and others, 2002). It is not our intent to describe all the potential forest management activities that could be conducted to achieve the desired habitat conditions for birds. Those need to be determined locally by assessing the most ecologically appropriate management at each site. However, to assist land managers, the Guide offers some basic forest management activities that are widely accepted for achieving habitat conditions and features which benefit breeding birds.

  5. Vegetative trends in a young conifer plantation after 10 years of grazing by sheep. Forest Service research paper (Final)

    SciTech Connect

    McDonald, P.M.; Fiddler, G.O.

    1993-02-01

    An 11-year-old ponderosa pine (pinus pronderosa) plantation in northern California was grazed annually in summer by 600-1150 dry (nonlactating) ewes in an attempt to reduce competing vegetation and increase growth of pine seedlings. The sheep also provided an opportunity to evaluate density and developmental trends in the pine, shrub, grass, thistle, and forb components of the plant community. A manual release and a deer-only treatment provided contrast to the effects of grazing by sheep. In general, stem diameter and foliar cover of ponderosa pines, rarely damaged by sheep or deer, were significantly greater in manually grubbed areas, but only after 8 years. Pines in grazed areas never differed significantly in height, stem diameter, or foliar cover from control areas. Density, cover, and height of deerbrush (Ceanothus integerrimus) were generally fewer and lower it grubbed and grazed, but grass and bull thistle (Cirsium vulgare) were larger and more numerous in these treatments. Forb cover was highest in the grubbed treatment.

  6. Suitability of Pines and Other Conifers as Hosts for the Invasive Mediterranean Pine Engraver (Coleoptera: Scolytidae) in North America

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The invasive Mediterranean pine engraver, Orthotomicus erosus (Wollaston), was detected in North America in 2004 and is currently distributed in the southern Central Valley of California. It originates from the Mediterranean region, the Middle East, and Asia, and reproduces on pines. To identify p...

  7. Evolutionary origin and demographic history of an ancient conifer (Juniperus microsperma) in the Qinghai-Tibetan Plateau

    PubMed Central

    Shang, Hui-Ying; Li, Zhong-Hu; Dong, Miao; Adams, Robert P.; Miehe, Georg; Opgenoorth, Lars; Mao, Kang-Shan

    2015-01-01

    All Qinghai-Tibetan Plateau (QTP) endemic species are assumed to have originated recently, although very rare species most likely diverged early. These ancient species provide an excellent model to examine the origin and evolution of QTP endemic plants in response to the QTP uplifts and the climate changes that followed in this high altitude region. In this study, we examined these hypotheses by employing sequence variation from multiple nuclear and chloroplast DNA of 239 individuals of Juniperus microsperma and its five congeners. Both phylogenetic and population genetic analyses revealed that J. microsperma diverged from its sister clade comprising two species with long isolation around the Early Miocene, which corresponds to early QTP uplift. Demographic modeling and coalescent tests suggest that J. microsperma experienced an obvious bottleneck event during the Quaternary when the global climate greatly oscillated. The results presented here support the hypotheses that the QTP uplifts and Quaternary climate changes played important roles in shaping the evolutionary history of this rare juniper. PMID:25977142

  8. Vegetation trends in a young conifer plantation after grazing, grubbing, and chemical release. Forest Service research paper

    SciTech Connect

    McDonald, P.M.; Fiddler, G.O.; Meyer, P.W.

    1996-07-01

    A 3-year-old Jeffrey pine (Pinus jeffreyi Grev. and Balf.) plantation in northern California was released by grazing with sheep for 5 years, manual grubbing for 3 years, and applying a herbicide 1 year. These treatments plus an untreated control provided an opportunity to evaluate density and developmental trends for the pine, shrub, and grass components of the plant community during 1986-1994. Creating a near-free-to-grow condition by applying Velpar herbicide modified the plant community by controlling the shrubs, reduced cheatgrass in the second and third years, and caused mean pine diameter, foliar cover, and height to be significantly greater than counterparts in all other treatments. Nipping of twigs by sheep stimulated foliar cover of snowbrush to more than three times that of similar plants in the control. Grazing significantly reduced greenleaf manzanita cover. Grubbing a 4-foot radius around pine seedlings, and grazing with sheep did not increase Jeffrey pine development relative to the control. Because of this ineffectiveness, the efficacy of grazing as a silvicultural tool is questioned and suggestions for its betterment are presented.

  9. Afforestation of abandoned farmland with conifer seedlings inoculated with three ectomycorrhizal fungi - impact on plant performance and ectomycorrhizal community.

    PubMed

    Menkis, A; Vasiliauskas, R; Taylor, A F S; Stenlid, J; Finlay, R

    2007-06-01

    The aim of a 3-year study was to investigate whether inoculation of Pinus sylvestris L. and Picea abies (L.) Karst. seedlings with mycorrhizas of Cenococcum geophilum Fr., Piceirhiza bicolorata, and Hebeloma crustuliniforme (Bull.) Quel. has any impact on: 1) survival and growth of outplanted seedlings on abandoned agricultural land, and 2) subsequent mycorrhizal community development. For inoculation, the root system of each plant was wrapped in a filter paper containing mycelium, overlaid with damp peat-sand mixture and wrapped in a paper towel. In total, 8,000 pine and 8,000 spruce seedlings were planted on 4-ha of poor sandy soil in randomized blocks. Already after the first year natural mycorrhizal infections prevailed in the inoculated root systems, and introduced mycorrhizas were seldom found. Yet, the seedlings that had been pre-inoculated with C. geophilum and the P. bicolorata during the whole 3-year period showed significantly higher survival and growth as compared to controls. Moreover, the independent colonization of roots by C. geophilum and the P. bicolorata from natural sources was also observed. A diverse mycorrhizal community was detected over two growing seasons in all treatments, showing low impact of inoculation on subsequent fungal community development. A total of 19 additional ectomycorrhizal morphotypes was observed, which clustered into two well-separated groups, according to host tree species (pine and spruce). In conclusion, the results showed limited ability to increase tree survival and growth, and to manipulate the mycorrhizal community even by extensive pre-inoculations, indicating that fungal community formation in root systems is governed mainly by environmental factors. PMID:17277941

  10. Landscape-scale effects of fire severity on mixed-conifer and red fir forest structure in Yosemite National Park

    USGS Publications Warehouse

    Kane, Van R.; Lutz, James A.; Roberts, Susan L.; Smith, Douglas F.; McGaughey, Robert J.; Povak, Nicholas A.; Brooks, Matthew L.

    2013-01-01

    While fire shapes the structure of forests and acts as a keystone process, the details of how fire modifies forest structure have been difficult to evaluate because of the complexity of interactions between fires and forests. We studied this relationship across 69.2 km2 of Yosemite National Park, USA, that was subject to 32 fires ⩾40 ha between 1984 and 2010. Forests types included ponderosa pine (Pinus ponderosa), white fir-sugar pine (Abies concolor/Pinus lambertiana), and red fir (Abies magnifica). We estimated and stratified burned area by fire severity using the Landsat-derived Relativized differenced Normalized Burn Ratio (RdNBR). Airborne LiDAR data, acquired in July 2010, measured the vertical and horizontal structure of canopy material and landscape patterning of canopy patches and gaps. Increasing fire severity changed structure at the scale of fire severity patches, the arrangement of canopy patches and gaps within fire severity patches, and vertically within tree clumps. Each forest type showed an individual trajectory of structural change with increasing fire severity. As a result, the relationship between estimates of fire severity such as RdNBR and actual changes appears to vary among forest types. We found three arrangements of canopy patches and gaps associated with different fire severities: canopy-gap arrangements in which gaps were enclosed in otherwise continuous canopy (typically unburned and low fire severities); patch-gap arrangements in which tree clumps and gaps alternated and neither dominated (typically moderate fire severity); and open-patch arrangements in which trees were scattered across open areas (typically high fire severity). Compared to stands outside fire perimeters, increasing fire severity generally resulted first in loss of canopy cover in lower height strata and increased number and size of gaps, then in loss of canopy cover in higher height strata, and eventually the transition to open areas with few or no trees. However, the estimated fire severities at which these transitions occurred differed for each forest type. Our work suggests that low severity fire in red fir forests and moderate severity fire in ponderosa pine and white fir-sugar pine forests would restore vertical and horizontal canopy structures believed to have been common prior to the start of widespread fire suppression in the early 1900s. The fusion of LiDAR and Landsat data identified post-fire structural conditions that would not be identified by Landsat alone, suggesting a broad applicability of combining Landsat and LiDAR data for landscape-scale structural analysis for fire management.

  11. X-ray Synchrotron Microtomography of a silicified Jurassic Cheirolepidiaceae (Conifer) cone: histology and morphology of Pararaucaria collinsonae sp. nov.

    PubMed Central

    Steart, David C.; Spencer, Alan R.T.; Garwood, Russell J.; Hilton, Jason; Munt, Martin C.; Needham, John

    2014-01-01

    We document a new species of ovulate cone (Pararaucaria collinsonae) on the basis of silicified fossils from the Late Jurassic Purbeck Limestone Group of southern England (Tithonian Stage: ca. 145 million years). Our description principally relies on the anatomy of the ovuliferous scales, revealed through X-ray synchrotron microtomography (SRXMT) performed at the Diamond Light Source (UK). This study represents the first application of SRXMT to macro-scale silicified plant fossils, and demonstrates the significant advantages of this approach, which can resolve cellular structure over lab-based X-ray computed microtomography (XMT). The method enabled us to characterize tissues and precisely demarcate their boundaries, elucidating organ shape, and thus allowing an accurate assessment of affinities. The cones are broadly spherical (ca. 1.3 cm diameter), and are structured around a central axis with helically arranged bract/scale complexes, each of which bares a single ovule. A three-lobed ovuliferous scale and ovules enclosed within pocket-forming tissue, demonstrate an affinity with Cheirolepidiaceae. Details of vascular sclerenchyma bundles, integument structure, and the number and attachment of the ovules indicate greatest similarity to P. patagonica and P. carrii. This fossil develops our understanding of the dominant tree element of the Purbeck Fossil Forest, providing the first evidence for ovulate cheirolepidiaceous cones in Europe. Alongside recent discoveries in North America, this significantly extends the known palaeogeographic range of Pararaucaria, supporting a mid-palaeolatitudinal distribution in both Gondwana and Laurasia during the Late Jurassic. Palaeoclimatic interpretations derived from contemporaneous floras, climate sensitive sediments, and general circulation climate models indicate that Pararaucaria was a constituent of low diversity floras in semi-arid Mediterranean-type environments. PMID:25374776

  12. Water limitations on forest carbon cycling and conifer traits along a steep climatic gradient in the Cascade Mountains, Oregon

    NASA Astrophysics Data System (ADS)

    Berner, L. T.; Law, B. E.

    2015-11-01

    Severe droughts occurred in the western United States during recent decades, and continued human greenhouse gas emissions are expected to exacerbate warming and drying in this region. We investigated the role of water availability in shaping forest carbon cycling and morphological traits in the eastern Cascade Mountains, Oregon, focusing on the transition from low-elevation, dry western juniper (Juniperus occidentalis) woodlands to higher-elevation, wetter ponderosa pine (Pinus ponderosa) and grand fir (Abies grandis) forests. We examined 12 sites in mature forests that spanned a 1300 mm yr-1 gradient in mean growing-year climate moisture index (CMIgy ), computed annually (1964 to 2013) as monthly precipitation minus reference evapotranspiration and summed October to September. Maximum leaf area, annual aboveground productivity, and aboveground live tree biomass increased with CMIgy (r2 = 0.67-0.88, P < 0.05), approximately 50-, 30-, and 10-fold along this drier to wetter gradient. Interannual fluctuations in CMI affected the annual radial growth of 91 % of juniper, 51 % of pine, and 12 % of fir individuals from 1964 to 2013. The magnitude of the site-average growth-CMI correlations decreased with increased CMIgy (r2 = 0.53, P < 0.05). All three species, particularly fir, experienced pronounced declines in radial growth from c. 1985 to 1994, coinciding with a period of sustained below-average CMIgy and extensive insect outbreak. Traits of stress-tolerant juniper included short stature, high wood density for cavitation resistance, and high investment in water transport relative to leaf area. Species occupying wetter areas invested more resources in height growth in response to competition for light relative to investment in hydraulic architecture. Consequently, maximum tree height, leaf area : sapwood area ratio, and stem wood density were all correlated with CMIgy . The tight coupling of forest carbon cycling and species traits with water availability suggests that warmer and drier conditions projected for the 21st century could have significant biogeochemical, ecological, and social consequences in the Pacific Northwest.

  13. Water limitations on forest carbon cycling and conifer traits along a steep climatic gradient in the Cascade Mountains, Oregon

    NASA Astrophysics Data System (ADS)

    Berner, L. T.; Law, B. E.

    2015-09-01

    Severe droughts occurred in the western United States during recent decades and continued human greenhouse gas emissions are expected to exacerbate warming and drying in this region. We investigated the role of water availability in shaping forest carbon cycling and morphological traits in the eastern Cascade Mountains, Oregon, focusing on the transition from low-elevation, dry western juniper (Juniperus occidentalis) woodlands to higher-elevation, wetter ponderosa pine (Pinus ponderosa) and grand fir (Abies grandis) forests. We examined 12 sites in mature forests that spanned a 1300 mm yr-1 gradient in mean growing-year climate moisture index (CMIgy ), computed annually (1964 to 2013) as monthly precipitation minus reference evapotranspiration and summed October to September. Maximum leaf area, annual aboveground productivity, and aboveground live tree biomass increased with CMIgy (r2 = 0.58-0.85, P < 0.05), approximately 50-, 30-, and 10-fold along this drier to wetter gradient. Interannual fluctuations in CMI affected the annual radial growth of 91 % of juniper, 51 % of pine, and 12 % of fir from 1964 to 2013. The magnitude of the site-average growth-CMI correlations decreased with increased CMIgy (r2 = 0.65, P < 0.05). All three species, particularly fir, experienced pronounced declines in radial growth from ca. 1985 to 1994, coinciding with a period of sustained below-average CMIgy and extensive insect outbreak. Traits of stress-tolerant juniper included short stature, high wood density for cavitation resistance, and high investment in water transport relative to leaf area. Species occupying wetter areas invested more resources in height growth in response to competition for light relative to investment in hydraulic architecture. Correspondingly, maximum tree height, leaf area:sapwood area ratio, and stem wood density were all correlated with CMIgy . The tight coupling of forest carbon cycling and species traits with water availability suggests that warmer and drier conditions projected for the 21st century could have significant biogeochemical, ecological, and social consequences in the Pacific Northwest.

  14. A High Resolution Late Holocene Paleo-atmospheric Co2 Reconstruction From Stomatal Frequency Analysis of Conifer Needles

    NASA Astrophysics Data System (ADS)

    Kouwenberg, L. L. R.; Kurschner, W. M.; Wagner, F.; Visscher, H.

    An inverse relation of stomatal frequency in leaves of many plant taxa and atmospheric CO2 concentration has been repeatedly demonstrated. Response curves based on this species-specific relation are increasingly used to reconstruct paleo-CO2 levels from stomatal frequency analysis on fossil leaves. This type of atmospheric CO2 records have been produced for a large part of geological history, varying from the Paleozoic to the Holocene. Quaternary glaciochemical records from Antarctica and Greenland suggest that CO2 concentration and temperature are strongly linked, in general CO2 appears to lag temperature change. However, in order to assess this relation, high res- olution records with a precise chronology are needed. During the Holocene, several century-scale climatic fluctuations took place, such as the 8.2 kyr event and the Lit- tle Ice age. Linking these temperature fluctuations to paleo-CO2 concentrations in glaciochemical records can be difficult, because the resolution of ice-cores is gen- erally low and the ice-gas age difference complicates accurate dating. An excellent alternative tool for high-resolution Holocene CO2 reconstructions can be provided by stomatal frequency analysis of leaves from Holocene peat and lake sediments. In this study, it is demonstrated that the western hemlock (Tsuga heterophylla) also ad- justs its stomatal frequency to the historical CO2 rise. After careful proxy-validation, a high resolution paleo-atmospheric CO2 record over the last 2000 years based on subfossil Tsuga heterophylla needles from Mount Rainier (Washington, USA) was re- constructed. Chronology is provided by a suite of AMS carbon isotope dates and the presence of tephra layers from nearby Mt. St Helens. The record reproduces CO2 lev- els around 280 ppmv for the Little Ice Age and the CO2 rise to 365 ppmv over the last 150 years. A prominent feature is a marked rise in CO2 at 350 years AD, gradu- ally declining over the next centuries. The CO2 record will be discussed in terms of its relation to local volcanic CO2 production, paleoclimate data and changes in the terrestrial and marine carbon sources and sinks.

  15. Bark beetles, pityogenes bidentatus, orienting to aggregation pheromone avoid conifer monoterpene odors when flying but not when walking

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Previous studies have provided evidence that monoterpene odors from healthy host Scotch pine (Pinus sylvestris) and non-host Norway spruce (Picea abies) significantly reduce the attraction of flying bark beetles, Pityogenes bidentatus, to their aggregation pheromone components (grandisol and cis-ver...

  16. Differential effects of conifer and broadleaf litter inputs on soil organic carbon chemical composition through altered soil microbial community composition

    PubMed Central

    Wang, Hui; Liu, Shi-Rong; Wang, Jing-Xin; Shi, Zuo-Min; Xu, Jia; Hong, Pi-Zheng; Ming, An-Gang; Yu, Hao-Long; Chen, Lin; Lu, Li-Hua; Cai, Dao-Xiong

    2016-01-01

    A strategic selection of tree species will shift the type and quality of litter input, and subsequently magnitude and composition of the soil organic carbon (SOC) through soil microbial community. We conducted a manipulative experiment in randomized block design with leaf litter inputs of four native subtropical tree species in a Pinus massoniana plantation in southern China and found that the chemical composition of SOC did not differ significantly among treatments until after 28 months of the experiment. Contrasting leaf litter inputs had significant impacts on the amounts of total microbial, Gram-positive bacterial, and actinomycic PLFAs, but not on the amounts of total bacterial, Gram-negative bacterial, and fungal PLFAs. There were significant differences in alkyl/O-alkyl C in soils among the leaf litter input treatments, but no apparent differences in the proportions of chemical compositions (alkyl, O-alkyl, aromatic, and carbonyl C) in SOC. Soil alkyl/O-alkyl C was significantly related to the amounts of total microbial, and Gram-positive bacterial PLFAs, but not to the chemical compositions of leaf litter. Our findings suggest that changes in forest leaf litter inputs could result in changes in chemical stability of SOC through the altered microbial community composition. PMID:27256545

  17. Diversity and succession of epiphytic macrolichen communities in low-elevation managed conifer forests in western Oregon

    USGS Publications Warehouse

    Peterson, E.B.; McCune, B.

    2001-01-01

    We examined epiphytic macrolichen communities in Pseudotsuga menziesii (Douglas-fir) forests across the western Oregon landscape for relationships to environmental gradients, stand age and structure, and commercial thinning. We used a retrospective, blocked design through the Coast and the western Cascade ranges of Oregon. Each of our 17 blocks consisted of a young, unthinned stand (age 50-110 yr); an adjacent, thinned stand of equivalent age; and an old-growth stand (age > 200 yr). We found 110 epiphytic macrolichen taxa in the stands. Forage-providing alectorioid lichens and the nitrogen-fixing cyanolichen Lobaria oregana associated strongly with old-growth stands and remnant old trees in younger stands (unthinned + thinned). Relative to unthinned stands, thinned stands had a slightly higher abundance of alectorioid lichens and a greater presence of Hypogymnia imshaugii. However, thinned stands hosted a lower landscape-level (I?) diversity, lacking many species that occurred infrequently in the unthinned stands. Patterns in the lichen community composition correlated strongly with climatic gradients; the greatest variation in composition was between the Coast and Cascade ranges. The difference in communities between mountain ranges was greatest among stands 70-110 yr old, suggesting a difference in lichen successional dynamics between the ranges.

  18. Effects of fire on decomposition: assessing the relative importance of soil environment versus charring on decomposition in boreal conifer forests

    NASA Astrophysics Data System (ADS)

    Manies, K.; Turetsky, M. R.; Harden, J. W.

    2014-12-01

    Boreal forests are experiencing significant changes in climate and disturbance regimes, including increases in the frequency and severity of fires. Fires impact the carbon (C) cycle of this region in many ways, including through changes to C inputs to the ecosystem (i.e., loss of all living vegetation, followed post-fire regrowth), changes in mycorrhizal relationships, the altering soil temperature and moisture regimes, and the charring of surface organic soil. All of these factors have the potential to impact decomposition rates. We were interested in comparing the relative importance of changes in soil temperature and moisture (soil environmental conditions) versus surface organic soil quality (charring) on decomposition rates. To disentangle the effects of environmental factors versus charring on mass loss, we performed a reciprocal transplant experiment. Our design included burned and unburned feather moss litter, collected from the field and placed within litterbags, which were then placed into triplicate burned and unburned black spruce dominated stands in interior Alaska. Litterbags were collected after one, three, and seven years, after which mass loss and changes in C and N pools were quantified. Exponential decomposition (k) values varied with litter type (burned/unburned) by environment (burned/unburned site) interactions. Averaged across both types of environments, decomposition rates were almost double for unburned versus burned litter. Decomposition rates were approximately 30 percent faster for unburned versus burned sites. Our results to date show that changes to soil quality due to charring have a larger effect in controlling post-burn decomposition rates than changes in soil environmental conditions.

  19. Research design for hydrologic response to watershed treatments in the mixed conifer zone of California's Sierra Nevada

    NASA Astrophysics Data System (ADS)

    Battles, J.; Bales, R.; Conklin, M.; Saksa, P.; Martin, S.

    2008-12-01

    Water quantity response to forest management is of great interest in California's Sierra Nevada, owing to shifts in the rain-snow transition elevation associated with climate change, increasing value of hydropower from high-elevation dams, and the re-examination of adaptive management strategies for wildfire mitigation. In 2006 we initiated a multi-disciplinary research program to inform adaptive management for Forest Service lands in the Sierra Nevada. The forest treatment approach is based on disconnected, overlapping fuel treatment patches (forest thinning) to reduce the rate and intensity of fire. As little as 30% of the area in a given catchment will be treated. Controlling for confounding influences is particularly challenging when the experimental unit is a whole landscape and the inferential reference is an entire region. To isolate water and ecosystem impacts related to forest thinning, we are using a Before After Control Impact (BACI) design in conjunction with mechanistic modeling. BACI compensates for the sparse replication (2 sites) and the non- random assignment of the treatments by providing robust longitudinal controls. BACI design defines two treatments, a control and an impact. For modeling fire and wildlife response we chose subdivided the region into two 40-km2 sub-firesheds; within each is a 1-km2 hydrologic study catchment. The control site in this a measure of natural variation rather than a true control. Meta-replication using parallel studies in the Sierra Nevada with different approaches is also an important component and involves a creative combination of data from multiple sources. Rather than statistical comparisons or traditional hypothesis testing, we will measure the support in the data for our a priori expectations using mechanistic models. We are currently evaluating how to extend this research design to private forest lands with a wider range of management options.

  20. Soil CO2 efflux in an old-growth southern conifer forest (Agathis australis) - magnitude, components and controls

    NASA Astrophysics Data System (ADS)

    Schwendenmann, Luitgard; Macinnis-Ng, Cate

    2016-08-01

    Total soil CO2 efflux and its component fluxes, autotrophic and heterotrophic respiration, were measured in a native forest in northern Aotearoa-New Zealand. The forest is dominated by Agathis australis (kauri) and is on an acidic, clay rich soil. Soil CO2 efflux, volumetric soil water content and soil temperature were measured bi-weekly to monthly at 72 sampling points over 18 months. Trenching and regression analysis was used to partition total soil CO2 efflux into heterotrophic and autotrophic respiration. The effect of tree structure was investigated by calculating an index of local contribution (Ic, based on tree size and distance to the measurement location) followed by correlation analysis between Ic and total soil CO2 efflux, root biomass, litterfall and soil characteristics. The measured mean total soil CO2 efflux was 3.47 µmol m-2 s-1. Autotrophic respiration accounted for 25 % (trenching) or 28 % (regression analysis) of total soil CO2 efflux. Using uni- and bivariate models showed that soil temperature was a poor predictor of the temporal variation in total soil CO2 efflux (< 20 %). In contrast, a stronger temperature sensitivity was found for heterotrophic respiration (around 47 %). We found significant positive relationships between kauri tree size (Ic) and total soil CO2 efflux, root biomass and mineral soil CN ratio within 5-6 m of the sampling points. Using multiple regression analysis revealed that 97 % of the spatial variability in total soil CO2 efflux in this kauri-dominated stand was explained by root biomass and soil temperature. Our findings suggest that biotic factors such as tree structure should be investigated in soil carbon related studies.

  1. Radial Growth of Two Dominant Montane Conifer Tree Species in Response to Climate Change in North-Central China

    PubMed Central

    Jiang, Yuan; Zhang, Wentao; Wang, Mingchang; Kang, Muyi; Dong, Manyu

    2014-01-01

    North-Central China is a region in which the air temperature has clearly increased for several decades. Picea meyeri and Larix principis-rupprechtii are the most dominant co-occurring tree species within the cold coniferous forest belt ranging vertically from 1800 m to 2800 m a.s.l. in this region. Based on a tree-ring analysis of 292 increment cores sampled from 146 trees at different elevations, this study aimed to examine if the radial growth of the two species in response to climate is similar, whether the responses are consistent along altitudinal gradients and which species might be favored in the future driven by the changing climate. The results indicated the following: (1) The two species grew in different rhythms at low and high elevation respectively; (2) Both species displayed inconsistent relationships between radial growth and climate data along altitudinal gradients. The correlation between radial growth and the monthly mean temperature in the spring or summer changed from negative at low elevation into positive at high elevation, whereas those between the radial growth and the total monthly precipitation displayed a change from positive into negative along the elevation gradient. These indicate the different influences of the horizontal climate and vertical mountainous climate on the radial growth of the two species; (3) The species-dependent different response to climate in radial growth appeared mainly in autumn of the previous year. The radial growth of L. principis-rupprechtii displayed negative responses both to temperature and to precipitation in the previous September, October or November, which was not observed in the radial growth of P. meyeri. (4) The radial growth of both species will tend to be increased at high elevation and limited at low elevation, and L. principis-rupprechtii might be more favored in the future, if the temperature keeps rising. PMID:25393738

  2. Rock outcrops reduce temperature-induced stress for tropical conifer by decoupling regional climate in the semiarid environment.

    PubMed

    Locosselli, Giuliano Maselli; Cardim, Ricardo Henrique; Ceccantini, Gregório

    2016-05-01

    We aimed to understand the effect of rock outcrops on the growth of Podocarpus lambertii within a microrefuge. Our hypothesis holds that the growth and survival of this species depend on the regional climate decoupling provided by rock outcrops. To test this hypothesis, we characterized the microclimate of (1) surrounding vegetation, (2) rock outcrop corridors, and (3) adjacencies. We assessed population structure by collecting data of specimen stem diameter and height. We also assessed differences between vegetation associated or not with outcrops using satellite imaging. For dendrochronological analyses, we sampled 42 individuals. Tree rings of 31 individuals were dated, and climate-growth relationships were tested. Rock outcrops produce a favorable microclimate by reducing average temperature by 4.9 °C and increasing average air humidity by 12 %. They also reduce the variability of atmospheric temperature by 42 % and air humidity by 20 % supporting a vegetation with higher leaf area index. Within this vegetation, specimen height was strongly constrained by the outcrop height. Although temperature and precipitation modulate this species growth, temperature-induced stress is the key limiting growth factor for this population of P. lambertii. We conclude that this species growth and survival depend on the presence of rock outcrops. These topography elements decouple regional climate in a favorable way for this species growth. However, these benefits are restricted to the areas sheltered by rock outcrops. Although this microrefuge supported P. lambertii growth so far, it is unclear whether this protection would be sufficient to withstand the stress of future climate changes. PMID:26362853

  3. Heterogeneity in fire severity within early season and late season prescribed burns in a mixed-conifer forest

    USGS Publications Warehouse

    Knapp, E.E.; Keeley, J.E.

    2006-01-01

    Structural heterogeneity in forests of the Sierra Nevada was historically produced through variation in fire regimes and local environmental factors. The amount of heterogeneity that prescription burning can achieve might now be more limited owing to high fuel loads and increased fuel continuity. Topography, woody fuel loading, and vegetative composition were quantified in plots within replicated early and late season burn units. Two indices of fire severity were evaluated in the same plots after the burns. Scorch height ranged from 2.8 to 25.4 m in early season plots and 3.1 to 38.5 m in late season plots, whereas percentage of ground surface burned ranged from 24 to 96% in early season plots and from 47 to 100% in late season plots. Scorch height was greatest in areas with steeper slopes, higher basal area of live trees, high percentage of basal area composed of pine, and more small woody fuel. Percentage of area burned was greatest in areas with less bare ground and rock cover (more fuel continuity), steeper slopes, and units burned in the fall (lower fuel moisture). Thus topographic and biotic factors still contribute to the abundant heterogeneity in fire severity with prescribed burning, even under the current high fuel loading conditions. Burning areas with high fuel loads in early season when fuels are moister may lead to patterns of heterogeneity in fire effects that more closely approximate the expected patchiness of historical fires.

  4. Widening of xylem conduits in a conifer tree depends on the longer time of cell expansion downwards along the stem

    PubMed Central

    Anfodillo, Tommaso; Deslauriers, Annie; Menardi, Roberto; Tedoldi, Laura; Petit, Giai; Rossi, Sergio

    2012-01-01

    The diameter of vascular conduits increases towards the stem base. It has been suggested that this profile is an efficient anatomical feature for reducing the hydraulic resistance when trees grow taller. However, the mechanism that controls the cell diameter along the plant is not fully understood. The timing of cell differentiation along the stem was investigated. Cambial activity and cell differentiation were investigated in a Picea abies tree (11.5 m in height) collecting microsamples at nine different heights (from 1 to 9 m) along the stem with a 4 d time interval. Wood sections (8–12 μm thick) were stained and observed under a light microscope with polarized light to differentiate the developing xylem cells. Cell wall lignification was detected using cresyl violet acetate. The first enlarging cells appeared almost simultaneously along the tree axis indicating that cambium activation is not height-dependent. A significant increase in the duration of the cell expansion phase was observed towards the tree base: at 9 m from the ground, xylem cells expanded for 7 d, at 6 m for 14 d, and at 3 m for 19 d. The duration of the expansion phase is positively correlated with the lumen area of the tracheids (r2=0.68, P < 0.01) at the same height. By contrast, thickness of the cell wall of the earlywood did not show any trend with height. The lumen area of the conduits down the stem appeared linearly dependent on time during which differentiating cells remained in the expansion phase. However, the inductive signal of such long-distance patterned differentiation remains to be identified. PMID:22016427

  5. Evolutionary origin and demographic history of an ancient conifer (Juniperus microsperma) in the Qinghai-Tibetan Plateau.

    PubMed

    Shang, Hui-Ying; Li, Zhong-Hu; Dong, Miao; Adams, Robert P; Miehe, Georg; Opgenoorth, Lars; Mao, Kang-Shan

    2015-01-01

    All Qinghai-Tibetan Plateau (QTP) endemic species are assumed to have originated recently, although very rare species most likely diverged early. These ancient species provide an excellent model to examine the origin and evolution of QTP endemic plants in response to the QTP uplifts and the climate changes that followed in this high altitude region. In this study, we examined these hypotheses by employing sequence variation from multiple nuclear and chloroplast DNA of 239 individuals of Juniperus microsperma and its five congeners. Both phylogenetic and population genetic analyses revealed that J. microsperma diverged from its sister clade comprising two species with long isolation around the Early Miocene, which corresponds to early QTP uplift. Demographic modeling and coalescent tests suggest that J. microsperma experienced an obvious bottleneck event during the Quaternary when the global climate greatly oscillated. The results presented here support the hypotheses that the QTP uplifts and Quaternary climate changes played important roles in shaping the evolutionary history of this rare juniper. PMID:25977142

  6. Responses of two semiarid conifer tree species to reduced precipitation and warming reveal new perspectives for stomatal regulation.

    PubMed

    Garcia-Forner, Núria; Adams, Henry D; Sevanto, Sanna; Collins, Adam D; Dickman, Lee T; Hudson, Patrick J; Zeppel, Melanie J B; Jenkins, Michael W; Powers, Heath; Martínez-Vilalta, Jordi; Mcdowell, Nate G

    2016-01-01

    Relatively anisohydric species are predicted to be more predisposed to hydraulic failure than relatively isohydric species, as they operate with narrower hydraulic safety margins. We subjected co-occurring anisohydric Juniperus monosperma and isohydric Pinus edulis trees to warming, reduced precipitation, or both, and measured their gas exchange and hydraulic responses. We found that reductions in stomatal conductance and assimilation by heat and drought were more frequent during relatively moist periods, but these effects were not exacerbated in the combined heat and drought treatment. Counter to expectations, both species exhibited similar gs temporal dynamics in response to drought. Further, whereas P. edulis exhibited chronic embolism, J. monosperma showed very little embolism due to its conservative stomatal regulation and maintenance of xylem water potential above the embolism entry point. This tight stomatal control and low levels of embolism experienced by juniper refuted the notion that very low water potentials during drought are associated with loose stomatal control and with the hypothesis that anisohydric species are more prone to hydraulic failure than isohydric species. Because direct association of stomatal behaviour with embolism resistance can be misleading, we advocate consideration of stomatal behaviour relative to embolism resistance for classifying species drought response strategies. PMID:26081870

  7. Cell Wall Ultrastructure of Stem Wood, Roots, and Needles of a Conifer Varies in Response to Moisture Availability

    PubMed Central

    Pattathil, Sivakumar; Ingwers, Miles W.; Victoriano, Olivia L.; Kandemkavil, Sindhu; McGuire, Mary Anne; Teskey, Robert O.; Aubrey, Doug P.

    2016-01-01

    The composition, integrity, and architecture of the macromolecular matrix of cell walls, collectively referred to as cell wall ultrastructure, exhibits variation across species and organs and among cell types within organs. Indirect approaches have suggested that modifications to cell wall ultrastructure occur in response to abiotic stress; however, modifications have not been directly observed. Glycome profiling was used to study cell wall ultrastructure by examining variation in composition and extractability of non-cellulosic glycans in cell walls of stem wood, roots, and needles of loblolly pine saplings exposed to high and low soil moisture. Soil moisture influenced physiological processes and the overall composition and extractability of cell wall components differed as a function of soil moisture treatments. The strongest response of cell wall ultrastructure to soil moisture was increased extractability of pectic backbone epitopes in the low soil moisture treatment. The higher abundance of these pectic backbone epitopes in the oxalate extract indicate that the loosening of cell wall pectic components could be associated with the release of pectic signals as a stress response. The increased extractability of pectic backbone epitopes in response to low soil moisture availability was more pronounced in stem wood than in roots or needles. Additional responses to low soil moisture availability were observed in lignin-associated carbohydrates released in chlorite extracts of stem wood, including an increased abundance of pectic arabinogalactan epitopes. Overall, these results indicate that cell walls of loblolly pine organs undergo changes in their ultrastructural composition and extractability as a response to soil moisture availability and that cell walls of the stem wood are more responsive to low soil moisture availability compared to cell walls of roots and needles. To our knowledge, this is the first direct evidence, delineated by glycomic analyses, that abiotic stress affects cell wall ultrastructure. This study is also unique in that glycome profiling of pine needles has never before been reported. PMID:27446114

  8. Phylogeny of Phaeomollisia piceae gen. sp. nov.: a dark, septate, conifer-needle endophyte and its relationships to Phialocephala and Acephala.

    PubMed

    Grünig, Christoph R; Queloz, Valentin; Duò, Angelo; Sieber, Thomas N

    2009-02-01

    Dark, septate endophytes (DSE) were isolated from roots and needles of dwarf Picea abies and from roots of Vaccinium spp. growing on a permafrost site in the Jura Mountains in Switzerland. Two of the isolates sporulated after incubation for more than one year at 4 degrees C. One of them was a hitherto undescribed helotialean ascomycete Phaeomollisia piceae gen. sp. nov., the other was a new species of Phialocephala, P. glacialis sp. nov. Both species are closely related to DSE of the Phialocephala fortinii s. lat.-Acephala applanata species complex (PAC) as revealed by phylogenetic analyses of the ITS and 18S rDNA regions. Morphologically dissimilar fungi, such as Vibrissea and Loramyces species, are phylogenetically also closely linked to the new species and the PAC. Cadophora lagerbergii and C. (Phialophora) botulispora are moved to Phialocephala because Phialocephala dimorphospora and P. repens are the closest relatives. Several Mollisia species were closely related to the new species and the PAC according to ITS sequence comparisons. One DSE from needles of Abies alba and one from shoots of Castanea sativa formed Cystodendron anamorphs in culture. Their identical 18S sequences and almost identical ITS sequences indicated Mollisia species as closest relatives, suggesting that Mollisia species are highly euryoecious. PMID:19015028

  9. SAFETY FACTORS FOR XYLEM FAILURE BY IMPLOSION AND AIR-SEEDING WITHIN ROOTS, TRUNKS AND BRANCHES OF YOUNG AND OLD CONIFER TREES

    SciTech Connect

    Domec, Jean-Christophe; Warren, Jeffrey M.; Meinzer, Rick; Lachenbruch, Barbara

    2009-01-01

    The cohesion-tension theory of water transport states that hydrogen bonds hold water molecules together and that they are pulled through the xylem under tension. This tension could cause transport failure in at least two ways: collapse of the conduit walls (implosion), or rupture of the water column through air-seeding. The objective of this research was to elucidate the functional significance of variations in tracheid anatomical features, earlywood to latewood ratios and wood densities with position in young and old Douglas-fir and ponderosa pine trees in terms of their consequences for the safety factors for tracheid implosion and air-seeding. For both species, wood density increased linearly with percent latewood for root, trunk and branch samples. However, the relationships between anatomy and hydraulic function in trunks differed from those in roots and branches. In roots and branches increased hydraulic efficiency was achieved at the cost of increased vulnerability to air-seeding. Mature wood of trunks had earlywood with wide tracheids that optimized water transport and had a high percentage of latewood that optimized structural support. Juvenile wood had higher resistance to air-seeding and cell wall implosion. The two safety factors followed similar axial trends from roots to terminal branches and were similar for both species studied and between juvenile and mature wood.

  10. Higher fine-scale genetic structure in peripheral than in core populations of a long-lived and mixed-mating conifer - eastern white cedar (Thuja occidentalis L.)

    PubMed Central

    2012-01-01

    Background Fine-scale or spatial genetic structure (SGS) is one of the key genetic characteristics of plant populations. Several evolutionary and ecological processes and population characteristics influence the level of SGS within plant populations. Higher fine-scale genetic structure may be expected in peripheral than core populations of long-lived forest trees, owing to the differences in the magnitude of operating evolutionary and ecological forces such as gene flow, genetic drift, effective population size and founder effects. We addressed this question using eastern white cedar (Thuja occidentalis) as a model species for declining to endangered long-lived tree species with mixed-mating system. Results We determined the SGS in two core and two peripheral populations of eastern white cedar from its Maritime Canadian eastern range using six nuclear microsatellite DNA markers. Significant SGS ranging from 15 m to 75 m distance classes was observed in the four studied populations. An analysis of combined four populations revealed significant positive SGS up to the 45 m distance class. The mean positive significant SGS observed in the peripheral populations was up to six times (up to 90 m) of that observed in the core populations (15 m). Spatial autocorrelation coefficients and correlograms of single and sub-sets of populations were statistically significant. The extent of within-population SGS was significantly negatively correlated with all genetic diversity parameters. Significant heterogeneity of within-population SGS was observed for 0-15 m and 61-90 m between core and peripheral populations. Average Sp, and gene flow distances were higher in peripheral (Sp = 0.023, σg = 135 m) than in core (Sp = 0.014, σg = 109 m) populations. However, the mean neighborhood size was higher in the core (Nb = 82) than in the peripheral (Nb = 48) populations. Conclusion Eastern white cedar populations have significant fine-scale genetic structure at short distances. Peripheral populations have several-folds higher within-population fine-scale genetic structure than core populations. Anthropogenic disturbances and population fragmentation presumably have significant effects on fine-scale genetic structure in eastern white cedar. Core populations have higher neighborhood size than peripheral populations, whereas gene flow distances are higher in peripheral than in core populations. The results of our study contribute to the knowledge of poorly-understood spatial genetic structure of core versus peripheral populations in plants. As well, the information is of significance for conservation of genetic resources of eastern white cedar and perhaps of other long-lived forest trees with mixed-mating system. PMID:22480185

  11. Novel Hydraulic Vulnerability Proxies for a Boreal Conifer Species Reveal That Opportunists May Have Lower Survival Prospects under Extreme Climatic Events

    PubMed Central

    Rosner, Sabine; Světlík, Jan; Andreassen, Kjell; Børja, Isabella; Dalsgaard, Lise; Evans, Robert; Luss, Saskia; Tveito, Ole E.; Solberg, Svein

    2016-01-01

    Top dieback in 40–60 years old forest stands of Norway spruce [Picea abies (L.) Karst.] in southern Norway is supposed to be associated with climatic extremes. Our intention was to learn more about the processes related to top dieback and in particular about the plasticity of possible predisposing factors. We aimed at (i) developing proxies for P50 based on anatomical data assessed by SilviScan technology and (ii) testing these proxies for their plasticity regarding climate, in order to (iii) analyze annual variations of hydraulic proxies of healthy looking trees and trees with top dieback upon their impact on tree survival. At two sites we selected 10 tree pairs, i.e., one healthy looking tree and one tree with visual signs of dieback such as dry tops, needle shortening and needle yellowing (n = 40 trees). Vulnerability to cavitation (P50) of the main trunk was assessed in a selected sample set (n = 19) and we thereafter applied SilviScan technology to measure cell dimensions (lumen (b) and cell wall thickness (t)) in these specimen and in all 40 trees in tree rings formed between 1990 and 2010. In a first analysis step, we searched for anatomical proxies for P50. The set of potential proxies included hydraulic lumen diameters and wall reinforcement parameters based on mean, radial, and tangential tracheid diameters. The conduit wall reinforcement based on tangential hydraulic lumen diameters ((t/bht)2) was the best estimate for P50. It was thus possible to relate climatic extremes to the potential vulnerability of single annual rings. Trees with top dieback had significantly lower (t/bht)2 and wider tangential (hydraulic) lumen diameters some years before a period of water deficit (2005–2006). Radial (hydraulic) lumen diameters showed however no significant differences between both tree groups. (t/bht)2 was influenced by annual climate variability; strongest correlations were found with precipitation in September of the previous growing season: high precipitation in previous September resulted in more vulnerable annual rings in the next season. The results are discussed with respect to an “opportunistic behavior” and genetic predisposition to drought sensitivity. PMID:27375672

  12. Novel Hydraulic Vulnerability Proxies for a Boreal Conifer Species Reveal That Opportunists May Have Lower Survival Prospects under Extreme Climatic Events.

    PubMed

    Rosner, Sabine; Světlík, Jan; Andreassen, Kjell; Børja, Isabella; Dalsgaard, Lise; Evans, Robert; Luss, Saskia; Tveito, Ole E; Solberg, Svein

    2016-01-01

    Top dieback in 40-60 years old forest stands of Norway spruce [Picea abies (L.) Karst.] in southern Norway is supposed to be associated with climatic extremes. Our intention was to learn more about the processes related to top dieback and in particular about the plasticity of possible predisposing factors. We aimed at (i) developing proxies for P 50 based on anatomical data assessed by SilviScan technology and (ii) testing these proxies for their plasticity regarding climate, in order to (iii) analyze annual variations of hydraulic proxies of healthy looking trees and trees with top dieback upon their impact on tree survival. At two sites we selected 10 tree pairs, i.e., one healthy looking tree and one tree with visual signs of dieback such as dry tops, needle shortening and needle yellowing (n = 40 trees). Vulnerability to cavitation (P 50) of the main trunk was assessed in a selected sample set (n = 19) and we thereafter applied SilviScan technology to measure cell dimensions (lumen (b) and cell wall thickness (t)) in these specimen and in all 40 trees in tree rings formed between 1990 and 2010. In a first analysis step, we searched for anatomical proxies for P 50. The set of potential proxies included hydraulic lumen diameters and wall reinforcement parameters based on mean, radial, and tangential tracheid diameters. The conduit wall reinforcement based on tangential hydraulic lumen diameters ((t/b ht)(2)) was the best estimate for P 50. It was thus possible to relate climatic extremes to the potential vulnerability of single annual rings. Trees with top dieback had significantly lower (t/b ht)(2) and wider tangential (hydraulic) lumen diameters some years before a period of water deficit (2005-2006). Radial (hydraulic) lumen diameters showed however no significant differences between both tree groups. (t/b ht)(2) was influenced by annual climate variability; strongest correlations were found with precipitation in September of the previous growing season: high precipitation in previous September resulted in more vulnerable annual rings in the next season. The results are discussed with respect to an "opportunistic behavior" and genetic predisposition to drought sensitivity. PMID:27375672

  13. Phytotoxicity of fungicides, herbicides and insecticides/acaricides on ornamental conifer (division: pinophyta) species in Southeastern U.S. for interregional research program (IR-4).

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Interregional Research Project (IR-4) is a joint USDA-ARS and Land Grant Institution program that evaluates agricultural chemicals and expands sustainable pest management technologies for growers by providing efficacy and phytotoxicity data needed for registered use on specialty crops that inclu...

  14. Critical zone co-evolution: evidence that weathering and consequent seasonal rock moisture storage leads to a mixed forest canopy of conifer and evergreen broadleaf trees

    NASA Astrophysics Data System (ADS)

    Oshun, J.; Dietrich, W. E.; Dawson, T. E.; Rempe, D. M.; Fung, I. Y.

    2014-12-01

    Despite recent studies demonstrating the importance of rock moisture as a source of water to vegetation, much remains unknown regarding species-specific and seasonal patterns of water uptake in a Mediterranean climate. Here, we use stable isotopes of water (d18O, dD) to define the isotope composition of water throughout the subsurface critical zone of Rivendell, within the Eel River Critical Zone Observatory. We find that a structured heterogeneity of water isotope composition exists in which bulk saprolite is chronically more negative than bulk soil, and tightly held moisture is more negative than the mobile water that recharges the saturated zone and generates runoff. These moisture reservoirs provide a blueprint from which to measure the seasonal uptake patterns of different species collocated on the site. Douglas-firs use unsaturated saprolite and weathered bedrock moisture (i. e. rock moisture) throughout the year. Contrastingly, hardwood species (madrone, live oak, tanoak) modify their source water depending on which moisture is energetically favorable. Hardwoods use freely mobile water in the wet season, and rely on unsaturated zone soil moisture in the dry season. When soil water tension decreases on the drier south-facing slope, hardwood species use saprolite moisture. Although adjacent hardwoods and Douglas-firs partition water based on matric pull on the north side, there is competition for saprolite moisture in late summer on the south side. These results reveal the eco-hydrological importance of moisture derived from weathered bedrock, and show that the hardwoods have a competitive advantage under the drier conditions predicted in many climate models. Finally, the data emphasize that isotope measurements of all subsurface reservoirs and potential water sources are necessary for a complete and accurate characterization of the eco-hydrological processes within the critical zone.

  15. Atlas of relations between climatic parameters and distributions of important trees and shrubs in North America; additional conifers, hardwoods, and monocots

    USGS Publications Warehouse

    Thompson, Robert S.; Anderson, Katherine H.; Bartlein, Patrick J.; Smith, Sharon A.

    2000-01-01

    This volume explores the continental-scale relations between climate and the geographic ranges of woody plant species in North America. A 25-km equal-area grid of modern climatic and bioclimatic parameters for North America was constructed from instrumental weather records. The geographic distributions of selected tree and shrub species were digitized, and the presence or absence of each species was determined for each cell on the 25-km grid, thus providing a basis for comparing climatic data and species' distribution.

  16. Real-Time Monitoring of Mountain Conifer Growth Response to Seasonal Climate and the Summer Monsoon in the Great Basin of North America

    NASA Astrophysics Data System (ADS)

    Strachan, S.; Biondi, F.

    2013-12-01

    Tree rings in the American intermountain west are often used for palaeoclimatic purposes, including reconstructions of precipitation, temperature, and drought. Specific seasonal phenomena such as the North American Monsoon (NAM) are also being identified in tree-ring studies as being related to certain growth features in the rings (such as early-onset 'false' latewood). These relationships have historically been developed using statistical relationships between tree-ring chronologies and regional weather observations. In zones near the periphery of the NAM, summertime precipitation may be more sporadic, yet localized vegetation assemblages in the northern Mojave desert and Great Basin regions indicate that these events are still important for some ecosystems which have established in areas where NAM activity is present. Major shifts in NAM behavior in the past may have been recorded by tree rings, and identifying the specific mechanisms/circumstances by which this occurs is critical for efforts seeking to model ecosystem response to climate changes. By establishing in-situ monitoring of climate/weather, soils, and tree-growth variables in Pinus ponderosa scopulorum and Pinus monophylla zones at study sites in eastern/southern Nevada, we are able to address these issues at very fine spatial and temporal scales. Data from two seasons of monitoring precipitation, solar radiation, air temperature, soil temperature, soil water content, tree sap flow, tree radial distance increment, and hourly imagery are presented. Point dendrometers along with sap flow sensors monitor growth in these ponderosa pine around the clock to help researchers understand tree-ring/climate relationships.

  17. Fungal communities in mycorrhizal roots of conifer seedlings in forest nurseries under different cultivation systems, assessed by morphotyping, direct sequencing and mycelial isolation.

    PubMed

    Menkis, Audrius; Vasiliauskas, Rimvydas; Taylor, Andrew F S; Stenlid, Jan; Finlay, Roger

    2005-12-01

    Fungi colonising root tips of Pinus sylvestris and Picea abies grown under four different seedling cultivation systems were assessed by morphotyping, direct sequencing and isolation methods. Roots were morphotyped using two approaches: (1) 10% of the whole root system from 30 seedlings of each species and (2) 20 randomly selected tips per plant from 300 seedlings of each species. The first approach yielded 15 morphotypes, the second yielded 27, including 18 new morphotypes. The overall community consisted of 33 morphotypes. The level of mycorrhizal colonisation of roots determined by each approach was about 50%. The cultivation system had a marked effect on the level of mycorrhizal colonisation. In pine, the highest level of colonisation (48%) was observed in bare-root systems, while in spruce, colonisation was highest in polyethylene rolls (71%). Direct internal transcribed spacer ribosomal DNA sequencing and isolation detected a total of 93 fungal taxa, including 27 mycorrhizal. A total of 71 (76.3%) fungi were identified at least to a genus level. The overlap between the two methods was low. Only 13 (13.9%) of taxa were both sequenced and isolated, 47 (50.5%) were detected exclusively by sequencing and 33 (35.5%) exclusively by isolation. All isolated mycorrhizal fungi were also detected by direct sequencing. Characteristic mycorrhizas were Phialophora finlandia, Amphinema byssoides, Rhizopogon rubescens, Suillus luteus and Thelephora terrestris. There was a moderate similarity in mycorrhizal communities between pine and spruce and among different cultivation systems. PMID:16177926

  18. Effects of introgression on the genetic population structure of two ecologically and economically important conifer species: lodgepole pine (Pinus contorta var. latifolia) and jack pine (Pinus banksiana).

    PubMed

    Cullingham, Catherine I; Cooke, Janice E K; Coltman, David W

    2013-10-01

    Forest trees exhibit a remarkable range of adaptations to their environment, but as a result of frequent and long-distance gene flow, populations are often only weakly differentiated. Lodgepole and jack pine hybridize in western Canada, which adds the opportunity for introgression through hybridization to contribute to population structure and (or) adaptive variation. Access to large sample size, high density SNP datasets for these species would improve our ability to resolve population structure, parameterize introgression, and separate the influence of demography from adaptation. To accomplish this, 454 transcriptome reads for lodgepole and jack pine were assembled using Newbler and MIRA, the assemblies mined for SNPs, and 1536 SNPs were selected for typing on lodgepole pine, jack pine, and their hybrids (N = 536). We identified population structure using both Bayesian clustering and discriminate analysis of principle components. Introgressed SNP loci were identified and their influence on observed population structure was assessed. We found that introgressed loci resulted in increased differentiation both within lodgepole and jack pine populations. These findings are timely given the recent mountain pine beetle population expansion in the hybrid zone, and will facilitate future studies of adaptive traits in these ecologically important species. PMID:24237338

  19. Inter-annual snow accumulation and melt patterns in a sub-alpine mixed conifer forest: results from a distributed physically based snow model

    NASA Astrophysics Data System (ADS)

    Musselman, K. N.; Molotch, N. P.; Margulis, S. A.; Kirchner, P. B.; Bales, R. C.

    2011-12-01

    Seasonally snow covered mid-latitude forests may be highly sensitive to climate change as they often overlap or reside near the present-day synoptic mean rain-snow transition zone. Limited capabilities of satellite remote sensing in forested, steep terrain combined with sparse in-situ observations emphasize the need for improved numerical simulations of the distribution of snow water equivalent in these regions. The land surface / snowmelt model Alpine3D was used to simulate snow accumulation and melt in the 7.22 km2 sub-alpine Wolverton basin in the southern Sierra Nevada, California. The basin is part of the Southern Sierra Nevada Critical Zone Observatory. Results from three snow seasons were evaluated against data from a distributed network of automated snow depth sensors, repeated catchment-wide snow survey measurements conducted in 2008 and 2009, and LiDAR data from 2010. Compared to the local 86-year historical record, the three years of observation accumulated average (2008), 48% below average (2009) and 43% above average (2010) maximum annual SWE. A mid-winter rain-on-snow event occurred in both 2008 and 2009. The inter-annual variability in maximum SWE combined with inter-annual differences in the timing and type of precipitation events, the timing of seasonal melt onset, and differences in the persistence of spring cloud cover caused significant inter-annual variability in areal snow cover depletion rates. In 2009, the year with the least precipitation, the most spring cloud cover, and a basin-wide late-January rain event, SWE patterns exhibited the least spatial variability and areal snow cover depletion was rapid. Conversely, the greatest spatial variability in SWE was simulated in 2010, the year with the most precipitation, no rain events, and a melt season that extended into early summer. The areal snow cover depletion curve for this year exhibited a rapid exponential phase as in 2009, but a distinctly different transitional phase as deep snow cover persisted at forested upper elevations (confirmed by automated depth sensors) long after >90% of the basin was snow-free. Simulations of the average snow season (2008) predicted an areal snow cover depletion curve that exhibited dampened characteristics of both the wet and dry years. Additionally, significant inter-annual differences in accumulation and melt patterns between open and sub-canopy environments were simulated. The results illustrate the utility of physically based models to simulate highly heterogeneous seasonal snowpack dynamics. Furthermore, results support the use of such a land surface model to predict potential impacts of climate change on the future of the region's hydrologic regime and the role of snow in these sub-alpine systems.

  20. Determination of Seed Soundness in Conifers Cryptomeria japonica and Chamaecyparis obtusa Using Narrow-Multiband Spectral Imaging in the Short-Wavelength Infrared Range.

    PubMed

    Matsuda, Osamu; Hara, Masashi; Tobita, Hiroyuki; Yazaki, Kenichi; Nakagawa, Toshinori; Shimizu, Kuniyoshi; Uemura, Akira; Utsugi, Hajime

    2015-01-01

    Regeneration of planted forests of Cryptomeria japonica (sugi) and Chamaecyparis obtuse (hinoki) is the pressing importance to the forest administration in Japan. Low seed germination rate of these species, however, has hampered low-cost production of their seedlings for reforestation. The primary cause of the low germinability has been attributed to highly frequent formation of anatomically unsound seeds, which are indistinguishable from sound germinable seeds by visible observation and other common criteria such as size and weight. To establish a method for sound seed selection in these species, hyperspectral imaging technique was used to identify a wavelength range where reflectance spectra differ clearly between sound and unsound seeds. In sound seeds of both species, reflectance in a narrow waveband centered at 1,730 nm, corresponding to a lipid absorption band in the short-wavelength infrared (SWIR) range, was greatly depressed relative to that in adjacent wavebands on either side. Such depression was absent or less prominent in unsound seeds. Based on these observations, a reflectance index SQI, abbreviated for seed quality index, was formulated using reflectance at three narrow SWIR wavebands so that it represents the extent of the depression. SQI calculated from seed area-averaged reflectance spectra and spatial distribution patterns of pixelwise SQI within each seed area were both proven as reliable criteria for sound seed selection. Enrichment of sound seeds was accompanied by an increase in germination rate of the seed lot. Thus, the methods described are readily applicable toward low-cost seedling production in combination with single seed sowing technology. PMID:26083366

  1. A conifer-friendly high-throughput α-cellulose extraction method for δ13C and δ18O stable isotope ratio analysis

    NASA Astrophysics Data System (ADS)

    Lin, W.; Noormets, A.; domec, J.; King, J. S.; Sun, G.; McNulty, S.

    2012-12-01

    Wood stable isotope ratios (δ13C and δ18O) offer insight to water source and plant water use efficiency (WUE), which in turn provide a glimpse to potential plant responses to changing climate, particularly rainfall patterns. The synthetic pathways of cell wall deposition in wood rings differ in their discrimination ratios between the light and heavy isotopes, and α-cellulose is broadly seen as the best indicator of plant water status due to its local and temporal fixation and to its high abundance within the wood. To use the effects of recent severe droughts on the WUE of loblolly pine (Pinus taeda) throughout Southeastern USA as a harbinger of future changes, an effort has been undertaken to sample the entire range of the species and to sample the isotopic composition in a consistent manner. To be able to accommodate the large number of samples required by this analysis, we have developed a new high-throughput method for α-cellulose extraction, which is the rate-limiting step in such an endeavor. Although an entire family of methods has been developed and perform well, their throughput in a typical research lab setting is limited to 16-75 samples per week with intensive labor input. The resin exclusion step in conifersis is particularly time-consuming. We have combined the recent advances of α-cellulose extraction in plant ecology and wood science, including a high-throughput extraction device developed in the Potsdam Dendro Lab and a simple chemical-based resin exclusion method. By transferring the entire extraction process to a multiport-based system allows throughputs of up to several hundred samples in two weeks, while minimizing labor requirements to 2-3 days per batch of samples.

  2. Comparison of lichen, conifer needles, passive air sampling devices, and snowpack as passive sampling media to measure semi-volatile organic compounds in remote atmospheres

    EPA Science Inventory

    The impact of extensively used arsenic-containing herbicides on groundwater beneath golf courses has become a topic of interest. Although currently used organoarsenicals are less toxic, their application into the environment may produce the more toxic inorganic arsenicals. The ob...

  3. Impacts of partial harvesting on the carbon and water balance of a mixed conifer forest attacked by the mountain pine beetle

    NASA Astrophysics Data System (ADS)

    Mathys, A.; Black, T. A.; Brown, M.; Nesic, Z.; Nishio, G.; Burton, P.; Spittlehouse, D.; Fredeen, A.; Trofymow, T.; Grant, N.; Lessard, D.; Bowler, R.

    2011-12-01

    The mountain pine beetle (MPB) outbreak has had a major impact on the carbon (C) and water balances of forests in Interior BC, Canada. As a management response, the forest sector has increased the annual allowable cut to enable partial harvesting in the timber supply areas. Protecting the non-pine secondary structure provides opportunities for mid-term (15-30 years) timber harvest, while providing habitat for wildlife, reducing run-off to rivers and streams and retaining stand biomass. This study investigates the effects of partial cutting on the CO2 and H2O fluxes and also compares it to clearcut harvesting. The study area is an MPB-attacked forest located near Summit Lake (54°13'N, 122°37'W) about 40 km north of Prince George, BC. In February and March 2009, the beetle-killed lodgepole pine trees (Pinus contorta var. latifolia) were removed, leaving 49% of secondary structure consisting mainly of black spruce (Picea mariana), white hybrid spruce (Picea engelmannii x glauca) and subalpine fir trees (Abies lasiocarpa) with a canopy height of ~16 m and a stand density of 535 stems ha-1. Net ecosystem productivity (NEP) has been continuously measured since October 2009 with the eddy-covariance technique using an ultrasonic anemometer and an open-path infrared gas analyzer mounted 26 m above the ground. This poster reports results for 2010, which was a relatively normal year in central BC with respect to solar radiation, precipitation and air temperature. During the growing season the stand was a C sink, with monthly total NEP values of up to 23.1 g C m-2 in June. Midday evapotranspiration rates did not exceed 0.3 mm h-1 with Bowen ratios usually greater than 1.5. By the end of the year the stand was a weak C source with an annual NEP of -50 g C m-2. In comparison, clearcuts in the region remain C sources for many years during the growing season. Results for 2011 will also be presented and compared to flux measurements in part of the stand that was clearcut harvested.

  4. The efficacy of salvage logging in reducing subsequent fire severity in conifer-dominated forests of Minnesota, U.S.A.

    PubMed

    Fraver, Shawn; Jain, Theresa; Bradford, John B; D'Amato, Anthony W; Kastendick, Doug; Palik, Brian; Shinneman, Doug; Stanovick, John

    2011-09-01

    Although primarily used to mitigate economic losses following disturbance, salvage logging has also been justified on the basis of reducing fire risk and fire severity; however, its ability to achieve these secondary objectives remains unclear. The patchiness resulting from a sequence of recent disturbances-blowdown, salvage logging, and wildfire-provided an excellent opportunity to assess the impacts of blowdown and salvage logging on wildfire severity. We used two fire-severity assessments (tree-crown and forest-floor characteristics) to compare post-wildfire conditions among three treatment combinations (Blowdown-Salvage-Fire, Blowdown-Fire, and Fire only). Our results suggest that salvage logging reduced the intensity (heat released) of the subsequent fire. However, its effect on severity (impact to the system) differed between the tree crowns and forest floor: tree-crown indices suggest that salvage logging decreased fire severity (albeit with modest statistical support), while forest-floor indices suggest that salvage logging increased fire severity. We attribute the latter finding to the greater exposure of mineral soil caused by logging operations; once exposed, soils are more likely to register the damaging effects of fire, even if fire intensity is not extreme. These results highlight the important distinction between fire intensity and severity when formulating post-disturbance management prescriptions. PMID:21939032

  5. Partial shading of lateral branches affects growth, and foliage nitrogen- and water-use efficiencies in the conifer Cunninghamia lanceolata growing in a warm monsoon climate.

    PubMed

    Dong, Tingfa; Li, Junyu; Zhang, Yuanbin; Korpelainen, Helena; Niinemets, Ülo; Li, Chunyang

    2015-06-01

    The degree to which branches are autonomous in their acclimation responses to alteration in light environment is still poorly understood. We investigated the effects of shading of the sapling crown of Cunninghamia lanceolata (Lamb.) Hook on the whole-tree and mid-crown branch growth and current-year foliage structure and physiology. Four treatments providing 0, 50, 75 and 90% shading compared with full daylight (denoted as Treatment(0), Treatment(50%), Treatment(75%) and Treatment(90%), and Shaded(0), Shaded(50%), Shaded(75%) and Shaded(90%) for the shaded branches and Sunlit(0), Sunlit(50%), Sunlit(75%) and Sunlit(90%) for the opposite sunlit branches under natural light conditions, respectively), were applied over two consecutive growing seasons. Shading treatments decreased the growth of basal stem diameter, leaf dry mass per unit leaf area, stomatal conductance, transpiration rate, the ratio of water-soluble to structural leaf nitrogen content, photosynthetic nitrogen-use efficiency and instantaneous and long-term (estimated from carbon isotope composition) water-use efficiency in shaded branches. Differences between shaded and sunlit branches increased with increasing severity and duration of shading. A non-autonomous, partly compensatory behavior of non-shaded branches was observed for most traits, thus reflecting the dependence between the traits of sunlit branches and the severity of shading of the opposite crown half. The results collectively indicated that tree growth and branch and leaf acclimation responses of C. lanceolata are not only affected by the local light environment, but also by relative within-crown light conditions. We argue that such a non-autonomous branch response to changes in light conditions can improve whole-tree resource optimization. These results contribute to better understanding of tree growth and utilization of water and nitrogen under heterogeneous light conditions within tree canopies. PMID:26032625

  6. Ectopic expression of a conifer Abscisic Acid Insensitive3 transcription factor induces high-level synthesis of recombinant human alpha-L-iduronidase in transgenic tobacco leaves.

    PubMed

    Kermode, Allison R; Zeng, Ying; Hu, Xiaoke; Lauson, Samantha; Abrams, Suzanne R; He, Xu

    2007-04-01

    We are examining various plant-based systems to produce enzymes for the treatment of human lysosomal storage disorders. Constitutive expression of the gene encoding the human lysosomal enzyme, alpha-L-iduronidase (IDUA; EC 3.2.1.76) in leaves of transgenic tobacco plants resulted in low-enzyme activity, and the protein appeared to be subject to proteolysis. Toward enhancing production of this recombinant enzyme in vegetative tissues, transgenic tobacco plants were generated to co-express a CaMV35S:Chamaecyparis nootkatensis Abscisic Acid Insensitive3 (CnABI3) gene construct, along with the human gene construct. The latter contained regulatory sequences of the Phaseolus vulgaris arcelin 5-I gene (5'-flanking, signal-peptide-encoding, and 3'-flanking regions). Ectopic synthesis of the CnABI3 protein led to the transactivation of the arcelin promoter and accordingly high activity (e.g., 25,000 pmol/min/mg total soluble protein) and levels of recombinant IDUA mRNA and protein were induced in leaves of transgenic tobacco, particularly in the presence of 150-200 microM S-(+)-ABA. Synthesis of human IDUA containing a carboxy-terminal ER retention (SEKDEL) sequence was also inducible by ABA in leaves co-transformed with the CnABI3 gene. As compared to the natural S-(+)-ABA, two persistent ABA analogues, (+)-8' acetylene ABA and (+)-8'methylene ABA, led to greater levels of beta-glucuronidase (GUS) reporter activities in leaves co-expressing the CnABI3 gene and a vicilin:GUS chimeric gene. In contrast, (+)-8' acetylene ABA and natural ABA appeared to be equally effective in stimulating the CnABI3-induced expression of an arcelin:GUS gene, and of the human IDUA gene, the latter also driven by arcelin-gene-regulatory sequences. Various stress-related treatments, particularly high concentrations of NaCl, had an even greater effect than ABA in promoting accumulation of human IDUA in co-transformed tobacco leaves. This strategy provides the means of enhancing the yields of recombinant proteins in transgenic plant vegetative tissues and potentially in cultured plant cells. The human recombinant protein can be readily induced in the presence of chemicals such as NaCl that can be added to cell cultures or even whole plants without a significant increase in production costs. PMID:17203373

  7. Long-term surface fuel accumulation in burned and unburned mixed-conifer forests of the central and southern Sierra Nevada, CA (USA)

    USGS Publications Warehouse

    Keifer, M.B.; van Wagtendonk, J.W.; Buhler, M.

    2006-01-01

    Summary of Conclusions and Recommendations: The levels of mercury contamination found in freshwater fish in Sweden and Finland are similar to those found in such fish in the United States. On the other hand, fish consumption in this country is regarded as generally somewhat less than in the region of Scandinavia. Medical examinations of heavy eaters of contaminated fish have not revealed conclusive evidence of mercury-related disease in either Sweden or Finland. Nevertheless, the body burdens of mercury of some of those having the heaviest intake of fish in both of those countries were as high as the lower levels reported in persons with methylmercury poisoning in Japan. The major conclusion derived from these and other findings was that it seems unlikely that we will find overt mercury poisoning from the consumption of fish or other food products, as normally marketed, in this country. This is not to say that there may not be a few individuals, who because of high consumption of contaminated fish may have signs of mercury poisoning or suffer possible subclinical effects, including delayed neurologic or intellectual damage. Also, possibly infants or children may have impaired development. As yet, no systematic studies have been undertaken, even in the known areas of human exposure in Sweden and Japan, to identify such subclinical effects. Although we appear to be on safe ground, it is urgent (1) to determine whether subtle health effects are present and (2) to use all possible means to reduce exposure to mercury immediately.

  8. Determination of Seed Soundness in Conifers Cryptomeria japonica and Chamaecyparis obtusa Using Narrow-Multiband Spectral Imaging in the Short-Wavelength Infrared Range

    PubMed Central

    Matsuda, Osamu; Hara, Masashi; Tobita, Hiroyuki; Yazaki, Kenichi; Nakagawa, Toshinori; Shimizu, Kuniyoshi; Uemura, Akira; Utsugi, Haj