Sample records for conjugal na qualidade

  1. Properties of acid gels made from sodium caseinate-maltodextrin conjugates prepared by a wet heating method.

    PubMed

    Zhang, Shuwen; Gong, Yuansheng; Khanal, Som; Lu, Yanjie; Lucey, John A

    2017-11-01

    Covalent attachment of polysaccharides to proteins (conjugation) via the Maillard reaction has been extensively studied. Conjugation can lead to a significant improvement in protein functionality (e.g., solubility, emulsification, and heat stability). Caseins have previously been successfully conjugated with maltodextrin (Md), but the effect on the detailed acid gelation properties has not been examined. We studied the effect of conjugating sodium caseinate (NaCN) with 3 different sized Md samples via the Maillard reaction in aqueous solutions. The Md samples had dextrose equivalents of 4 to 7, 9 to 12, and 20 to 23 for Md40, Md100, and Md200, respectively. The conjugation reaction was performed in mixtures with 5% NaCN and 5% Md, which were heated at 90°C for 10 h. The degree of conjugation was estimated from the reduction in free amino groups as well as color changes. Sodium dodecyl sulfate-PAGE analysis was performed to confirm conjugation by employing staining of both protein and carbohydrate bands. The molar mass of samples was determined by size-exclusion chromatography coupled with multi-angle laser light scattering. After the conjugation reaction, samples were then gelled by the addition of 0.63% (wt/vol) glucono-δ-lactone at 30°C, such that samples reached pH 4.6 after about 13 h. The rheological properties of samples during acidification was monitored by small-strain dynamic oscillatory rheology. The microstructure of acid gels at pH 4.6 was examined by fluorescence microscopy. Conjugation resulted in a loss of 10.8, 8.8, and 11.9% of the available amino groups in the protein for the NaCN-Md40 conjugates (C40), NaCN-Md100 conjugates (C100), and NaCN-Md100 conjugates (C200), respectively. With a decrease in the size of the type of Md, an increase occurred in the molar mass of the resultant conjugate. The weight average molar masses of NaCN-Md samples were 340, 368, and 425 kDa for the conjugates C40, C100, and C200, respectively. Addition of Md to Na

  2. Stimulated Brillouin scattering continuous wave phase conjugation in step-index fiber optics.

    PubMed

    Massey, Steven M; Spring, Justin B; Russell, Timothy H

    2008-07-21

    Continuous wave (CW) stimulated Brillouin scattering (SBS) phase conjugation in step-index optical fibers was studied experimentally and modeled as a function of fiber length. A phase conjugate fidelity over 80% was measured from SBS in a 40 m fiber using a pinhole technique. Fidelity decreases with fiber length, and a fiber with a numerical aperture (NA) of 0.06 was found to generate good phase conjugation fidelity over longer lengths than a fiber with 0.13 NA. Modeling and experiment support previous work showing the maximum interaction length which yields a high fidelity phase conjugate beam is inversely proportional to the fiber NA(2), but find that fidelity remains high over much longer fiber lengths than previous models calculated. Conditions for SBS beam cleanup in step-index fibers are discussed.

  3. Doxorubicin-conjugated β-NaYF4:Gd(3+)/Tb(3+) multifunctional, phosphor nanorods: a multi-modal, luminescent, magnetic probe for simultaneous optical and magnetic resonance imaging and an excellent pH-triggered anti-cancer drug delivery nanovehicle.

    PubMed

    Padhye, Preeti; Alam, Aftab; Ghorai, Suvankar; Chattopadhyay, Samit; Poddar, Pankaj

    2015-12-14

    Herein, we report the fabrication of a multifunctional nanoprobe based on highly monodispersed, optically and magnetically active, biocompatible, PEI-functionalized, highly crystalline β-NaYF4:Gd(3+)/Tb(3+) nanorods as an excellent multi-modal optical/magnetic imaging tool and a pH-triggered intracellular drug delivery nanovehicle. The static and dynamic photoluminescence spectroscopy showed the presence of sharp emission peaks, with long lifetimes (∼3.5 milliseconds), suitable for optical imaging. The static magnetic susceptibility measurements at room temperature showed a strong paramagnetic signal (χ∼ 3.8 × 10(-5) emu g(-1) Oe(-1)). The nuclear magnetic resonance (NMR) measurements showed fair T1 relaxivity (r1 = 1.14 s(-1) mM(-1)) and magnetic resonance imaging gave enhanced T1-weighted MRI images with increased concentrations of β-NaYF4:Gd(3+)/Tb(3+) making them suitable for simultaneous magnetic resonance imaging. In addition, an anticancer drug, doxorubicin (DOX) was conjugated to the amine-functionalized β-NaYF4:Gd(3+)/Tb(3+) nanorods via pH-sensitive hydrazone bond linkages enabling them as a pH-triggered, site-specific drug delivery nanovehicle for DOX release inside tumor cells. A comparison between in vitro DOX release studies undertaken in normal physiological (pH 7.4) and acidic (pH 5.0) environments showed an enhanced DOX dissociation (∼80%) at pH 5.0. The multifunctional material was also applied as an optical probe to confirm the conjugation of DOX and to monitor DOX release via a fluorescence resonance energy transfer (FRET) mechanism. The DOX-conjugated β-NaYF4:Gd(3+)/Tb(3+) nanorods exhibited a cytotoxic effect on MCF-7 breast cancer cells and their uptake by MCF-7 cells was demonstrated using confocal laser scanning microscopy and flow cytometry. The comparative cellular uptakes of free DOX and DOX-conjugated β-NaYF4:Gd(3+)/Tb(3+) nanorods were studied in tumor microenvironment conditions (pH 6.5) using confocal imaging, which

  4. Visualization of melanoma tumor with lectin-conjugated rare-earth doped fluoride nanocrystals

    PubMed Central

    Dumych, Tetiana; Lutsyk, Maxym; Banski, Mateusz; Yashchenko, Antonina; Sojka, Bartlomiej; Horbay, Rostyslav; Lutsyk, Alexander; Stoika, Rostyslav; Misiewicz, Jan; Podhorodecki, Artur; Bilyy, Rostyslav

    2014-01-01

    Aim To develop specific fluorescent markers for melanoma tumor visualization, which would provide high selectivity and reversible binding pattern, by the use of carbohydrate-recognizing proteins, lectins, combined with the physical ability for imaging deep in the living tissues by utilizing red and near infrared fluorescent properties of specific rare-earth doped nanocrystals (NC). Methods B10F16 melanoma cells were inoculated to C57BL/6 mice for inducing experimental melanoma tumor. Tumors were removed and analyzed by lectin-histochemistry using LABA, PFA, PNA, HPA, SNA, GNA, and NPL lectins and stained with hematoxylin and eosin. NPL lectin was conjugated to fluorescent NaGdF4:Eu3+-COOH nanoparticles (5 nm) via zero length cross-linking reaction, and the conjugates were purified from unbound substances and then used for further visualization of histological samples. Fluorescent microscopy was used to visualize NPL-NaGdF4:Eu3+ with the fluorescent emission at 600-720 nm range. Results NPL lectin selectively recognized regions of undifferentiated melanoblasts surrounding neoangiogenic foci inside melanoma tumor, PNA lectin recognized differentiated melanoblasts, and LCA and WGA were bound to tumor stroma regions. NPL-NaGdF4:Eu3+ conjugated NC were efficiently detecting newly formed regions of melanoma tumor, confirmed by fluorescent microscopy in visible and near infrared mode. These conjugates possessed high photostability and were compatible with convenient xylene-based mounting systems and preserved intensive fluorescent signal at samples storage for at least 6 months. Conclusion NPL lectin-NaGdF4:Eu3+ conjugated NC permitted distinct identification of contours of the melanoma tissue on histological sections using red excitation at 590-610 nm and near infrared emission of 700-720 nm. These data are of potential practical significance for development of glycans-conjugated nanoparticles to be used for in vivo visualization of melanoma tumor. PMID:24891277

  5. Multicolor Upconversion Nanoparticles for Protein Conjugation

    PubMed Central

    Wilhelm, Stefan; Hirsch, Thomas; Patterson, Wendy M.; Scheucher, Elisabeth; Mayr, Torsten; Wolfbeis, Otto S.

    2013-01-01

    We describe the preparation of monodisperse, lanthanide-doped hexagonal-phase NaYF4 upconverting luminescent nanoparticles for protein conjugation. Their core was coated with a silica shell which then was modified with a poly(ethylene glycol) spacer and N-hydroxysuccinimide ester groups. The nanoparticles were characterized by transmission electron microscopy, Raman spectroscopy, X-ray diffraction, and dynamic light scattering. The N-hydroxysuccinimide ester functionalization renders them highly reactive towards amine nucleophiles (e.g., proteins). We show that such particles can be conjugated to proteins. The protein-reactive UCLNPs and their conjugates to streptavidin and bovine serum albumin display multicolor emissions upon 980-nm continuous wave laser excitation. Surface plasmon resonance studies were carried out to prove bioconjugation and to compare the affinity of the particles for proteins immobilized on a thin gold film. PMID:23606910

  6. Priming for immunologic memory in adults by meningococcal group C conjugate vaccination.

    PubMed

    Vu, David M; de Boer, Alberdina W; Danzig, Lisa; Santos, George; Canty, Bridget; Flores, Betty M; Granoff, Dan M

    2006-06-01

    Meningococcal group C polysaccharide-protein conjugate vaccines (MCV) prime infants and children for memory anticapsular responses upon subsequent exposure to unconjugated polysaccharide. The objective of this study was to determine whether MCV primes vaccine-naïve adults and adults previously vaccinated with meningococcal polysaccharide vaccine (MPSV) for memory antibody responses. Meningococcal vaccine-naïve adults were randomized to receive either MCV (MCV/naïve group) (n = 35) or pneumococcal conjugate vaccine (PCV) (PCV/naïve group) (n = 34). Participants with a history of receiving MPSV were given MCV (MCV/MPSV group) (n = 26). All subjects were challenged 10 months later with one-fifth of the usual dose of MPSV (10 mug of each polysaccharide). Sera were obtained before the conjugate vaccination and before and 7 days after the MPSV challenge and assayed for immunoglobulin G (IgG) anticapsular antibody concentrations and bactericidal titers. The MCV/naïve group had 7- to 10-fold-higher serum IgG and bactericidal responses after the MPSV challenge than the PCV/naïve group (P < 0.001). The increases (n-fold) in anticapsular antibody concentrations in the MCV/naïve group were greatest in subjects with antibody concentrations of 2 microg/ml before the challenge; P < 0.0001). Only 3 of 11 MCV-vaccinated subjects who had received MPSV before enrollment and who had antibody concentrations of naïve adults primes for robust memory antibody responses. There was no evidence of induction of memory by MCV in adults previously vaccinated with MPSV.

  7. Exciton transport in π-conjugated polymers with conjugation defects.

    PubMed

    Meng, Ruixuan; Li, Yuan; Li, Chong; Gao, Kun; Yin, Sun; Wang, Luxia

    2017-09-20

    In π-conjugated polymers for photovoltaic applications, intrinsic conjugation defects are known to play crucial roles in impacting exciton transport after photoexcitation. However, the understanding of the associated microscopic processes still remains limited. Here, we present a theoretical investigation of the effects of different conjugation defects on the dynamics of exciton transport in two linearly coupled poly(p-phenylene vinylene) (PPV) molecules. The model system is constructed by employing an extended version of the Su-Schrieffer-Heeger model and the exciton behaviors are simulated by means of a quantum nonadiabatic dynamics. We identify two types of conjugation defects, i.e., weakening conjugation and strengthening conjugation, which are demonstrated to play different roles in impacting the dynamics of exciton transport in the system. The weakening conjugation acts as an energy well inclined to trap a moving exciton, while the strengthening conjugation acts as an energy barrier inclined to block the exciton. We also systematically simulate both intrachain and interchain dynamics of exciton transport, and find that an exciton could experience a "short-time delaying", "trapping", "blocking", or "hopping" process, which is determined by the defect type, strength, and position. These findings provide a microscopic understanding of how the exciton transport dynamics can be impacted by conjugation defects in an actual polymer system.

  8. Purification of SUMO conjugating enzymes and kinetic analysis of substrate conjugation

    PubMed Central

    Yunus, Ali A.; Lima, Christopher D.

    2009-01-01

    SUMO conjugation to protein substrates requires the concerted action of a dedicated E2 ubiquitin conjugation enzyme (Ubc9) and associated E3 ligases. Although Ubc9 can directly recognize and modify substrate lysine residues that occur within a consensus site for SUMO modification, E3 ligases can redirect specificity and enhance conjugation rates during SUMO conjugation in vitro and in vivo. In this chapter, we will describe methods utilized to purify SUMO conjugating enzymes and model substrates which can be used for analysis of SUMO conjugation in vitro. We will also describe methods to extract kinetic parameters during E3-dependent or E3-independent substrate conjugation. PMID:19107417

  9. Synthesis and properties of a biodegradable polymer-drug conjugate: Methotrexate-poly(glycerol adipate).

    PubMed

    Suksiriworapong, Jiraphong; Taresco, Vincenzo; Ivanov, Delyan P; Styliari, Ioanna D; Sakchaisri, Krisada; Junyaprasert, Varaporn Buraphacheep; Garnett, Martin C

    2018-07-01

    Polymer-drug conjugates have been actively developed as potential anticancer drug delivery systems. In this study, we report the first polymer-anticancer drug conjugate with poly(glycerol adipate) (PGA) through the successful conjugation of methotrexate (MTX). MTX-PGA conjugates were controllably and simply fabricated by carbodiimide-mediated coupling reaction with various high molar ratios of MTX. The MTX-PGA conjugate self-assembled into nanoparticles with size dependent on the amount of conjugated MTX and the pH of medium. Change in particle size was attributed to steric hindrance and bulkiness inside the nanoparticle core and dissociation of free functional groups of the drug. The MTX-PGA nanoparticles were physically stable in media with pH range of 5-9 and ionic strength of up to 0.15 M NaCl and further chemically stable against hydrolysis in pH 7.4 medium over 30 days but enzymatically degradable to release unchanged free drug. Although 30%MTX-PGA nanoparticles exhibited only slightly less potency than free MTX in 791T cells in contrast to previously reported human serum albumin-MTX conjugates which had >300 times lower potency than free MTX. However, the MTX nanoparticles showed 7 times higher toxicity to Saos-2 cells than MTX. Together with the enzymic degradation experiments, these results suggest that with a suitable biodegradable polymer a linker moiety is not a necessary component. These easily synthesised PGA drug conjugates lacking a linker moiety could therefore be an effective new pathway for development of polymer drug conjugates. Copyright © 2018 Elsevier B.V. All rights reserved.

  10. Ozone-Induced Dissociation of Conjugated Lipids Reveals Significant Reaction Rate Enhancements and Characteristic Odd-Electron Product Ions

    NASA Astrophysics Data System (ADS)

    Pham, Huong T.; Maccarone, Alan T.; Campbell, J. Larry; Mitchell, Todd W.; Blanksby, Stephen J.

    2013-02-01

    Ozone-induced dissociation (OzID) is an alternative ion activation method that relies on the gas phase ion-molecule reaction between a mass-selected target ion and ozone in an ion trap mass spectrometer. Herein, we evaluated the performance of OzID for both the structural elucidation and selective detection of conjugated carbon-carbon double bond motifs within lipids. The relative reactivity trends for [M + X]+ ions (where X = Li, Na, K) formed via electrospray ionization (ESI) of conjugated versus nonconjugated fatty acid methyl esters (FAMEs) were examined using two different OzID-enabled linear ion-trap mass spectrometers. Compared with nonconjugated analogues, FAMEs derived from conjugated linoleic acids were found to react up to 200 times faster and to yield characteristic radical cations. The significantly enhanced reactivity of conjugated isomers means that OzID product ions can be observed without invoking a reaction delay in the experimental sequence (i.e., trapping of ions in the presence of ozone is not required). This possibility has been exploited to undertake neutral-loss scans on a triple quadrupole mass spectrometer targeting characteristic OzID transitions. Such analyses reveal the presence of conjugated double bonds in lipids extracted from selected foodstuffs. Finally, by benchmarking of the absolute ozone concentration inside the ion trap, second order rate constants for the gas phase reactions between unsaturated organic ions and ozone were obtained. These results demonstrate a significant influence of the adducting metal on reaction rate constants in the fashion Li > Na > K.

  11. Nonadiabatic excited-state molecular dynamics: modeling photophysics in organic conjugated materials.

    PubMed

    Nelson, Tammie; Fernandez-Alberti, Sebastian; Roitberg, Adrian E; Tretiak, Sergei

    2014-04-15

    To design functional photoactive materials for a variety of technological applications, researchers need to understand their electronic properties in detail and have ways to control their photoinduced pathways. When excited by photons of light, organic conjugated materials (OCMs) show dynamics that are often characterized by large nonadiabatic (NA) couplings between multiple excited states through a breakdown of the Born-Oppenheimer (BO) approximation. Following photoexcitation, various nonradiative intraband relaxation pathways can lead to a number of complex processes. Therefore, computational simulation of nonadiabatic molecular dynamics is an indispensable tool for understanding complex photoinduced processes such as internal conversion, energy transfer, charge separation, and spatial localization of excitons. Over the years, we have developed a nonadiabatic excited-state molecular dynamics (NA-ESMD) framework that efficiently and accurately describes photoinduced phenomena in extended conjugated molecular systems. We use the fewest-switches surface hopping (FSSH) algorithm to treat quantum transitions among multiple adiabatic excited state potential energy surfaces (PESs). Extended molecular systems often contain hundreds of atoms and involve large densities of excited states that participate in the photoinduced dynamics. We can achieve an accurate description of the multiple excited states using the configuration interaction single (CIS) formalism with a semiempirical model Hamiltonian. Analytical techniques allow the trajectory to be propagated "on the fly" using the complete set of NA coupling terms and remove computational bottlenecks in the evaluation of excited-state gradients and NA couplings. Furthermore, the use of state-specific gradients for propagation of nuclei on the native excited-state PES eliminates the need for simplifications such as the classical path approximation (CPA), which only uses ground-state gradients. Thus, the NA-ESMD methodology

  12. Conjugate and method for forming aminomethyl phosphorus conjugates

    DOEpatents

    Katti, Kattesh V.; Berning, Douglas E.; Volkert, Wynn A.; Ketring, Alan R.; Churchill, Robert

    1999-01-01

    A method of forming phosphine-amine conjugates includes reacting a hydroxymethyl phosphine group of an amine-free first molecule with at least one free amine group of a second molecule to covalently bond the first molecule with the second molecule through an aminomethyl phosphorus linkage and the conjugates formed thereby.

  13. [Conjugated vaccines].

    PubMed

    Fritzell, Bernard

    2005-01-01

    Encapsulated bacterial pathogens (e.g. Haemophilus influenzae type b [Hib], Neisseria meningitidis, or Streptococcus pneumoniae) target infants and young children who have lost any protective anti-capsular antibodies supplied maternally and whose immune systems are ineffective against T-independent antigens such as the polysaccharides of the capsule. The polysaccharide-protein conjugate vaccines overcome this limitation by converting the polysaccharide to a T-dependent antigen, which allows a vaccinated infant to mount a protective immune response. Where conjugated vaccines have been introduced into paediatric vaccination schedules, the incidence of invasive diseases caused by Hib, the group C meningococcus, or the pneumococcus has plummeted by at least 80%, a major public health success. Furthermore, surveillance has demonstrated that the conjugate vaccines provide 'herd protection' through their beneficial impact on nasopharyngeal colonisation among vaccinated children. Promising future approaches include enhancement of the number of capsular serogroups targeted by the meningococcal or pneumococcal conjugate vaccines.

  14. Phthalocyanine-Conjugated Upconversion NaYF4 :Yb3+ /Er3+ @SiO2 Nanospheres for NIR-Triggered Photodynamic Therapy in a Tumor Mouse Model.

    PubMed

    Kostiv, Uliana; Patsula, Vitalii; Noculak, Agnieszka; Podhorodecki, Artur; Větvička, David; Poučková, Pavla; Sedláková, Zdenka; Horák, Daniel

    2017-12-19

    Photodynamic therapy (PDT) has garnered immense attention as a minimally invasive clinical treatment modality for malignant cancers. However, its low penetration depth and photodamage of living tissues by UV and visible light, which activate a photosensitizer, limit the application of PDT. In this study, monodisperse NaYF 4 :Yb 3+ /Er 3+ nanospheres 20 nm in diameter, that serve as near-infrared (NIR)-to-visible light converters and activators of a photosensitizer, were synthesized by high-temperature co-precipitation of lanthanide chlorides in a high-boiling organic solvent (octadec-1-ene). The nanoparticles were coated with a thin shell (≈3 nm) of homogenous silica via the hydrolysis and condensation of tetramethyl orthosilicate. The NaYF 4 :Yb 3+ /Er 3+ @SiO 2 particles were further functionalized by methacrylate-terminated groups via 3-(trimethoxysilyl)propyl methacrylate. To introduce a large number of reactive amino groups on the particle surface, methacrylate-terminated NaYF 4 :Yb 3+ /Er 3+ @SiO 2 nanospheres were modified with a branched polyethyleneimine (PEI) via Michael addition. Aluminum carboxyphthalocyanine (Al Pc-COOH) was then conjugated to NaYF 4 :Yb 3+ /Er 3+ @SiO 2 -PEI nanospheres via carbodiimide chemistry. The resulting NaYF 4 :Yb 3+ /Er 3+ @SiO 2 -PEI-Pc particles were finally modified with succinimidyl ester of poly(ethylene glycol) (PEG) in order to alleviate their future uptake by the reticuloendothelial system. Upon 980 nm irradiation, the intensive red emission of NaYF 4 :Yb 3+ /Er 3+ @SiO 2 -PEI-Pc-PEG nanoparticles completely vanished, indicating efficient energy transfer from the nanoparticles to Al Pc-COOH, which generates singlet oxygen ( 1 O 2 ). Last but not least, NaYF 4 :Yb 3+ /Er 3+ @SiO 2 -PEI-Pc-PEG nanospheres were intratumorally administered into mammary carcinoma MDA-MB-231 growing subcutaneously in athymic nude mice. Extensive necrosis developed at the tumor site of all mice 24-48 h after irradiation by laser at

  15. Multi-step high-throughput conjugation platform for the development of antibody-drug conjugates.

    PubMed

    Andris, Sebastian; Wendeler, Michaela; Wang, Xiangyang; Hubbuch, Jürgen

    2018-07-20

    Antibody-drug conjugates (ADCs) form a rapidly growing class of biopharmaceuticals which attracts a lot of attention throughout the industry due to its high potential for cancer therapy. They combine the specificity of a monoclonal antibody (mAb) and the cell-killing capacity of highly cytotoxic small molecule drugs. Site-specific conjugation approaches involve a multi-step process for covalent linkage of antibody and drug via a linker. Despite the range of parameters that have to be investigated, high-throughput methods are scarcely used so far in ADC development. In this work an automated high-throughput platform for a site-specific multi-step conjugation process on a liquid-handling station is presented by use of a model conjugation system. A high-throughput solid-phase buffer exchange was successfully incorporated for reagent removal by utilization of a batch cation exchange step. To ensure accurate screening of conjugation parameters, an intermediate UV/Vis-based concentration determination was established including feedback to the process. For conjugate characterization, a high-throughput compatible reversed-phase chromatography method with a runtime of 7 min and no sample preparation was developed. Two case studies illustrate the efficient use for mapping the operating space of a conjugation process. Due to the degree of automation and parallelization, the platform is capable of significantly reducing process development efforts and material demands and shorten development timelines for antibody-drug conjugates. Copyright © 2018 Elsevier B.V. All rights reserved.

  16. Improved conjugation and purification strategies for the preparation of protein-polysaccharide conjugates.

    PubMed

    Suárez, N; Massaldi, H; Franco Fraguas, L; Ferreira, F

    2008-12-12

    A glycoconjugate constituted by the Streptococcus pneumoniae serotype 14 capsular polysaccharide (CPS14) and bovine serum albumin (BSA) was prepared, and the unique properties of Sephadex LH-20 were used to separate the conjugate from the unconjugated material. The strength of this approach consists in its capacity to produce pure polysaccharide-protein conjugate in good yield and free from unconjugated material, a common residual contaminant of this type of immunobiologicals. The CPS14-BSA conjugate prepared via an improved 1-cyano-4-dimethylaminopyridinium tetrafluoroborate (CDAP)-activation technique was characterized chemically and its immunogenicity was evaluated in mice. The purified conjugate, unlike the corresponding polysaccharide, produced a T-cell-dependent response in this species.

  17. Ubiquitin in Motion: Structural Studies of the Ubiquitin-Conjugating Enzyme~Ubiquitin Conjugate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pruneda, Jonathan N.; Stoll, Kate E.; Bolton, Laura J.

    2011-03-15

    Ubiquitination of proteins provides a powerful and versatile post-translational signal in the eukaryotic cell. The formation of a thioester bond between ubiquitin (Ub) and the active site of a ubiquitin-conjugating enzyme (E2) is critical for the transfer of Ub to substrates. Assembly of a functional ubiquitin ligase (E3) complex poised for Ub transfer involves recognition and binding of an E2~Ub conjugate. Therefore, full characterization of the structure and dynamics of E2~Ub conjugates is required for further mechanistic understanding of Ub transfer reactions. Here we present characterization of the dynamic behavior of E2~Ub conjugates of two human enzymes, UbcH5c~Ub and Ubc13~Ub,more » in solution as determined by nuclear magnetic resonance and small-angle X-ray scattering. Within each conjugate, Ub retains great flexibility with respect to the E2, indicative of highly dynamic species that adopt manifold orientations. The population distribution of Ub conformations is dictated by the identity of the E2: the UbcH5c~Ub conjugate populates an array of extended conformations, and the population of Ubc13~Ub conjugates favors a closed conformation in which the hydrophobic surface of Ub faces helix 2 of Ubc13. Finally, we propose that the varied conformations adopted by Ub represent available binding modes of the E2~Ub species and thus provide insight into the diverse E2~Ub protein interactome, particularly with regard to interaction with Ub ligases.« less

  18. Self-Adjuvanting Glycopeptide Conjugate Vaccine against Disseminated Candidiasis

    PubMed Central

    Xin, Hong; Cartmell, Jonathan; Bailey, Justin J.; Dziadek, Sebastian; Bundle, David R.; Cutler, Jim E.

    2012-01-01

    Our research on pathogenesis of disseminated candidiasis led to the discovery that antibodies specific for Candida albicans cell surface β-1, 2–mannotriose [β-(Man)3] protect mice. A 14 mer peptide Fba, which derived from the N-terminal portion of the C. albicans cytosolic/cell surface protein fructose-bisphosphate aldolase, was used as the glycan carrier and resulted in a novel synthetic glycopeptide vaccine β-(Man)3-Fba. By a dendritic cell-based immunization approach, this conjugate induced protective antibody responses against both the glycan and peptide parts of the vaccine. In this report, we modified the β-(Man)3-Fba conjugate by coupling it to tetanus toxoid (TT) in order to improve immunogenicity and allow for use of an adjuvant suitable for human use. By new immunization procedures entirely compatible with human use, the modified β-(Man)3-Fba-TT was administered either alone or as a mixture made with alum or monophosphoryl lipid A (MPL) adjuvants and given to mice by a subcutaneous (s.c.) route. Mice vaccinated with or, surprisingly, without adjuvant responded well by making robust antibody responses. The immunized groups showed a high degree of protection against a lethal challenge with C. albicans as evidenced by increased survival times and reduced kidney fungal burden as compared to control groups that received only adjuvant or DPBS buffer prior to challenge. To confirm that induced antibodies were protective, sera from mice immunized against the β-(Man)3-Fba-TT conjugate transferred protection against disseminated candidiasis to naïve mice, whereas C. albicans-absorbed immune sera did not. Similar antibody responses and protection induced by the β-(Man)3-Fba-TT vaccine was observed in inbred BALB/c and outbred Swiss Webster mice. We conclude that addition of TT to the glycopeptide conjugate results in a self-adjuvanting vaccine that promotes robust antibody responses without the need for additional adjuvant, which is novel and represents a

  19. Silver Nanoparticle Oligonucleotide Conjugates Based on DNA with Triple Cyclic Disulfide Moieties

    PubMed Central

    Lee, Jae-Seung; Lytton-Jean, Abigail K. R.; Hurst, Sarah J.; Mirkin, Chad A.

    2011-01-01

    We report a new strategy for preparing silver nanoparticle oligonucleotide conjugates that are based upon DNA with cyclic disulfide-anchoring groups. These particles are extremely stable and can withstand NaCl concentrations up to 1.0 M. When silver nanoparticles functionalized with complementary sequences are combined, they assemble to form DNA-linked nanoparticle networks. This assembly process is reversible with heating and is associated with a red-shifting of the particle surface plasmon resonance and a concomitant color change from yellow to pale red. Analogous to the oligonucleotide-functionalized gold nanoparticles, these particles also exhibit highly cooperative binding properties with extremely sharp melting transitions. This work is an important step towards being able to use silver nanoparticle oligonucleotide conjugates for a variety of purposes, including molecular diagnostic labels, synthons in programmable materials synthesis approaches, and functional components for nanoelectronic and plasmonic devices. PMID:17571909

  20. Conjugation, characterization and toxicity of lipophosphoglycan-polyacrylic acid conjugate for vaccination against leishmaniasis.

    PubMed

    Topuzogullari, Murat; Cakir Koc, Rabia; Dincer Isoglu, Sevil; Bagirova, Melahat; Akdeste, Zeynep; Elcicek, Serhat; Oztel, Olga N; Yesilkir Baydar, Serap; Canim Ates, Sezen; Allahverdiyev, Adil M

    2013-06-03

    Research on the conjugates of synthetic polyelectrolytes with antigenic molecules, such as proteins, peptides, or carbohydrates, is an attractive area due to their highly immunogenic character in comparison to classical adjuvants. For example, polyacrylic acid (PAA) is a weak polyelectrolyte and has been used in several biomedical applications such as immunological studies, drug delivery, and enzyme immobilization. However, to our knowledge, there are no studies that document immune-stimulant properties of PAA in Leishmania infection. Therefore, we aimed to develop a potential vaccine candidate against leishmaniasis by covalently conjugating PAA with an immunologically vital molecule of lipophosphoglycan (LPG) found in Leishmania parasites. In the study, LPG and PAA were conjugated by a multi-step procedure, and final products were analyzed with GPC and MALDI-TOF MS techniques. In cytotoxicity experiments, LPG-PAA conjugates did not indicate toxic effects on L929 and J774 murine macrophage cells. We assume that LPG-PAA conjugate can be a potential vaccine candidate, and will be immunologically characterized in further studies to prove its potential.

  1. TRANSPORT OF THIOL-CONJUGATES OF INORGANIC MERCURY IN HUMAN RETINAL PIGMENT EPITHELIAL CELLS

    PubMed Central

    Bridges, Christy C.; Battle, Jamie R.; Zalups, Rudolfs K.

    2007-01-01

    Inorganic mercury (Hg2+) is a prevalent environmental contaminant to which exposure to can damage rod photoreceptor cells and compromise scotopic vision. The retinal pigment epithelium (RPE) likely plays a role in the ocular toxicity associated with Hg2+ exposure in that it mediates transport of substances to the photoreceptor cells. In order for Hg2+ to access photoreceptor cells, it must be first be taken up by the RPE, possibly by mechanisms involving transporters of essential nutrients. In other epithelia, Hg2+, when conjugated to cysteine (Cys) or homocysteine (Hcy), gains access to the intracellular compartment of the target cells via amino acid and organic anion transporters. Accordingly, the purpose of the current study was to test the hypothesis that Cys and Hcy S-conjugates of Hg2+ utilize amino acid transporters to gain access into RPE cells. Time- and temperature-dependence, saturation kinetics, and substrate-specificity of the transport of Hg2+, was assessed in ARPE-19 cells exposed to the following S-conjugates of Hg2+: Cys (Cys-S-Hg-S-Cys), Hcy (Hcy-S-Hg-S-Hcy), N-acetylcysteine (NAC-S-Hg-S-NAC) or glutathione (GSH-S-Hg-S-GSH). We discovered that only Cys-S-Hg-S-Cys and Hcy-S-Hg-S-Hcy were taken up by these cells. This transport was Na+-dependent and was inhibited by neutral and cationic amino acids. RT-PCR analyses identified systems B0,+ and ASC in ARPE-19 cells. Overall, our data suggest that Cys-S-Hg-S-Cys and Hcy-S-Hg-S-Hcy are taken up into ARPE-19 cells by Na-dependent amino acid transporters, possibly systems B0,+ and ASC. These amino acid transporters may play a role in the retinal toxicity observed following exposure to mercury. PMID:17467761

  2. Transport of thiol-conjugates of inorganic mercury in human retinal pigment epithelial cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bridges, Christy C.; Battle, Jamie R.; Zalups, Rudolfs K.

    2007-06-01

    Inorganic mercury (Hg{sup 2+}) is a prevalent environmental contaminant to which exposure to can damage rod photoreceptor cells and compromise scotopic vision. The retinal pigment epithelium (RPE) likely plays a role in the ocular toxicity associated with Hg{sup 2+} exposure in that it mediates transport of substances to the photoreceptor cells. In order for Hg{sup 2+} to access photoreceptor cells, it must first be taken up by the RPE, possibly by mechanisms involving transporters of essential nutrients. In other epithelia, Hg{sup 2+}, when conjugated to cysteine (Cys) or homocysteine (Hcy), gains access to the intracellular compartment of the target cellsmore » via amino acid and organic anion transporters. Accordingly, the purpose of the current study was to test the hypothesis that Cys and Hcy S-conjugates of Hg{sup 2+} utilize amino acid transporters to gain access into RPE cells. Time- and temperature-dependence, saturation kinetics, and substrate-specificity of the transport of Hg{sup 2+}, was assessed in ARPE-19 cells exposed to the following S-conjugates of Hg{sup 2+}: Cys (Cys-S-Hg-S-Cys), Hcy (Hcy-S-Hg-S-Hcy), N-acetylcysteine (NAC-S-Hg-S-NAC) or glutathione (GSH-S-Hg-S-GSH). We discovered that only Cys-S-Hg-S-Cys and Hcy-S-Hg-S-Hcy were taken up by these cells. This transport was Na{sup +}-dependent and was inhibited by neutral and cationic amino acids. RT-PCR analyses identified systems B{sup 0,+} and ASC in ARPE-19 cells. Overall, our data suggest that Cys-S-Hg-S-Cys and Hcy-S-Hg-S-Hcy are taken up into ARPE-19 cells by Na-dependent amino acid transporters, possibly systems B{sup 0,+} and ASC. These amino acid transporters may play a role in the retinal toxicity observed following exposure to mercury.« less

  3. Star-Shaped Conjugated Systems

    PubMed Central

    Detert, Heiner; Lehmann, Matthias; Meier, Herbert

    2010-01-01

    The present review deals with the preparation and the properties of star-shaped conjugated compounds. Three, four or six conjugated arms are attached to cross-conjugated cores, which consist of single atoms (B, C+, N), benzene or azine rings or polycyclic ring systems, as for example triphenylene or tristriazolotriazine. Many of these shape-persistent [n]star compounds tend to π-stacking and self-organization, and exhibit interesting properties in materials science: Linear and non-linear optics, electrical conductivity, electroluminescence, formation of liquid crystalline phases, etc.

  4. The Tcp conjugation system of Clostridium perfringens.

    PubMed

    Wisniewski, Jessica A; Rood, Julian I

    2017-05-01

    The Gram-positive pathogen Clostridium perfringens possesses a family of large conjugative plasmids that is typified by the tetracycline resistance plasmid pCW3. Since these plasmids may carry antibiotic resistance genes or genes encoding extracellular or sporulation-associated toxins, the conjugative transfer of these plasmids appears to be important for the epidemiology of C. perfringens-mediated diseases. Sequence analysis of members of this plasmid family identified a highly conserved 35kb region that encodes proteins with various functions, including plasmid replication and partitioning. The tcp conjugation locus also was identified in this region, initially based on low-level amino acid sequence identity to conjugation proteins from the integrative conjugative element Tn916. Genetic studies confirmed that the tcp locus is required for conjugative transfer and combined with biochemical and structural analyses have led to the development of a functional model of the Tcp conjugation apparatus. This review summarises our current understanding of the Tcp conjugation system, which is now one of the best-characterized conjugation systems in Gram-positive bacteria. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Glutathione conjugation and contaminant transformation

    USGS Publications Warehouse

    Field, Jennifer A.; Thurman, E.M.

    1996-01-01

    The recent identification of a novel sulfonated metabolite of alachlor in groundwater and metolachlor in soil is likely the result of glutathione conjugation. Glutathione conjugation is an important biochemical reaction that leads, in the case of alachlor, to the formation of a rather difficult to detect, water-soluble, and therefore highly mobile, sulfonated metabolite. Research from weed science, toxicology, and biochemistry is discussed to support the hypothesis that glutathione conjugation is a potentially important detoxification pathway carried out by aquatic and terrestrial plants and soil microorganisms. A brief review of the biochemical basis for glutathione conjugation is presented. We recommend that multidisciplinary research focus on the occurrence and expression of glutathione and its attendant enzymes in plants and microorganisms, relationships between electrophilic substrate structure and enzyme activity, and the potential exploitation of plants and microorganisms that are competent in glutathione conjugation for phytoremediation and bioremediation.

  6. Antibody-gold cluster conjugates

    DOEpatents

    Hainfeld, J.F.

    1988-06-28

    Antibody- or antibody fragment-gold cluster conjugates are shown wherein the conjugate size can be about 5.0 nm. Methods and reagents are disclosed in which antibodies or Fab' fragments thereof are covalently bound to a stable cluster of gold atoms. 2 figs.

  7. A Scheme for the Evaluation of Electron Delocalization and Conjugation Efficiency in Linearly π-Conjugated Systems.

    PubMed

    Bruschi, Maurizio; Limacher, Peter A; Hutter, Jürg; Lüthi, Hans Peter

    2009-03-10

    In this study, we present a scheme for the evaluation of electron delocalization and conjugation efficiency in lineraly π-conjugated systems. The scheme, based on the natural bond orbital theory, allows monitoring the evolution of electron delocalization along an extended conjugation path as well as its response to chemical modification. The scheme presented is evaluated and illustrated by means of a computational investigation of π-conjugation in all-trans polyacetylene [PA; H(-CH═CH)n-H], polydiacetylene [PDA, H(-C≡C-CH═CH)n-H], and polytriacetylene [PTA, H(-C≡C-CH═CH-C≡C)n-H] with up to 180 carbon atoms, all related by the number of ethynyl units incorporated in the chain. We are able to show that for short oligomers the incorporation of ethynyl spacers into the PA chain increases the π-delocalization energy, but, on the other hand, reduces the efficiency with which π-electron delocalization is promoted along the backbone. This explains the generally shorter effective conjugation lengths observed for the properties of the polyeneynes (PDA and PTA) relative to the polyenes (PA). It will also be shown that the reduced conjugation efficiency, within the NBO-based model presented in this work, can be related to the orbital interaction pattern along the π-conjugated chain. We will show that the orbital interaction energy pattern is characteristic for the type and the length of the backbone and may therefore serve as a descriptor for linearly π-conjugated chains.

  8. Protein carriers of conjugate vaccines

    PubMed Central

    Pichichero, Michael E

    2013-01-01

    The immunogenicity of polysaccharides as human vaccines was enhanced by coupling to protein carriers. Conjugation transformed the T cell-independent polysaccharide vaccines of the past to T cell-dependent antigenic vaccines that were much more immunogenic and launched a renaissance in vaccinology. This review discusses the conjugate vaccines for prevention of infections caused by Hemophilus influenzae type b, Streptococcus pneumoniae, and Neisseria meningitidis. Specifically, the characteristics of the proteins used in the construction of the vaccines including CRM, tetanus toxoid, diphtheria toxoid, Neisseria meningitidis outer membrane complex, and Hemophilus influenzae protein D are discussed. The studies that established differences among and key features of conjugate vaccines including immunologic memory induction, reduction of nasopharyngeal colonization and herd immunity, and antibody avidity and avidity maturation are presented. Studies of dose, schedule, response to boosters, of single protein carriers with single and multiple polysaccharides, of multiple protein carriers with multiple polysaccharides and conjugate vaccines administered concurrently with other vaccines are discussed along with undesirable consequences of conjugate vaccines. The clear benefits of conjugate vaccines in improving the protective responses of the immature immune systems of young infants and the senescent immune systems of the elderly have been made clear and opened the way to development of additional vaccines using this technology for future vaccine products. PMID:23955057

  9. Conjugated Polymers in Bioelectronics.

    PubMed

    Inal, Sahika; Rivnay, Jonathan; Suiu, Andreea-Otilia; Malliaras, George G; McCulloch, Iain

    2018-06-19

    The emerging field of organic bioelectronics bridges the electronic world of organic-semiconductor-based devices with the soft, predominantly ionic world of biology. This crosstalk can occur in both directions. For example, a biochemical reaction may change the doping state of an organic material, generating an electronic readout. Conversely, an electronic signal from a device may stimulate a biological event. Cutting-edge research in this field results in the development of a broad variety of meaningful applications, from biosensors and drug delivery systems to health monitoring devices and brain-machine interfaces. Conjugated polymers share similarities in chemical "nature" with biological molecules and can be engineered on various forms, including hydrogels that have Young's moduli similar to those of soft tissues and are ionically conducting. The structure of organic materials can be tuned through synthetic chemistry, and their biological properties can be controlled using a variety of functionalization strategies. Finally, organic electronic materials can be integrated with a variety of mechanical supports, giving rise to devices with form factors that enable integration with biological systems. While these developments are innovative and promising, it is important to note that the field is still in its infancy, with many unknowns and immense scope for exploration and highly collaborative research. The first part of this Account details the unique properties that render conjugated polymers excellent biointerfacing materials. We then offer an overview of the most common conjugated polymers that have been used as active layers in various organic bioelectronics devices, highlighting the importance of developing new materials. These materials are the most popular ethylenedioxythiophene derivatives as well as conjugated polyelectrolytes and ion-free organic semiconductors functionalized for the biological interface. We then discuss several applications and

  10. Immunogenicity and safety of a 13-valent pneumococcal conjugate vaccine administered to older infants and children naïve to pneumococcal vaccination.

    PubMed

    Wysocki, Jacek; Brzostek, Jerzy; Szymański, Henryk; Tetiurka, Bogusław; Toporowska-Kowalska, Ewa; Wasowska-Królikowska, Krystyna; Sarkozy, Denise A; Giardina, Peter C; Gruber, William C; Emini, Emilio A; Scott, Daniel A

    2015-03-30

    Streptococcus pneumoniae infections are a major cause of morbidity and mortality in children <5 years old worldwide. To increase serotype coverage globally, a 13-valent pneumococcal conjugate vaccine (PCV13) has been developed and approved in many countries worldwide. Assess the safety and immunogenicity of PCV13 in healthy older infants and children naïve to previous pneumococcal vaccination. This was a phase 3, open-label, multicenter study conducted in Polish children (N=354) who were vaccinated according to 3 age-appropriate catch-up schedules: Group 1 (aged 7 to <12 months) received two PCV13 doses with a booster at 12-16 months of age; Group 2 (aged 12 to <24 months) received two vaccine doses only; and Group 3 (aged 24 to <72 months) received a single dose of PCV13. Statistical analyses were descriptive. The proportion of immunological "responders" achieving serotype-specific antipneumococcal polysaccharide concentrations ≥0.35μg/mL, 1-month after the last dose of vaccine, was determined for each vaccine serotype. In addition, antipolysaccharide immunoglobulin (Ig) G geometric mean concentrations (GMCs) were calculated. Safety assessments included systemic and local reactions, and adverse events. The proportion of immunological responders was ≥88% across groups for all serotypes. Antipolysaccharide IgG GMCs were generally similar across groups. Each schedule elicited immune response levels against all 13 serotypes comparable to or greater than levels previously reported in infants after a 3-dose series. The 3 catch-up schedules had similar tolerability and safety profiles; a trend was present towards greater local tenderness with increasing age and subsequent dose administration. Immunological responses and safety results support the use of PCV13 for catch-up schedules in older infants and children naïve to pneumococcal vaccination. Copyright © 2015. Published by Elsevier Ltd.

  11. Poly(2-oxazoline)-Antibiotic Conjugates with Penicillins.

    PubMed

    Schmidt, Martin; Bast, Livia K; Lanfer, Franziska; Richter, Lena; Hennes, Elisabeth; Seymen, Rana; Krumm, Christian; Tiller, Joerg C

    2017-09-20

    The conjugation of antibiotics with polymers is rarely done, but it might be a promising alternative to low-molecular-weight derivatization. The two penicillins penicillin G (PenG) and penicillin V (PenV) were attached to the end groups of different water-soluble poly(2-oxazoline)s (POx) via their carboxylic acid function. This ester group was shown to be more stable against hydrolysis than the β-lactam ring of the penicillins. The conjugates are still antimicrobially active and up to 20 times more stable against penicillinase catalyzed hydrolysis. The antibiotic activity of the conjugates against Staphylococcus aureus in the presence of penicillinase is up to 350 times higher compared with the free antibiotics. Conjugates with a second antimicrobial function, a dodecyltrimethylammonium group (DDA-X), at the starting end of the PenG and PenV POx conjugates are more antimicrobially active than the conjugates without DDA-X and show high activity in the presence of penicillinase. For example, the conjugates DDA-X-PEtOx-PenG and DDA-X-PEtOx-PenV are 200 to 350 times more active against S. aureus in the presence of penicillinase and almost as effective as the penicillinase stable cloxacollin (Clox) under these conditions. These conjugates show even greater activity compared to cloxacollin without this enzyme present. Further, both conjugates kill Escherichia coli more effectively than PenG and Clox.

  12. Polyamine-iron chelator conjugate.

    PubMed

    Bergeron, Raymond J; McManis, James S; Franklin, April M; Yao, Hua; Weimar, William R

    2003-12-04

    The current study demonstrates unequivocally that polyamines can serve as vectors for the intracellular delivery of the bidentate chelator 1,2-dimethyl-3-hydroxypyridin-4-one (L1). The polyamine-hydroxypyridinone conjugate 1-(12-amino-4,9-diazadodecyl)-2-methyl-3-hydroxy-4(1H)-pyridinone is assembled from spermine and 3-O-benzylmaltol. The conjugate is shown to form a 3:1 complex with Fe(III) and to be taken up by the polyamine transporter 1900-fold against a concentration gradient. The K(i) of the conjugate is 3.7 microM vs spermidine for the polyamine transporter. The conjugate is also at least 230 times more active in suppressing the growth of L1210 murine leukemia cells than is the parent ligand, decreases the activities of the polyamine biosynthetic enzymes ornithine decarboxylase and S-adenosylmethionine decarboxylase, and upregulates spermidine-spermine N (1)-acetyltransferase. However, the effect on native polyamine pools is a moderate one. These findings are in keeping with the idea that polyamines can also serve as efficient vectors for the intracellular delivery of other iron chelators.

  13. Conjugated polymer zwitterions and solar cells comprising conjugated polymer zwitterions

    DOEpatents

    Emrick, Todd; Russell, Thomas; Page, Zachariah; Liu, Yao

    2018-06-05

    A conjugated polymer zwitterion includes repeating units having structure (I), (II), or a combination thereof ##STR00001## wherein Ar is independently at each occurrence a divalent substituted or unsubstituted C3-30 arylene or heteroarylene group; L is independently at each occurrence a divalent C1-16 alkylene group, C6-30arylene or heteroarylene group, or alkylene oxide group; and R1 is independently at each occurrence a zwitterion. A polymer solar cell including the conjugated polymer zwitterion is also disclosed.

  14. Impact of linker and conjugation chemistry on antigen binding, Fc receptor binding and thermal stability of model antibody-drug conjugates

    PubMed Central

    Acchione, Mauro; Kwon, Hyewon; Jochheim, Claudia M.; Atkins, William M.

    2012-01-01

    Antibody-drug conjugates (ADCs) with biotin as a model cargo tethered to IgG1 mAbs via different linkers and conjugation methods were prepared and tested for thermostability and ability to bind target antigen and Fc receptor. Most conjugates demonstrated decreased thermostability relative to unconjugated antibody, based on DSC, with carbohydrate and amine coupled ADCs showing the least effect compared with thiol coupled conjugates. A strong correlation between biotin-load and loss of stability is observed with thiol conjugation to one IgG scaffold, but the stability of a second IgG scaffold is relatively insensitive to biotin load. The same correlation for amine coupling was less significant. Binding of antibody to antigen and Fc receptor was investigated using surface plasmon resonance. None of the conjugates exhibited altered antigen affinity. Fc receptor FcγIIb (CD32b) interactions were investigated using captured antibody conjugate. Protein G and Protein A, known inhibitors of Fc receptor (FcR) binding to IgG, were also used to extend the analysis of the impact of conjugation on Fc receptor binding. H10NPEG4 was the only conjugate to show significant negative impact to FcR binding, which is likely due to higher biotin-load compared with the other ADCs. The ADC aHISNLC and aHISTPEG8 demonstrated some loss in affinity for FcR, but to much lower extent. The general insensitivity of target binding and effector function of the IgG1 platform to conjugation highlight their utility. The observed changes in thermostability require consideration for the choice of conjugation chemistry, depending on the system being pursued and particular application of the conjugate. PMID:22531451

  15. Stabilized polyacrylic saccharide protein conjugates

    DOEpatents

    Callstrom, Matthew R.; Bednarski, Mark D.; Gruber, Patrick R.

    1996-01-01

    This invention is directed to water soluble protein polymer conjugates which are stabile in hostile environments. The conjugate comprises a protein which is linked to an acrylic polymer at multiple points through saccharide linker groups.

  16. Approximate error conjugation gradient minimization methods

    DOEpatents

    Kallman, Jeffrey S

    2013-05-21

    In one embodiment, a method includes selecting a subset of rays from a set of all rays to use in an error calculation for a constrained conjugate gradient minimization problem, calculating an approximate error using the subset of rays, and calculating a minimum in a conjugate gradient direction based on the approximate error. In another embodiment, a system includes a processor for executing logic, logic for selecting a subset of rays from a set of all rays to use in an error calculation for a constrained conjugate gradient minimization problem, logic for calculating an approximate error using the subset of rays, and logic for calculating a minimum in a conjugate gradient direction based on the approximate error. In other embodiments, computer program products, methods, and systems are described capable of using approximate error in constrained conjugate gradient minimization problems.

  17. Stabilized polyacrylic saccharide protein conjugates

    DOEpatents

    Callstrom, M.R.; Bednarski, M.D.; Gruber, P.R.

    1996-02-20

    This invention is directed to water soluble protein polymer conjugates which are stable in hostile environments. The conjugate comprises a protein which is linked to an acrylic polymer at multiple points through saccharide linker groups. 16 figs.

  18. Structural analysis of conjugated linoleic acid produced by Lactobacillus plantarum, and factors affecting isomer production.

    PubMed

    Kishino, Shigenobu; Ogawa, Jun; Ando, Akinori; Iwashita, Takashi; Fujita, Tsuyoshi; Kawashima, Hiroshi; Shimizu, Sakayu

    2003-01-01

    An isomer of the conjugated linoleic acid (CLA) produced from linoleic acid by Lactobacillus plantarum was identified as cis-9,trans-11-octadecadienoic acid by proton nuclear magnetic resonance spectroscopy. Together with earlier results, we concluded that the bacterium produces two CLA isomers, cis-9,trans-11- and trans-9,trans-11-octadecadienoic acid from linoleic acid. The addition of L-serine, glucose, AgNO3, or NaCl to the reaction mixture reduced production of the latter.

  19. Preparation, structural analysis and bioactivity of ribonuclease A-albumin conjugate: tetra-conjugation or PEG as the linker.

    PubMed

    Li, Chunju; Lin, Qixun; Wang, Jun; Shen, Lijuan; Ma, Guanghui; Su, Zhiguo; Hu, Tao

    2012-12-31

    Ribonuclease A (RNase A) is a therapeutic enzyme with cytotoxic action against tumor cells. Its clinical application is limited by the short half-life and insufficient stability. Conjugation of albumin can overcome the limitation, whereas dramatically decrease the enzymatic activity of RNase A. Here, three strategies were proposed to prepare the RNase A-bovine serum albumin (BSA) conjugates. R-SMCC-B (a conjugate of four RNase A attached with one BSA) and R-PEG-B (a mono-conjugate) were prepared using Sulfo-SMCC (a short bifunctional linker) and mal-PEG-NHS (a bifunctional PEG), respectively. Mal-PEG-NHS and hexadecylamine (HDA) were used to prepare the mono-conjugate, R-HDA-B, where HDA was adopted to bind BSA. The PEG linker can elongate the proximity between RNase A and BSA. In contrast, four RNase A were closely located on BSA in R-SMCC-B. R-SMCC-B showed the lowest K(m) and the highest relative enzymatic activity and k(cat)/K(m) in the three conjugates. Presumably, the tetravalent interaction of RNase A in R-SMCC-B can increase the binding affinity to its substrate. In addition, the slow release of BSA from R-HDA-B may increase the enzymatic activity of R-HDA-B. Our study is expected to provide strategies to develop protein-albumin conjugate with high therapeutic potential. Copyright © 2012 Elsevier B.V. All rights reserved.

  20. Synthesis and Characterization of Bioactive Tamoxifen-conjugated Polymers

    PubMed Central

    Rickert, Emily L.; Trebley, Joseph P.; Peterson, Anton C.; Morrell, Melinda M.; Weatherman, Ross V.

    2008-01-01

    Macromolecular conjugates of tamoxifen could perhaps be used to circumvent some of the limitations of the extensively used breast cancer drug. To test the feasibility of these conjugates, a 4-hydroxytamoxifen analog was conjugated to a diaminoalkyl linker and then conjugated to activated esters of a poly(methacrylic acid) polymer synthesized by atom transfer radical polymerization. A polymer conjugated to the 4-hydroxytamoxifen analog with a six carbon linker showed high affinity for both estrogen receptor alpha and estrogen receptor beta and potent antagonism of the estrogen receptor in cell-based transcriptional reporter assays. These results suggest that the conjugation of 4-hydroxytamoxifen to a polymer results in a macromolecular conjugate that can display ligand in a manner that can be recognized by estrogen receptor and still act as a potent antiestrogen in cells. PMID:17929966

  1. Selective cesium removal from radioactive liquid waste by crown ether immobilized new class conjugate adsorbent.

    PubMed

    Awual, Md Rabiul; Yaita, Tsuyoshi; Taguchi, Tomitsugu; Shiwaku, Hideaki; Suzuki, Shinichi; Okamoto, Yoshihiro

    2014-08-15

    Conjugate materials can provide chemical functionality, enabling an assembly of the ligand complexation ability to metal ions that are important for applications, such as separation and removal devices. In this study, we developed ligand immobilized conjugate adsorbent for selective cesium (Cs) removal from wastewater. The adsorbent was synthesized by direct immobilization of dibenzo-24-crown-8 ether onto inorganic mesoporous silica. The effective parameters such as solution pH, contact time, initial Cs concentration and ionic strength of Na and K ion concentrations were evaluated and optimized systematically. This adsorbent was exhibited the high surface area-to-volume ratios and uniformly shaped pores in case cavities, and its active sites kept open functionality to taking up Cs. The obtained results revealed that adsorbent had higher selectivity toward Cs even in the presence of a high concentration of Na and K and this is probably due to the Cs-π interaction of the benzene ring. The proposed adsorbent was successfully applied for radioactive Cs removal to be used as the potential candidate in Fukushima nuclear wastewater treatment. The adsorbed Cs was eluted with suitable eluent and simultaneously regenerated into the initial form for the next removal operation after rinsing with water. The adsorbent retained functionality despite several cycles during sorption-elution-regeneration operations. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. The target invites a foe: antibody-drug conjugates in gynecologic oncology.

    PubMed

    Campos, Maira P; Konecny, Gottfried E

    2018-02-01

    Antibody-drug conjugates (ADCs) represent a promising new class of cancer therapeutics. Currently more than 60 ADCs are in clinical development, however, only very few trials focus on gynecologic malignancies. In this review, we summarize the most recent advances in ADC drug development with an emphasis on how this progress relates to patients diagnosed with gynecologic malignancies and breast cancer. The cytotoxic payloads of the majority of the ADCs that are currently in clinical trials for gynecologic malignancies or breast cancer are auristatins (MMAE, MMAF), maytansinoids (DM1, DM4), calicheamicin, pyrrolobenzodiazepines and SN-38. Both cleavable and noncleavable linkers are currently being investigated in clinical trials. A number of novel target antigens are currently being validated in ongoing clinical trials including folate receptor alpha, mesothelin, CA-125, NaPi2b, NOTCH3, protein tyrosine kinase-like 7, ephrin-A4, TROP2, CEACAM5, and LAMP1. For most ADCs currently in clinical development, dose-limiting toxicities appear to be unrelated to the targeted antigen but more tightly associated with the payload. Rational drug design involving optimization of the antibody, the linker and the conjugation chemistry is aimed at improving the therapeutic index of new ADCs. Antibody-drug conjugates can increase the efficacy and decrease the toxicity of their payloads in comparison with traditional cyctotoxic agents. A better and quicker translation of recent scientific advances in the field of ADCs into rational clinical trials for patients diagnosed with ovarian, endometrial or cervical cancer could create real improvements in tumor response, survival and quality of life for our patients.

  3. Enhanced solubility and antioxidant activity of chlorogenic acid-chitosan conjugates due to the conjugation of chitosan with chlorogenic acid.

    PubMed

    Rui, Liyun; Xie, Minhao; Hu, Bing; Zhou, Li; Saeeduddin, Muhammad; Zeng, Xiaoxiong

    2017-08-15

    Chlorogenic acid-chitosan conjugate was synthesized by introducing of chlorogenic acid onto chitosan with the aid of 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide and hydroxybenzotriazole. The data of UV-vis, FT-IR and NMR for chlorogenic acid-chitosan conjugates demonstrated the successful conjugation of chlorogenic acid with chitosan. Compared to chitosan, chlorogenic acid-chitosan conjugates exhibited increased solubility in distilled water, 1% acetic acid solution (v/v) or 50% ethanol solution (v/v) containing 0.5% acetic acid. Moreover, chlorogenic acid-chitosan conjugates showed dramatic enhancements in metal ion chelating activity, total antioxidant capacity, scavenging activities on 2,2'-azino-bis-(3-ethylbenzothiazoline-6-sulphonic acid) and superoxide radicals, inhibitory effects on lipid peroxidation and β-carotene-linoleic acid bleaching, and protective effect on H 2 O 2 -induced oxidative injury of PC12 cells. Particularly, chlorogenic acid-chitosan conjugate exhibited higher inhibitory effects on lipid peroxidation and β-carotene-linoleic acid bleaching than chlorogenic acid. The results suggested that chlorogenic acid-chitosan conjugates could serve as food supplements to enhance the function of foods in future. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. The Conjugate Acid-Base Chart.

    ERIC Educational Resources Information Center

    Treptow, Richard S.

    1986-01-01

    Discusses the difficulties that beginning chemistry students have in understanding acid-base chemistry. Describes the use of conjugate acid-base charts in helping students visualize the conjugate relationship. Addresses chart construction, metal ions, buffers and pH titrations, and the organic functional groups and nonaqueous solvents. (TW)

  5. Synthesis, Characterization, and Application of Core–Shell Co0.16Fe2.84O4@NaYF4(Yb, Er) and Fe3O4@NaYF4(Yb, Tm) Nanoparticle as Trimodal (MRI, PET/SPECT, and Optical) Imaging Agents

    PubMed Central

    2015-01-01

    Multimodal nanoparticulate materials are described, offering magnetic, radionuclide, and fluorescent imaging capabilities to exploit the complementary advantages of magnetic resonance imaging (MRI), positron emission tomography/single-photon emission commuted tomography (PET/SPECT), and optical imaging. They comprise Fe3O4@NaYF4 core/shell nanoparticles (NPs) with different cation dopants in the shell or core, including Co0.16Fe2.84O4@NaYF4(Yb, Er) and Fe3O4@NaYF4(Yb, Tm). These NPs are stabilized by bisphosphonate polyethylene glycol conjugates (BP-PEG), and then show a high transverse relaxivity (r2) up to 326 mM–1 s–1 at 3T, a high affinity to [18F]-fluoride or radiometal-bisphosphonate conjugates (e.g., 64Cu and 99mTc), and fluorescent emissions from 500 to 800 nm under excitation at 980 nm. The biodistribution of intravenously administered particles determined by PET/MR imaging suggests that negatively charged Co0.16Fe2.84O4@NaYF4(Yb, Er)-BP-PEG (10K) NPs cleared from the blood pool more slowly than positively charged NPs Fe3O4@NaYF4(Yb, Tm)-BP-PEG (2K). Preliminary results in sentinel lymph node imaging in mice indicate the advantages of multimodal imaging. PMID:26172432

  6. Improved labelling of DTPA- and DOTA-conjugated peptides and antibodies with 111In in HEPES and MES buffer.

    PubMed

    Brom, Maarten; Joosten, Lieke; Oyen, Wim Jg; Gotthardt, Martin; Boerman, Otto C

    2012-01-27

    In single photon emission computed tomography [SPECT], high specific activity of 111In-labelled tracers will allow administration of low amounts of tracer to prevent receptor saturation and/or side effects. To increase the specific activity, we studied the effect of the buffer used during the labelling procedure: NaAc, NH4Ac, HEPES and MES buffer. The effect of the ageing of the 111InCl3 stock and cadmium contamination, the decay product of 111In, was also examined in these buffers. Escalating amounts of 111InCl3 were added to 1 μg of the diethylene triamine pentaacetic acid [DTPA]- and 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid [DOTA]-conjugated compounds (exendin-3, octreotide and anti-carbonic anhydrase IX [CAIX] antibody). Five volumes of 2-(N-morpholino)ethanesulfonic acid [MES], 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid [HEPES], NH4Ac or NaAc (0.1 M, pH 5.5) were added. After 20 min at 20°C (DTPA-conjugated compounds), at 95°C (DOTA-exendin-3 and DOTA-octreotide) or at 45°C (DOTA-anti-CAIX antibody), the labelling efficiency was determined by instant thin layer chromatography. The effect of the ageing of the 111InCl3 stock on the labelling efficiency of DTPA-exendin-3 as well as the effect of increasing concentrations of Cd2+ (the decay product of 111In) were also examined. Specific activities obtained for DTPA-octreotide and DOTA-anti-CAIX antibody were five times higher in MES and HEPES buffer. Radiolabelling of DTPA-exendin-3, DOTA-exendin-3 and DTPA-anti-CAIX antibody in MES and HEPES buffer resulted in twofold higher specific activities than that in NaAc and NH4Ac. Labelling of DTPA-exendin-3 decreased with 66% and 73% for NaAc and NH4Ac, respectively, at day 11 after the production date of 111InCl3, while for MES and HEPES, the maximal decrease in the specific activity was 10% and 4% at day 11, respectively. The presence of 1 pM Cd2+ in the labelling mixture of DTPA-exendin-3 in NaAc and NH4Ac markedly reduced the labelling

  7. High-reflectivity phase conjugation using Brillouin preamplification.

    PubMed

    Ridley, K D; Scott, A M

    1990-07-15

    We describe experiments in which a weak laser pulse is phase conjugated by using a high-gain Brillouin amplifier in front of a stimulated Brillouin scattering phase-conjugate mirror. We observe phase conjugation with signal energies as low as 3 x 10(-13) J and with a maximum reflection coefficient of 2 x 10(8).

  8. Efficient inverted polymer solar cells based on conjugated polyelectrolyte and zinc oxide modified ITO electrode

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yuan, Tao; Zhu, Xiaoguang; Tu, Guoli, E-mail: tgl@hust.edu.cn

    Efficient inverted polymer solar cells (PSCs) were constructed by utilizing a conjugated polyelectrolyte PF{sub EO}SO{sub 3}Na and zinc oxide to modify the indium tin oxide (ITO) electrode. The ITO electrode modified by PF{sub EO}SO{sub 3}Na and zinc oxide possesses high transparency, increased electron mobility, smoothened surface, and lower work function. PTB7:PC{sub 71}BM inverted PSCs containing the modified ITO electrode achieved a high power conversion efficiency (PCE) of 8.49%, exceeding that of the control device containing a ZnO modified ITO electrode (7.48%). Especially, PCE-10:PC{sub 71}BM inverted polymer solar cells achieved a high PCE up to 9.4%. These results demonstrate a usefulmore » approach to improve the performance of inverted polymer solar cells.« less

  9. Generic method for the absolute quantification of glutathione S-conjugates: Application to the conjugates of acetaminophen, clozapine and diclofenac.

    PubMed

    den Braver, Michiel W; Vermeulen, Nico P E; Commandeur, Jan N M

    2017-03-01

    Modification of cellular macromolecules by reactive drug metabolites is considered to play an important role in the initiation of tissue injury by many drugs. Detection and identification of reactive intermediates is often performed by analyzing the conjugates formed after trapping by glutathione (GSH). Although sensitivity of modern mass spectrometrical methods is extremely high, absolute quantification of GSH-conjugates is critically dependent on the availability of authentic references. Although 1 H NMR is currently the method of choice for quantification of metabolites formed biosynthetically, its intrinsically low sensitivity can be a limiting factor in quantification of GSH-conjugates which generally are formed at low levels. In the present study, a simple but sensitive and generic method for absolute quantification of GSH-conjugates is presented. The method is based on quantitative alkaline hydrolysis of GSH-conjugates and subsequent quantification of glutamic acid and glycine by HPLC after precolumn derivatization with o-phthaldialdehyde/N-acetylcysteine (OPA/NAC). Because of the lower stability of the glycine OPA/NAC-derivate, quantification of the glutamic acid OPA/NAC-derivate appeared most suitable for quantification of GSH-conjugates. The novel method was used to quantify the concentrations of GSH-conjugates of diclofenac, clozapine and acetaminophen and quantification was consistent with 1 H NMR, but with a more than 100-fold lower detection limit for absolute quantification. Copyright © 2017. Published by Elsevier B.V.

  10. White-Light Phase-Conjugate Mirrors as Distortion Correctors

    NASA Technical Reports Server (NTRS)

    Frazier, Donald; Smith, W. Scott; Abdeldayem, Hossin; Banerjee, Partha

    2010-01-01

    White-light phase-conjugate mirrors would be incorporated into some optical systems, according to a proposal, as means of correcting for wavefront distortions caused by imperfections in large optical components. The proposal was given impetus by a recent demonstration that white, incoherent light can be made to undergo phase conjugation, whereas previously, only coherent light was known to undergo phase conjugation. This proposal, which is potentially applicable to almost any optical system, was motivated by a need to correct optical aberrations of the primary mirror of the Hubble Space telescope. It is difficult to fabricate large optical components like the Hubble primary mirror and to ensure the high precision typically required of such components. In most cases, despite best efforts, the components as fabricated have small imperfections that introduce optical aberrations that adversely affect imaging quality. Correcting for such aberrations is difficult and costly. The proposed use of white-light phase conjugate mirrors offers a relatively simple and inexpensive solution of the aberration-correction problem. Indeed, it should be possible to simplify the entire approach to making large optical components because there would be no need to fabricate those components with extremely high precision in the first place: A white-light phase-conjugate mirror could correct for all the distortions and aberrations in an optical system. The use of white-light phase-conjugate mirrors would be essential for ensuring high performance in optical systems containing lightweight membrane mirrors, which are highly deformable. As used here, "phase-conjugate mirror" signifies, more specifically, an optical component in which incident light undergoes time-reversal phase conjugation. In practice, a phase-conjugate mirror would typically be implemented by use of a suitably positioned and oriented photorefractive crystal. In the case of a telescope comprising a primary and secondary

  11. 2-Deoxystreptamine Conjugates by Truncation–Derivatization of Neomycin

    PubMed Central

    Aslam, M. Waqar; Tabares, Leandro C.; Andreoni, Alessio; Canters, Gerard W.; Rutjes, Floris P.J.T.; van Delft, Floris L.

    2010-01-01

    A small library of truncated neomycin-conjugates is prepared by consecutive removal of 2,6-diaminoglucose rings, oxidation-reductive amination of ribose, oxidation-conjugation of aminopyridine/aminoquinoline and finally dimerization. The dimeric conjugates were evaluated for antibacterial activity with a unique hemocyanin-based biosensor. Based on the outcome of these results, a second-generation set of monomeric conjugates was prepared and found to display significant antibacterial activity, in particular with respect to kanamycin-resistant E. coli. PMID:27713274

  12. Responsive Guest Encapsulation of Dynamic Conjugated Microporous Polymers.

    PubMed

    Xu, Lai; Li, Youyong

    2016-06-30

    The host-guest complexes of conjugated microporous polymers encapsulating C60 and dye molecules have been investigated systematically. The orientation of guest molecules inside the cavities, have different terms: inside the open cavities of the polymer, or inside the cavities formed by packing different polymers. The host backbone shows responsive dynamic behavior in order to accommodate the size and shape of incoming guest molecule or guest aggregates. Simulations show that the host-guest binding of conjugated polymers is stronger than that of non-conjugated polymers. This detailed study could provide a clear picture for the host-guest interaction for dynamic conjugated microporous polymers. The mechanism obtained could guide designing new conjugated microporous polymers.

  13. Reagents for astatination of biomolecules. 2. Conjugation of anionic boron cage pendant groups to a protein provides a method for direct labeling that is stable to in vivo deastatination.

    PubMed

    Wilbur, D Scott; Chyan, Ming-Kuan; Hamlin, Donald K; Vessella, Robert L; Wedge, Timothy J; Hawthorne, M Frederick

    2007-01-01

    Cancer-targeting biomolecules labeled with 211At must be stable to in vivo deastatination, as control of the 211At distribution is critical due to the highly toxic nature of alpha-particle emission. Unfortunately, no astatinated aryl conjugates have shown in vivo stability toward deastatination when (relatively) rapidly metabolized proteins, such as monoclonal antibody Fab' fragments, are labeled. As a means of increasing the in vivo stability of 211At-labeled proteins, we have been investigating antibody conjugates of boron cage moieties. In this investigation, protein-reactive derivatives containing a nido-carborane (2), a bis-nido-carborane derivative (Venus Flytrap Complex, 3), and four 2-nonahydro-closo-decaborate(2-) derivatives (4-7) were prepared and conjugated with an antibody Fab' fragment such that subsequent astatination and in vivo tissue distributions could be obtained. To aid in determination of stability toward in vivo deastatination, the Fab'-borane conjugates were also labeled with 125I, and that material was coinjected with the 211At-labeled Fab'. For comparison, direct labeling of the Fab' with 125I and 211At was conducted. Direct labeling with Na[125I]I and Chloramine-T gave an 89% radiochemical yield. However, direct labeling of the Fab' with Na[211At]At and Chloramine-T resulted in a yield of <1% after quenching with NaS2O5. As another comparison, the same Fab' was conjugated with p-[211At]astatobenzoate NHS ester, [211At]1c-Fab', and (separately) with p-[125I]iodobenzoate NHS ester, [125I]1b-Fab'. An evaluation in athymic mice demonstrated that [211At]1c-Fab' underwent deastatination. In contrast, the high in vivo stability of [125I]1b-Fab' allowed it to be used as a tracer control for the natural distribution of Fab'. Although found to be much more stable in vivo than [211At]1c-Fab', the biodistributions of nido-carborane conjugated Fab' ([125I]2-Fab'/ [211At]2-Fab') and the bis-nido-carborane (VFC) ([125I]3-Fab'/[211At]3-Fab') had very

  14. Multivalent peptidic linker enables identification of preferred sites of conjugation for a potent thialanstatin antibody drug conjugate.

    PubMed

    Puthenveetil, Sujiet; He, Haiyin; Loganzo, Frank; Musto, Sylvia; Teske, Jesse; Green, Michael; Tan, Xingzhi; Hosselet, Christine; Lucas, Judy; Tumey, L Nathan; Sapra, Puja; Subramanyam, Chakrapani; O'Donnell, Christopher J; Graziani, Edmund I

    2017-01-01

    Antibody drug conjugates (ADCs) are no longer an unknown entity in the field of cancer therapy with the success of marketed ADCs like ADCETRIS and KADCYLA and numerous others advancing through clinical trials. The pursuit of novel cytotoxic payloads beyond the mictotubule inhibitors and DNA damaging agents has led us to the recent discovery of an mRNA splicing inhibitor, thailanstatin, as a potent ADC payload. In our previous work, we observed that the potency of this payload was uniquely tied to the method of conjugation, with lysine conjugates showing much superior potency as compared to cysteine conjugates. However, the ADC field is rapidly shifting towards site-specific ADCs due to their advantages in manufacturability, characterization and safety. In this work we report the identification of a highly efficacious site-specific thailanstatin ADC. The site of conjugation played a critical role on both the in vitro and in vivo potency of these ADCs. During the course of this study, we developed a novel methodology of loading a single site with multiple payloads using an in situ generated multi-drug carrying peptidic linker that allowed us to rapidly screen for optimal conjugation sites. Using this methodology, we were able to identify a double-cysteine mutant ADC delivering four-loaded thailanstatin that was very efficacious in a gastric cancer xenograft model at 3mg/kg and was also shown to be efficacious against T-DM1 resistant and MDR1 overexpressing tumor cell lines.

  15. Comparison of anti-EGFR-Fab’ conjugated immunoliposomes modified with two different conjugation linkers for siRNa delivery in SMMC-7721 cells

    PubMed Central

    Deng, Li; Zhang, Yingying; Ma, Lulu; Jing, Xiaolong; Ke, Xingfa; Lian, Jianhao; Zhao, Qiang; Yan, Bo; Zhang, Jinfeng; Yao, Jianzhong; Chen, Jianming

    2013-01-01

    Background Targeted liposome-polycation-DNA complex (LPD), mainly conjugated with antibodies using functionalized PEG derivatives, is an effective nanovector for systemic delivery of small interference RNA (siRNA). However, there are few studies reporting the effect of different conjugation linkers on LPD for gene silencing. To clarify the influence of antibody conjugation linkers on LPD, we prepared two different immunoliposomes to deliver siRNA in which DSPE-PEG-COOH and DSPE-PEG-MAL, the commonly used PEG derivative linkers, were used to conjugate anti-EGFR Fab’ with the liposome. Methods First, 600 μg of anti-EGFR Fab’ was conjugated with 28.35 μL of a micelle solution containing DSPE-PEG-MAL or DSPE-PEG-COOH, and then post inserted into the prepared LPD. Various liposome parameters, including particle size, zeta potential, stability, and encapsulation efficiency were evaluated, and the targeting ability and gene silencing activity of TLPD-FPC (DSPE-PEG-COOH conjugated with Fab’) was compared with that of TLPD-FPM (DSPE-PEG-MAL conjugated with Fab’) in SMMC-7721 hepatocellular carcinoma cells. Results There was no significant difference in particle size between the two TLPDs, but the zeta potential was significantly different. Further, although there was no significant difference in siRNA encapsulation efficiency, cell viability, or serum stability between TLPD-FPM and TLPD-FPC, cellular uptake of TLPD-FPM was significantly greater than that of TLPD-FPC in EGFR-overexpressing SMMC-7721 cells. The luciferase gene silencing efficiency of TLPD-FPM was approximately three-fold high than that of TLPD-FPC. Conclusion Different conjugation linkers whereby antibodies are conjugated with LPD can affect the physicochemical properties of LPD and antibody conjugation efficiency, thus directly affecting the gene silencing effect of TLPD. Immunoliposomes prepared by DSPE-PEG-MAL conjugation with anti-EGFR Fab’ are more effective than TLPD containing DSPE

  16. Bridging disulfides for stable and defined antibody drug conjugates.

    PubMed

    Badescu, George; Bryant, Penny; Bird, Matthew; Henseleit, Korinna; Swierkosz, Julia; Parekh, Vimal; Tommasi, Rita; Pawlisz, Estera; Jurlewicz, Kosma; Farys, Monika; Camper, Nicolas; Sheng, XiaoBo; Fisher, Martin; Grygorash, Ruslan; Kyle, Andrew; Abhilash, Amrita; Frigerio, Mark; Edwards, Jeff; Godwin, Antony

    2014-06-18

    To improve both the homogeneity and the stability of ADCs, we have developed site-specific drug-conjugating reagents that covalently rebridge reduced disulfide bonds. The new reagents comprise a drug, a linker, and a bis-reactive conjugating moiety that is capable of undergoing reaction with both sulfur atoms derived from a reduced disulfide bond in antibodies and antibody fragments. A disulfide rebridging reagent comprising monomethyl auristatin E (MMAE) was prepared and conjugated to trastuzumab (TRA). A 78% conversion of antibody to ADC with a drug to antibody ratio (DAR) of 4 was achieved with no unconjugated antibody remaining. The MMAE rebridging reagent was also conjugated to the interchain disulfide of a Fab derived from proteolytic digestion of TRA, to give a homogeneous single drug conjugated product. The resulting conjugates retained antigen-binding, were stable in serum, and demonstrated potent and antigen-selective cell killing in in vitro and in vivo cancer models. Disulfide rebridging conjugation is a general approach to prepare stable ADCs, which does not require the antibody to be recombinantly re-engineered for site-specific conjugation.

  17. Aptamer-conjugated nanobubbles for targeted ultrasound molecular imaging.

    PubMed

    Wang, Chung-Hsin; Huang, Yu-Fen; Yeh, Chih-Kuang

    2011-06-07

    Targeted ultrasound contrast agents can be prepared by some specific bioconjugation techniques. The biotin-avidin complex is an extremely useful noncovalent binding system, but the system might induce immunogenic side effects in human bodies. Previous proposed covalently conjugated systems suffered from low conjugation efficiency and complex procedures. In this study, we propose a covalently conjugated nanobubble coupling with nucleic acid ligands, aptamers, for providing a higher specific affinity for ultrasound targeting studies. The sgc8c aptamer was linked with nanobubbles through thiol-maleimide coupling chemistry for specific targeting to CCRF-CEM cells. Further improvements to reduce the required time and avoid the degradation of nanobubbles during conjugation procedures were also made. Several investigations were used to discuss the performance and consistency of the prepared nanobubbles, such as size distribution, conjugation efficiency analysis, and flow cytometry assay. Further, we applied our conjugated nanobubbles to ex vivo ultrasound targeted imaging and compared the resulting images with optical images. The results indicated the availability of aptamer-conjugated nanobubbles in targeted ultrasound imaging and the practicability of using a highly sensitive ultrasound system in noninvasive biological research.

  18. Chimeric Antisense Oligonucleotide Conjugated to α-Tocopherol

    PubMed Central

    Nishina, Tomoko; Numata, Junna; Nishina, Kazutaka; Yoshida-Tanaka, Kie; Nitta, Keiko; Piao, Wenying; Iwata, Rintaro; Ito, Shingo; Kuwahara, Hiroya; Wada, Takeshi; Mizusawa, Hidehiro; Yokota, Takanori

    2015-01-01

    We developed an efficient system for delivering short interfering RNA (siRNA) to the liver by using α-tocopherol conjugation. The α-tocopherol–conjugated siRNA was effective and safe for RNA interference–mediated gene silencing in vivo. In contrast, when the 13-mer LNA (locked nucleic acid)-DNA gapmer antisense oligonucleotide (ASO) was directly conjugated with α-tocopherol it showed markedly reduced silencing activity in mouse liver. Here, therefore, we tried to extend the 5′-end of the ASO sequence by using 5′-α-tocopherol–conjugated 4- to 7-mers of unlocked nucleic acid (UNA) as a “second wing.” Intravenous injection of mice with this α-tocopherol–conjugated chimeric ASO achieved more potent silencing than ASO alone in the liver, suggesting increased delivery of the ASO to the liver. Within the cells, the UNA wing was cleaved or degraded and α-tocopherol was released from the 13-mer gapmer ASO, resulting in activation of the gapmer. The α-tocopherol–conjugated chimeric ASO showed high efficacy, with hepatic tropism, and was effective and safe for gene silencing in vivo. We have thus identified a new, effective LNA-DNA gapmer structure in which drug delivery system (DDS) molecules are bound to ASO with UNA sequences. PMID:25584900

  19. Emerging roles for conjugated sterols in plants.

    PubMed

    Ferrer, Albert; Altabella, Teresa; Arró, Montserrat; Boronat, Albert

    2017-07-01

    In plants, sterols are found in free form (free sterols, FSs) and conjugated as steryl esters (SEs), steryl glycosides (SGs) and acyl steryl glycosides (ASGs). Conjugated sterols are ubiquitously found in plants but their relative contents highly differ among species and their profile may change in response to developmental and environmental cues. SEs play a central role in membrane sterol homeostasis and also represent a storage pool of sterols in particular plant tissues. SGs and ASGs are main components of the plant plasma membrane (PM) that specifically accumulate in lipid rafts, PM microdomains known to mediate many relevant cellular processes. There are increasing evidences supporting the involvement of conjugated sterols in plant stress responses. In spite of this, very little is known about their metabolism. At present, only a limited number of genes encoding enzymes participating in conjugated sterol metabolism have been cloned and characterized in plants. The aim of this review is to update the current knowledge about the tissue and cellular distribution of conjugated sterols in plants and the enzymes involved in their biosynthesis. We also discuss novel aspects on the role of conjugated sterols in plant development and stress responses recently unveiled using forward- and reverse-genetic approaches. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  20. Preclinical manufacture of anti-HER2 liposome-inserting, scFv-PEG-lipid conjugate. 2. Conjugate micelle identity, purity, stability, and potency analysis.

    PubMed

    Nellis, David F; Giardina, Steven L; Janini, George M; Shenoy, Shilpa R; Marks, James D; Tsai, Richard; Drummond, Daryl C; Hong, Keelung; Park, John W; Ouellette, Thomas F; Perkins, Shelley C; Kirpotin, Dmitri B

    2005-01-01

    Analytical methods optimized for micellar F5cys-MP-PEG(2000)-DPSE protein-lipopolymer conjugate are presented. The apparent micelle molecular weight, determined by size exclusion chromatography, ranged from 330 to 960 kDa. The F5cys antibody and conjugate melting points, determined by differential scanning calorimetry, were near 82 degrees C. Traditional methods for characterizing monodisperse protein species were inapplicable to conjugate analysis. The isoelectric point of F5cys (9.2) and the conjugate (8.9) were determined by capillary isoelectric focusing (cIEF) after addition of the zwitterionic detergent CHAPS to the buffer. Conjugate incubation with phospholipase B selectively removed DSPE lipid groups and dispersed the conjugate prior to separation by chromatographic methods. Alternatively, adding 2-propanol (29.4 vol %) and n-butanol (4.5 vol %) to buffers for salt-gradient cation exchange chromatography provided gentler, nonenzymatic dispersion, resulting in well-resolved peaks. This method was used to assess stability, identify contaminants, establish lot-to-lot comparability, and determine the average chromatographic purity (93%) for conjugate lots, described previously. The F5cys amino acid content was confirmed after conjugation. The expected conjugate avidity for immobilized HER-2/neu was measured by bimolecular interaction analysis (BIAcore). Mock therapeutic assemblies were made by conjugate insertion into preformed doxorubicin-encapsulating liposomes for antibody-directed uptake of doxorubicin by HER2-overexpressing cancer cells in vitro. Together these developed assays established that the manufacturing method as described in the first part of this study consistently produced F5cys-MP-PEG(2000)-DSPE having sufficient purity, stability, and functionality for use in preclinical toxicology investigations.

  1. Nano gold conjugation, anti-arthritic potential and toxicity studies of snake Naja kaouthia (Lesson, 1831) venom protein toxin NKCT1 in male albino rats and mice.

    PubMed

    Saha, Partha Pratim; Bhowmik, Tanmoy; Dasgupta, Anjan Kumar; Gomes, Antony

    2014-08-01

    Nanoscience and Nanotechnology have found their way in the fields of pharmacology and medicine. The conjugation of drug to nanoparticles combines the properties of both. In this study, gold nanoparticle (GNP) was conjugated with NKCT1, a cytotoxic protein toxin from Indian cobra venom for evaluation of anti-arthritic activity and toxicity in experimental animal models. GNP conjugated NKCT1 (GNP-NKCT1) synthesized by NaBH4 reduction method was stable at room temperature (25 +/- 2 degrees C), pH 7.2. Hydrodynamic size of GNP-NKCT1 was 68-122 nm. Arthritis was developed by Freund's complete adjuvant induction in male albino rats and treatment was done with NKCT1/GNP-NKCT1/standard drug. The paw/ankle swelling, urinary markers, serum markers and cytokines were changed significantly in arthritic control rats which were restored after GNP-NKCT1 treatment. Acute toxicity study revealed that GNP conjugation increased the minimum lethal dose value of NKCT1 and partially reduced the NKCT1 induced increase of the serum biochemical tissue injury markers. Histopathological study showed partial restoration of toxic effect in kidney tissue after GNP conjugation. Normal lymphocyte count in culture was in the order of GNP-NKCT1 > NKCT1 > Indomethacine treatment. The present study confirmed that GNP conjugation increased the antiarthritic activity and decreased toxicity profile of NKCT1.

  2. Multiline phase conjugation at 4 microm in germanium.

    PubMed

    Depatie, D; Haueisen, D

    1980-06-01

    Phase conjugation by degenerate four-wave mixing in the 4-microm region in germanium has been observed for both single-line and multiline radiation. By using single-line output of a DF laser at 3.8 microm, X3 has been measured to be 4 X 10(-1) esu. Phase conjugation of multiline laser output has been achieved with an efficiency of 0.03%, a level that is consistent with the susceptibility found for single-line phase conjugation and the assumption of independent conjugation of each line of the multiline output.

  3. Sources and Bioactive Properties of Conjugated Dietary Fatty Acids.

    PubMed

    Hennessy, Alan A; Ross, Paul R; Fitzgerald, Gerald F; Stanton, Catherine

    2016-04-01

    The group of conjugated fatty acids known as conjugated linoleic acid (CLA) isomers have been extensively studied with regard to their bioactive potential in treating some of the most prominent human health malignancies. However, CLA isomers are not the only group of potentially bioactive conjugated fatty acids currently undergoing study. In this regard, isomers of conjugated α-linolenic acid, conjugated nonadecadienoic acid and conjugated eicosapentaenoic acid, to name but a few, have undergone experimental assessment. These studies have indicated many of these conjugated fatty acid isomers commonly possess anti-carcinogenic, anti-adipogenic, anti-inflammatory and immune modulating properties, a number of which will be discussed in this review. The mechanisms through which these bioactivities are mediated have not yet been fully elucidated. However, existing evidence indicates that these fatty acids may play a role in modulating the expression of several oncogenes, cell cycle regulators, and genes associated with energy metabolism. Despite such bioactive potential, interest in these conjugated fatty acids has remained low relative to the CLA isomers. This may be partly attributed to the relatively recent emergence of these fatty acids as bioactives, but also due to a lack of awareness regarding sources from which they can be produced. In this review, we will also highlight the common sources of these conjugated fatty acids, including plants, algae, microbes and chemosynthesis.

  4. In vitro antibody-enzyme conjugates with specific bactericidal activity.

    PubMed

    Knowles, D M; Sulivan, T J; Parker, C W; Williams, R C

    1973-06-01

    IgG with antibacterial antibody opsonic activity was isolated from rabbit antisera produced by intravenous hyperimmunization with several test strains of pneumococci, Group A beta-hemolytic streptococci, Staphylococcus aureus, Proteus mirabilis, Pseudomonas aeruginosa, and Escherichia coli. Antibody-enzyme conjugates were prepared, using diethylmalonimidate to couple glucose oxidase to IgG antibacterial antibody preparations. Opsonic human IgG obtained from serum of patients with subacute bacterial endocarditis was also conjugated to glucose oxidase. Antibody-enzyme conjugates retained combining specificity for test bacteria as demonstrated by indirect immunofluorescence. In vitro test for bactericidal activity of antibody-enzyme conjugates utilized potassium iodide, lactoperoxidase, and glucose as cofactors. Under these conditions glucose oxidase conjugated to antibody generates hydrogen peroxide, and lactoperoxidase enzyme catalyzes the reduction of hydrogen peroxide with simultaneous oxidation of I(-) and halogenation and killing of test bacteria. Potent in vitro bactericidal activity of this system was repeatedly demonstrated for antibody-enzyme conjugates against pneumococci, streptococci, S. aureus, P. mirabilis, and E. coli. However, no bactericidal effect was demonstrable with antibody-enzyme conjugates and two test strains of P. aeruginosa. Bactericidal activity of antibody-enzyme conjugates appeared to parallel original opsonic potency of unconjugated IgG preparations. Antibody-enzyme conjugates at concentrations as low as 0.01 mg/ml were capable of intense bactericidal activity producing substantial drops in surviving bacterial counts within 30-60 min after initiation of assay. These in vitro bactericidal systems indicate that the concept of antibacterial antibody-enzyme conjugates may possibly be adaptable as a mechanism for treatment of patients with leukocyte dysfunction or fulminant bacteremia.

  5. Synthesis, characterization and biological activity of Rhein-cyclodextrin conjugate

    NASA Astrophysics Data System (ADS)

    Liu, Manshuo; Lv, Pin; Liao, Rongqiang; Zhao, Yulin; Yang, Bo

    2017-01-01

    Cyclodextrin conjugate complexation is a useful method to enhance the solubility and absorption of poorly soluble drugs. A series of new Rhein-β-cyclodextrin conjugates (Rh-CD conjugates) have been synthesized and examined. Rhein is covalently linked with the β-CD by amido linkage in a 1:1 molar ratio. The conjugates were characterized by 1H NMR, 13C NMR, HRMS, powder X-ray diffraction (powder XRD) as well as thermogravimetric analysis (TGA). The results reveal that incorporation of β-CD could improve the aqueous solubility of Rhein and the cytotoxicity against hepatocellular carcinoma (HepG2) cell line as well as antibacterial activity against three organisms. The improved biological activity and the satisfactory water solubility of the conjugates will be potentially useful for developing novel drug-cyclodextrin conjugates, such as herbal medicine.

  6. Estimation of phenolic conjugation by colonic mucosa.

    PubMed Central

    Ramakrishna, B S; Gee, D; Weiss, A; Pannall, P; Roberts-Thomson, I C; Roediger, W E

    1989-01-01

    Conjugation of phenol by the colonic mucosa was assessed in vivo using dialysis tubing containing 1.5 ml of 1 mmol/l acetaminophen (paracetamol) and 10 mmol/l butyrate. These were allowed to equilibrate in the rectum for one hour. The glucuronidated and sulphated conjugates of acetaminophen were measured by high pressure liquid chromatography and bicarbonate concentrations by gas analysis. In 21 subjects without colonic disease sulphate conjugation was observed in all cases, with a mean (SE) of 3.86 (0.66) nmol/hour, while glucuronide conjugation was found in seven of 21 cases. Mean (SE) bicarbonate output of 42.9 (3.9) mumol/hour (n = 21) indicated healthy colonic mucosal metabolism and phenolic sulphation in dialysate and agreed with published sulphation rates obtained with cultured cells of colonic epithelium. Acetaminophen sulphation suggests that the colonic mucosa has an important role in the conjugation of phenols, and the method reported here would be useful in assessing the detoxification capacity of the colonic mucosa in diseases of the rectal mucosa. PMID:2738167

  7. Novel agrochemical conjugates with self-assembling behaviour.

    PubMed

    Liu, Qingtao; Graham, Bim; Hawley, Adrian; Dong, Yao-Da; Boyd, Ben J

    2018-02-15

    That conjugation of agrichemicals to pro-assembly hydrophobic moieties will enable enhanced compatibility and loading with host lyotropic liquid crystalline carrier matrix, and potentially self-assemble in their own right in aqueous environments. A series of lipid-like agrochemical-conjugates were synthesized using specific amphiphilic entities conjugated onto the agrochemicals, picloram and 2,4-dichlorophenoxyacetic acid (2,4-D). The self-assembly behaviour and compatibility of the novel entities when incorporated into phytantriol and monoolein-based liquid crystalline systems were examined using small angle X-ray scattering, cryo-TEM and polarized optical microscopy. Compared to agrochemical-conjugates with simple alkyl ester groups, the esterification of the agrochemicals with amphiphilic groups such as phytantriol and monoolein led to greater structural compatibility and consequently a greater loading of the agrochemicals in the liquid crystalline systems without destabilizing phase structure. Picloram-monoolein and picloram-monoelaidin can self-assemble to form lamellar structures in water. However, certain agrochemical-conjugates such as picloram-monoelaidin and picloram-PEGn-oleate showed poor compatibility with liquid crystalline systems, resulting in phase separation. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Conjugate-gradient optimization method for orbital-free density functional calculations.

    PubMed

    Jiang, Hong; Yang, Weitao

    2004-08-01

    Orbital-free density functional theory as an extension of traditional Thomas-Fermi theory has attracted a lot of interest in the past decade because of developments in both more accurate kinetic energy functionals and highly efficient numerical methodology. In this paper, we developed a conjugate-gradient method for the numerical solution of spin-dependent extended Thomas-Fermi equation by incorporating techniques previously used in Kohn-Sham calculations. The key ingredient of the method is an approximate line-search scheme and a collective treatment of two spin densities in the case of spin-dependent extended Thomas-Fermi problem. Test calculations for a quartic two-dimensional quantum dot system and a three-dimensional sodium cluster Na216 with a local pseudopotential demonstrate that the method is accurate and efficient. (c) 2004 American Institute of Physics.

  9. Electroactive polymer-peptide conjugates for adhesive biointerfaces.

    PubMed

    Maione, Silvana; Gil, Ana M; Fabregat, Georgina; Del Valle, Luis J; Triguero, Jordi; Laurent, Adele; Jacquemin, Denis; Estrany, Francesc; Jiménez, Ana I; Zanuy, David; Cativiela, Carlos; Alemán, Carlos

    2015-10-15

    Electroactive polymer-peptide conjugates have been synthesized by combining poly(3,4-ethylenedioxythiophene), a polythiophene derivative with outstanding properties, and an Arg-Gly-Asp (RGD)-based peptide in which Gly has been replaced by an exotic amino acid bearing a 3,4-ethylenedioxythiophene ring in the side chain. The incorporation of the peptide at the ends of preformed PEDOT chains has been corroborated by both FTIR and X-ray photoelectron spectroscopy. Although the morphology and topology are not influenced by the incorporation of the peptide at the ends of PEDOT chains, this process largely affects other surface properties. Thus, the wettability of the conjugates is considerably higher than that of PEDOT, independently of the synthetic strategy, whereas the surface roughness only increases when the conjugate is obtained using a competing strategy (i.e. growth of the polymer chains against termination by end capping). The electrochemical activity of the conjugates has been found to be higher than that of PEDOT, evidencing the success of the polymer-peptide links designed by chemical similarity. Density functional theory calculations have been used not only to ascertain the conformational preferences of the peptide but also to interpret the electronic transitions detected by UV-vis spectroscopy. Electroactive surfaces prepared using the conjugates displayed the higher bioactivities in terms of cell adhesion, with the relative viabilities being dependent on the roughness, wettability and electrochemical activity of the conjugate. In addition to the influence of the peptide fragment in the initial cell attachment and subsequent cell spreading and survival, the results indicate that PEDOT promotes the exchange of ions at the conjugate-cell interface.

  10. Mannose-pepstatin conjugates as targeted inhibitors of antigen processing.

    PubMed

    Free, Paul; Hurley, Christopher A; Kageyama, Takashi; Chain, Benjamin M; Tabor, Alethea B

    2006-05-07

    The molecular details of antigen processing, including the identity of the enzymes involved, their intracellular location and their substrate specificity, are still incompletely understood. Selective inhibition of proteolytic antigen processing enzymes such as cathepsins D and E, using small molecular inhibitors such as pepstatin, has proven to be a valuable tool in investigating these pathways. However, pepstatin is poorly soluble in water and has limited access to the antigen processing compartment in antigen presenting cells. We have synthesised mannose-pepstatin conjugates, and neomannosylated BSA-pepstatin conjugates, as tools for the in vivo study of the antigen processing pathway. Conjugation to mannose and to neomannosylated BSA substantially improved the solubility of the conjugates relative to pepstatin. The mannose-pepstatin conjugates showed no reduction in inhibition of cathepsin E, whereas the neomannosylated BSA-pepstatin conjugates showed some loss of inhibition, probably due to steric factors. However, a neomannosylated BSA-pepstatin conjugate incorporating a cleavable disulfide linkage between the pepstatin and the BSA showed the best uptake to dendritic cells and the best inhibition of antigen processing.

  11. Multilevel Investigation of Charge Transport in Conjugated Polymers.

    PubMed

    Dong, Huanli; Hu, Wenping

    2016-11-15

    Conjugated polymers have attracted the world's attentions since their discovery due to their great promise for optoelectronic devices. However, the fundamental understanding of charge transport in conjugated polymers remains far from clear. The origin of this challenge is the natural disorder of polymers with complex molecular structures in the solid state. Moreover, an effective way to examine the intrinsic properties of conjugated polymers is absent. Optoelectronic devices are always based on spin-coated films. In films, polymers tend to form highly disordered structures at nanometer to micrometer length scales due to the high degree of conformational freedom of macromolecular chains and the irregular interchain entanglement, thus typically resulting in much lower charge transport properties than their intrinsic performance. Furthermore, a subtle change of processing conditions may dramatically affect the film formation-inducing large variations in the morphology, crystallinity, microstructure, molecular packing, and alignment, and finally varying the effective charge transport significantly and leading to great inconsistency over an order of magnitude even for devices based on the same polymer semiconductor. Meanwhile, the charge transport mechanism in conjugated polymers is still unclear and its investigation is challenging based on such complex microstructures of polymers in films. Therefore, how to objectively evaluate the charge transport and probe the charge transport mechanism of conjugated polymers has confronted the world for decades. In this Account, we present our recent progress on multilevel charge transport in conjugated polymers, from disordered films, uniaxially aligned thin films, and single crystalline micro- or nanowires to molecular scale, where a derivative of poly(para-phenylene ethynylene) with thioacetyl end groups (TA-PPE) is selected as the candidate for investigation, which could also be extended to other conjugated polymer systems. Our

  12. Doxorubicin conjugated to D-alpha-tocopheryl polyethylene glycol 1000 succinate (TPGS): conjugation chemistry, characterization, in vitro and in vivo evaluation.

    PubMed

    Cao, Na; Feng, Si-Shen

    2008-10-01

    To develop a polymer-anticancer drug conjugate, D-alpha-tocopheryl polyethylene glycol 1000 succinate (TPGS) was employed as a carrier of doxorubicin (DOX) to enhance its therapeutic effects and reduce its side effects. Doxorubicin was chemically conjugated to TPGS. The molecular structure, drug loading efficiency, drug release kinetics and stability of the conjugate were characterized. The cellular uptake, intracellular distribution, and cytotoxicity were accessed by using MCF-7 breast cancer cells and C6 glioma cells as in vitro cell model. The conjugate showed higher cellular uptake efficiency and broader distribution within the cells. Judged by IC(50), the conjugate was found 31.8, 69.6, 84.1% more effective with MCF-7 cells and 43.9, 87.7, 42.2% more effective with C6 cells than the parent drug after 24, 48, 72 h culture, respectively. The in vivo pharmacokinetics and biodistribution were investigated after an i.v. administration at 5 mg DOX/kg body weight in rats. Promisingly, 4.5-fold increase in the half-life and 24-fold increase in the area-under-the-curve (AUC) of DOX were achieved for the TPGS-DOX conjugate compared with the free DOX. The drug level in heart, gastric and intestine was significantly reduced, which is an indication of reduced side effects. Our TPGS-DOX conjugate showed great potential to be a prodrug of higher therapeutic effects and fewer side effects than DOX itself.

  13. Protein/oligonucleotide conjugates as a cell specific PNA carrier.

    PubMed

    Obara, K; Ishihara, T; Akaike, T; Maruyama, A

    2001-01-01

    We have focused on proteineus ligand conjugate with oligonucleotides (ODNs) as a cell-specific delivery vector for peptide nucleic acids (PNAs). Asialofetuin (AF), a hepatocyte-specific proteineus ligand, was conjugated with ODNs that served as binding sites for PNAs. Succinimidyl-transe-4(N-maleimidylmethyl)-cyclohexane-1-carboxylate (SMCC) modified AF was coupled with 5'-thiolated oligodeoxynucleotide (HS-ODN). The resulting conjugate held PNAs with sequence-specific manner. The PNA/DNA conjugate complex has resistance against nucleases in serum. The efficient release of PNA from the complex was observed when the complex was made in contact with a target nucleotide. PNA uptake to hepatocytes was greatly enhanced when hepatocytes was incubated with PNA/conjugate complex. Free AF thoroughly inhibited PNA uptake with the conjugate, evidencing asialoglycoprotein receptor (ASGP-R) mediated endocytosis to be a major-route for the cellular uptake.

  14. Conjugated Polymers: Catalysts for Photocatalytic Hydrogen Evolution.

    PubMed

    Zhang, Guigang; Lan, Zhi-An; Wang, Xinchen

    2016-12-19

    Conjugated polymers, comprising fully π-conjugated systems, present a new generation of heterogeneous photocatalysts for solar-energy utilization. They have three key features, namely robustness, nontoxicity, and visible-light activity, for photocatalytic processes, thus making them appealing candidates for scale-up. Presented in this Minireview, is a brief summary on the recent development of various promising polymer photocatalysts for hydrogen evolution from aqueous solutions, including linear polymers, planarized polymers, triazine/heptazine polymers, and other related organic conjugated semiconductors, with a particular focus on the rational manipulation in the composition, architectures, and optical and electronic properties that are relevant to photophysical and photochemical properties. Some future trends and prospects for organic conjugated photocatalysts in artificial photosynthesis, by water splitting, are also envisaged. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Bis-polymer lipid-peptide conjugates and nanoparticles thereof

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Ting; Dong, He; Shu, Jessica

    The present invention provides bis-polymer lipid-peptide conjugates containing a hydrophobic block and headgroup containing a helical peptide and two polymer blocks. The conjugates can self-assemble to form helix bundle subunits, which in turn assemble to provide micellar nanocarriers for drug cargos and other agents. Particles containing the conjugates and methods for forming the particles are also disclosed.

  16. Processing Conjugated-Diene-Containing Polymers

    NASA Technical Reports Server (NTRS)

    Bell, Vernon L.; Havens, Stephen J.

    1987-01-01

    Diels-Alder reaction used to cross-linked thermoplastics. Process uses Diels-Alder reaction to cross-link and/or extend conjugated-diene-containing polymers by reacting them with bis-unsaturated dienophiles results in improved polymer properties. Quantities of diene groups required for cross-linking varies from very low to very high concentrations. Process also used to extend, or build up molecular weights of, low-molecular-weight linear polymers with terminal conjugated dienic groups.

  17. Morphological priming by itself: a study of Portuguese conjugations.

    PubMed

    Veríssimo, João; Clahsen, Harald

    2009-07-01

    Does the language processing system make use of abstract grammatical categories and representations that are not directly visible from the surface form of a linguistic expression? This study examines stem-formation processes and conjugation classes, a case of 'pure' morphology that provides insight into the role of grammatical structure in language processing. We report results from a cross-modal priming experiment examining 1st and 3rd conjugation verb forms in Portuguese. Although items were closely matched with respect to a range of non-morphological factors, distinct priming patterns were found for 1st and 3rd conjugation stems. We attribute the observed priming patterns to different representations of conjugational stems, combinatorial morphologically structured ones for 1st conjugation and un-analyzed morphologically unstructured ones for 3rd conjugation stems. Our findings underline the importance of morphology for language comprehension indicating that morphological analysis goes beyond the identification of grammatical morphemes.

  18. In Vitro Structural and Functional Evaluation of Gold Nanoparticles Conjugated Antibiotics

    NASA Astrophysics Data System (ADS)

    Saha, Biswarup; Bhattacharya, Jaydeep; Mukherjee, Ananda; Ghosh, Anup Kumar; Santra, Chitta Ranjan; Dasgupta, Anjan K.; Karmakar, Parimal

    2007-12-01

    Bactericidal efficacy of gold nanoparticles conjugated with ampicillin, streptomycin and kanamycin were evaluated. Gold nanoparticles (Gnps) were conjugated with the antibiotics during the synthesis of nanoparticles utilizing the combined reducing property of antibiotics and sodium borohydride. The conjugation of nanoparticles was confirmed by dynamic light scattering (DLS) and electron microscopic (EM) studies. Such Gnps conjugated antibiotics showed greater bactericidal activity in standard agar well diffusion assay. The minimal inhibitory concentration (MIC) values of all the three antibiotics along with their Gnps conjugated forms were determined in three bacterial strains, Escherichia coli DH5α, Micrococcus luteus and Staphylococcus aureus. Among them, streptomycin and kanamycin showed significant reduction in MIC values in their Gnps conjugated form whereas; Gnps conjugated ampicillin showed slight decrement in the MIC value compared to its free form. On the other hand, all of them showed more heat stability in their Gnps conjugated forms. Thus, our findings indicated that Gnps conjugated antibiotics are more efficient and might have significant therapeutic implications.

  19. Lipid-peptide-polymer conjugates and nanoparticles thereof

    DOEpatents

    Xu, Ting; Dong, He; Shu, Jessica

    2015-06-02

    The present invention provides a conjugate having a peptide with from about 10 to about 100 amino acids, wherein the peptide adopts a helical structure. The conjugate also includes a first polymer covalently linked to the peptide, and a hydrophobic moiety covalently linked to the N-terminus of the peptide, wherein the hydrophobic moiety comprises a second polymer or a lipid moiety. The present invention also provides helix bundles form by self-assembling the conjugates, and particles formed by self-assembling the helix bundles. Methods of preparing the helix bundles and particles are also provided.

  20. Photodynamic tissue adhesion with chlorin(e6) protein conjugates.

    PubMed

    Khadem, J; Veloso, A A; Tolentino, F; Hasan, T; Hamblin, M R

    1999-12-01

    To test the hypothesis that a photodynamic laser-activated tissue solder would perform better in sealing scleral incisions when the photosensitizer was covalently linked to the protein than when it was noncovalently mixed. Conjugates and mixtures were prepared between the photosensitizer chlorin(e6) and various proteins (albumin, fibrinogen, and gelatin) in different ratios and used to weld penetrating scleral incisions made in human cadaveric eyes. A blue-green (488-514 nm) argon laser activated the adhesive, and the strength of the closure was measured by increasing the intraocular pressure until the wound showed leakage. Both covalent conjugates and noncovalent mixtures showed a light dose-dependent increase in leaking pressure. A preparation of albumin chlorin(e6) conjugate with additional albumin added (2.5 protein to chlorin(e6) molar ratio) showed significantly higher weld strength than other protein conjugates and mixtures. This is the first report of dye-protein conjugates as tissue solders. These conjugates may have applications in ophthalmology.

  1. Controlling Molecular Ordering in Solution-State Conjugated Polymers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhu, Jiahua; Han, Youngkyu; Kumar, Rajeev

    Rationally encoding molecular interactions that can control the assembly structure and functional expression in solution of conjugated polymers holds great potential for enabling optimal organic optoelectronic and sensory materials. In this work, we show that thermally-controlled and surfactant-guided assembly of water-soluble conjugated polymers in aqueous solution is a simple and effective strategy to generate optoelectronic materials with desired molecular ordering. We have studied a conjugated polymer consisting of a hydrophobic thiophene backbone and hydrophilic, thermo-responsive ethylene oxide side groups, which shows a step-wise, multi-dimensional assembly in water. By incorporating the polymer into phase-segregated domains of an amphiphilic surfactant in solution,more » we demonstrate that both chain conformation and degree of molecular ordering of the conjugated polymer can be tuned in hexagonal, micellar and lamellar phases of the surfactant solution. The controlled molecular ordering in conjugated polymer assembly is demonstrated as a key factor determining the electronic interaction and optical function.« less

  2. Controlling Molecular Ordering in Solution-State Conjugated Polymers

    DOE PAGES

    Zhu, Jiahua; Han, Youngkyu; Kumar, Rajeev; ...

    2015-07-17

    Rationally encoding molecular interactions that can control the assembly structure and functional expression in solution of conjugated polymers holds great potential for enabling optimal organic optoelectronic and sensory materials. In this work, we show that thermally-controlled and surfactant-guided assembly of water-soluble conjugated polymers in aqueous solution is a simple and effective strategy to generate optoelectronic materials with desired molecular ordering. We have studied a conjugated polymer consisting of a hydrophobic thiophene backbone and hydrophilic, thermo-responsive ethylene oxide side groups, which shows a step-wise, multi-dimensional assembly in water. By incorporating the polymer into phase-segregated domains of an amphiphilic surfactant in solution,more » we demonstrate that both chain conformation and degree of molecular ordering of the conjugated polymer can be tuned in hexagonal, micellar and lamellar phases of the surfactant solution. The controlled molecular ordering in conjugated polymer assembly is demonstrated as a key factor determining the electronic interaction and optical function.« less

  3. Chain conformations and phase behavior of conjugated polymers.

    PubMed

    Kuei, Brooke; Gomez, Enrique D

    2016-12-21

    Conjugated polymers may play an important role in various emerging optoelectronic applications because they combine the chemical versatility of organic molecules and the flexibility, stretchability and toughness of polymers with semiconducting properties. Nevertheless, in order to achieve the full potential of conjugated polymers, a clear description of how their structure, morphology, and macroscopic properties are interrelated is needed. We propose that the starting point for understanding conjugated polymers includes understanding chain conformations and phase behavior. Efforts to predict and measure the persistence length have significantly refined our intuition of the chain stiffness, and have led to predictions of nematic-to-isotropic transitions. Exploring mixing between conjugated polymers and small molecules or other polymers has demonstrated tremendous advancements in attaining the needed properties for various optoelectronic devices. Current efforts continue to refine our knowledge of chain conformations and phase behavior and the factors that influence these properties, thereby providing opportunities for the development of novel optoelectronic materials based on conjugated polymers.

  4. Nonspecific Interaction of Streptavidin with Urease-Conjugated Antibodies

    DTIC Science & Technology

    1991-11-01

    11l1llilll li ii________ l__ :’SUFFIELD MEMORANDUM= NO. 1358 NONSPECIFIC INTERACTION OF STREPTAVIDIN WITH UREASE -CONJUGATED ANTIBODIES E LECT- by 92-01626...ESTABLISHMENT SUFFIELD RALSTON ALBERTA Suffield Memorandum No. 1358 Nonspecific Interaction of Streptavidin with Urease -Conjugated Antibodies by H. Gail...mixture, a urease -conjugated antibody. The variations could be diminished by allowing the reagents to stand at room temperature for two to three hours

  5. Subpicosecond Optical Digital Computation Using Conjugate Parametric Generators

    DTIC Science & Technology

    1989-03-31

    Using Phase Conjugate Farametric Generators ..... 12. PERSONAL AUTHOR(S) Alfano, Robert- Eichmann . George; Dorsinville. Roger! Li. Yao 13a. TYPE OF...conjugation-based optical residue arithmetic processor," Y. Li, G. Eichmann , R. Dorsinville, and R. R. Alfano, Opt. Lett. 13, (1988). [2] "Parallel ultrafast...optical digital and symbolic computation via optical phase conjugation," Y. Li, G. Eichmann , R. Dorsinville, Appl. Opt. 27, 2025 (1988). [3

  6. Silica passivated conjugated polymer nanoparticles for biological imaging applications

    NASA Astrophysics Data System (ADS)

    Bourke, Struan; Urbano, Laura; Olona, Antoni; Valderrama, Ferran; Dailey, Lea Ann; Green, Mark A.

    2017-02-01

    Colorectal and prostate cancers are major causes of cancer-related death, with early detection key to increased survival. However, as symptoms occur during advanced stages and current diagnostic methods have limitations, there is a need for new fluorescent probes that remain bright, are biocompatible and can be targeted. Conjugated polymer nanoparticles have shown great promise in biological imaging due to their unique optical properties. We have synthesised small, bright, photo-stable CN-PPV, nanoparticles encapsulated with poloxamer polymer and a thin silica shell. By incubating the CN-PPV silica shelled cross-linked (SSCL) nanoparticles in mammalian (HeLa) cells; we were able to show that cellular uptake occurred. Uptake was also shown by incubating the nanoparticles in RWPE-1, WPE1-NB26 and WPE1- NA22 prostate cancer cell lines. Finally, HEK cells were used to show the particles had limited cytotoxicity.

  7. A Conserved Helicase Processivity Factor Is Needed for Conjugation and Replication of an Integrative and Conjugative Element

    PubMed Central

    Thomas, Jacob; Lee, Catherine A.; Grossman, Alan D.

    2013-01-01

    Integrative and conjugative elements (ICEs) are agents of horizontal gene transfer and have major roles in evolution and acquisition of new traits, including antibiotic resistances. ICEs are found integrated in a host chromosome and can excise and transfer to recipient bacteria via conjugation. Conjugation involves nicking of the ICE origin of transfer (oriT) by the ICE–encoded relaxase and transfer of the nicked single strand of ICE DNA. For ICEBs1 of Bacillus subtilis, nicking of oriT by the ICEBs1 relaxase NicK also initiates rolling circle replication. This autonomous replication of ICEBs1 is critical for stability of the excised element in growing cells. We found a conserved and previously uncharacterized ICE gene that is required for conjugation and replication of ICEBs1. Our results indicate that this gene, helP (formerly ydcP), encodes a helicase processivity factor that enables the host-encoded helicase PcrA to unwind the double-stranded ICEBs1 DNA. HelP was required for both conjugation and replication of ICEBs1, and HelP and NicK were the only ICEBs1 proteins needed for replication from ICEBs1 oriT. Using chromatin immunoprecipitation, we measured association of HelP, NicK, PcrA, and the host-encoded single-strand DNA binding protein Ssb with ICEBs1. We found that NicK was required for association of HelP and PcrA with ICEBs1 DNA. HelP was required for association of PcrA and Ssb with ICEBs1 regions distal, but not proximal, to oriT, indicating that PcrA needs HelP to progress beyond nicked oriT and unwind ICEBs1. In vitro, HelP directly stimulated the helicase activity of the PcrA homologue UvrD. Our findings demonstrate that HelP is a helicase processivity factor needed for efficient unwinding of ICEBs1 for conjugation and replication. Homologues of HelP and PcrA-type helicases are encoded on many known and putative ICEs. We propose that these factors are essential for ICE conjugation, replication, and genetic stability. PMID:23326247

  8. Synthesis of Mikto-Arm Star Peptide Conjugates.

    PubMed

    Koo, Jin Mo; Su, Hao; Lin, Yi-An; Cui, Honggang

    2018-01-01

    Mikto-arm star peptide conjugates are an emerging class of self-assembling peptide-based structural units that contain three or more auxiliary segments of different chemical compositions and/or functionalities. This group of molecules exhibit interesting self-assembly behavior in solution due to their chemically asymmetric topology. Here we describe the detailed procedure for synthesis of an ABC Mikto-arm star peptide conjugate in which two immiscible entities (a saturated hydrocarbon and a hydrophobic and lipophobic fluorocarbon) are conjugated onto a short β-sheet forming peptide sequence, GNNQQNY, derived from the Sup35 prion, through a lysine junction. Automated and manual Fmoc-solid phase synthesis techniques are used to synthesize the Mikto-arm star peptide conjugates, followed by HPLC purification. We envision that this set of protocols can afford a versatile platform to synthesize a new class of peptidic building units for diverse applications.

  9. Conjugated amplifying polymers for optical sensing applications.

    PubMed

    Rochat, Sébastien; Swager, Timothy M

    2013-06-12

    Thanks to their unique optical and electrochemical properties, conjugated polymers have attracted considerable attention over the last two decades and resulted in numerous technological innovations. In particular, their implementation in sensing schemes and devices was widely investigated and produced a multitude of sensory systems and transduction mechanisms. Conjugated polymers possess numerous attractive features that make them particularly suitable for a broad variety of sensing tasks. They display sensory signal amplification (compared to their small-molecule counterparts) and their structures can easily be tailored to adjust solubility, absorption/emission wavelengths, energy offsets for excited state electron transfer, and/or for use in solution or in the solid state. This versatility has made conjugated polymers a fluorescence sensory platform of choice in the recent years. In this review, we highlight a variety of conjugated polymer-based sensory mechanisms together with selected examples from the recent literature.

  10. Tales of conjugation and sex pheromones

    PubMed Central

    2011-01-01

    This review covers highlights of the author's experience becoming and working as a plasmid biologist. The account chronicles a progression from studies of ColE1 DNA in Escherichia coli to Gram-positive bacteria with an emphasis on conjugation in enterococci. It deals with gene amplification, conjugative transposons and sex pheromones in the context of bacterial antibiotic resistance. PMID:22016844

  11. Gold Nanoparticle Conjugation Enhances the Antiacanthamoebic Effects of Chlorhexidine

    PubMed Central

    Aqeel, Yousuf; Siddiqui, Ruqaiyyah; Anwar, Ayaz; Shah, Muhammad Raza

    2015-01-01

    Acanthamoeba keratitis is a serious infection with blinding consequences and often associated with contact lens wear. Early diagnosis, followed by aggressive topical application of drugs, is a prerequisite in successful treatment, but even then prognosis remains poor. Several drugs have shown promise, including chlorhexidine gluconate; however, host cell toxicity at physiologically relevant concentrations remains a challenge. Nanoparticles, subcolloidal structures ranging in size from 10 to 100 nm, are effective drug carriers for enhancing drug potency. The overall aim of the present study was to determine whether conjugation with gold nanoparticles enhances the antiacanthamoebic potential of chlorhexidine. Gold-conjugated chlorhexidine nanoparticles were synthesized. Briefly, gold solution was mixed with chlorhexidine and reduced by adding sodium borohydride, resulting in an intense deep red color, indicative of colloidal gold-conjugated chlorhexidine nanoparticles. The synthesis was confirmed using UV-visible spectrophotometry that shows a plasmon resonance peak of 500 to 550 nm, indicative of gold nanoparticles. Further characterization using matrix-assisted laser desorption ionization-mass spectrometry showed a gold-conjugated chlorhexidine complex at m/z 699 ranging in size from 20 to 100 nm, as determined using atomic force microscopy. To determine the amoebicidal and amoebistatic effects, amoebae were incubated with gold-conjugated chlorhexidine nanoparticles. For controls, amoebae also were incubated with gold and silver nanoparticles alone, chlorhexidine alone, neomycin-conjugated nanoparticles, and neomycin alone. The findings showed that gold-conjugated chlorhexidine nanoparticles exhibited significant amoebicidal and amoebistatic effects at 5 μM. Amoebicidal effects were observed by parasite viability testing using a Trypan blue exclusion assay and flow-cytometric analysis using propidium iodide, while amoebistatic effects were observed using growth

  12. Meningococcal conjugate vaccines: optimizing global impact

    PubMed Central

    Terranella, Andrew; Cohn, Amanda; Clark, Thomas

    2011-01-01

    Meningococcal conjugate vaccines have several advantages over polysaccharide vaccines, including the ability to induce greater antibody persistence, avidity, immunologic memory, and herd immunity. Since 1999, meningococcal conjugate vaccine programs have been established across the globe. Many of these vaccination programs have resulted in significant decline in meningococcal disease in several countries. Recent introduction of serogroup A conjugate vaccine in Africa offers the potential to eliminate meningococcal disease as a public health problem in Africa. However, the duration of immune response and the development of widespread herd immunity in the population remain important questions for meningococcal vaccine programs. Because of the unique epidemiology of meningococcal disease around the world, the optimal vaccination strategy for long-term disease prevention will vary by country. PMID:22114508

  13. Heat Shock-Enhanced Conjugation Efficiency in Standard Campylobacter jejuni Strains

    PubMed Central

    Zeng, Ximin; Ardeshna, Devarshi

    2015-01-01

    Campylobacter jejuni, the leading bacterial cause of human gastroenteritis in the United States, displays significant strain diversity due to horizontal gene transfer. Conjugation is an important horizontal gene transfer mechanism contributing to the evolution of bacterial pathogenesis and antimicrobial resistance. It has been observed that heat shock could increase transformation efficiency in some bacteria. In this study, the effect of heat shock on C. jejuni conjugation efficiency and the underlying mechanisms were examined. With a modified Escherichia coli donor strain, different C. jejuni recipient strains displayed significant variation in conjugation efficiency ranging from 6.2 × 10−8 to 6.0 × 10−3 CFU per recipient cell. Despite reduced viability, heat shock of standard C. jejuni NCTC 11168 and 81-176 strains (e.g., 48 to 54°C for 30 to 60 min) could dramatically enhance C. jejuni conjugation efficiency up to 1,000-fold. The phenotype of the heat shock-enhanced conjugation in C. jejuni recipient cells could be sustained for at least 9 h. Filtered supernatant from the heat shock-treated C. jejuni cells could not enhance conjugation efficiency, which suggests that the enhanced conjugation efficiency is independent of secreted substances. Mutagenesis analysis indicated that the clustered regularly interspaced short palindromic repeats system and the selected restriction-modification systems (Cj0030/Cj0031, Cj0139/Cj0140, Cj0690c, and HsdR) were dispensable for heat shock-enhanced conjugation in C. jejuni. Taking all results together, this study demonstrated a heat shock-enhanced conjugation efficiency in standard C. jejuni strains, leading to an optimized conjugation protocol for molecular manipulation of this organism. The findings from this study also represent a significant step toward elucidation of the molecular mechanism of conjugative gene transfer in C. jejuni. PMID:25911489

  14. Heat Shock-Enhanced Conjugation Efficiency in Standard Campylobacter jejuni Strains.

    PubMed

    Zeng, Ximin; Ardeshna, Devarshi; Lin, Jun

    2015-07-01

    Campylobacter jejuni, the leading bacterial cause of human gastroenteritis in the United States, displays significant strain diversity due to horizontal gene transfer. Conjugation is an important horizontal gene transfer mechanism contributing to the evolution of bacterial pathogenesis and antimicrobial resistance. It has been observed that heat shock could increase transformation efficiency in some bacteria. In this study, the effect of heat shock on C. jejuni conjugation efficiency and the underlying mechanisms were examined. With a modified Escherichia coli donor strain, different C. jejuni recipient strains displayed significant variation in conjugation efficiency ranging from 6.2 × 10(-8) to 6.0 × 10(-3) CFU per recipient cell. Despite reduced viability, heat shock of standard C. jejuni NCTC 11168 and 81-176 strains (e.g., 48 to 54°C for 30 to 60 min) could dramatically enhance C. jejuni conjugation efficiency up to 1,000-fold. The phenotype of the heat shock-enhanced conjugation in C. jejuni recipient cells could be sustained for at least 9 h. Filtered supernatant from the heat shock-treated C. jejuni cells could not enhance conjugation efficiency, which suggests that the enhanced conjugation efficiency is independent of secreted substances. Mutagenesis analysis indicated that the clustered regularly interspaced short palindromic repeats system and the selected restriction-modification systems (Cj0030/Cj0031, Cj0139/Cj0140, Cj0690c, and HsdR) were dispensable for heat shock-enhanced conjugation in C. jejuni. Taking all results together, this study demonstrated a heat shock-enhanced conjugation efficiency in standard C. jejuni strains, leading to an optimized conjugation protocol for molecular manipulation of this organism. The findings from this study also represent a significant step toward elucidation of the molecular mechanism of conjugative gene transfer in C. jejuni. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  15. Molecular Approach to Conjugated Polymers with Biomimetic Properties.

    PubMed

    Baek, Paul; Voorhaar, Lenny; Barker, David; Travas-Sejdic, Jadranka

    2018-06-13

    The field of bioelectronics involves the fascinating interplay between biology and human-made electronics. Applications such as tissue engineering, biosensing, drug delivery, and wearable electronics require biomimetic materials that can translate the physiological and chemical processes of biological systems, such as organs, tissues. and cells, into electrical signals and vice versa. However, the difference in the physical nature of soft biological elements and rigid electronic materials calls for new conductive or electroactive materials with added biomimetic properties that can bridge the gap. Soft electronics that utilize organic materials, such as conjugated polymers, can bring many important features to bioelectronics. Among the many advantages of conjugated polymers, the ability to modulate the biocompatibility, solubility, functionality, and mechanical properties through side chain engineering can alleviate the issues of mechanical mismatch and provide better interface between the electronics and biological elements. Additionally, conjugated polymers, being both ionically and electrically conductive through reversible doping processes provide means for direct sensing and stimulation of biological processes in cells, tissues, and organs. In this Account, we focus on our recent progress in molecular engineering of conjugated polymers with tunable biomimetic properties, such as biocompatibility, responsiveness, stretchability, self-healing, and adhesion. Our approach is general and versatile, which is based on functionalization of conjugated polymers with long side chains, commonly polymeric or biomolecules. Applications for such materials are wide-ranging, where we have demonstrated conductive, stimuli-responsive antifouling, and cell adhesive biointerfaces that can respond to external stimuli such as temperature, salt concentration, and redox reactions, the processes that in turn modify and reversibly switch the surface properties. Furthermore, utilizing the

  16. Thin Films Formed from Conjugated Polymers with Ionic, Water-Soluble Backbones.

    PubMed

    Voortman, Thomas P; Chiechi, Ryan C

    2015-12-30

    This paper compares the morphologies of films of conjugated polymers in which the backbone (main chain) and pendant groups are varied between ionic/hydrophilic and aliphatic/hydrophobic. We observe that conjugated polymers in which the pendant groups and backbone are matched, either ionic-ionic or hydrophobic-hydrophobic, form smooth, structured, homogeneous films from water (ionic) or tetrahydrofuran (hydrophobic). Mismatched conjugated polymers, by contrast, form inhomogeneous films with rough topologies. The polymers with ionic backbone chains are conjugated polyions (conjugated polymers with closed-shell charges in the backbone), which are semiconducting materials with tunable bad-gaps, not unlike uncharged conjugated polymers.

  17. O:2-CRM(197) conjugates against Salmonella Paratyphi A.

    PubMed

    Micoli, Francesca; Rondini, Simona; Gavini, Massimiliano; Lanzilao, Luisa; Medaglini, Donata; Saul, Allan; Martin, Laura B

    2012-01-01

    Enteric fevers remain a common and serious disease, affecting mainly children and adolescents in developing countries. Salmonella enterica serovar Typhi was believed to cause most enteric fever episodes, but several recent reports have shown an increasing incidence of S. Paratyphi A, encouraging the development of a bivalent vaccine to protect against both serovars, especially considering that at present there is no vaccine against S. Paratyphi A. The O-specific polysaccharide (O:2) of S. Paratyphi A is a protective antigen and clinical data have previously demonstrated the potential of using O:2 conjugate vaccines. Here we describe a new conjugation chemistry to link O:2 and the carrier protein CRM(197), using the terminus 3-deoxy-D-manno-octulosonic acid (KDO), thus leaving the O:2 chain unmodified. The new conjugates were tested in mice and compared with other O:2-antigen conjugates, synthesized adopting previously described methods that use CRM(197) as carrier protein. The newly developed conjugation chemistry yielded immunogenic conjugates with strong serum bactericidal activity against S. Paratyphi A.

  18. Dehydration Polymerization for Poly(hetero)arene Conjugated Polymers.

    PubMed

    Mirabal, Rafael A; Vanderzwet, Luke; Abuadas, Sara; Emmett, Michael R; Schipper, Derek

    2018-02-18

    The lack of scalable and sustainable methods to prepare conjugated polymers belies their importance in many enabling technologies. Accessing high-performance poly(hetero)arene conjugated polymers by dehydration has remained an unsolved problem in synthetic chemistry and has historically required transitional-metal coupling reactions. Herein, we report a dehydration method that allows access to conjugated heterocyclic materials. By using the technique, we have prepared a series of small molecules and polymers. The reaction avoids using transition metals, proceeds at room temperature, the only required reactant is a simple base and water is the sole by-product. The dehydration reaction is technically simple and provides a sustainable and straightforward method to prepare conjugated heteroarene motifs. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Stabilization of water in oil in water (W/O/W) emulsion using whey protein isolate-conjugated durian seed gum: enhancement of interfacial activity through conjugation process.

    PubMed

    Tabatabaee Amid, Bahareh; Mirhosseini, Hamed

    2014-01-01

    The present work was conducted to investigate the effect of purification and conjugation processes on functional properties of durian seed gum (DSG) used for stabilization of water in oil in water (W/O/W) emulsion. Whey protein isolate (WPI) was conjugated to durian seed gum through the covalent linkage. In order to prepare WPI-DSG conjugate, covalent linkage of whey protein isolate to durian seed gum was obtained by Maillard reaction induced by heating at 60 °C and 80% (±1%) relative humidity. SDS-polyacrylamide gel electrophoresis was used to test the formation of the covalent linkage between whey protein isolate and durian seed gum after conjugation process. In this study, W/O/W stabilized by WPI-conjugated DSG A showed the highest interface activity and lowest creaming layer among all prepared emulsions. This indicated that the partial conjugation of WPI to DSG significantly improved its functional characteristics in W/O/W emulsion. The addition of WPI-conjugated DSG to W/O/W emulsion increased the viscosity more than non-conjugated durian seed gum (or control). This might be due to possible increment of the molecular weight after linking the protein fraction to the structure of durian seed gum through the conjugation process. Copyright © 2013 Elsevier B.V. All rights reserved.

  20. Integrated circuits based on conjugated polymer monolayer

    DOE PAGES

    Li, Mengmeng; Mangalore, Deepthi Kamath; Zhao, Jingbo; ...

    2018-01-31

    It is still a great challenge to fabricate conjugated polymer monolayer field-effect transistors (PoM-FETs) due to intricate crystallization and film formation of conjugated polymers. Here we demonstrate PoM-FETs based on a single monolayer of a conjugated polymer. The resulting PoM-FETs are highly reproducible and exhibit charge carrier mobilities reaching 3 cm 2 V -1 s -1. The high performance is attributed to the strong interactions of the polymer chains present already in solution leading to pronounced edge-on packing and well-defined microstructure in the monolayer. The high reproducibility enables the integration of discrete unipolar PoM-FETs into inverters and ring oscillators. Realmore » logic functionality has been demonstrated by constructing a 15-bit code generator in which hundreds of self-assembled PoM-FETs are addressed simultaneously. Lastly, our results provide the state-of-the-art example of integrated circuits based on a conjugated polymer monolayer, opening prospective pathways for bottom-up organic electronics.« less

  1. Integrated circuits based on conjugated polymer monolayer.

    PubMed

    Li, Mengmeng; Mangalore, Deepthi Kamath; Zhao, Jingbo; Carpenter, Joshua H; Yan, Hongping; Ade, Harald; Yan, He; Müllen, Klaus; Blom, Paul W M; Pisula, Wojciech; de Leeuw, Dago M; Asadi, Kamal

    2018-01-31

    It is still a great challenge to fabricate conjugated polymer monolayer field-effect transistors (PoM-FETs) due to intricate crystallization and film formation of conjugated polymers. Here we demonstrate PoM-FETs based on a single monolayer of a conjugated polymer. The resulting PoM-FETs are highly reproducible and exhibit charge carrier mobilities reaching 3 cm 2  V -1  s -1 . The high performance is attributed to the strong interactions of the polymer chains present already in solution leading to pronounced edge-on packing and well-defined microstructure in the monolayer. The high reproducibility enables the integration of discrete unipolar PoM-FETs into inverters and ring oscillators. Real logic functionality has been demonstrated by constructing a 15-bit code generator in which hundreds of self-assembled PoM-FETs are addressed simultaneously. Our results provide the state-of-the-art example of integrated circuits based on a conjugated polymer monolayer, opening prospective pathways for bottom-up organic electronics.

  2. Integrated circuits based on conjugated polymer monolayer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Mengmeng; Mangalore, Deepthi Kamath; Zhao, Jingbo

    It is still a great challenge to fabricate conjugated polymer monolayer field-effect transistors (PoM-FETs) due to intricate crystallization and film formation of conjugated polymers. Here we demonstrate PoM-FETs based on a single monolayer of a conjugated polymer. The resulting PoM-FETs are highly reproducible and exhibit charge carrier mobilities reaching 3 cm 2 V -1 s -1. The high performance is attributed to the strong interactions of the polymer chains present already in solution leading to pronounced edge-on packing and well-defined microstructure in the monolayer. The high reproducibility enables the integration of discrete unipolar PoM-FETs into inverters and ring oscillators. Realmore » logic functionality has been demonstrated by constructing a 15-bit code generator in which hundreds of self-assembled PoM-FETs are addressed simultaneously. Lastly, our results provide the state-of-the-art example of integrated circuits based on a conjugated polymer monolayer, opening prospective pathways for bottom-up organic electronics.« less

  3. Axial range of conjugate adaptive optics in two-photon microscopy

    PubMed Central

    Paudel, Hari P.; Taranto, John; Mertz, Jerome; Bifano, Thomas

    2015-01-01

    We describe an adaptive optics technique for two-photon microscopy in which the deformable mirror used for aberration compensation is positioned in a plane conjugate to the plane of the aberration. We demonstrate in a proof-of-principle experiment that this technique yields a large field of view advantage in comparison to standard pupil-conjugate adaptive optics. Further, we show that the extended field of view in conjugate AO is maintained over a relatively large axial translation of the deformable mirror with respect to the conjugate plane. We conclude with a discussion of limitations and prospects for the conjugate AO technique in two-photon biological microscopy. PMID:26367938

  4. Axial range of conjugate adaptive optics in two-photon microscopy.

    PubMed

    Paudel, Hari P; Taranto, John; Mertz, Jerome; Bifano, Thomas

    2015-08-10

    We describe an adaptive optics technique for two-photon microscopy in which the deformable mirror used for aberration compensation is positioned in a plane conjugate to the plane of the aberration. We demonstrate in a proof-of-principle experiment that this technique yields a large field of view advantage in comparison to standard pupil-conjugate adaptive optics. Further, we show that the extended field of view in conjugate AO is maintained over a relatively large axial translation of the deformable mirror with respect to the conjugate plane. We conclude with a discussion of limitations and prospects for the conjugate AO technique in two-photon biological microscopy.

  5. Scintillation Reduction using Conjugate-Plane Imaging

    NASA Astrophysics Data System (ADS)

    Vander Haagen, Gary A.

    2017-06-01

    All observatories are plagued by atmospheric turbulence exhibited as star scintillation or "twinkle" whether a high altitude adaptive optics research or a 30 cm amateur telescope. It is well known that these disturbances are caused by wind and temperature driven refractive gradients in the atmosphere and limit the ultimate photometric resolution of land-based facilities. One approach identified by Fuchs (1998) for scintillation noise reduction was to create a conjugate image space at the telescope and focus on the dominant conjugate turbulent layer within that space. When focused on the turbulent layer little or no scintillation exists. This technique is described whereby noise reductions of 6 to 11/1 have been experienced with mathematical and optical bench simulations. Discussed is a proof-of-principle conjugate optical train design for an 80 mm, f-7 telescope.

  6. Class, Kinship Density, and Conjugal Role Segregation.

    ERIC Educational Resources Information Center

    Hill, Malcolm D.

    1988-01-01

    Studied conjugal role segregation in 150 married women from intact families in working-class community. Found that, although involvement in dense kinship networks was associated with conjugal role segregation, respondents' attitudes toward marital roles and phase of family cycle when young children were present were more powerful predictors of…

  7. Solar multi-conjugate adaptive optics performance improvement

    NASA Astrophysics Data System (ADS)

    Zhang, Zhicheng; Zhang, Xiaofang; Song, Jie

    2015-08-01

    In order to overcome the effect of the atmospheric anisoplanatism, Multi-Conjugate Adaptive Optics (MCAO), which was developed based on turbulence correction by means of several deformable mirrors (DMs) conjugated to different altitude and by which the limit of a small corrected FOV that is achievable with AO is overcome and a wider FOV is able to be corrected, has been widely used to widen the field-of-view (FOV) of a solar telescope. With the assistance of the multi-threaded Adaptive Optics Simulator (MAOS), we can make a 3D reconstruction of the distorted wavefront. The correction is applied by one or more DMs. This technique benefits from information about atmospheric turbulence at different layers, which can be used to reconstruct the wavefront extremely well. In MAOS, the sensors are either simulated as idealized wavefront gradient sensors, tip-tilt sensors based on the best Zernike fit, or a WFS using physical optics and incorporating user specified pixel characteristics and a matched filter pixel processing algorithm. Only considering the atmospheric anisoplanatism, we focus on how the performance of a solar MCAO system is related to the numbers of DMs and their conjugate heights. We theoretically quantify the performance of the tomographic solar MCAO system. The results indicate that the tomographic AO system can improve the average Strehl ratio of a solar telescope by only employing one or two DMs conjugated to the optimum altitude. And the S.R. has a significant increase when more deformable mirrors are used. Furthermore, we discuss the effects of DM conjugate altitude on the correction achievable by the MCAO system, and present the optimum DM conjugate altitudes.

  8. Molecular diodes based on conjugated diblock co-oligomers.

    PubMed

    Ng, Man-Kit; Lee, Dong-Chan; Yu, Luping

    2002-10-09

    This report describes synthesis and characterization of a molecular diode based upon a diblock conjugated oligomer system. This system consists of two conjugated blocks with opposite electronic demand. The molecular structure exhibits a built-in electronic asymmetry, much like a semiconductor p-n junction. Electrical measurements by scanning tunneling spectroscopy (STS) clearly revealed a pronounced rectifying effect. Definitive proof for the molecular nature of the rectifying effect in this conjugated diblock molecule is provided by control experiments with a structurally similar reference compound.

  9. Conjugated Polymers for Flexible Energy Harvesting and Storage.

    PubMed

    Zhang, Zhitao; Liao, Meng; Lou, Huiqing; Hu, Yajie; Sun, Xuemei; Peng, Huisheng

    2018-03-01

    Since the discovery of conjugated polymers in the 1970s, they have attracted considerable interest in light of their advantages of having a tunable bandgap, high electroactivity, high flexibility, and good processability compared to inorganic conducting materials. The above combined advantages make them promising for effective energy harvesting and storage, which have been widely studied in recent decades. Herein, the key advancements in the use of conjugated polymers for flexible energy harvesting and storage are reviewed. The synthesis, structure, and properties of conjugated polymers are first summarized. Then, their applications in flexible polymer solar cells, thermoelectric generators, supercapacitors, and lithium-ion batteries are described. The remaining challenges are then discussed to highlight the future direction in the development of conjugated polymers. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Formation of primary sperm conjugates in a haplogyne spider (Caponiidae, Araneae) with remarks on the evolution of sperm conjugation in spiders.

    PubMed

    Lipke, Elisabeth; Michalik, Peter

    2012-11-01

    Sperm conjugation, where two or more sperm are physically united, is a rare but widespread pheno-menon across the animal kingdom. One group well known for its different types of sperm conjugation are spiders. Particularly, haplogyne spiders show a high diversity of sperm traits. Besides individual cleistospermia, primary (synspermia) and secondary (coenospermia, "spermatophore") sperm conjugation occurs. However, the evolution of sperm conjugates and sperm is not understood in this group. Here, we look at how sperm are transferred in Caponiidae (Haplogynae) in pursuit of additional information about the evolution of sperm transfer forms in spiders. Additionally, we investigated the male reproductive system and spermatozoa using light- and transmission electron-microscopy and provide a 3D reconstruction of individual as of well as conjugated spermatozoa. Mature spermatozoa are characterized by an extremely elongated, helical nucleus resulting in the longest spider sperm known to date. At the end of spermiogenesis, synspermia are formed by complete fusion of four spermatids. Thus, synspermia might have evolved early within ecribellate Haplogynae. The fused sperm cells are surrounded by a prominent vesicular area. The function of the vesicular area remains still unknown but might be correlated with the capacitation process inside the female. Further phylogenetic and functional implications of the spermatozoa and sperm conjugation are discussed. Copyright © 2012 Elsevier Ltd. All rights reserved.

  11. Helically assembled π-conjugated polymers with circularly polarized luminescence.

    PubMed

    Watanabe, Kazuyoshi; Akagi, Kazuo

    2014-08-01

    We review the recent progress in the field of helically assembled π -conjugated polymers, focusing on aromatic conjugated polymers with interchain helical π -stacking that exhibit circularly polarized luminescence (CPL). In Part 1, we discuss optically active polymers with white-colored CPL and the amplification of the circular polarization through liquid crystallinity. In Part 2, we focus on the stimuli-responsive CPL that results from changes in the conformation and aggregation state of π -conjugated molecules and polymers. In Part 3, we discuss the self-assembly of achiral cationic π -conjugated polymers into circularly polarized luminescent supramolecular nanostructures with the aid of other chiral molecules.

  12. Bacillus thuringiensis Conjugation in Simulated Microgravity

    NASA Astrophysics Data System (ADS)

    Beuls, Elise; van Houdt, Rob; Leys, Natalie; Dijkstra, Camelia; Larkin, Oliver; Mahillon, Jacques

    2009-10-01

    Spaceflight experiments have suggested a possible effect of microgravity on the plasmid transfer among strains of the Gram-positive Bacillus thuringiensis, as opposed to no effect recorded for Gram-negative conjugation. To investigate these potential effects in a more affordable experimental setup, three ground-based microgravity simulators were tested: the Rotating Wall Vessel (RWV), the Random Positioning Machine (RPM), and a superconducting magnet. The bacterial conjugative system consisted in biparental matings between two B. thuringiensis strains, where the transfer frequencies of the conjugative plasmid pAW63 and its ability to mobilize the nonconjugative plasmid pUB110 were assessed. Specifically, potential plasmid transfers in a 0-g position (simulated microgravity) were compared to those obtained under 1-g (normal gravity) condition in each device. Statistical analyses revealed no significant difference in the conjugative and mobilizable transfer frequencies between the three different simulated microgravitational conditions and our standard laboratory condition. These important ground-based observations emphasize the fact that, though no stimulation of plasmid transfer was observed, no inhibition was observed either. In the case of Gram-positive bacteria, this ability to exchange plasmids in weightlessness, as occurs under Earth's conditions, should be seen as particularly relevant in the scope of spread of antibiotic resistances and bacterial virulence.

  13. Bacillus thuringiensis conjugation in simulated microgravity.

    PubMed

    Beuls, Elise; Van Houdt, Rob; Leys, Natalie; Dijkstra, Camelia; Larkin, Oliver; Mahillon, Jacques

    2009-10-01

    Spaceflight experiments have suggested a possible effect of microgravity on the plasmid transfer among strains of the Gram-positive Bacillus thuringiensis, as opposed to no effect recorded for Gram-negative conjugation. To investigate these potential effects in a more affordable experimental setup, three ground-based microgravity simulators were tested: the Rotating Wall Vessel (RWV), the Random Positioning Machine (RPM), and a superconducting magnet. The bacterial conjugative system consisted in biparental matings between two B. thuringiensis strains, where the transfer frequencies of the conjugative plasmid pAW63 and its ability to mobilize the nonconjugative plasmid pUB110 were assessed. Specifically, potential plasmid transfers in a 0 g position (simulated microgravity) were compared to those obtained under 1 g (normal gravity) condition in each device. Statistical analyses revealed no significant difference in the conjugative and mobilizable transfer frequencies between the three different simulated microgravitational conditions and our standard laboratory condition. These important ground-based observations emphasize the fact that, though no stimulation of plasmid transfer was observed, no inhibition was observed either. In the case of Gram-positive bacteria, this ability to exchange plasmids in weightlessness, as occurs under Earth's conditions, should be seen as particularly relevant in the scope of spread of antibiotic resistances and bacterial virulence.

  14. Synthesis and antimicrobial activity of gold nanoparticle conjugates with cefotaxime

    NASA Astrophysics Data System (ADS)

    Titanova, Elena O.; Burygin, Gennady L.

    2016-04-01

    Gold nanoparticles (GNPs) have attracted significant interest as a novel platform for various applications to nanobiotechnology and biomedicine. The conjugates of GNPs with antibiotics and antibodies were also used for selective photothermal killing of protozoa and bacteria. Also the conjugates of some antibiotics with GNPs decreased the number of bacterial growing cells. In this work was made the procedure optimization for conjugation of cefotaxime (a third-generation cephalosporin antibiotic) with GNPs (15 nm) and we examined the antimicrobial properties of this conjugate to bacteria culture of E. coli K-12. Addition of cefotaxime solution to colloidal gold does not change their color and extinction spectrum. For physiologically active concentration of cefotaxime (3 μg/mL), it was shown that the optimum pH for the conjugation was more than 9.5. A partial aggregation of the GNPs in saline medium was observed at pH 6.5-7.5. The optimum concentration of K2CO3 for conjugation cefotaxime with GNPs-15 was 5 mM. The optimum concentration of cefotaxime was at 0.36 μg/mL. We found the inhibition of the growth of E. coli K12 upon application cefotaxime-GNP conjugates.

  15. Soluble polymer conjugates for drug delivery.

    PubMed

    Minko, Tamara

    2005-01-01

    The use of water-soluble polymeric conjugates as drug carriers offers several possible advantages. These advantages include: (1) improved drug pharmacokinetics; (2) decreased toxicity to healthy organs; (3) possible facilitation of accumulation and preferential uptake by targeted cells; (4) programmed profile of drug release. In this review, we will consider the main types of useful polymeric conjugates and their role and effectiveness as carriers in drug delivery systems.: © 2005 Elsevier Ltd . All rights reserved.

  16. Novel Synthetic (Poly)Glycerolphosphate-Based Antistaphylococcal Conjugate Vaccine

    PubMed Central

    Chen, Quanyi; Dintaman, Jay; Lees, Andrew; Sen, Goutam; Schwartz, David; Shirtliff, Mark E.; Park, Saeyoung; Lee, Jean C.; Mond, James J.

    2013-01-01

    Staphylococcal infections are a major source of global morbidity and mortality. Currently there exists no antistaphylococcal vaccine in clinical use. Previous animal studies suggested a possible role for purified lipoteichoic acid as a vaccine target for eliciting protective IgG to several Gram-positive pathogens. Since the highly conserved (poly)glycerolphosphate backbone of lipoteichoic acid is a major antigenic target of the humoral immune system during staphylococcal infections, we developed a synthetic method for producing glycerol phosphoramidites to create a covalent 10-mer of (poly)glycerolphosphate for potential use in a conjugate vaccine. We initially demonstrated that intact Staphylococcus aureus elicits murine CD4+ T cell-dependent (poly)glycerolphosphate-specific IgM and IgG responses in vivo. Naive mice immunized with a covalent conjugate of (poly)glycerolphosphate and tetanus toxoid in alum plus CpG-oligodeoxynucleotides produced high secondary titers of serum (poly)glycerolphosphate-specific IgG. Sera from immunized mice enhanced opsonophagocytic killing of live Staphylococcus aureus in vitro. Mice actively immunized with the (poly)glycerolphosphate conjugate vaccine showed rapid clearance of staphylococcal bacteremia in vivo relative to mice similarly immunized with an irrelevant conjugate vaccine. In contrast to purified, natural lipoteichoic acid, the (poly)glycerolphosphate conjugate vaccine itself exhibited no detectable inflammatory activity. These data suggest that a synthetic (poly)glycerolphosphate-based conjugate vaccine will contribute to active protection against extracellular Gram-positive pathogens expressing this highly conserved backbone structure in their membrane-associated lipoteichoic acid. PMID:23649092

  17. Photo-induced conjugation of tetrazoles to modified and native proteins.

    PubMed

    Siti, Winna; Khan, Amit Kumar; de Hoog, Hans-Peter M; Liedberg, Bo; Nallani, Madhavan

    2015-03-21

    Bio-orthogonal chemistry has been widely used for conjugation of polymer molecules to proteins. Here, we demonstrate the conjugation of polyethylene glycol (PEG) to bovine beta-lactoglobulin (BLG) by photo-induced cyclo-addition of tetrazole-appended PEG and allyl-modified BLG. During the course of the investigation, a significant side-reaction was found to occur for the conjugation of PEG-tetrazole to native BLG. Further exploration of the underlying chemistry reveals that the presence of a tryptophan residue is sufficient for conjugation of tetrazole-modified molecules.

  18. Derivatized gold clusters and antibody-gold cluster conjugates

    DOEpatents

    Hainfeld, James F.; Furuya, Frederic R.

    1994-11-01

    Antibody- or antibody fragment-gold cluster conjugates are shown wherein the conjugate size can be as small as 5.0 nm. Methods and reagents are disclosed in which antibodies, Fab' or F(ab').sub.2 fragments thereof are covalently bound to a stable cluster of gold atoms. The gold clusters may contain 6, 8, 9, 11, 13, 55 or 67 gold atoms in their inner core. The clusters may also contain radioactive gold. The antibody-cluster conjugates are useful in electron microscopy applications as well as in clinical applications that include imaging, diagnosis and therapy.

  19. Protein-protein conjugate nanoparticles for malaria antigen delivery and enhanced immunogenicity

    PubMed Central

    Scaria, Puthupparampil V.; Jones, David S.; Barnafo, Emma; Fischer, Elizabeth R.; Anderson, Charles; MacDonald, Nicholas J.; Lambert, Lynn; Rausch, Kelly M.; Narum, David L.

    2017-01-01

    Chemical conjugation of polysaccharide to carrier proteins has been a successful strategy to generate potent vaccines against bacterial pathogens. We developed a similar approach for poorly immunogenic malaria protein antigens. Our lead candidates in clinical trials are the malaria transmission blocking vaccine antigens, Pfs25 and Pfs230D1, individually conjugated to the carrier protein Exoprotein A (EPA) through thioether chemistry. These conjugates form nanoparticles that show enhanced immunogenicity compared to unconjugated antigens. In this study, we examined the broad applicability of this technology as a vaccine development platform, by comparing the immunogenicity of conjugates prepared by four different chemistries using different malaria antigens (PfCSP, Pfs25 and Pfs230D1), and carriers such as EPA, TT and CRM197. Several conjugates were synthesized using thioether, amide, ADH and glutaraldehyde chemistries, characterized for average molecular weight and molecular weight distribution, and evaluated in mice for humoral immunogenicity. Conjugates made with the different chemistries, or with different carriers, showed no significant difference in immunogenicity towards the conjugated antigens. Since particle size can influence immunogenicity, we tested conjugates with different average size in the range of 16–73 nm diameter, and observed greater immunogenicity of smaller particles, with significant differences between 16 and 73 nm particles. These results demonstrate the multiple options with respect to carriers and chemistries that are available for protein-protein conjugate vaccine development. PMID:29281708

  20. Fast optimal wavefront reconstruction for multi-conjugate adaptive optics using the Fourier domain preconditioned conjugate gradient algorithm.

    PubMed

    Vogel, Curtis R; Yang, Qiang

    2006-08-21

    We present two different implementations of the Fourier domain preconditioned conjugate gradient algorithm (FD-PCG) to efficiently solve the large structured linear systems that arise in optimal volume turbulence estimation, or tomography, for multi-conjugate adaptive optics (MCAO). We describe how to deal with several critical technical issues, including the cone coordinate transformation problem and sensor subaperture grid spacing. We also extend the FD-PCG approach to handle the deformable mirror fitting problem for MCAO.

  1. Tumor targeting of gene expression through metal-coordinated conjugation with dextran.

    PubMed

    Hosseinkhani, Hossein; Aoyama, Teruyoshi; Ogawa, Osamu; Tabata, Yasuhiko

    2003-03-07

    Tumor targeting of plasmid DNA was achieved through the conjugation of dextran derivatives with chelate residues based on metal coordination. Diethylenetriamine pentaacetic acid (DTPA), spermidine (Sd), and spermine (Sm) were chemically introduced to the hydroxyl groups of dextran to obtain dextran-DTPA, dextran-Sd and dextran-Sm derivatives. Conjugation of the dextran derivative by Zn(2+) coordination decreased the apparent size of the plasmid DNA, depending on the derivative type. The negative zeta potential of plasmid DNA became almost 0 mV after Zn(2+)-coordinated conjugation with dextran-Sm. When the dextran derivative-plasmid DNA conjugates with Zn(2+) coordination were intravenously injected subcutaneously into mice bearing Meth-AR-1 fibrosarcoma, the dextran-Sm-plasmid DNA conjugate significantly enhanced the level of gene expression in the tumor, in contrast to the conjugate of other dextran derivatives and free plasmid DNA. The enhanced gene expression produced by the Zn(2+)-coordinated dextran-Sm-plasmid DNA conjugate was specific to the tumor, whereas a simple mixture of dextran-Sm and plasmid DNA was not effective. The level of gene expression depended on the percentage of chelate residues introduced, the mixing weight ratio of the plasmid DNA/Sm residue used for conjugate preparation, and the plasmid DNA dose. A fluorescent microscopic study revealed that localization of plasmid DNA in the tumor tissue was observed only after injection of the dextran-Sm-plasmid DNA conjugate with Zn(2+) coordination. In addition, the gene expression induced by the conjugate lasted for more than 10 days after the injection. We conclude that Zn(2+)-coordinated dextran-Sm conjugation is a promising way to enable plasmid DNA to target the tumor in gene expression as well as to prolong the duration of gene expression.

  2. Scattering from Colloid-Polymer Conjugates with Excluded Volume Effect

    DOE PAGES

    Li, Xin; Sanchez-Diaz, Luis E.; Smith, Gregory Scott; ...

    2015-01-13

    This work presents scattering functions of conjugates consisting of a colloid particle and a self-avoiding polymer chain as a model for protein-polymer conjugates and nanoparticle-polymer conjugates in solution. The model is directly derived from the two-point correlation function with the inclusion of excluded volume effects. The dependence of the calculated scattering function on the geometric shape of the colloid and polymer stiffness is investigated. The model is able to describe the experimental scattering signature of the solutions of suspending hard particle-polymer conjugates and provide additional conformational information. This model explicitly elucidates the link between the global conformation of a conjugatemore » and the microstructure of its constituent components.« less

  3. Biomedical Applications of Organometal-Peptide Conjugates

    NASA Astrophysics Data System (ADS)

    Metzler-Nolte, Nils

    Peptides are well suited as targeting vectors for the directed delivery of metal-based drugs or probes for biomedical investigations. This chapter describes synthetic strategies for the preparation of conjugates of medically interesting peptides with covalently bound metal complexes. Peptides that were used include neuropeptides (enkephalin, neuropeptide Y, neurotensin), uptake peptides (TAT and poly-Arg), and intracellular localization sequences. To these peptides, a whole variety of transition metal complexes has been attached in recent years by solid-phase peptide synthesis (SPPS) techniques. The metal complex can be attached to the peptide on the resin as part of the SPPS scheme. Alternatively, the metal complex may be attached to the peptide as a postsynthetic modification. Advantages as well as disadvantages for either strategy are discussed. Biomedical applications include radiopharmaceutical applications, anticancer and antibacterial activity, metal-peptide conjugates as targeted CO-releasing molecules, and metal-peptide conjugates in biosensor applications.

  4. Phthalocyanine-Peptide Conjugates for Epidermal Growth Factor Receptor Targeting1

    PubMed Central

    Ongarora, Benson G.; Fontenot, Krystal R.; Hu, Xiaoke; Sehgal, Inder; Satyanarayana-Jois, Seetharama D.; Vicente, M. Graça H.

    2012-01-01

    Four phthalocyanine (Pc)-peptide conjugates designed to target the epidermal growth factor receptor (EGFR) were synthesized and evaluated in vitro using four cell lines: human carcinoma A431 and HEp2, human colorectal HT-29, and kidney Vero (negative control) cells. Two peptide ligands for EGFR were investigated: EGFR-L1 and -L2, bearing 6 and 13 amino acid residues, respectively. The peptides and Pc-conjugates were shown to bind to EGFR using both theoretical (Autodock) and experimental (SPR) investigations. The Pc-EGFR-L1 conjugates 5a and 5b efficiently targeted EGFR and were internalized, in part due to their cationic charge, whereas the uncharged Pc-EGFR-L2 conjugates 4b and 6a poorly targeted EGFR maybe due to their low aqueous solubility. All conjugates were non-toxic (IC50 > 100 µM) to HT-29 cells, both in the dark and upon light activation (1 J/cm2). Intravenous (iv) administration of conjugate 5b into nude mice bearing A431 and HT-29 human tumor xenografts resulted in a near-IR fluorescence signal at ca. 700 nm, 24 h after administration. Our studies show that Pc-EGFR-L1 conjugates are promising near-IR fluorescent contrast agents for CRC, and potentially other EGFR over-expressing cancers. PMID:22468711

  5. Conjugated Polymers/DNA Hybrid Materials for Protein Inactivation.

    PubMed

    Zhao, Likun; Zhang, Jiangyan; Xu, Huiming; Geng, Hao; Cheng, Yongqiang

    2016-09-07

    Chromophore-assisted light inactivation (CALI) is a powerful tool for analyzing protein functions due to the high degree of spatial and temporal resolution. In this work, we demonstrate a CALI approach based on conjugated polymers (CPs)/DNA hybrid material for protein inactivation. The target protein is conjugated with single-stranded DNA in advance. Single-stranded DNA can form CPs/DNA hybrid material with cationic CPs via electrostatic and hydrophobic interactions. Through the formation of CPs/DNA hybrid material, the target protein that is conjugated with DNA is brought into close proximity to CPs. Under irradiation, CPs harvest light and generate reactive oxygen species (ROS), resulting in the inactivation of the adjacent target protein. This approach can efficiently inactivate any target protein which is conjugated with DNA and has good specificity and universality, providing a new strategy for studies of protein function and adjustment of protein activity.

  6. Recent advances in conjugated polymers for light emitting devices.

    PubMed

    Alsalhi, Mohamad Saleh; Alam, Javed; Dass, Lawrence Arockiasamy; Raja, Mohan

    2011-01-01

    A recent advance in the field of light emitting polymers has been the discovery of electroluminescent conjugated polymers, that is, kind of fluorescent polymers that emit light when excited by the flow of an electric current. These new generation fluorescent materials may now challenge the domination by inorganic semiconductor materials of the commercial market in light-emitting devices such as light-emitting diodes (LED) and polymer laser devices. This review provides information on unique properties of conjugated polymers and how they have been optimized to generate these properties. The review is organized in three sections focusing on the major advances in light emitting materials, recent literature survey and understanding the desirable properties as well as modern solid state lighting and displays. Recently, developed conjugated polymers are also functioning as roll-up displays for computers and mobile phones, flexible solar panels for power portable equipment as well as organic light emitting diodes in displays, in which television screens, luminous traffic, information signs, and light-emitting wallpaper in homes are also expected to broaden the use of conjugated polymers as light emitting polymers. The purpose of this review paper is to examine conjugated polymers in light emitting diodes (LEDs) in addition to organic solid state laser. Furthermore, since conjugated polymers have been approved as light-emitting organic materials similar to inorganic semiconductors, it is clear to motivate these organic light-emitting devices (OLEDs) and organic lasers for modern lighting in terms of energy saving ability. In addition, future aspects of conjugated polymers in LEDs were also highlighted in this review.

  7. Recent Advances in Conjugated Polymers for Light Emitting Devices

    PubMed Central

    AlSalhi, Mohamad Saleh; Alam, Javed; Dass, Lawrence Arockiasamy; Raja, Mohan

    2011-01-01

    A recent advance in the field of light emitting polymers has been the discovery of electroluminescent conjugated polymers, that is, kind of fluorescent polymers that emit light when excited by the flow of an electric current. These new generation fluorescent materials may now challenge the domination by inorganic semiconductor materials of the commercial market in light-emitting devices such as light-emitting diodes (LED) and polymer laser devices. This review provides information on unique properties of conjugated polymers and how they have been optimized to generate these properties. The review is organized in three sections focusing on the major advances in light emitting materials, recent literature survey and understanding the desirable properties as well as modern solid state lighting and displays. Recently, developed conjugated polymers are also functioning as roll-up displays for computers and mobile phones, flexible solar panels for power portable equipment as well as organic light emitting diodes in displays, in which television screens, luminous traffic, information signs, and light-emitting wallpaper in homes are also expected to broaden the use of conjugated polymers as light emitting polymers. The purpose of this review paper is to examine conjugated polymers in light emitting diodes (LEDs) in addition to organic solid state laser. Furthermore, since conjugated polymers have been approved as light-emitting organic materials similar to inorganic semiconductors, it is clear to motivate these organic light-emitting devices (OLEDs) and organic lasers for modern lighting in terms of energy saving ability. In addition, future aspects of conjugated polymers in LEDs were also highlighted in this review. PMID:21673938

  8. Reduced T cell response to beta-lactoglobulin by conjugation with acidic oligosaccharides.

    PubMed

    Yoshida, Tadashi; Sasahara, Yoshimasa; Miyakawa, Shunpei; Hattori, Makoto

    2005-08-24

    We have previously reported that the conjugation of beta-lactoglobulin (beta-LG) with alginic acid oligosaccharide (ALGO) and phosphoryl oligosaccharides reduced the immunogenicity of beta-LG. In addition, those conjugates showed higher thermal stability and improved emulsifying properties than those of native beta-LG. We examine in this study the effect of conjugation on the T cell response. Our results demonstrate that the T cell response was reduced when mice were immunized with the conjugates. The findings obtained from an experiment using overlapping synthetic peptides show that novel epitopes were not generated by conjugation. One of the mechanisms for the reduced T cell response to the conjugates was found to be the reduced susceptibility of the conjugates to processing enzymes for antigen presentation. We further clarify that the beta-LG-ALGO conjugate modulated the immune response to Th1 dominance. We consider that this property of the beta-LG-ALGO conjugate would be effective for preventing food allergy as well as by its reduced immunogenicity. Our observations indicate that the method used in this study could be applied to various protein allergens to achieve reduced allergenicity with multiple improvements in their properties.

  9. New Generation of Photosensitizers: Conjugates of Chlorin e 6 With Diamond Nanoparticles

    NASA Astrophysics Data System (ADS)

    Lapina, V. A.; Bushuk, S. B.; Pavich, T. A.; Vorobey, A. V.

    2016-07-01

    Conjugates of chlorin e 6 with diamond nanoparticles were synthesized by two methods. The spectral and luminescent properties of the obtained conjugates were studied. It was shown that chlorin e 6 retained its photosensitizing activity in the conjugate. It was established that chlorin e 6 immobilized directly on diamond nanoparticles had higher photosensitizing activity than that conjugated using a spacer. It was observed that chlorin e 6 in the conjugate had higher photolytic stability than the free form.

  10. Impact of the introduction of the pneumococcal conjugate vaccine in the Brazilian routine childhood national immunization program.

    PubMed

    Moreira, Marta; Cintra, Otavio; Harriague, Julie; Hausdorff, William P; Hoet, Bernard

    2016-05-27

    Brazil introduced the 10-valent pneumococcal non-typeable Haemophilus influenzae protein D conjugate vaccine (PHiD-CV, Synflorix™, GSK Vaccines) in the routine childhood immunization program in 2010 with a 3+1 schedule (with catch-up for children <2 years-old). This review represents the first analysis of the overall impact of a second-generation pneumococcal conjugate vaccine on nasopharyngeal carriage and all the major pneumococcal disease manifestations in a single, pneumococcal conjugate vaccine-naïve, developing country. A total of 15 published articles and 13 congress abstracts were included in the analysis. In children <5 years-old, studies showed a positive impact of PHiD-CV on the incidence of vaccine-type and any-type invasive pneumococcal disease (including decreases in pneumococcal meningitis morbidity and mortality), on pneumonia incidence and mortality, and on otitis media. Nasopharyngeal carriage of vaccine-type and any-type pneumococci decreased after the primary doses, with no early signs of replacement with other pathogens. Finally, herd protection against vaccine-type invasive pneumococcal disease and pneumonia in unvaccinated subjects was shown in some studies for some age groups. In conclusion, pneumococcal disease decreased after the introduction of PHiD-CV into the Brazilian national immunization program. Further follow-up is needed to evaluate the long-term overall impact of PHiD-CV in the Brazilian population. Copyright © 2016 GlaxoSmithKline Biologicals SA. Published by Elsevier Ltd.. All rights reserved.

  11. Cysteine-containing peptide tag for site-specific conjugation of proteins

    DOEpatents

    Backer, Marina V.; Backer, Joseph M.

    2008-04-08

    The present invention is directed to a biological conjugate, comprising: (a) a targeting moiety comprising a polypeptide having an amino acid sequence comprising the polypeptide sequence of SEQ ID NO:2 and the polypeptide sequence of a selected targeting protein; and (b) a binding moiety bound to the targeting moiety; the biological conjugate having a covalent bond between the thiol group of SEQ ID NO:2 and a functional group in the binding moiety. The present invention is directed to a biological conjugate, comprising: (a) a targeting moiety comprising a polypeptide having an amino acid sequence comprising the polypeptide sequence of SEQ ID NO:2 and the polypeptide sequence of a selected targeting protein; and (b) a binding moiety that comprises an adapter protein, the adapter protein having a thiol group; the biological conjugate having a disulfide bond between the thiol group of SEQ ID NO:2 and the thiol group of the adapter protein. The present invention is also directed to biological sequences employed in the above biological conjugates, as well as pharmaceutical preparations and methods using the above biological conjugates.

  12. Cysteine-containing peptide tag for site-specific conjugation of proteins

    DOEpatents

    Backer, Marina V.; Backer, Joseph M.

    2010-10-05

    The present invention is directed to a biological conjugate, comprising: (a) a targeting moiety comprising a polypeptide having an amino acid sequence comprising the polypeptide sequence of SEQ ID NO:2 and the polypeptide sequence of a selected targeting protein; and (b) a binding moiety bound to the targeting moiety; the biological conjugate having a covalent bond between the thiol group of SEQ ID NO:2 and a functional group in the binding moiety. The present invention is directed to a biological conjugate, comprising: (a) a targeting moiety comprising a polypeptide having an amino acid sequence comprising the polypeptide sequence of SEQ ID NO:2 and the polypeptide sequence of a selected targeting protein; and (b) a binding moiety that comprises an adapter protein, the adapter protein having a thiol group; the biological conjugate having a disulfide bond between the thiol group of SEQ ID NO:2 and the thiol group of the adapter protein. The present invention is also directed to biological sequences employed in the above biological conjugates, as well as pharmaceutical preparations and methods using the above biological conjugates.

  13. Comparative cytotoxicity of gold-doxorubicin and InP-doxorubicin conjugates.

    PubMed

    Zhang, Xuan; Chibli, Hicham; Kong, Dekun; Nadeau, Jay

    2012-07-11

    Direct comparisons of different types of nanoparticles for drug delivery have seldom been performed. In this study we compare the physical properties and cellular activity of doxorubicin (Dox) conjugates to gold nanoparticles (Au) and InP quantum dots of comparable diameter. Although the Au particles alone are non-toxic and InP is moderately toxic, Au-Dox is more effective than InP-Dox against the Dox-resistant B16 melanoma cell line. Light exposure does not augment the efficacy of InP-Dox, suggesting that conjugates are breaking down. Electron and confocal microscopy and atomic absorption spectroscopy reveal that over 60% of the Au-Dox conjugates reach the cell nucleus. In contrast, InP-Dox enters cell nuclei to a very limited extent, although liberated Dox from the conjugates does eventually reach the nucleus. These observations are attributed to faster Dox release from Au conjugates under endosomal conditions, greater aggregation of InP-Dox with cytoplasmic proteins, and adherence of InP to membranes. These findings have important implications for design of active drug-nanoparticle conjugates.

  14. Synthesis and evaluation of the antioxidative potential of minoxidil-polyamine conjugates.

    PubMed

    Hadjipavlou-Litina, Dimitra; Magoulas, George E; Bariamis, Stavros E; Tsimali, Zinovia; Avgoustakis, Konstantinos; Kontogiorgis, Christos A; Athanassopoulos, Constantinos M; Papaioannou, Dionissios

    2013-07-01

    A series of conjugates (MNX-CO-PA) of minoxidil (MNX) with the polyamines (PAs) putrescine (PUT), spermidine (SPD) and spermine (SPM) as well as dopamine were produced through activation of MNX with N,N'-carbonyldiimidazole, followed by reaction with dopamine or selectively protected PAs and acid-mediated deprotection. These conjugates together with conjugates of the general type MNX-PA or PA-MNX-PA, readily produced using literature protocols, were tested as antioxidants. The most potent inhibitors of lipid peroxidation were the conjugates MNX-SPM (2, 94%), SPM-MNX-SPM (4, 94%) and MNX-N(4)-SPD (7, 91%) and MNX (91%). The most powerful lipoxygenase (LOX) inhibitors were MNX (IC50 = 20 μM) and the conjugates MNX-N(8)-SPD (9, IC50 = 22.1 μM), MNX-CO-dopamine (11, IC50 = 28 μM) and MNX-N(1)-SPD (8, IC50 = 30 μM). The most interesting conjugates 2, MNX-CO-PUT (5), 8 and 11 as well as MNX were generally found to exhibit weaker (22-36.5%) or no (conjugate 8) anti-inflammatory activity than indomethacin (47%) with the exception of MNX which showed almost equal potency (49%) to indomethacin. The cytocompatibility of conjugates and MNX at the highest concentration of 100 μM showed a survival percentage of 87-107%, with the exception of conjugates with SPM (compound 2) and MNX-CO-SPM (6), which showed considerable cytotoxicity (survival percentage 8-14%). Molecular docking studies were carried on conjugate 9 and the parent compound MNX and were found to be in accordance with our experimental biological results. Copyright © 2013 Elsevier Masson SAS. All rights reserved.

  15. Synthesis and therapeutic effect of styrene–maleic acid copolymer-conjugated pirarubicin

    PubMed Central

    Tsukigawa, Kenji; Liao, Long; Nakamura, Hideaki; Fang, Jun; Greish, Khaled; Otagiri, Masaki; Maeda, Hiroshi

    2015-01-01

    Previously, we prepared a pirarubicin (THP)-encapsulated micellar drug using styrene–maleic acid copolymer (SMA) as the drug carrier, in which active THP was non-covalently encapsulated. We have now developed covalently conjugated SMA-THP (SMA-THP conjugate) for further investigation toward clinical development, because covalently linked polymer–drug conjugates are known to be more stable in circulation than drug-encapsulated micelles. The SMA-THP conjugate also formed micelles and showed albumin binding capacity in aqueous solution, which suggested that this conjugate behaved as a macromolecule during blood circulation. Consequently, SMA-THP conjugate showed significantly prolonged circulation time compared to free THP and high tumor-targeting efficiency by the enhanced permeability and retention (EPR) effect. As a result, remarkable antitumor effect was achieved against two types of tumors in mice without apparent adverse effects. Significantly, metastatic lung tumor also showed the EPR effect, and this conjugate reduced metastatic tumor in the lung almost completely at 30 mg/kg once i.v. (less than one-fifth of the maximum tolerable dose). Although SMA-THP conjugate per se has little cytotoxicity in vitro (1/100 of free drug THP), tumor-targeted accumulation by the EPR effect ensures sufficient drug concentrations in tumor to produce an antitumor effect, whereas toxicity to normal tissues is much less. These findings suggest the potential of SMA-THP conjugate as a highly favorable candidate for anticancer nanomedicine with good stability and tumor-targeting properties in vivo. PMID:25529761

  16. Anticancer activity of drug conjugates in head and neck cancer cells.

    PubMed

    Majumdar, Debatosh; Rahman, Mohammad Aminur; Chen, Zhuo Georgia; Shin, Dong M

    2016-06-01

    Sexually transmitted oral cancer/head and neck cancer is increasing rapidly. Human papilloma virus (HPV) is playing a role in the pathogenesis of a subset of squamous cell carcinoma of head and neck (SCCHN). Paclitaxel is a widely used anticancer drug for breast, ovarian, testicular, cervical, non-small cell lung, head and neck cancer. However, it is water insoluble and orally inactive. We report the synthesis of water soluble nanosize conjugates of paclitaxel, branched PEG, and EGFR-targeting peptide by employing native chemical ligation. We performed a native chemical ligation between the N-hydroxy succinimide (NHS) ester of paclitaxel succinate and cysteine at pH 6.5 to give the cysteine-conjugated paclitaxel derivative. The thiol functionality of cysteine was activated and subsequently conjugated to multiarm thiol-PEG to obtain the paclitaxel branched PEG conjugate. Finally, we conjugated an EGFR-targeting peptide to obtain conjugates of paclitaxel, branched PEG, and EGFR-targeting peptide. These conjugates show anticancer activity against squamous cell carcinoma of head and neck cells (SCCHN, Tu212).

  17. [Human drug metabolizing enzymes. II. Conjugation enzymes].

    PubMed

    Vereczkey, L; Jemnitz, K; Gregus, Z

    1998-09-01

    In this review we focus on human conjugation enzymes (UDP-glucuronyltransferases, methyl-trasferases, N-acetyl-transferases, O-acetyl-transferases, Amidases/carboxyesterases, sulfotransferases, Glutation-S-transferases and the enzymes involved in the conjugation with amino acids) that participate in the metabolism of xenobiotics. Although conjugation reactions in most of the cases result in detoxication, more and more publications prove that the reactions catalysed by these enzymes very often lead to activated molecules that may attack macromolecules (proteins, RNAs, DNAs), resulting in toxicity (liver, neuro-, embryotoxicity, allergy, carcinogenecity). We have summarised the data available on these enzymes concerning their catalytic profile and specificity, inhibition, induction properties, their possible role in the generation of toxic compounds, their importance in clinical practice and drug development.

  18. Small angle scattering from protein/sugar conjugates

    NASA Astrophysics Data System (ADS)

    Jackson, Andrew; White, John

    2006-11-01

    The Maillard reaction between free amine groups on proteins and sugars is well known. We have examined the effect of the reaction of the casein group of milk proteins with sugars on their nanoscale structure and aggregation. The small angle neutron scattering from beta casein and sodium caseinate and their sugar conjugates have been studied as a function of solution concentration. At high conjugate concentration (greater than ca. 5 mg/ml) the addition of sugar reduces supra-micellar aggregation of the protein whilst at lower concentration, where the protein is expected to be deaggregated already, little effect is seen. Guinier analysis of the scattering data show a radius of gyration of around 75 A˚ for beta casein in solution and around 80 A˚ for the sucrose conjugate.

  19. Protein-Polymer Conjugates: Synthetic Approaches by Controlled Radical Polymerizations & Interesting Applications

    PubMed Central

    Grover, Gregory N.; Maynard, Heather D.

    2011-01-01

    Protein-polymer conjugates are of interest to researchers in diverse fields. Attachment of polymers to proteins results in improved pharmacokinetics, which is important in medicine. From an engineering standpoint, conjugates are exciting because they exhibit properties of both the biomolecules and synthetic polymers. This allows the activity of the protein to be altered or tuned, a key aspect in therapeutic design, anchoring conjugates to surfaces, and utilizing these materials for supramolecular self-assembly. Thus, there is broad interest in straightforward synthetic methods to make protein-polymer conjugates. Controlled radical polymerization (CRP) techniques have emerged as excellent strategies to make conjugates because the resulting polymers have narrow molecular weight distributions, targeted molecular weights, and attach to specific sites on proteins. Herein, recent advances in the synthesis and application of protein-polymer conjugates by CRP are highlighted. PMID:21071260

  20. Derivatized gold clusters and antibody-gold cluster conjugates

    DOEpatents

    Hainfeld, J.F.; Furuya, F.R.

    1994-11-01

    Antibody- or antibody fragment-gold cluster conjugates are shown wherein the conjugate size can be as small as 5.0 nm. Methods and reagents are disclosed in which antibodies, Fab' or F(ab')[sub 2] fragments are covalently bound to a stable cluster of gold atoms. The gold clusters may contain 6, 8, 9, 11, 13, 55 or 67 gold atoms in their inner core. The clusters may also contain radioactive gold. The antibody-cluster conjugates are useful in electron microscopy applications as well as in clinical applications that include imaging, diagnosis and therapy. 7 figs.

  1. Quantum dot-polymer conjugates for stable luminescent displays.

    PubMed

    Ghimire, Sushant; Sivadas, Anjaly; Yuyama, Ken-Ichi; Takano, Yuta; Francis, Raju; Biju, Vasudevanpillai

    2018-05-23

    The broad absorption of light in the UV-Vis-NIR region and the size-based tunable photoluminescence color of semiconductor quantum dots make these tiny crystals one of the most attractive antennae in solar cells and phosphors in electrooptical devices. One of the primary requirements for such real-world applications of quantum dots is their stable and uniform distribution in optically transparent matrices. In this work, we prepare transparent thin films of polymer-quantum dot conjugates, where CdSe/ZnS quantum dots are uniformly distributed at high densities in a chitosan-polystyrene copolymer (CS-g-PS) matrix. Here, quantum dots in an aqueous solution are conjugated to the copolymer by a phase transfer reaction. With the stable conjugation of quantum dots to the copolymer, we prevent undesired phase separation between the two and aggregation of quantum dots. Furthermore, the conjugate allows us to prepare transparent thin films in which quantum dots are uniformly distributed at high densities. The CS-g-PS copolymer helps us in not only preserving the photoluminescence properties of quantum dots in the film but also rendering excellent photostability to quantum dots at the ensemble and single particle levels, making the conjugate a promising material for photoluminescence-based devices.

  2. Conjugal conflict and violence: a review and theoretical paradigm.

    PubMed

    Smilkstein, G; Aspy, C B; Quiggins, P A

    1994-02-01

    Conjugal violence has been described as having multiple etiologies. The variables are so numerous that intervention and research protocols are difficult to effect. This paper proposes a paradigm that establishes conjugal conflict and violence as separate entities. According to the paradigm, conjugal conflict is viewed as "an inevitable part of human association," whereas conjugal violence is determined to be a learned behavioral tactic that is employed as a coping strategy when an individual's conflict threshold potential is exceeded. Evidence will be offered that violence is learned from family of origin and from observing what is common or accepted practice in the community. Use of this paradigm would give primacy to community education programs that advance the concept of conflict resolution through rational discourse.

  3. DNA-cell conjugates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hsiao, Shih-Chia; Francis, Matthew B.; Bertozzi, Carolyn

    The present invention provides conjugates of DNA and cells by linking the DNA to a native functional group on the cell surface. The cells can be without cell walls or can have cell walls. The modified cells can be linked to a substrate surface and used in assay or bioreactors.

  4. DNA-cell conjugates

    DOEpatents

    Hsiao, Shih-Chia; Francis, Matthew B.; Bertozzi, Carolyn; Mathies, Richard; Chandra, Ravi; Douglas, Erik; Twite, Amy; Toriello, Nicholas; Onoe, Hiroaki

    2016-05-03

    The present invention provides conjugates of DNA and cells by linking the DNA to a native functional group on the cell surface. The cells can be without cell walls or can have cell walls. The modified cells can be linked to a substrate surface and used in assay or bioreactors.

  5. In Vitro and In Vivo Evaluation of Cysteine and Site Specific Conjugated Herceptin Antibody-Drug Conjugates

    PubMed Central

    Jackson, Dowdy; Atkinson, John; Guevara, Claudia I.; Zhang, Chunying; Kery, Vladimir; Moon, Sung-Ju; Virata, Cyrus; Yang, Peng; Lowe, Christine; Pinkstaff, Jason; Cho, Ho; Knudsen, Nick; Manibusan, Anthony; Tian, Feng; Sun, Ying; Lu, Yingchun; Sellers, Aaron; Jia, Xiao-Chi; Joseph, Ingrid; Anand, Banmeet; Morrison, Kendall; Pereira, Daniel S.; Stover, David

    2014-01-01

    Antibody drug conjugates (ADCs) are monoclonal antibodies designed to deliver a cytotoxic drug selectively to antigen expressing cells. Several components of an ADC including the selection of the antibody, the linker, the cytotoxic drug payload and the site of attachment used to attach the drug to the antibody are critical to the activity and development of the ADC. The cytotoxic drugs or payloads used to make ADCs are typically conjugated to the antibody through cysteine or lysine residues. This results in ADCs that have a heterogeneous number of drugs per antibody. The number of drugs per antibody commonly referred to as the drug to antibody ratio (DAR), can vary between 0 and 8 drugs for a IgG1 antibody. Antibodies with 0 drugs are ineffective and compete with the ADC for binding to the antigen expressing cells. Antibodies with 8 drugs per antibody have reduced in vivo stability, which may contribute to non target related toxicities. In these studies we incorporated a non-natural amino acid, para acetyl phenylalanine, at two unique sites within an antibody against Her2/neu. We covalently attached a cytotoxic drug to these sites to form an ADC which contains two drugs per antibody. We report the results from the first direct preclinical comparison of a site specific non-natural amino acid anti-Her2 ADC and a cysteine conjugated anti-Her2 ADC. We report that the site specific non-natural amino acid anti-Her2 ADCs have superior in vitro serum stability and preclinical toxicology profile in rats as compared to the cysteine conjugated anti-Her2 ADCs. We also demonstrate that the site specific non-natural amino acid anti-Her2 ADCs maintain their in vitro potency and in vivo efficacy against Her2 expressing human tumor cell lines. Our data suggests that site specific non-natural amino acid ADCs may have a superior therapeutic window than cysteine conjugated ADCs. PMID:24454709

  6. Biosensors from conjugated polyelectrolyte complexes

    PubMed Central

    Wang, Deli; Gong, Xiong; Heeger, Peter S.; Rininsland, Frauke; Bazan, Guillermo C.; Heeger, Alan J.

    2002-01-01

    A charge neutral complex (CNC) was formed in aqueous solution by combining an orange light emitting anionic conjugated polyelectrolyte and a saturated cationic polyelectrolyte at a 1:1 ratio (per repeat unit). Photoluminescence (PL) from the CNC can be quenched by both the negatively charged dinitrophenol (DNP) derivative, (DNP-BS−), and positively charged methyl viologen (MV2+). Use of the CNC minimizes nonspecific interactions (which modify the PL) between conjugated polyelectrolytes and biopolymers. Quenching of the PL from the CNC by the DNP derivative and specific unquenching on addition of anti-DNP antibody (anti-DNP IgG) were observed. Thus, biosensing of the anti-DNP IgG was demonstrated. PMID:11756675

  7. Development of Efficient Chemistry to Generate Site-Specific Disulfide-Linked Protein- and Peptide-Payload Conjugates: Application to THIOMAB Antibody-Drug Conjugates.

    PubMed

    Sadowsky, Jack D; Pillow, Thomas H; Chen, Jinhua; Fan, Fang; He, Changrong; Wang, Yanli; Yan, Gang; Yao, Hui; Xu, Zijin; Martin, Shanique; Zhang, Donglu; Chu, Phillip; Dela Cruz-Chuh, Josefa; O'Donohue, Aimee; Li, Guangmin; Del Rosario, Geoffrey; He, Jintang; Liu, Luna; Ng, Carl; Su, Dian; Lewis Phillips, Gail D; Kozak, Katherine R; Yu, Shang-Fan; Xu, Keyang; Leipold, Douglas; Wai, John

    2017-08-16

    Conjugation of small molecule payloads to cysteine residues on proteins via a disulfide bond represents an attractive strategy to generate redox-sensitive bioconjugates, which have value as potential diagnostic reagents or therapeutics. Advancement of such "direct-disulfide" bioconjugates to the clinic necessitates chemical methods to form disulfide connections efficiently, without byproducts. The disulfide connection must also be resistant to premature cleavage by thiols prior to arrival at the targeted tissue. We show here that commonly employed methods to generate direct disulfide-linked bioconjugates are inadequate for addressing these challenges. We describe our efforts to optimize direct-disulfide conjugation chemistry, focusing on the generation of conjugates between cytotoxic payloads and cysteine-engineered antibodies (i.e., THIOMAB antibody-drug conjugates, or TDCs). This work culminates in the development of novel, high-yielding conjugation chemistry for creating direct payload disulfide connections to any of several Cys mutation sites in THIOMAB antibodies or to Cys sites in other biomolecules (e.g., human serum albumin and cell-penetrating peptides). We conclude by demonstrating that hindered direct disulfide TDCs with two methyl groups adjacent to the disulfide, which have heretofore not been described for any bioconjugate, are more stable and more efficacious in mouse tumor xenograft studies than less hindered analogs.

  8. Nanostructured conjugated polymers in chemical sensors: synthesis, properties and applications.

    PubMed

    Correa, D S; Medeiros, E S; Oliveira, J E; Paterno, L G; Mattoso, Luiz C

    2014-09-01

    Conjugated polymers are organic materials endowed with a π-electron conjugation along the polymer backbone that present appealing electrical and optical properties for technological applications. By using conjugated polymeric materials in the nanoscale, such properties can be further enhanced. In addition, the use of nanostructured materials makes possible miniaturize devices at the micro/nano scale. The applications of conjugated nanostructured polymers include sensors, actuators, flexible displays, discrete electronic devices, and smart fabric, to name a few. In particular, the use of conjugated polymers in chemical and biological sensors is made feasible owning to their sensitivity to the physicochemical conditions of its surrounding environment, such as chemical composition, pH, dielectric constant, humidity or even temperature. Subtle changes in these conditions bring about variations on the electrical (resistivity and capacitance), optical (absorptivity, luminescence, etc.), and mechanical properties of the conjugated polymer, which can be precisely measured by different experimental methods and ultimately associated with a specific analyte and its concentration. The present review article highlights the main features of conjugated polymers that make them suitable for chemical sensors. An especial emphasis is given to nanostructured sensors systems, which present high sensitivity and selectivity, and find application in beverage and food quality control, pharmaceutical industries, medical diagnosis, environmental monitoring, and homeland security, and other applications as discussed throughout this review.

  9. Phase conjugation and time reversal in acoustics

    NASA Astrophysics Data System (ADS)

    Fink, Mathias

    2000-07-01

    This paper compares the different approaches used in acoustics to time reverse or to phase conjugate a wavefield. The basic principle of a time reversal mirror is an extension for broadband pulsed waves to the optical phase conjugated mirror designed for monochromatic waves. However, this equivalence is only valid mathematically and there are some fundamental differences between these two techniques that will be described in this paper.

  10. Synthesis, characterization, mucoadhesion and biocompatibility of thiolated carboxymethyl dextran-cysteine conjugate.

    PubMed

    Shahnaz, G; Perera, G; Sakloetsakun, D; Rahmat, D; Bernkop-Schnürch, A

    2010-05-21

    This study was aimed at improving the mucoadhesive properties of carboxymethyl dextran by the covalent attachment of cysteine. Mediated by a carbodiimide, l-cysteine was covalently attached to the polymer. The resulting CMD-cysteine conjugate (CMD-(273) conjugate) displayed 273+/-20 micromol thiol groups per gram of polymer (mean+/-S.D.; n=3). Within 2h the viscosity of an aqueous mucus/CMD-(273) conjugate mixture pH 7.4 increased at 37 degrees C by more than 85% compared to a mucus/carboxymethyl dextran mixture indicating enlarged interactions between the mucus and the thiolated polymer. Due to the immobilization of cysteine, the swelling velocity of the polymer was significantly accelerated (p<0.05). In aqueous solutions the CMD-(273) conjugate was capable of forming inter- and/or intramolecular disulfide bonds. Because of this crosslinking process within the polymeric network, the cohesive properties of the conjugate were also improved. Tablets comprising the unmodified polymer disintegrated within 15 min, whereas tablets of the CMD-(273) conjugate remained stable for 160 min (means+/-S.D.; n=3). Results from LDH and MTT assays on Caco-2 cells revealed 4.96+/-0.98% cytotoxicity and 94.1+/-0.9% cell viability for the CMD-(273) conjugate, respectively. Controlled release of model compound from CMD-(273) conjugate tablets was observed over 6h. These findings suggest that CMD-(273) conjugate is a promising novel polymer for drug delivery systems providing improved mucoadhesive and cohesive properties, greater stability and biocompatibility. Copyright 2010 Elsevier B.V. All rights reserved.

  11. Evaluation of hyaluronic acid-protein conjugates for polymer masked-unmasked protein therapy.

    PubMed

    Ferguson, Elaine L; Alshame, Alshame M J; Thomas, David W

    2010-12-15

    Bioresponsive polymers may effectively be utilized to enhance the circulation time and stability of biologically active proteins and peptides, while reducing their immunogenicity and toxicity. Recently, dextrin-epidermal growth factor (EGF) conjugates, which make use of the Polymer-masked UnMasked Protein Therapy (PUMPT) concept, have been developed and shown potential as modulators of impaired wound healing. This study investigated the potential of PUMPT using hyaluronic acid (HA) conjugates to mask activity and enhance protein stability, while allowing restoration of biological activity following triggered degradation. HA fragments (Mw ∼90,000g/mol), obtained by acid hydrolysis of Rooster comb HA, were conjugated to trypsin as a model enzyme or to EGF as a model growth factor. Conjugates contained 2.45 and 0.98% (w/w) trypsin or EGF, respectively, and contained <5% free protein. HA conjugation did not significantly alter trypsin's activity. However, incubation of the conjugate with physiological concentrations of HAase increased its activity to ∼145% (p<0.001) that of the free enzyme. In contrast, when HA-EGF conjugates were tested in vitro, no effect on cell proliferation was seen, even in the presence of HAase. HA conjugates did not display typical masking/unmasking behavior, HA-trypsin conjugates exhibited ∼52% greater stability in the presence of elastase, compared to free trypsin, demonstrating the potential of HA conjugates for further development as modulators of tissue repair. Copyright © 2010 Elsevier B.V. All rights reserved.

  12. Minimizing inner product data dependencies in conjugate gradient iteration

    NASA Technical Reports Server (NTRS)

    Vanrosendale, J.

    1983-01-01

    The amount of concurrency available in conjugate gradient iteration is limited by the summations required in the inner product computations. The inner product of two vectors of length N requires time c log(N), if N or more processors are available. This paper describes an algebraic restructuring of the conjugate gradient algorithm which minimizes data dependencies due to inner product calculations. After an initial start up, the new algorithm can perform a conjugate gradient iteration in time c*log(log(N)).

  13. Phase conjugate digital inline holography (PCDIH)

    DOE PAGES

    Guildenbecher, Daniel Robert; Hoffmeister, Kathryn N. Gabet; Kunzler, William Marley; ...

    2018-01-12

    We report digital inline holography (DIH) provides instantaneous three-dimensional (3D) measurements of diffracting objects; however, phase disturbances in the beam path can distort the imaging. In this Letter, a phase conjugate digital inline holography (PCDIH) configuration is proposed for removal of phase disturbances. Brillouin-enhanced four-wave mixing produces a phase conjugate signal that back propagates along the DIH beam path. Finally, the results demonstrate the removal of distortions caused by gas-phase shocks to recover 3D images of diffracting objects.

  14. Phase conjugate digital inline holography (PCDIH)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guildenbecher, Daniel Robert; Hoffmeister, Kathryn N. Gabet; Kunzler, William Marley

    We report digital inline holography (DIH) provides instantaneous three-dimensional (3D) measurements of diffracting objects; however, phase disturbances in the beam path can distort the imaging. In this Letter, a phase conjugate digital inline holography (PCDIH) configuration is proposed for removal of phase disturbances. Brillouin-enhanced four-wave mixing produces a phase conjugate signal that back propagates along the DIH beam path. Finally, the results demonstrate the removal of distortions caused by gas-phase shocks to recover 3D images of diffracting objects.

  15. Doxorubicin-loaded microgels composed of cinnamic acid-gelatin conjugate and cinnamic acid-Pluronic F127 conjugate.

    PubMed

    Zhang, Hong; Kim, Jin-Chul

    2016-01-01

    Microgels were prepared by cinnamic acid-gelatin (type B) conjugate (CA-GelB) and cinnamic acid-Pluronic F127 conjugate (CA-Plur). (1)H NMR confirmed that CA was conjugated to gelatin and the gelatin to CA residue molar ratio was estimated to be 1:4.7 by a colorimetric method. CA-Plur of which the CA residue to Plur molar ratio was 1.2:1 was used as a thermo-sensitive polymer. The CA residues of CA-Plur/CA-GelB mixture were readily photo-dimerized to form microgels by UV irradiation. The isoelectric point of the microgel was found to be pH 5.8 and the hydrodynamic diameter decreased when the suspension temperature increased. The microgel could hardly retard the release of doxorubicin (DOX) at pH 3.0 and pH 5.0, but it could suppress and control the release at pH 7.4 possibly due to electrostatic attraction. Meanwhile, the release of DOX at pH 7.4 was less suppressed when the medium temperature was higher, possibly because of thermal thinning of Pluronic chain layer.

  16. Naproxen conjugated mPEG-PCL micelles for dual triggered drug delivery.

    PubMed

    Karami, Zahra; Sadighian, Somayeh; Rostamizadeh, Kobra; Parsa, Maliheh; Rezaee, Saeed

    2016-04-01

    A conjugate of the NSAIDs drug, naproxen, with diblock methoxy poly(ethylene glycol)-poly(ε-caprolactone) (mPEG-PCL) copolymer was synthesized by the reaction of copolymer with naproxen in the presence of dicyclohexylcarbodiimide and dimethylaminopyridine. The naproxen conjugated copolymers were characterized with different techniques including (1)HNMR, FTIR, and DSC. The naproxen conjugated mPEG-PCL copolymers were self-assembled into micelles in aqueous solution. The TEM analysis revealed that the micelles had the average size of about 80 nm. The release behavior of conjugated copolymer was investigated in two different media with the pH values of 7.4 and 5.2. In vitro release study showed that the drug release rate was dependant on pH as it was higher at lower pH compared to neutral pH. Another feature of the conjugated micelles was a more sustained release profile compared to the conjugated copolymer. The kinetic of the drug release from naproxen conjugated micelles under different values of pH was also investigated by different kinetic models such as first-order, Makoid-Banakar, Weibull, Logistic, and Gompertz. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Thiolated pectin-doxorubicin conjugates: Synthesis, characterization and anticancer activity studies.

    PubMed

    Cheewatanakornkool, Kamonrak; Niratisai, Sathit; Manchun, Somkamol; Dass, Crispin R; Sriamornsak, Pornsak

    2017-10-15

    In this paper, pectin was cross-linked by a coupling reaction with either thioglycolic acid or cystamine dihydrochloride to form thiolated pectins. The thiolated pectins were then coupled with doxorubicin (DOX) derivative to obtain thiolated pectin-DOX conjugates by two different methods, disulfide bond formation and disulfide bond exchange. The disulfide bond exchange method provided a simple, fast, and efficient approach for synthesis of thiolated pectin-DOX conjugates, compared to the disulfide bond formation. Characteristics, physicochemical properties, and morphology of thiolated pectins and thiolated pectin-DOX conjugates were determined. DOX content in thiolated pectin-DOX conjugates using low methoxy pectin was found to be higher than that using high methoxy pectin. The in vitro anticancer activity of thiolated pectin-DOX conjugates was significantly higher than that of free DOX, in mouse colon carcinoma and human bone osteosarcoma cells, but insignificantly different from that of free DOX, in human prostate cancer cells. Due to their promising anticancer activity in mouse colon carcinoma cells, the thiolated pectin-DOX conjugates might be suitable for building drug platform for colorectal cancer-targeted delivery of DOX. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Less is More: A Comparison of Antibody-Gold Nanoparticle Conjugates of Different Ratios.

    PubMed

    Byzova, Nadezhda A; Safenkova, Irina V; Slutskaya, Elvira S; Zherdev, Anatoly V; Dzantiev, Boris B

    2017-11-15

    This comprehensive study is related to gold nanoparticles (GNPs) conjugated with antibodies. The goal of the study is to determine the minimal concentration of antibodies for conjugate synthesis when the conjugates have high antigen-capturing activity. Two systems were studied: gold nanoparticles conjugated with monoclonal antibodies (mAb-GNP) specific to Helicobacter pylori and gold nanoparticles conjugated with polyclonal antibodies (pAb-GNP) specific to mouse immunoglobulins. Several conjugates were synthesized with different GNP-to-antibody molar ratios (from 1:1 to 1:245) through nondirectional and noncovalent immobilization on a surface of GNPs with a diameter of 25.3 ± 4.6 nm. The maximal antigen-capturing activities and equilibrium constants of the conjugates correlate with the formation of a constant hydrodynamic radius of the conjugates for mAb-GNP (GNP to antibody molar ratio 1:58) and with the stabilizing concentration by flocculation curves for pAb-GNP (GNP to antibody molar ratio 1:116). The application of the conjugates to the lateral flow immunoassay shows that the antibody concentrations used for the conjugation can be reduced (below the stabilizing concentration) without losing activity for the mAb-GNP conjugates. The findings highlight that the optimal concentration of antibodies immobilized on the surface of GNPs is not always equal to the stabilizing concentration determined by the flocculation curve.

  19. Application of the conjugate-gradient method to ground-water models

    USGS Publications Warehouse

    Manteuffel, T.A.; Grove, D.B.; Konikow, Leonard F.

    1984-01-01

    The conjugate-gradient method can solve efficiently and accurately finite-difference approximations to the ground-water flow equation. An aquifer-simulation model using the conjugate-gradient method was applied to a problem of ground-water flow in an alluvial aquifer at the Rocky Mountain Arsenal, Denver, Colorado. For this application, the accuracy and efficiency of the conjugate-gradient method compared favorably with other available methods for steady-state flow. However, its efficiency relative to other available methods depends on the nature of the specific problem. The main advantage of the conjugate-gradient method is that it does not require the use of iteration parameters, thereby eliminating this partly subjective procedure. (USGS)

  20. Nonlinear propagation of phase-conjugate focused sound beams in water

    NASA Astrophysics Data System (ADS)

    Brysev, A. P.; Krutyansky, L. M.; Preobrazhensky, V. L.; Pyl'nov, Yu. V.; Cunningham, K. B.; Hamilton, M. F.

    2000-07-01

    Nonlinear propagation of phase-conjugate, focused, ultrasound beams is studied. Measurements are presented of harmonic amplitudes along the axis and in the focal plane of the conjugate beam, and of the waveform and spectrum at the focus. A maximum peak pressure of 3.9 MPa was recorded in the conjugate beam. The measurements are compared with simulations based on the KZK equation, and satisfactory agreement is obtained.

  1. Transport characteristics of three fluorescent conjugated bile acid analogs in isolated rat hepatocytes and couplets.

    PubMed

    Maglova, L M; Jackson, A M; Meng, X J; Carruth, M W; Schteingart, C D; Ton-Nu, H T; Hofmann, A F; Weinman, S A

    1995-08-01

    The transport properties of three different synthetically prepared fluorescent conjugated bile acid analogs (FBA), all with the fluorophore on the side chain, were determined using isolated rat hepatocytes and hepatocyte couplets. The compounds studied were cholylglycylamidofluorescein (CGamF), cholyl(N epsilon-nitrobenzoxadiazolyl [NBD])-lysine (C-NBD-L), and chenodeoxycholyl-(N epsilon-NBD)-lysine (CDC-NBD-L). When hepatocytes were incubated at 37 degrees C with 0.3 mumol/L of FBA and 0.15 mol/L of Na+, cell fluorescence increased linearly with time at a rate (U/min) of 7.8 +/- 0.5 for CGamF, 7.2 +/- 0.3 for C-NBD-L, and 13.7 +/- 1.0 for CDC-NBD-L (mean, +/- SE; n = 40 to 90). Uptake was concentration dependent for concentrations less than 20 mumol/L and was saturable. The Michaelis constant (Km) value (mumol/L) for CGamF was 10.8, for C-NBD-L was 3.8, and for CDC-NBD-L was 3.0. In the absence of Na+, the uptake rate was decreased by 50% for CGamF and by 38% for C-NBD-L; but uptake of CDC-NBD-L was unchanged and thus Na+ independent. Cellular uptake of all three derivatives was specific to hepatocytes and was absent in several nonhepatocyte cell lines. For CGamF and C-NBD-L, both Na(+)-dependent and Na(+)-independent uptake was inhibited by 200-fold excess concentrations of cholyltaurine, dehydrocholyltaurine, and cholate, but for CDC-NBD-L, these nonfluorescent bile acids did not inhibit initial uptake. The intracellular fluorescence of CGamF was strongly pH dependent at an excitation wavelength of 495 nm, but pH independent at 440 nm excitation. In contrast, intracellular fluorescence of C-NBD-L and CDC-NBD-L was pH independent. All three FBA were secreted into the canalicular space of approximately 50% to 60% of couplets. Cellular adenosine triphosphate (ATP) depletion with either CN- or atractyloside inhibited secretion of all three FBA. The multispecific organic anion transporter (MOAT) inhibitor, chlorodinitrobenzene, blocked secretion of fluorescent MOAT

  2. Antimicrobial Peptide-PNA Conjugates Selectively Targeting Bacterial Genes

    DTIC Science & Technology

    2013-07-22

    RXR)4XB and (KFF)3K, were previously reported as a potent permeabilizer against E. coli and MRSA cells (Mellbye, 2009). (RW)4D, a small dendrimeric ...lethal concentration (Liu, 2007). Scheme 1. Synthesis of PNA- dendrimer conjugate. (a) (RW)4D-cysteine (b)Free PNA (C) PNA-(RW)4D conjugates

  3. Preliminary experiments on phase conjugation for flow visualization. [barium titanate single crystals

    NASA Technical Reports Server (NTRS)

    Weimer, D.; Howes, W. L.

    1984-01-01

    Barium titanate single crystals are discussed in the context of: the procedure for polarizing a crystal; a test for phase conjugation; transients in the production of phase conjugation; real time readout by a separate laser of a hologram induced within the crystal, including conjugation response times to on-off switching of each beam; and a demonstration of a Twyman-Green interferometer utilizing phase conjugation.

  4. Treatment with Cefotaxime Affects Expression of Conjugation Associated Proteins and Conjugation Transfer Frequency of an IncI1 Plasmid in Escherichia coli

    PubMed Central

    Møller, Thea S. B.; Liu, Gang; Boysen, Anders; Thomsen, Line E.; Lüthje, Freja L.; Mortensen, Sisse; Møller-Jensen, Jakob; Olsen, John E.

    2017-01-01

    Horizontal gene transfer (HGT) is the major mechanism responsible for spread of antibiotic resistance. Antibiotic treatment has been suggested to promote HGT, either by directly affecting the conjugation process itself or by selecting for conjugations subsequent to DNA transfer. However, recent research suggests that the effect of antibiotic treatment on plasmid conjugation frequencies, and hence the spread of resistance plasmids, may have been overestimated. We addressed the question by quantifying transfer proteins and conjugation frequencies of a blaCTX−M−1 encoding IncI1 resistance plasmid in Escherichia coli MG1655 in the presence and absence of therapeutically relevant concentrations of cefotaxime (CTX). Analysis of the proteome by iTRAQ labeling and liquid chromatography tandem mass spectrometry revealed that Tra proteins were significantly up-regulated in the presence of CTX. The up-regulation of the transfer machinery was confirmed at the transcriptional level for five selected genes. The CTX treatment did not cause induction of the SOS-response as revealed by absence of significantly regulated SOS associated proteins in the proteome and no significant up-regulation of recA and sfiA genes. The frequency of plasmid conjugation, measured in an antibiotic free environment, increased significantly when the donor was pre-grown in broth containing CTX compared to growth without this drug, regardless of whether blaCTX-M-1 was located on the plasmid or in trans on the chromosome. The results shows that antibiotic treatment can affect expression of a plasmid conjugation machinery and subsequent DNA transfer. PMID:29238335

  5. Phase conjugation of high energy lasers.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bliss, David E; Valley, Michael T.; Atherton, Briggs W.

    2013-01-01

    In this report we explore claims that phase conjugation of high energy lasers by stimulated Brillouin scattering (SBS) can compensate optical aberrations associated with severely distorted laser amplifier media and aberrations induced by the atmosphere. The SBS media tested was a gas cell pressurized up to 300 psi with SF6 or Xe or both. The laser was a 10 Hz, 3J, Q-switched Nd:YAG with 25 ns wide pulses. Atmospheric aberrations were created with space heaters, helium jets and phase plates designed with a Kolmogorov turbulence spectrum characterized by a Fried parameter, ro , ranging from 0.6 6.0 mm. Phase conjugatemore » tests in the laboratory were conducted without amplification. For the strongest aberrations, D/ro ~ 20, created by combining the space heaters with the phase plate, the Strehl ratio was degraded by a factor of ~50. Phase conjugation in SF6 restored the peak focusable intensity to about 30% of the original laser. Phase conjugate tests at the outdoor laser range were conducted with laser amplifiers providing gain in combination with the SBS cell. A large 600,000 BTU kerosene space heater was used to create turbulence along the beam path. An atmospheric structure factor of Cn2 = 5x10-13 m2/3 caused the illumination beam to expand to a diameter 250mm and overfill the receiver. The phase conjugate amplified return could successfully be targeted back onto glints 5mm in diameter. Use of a lenslet arrays to lower the peak focusable intensity in the SBS cell failed to produce a useful phase conjugate beam; The Strehl ratio was degraded with multiple random lobes instead of a single focus. I will review literature results which show how multiple beams can be coherently combined by SBS when a confocal reflecting geometry is used to focus the laser in the SBS cell.« less

  6. Inhomogeneity in the excited-state torsional disorder of a conjugated macrocycle.

    PubMed

    Yang, Jaesung; Ham, Sujin; Kim, Tae-Woo; Park, Kyu Hyung; Nakao, Kazumi; Shimizu, Hideyuki; Iyoda, Masahiko; Kim, Dongho

    2015-03-12

    The photophysics of conjugated polymers has generally been explained based on the interactions between the component conjugated chromophores in a tangled chain. However, conjugated chromophores are entities with static and dynamic structural disorder, which directly affects the conjugated polymer photophysics. Here we demonstrate the impact of chain structure torsional disorder on the spectral characteristics for a macrocyclic oligothiophene 1, which is obscured in conventional linear conjugated chromophores by diverse structural disorders such as those in chromophore size and shape. We used simultaneous multiple fluorescence parameter measurement for a single molecule and quantum-mechanical calculations to show that within the fixed conjugation length across the entire ring an inhomogeneity from torsional disorder in the structure of 1 plays a crucial role in causing its energetic disorder, which affords the spectral broadening of ∼220 meV. The torsional disorder in 1 fluctuated on the time scale of hundreds of milliseconds, typically accompanied by spectral drifts on the order of ∼10 meV. The fluctuations could generate torsional defects and change the electronic structure of 1 associated with the ring symmetry. These findings disclose the fundamental nature of conjugated chromophore that is the most elementary spectroscopic unit in conjugated polymers and suggest the importance of engineering structural disorder to optimize polymer-based device photophysics. Additionally, we combined defocused wide-field fluorescence microscopy and linear dichroism obtained from the simultaneous measurements to show that 1 emits polarized light with a changing polarization direction based on the torsional disorder fluctuations.

  7. Guanidinylated polyethyleneimine-polyoxypropylene-polyoxyethylene conjugates as gene transfection agents.

    PubMed

    Bromberg, Lev; Raduyk, Svetlana; Hatton, T Alan; Concheiro, Angel; Rodriguez-Valencia, Cosme; Silva, Maite; Alvarez-Lorenzo, Carmen

    2009-05-20

    Conjugates of linear and branched polyethyleneimine (PEI) and monoamine polyether Jeffamine M-2070 (PO/EO mol ratio 10/31, 2000 Da) were synthesized through polyether activation by cyanuric chloride followed by attachment to PEI and guanidinylation by 1H-pyrazole-carboxamidine hydrochloride. The resulting guanidinylated PEI-polyether conjugates (termed gPEI-Jeffamine) efficiently complexed plasmid DNA, and their polyplexes possessed enhanced colloidal stability in the presence of serum proteins. In vitro studies with mammalian CHO-1, 3T3, and Cos-7 cell lines demonstrated improved transfection efficiency of the pCMVbeta-gal plasmid/gPEI-Jeffamine polyplexes. The guanidinylation of the amino groups of PEI and the conjugation of PEI with the Jeffamine polyether enhanced the conjugates' interaction with genetic material and reduced the cytotoxicity of the polyplexes in experiments with the L929 cell line.

  8. Scintillation Reduction using Conjugate-Plane Imaging (Abstract)

    NASA Astrophysics Data System (ADS)

    Vander Haagen, G. A.

    2017-12-01

    (Abstract only) All observatories are plagued by atmospheric turbulence exhibited as star scintillation or "twinkle" whether a high altitude adaptive optics research or a 30-cm amateur telescope. It is well known that these disturbances are caused by wind and temperature-driven refractive gradients in the atmosphere and limit the ultimate photometric resolution of land-based facilities. One approach identified by Fuchs (1998) for scintillation noise reduction was to create a conjugate image space at the telescope and focus on the dominant conjugate turbulent layer within that space. When focused on the turbulent layer little or no scintillation exists. This technique is described whereby noise reductions of 6 to 11/1 have been experienced with mathematical and optical bench simulations. Discussed is a proof-of-principle conjugate optical train design for an 80-mm, f7 telescope.

  9. Water-soluble polymer–drug conjugates for combination chemotherapy against visceral leishmaniasis

    PubMed Central

    Nicoletti, Salvatore; Seifert, Karin; Gilbert, Ian H.

    2010-01-01

    There is a need for new safe, effective and short-course treatments for leishmaniasis; one strategy is to use combination chemotherapy. Polymer–drug conjugates have shown promise for the delivery of anti-leishmanial agents such as amphotericin B. In this paper, we report on the preparation and biological evaluation of polymer–drug conjugates of N-(2-hydroxypropyl)methacrylamide (HPMA), amphotericin B and alendronic acid. The combinatorial polymer–drug conjugates were effective anti-leishmanial agents in vitro and in vivo, but offered no advantage over the single poly(HPMA)–amphotericin B conjugates. PMID:20338769

  10. Bispecific small molecule-antibody conjugate targeting prostate cancer.

    PubMed

    Kim, Chan Hyuk; Axup, Jun Y; Lawson, Brian R; Yun, Hwayoung; Tardif, Virginie; Choi, Sei Hyun; Zhou, Quan; Dubrovska, Anna; Biroc, Sandra L; Marsden, Robin; Pinstaff, Jason; Smider, Vaughn V; Schultz, Peter G

    2013-10-29

    Bispecific antibodies, which simultaneously target CD3 on T cells and tumor-associated antigens to recruit cytotoxic T cells to cancer cells, are a promising new approach to the treatment of hormone-refractory prostate cancer. Here we report a site-specific, semisynthetic method for the production of bispecific antibody-like therapeutics in which a derivative of the prostate-specific membrane antigen-binding small molecule DUPA was selectively conjugated to a mutant αCD3 Fab containing the unnatural amino acid, p-acetylphenylalanine, at a defined site. Homogeneous conjugates were generated in excellent yields and had good solubility. The efficacy of the conjugate was optimized by modifying the linker structure, relative binding orientation, and stoichiometry of the ligand. The optimized conjugate showed potent and selective in vitro activity (EC50 ~ 100 pM), good serum half-life, and potent in vivo activity in prophylactic and treatment xenograft mouse models. This semisynthetic approach is likely to be applicable to the generation of additional bispecific agents using drug-like ligands selective for other cell-surface receptors.

  11. Bispecific small molecule–antibody conjugate targeting prostate cancer

    PubMed Central

    Kim, Chan Hyuk; Axup, Jun Y.; Lawson, Brian R.; Yun, Hwayoung; Tardif, Virginie; Choi, Sei Hyun; Zhou, Quan; Dubrovska, Anna; Biroc, Sandra L.; Marsden, Robin; Pinstaff, Jason; Smider, Vaughn V.; Schultz, Peter G.

    2013-01-01

    Bispecific antibodies, which simultaneously target CD3 on T cells and tumor-associated antigens to recruit cytotoxic T cells to cancer cells, are a promising new approach to the treatment of hormone-refractory prostate cancer. Here we report a site-specific, semisynthetic method for the production of bispecific antibody-like therapeutics in which a derivative of the prostate-specific membrane antigen-binding small molecule DUPA was selectively conjugated to a mutant αCD3 Fab containing the unnatural amino acid, p-acetylphenylalanine, at a defined site. Homogeneous conjugates were generated in excellent yields and had good solubility. The efficacy of the conjugate was optimized by modifying the linker structure, relative binding orientation, and stoichiometry of the ligand. The optimized conjugate showed potent and selective in vitro activity (EC50 ∼100 pM), good serum half-life, and potent in vivo activity in prophylactic and treatment xenograft mouse models. This semisynthetic approach is likely to be applicable to the generation of additional bispecific agents using drug-like ligands selective for other cell-surface receptors. PMID:24127589

  12. Multifunctional Diketopyrrolopyrrole-Based Conjugated Polymers with Perylene Bisimide Side Chains.

    PubMed

    Li, Cheng; Yu, Changshi; Lai, Wenbin; Liang, Shijie; Jiang, Xudong; Feng, Guitao; Zhang, Jianqi; Xu, Yunhua; Li, Weiwei

    2017-11-24

    Two conjugated polymers based on diketopyrrolopyrrole (DPP) in the main chain with different content of perylene bisimide (PBI) side chains are developed. The influence of PBI side chain on the photovoltaic performance of these DPP-based conjugated polymers is systematically investigated. This study suggests that the PBI side chains can not only alter the absorption spectrum and energy level but also enhance the crystallinity of conjugated polymers. As a result, such polymers can act as electron donor, electron acceptor, and single-component active layer in organic solar cells. These findings provide a new guideline for the future molecular design of multifunctional conjugated polymers. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Multifunctional nanoparticle-protein conjugates with controllable bioactivity and pH responsiveness

    NASA Astrophysics Data System (ADS)

    Liu, Feng; Xue, Lulu; Yuan, Yuqi; Pan, Jingjing; Zhang, Chenjie; Wang, Hongwei; Brash, John L.; Yuan, Lin; Chen, Hong

    2016-02-01

    The modulation of protein activity is of significance for disease therapy, molecular diagnostics, and tissue engineering. Nanoparticles offer a new platform for the preparation of protein conjugates with improved protein properties. In the present work, Escherichia coli (E. coli) inorganic pyrophosphatase (PPase) and poly(methacrylic acid) (PMAA) were attached together to gold nanoparticles (AuNPs), forming AuNP-PPase-PMAA conjugates having controllable multi-biofunctionalities and responsiveness to pH. By treating with poly(2-(dimethylamino)ethyl methacrylate) (PDMAEMA) and regulating the pH, the bioactivity of the conjugate becomes ``on/off''-switchable. In addition, by taking advantage of the ability of AuNPs to undergo reversible aggregation/dispersion, the conjugates can be recycled and reused multiple times; and due to the shielding effect of the PMAA, the conjugated enzyme has high resistance to protease digestion. This approach has considerable potential in areas such as controlled delivery and release of drugs, biosensing, and biocatalysis.The modulation of protein activity is of significance for disease therapy, molecular diagnostics, and tissue engineering. Nanoparticles offer a new platform for the preparation of protein conjugates with improved protein properties. In the present work, Escherichia coli (E. coli) inorganic pyrophosphatase (PPase) and poly(methacrylic acid) (PMAA) were attached together to gold nanoparticles (AuNPs), forming AuNP-PPase-PMAA conjugates having controllable multi-biofunctionalities and responsiveness to pH. By treating with poly(2-(dimethylamino)ethyl methacrylate) (PDMAEMA) and regulating the pH, the bioactivity of the conjugate becomes ``on/off''-switchable. In addition, by taking advantage of the ability of AuNPs to undergo reversible aggregation/dispersion, the conjugates can be recycled and reused multiple times; and due to the shielding effect of the PMAA, the conjugated enzyme has high resistance to protease digestion

  14. Preparation and characterization of a dextran-amylase conjugate.

    PubMed

    Marshall, J J

    1976-07-01

    Bacillus amyloliquefaciens alpha-amylase was attached to dextran after activation of the polysaccharide by using a modification of the cyanogen bromide method. The soluble dextran-amylase conjugate was purified by molecular-sieve chromatography. The conjugated enzyme has greater stability than the unmodified enzyme at low pH values, during heat treatment, and on removal of calcium ions with a chelating agent. Attachment of dextran to alpha-amylase did not alter the Michaelis constant of the enzyme acting on starch. The polysaccharide-enzyme conjugate probably consists of a cross-linked aggregate of many dextran and many enzyme molecules, in which a proportion of the enzyme molecules, although not inactivated, are unable to express their activity, except after dextranase treatment.

  15. Anti-Group B Streptococcus Glycan-Conjugate Vaccines Using Pilus Protein GBS80 As Carrier and Antigen: Comparing Lysine and Tyrosine-directed Conjugation.

    PubMed

    Nilo, Alberto; Morelli, Laura; Passalacqua, Irene; Brogioni, Barbara; Allan, Martin; Carboni, Filippo; Pezzicoli, Alfredo; Zerbini, Francesca; Maione, Domenico; Fabbrini, Monica; Romano, Maria Rosaria; Hu, Qi-Ying; Margarit, Immaculada; Berti, Francesco; Adamo, Roberto

    2015-07-17

    Gram-positive Streptococcus agalactiae or group B Streptococcus (GBS) is a leading cause of invasive infections in pregnant women, newborns, and elderly people. Vaccination of pregnant women represents the best strategy for prevention of neonatal disease, and GBS polysaccharide-based conjugate vaccines are currently under clinical testing. The potential of GBS pilus proteins selected by genome-based reverse vaccinology as protective antigens for anti-streptococcal vaccines has also been demonstrated. Dressing pilus proteins with surface glycan antigens could be an attractive approach to extend vaccine coverage. We have recently developed an efficient method for tyrosine-directed ligation of large glycans to proteins via copper-free azide-alkyne [3 + 2] cycloaddition. This method enables targeting of predetermined sites of the protein, ensuring that protein epitopes are preserved prior to glycan coupling and a higher consistency in glycoconjugate batches. Herein, we compared conjugates of the GBS type II polysaccharide (PSII) and the GBS80 pilus protein obtained by classic lysine random conjugation and by the recently developed tyrosine-directed ligation. PSII conjugated to CRM197, a carrier protein used for vaccines in the market, was used as a control. We found that the constructs made from PSII and GBS80 were able to elicit murine antibodies recognizing individually the glycan and protein epitopes on the bacterial surface. The generated antibodies were efficacious in mediating opsonophagocytic killing of strains expressing exclusively PSII or GBS80 proteins. The two glycoconjugates were also effective in protecting newborn mice against GBS infection following vaccination of the dams. Altogether, these results demonstrated that polysaccharide-conjugated GBS80 pilus protein functions as a carrier comparably to CRM197, while maintaining its properties of protective protein antigen. Glycoconjugation and reverse vaccinology can, therefore, be combined to design

  16. 1,2-disubstituted ferrocenyl carbohydrate chloroquine conjugates as potential antimalarial agents.

    PubMed

    Herrmann, Christoph; Salas, Paloma F; Patrick, Brian O; de Kock, Carmen; Smith, Peter J; Adam, Michael J; Orvig, Chris

    2012-06-07

    This work presents a new family of organometallic antimalarial compounds consisting of ferrocene bearing a chloroquine-derived moiety as well as a 1,2;3,5-diisopropylidene glucofuranose moiety at a cyclopentadienyl scaffold in a 1,2-substitution pattern. The synthetic route proceeds via a stereoselective functionalization of ferrocene carboxaldehyde to the 1,2-disubstituted conjugates. After complete characterization of these new, trifunctional conjugates, they were examined for their cytotoxicity in two cancerous cell lines (MDA-MB-435S and Caco2) and one non-cancerous cell line (MCF-10A), showing that increased cytotoxicity can be observed for the chloroquine ferrocenyl conjugates compared to their carbohydrate-substituted precursors. The antiplasmodial activity of the conjugates in a chloroquine-sensitive strain of Plasmodium falciparum (D10) and a chloroquine-resistant strain (Dd2) was determined. Monosubstituted conjugates 13, 14 and 15 exhibit decreasing activity with increasing alkyl chain length between the ferrocene and quinoline moiety, bifunctional conjugates 16, 17, 18 show constant activity, performing better than chloroquine in the Dd2 strain.

  17. Vectorial transport of unconjugated and conjugated bile salts by monolayers of LLC-PK1 cells doubly transfected with human NTCP and BSEP or with rat Ntcp and Bsep.

    PubMed

    Mita, Sachiko; Suzuki, Hiroshi; Akita, Hidetaka; Hayashi, Hisamitsu; Onuki, Reiko; Hofmann, Alan F; Sugiyama, Yuichi

    2006-03-01

    Na(+)-taurocholate-cotransporting peptide (NTCP)/SLC10A1 and bile salt export pump (BSEP)/ABCB11 synergistically play an important role in the transport of bile salts by the hepatocyte. In this study, we transfected human NTCP and BSEP or rat Ntcp and Bsep into LLC-PK1 cells, a cell line devoid of bile salts transporters. Transport by these cells was characterized with a focus on substrate specificity between rats and humans. The basal to apical flux of taurocholate across NTCP- and BSEP-expressing LLC-PK1 monolayers was 10 times higher than that in the opposite direction, whereas the flux across the monolayer of control and NTCP or BSEP single-expressing cells did not show any vectorial transport. The basal to apical flux of taurocholate was saturated with a K(m) value of 20 microM. Vectorial transcellular transport was also observed for cholate, chenodeoxycholate, ursodeoxycholate, their taurine and glycine conjugates, and taurodeoxycholate and glycodeoxycholate, whereas no transport of lithocholate was detected. To evaluate the respective functions of NTCP and BSEP and to compare them with those of rat Ntcp and Bsep, we calculated the clearance by each transporter in this system. A good correlation in the clearance of the examined bile salts (cholate, chenodeoxycholate, ursodeoxycholate, and their taurine or glycine conjugates) was observed between transport by human and that of rat transporters in terms of their rank order: for NTCP, taurine conjugates > glycine conjugates > unconjugated bile salts, and for BSEP, unconjugated bile salts and glycine conjugates > taurine conjugates. In conclusion, the substrate specificity of human and rat NTCP and BSEP appear to be very similar at least for monovalent bile salts under physiological conditions.

  18. Synthesis of N-peptide-6-amino-D-luciferin Conjugates.

    PubMed

    Kovács, Anita K; Hegyes, Péter; Szebeni, Gábor J; Nagy, Lajos I; Puskás, László G; Tóth, Gábor K

    2018-01-01

    A general strategy for the synthesis of N -peptide-6-amino-D-luciferin conjugates has been developed. The applicability of the strategy was demonstrated with the preparation of a known substrate, N -Z-Asp-Glu-Val-Asp-6-amino-D-luciferin ( N -Z-DEVD-aLuc). N -Z-DEVD-aLuc was obtained via a hybrid liquid/solid phase synthesis method, in which the appropriately protected C-terminal amino acid was coupled to 6-amino-2-cyanobenzothiazole and the resulting conjugate was reacted with D-cysteine in order to get the protected amino acid-6-amino-D-luciferin conjugate, which was then attached to resin. The resulting loaded resin was used for the solid-phase synthesis of the desired N -peptide-6-amino-D-luciferin conjugate without difficulties, which was then attested with NMR spectroscopy and LC-MS, and successfully tested in a bioluminescent system.

  19. Synthesis of N-peptide-6-amino-D-luciferin Conjugates

    PubMed Central

    Kovács, Anita K.; Hegyes, Péter; Szebeni, Gábor J.; Nagy, Lajos I.; Puskás, László G.; Tóth, Gábor K.

    2018-01-01

    A general strategy for the synthesis of N-peptide-6-amino-D-luciferin conjugates has been developed. The applicability of the strategy was demonstrated with the preparation of a known substrate, N-Z-Asp-Glu-Val-Asp-6-amino-D-luciferin (N-Z-DEVD-aLuc). N-Z-DEVD-aLuc was obtained via a hybrid liquid/solid phase synthesis method, in which the appropriately protected C-terminal amino acid was coupled to 6-amino-2-cyanobenzothiazole and the resulting conjugate was reacted with D-cysteine in order to get the protected amino acid-6-amino-D-luciferin conjugate, which was then attached to resin. The resulting loaded resin was used for the solid-phase synthesis of the desired N-peptide-6-amino-D-luciferin conjugate without difficulties, which was then attested with NMR spectroscopy and LC-MS, and successfully tested in a bioluminescent system. PMID:29725588

  20. Factors contributing to the immunogenicity of meningococcal conjugate vaccines

    PubMed Central

    Bröker, Michael; Berti, Francesco; Costantino, Paolo

    2016-01-01

    ABSTRACT Various glycoprotein conjugate vaccines have been developed for the prevention of invasive meningococcal disease, having significant advantages over pure polysaccharide vaccines. One of the most important features of the conjugate vaccines is the induction of a T-cell dependent immune response, which enables both the induction of immune memory and a booster response after repeated immunization. The nature of the carrier protein to which the polysaccharides are chemically linked, is often regarded as the main component of the vaccine in determining its immunogenicity. However, other factors can have a significant impact on the vaccine's profile. In this review, we explore the physico-chemical properties of meningococcal conjugate vaccines, which can significantly contribute to the vaccine's immunogenicity. We demonstrate that the carrier is not the sole determining factor of the vaccine's profile, but, moreover, that the conjugate vaccine's immunogenicity is the result of multiple physico-chemical structures and characteristics. PMID:26934310

  1. Tumor-specific novel taxoid-monoclonal antibody conjugates.

    PubMed

    Ojima, Iwao; Geng, Xudong; Wu, Xinyuan; Qu, Chuanxing; Borella, Christopher P; Xie, Hongsheng; Wilhelm, Sharon D; Leece, Barbara A; Bartle, Laura M; Goldmacher, Victor S; Chari, Ravi V J

    2002-12-19

    Taxoids bearing methyldisulfanyl(alkanoyl) groups for taxoid-antibody immunoconjugates were designed, synthesized and their activities evaluated. A highly cytotoxic C-10 methyldisulfanylpropanoyl taxoid was conjugated to monoclonal antibodies recognizing the epidermal growth factor receptor (EGFR) expressed in human squamous cancers. These conjugates were shown to possess remarkable target-specific antitumor activity in vivo against EGFR-expressing A431 tumor xenografts in severe combined immune deficiency mice, resulting in complete inhibition of tumor growth in all the treated mice.

  2. Efficient conjugate gradient algorithms for computation of the manipulator forward dynamics

    NASA Technical Reports Server (NTRS)

    Fijany, Amir; Scheid, Robert E.

    1989-01-01

    The applicability of conjugate gradient algorithms for computation of the manipulator forward dynamics is investigated. The redundancies in the previously proposed conjugate gradient algorithm are analyzed. A new version is developed which, by avoiding these redundancies, achieves a significantly greater efficiency. A preconditioned conjugate gradient algorithm is also presented. A diagonal matrix whose elements are the diagonal elements of the inertia matrix is proposed as the preconditioner. In order to increase the computational efficiency, an algorithm is developed which exploits the synergism between the computation of the diagonal elements of the inertia matrix and that required by the conjugate gradient algorithm.

  3. Aptamer-conjugated nanoparticles for cancer cell detection.

    PubMed

    Medley, Colin D; Bamrungsap, Suwussa; Tan, Weihong; Smith, Joshua E

    2011-02-01

    Aptamer-conjugated nanoparticles (ACNPs) have been used for a variety of applications, particularly dual nanoparticles for magnetic extraction and fluorescent labeling. In this type of assay, silica-coated magnetic and fluorophore-doped silica nanoparticles are conjugated to highly selective aptamers to detect and extract targeted cells in a variety of matrixes. However, considerable improvements are required in order to increase the selectivity and sensitivity of this two-particle assay to be useful in a clinical setting. To accomplish this, several parameters were investigated, including nanoparticle size, conjugation chemistry, use of multiple aptamer sequences on the nanoparticles, and use of multiple nanoparticles with different aptamer sequences. After identifying the best-performing elements, the improvements made to this assay's conditional parameters were combined to illustrate the overall enhanced sensitivity and selectivity of the two-particle assay using an innovative multiple aptamer approach, signifying a critical feature in the advancement of this technique.

  4. Functional Hybrid Biomaterials based on Peptide-Polymer Conjugates for Nanomedicine

    NASA Astrophysics Data System (ADS)

    Shu, Jessica Yo

    The focus of this dissertation is the design, synthesis and characterization of hybrid functional biomaterials based on peptide-polymer conjugates for nanomedicine. Generating synthetic materials with properties comparable to or superior than those found in nature has been a "holy grail" for the materials community. Man-made materials are still rather simplistic when compared to the chemical and structural complexity of a cell. Peptide-polymer conjugates have the potential to combine the advantages of the biological and synthetic worlds---that is they can combine the precise chemical structure and diverse functionality of biomolecules with the stability and processibility of synthetic polymers. As a new family of soft matter, they may lead to materials with novel properties that have yet to be realized with either of the components alone. In order for peptide-polymer conjugates to reach their full potential as useful materials, the structure and function of the peptide should be maintained upon polymer conjugation. The success in achieving desirable, functional assemblies relies on fundamentally understanding the interactions between each building block and delicately balancing and manipulating these interactions to achieve targeted assemblies without interfering with designed structures and functionalities. Such fundamental studies of peptide-polymer interactions were investigated as the nature of the polymer (hydrophilic vs. hydrophobic) and the site of its conjugation (end-conjugation vs. side-conjugation) were varied. The fundamental knowledge gained was then applied to the design of amphiphiles that self-assemble to form stable functional micelles. The micelles exhibited exceptional monodispersity and long-term stability, which is atypical of self-assembled systems. Thus such micelles based on amphiphilic peptide-polymer conjugates may meet many current demands in nanomedicine, in particular for drug delivery of hydrophobic anti-cancer therapeutics. Lastly

  5. Cotransporting Ion is a Trigger for Cellular Endocytosis of Transporter-Targeting Nanoparticles: A Case Study of High-Efficiency SLC22A5 (OCTN2)-Mediated Carnitine-Conjugated Nanoparticles for Oral Delivery of Therapeutic Drugs.

    PubMed

    Kou, Longfa; Yao, Qing; Sun, Mengchi; Wu, Chunnuan; Wang, Jia; Luo, Qiuhua; Wang, Gang; Du, Yuqian; Fu, Qiang; Wang, Jian; He, Zhonggui; Ganapathy, Vadivel; Sun, Jin

    2017-09-01

    OCTN2 (SLC22A5) is a Na + -coupled absorption transporter for l-carnitine in small intestine. This study tests the potential of this transporter for oral delivery of therapeutic drugs encapsulated in l-carnitine-conjugated poly(lactic-co-glycolic acid) (PLGA) nanoparticles (LC-PLGA NPs) and discloses the molecular mechanism for cellular endocytosis of transporter-targeting nanoparticles. Conjugation of l-carnitine to a surface of PLGA-NPs enhances the cellular uptake and intestinal absorption of encapsulated drug. In both cases, the uptake process is dependent on cotransporting ion Na + . Computational OCTN2 docking analysis shows that the presence of Na + is important for the formation of the energetically stable intermediate complex of transporter-Na + -LC-PLGA NPs, which is also the first step in cellular endocytosis of nanoparticles. The transporter-mediated intestinal absorption of LC-PLGA NPs occurs via endocytosis/transcytosis rather than via the traditional transmembrane transport. The portal blood versus the lymphatic route is evaluated by the plasma appearance of the drug in the control and lymph duct-ligated rats. Absorption via the lymphatic system is the predominant route in the oral delivery of the NPs. In summary, LC-PLGA NPs can effectively target OCTN2 on the enterocytes for enhancing oral delivery of drugs and the critical role of cotransporting ions should be noticed in designing transporter-targeting nanoparticles. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Programmable Regulation of DNA Conjugation to Gold Nanoparticles via Strand Displacement.

    PubMed

    Zhang, Cheng; Wu, Ranfeng; Li, Yifan; Zhang, Qiang; Yang, Jing

    2017-10-31

    Methods for conjugating DNA to gold nanoparticles (AuNPs) have recently attracted considerable attention. The ability to control such conjugation in a programmable way is of great interest. Here, we have developed a logic-based method for manipulating the conjugation of thiolated DNA species to AuNPs via cascading DNA strand displacement. Using this method, several logic-based operation systems are established and up to three kinds of DNA signals are introduced at the same time. In addition, a more sensitive catalytic logic-based operation is also achieved based on an entropy-driven process. In the experiment, all of the DNA/AuNPs conjugation results are verified by agrose gel. This strategy promises great potential for automatically conjugating DNA stands onto label-free gold nanoparticles and can be extended to constructing DNA/nanoparticle devices for applications in diagnostics, biosensing, and molecular robotics.

  7. Inguinodynia in patients submitted to conventional inguinal hernioplasty.

    PubMed

    Dias, Bruno Garcia; Santos, Marcelo Protásio Dos; Chaves, Ana Barbara DE Jesus; Willis, Mariana; Gomes, Marcio Couto; Andrade, Fernandes Tavares; Melo, Valdinaldo Aragão DE; Santos, Paulo Vicente Dos

    2017-01-01

    to evaluate the incidence of chronic pain and its impact on the quality of life of patients submitted to inguinal hernioplasty using the Lichtenstein technique. this was a descriptive, cross-sectional study of patients operated under spinal anesthesia from February 2013 to February 2015 and who had already completed six postoperative months. We questioned patients about the presence of chronic inguinal pain and, if confirmed, invited them to a consultation in which we assessed the pain and its impact on quality of life. out of 158 patients submitted to the procedure, we identified 7.6% as having inguinodynia. Of these, there was an impact on the quality of life in 25%. the incidence of inguinodynia after hernioplasty with repercussion in quality of life was similar to the one of found in the world literature. avaliar a incidência de dor crônica e o seu impacto na qualidade de vida de pacientes submetidos à hernioplastia inguinal pela técnica de Lichtenstein. trata-se de estudo transversal descritivo, de pacientes operados de hérnia inguinal pela técnica de Lichtenstein sob anestesia raquidiana, no período de fevereiro de 2013 a fevereiro de 2015, e que já haviam completado seis meses de pós-operatório. Os pacientes foram questionados sobre a presença de dor inguinal crônica e, caso confirmada, convidados a uma consulta na qual foi feita análise da qualidade da dor e seu impacto na qualidade de vida. do total de 158 pacientes submetidos ao procedimento, 7,6% foram identificados como portadores de inguinodinia. Destes, houve impacto na qualidade de vida em 25%. observou-se incidência de inguinodinia pós-hernioplastia com repercussão na qualidade de vida semelhante à literatura mundial.

  8. [Role of proton-motive force in the conjugative DNA transport in Staphylococci].

    PubMed

    Gavriliuk, V G; Vinnikov, A I

    1997-01-01

    Sensitivity of the conjugative process in staphylococci to the action of uncouplers of oxidative phosphorylation and inhibitors of electron transport systems have been proved, that testifies to the energy-dependent character of conjugative transport of DNA. Proceeding of the conjugation process depends upon the generation of delta microH+ on the membrane of both the donor and recipient cells. contribution of protonmotive forces to providing for the transfer of plasmids during conjugation to staphylococci has been defined.

  9. Direct protein-protein conjugation by genetically introducing bioorthogonal functional groups into proteins.

    PubMed

    Kim, Sanggil; Ko, Wooseok; Sung, Bong Hyun; Kim, Sun Chang; Lee, Hyun Soo

    2016-11-15

    Proteins often function as complex structures in conjunction with other proteins. Because these complex structures are essential for sophisticated functions, developing protein-protein conjugates has gained research interest. In this study, site-specific protein-protein conjugation was performed by genetically incorporating an azide-containing amino acid into one protein and a bicyclononyne (BCN)-containing amino acid into the other. Three to four sites in each of the proteins were tested for conjugation efficiency, and three combinations showed excellent conjugation efficiency. The genetic incorporation of unnatural amino acids (UAAs) is technically simple and produces the mutant protein in high yield. In addition, the conjugation reaction can be conducted by simple mixing, and does not require additional reagents or linker molecules. Therefore, this method may prove very useful for generating protein-protein conjugates and protein complexes of biochemical significance. Copyright © 2016. Published by Elsevier Ltd.

  10. Dual peptide conjugation strategy for improved cellular uptake and mitochondria targeting.

    PubMed

    Lin, Ran; Zhang, Pengcheng; Cheetham, Andrew G; Walston, Jeremy; Abadir, Peter; Cui, Honggang

    2015-01-21

    Mitochondria are critical regulators of cellular function and survival. Delivery of therapeutic and diagnostic agents into mitochondria is a challenging task in modern pharmacology because the molecule to be delivered needs to first overcome the cell membrane barrier and then be able to actively target the intracellular organelle. Current strategy of conjugating either a cell penetrating peptide (CPP) or a subcellular targeting sequence to the molecule of interest only has limited success. We report here a dual peptide conjugation strategy to achieve effective delivery of a non-membrane-penetrating dye 5-carboxyfluorescein (5-FAM) into mitochondria through the incorporation of both a mitochondrial targeting sequence (MTS) and a CPP into one conjugated molecule. Notably, circular dichroism studies reveal that the combined use of α-helix and PPII-like secondary structures has an unexpected, synergistic contribution to the internalization of the conjugate. Our results suggest that although the use of positively charged MTS peptide allows for improved targeting of mitochondria, with MTS alone it showed poor cellular uptake. With further covalent linkage of the MTS-5-FAM conjugate to a CPP sequence (R8), the dually conjugated molecule was found to show both improved cellular uptake and effective mitochondria targeting. We believe these results offer important insight into the rational design of peptide conjugates for intracellular delivery.

  11. Nanostructured Conjugated Polymers for Energy-Related Applications beyond Solar Cells.

    PubMed

    Xie, Jian; Zhao, Cui-E; Lin, Zong-Qiong; Gu, Pei-Yang; Zhang, Qichun

    2016-05-20

    To meet the ever-increasing requirements for the next generation of sustainable and versatile energy-related devices, conjugated polymers, which have potential advantages over small molecules and inorganic materials, are among the most promising types of green candidates. The properties of conjugated polymers can be tuned through modification of the structure and incorporation of different functional moieties. In addition, superior performances can be achieved as a result of the advantages of nanostructures, such as their large surface areas and the shortened pathways for charge transfer. Therefore, nanostructured conjugated polymers with different properties can be obtained to be applied in different energy-related organic devices. This review focuses on the application and performance of the recently reported nanostructured conjugated polymers for high-performance devices, including rechargeable lithium batteries, microbial fuel cells (MFCs), thermoelectric generators, and photocatalytic systems. The design strategies, reaction mechanisms, advantages, and limitations of nanostructured conjugated polymers are further discussed in each section. Finally, possible routes to improve the performances of the current systems are also included in the conclusion. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Peptide-conjugated micelles as a targeting nanocarrier for gene delivery

    NASA Astrophysics Data System (ADS)

    Lin, Wen Jen; Chien, Wei Hsuan

    2015-09-01

    The aim of this study was to develop peptide-conjugated micelles possessing epidermal growth factor receptor (EGFR) targeting ability for gene delivery. A sequence-modified dodecylpeptide, GE11(2R), with enhancing EGF receptor binding affinity, was applied in this study as a targeting ligand. The active targeting micelles were composed of poly( d,l-lactide- co-glycolide)-poly(ethylene glycol) (PLGA-PEG) copolymer conjugated with GE11(2R)-peptide. The particle sizes of peptide-free and peptide-conjugated micelles were 277.0 ± 5.1 and 308.7 ± 14.5 nm, respectively. The peptide-conjugated micelles demonstrated the cellular uptake significantly higher than peptide-free micelles in EGFR high-expressed MDA-MB-231 and MDA-MB-468 cells due to GE11(2R)-peptide specificity. Furthermore, the peptide-conjugated micelles were able to encapsulate plasmid DNA and expressed cellular transfection higher than peptide-free micelles in EGFR high-expressed cells. The EGFR-targeting delivery micelles enhanced DNA internalized into cells and achieved higher cellular transfection in EGFR high-expressed cells.

  13. Intra-variant substructure in Ni–Mn–Ga martensite: Conjugation boundaries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Muntifering, B.; Pond, R. C.; Kovarik, L.

    2014-06-01

    The microstructure of a Ni–Mn–Ga alloy in the martensitic phase was investigated using transmission electron microscopy. Inter-variant twin boundaries were observed separating non-modulated tetragonal martensite variants. In addition, intra-variant boundary structures, referred to here as “conjugation boundaries”, were also observed. We propose that conjugation boundaries originate at the transformation interface between austenite and a nascent martensite variant. In the alloy studied, deformation twinning was observed, consistent with being the mode of lattice-invariant deformation, and this can occur on either of two crystallographically equivalent conjugate View the MathML source{101}(101⁻) twinning systems: conjugation boundaries separate regions within a single variant in whichmore » the active modes were distinct. The defect structure of conjugation boundaries and the low-angle of misorientation across them are revealed in detail using high-resolution microscopy. Finally, we anticipate that the mobility of such boundaries is lower than that of inter-variant boundaries, and is therefore likely to significantly affect the kinetics of deformation in the martensitic phase.« less

  14. Genome-Wide Identification, Phylogenetic and Expression Analyses of the Ubiquitin-Conjugating Enzyme Gene Family in Maize.

    PubMed

    Jue, Dengwei; Sang, Xuelian; Lu, Shengqiao; Dong, Chen; Zhao, Qiufang; Chen, Hongliang; Jia, Liqiang

    2015-01-01

    Ubiquitination is a post-translation modification where ubiquitin is attached to a substrate. Ubiquitin-conjugating enzymes (E2s) play a major role in the ubiquitin transfer pathway, as well as a variety of functions in plant biological processes. To date, no genome-wide characterization of this gene family has been conducted in maize (Zea mays). In the present study, a total of 75 putative ZmUBC genes have been identified and located in the maize genome. Phylogenetic analysis revealed that ZmUBC proteins could be divided into 15 subfamilies, which include 13 ubiquitin-conjugating enzymes (ZmE2s) and two independent ubiquitin-conjugating enzyme variant (UEV) groups. The predicted ZmUBC genes were distributed across 10 chromosomes at different densities. In addition, analysis of exon-intron junctions and sequence motifs in each candidate gene has revealed high levels of conservation within and between phylogenetic groups. Tissue expression analysis indicated that most ZmUBC genes were expressed in at least one of the tissues, indicating that these are involved in various physiological and developmental processes in maize. Moreover, expression profile analyses of ZmUBC genes under different stress treatments (4°C, 20% PEG6000, and 200 mM NaCl) and various expression patterns indicated that these may play crucial roles in the response of plants to stress. Genome-wide identification, chromosome organization, gene structure, evolutionary and expression analyses of ZmUBC genes have facilitated in the characterization of this gene family, as well as determined its potential involvement in growth, development, and stress responses. This study provides valuable information for better understanding the classification and putative functions of the UBC-encoding genes of maize.

  15. A nanodiamond-fluorescein conjugate for cell studies

    NASA Astrophysics Data System (ADS)

    Pedroso-Santana, Seidy; Fleitas-Salazar, Noralvis; Sarabia-Sainz, Andrei; Silva-Campa, Erika; Burgara-Estrella, Alexel; Angulo-Molina, Aracely; Melendrez, Rodrigo; Pedroza-Montero, Martin; Riera, Raul

    2018-03-01

    The use of nanodiamonds in studies with living systems generally involves the modification of their surfaces with functional groups. Fluorescent molecules can be attached to these groups, so that one can know the exact position of the particles in each moment of the interaction with the cells. Here we modify the surface of detonation nanodiamonds and nitrogen-vacancy center nanodiamonds using carboxylation and hydroxylation procedures. Subsequent reactions with silicates and cysteine, before addition of fluorescein allow to obtain fluorescent nano-conjugates. We used confocal microscopy to observe the position of nanodiamonds interacting with HeLa cells. At 3 h post-incubation the green fluorescence is localized in extracellular rounded like-vesicles assemblies while at 24 h the conjugates can be observed inside the cells. The measurement of the fluorescence emitted by both conjugates allowed to find an enhanced emission of fluorescein isothiocyanate (FITC) when the nitrogen-vacancy center is present. We propose the existence of a fluorescence enhancement by electron transference process. The procedure described in this work allows the functionalization of nanodiamonds with FITC and other molecules using functional surface groups and small size mediators. Also, as was proved in our work, the nanodiamond-fluorescein conjugates can be used to track nanoparticles position within the cell. Localization studies are particularly important for drug delivery applications of nanodiamonds.

  16. Women experiencing the intergenerationality of conjugal violence.

    PubMed

    Paixão, Gilvânia Patrícia do Nascimento; Gomes, Nadirlene Pereira; Diniz, Normélia Maria Freire; Carvalho e Lira, Margaret Ollinda de Souza; Carvalho, Milca Ramaiane da Silva; da Silva, Rudval Souza

    2015-01-01

    to analyze the family relationship, in childhood and adolescence, of women who experience conjugal violence. qualitative study. Interviews were held with 19 women, who were experiencing conjugal violence, and who were resident in a community in Salvador, Bahia, Brazil. The project was approved by the Research Ethics Committee (N. 42/2011). the data was organized using the Discourse of the Collective Subject, identifying the summary central ideas: they witnessed violence between their parents; they suffered repercussions from the violence between their parents: they were angry about the mother's submission to her partner; and they reproduced the conjugal violence. The discourse showed that the women witnessed, in childhood and adolescence, violence between their parents, and were injured both physically and psychologically. As a result of the mother's submission, feelings of anger arose in the children. However, in the adult phase of their own lives, they noticed that their conjugal life resembled that of their parents, reproducing the violence. investment is necessary in strategies designed to break inter-generational violence, and the health professionals are important in this process, as it is a phenomenon with repercussions in health. Because they work in the Family Health Strategy, which focuses on the prevention of harm and illness, health promotion and interdepartmentality, the nurses are essential in the process of preventing and confronting this phenomenon.

  17. Enzyme linked immunoassay with stabilized polymer saccharide enzyme conjugates

    DOEpatents

    Callstrom, Matthew R.; Bednarski, Mark D.; Gruber, Patrick R.

    1997-01-01

    An improvement in enzyme linked immunoassays is disclosed wherein the enzyme is in the form of a water soluble polymer saccharide conjugate which is stable in hostile environments. The conjugate comprises the enzyme which is linked to the polymer at multiple points through saccharide linker groups.

  18. Vacuolar transport of the glutathione conjugate of trans-cinnamic acid.

    PubMed

    Walczak, H A; Dean, J V

    2000-02-01

    Red beet (Beta vulgaris L.) tonoplast membrane vesicles and [14C]trans-cinnamic acid-glutatione were used to study the vacuolar transport of phynylpropanoid-glutathione conjugates which are formed in peroxidase-mediated reactions. It was determined that the uptake of [14C]trans-cinnamic acid-glutathione into the tonoplast membrane vesicles was MgATP dependent and was 10-fold faster than the uptake of non-conjugated [14C]trans-cinnamic acid. Uptake of the conjugate in the presence of MgATP was not dependent on a trans-tonoblast H+-electrochemical gradient, because uptake was not affected by the addition of NH4Cl (1 mM; 0% inhibition) and was only slightly affected by gramicidin-D (5 microM; 14% inhibition). Uptake of the conjugate was inhibited 92% by the addition of vanadate (1 mM) and 71% by the addition of the model substrate S-(2,4-dinitrophenyl) glutathione (500 microM). Uptake did not occur when a nonhydrolyzable analog of ATP was used in place of MgATP. The calculated Km and Vmax values for uptake were 142 microM amd 5.95 nmol mg(-1) min(-1), respectively. Based on these results, phenylpropanoid-glutation conjugates formed in peroxidase-mediated reactions appear to be transported into the vacuole by the glutathione S-conjugate pump(s) located in the tonoplast membrane.

  19. Docetaxel-albumin conjugates: preparation, in vitro evaluation and biodistribution studies.

    PubMed

    Esmaeili, Farnaz; Dinarvand, Rassoul; Ghahremani, Mohammad Hossein; Amini, Mohsen; Rouhani, Hasti; Sepehri, Nima; Ostad, Seyed Nasser; Atyabi, Fatemeh

    2009-08-01

    Docetaxel (DTX) is one of the most active chemotherapeutic agents for treating metastatic breast cancer. Its aqueous solubility is very low, hence the available formulation of DTX for clinical use consists of high concentrations of tween80, which has been associated with several hypersensitivity reactions. To reduce the systemic toxicity of DTX as well as to avoid the use of tween80, in this study DTX was chemically conjugated with human serum albumin via a succinic spacer. A high-performance liquid chromatography method was developed for the determination of DTX-albumin conjugate. T47D and SKOV3 cells were used for the evaluation of the in vitro cytotoxicity of the conjugate by MTT assay. Studies were then done on balb/c mice to elucidate the tissue distribution of conjugates after intravenous administration. The albumin-conjugated formulation of DTX with the particle size of 90-110 nm showed enhanced solubility and in vivo characteristics and significantly higher cytotoxicity against tumor cells, for example, IC50 of 6.30 +/- 0.73 nM for T47D cell line compared to free DTX with IC50 of 39.4 +/- 1.75 nM. Conjugation also maintained DTX plasma level at 16.19% up to 2 h after injection compared with 2.51% for Taxotere, hence increasing the chance of nanoparticles uptake by tumor cells. Copyright 2009 Wiley-Liss, Inc.

  20. Conjugate Relationships in Basic Electricity.

    ERIC Educational Resources Information Center

    Fisher, Kurt

    1999-01-01

    Presents an organization of seemingly disparate convention and procedure statements and rules of basic electricity into conjugate relationships which can be used to reduce students' memorization loads and improve their understanding. (WRM)

  1. Peptide- and saccharide-conjugated dendrimers for targeted drug delivery: a concise review

    PubMed Central

    Liu, Jie; Gray, Warren D.; Davis, Michael E.; Luo, Ying

    2012-01-01

    Dendrimers comprise a category of branched materials with diverse functions that can be constructed with defined architectural and chemical structures. When decorated with bioactive ligands made of peptides and saccharides through peripheral chemical groups, dendrimer conjugates are turned into nanomaterials possessing attractive binding properties with the cognate receptors. At the cellular level, bioactive dendrimer conjugates can interact with cells with avidity and selectivity, and this function has particularly stimulated interests in investigating the targeting potential of dendrimer materials for the design of drug delivery systems. In addition, bioactive dendrimer conjugates have so far been studied for their versatile capabilities to enhance stability, solubility and absorption of various types of therapeutics. This review presents a brief discussion on three aspects of the recent studies to use peptide- and saccharide-conjugated dendrimers for drug delivery: (i) synthesis methods, (ii) cell- and tissue-targeting properties and (iii) applications of conjugated dendrimers in drug delivery nanodevices. With more studies to elucidate the structure–function relationship of ligand–dendrimer conjugates in transporting drugs, the conjugated dendrimers hold promise to facilitate targeted delivery and improve drug efficacy for discovery and development of modern pharmaceutics. PMID:23741608

  2. Patterning of conjugated polymers for organic optoelectronic devices.

    PubMed

    Xu, Youyong; Zhang, Fan; Feng, Xinliang

    2011-05-23

    Conjugated polymers have been attracting more and more attention because they possess various novel electrical, magnetical, and optical properties, which render them useful in modern organic optoelectronic devices. Due to their organic nature, conjugated polymers are light-weight and can be fabricated into flexible appliances. Significant research efforts have been devoted to developing new organic materials to make them competitive with their conventional inorganic counterparts. It is foreseeable that when large-scale industrial manufacture of the devices made from organic conjugated polymers is feasible, they would be much cheaper and have more functions. On one hand, in order to improve the performance of organic optoelectronic devices, it is essential to tune their surface morphologies by techniques such as patterning. On the other hand, patterning is the routine requirement for device processing. In this review, the recent progress in the patterning of conjugated polymers for high-performance optoelectronic devices is summarized. Patterning based on the bottom-up and top-down methods are introduced. Emerging new patterning strategies and future trends for conventional patterning techniques are discussed. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. CONJUGATED POLYMERS AND POLYELECTROLYTES IN SOLAR PHOTOCONVERSION, Final Technical Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schanze, Kirk S

    2014-08-05

    This DOE-supported program investigated the fundamental properties of conjugated polyelectrolytes, with emphasis placed on studies of excited state energy transport, self-assembly into conjugated polyelectroyte (CPE) based films and colloids, and exciton transport and charge injection in CPE films constructed atop wide bandgap semiconductors. In the most recent grant period we have also extended efforts to examine the properties of low-bandgap donor-acceptor conjugated polyelectrolytes that feature strong visible light absorption and the ability to adsorb to metal-oxide interfaces.

  4. Development and application of nanoparticles synthesized with folic acid-conjugated soy protein

    USDA-ARS?s Scientific Manuscript database

    In this study, soy protein isolate (SPI) was conjugated with folic acid (FA) to prepare nanoparticles for target-specific drug delivery. Successful conjugation was evidenced by UV spectrophotometry and primary amino group analysis. An increase in count rate by at least 142% was observed in FA-conjug...

  5. Engineering Monolignol p-Coumarate Conjugates into Poplar and Arabidopsis Lignins1

    PubMed Central

    Smith, Rebecca A.; Gonzales-Vigil, Eliana; Karlen, Steven D.; Park, Ji-Young; Lu, Fachuang; Wilkerson, Curtis G.; Samuels, Lacey; Ralph, John; Mansfield, Shawn D.

    2015-01-01

    Lignin acylation, the decoration of hydroxyls on lignin structural units with acyl groups, is common in many plant species. Monocot lignins are decorated with p-coumarates by the polymerization of monolignol p-coumarate conjugates. The acyltransferase involved in the formation of these conjugates has been identified in a number of model monocot species, but the effect of monolignol p-coumarate conjugates on lignification and plant growth and development has not yet been examined in plants that do not inherently possess p-coumarates on their lignins. The rice (Oryza sativa) p-COUMAROYL-Coenzyme A MONOLIGNOL TRANSFERASE gene was introduced into two eudicots, Arabidopsis (Arabidopsis thaliana) and poplar (Populus alba × grandidentata), and a series of analytical methods was used to show the incorporation of the ensuing monolignol p-coumarate conjugates into the lignin of these plants. In poplar, specifically, the addition of these conjugates did not occur at the expense of the naturally incorporated monolignol p-hydroxybenzoates. Plants expressing the p-COUMAROYL-Coenzyme A MONOLIGNOL TRANSFERASE transgene can therefore produce monolignol p-coumarate conjugates essentially without competing with the formation of other acylated monolignols and without drastically impacting normal monolignol production. PMID:26511914

  6. Synthesis and Characterization of Water-soluble Conjugates of Cabazitaxel Hemiesters-Dextran.

    PubMed

    Parhizkar, Elahehnaz; Ahmadi, Fatemeh; Daneshamouz, Saeid; Mohammadi-Samani, Soliman; Sakhteman, Amirhossein; Parhizkar, Golnaz

    2017-11-24

    Cabazitaxel (CTX) is a second- generation taxane derivative, a class of potent anticancer drugs with very low water solubility. CTX is used in patients with resistant prostate cancer unresponsive to the first generation taxane, docetaxel. Currently marketed formulations of CTX contain high concentrations of surfactant and ethanol, which cause severe hypersensitivity reactions in patients. In order to increase its solubility, two hemiester analogs; CTX-succinate and CTX-glutarate were synthesized and characterized. To improve the solubility of hemiesters even more, dextran as a biocompatible polymer was also conjugated to hemiester analogs. MTT assay was performed on MCF-7 cell line to evaluate the cytotoxicity effect of hemiesters and conjugates. Based on the results, hemiester analogs increased water solubility of the drug up to about 3 and 8 fold. Conjugation to dextran enhanced the CTX solubility to more than 1500 fold. These conjugates released the conjugated CTX in less than 24 hours in a pH dependent manner and showed proper hemocompatibility characteristics. The hemiesters had approximately similar cytotoxicity in comparison with CTX and the dextran conjugates showed higher cytotoxicity effect on MCF-7 cell line. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  7. Conjugation Approach To Produce a Staphylococcus aureus Synbody with Activity in Serum.

    PubMed

    Lainson, John C; Fuenmayor, Mariana Ferrer; Johnston, Stephen Albert; Diehnelt, Chris W

    2015-10-21

    Synbodies show promise as a new class of synthetic antibiotics. Here, we explore improvements in their activity and production through conjugation chemistry. Maleimide conjugation is a widely used conjugation strategy due to its high yield, selectivity, and low cost. We used this strategy to conjugate two antibacterial peptides to produce a bivalent antibacterial peptide, called a synbody that has bactericidal activity against methicillin resistant Staphylococcus aureus (MRSA). The synbody was prepared by conjugation of a partially d-amino acid substituted synthetic antibacterial peptide to a bis-maleimide scaffold. The synbody slowly degrades in serum, but also undergoes exchange reactions with other serum proteins, such as albumin. Therefore, we hydrolyzed the thiosuccinimide ring using a mild hydrolysis protocol to produce a new synbody with similar bactericidal activity. The synbody was now resistant to exchange reactions and maintained bactericidal activity in serum for 2 h. This work demonstrates that low-cost maleimide coupling can be used to produce antibacterial peptide conjugates with activity in serum.

  8. Enzyme linked immunoassay with stabilized polymer saccharide enzyme conjugates

    DOEpatents

    Callstrom, M.R.; Bednarski, M.D.; Gruber, P.R.

    1997-11-25

    An improvement in enzyme linked immunoassays is disclosed wherein the enzyme is in the form of a water soluble polymer saccharide conjugate which is stable in hostile environments. The conjugate comprises the enzyme which is linked to the polymer at multiple points through saccharide linker groups. 19 figs.

  9. Degradable conjugated polymers for the selective sorting of semiconducting carbon nanotubes

    DOEpatents

    Gopalan, Padma; Arnold, Michael Scott; Kansiusarulsamy, Catherine Kanimozhi; Brady, Gerald Joseph; Shea, Matthew John

    2018-04-10

    Conjugated polymers composed of bi-pyridine units linked to 9,9-dialkyl fluorenyl-2,7-diyl units via imine linkages along the polymer backbone are provided. Also provided are semiconducting single-walled carbon nanotubes coated with the conjugated polymers and methods of sorting and separating s-SWCNTs from a sample comprising a mixture of s-SWCNTs and metallic single-walled carbon nanotubes using the conjugated polymers.

  10. A rapid approach for characterization of thiol-conjugated antibody-drug conjugates and calculation of drug-antibody ratio by liquid chromatography mass spectrometry.

    PubMed

    Firth, David; Bell, Leonard; Squires, Martin; Estdale, Sian; McKee, Colin

    2015-09-15

    We present the demonstration of a rapid "middle-up" liquid chromatography mass spectrometry (LC-MS)-based workflow for use in the characterization of thiol-conjugated maleimidocaproyl-monomethyl auristatin F (mcMMAF) and valine-citrulline-monomethyl auristatin E (vcMMAE) antibody-drug conjugates. Deconvoluted spectra were generated following a combination of deglycosylation, IdeS (immunoglobulin-degrading enzyme from Streptococcus pyogenes) digestion, and reduction steps that provide a visual representation of the product for rapid lot-to-lot comparison-a means to quickly assess the integrity of the antibody structure and the applied conjugation chemistry by mass. The relative abundance of the detected ions also offer information regarding differences in drug conjugation levels between samples, and the average drug-antibody ratio can be calculated. The approach requires little material (<100 μg) and, thus, is amenable to small-scale process development testing or as an early component of a complete characterization project facilitating informed decision making regarding which aspects of a molecule might need to be examined in more detail by orthogonal methodologies. Copyright © 2015 Elsevier Inc. All rights reserved.

  11. Nanohybrid conjugated polyelectrolytes: highly photostable and ultrabright nanoparticles

    NASA Astrophysics Data System (ADS)

    Darwish, Ghinwa H.; Karam, Pierre

    2015-09-01

    We present a general and straightforward one-step approach to enhance the photophysical properties of conjugated polyelectrolytes. Upon complexation with an amphiphilic polymer (polyvinylpyrrolidone), an anionic conjugated polyelectrolyte (poly[5-methoxy-2-(3-sulfopropoxy)-1,4-phenylenevinylene]) was prepared into small nanoparticles with exceptional photostability and brightness. The polymer fluorescence intensity was enhanced by 23 -fold and could be easily tuned by changing the order of addition. Single molecule experiments revealed a complete suppression of blinking. In addition, after only losing 18% of the original intensity, a remarkable amount of photons were emitted per particle (~109, on average). This number is many folds greater than popular organic fluorescent dyes. We believe that an intimate contact between the two polymers is shielding the conjugated polyelectrolyte from the destructive photooxidation. The prepared nanohybrid particles will prove instrumental in single particle based fluorescent assays and can serve as a probe for the current state-of-the-art bioimaging fluorescence techniques.We present a general and straightforward one-step approach to enhance the photophysical properties of conjugated polyelectrolytes. Upon complexation with an amphiphilic polymer (polyvinylpyrrolidone), an anionic conjugated polyelectrolyte (poly[5-methoxy-2-(3-sulfopropoxy)-1,4-phenylenevinylene]) was prepared into small nanoparticles with exceptional photostability and brightness. The polymer fluorescence intensity was enhanced by 23 -fold and could be easily tuned by changing the order of addition. Single molecule experiments revealed a complete suppression of blinking. In addition, after only losing 18% of the original intensity, a remarkable amount of photons were emitted per particle (~109, on average). This number is many folds greater than popular organic fluorescent dyes. We believe that an intimate contact between the two polymers is shielding the

  12. Functional properties of nisin-carbohydrate conjugates formed by radiation induced Maillard reaction

    NASA Astrophysics Data System (ADS)

    Muppalla, Shobita R.; Sonavale, Rahul; Chawla, Surinder P.; Sharma, Arun

    2012-12-01

    Nisin-carbohydrate conjugates were prepared by irradiating nisin either with glucose or dextran. Increase in browning and formation of intermediate products was observed with a concomitant decrease in free amino and reducing sugar groups indicating occurrence of the Maillard reaction catalyzed by irradiation. Nisin-carbohydrate conjugates showed a broad spectrum antibacterial activity against Gram negative bacteria (Escherichia coli, Pseudomonas fluorescence) as well as Gram positive bacteria (Staphylococcus aureus, Bacillus cereus). Results of antioxidant assays, including that of DPPH radical-scavenging activity and reducing power, showed that the nisin-dextran conjugates possessed better antioxidant potential than nisin-glucose conjugate. These results suggested that it was possible to enhance the functional properties of nisin by preparing radiation induced conjugates suitable for application in food industry.

  13. Conjugation in "Escherichia coli"

    ERIC Educational Resources Information Center

    Phornphisutthimas, Somkiat; Thamchaipenet, Arinthip; Panijpan, Bhinyo

    2007-01-01

    Bacterial conjugation is a genetic transfer that involves cell-to-cell between donor and recipient cells. With the current method used to teach students in genetic courses at the undergraduate level, the transconjugants are identified using bacterial physiology and/or antibiotic resistance. Using physiology, however, is difficult for both…

  14. pH-responsive fluorescence chemical sensor constituted by conjugated polymers containing pyridine rings.

    PubMed

    Adachi, Naoya; Kaneko, Yuki; Sekiguchi, Kazuki; Sugiyama, Hiroki; Sugeno, Masafumi

    2015-12-01

    Poly(p-pyridinium phenylene ethynylene)s (PPyPE) functionalized with alternating donor-acceptor repeat units were synthesized by a Pd-catalyzed Sonogashira coupling reaction between diethynyl monomer and di-iodopyridine for use as a pH-responsive fluorescence chemical sensor. The synthesized PPyPE, containing pyridine units, was characterized by FT-IR, (1)H and (13)C NMR, UV-visible and fluorescence spectroscopies. We investigated the relationship between changes of optical properties and protonation/deprotonation of PPyPE containing pyridine units in solution. Addition of HCl decreased and red-shifted the fluorescence intensity of the conjugated polymers that contained pyridine rings; fluorescence intensity of the polymers increased upon addition of NaOH solution. The synthesized PPyPE was found to be an effective and reusable chemical sensor for pH sensing. Copyright © 2015 John Wiley & Sons, Ltd.

  15. Conjugated polymers: Watching polymers dance

    NASA Astrophysics Data System (ADS)

    Rothberg, Lewis

    2011-06-01

    Single-molecule spectroscopy allows fluctuations of conjugated polymer conformation to be monitored during solvent vapour annealing. Dramatic changes in fluorescence behaviour are observed and interpreted in terms of transformations between extended and collapsed polymer geometries.

  16. Interactions of Nitroxide-Conjugated and Non-Conjugated Glycodendrimers with Normal and Cancer Cells and Biocompatibility Studies.

    PubMed

    Andreozzi, Elisa; Antonelli, Antonella; Cangiotti, Michela; Canonico, Barbara; Sfara, Carla; Pianetti, Anna; Bruscolini, Francesca; Sahre, Karin; Appelhans, Dietmar; Papa, Stefano; Ottaviani, Maria Francesca

    2017-02-15

    Poly(propyleneimine) glycodendrimers fully modified with maltose units were administered to different cancer cell lines and their effect on cell viability was evaluated by using MTS assay and flow cytometry. The mechanism of dendrimer-cell interactions was investigated by the electron paramagnetic resonance (EPR) technique by using a new nitroxide-conjugated glycodendrimer. The nitroxide groups did not modify both the biological properties (cell viability and apoptosis degree) of the dendrimers in the presence of the cells and the dendrimer-cell interactions. Since this class of dendrimers is already known to be biocompatible for human healthy cells, noncancer cells such as human peripheral blood mononuclear cells (PBMCs) and macrophages were also treated with the glycodendrimer, and EPR spectra of the nitroxide-conjugated glycodendrimer were compared for cancer and noncancer cells. It was found that this dendrimer selectively affects the cell viability of tumor cells, while, surprisingly, PBMC proliferation is induced. Moreover, H-bond-active glycodendrimer-cell interactions were different for the different cancer cell lines and noncancer cells. The nitroxide-conjugated glycodendrimer was able to interact with the cell membrane and eventually cross it, getting in contact with cytosol antioxidants. This study helps to clarify the potential anticancer effect of this class of dendrimers opening to future applications of these macromolecules as new antitumor agents.

  17. Targeting Tumor Associated Phosphatidylserine with New Zinc Dipicolylamine-Based Drug Conjugates.

    PubMed

    Liu, Yu-Wei; Shia, Kak-Shan; Wu, Chien-Huang; Liu, Kuan-Liang; Yeh, Yu-Cheng; Lo, Chen-Fu; Chen, Chiung-Tong; Chen, Yun-Yu; Yeh, Teng-Kuang; Chen, Wei-Han; Jan, Jiing-Jyh; Huang, Yu-Chen; Huang, Chen-Lung; Fang, Ming-Yu; Gray, Brian D; Pak, Koon Y; Hsu, Tsu-An; Huang, Kuan-Hsun; Tsou, Lun K

    2017-07-19

    A series of zinc(II) dipicolylamine (ZnDPA)-based drug conjugates have been synthesized to probe the potential of phosphatidylserine (PS) as a new antigen for small molecule drug conjugate (SMDC) development. Using in vitro cytotoxicity and plasma stability studies, PS-binding assay, in vivo pharmacokinetic studies, and maximum tolerated dose profiles, we provided a roadmap and the key parameters required for the development of the ZnDPA based drug conjugate. In particular, conjugate 24 induced tumor regression in the COLO 205 xenograft model and exhibited a more potent antitumor effect with a 70% reduction of cytotoxic payload compared to that of the marketed irinotecan when dosed at the same regimen. In addition to the validation of PS as an effective pharmacodelivery target for SMDC, our work also provided the foundation that, if applicable, a variety of therapeutic agents could be conjugated in the same manner to treat other PS-associated diseases.

  18. Magnetic catechin-dextran conjugate as targeted therapeutic for pancreatic tumour cells.

    PubMed

    Vittorio, Orazio; Voliani, Valerio; Faraci, Paolo; Karmakar, Biswajit; Iemma, Francesca; Hampel, Silke; Kavallaris, Maria; Cirillo, Giuseppe

    2014-06-01

    Catechin-dextran conjugates have recently attracted a lot of attention due to their anticancer activity against a range of cancer cells. Magnetic nanoparticles have the ability to concentrate therapeutically important drugs due to their magnetic-spatial control and provide opportunities for targeted drug delivery. Enhancement of the anticancer efficiency of catechin-dextran conjugate by functionalisation with magnetic iron oxide nanoparticles. Modification of the coating shell of commercial magnetic nanoparticles (Endorem) composed of dextran with the catechin-dextran conjugate. Catechin-dextran conjugated with Endorem (Endo-Cat) increased the intracellular concentration of the drug and it induced apoptosis in 98% of pancreatic tumour cells placed under magnetic field. The conjugation of catechin-dextran with Endorem enhances the anticancer activity of this drug and provides a new strategy for targeted drug delivery on tumour cells driven by magnetic field. The ability to spatially control the delivery of the catechin-dextran by magnetic field makes it a promising agent for further application in cancer therapy.

  19. Development of Tat-Conjugated Dendrimer for Transdermal DNA Vaccine Delivery.

    PubMed

    Bahadoran, Azadeh; Moeini, Hassan; Bejo, Mohd Hair; Hussein, Mohd Zobir; Omar, Abdul Rahman

    In order to enhance cellular uptake and to facilitate transdermal delivery of DNA vaccine, polyamidoamine (PAMAM) dendrimers conjugated with HIV transactivator of transcription (TAT) was developed. First, the plasmid DNA (pIRES-H5/GFP) nanoparticle was formulated using PAMAM dendrimer and TAT peptide and then characterized for surface charge, particle size, DNA encapsulation and protection of the pIRES-H5/GFP DNA plasmid to enzymatic digestion. Subsequently, the potency of the TAT-conjugated dendrimer for gene delivery was evaluated through in vitro transfection into Vero cells followed by gene expression analysis including western blotting, fluorescent microscopy and PCR. The effect of the TAT peptide on cellular uptake of DNA vaccine was studied by qRT-PCR and flow cytometry. Finally, the ability of TAT-conjugated PAMAM dendrimer for transdermal delivery of the DNA plasmid was assessed through artificial membranes followed by qRT-PCR and flow cytometry. TAT-conjugated PAMAM dendrimer showed the ability to form a compact and nanometre-sized polyplexes with the plasmid DNA, having the size range of 105 to 115 nm and a positive charge of +42 to +45 mV over the N/P ratio of 6:1(+/-).  In vitro transfection analysis into Vero cells confirms the high potency of TAT-conjugated PAMAM dendrimer to enhance the cellular uptake of DNA vaccine.  The permeability value assay through artificial membranes reveals that TAT-conjugated PAMAM has more capacity for transdermal delivery of the DNA compared to unmodified PAMAM dendrimer (P<0.05). The findings of this study suggest that TAT-conjugated PAMAM dendrimer is a promising non-viral vector for transdermal use.This article is open to POST-PUBLICATION REVIEW. Registered readers (see "For Readers") may comment by clicking on ABSTRACT on the issue's contents page.

  20. Acetylation of aromatic cysteine conjugates by recombinant human N-acetyltransferase 8.

    PubMed

    Deol, Reema; Josephy, P David

    2017-03-01

    1. The mercapturic acid (MA) pathway is a metabolic route for the processing of glutathione conjugates to MA (N-acetylcysteine conjugates). An N-acetyltransferase enzyme, NAT8, catalyzes the transfer of an acetyl group from acetyl-CoA to the cysteine amino group, producing a MA, which is excreted in the urine. We expressed human NAT8 in HEK293T cells and developed an HPLC-MS method for the quantitation of the S-aryl-substituted cysteine conjugates and their MA. 2. We measured the activity of the enzyme for acetylation of benzyl-, 4-nitrobenzyl-, and 1-menaphthylcysteine substrates. 3. NAT8 catalyzed the acetylation of all three cysteine conjugates with similar Michaelis-Menten kinetics.

  1. Curcumin conjugated silica nanoparticles for improving bioavailability and its anticancer applications.

    PubMed

    Gangwar, Rajesh K; Tomar, Geetanjali B; Dhumale, Vinayak A; Zinjarde, Smita; Sharma, Rishi B; Datar, Suwarna

    2013-10-09

    Curcumin, a yellow bioactive component of Indian spice turmeric, is known to have a wide spectrum of biological applications. In spite of various astounding therapeutic properties, it lacks in bioavailability mainly due to its poor solubility in water. In this work, we have conjugated curcumin with silica nanoparticles to improve its aqueous solubility and hence to make it more bioavailable. Conjugation and loading of curcumin with silica nanoparticles was further examined with transmission electron microscope (TEM) and thermogravimetric analyzer. Cytotoxicity analysis of synthesized silica:curcumin conjugate was studied against HeLa cell lines as well as normal fibroblast cell lines. This study shows that silica:curcumin conjugate has great potential for anticancer application.

  2. Antimicrobial lubricant formulations containing poly(hydroxybenzene)-trimethoprim conjugates synthesized by tyrosinase.

    PubMed

    Gonçalves, Idalina; Botelho, Cláudia M; Teixeira, Ana; Abreu, Ana S; Hilliou, Loïc; Silva, Carla; Cavaco-Paulo, Artur

    2015-05-01

    Poly(hydroxybenzene)-trimethoprim conjugates were prepared using methylparaben as substrate of the oxidative enzyme tyrosinase. MALDI-TOF MS analysis showed that the enzymatic oxidation of methylparaben alone leads to the poly(hydroxybenzene) formation. In the presence of trimethoprim, the methylparaben tyrosinase oxidation leads poly(hydroxybenzene)-trimethoprim conjugates. All of these compounds were incorporated into lubricant hydroxyethyl cellulose/glycerol mixtures. Poly(hydroxybenzene)-trimethoprim conjugates were the most effective phenolic structures against the bacterial growth reducing by 96 and 97% of Escherichia coli and Staphylococcus epidermidis suspensions, respectively (after 24 h). A novel enzymatic strategy to produce antimicrobial poly(hydroxybenzene)-antibiotic conjugates is proposed here for a wide range of applications on the biomedical field.

  3. Are conjugated linolenic acid isomers an alternative to conjugated linoleic acid isomers in obesity prevention?

    PubMed

    Miranda, Jonatan; Arias, Noemi; Fernández-Quintela, Alfredo; del Puy Portillo, María

    2014-04-01

    Despite its benefits, conjugated linoleic acid (CLA) may cause side effects after long-term administration. Because of this and the controversial efficacy of CLA in humans, alternative biomolecules that may be used as functional ingredients have been studied in recent years. Thus, conjugated linolenic acid (CLNA) has been reported to be a potential anti-obesity molecule which may have additional positive effects related to obesity. According to the results reported in obesity, CLNA needs to be given at higher doses than CLA to be effective. However, because of the few studies conducted so far, it is still difficult to reach clear conclusions about the potential use of these CLNAs in obesity and its related changes (insulin resistance, dyslipidemia, or inflammation). Copyright © 2012 SEEN. Published by Elsevier Espana. All rights reserved.

  4. [Relationship between family variables and conjugal adjustment].

    PubMed

    Jiménez-Picón, Nerea; Lima-Rodríguez, Joaquín-Salvador; Lima-Serrano, Marta

    2018-04-01

    To determine whether family variables, such as type of relationship, years of marriage, existence of offspring, number of members of family, stage of family life cycle, transition between stages, perceived social support, and/or stressful life events are related to conjugal adjustment. A cross-sectional and correlational study using questionnaires. Primary care and hospital units of selected centres in the province of Seville, Spain. Consecutive stratified sampling by quotas of 369 heterosexual couples over 18years of age, who maintained a relationship, with or without children, living in Seville. A self-report questionnaire for the sociodemographic variables, and the abbreviated version of the Dyadic Adjustment Scale, Questionnaire MOS Perceived Social Support, and Social Readjustment Rating Scale, were used. Descriptive and inferential statistics were performed with correlation analysis and multivariate regression. Statistically significant associations were found between conjugal adjustment and marriage years (r=-10: P<.05), stage of family life cycle (F=2.65; P<.05), the transition between stages (RPB=.11; P<.05) and perceived social support (r=.44; P<.001). The regression model showed the predictive power of perceived social support and the family life cycle stage (mature-aged stage) on conjugal adjustment (R2=.21; F=9.9; df=356; P<.001). Couples may be assessed from Primary Care and be provide with resources and support. In addition, it can identify variables that may help improve the conjugal relationship. Copyright © 2017 Elsevier España, S.L.U. All rights reserved.

  5. Immunochemical Parameters of Some Commercial Conjugates for the Fluorescent Treponemal Antibody-Absorption Test

    PubMed Central

    Hunter, E. F.; Smith, J. F.; Lewis, J. S.; McGrew, B. E.; Schmale, J. D.

    1972-01-01

    Fluorescein-labeled anti-human globulins were examined to determine the need for standardization of conjugates used in the fluorescent treponemal antibody-absorption (FTA-ABS) test. Twenty-one of 33 conjugates submitted by commercial manufacturers to the Reagents Control Activity, Venereal Disease Research Laboratory, for evaluation in the FTA-ABS test were available for study. Conjugates, after evaluation in FTA-ABS performance tests, were examined by immunoelectrophoresis, by titration against immunoglobulins G and M (IgG, IgM) with FTA-ABS techniques, and by the biuret protein and fluorescein diacetate methods for determining fluorescein to protein (F/P) ratios. The conjugates were predominately anti-IgG globulin with anti-light-chain activity. Differences were noted in the ability of some conjugates to detect IgM antibody. The F/P ratios of those conjugates that could be determined varied from 2.6 to 17.8 μg of fluorescein per mg of protein. The need to identify and standardize both the immunologic capabilities and the optimum F/P ratio for FTA-ABS test conjugates is presented. PMID:4564403

  6. Conjugation of curcumin onto hyaluronic acid enhances its aqueous solubility and stability.

    PubMed

    Manju, S; Sreenivasan, K

    2011-07-01

    Polymer-drug conjugates have gained much attention largely to circumvent lower drug solubility and to enhance drug stability. Curcumin is widely known for its medicinal properties including its anticancer efficacy. One of the serious drawbacks of curcumin is its poor water solubility which leads to reduced bioavailability. With a view to address these issues, we synthesized hyaluronic acid-curcumin (HA-Cur) conjugate. The drug conjugate was characterized using FT-IR, NMR, Dynamic light scattering and TEM techniques. The conjugates, interestingly found to assembles as micelles in aqueous phase. The formation of micelles seems to improve the stability of the drug in physiological pH. We also assessed cytotoxicity of the conjugate using L929 fibroblast cells and quantified by MTT assay. Copyright © 2011 Elsevier Inc. All rights reserved.

  7. Optimization of condition for conjugation of enrofloxacin to enzymes in chemiluminescence enzyme immunoassay

    NASA Astrophysics Data System (ADS)

    Yu, Songcheng; Yu, Fei; Zhang, Hongquan; Qu, Lingbo; Wu, Yongjun

    2014-06-01

    In this study, in order to find out a proper method for conjugation of enrofloxacin to label enzymes, two methods were compared and carbodiimide condensation was proved to be better. The results showed that the binding ratio of enrofloxacin and alkaline phosphatase (ALP) was 8:1 and that of enrofloxacin and horseradish peroxidase (HRP) was 5:1. This indicated that conjugate synthesized by carbodiimide condensation was fit for chemiluminescence enzyme immunoassay (CLEIA). Furthermore, data revealed that dialysis time was an important parameter for conjugation and 6 days was best. Buffer to dilute conjugate had little effect on CLEIA. The storage condition for conjugates was also studied and it was shown that the conjugate was stable at 4 °C with no additive up to 30 days. These data were valuable for establishing CLEIA to quantify enrofloxacin.

  8. Integrative and conjugative elements and their hosts: composition, distribution and organization

    PubMed Central

    Touchon, Marie; Rocha, Eduardo P. C.

    2017-01-01

    Abstract Conjugation of single-stranded DNA drives horizontal gene transfer between bacteria and was widely studied in conjugative plasmids. The organization and function of integrative and conjugative elements (ICE), even if they are more abundant, was only studied in a few model systems. Comparative genomics of ICE has been precluded by the difficulty in finding and delimiting these elements. Here, we present the results of a method that circumvents these problems by requiring only the identification of the conjugation genes and the species’ pan-genome. We delimited 200 ICEs and this allowed the first large-scale characterization of these elements. We quantified the presence in ICEs of a wide set of functions associated with the biology of mobile genetic elements, including some that are typically associated with plasmids, such as partition and replication. Protein sequence similarity networks and phylogenetic analyses revealed that ICEs are structured in functional modules. Integrases and conjugation systems have different evolutionary histories, even if the gene repertoires of ICEs can be grouped in function of conjugation types. Our characterization of the composition and organization of ICEs paves the way for future functional and evolutionary analyses of their cargo genes, composed of a majority of unknown function genes. PMID:28911112

  9. Physicochemical properties of β-carotene emulsions stabilized by chlorogenic acid-lactoferrin-glucose/polydextrose conjugates.

    PubMed

    Liu, Fuguo; Wang, Di; Xu, Honggao; Sun, Cuixia; Gao, Yanxiang

    2016-04-01

    In this study, the influence of chlorogenic acid (CA)-lactoferrin (LF)-glucose (Glc) conjugate and CA-LF-polydextrose (PD) conjugate on the physicochemical characteristics of β-carotene emulsions was investigated. Novel emulsifiers were formed during Maillard reaction between CA-LF conjugate and Glc/PD. The physicochemical properties of β-carotene emulsions were characterized by droplet size, ζ-potential, rheological behavior, transmission changes during centrifugal sedimentation and β-carotene degradation. Results showed that the covalent attachment of Glc or PD to CA-LF conjugate effectively increased the hydrophilicity of the oil droplets surfaces and strengthened the steric repulsion between the oil droplets. Glucose was better than polydextrose for the conjugation with CA-LF conjugate to stabilize β-carotene emulsions. In comparison with LF and CA-LF-Glc/PD mixtures, CA-LF-Glc/PD ternary conjugates exhibited better emulsifying properties and improved physical stability of β-carotene emulsions during the freeze-thaw treatment. In addition, CA-LF-Glc/PD conjugates significantly enhanced chemical stability of β-carotene in the emulsions against ultraviolet light exposure. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Recent Advances in Conjugated Polymer Materials for Disease Diagnosis.

    PubMed

    Lv, Fengting; Qiu, Tian; Liu, Libing; Ying, Jianming; Wang, Shu

    2016-02-10

    The extraordinary optical amplification and light-harvesting properties of conjugated polymers impart sensing systems with higher sensitivity, which meets the primary demands of early cancer diagnosis. Recent advances in the detection of DNA methylation and mutation with polyfluorene derivatives based fluorescence resonance energy transfer (FRET) as a means to modulate fluorescent responses attest to the great promise of conjugated polymers as powerful tools for the clinical diagnosis of diseases. To facilitate the ever-changing needs of diagnosis, the development of detection approaches and FRET signal analysis are highlighted in this review. Due to their exceptional brightness, excellent photostability, and low or absent toxicity, conjugated polymers are verified as superior materials for in-vivo imaging, and provide feasibility for future clinical molecular-imaging applications. The integration of conjugated polymers with clinical research has shown profound effects on diagnosis for the early detection of disease-related biomarkers, as well as in-vivo imaging, which leads to a multidisciplinary scientific field with perspectives in both basic research and application issues. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Homology among tet determinants in conjugative elements of streptococci.

    PubMed Central

    Smith, M D; Hazum, S; Guild, W R

    1981-01-01

    A mutation to tetracycline sensitivity in a resistant strain of Streptococcus pneumoniae was shown by several criteria to be due to a point mutation in the conjugative omega (cat-tet) element found in the chromosomes of strains derived from BM6001, a clinical strain resistant to tetracycline and chloramphenicol. Strains carrying the mutation were transformed back to tetracycline resistance with the high efficiency of a point marker by donor deoxyribonucleic acids from its ancestral strain and from nine other clinical isolates of pneumococcus and by deoxyribonucleic acids from group D Streptococcus faecalis and group B Streptococcus agalactiae strains that also carry conjugative tet elements in their chromosomes. It was not transformed to resistance by tet plasmid deoxyribonucleic acids from either gram-negative or gram-positive species, except for one that carried transposon Tn916, the conjugative tet element present in the chromosomes of some S. faecalis strains. The results showed that the tet determinants in conjugative elements of several streptococcal species share a high degree of deoxyribonucleic acid sequence homology and suggested that they differ from other tet genes. PMID:6270063

  12. Parallel conjugate gradient algorithms for manipulator dynamic simulation

    NASA Technical Reports Server (NTRS)

    Fijany, Amir; Scheld, Robert E.

    1989-01-01

    Parallel conjugate gradient algorithms for the computation of multibody dynamics are developed for the specialized case of a robot manipulator. For an n-dimensional positive-definite linear system, the Classical Conjugate Gradient (CCG) algorithms are guaranteed to converge in n iterations, each with a computation cost of O(n); this leads to a total computational cost of O(n sq) on a serial processor. A conjugate gradient algorithms is presented that provide greater efficiency using a preconditioner, which reduces the number of iterations required, and by exploiting parallelism, which reduces the cost of each iteration. Two Preconditioned Conjugate Gradient (PCG) algorithms are proposed which respectively use a diagonal and a tridiagonal matrix, composed of the diagonal and tridiagonal elements of the mass matrix, as preconditioners. Parallel algorithms are developed to compute the preconditioners and their inversions in O(log sub 2 n) steps using n processors. A parallel algorithm is also presented which, on the same architecture, achieves the computational time of O(log sub 2 n) for each iteration. Simulation results for a seven degree-of-freedom manipulator are presented. Variants of the proposed algorithms are also developed which can be efficiently implemented on the Robot Mathematics Processor (RMP).

  13. Target binding improves relaxivity in aptamer-gadolinium conjugates.

    PubMed

    Bernard, Elyse D; Beking, Michael A; Rajamanickam, Karunanithi; Tsai, Eve C; Derosa, Maria C

    2012-12-01

    MRI contrast agents (CA) have been heavily used over the past several decades to enhance the diagnostic value of the obtained images. From a design perspective, two avenues to improve the efficacy of contrast agents are readily evident: optimization of magnetic properties of the CA, and optimization of the pharmacokinetics and distribution of the CA in the patient. Contrast agents consisting of DNA aptamer-gadolinium(III) conjugates provide a single system in which these factors can be addressed simultaneously. In this proof-of-concept study, the 15mer thrombin aptamer was conjugated to diethylenetriaminepentaacetic (DTPA) dianhydride to form a monoamide derivative of the linear open-chain chelate present in the commonly used contrast agent Magnevist(®). The stability of the conjugated DNA aptamer-DTPA-Gd(III) chelate in a transmetallation study using Zn(II) was found to be similar to that reported for DTPA-Gd(III). Relaxivity enhancements of 35 ± 4 and 20 ± 1 % were observed in the presence of thrombin compared to a control protein at fields of 9.4 and 1.5 T, respectively. The inclusion of spacers between the aptamer and the DTPA to eliminate possible steric effects was also investigated but not found to improve the relaxation enhancement achieved in comparison to the unaltered aptamer conjugate.

  14. HER2 specific delivery of methotrexate by dendrimer conjugated anti-HER2 mAb

    NASA Astrophysics Data System (ADS)

    Shukla, Rameshwer; Thomas, Thommey P.; Desai, Ankur M.; Kotlyar, Alina; Park, Steve J.; Baker, James R., Jr.

    2008-07-01

    Herceptin, a humanized monoclonal antibody that binds to human growth factor receptor-2 (HER2), was covalently attached to a fifth-generation (G5) polyamidoamine dendrimer containing the cytotoxic drug methotrexate. The specific binding and internalization of this conjugate labeled with FITC was clearly demonstrated in cell lines overexpressing HER2 by flow cytometry as well as confocal microscopic analysis. In addition, binding and uptake of antibody conjugated dendrimers was completely blocked by excess non-conjugated herceptin. The dendrimer conjugate was also shown to inhibit the dihydrofolate reductase with similar activity to methotrexate. Co-localization experiments with lysotracker red indicate that antibody conjugate, although internalized efficiently into cells, has an unusually long residence time in the lysosome. Somewhat lower cytotoxicity of the conjugate in comparison to free methotrexate was attributed to the slow release of methotrexate from the conjugate and its long retention in the lysosomal pocket.

  15. A self-assembling nanomedicine of conjugated linoleic acid-paclitaxel conjugate (CLA-PTX) with higher drug loading and carrier-free characteristic

    NASA Astrophysics Data System (ADS)

    Zhong, Ting; Yao, Xin; Zhang, Shuang; Guo, Yang; Duan, Xiao-Chuan; Ren, Wei; Dan Huang; Yin, Yi-Fan; Zhang, Xuan

    2016-11-01

    The main objective of this study was to demonstrate the proof-of-principle for the hypothesis that conjugated linoleic acid-paclitaxel conjugate (CLA-PTX), a novel fatty acid modified anti-cancer drug conjugate, could self-assemble forming nanoparticles. The results indicated that a novel self-assembling nanomedicine, CLA-PTX@PEG NPs (about 105 nm), with Cremophor EL (CrEL)-free and organic solvent-free characteristics, was prepared by a simple precipitation method. Being the ratio of CLA-PTX:DSPE-PEG was only 1:0.1 (w/w), the higher drug loading CLA-PTX@PEG NPs (about 90%) possessed carrier-free characteristic. The stability results indicated that CLA-PTX@PEG NPs could be stored for at least 9 months. The safety of CLA-PTX@PEG NPs was demonstrated by the MTD results. The anti-tumor activity and cellular uptake were also confirmed in the in vitro experiments. The lower crystallinity, polarity and solubility of CLA-PTX compared with that of paclitaxel (PTX) might be the possible reason for CLA-PTX self-assembling forming nanoparticles, indicating a relationship between PTX modification and nanoparticles self-assembly. Overall, the data presented here confirm that this drug self-delivery strategy based on self-assembly of a CLA-PTX conjugate may offer a new way to prepare nanomedicine products for cancer therapy involving the relationship between anticancer drug modification and self-assembly into nanoparticles.

  16. Recent progress in the development of polysaccharide conjugates of docetaxel and paclitaxel

    PubMed Central

    Roy, Aniruddha; Bhattacharyya, Mousumi; Ernsting, Mark J.; May, Jonathan P; Li, Shyh-Dar

    2014-01-01

    Taxanes are one of the most potent and broadest spectrum chemotherapeutics used clinically, but also induce significant side effects. Different strategies have been developed to produce a safer taxane formulation. Development of polysaccharide drug conjugates has increased in the recent years due to the demonstrated biocompatibility, biodegradability, safety and low cost of the biopolymers. This review focuses on polysaccharide taxane conjugates and provides an overview on various conjugation strategies and their effect on the efficacy. Detailed analyses on the designing factors of an effective polysaccharide drug conjugate are provided with a discussion on the future direction of this field. PMID:24652678

  17. Optimization of condition for conjugation of enrofloxacin to enzymes in chemiluminescence enzyme immunoassay.

    PubMed

    Yu, Songcheng; Yu, Fei; Zhang, Hongquan; Qu, Lingbo; Wu, Yongjun

    2014-06-05

    In this study, in order to find out a proper method for conjugation of enrofloxacin to label enzymes, two methods were compared and carbodiimide condensation was proved to be better. The results showed that the binding ratio of enrofloxacin and alkaline phosphatase (ALP) was 8:1 and that of enrofloxacin and horseradish peroxidase (HRP) was 5:1. This indicated that conjugate synthesized by carbodiimide condensation was fit for chemiluminescence enzyme immunoassay (CLEIA). Furthermore, data revealed that dialysis time was an important parameter for conjugation and 6days was best. Buffer to dilute conjugate had little effect on CLEIA. The storage condition for conjugates was also studied and it was shown that the conjugate was stable at 4°C with no additive up to 30days. These data were valuable for establishing CLEIA to quantify enrofloxacin. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. LASIC: Light Activated Site-Specific Conjugation of Native IgGs.

    PubMed

    Hui, James Z; Tamsen, Shereen; Song, Yang; Tsourkas, Andrew

    2015-08-19

    Numerous biological applications, from diagnostic assays to immunotherapies, rely on the use of antibody-conjugates. The efficacy of these conjugates can be significantly influenced by the site at which Immunoglobulin G (IgG) is modified. Current methods that provide control over the conjugation site, however, suffer from a number of shortfalls and often require large investments of time and cost. We have developed a novel adapter protein that, when activated by long wavelength UV light, can covalently and site-specifically label the Fc region of nearly any native, full-length IgG, including all human IgG subclasses. Labeling occurs with unprecedented efficiency and speed (>90% after 30 min), with no effect on IgG affinity. The adapter domain can be bacterially expressed and customized to contain a variety of moieties (e.g., biotin, azide, fluorophores), making reliable and efficient conjugation of antibodies widely accessible to researchers at large.

  19. Smart linkers in polymer-drug conjugates for tumor-targeted delivery.

    PubMed

    Chang, Minglu; Zhang, Fang; Wei, Ting; Zuo, Tiantian; Guan, Yuanyuan; Lin, Guimei; Shao, Wei

    2016-01-01

    To achieve effective chemotherapy, many types of drug delivery systems have been developed for the specific environments in tumor tissues. Polymer-drug conjugates are increasingly used in tumor therapy due to several significant advantages over traditional delivery systems. In the fabrication of polymer-drug conjugates, a smart linker is an important component that joins two fragments or molecules together and can be cleared by a specific stimulus, which results in targeted drug delivery and controlled release. By regulating the conjugation between the drug and the nanocarriers, stimulus-sensitive systems based on smart linkers can offer high payloads, certified stability, controlled release and targeted delivery. In this review, we summarize the current state of smart linkers (e.g. disulfide, hydrazone, peptide, azo) used recently in various polymer-drug conjugate-based delivery systems with a primary focus on their sophisticated design principles and drug delivery mechanisms as well as in vivo processes.

  20. Photoresponsive peptide azobenzene conjugates that specifically interact with platinum surfaces

    NASA Astrophysics Data System (ADS)

    Dinçer, S.; Tamerler, C.; Sarıkaya, M.; Pişkin, E.

    2008-05-01

    The aim of this study is to prepare photoresponsive peptide-azobenzene compounds which interacts with platinum surfaces specifically, in order to create smart surfaces for further novel applications in design of smart biosensors and array platforms. Here, a water-soluble azobenzene molecule, 4-hydroxyazo benzene,4-sulfonic acid was synthesized by diazo coupling reaction. A platinum-specific peptide, originally selected by a phage display technique was chemically synthesized/purchased, and conjugated with the azobenzene compound activated with carbonyldiimidazole. Both azobenzene and its conjugate were characterized (including photoresponsive properties) by FTIR, NMR, and UV-spectrophotometer. The yield of conjugation reaction estimated by ninhydrin assay was about 65%. Peptide incorporation did not restrict the light-sensitivity of azobenzene. Adsorption of both the peptide and its azobenzene conjugate was followed by Quartz Crystal Microbalance (QCM) system. The kinetic evaluations exhibited that both molecules interact platinum surfaces, quite rapidly and strongly.

  1. Improved Synthesis and In Vitro Evaluation of an Aptamer Ribosomal Toxin Conjugate

    PubMed Central

    Kelly, Linsley; Kratschmer, Christina; Maier, Keith E.; Yan, Amy C.

    2016-01-01

    Delivery of toxins, such as the ricin A chain, Pseudomonas exotoxin, and gelonin, using antibodies has had some success in inducing specific toxicity in cancer treatments. However, these antibody-toxin conjugates, called immunotoxins, can be bulky, difficult to express, and may induce an immune response upon in vivo administration. We previously reported delivery of a recombinant variant of gelonin (rGel) by the full-length prostate-specific membrane antigen (PSMA) binding aptamer, A9, to potentially circumvent some of these problems. Here, we report a streamlined approach to generating aptamer-rGel conjugates utilizing a chemically synthesized minimized form of the A9 aptamer. Unlike the full-length A9 aptamer, this minimized variant can be chemically synthesized with a 5′ terminal thiol. This facilitates the large scale synthesis and generation of aptamer toxin conjugates linked by a reducible disulfide linkage. Using this approach, we generated aptamer-toxin conjugates and evaluated their binding specificity and toxicity. On PSMA(+) LNCaP prostate cancer cells, the A9.min-rGel conjugate demonstrated an IC50 of ∼60 nM. Additionally, we performed a stability analysis of this conjugate in mouse serum where the conjugate displayed a t1/2 of ∼4 h, paving the way for future in vivo experiments. PMID:27228412

  2. Parametric phase conjugation for the second harmonic of a nonlinear ultrasonic beam

    NASA Astrophysics Data System (ADS)

    Brysev, A. P.; Bunkin, F. V.; Hamilton, M. F.; Klopotov, R. V.; Krutyanskii, L. M.; Yan, K.

    2003-01-01

    The effect of phase conjugation for the second harmonic of a focused ultrasonic beam was investigated experimentally and by numerical simulation. An ultrasonic pulse with the carrier frequency f=3 MHz was emitted into water and focused at a point between the source and the phase conjugating system. The phase conjugation for the second harmonic of the incident wave (2 f=6 MHz) was performed in a magnetostrictive ceramic as a result of the parametric interaction of the incident wave with the pumping magnetic field (the pumping frequency was f p=4 f=12 MHz). The axial and focal distributions of sound pressure in the incident and conjugated beams were measured using a broadband PVDF membrane hydrophone. The corresponding calculations were performed by solving numerically the Khokhlov-Zabolotskaya-Kuznetsov (KZK) equation allowing for the nonlinearity, diffraction, and thermoviscous absorption. The results of measurements agreed well with the calculations and showed that the field of a conjugate wave adequately reproduces the field of the second harmonic of the incident wave. A certain advantage of focusing with the phase conjugation for the second harmonic was demonstrated in comparison with the operation at the doubled frequency of the incident wave. The results of this study can serve as a basis for the utilization of the phase conjugation of harmonics in ultrasonic tomography and nondestructive testing.

  3. Conjugation of Inulin Improves Anti-Biofilm Activity of Chitosan.

    PubMed

    Zhang, Guiqiang; Liu, Jing; Li, Ruilian; Jiao, Siming; Feng, Cui; Wang, Zhuo A; Du, Yuguang

    2018-05-04

    Bacteria biofilm helps bacteria prevent phagocytosis during infection and increase resistance to antibiotics. Staphylococcus aureus is a Gram-positive pathogenic bacterium and is tightly associated with biofilm-related infections, which have led to great threat to human health. Chitosan, the only cationic polysaccharide in nature, has been demonstrated to have antimicrobial and anti-biofilm activities, which, however, require a relative high dosage of chitosan. Moreover, poor water solubility further restricts its applications on anti-infection therapy. Inulins are a group of polysaccharides produced by many types of plants, and are widely used in processed foods. Compared to chitosan, inulin is very soluble in water and possesses a mild antibacterial activity against certain pathogenic bacteria. In order to develop an effective strategy to treat biofilm-related infections, we introduce a method by covalent conjugation of inulin to chitosan. The physicochemical characterization of the inulin⁻chitosan conjugate was assayed, and the anti-biofilm activity was evaluated against S. aureus biofilm. The results indicated that, as compared to chitosan, this novel polysaccharide⁻polysaccharide conjugate significantly enhanced activities against S. aureus either in a biofilm or planktonic state. Of note, the conjugate also showed a broad spectrum anti-biofilm activity on different bacteria strains and low cellular toxicity to mammalian cells. These results suggested that chitosan conjugation of inulin was a viable strategy for treatment against biofilm-related infections. This finding may further spread the application of natural polysaccharides on treatments of infectious disease.

  4. Conjugation of Inulin Improves Anti-Biofilm Activity of Chitosan

    PubMed Central

    Liu, Jing; Li, Ruilian; Jiao, Siming; Feng, Cui; Du, Yuguang

    2018-01-01

    Bacteria biofilm helps bacteria prevent phagocytosis during infection and increase resistance to antibiotics. Staphylococcus aureus is a Gram-positive pathogenic bacterium and is tightly associated with biofilm-related infections, which have led to great threat to human health. Chitosan, the only cationic polysaccharide in nature, has been demonstrated to have antimicrobial and anti-biofilm activities, which, however, require a relative high dosage of chitosan. Moreover, poor water solubility further restricts its applications on anti-infection therapy. Inulins are a group of polysaccharides produced by many types of plants, and are widely used in processed foods. Compared to chitosan, inulin is very soluble in water and possesses a mild antibacterial activity against certain pathogenic bacteria. In order to develop an effective strategy to treat biofilm-related infections, we introduce a method by covalent conjugation of inulin to chitosan. The physicochemical characterization of the inulin–chitosan conjugate was assayed, and the anti-biofilm activity was evaluated against S. aureus biofilm. The results indicated that, as compared to chitosan, this novel polysaccharide–polysaccharide conjugate significantly enhanced activities against S. aureus either in a biofilm or planktonic state. Of note, the conjugate also showed a broad spectrum anti-biofilm activity on different bacteria strains and low cellular toxicity to mammalian cells. These results suggested that chitosan conjugation of inulin was a viable strategy for treatment against biofilm-related infections. This finding may further spread the application of natural polysaccharides on treatments of infectious disease. PMID:29734657

  5. Semiconductor Phase Conjugation

    DTIC Science & Technology

    1992-05-01

    PL-TR--91- 1082 PL-TR-- AD-A253 684 91- 1082 SEMICONDUCTOR PHASE CONJUGATION lam-Choon Khoo Pennsylvania State University Electrical and Computer... 1082 This final report was prepared by Pennsylvania State University, University Park, Pennsylvania, under Contract F29601-88-K-0028, Job Order 33261B18...10. SPONSORING/ MONITORING AGENCY REPORT NUMBER Phill ips Laboratory PL-TR--91- 1082 Kirtland AFB, NM 87117-6008 11. SUPPLEMENTARY NOTES 12a

  6. Genome-Wide Identification, Phylogenetic and Expression Analyses of the Ubiquitin-Conjugating Enzyme Gene Family in Maize

    PubMed Central

    Jue, Dengwei; Sang, Xuelian; Lu, Shengqiao; Dong, Chen; Zhao, Qiufang; Chen, Hongliang; Jia, Liqiang

    2015-01-01

    Background Ubiquitination is a post-translation modification where ubiquitin is attached to a substrate. Ubiquitin-conjugating enzymes (E2s) play a major role in the ubiquitin transfer pathway, as well as a variety of functions in plant biological processes. To date, no genome-wide characterization of this gene family has been conducted in maize (Zea mays). Methodology/Principal Findings In the present study, a total of 75 putative ZmUBC genes have been identified and located in the maize genome. Phylogenetic analysis revealed that ZmUBC proteins could be divided into 15 subfamilies, which include 13 ubiquitin-conjugating enzymes (ZmE2s) and two independent ubiquitin-conjugating enzyme variant (UEV) groups. The predicted ZmUBC genes were distributed across 10 chromosomes at different densities. In addition, analysis of exon-intron junctions and sequence motifs in each candidate gene has revealed high levels of conservation within and between phylogenetic groups. Tissue expression analysis indicated that most ZmUBC genes were expressed in at least one of the tissues, indicating that these are involved in various physiological and developmental processes in maize. Moreover, expression profile analyses of ZmUBC genes under different stress treatments (4°C, 20% PEG6000, and 200 mM NaCl) and various expression patterns indicated that these may play crucial roles in the response of plants to stress. Conclusions Genome-wide identification, chromosome organization, gene structure, evolutionary and expression analyses of ZmUBC genes have facilitated in the characterization of this gene family, as well as determined its potential involvement in growth, development, and stress responses. This study provides valuable information for better understanding the classification and putative functions of the UBC-encoding genes of maize. PMID:26606743

  7. Orderings for conjugate gradient preconditionings

    NASA Technical Reports Server (NTRS)

    Ortega, James M.

    1991-01-01

    The effect of orderings on the rate of convergence of the conjugate gradient method with SSOR or incomplete Cholesky preconditioning is examined. Some results also are presented that help to explain why red/black ordering gives an inferior rate of convergence.

  8. Tunable cytotoxic aptamer-drug conjugates for the treatment of prostate cancer.

    PubMed

    Powell Gray, Bethany; Kelly, Linsley; Ahrens, Douglas P; Barry, Ashley P; Kratschmer, Christina; Levy, Matthew; Sullenger, Bruce A

    2018-05-01

    Therapies that can eliminate both local and metastatic prostate tumor lesions while sparing normal organ tissue are desperately needed. With the goal of developing an improved drug-targeting strategy, we turned to a new class of targeted anticancer therapeutics: aptamers conjugated to highly toxic chemotherapeutics. Cell selection for aptamers with prostate cancer specificity yielded the E3 aptamer, which internalizes into prostate cancer cells without targeting normal prostate cells. Chemical conjugation of E3 to the drugs monomethyl auristatin E (MMAE) and monomethyl auristatin F (MMAF) yields a potent cytotoxic agent that efficiently kills prostate cancer cells in vitro but does not affect normal prostate epithelial cells. Importantly, the E3 aptamer targets tumors in vivo and treatment with the MMAF-E3 conjugate significantly inhibits prostate cancer growth in mice, demonstrating the in vivo utility of aptamer-drug conjugates. Additionally, we report the use of antidotes to block E3 aptamer-drug conjugate cytotoxicity, providing a safety switch in the unexpected event of normal cell killing in vivo.

  9. Fused thiophene-based conjugated polymers and their use in optoelectronic devices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Facchetti, Antonio; Marks, Tobin J.; Takai, Atsuro

    The present teachings relate to polymeric compounds and their use as organic semiconductors in organic and hybrid optical, optoelectronic, and/or electronic devices such as photovoltaic cells, light emitting diodes, light emitting transistors, and field effect transistors. The disclosed compounds generally include as repeating units at least one annulated thienyl-vinylene-thienyl (TVT) unit and at least one other pi-conjugated unit. The annulated TVT unit can be represented by the formula: ##STR00001## where Cy.sup.1 and Cy.sup.2 can be a five- or six-membered carbocyclic ring. The annulated TVT unit can be optionally substituted at any available ring atom(s), and can be covalently linked tomore » the other pi-conjugated unit via either the thiophene rings or the carbocyclic rings Cy.sup.1 and Cy.sup.2. The other pi-conjugated unit can be a conjugated linear linker including one or more unsaturated bonds, or a conjugated cyclic linker including one or more carbocyclic and/or heterocyclic rings.« less

  10. What can the dihedral angle of conjugate-faults tell us?

    NASA Astrophysics Data System (ADS)

    Ismat, Zeshan

    2015-04-01

    Deformation within the upper crust (elastico-frictional regime) is largely accommodated by fractures and conjugate faults. The Coulomb fracture criterion leads us to expect that the average dihedral angle of conjugate-fault sets is expected to be ∼60°. Experiments, however, reveal a significant amount of scatter from this 60° average. The confining pressure under which these rocks are deformed is a contributing factor to this scatter. The Canyon Range syncline, Sevier fold-thrust belt (USA) and the Jebel Bani, Anti-Atlas fold-belt (Morocco) both folded under different depths, within the elastico-frictional regime, by cataclastic flow. Conjugate-fault sets assisted deformation by cataclastic flow. The Canyon Range syncline and the Jebel Bani are used here as natural examples to test the relationship between the dihedral angle of conjugate-faults and confining pressure. Variations is confining pressure are modeled by the difference in depth of deformation and position within the folds. Results from this study show that the dihedral angle increases with an increase in depth and within the hinge regions of folds, where space problems commonly occur. Moreover, the shortening directions based on the acute bisectors of conjugate-faults may not be accurately determined if the dihedral angles are unusually large or small, leading to incorrect kinematic analyses.

  11. Novel anticancer polymeric conjugates of activated nucleoside analogs

    PubMed Central

    Senanayake, Thulani H.; Warren, Galya; Vinogradov, Serguei V.

    2011-01-01

    Inherent or therapy-induced drug resistance is a major clinical setback in cancer treatment. The extensive usage of cytotoxic nucleobases and nucleoside analogs in chemotherapy also results in the development of specific mechanisms of drug resistance; such as nucleoside transport or activation deficiencies. These drugs are prodrugs; and being converted into the active mono-, di- and triphosphates inside cancer cells following administration, they affect nucleic acid synthesis, nucleotide metabolism, or sensitivity to apoptosis. Previously, we have actively promoted the idea that the nanodelivery of active nucleotide species, e.g. 5′-triphosphates of nucleoside analogs, can enhance drug efficacy and reduce nonspecific toxicity. In this study we report the development of a novel type of drug nanoformulations, polymeric conjugates of nucleoside analogs, which are capable of the efficient transport and sustained release of phosphorylated drugs. These drug conjugates have been synthesized, starting from cholesterol-modified mucoadhesive polyvinyl alcohol or biodegradable dextrin, by covalent attachment of nucleoside analogs through a tetraphosphate linker. Association of cholesterol moieties in aqueous media resulted in intramolecular polymer folding and the formation of small nanogel particles containing 0.5 mmol/g of a 5′-phosphorylated nucleoside analog, e.g. 5-fluoro-2′-deoxyuridine (floxuridine, FdU), an active metabolite of anticancer drug 5-fluorouracyl (5-FU). The polymeric conjugates demonstrated rapid enzymatic release of floxuridine 5′-phosphate and much slower drug release under hydrolytic conditions (pH 1.0–7.4). Among the panel of cancer cell lines, all studied polymeric FdU-conjugates demonstrated an up to 50 times increased cytotoxicity in human prostate cancer PC-3, breast cancer MCF-7 and MDA-MB-231 cells, and more than 100 times higher efficacy against cytarabine-resistant human T-lymphoma (CEM/araC/8) and gemcitabine-resistant follicular

  12. Integrative and conjugative elements and their hosts: composition, distribution and organization.

    PubMed

    Cury, Jean; Touchon, Marie; Rocha, Eduardo P C

    2017-09-06

    Conjugation of single-stranded DNA drives horizontal gene transfer between bacteria and was widely studied in conjugative plasmids. The organization and function of integrative and conjugative elements (ICE), even if they are more abundant, was only studied in a few model systems. Comparative genomics of ICE has been precluded by the difficulty in finding and delimiting these elements. Here, we present the results of a method that circumvents these problems by requiring only the identification of the conjugation genes and the species' pan-genome. We delimited 200 ICEs and this allowed the first large-scale characterization of these elements. We quantified the presence in ICEs of a wide set of functions associated with the biology of mobile genetic elements, including some that are typically associated with plasmids, such as partition and replication. Protein sequence similarity networks and phylogenetic analyses revealed that ICEs are structured in functional modules. Integrases and conjugation systems have different evolutionary histories, even if the gene repertoires of ICEs can be grouped in function of conjugation types. Our characterization of the composition and organization of ICEs paves the way for future functional and evolutionary analyses of their cargo genes, composed of a majority of unknown function genes. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  13. Linker-free conjugation and specific cell targeting of antibody functionalized iron-oxide nanoparticles

    PubMed Central

    Xu, Yaolin; Baiu, Dana C.; Sherwood, Jennifer A.; McElreath, Meghan R.; Qin, Ying; Lackey, Kimberly H.; Otto, Mario; Bao, Yuping

    2015-01-01

    Specific targeting is a key step to realize the full potential of iron oxide nanoparticles in biomedical applications, especially tumor-associated diagnosis and therapy. Here, we developed anti-GD2 antibody conjugated iron oxide nanoparticles for highly efficient neuroblastoma cell targeting. The antibody conjugation was achieved through an easy, linker-free method based on catechol reactions. The targeting efficiency and specificity of the antibody-conjugated nanoparticles to GD2-positive neuroblastoma cells were confirmed by flow cytometry, fluorescence microscopy, Prussian blue staining and transmission electron microscopy. These detailed studies indicated that the receptor-recognition capability of the antibody was fully retained after conjugation and the conjugated nanoparticles quickly attached to GD2-positive cells within four hours. Interestingly, longer treatment (12 h) led the cell membrane-bound nanoparticles to be internalized into cytosol, either by directly penetrating the cell membrane or escaping from the endosomes. Last but importantly, the uniquely designed functional surfaces of the nanoparticles allow easy conjugation of other bioactive molecules. PMID:26660881

  14. Novel amphiphilic PEG-hydroxycamptothecin conjugates as glutathione-responsive prodrug nanocapsules for cancer chemotherapy

    NASA Astrophysics Data System (ADS)

    Guo, Na; Hao, Tiantian; Shang, Xiuzhuan; Zhang, Tianle; Liu, Huan; Zhang, Qian; Wang, Jing; Jiang, Du; Rong, Yao; Teng, Yuou; Yu, Peng

    2017-06-01

    A series of novel hydroxycamptothecin (HCPT) conjugates ( 13a-14d), which contained a polyethylene glycol moiety and disulfide bond, were designed and synthesized in five to six steps, with overall yields of 20-39%. The anticancer activities and toxicities of these new conjugates were evaluated using an in vitro MTT assay in K562, HepG2, and HT-29 cell lines and HUVECs. The conjugates displayed enhanced antitumor activity and reduced toxicity in comparison with their parent molecule, HCPT. Among these conjugates, compound 13a exhibited 100-fold better selectivity to the tumor cells than to HUVECs. TEM and DLS experiments demonstrated that 13a formed nanosized micelles with a diameter of approximately 200 nm in aqueous solution and that the conjugate could undergo glutathione-responsive degradation to release HCPT at the tumor site. The improved potency and reduced toxicity of these conjugates may be caused by the enhanced permeation and retention (EPR) effect of nanoparticles.

  15. Concentration-Driven Assembly and Sol–Gel Transition of π-Conjugated Oligopeptides

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, Yuecheng; Li, Bo; Li, Songsong

    Advances in supramolecular assembly have enabled the design and synthesis of functional materials with well-defined structures across multiple length scales. Biopolymer-synthetic hybrid materials can assemble into supramolecular structures with a broad range of structural and functional diversity through precisely controlled noncovalent interactions between subunits. Despite recent progress, there is a need to understand the mechanisms underlying the assembly of biohybrid/synthetic molecular building blocks, which ultimately control the emergent properties of hierarchical assemblies. Here in this work, we study the concentration-driven self-assembly and gelation of π-conjugated synthetic oligopeptides containing different π-conjugated cores (quaterthiophene and perylene diimide) using a combination of particlemore » tracking microrheology, confocal fluorescence microscopy, optical spectroscopy, and electron microscopy. Our results show that π-conjugated oligopeptides self-assemble into β-sheet-rich fiber-like structures at neutral pH, even in the absence of electrostatic screening of charged residues. A critical fiber formation concentration c fiber and a critical gel concentration c gel are determined for fiber-forming π-conjugated oligopeptides, and the linear viscoelastic moduli (storage modulus G' and loss modulus G") are determined across a wide range of peptide concentrations. These results suggest that the underlying chemical structure of the synthetic π-conjugated cores greatly influences the self-assembly process, such that oligopeptides appended to π-conjugated cores with greater torsional flexibility tend to form more robust fibers upon increasing peptide concentration compared to oligopeptides with sterically constrained cores. Overall, our work focuses on the molecular assembly of π-conjugated oligopeptides driven by concentration, which is controlled by a combination of enthalpic and entropic interactions between oligopeptide subunits.« less

  16. Concentration-Driven Assembly and Sol–Gel Transition of π-Conjugated Oligopeptides

    DOE PAGES

    Zhou, Yuecheng; Li, Bo; Li, Songsong; ...

    2017-08-17

    Advances in supramolecular assembly have enabled the design and synthesis of functional materials with well-defined structures across multiple length scales. Biopolymer-synthetic hybrid materials can assemble into supramolecular structures with a broad range of structural and functional diversity through precisely controlled noncovalent interactions between subunits. Despite recent progress, there is a need to understand the mechanisms underlying the assembly of biohybrid/synthetic molecular building blocks, which ultimately control the emergent properties of hierarchical assemblies. Here in this work, we study the concentration-driven self-assembly and gelation of π-conjugated synthetic oligopeptides containing different π-conjugated cores (quaterthiophene and perylene diimide) using a combination of particlemore » tracking microrheology, confocal fluorescence microscopy, optical spectroscopy, and electron microscopy. Our results show that π-conjugated oligopeptides self-assemble into β-sheet-rich fiber-like structures at neutral pH, even in the absence of electrostatic screening of charged residues. A critical fiber formation concentration c fiber and a critical gel concentration c gel are determined for fiber-forming π-conjugated oligopeptides, and the linear viscoelastic moduli (storage modulus G' and loss modulus G") are determined across a wide range of peptide concentrations. These results suggest that the underlying chemical structure of the synthetic π-conjugated cores greatly influences the self-assembly process, such that oligopeptides appended to π-conjugated cores with greater torsional flexibility tend to form more robust fibers upon increasing peptide concentration compared to oligopeptides with sterically constrained cores. Overall, our work focuses on the molecular assembly of π-conjugated oligopeptides driven by concentration, which is controlled by a combination of enthalpic and entropic interactions between oligopeptide subunits.« less

  17. Molecularly precise dendrimer-drug conjugates with tunable drug release for cancer therapy.

    PubMed

    Zhou, Zhuxian; Ma, Xinpeng; Murphy, Caitlin J; Jin, Erlei; Sun, Qihang; Shen, Youqing; Van Kirk, Edward A; Murdoch, William J

    2014-10-06

    The structural preciseness of dendrimers makes them perfect drug delivery carriers, particularly in the form of dendrimer-drug conjugates. Current dendrimer-drug conjugates are synthesized by anchoring drug and functional moieties onto the dendrimer peripheral surface. However, functional groups exhibiting the same reactivity make it impossible to precisely control the number and the position of the functional groups and drug molecules anchored to the dendrimer surface. This structural heterogeneity causes variable pharmacokinetics, preventing such conjugates to be translational. Furthermore, the highly hydrophobic drug molecules anchored on the dendrimer periphery can interact with blood components and alter the pharmacokinetic behavior. To address these problems, we herein report molecularly precise dendrimer-drug conjugates with drug moieties buried inside the dendrimers. Surprisingly, the drug release rates of these conjugates were tailorable by the dendrimer generation, surface chemistry, and acidity. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Rapid synthesis of DNA-cysteine conjugates for expressed protein ligation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lovrinovic, Marina; Niemeyer, Christof M.

    2005-09-30

    We report a rapid method for the covalent modification of commercially available amino-modified DNA oligonucleotides with a cysteine moiety. The resulting DNA-cysteine conjugates are versatile reagents for the efficient preparation of covalent DNA-protein conjugates by means of expressed protein ligation (EPL). The EPL method allows for the site-specific coupling of cysteine-modified DNA oligomers with recombinant intein-fusion proteins, the latter of which contain a C-terminal thioester enabling the mild and highly specific reaction with N-terminal cysteine compounds. We prepared a cysteine-modifier reagent in a single-step reaction which allows for the rapid and near quantitative synthesis of cysteine-DNA conjugates. The latter weremore » ligated with the green fluorescent protein mutant EYFP, recombinantly expressed as an intein-fusion protein, allowing for the mild and selective formation of EYFP-DNA conjugates in high yields of about 60%. We anticipate many applications of our approach, ranging from protein microarrays to the arising field of nanobiotechnology.« less

  19. Preparation and testing of a Haemophilus influenzae Type b/Hepatitis B surface antigen conjugate vaccine.

    PubMed

    An, So Jung; Woo, Joo Sung; Chae, Myung Hwa; Kothari, Sudeep; Carbis, Rodney

    2015-03-24

    The majority of conjugate vaccines focus on inducing an antibody response to the polysaccharide antigen and the carrier protein is present primarily to induce a T-cell dependent response. In this study conjugates consisting of poly(ribosylribitolphosphate) (PRP) purified from Haemophilus influenzae Type b bound to Hepatitis B virus surface antigen (HBsAg) virus like particles were prepared with the aim of inducing an antibody response to not only the PRP but also the HBsAg. A conjugate consisting of PRP bound to HBsAg via an adipic acid dihydrazide (ADH) spacer induced strong IgG antibodies to both the PRP and HBsAg. When conjugation was performed without the ADH spacer the induction of an anti-PRP response was equivalent to that seen by conjugate with the ADH spacer, however, a negligible anti-HBsAg response was induced. For comparison, PRP was conjugated to diphtheria toxoid (DT) and Vi polysaccharide purified from Salmonella Typhi conjugated to HBsAg both using an ADH spacer. The PRPAH-DT conjugate induced strong anti-PRP and anti-DT responses, the Vi-AHHBsAg conjugate induced a good anti-HBsAg response but not as strong as that induced by the PRPAH-HBsAg conjugate. This study demonstrated that in mice it was possible to induce robust antibody responses to both polysaccharide and carrier protein provided the conjugate has certain physico-chemical properties. A PRPAH-HBsAg conjugate with the capacity to induce anti-PRP and anti-HBsAg responses could be incorporated into a multivalent pediatric vaccine and simplify formulation of such a vaccine. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Molecules with enhanced electronic polarizabilities based on defect-like states in conjugated polymers

    NASA Technical Reports Server (NTRS)

    Beratan, David N. (Inventor)

    1991-01-01

    Highly conjugated organic polymers typically have large non-resonant electronic susceptibilities, which give the molecules unusual optical properties. To enhance these properties, defects are introduced into the polymer chain. Examples include light doping of the conjugated polymer and synthesis, conjugated polymers which incorporate either electron donating or accepting groups, and conjugated polymers which contain a photoexcitable species capable of reversibly transferring its electron to an acceptor. Such defects in the chain permit enhancement of the second hyperpolarizability by at least an order of magnitude.

  1. Preparation and characterization of conjugated polyamidoamine-MPEG-methotrexate for potential drug delivery system

    NASA Astrophysics Data System (ADS)

    Mohd Sabri, Siti Noorzidah bt; Abu, Norhidayah; Mastor, Azreena; Hisham, Siti Farhana; Noorsal, Kartini

    2012-07-01

    Star polymers have unique characteristics due to their well-defined size and tailor ability which makes these polymers attractive candidates as carriers in drug delivery system applications. This work focuses on attaching a drug to the star polymer (polyamidoamine). The conjugation of polyamidoamine (PAMAM, generation 4) with methotrexate (MTX) (model drug) was studied in which monomethyl polyethylene glycol (MPEG) was used as a linker to reduce the toxicity of dendrimer. Conjugation starts with attaching the drug to the linker and followed by further conjugation with the polyamidoamine (PAMAM) dendrimer. The conjugation of PAMAM-PEG-MTX was confirmed through UV-Vis, FTIR, 1H NMR and DSC. The loading capacities and release profile of this conjugate were determined using 1H NMR and UV spectrometer.

  2. Phase Conjugation Scaling for High Energy Lasers.

    DTIC Science & Technology

    1985-05-30

    PFPORT b PfRiOE) C"v’’’ NV Pnase cor, uqatio. scaling for high. energy’ lasers FIna 718 PF RF06MING OR,’ 04EPOPT NUM14EP C 7. AUHRo. CONTRACT QN GRA#%T...nocoo..wy dind ld9ntalY DY OoCw K~b * - High energy lasers ; phase conjugation; stimulated Brillouin scattering,’ infrared waveguides 2. ABSTRACT...coiw on meoe eti if I r’w~ o ldenIr by block n’.inb..) * Phase conjugation of both cv and pulsed 10.6 micron lasers by stimulated * Brillouin

  3. A physico-chemical assessment of the thermal stability of pneumococcal conjugate vaccine components

    PubMed Central

    Gao, Fang; Lockyer, Kay; Burkin, Karena; Crane, Dennis T; Bolgiano, Barbara

    2014-01-01

    Physico-chemical analysis of pneumococcal polysaccharide (PS)-protein conjugate vaccine components used for two commercially licensed vaccines was performed to compare the serotype- and carrier protein-specific stabilities of these vaccines. Nineteen different monovalent pneumococcal conjugates from commercial vaccines utilizing CRM197, diphtheria toxoid (DT), Protein D (PD) or tetanus toxoid (TT) as carrier proteins were incubated at temperatures up to 56°C for up to eight weeks or were subjected to freeze-thawing (F/T). Structural stability was evaluated by monitoring their size, integrity and carrier protein conformation. The molecular size of the vaccine components was well maintained for Protein D, TT and DT conjugates at -20°C, 4°C and F/T, and for CRM197 conjugates at 4°C and F/T. It was observed that four of the eight serotypes of Protein D conjugates tended to form high molecular weight complexes at 37°C or above. The other conjugated carrier proteins also appeared to form oligomers or ‘aggregates’ at elevated temperatures, but rarely when frozen and thawed. There was evidence of degradation in some of the conjugates as evidenced by the formation of lower molecular weight materials which correlated with measured free saccharide. In conclusion, pneumococcal-Protein D/TT/DT and most CRM197 bulk conjugate vaccines were stable when stored at 2–8°C, the recommended temperature. In common between the conjugates produced by the two manufacturers, serotypes 1, 5, and 19F were relatively less stable and 6B was the most stable, with types 7F and 23F also showing good stability. PMID:25483488

  4. Curcumin-albumin conjugates as an effective anti-cancer agent with immunomodulatory properties.

    PubMed

    Aravind, S R; Krishnan, Lissy K

    2016-05-01

    Curcumin (diferuloylmethane) is an active ingredient in turmeric (Curcuma longa) with anti-inflammatory, antioxidant, chemopreventive, chemosensitization, and radiosensitization properties. Conjugation of curcumin (Curc) to albumin (Alb) has been found to increase the aqueous solubility of the drug. The current study aimed to prove the safe use of the Curc-Alb conjugate in animals and to demonstrate that it retains drug action both in vitro and in vivo. Dalton's lymphoma ascites (DLA) cell viability was inhibited by the Curc-Alb conjugate in a dose dependent manner in vitro, as evidenced by the MTT assay. Administration of up to 11.4 mg of conjugated curcumin per kg body weight to healthy animals was non-toxic both in terms of lethality and weight loss. Histological analysis of vital organs (kidney, liver and spleen) also did not show toxic effects. Favorable immuno-modulatory activity was observed after continuous administration of sub-acute doses of the conjugate which caused increase in total leukocyte count, platelet count, and viable cell count in bone marrow, and enhanced proliferation of lymphocyte in vitro upon culture. In vivo studies in the DLA tumor model in mice demonstrated that conjugated drug induces tumor reduction and prevention. Significant tumor reduction was observed when the Curc-Alb conjugate was administered intraperitoneally in DLA-induced mice after 1 day (prevention therapy) and 7 days (reduction therapy) of tumor induction. There was significant reduction in both tumor volume and tumor cell numbers in the treated animals as well as a marked increase in their mean survival time and percent increase in life span. The effect was greater when the conjugate was administered soon after inducing the tumor as compared to when treatment was started after allowing tumor to grow for 7 days. Thus, the results of the present study suggest that curcumin albumin conjugate has immunomodulatory and tumor growth inhibition properties. The study postulates

  5. Enhanced photophysics of conjugated polymers

    DOEpatents

    Chen, Liaohai [Argonne, IL; Xu, Su [Santa Clara, CA; McBranch, Duncan [Santa Fe, NM; Whitten, David [Santa Fe, NM

    2003-05-27

    The addition of oppositely charged surfactant to fluorescent ionic conjugated polymer forms a polymer-surfactant complex that exhibits at least one improved photophysical property. The conjugated polymer is a fluorescent ionic polymer that typically has at least one ionic side chain or moiety that interacts with the specific surfactant selected. The photophysical property improvements may include increased fluorescence quantum efficiency, wavelength-independent emission and absorption spectra, and more stable fluorescence decay kinetics. The complexation typically occurs in a solution of a polar solvent in which the polymer and surfactant are soluble, but it may also occur in a mixture of solvents. The solution is commonly prepared with a surfactant molecule:monomer repeat unit of polymer ratio ranging from about 1:100 to about 1:1. A polymer-surfactant complex precipitate is formed as the ratio approaches 1:1. This precipitate is recoverable and usable in many forms.

  6. Women experiencing the intergenerationality of conjugal violence1

    PubMed Central

    Paixão, Gilvânia Patrícia do Nascimento; Gomes, Nadirlene Pereira; Diniz, Normélia Maria Freire; Lira, Margaret Ollinda de Souza Carvalho e; Carvalho, Milca Ramaiane da Silva; da Silva, Rudval Souza

    2015-01-01

    Objective: to analyze the family relationship, in childhood and adolescence, of women who experience conjugal violence. Method: qualitative study. Interviews were held with 19 women, who were experiencing conjugal violence, and who were resident in a community in Salvador, Bahia, Brazil. The project was approved by the Research Ethics Committee (N. 42/2011). Results: the data was organized using the Discourse of the Collective Subject, identifying the summary central ideas: they witnessed violence between their parents; they suffered repercussions from the violence between their parents: they were angry about the mother's submission to her partner; and they reproduced the conjugal violence. The discourse showed that the women witnessed, in childhood and adolescence, violence between their parents, and were injured both physically and psychologically. As a result of the mother's submission, feelings of anger arose in the children. However, in the adult phase of their own lives, they noticed that their conjugal life resembled that of their parents, reproducing the violence. Conclusion: investment is necessary in strategies designed to break inter-generational violence, and the health professionals are important in this process, as it is a phenomenon with repercussions in health. Because they work in the Family Health Strategy, which focuses on the prevention of harm and illness, health promotion and interdepartmentality, the nurses are essential in the process of preventing and confronting this phenomenon. PMID:26487137

  7. [Conjugal leprosy infection in Japan--case report and review].

    PubMed

    Ozaki, Motoaki; Tomoda, Masakazu

    2012-04-01

    The authors reported a conjugal leprosy infection observed in Japan. The husband, index case, first noticed sensory disturbance at the lower right leg in his forties. He developed edematous swelling with redness of the right hand and forearm at the age of 72 (1989), and then developed multiple erythema and hypesthesia at the extremities. He was diagnosed as BL type leprosy (reactional stage) and treated with multi-drug therapy. His 71-year-old wife developed a few erythema at the right forearm in 1993. She was classified as BT type. The duration of their marriage life was over forty years. The couple did not have consanguinity. No other leprosy patients were found in their lineage. From their clinical courses the authors concluded that the husband infected his wife. According to Japanese literatures, the frequency of conjugal leprosy among new patients in Japan was approximately 1%. There were worldwide observations that the husband often infected the wife, and mostly the index case was multibacillary and the secondary case paucibacillary. The authors reviewed definition and frequency of conjugal leprosy, factors in conjugal infection and leprosy infection among the adults.

  8. High-power beam steering using phase conjugation through Brillouin-induced four-wave mixing.

    PubMed

    Jones, D C; Cook, G; Ridley, K D; Scott, A M

    1991-10-15

    We report an experimental demonstration of a beam-steering concept. A high-reflectivity phase-conjugate mirror is used to steer a high-power phase-conjugate beam using a low-power signal beam. The high reflectivity phase conjugation is achieved using Brillouin-induced four-wave mixing in a cell containing carbon disulfide.

  9. A universal polysaccharide conjugated vaccine against O111 E. coli

    PubMed Central

    Andrade, Gabrielle R; New, Roger R C; Sant’Anna, Osvaldo A; Williams, Neil A; Alves, Rosely C B; Pimenta, Daniel C; Vigerelli, Hugo; Melo, Bruna S; Rocha, Letícia B; Piazza, Roxane M F; Mendonça-Previato, Lucia; Domingos, Marta O

    2014-01-01

    E. coli O111 strains are responsible for outbreaks of blood diarrhea and hemolytic uremic syndrome throughout the world. Because of their phenotypic variability, the development of a vaccine against these strains which targets an antigen that is common to all of them is quite a challenge. Previous results have indicated, however, that O111 LPS is such a candidate, but its toxicity makes LPS forbidden for human use. To overcome this problem, O111 polysaccharides were conjugated either to cytochrome C or to EtxB (a recombinant B subunit of LT) as carrier proteins. The O111-cytochrome C conjugate was incorporated in silica SBA-15 nanoparticles and administered subcutaneously in rabbits, while the O111-EtxB conjugate was incorporated in VaxcineTM, an oil-based delivery system, and administered orally in mice. The results showed that one year post-vaccination, the conjugate incorporated in silica SBA-15 generated antibodies in rabbits able to inhibit the adhesion of all categories of O111 E. coli to epithelial cells. Importantly, mice immunized orally with the O111-EtxB conjugate in VaxcineTM generated systemic and mucosal humoral responses against all categories of O111 E. coli as well as antibodies able to inhibit the toxic effect of LT in vitro. In summary, the results obtained by using 2 different approaches indicate that a vaccine that targets the O111 antigen has the potential to prevent diarrhea induced by O111 E. coli strains regardless their mechanism of virulence. They also suggest that a conjugated vaccine that uses EtxB as a carrier protein has potential to combat diarrhea induced by ETEC. PMID:25483465

  10. Investigations of conjugate MSTIDS over the Brazilian sector during daytime

    NASA Astrophysics Data System (ADS)

    Jonah, O. F.; Kherani, E. A.; De Paula, E. R.

    2017-09-01

    This study focuses on the daytime medium-scale traveling ionospheric disturbances (MSTIDs) observed at conjugate hemispheres. It is the first time that the geomagnetical conjugate daytime MSTIDs are observed over the South America sector. To observe the MSTID characteristics, we used detrended total electron content (TEC) derived from Global Navigation Satellite Systems receivers located at Brazilian sector covering the Northern and Southern Hemispheres along the same magnetic meridian. The geographic grid of 1°N to 14°S in latitude and 60°S to 50°S in longitude was selected for this study. The cross-correlation method between two latitudes and longitudes in time was used to observe the propagation of the MSTID waves. The following features are noted: (a) MSTIDs are well developed at both hemispheres; (b) the peak MSTIDs amplitudes vary from one hemisphere to another; hence, we suppose that MSTIDs generated in Southern Hemisphere or Northern Hemisphere mirrored in the conjugate hemisphere; (c) the gravity wave-induced electric fields from one hemisphere map along the field lines and generate the mirrored MSTIDs in the conjugate region. To investigate the hemispheric mapping mechanism, a rough approximation for the integrated field line conductivity ratio of E and F regions is calculated using digisonde E and F region parameters. We noted that during the period of mapping the decrease in E region conductivity results in an increase in total conductivity. This shows that the E region was partially short circuited; hence, electric field generated at F region could map to the conjugate hemisphere during daytime: daytime MSTIDs at conjugate regions; mechanisms responsible for daytime electrified MSTIDs; gravity wave-induced electric field role in daytime MSTIDs.

  11. Role of the Methoxy Group in Immune Responses to mPEG-Protein Conjugates

    PubMed Central

    2012-01-01

    Anti-PEG antibodies have been reported to mediate the accelerated clearance of PEG-conjugated proteins and liposomes, all of which contain methoxyPEG (mPEG). The goal of this research was to assess the role of the methoxy group in the immune responses to mPEG conjugates and the potential advantages of replacing mPEG with hydroxyPEG (HO-PEG). Rabbits were immunized with mPEG, HO-PEG, or t-butoxyPEG (t-BuO-PEG) conjugates of human serum albumin, human interferon-α, or porcine uricase as adjuvant emulsions. Assay plates for enzyme-linked immunosorbent assays (ELISAs) were coated with mPEG, HO-PEG, or t-BuO-PEG conjugates of the non-cross-reacting protein, porcine superoxide dismutase (SOD). In sera from rabbits immunized with HO-PEG conjugates of interferon-α or uricase, the ratio of titers of anti-PEG antibodies detected on mPEG-SOD over HO-PEG-SOD (“relative titer”) had a median of 1.1 (range 0.9–1.5). In contrast, sera from rabbits immunized with mPEG conjugates of three proteins had relative titers with a median of 3.0 (range 1.1–20). Analyses of sera from rabbits immunized with t-BuO-PEG-albumin showed that t-butoxy groups are more immunogenic than methoxy groups. Adding Tween 20 or Tween 80 to buffers used to wash the assay plates, as is often done in ELISAs, greatly reduced the sensitivity of detection of anti-PEG antibodies. Competitive ELISAs revealed that the affinities of antibodies raised against mPEG-uricase were c. 70 times higher for 10 kDa mPEG than for 10 kDa PEG diol and that anti-PEG antibodies raised against mPEG conjugates of three proteins had >1000 times higher affinities for albumin conjugates with c. 20 mPEGs than for analogous HO-PEG-albumin conjugates. Overall, these results are consistent with the hypothesis that antibodies with high affinity for methoxy groups contribute to the loss of efficacy of mPEG conjugates, especially if multiply-PEGylated. Using monofunctionally activated HO-PEG instead of mPEG in preparing conjugates for

  12. Reductive nanocomplex encapsulation of cRGD-siRNA conjugates for enhanced targeting to cancer cells

    PubMed Central

    Zhang, Yanfen; Yang, Xiantao; Ma, Yuan; Guan, Zhu; Wu, Yun; Zhang, Lihe; Yang, Zhenjun

    2017-01-01

    In this study, through covalent conjugation and lipid material entrapment, a combined modification strategy was established for effective delivery of small interfering RNA (siRNA). Single strands of siRNA targeting to BRAFV600E gene (siMB3) conjugated with cRGD peptide at 3′-terminus or 5′-terminus via cleavable disulfide bond was synthesized and then annealed with corresponding strands to obtain single and bis-cRGD-siRNA conjugates. A cationic lipid material (CLD) developed by our laboratory was mixed with the conjugates to generate nanocomplexes; their uniformity and electrical property were revealed by particle size and zeta potential measurement. Compared with CLD/siBraf, CLD/cRGD-siBraf achieved higher cell uptake and more excellent tumor-targeting ability, especially 21 (sense-5′/antisense-3″-cRGD-congjugate) nanocomplex. Moreover, they can regulate multiple pathways to varying degree and reduce acidification of endosome. Compared with the gene silencing of different conjugates, single or bis-cRGD-conjugated siRNA showed little differences except 22 (5/5) which cRGD was conjugated at 5′-terminus of antisense strand and sense strand. However bis-cRGD conjugate 21 nanocomplex exhibited better specific target gene silencing at multiple time points. Furthermore, the serum stabilities of the bis-cRGD conjugates were higher than those of the single-cRGD conjugates. In conclusion, all these data suggested that CLD/bis-conjugates, especially CLD/21, can be an effective system for delivery of siRNA to target BRAFV600E gene for therapy of melanoma. PMID:29042774

  13. Development of antibody-siRNA conjugate targeted to cardiac and skeletal muscles.

    PubMed

    Sugo, Tsukasa; Terada, Michiko; Oikawa, Tatsuo; Miyata, Kenichi; Nishimura, Satoshi; Kenjo, Eriya; Ogasawara-Shimizu, Mari; Makita, Yukimasa; Imaichi, Sachiko; Murata, Shumpei; Otake, Kentaro; Kikuchi, Kuniko; Teratani, Mika; Masuda, Yasushi; Kamei, Takayuki; Takagahara, Shuichi; Ikeda, Shota; Ohtaki, Tetsuya; Matsumoto, Hirokazu

    2016-09-10

    Despite considerable efforts to develop efficient carriers, the major target organ of short-interfering RNAs (siRNAs) remains limited to the liver. Expanding the application outside the liver is required to increase the value of siRNAs. Here we report on a novel platform targeted to muscular organs by conjugation of siRNAs with anti-CD71 Fab' fragment. This conjugate showed durable gene-silencing in the heart and skeletal muscle for one month after intravenous administration in normal mice. In particular, 1μg siRNA conjugate showed significant gene-silencing in the gastrocnemius when injected intramuscularly. In a mouse model of peripheral artery disease, the treatment with myostatin-targeting siRNA conjugate by intramuscular injection resulted in significant silencing of myostatin and hypertrophy of the gastrocnemius, which was translated into the recovery of running performance. These data demonstrate the utility of antibody conjugation for siRNA delivery and the therapeutic potential for muscular diseases. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Conjugation of curcumin onto alginate enhances aqueous solubility and stability of curcumin.

    PubMed

    Dey, Soma; Sreenivasan, K

    2014-01-01

    Curcumin is a potential drug for various diseases including cancer. Prime limitations associated with curcumin are low water solubility, rapid hydrolytic degradation and poor bioavailability. In order to redress these issues we developed Alginate-Curcumin (Alg-Ccm) conjugate which was characterized by FTIR and (1)H NMR spectroscopy. The conjugate self-assembled in aqueous solution forming micelles with an average hydrodynamic diameter of 459 ± 0.32 nm and negative zeta potential. The spherical micelles were visualized by TEM. The critical micelle concentration (CMC) of Alg-Ccm conjugate was determined. A significant enhancement in the aqueous solubility of curcumin was observed upon conjugation with alginate. Formation of micelles improved the stability of curcumin in water at physiological pH. The cytotoxic activity of Alg-Ccm was quantified by MTT assay using L-929 fibroblast cells and it was found to be potentially cytotoxic. Hence, Alg-Ccm could be a promising drug conjugate as well as a nanosized delivery vehicle. Copyright © 2013 Elsevier Ltd. All rights reserved.

  15. Synthesis of galabiose-chitosan conjugate as potent inhibitor of Streptococcus suis adhesion.

    PubMed

    Xu, Yaozu; Fan, Hongjie; Lu, Chengping; Gao, George F; Li, Xuebing

    2010-07-12

    The aim of this work is to construct a safe and effective drug candidate against Streptococcus suis infection. A panel of chitosan-based polymer conjugates with branched galabiose (Galalpha1-4Gal) side chains was synthesized as inhibitors of S. suis adhesion. The synthesis was achieved by using an aldehyde-functionalized galabiose derivative to graft it onto chitosan amino groups. Structural compositions of the conjugates were verified by 1H NMR spectroscopy and CHN elemental analyses. Potent inhibitory activities of the conjugates against S. suis adhesion to human erythrocytes were determined at low nanomolar concentration by HAI assay. An SPR study revealed a high affinity binding (Kd=39.6 nM) of the conjugate with BSI-B4 lectin. By using biocompatible chitosan as the scaffold for presenting S. suis -specific galabiose units, as well as the concise route tailored for the conjugate syntheses, the present study provides a practical way for explorations of new anti- S. suis therapies.

  16. Enhanced photophysics of conjugated polymers

    DOEpatents

    Chen, Liaohai [Darien, IL

    2007-06-12

    A particulate fluorescent conjugated polymer surfactant complex and method of making and using same. The particles are between about 15 and about 50 nm and when formed from a lipsome surfactant have a charge density similar to DNA and are strongly absorbed by cancer cells.

  17. Intramolecular Charge Transfer of Conjugated Liquid Crystal Ferrocene Macromolecules - Synthesis and Characterization

    DTIC Science & Technology

    2016-04-12

    AFRL-AFOSR-CL-TR-2016-0012 Intramolecular Charge Transfer of Conjugated Liquid Crystal Ferrocene Macromolecules Ronald Ziolo CIQA Final Report 07/07...3. DATES COVERED (From - To)  15 Aug 2014 to 14 Jan 2016 4. TITLE AND SUBTITLE Intramolecular Charge Transfer of Conjugated Liquid Crystal Ferrocene...characterization of a new series of conjugated macromolecules bearing ferrocene as a highly efficient electron donor material coupled to 2,5-di(alcoxy) benzene

  18. Method for synthesizing peptides with saccharide linked enzyme polymer conjugates

    DOEpatents

    Callstrom, Matthew R.; Bednarski, Mark D.; Gruber, Patrick R.

    1997-01-01

    A method is disclosed for synthesizing peptides using water soluble enzyme polymer conjugates. The method comprises catalyzing the peptide synthesis with enzyme which has been covalently bonded to a polymer through at least three linkers which linkers have three or more hydroxyl groups. The enzyme is conjugated at lysines or arginines.

  19. Effects of Hyaluronic Acid Conjugation on Anti-TNF-alpha Inhibition of Inflammation in Burns

    DTIC Science & Technology

    2014-05-01

    Effects of hyaluronic acid conjugation on anti-TNF-α inhibition of inflammation in burns Emily E. Friedrich1, Liang Tso Sun1, Shanmugasundaram...alone, mixed with hyaluronic acid or conjugated to hyaluronic acid . We found that non-conjugated anti-TNF-α decreased macrophage infiltration to a...greater extent than that conjugated to hyaluronic acid ; however there was little effect on the degree of progression or IL-1β levels. A simple transport

  20. Laser radiation wavefront conjugation in fiber optic lightguides

    NASA Astrophysics Data System (ADS)

    Chertkov, A. A.

    1986-02-01

    Wavefront conjugation precision during stimulated brillouin scattering is investigated in a monofiber with spatially homogeneous and inhomogeneous beams at lambda = 106 micrometer. A Q-modulated YAG:Nd sup 3+ laser with initial transmission of 25% was employed as the radiation source. The energy of the incident and reflected radiation was measured by means of F-28 photoelements outputting their signals to an S8-12 oscilloscope. The behavior of the coefficient of reflection from the stimulated Brillouin scattering mirror as a function of the amount by which the pumping energy exceeded the threshold was found to be the same for all types of fibers, and to be independent of astigmatism and angular beam divergence. The wavefront conjugation quality as a function of the energy level was also the same for all of the lightguides employed: quartz, silicate and silicate-quartz. The good wavefront conjugation observed for astigmatic and spatially inhomogeneous beams make it possible to compensate satisfactorily for inhomogeneities in the distorting wavefront of the beam.

  1. Peptide-Drug Conjugate: A Novel Drug Design Approach.

    PubMed

    Ma, Liang; Wang, Chao; He, Zihao; Cheng, Biao; Zheng, Ling; Huang, Kun

    2017-01-01

    More than 100 years ago, German physician Paul Ehrlich first proposed the concept of selectively delivering "magic bullets" to tumors through targeting agents. The targeting therapy with antibody-drug conjugates (ADCs) and peptide-drug conjugate (PDCs), which are usually composed of monoclonal antibodies or peptides, toxic payloads and cleavage/ noncleavage linkers, has been extensively studied for decades. The conjugates enable selective delivery of cytotoxic payloads to target cells, which results in improved efficacy, reduced systemic toxicity and improved pharmacokinetics (PK)/pharmacodynamics (PD) compared with traditional chemotherapy. PDC and ADC share similar concept, but with vastly different structures and properties. Humanized antibodies introduce high specificity and prolonged half-life, while small molecule weight peptides exhibit higher drug loading and enhanced tissue penetration capacity, and the flexible linear or cyclic peptides are also modified more easily. In this review, the principles of design, synthesis approaches and the latest advances of PDCs are summarized. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  2. Nanohybrid conjugated polyelectrolytes: highly photostable and ultrabright nanoparticles.

    PubMed

    Darwish, Ghinwa H; Karam, Pierre

    2015-10-07

    We present a general and straightforward one-step approach to enhance the photophysical properties of conjugated polyelectrolytes. Upon complexation with an amphiphilic polymer (polyvinylpyrrolidone), an anionic conjugated polyelectrolyte (poly[5-methoxy-2-(3-sulfopropoxy)-1,4-phenylenevinylene]) was prepared into small nanoparticles with exceptional photostability and brightness. The polymer fluorescence intensity was enhanced by 23 -fold and could be easily tuned by changing the order of addition. Single molecule experiments revealed a complete suppression of blinking. In addition, after only losing 18% of the original intensity, a remarkable amount of photons were emitted per particle (∼10(9), on average). This number is many folds greater than popular organic fluorescent dyes. We believe that an intimate contact between the two polymers is shielding the conjugated polyelectrolyte from the destructive photooxidation. The prepared nanohybrid particles will prove instrumental in single particle based fluorescent assays and can serve as a probe for the current state-of-the-art bioimaging fluorescence techniques.

  3. Development of an aptamer-ampicillin conjugate for treating biofilms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lijuan, Cheng; Department of Biochemistry and Molecular Biology, Hunan University of Chinese Medicine, Changsha, Hunan, 410208; Xing, Yan

    Biofilm formation involves the development of extracellular matrix and initially depends on adherence and tropism by flagellar movement. With the widespread development of antibiotic resistance and tolerance of biofilms, there is a growing need for novel anti-infective strategies. No currently approved medications specifically target biofilms. Aptamers are single-stranded nucleic acid molecules that may bind to their targets with high affinity and affect the target functions. We developed a bifunctional conjugate by linking an aptamer targeting bacterial flagella with ampicillin. We investigated its influence on biofilm prevention and dissolution by ultraviolet–visible spectrophotometry, inverted microscopy, and atomic force microscopy. This conjugate hadmore » distinctive antibacterial activity. Notably, the conjugate was more active than either component, and thus had a synergistic effect against biofilms.« less

  4. Intracellular trafficking of new anticancer therapeutics: antibody-drug conjugates.

    PubMed

    Kalim, Muhammad; Chen, Jie; Wang, Shenghao; Lin, Caiyao; Ullah, Saif; Liang, Keying; Ding, Qian; Chen, Shuqing; Zhan, Jinbiao

    2017-01-01

    Antibody-drug conjugate (ADC) is a milestone in targeted cancer therapy that comprises of monoclonal antibodies chemically linked to cytotoxic drugs. Internalization of ADC takes place via clathrin-mediated endocytosis, caveolae-mediated endocytosis, and pinocytosis. Conjugation strategies, endocytosis and intracellular trafficking optimization, linkers, and drugs chemistry present a great challenge for researchers to eradicate tumor cells successfully. This inventiveness of endocytosis and intracellular trafficking has given considerable momentum recently to develop specific antibodies and ADCs to treat cancer cells. It is significantly advantageous to emphasize the endocytosis and intracellular trafficking pathways efficiently and to design potent engineered conjugates and biological entities to boost efficient therapies enormously for cancer treatment. Current studies illustrate endocytosis and intracellular trafficking of ADC, protein, and linker strategies in unloading and also concisely evaluate practically applicable ADCs.

  5. Intracellular trafficking of new anticancer therapeutics: antibody–drug conjugates

    PubMed Central

    Kalim, Muhammad; Chen, Jie; Wang, Shenghao; Lin, Caiyao; Ullah, Saif; Liang, Keying; Ding, Qian; Chen, Shuqing; Zhan, Jinbiao

    2017-01-01

    Antibody–drug conjugate (ADC) is a milestone in targeted cancer therapy that comprises of monoclonal antibodies chemically linked to cytotoxic drugs. Internalization of ADC takes place via clathrin-mediated endocytosis, caveolae-mediated endocytosis, and pinocytosis. Conjugation strategies, endocytosis and intracellular trafficking optimization, linkers, and drugs chemistry present a great challenge for researchers to eradicate tumor cells successfully. This inventiveness of endocytosis and intracellular trafficking has given considerable momentum recently to develop specific antibodies and ADCs to treat cancer cells. It is significantly advantageous to emphasize the endocytosis and intracellular trafficking pathways efficiently and to design potent engineered conjugates and biological entities to boost efficient therapies enormously for cancer treatment. Current studies illustrate endocytosis and intracellular trafficking of ADC, protein, and linker strategies in unloading and also concisely evaluate practically applicable ADCs. PMID:28814834

  6. Development of a bivalent conjugate vaccine candidate against malaria transmission and typhoid fever.

    PubMed

    An, So Jung; Scaria, Puthupparampil V; Chen, Beth; Barnafo, Emma; Muratova, Olga; Anderson, Charles; Lambert, Lynn; Chae, Myung Hwa; Yang, Jae Seung; Duffy, Patrick E

    2018-05-17

    Immune responses to poorly immunogenic antigens, such as polysaccharides, can be enhanced by conjugation to carriers. Our previous studies indicate that conjugation to Vi polysaccharide of Salmonella Typhi may also enhance immunogenicity of some protein carriers. We therefore explored the possibility of generating a bivalent vaccine against Plasmodium falciparum malaria and typhoid fever, which are co-endemic in many parts of the world, by conjugating Vi polysaccharide, an approved antigen in typhoid vaccine, to Pfs25, a malaria transmission blocking vaccine antigen in clinical trials. Vi-Pfs25 conjugates induced strong immune responses against both Vi and Pfs25 in mice, whereas the unconjugated antigens are poorly immunogenic. Functional assays of immune sera revealed potent transmission blocking activity mediated by anti-Pfs25 antibody and serum bactericidal activity due to anti-Vi antibody. Pfs25 conjugation to Vi modified the IgG isotype distribution of antisera, inducing a Th2 polarized immune response against Vi antigen. This conjugate may be further developed as a bivalent vaccine to concurrently target malaria and typhoid fever. Copyright © 2018. Published by Elsevier Ltd.

  7. Biotransformation of Flavonoid Conjugates with Fatty Acids and Evaluations of Their Functionalities

    PubMed Central

    Sun, Cynthia Q.; Johnson, Keryn D.; Wong, Herbert; Foo, L. Y.

    2017-01-01

    Enzymatic conjugation with fatty acids including omega-3 polyunsaturated fatty acids (ω-3 PUFAs) derived from fish oil to three citrus fruit-derived flavonoids: grapefruit extract, naringin, and neohesperidin dihydrochalcone were investigated. The conversions were achieved over 85% under the catalysis of lipase Novozyme 435 in acetone at 45°C at semi-preparative scale. The conjugates were purified via solvent partition and silica gel chromatography and achieved 90–98% in purity. The NMR analysis of the conjugates confirmed that the fatty acid carbon chain was linked onto the primary –OH group on the glucose moiety of the flavonoids. The purified flavonoid conjugates alongside their original flavonoids were analyzed for antioxidant activities via 2,2-diphenyl-1-picrylhydrazyl scavenging assay, and anti-peroxidation test via peroxide values measured during a 1-week fish oil storage trial. Vascular endothelial growth factor (VEGF) assay was conducted with 1, 10, and 100 μM of naringin and grapefruits and their conjugates, respectively, and total VEGF levels were measured at 24 and 48 h, respectively, using ELISA and dot blot analysis. The results from these functionality experiments demonstrated that flavonoid FA conjugates have at least comparable (if not higher) antioxidant activity, anti-peroxidation activity, and anti-angiogenic activity. PMID:29163154

  8. Biotransformation of Flavonoid Conjugates with Fatty Acids and Evaluations of Their Functionalities.

    PubMed

    Sun, Cynthia Q; Johnson, Keryn D; Wong, Herbert; Foo, L Y

    2017-01-01

    Enzymatic conjugation with fatty acids including omega-3 polyunsaturated fatty acids (ω-3 PUFAs) derived from fish oil to three citrus fruit-derived flavonoids: grapefruit extract, naringin, and neohesperidin dihydrochalcone were investigated. The conversions were achieved over 85% under the catalysis of lipase Novozyme 435 in acetone at 45°C at semi-preparative scale. The conjugates were purified via solvent partition and silica gel chromatography and achieved 90-98% in purity. The NMR analysis of the conjugates confirmed that the fatty acid carbon chain was linked onto the primary -OH group on the glucose moiety of the flavonoids. The purified flavonoid conjugates alongside their original flavonoids were analyzed for antioxidant activities via 2,2-diphenyl-1-picrylhydrazyl scavenging assay, and anti-peroxidation test via peroxide values measured during a 1-week fish oil storage trial. Vascular endothelial growth factor (VEGF) assay was conducted with 1, 10, and 100 μM of naringin and grapefruits and their conjugates, respectively, and total VEGF levels were measured at 24 and 48 h, respectively, using ELISA and dot blot analysis. The results from these functionality experiments demonstrated that flavonoid FA conjugates have at least comparable (if not higher) antioxidant activity, anti-peroxidation activity, and anti-angiogenic activity.

  9. Design of polymer conjugated 3-helix micelles as nanocarriers with tunable shapes.

    PubMed

    Ma, Dan; DeBenedictis, Elizabeth P; Lund, Reidar; Keten, Sinan

    2016-11-24

    Amphiphilic peptide-polymer conjugates have the ability to form stable nanoscale micelles, which show great promise for drug delivery and other applications. A recent design has utilized the end-conjugation of alkyl chains to 3-helix coiled coils to achieve amphiphilicity, combined with the side-chain conjugation of polyethylene glycol (PEG) to tune micelle size through entropic confinement forces. Here we investigate this phenomenon in depth, using coarse-grained dissipative particle dynamics (DPD) simulations in an explicit solvent and micelle theory. We analyze the conformations of PEG chains conjugated to three different positions on 3-helix bundle peptides to ascertain the degree of confinement upon assembly, as well as the ordering of the subunits making up the micelle. We discover that the micelle size and stability is dictated by a competition between the entropy of PEG chain conformations in the assembled state, as well as intermolecular cross-interactions among PEG chains that promote cohesion between neighboring conjugates. Our analyses build on the role of PEG molecular weight and conjugation site and lead to computational phase diagrams that can be used to design 3-helix micelles. This work opens pathways for the design of multifunctional micelles with tunable size, shape and stability.

  10. Design and characterization of nanomaterial-biomolecule conjugates

    NASA Astrophysics Data System (ADS)

    Yim, Tae-Jin

    In the field of nanobiotechnology, nanoscale dimensions result in physical properties that differ from more conventional bulk material state. The integration of nanomaterials with biomolecules has begun to be used for unique physical properties, and for biological specific recognition, thereby leading to novel nanomaterial-biomolecule conjugates. The direction of this dissertation is to develop biocatalytic nanomaterial-biomolecule conjugates and to characterize them. For this, biological catalysts are employed to combine with nanomaterials. Two large parts include functional ization of nanomaterials with biomolecules and assembly of nanomaterials using a biological catalyst. First part of this thesis work is the exploration of the biocatalytic properties of nanomaterial-biomolecule conjugates. Si nanocolumns have higher surface area which leads more amount of biocatalytis immobilization than flat Si wafer with the same projected area. The enhanced activity of soybean peroxidase (SBP) immobilized onto Si nanocolumns as novel nanostructured supports is focused. Next, the catalytic activity of immobilized DNAzyme onto multiwalled carbon nanotubes (MWNTs) is compared to that in solution phase, and multiple turnovers are examined. The relationship between hybridization efficiency and activity is investigated as a function of surface density of DNAzyme on MWNTs. Then, cellular delivery of silica nanoparticle-protein conjugates is visually confirmed and therefore the intracellular function of a protein delivered by silica nanoparticle-protein conjugates is proved. For one example of the intracellular function, stable SBP immobilized onto silica nanoparticles to activate a prodrug is demonstrated. Second part of this thesis work is the formation of nanostructured materials through the enzymatic assembly of single-walled carbon nanotubes (SWNTs). Enzymatic polymerization of a phenol compound is applied to the bridging of two or more SWNTs functionalized with phenol

  11. Novel liver-specific cholic acid-cytarabine conjugates with potent antitumor activities: Synthesis and biological characterization

    PubMed Central

    Chen, Dan-qi; Wang, Xin; Chen, Lin; He, Jin-xue; Miao, Ze-hong; Shen, Jing-kang

    2011-01-01

    Aim: Cytarabine is an efficient anticancer agent for acute myelogenous leukemia, but with short plasma half-life and rapid deamination to its inactive metabolite. The aim of this study was to design and synthesize novel cholic acid-cytarabine conjugates to improve its pharmacokinetic parameters. Methods: The in vitro stability of novel cholic acid-cytarabine conjugates was investigated in simulated gastric and intestinal fluid, mouse blood and liver homogenate using HPLC. The portacaval samples of the conjugates were examined in male Sprague-Dawley rats using LC/MS, and in vivo distribution was examined in male Kunming mice using LC/MS. Antitumor activities were tested in HL60 cells using MTT assay. Results: Cholic acid-cytarabine compounds with four different linkers were designed and synthesized. All the four cholic acid-cytarabine conjugates could release cytarabine when incubated with the simulated gastric and intestinal fluid, mouse blood and liver homogenate. The conjugates 6, 12, and 16 were present in the portacaval samples, whereas the conjugate 7 was not detected. The conjugates 6 and 16 showed high specificity in targeting the liver (liver target index 34.9 and 16.3, respectively) and good absorption in vivo, as compared with cytarabine. In cytarabine-sensitive HL60 cells, the conjugates 6, 12, and 16 retained potent antitumor activities. Conclusion: Three novel cholic acid-cytarabine conjugates with good liver-targeting properties and absorption were obtained. Further optimization of the conjugates is needed in the future. PMID:21516131

  12. Method for synthesizing peptides with saccharide linked enzyme polymer conjugates

    DOEpatents

    Callstrom, M.R.; Bednarski, M.D.; Gruber, P.R.

    1997-06-17

    A method is disclosed for synthesizing peptides using water soluble enzyme polymer conjugates. The method comprises catalyzing the peptide synthesis with enzyme which has been covalently bonded to a polymer through at least three linkers which linkers have three or more hydroxyl groups. The enzyme is conjugated at lysines or arginines. 19 figs.

  13. Radialenes are minimally conjugated cyclic π-systems

    NASA Astrophysics Data System (ADS)

    Dias, Jerry Ray

    2017-03-01

    Conjugation energy (CE) in benzene is larger than its aromatic stabilisation energy (ASE). A far-reaching conclusion offered by this work is that per π-electron, CE is energetically larger than aromaticity. If a diene has a doubly degenerate HOMO, then its Diels-Alder reaction will be kinetically faster than a similar diene with a nondegenerate HOMO. The topological conjugation energy (TCE) for the radialene, monocyclic, dendralene, and linear polyene series has quite different trends. Radialenes are minimally conjugated cyclic systems with the TCE/No. π-bond = 0.432 β; the members of the dendralene series approach this same value from smaller values with increasing size. With increasing size, the members of the monocyclic and linear polyene series have, respectively, decreasing and increasing TCE/No. π-bond values approaching 0.547 β. Topological resonance energy (TRE) for radialenes, dendralenes, and linear polyenes all have TRE = 0, and the TRE/π-electron for monocyclic polyenes has alternating declining values between antiaromatic (-0.3066 β, -0.07435 β, -0.03287 β, …) and aromatic (0.04543 β, 0.01594 β, 0.00807 β, …). For benzene, TRE/No. π-bond = 0.0909 β and TCE/No. π-bond = 0.576 β.

  14. Specific Conjugation of the Hinge Region for Homogeneous Preparation of Antibody Fragment-Drug Conjugate: A Case Study for Doxorubicin-PEG-anti-CD20 Fab' Synthesis.

    PubMed

    Zhou, Zhan; Zhang, Jing; Zhang, Yan; Ma, Guanghui; Su, Zhiguo

    2016-01-20

    Conventional preparation strategies for antibody-drug conjugates (ADCs) result in heterogeneous products with various molecular sizes and species. In this study, we developed a homogeneous preparation strategy by site-specific conjugation of the anticancer drug with an antibody fragment. The model drug doxorubicin (DOX) was coupled to the Fab' fragment of anti-CD20 IgG at its permissive sites through a heterotelechelic PEG linker, generating an antibody fragment-drug conjugate (AFDC). Anti-CD20 IgG was digested and reduced specifically with β-mercaptoethylamine to generate the Fab' fragment with two free mercapto groups in its hinge region. Meanwhile, DOX was conjugated with α-succinimidylsuccinate ω-maleimide polyethylene glycol (NHS-PEG-MAL) to form MAL-PEG-DOX, which was subsequently linked to the free mercapto containing Fab' fragment to form a Fab'-PEG-DOX conjugate. The dual site-specific bioconjugation was achieved through the combination of highly selective reduction of IgG and introduction of heterotelechelic PEG linker. The resulting AFDC provides an utterly homogeneous product, with a definite ratio of one fragment to two drugs. Laser confocal microscopy and cell ELISA revealed that the AFDC could accumulate in the antigen-positive Daudi tumor cell. In addition, the Fab'-PEG-DOX retained appreciable targeting ability and improved antitumor activity, demonstrating an excellent therapeutic effect on the lymphoma mice model for better cure rate and significantly reduced side effects.

  15. Preparation, characterization, and immunogenicity of Haemophilus influenzae type b polysaccharide-protein conjugates

    PubMed Central

    1980-01-01

    A method is presented for covalently bonding Haemophilus influenzae type b capsular polysaccharide (HIB Ps) to several proteins. The method is efficient and relies upon the use of adipic dihydrazide as a spacer between the capsular polysaccharide and the carrier protein. In contrast to the poor immunogenicity of the purified HIB Ps in mice and rabbits, the HIB Ps-protein conjugates induced serum anti-type b antibodies having bactericidal activity at levels shown to be protective in humans when low doses were injected subcutaneously in a saline solution. The antibody response in mice was related to the dose of the conjugates, increased with the number of injections, and could be primed by the previous injection of the carrier protein. The HIB Ps- protein conjugates were immunogenic in three different mouse strains. The importance of the carrier molecule for the enhanced immunogenicity of the HIB Ps-protein conjugates was shown by the failure of HIB Ps hybrids prepared with either the homologous polysaccharide or pneumococcus type 3 polysaccharide to induce antibodie in mice. Rabbits injected with the HIB Ps-protein conjugates emulsified in Freund's adjuvant produced high levels of serum anti-type b antibodies which induced a bactericidal effect upon H. influenzae type b organisms. It is proposed that the HIB Ps component of the polysaccharide protein conjugates has been converted to a thymic-dependent immunogen. This method may be used to prepare protein-polysaccharide conjugates with HIB Ps and other polysaccharides to be considered for human use. PMID:6967514

  16. Fiber bundle phase conjugate mirror

    DOEpatents

    Ward, Benjamin G.

    2012-05-01

    An improved method and apparatus for passively conjugating the phases of a distorted wavefronts resulting from optical phase mismatch between elements of a fiber laser array are disclosed. A method for passively conjugating a distorted wavefront comprises the steps of: multiplexing a plurality of probe fibers and a bundle pump fiber in a fiber bundle array; passing the multiplexed output from the fiber bundle array through a collimating lens and into one portion of a non-linear medium; passing the output from a pump collection fiber through a focusing lens and into another portion of the non-linear medium so that the output from the pump collection fiber mixes with the multiplexed output from the fiber bundle; adjusting one or more degrees of freedom of one or more of the fiber bundle array, the collimating lens, the focusing lens, the non-linear medium, or the pump collection fiber to produce a standing wave in the non-linear medium.

  17. Conjugate field approaches for active array compensation

    NASA Technical Reports Server (NTRS)

    Acosta, R. J.

    1989-01-01

    Two approaches for calculating the compensating feed array complex excitations are namely, the indirect conjugate field matching (ICFM) and the direct conjugate field matching (DCFM) approach. In the ICFM approach the compensating feed array excitations are determined by considering the transmitting mode and the reciprocity principle. The DCF, in contrast calculates the array excitations by integrating directly the induced surface currents on the reflector under a receiving mode. DCFM allows the reflector to be illuminated by an incident plane wave with a tapered amplitude. The level of taper can effectively control the sidelobe level of the compensated antenna pattern. Both approaches are examined briefly.

  18. Effects of Polymer Conjugation on Hybridization Thermodynamics of Oligonucleic Acids.

    PubMed

    Ghobadi, Ahmadreza F; Jayaraman, Arthi

    2016-09-15

    In this work, we perform coarse-grained (CG) and atomistic simulations to study the effects of polymer conjugation on hybridization/melting thermodynamics of oligonucleic acids (ONAs). We present coarse-grained Langevin molecular dynamics simulations (CG-NVT) to assess the effects of the polymer flexibility, length, and architecture on hybridization/melting of ONAs with different ONA duplex sequences, backbone chemistry, and duplex concentration. In these CG-NVT simulations, we use our recently developed CG model of ONAs in implicit solvent, and treat the conjugated polymer as a CG chain with purely repulsive Weeks-Chandler-Andersen interactions with all other species in the system. We find that 8-100-mer linear polymer conjugation destabilizes 8-mer ONA duplexes with weaker Watson-Crick hydrogen bonding (WC H-bonding) interactions at low duplex concentrations, while the same polymer conjugation has an insignificant impact on 8-mer ONA duplexes with stronger WC H-bonding. To ensure the configurational space is sampled properly in the CG-NVT simulations, we also perform CG well-tempered metadynamics simulations (CG-NVT-MetaD) and analyze the free energy landscape of ONA hybridization for a select few systems. We demonstrate that CG-NVT-MetaD simulation results are consistent with the CG-NVT simulations for the studied systems. To examine the limitations of coarse-graining in capturing ONA-polymer interactions, we perform atomistic parallel tempering metadynamics simulations at well-tempered ensemble (AA-MetaD) for a 4-mer DNA in explicit water with and without conjugation to 8-mer poly(ethylene glycol) (PEG). AA-MetaD simulations also show that, for a short DNA duplex at T = 300 K, a condition where the DNA duplex is unstable, conjugation with PEG further destabilizes DNA duplex. We conclude with a comparison of results from these three different types of simulations and discuss their limitations and strengths.

  19. Glutathione S-conjugates as prodrugs to target drug-resistant tumors

    PubMed Central

    Ramsay, Emma E.; Dilda, Pierre J.

    2014-01-01

    Living organisms are continuously exposed to xenobiotics. The major phase of enzymatic detoxification in many species is the conjugation of activated xenobiotics to reduced glutathione (GSH) catalyzed by the glutathione-S-transferase (GST). It has been reported that some compounds, once transformed into glutathione S-conjugates, enter the mercapturic acid pathway whose end products are highly reactive and toxic for the cell responsible for their production. The cytotoxicity of these GSH conjugates depends essentially on GST and gamma-glutamyl transferases (γGT), the enzymes which initiate the mercapturic acid synthesis pathway. Numerous studies support the view that the expression of GST and γGT in cancer cells represents an important factor in the appearance of a more aggressive and resistant phenotype. High levels of tumor GST and γGT expression were employed to selectively target tumor with GST- or γGT-activated drugs. This strategy, explored over the last two decades, has recently been successful using GST-activated nitrogen mustard (TLK286) and γGT-activated arsenic-based (GSAO and Darinaparsin) prodrugs confirming the potential of GSH-conjugates as anticancer drugs. PMID:25157234

  20. Effect of guar gum conjugation on functional, antioxidant and antimicrobial activity of egg white lysozyme.

    PubMed

    Hamdani, Afshan Mumtaz; Wani, Idrees Ahmed; Bhat, Naseer Ahmad; Siddiqi, Raushid Ahmad

    2018-02-01

    This study was undertaken to analyze the effect of conjugation of egg-white lysozyme with guar gum. Lysozyme is an antimicrobial polypeptide that can be used for food preservation. Its antibacterial activity is limited to gram positive bacteria. Conjugation with polysaccharides like guar gum may broaden its activity against gram negatives. Conjugate was developed through Maillard reaction. Assays carried out included sugar estimation, SDS-PAGE, GPC, color, FT-IR, DSC, thermal stability, solubility, emulsifying, foaming and antioxidant activity. In addition, antimicrobial activity of the conjugate was determined against two gram positive (Staphyllococcus aureus and Enterococcus) and two gram negative pathogens (E. coli and Salmonella). Results showed higher functional properties of lysozyme-guar gum conjugate. The antioxidant properties increased from 2.02-35.80% (Inhibition of DPPH) and 1.65-4.93AAE/g (reducing power) upon guar gum conjugation. Conjugate significantly inhibited gram negative bacteria and the antibacterial activity also increased significantly against gram positive pathogens. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Template-directed covalent conjugation of DNA to native antibodies, transferrin and other metal-binding proteins

    NASA Astrophysics Data System (ADS)

    Rosen, Christian B.; Kodal, Anne L. B.; Nielsen, Jesper S.; Schaffert, David H.; Scavenius, Carsten; Okholm, Anders H.; Voigt, Niels V.; Enghild, Jan J.; Kjems, Jørgen; Tørring, Thomas; Gothelf, Kurt V.

    2014-09-01

    DNA-protein conjugates are important in bioanalytical chemistry, molecular diagnostics and bionanotechnology, as the DNA provides a unique handle to identify, functionalize or otherwise manipulate proteins. To maintain protein activity, conjugation of a single DNA handle to a specific location on the protein is often needed. However, preparing such high-quality site-specific conjugates often requires genetically engineered proteins, which is a laborious and technically challenging approach. Here we demonstrate a simpler method to create site-selective DNA-protein conjugates. Using a guiding DNA strand modified with a metal-binding functionality, we directed a second DNA strand to the vicinity of a metal-binding site of His6-tagged or wild-type metal-binding proteins, such as serotransferrin, where it subsequently reacted with lysine residues at that site. This method, DNA-templated protein conjugation, facilitates the production of site-selective protein conjugates, and also conjugation to IgG1 antibodies via a histidine cluster in the constant domain.

  2. Androgen Receptor Antagonism By Divalent Ethisterone Conjugates In Castrate-Resistant Prostate Cancer Cells

    PubMed Central

    Levine, Paul M.; Lee, Eugine; Greenfield, Alex; Bonneau, Richard; Logan, Susan K.; Garabedian, Michael J.; Kirshenbaum, Kent

    2013-01-01

    Sustained treatment of prostate cancer with Androgen Receptor (AR) antagonists can evoke drug resistance, leading to castrate-resistant disease. Elevated activity of the AR is often associated with this highly aggressive disease state. Therefore, new therapeutic regimens that target and modulate AR activity could prove beneficial. We previously introduced a versatile chemical platform to generate competitive and non-competitive multivalent peptoid oligomer conjugates that modulate AR activity. In particular, we identified a linear and a cyclic divalent ethisterone conjugate that exhibit potent anti-proliferative properties in LNCaP-abl cells, a model of castrate-resistant prostate cancer. Here, we characterize the mechanism of action of these compounds utilizing confocal microscopy, time-resolved fluorescence resonance energy transfer, chromatin immunoprecipitation, flow cytometry, and microarray analysis. The linear conjugate competitively blocks AR action by inhibiting DNA binding. In addition, the linear conjugate does not promote AR nuclear localization or co-activator binding. In contrast, the cyclic conjugate promotes AR nuclear localization and induces cell-cycle arrest, despite its inability to compete against endogenous ligand for binding to AR in vitro. Genome-wide expression analysis reveals that gene transcripts are differentially affected by treatment with the linear or cyclic conjugate. Although the divalent ethisterone conjugates share extensive chemical similarities, we illustrate that they can antagonize the AR via distinct mechanisms of action, establishing new therapeutic strategies for potential applications in AR pharmacology. PMID:22871957

  3. Microwave phase conjugation using artificial nonlinear microwave surfaces

    NASA Astrophysics Data System (ADS)

    Chang, Yian

    1997-09-01

    A new technique is developed and demonstrated to simulate nonlinear materials in the microwave and millimeter wave regime. Such materials are required to extend nonlinear optical techniques into longer wavelength areas. Using an array of antenna coupled mixers as an artificial nonlinear surface, we have demonstrated two-dimensional free space microwave phase conjugation at 10 GHz. The basic concept is to replace the weak nonlinearity of electron distribution in a crystal with the strong nonlinear V-I response of a P-N junction. This demnstration uses a three-wave mixing method with the effective nonlinear susceptibility χ(2) provided by an artificial nonlinear surface. The pump signal at 2ω (20 GHz) can be injected to the mixing elements electrically or optically. Electrical injection was first used to prove the concept of artificial nonlinear surfaces. However, due to the loss and size of microwave components, electrical injection is not practical for an array of artificial nonlinear surfaces, as would be needed in a three-dimensional free space phase conjugation setup. Therefore optical injection was implemented to carry the 2ω microwave pump signal in phase to all mixing elements. In both cases, two-dimensional free space phase conjugation was observed by directly measuring the electric field amplitude and phase distribution. The electric field wavefronts exhibited retro-directivity and auto- correction characteristics of phase conjugation. This demonstration surface also shows a power gain of 10 dB, which is desired for potential communication applications.

  4. Cellulose-ethylenediaminetetraacetic acid conjugates protect mammalian cells from bacterial cells.

    PubMed

    Luo, Jie; Lv, Wei; Deng, Ying; Sun, Yuyu

    2013-04-08

    Cellulose-ethylenediaminetetraacetic acid (EDTA) conjugates were synthesized by the esterification of cellulose with ethylenediaminetetraacetic dianhydride (EDTAD). The new materials provided potent antimicrobial activities against Staphylococcus aureus (S. aureus, Gram-positive bacteria) and Pseudomonas aeruginosa (P. aeruginosa, Gram-negative bacteria), and inhibited the formation of bacterial biofilms. The biocompatibility of the new cellulose-EDTA conjugates was evaluated with mouse skin fibroblasts for up to 14 days. SEM observation and DNA content analysis suggested that the new materials sustained the viability of fibroblast cells. Moreover, in mouse skin fibroblast-bacteria co-culture systems, the new cellulose-EDTA conjugates prevented bacterial biofilm formation and protected the mammalian cells from the bacterial cells for at least one day.

  5. New silibinin glyco-conjugates: synthesis and evaluation of antioxidant properties.

    PubMed

    Zarrelli, Armando; Romanucci, Valeria; Tuccillo, Concetta; Federico, Alessandro; Loguercio, Carmela; Gravante, Raffaele; Di Fabio, Giovanni

    2014-11-15

    New silibinin glyco-conjugates have been synthesized by efficient method and in short time. Exploiting our solution phase strategy, several structurally diverse silibinin glyco-conjugates (gluco, manno, galacto, and lacto-) were successfully realized in very good yields and in short time. In preliminary study to evaluate their antioxidant and neuroprotective activities new derivatives were subjected to DPPH free radical scavenging assay and the Xanthine oxidase (XO) inhibition models assay. Irrespective of the sugar moiety examined, new glyco-conjugates are more than 50 times water-soluble of silibinin. In the other hand they exhibit a radical scavenging activities slightly higher than to silibinin and XO inhibition at least as silibinin. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. Novel Curcumin Diclofenac Conjugate Enhanced Curcumin Bioavailability and Efficacy in Streptococcal Cell Wall-induced Arthritis.

    PubMed

    Jain, S K; Gill, M S; Pawar, H S; Suresh, Sarasija

    2014-09-01

    Curcumin-diclofenac conjugate as been synthesized by esterification of phenolic group of curcumin with the acid moiety of diclofenac, and characterized by mass spectrometry, NMR, FTIR, DSC, thermogravimetric analysis and X-ray diffraction analysis. The relative solubility of curcumin-diclofenac conjugate, curcumin and diclofenac; stability of curcumin-diclofenac conjugate in intestinal extract; permeability study of curcumin-diclofenac conjugate using the everted rat intestinal sac method; stability of curcumin-diclofenac conjugate in gastrointestinal fluids and in vitro efficacy have been evaluated. In vivo bioavailability of curcumin-diclofenac conjugate and curcumin in Sprague-Dawley rats, and antiarthritic activity of curcumin-diclofenac conjugate, curcumin and diclofenac in modified streptococcal cell wall-induced arthritis model in Balb/c mice to mimic rheumatoid arthritis in humans have also been studied. In all of the above studies, curcumin-diclofenac conjugate exhibited enhanced stability as compared to curcumin; its activity was twice that of diclofenac in inhibiting thermal protein denaturation taken as a measure of in vitro antiinflammatory activity; it enhanced the bioavailability of curcumin by more than five folds, and significantly (P<0.01) alleviated the symptoms of arthritis in streptococcal cell wall-induced arthritis model as compared to both diclofenac and curcumin.

  7. Single-particle tracking of quantum dot-conjugated prion proteins inside yeast cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tsuji, Toshikazu; Kawai-Noma, Shigeko; Pack, Chan-Gi

    2011-02-25

    Research highlights: {yields} We develop a method to track a quantum dot-conjugated protein in yeast cells. {yields} We incorporate the conjugated quantum dot proteins into yeast spheroplasts. {yields} We track the motions by conventional or 3D tracking microscopy. -- Abstract: Yeast is a model eukaryote with a variety of biological resources. Here we developed a method to track a quantum dot (QD)-conjugated protein in the budding yeast Saccharomyces cerevisiae. We chemically conjugated QDs with the yeast prion Sup35, incorporated them into yeast spheroplasts, and tracked the motions by conventional two-dimensional or three-dimensional tracking microscopy. The method paves the way towardmore » the individual tracking of proteins of interest inside living yeast cells.« less

  8. Studies on poison ivy. In vitro lymphocyte transformation by urushiol-protein conjugates.

    PubMed

    Dupuis, G

    1979-12-01

    The isolation and purification of poison ivy urushiol is described. The preparation of urushiol-ski protein and urushiol human serum albumin is also described. Lymphocytes from eleven donor naturally sensitized to poison ivy and from four non-sensitive individuals have been cultured for 5 days in the presence of urushiol-carrier conjugates. Lymphocytes from seven of the eleven sensitive donors responded with a stimulation index greater than 3.0 to urushiol-albumin conjugate. When urushiol-skin protein conjugate was used as a stimulant, lymphocytes from only three of the eleven sensitive donors responded. The results suggest that urushiol-protein conjugates can stimulate sensitive lymphocytes in vitro, although a response is not observed in every individual naturally sensitized to poison ivy.

  9. Thio-Linked UDP–Peptide Conjugates as O-GlcNAc Transferase Inhibitors

    PubMed Central

    2018-01-01

    O-GlcNAc transferase (OGT) is an essential glycosyltransferase that installs the O-GlcNAc post-translational modification on the nucleocytoplasmic proteome. We report the development of S-linked UDP–peptide conjugates as potent bisubstrate OGT inhibitors. These compounds were assembled in a modular fashion by photoinitiated thiol–ene conjugation of allyl-UDP and optimal acceptor peptides in which the acceptor serine was replaced with cysteine. The conjugate VTPVC(S-propyl-UDP)TA (Ki = 1.3 μM) inhibits the OGT activity in HeLa cell lysates. Linear fusions of this conjugate with cell penetrating peptides were explored as prototypes of cell-penetrant OGT inhibitors. A crystal structure of human OGT with the inhibitor revealed mimicry of the interactions seen in the pseudo-Michaelis complex. Furthermore, a fluorophore-tagged derivative of the inhibitor works as a high affinity probe in a fluorescence polarimetry hOGT assay. PMID:29723473

  10. Field of view advantage of conjugate adaptive optics in microscopy applications

    PubMed Central

    Mertz, Jerome; Paudel, Hari; Bifano, Thomas G.

    2015-01-01

    The imaging performance of an optical microscope can be degraded by sample-induced aberrations. A general strategy to undo the effect of these aberrations is to apply wavefront correction with a deformable mirror (DM). In most cases the DM is placed conjugate to the microscope pupil, called pupil adaptive optics (AO). When the aberrations are spatially variant an alternative configuration involves placing the DM conjugate to the main source of aberrations, called conjugate AO. We provide a theoretical and experimental comparison of both configurations for the simplified case where spatially variant aberrations are produced by a well defined phase screen. We pay particular attention to the resulting correction field of view (FOV). Conjugate AO is found to provide a significant FOV advantage. While this result is well known in the astronomy community, our goal here is to recast it specifically for the optical microscopy community. PMID:25967343

  11. Cholesterol-conjugated supramolecular assemblies of low generations polyamidoamine dendrimers for enhanced EGFP plasmid DNA transfection

    NASA Astrophysics Data System (ADS)

    Golkar, Nasim; Samani, Soliman Mohammadi; Tamaddon, Ali Mohammad

    2016-05-01

    Aimed to prepare an enhanced gene delivery system with low cytotoxicity and high transfection efficiency, various cholesterol-conjugated derivates of low generation polyamidoamine (PAMAM) dendrimers were prepared. The conjugates were characterized by TNBS assay, FTIR, and 1H-NMR spectroscopy. Self-assembly of the dendrimer conjugates (G1-Chol, G2-Chol, and G3-Chol) was investigated by pyrene assay. Following formation of the complexes between enhanced green fluorescence protein plasmid and the dendrimer conjugates at various N (primary amine)/P (phosphate) mole ratios, plasmid condensation, biologic stability, cytotoxicity, and protein expression were investigated. The conjugates self-assembled into micellar dispersions with the critical micelle concentration values (<50 µg/ml) depending on the dendrimer generation and cholesterol/amine mole ratio. Cholesterol conjugation resulted in higher resistance of the condensed plasmid DNA in a competition assay with heparin sulfate. Also, the transfection efficiency was determined higher for the cholesterol conjugates than unmodified dendrimers in HepG2 cells, showing the highest for G2-Chol at 40 % degree of cholesterol modification (G2-Chol40 %) among various dendrimer generations. Interestingly, such conjugate showed a complete protection of plasmid against serum nucleases. Our results confirmed that the cholesterol conjugation to PAMAM dendrimers of low generations bearing little cytotoxicity improves their several physicochemical and biological characteristics required for an enhanced delivery of plasmid DNA into cells.

  12. Targeting of antibody-conjugated plasminogen activators to the pulmonary vasculature.

    PubMed

    Muzykantov, V R; Barnathan, E S; Atochina, E N; Kuo, A; Danilov, S M; Fisher, A B

    1996-11-01

    Thrombolytic therapy has not been widely used for pulmonary embolism due to less than optimal results with conventional plasminogen activators. We propose a new approach to deliver plasminogen activators to the luminal surface of the pulmonary vasculature to potentially improve dissolution of pulmonary thromboemboli. Our previous studies have documented that a monoclonal antibody (mAb) to angiotensin-converting enzyme (anti-angiotensin-converting enzyme mAb 9B9) accumulates in the lungs of various animal species after systemic administration. We coupled 125I-labeled biotinylated plasminogen activators (single-chain urokinase plasminogen activator, tissue-type plasminogen activator and streptokinase) to biotinylated mAb 9B9, using streptavidin as a cross-linker. The fibrinolytic activity of plasminogen activators was not changed significantly by either biotinylation or by coupling to streptavidin. Antibody-conjugated plasminogen activators bind to the antigen immobilized in plastic wells and provide lysis of fibrin clots formed in these wells. Therefore, antibody-conjugated plasminogen activators bound to their target antigen retain their capacity to activate plasminogen. One hour after i.v. injection of mAb 9B9-conjugated radiolabeled biotinylated single-chain urokinase plasminogen activator, biotinylated tissue-type plasminogen activator or biotinylated-streptokinase in rats, the level of radiolabel was 7.4 +/- 0.8, 5.9 +/- 0.4 and 3.6 +/- 0.4% of injected dose/g (ID/g) of lung tissue vs. 0.5 +/- 0.01, 0.3 +/- 0.01 and 0.6 +/- 0.3% ID/g after injection of the same activators conjugated with control mouse IgG (P < .01 in all cases). Injection of mAb 9B9-conjugated radiolabeled plasminogen activator led to its rapid pulmonary uptake with a peak value 6.2 +/- 1.2% ID/g attained 3 hr after injection. One day later, 2.2 +/- 0.5% of the injected radioactivity was found per gram of lung tissue, although the blood level was 0.13 +/- 0.03% ID/g (lung/blood ratio 16.7 +/- 0

  13. Hypothesis: conjugate vaccines may predispose children to autism spectrum disorders.

    PubMed

    Richmand, Brian J

    2011-12-01

    The first conjugate vaccine was approved for use in the US in 1988 to protect infants and young children against the capsular bacteria Haemophilus influenzae type b (Hib). Since its introduction in the US, this vaccine has been approved in most developed countries, including Denmark and Israel where the vaccine was added to their national vaccine programs in 1993 and 1994, respectively. There have been marked increases in the reported prevalence of autism spectrum disorders (ASDs) among children in the US beginning with birth cohorts in the late 1980s and in Denmark and Israel starting approximately 4-5 years later. Although these increases may partly reflect ascertainment biases, an exogenous trigger could explain a significant portion of the reported increases in ASDs. It is hypothesized here that the introduction of the Hib conjugate vaccine in the US in 1988 and its subsequent introduction in Denmark and Israel could explain a substantial portion of the initial increases in ASDs in those countries. The continuation of the trend toward increased rates of ASDs could be further explained by increased usage of the vaccine, a change in 1990 in the recommended age of vaccination in the US from 15 to 2 months, increased immunogenicity of the vaccine through changes in its carrier protein, and the subsequent introduction of the conjugate vaccine for Streptococcus pneumoniae. Although conjugate vaccines have been highly effective in protecting infants and young children from the significant morbidity and mortality caused by Hib and S. pneumoniae, the potential effects of conjugate vaccines on neural development merit close examination. Conjugate vaccines fundamentally change the manner in which the immune systems of infants and young children function by deviating their immune responses to the targeted carbohydrate antigens from a state of hypo-responsiveness to a robust B2 B cell mediated response. This period of hypo-responsiveness to carbohydrate antigens coincides

  14. Extreme electron polaron spatial delocalization in π-conjugated materials

    DOE PAGES

    Rawson, Jeff; Angiolillo, Paul J.; Therien, Michael J.

    2015-10-28

    The electron polaron, a spin-1/2 excitation, is the fundamental negative charge carrier in π-conjugated organic materials. Large polaron spatial dimensions result from weak electron-lattice coupling and thus identify materials with unusually low barriers for the charge transfer reactions that are central to electronic device applications. In this paper, we demonstrate electron polarons in π-conjugated multiporphyrin arrays that feature vast areal delocalization. This finding is evidenced by concurrent optical and electron spin resonance measurements, coupled with electronic structure calculations that suggest atypically small reorganization energies for one-electron reduction of these materials. Finally, because the electron polaron dimension can be linked tomore » key performance metrics in organic photovoltaics, light-emitting diodes, and a host of other devices, these findings identify conjugated materials with exceptional optical, electronic, and spintronic properties.« less

  15. High-frequency chaotic dynamics enabled by optical phase-conjugation

    PubMed Central

    Mercier, Émeric; Wolfersberger, Delphine; Sciamanna, Marc

    2016-01-01

    Wideband chaos is of interest for applications such as random number generation or encrypted communications, which typically use optical feedback in a semiconductor laser. Here, we show that replacing conventional optical feedback with phase-conjugate feedback improves the chaos bandwidth. In the range of achievable phase-conjugate mirror reflectivities, the bandwidth increase reaches 27% when compared with feedback from a conventional mirror. Experimental measurements of the time-resolved frequency dynamics on nanosecond time-scales show that the bandwidth enhancement is related to the onset of self-pulsing solutions at harmonics of the external-cavity frequency. In the observed regime, the system follows a chaotic itinerancy among these destabilized high-frequency external-cavity modes. The recorded features are unique to phase-conjugate feedback and distinguish it from the long-standing problem of time-delayed feedback dynamics. PMID:26739806

  16. Conjugate gradient heat bath for ill-conditioned actions.

    PubMed

    Ceriotti, Michele; Bussi, Giovanni; Parrinello, Michele

    2007-08-01

    We present a method for performing sampling from a Boltzmann distribution of an ill-conditioned quadratic action. This method is based on heat-bath thermalization along a set of conjugate directions, generated via a conjugate-gradient procedure. The resulting scheme outperforms local updates for matrices with very high condition number, since it avoids the slowing down of modes with lower eigenvalue, and has some advantages over the global heat-bath approach, compared to which it is more stable and allows for more freedom in devising case-specific optimizations.

  17. Ketopantoyl lactone reductase is a conjugated polyketone reductase.

    PubMed

    Hata, H; Shimizu, S; Hattori, S; Yamada, H

    1989-03-01

    Ketopantoyl lactone reductase (EC 1.1.1.168) of Saccharomyces cerevisiae was found to catalyze the reduction of a variety of natural and unnatural conjugated polyketone compounds and quinones, such as isatin, ninhydrin, camphorquinone and beta-naphthoquinone in the presence of NADPH. 5-Bromoisatin is the best substrate for the enzyme (Km = 3.1 mM; Vmax = 650 mumol/min/mg). The enzyme is inhibited by quercetin, and several polyketones. These results suggest that ketopantoyl lactone reductase is a carbonyl reductase which specifically catalyzes the reduction of conjugated polyketones.

  18. Live Cell Imaging of a Fluorescent Gentamicin Conjugate

    PubMed Central

    Escobedo, Jorge O.; Chu, Yu-Hsuan; Wang, Qi; Steyger, Peter S.; Strongin, Robert M.

    2012-01-01

    Understanding cellular mechanisms of ototoxic and nephrotoxic drug uptake, intracellular distribution, and molecular trafficking across cellular barrier systems aids the study of potential uptake blockers that preserve sensory and renal function during critical life-saving therapy. Herein we report the design, synthesis characterization and evaluation of a fluorescent conjugate of the aminoglycoside antibiotic gentamicin. Live cell imaging results show the potential utility of this new material. Related gentamicin conjugates studied to date quench in live kindney cells, and have been largely restricted to use in fixed (delipidated) cells. PMID:22545403

  19. Cyclization Cascades Initiated by 1,6-Conjugate Addition

    PubMed Central

    Brooks, Joshua L.; Frontier, Alison J.

    2012-01-01

    Dienyl diketones containing tethered acetates selectively undergo two different 1,6-conjugate addition-initiated cyclization cascades. One is a 1,6-conjugate addition/cyclization sequence with incorporation of the nucleophile, and the other is catalyzed by DABCO and is thought to proceed via a cyclic acetoxonium intermediate. The reaction behavior of substrates lacking the tethered acetate was also studied. The scope of both types of cyclization cascades, the role of the amine additive, and the factors controlling reactivity and selectivity in the two different reaction pathways is discussed. PMID:23004564

  20. Possibility for the Conjugated Use of Photodynamic Therapy and Electrosurgical Devices.

    PubMed

    Rego Filho, Francisco de Assis Martins Gomes; Caldas, Romualdo Arthur Alencar; Kurachi, Cristina; Bagnato, Vanderlei Salvador; de Araujo, Maria Tereza

    2015-01-01

    Because tissue optics limits the treated volume during anti-tumor Photodynamic Therapy (PDT), its conjugation with prior tissue debulking has been suggested clinically. In this context, the conjugation of radiofrequency ablation and PDT has already been demonstrated. However, the basic principles that enable the success of these protocols have not been discussed. This proof-of-principle study analyzes the possibility of conjugating electrosurgery (ES) and PDT, analyzing different sequences of photosensitizer (PS) administration in an animal model. The animals were distributed over five groups: ES, PS+Light, PS+ES, ES+PS+Light and PS+ES+Light. The PS Photogem was administered systemically. An electrosurgical unit (480 kHz) was used to remove a portion of the liver, leaving a plane surface for PDT illumination (630 nm, 150 J/cm²). Fluorescence was collected during the stages of the experiment to monitor the PS accumulation. After 30 hours, histological processing was performed. The fluorescence spectra revealed strong Photogem emission in both administration sequences (ES+PS; PS+ES), and little PS bleach after ES was observed. The maximum necrosis depth was observed for the PS+ES+Light group-(716 ± 75) μm-higher than its respective control group (160 ± 28) μm, proving successful conjugation. Histological features from ES and PDT on both conjugation sequences were observed. Pre-photosensitized tissue presented decreased ES-related thermal damage. A simple physical hypothesis, based on the Joule effect and the tissue electrical conductivity, was proposed to support these findings. In conclusion, the results successfully demonstrated the possibility of conjugating ES and PDT in a single protocol.

  1. Near-infrared (NIR) emitting conjugated polymers for biomedical applications (Presentation Recording)

    NASA Astrophysics Data System (ADS)

    Repenko, Tatjana; Kuehne, Alexander J. C.

    2015-10-01

    Fluorescent biomedical markers of today such as dye-infiltrated colloids, microgels and quantum dots suffer from fast bleaching, lack surface functionality (for targets or pharmaceutical agents) and potentially leach heavy metals in case of quantum dots (e.g. Cd). By contrast, conjugated polymer particles are non-cytotoxic, exhibit reduced bleaching, as the entire particle consists of fluorophore, they are hydrophobic and show high quantum yields. Consequently, conjugated polymer particles represent ideal materials for biological applications and imaging. However currently, conjugated polymer particles for biomedical imaging usually lack near-infrared (NIR) emission and are polydisperse. Fluorescent agents with emission in the NIR spectrum are interesting for biomedical applications due to their low photo-damage towards biological species and the ability of NIR radiation to penetrate deep into biological tissue.. I will present the development and synthesis of new conjugated polymers particles with fluorescence in the NIR spectral region for bio-imaging and clinical diagnosis. The particle synthesis proceeds in a one-step Pd or Ni-catalyzed dispersion polymerization of functional NIR emitters. The resulting monodisperse conjugated polymer particles are obtained as a dispersion in a non-hazardous solvent. Different sizes in the sub-micrometer range with a narrow size distribution can be produced. Furthermore biological recognition motifs can be easily attached to the conjugated polymers via thiol-yne click-chemistry providing specific tumor targeting without quenching of the fluorescence. References [1] Kuehne AJC, Gather MC, Sprakel J., Nature Commun. 2012, 3, 1088. [2] Repenko T, Fokong S, De Laporte L, Go D, Kiessling F, Lammers T, Kuehne AJC.,Chem Commun 2015, accepted.

  2. Gold nanocage-photosensitizer conjugates for dual-modal image-guided enhanced photodynamic therapy.

    PubMed

    Srivatsan, Avinash; Jenkins, Samir V; Jeon, Mansik; Wu, Zhijin; Kim, Chulhong; Chen, Jingyi; Pandey, Ravindra K

    2014-01-01

    We have demonstrated that gold nanocage-photosensitizer conjugates can enable dual image-guided delivery of photosensitizer and significantly improve the efficacy of photodynamic therapy in a murine model. The photosensitizer, 3-devinyl-3-(1'-hexyloxyethyl)pyropheophorbide (HPPH), was noncovalently entrapped in the poly(ethylene glycol) monolayer coated on the surface of gold nanocages. The conjugate is stable in saline solutions, while incubation in protein rich solutions leads to gradual unloading of the HPPH, which can be monitored optically by fluorescence and photoacoustic imaging. The slow nature of the release in turn results in an increase in accumulation of the drug within implanted tumors due to the passive delivery of gold nanocages. Furthermore, the conjugate is found to generate more therapeutic singlet oxygen and have a lower IC50 value than the free drug alone. Thus the conjugate shows significant suppression of tumor growth as compared to the free drug in vivo. Short-term study showed neither toxicity nor phenotypical changes in mice at therapeutic dose of the conjugates or even at 100-fold higher than therapeutic dose of gold nanocages.

  3. Design, synthesis of methotrexate-diosgenin conjugates and biological evaluation of their effect on methotrexate transport-resistant cells.

    PubMed

    Cai, Bangrong; Liao, Aimei; Lee, Kyung-Ku; Ban, Jae-Sam; Yang, Hyun-Sam; Im, Young Jun; Chun, ChangJu

    2016-12-01

    A series of methotrexate-diosgenin conjugates was designed and synthesized to enhance the passive internalization of methotrexate (MTX) into transport-resistant cells. The inhibitory effects of these conjugates on dihydrofolate reductase (DHFR), and their anti-proliferation behaviors against a transport-resistant breast cancer cell line, MDA-MB-231, were investigated. All of the synthesized conjugates retained an ability to inhibit DHFR after the diosgenin substitution. The MTX conjugates were much more potent against methotrexate-resistant MDA-MB-231 cells than MTX. Conjugate 18, containing a disulfide bond, exhibited the most potent anti-proliferative and DHFR inhibitory effects (IC 50 =4.1μM and 17.21nM, respectively). Anti-proliferative activity was higher in the conjugate with a longer space linker (conjugate 21) than those with shorter linkers (conjugates 19 and 20). These results suggest that diosgenin conjugation of MTX may be an effective way to overcome its transport resistance in cancer cells. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. Molecular design toward highly efficient photovoltaic polymers based on two-dimensional conjugated benzodithiophene.

    PubMed

    Ye, Long; Zhang, Shaoqing; Huo, Lijun; Zhang, Maojie; Hou, Jianhui

    2014-05-20

    As researchers continue to develop new organic materials for solar cells, benzo[1,2-b:4,5-b']dithiophene (BDT)-based polymers have come to the fore. To improve the photovoltaic properties of BDT-based polymers, researchers have developed and applied various strategies leading to the successful molecular design of highly efficient photovoltaic polymers. Novel polymer materials composed of two-dimensional conjugated BDT (2D-conjugated BDT) have boosted the power conversion efficiency of polymer solar cells (PSCs) to levels that exceed 9%. In this Account, we summarize recent progress related to the design and synthesis of 2D-conjugated BDT-based polymers and discuss their applications in highly efficient photovoltaic devices. We introduce the basic considerations for the construction of 2D-conjugated BDT-based polymers and systematic molecular design guidelines. For example, simply modifying an alkoxyl-substituted BDT to form an alkylthienyl-substituted BDT can improve the polymer hole mobilities substantially with little effect on their molecular energy level. Secondly, the addition of a variety of chemical moieties to the polymer can produce a 2D-conjugated BDT unit with more functions. For example, the introduction of a conjugated side chain with electron deficient groups (such as para-alkyl-phenyl, meta-alkoxyl-phenyl, and 2-alkyl-3-fluoro-thienyl) allowed us to modulate the molecular energy levels of 2D-conjugated BDT-based polymers. Through the rational design of BDT analogues such as dithienobenzodithiophene (DTBDT) or the insertion of larger π bridges, we can tune the backbone conformations of these polymers and modulate their photovoltaic properties. We also discuss the influence of 2D-conjugated BDT on polymer morphology and the blends of these polymers with phenyl-C61 (or C71)-butyric acid methyl ester (PCBM). Finally, we summarize the various applications of the 2D-conjugated BDT-based polymers in highly efficient PSC devices. Overall, this Account

  5. Characterization of pi-Conjugated Polymers for Transistor and Photovoltaic Applications

    NASA Astrophysics Data System (ADS)

    Paulsen, Bryan D.

    pi-Conjugated polymers represent a unique class of optoelectronic materials. Being polymers, they are solution processable and inherently "soft" materials. This makes them attractive candidates for the production of roll-to-roll printed electronic devices on flexible substrates. The optical and electronic properties of pi-conjugated polymers are synthetically tunable allowing material sets to be tailored to specific applications. Two of the most heavily researched applications are the thin film transistor, the building block of electronic circuits, and the bulk heterojunction solar cell, which holds great potential as a renewable energy source. Key to developing commercially feasible pi-conjugated polymer devices is a thorough understanding of the electronic structure and charge transport behavior of these materials in relationship with polymer structure. Here this structure property relationship has been investigated through electrical and electrochemical means in concert with a variety of other characterization techniques and device test beds. The tunability of polymer optical band gap and frontier molecular orbital energy level was investigated in systems of vinyl incorporating statistical copolymers. Energy levels and band gaps are crucial parameters in developing efficient photovoltaic devices, with control of these parameters being highly desirable. Additionally, charge transport and density of electronic states were investigated in pi-conjugated polymers at extremely high electrochemically induced charge density. Finally, the effects of molecular weight on pi-conjugated polymer optical properties, energy levels, charge transport, morphology, and photovoltaic device performance was examined.

  6. Conjugation in Hyalophysa chattoni Bradbury (Apostomatida): An adaptation to a symbiotic life cycle.

    PubMed

    Bradbury, Phyllis Clarke; Hash, Stephen M; Rogers, Faye Kucera; Neptun, Steven H; Zhang, Limin

    2013-11-01

    Hyalophysa chattoni, borne as an encysted phoront on a crustacean's exoskeleton, metamorphoses to the trophont during the host's premolt. After the molt within 15min to 2h conjugants with food vacuoles appear in the exuvium, swimming along with the trophonts. Starvation in other ciliates usually precedes conjugation, but food vacuoles in conjugants do not preclude starvation. Only after ingestion and dehydration of vacuoles ceases, does digestion of exuvial fluid begin. Conjugants resorb their feeding apparatus as they fuse. A single imperforate membrane from each partner forms the junction membrane. In a reproductive cyst conjugants divide synchronously, but now the junction membrane is interrupted by pores and channels. After the last division the daughters undergo meiosis--two meiotic divisions and one mitotic division yielding two prokarya as they simultaneously differentiate into tomites. After fertilization, pairs separate and the synkaryon divides once into a macronuclear anlage and a micronucleus. Exconjugants leave the cyst and seek a host. The parental macronucleus remains active until the phoront stage when the anlage develops. Owing to random association of micronuclei during meiosis, Hyalophysa's exconjugants are more genetically diverse than exconjugants from conventional patterns of conjugation. Copyright © 2013 Elsevier GmbH. All rights reserved.

  7. Galactosylated pullulan-curcumin conjugate micelles for site specific anticancer activity to hepatocarcinoma cells.

    PubMed

    Sarika, P R; James, Nirmala Rachel; Nishna, N; Anil Kumar, P R; Raj, Deepa K

    2015-09-01

    Galactosylated pullulan-curcumin conjugate (LANH2-Pu Ald-Cur SA) is developed for target specific delivery of curcumin to hepatocarcinoma cells by five step synthetic strategy, which includes oxidation of pullulan (Pu Ald), introduction of amino group to the targeting ligand (LANH2), grafting of the LANH2 to Pu Ald, modification of curcumin (Cur SA) and conjugation of Cur SA to pullulan. Nongalactosylated pullulan-curcumin conjugate (Pu-Cur SA) is also prepared to compare the enhancement in cytotoxicity offered by the targeting group. Both LANH2-Pu Ald-Cur SA and Pu-Cur SA conjugates could self assemble to micelle in water with hydrodynamic diameters of 355±9nm and 363±10nm, respectively. Both conjugates show spherical morphology and enhance stability of curcumin in physiological pH. Compared to Pu-Cur SA, LANH2-Pu Ald-Cur SA exhibits higher toxicity and internalization towards HepG2 cells. This indicates the enhanced uptake of LANH2-Pu Ald-Cur SA conjugate via ASGPR (asialoglycoprotein receptor) mediated endocytosis into HepG2 cells. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. PEG conjugates in clinical development or use as anticancer agents: an overview.

    PubMed

    Pasut, Gianfranco; Veronese, Francesco M

    2009-11-12

    During the almost forty years of PEGylation, several antitumour agents, either proteins, peptides or low molecular weight drugs, have been considered for polymer conjugation but only few entered clinical phase studies. The results from the first clinical trials have shared and improved the knowledge on biodistribution, clearance, mechanism of action and stability of a polymer conjugate in vivo. This has helped to design conjugates with improved features. So far, most of the PEG conjugates comprise of a protein, which in the native form has serious shortcomings that limit the full exploitation of its therapeutic action. The main issues can be short in vivo half-life, instability towards degrading enzymes or immunogenicity. PEGylation proved to be effective in shielding sensitive sites at the protein surface, such as antigenic epitopes and enzymatic degradable sequences, as well as in prolonging the drug half-life by decreasing the kidney clearance. In this review PEG conjugates of proteins or low molecular weight drugs, in clinical development or use as anticancer agents, will be taken into consideration. In the case of PEG-protein derivatives the most represented are depleting enzymes, which act by degrading amino acids essential for cancer cells. Interestingly, PEGylated conjugates have been also considered as adjuvant therapy in many standard anticancer protocols, in this regard the case of PEG-G-CSF and PEG-interferons will be presented.

  9. High Relaxivity Gadolinium Hydroxypyridonate-Viral Capsid Conjugates: Nano-sized MRI Contrast Agents

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meux, Susan C.; Datta, Ankona; Hooker, Jacob M.

    2007-08-29

    High relaxivity macromolecular contrast agents based on the conjugation of gadolinium chelates to the interior and exterior surfaces of MS2 viral capsids are assessed. The proton nuclear magnetic relaxation dispersion (NMRD) profiles of the conjugates show up to a five-fold increase in relaxivity, leading to a peak relaxivity (per Gd{sup 3+} ion) of 41.6 mM{sup -1}s{sup -1} at 30 MHz for the internally modified capsids. Modification of the exterior was achieved through conjugation to flexible lysines, while internal modification was accomplished by conjugation to relatively rigid tyrosines. Higher relaxivities were obtained for the internally modified capsids, showing that (1) theremore » is facile diffusion of water to the interior of capsids and (2) the rigidity of the linker attaching the complex to the macromolecule is important for obtaining high relaxivity enhancements. The viral capsid conjugated gadolinium hydroxypyridonate complexes appear to possess two inner-sphere water molecules (q = 2) and the NMRD fittings highlight the differences in the local motion for the internal ({tau}{sub RI} = 440 ps) and external ({tau}{sub RI} = 310 ps) conjugates. These results indicate that there are significant advantages of using the internal surface of the capsids for contrast agent attachment, leaving the exterior surface available for the installation of tissue targeting groups.« less

  10. Gemcitabine-based polymer-drug conjugate for enhanced anticancer effect in colon cancer.

    PubMed

    Liang, Tie-Jun; Zhou, Zhong-Mei; Cao, Ying-Qing; Ma, Ming-Ze; Wang, Xiao-Jun; Jing, Kai

    2016-11-20

    In this study, we have demonstrated gemcitabine (GEM)-conjugated amphiphilic biodegradable polymeric drug carriers. Our aim was to increase the chemotherapeutic potential of GEM in colon cancer by forming a unique polymer-drug conjugates. The polymer-drug conjugate micelles were nanosized with a typical spherical shape. The GEM-conjugated methoxy poly(ethylene glycol)-poly(lactic acid) (GEM-PL) exhibited a controlled release of drug in both the pH conditions. The developed GEM-PL efficiently killed the HT29 cancers cells in a typical time dependent manner. The clonogenic assay further confirmed the superior anticancer effect of GEM-PL which showed least number of colonies. GEM-PL formulation exhibited a significantly higher apoptosis of cancer cells (∼25%) when stained using Annexin-V/PI kit. Conjugation of GEM to the mPEG-PLA significantly enhanced the blood circulation potential in animal model compared to that of free GEM. GEM-PL could prevent quick elimination of the drug and can provide sufficient time for the greater accumulation of GEM at the tumor sites. GEM-PL showed a remarkable tumor regression effect as evident from the lowest tumor volume in HT-29 containing tumor model. Overall, mPEG-PLA/GEM conjugates showed the potential of polymer-based drug targeting and might hold significant clinical potential in the treatment of colon cancers. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Novel tumor-targeted RGD peptide-camptothecin conjugates: synthesis and biological evaluation.

    PubMed

    Dal Pozzo, Alma; Ni, Ming-Hong; Esposito, Emiliano; Dallavalle, Sabrina; Musso, Loana; Bargiotti, Alberto; Pisano, Claudio; Vesci, Loredana; Bucci, Federica; Castorina, Massimo; Foderà, Rosanna; Giannini, Giuseppe; Aulicino, Concetta; Penco, Sergio

    2010-01-01

    Five RGD peptide-camptothecin (CPT) conjugates were designed and synthesized with the purpose to improve the therapeutic index of this antitumoral drug family. New RGD cyclopeptides were selected on the basis of their high affinity to alpha(v) integrin receptors overexpressed by tumor cells and their metabolic stability. The conjugates can be divided in two groups: in the first the peptide was attached to the drug through an amide bond, in the second through a hydrazone bond. The main difference between the two spacers lies in their acid stability. Affinity to the receptors was maintained for all conjugates and their internalization into tumor cells was demonstrated. The first group conjugates showed lower in vitro and in vivo activity than the parent drug, probably due to the excessive stability of the amide bond, even inside the tumor cells. Conversely, the hydrazone conjugates exhibited in vitro tumor cell inhibition similar to the parent drug, indicating high conversion in the culture medium and/or inside the cells, but their poor solubility hampered in vivo experiments. On the basis of these results, information was acquired for additional development of derivatives with different linkers and better solubility for in vivo evaluation. Copyright (c) 2009 Elsevier Ltd. All rights reserved.

  12. On-bead antibody-small molecule conjugation using high-capacity magnetic beads.

    PubMed

    Nath, Nidhi; Godat, Becky; Benink, Hélène; Urh, Marjeta

    2015-11-01

    Antibodies labeled with small molecules such as fluorophore, biotin or drugs play an important role in various areas of biological research, drug discovery and diagnostics. However, the majority of current methods for labeling antibodies is solution-based and has several limitations including the need for purified antibodies at high concentrations and multiple buffer exchange steps. In this study, a method (on-bead conjugation) is described that addresses these limitations by combining antibody purification and conjugation in a single workflow. This method uses high capacity-magnetic Protein A or Protein G beads to capture antibodies directly from cell media followed by conjugation with small molecules and elution of conjugated antibodies from the beads. High-capacity magnetic antibody capture beads are key to this method and were developed by combining porous and hydrophilic cellulose beads with oriented immobilization of Protein A and Protein G using HaloTag technology. With a variety of fluorophores it is shown that the on-bead conjugation method is compatible with both thiol- and amine-based chemistry. This method enables simple and rapid processing of multiple samples in parallel with high-efficiency antibody recovery. It is further shown that recovered antibodies are functional and compatible with downstream applications. Copyright © 2015. Published by Elsevier B.V.

  13. Quantitative studies of sulphate conjugation by isolated rat liver cells using [35S]sulphate.

    PubMed

    Dawson, J; Knowles, R G; Pogson, C I

    1991-06-21

    We have developed a simple, rapid and sensitive method for the study of sulphate conjugation in isolated liver cells based on the incorporation of 35S from [35S]sulphate. Excess [35S]sulphate is removed by a barium precipitation procedure, leaving [35S]sulphate conjugates in solution. We have used this method to examine the kinetics of sulphation of N-acetyl-p-aminophenol (acetaminophen), 4-nitrophenol and 1-naphthol in isolated rat liver cells. The efficiency of recovery of the sulphate conjugates was greater than 86%. The method is applicable to the quantitative study of sulphate conjugation of any substrate which forms a sulphate conjugate that is soluble in the presence of barium, without the need for standards or radiolabelled sulphate acceptors.

  14. Conformational Assessment of Adnectin and Adnectin-Drug Conjugate by Hydrogen/Deuterium Exchange Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Huang, Richard Y.-C.; O'Neil, Steven R.; Lipovšek, Daša; Chen, Guodong

    2018-05-01

    Higher-order structure (HOS) characterization of therapeutic protein-drug conjugates for comprehensive assessment of conjugation-induced protein conformational changes is an important consideration in the biopharmaceutical industry to ensure proper behavior of protein therapeutics. In this study, conformational dynamics of a small therapeutic protein, adnectin 1, together with its drug conjugate were characterized by hydrogen/deuterium exchange mass spectrometry (HDX-MS) with different spatial resolutions. Top-down HDX allows detailed assessment of the residue-level deuterium content in the payload conjugation region. HDX-MS dataset revealed the ability of peptide-based payload/linker to retain deuterium in HDX experiments. Combined results from intact, top-down, and bottom-up HDX indicated no significant conformational changes of adnectin 1 upon payload conjugation. [Figure not available: see fulltext.

  15. Optical phase conjugation: principles, techniques, and applications

    NASA Astrophysics Data System (ADS)

    He, Guang S.

    2002-05-01

    Over the last three decades, optical phase conjugation (OPC) has been one of the major research subjects in the field of nonlinear optics and quantum electronics. OPC defines usually a special relationship between two coherent optical beams propagating in opposite directions with reversed wave front and identical transverse amplitude distributions. The unique feature of a pair of phase-conjugate beams is that the aberration influence imposed on the forward beam passed through an inhomogeneous or disturbing medium can be automatically removed for the backward beam passed through the same disturbing medium. To date there have been three major technical approaches that can efficiently produce the backward phase-conjugate beam. The first approach is based on the degenerate (or partially degenerate) four-wave mixing processes, the second is based on various backward simulated (Brillouin, Raman, Rayleigh-wing or Kerr) scattering processes, and the third is based on one-photon or multi-photon pumped backward stimulated emission (lasing) processes. Among these three different approaches, there is a common physical mechanism that plays the same essential role in generating a backward phase-conjugate beam, which is the formation of the induced holographic grating and the subsequent wave-front restoration via a backward reading beam. In most experimental studies, certain types of resonance enhancements of induced refractive-index changes are desirable for obtaining higher grating-refraction efficiency. The momentum of OPC studies has recently become even stronger because there are more prospective potentials and achievements for applications. OPC-associated techniques can be successfully utilized in many different application areas: such as high-brightness laser oscillator/amplifier systems, cavity-less lasing devices, laser target-aiming systems, aberration correction for coherent-light transmission and reflection through disturbing media, long distance optical fiber

  16. Intracellular delivery and trafficking dynamics of a lymphoma-targeting antibody-polymer conjugate

    PubMed Central

    Berguig, Geoffrey Y.; Convertine, Anthony J.; Shi, Julie; Palanca-Wessels, Maria Corinna; Duvall, Craig L.; Pun, Suzie H.; Press, Oliver W.; Stayton, Patrick S.

    2012-01-01

    Ratiometric fluorescence and cellular fractionation studies were employed to characterize the intracellular trafficking dynamics of antibody-poly(propylacrylic acid) (PPAA) conjugates in CD22+ RAMOS-AW cells. The HD39 monoclonal antibody (mAb) directs CD22-dependent, receptor-mediated uptake in human B-cell lymphoma cells where it is rapidly trafficked to the lysosomal compartment. To characterize the intracellular-releasing dynamics of the polymer-mAb conjugates, HD39-streptavidin (HD39/SA) was dual-labeled with pH-insensitive Alex Fluor 488 and pH-sensitive pHrodo fluorophores. The subcellular pH-distribution of the HD39/SA-polymer conjugates were quantified as a function of time by live-cell fluorescence microscopy, and the average intracellular pH values experienced by the conjugates were also characterized as a function of time by flow cytometry. PPAA was shown to strongly alter the intracellular trafficking kinetics compared to HD39/SA alone or HD39/SA conjugates with a control polymer, poly(methacryclic acid) (PMAA). Subcellular trafficking studies revealed that after 6 hours only 11% of the HD39/SA-PPAA conjugates had been trafficked to acidic lysosomal compartments with values at or below pH 5.6. In contrast the average intracellular pH of HD39/SA alone dropped from pH 6.7 ± 0.2 at 1 hour to pH 5.6 ± 0.5 after 3 hours and pH 4.7 ± 0.6 after 6 hours. Conjugation of the control PMAA to HD39/SA showed an average pH drop similar to HD39/SA. Subcellular fractionation studies with tritium-labeled HD39/SA demonstrated that after 6 hours, 89% of HD39/SA was associated with endosomes (Rab5+) and lysosomes (Lamp2+), while 45% of HD39/SA-PPAA was translocated to the cytosol (lactate dehydrogenase+). These results demonstrate the endosomal-releasing properties of PPAA with antibody-polymer conjugates and detail their intracellular trafficking dynamics and subcellular compartmental distributions over time. PMID:23075320

  17. Intracellular delivery and trafficking dynamics of a lymphoma-targeting antibody-polymer conjugate.

    PubMed

    Berguig, Geoffrey Y; Convertine, Anthony J; Shi, Julie; Palanca-Wessels, Maria Corinna; Duvall, Craig L; Pun, Suzie H; Press, Oliver W; Stayton, Patrick S

    2012-12-03

    Ratiometric fluorescence and cellular fractionation studies were employed to characterize the intracellular trafficking dynamics of antibody-poly(propylacrylic acid) (PPAA) conjugates in CD22+ RAMOS-AW cells. The HD39 monoclonal antibody (mAb) directs CD22-dependent, receptor-mediated uptake in human B-cell lymphoma cells, where it is rapidly trafficked to the lysosomal compartment. To characterize the intracellular-release dynamics of the polymer-mAb conjugates, HD39-streptavidin (HD39/SA) was dual-labeled with pH-insensitive Alexa Fluor 488 and pH-sensitive pHrodo fluorophores. The subcellular pH distribution of the HD39/SA-polymer conjugates was quantified as a function of time by live-cell fluorescence microscopy, and the average intracellular pH value experienced by the conjugates was also characterized as a function of time by flow cytometry. PPAA was shown to alter the intracellular trafficking kinetics strongly relative to HD39/SA alone or HD39/SA conjugates with a control polymer, poly(methacryclic acid) (PMAA). Subcellular trafficking studies revealed that after 6 h, only 11% of the HD39/SA-PPAA conjugates had been trafficked to acidic lysosomal compartments with values at or below pH 5.6. In contrast, the average intracellular pH of HD39/SA alone dropped from 6.7 ± 0.2 at 1 h to 5.6 ± 0.5 after 3 h and 4.7 ± 0.6 after 6 h. Conjugation of the control polymer PMAA to HD39/SA showed an average pH drop similar to that of HD39/SA. Subcellular fractionation studies with tritium-labeled HD39/SA demonstrated that after 6 h, 89% of HD39/SA was associated with endosomes (Rab5+) and lysosomes (Lamp2+), while 45% of HD39/SA-PPAA was translocated to the cytosol (lactate dehydrogenase+). These results demonstrate the endosomal-releasing properties of PPAA with antibody-polymer conjugates and detail their intracellular trafficking dynamics and subcellular compartmental distributions over time.

  18. Gel Electrophoresis of Gold-DNA Nano-Conjugates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pellegrino, T.; Sperling, R.A.; Alivisatos, A.P.

    2006-01-10

    Single stranded DNA of different lengths and different amounts was attached to colloidal phosphine stabilized Au nanoparticles. The resulting conjugates were investigated in detail by a gel electrophoresis study based on 1200 gels. We demonstrate how these experiments help to understand the binding of DNA to Au particles. In particular we compare specific attachment of DNA via gold-thiol bonds with nonspecific adsorption of DNA. The maximum number of DNA molecules that can be bound per particle was determined. We also compare several methods to used gel electrophoresis for investigating the effective diameter of DNA-Au conjugates, such as using a calibrationmore » curve of particles with known diameters and Ferguson plots.« less

  19. cRGD Peptide-Conjugated Pyropheophorbide-a Photosensitizers for Tumor Targeting in Photodynamic Therapy.

    PubMed

    Li, Wenjing; Tan, Sihai; Xing, Yutong; Liu, Qian; Li, Shuang; Chen, Qingle; Yu, Min; Wang, Fengwei; Hong, Zhangyong

    2018-04-02

    Pyropheophorbide-a (Pyro) is a highly promising photosensitizer for tumor photodynamic therapy (PDT), although its very limited tumor-accumulation ability seriously restricts its clinical applications. A higher accumulation of photosensitizers is very important for the treatment of deeply seated and larger tumors. The conjugation of Pyro with tumor-homing peptide ligands could be a very useful strategy to optimize the physical properties of Pyro. Herein, we reported our studies on the conjugation of Pyro with a cyclic cRGDfK (cRGD) peptide, an integrin binding sequence, to develop highly tumor-specific photosensitizers for PDT application. To further reduce the nonspecific uptake and, thus, reduce the background distribution of the conjugates in normal tissues, we opted to add a highly hydrophilic polyethylene glycol (PEG) chain and an extra strongly hydrophilic carboxylic acid group as the linker to avoid the direct connection of the strongly hydrophobic Pyro macrocycle and cRGD ligand. We reported here the synthesis and characterization of these conjugates, and the influence of the hydrophilic modification on the biological function of the conjugates was carefully studied. The tumor-accumulation ability and photodynamic-induced cell-killing ability of these conjugates were evaluated through both in vitro cell-based experiment and in vivo distribution and tumor therapy experiments with tumor-bearing mice. Thus, the synthesized conjugate significantly improved the tumor enrichment and tumor selectivity of Pyro, as well as abolished the xenograft tumors in the murine model through a one-time PDT treatment.

  20. Repercussions of imprisonment for conjugal violence: discourses of men 1

    PubMed Central

    de Sousa, Anderson Reis; Pereira, Álvaro; Paixão, Gilvânia Patrícia do Nascimento; Pereira, Nadirlene Gomes; Campos, Luana Moura; Couto, Telmara Menezes

    2016-01-01

    ABSTRACT Objective: to know the consequences that men experience related to incarceration by conjugal violence. Methods: qualitative study on 20 men in jail and indicted in criminal processes related to conjugal violence in a Court specialized in Family and Domestic Violence against women. The interviews were classified based on Collective Subject Discourse method, using NVIVO(r) software. Results: the collective discourse shows that the experience of preventive imprisonment starts a process of family dismantling, social stigma, financial hardship and psycho-emotional symptoms such as phobia, depression, hypertension, and headaches. Conclusion: due to the physical, mental and social consequences of the conjugal violence-related imprisonment experience, it is urgent to look carefully into the somatization process as well as to the prevention strategies regarding this process. PMID:27982312

  1. Recent advances in the construction of antibody-drug conjugates

    NASA Astrophysics Data System (ADS)

    Chudasama, Vijay; Maruani, Antoine; Caddick, Stephen

    2016-02-01

    Antibody-drug conjugates (ADCs) comprise antibodies covalently attached to highly potent drugs using a variety of conjugation technologies. As therapeutics, they combine the exquisite specificity of antibodies, enabling discrimination between healthy and diseased tissue, with the cell-killing ability of cytotoxic drugs. This powerful and exciting class of targeted therapy has shown considerable promise in the treatment of various cancers with two US Food and Drug Administration approved ADCs currently on the market (Adcetris and Kadcyla) and approximately 40 currently undergoing clinical evaluation. However, most of these ADCs exist as heterogeneous mixtures, which can result in a narrow therapeutic window and have major pharmacokinetic implications. In order for ADCs to deliver their full potential, sophisticated site-specific conjugation technologies to connect the drug to the antibody are vital. This Perspective discusses the strategies currently used for the site-specific construction of ADCs and appraises their merits and disadvantages.

  2. Conformational Order in Aggregates of Conjugated Polymers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jackson, Nicholas E.; Kohlstedt, Kevin L.; Savoie, Brett M.

    With the abundant variety and increasing chemical complexity of conjugated poly-friers proliferating the field of organic semiconductors, it has become increasingly important to correlate the polymer molecular structure with its mesoscale conformational and morphological attributes. For instance, it is unknown which combinations of chemical moieties and periodicities predictably produce mesoscale ordering. Interestingly) not all ordered morphologies result in efficient devices. In this work we have parametrized accurate classical force-fields and used these to compute the conformational and aggregation characteristics of single strands of common conjugated polymers. Molecular dynamics trajectories are shown to reproduce experimentally observed polymeric ordering, concluding that efficientmore » organic photovoltaic devices span a range of polymer conformational classes, and suggesting that the solution-phase morphologies have far-reaching effects. Encouragingly, these simulations indicate that despite the wide-range of conformational classes present in successful devices, local molecular ordering, and not long-range crystallinity, appears to be the necessary requirement for efficient devices. Finally, we examine what makes a "good" solvent for conjugated polymers, concluding that dispersive pi-electron solvent-polymer interactions, and not the electrostatic potential of the backbone interacting with the solvent, are what primarily determine a polymer's solubility in a particular solvent, and consequently its morphological characteristics.« less

  3. Conjugated organic framework with three-dimensionally ordered stable structure and delocalized π clouds

    PubMed Central

    Guo, Jia; Xu, Yanhong; Jin, Shangbin; Chen, Long; Kaji, Toshihiko; Honsho, Yoshihito; Addicoat, Matthew A.; Kim, Jangbae; Saeki, Akinori; Ihee, Hyotcherl; Seki, Shu; Irle, Stephan; Hiramoto, Masahiro; Gao, Jia; Jiang, Donglin

    2013-01-01

    Covalent organic frameworks are a class of crystalline organic porous materials that can utilize π–π-stacking interactions as a driving force for the crystallization of polygonal sheets to form layered frameworks and ordered pores. However, typical examples are chemically unstable and lack intrasheet π-conjugation, thereby significantly limiting their applications. Here we report a chemically stable, electronically conjugated organic framework with topologically designed wire frameworks and open nanochannels, in which the π conjugation-spans the two-dimensional sheets. Our framework permits inborn periodic ordering of conjugated chains in all three dimensions and exhibits a striking combination of properties: chemical stability, extended π-delocalization, ability to host guest molecules and hole mobility. We show that the π-conjugated organic framework is useful for high on-off ratio photoswitches and photovoltaic cells. Therefore, this strategy may constitute a step towards realizing ordered semiconducting porous materials for innovations based on two-dimensionally extended π systems. PMID:24220603

  4. Conjugated organic framework with three-dimensionally ordered stable structure and delocalized π clouds

    NASA Astrophysics Data System (ADS)

    Guo, Jia; Xu, Yanhong; Jin, Shangbin; Chen, Long; Kaji, Toshihiko; Honsho, Yoshihito; Addicoat, Matthew A.; Kim, Jangbae; Saeki, Akinori; Ihee, Hyotcherl; Seki, Shu; Irle, Stephan; Hiramoto, Masahiro; Gao, Jia; Jiang, Donglin

    2013-11-01

    Covalent organic frameworks are a class of crystalline organic porous materials that can utilize π-π-stacking interactions as a driving force for the crystallization of polygonal sheets to form layered frameworks and ordered pores. However, typical examples are chemically unstable and lack intrasheet π-conjugation, thereby significantly limiting their applications. Here we report a chemically stable, electronically conjugated organic framework with topologically designed wire frameworks and open nanochannels, in which the π conjugation-spans the two-dimensional sheets. Our framework permits inborn periodic ordering of conjugated chains in all three dimensions and exhibits a striking combination of properties: chemical stability, extended π-delocalization, ability to host guest molecules and hole mobility. We show that the π-conjugated organic framework is useful for high on-off ratio photoswitches and photovoltaic cells. Therefore, this strategy may constitute a step towards realizing ordered semiconducting porous materials for innovations based on two-dimensionally extended π systems.

  5. p-Coumaric acid and its conjugates: dietary sources, pharmacokinetic properties and biological activities.

    PubMed

    Pei, Kehan; Ou, Juanying; Huang, Junqing; Ou, Shiyi

    2016-07-01

    p-Coumaric acid (4-hydroxycinnamic acid) is a phenolic acid that has low toxicity in mice (LD50 = 2850 mg kg(-1) body weight), serves as a precursor of other phenolic compounds, and exists either in free or conjugated form in plants. Conjugates of p-coumaric acid have been extensively studied in recent years due to their bioactivities. In this review, the occurrence, bioavailability and bioaccessibility of p-coumaric acid and its conjugates with mono-, oligo- and polysaccharides, alkyl alcohols, organic acids, amine and lignin are discussed. Their biological activities, including antioxidant, anti-cancer, antimicrobial, antivirus, anti-inflammatory, antiplatelet aggregation, anxiolytic, antipyretic, analgesic, and anti-arthritis activities, and their mitigatory effects against diabetes, obesity, hyperlipaemia and gout are compared. Cumulative evidence from multiple studies indicates that conjugation of p-coumaric acid greatly strengthens its biological activities; however, the high biological activity but low absorption of its conjugates remains a puzzle. © 2015 Society of Chemical Industry. © 2015 Society of Chemical Industry.

  6. Diketopyrrolopyrrole-based Conjugated Polymers Bearing Branched Oligo(Ethylene Glycol) Side Chains for Photovoltaic Devices.

    PubMed

    Chen, Xingxing; Zhang, Zijian; Ding, Zicheng; Liu, Jun; Wang, Lixiang

    2016-08-22

    Conjugated polymers are essential for solution-processable organic opto-electronic devices. In contrast to the great efforts on developing new conjugated polymer backbones, research on developing side chains is rare. Herein, we report branched oligo(ethylene glycol) (OEG) as side chains of conjugated polymers. Compared with typical alkyl side chains, branched OEG side chains endowed the resulting conjugated polymers with a smaller π-π stacking distance, higher hole mobility, smaller optical band gap, higher dielectric constant, and larger surface energy. Moreover, the conjugated polymers with branched OEG side chains exhibited outstanding photovoltaic performance in polymer solar cells. A power conversion efficiency of 5.37 % with near-infrared photoresponse was demonstrated and the device performance could be insensitive to the active layer thickness. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Structural correlates of carrier protein recognition in tetanus toxoid-conjugated bacterial polysaccharide vaccines.

    PubMed

    Lockyer, Kay; Gao, Fang; Derrick, Jeremy P; Bolgiano, Barbara

    2015-03-10

    An analysis of structure-antibody recognition relationships in nine licenced polysaccharide-tetanus toxoid (TT) conjugate vaccines was performed. The panel of conjugates used included vaccine components to protect against disease caused by Haemophilus influenzae type b, Neisseria meningitidis groups A, C, W and Y and Streptococcus pneumoniae serotype 18C. Conformation and structural analysis included size exclusion chromatography with multi-angle light scattering to determine size, and intrinsic fluorescence spectroscopy and fluorescence quenching to evaluate the protein folding and exposure of Trp residues. A capture ELISA measured the recognition of TT epitopes in the conjugates, using four rat monoclonal antibodies: 2 localised to the HC domain, and 2 of which were holotoxoid conformation-dependent. The conjugates had a wide range of average molecular masses ranging from 1.8×10(6) g/mol to larger than 20×10(6) g/mol. The panel of conjugates were found to be well folded, and did not have spectral features typical of aggregated TT. A partial correlation was found between molecular mass and epitope recognition. Recognition of the epitopes either on the HC domain or the whole toxoid was not necessarily hampered by the size of the molecule. Correlation was also found between the accessibility of Trp side chains and polysaccharide loading, suggesting also that a higher level of conjugated PS does not necessarily interfere with toxoid accessibility. There were different levels of carrier protein Trp side-chain and epitope accessibility that were localised to the HC domain; these were related to the saccharide type, despite the conjugates being independently manufactured. These findings extend our understanding of the molecular basis for carrier protein recognition in TT conjugate vaccines. Crown Copyright © 2015. Published by Elsevier Ltd. All rights reserved.

  8. Structural correlates of carrier protein recognition in tetanus toxoid-conjugated bacterial polysaccharide vaccines

    PubMed Central

    Lockyer, Kay; Gao, Fang; Derrick, Jeremy P.; Bolgiano, Barbara

    2015-01-01

    An analysis of structure-antibody recognition relationships in nine licenced polysaccharide-tetanus toxoid (TT) conjugate vaccines was performed. The panel of conjugates used included vaccine components to protect against disease caused by Haemophilus influenzae type b, Neisseria meningitidis groups A, C, W and Y and Streptococcus pneumoniae serotype 18C. Conformation and structural analysis included size exclusion chromatography with multi-angle light scattering to determine size, and intrinsic fluorescence spectroscopy and fluorescence quenching to evaluate the protein folding and exposure of Trp residues. A capture ELISA measured the recognition of TT epitopes in the conjugates, using four rat monoclonal antibodies: 2 localised to the HC domain, and 2 of which were holotoxoid conformation-dependent. The conjugates had a wide range of average molecular masses ranging from 1.8 × 106 g/mol to larger than 20 × 106 g/mol. The panel of conjugates were found to be well folded, and did not have spectral features typical of aggregated TT. A partial correlation was found between molecular mass and epitope recognition. Recognition of the epitopes either on the HC domain or the whole toxoid was not necessarily hampered by the size of the molecule. Correlation was also found between the accessibility of Trp side chains and polysaccharide loading, suggesting also that a higher level of conjugated PS does not necessarily interfere with toxoid accessibility. There were different levels of carrier protein Trp side-chain and epitope accessibility that were localised to the HC domain; these were related to the saccharide type, despite the conjugates being independently manufactured. These findings extend our understanding of the molecular basis for carrier protein recognition in TT conjugate vaccines. PMID:25640334

  9. Molecular engineering of phosphole-based conjugated materials

    NASA Astrophysics Data System (ADS)

    Ren, Yi

    The work in this thesis focuses on the molecular engineering of phosphorus-based conjugated materials. In the first part (Chapters Two and Three), new phosphorus-based conjugated systems were designed and synthesized to study the effect of the heteroelement on the electronic properties of the π-conjugated systems. The second part (Chapters Four and Five) deals with the self-assembly features of specifically designed phosphorus-based conjugated systems. In Chapter Two, electron-poor and electron-rich aromatic substituents were introduced to the dithienophosphole core in order to balance the electron-accepting and electron-donating character of the systems. Furthermore, an intriguing intramolecular charge transfer process could be observed between two dithienophosphole cores in a bridged bisphosphole-system. In Chapter Three, a secondary heteroelement (Si, P, S) was incorporated in the phosphorus-based conjugated systems. Extensive structure-property studies revealed that the secondary heteroelement can effectively manipulate the communication in phosphinine-based systems. The study of a heterotetracene system allowed for selectively applying distinct heteroatom (S/P) chemistries, which offers a powerful tool for the modification of the electronic structure of the system. More importantly, the heteroatom-specific electronic nature (S/P) can be utilized to selectively control different photophysical aspects (energy gap and fluorescence quantum yield). Furthermore, additional molecular engineering of the heterotetracene provided access to well-defined 1D microstructures, which opened the door for designing multi-functional self-assembled phosphorus-based materials. In Chapter Four, the self-organizing phosphole-lipid system is introduced, which combines the features of phospholipids with the electronics of phospholes. Its amphiphilic nature induces intriguing self-assembly features - liquid crystal and soft crystal architectures, both exhibiting well

  10. Entropic (de)stabilization of surface-bound peptides conjugated with polymers

    NASA Astrophysics Data System (ADS)

    Carmichael, Scott P.; Shell, M. Scott

    2015-12-01

    In many emerging biotechnologies, functional proteins must maintain their native structures on or near interfaces (e.g., tethered peptide arrays, protein coated nanoparticles, and amphiphilic peptide micelles). Because the presence of a surface is known to dramatically alter the thermostability of tethered proteins, strategies to stabilize surface-bound proteins are highly sought. Here, we show that polymer conjugation allows for significant control over the secondary structure and thermostability of a model surface-tethered peptide. We use molecular dynamics simulations to examine the folding behavior of a coarse-grained helical peptide that is conjugated to polymers of various lengths and at various conjugation sites. These polymer variations reveal surprisingly diverse behavior, with some stabilizing and some destabilizing the native helical fold. We show that ideal-chain polymer entropies explain these varied effects and can quantitatively predict shifts in folding temperature. We then develop a generic theoretical model, based on ideal-chain entropies, that predicts critical lengths for conjugated polymers to effect changes in the folding of a surface-bound protein. These results may inform new design strategies for the stabilization of surface-associated proteins important for a range technological applications.

  11. Entropic (de)stabilization of surface-bound peptides conjugated with polymers.

    PubMed

    Carmichael, Scott P; Shell, M Scott

    2015-12-28

    In many emerging biotechnologies, functional proteins must maintain their native structures on or near interfaces (e.g., tethered peptide arrays, protein coated nanoparticles, and amphiphilic peptide micelles). Because the presence of a surface is known to dramatically alter the thermostability of tethered proteins, strategies to stabilize surface-bound proteins are highly sought. Here, we show that polymer conjugation allows for significant control over the secondary structure and thermostability of a model surface-tethered peptide. We use molecular dynamics simulations to examine the folding behavior of a coarse-grained helical peptide that is conjugated to polymers of various lengths and at various conjugation sites. These polymer variations reveal surprisingly diverse behavior, with some stabilizing and some destabilizing the native helical fold. We show that ideal-chain polymer entropies explain these varied effects and can quantitatively predict shifts in folding temperature. We then develop a generic theoretical model, based on ideal-chain entropies, that predicts critical lengths for conjugated polymers to effect changes in the folding of a surface-bound protein. These results may inform new design strategies for the stabilization of surface-associated proteins important for a range technological applications.

  12. Silibinin phosphodiester glyco-conjugates: Synthesis, redox behaviour and biological investigations.

    PubMed

    Romanucci, Valeria; Agarwal, Chapla; Agarwal, Rajesh; Pannecouque, Christophe; Iuliano, Mauro; De Tommaso, Gaetano; Caruso, Tonino; Di Fabio, Giovanni; Zarrelli, Armando

    2018-04-01

    New silibinin phosphodiester glyco-conjugates were synthesized by efficient phosphoramidite chemistry and were fully characterized by 2D-NMR. A wide-ranging study focused on the determination of their pKa and E° values as well as on their radical scavenging activities by different assays (DPPH, ABTS + and HRSA) was conducted. The new glyco-conjugates are more water-soluble than silibinin, and their radical scavenging activities are higher than those of silibinin. The conjugation therefore improves both the water solubilities and antioxidant activities of the flavonolignan moieties. The serum stability was evaluated under physiological conditions, and the glyco-conjugates degraded with half-lives of 40-70 h, making them useful in pro-drug approaches. We started by treating androgen-dependent prostate cancer (PCa) LNCaP cells and then expanded our studies to androgen-independent PCa PC3 and DU145 cells. In most cases, the new derivatives significantly reduced both total and live cell numbers, albeit at different levels. Anti-HIV activities were evaluated and the glucosamine-phosphate silibinin derivative showed higher activity (IC 50  = 73 μM) than silibinin. Copyright © 2018 Elsevier Inc. All rights reserved.

  13. Decitabine Nano-conjugate Sensitizing Human Glioblastoma Cells to Temozolomide

    PubMed Central

    Cui, Yi; Naz, Asia; Thompson, David H.; Irudayaraj, Joseph

    2015-01-01

    In this study we developed and characterized a delivery system for the epigenetic demethylating drug, decitabine, to sensitize temozolomide-resistant human glioblastoma multiforme (GBM) cells to alkylating chemotherapy. A poly(lactic-co-glycolic acid) (PLGA) and polyethylene glycol (PEG) based nano-conjugate was fabricated to encapsulate decitabine and achieved a better therapeutic response in GBM cells. After synthesis, the highly efficient uptake process and intracellular dynamics of this nano-conjugate was monitored by single-molecule fluorescence tools. Our experiments demonstrated that, under an acidic pH due to active glycolysis in cancer cells, the PLGA-PEG nano-vector could release the conjugated decitabine at a faster rate, after which the hydrolyzed lactic acid and glycolic acid would further acidify the intracellular microenvironment, thus providing a “positive feedback” to increase the effective drug concentration and realize growth inhibition. In temozolomide-resistant GBM cells, decitabine can potentiate the cytotoxic DNA alkylation by counteracting cytosine methylation and reactivating tumor suppressor genes, such as p53 and p21. Owing to excellent internalization and endo-lysosomal escape enabled by the PLGA-PEG backbone, the encapsulated decitabine exhibited a better anti-GBM potential than free drug molecules. Hence, the synthesized nano-conjugate and temozolomide could act in synergy to deliver a more potent and long-term anti-proliferation effect against malignant GBM cells. PMID:25751281

  14. Peptide π-Electron Conjugates: Organic Electronics for Biology?

    PubMed

    Ardoña, Herdeline Ann M; Tovar, John D

    2015-12-16

    Highly ordered arrays of π-conjugated molecules are often viewed as a prerequisite for effective charge-transporting materials. Studies involving these materials have traditionally focused on organic electronic devices, with more recent emphasis on biological systems. In order to facilitate the transition to biological environments, biomolecules that can promote hierarchical ordering and water solubility are often covalently appended to the π-electron unit. This review highlights recent work on π-conjugated systems bound to peptide moieties that exhibit self-assembly and aims to provide an overview on the development and emerging applications of peptide-based supramolecular π-electron systems.

  15. Synthesis and biological evaluation of nandrolone-bodipy conjugates.

    PubMed

    Jurášek, Michal; Rimpelová, Silvie; Pavlíčková, Vladimíra; Ruml, Tomáš; Lapčík, Oldřich; Drašar, Pavel B

    2015-05-01

    Here, we report synthesis and biological evaluation of fluorescent nandrolone-3-carboxymethyloxime derivatives conjugated with green-emitting bodipy dye via PEG linkers. All the newly-synthesized compounds were evaluated for their effect on cell proliferation in vitro in MCF-7, LNCaP, PC-3 and HEK 293T model cell lines using WST-1 assay. By means of live-cell fluorescence microscopy, the intracellular localization of nandrolone-bodipy conjugates was revealed in endoplasmic reticulum. Moreover, we performed competitive localization study with nonfluorescent nandrolone, metandrolone, boldenone, trenbolone, and testosterone. Copyright © 2014 Elsevier Inc. All rights reserved.

  16. Transporter-targeted cholic acid-cytarabine conjugates for improved oral absorption.

    PubMed

    Zhang, Dong; Li, Dongpo; Shang, Lei; He, Zhonggui; Sun, Jin

    2016-09-10

    Cytarabine has a poor oral absorption due to its rapid deamination and poor membrane permeability. Bile acid transporters are highly expressed both in enterocytes and hepatocytes and to increase the oral bioavailability and investigate the potential application of cytarabine for liver cancers, a transporter- recognizing prodrug strategy was applied to design and synthesize four conjugates of cytarabine with cholic acid (CA), chenodeoxycholic acid (CDCA), hyodeoxycholic acid (HDCA) and ursodeoxycholic acid (UDCA). The anticancer activities against HepG2 cells were evaluated by MTT assay and the role of bile acid transporters during cellular transport was investigated in a competitive inhibition experiment. The in vitro and in vivo metabolic stabilities of these conjugates were studied in rat plasma and liver homogenates. Finally, an oral bioavailability study was conducted in rats. All the cholic acid-cytarabine conjugates (40μM) showed potent antiproliferative activities (up to 70%) against HepG2 cells after incubation for 48h. The addition of bile acids could markedly reduce the antitumor activities of these conjugates. The N(4)-ursodeoxycholic acid conjugate of cytarabine (compound 5) exhibited optimal stability (t1/2=90min) in vitro and a 3.9-fold prolonged half-life of cytarabine in vivo. More importantly, compound 5 increased the oral bioavailability 2-fold compared with cytarabine. The results of the present study suggest that the prodrug strategy based on the bile acid transporters is suitable for improving the oral absorption and the clinical application of cytarabine. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Physicochemical properties and biocompatibility of a polymer-paclitaxel conjugate for cancer treatment.

    PubMed

    Yang, Danbo; Van, Sang; Liu, Jian; Wang, Jing; Jiang, Xinguo; Wang, Yiting; Yu, Lei

    2011-01-01

    Poly(L-γ-glutamylglutamine) paclitaxel (PGG-PTX) conjugate is a non-diblock polymeric drug nanoparticle intended to improve the therapeutic index of paclitaxel. The purpose of the present study was to elucidate further the physicochemical properties of PGG-PTX in order to proceed with its clinical development. PGG-PTX was designed by integration of a hydrophobic paclitaxel conjugate through an added hydrophilic glutamic acid onto poly(L-glutamic acid). The addition of a flexible glutamic linker between PGA and paclitaxel resulted in spontaneous self-assembly of a PGG-PTX conjugate into nanoparticles. The PGG-PTX conjugate was stable as a lyophilized solid form. An in vitro viability experiment showed that PGG-PTX was effective after a longer incubation period, the same trend as Taxol. In vitro studies using NCI-H460 and B16F0 cancer cells demonstrated significantly high cellular uptake after 30 minutes of incubation. The in vivo biocompatibility of PGG-PTX conjugate was evaluated in the NCI-H460 tumor model, the assessment of tissue seemed to be normal after 21 days of treatment. These results are encouraging for further development of non-block polymeric paclitaxel nanoparticles for treatment of cancer.

  18. Multivalency of Sonic hedgehog conjugated to linear polymer chains modulates protein potency.

    PubMed

    Wall, Samuel T; Saha, Krishanu; Ashton, Randolph S; Kam, Kimberly R; Schaffer, David V; Healy, Kevin E

    2008-04-01

    A potently active multivalent form of the protein Sonic hedgehog (Shh) was produced by bioconjugation of a modified recombinant form of Shh to the linear polymers poly(acrylic acid) (pAAc) and hyaluronic acid (HyA) via a two-step reaction exploiting carboimiide and maleimide chemistry. Efficiency of the conjugation was approximately 75% even at stoichiometric ratios of 30 Shh molecules per linear HyA chain (i.e., 30:1 Shh/HyA). Bioactivity of the conjugates was tested via a cellular assay across a range of stoichiometric ratios of Shh molecules to HyA linear chains, which was varied from 0.6:1 Shh/HyA to 22:1 Shh/HyA. Results indicate that low conjugation ratios decrease Shh bioactivity and high ratios increase this activity beyond the potency of monomeric Shh, with approximately equal activity between monomeric soluble Shh and conjugated Shh at 7:1 Shh/HyA. In addition, high-ratio constructs increased angiogenesis determined by the in vivo chick chorioallantoic membrane (CAM) assay. These results are captured by a kinetic model of multiple interactions between the Shh/HyA conjugates and cell surface receptors resulting in higher cell signaling at lower bulk Shh concentrations.

  19. Water-soluble luminescent quantum dots and biomolecular conjugates thereof and related compositions and methods of use

    DOEpatents

    Nie, Shuming; Chan, Warren C. W.; Emory, Stephen

    2007-03-20

    The present invention provides a water-soluble luminescent quantum dot, a biomolecular conjugate thereof and a composition comprising such a quantum dot or conjugate. Additionally, the present invention provides a method of obtaining a luminescent quantum dot, a method of making a biomolecular conjugate thereof, and methods of using a biomolecular conjugate for ultrasensitive nonisotopic detection in vitro and in vivo.

  20. Water-soluble luminescent quantum dots and biomolecular conjugates thereof and related compositions and method of use

    DOEpatents

    Nie, Shuming; Chan, Warren C. W.; Emory, Steven R.

    2002-01-01

    The present invention provides a water-soluble luminescent quantum dot, a biomolecular conjugate thereof and a composition comprising such a quantum dot or conjugate. Additionally, the present invention provides a method of obtaining a luminescent quantum dot, a method of making a biomolecular conjugate thereof, and methods of using a biomolecular conjugate for ultrasensitive nonisotopic detection in vitro and in vivo.

  1. Systemic aspects of conjugal resilience in couples with a child facing cancer and marrow transplantation.

    PubMed

    Martin, Julie; Péloquin, Katherine; Vachon, Marie-France; Duval, Michel; Sultan, Serge

    The negative impact of paediatric cancer on parents is well known and is even greater when intensive treatments are used. This study aimed to describe how couples whose child has received a transplant for the treatment of leukaemia view conjugal resilience and to evaluate the role of we-ness as a precursor of conjugal adjustment. Four parental couples were interviewed. Interviews were analysed in two ways: inductive thematic analysis and rating of verbal content with the We-ness Coding Scale . Participants report that conjugal resilience involves the identification of the couple as a team and cohesion in the couple. Being a team generates certain collaborative interactions that lead to conjugal resilience. A sense of we-ness in parents is associated with fluctuation in the frequency of themes. Participants' vision of conjugal resilience introduced novel themes. The sense of we-ness facilitates cohesion and the process of conjugal resilience.

  2. Surface modification of PLGA nanoparticles via human serum albumin conjugation for controlled delivery of docetaxel

    PubMed Central

    2013-01-01

    Background Poly lactic-co-glycolic acid (PLGA) based nanoparticles are considered to be a promising drug carrier in tumor targeting but suffer from the high level of opsonization by reticuloendothelial system due to their hydrophobic structure. As a result surface modification of these nanoparticles has been widely studied as an essential step in their development. Among various surface modifications, human serum albumin (HSA) possesses advantages including small size, hydrophilic surface and accumulation in leaky vasculature of tumors through passive targeting and a probable active transport into tumor tissues. Methods PLGA nanoparticles of docetaxel were prepared by emulsification evaporation method and were surface conjugated with human serum albumin. Fourier transform infrared spectrum was used to confirm the conjugation reaction where nuclear magnetic resonance was utilized for conjugation ratio determination. In addition, transmission electron microscopy showed two different contrast media in conjugated nanoparticles. Furthermore, cytotoxicity of free docetaxel, unconjugated and conjugated PLGA nanoparticles was studied in HepG2 cells. Results Size, zeta potential and drug loading of PLGA nanoparticles were about 199 nm, −11.07 mV, and 4%, respectively where size, zeta potential and drug loading of conjugated nanoparticles were found to be 204 nm, −5.6 mV and 3.6% respectively. Conjugated nanoparticles represented a three-phasic release pattern with a 20% burst effect for docetaxel on the first day. Cytotoxicity experiment showed that the IC50 of HSA conjugated PLGA nanoparticles (5.4 μg) was significantly lower than both free docetaxel (20.2 μg) and unconjugated PLGA nanoparticles (6.2 μg). Conclusion In conclusion surface modification of PLGA nanoparticles through HSA conjugation results in more cytotoxicity against tumor cell lines compared with free docetaxel and unconjugated PLGA nanoparticles. Albumin conjugated PLGA nanoparticles may

  3. Complex analysis of concentrated antibody-gold nanoparticle conjugates' mixtures using asymmetric flow field-flow fractionation.

    PubMed

    Safenkova, Irina V; Slutskaya, Elvira S; Panferov, Vasily G; Zherdev, Anatoly V; Dzantiev, Boris B

    2016-12-16

    Conjugates of gold nanoparticles (GNPs) with antibodies are powerful analytical tools. It is crucial to know the conjugates' state in both the concentrated and mixed solutions used in analytical systems. Herein, we have applied asymmetrical flow field-flow fractionation (AF4) to identify the conjugates' state. The influence of a conjugate's composition and concentration on aggregation was studied in a true analytical solution (a concentrated mixture with stabilizing components). GNPs with an average diameter of 15.3±1.2nm were conjugated by adsorption with eight antibodies of different specificities. We found that, while the GNPs have a zeta potential of -31.6mV, the conjugates have zeta potentials ranging from -5.8 to -11.2mV. Increased concentrations (up to 184nM, OD 520 =80) of the mixed conjugate (mixture of eight conjugates) did not change the form of fractograms, and the peak areas' dependence on concentration was strongly linear (R 2 values of 0.99919 and 0.99845 for absorption signal and light scattering, respectively). Based on the gyration (R g ) and hydrodynamic (R h ) radii measured during fractionation, we found that the nanoparticles were divided into two populations: (1) those with constant radii (R g =9.9±0.9nm; R h =14.3±0.5nm); and (2) those with increased radii from 9.9 to 24.4nm for R g and from 14.3 to 28.1nm for R h . These results confirm that the aggregate state of the concentrated and mixed conjugates' preparations is the same as that of diluted preparations and that AF4 efficiently characterizes the conjugates' state in a true analytical solution. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Ferrocene-pyrimidine conjugates: Synthesis, electrochemistry, physicochemical properties and antiplasmodial activities.

    PubMed

    Chopra, Rakesh; de Kock, Carmen; Smith, Peter; Chibale, Kelly; Singh, Kamaljit

    2015-07-15

    The promise of hybrid antimalarial agents and the precedence set by the antimalarial drug ferroquine prompted us to design ferrocene-pyrimidine conjugates. Herein, we report the synthesis, electrochemistry and anti-plasmodial evaluation of ferrocenyl-pyrimidine conjugates against chloroquine susceptible NF54 strain of the malaria parasite Plasmodium falciparum. Also their physicochemical properties have been studied. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  5. Induction of Au-methotrexate conjugates by sugar molecules: production, assembly mechanism, and bioassay studies.

    PubMed

    Wang, Wei-Yuan; Zhao, Xiu-Fen; Ju, Xiao-Han; Liu, Ping; Li, Jing; Tang, Ya-Wen; Li, Shu-Ping; Li, Xiao-Dong; Song, Fu-Gui

    2018-03-01

    Au-methotrexate (Au-MTX) conjugates induced by sugar molecules were produced by a simple, one-pot, hydrothermal growth method. Herein, the Au(III)-MTX complexes were used as the precursors to form Au-MTX conjugates. Addition of different types of sugar molecules with abundant hydroxyl groups resulted in the formation of Au-MTX conjugates featuring distinct characteristics that could be explained by the diverse capping mechanisms of sugar molecules. That is, the instant-capping mechanism of glucose favored the generation of peanut-like Au-MTX conjugates with high colloidal stability while the post-capping mechanism of dextran and sucrose resulted in the production of Au-MTX conjugates featuring excellent near-infrared (NIR) optical properties with a long-wavelength plasmon resonance near 630-760 nm. Moreover, in vitro bioassays showed that cancer cell viabilities upon incubation with free MTX, Au-MTX conjugates doped with glucose, dextran and sucrose for 48 h were 74.6%, 55.0%, 62.0%, and 63.1%, respectively. Glucose-doped Au-MTX conjugates exhibited a higher anticancer activity than those doped with dextran and sucrose, therefore potentially presenting a promising treatment platform for anticancer therapy. Based on the present study, this work may provide the first example of using biocompatible sugars as regulating agents to effectively guide the shape and assembly behavior of Au-MTX conjugates. Potentially, the synergistic strategy of drug molecules and sugar molecules may offer the possibility to create more gold-based nanocarriers with new shapes and beneficial features for advanced anticancer therapy. Copyright © 2018 Elsevier B.V. All rights reserved.

  6. Ti-Catalyzed Hydroamination for the Synthesis of Amine-Containing π-Conjugated Materials.

    PubMed

    Hao, Han; Thompson, Kyle A; Hudson, Zachary M; Schafer, Laurel L

    2018-04-11

    A series of conjugated enamines were prepared by Ti catalyzed anti-Markovnikov hydroamination. The synthetic route is efficient with yields of up to 94 % and the 100 % atom efficiency of the reaction means that these products are easily isolated and purified. Due to the extended conjugated system, the enamine tautomers were observed exclusively in both solid and solution phases, as determined by X-ray crystallography and NMR spectroscopy. These new conjugated molecules, with N incorporated into the backbone, show interesting photophysical properties including photo-luminescent quantum yields of up to 0.26. Notably, through the incorporation of B to give a donor-acceptor π-conjugated system, a redshift of approximately 100 nm is observed for the emission maximum along with the anticipated solvatochromic shifts. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Near-IR Light-Cleavable Antibody Conjugates and Conjugate Precursors | NCI Technology Transfer Center | TTC

    Cancer.gov

    Researchers at the National Cancer Institute (NCI) developed novel groups of cyanine (Cy) based antibody-drug conjugate (ADC) chemical linkers that undergo photolytic cleavage upon irradiation with near-IR light. By using the fluorescent properties of the Cy linker to monitor localization of the ADC, and subsequent near-IR irradiation of cancerous tissue, drug release could be confined to the tumor microenvironment.

  8. π-Clamp-mediated cysteine conjugation

    NASA Astrophysics Data System (ADS)

    Zhang, Chi; Welborn, Matthew; Zhu, Tianyu; Yang, Nicole J.; Santos, Michael S.; van Voorhis, Troy; Pentelute, Bradley L.

    2016-02-01

    Site-selective functionalization of complex molecules is one of the most significant challenges in chemistry. Typically, protecting groups or catalysts must be used to enable the selective modification of one site among many that are similarly reactive, and general strategies that selectively tune the local chemical environment around a target site are rare. Here, we show a four-amino-acid sequence (Phe-Cys-Pro-Phe), which we call the ‘π-clamp’, that tunes the reactivity of its cysteine thiol for site-selective conjugation with perfluoroaromatic reagents. We use the π-clamp to selectively modify one cysteine site in proteins containing multiple endogenous cysteine residues. These examples include antibodies and cysteine-based enzymes that would be difficult to modify selectively using standard cysteine-based methods. Antibodies modified using the π-clamp retained binding affinity to their targets, enabling the synthesis of site-specific antibody-drug conjugates for selective killing of HER2-positive breast cancer cells. The π-clamp is an unexpected approach to mediate site-selective chemistry and provides new avenues to modify biomolecules for research and therapeutics.

  9. Development and characterization of lysine-methotrexate conjugate for enhanced brain delivery.

    PubMed

    Singh, Vijay Kumar; Subudhi, Bharat Bhusan

    2016-09-01

    Methotrexate (MTX), an anticancer drug of choice, has poor permeability across blood-brain barrier (BBB) making it unsuitable for brain tumor application. Its brain availability and scope of application was improved by preparation of reversible conjugate with lysine by capitalizing the endogenous transport system of lysine at BBB. To enhance its delivery to brain, MTX was reversibly conjugated with l-Lysine by an amide linkage. It was characterized by advanced spectroscopy techniques including IR, NMR and MS. Furthermore, conjugate was assessed for stability, toxicity and drug release ability. In vivo distribution studies were done by radioscintigraphy study using 99m Tc radioisotope. The structure of prodrug was confirmed by 1 H-NMR, 13 C-NMR and Mass. The m/e (mass to charge ratio) fragment was found at [M + H] 711.32 in Mass spectra. Stability and metabolic studies suggested that conjugate was stable at physiological pH (in Phosphate buffer pH 7.4 t 1/2 is 70.25 ± 2.17 h and in plasma t 1/2 is 193.57 ± 2.03 min) and circulated adequately to release MTX slowly in brain. In vivo biodistribution study showed that prodrug significantly increased the level of MTX in brain when compared with pharmacokinetic parameter of parent drug. The brain permeability of MTX was enhanced significantly by this conjugate.

  10. Toward High Performance Photovoltaic Cells based on Conjugated Polymers

    DTIC Science & Technology

    2016-12-26

    AFRL-AFOSR-JP-TR-2016-0103 Toward High Performance Photovoltaic Cells based on Conjugated Polymers Kung-Hwa Wei National Chiao Tung University Final...Conjugated Polymers 5a.  CONTRACT NUMBER 5b.  GRANT NUMBER FA2386-15-1-4113 5c.  PROGRAM ELEMENT NUMBER 61102F 6. AUTHOR(S) Kung-Hwa Wei 5d.  PROJECT...gap polymer with good packing order as the active layer for a single-junction photovoltaic device. The light absorptions for the small molecule and the

  11. Second and third order nonlinear optical properties of conjugated molecules and polymers

    NASA Technical Reports Server (NTRS)

    Perry, Joseph W.; Stiegman, Albert E.; Marder, Seth R.; Coulter, Daniel R.; Beratan, David N.; Brinza, David E.

    1988-01-01

    Second- and third-order nonlinear optical properties of some newly synthesized organic molecules and polymers are reported. Powder second-harmonic-generation efficiencies of up to 200 times urea have been realized for asymmetric donor-acceptor acetylenes. Third harmonic generation chi(3)s have been determined for a series of small conjugated molecules in solution. THG chi(3)s have also been determined for a series of soluble conjugated copolymers prepared using ring-opening metathesis polymerization. The results are discussed in terms of relevant molecular and/or macroscopic structural features of these conjugated organic materials.

  12. Particle-in-a-box model of exciton absorption and electroabsorption in conjugated polymers

    NASA Astrophysics Data System (ADS)

    Pedersen, Thomas G.

    2000-12-01

    The recently proposed particle-in-a-box model of one-dimensional excitons in conjugated polymers is applied in calculations of optical absorption and electroabsorption spectra. It is demonstrated that for polymers of long conjugation length a superposition of single exciton resonances produces a line shape characterized by a square-root singularity in agreement with experimental spectra near the absorption edge. The effects of finite conjugation length on both absorption and electroabsorption spectra are analyzed.

  13. Oriented conjugation of single-domain antibodies and quantum dots.

    PubMed

    Brazhnik, Kristina; Nabiev, Igor; Sukhanova, Alyona

    2014-01-01

    Nanoparticle-based biodetection routinely employs monoclonal antibodies (mAbs) for targeting. However, the large size of mAbs limits the number of ligands per nanoparticle and severely restricts the bioavailability and distribution of these probes in a sample. Furthermore, conventional conjugation techniques provide nanoprobes with irregular orientation of mAbs on the nanoparticle surface and often provoke mAb unfolding. Here, we describe a protocol for engineering a new generation of ultrasmall diagnostic nanoprobes through oriented conjugation of semiconductor quantum dots (QDs) with 13 kDa single-domain antibodies (sdAbs) derived from llama immunoglobulin G (IgG). The sdAbs are conjugated with QDs in a highly oriented manner via an additional cysteine residue specifically integrated into the sdAb C-terminus. The resultant nanoprobes are <12 nm in diameter, ten times smaller in volume compared to the known alternatives. They have been proved highly efficient in flow cytometry and immunuhistochemical diagnostics. This approach can be easily extended to other semiconductor and plasmonic nanoparticles.

  14. Experiments with conjugate gradient algorithms for homotopy curve tracking

    NASA Technical Reports Server (NTRS)

    Irani, Kashmira M.; Ribbens, Calvin J.; Watson, Layne T.; Kamat, Manohar P.; Walker, Homer F.

    1991-01-01

    There are algorithms for finding zeros or fixed points of nonlinear systems of equations that are globally convergent for almost all starting points, i.e., with probability one. The essence of all such algorithms is the construction of an appropriate homotopy map and then tracking some smooth curve in the zero set of this homotopy map. HOMPACK is a mathematical software package implementing globally convergent homotopy algorithms with three different techniques for tracking a homotopy zero curve, and has separate routines for dense and sparse Jacobian matrices. The HOMPACK algorithms for sparse Jacobian matrices use a preconditioned conjugate gradient algorithm for the computation of the kernel of the homotopy Jacobian matrix, a required linear algebra step for homotopy curve tracking. Here, variants of the conjugate gradient algorithm are implemented in the context of homotopy curve tracking and compared with Craig's preconditioned conjugate gradient method used in HOMPACK. The test problems used include actual large scale, sparse structural mechanics problems.

  15. Nano-assembly of nanodiamonds by conjugation to actin filaments.

    PubMed

    Bradac, Carlo; Say, Jana M; Rastogi, Ishan D; Cordina, Nicole M; Volz, Thomas; Brown, Louise J

    2016-03-01

    Fluorescent nanodiamonds (NDs) are remarkable objects. They possess unique mechanical and optical properties combined with high surface areas and controllable surface reactivity. They are non-toxic and hence suited for use in biological environments. NDs are also readily available and commercially inexpensive. Here, the exceptional capability of controlling and tailoring their surface chemistry is demonstrated. Small, bright diamond nanocrystals (size ˜30 nm) are conjugated to protein filaments of actin (length ˜3-7 µm). The conjugation to actin filaments is extremely selective and highly target-specific. These unique features, together with the relative simplicity of the conjugation-targeting method, make functionalised nanodiamonds a powerful and versatile platform in biomedicine and quantum nanotechnologies. Applications ranging from using NDs as superior biological markers to, potentially, developing novel bottom-up approaches for the fabrication of hybrid quantum devices that would bridge across the bio/solid-state interface are presented and discussed. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Phase conjugation of Nd:YAG laser radiation

    NASA Astrophysics Data System (ADS)

    Chen, Jun

    1988-06-01

    The phase conjugation of Nd:YAG laser radiation by four-wave mixing in silicon and by stimulated Brillouin scattering in acetone and other organic liquids was experimentally and theoretically investigated. Due to nonlinear absorption in Si a saturation of the reflection of the phase conjugator was theoretically predicted, and experimentally observed. It is theoretically and experimentally shown that the radiation profile behind the Si-sample is annular due to defocusing. The experiments show that CS2 and acetone have the lowest thresholds for stimulated Brillouin scattering. A laser resonator was built using a Brillouin cell and two normal mirrors; the emitted laser beam is insensitive to phase perturbations in the resonator, and has a pulse duration of 5 ns and a pulse energy of 220 m.

  17. Systemic aspects of conjugal resilience in couples with a child facing cancer and marrow transplantation

    PubMed Central

    Martin, Julie; Péloquin, Katherine; Vachon, Marie-France; Duval, Michel; Sultan, Serge

    2016-01-01

    Introduction The negative impact of paediatric cancer on parents is well known and is even greater when intensive treatments are used. This study aimed to describe how couples whose child has received a transplant for the treatment of leukaemia view conjugal resilience and to evaluate the role of we-ness as a precursor of conjugal adjustment. Methods Four parental couples were interviewed. Interviews were analysed in two ways: inductive thematic analysis and rating of verbal content with the We-ness Coding Scale. Results Participants report that conjugal resilience involves the identification of the couple as a team and cohesion in the couple. Being a team generates certain collaborative interactions that lead to conjugal resilience. A sense of we-ness in parents is associated with fluctuation in the frequency of themes. Discussion Participants’ vision of conjugal resilience introduced novel themes. The sense of we-ness facilitates cohesion and the process of conjugal resilience. PMID:27687510

  18. A penalized linear and nonlinear combined conjugate gradient method for the reconstruction of fluorescence molecular tomography.

    PubMed

    Shang, Shang; Bai, Jing; Song, Xiaolei; Wang, Hongkai; Lau, Jaclyn

    2007-01-01

    Conjugate gradient method is verified to be efficient for nonlinear optimization problems of large-dimension data. In this paper, a penalized linear and nonlinear combined conjugate gradient method for the reconstruction of fluorescence molecular tomography (FMT) is presented. The algorithm combines the linear conjugate gradient method and the nonlinear conjugate gradient method together based on a restart strategy, in order to take advantage of the two kinds of conjugate gradient methods and compensate for the disadvantages. A quadratic penalty method is adopted to gain a nonnegative constraint and reduce the illposedness of the problem. Simulation studies show that the presented algorithm is accurate, stable, and fast. It has a better performance than the conventional conjugate gradient-based reconstruction algorithms. It offers an effective approach to reconstruct fluorochrome information for FMT.

  19. The Bacillus subtilis Conjugative Plasmid pLS20 Encodes Two Ribbon-Helix-Helix Type Auxiliary Relaxosome Proteins That Are Essential for Conjugation.

    PubMed

    Miguel-Arribas, Andrés; Hao, Jian-An; Luque-Ortega, Juan R; Ramachandran, Gayetri; Val-Calvo, Jorge; Gago-Córdoba, César; González-Álvarez, Daniel; Abia, David; Alfonso, Carlos; Wu, Ling J; Meijer, Wilfried J J

    2017-01-01

    Bacterial conjugation is the process by which a conjugative element (CE) is transferred horizontally from a donor to a recipient cell via a connecting pore. One of the first steps in the conjugation process is the formation of a nucleoprotein complex at the origin of transfer ( oriT ), where one of the components of the nucleoprotein complex, the relaxase, introduces a site- and strand specific nick to initiate the transfer of a single DNA strand into the recipient cell. In most cases, the nucleoprotein complex involves, besides the relaxase, one or more additional proteins, named auxiliary proteins, which are encoded by the CE and/or the host. The conjugative plasmid pLS20 replicates in the Gram-positive Firmicute bacterium Bacillus subtilis . We have recently identified the relaxase gene and the oriT of pLS20, which are separated by a region of almost 1 kb. Here we show that this region contains two auxiliary genes that we name aux1 LS20 and aux2 LS20 , and which we show are essential for conjugation. Both Aux1 LS20 and Aux2 LS20 are predicted to contain a Ribbon-Helix-Helix DNA binding motif near their N-terminus. Analyses of the purified proteins show that Aux1 LS20 and Aux2 LS20 form tetramers and hexamers in solution, respectively, and that they both bind preferentially to oriT LS20 , although with different characteristics and specificities. In silico analyses revealed that genes encoding homologs of Aux1 LS20 and/or Aux2 LS20 are located upstream of almost 400 relaxase genes of the Rel LS20 family (MOB L ) of relaxases. Thus, Aux1 LS20 and Aux2 LS20 of pLS20 constitute the founding member of the first two families of auxiliary proteins described for CEs of Gram-positive origin.

  20. Preparation and characterization of conjugated polymers made by postpolymerization reactions of alternating polyketones.

    PubMed

    Cheng, Chen; Guironnet, Damien; Barborak, James; Brookhart, Maurice

    2011-06-29

    Conjugated polymers possessing a poly(2,5-dimethylene-2,5-dihydrofuran) backbone were prepared through postpolymerization reaction of styrenic polyketones with bromine in one-pot reactions. The modification is proposed to proceed via condensation of two repeating units to form a fully characterized polymer with a poly(2,5-dimethylenetetrahydrofuran) backbone. Subsequent bromination and elimination of HBr yield a polymer with a fully conjugated carbon backbone. The new conjugated polymers were characterized by NMR, IR, and UV-vis spectroscopies and by CV. These polymers have strong absorption in the visible region, with the absorption peaks shifted to the NIR region upon doping with acids. The ease of the synthesis of the starting polyketone and of the modifications allows large-scale preparation of those conjugated polymers.

  1. Poly(zwitterionic)protein conjugates offer increased stability without sacrificing binding affinity or bioactivity

    NASA Astrophysics Data System (ADS)

    Keefe, Andrew J.; Jiang, Shaoyi

    2012-01-01

    Treatment with therapeutic proteins is an attractive approach to targeting a number of challenging diseases. Unfortunately, the native proteins themselves are often unstable in physiological conditions, reducing bioavailability and therefore increasing the dose that is required. Conjugation with poly(ethylene glycol) (PEG) is often used to increase stability, but this has a detrimental effect on bioactivity. Here, we introduce conjugation with zwitterionic polymers such as poly(carboxybetaine). We show that poly(carboxybetaine) conjugation improves stability in a manner similar to PEGylation, but that the new conjugates retain or even improve the binding affinity as a result of enhanced protein-substrate hydrophobic interactions. This chemistry opens a new avenue for the development of protein therapeutics by avoiding the need to compromise between stability and affinity.

  2. Pneumococcal conjugate vaccine: economic issues of the introduction of a new childhood vaccine.

    PubMed

    Ray, G Thomas

    2002-06-01

    In February 2000, a pneumococcal conjugate vaccine was licensed for use in the USA. This vaccine has been shown to be effective in reducing pneumococcal disease, and has been recommended for universal use in infants. However, pneumococcal conjugate vaccine is by far the most expensive child vaccine series routinely administered in the USA, alone accounting for over 40% of the total purchase price of vaccines for the recommended childhood schedule. This article reviews the existing efficacy and economic studies of pneumococcal conjugate vaccine and discusses the process by which routine use of pneumococcal conjugate vaccine was introduced and the role economic analysis played in that process. Some of the scientific and funding issues relating to its use in both the industrialized and developing world are also discussed.

  3. Milatuzumab-SN-38 conjugates for the treatment of CD74+ cancers.

    PubMed

    Govindan, Serengulam V; Cardillo, Thomas M; Sharkey, Robert M; Tat, Fatma; Gold, David V; Goldenberg, David M

    2013-06-01

    CD74 is an attractive target for antibody-drug conjugates (ADC), because it internalizes and recycles after antibody binding. CD74 mostly is associated with hematologic tumors but is expressed also in solid cancers. Therefore, ADCs of the humanized anti-CD74 antibody, milatuzumab, were examined for the therapy of CD74-expressing solid tumors. Milatuzumab-doxorubicin and two milatuzumab-SN-38 conjugates with cleavable linkers, differing in their stability in serum and how they release SN-38 in the lysosome, were prepared. CD74 expression was determined by flow cytometry and immunohistology. In vitro cytotoxicity and in vivo therapeutic studies were conducted in the human cancer cell lines A-375 (melanoma), HuH-7 and Hep-G2 (hepatoma), Capan-1 (pancreatic), NCI-N87 (gastric), and Raji Burkitt lymphoma. The milatuzumab-SN-38 ADC was compared with SN-38 ADCs prepared with anti-Trop-2 and anti-CEACAM6 antibodies in xenografts expressing their target antigens. Milatuzumab-doxorubicin was most effective in the lymphoma model, whereas in A-375 and Capan-1 solid tumors, only milatuzumab-SN-38 showed a therapeutic benefit. Despite much lower surface expression of CD74 than Trop-2 or CEACAM6, milatuzumab-SN-38 had similar efficacy in Capan-1 as anti-Trop-2-SN-38, but in NCI-N87, anti-CEACAM6 and anti-Trop-2 conjugates were superior. Studies in two hepatoma lines at a single dose level showed significant benefit over saline controls but not against an irrelevant immunoglobulin G conjugate. CD74 is a suitable target for ADCs in some solid tumor xenografts, with efficacy largely influenced by uniformity of CD74 expression and with SN-38 conjugates providing the best therapeutic responses; SN-38 conjugates were preferable in solid cancers, whereas doxorubicin ADC was better in lymphoma tested. ©2013 AACR

  4. Mathematical modeling of mutant transferrin-CRM107 molecular conjugates for cancer therapy.

    PubMed

    Yoon, Dennis J; Chen, Kevin Y; Lopes, André M; Pan, April A; Shiloach, Joseph; Mason, Anne B; Kamei, Daniel T

    2017-03-07

    The transferrin (Tf) trafficking pathway is a promising mechanism for use in targeted cancer therapy due to the overexpression of transferrin receptors (TfRs) on cancerous cells. We have previously developed a mathematical model of the Tf/TfR trafficking pathway to improve the efficiency of Tf as a drug carrier. By using diphtheria toxin (DT) as a model toxin, we found that mutating the Tf protein to change its iron release rate improves cellular association and efficacy of the drug. Though this is an improvement upon using wild-type Tf as the targeting ligand, conjugated toxins like DT are unfortunately still highly cytotoxic at off-target sites. In this work, we address this hurdle in cancer research by developing a mathematical model to predict the efficacy and selectivity of Tf conjugates that use an alternative toxin. For this purpose, we have chosen to study a mutant of DT, cross-reacting material 107 (CRM107). First, we developed a mathematical model of the Tf-DT trafficking pathway by extending our Tf/TfR model to include intracellular trafficking via DT and DT receptors. Using this mathematical model, we subsequently investigated the efficacy of several conjugates in cancer cells: DT and CRM107 conjugated to wild-type Tf, as well as to our engineered mutant Tf proteins (K206E/R632A Tf and K206E/R534A Tf). We also investigated the selectivity of mutant Tf-CRM107 against non-neoplastic cells. Through the use of our mathematical model, we predicted that (i) mutant Tf-CRM107 exhibits a greater cytotoxicity than wild-type Tf-CRM107 against cancerous cells, (ii) this improvement was more drastic with CRM107 conjugates than with DT conjugates, and (iii) mutant Tf-CRM107 conjugates were selective against non-neoplastic cells. These predictions were validated with in vitro cytotoxicity experiments, demonstrating that mutant Tf-CRM107 conjugates is indeed a more suitable therapeutic agent. Validation from in vitro experiments also confirmed that such whole

  5. Conjugated Gammadion Chiral Metamaterial with Uniaxial Optical Activity and Negative Refractive Index

    DTIC Science & Technology

    2011-01-10

    in Fig. 4, we discuss a procedure of transmutation from the simple -particle chiral element to the conjugated gammadion chiral metamaterial. The...the transmutation from the simple -particle chiral element to the conjugated gammadion chiral metamaterial. The procedure shows how the magnetic or

  6. Asialoglycoprotein receptor mediates the toxic effects of an asialofetuin-diphtheria toxin fragment A conjugate on cultured rat hepatocytes.

    PubMed Central

    Cawley, D B; Simpson, D L; Herschman, H R

    1981-01-01

    We have constructed a toxic hybrid protein that is recognized by asialoglycoprotein (ASGP) receptors of cultured rat hepatocytes. The conjugate consists of fragment A of diphtheria toxin (DTA) linked by a disulfide bond to asialofetuin (ASF). This conjugate is highly toxic, inhibiting protein synthesis in primary rat hepatocytes at concentrations as low as 10 pM. The ASF-DTA conjugate was 600 and 1800 times as toxic as diphtheria toxin and DTA, respectively, on primary rat hepatocytes. The ASGP receptor recognizes galactose-terminated proteins. We tested a series of glycoproteins for their ability to block the action of the ASF-DTA conjugate. Fetuin and orosomucoid, two glycoproteins with terminal sialic acid on their oligosaccharide chains, did not block the action of the conjugate. Their galactose-terminated asialo derivatives, ASF and asialoorosomucoid, as expected, did block the action of the conjugate. The N-acetylglucosaminyl-terminated derivative (asialogalactoorsomucoid) had no appreciable effect on the activity of the conjugate. We tested the ASF-DTA conjugate on six cell types; except for primary rat hepatocytes, none of them were affected by a high concentration (10 nM) of ASF-DTA conjugate. A fetuin-DTA conjugate was less toxic by a factor of 300 than the ASF-DTA conjugate and exerted its effects primarily through non-receptor-mediated mechanisms. The highly toxic ASF-DTA conjugate is cell-type specific, and its action is mediated by a well-characterized receptor, whose mechanism of receptor-ligand internalization has been extensively investigated. Images PMID:6167984

  7. Chemotherapeutic Drug-Conjugated Microbeads Demonstrate Preferential Binding to Methylated Plasmid DNA.

    PubMed

    Lin, Kevin N; Grandhi, Taraka Sai Pavan; Goklany, Sheba; Rege, Kaushal

    2018-04-10

    Plasmid DNA (pDNA) is an attractive therapeutic biomolecule in several diseases including cancer, AIDS, cystic fibrosis, Parkinson's disease, and Alzheimer's disease. Increasing demand for plasmid DNA as a therapeutic biomolecule for transgene expression or vaccine applications necessitate novel approaches to bioprocessing. The synthesis, characterization and evaluation of aminoglycoside-derived hydrogel microbeads (Amikabeads) for pDNA binding is described previously. Here, the generation and evaluation of novel chemotherapeutic drug-conjugated microbeads for application in pDNA binding and recovery is described. Chemotherapeutic drug-conjugated Amikabeads demonstrate higher binding of methylated pDNA compared to unmethylated pDNA in presence of high salt concentrations. Desorption of plasmids from drug-conjugated microbeads is facilitated by the use of organic modifiers. The observed differences in binding methylated versus unmethylated DNA can make drug-conjugated microbeads useful in diagnostic as well as therapeutic applications. These results demonstrate that anti-cancer drugs represent a diverse set of ligands that may be exploited for molecular engineering of novel DNA binding materials for applications in delivery, diagnostics, and biomanufacturing. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Asymmetric rifting, breakup and magmatism across conjugate margin pairs: insights from Newfoundland to Ireland

    NASA Astrophysics Data System (ADS)

    Peace, Alexander L.; Welford, J. Kim; Foulger, Gillian R.; McCaffrey, Ken J. W.

    2017-04-01

    Continental extension, subsequent rifting and eventual breakup result in the development of passive margins with transitional crust between extended continental crust and newly created oceanic crust. Globally, passive margins are typically classified as either magma-rich or magma-poor. Despite this simple classification, magma-poor margins like the West Orphan Basin, offshore Newfoundland, do exhibit some evidence of localized magmatism, as magmatism to some extent invariably accompanies all continental breakup. For example, on the Newfoundland margin, a small volcanic province has been interpreted near the termination of the Charlie Gibbs Fracture Zone, whereas on the conjugate Irish margin within the Rockall Basin, magmatism appears to be more widespread and has been documented both in the north and in the south. The broader region over which volcanism has been identified on the Irish margin is suggestive of magmatic asymmetry across this conjugate margin pair and this may have direct implications for the mechanisms governing the nature of rifting and breakup. Possible causes of the magmatic asymmetry include asymmetric rifting (simple shear), post-breakup thermal anomalies in the mantle, or pre-existing compositional zones in the crust that predispose one of the margins to more melting than its conjugate. A greater understanding of the mechanisms leading to conjugate margin asymmetry will enhance our fundamental understanding of rifting processes and will also reduce hydrocarbon exploration risk by better characterizing the structural and thermal evolution of hydrocarbon bearing basins on magma-poor margins where evidence of localized magmatism exists. Here, the latest results of a conjugate margin study of the Newfoundland-Ireland pair utilizing seismic interpretation integrated with other geological and geophysical datasets are presented. Our analysis has begun to reveal the nature and timing of rift-related magmatism and the degree to which magmatic asymmetry

  9. Maleimide conjugation markedly enhances the immunogenicity of both human and murine idiotype-KLH vaccines

    PubMed Central

    Kafi, Kamran; Betting, David J.; Yamada, Reiko E.; Bacica, Michael; Steward, Kristopher K.; Timmerman, John M.

    2009-01-01

    The collection of epitopes present within the variable regions of the tumor-specific clonal immunoglobulin expressed by B cell lymphomas (idiotype, Id) can serve as a target for active immunotherapy. Traditionally, tumor-derived Id protein is chemically-conjugated to the immunogenic foreign carrier protein keyhole limpet hemocyanin (KLH) using glutaraldehyde to serve as a therapeutic vaccine. While this approach offered promising results for some patients treated in early clinical trials, glutaraldehyde Id-KLH vaccines have failed to induce immune and clinical responses in many vaccinated subjects. We recently described an alternative conjugation method employing maleimide-sulfhydryl chemistry that significantly increased the therapeutic efficacy of Id-KLH vaccines in three different murine B cell lymphoma models, with protection mediated by either CD8+ T cells or antibodies. We now define in detail the methods and parameters critical for enhancing the in vivo immunogenicity of human as well as murine Id-KLH conjugate vaccines. Optimal conditions for Id sulfhydryl pre-reduction were determined, and maleimide Id-KLH conjugates maintained stability and potency even after prolonged storage. Field flow fractionation analysis of Id-KLH particle size revealed that maleimide conjugates were far more uniform in size than glutaraldehyde conjugates. Under increasingly stringent conditions, maleimide Id-KLH vaccines maintained superior efficacy over glutaraldehyde Id-KLH in treating established, disseminated murine lymphoma. More importantly, human maleimide Id-KLH conjugates were consistently superior to glutaraldehyde Id-KLH conjugates in inducing Id-specific antibody and T cell responses. The described methods should be easily adaptable to the production of clinical grade vaccines for human trials in B cell malignancies. PMID:19046770

  10. Cell-penetrating conjugates of pentaglutamylated methotrexate as potential anticancer drugs against resistant tumor cells.

    PubMed

    Szabó, Ildikó; Orbán, Erika; Schlosser, Gitta; Hudecz, Ferenc; Bánóczi, Zoltán

    2016-06-10

    The emerging resistance of tumor cells against methotrexate (MTX) is one of the major limitations of the MTX treatment of tumorous diseases. The disturbance in the polyglutamation which is a main step in the mechanism of methotrexate action is often the reason of the resistance. Delivery of polyglutamylated MTX into cells may evade the mechanisms that are responsible for drug resistance. In this study conjugates of methotrexate and its pentaglutamylated derivatives with cell-penetrating peptides - penetratin and octaarginine - were investigated. The cellular-uptake and in vitro cytostatic activity of conjugates were examined on breast cancer cell cultures (MDA-MB-231 as resistant and MCF-7 as sensitive cell culture). These cell cultures showed very different behaviour towards the conjugates. Although the presence of pentaglutamyl moiety significantly decreased the internalisation of conjugates, some of them were significantly active in vitro. All of the conjugates were able to penetrate in some extent into both cell types, but only the conjugates of penetratin showed in vitro cytostatic activity. The most effective conjugates were the MTX-Glu5-Penetratin(desMet) and MTX-Glu5-GFLG-Penetratin(desMet). The latter was effective on both cell cultures while the former was active only on the resistant tumor cells. Our results suggest that the translocation of polyglutamylated MTX may be a new way to treat sensitive and more importantly resistant tumors. While both penetratin and octaarginine peptides were successfully used to deliver several kinds of cargos earlier in our case the activity of penetratin conjugates was more pronounced. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  11. Naphthobischalcogenadiazole Conjugated Polymers: Emerging Materials for Organic Electronics.

    PubMed

    Osaka, Itaru; Takimiya, Kazuo

    2017-07-01

    π-Conjugated polymers are an important class of materials for organic electronics. In the past decade, numerous polymers with donor-acceptor molecular structures have been developed and used as the active materials for organic devices, such as organic field-effect transistors (OFETs) and organic photovoltaics (OPVs). The choice of the building unit is the primary step for designing the polymers. Benzochalcogenadiazoles (BXzs) are one of the most familiar acceptor building units studied in this area. As their doubly fused system, naphthobischalcogenadiazoles (NXzs), i.e., naphthobisthiadiazole (NTz), naphthobisoxadiazole (NOz), and naphthobisselenadiazole (NSz) are emerging building units that provide interesting electronic properties and highly self-assembling nature for π-conjugated polymers. With these fruitful features, π-conjugated polymers based on these building units demonstrate great performances in OFETs and OPVs. In particular, in OPVs, NTz-based polymers have exhibited more than 10% efficiency, which is among the highest values reported so far. In this Progress Report, the synthesis, properties, and structures of NXzs and their polymers is summarized. The device performance is also highlighted and the structure-property relationships of the polymers are discussed. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Bioanalysis of antibody-drug conjugates: American Association of Pharmaceutical Scientists Antibody-Drug Conjugate Working Group position paper.

    PubMed

    Gorovits, Boris; Alley, Stephen C; Bilic, Sanela; Booth, Brian; Kaur, Surinder; Oldfield, Phillip; Purushothama, Shobha; Rao, Chetana; Shord, Stacy; Siguenza, Patricia

    2013-05-01

    Antibody-drug conjugates (ADCs) typically consist of a cytotoxic drug covalently bound to an antibody by a linker. These conjugates have the potential to substantially improve efficacy and reduce toxicity compared with cytotoxic small-molecule drugs. Since ADCs are generally complex heterogeneous mixtures of multiple species, these novel therapeutic products present unique bioanalytical challenges. The growing number of ADCs being developed across the industry suggests the need for alignment of the bioanalytical methods or approaches used to assess the multiple species and facilitate consistent interpretation of the bioanalytical data. With limited clinical data, the current strategies that can be used to provide insight into the relationship between the multiple species and the observed clinical safety and efficacy are still evolving. Considerations of the bioanalytical strategies for ADCs based on the current industry practices that take into account the complexity and heterogeneity of ADCs are discussed.

  13. The Use of Conjugate Charts in Transfer Reactions: A Unified Approach

    ERIC Educational Resources Information Center

    Allnutt, Michael I.

    2007-01-01

    Redox reactions can be conveniently discussed in terms of the relative strengths of the oxidant, the reductant, and their conjugates; a conjugate chart is a most convenient and useful way of doing this. A similar chart for acids and bases is proposed, which can be applied in the same manner. (Contains 7 figures and 2 tables.)

  14. [Comparative study of the biodistribution of (99m)Tc-HYNIC-Lys3-Bombesin obtained with the EDDA/tricine and NA/tricine as coligands].

    PubMed

    Hernández-Cairo, A; Perera-Pintado, A; Prats-Capote, A; Batista-Cuellar, J F; Casacó-Santana, C

    2012-01-01

    The aim of present investigation was to evaluate biodistribution in healthy animals and in tumor models of the radiopharmaceuticals (99m)Tc-EDDA/tricine-HYNIC-Lys3-Bombesin (HYNIC-Lys3-BN) and (99m)Tc-NA/tricine-HYNIC-Lys3-BN. Biodistribution and pharmacokinetics were carried out over 24 hours. To do so, 24 healthy Wistar rats were used and were administered 37.0 ± 0.8 MBq/rat of each radiopharmaceutical. For the tumor model study, 20 CD-1 nude mice were used and prostate tumors (PC3) were implanted in all the mice. Ten days later, tumor volumes were calculated and 40.00 ± 0.04 MBq/mice of each radiopharmaceutical were injected. Both showed high radiochemical purity: 98.08 ± 0.25% for EDDA/tricine product and 95.1 ± 0.3% for the conjugate with NA/tricine. Uptake of the radiopharmaceutical with NA/tricine was significantly higher in organs of the reticulo-endothelial system of healthy Wistar rats during 24h, specifically in the liver and spleen. Both labeled compounds showed no significant differences between their blood elimination half lives. Average of tumor growth was 0.93 ± 0.02 cm(3) and affinity for tumors showed a growing and specific binding of both radiopharmaceuticals, although it was significantly higher for the EDDA/tricine conjugate. This outcome made it possible to corroborate the direct relationship between the density of gastrin releasing peptide and its receptors (GRPr) and the variation of the accumulation of the radiopharmaceuticals in the tumor. Use of EDDA/tricine as coligand is more appropriate than NA/tricine for labeling of HYNIC-Lys3-BN with (99m)Tc. Copyright © 2011 Elsevier España, S.L. y SEMNIM. All rights reserved.

  15. Naked-eye 3D imaging employing a modified MIMO micro-ring conjugate mirrors

    NASA Astrophysics Data System (ADS)

    Youplao, P.; Pornsuwancharoen, N.; Amiri, I. S.; Thieu, V. N.; Yupapin, P.

    2018-03-01

    In this work, the use of a micro-conjugate mirror that can produce the 3D image incident probe and display is proposed. By using the proposed system together with the concept of naked-eye 3D imaging, a pixel and a large volume pixel of a 3D image can be created and displayed as naked-eye perception, which is valuable for the large volume naked-eye 3D imaging applications. In operation, a naked-eye 3D image that has a large pixel volume will be constructed by using the MIMO micro-ring conjugate mirror system. Thereafter, these 3D images, formed by the first micro-ring conjugate mirror system, can be transmitted through an optical link to a short distance away and reconstructed via the recovery conjugate mirror at the other end of the transmission. The image transmission is performed by the Fourier integral in MATLAB and compares to the Opti-wave program results. The Fourier convolution is also included for the large volume image transmission. The simulation is used for the manipulation, where the array of a micro-conjugate mirror system is designed and simulated for the MIMO system. The naked-eye 3D imaging is confirmed by the concept of the conjugate mirror in both the input and output images, in terms of the four-wave mixing (FWM), which is discussed and interpreted.

  16. A molecular design principle of lyotropic liquid-crystalline conjugated polymers with directed alignment capability for plastic electronics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Bong-Gi; Jeong, Eun Jeong; Chung, Jong Won

    Conjugated polymers with a one-dimensional p-orbital overlap exhibit optoelectronic anisotropy. Their unique anisotropic properties can be fully realized in device applications only when the conjugated chains are aligned. Here, we report a molecular design principle of conjugated polymers to achieve concentration-regulated chain planarization, self-assembly, liquid-crystal-like good mobility and non-interdigitated side chains. As a consequence of these intra- and intermolecular attributes, chain alignment along an applied flow field occurs. This liquid-crystalline conjugated polymer was realized by incorporating intramolecular sulphur–fluorine interactions and bulky side chains linked to a tetrahedral carbon having a large form factor. By optimizing the polymer concentration and themore » flow field, we could achieve a high dichroic ratio of 16.67 in emission from conducting conjugated polymer films. Two-dimensional grazing-incidence X-ray diffraction was performed to analyse a well-defined conjugated polymer alignment. Thin-film transistors built on highly aligned conjugated polymer films showed more than three orders of magnitude faster carrier mobility along the conjugated polymer alignment direction than the perpendicular direction.« less

  17. Toward the in vivo study of captopril-conjugated quantum dots

    NASA Astrophysics Data System (ADS)

    Manabe, Noriyoshi; Hoshino, Akiyoshi; Liang, Yi-qiang; Goto, Tomomasa; Kato, Norihiro; Yamamoto, Kenji

    2005-04-01

    Photo-luminescent semiconductor quantum dots are nanometer-size probes that have the potential to be applied to the fields of the bio-imaging and the study of the cell mobility inside the body. At the same time, on the other hand, quantum dots are expected to carry some kind of molecules to the local organ inside of the animal body, which leads to the expectation that they can be used as a medicine-carrier. For this purpose, we conjugate (2S)-1-[(2s)-2-Methyl-3-sulfanylpropionyl]pyrrolidine-2-carboxylic acid (cap) with the quantum dot. Cap has the effect as an anti-hypertension drug, which inhibits angiotensin 1 converting enzyme. We conjugated the quantum dot with cap by the exchange reaction avoiding the regions which holds medicinal effect. Quantum dot conjugated with cap (QD-cap) were 3-times brighter than thioglycerol-coated quantum dots (QD-OH). The particle size of cap was 1.1nm and that of QD-cap was 12nm. QD-cap was permeated into the HeLa cells, while QD-MUA were taken into the HeLa cells by endocytosis. In addition, no apoptosis was detected against the cells that permeated QD-cap, because there was no damage to DNA. These results indicated that QD-conjugated medicines (QD-medicine) could be safe in the experiment on the level of the cell. More over, when QD-cap was intravenously injected into Stroke-prone Spontaneously Hypertensive Rats (SHRSP), they reduced blood pressure at systole. Therefore, the anti-hypertension effect of cap remained after conjugated with the quantum dot. These results suggested that QD-medicine were effective on the animal level.

  18. Collagen-Gold Nanoparticle Conjugates for Versatile Biosensing

    PubMed Central

    Unser, Sarah; Holcomb, Samuel; Cary, ReJeana; Sagle, Laura

    2017-01-01

    Integration of noble metal nanoparticles with proteins offers promising potential to create a wide variety of biosensors that possess both improved selectivity and versatility. The multitude of functionalities that proteins offer coupled with the unique optical properties of noble metal nanoparticles can allow for the realization of simple, colorimetric sensors for a significantly larger range of targets. Herein, we integrate the structural protein collagen with 10 nm gold nanoparticles to develop a protein-nanoparticle conjugate which possess the functionality of the protein with the desired colorimetric properties of the nanoparticles. Applying the many interactions that collagen undergoes in the extracellular matrix, we are able to selectively detect both glucose and heparin with the same collagen-nanoparticle conjugate. Glucose is directly detected through the cross-linking of the collagen fibrils, which brings the attached nanoparticles into closer proximity, leading to a red-shift in the LSPR frequency. Conversely, heparin is detected through a competition assay in which heparin-gold nanoparticles are added to solution and compete with heparin in the solution for the binding sites on the collagen fibrils. The collagen-nanoparticle conjugates are shown to detect both glucose and heparin in the physiological range. Lastly, glucose is selectively detected in 50% mouse serum with the collagen-nanoparticle devices possessing a linear range of 3–25 mM, which is also within the physiologically relevant range. PMID:28212282

  19. Excited-State Complexes of Conjugated Polymers: Novel Photophysical Processes and Optoelectronic Materials.

    DTIC Science & Technology

    1995-03-20

    corresponding excited-state complexes were only recently discovered. The results of our extensive studies of intermolecular excimers and exciplexes of many...the luminescence of conjugated polymers. The luminescence and charge photogeneration in exciplexes of conjugated polymers with donor triarylamines will also be presented. jg

  20. Emerging applications of conjugated polymers in molecular imaging.

    PubMed

    Li, Junwei; Liu, Jie; Wei, Chen-Wei; Liu, Bin; O'Donnell, Matthew; Gao, Xiaohu

    2013-10-28

    In recent years, conjugated polymers have attracted considerable attention from the imaging community as a new class of contrast agent due to their intriguing structural, chemical, and optical properties. Their size and emission wavelength tunability, brightness, photostability, and low toxicity have been demonstrated in a wide range of in vitro sensing and cellular imaging applications, and have just begun to show impact in in vivo settings. In this Perspective, we summarize recent advances in engineering conjugated polymers as imaging contrast agents, their emerging applications in molecular imaging (referred to as in vivo uses in this paper), as well as our perspectives on future research.

  1. Aptamer-conjugated and drug-loaded acoustic droplets for ultrasound theranosis.

    PubMed

    Wang, Chung-Hsin; Kang, Shih-Tsung; Lee, Ya-Hsuan; Luo, Yun-Ling; Huang, Yu-Fen; Yeh, Chih-Kuang

    2012-02-01

    Tumor therapy requires multi-functional treatment strategies with specific targeting of therapeutics to reduce general toxicity and increase efficacy. In this study we fabricated and functionally tested aptamer-conjugated and doxorubicin (DOX)-loaded acoustic droplets comprising cores of liquid perfluoropentane compound and lipid-based shell materials. Conjugation of sgc8c aptamers provided the ability to specifically target CCRF-CEM cells for both imaging and therapy. High-intensity focused ultrasound (HIFU) was introduced to trigger targeted acoustic droplet vaporization (ADV) which resulted in both mechanical cancer cell destruction by inertial cavitation and chemical treatment through localized drug release. HIFU insonation showed a 56.8% decrease in cell viability with aptamer-conjugated droplets, representing a 4.5-fold increase in comparison to non-conjugated droplets. In addition, the fully-vaporized droplets resulted in the highest DOX uptake by cancer cells, compared to non-vaporized or partially vaporized droplets. Optical studies clearly illustrated the transient changes that occurred upon ADV of droplet-targeted CEM cells, and B-mode ultrasound imaging revealed contrast enhancement by ADV in ultrasound images. In conclusion, our fabricated droplets functioned as a hybrid chemical and mechanical strategy for the specific destruction of cancer cells upon ultrasound-mediated ADV, while simultaneously providing ultrasound imaging capability. Copyright © 2011 Elsevier Ltd. All rights reserved.

  2. Mobility of the native Bacillus subtilis conjugative plasmid pLS20 is regulated by intercellular signaling.

    PubMed

    Singh, Praveen K; Ramachandran, Gayetri; Ramos-Ruiz, Ricardo; Peiró-Pastor, Ramón; Abia, David; Wu, Ling J; Meijer, Wilfried J J

    2013-10-01

    Horizontal gene transfer mediated by plasmid conjugation plays a significant role in the evolution of bacterial species, as well as in the dissemination of antibiotic resistance and pathogenicity determinants. Characterization of their regulation is important for gaining insights into these features. Relatively little is known about how conjugation of Gram-positive plasmids is regulated. We have characterized conjugation of the native Bacillus subtilis plasmid pLS20. Contrary to the enterococcal plasmids, conjugation of pLS20 is not activated by recipient-produced pheromones but by pLS20-encoded proteins that regulate expression of the conjugation genes. We show that conjugation is kept in the default "OFF" state and identified the master repressor responsible for this. Activation of the conjugation genes requires relief of repression, which is mediated by an anti-repressor that belongs to the Rap family of proteins. Using both RNA sequencing methodology and genetic approaches, we have determined the regulatory effects of the repressor and anti-repressor on expression of the pLS20 genes. We also show that the activity of the anti-repressor is in turn regulated by an intercellular signaling peptide. Ultimately, this peptide dictates the timing of conjugation. The implications of this regulatory mechanism and comparison with other mobile systems are discussed.

  3. Enhancement of anti-tumor activity of hybrid peptide in conjugation with carboxymethyl dextran via disulfide linkers.

    PubMed

    Gaowa, Arong; Horibe, Tomohisa; Kohno, Masayuki; Tabata, Yasuhiko; Harada, Hiroshi; Hiraoka, Masahiro; Kawakami, Koji

    2015-05-01

    To improve the anti-tumor activity of EGFR2R-lytic hybrid peptide, we prepared peptide-modified dextran conjugates with the disulfide bonds between thiolated carboxymethyl dextran (CMD-Cys) and cysteine-conjugated peptide (EGFR2R-lytic-Cys). In vitro release studies showed that the peptide was released from the CMD-s-s-peptide conjugate in a concentration-dependent manner in the presence of glutathione (GSH, 2μM-2mM). The CMD-s-s-peptide conjugate exhibited a similar cytotoxic activity with free peptide alone against human pancreatic cancer BxPC-3 cells in vitro. Furthermore, it was shown that the CMD-s-s-peptide conjugates were highly accumulated in tumor tissue in a mouse xenograft model using BxPC-3 cells, and the anti-tumor activity of the conjugate was more effective than that of the free peptide. In addition, the plasma concentrations of peptide were moderately increased and the elimination half-life of the peptide was prolonged after intravenous injection of CMD-s-s-peptide conjugates. These results demonstrated that the conjugate based on thiolated CMD polymer would be potentially useful carriers for the sustained release of the hybrid peptide in vivo. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. The Obscure World of Integrative and Mobilizable Elements, Highly Widespread Elements that Pirate Bacterial Conjugative Systems

    PubMed Central

    Guédon, Gérard; Libante, Virginie; Coluzzi, Charles; Payot, Sophie

    2017-01-01

    Conjugation is a key mechanism of bacterial evolution that involves mobile genetic elements. Recent findings indicated that the main actors of conjugative transfer are not the well-known conjugative or mobilizable plasmids but are the integrated elements. This paper reviews current knowledge on “integrative and mobilizable elements” (IMEs) that have recently been shown to be highly diverse and highly widespread but are still rarely described. IMEs encode their own excision and integration and use the conjugation machinery of unrelated co-resident conjugative element for their own transfer. Recent studies revealed a much more complex and much more diverse lifecycle than initially thought. Besides their main transmission as integrated elements, IMEs probably use plasmid-like strategies to ensure their maintenance after excision. Their interaction with conjugative elements reveals not only harmless hitchhikers but also hunters that use conjugative elements as target for their integration or harmful parasites that subvert the conjugative apparatus of incoming elements to invade cells that harbor them. IMEs carry genes conferring various functions, such as resistance to antibiotics, that can enhance the fitness of their hosts and that contribute to their maintenance in bacterial populations. Taken as a whole, IMEs are probably major contributors to bacterial evolution. PMID:29165361

  5. Water-Soluble Conjugated Polymers: Self-Assembly and Biosensor Applications

    NASA Astrophysics Data System (ADS)

    Bazan, Guillermo

    2005-03-01

    Homogeneous assays can be designed which take advantage of the optical amplification of conjugated polymers and the self-assembly characteristic of aqueous polyelectrolytes. For example, a ssDNA sequence sensor comprises an aqueous solution containing a cationic water soluble conjugated polymer such as poly(9,9-bis(trimethylammonium)-hexyl)-fluorene phenylene) with a peptide nucleic acid (PNA) labeled with a dye (PNA-C*). Signal transduction is controlled by hybridization of the neutral PNA-C* probe and the negative ssDNA target, resulting in favorable electrostatic interactions between the hybrid complex and the cationic polymer. Distance requirements for Förster energy transfer are thus met only when ssDNA of complementary sequence to the PNA-C* probe is present. Signal amplification by the conjugated polymer provides fluorescein emission >25 times higher than that of the directly excited dye. Transduction by electrostatic interactions followed by energy transfer is a general strategy. Examples involving other biomolecular recognition events, such as DNA/DNA, RNA/protein and RNA/RNA, will also be provided. The mechanism of biosensing will be discussed, with special attention to the varying contributions of hydrophobic and electrostatic forces, polymer conformation, charge density, local concentration of C*s and tailored defect sites for aggregation-induced optical changes. Finally, the water solubility of these conjugated polymers opens possibilities for spin casting onto organic materials, without dissolving the underlying layers. This property is useful for fabricating multilayer organic optoelectronic devices by simple solution techniques.

  6. Indocyanine green as effective antibody conjugate for intracellular molecular targeted photodynamic therapy

    NASA Astrophysics Data System (ADS)

    Wang, Sijia; Hüttmann, Gereon; Rudnitzki, Florian; Diddens-Tschoeke, Heyke; Zhang, Zhenxi; Rahmanzadeh, Ramtin

    2016-07-01

    The fluorescent dye indocyanine green (ICG) is clinically approved and has been applied for ophthalmic and intraoperative angiography, measurement of cardiac output and liver function, or as contrast agent in cancer surgery. Though ICG is known for its photochemical effects, it has played a minor role so far in photodynamic therapy or techniques for targeted protein-inactivation. Here, we investigated ICG as an antibody-conjugate for the selective inactivation of the protein Ki-67 in the nucleus of cells. Conjugates of the Ki-67 antibody TuBB-9 with different amounts of ICG were synthesized and delivered into HeLa and OVCAR-5 cells through conjugation to the nuclear localization sequence. Endosomal escape of the macromolecular antibodies into the cytoplasm was optically triggered by photochemical internalization with the photosensitizer BPD. The second light irradiation at 690 nm inactivated Ki-67 and subsequently caused cell death. Here, we show that ICG as an antibody-conjugate can be an effective photosensitizing agent. Best effects were achieved with 1.8 ICG molecules per antibody. Conjugated to antibodies, the ICG absorption peaks vary proportionally with concentration. The absorption of ICG above 650 nm within the optical window of tissue opens the possibility of selective Ki-67 inactivation deep inside of tissues.

  7. Sensitivity-Enhancement of FRET Immunoassays by Multiple-Antibody Conjugation on Quantum Dots.

    PubMed

    Annio, Giacomo; Jennings, Travis; Tagit, Oya; Hildebrandt, Niko

    2018-05-23

    Quantum dots (QDs) are not only advantageous for color-tuning, improved brightness, and high stability, but their nanoparticle surfaces also allow for the attachment of many biomolecules. Because IgG antibodies (ABs) are in the same size range of biocompatible QDs and the AB orientation after conjugation to the QD is often random, it is difficult to predict if few or many ABs per QD will lead to an efficient AB-QD conjugate. This is particularly true for homogeneous Förster resonance energy transfer (FRET) sandwich immunoassays, for which the ABs on the QD must bind a biomarker that needs to bind a second AB-FRET-conjugate. Here, we investigate the performance of Tb-to-QD FRET immunoassays against total prostate specific antigen (TPSA) by changing the number of ABs per QD while leaving all the other assay components unchanged. We first characterize the AB-QD conjugation by various spectroscopic, microscopic, and chromatographic techniques and then quantify the TPSA immunoassay performance regarding sensitivity, limit of detection, and dynamic range. Our results show that an increasing conjugation ratio leads to significantly enhanced FRET immunoassays. These findings will be highly important for developing QD-based immunoassays in which the concentrations of both ABs and QDs can significantly influence the assay performance.

  8. Free and Conjugated Indole-3-Acetic Acid in Developing Bean Seeds 1

    PubMed Central

    Bialek, Krystyna; Cohen, Jerry D.

    1989-01-01

    The changes in conjugated indole-3-acetic acid (IAA) levels compared to the levels of free IAA have been analyzed during the development of bean (Phaseolus vulgaris L.) seed using quantitative mass spectrometry. Free and ester-linked IAA levels are both relatively high in the early stages of seed development but drop during seed maturation. Concomitantly, the amide-linked IAA becomes the major form of IAA present as the seed matures. In fully mature seed, amide IAA accounts for 80% of the total IAA. The total IAA pool in the seed is maintained at approximately the same level (150-170 nanograms/seed) once the level of free IAA has attained its maximum. Thus, the amount of amide IAA conjugates that accumulate in mature seed is closely related to the amounts of free and ester-linked IAA that disappeared from the rapidly growing seed. Analysis of developing bean pods, from which the seeds were taken for analysis, showed very low levels of both ester and amide-linked IAA conjugates. The pattern of changes seen in the levels of free and conjugated IAA in developing bean seed supports our prior hypothesis suggesting a role of IAA conjugates in the storage of the phytohormone in the seed. PMID:16667099

  9. Conjugates of a Photoactivated Rhodamine with Biopolymers for Cell Staining

    PubMed Central

    Zaitsev, Sergei Yu.; Shaposhnikov, Mikhail N.; Solovyeva, Daria O.; Solovyeva, Valeria V.; Rizvanov, Albert A.

    2014-01-01

    Conjugates of the photoactivated rhodamine dyes with biopolymers (proteins, polysaccharides, and nucleic acids) are important tools for microscopic investigation of biological tissue. In this study, a precursor of the photoactivated fluorescent dye (PFD) has been successfully used for staining of numerous mammalian cells lines and for conjugate formation with chitosan (“Chitosan-PFD”) and histone H1 (“Histone H1.3-PFD”). The intensive fluorescence has been observed after photoactivation of these conjugates inside cells (A431, HaCaT, HEK239, HBL-100, and MDCK). Developed procedures and obtained data are important for further application of novel precursors of fluorescent dyes (“caged” dyes) for microscopic probing of biological objects. Thus, the synthesized “Chitosan-PFD” and “Histone H1-PFD” have been successfully applied in this study for intracellular transport visualization by fluorescent microscopy. PMID:25383365

  10. Non-Traditional Aromatic Topologies and Biomimetic Assembly Motifs as Components of Functional Pi-Conjugated Oligomers

    PubMed Central

    Tovar, John D.; Diegelmann, Stephen R.; Peart, Patricia A.

    2010-01-01

    This article will highlight our recent work using conjugated oligomers as precursors to electroactive polymer films and self-assembling nanomaterials. One area of investigation has focused on nonbenzenoid aromaticity in the context of charge delocalization in conjugated polymers. In these studies, polymerizable pi-conjugated units were coupled onto unusual aromatic cores such as methano[10]annulene. This article will also show how biologically-inspired assembly of molecularly well-defined oligopeptides that flank pi-conjugated oligomers has resulted in the aqueous construction of 1-dimensional nanomaterials that encourage electronic delocalization among the pi-electron systems.

  11. Confirmation of conjugation processes during TNT metabolism by axenic plant roots

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bhadra, R.; Wayment, D.G.; Hughes, J.B.

    1999-02-01

    This paper examines processes in plants for the formation of fate products of TNT beyond its animated reduction products, 2-amino-4,6-dinitrotoluene and 4-amino-2,6-dinitrotoluene. TNT metabolites were isolated and characterized in combination with temporal analyses of production profiles and {sup 14}C distribution, in microbe-free, axenic root cultures of Catharanthus roseus. Four unique TNT-derived compounds were isolated. Using evidence from {sup 1}H NMR, mass spectroscopy, HPLC, acid hydrolysis, and enzymatic hydrolysis with {beta}-glucuronidase and {beta}-glucosidase, they were established as conjugates formed by reactions of the amine groups of 2-amino-4,6-dinitrotoluene and 4-amino-2,6-dinitrotoluene. From the mass spectral evidence, at least a six-carbon unit from themore » plant intracellular milleu was involved in conjugate formation. Mass balance analysis indicated that, by 75 h after TNT amendment of the initial TNT radiolabel, extractable conjugates comprised 22%, bound residues comprised another 29%, 2-amino-4,6-dinitrotoluene was 4%, and the rest remained unidentified. Isolates from TNT-amended roots versus monoamino-dinitrotoluene-amended roots were not identical, suggesting numerous possible outcomes for the plant-based conjugation of 2-amino-2,6-dinitrotoluene or 4-amino-2,6-dinitrotoluene. This study is the first direct evidence for the involvement of the primary reduction products of TNT--2-amino-4,6-dinitrotoluene ad 4-amino--2,6-dinitrotoluene--in conjugation process in plant detoxification of TNT.« less

  12. Interleukin-12 plasmid DNA delivery using l-thyroxine-conjugated polyethylenimine nanocarriers

    NASA Astrophysics Data System (ADS)

    Dehshahri, Ali; Sadeghpour, Hossein; Kazemi Oskuee, Reza; Fadaei, Mahin; Sabahi, Zahra; Alhashemi, Samira Hossaini; Mohazabieh, Erfaneh

    2014-05-01

    In this study, l-thyroxine was covalently grafted on 25 kDa branched polyethylenimine (PEI), and the ability of the nano-sized polyplexes for transferring plasmid encoding interleukin-12 (IL-12) gene was evaluated. As there are several problems in systemic administration of recombinant IL-12 protein, local expression of the plasmid encoding IL-12 gene inside the tumor tissue has been considered as an effective alternative approach. The l-thyroxine-conjugated PEI polyplexes were prepared using pUMVC3-hIL12 plasmid, and their transfection activity was determined in HepG2 human liver carcinoma and Neuro2A neuroblastoma cell lines. The polyplexes characterized in terms of DNA condensation ability, particle size, zeta potential, and buffering capacity as well as cytotoxicity and resistance to enzyme digestion. The results revealed that l-thyroxine conjugation of PEI increased gene transfer ability by up to two fold relative to unmodified 25 kDa PEI, the gold standard for non-viral gene delivery, with the highest increase occurring at degrees of conjugation around 10 %. pDNA condensation tests and dynamic light scattering measurements exhibited the ability of PEI conjugates to optimally condense the plasmid DNA into polyplexes in the size range around 200 nm. The modified polymers showed remarkable buffering capacity and protection against enzymatic degradation comparable to that of unmodified PEI. These results suggest that l-thyroxine conjugation of PEI is a simple modification strategy for future investigations aimed at developing a targeting gene vehicle.

  13. Direct Conjugation of Emerging Contaminants in Arabidopsis: Indication for an Overlooked Risk in Plants?

    PubMed

    Fu, Qiuguo; Zhang, Jianbo; Borchardt, Dan; Schlenk, Daniel; Gan, Jay

    2017-06-06

    Agricultural use of treated wastewater, biosolids, and animal wastes introduces a multitude of contaminants of emerging concerns (CECs) into the soil-plant system. The potential for food crops to accumulate CECs depends largely on their metabolism in plants, which at present is poorly understood. Here, we evaluated the metabolism of naproxen and ibuprofen, two of the most-used human drugs from the Profen family, in Arabidopsis thaliana cells and the Arabidopsis plant. The complementary use of high-resolution mass spectrometry and 14 C labeling allowed the characterization of both free and conjugated metabolites, as well as nonextractable residues. Naproxen and ibuprofen, in their parent form, were conjugated quickly and directly with glutamic acid and glutamine, and further with peptides, in A. thaliana cells. For example, after 120 h, the metabolites of naproxen accounted for >90% of the extractable chemical mass, while the intact parent itself was negligible. The structures of glutamate and glutamine conjugates were confirmed using synthesized standards and further verified in whole plants. Amino acid conjugates may easily deconjugate, releasing the parent molecule. This finding highlights the possibility that the bioactivity of such CECs may be effectively preserved through direct conjugation, a previously overlooked risk. Many other CECs are also carboxylic acids, such as the profens. Therefore, direct conjugation may be a common route for plant metabolism of these CECs, making it imperative to consider conjugates when assessing their risks.

  14. Asialoglycoprotein receptor mediates the toxic effects of an asialofetuin-diphtheria toxin fragment A conjugate on cultured rat hepatocytes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cawley, D.B.; Simpson, D.L.; Herschman, H.R.

    1981-06-01

    We have constructed a toxic hybrid protein that is recognized by asialoglycoprotein (ASGP) receptors of cultured rat hepatocytes. The conjugate consists of fragment A of diphtheria toxin (DTA) linked by a disulfide bond to asialofetuin (ASF). This conjugate is highly toxic, inhibiting protein synthesis in primary rat hepatocytes at concentrations as low as 10 pM. The ASF-DTA conjugate was 600 and 1800 times as toxic as diphtheria toxin and DTA, respectively, on primary rat hepatocytes. The ASGP receptor recognizes galactose-terminated proteins. We tested a series of glycoproteins for their ability to block the action of the ASF-DTA conjugate. Fetuin andmore » orosomucoid, two glycoproteins with terminal sialic acid on their oligosaccharide chains, did not block the action of the conjugate. Their galactose-terminated asialo derivatives, ASF and asialoorosomucoid, as expected, did block the action of the conjugate. The N-acetylglucosaminyl-terminated derivative (asialoagalactoorosomucoid) had no appreciable effect on the activity of the conjugate. We tested the ASF-DTA conjugate on six cell types; except for primary rat hepatocytes, none of them were affected by a high concentration (10 nM) of ASF-DTA conjugate. A fetuin-DTA conjugate was less toxic by a factor of 300 than the ASF-DTA conjugate and exerted its effects primarily through non-receptor-mediated mechanisms. The highly toxic ASF-DTA conjugate is cell-type specific, and its action is mediated by a well-characterized receptor, whose mechanism of receptor-ligand internalization has been extensively investigated.« less

  15. Ferrocene conjugated oligonucleotide for electrochemical detection of DNA base mismatch.

    PubMed

    Hasegawa, Yusuke; Takada, Tadao; Nakamura, Mitsunobu; Yamana, Kazushige

    2017-08-01

    We describe the synthesis, binding, and electrochemical properties of ferrocene-conjugated oligonucleotides (Fc-oligos). The key step for the preparation of Fc-oligos contains the coupling of vinylferrocene to 5-iododeoxyuridine via Heck reaction. The Fc-conjugated deoxyuridine phosphoramidite was used in the Fc-oligonucleotide synthesis. We show that thiol-modified Fc-oligos deposited onto gold electrodes possess potential ability in electrochemical detection of DNA base mismatch. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Controlled release strategy of paclitaxel by conjugating to matrix metalloproteinases-2 sensitive peptide

    PubMed Central

    Huang, Changjiang; Yi, Xiulin; Kong, Dexin; Chen, Ligong; Min, Gong

    2016-01-01

    Peptide drug conjugates offer a novel strategy to achieve controlled drug release. This approach avoids the clinical obstacles of non-specific toxicity and overall drug resistance of conventional cytotoxic agents, such as paclitaxel. MMP2 plays important functions in tumour proliferation and metastasis. Herein, we conjugated the paclitaxel with a hexapeptide which is specific recognized by MMP2 protein. The conjugate is dissociated upon the MMP2 specific proteolysis at COOH terminal of hexapeptide, PVGLIG. The results clearly indicated that the PVGLIG-paclitaxel conjugate significantly enhanced the tumor specificity against HT-1080 and U87-MG tumour cells. Our finding suggested that the hexapeptide PVGLIG is capable to act as a controlled and sustained drug carrier of paclitaxel for the treatment against tumour proliferation and metastasis with high MMP2 expression. PMID:27447567

  17. Photophysicochemical behaviour and antimicrobial properties of monocarboxy Mg (II) and Al (III) phthalocyanine-magnetite conjugates

    NASA Astrophysics Data System (ADS)

    Idowu, Mopelola Abidemi; Xego, Solami; Arslanoglu, Yasin; Mark, John; Antunes, Edith; Nyokong, Tebello

    2018-03-01

    Asymmetric Mg (II) or Al (III) phthalocyanine (containing a COOH group and 3-pyridylsulfanyl units) was conjugated via an amide bond to amino functionalized magnetic nanoparticle (AIMN) to form MgPc-AIMN or AlPc-AIMN conjugate, and characterized. The photophysicochemical behaviour of the phthalocyanine-AIMN conjugates was investigated and compared to the asymmetric Pcs and to the simple mixture of Pc with AIMNs without a chemical bond, (MPc-AIMN (mixed)). The directed covalent linkage of AIMNs to the asymmetrical metallopthalocyanines afforded improvements in the singlet oxygen (VΔ) and triplet state quantum yield (VT) as well as singlet oxygen lifetimes for the MPcs-AIMN-linked conjugates compared to MPc-AIMN (mixed) and MPcs alone. The asymmetric phthalocyanines and their conjugates showed effective antimicrobial activity against Escherichia coli bacteria under illumination.

  18. A septal chromosome segregator protein evolved into a conjugative DNA-translocator protein

    PubMed Central

    Sepulveda, Edgardo; Vogelmann, Jutta

    2011-01-01

    Streptomycetes, Gram-positive soil bacteria well known for the production of antibiotics feature a unique conjugative DNA transfer system. In contrast to classical conjugation which is characterized by the secretion of a pilot protein covalently linked to a single-stranded DNA molecule, in Streptomyces a double-stranded DNA molecule is translocated during conjugative transfer. This transfer involves a single plasmid encoded protein, TraB. A detailed biochemical and biophysical characterization of TraB, revealed a close relationship to FtsK, mediating chromosome segregation during bacterial cell division. TraB translocates plasmid DNA by recognizing 8-bp direct repeats located in a specific plasmid region clt. Similar sequences accidentally also occur on chromosomes and have been shown to be bound by TraB. We suggest that TraB mobilizes chromosomal genes by the interaction with these chromosomal clt-like sequences not relying on the integration of the conjugative plasmid into the chromosome. PMID:22479692

  19. Conjugated Microporous Polymers for Heterogeneous Catalysis.

    PubMed

    Zhou, Yun-Bing; Zhan, Zhuang-Ping

    2018-01-04

    Conjugated microporous polymers (CMPs) are a class of crosslinked polymers that combine permanent micropores with π-conjugated skeletons and possess three-dimensional (3D) networks. Compared with conventional materials such as metal-organic frameworks (MOFs) and covalent organic frameworks (COFs), CMPs usually have superior chemical and thermal stability. CMPs have made significant progress in heterogeneous catalysis in the past seven years. With a bottom-up strategy, catalytic moieties can be directly introduced into in the framework to produce heterogeneous CMP catalysts. Higher activity, stability, and selectivity can be obtained with heterogeneous CMP catalysts in comparison with their homogeneous analogs. In addition, CMP catalysts can be easily isolated and recycled. In this review, we focus on CMPs as an intriguing platform for developing various highly efficient and recyclable heterogeneous catalysts in organic reactions. The design, synthesis, and structure of these CMP catalysts are also discussed in this focus review. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Fabrication and evaluation of chitosan/NaYF4:Yb3+/Tm3+ upconversion nanoparticles composite beads based on the gelling of Pickering emulsion droplets.

    PubMed

    Yan, Huiqiong; Chen, Xiuqiong; Shi, Jia; Shi, Zaifeng; Sun, Wei; Lin, Qiang; Wang, Xianghui; Dai, Zihao

    2017-02-01

    The rare earth ion doped upconversion nanoparticles (UCNPs) synthesized by hydrophobic organic ligands possess poor solubility and low fluorescence quantum yield in aqueous media. To conquer this issue, NaYF 4 :Yb 3+ /Tm 3+ UCNPs, synthesized by a hydrothermal method, were coated with F127 and then assembled with chitosan to fabricate the chitosan/NaYF 4 :Yb 3+ /Tm 3+ composite beads (CS/NaYF 4 :Yb 3+ /Tm 3+ CBs) by Pickering emulsion system. The characterization results revealed that the as-synthesized NaYF 4 :Yb 3+ /Tm 3+ UCNPs with an average size of 20nm exhibited spherical morphology, high crystallinity and characteristic emission upconversion fluorescence with an overall blue color output. The NaYF 4 :Yb 3+ /Tm 3+ UCNPs were successfully conjugated on the surface of chitosan beads by the gelling of emulsion droplets. The resultant CS/NaYF 4 :Yb 3+ /Tm 3+ CBs showed good upconversion luminescent property, drug-loading capacity, release performance and excellent biocompatibility, exhibiting great potentials in targeted drug delivery and tissue engineering with potential tracking capability and lasting release performance. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Jasmonic acid-amino acid conjugation enzyme assays.

    PubMed

    Rowe, Martha L; Staswick, Paul E

    2013-01-01

    Jasmonic acid (JA) is activated for signaling by its conjugation to isoleucine (Ile) through an amide linkage. The Arabidopsis thaliana JASMONIC ACID RESISTANT1 (JAR1) enzyme carries out this Mg-ATP-dependent reaction in two steps, adenylation of the free carboxyl of JA, followed by condensation of the activated group to Ile. This chapter details the protocols used to detect and quantify the enzymatic activity obtained from a glutathione-S-transferase:JAR1 fusion protein produced in Escherichia coli, including an isotope exchange assay for the adenylation step and assays for the complete reaction that involve the high-performance liquid chromatography quantitation of adenosine monophosphate, a stoichiometric by-product of the reaction, and detection of the conjugation product by thin-layer chromatography or gas -chromatography/mass spectrometry.

  2. Mass Spectrometry Based Mechanistic Insights into Formation of Tris Conjugates: Implications on Protein Biopharmaceutics

    NASA Astrophysics Data System (ADS)

    Kabadi, Pradeep G.; Sankaran, Praveen Kallamvalliillam; Palanivelu, Dinesh V.; Adhikary, Laxmi; Khedkar, Anand; Chatterjee, Amarnath

    2016-10-01

    We present here extensive mass spectrometric studies on the formation of a Tris conjugate with a therapeutic monoclonal antibody. The results not only demonstrate the reactive nature of the Tris molecule but also the sequence and reaction conditions that trigger this reactivity. The results corroborate the fact that proteins are, in general, prone to conjugation and/or adduct formation reactions and any modification due to this essentially leads to formation of impurities in a protein sample. Further, the results demonstrate that the conjugation reaction happens via a succinimide intermediate and has sequence specificity. Additionally, the data presented in this study also shows that the Tris formation is produced in-solution and is not an in-source phenomenon. We believe that the facts given here will open further avenues on exploration of Tris as a conjugating agent as well as ensure that the use of Tris or any ionic buffer in the process of producing a biopharmaceutical drug is monitored closely for the presence of such conjugate formation.

  3. Conformation-driven quantum interference effects mediated by through-space conjugation in self-assembled monolayers

    NASA Astrophysics Data System (ADS)

    Carlotti, Marco; Kovalchuk, Andrii; Wächter, Tobias; Qiu, Xinkai; Zharnikov, Michael; Chiechi, Ryan C.

    2016-12-01

    Tunnelling currents through tunnelling junctions comprising molecules with cross-conjugation are markedly lower than for their linearly conjugated analogues. This effect has been shown experimentally and theoretically to arise from destructive quantum interference, which is understood to be an intrinsic, electronic property of molecules. Here we show experimental evidence of conformation-driven interference effects by examining through-space conjugation in which π-conjugated fragments are arranged face-on or edge-on in sufficiently close proximity to interact through space. Observing these effects in the latter requires trapping molecules in a non-equilibrium conformation closely resembling the X-ray crystal structure, which we accomplish using self-assembled monolayers to construct bottom-up, large-area tunnelling junctions. In contrast, interference effects are completely absent in zero-bias simulations on the equilibrium, gas-phase conformation, establishing through-space conjugation as both of fundamental interest and as a potential tool for tuning tunnelling charge-transport in large-area, solid-state molecular-electronic devices.

  4. Preparation and high-resolution microscopy of gold cluster labeled nucleic acid conjugates and nanodevices

    PubMed Central

    Powell, Richard D.; Hainfeld, James F.

    2013-01-01

    Nanogold and undecagold are covalently linked gold cluster labels which enable the identification and localization of biological components with molecular precision and resolution. They can be prepared with different reactivities, which means they can be conjugated to a wide variety of molecules, including nucleic acids, at specific, unique sites. The location of these sites can be synthetically programmed in order to preserve the binding affinity of the conjugate and impart novel characteristics and useful functionality. Methods for the conjugation of undecagold and Nanogold to DNA and RNA are discussed, and applications of labeled conjugates to the high-resolution microscopic identification of binding sites and characterization of biological macromolecular assemblies are described. In addition to providing insights into their molecular structure and function, high-resolution microscopic methods also show how Nanogold and undecagold conjugates can be synthetically assembled, or self-assemble, into supramolecular materials to which the gold cluster labels impart useful functionality. PMID:20869258

  5. Glutathione-Conjugates of Deoxynivalenol in Naturally Contaminated Grain Are Primarily Linked via the Epoxide Group

    PubMed Central

    Uhlig, Silvio; Stanic, Ana; Hofgaard, Ingerd S.; Kluger, Bernhard; Schuhmacher, Rainer; Miles, Christopher O.

    2016-01-01

    A glutathione (GSH) adduct of the mycotoxin 4-deoxynivalenol (DON), together with a range of related conjugates, has recently been tentatively identified by LC-MS of DON-treated wheat spikelets. In this study, we prepared samples of DON conjugated at the 10- and 13-positions with GSH, Cys, CysGly, γ-GluCys and N-acetylcysteine (NAC). The mixtures of conjugates were used as standards for LC-HRMS analysis of one of the DON-treated wheat spikelet samples, as well as 19 Norwegian grain samples of spring wheat and 16 grain samples of oats that were naturally-contaminated with DON at concentrations higher than 1 mg/kg. The artificially-contaminated wheat spikelets contained conjugates of GSH, CysGly and Cys coupled at the olefinic 10-position of DON, whereas the naturally-contaminated harvest-ripe grain samples contained GSH, CysGly, Cys, and NAC coupled mainly at the 13-position on the epoxy group. The identities of the conjugates were confirmed by LC-HRMS comparison with authentic standards, oxidation to the sulfoxides with hydrogen peroxide, and examination of product-ion spectra from LC-HRMS/MS analysis. No γ-GluCys adducts of DON were detected in any of the samples. The presence of 15-O-acetyl-DON was demonstrated for the first time in Norwegian grain. The results indicate that a small but significant proportion of DON is metabolized via the GSH-conjugation pathway in plants. To our knowledge, this is the first report of in vivo conjugation of trichothecenes via their epoxy group, which has generally been viewed as unreactive. Because conjugation at the 13-position of DON and other trichothecenes has been shown to be irreversible, this type of conjugate may prove useful as a biomarker of exposure to DON and other 12,13-epoxytrichothecenes. PMID:27845722

  6. Approaching Intra- and Interchain Charge Transport of Conjugated Polymers Facilely by Topochemical Polymerized Single Crystals.

    PubMed

    Yao, Yifan; Dong, Huanli; Liu, Feng; Russell, Thomas P; Hu, Wenping

    2017-08-01

    Charge transport of small molecules is measured well with scanning tunneling microscopy, conducting atomic force microscopy, break junction, nanopore, and covalently bridging gaps. However, the manipulation and measurement of polymer chains remain a long-standing fundamental issue in conjugated polymers and full of challenge since conjugated polymers are naturally disordered materials. Here, a fundamental breakthrough in generating high-quality conjugated-polymer nanocrystals with extended conjugation and exceptionally high degrees of order using a surface-supported topochemical polymerization method is demonstrated. In the crystal the conjugated-polymer chains are extended along the long axis of the crystal with the side chains perpendicular to the long axis. Devices with conducting channels along the polymer chains show efficient charge transport, nearly two orders of magnitude greater than the interchain charge transport along the π-π stacking direction. This is the first example to clarify intra- and interchain charge transport based on an individual single crystal of conjugated polymers, and demonstrate the importance of intrachain charge transport in plastic electronics. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Sequence-selective binding of C8-conjugated pyrrolobenzodiazepines (PBDs) to DNA.

    PubMed

    Basher, Mohammad A; Rahman, Khondaker Miraz; Jackson, Paul J M; Thurston, David E; Fox, Keith R

    2017-11-01

    DNA footprinting and melting experiments have been used to examine the sequence-specific binding of C8-conjugates of pyrrolobenzodiazepines (PBDs) and benzofused rings including benzothiophene and benzofuran, which are attached using pyrrole- or imidazole-containing linkers. The conjugates modulate the covalent attachment points of the PBDs, so that they bind best to guanines flanked by A/T-rich sequences on either the 5'- or 3'-side. The linker affects the binding, and pyrrole produces larger changes than imidazole. Melting studies with 14-mer oligonucleotide duplexes confirm covalent attachment of the conjugates, which show a different selectivity to anthramycin and reveal that more than one ligand molecule can bind to each duplex. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Subgap Absorption in Conjugated Polymers

    DOE R&D Accomplishments Database

    Sinclair, M.; Seager, C. H.; McBranch, D.; Heeger, A. J; Baker, G. L.

    1991-01-01

    Along with X{sup (3)}, the magnitude of the optical absorption in the transparent window below the principal absorption edge is an important parameter which will ultimately determine the utility of conjugated polymers in active integrated optical devices. With an absorptance sensitivity of < 10{sup {minus}5}, Photothermal Deflection Spectroscopy (PDS) is ideal for determining the absorption coefficients of thin films of transparent'' materials. We have used PDS to measure the optical absorption spectra of the conjugated polymers poly(1,4-phenylene-vinylene) (and derivitives) and polydiacetylene-4BCMU in the spectral region from 0.55 eV to 3 eV. Our spectra show that the shape of the absorption edge varies considerably from polymer to polymer, with polydiacetylene-4BCMU having the steepest absorption edge. The minimum absorption coefficients measured varied somewhat with sample age and quality, but were typically in the range 1 cm{sup {minus}1} to 10 cm{sup {minus}1}. In the region below 1 eV, overtones of C-H stretching modes were observed, indicating that further improvements in transparency in this spectral region might be achieved via deuteration of fluorination.

  9. CD133 antibody conjugation to decellularized human heart valves intended for circulating cell capture.

    PubMed

    Vossler, John D; Min Ju, Young; Williams, J Koudy; Goldstein, Steven; Hamlin, James; Lee, Sang Jin; Yoo, James J; Atala, Anthony

    2015-09-03

    The long term efficacy of tissue based heart valve grafts may be limited by progressive degeneration characterized by immune mediated inflammation and calcification. To avoid this degeneration, decellularized heart valves with functionalized surfaces capable of rapid in vivo endothelialization have been developed. The aim of this study is to examine the capacity of CD133 antibody-conjugated valve tissue to capture circulating endothelial progenitor cells (EPCs). Decellularized human pulmonary valve tissue was conjugated with CD133 antibody at varying concentrations and exposed to CD133 expressing NTERA-2 cl.D1 (NT2) cells in a microflow chamber. The amount of CD133 antibody conjugated on the valve tissue surface and the number of NT2 cells captured in the presence of shear stress was measured. Both the amount of CD133 antibody conjugated to the valve leaflet surface and the number of adherent NT2 cells increased as the concentration of CD133 antibody present in the surface immobilization procedure increased. The data presented in this study support the hypothesis that the rate of CD133(+) cell adhesion in the presence of shear stress to decellularized heart valve tissue functionalized by CD133 antibody conjugation increases as the quantity of CD133 antibody conjugated to the tissue surface increases.

  10. Simple Protein Modification Using Zwitterionic Polymer to Mitigate the Bioactivity Loss of Conjugated Insulin.

    PubMed

    Xie, Jinbing; Lu, Yang; Wang, Wei; Zhu, Hui; Wang, Zhigang; Cao, Zhiqiang

    2017-06-01

    Polymer-protein conjugation has been extensively explored toward a better protein drug with improved pharmacokinetics. However, a major problem with polymer-protein conjugation is that the polymers drastically reduce the bioactivity of the modified protein. There is no perfect solution to prevent the bioactivity loss, no matter the polymer is conjugated in a non-site specific way, or a more complex site-specific procedure. Here the authors report for the first time that when zwitterionic carboxybetaine polymer (PCB) is conjugated to insulin through simple conventional coupling chemistry. The resulting PCB-insulin does not show a significant reduction of in vitro bioactivity. The obtained PCB-insulin shows two significant advantages as a novel pharmaceutical agent. First, its therapeutic performance is remarkable. For PCB-insulin, there is a 24% increase of in vivo pharmacological activity of lowering blood glucose compared with native insulin. Such uncommonly seen increase has rarely been reported and is expected to be due to both the improved pharmacokinetics and retained bioactivity of PCB-insulin. Second, the production is simple from manufacturing standpoints. Conjugation procedure involves only one-step coupling reaction without complex site-specific linkage technique. The synthesized PCB-insulin conjugates do not require chromatographic separation to purify and obtain particular isoforms. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Folate coupled poly(ethyleneglycol) conjugates of anionic poly(amidoamine) dendrimer for inflammatory tissue specific drug delivery.

    PubMed

    Chandrasekar, Durairaj; Sistla, Ramakrishna; Ahmad, Farhan J; Khar, Roop K; Diwan, Prakash V

    2007-07-01

    Folate receptor is overexpressed on the activated (but not quiescent) macrophages in both animal models and human patients with naturally occurring rheumatoid arthritis. The aim of this study was to prepare folate targeted poly(ethylene glycol) (PEG) conjugates of anionic dendrimer (G3.5 PAMAM) as targeted drug delivery systems to inflammation and to investigate its biodistribution pattern in arthritic rats. Folate-PEG-PAMAM conjugates, with different degrees of substitution were synthesized by a two-step reaction through a carbodiimide-mediated coupling reaction and loaded with indomethacin. Folate-PEG conjugation increased the drug loading efficiency by 10- to 20-fold and the in vitro release profile indicated controlled release of drug. The plasma pharmacokinetic parameters indicated an increased AUC, circulatory half-life and mean residence time for the folate-PEG conjugates. The tissue distribution studies revealed significantly lesser uptake by stomach for the folate-PEG conjugates, thereby limiting gastric-related side effect. The time-averaged relative drug exposure (r(e)) of the drug in paw for the folate-PEG conjugates ranged from 1.81 to 2.37. The overall drug targeting efficiency (T(e)) was highest for folate-PEG conjugate (3.44) when compared to native dendrimer (1.72). The folate-PEG-PAMAM conjugates are the ideal choice for targeted delivery of antiarthritic drugs to inflammation with reduced side-effects and higher targeting efficiency. Copyright 2007 Wiley Periodicals, Inc.

  12. Carrier priming or suppression: understanding carrier priming enhancement of anti-polysaccharide antibody response to conjugate vaccines.

    PubMed

    Pobre, Karl; Tashani, Mohamed; Ridda, Iman; Rashid, Harunor; Wong, Melanie; Booy, Robert

    2014-03-14

    With the availability of newer conjugate vaccines, immunization schedules have become increasingly complex due to the potential for unpredictable immunologic interference such as 'carrier priming' and 'carrier induced epitopic suppression'. Carrier priming refers to an augmented antibody response to a carbohydrate portion of a glycoconjugate vaccine in an individual previously primed with the carrier protein. This review aims to provide a critical evaluation of the available data on carrier priming (and suppression) and conceptualize ways by which this phenomenon can be utilized to strengthen vaccination schedules. We conducted this literature review by searching well-known databases to date to identify relevant studies, then extracted and synthesized the data on carrier priming of widely used conjugate polysaccharide vaccines, such as, pneumococcal conjugate vaccine (PCV), meningococcal conjugate vaccine (MenCV) and Haemophilus influenzae type b conjugate vaccines (HibV). We found evidence of carrier priming with some conjugate vaccines, particularly HibV and PCV, in both animal and human models but controversy surrounds MenCV. This has implications for the immunogenicity of conjugate polysaccharide vaccines following the administration of tetanus-toxoid or diphtheria-toxoid containing vaccine (such as DTP). Available evidence supports a promising role for carrier priming in terms of maximizing the immunogenicity of conjugate vaccines and enhancing immunization schedule by making it more efficient and cost effective. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. Development of superparamagnetic iron oxide nanoparticles via direct conjugation with ginsenosides and its in-vitro study.

    PubMed

    Singh, Hina; Du, Juan; Singh, Priyanka; Mavlonov, Gafurjon Tom; Yi, Tae Hoo

    2018-06-01

    The current study focused on direct conjugation of superparamagnetic iron oxide nanoparticles (SPIONs) with ginsenosides CK and Rg3. The direct conjugation approach was low-cost, eco-friendly, simple, fast and high yield. The synthesized conjugates (SPION-CK and SPION-Rg3) were characterized by field emission transmission electron microscopy, dynamic light scattering, zeta potential, X-ray diffractometer, and magnetometer. The characterization results confirmed the formation of SPIONs conjugates. The maximum attaching percentage for ginsenosides to SPIONs was found to be 5%. In vitro cytotoxicity assay in HaCaT keratinocyte cells revealed that the conjugates were non-cytotoxic to normal cells. Moreover, the anti-inflammatory activity of SPION-CK and SPION-Rg3 were investigated. The expression of reactive oxygen species (ROS) in lipopolysaccharide-activated RAW 264.7 (murine macrophage cells) were inhibited by SPIONs conjugates in a dose-dependent manner. In addition, SPION-CK and SPION-Rg3 significantly reduced the production of nitric oxide and inducible nitric oxide synthase (iNOS) in a dose-dependent manner in the lipopolysaccharide-induced RAW 264.7 cells. Overall the results suggested that the SPIONs were conjugated with ginsenosides CK and Rg3 by using direct conjugation approach were non-cytotoxic and can be used as a carrier for intracellular release of ginsenosides in inflammatory diseases. Copyright © 2018 Elsevier B.V. All rights reserved.

  14. A pH-responsive carboxymethyl dextran-based conjugate as a carrier of docetaxel for cancer therapy.

    PubMed

    Han, Hwa Seung; Lee, Minchang; An, Jae Yoon; Son, Soyoung; Ko, Hyewon; Lee, Hansang; Chae, Yee Soo; Kang, Young Mo; Park, Jae Hyung

    2016-05-01

    Although docetaxel is available for the treatment of various cancers, its clinical applications are limited by its poor water solubility and toxicity to normal cells, resulting in severe adverse effects. In this study, we synthesized a polymeric conjugate with an acid-labile ester linkage, consisting of carboxymethyl dextran (CMD) and docetaxel (DTX), as a potential anticancer drug delivery system. The conjugate exhibited sustained release of DTX in physiological buffer (pH 7.4), whereas its release rate increased remarkably under mildly acidic conditions (pH < 6.5), mimicking the intracellular environment. Cytotoxicity tests conducted in vitro demonstrated that the conjugate exhibited much higher toxicity to cancer cells under mildly acidic conditions than at physiological buffer (pH 7.4). These results implied that the ester linkage in the conjugate allowed for selective release of biologically active DTX under mildly acidic conditions. The in vivo biodistribution of a Cy5.5-labeled conjugate was observed using the noninvasive optical imaging technique after its systemic administration into tumor-bearing mice. The conjugate was effectively accumulated into the tumor site, which may have been because of an enhanced permeability and retention effect. In addition, in vivo antitumor efficacy of the conjugate was significantly higher than that of free DTX. Overall, the CMD-based conjugate might have promising potential as a carrier of DTX for cancer therapy. © 2015 Wiley Periodicals, Inc.

  15. Organic arsenicals as efficient and highly specific linkers for protein/peptide-polymer conjugation.

    PubMed

    Wilson, Paul; Anastasaki, Athina; Owen, Matthew R; Kempe, Kristian; Haddleton, David M; Mann, Sarah K; Johnston, Angus P R; Quinn, John F; Whittaker, Michael R; Hogg, Philip J; Davis, Thomas P

    2015-04-01

    The entropy-driven affinity of trivalent (in)organic arsenicals for closely spaced dithiols has been exploited to develop a novel route to peptide/protein-polymer conjugation. A trivalent arsenous acid (As(III)) derivative (1) obtained from p-arsanilic acid (As(V)) was shown to readily undergo conjugation to the therapeutic peptide salmon calcitonin (sCT) via bridging of the Cys(1)-Cys(7) disulfide, which was verified by RP-HPLC and MALDI-ToF-MS. Conjugation was shown to proceed rapidly (t < 2 min) in situ and stoichiometrically through sequential reduction-conjugation protocols, therefore exhibiting conjugation efficiencies equivalent to those reported for the current leading disulfide-bond targeting strategies. Furthermore, using bovine serum albumin as a model protein, the trivalent organic arsenical 1 was found to demonstrate enhanced specificity for disulfide-bond bridging in the presence of free cysteine residues relative to established maleimide functional reagents. This specificity represents a shift toward potential orthogonality, by clearly distinguishing between the reactivity of mono- and disulfide-derived (vicinal or neighbors-through-space) dithiols. Finally, p-arsanilic acid was transformed into an initiator for aqueous single electron-transfer living radical polymerization, allowing the synthesis of hydrophilic arsenic-functional polymers which were shown to exhibit negligible cytotoxicity relative to a small molecule organic arsenical, and an unfunctionalized polymer control. Poly(poly[ethylene glycol] methyl ether acrylate) (PPEGA480, DPn = 10, Mn,NMR = 4900 g·mol(-1), Đ = 1.07) possessing a pentavalent arsenic acid (As(V)) α-chain end was transformed into trivalent As(III) post-polymerization via initial reduction by biological reducing agent glutathione (GSH), followed by binding of GSH. Conjugation of the resulting As(III)-functional polymer to sCT was realized within 35 min as indicated by RP-HPLC and verified later by thermodynamically

  16. N-succinyl-chitosan as a drug carrier: water-insoluble and water-soluble conjugates.

    PubMed

    Kato, Yoshinori; Onishi, Hiraku; Machida, Yoshiharu

    2004-02-01

    N-succinyl-chitosan (Suc-Chi) has favourable properties as a drug carrier such as biocompatibility, low toxicity and long-term retention in the body. It was long retained in the systemic circulation after intravenous administration, and the plasma half-lives of Suc-Chi (MW: 3.4 x 10(5); succinylation degree: 0.81 mol/sugar unit; deacetylation degree: 1.0 mol/sugar unit) were ca. 100.3h in normal mice and 43 h in Sarcoma 180-bearing mice. The biodistribution of Suc-Chi into other tissues was trace apart from the prostate and lymph nodes. The maximum tolerable dose for the intraperitoneal injection of Suc-Chi to mice was greater than 2 g/kg. The water-insoluble and water-soluble conjugates could be prepared using a water-soluble carbodiimide and mitomycin C (MMC) or using an activated ester of glutaric MMC. In vitro release characteristics of these conjugates showed similar patterns, i.e. a pH-dependent manner, except that water-insoluble conjugates showed a slightly slower release of MMC than water-soluble ones. The conjugates of MMC with Suc-Chi showed good antitumour activities against various tumours such as murine leukaemias (L1210 and P388), B16 melanoma, Sarcoma 180 solid tumour, a murine liver metastatic tumour (M5076) and a murine hepatic cell carcinoma (MH134). This review summarizes the utilization of Suc-Chi as a drug carrier for macromolecular conjugates of MMC and the therapeutic efficacy of the conjugates against various tumours.

  17. An Integrated Solution for Performing Thermo-fluid Conjugate Analysis

    NASA Technical Reports Server (NTRS)

    Kornberg, Oren

    2009-01-01

    A method has been developed which integrates a fluid flow analyzer and a thermal analyzer to produce both steady state and transient results of 1-D, 2-D, and 3-D analysis models. The Generalized Fluid System Simulation Program (GFSSP) is a one dimensional, general purpose fluid analysis code which computes pressures and flow distributions in complex fluid networks. The MSC Systems Improved Numerical Differencing Analyzer (MSC.SINDA) is a one dimensional general purpose thermal analyzer that solves network representations of thermal systems. Both GFSSP and MSC.SINDA have graphical user interfaces which are used to build the respective model and prepare it for analysis. The SINDA/GFSSP Conjugate Integrator (SGCI) is a formbase graphical integration program used to set input parameters for the conjugate analyses and run the models. The contents of this paper describes SGCI and its thermo-fluids conjugate analysis techniques and capabilities by presenting results from some example models including the cryogenic chill down of a copper pipe, a bar between two walls in a fluid stream, and a solid plate creating a phase change in a flowing fluid.

  18. Improving Nucleoside Analogs via Lipid Conjugation; Is fatter any better?

    PubMed Central

    Alexander, Peter; Kucera, Gregory; Pardee, Timothy S.

    2016-01-01

    In the past few decades, nucleoside analog drugs have been used to treat a large variety of cancers. These antimetabolite drugs mimic nucleosides and interfere with chain lengthening upon incorporation into the DNA or RNA of actively replicating cells. However, efficient delivery of these drugs is limited due to their pharmacokinetic properties, and tumors often develop drug resistance. In addition, nucleoside analogs are generally hydrophilic, resulting in poor bioavailability and impaired blood-brain barrier penetration. Conjugating these drugs to lipids modifies their pharmacokinetic properties and may improve in vivo efficacy. This review will cover recent advances in the field of conjugation of phospholipids to nucleoside analogs. This includes conjugation of myristic acid, 12-thioethyldodecanoic acid, 5-elaidic acid esters, phosphoramidate, and self-emulsifying formulations. Relevant in vitro and in vivo data will be discussed for each drug, as well as any available data from clinical trials. PMID:26829896

  19. Transposase-Mediated Excision, Conjugative Transfer, and Diversity of ICE6013 Elements in Staphylococcus aureus.

    PubMed

    Sansevere, Emily A; Luo, Xiao; Park, Joo Youn; Yoon, Sunghyun; Seo, Keun Seok; Robinson, D Ashley

    2017-04-15

    ICE 6013 represents one of two families of integrative conjugative elements (ICEs) identified in the pan-genome of the human and animal pathogen Staphylococcus aureus Here we investigated the excision and conjugation functions of ICE 6013 and further characterized the diversity of this element. ICE 6013 excision was not significantly affected by growth, temperature, pH, or UV exposure and did not depend on recA The IS 30 -like DDE transposase (Tpase; encoded by orf1 and orf2 ) of ICE 6013 must be uninterrupted for excision to occur, whereas disrupting three of the other open reading frames (ORFs) on the element significantly affects the level of excision. We demonstrate that ICE 6013 conjugatively transfers to different S. aureus backgrounds at frequencies approaching that of the conjugative plasmid pGO1. We found that excision is required for conjugation, that not all S. aureus backgrounds are successful recipients, and that transconjugants acquire the ability to transfer ICE 6013 Sequencing of chromosomal integration sites in serially passaged transconjugants revealed a significant integration site preference for a 15-bp AT-rich palindromic consensus sequence, which surrounds the 3-bp target site that is duplicated upon integration. A sequence analysis of ICE 6013 from different host strains of S. aureus and from eight other species of staphylococci identified seven divergent subfamilies of ICE 6013 that include sequences previously classified as a transposon, a plasmid, and various ICEs. In summary, these results indicate that the IS 30 -like Tpase functions as the ICE 6013 recombinase and that ICE 6013 represents a diverse family of mobile genetic elements that mediate conjugation in staphylococci. IMPORTANCE Integrative conjugative elements (ICEs) encode the abilities to integrate into and excise from bacterial chromosomes and plasmids and mediate conjugation between bacteria. As agents of horizontal gene transfer, ICEs may affect bacterial evolution. ICE 6013

  20. Dog bites man or man bites dog? The enigma of the amino acid conjugations

    PubMed Central

    Beyoğlu, Diren; Smith, Robert L.; Idle, Jeffrey R.

    2012-01-01

    The proposition posed is that the value of amino acid conjugation to the organism is not, as in the traditional view, to use amino acids for the detoxication of aromatic acids. Rather, the converse is more likely, to use aromatic acids that originate from the diet and gut microbiota to assist in the regulation of body stores of amino acids, such as glycine, glutamate, and, in certain invertebrates, arginine, that are key neurotransmitters in the CNS. As such, the amino acid conjugations are not so much detoxication reactions, rather they are homeostatic and neuroregulatory processes. Experimental data have been culled in support of this hypothesis from a broad range of scientific and clinical literature. Such data include the low detoxication value of amino acid conjugations and the Janus nature of certain amino acids that are both neurotransmitters and apparent conjugating agents. Amino acid scavenging mechanisms in blood deplete brain amino acids. Amino acids glutamate and glycine when trafficked from brain are metabolized to conjugates of aromatic acids in hepatic mitochondria and then irreversibly excreted into urine. This process is used clinically to deplete excess nitrogen in cases of urea cycle enzymopathies through excretion of glycine or glutamine as their aromatic acid conjugates. Untoward effects of high-dose phenylacetic acid surround CNS toxicity. There appears to be a relationship between extent of glycine scavenging by benzoic acid and psychomotor function. Glycine and glutamine scavenging by conjugation with aromatic acids may have important psychosomatic consequences that link diet to health, wellbeing, and disease. PMID:22227274

  1. Development and technology transfer of Haemophilus influenzae type b conjugate vaccines for developing countries.

    PubMed

    Beurret, Michel; Hamidi, Ahd; Kreeftenberg, Hans

    2012-07-13

    This paper describes the development of a Haemophilus influenzae type b (Hib) conjugate vaccine at the National Institute for Public Health and the Environment/Netherlands Vaccine Institute (RIVM/NVI, Bilthoven, The Netherlands), and the subsequent transfer of its production process to manufacturers in developing countries. In 1998, at the outset of the project, the majority of the world's children were not immunized against Hib because of the high price and limited supply of the conjugate vaccines, due partly to the fact that local manufacturers in developing countries did not master the Hib conjugate production technology. To address this problem, the RIVM/NVI has developed a robust Hib conjugate vaccine production process based on a proven model, and transferred this technology to several partners in India, Indonesia, Korea and China. As a result, emerging manufacturers in developing countries acquired modern technologies previously unavailable to them. This has in turn facilitated their approach to producing other conjugate vaccines. As an additional spin-off from the project, a World Health Organization (WHO) Hib quality control (QC) course was designed and conducted at the RIVM/NVI, resulting in an increased regulatory capacity for conjugate vaccines in developing countries at the National Regulatory Authority (NRA) level. For the local populations, this has translated into an increased and sustainable supply of affordable Hib conjugate-containing combination vaccines. During the course of this project, developing countries have demonstrated their ability to produce large quantities of high-quality modern vaccines after a successful transfer of the technology. Copyright © 2012 Elsevier Ltd. All rights reserved.

  2. Conjugation of antibodies to gold nanorods through Fc portion: synthesis and molecular specific imaging

    PubMed Central

    Joshi, Pratixa P.; Yoon, Soon Joon; Hardin, William G.; Emelianov, Stanislav; Sokolov, Konstantin V.

    2013-01-01

    Anisotropic gold nanorods provide a convenient combination of properties, such as tunability of plasmon resonances and strong extinction cross-sections in the near-infrared to red spectral region. These properties have created significant interest in the development of antibody conjugation methods for synthesis of targeted nanorods for a number of biomedical applications, including molecular specific imaging and therapy. Previously published conjugation approaches have achieved molecular specificity. However, the current conjugation methods have several downsides including low stability and potential cytotoxicity of bioconjugates that are produced by electrostatic interactions as well as lack of control over antibody orientation during covalent conjugation. Here we addressed these shortcomings by introducing directional antibody conjugation to the gold nanorod surface. The directional conjugation is achieved through the carbohydrate moiety, which is located on one of the heavy chains of the Fc portion of most antibodies. The carbohydrate is oxidized under mild conditions to a hydrazide reactive aldehyde group. Then, a heterofunctional linker with hydrazide and dithiol groups is used to attach antibodies to gold nanorods. The directional conjugation approach was characterized using electron microscopy, zeta potential and extinction spectra. We also determined spectral changes associated with nanorod aggregation; these spectral changes can be used as a convenient quality control of nanorod bioconjugates. Molecular specificity of the synthesized antibody targeted nanorods was demonstrated using hyperspectral optical and photoacoustic imaging of cancer cell culture models. Additionally, we observed characteristic changes in optical spectra of molecular specific nanorods after their interactions with cancer cells; the observed spectral signatures can be explored for sensitive cancer detection. PMID:23631707

  3. Stabilization of Resveratrol in Blood Circulation by Conjugation to mPEG and mPEG-PLA Polymers: Investigation of Conjugate Linker and Polymer Composition on Stability, Metabolism, Antioxidant Activity and Pharmacokinetic Profile

    PubMed Central

    Siddalingappa, Basavaraj; Benson, Heather A. E.; Brown, David H.; Batty, Kevin T.; Chen, Yan

    2015-01-01

    Resveratrol is naturally occurring phytochemical with diverse biological activities such as chemoprevention, anti-inflammatory, anti-cancer, anti-oxidant. But undergoes rapid metabolism in the body (half life 0.13h). Hence Polymer conjugation utilizing different chemical linkers and polymer compositions was investigated for enhanced pharmacokinetic profile of resveratrol. Ester conjugates such as α-methoxy-ω-carboxylic acid poly(ethylene glycol) succinylamide resveratrol (MeO-PEGN-Succ-RSV) (2 and 20 kDa); MeO-PEG succinyl ester resveratrol (MeO-PEGO-Succ-RSV) (2 kDa); α-methoxy poly(ethylene glycol)-co-polylactide succinyl ester resveratrol (MeO-PEG-PLAO-Succ-RSV) (2 and 6.6kDa) were prepared by carbodiimide coupling reactions. Resveratrol-PEG ethers (2 and 5 kDa) were synthesized by alkali-mediated etherification. All polymer conjugates were fully characterized in vitro and the pharmacokinetic profile of selected conjugates was characterized in rats. Buffer and plasma stability of conjugates was dependent on polymer hydrophobicity, aggregation behavior and PEG corona, with MeO-PEG-PLAO-Succ-RSV (2 kDa) showing a 3h half-life in rat plasma in vitro. Polymer conjugates irrespective of linker chemistry protected resveratrol against metabolism in vitro. MeO-PEG-PLAO-Succ-RSV (2 kDa), Resveratrol-PEG ether (2 and 5 kDa) displayed improved pharmacokinetic profiles with significantly higher plasma area under curve (AUC), slower clearance and smaller volume of distribution, compared to resveratrol. PMID:25799413

  4. Incorporating functionalized polyethylene glycol lipids into reprecipitated conjugated polymer nanoparticles for bioconjugation and targeted labeling of cells

    NASA Astrophysics Data System (ADS)

    Kandel, Prakash K.; Fernando, Lawrence P.; Ackroyd, P. Christine; Christensen, Kenneth A.

    2011-03-01

    We report a simple and rapid method to prepare extremely bright, functionalized, stable, and biocompatible conjugated polymer nanoparticles incorporating functionalized polyethylene glycol (PEG) lipids by reprecipitation. These nanoparticles retain the fundamental spectroscopic properties of conjugated polymer nanoparticles prepared without PEG lipid, but demonstrate greater hydrophilicity and quantum yield compared to unmodified conjugated polymer nanoparticles. The sizes of these nanoparticles, as determined by TEM, were 21-26 nm. Notably, these nanoparticles were prepared with several PEG lipid functional end groups, including biotin and carboxy moieties that can be easily conjugated to biomolecules. We have demonstrated the availability of these end groups for functionalization using the interaction of biotin PEG lipid conjugated polymer nanoparticles with streptavidin. Biotinylated PEG lipid conjugated polymer nanoparticles bound streptavidin-linked magnetic beads, while carboxy and methoxy PEG lipid modified nanoparticles did not. Similarly, biotinylated PEG lipid conjugated polymer nanoparticles bound streptavidin-coated glass slides and could be visualized as diffraction-limited spots, while nanoparticles without PEG lipid or with non-biotin PEG lipid end groups were not bound. To demonstrate that nanoparticle functionalization could be used for targeted labelling of specific cellular proteins, biotinylated PEG lipid conjugated polymer nanoparticles were bound to biotinylated anti-CD16/32 antibodies on J774A.1 cell surface receptors, using streptavidin as a linker. This work represents the first demonstration of targeted delivery of conjugated polymer nanoparticles and demonstrates the utility of these new nanoparticles for fluorescence based imaging and sensing.We report a simple and rapid method to prepare extremely bright, functionalized, stable, and biocompatible conjugated polymer nanoparticles incorporating functionalized polyethylene glycol (PEG

  5. Femtosecond Pump-Push-Probe and Pump-Dump-Probe Spectroscopy of Conjugated Polymers: New Insight and Opportunities.

    PubMed

    Kee, Tak W

    2014-09-18

    Conjugated polymers are an important class of soft materials that exhibit a wide range of applications. The excited states of conjugated polymers, often referred to as excitons, can either deactivate to yield the ground state or dissociate in the presence of an electron acceptor to form charge carriers. These interesting properties give rise to their luminescence and the photovoltaic effect. Femtosecond spectroscopy is a crucial tool for studying conjugated polymers. Recently, more elaborate experimental configurations utilizing three optical pulses, namely, pump-push-probe and pump-dump-probe, have been employed to investigate the properties of excitons and charge-transfer states of conjugated polymers. These studies have revealed new insight into femtosecond torsional relaxation and detrapping of bound charge pairs of conjugated polymers. This Perspective highlights (1) the recent achievements by several research groups in using pump-push-probe and pump-dump-probe spectroscopy to study conjugated polymers and (2) future opportunities and potential challenges of these techniques.

  6. Biological characterization of cetuximab-conjugated gold nanoparticles in a tumor animal model

    NASA Astrophysics Data System (ADS)

    Kao, Hao-Wen; Lin, Yi-Yu; Chen, Chao-Cheng; Chi, Kwan-Hwa; Tien, Der-Chi; Hsia, Chien-Chung; Lin, Wuu-Jyh; Chen, Fu-Du; Lin, Ming-Hsien; Wang, Hsin-Ell

    2014-07-01

    Gold nanoparticles (AuNPs) are widely applied to the diagnosis and treatment of cancer and can be modified to contain target-specific ligands via gold-thiolate bonding. This study investigated the pharmacokinetics and microdistribution of antibody-mediated active targeting gold nanoparticles in mice with subcutaneous lung carcinoma. We conjugated AuNPs with cetuximab (C225), an antibody-targeting epidermal growth factor receptor (EGFR), and then labeled with In-111, which created EGFR-targeted AuNPs. In vitro studies showed that after a 2 h incubation, the uptake of C225-conjugated AuNPs in high EGFR-expression A549 cells was 14.9-fold higher than that of PEGylated AuNPs; furthermore, uptake was also higher at 3.8-fold when MCF7 cells with lower EGFR-expression were used. MicroSPECT/CT imaging and a biodistribution study conducted by using a A549 tumor xenograft mouse model provided evidence of elevated uptake of the C225-conjugated AuNPs into the tumor cells as a result of active targeting. Moreover, the microdistribution of PEGylated AuNPs revealed that a large portion of AuNPs remained in the tumor interstitium, whereas the C225-conjugated AuNPs displayed enhanced internalization via antibody-mediated endocytosis. Our findings suggest that the anti-EGFR antibody-conjugated AuNPs are likely to be a plausible nano-sized vehicle for drug delivery to EGFR-expressing tumors.

  7. Recent development of poly(ethylene glycol)-cholesterol conjugates as drug delivery systems.

    PubMed

    He, Zhi-Yao; Chu, Bing-Yang; Wei, Xia-Wei; Li, Jiao; Edwards, Carl K; Song, Xiang-Rong; He, Gu; Xie, Yong-Mei; Wei, Yu-Quan; Qian, Zhi-Yong

    2014-07-20

    Poly(ethylene glycol)-cholesterol (PEG-Chol) conjugates are composed of "hydrophilically-flexible" PEG and "hydrophobically-rigid" Chol molecules. PEG-Chol conjugates are capable of forming micelles through molecular self-assembly and they are also used extensively for the PEGylation of drug delivery systems (DDS). The PEGylated DDS have been shown to display optimized physical stability properties in vitro and longer half-lives in vivo when compared with non-PEGylated DDS. Cell uptake studies have indicated that PEG-Chol conjugates are internalized via clathrin-independent pathways into endosomes and Golgi apparatus. Acid-labile PEG-Chol conjugates are also able to promote the content release of PEGylated DDS when triggered by dePEGylation at acidic conditions. More importantly, biodegradable PEG-Chol molecules have been shown to decrease the "accelerated blood clearance" phenomenon of PEG-DSPE. Ligands, peptides or antibodies which have been modified with PEG-Chols are oftentimes used to formulate active targeting DDS, which have been shown in many systems recently to enhance the efficacy and lower the adverse effects of drugs. Production of PEG-Chol is simple and efficient, and production costs are relatively low. In conclusion, PEG-Chol conjugates appear to be very promising multifunctional biomaterials for many uses in the biomedical sciences and pharmaceutical industries. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. Thiolated polymers: synthesis and in vitro evaluation of polymer-cysteamine conjugates.

    PubMed

    Bernkop-Schnürch, A; Clausen, A E; Hnatyszyn, M

    2001-09-11

    The purpose of the present study was to synthesize and characterize novel thiolated polymers. Mediated by a carbodiimide cysteamine was covalently linked to sodium carboxymethylcellulose (CMC) and polycarbophil (PCP). The resulting CMC-cysteamine conjugates displayed 77.9+/-6.7 and 365.1+/-8.7 micromol thiol groups per gram of polymer, whereas the PCP-cysteamine conjugates showed 26.3+/-1.9 and 122.7+/-3.8 micromol thiol groups per gram of polymer (mean+/-S.D.; n=3). In aqueous solutions above pH 5.0 both modified polymers were capable of forming inter- and/or intra-molecular disulfide bonds. The reaction velocity of this oxidation process was accelerated with a decrease in the proton concentration. The oxidation proceeded more rapidly within thiolated CMC than within thiolated PCP. Permeation studies carried out in Ussing-type chambers with freshly excised intestinal mucosa from guinea pigs utilizing sodium fluorescein as model drug for the paracellular uptake revealed an enhancement ratio (R=P(app) (conjugate)/P(app) (control)) of 1.15 and 1.41 (mean+/-S.D.; n=3) for the higher thiolated CMC-cysteamine (0.5%; m/v) and PCP-cysteamine conjugate (1.0%; m/v), respectively. The decrease in the transepithelial electrical resistance values was in good correlation with the enhancement ratios. Due to a high crosslinking tendency by the formation of disulfide bonds stabilizing drug carrier systems based on thiolated polymers and a permeation enhancing effect, CMC- and PCP-cysteamine conjugates represent promising excipients for the development of novel drug delivery systems.

  9. Conjugative DNA Transfer Is Enhanced by Plasmid R1 Partitioning Proteins

    PubMed Central

    Gruber, Christian J.; Lang, Silvia; Rajendra, Vinod K. H.; Nuk, Monika; Raffl, Sandra; Schildbach, Joel F.; Zechner, Ellen L.

    2016-01-01

    Bacterial conjugation is a form of type IV secretion used to transport protein and DNA directly to recipient bacteria. The process is cell contact-dependent, yet the mechanisms enabling extracellular events to trigger plasmid transfer to begin inside the cell remain obscure. In this study of plasmid R1 we investigated the role of plasmid proteins in the initiation of gene transfer. We find that TraI, the central regulator of conjugative DNA processing, interacts physically, and functionally with the plasmid partitioning proteins ParM and ParR. These interactions stimulate TraI catalyzed relaxation of plasmid DNA in vivo and in vitro and increase ParM ATPase activity. ParM also binds the coupling protein TraD and VirB4-like channel ATPase TraC. Together, these protein-protein interactions probably act to co-localize the transfer components intracellularly and promote assembly of the conjugation machinery. Importantly these data also indicate that the continued association of ParM and ParR at the conjugative pore is necessary for plasmid transfer to start efficiently. Moreover, the conjugative pilus and underlying secretion machinery assembled in the absence of Par proteins mediate poor biofilm formation and are completely dysfunctional for pilus specific R17 bacteriophage uptake. Thus, functional integration of Par components at the interface of relaxosome, coupling protein, and channel ATPases appears important for an optimal conformation and effective activation of the transfer machinery. We conclude that low copy plasmid R1 has evolved an active segregation system that optimizes both its vertical and lateral modes of dissemination. PMID:27486582

  10. Conjugate-like immunogens produced as protein capsular matrix vaccines.

    PubMed

    Thanawastien, Ann; Cartee, Robert T; Griffin, Thomas J; Killeen, Kevin P; Mekalanos, John J

    2015-03-10

    Capsular polysaccharides are the primary antigenic components involved in protective immunity against encapsulated bacterial pathogens. Although immunization of adolescents and adults with polysaccharide antigens has reduced pathogen disease burden, pure polysaccharide vaccines have proved ineffective at conferring protective immunity to infants and the elderly, age cohorts that are deficient in their adaptive immune responses to such antigens. However, T-cell-independent polysaccharide antigens can be converted into more potent immunogens by chemically coupling to a "carrier protein" antigen. Such "conjugate vaccines" efficiently induce antibody avidity maturation, isotype switching, and immunological memory in immunized neonates. These immune responses have been attributed to T-cell recognition of peptides derived from the coupled carrier protein. The covalent attachment of polysaccharide antigens to the carrier protein is thought to be imperative to the immunological properties of conjugate vaccines. Here we provide evidence that covalent attachment to carrier proteins is not required for conversion of T-independent antigens into T-dependent immunogens. Simple entrapment of polysaccharides or a d-amino acid polymer antigen in a cross-linked protein matrix was shown to be sufficient to produce potent immunogens that possess the key characteristics of conventional conjugate vaccines. The versatility and ease of manufacture of these antigen preparations, termed protein capsular matrix vaccines (PCMVs), will likely provide improvements in the manufacture of vaccines designed to protect against encapsulated microorganisms. This in turn could improve the availability of such vaccines to the developing world, which has shown only a limited capacity to afford the cost of conventional conjugate vaccines.

  11. In vitro imaging of cells using peptide-conjugated quantum dots

    NASA Astrophysics Data System (ADS)

    Ishikawa, Mitsuru; Biju, Vasudevan

    2010-02-01

    Efficient intracellular delivery of quantum dots (QDs) in living cells and elucidating the mechanism of the delivery are essential for advancing the applications of QDs to in vivo imaging and in vivo photodynamic therapy. Here, we demonstrate that clathrin-mediated endocytosis is the most dominant pathway for the delivery of peptide-conjugated QDs. We selected an insect neuropeptide, allatostatin (AST1), conjugated with CdSe-ZnS QDs, and investigated the delivery of the conjugate in living cells. We evaluated the contributions of clathrin-mediated endocytosis, receptormediated endocytosis, and charge-based cell penetration to the delivery of QD605-AST1 conjugates by flow cytometry and fluorescence video microscopy. The delivery was suppressed by ~57% in inhibiting phosphoinositide 3-kinase with wortmannin, which blocks the formation of clathrin-coated vesicles, and by ~45% in incubating the cells at 4°C. Also, we identified clathrin-mediated endocytosis by two-color experiment to find colocalization of QD560-labeled clathrin heavy-chain antibody and QD605-AST1. We further observed reduction of the galanin receptor-mediated delivery of QD605-AST1 by ~8% in blocking the cells with a galanin antagonist, and reduction of charge-based cell penetration delivery by ~30% in removing the positive charge in the peptide from arginine and suppressing the cell-surface negative charge from glycosaminoglycan.

  12. Novel conjugates of peptides and conjugated polymers for optoelectronics and neural interfaces

    NASA Astrophysics Data System (ADS)

    Bhagwat, Nandita

    Peptide-polymer conjugates are a novel class of hybrid materials that take advantage of each individual component giving the opportunity to generate materials with unique physical, chemical, mechanical, optical, and electronic properties. In this dissertation peptide-polymer conjugates for two different applications are discussed. The first set of peptide-polymer conjugates were developed as templates to study the intermolecular interactions between electroactive molecules by manipulating the intermolecular distances at nano-scale level. A PEGylated, alpha-helical peptide template was employed to effectively display an array of organic chromophores (oxadiazole containing phenylenevinylene oligomers, Oxa-PPV). Three Oxa-PPV chromophores were strategically positioned on each template, at distances ranging from 6 to 17 A from each other, as dictated by the chemical and structural properties of the peptide. The Oxa-PPV modified PEGylated helical peptides (produced via Heck coupling strategies) were characterized by a variety of spectroscopic methods. Electronic contributions from multiple pairs of chromophores on a scaffold were detectable; the number and relative positioning of the chromophores dictated the absorbance and emission maxima, thus confirming the utility of these polymer--peptide templates for complex presentation of organic chromophores. The rest of the thesis is focused on using poly(3,4-alkylenedioxythiophene) based conjugated polymers as coatings for neural electrodes. This thiophene derivative is of considerable current interest for functionalizing the surfaces of a wide variety of devices including implantable biomedical electronics, specifically neural bio-electrodes. Toward these ends, copolymer films of 3,4-ethylenedioxythiophene (EDOT) with a carboxylic acid functional EDOT (EDOTacid) were electrochemically deposited and characterized as a systematic function of the EDOTacid content (0, 25, 50, 75, and 100%). The chemical surface characterization

  13. Polycaprolactone electrospun mesh conjugated with an MSC affinity peptide for MSC homing in vivo.

    PubMed

    Shao, Zhenxing; Zhang, Xin; Pi, Yanbin; Wang, Xiaokun; Jia, Zhuqing; Zhu, Jingxian; Dai, Linghui; Chen, Wenqing; Yin, Ling; Chen, Haifeng; Zhou, Chunyan; Ao, Yingfang

    2012-04-01

    Mesenchymal stem cell (MSC) is a promising cell source candidate in tissue engineering (TE) and regenerative medicine. However, the inability to target MSCs in tissues of interest with high efficiency and engraftment has become a significant barrier for MSC-based therapies. The mobilization and transfer of MSCs to defective/damaged sites in tissues or organs in vivo with high efficacy and efficiency has been a major concern. In the present study, we identified a peptide sequence (E7) with seven amino acids through phage display technology, which has a high specific affinity to bone marrow-derived MSCs. Subsequent analysis suggested that the peptide could efficiently interact specifically with MSCs without any species specificity. Thereafter, E7 was covalently conjugated onto polycaprolactone (PCL) electrospun meshes to construct an "MSC-homing device" for the recruitment of MSCs both in vitro and in vivo. The E7-conjugated PCL electrospun meshes were implanted into a cartilage defect site of rat knee joints, combined with a microfracture procedure to mobilize the endogenous MSCs. After 7 d of implantation, immunofluorescence staining showed that the cells grown into the E7-conjugated PCL electrospun meshes yielded a high positive rate for specific MSC surface markers (CD44, CD90, and CD105) compared with those in arginine-glycine-aspartic acid (RGD)-conjugated PCL electrospun meshes (63.67% vs. 3.03%; 59.37% vs. 2.98%; and 61.45% vs. 3.82%, respectively). Furthermore, the percentage of CD68 positive cells in the E7-conjugated PCL electrospun meshes was much lower than that in the RGD-conjugated PCL electrospun meshes (5.57% vs. 53.43%). This result indicates that E7-conjugated PCL electrospun meshes absorb much less inflammatory cells in vivo than RGD-conjugated PCL electrospun meshes. The results of the present study suggest that the identified E7 peptide sequence has a high specific affinity to MSCs. Covalently conjugating this peptide on the synthetic PCL mesh

  14. LC/MS/MS Bioanalysis of Protein-Drug Conjugates-The Importance of Incorporating Succinimide Hydrolysis Products.

    PubMed

    Shi, Chuan; Goldberg, Shalom; Lin, Tricia; Dudkin, Vadim; Widdison, Wayne; Harris, Luke; Wilhelm, Sharon; Jmeian, Yazen; Davis, Darryl; O'Neil, Karyn; Weng, Naidong; Jian, Wenying

    2018-04-17

    Bioanalysis of antibody-drug conjugates (ADCs) is challenging due to the complex, heterogeneous nature of their structures and their complicated catabolism. To fully describe the pharmacokinetics (PK) of an ADC, several analytes are commonly quantified, including total antibody, conjugate, and payload. Among them, conjugate is the most challenging to measure, because it requires detection of both small and large molecules as one entity. Existing approaches to quantify the conjugated species of ADCs involve a ligand binding assay (LBA) for conjugated antibody or hybrid LBA/liquid chromatography/tandem mass spectrometry (LC/MS/MS) for quantitation of conjugated drug. In our current work for a protein-drug conjugate (PDC) using the Centyrin scaffold, a similar concept to ADCs but with smaller protein size, an alternative method to quantify the conjugate by using a surrogate peptide approach, was utilized. The His-tagged proteins were isolated from biological samples using immobilized metal affinity chromatography (IMAC), followed by trypsin digestion. The tryptic peptide containing the linker attached to the payload was used as a surrogate of the conjugate and monitored by LC/MS/MS analysis. During method development and its application, we found that hydrolysis of the succinimide ring of the linker was ubiquitous, taking place at many stages during the lifetime of the PDC including in the initial drug product, in vivo in circulation in the animals, and ex vivo during the trypsin digestion step of the sample preparation. We have shown that hydrolysis during trypsin digestion is concentration-independent and consistent during the work flow-therefore, having no impact on assay performance. However, for samples that have undergone extensive hydrolysis prior to trypsin digestion, significant bias could be introduced if only the non-hydrolyzed form is considered in the quantitation. Therefore, it is important to incorporate succinimide hydrolysis products in the

  15. Repercussions of imprisonment for conjugal violence: discourses of men.

    PubMed

    Sousa, Anderson Reis de; Pereira, Álvaro; Paixão, Gilvânia Patrícia do Nascimento; Pereira, Nadirlene Gomes; Campos, Luana Moura; Couto, Telmara Menezes

    2016-12-08

    to know the consequences that men experience related to incarceration by conjugal violence. qualitative study on 20 men in jail and indicted in criminal processes related to conjugal violence in a Court specialized in Family and Domestic Violence against women. The interviews were classified based on Collective Subject Discourse method, using NVIVO(r) software. the collective discourse shows that the experience of preventive imprisonment starts a process of family dismantling, social stigma, financial hardship and psycho-emotional symptoms such as phobia, depression, hypertension, and headaches. due to the physical, mental and social consequences of the conjugal violence-related imprisonment experience, it is urgent to look carefully into the somatization process as well as to the prevention strategies regarding this process. conhecer as repercussões da prisão por violência conjugal para os homens. estudo qualitativo com 20 homens que foram presos e respondem a processo criminal por violência conjugal em uma Vara de Violência Doméstica e Familiar contra a Mulher. As entrevistas foram categorizadas com base no método do Discurso do Sujeito Coletivo, com auxílio do software NVIVO(r). o discurso coletivo revela que a vivência da prisão preventiva desencadeia desagregação familiar, estigma social, dificuldades financeiras e sintomatologia de caráter psicoemocional, como fobia, depressão, hipertensão e cefaleia. diante das repercussões físicas, mentais e sociais de experienciar a prisão em decorrência de violência conjugal, urge um olhar acerca do processo de somatização do vivido, da mesma maneira que estratégias de prevenção do fenômeno. conocer las repercusiones de prisión, por violencia conyugal, en los hombres. estudio cualitativo con 20 hombres que fueron presos y responden por caso criminal de violencia conyugal, en una Juzgado de Violencia Doméstica y Familiar contra la Mujer. Las entrevistas fueron categorizadas con base en el m

  16. Separation efficiency of free-solution conjugated electrophoresis with drag-tags incorporating a synthetic amino acid.

    PubMed

    Seo, Kyung-Ho; Chu, Hun-Su; Yoo, Tae Hyeon; Lee, Sun-Gu; Won, Jong-In

    2016-03-01

    DNA sequencing or separation by conventional capillary electrophoresis with a polymer matrix has some inherent drawbacks, such as the expense of polymer matrix and limitations in sequencing read length. As DNA fragments have a linear charge-to-friction ratio in free solution, DNA fragments cannot be separated by size. However, size-based separation of DNA is possible in free-solution conjugate electrophoresis (FSCE) if a "drag-tag" is attached to DNA fragments because the tag breaks the linear charge-to-friction scaling. Although several previous studies have demonstrated the feasibility of DNA separation by free-solution conjugated electrophoresis, generation of a monodisperse drag-tag and identification of a strong, site-specific conjugation method between a DNA fragment and a drag-tag are challenges that still remain. In this study, we demonstrate an efficient FSCE method by conjugating a biologically synthesized elastin-like polypeptide (ELP) and green fluorescent protein (GFP) to DNA fragments. In addition, to produce strong and site-specific conjugation, a methionine residue in drag-tags is replaced with homopropargylglycine (Hpg), which can be conjugated specifically to a DNA fragment with an azide site. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Conjugations with glutathione. The enzymic conjugation of some chlorocyclohexenes

    PubMed Central

    Sims, P.; Grover, P. L.

    1965-01-01

    1. α-3,4,5,6-Tetrachlorocyclohex-1-ene and γ-2,3,4,5,6-pentachlorocyclohex-1-ene are conjugated with glutathione in vitro by a rat-liver enzyme that is probably glutathione S-aryltransferase. 2. Chlorocyclohexane and the α-, β-, γ- and δ-isomers of hexachlorocyclohexane were not substrates for rat-liver glutathione S-aryltransferase. 3. Glutathione-S-aryltransferase activity was present in tissue preparations of houseflies of insecticide-resistant and -susceptible strains. More activity was found in a dieldrin-resistant strain of houseflies fed on dieldrin than in either a dieldrin-resistant strain not fed on dieldrin or a control strain of dieldrin-susceptible houseflies. 4. Housefly soluble supernatant preparations converted S-(2-chloro-4-nitrophenyl)glutathione into the corresponding cysteine and mercapturic acid derivatives. PMID:14333551

  18. ß-Lactoglobulin-chlorogenic acid conjugate-based nanoparticle for delivery of (-)-epigallocatechin-3-gallate

    USDA-ARS?s Scientific Manuscript database

    ß-Lactoglobulin (BLG)-chlorogenic acid (CA) conjugates were generated with a free radical induced grafting method. BLG-CA conjugates showed better antioxidant activities than that of BLG. The antioxidant activity increased with the increase of CA substitution. The particle sizes of (-)-epigallocatec...

  19. A novel bifunctional metabolizable linker for the conjugation of antibodies with radionuclides

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arano, Y.; Matsushima, H.; Tagawa, M.

    1991-03-01

    A novel heterogeneous bifunctional reagent containing an ester bond, N-((4-(2-maleimidoethoxy)-succinyl)oxy)succinimide (MESS), was designed and synthesized for the conjugation of antibodies with the gallium-67 (67Ga) chelate of succinyldeferoxamine (SDF) via the ester bond. MESS was synthesized by the acylation of N-(2-hydroxyethyl)maleimide with succinic anhydride, followed by the activation of the resulting carboxylic acid to a succinimido ester. MESS possesses a maleimide group for protein conjugation and an active ester group for deferoxamine (DFO) coupling, and the two functional groups are linked via ester bonding. Conjugation of 67Ga-SDF with nonspecific human IgG was performed by reacting freshly thiolated IgG with the reactionmore » product of MESS and DFO, followed by 67Ga labeling of the resulting conjugate using GaCl3 (67Ga-DFO-MESS-IgG). For comparison, 67Ga-DFO conjugated nonspecific human IgG with a nonmetabolizable linkage was synthesized under the same conjugation conditions as those for 67Ga-DFO-MESS-IgG, using a nonmetabolizable heterogenous bifunctional reagent (N-((6-maleimidocaproyl)oxy)succinimide, EMCS) instead of MESS (67Ga-DFO-EMCS-IgG). HPLC size-exclusion chromatography of both preparations showed a single radioactivity and UV peak corresponding to the intact IgG. Generation of 67Ga-SDF from the 67Ga-DFO-MESS-IgG was demonstrated by reverse-phase HPLC analysis and cellulose acetate electrophoresis after the incubation of 67Ga-DFO-MESS-IgG in a buffered solution containing carboxyesterase. After injection of 67Ga-DFO-MESS-IgG into mice, faster radioactivity clearance from the blood and less radioactivity accumulation in the liver, kidney, and spleen was noted than when 67Ga-DFO-EMCS-IgG was injected.« less

  20. Photophysical properties gallium octacarboxy phthalocyanines conjugated to CdSe@ZnS quantum dots.

    PubMed

    Tshangana, Charmaine; Nyokong, Tebello

    2015-01-01

    L-Glutathione (GSH) capped core CdSe (2.3 nm) and core shell CdSe@ZnS quantum dots (QDs) (3.0 nm and 3.5 nm) were coordinated to gallium octacarboxy phthalocyanine (ClGaPc(COOH)8) to form ClGaPc(COOH)8-QDs conjugates. An efficient transfer of energy from the QDs to the Pcs was demonstrated through Förster resonance energy transfer (FRET), the FRET efficiencies in all cases was above 50%. The photophysical parameters (triplet state and fluorescence quantum yields and lifetimes) were also determined for the conjugates. There was a decrease in the fluorescence lifetimes of ClGaPc(COOH)8 in the presence of all the QDs, due to the heavy atom effect. The triplet quantum yields increased in the conjugates. The lifetimes also became longer for the conjugates compared to Pc alone. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. Conjugate Gradient Algorithms For Manipulator Simulation

    NASA Technical Reports Server (NTRS)

    Fijany, Amir; Scheid, Robert E.

    1991-01-01

    Report discusses applicability of conjugate-gradient algorithms to computation of forward dynamics of robotic manipulators. Rapid computation of forward dynamics essential to teleoperation and other advanced robotic applications. Part of continuing effort to find algorithms meeting requirements for increased computational efficiency and speed. Method used for iterative solution of systems of linear equations.

  2. Fluctuating exciton localization in giant π-conjugated spoked-wheel macrocycles.

    PubMed

    Aggarwal, A Vikas; Thiessen, Alexander; Idelson, Alissa; Kalle, Daniel; Würsch, Dominik; Stangl, Thomas; Steiner, Florian; Jester, Stefan-S; Vogelsang, Jan; Höger, Sigurd; Lupton, John M

    2013-11-01

    Conjugated polymers offer potential for many diverse applications, but we still lack a fundamental microscopic understanding of their electronic structure. Elementary photoexcitations (excitons) span only a few nanometres of a molecule, which itself can extend over microns, and how their behaviour is affected by molecular dimensions is not immediately obvious. For example, where is the exciton formed within a conjugated segment and is it always situated on the same repeat units? Here, we introduce structurally rigid molecular spoked wheels, 6 nm in diameter, as a model of extended π conjugation. Single-molecule fluorescence reveals random exciton localization, which leads to temporally varying emission polarization. Initially, this random localization arises after every photon absorption event because of temperature-independent spontaneous symmetry breaking. These fast fluctuations are slowed to millisecond timescales after prolonged illumination. Intramolecular heterogeneity is revealed in cryogenic spectroscopy by jumps in transition energy, but emission polarization can also switch without a spectral jump occurring, which implies long-range homogeneity in the local dielectric environment.

  3. Fluctuating exciton localization in giant π-conjugated spoked-wheel macrocycles

    NASA Astrophysics Data System (ADS)

    Aggarwal, A. Vikas; Thiessen, Alexander; Idelson, Alissa; Kalle, Daniel; Würsch, Dominik; Stangl, Thomas; Steiner, Florian; Jester, Stefan-S.; Vogelsang, Jan; Höger, Sigurd; Lupton, John M.

    2013-11-01

    Conjugated polymers offer potential for many diverse applications, but we still lack a fundamental microscopic understanding of their electronic structure. Elementary photoexcitations (excitons) span only a few nanometres of a molecule, which itself can extend over microns, and how their behaviour is affected by molecular dimensions is not immediately obvious. For example, where is the exciton formed within a conjugated segment and is it always situated on the same repeat units? Here, we introduce structurally rigid molecular spoked wheels, 6 nm in diameter, as a model of extended π conjugation. Single-molecule fluorescence reveals random exciton localization, which leads to temporally varying emission polarization. Initially, this random localization arises after every photon absorption event because of temperature-independent spontaneous symmetry breaking. These fast fluctuations are slowed to millisecond timescales after prolonged illumination. Intramolecular heterogeneity is revealed in cryogenic spectroscopy by jumps in transition energy, but emission polarization can also switch without a spectral jump occurring, which implies long-range homogeneity in the local dielectric environment.

  4. Recyclable Thermoresponsive Polymer-β-Glucosidase Conjugate with Intact Hydrolysis Activity.

    PubMed

    Mukherjee, Ishita; Sinha, Sushant K; Datta, Supratim; De, Priyadarsi

    2018-06-11

    β-Glucosidase (BG) catalyzes the hydrolysis of cellobiose to glucose and is a rate-limiting enzyme in the conversion of lignocellulosic biomass to sugars toward biofuels. Since the cost of enzyme is a major contributor to biofuel economics, we report the bioconjugation of a temperature-responsive polymer with the highly active thermophilic β-glucosidase (B8CYA8) from Halothermothrix orenii toward improving enzyme recyclability. The bioconjugate, with a lower critical solution temperature (LCST) of 33 °C withstands high temperatures up to 70 °C. Though the secondary structure of the enzyme in the conjugate is slightly distorted with a higher percentage of β-sheet like structure, the stability and specific activity of B8CYA8 in the conjugate remains unaltered up to 30 °C and retains more than 70% specific activity of the unmodified enzyme at 70 °C. The conjugate can be reused for β-glucosidic bond cleavage of cellobiose for at least four cycles without any significant loss in specific activity.

  5. Conjugated polymer/nanocrystal nanocomposites for renewable energy applications in photovoltaics and photocatalysis.

    PubMed

    Su, Yu-Wei; Lin, Wei-Hao; Hsu, Yung-Jung; Wei, Kung-Hwa

    2014-11-01

    Conjugated polymer/nanocrystal composites have attracted much attention for use in renewable energy applications because of their versatile and synergistic optical and electronic properties. Upon absorbing photons, charge separation occurs in the nanocrystals, generating electrons and holes for photocurrent flow or reduction/oxidation (redox) reactions under proper conditions. Incorporating these nanocrystals into conjugated polymers can complement the visible light absorption range of the polymers for photovoltaics applications or allow the polymers to sensitize or immobilize the nanocrystals for photocatalysis. Here, the current developments of conjugated polymer/nanocrystal nanocomposites for bulk heterojunction-type photovoltaics incorporating Cd- and Pb-based nanocrystals or quantum dots are reviewed. The effects of manipulating the organic ligands and the concentration of the nanocrystal precursor, critical factors that affect the shape and aggregation of the nanocrystals, are also discussed. In the conclusion, the mechanisms through which conjugated polymers can sensitize semiconductor nanocrystals (TiO2 , ZnO) to ensure efficient charge separation, as well as how they can support immobilized nanocrystals for use in photocatalysis, are addressed. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. A Sulfhydryl-Reactive Ruthenium (II) Complex and Its Conjugation to Protein G as a Universal Reagent for Fluorescent Immunoassays

    PubMed Central

    Goud, Thirumani Venkatshwar; Huang, Bor-Rong; Lin, Tzu-Chau; Biellmann, Jean-François; Chen, Chien-Sheng

    2012-01-01

    To develop a fluorescent ruthenium complex for biosensing, we synthesized a novel sulfhydryl-reactive compound, 4-bromophenanthroline bis-2,2′-dipyridine Ruthenium bis (hexafluorophosphate). The synthesized Ru(II) complex was crosslinked with thiol-modified protein G to form a universal reagent for fluorescent immunoassays. The resulting Ru(II)-protein G conjugates were identified by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). The emission peak wavelength of the Ru(II)-protein G conjugate was 602 nm at the excitation of 452 nm which is similar to the spectra of the Ru(II) complex, indicating that Ru(II)-protein G conjugates still remain the same fluorescence after conjugation. To test the usefulness of the conjugate for biosensing, immunoglobulin G (IgG) binding assay was conducted. The result showed that Ru(II)-protein G conjugates were capable of binding IgG and the more cross-linkers to modify protein G, the higher conjugation efficiency. To demonstrate the feasibility of Ru(II)-protein G conjugates for fluorescent immunoassays, the detection of recombinant histidine-tagged protein using the conjugates and anti-histidine antibody was developed. The results showed that the histidine-tagged protein was successfully detected with dose-response, indicating that Ru(II)-protein G conjugate is a useful universal fluorescent reagent for quantitative immunoassays. PMID:22563441

  7. pH-responsive polymer-drug conjugates as multifunctional micelles for cancer-drug delivery

    NASA Astrophysics Data System (ADS)

    Kang, Yang; Ha, Wei; Liu, Ying-Qian; Ma, Yuan; Fan, Min-Min; Ding, Li-Sheng; Zhang, Sheng; Li, Bang-Jing

    2014-08-01

    We developed a novel linear pH-sensitive conjugate methoxy poly(ethylene glycol)-4β-aminopodophyllotoxin (mPEG-NPOD-I) by a covalently linked 4β-aminopodophyllotoxin (NPOD) and PEG via imine bond, which was amphiphilic and self-assembled to micelles in an aqueous solution. The mPEG-NPOD-I micelles simultaneously served as an anticancer drug conjugate and as drug carriers. As a drug conjugate, mPEG-NPOD-I showed a significantly faster NPOD release at a mildly acidic pH of 5.0 and 4.0 than a physiological pH of 7.4. Notably, it was confirmed that this drug conjugate could efficiently deliver NPOD to the nuclei of the tumor cells and led to much more cytotoxic effects to A549, Hela, and HepG2 cancer cells than the parent NPOD. The half maximal inhibitory concentration (IC50) of mPEG-NPOD-I was about one order magnitude lower than that of the NPOD. In vivo, mPEG-NPOD-I reduced the size of the tumors significantly, and the biodistribution studies indicated that this drug conjugate could selectively accumulate in tumor tissues. As drug carriers, the mPEG-NPOD-I micelles encapsulated hydrophobic PTX with drug-loading efficiencies of 57% and drug-loading content of 16%. The loaded PTX also showed pH-triggered fast release behavior, and good additive cytotoxicity effect was observed for the PEG-NPOD-I/PTX. We are convinced that these multifunctional drug conjugate micelles have tremendous potential for targeted cancer therapy.

  8. Mannose-conjugated platinum complexes reveals effective tumor targeting mediated by glucose transporter 1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Ran; Li, Hong; Gao, Xiangqian

    Despite numerous studies that report the glucose derived glycoconjugates as antitumor candidates, using mannose as sugar motif for specific tumor targeting remains less studied. In this research, two novel mannose-conjugated platinum complexes 4a and 4b that target the Warburg effect were designed, synthesized and evaluated for their antitumor activities in vitro and in vivo. Compared with oxaliplatin, both complexes exhibited substantial enhancement in water solubility as well as excellent or comparative cytotoxicity in six human cancer cell lines. Cytotoxicity assessments on Glucose transporter 1 (GLUT1) down-regulated or overexpressed cells and platinum accumulation study demonstrated that cellular uptake of compound 4a was regulatedmore » by GLUT1. In particular, 4a induced apoptosis in HT29 cells by suppressing expression of Bcl-2 and Bcl-XL, which preliminary explained the mechanism origin of antitumor effect. As indicated by its maximum tolerated dose-finding assay and in vivo anticancer activity, compound 4a exhibits better safety and efficacy profile than oxaliplatin. The findings of this study indicate the possibility of subjecting mannose-conjugated platinum complexes as lead compounds for further preclinical evaluation. - Highlights: • Mannose-conjugated platinum complexes were designed and synthesized to target glucose transporter 1(GLUT1). • Mannose-conjugated platinum complex 4a transport across cancer cells through GLUT1. • Mannose-conjugated platinum complex 4a induce apoptosis in HT29 cells. • Mannose-conjugated platinum complex 4a antitumor activities were more potent than those of oxaliplatin.« less

  9. Inhibition of mRNA export in vertebrate cells by nuclear export signal conjugates

    PubMed Central

    Pasquinelli, Amy E.; Powers, Maureen A.; Lund, Elsebet; Forbes, Douglass; Dahlberg, James E.

    1997-01-01

    Leucine-rich nuclear export signals (NESs) are recognized by the NES receptor exportin 1 and are central to the export of multiple shuttling proteins and RNAs. The export of messenger RNA in vertebrates was, however, thought to occur by a different pathway, because inhibition by injection of a synthetic Rev NES conjugate could not be demonstrated. Here we find that peptide conjugates composed of the NES of either protein kinase A inhibitor protein (PKI) or the HIV-1 Rev protein, when coupled to human serum albumin, are potent inhibitors of mRNA and small nuclear RNA export. These results provide direct evidence that mRNA export in vertebrates depends on interactions between an NES and its cognate NES receptors. PKI NES conjugates are significantly more efficient at inhibiting RNA export than are REV NES conjugates, indicating that different NESs may have different abilities to promote protein and RNA export. Surprisingly, an expected control conjugate containing the mutant Rev NES sequence M10 strongly inhibited the export of intronless dihydrofolate reductase mRNA. Nuclear injection of NES peptide conjugates led to mislocalization to the nucleus of 10–20% of the cytoplasmic Ran GTPase-binding protein (RanBP1) indicating that RanBP1 shuttles between the nucleus and the cytoplasm via an NES pathway. These results demonstrate that in vertebrates the export of mRNA, like that of small nuclear RNA, 5S rRNA, and transport factors such as RanBP1, employs NES-mediated molecular machinery. PMID:9405623

  10. pH-responsive polymer-drug conjugates as multifunctional micelles for cancer-drug delivery.

    PubMed

    Kang, Yang; Ha, Wei; Liu, Ying-Qian; Ma, Yuan; Fan, Min-Min; Ding, Li-Sheng; Zhang, Sheng; Li, Bang-Jing

    2014-08-22

    We developed a novel linear pH-sensitive conjugate methoxy poly(ethylene glycol)-4β-aminopodophyllotoxin (mPEG-NPOD-I) by a covalently linked 4β-aminopodophyllotoxin (NPOD) and PEG via imine bond, which was amphiphilic and self-assembled to micelles in an aqueous solution. The mPEG-NPOD-I micelles simultaneously served as an anticancer drug conjugate and as drug carriers. As a drug conjugate, mPEG-NPOD-I showed a significantly faster NPOD release at a mildly acidic pH of 5.0 and 4.0 than a physiological pH of 7.4. Notably, it was confirmed that this drug conjugate could efficiently deliver NPOD to the nuclei of the tumor cells and led to much more cytotoxic effects to A549, Hela, and HepG2 cancer cells than the parent NPOD. The half maximal inhibitory concentration (IC₅₀) of mPEG-NPOD-I was about one order magnitude lower than that of the NPOD. In vivo, mPEG-NPOD-I reduced the size of the tumors significantly, and the biodistribution studies indicated that this drug conjugate could selectively accumulate in tumor tissues. As drug carriers, the mPEG-NPOD-I micelles encapsulated hydrophobic PTX with drug-loading efficiencies of 57% and drug-loading content of 16%. The loaded PTX also showed pH-triggered fast release behavior, and good additive cytotoxicity effect was observed for the PEG-NPOD-I/PTX. We are convinced that these multifunctional drug conjugate micelles have tremendous potential for targeted cancer therapy.

  11. Compositions for directed alignment of conjugated polymers

    DOEpatents

    Kim, Jinsang; Kim, Bong-Gi; Jeong, Eun Jeong

    2016-04-19

    Conjugated polymers (CPs) achieve directed alignment along an applied flow field and a dichroic ratio of as high as 16.67 in emission from well-aligned thin films and fully realized anisotropic optoelectronic properties of CPs in field-effect transistor (FET).

  12. Optimal conjugation of catechol group onto hyaluronic acid in coronary stent substrate coating for the prevention of restenosis.

    PubMed

    Lih, Eugene; Choi, Seul Gi; Ahn, Dong June; Joung, Yoon Ki; Han, Dong Keun

    2016-01-01

    Although endovascular stenting has been used as an interventional therapy to treat cardio- and cerebro-vascular diseases, it is associated with recurrent vascular diseases following stent thrombosis and in-stent restenosis. In this study, a metallic stent was coated with dopamine-conjugated hyaluronic acid with different ratios of catechol group to improve hemocompatibility and re-endothelialization. Especially, we were interested in how much amount of catechol group is appropriate for the above-mentioned purposes. Therefore, a series of dopamine-conjugated hyaluronic acid conjugates with different ratios of catechol group were synthesized via a carbodiimide coupling reaction. Dopamine-conjugated hyaluronic acid conjugates were characterized with 1 H-nuclear magnetic resonance and Fourier transform infrared spectroscopy, and the amount of catechol group in dopamine-conjugated hyaluronic acid was measured by ultraviolet spectrometer. Co-Cr substrates were polished and coated with various dopamine-conjugated hyaluronic acid conjugates under pH 8.5. Dopamine-conjugated hyaluronic acid amounts on the substrate were quantified by micro-bicinchoninic acid assay. Surface characteristics of dopamine-conjugated hyaluronic-acid-coated Co-Cr were evaluated by water contact angle, scanning electron microscopy, and atomic force microscopy. The hemocompatibility of the surface-modified substrates was assessed by protein adsorption and platelet adhesion tests. Adhesion and activation of platelets were confirmed with scanning electron microscopy and lactate dehydrogenase assay. Human umbilical vein endothelial cells were cultured on the substrates, and the viability, adhesion, and proliferation were investigated through cell counting kit-8 assay and fluorescent images. Obtained results demonstrated that optimal amounts of catechol group (100 µmol) in the dopamine-conjugated hyaluronic acid existed in terms of various properties such as hemocompatibility and cellular responses.

  13. Synthesis of minoxidil conjugates and their evaluation as HL-60 differentiation agents.

    PubMed

    Stoica, Sonia; Magoulas, George E; Antoniou, Antonia I; Suleiman, Sherif; Cassar, Analisse; Gatt, Lucienne; Papaioannou, Dionissios; Athanassopoulos, Constantinos M; Schembri-Wismayer, Pierre

    2016-02-15

    Activation of minoxidil (MNX) with N,N'-carbonyldiimidazole and coupling with natural polyamines (PAs) and commercially available aliphatic or aromatic amines provided a series of new conjugates which were evaluated for their ability to induce differentiation to HL-60 acute myeloid leukemia cancer cells, using a modified NBTZ reduction test. Although neither MNX nor 4,4'-methylenedianiline (MDA) or 2,7-diaminofluorene (DAF), alone or in combination, had any effect, the MNX-spermine (SPM) conjugate (11) and the conjugates 7 and 8 of MNX with MDA and DAF exhibited a differentiation-inducing effect at a concentration of 10 μM without being toxic on proliferating human peripheral blood mononuclear cells. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Conjugated ionomers for photovoltaic applications: electric field driven charge separation in organic photovoltaics. Final Technical report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lonergan, Mark

    Final technical report for Conjugated ionomers for photovoltaic applications, electric field driven charge separation in organic photovoltaics. The central goal of the work we completed was been to understand the photochemical and photovoltaic properties of ionically functionalized conjugated polymers (conjugated ionomers or polyelectrolytes) and energy conversion systems based on them. We primarily studied two classes of conjugated polymer interfaces that we developed based either upon undoped conjugated polymers with an asymmetry in ionic composition (the ionic junction) or doped conjugated polymers with an asymmetry in doping type (the p-n junction). The materials used for these studies have primarily been themore » polyacetylene ionomers. We completed a detailed study of p-n junctions with systematically varying dopant density, photochemical creation of doped junctions, and experimental and theoretical work on charge transport and injection in polyacetylene ionomers. We have also completed related work on the use of conjugated ionomers as interlayers that improve the efficiency or organic photovoltaic systems and studied several important aspects of the chemistry of ionically functionalized semiconductors, including mechanisms of so-called "anion-doping", the formation of charge transfer complexes with oxygen, and the synthesis of new polyfluorene polyelectrolytes. We also worked worked with the Haley group at the University of Oregon on new indenofluorene-based organic acceptors.« less

  15. DNA sequence-selective C8-linked pyrrolobenzodiazepine-heterocyclic polyamide conjugates show anti-tubercular-specific activities.

    PubMed

    Brucoli, Federico; Guzman, Juan D; Basher, Mohammad A; Evangelopoulos, Dimitrios; McMahon, Eleanor; Munshi, Tulika; McHugh, Timothy D; Fox, Keith R; Bhakta, Sanjib

    2016-12-01

    New chemotherapeutic agents with novel mechanisms of action are in urgent need to combat the tuberculosis pandemic. A library of 12 C8-linked pyrrolo[2,1-c][1,4]benzodiazepine (PBD)-heterocyclic polyamide conjugates (1-12) was evaluated for anti-tubercular activity and DNA sequence selectivity. The PBD conjugates were screened against slow-growing Mycobacterium bovis Bacillus Calmette-Guérin and M. tuberculosis H 37 Rv, and fast-growing Escherichia coli, Pseudomonas putida and Rhodococcus sp. RHA1 bacteria. DNase I footprinting and DNA thermal denaturation experiments were used to determine the molecules' DNA recognition properties. The PBD conjugates were highly selective for the mycobacterial strains and exhibited significant growth inhibitory activity against the pathogenic M. tuberculosis H 37 Rv, with compound 4 showing MIC values (MIC=0.08 mg l -1 ) similar to those of rifampin and isoniazid. DNase I footprinting results showed that the PBD conjugates with three heterocyclic moieties had enhanced sequence selectivity and produced larger footprints, with distinct cleavage patterns compared with the two-heterocyclic chain PBD conjugates. DNA melting experiments indicated a covalent binding of the PBD conjugates to two AT-rich DNA-duplexes containing either a central GGATCC or GTATAC sequence, and showed that the polyamide chains affect the interactions of the molecules with DNA. The PBD-C8 conjugates tested in this study have a remarkable anti-mycobacterial activity and can be further developed as DNA-targeted anti-tubercular drugs.

  16. Diastereoselective and enantioselective conjugate addition reactions utilizing α,β-unsaturated amides and lactams

    PubMed Central

    2015-01-01

    Summary The conjugate addition reaction has been a useful tool in the formation of carbon–carbon bonds. The utility of this reaction has been demonstrated in the synthesis of many natural products, materials, and pharmacological agents. In the last three decades, there has been a significant increase in the development of asymmetric variants of this reaction. Unfortunately, conjugate addition reactions using α,β-unsaturated amides and lactams remain underdeveloped due to their inherently low reactivity. This review highlights the work that has been done on both diastereoselective and enantioselective conjugate addition reactions utilizing α,β-unsaturated amides and lactams. PMID:25977728

  17. Synthesis of polycyclic aromatic hydrocarbon-protein conjugates for preparation and immunoassay of antibodies.

    PubMed

    Glushkov, Andrey N; Kostyanko, Mikhail V; Cherno, Sergey V; Vasilchenko, Ilya L

    2002-04-01

    The method is described dealing with the synthesis of conjugates protein-polycyclic aromatic hydrocarbons (PAHs), highly soluble in water, stable without special stabilizers and containing the minimum quantity of cross-linked products. The reaction of protein with PAH containing an aldehyde group, has been carried out in an alkaline solution, and stabilization of the conjugate has been achieved by reduction with sodium borohydride in the presence of a compound blocking the formation of an insoluble polymeric fraction. The efficiency of synthesized conjugates for the induction and immunoassay of Abs to PAH for benzo[a]pyrene is shown.

  18. Photogeneration of Charge Carriers in Bilayer Assemblies of Conjugated Rigid-Rod Polymers

    DTIC Science & Technology

    1994-07-08

    photoinduced electron transfer and exciplex formation at the bilayer interface. Thus photocarrier generation on photoexcitation of the conjugated rigid...rod polymers in the bilayer occurs by photoinduced electron transfer, forming intermolecular exciplexes which dissociate efficiently in electric field...photogeneration, conjugated rigid-rod polymers, is. MACI COD bilayer assemblies, electron transfer, exciplexes . 11. SEOJUTY CLASUICA 10. 51(11MIE CLASSIMIAVION

  19. Iminoboronate Formation Leads to Fast and Reversible Conjugation Chemistry of α-Nucleophiles at Neutral pH

    PubMed Central

    Bandyopadhyay, Anupam

    2015-01-01

    Bioorthogonal reactions that are fast and reversible under physiologic conditions are in high demand for biological applications. Herein, we show that an ortho boronic acid substituent makes aryl ketones to rapidly conjugate with α-nucleophiles at neutral pH. Specifically, 2-acetylphenylboronic acid and derivatives were found to conjugate with phenylhydrazine with rate constants of 102 to 103 M−1 s−1, comparable to the fastest bioorthogonal conjugations known to date. 11B-NMR analysis reveals varied extent of iminoboronate formation of the conjugates, in which the imine nitrogen forms a dative bond with boron. The iminoboronate formation activates the imines for hydrolysis and exchange, rendering these oxime/hydrazone conjugations reversible and dynamic under physiologic conditions. The fast and dynamic nature of the iminoboronate chemistry should find wide applications in biology. PMID:26311464

  20. The pH-dependent and enzymatic release of cytarabine from hydrophilic polymer conjugates.

    PubMed

    Pola, R; Janoušková, O; Etrych, T

    2016-10-20

    Cytarabine is one of the most efficient drugs in the treatment of hematological malignancies. In this work, we describe the synthesis and characterization of two different polymer conjugates of cytarabine that were designed for the controlled release of cytarabine within the leukemia cells. Reactive copolymers of N-(2-hydroxypropyl)methacrylamide (HPMA) and 3-(3-methacrylamidopropa-noyl)thiazolidine-2-thione) or 3-(Nmethacryloylglycyl-phenylalanylleucylglycyl)thiazolidine-2-thione were used in the study as reactive polymer precursors for reaction with cytarabine. The enzymatic release of cytarabine from the conjugate containing a GFLG spacer utilizing cathepsin B was verified. In addition to enzymolysis, the pH-dependent hydrolysis of cytarabine from both copolymers was also confirmed. Approximately 40 % and 20 % of the drug was released by spontaneous hydrolysis at pH 7.4 within 72 h from the polymer conjugates with the GFLG and beta-Ala spacers, respectively. At pH 6.0, the spontaneous hydrolysis slowed down, and less than 10 % of the drug was liberated within 72 h. The results of the cytotoxicity evaluation of the polymer conjugates in vitro against various cell lines showed that the cytotoxicity of the polymer conjugates is approximately three times lower in comparison to free cytarabine.

  1. Metallo-Phthalocyanine Near-IR Fluorophores: Oligonucleotide Conjugates and Their Applications in PCR Assays

    PubMed Central

    Nesterova, Irina V.; Verdree, Vera T.; Pakhomov, Serhii; Strickler, Karen L.; Allen, Michael W.; Hammer, Robert P.; Soper, Steven A.

    2011-01-01

    Water soluble, metallo-pthalocyanine (MPc) near-IR fluorophores were designed, synthesized, and evaluated as highly stable and sensitive reporters for fluorescence assays. Their conjugation to oligonucleotides was achieved via succinimidyl ester-amino coupling chemistry with the conditions for conjugation extensively examined and optimized. In addition, various conjugate purification and isolation techniques were evaluated as well. Results showed that under proper conditions and following purification using reverse-phase ion-pair chromatography, labeling efficiencies near 80% could be achieved using ZnPc (Zn phthalocyanine) as the labeling fluorophore. Absorption and fluorescence spectra accumulated for the conjugates indicated that the intrinsic fluorescence properties of the MPc’s were not significantly altered by covalent attachment to oligonucleotides. As an example of the utility of MPc reporters, we used the MPc–oligonucleotide conjugates as primers for PCR (polymerase chain reaction) amplifications with the products sorted via electrophoresis and detected using near-IR fluorescence (λex = 680 nm). The MPc dyes were found to be more chemically stable under typical thermal cycling conditions used for PCR compared to the carbocyanine-based near-IR reporter systems typically used and produced single and narrow bands in the electrophoretic traces, indicative of producing a single PCR product during amplification. PMID:18030995

  2. Controlled Supramolecular Self-Assembly of Super-charged β-Lactoglobulin A-PEG Conjugates into Nanocapsules.

    PubMed

    Khan, Amit Kumar; Gudlur, Sushanth; de Hoog, Hans-Peter M; Siti, Winna; Liedberg, Bo; Nallani, Madhavan

    2017-09-18

    The synthesis and characterization of a new protein-polymer conjugate composed of β lactoglobulin A (βLG A) and poly(ethylene glycol) PEG is described. βLG A was selectively modified to self-assemble by super-charging via amination or succinylation followed by conjugation with PEG. An equimolar mixture of the oppositely charged protein-polymer conjugates self-assemble into spherical capsules of 80-100 nm in diameter. The self-assembly proceeds by taking simultaneous advantage of the amphiphilicity and polyelectrolyte nature of the protein-polymer conjugate. These protein-polymer capsules or proteinosomes are reminiscent of protein capsids, and are capable of encapsulating solutes in their interior. We envisage this approach to be applicable to other globular proteins. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Quantitation and immunocytochemical localization of ubiquitin conjugates within rat red and white skeletal muscles

    NASA Technical Reports Server (NTRS)

    Riley, Danny A.; Bain, James L. W.; Haas, Arthur L.; Ellis, Stanley

    1988-01-01

    Solid-phase immunochemical methods were employed to probe the dynamics of ubiquitin pools within selected rat skeletal muscles. The total ubiquitin content of red muscles was greater than that of white muscles, even though the fractional conjugation was similar for both types of muscles. The specificity for conjugated ubiquitin in solid-phase applications, previously demonstrated for an affinity-purified antibody against SDS-denatured ubiquitin, was retained when used as a probe for ubiquitin-protein adducts in tissue sections. Immunohistochemical localization revealed that differences in ubiquitin pools derived from the relative content of red (oxidative) vs white (glycolytic) fibers, with the former exhibiting a higher content of ubiquitin conjugates. Subsequent immunogold labeling demonstrated statistically significant enhanced localization of ubiquitin conjugates to the Z-lines in both red and white muscle fiber types.

  4. Differences between the endocytosis of horseradish peroxidase and its conjugate with wheat germ agglutinin by cultured fibroblasts.

    PubMed

    Stieber, A; Gonatas, J O; Gonatas, N K

    1984-04-01

    A covalent conjugate of wheat germ agglutinin (WGA) with horseradish peroxidase (HRP) was used for a morphologic study of its adsorptive endocytosis by cultured human fibroblasts. Initial binding at 4 degrees C of the conjugate was observed over the entire plasma membrane, including "coated" and smooth pits. Endocytosis of HRP and the WGA-HRP conjugate was observed in lysosomes, but only the conjugate was seen in a cisterna of the Golgi apparatus (GERL), and in adjacent coated vesicles.

  5. Brain-Eating Amoebae: Silver Nanoparticle Conjugation Enhanced Efficacy of Anti-Amoebic Drugs against Naegleria fowleri.

    PubMed

    Rajendran, Kavitha; Anwar, Ayaz; Khan, Naveed Ahmed; Siddiqui, Ruqaiyyah

    2017-12-20

    The overall aim of this study was to determine whether conjugation with silver nanoparticles enhances effects of available drugs against primary amoebic meningoencephalitis due to Naegleria fowleri. Amphotericin B, Nystatin, and Fluconazole were conjugated with silver nanoparticles, and synthesis was confirmed using UV-visible spectrophotometry. Atomic force microscopy determined their size in range of 20-100 nm. To determine amoebicidal effects, N. fowleri were incubated with drugs-conjugated silver nanoparticles, silver nanoparticles alone, and drugs alone. The findings revealed that silver nanoparticles conjugation significantly enhanced antiamoebic effects of Nystatin and Amphotericin B but not Fluconazole at micromolar concentrations, compared with the drugs alone. For the first time, our findings showed that silver nanoparticle conjugation enhances efficacy of antiamoebic drugs against N. fowleri. Given the rarity of the disease and challenges in developing new drugs, it is hoped that modifying existing drugs to enhance their antiamoebic effects is a useful avenue that holds promise in improving the treatment of brain-eating amoebae infection due to N. fowleri.

  6. The multigrid preconditioned conjugate gradient method

    NASA Technical Reports Server (NTRS)

    Tatebe, Osamu

    1993-01-01

    A multigrid preconditioned conjugate gradient method (MGCG method), which uses the multigrid method as a preconditioner of the PCG method, is proposed. The multigrid method has inherent high parallelism and improves convergence of long wavelength components, which is important in iterative methods. By using this method as a preconditioner of the PCG method, an efficient method with high parallelism and fast convergence is obtained. First, it is considered a necessary condition of the multigrid preconditioner in order to satisfy requirements of a preconditioner of the PCG method. Next numerical experiments show a behavior of the MGCG method and that the MGCG method is superior to both the ICCG method and the multigrid method in point of fast convergence and high parallelism. This fast convergence is understood in terms of the eigenvalue analysis of the preconditioned matrix. From this observation of the multigrid preconditioner, it is realized that the MGCG method converges in very few iterations and the multigrid preconditioner is a desirable preconditioner of the conjugate gradient method.

  7. Anticancer activity of fungal L-asparaginase conjugated with zinc oxide nanoparticles.

    PubMed

    Baskar, G; Chandhuru, J; Sheraz Fahad, K; Praveen, A S; Chamundeeswari, M; Muthukumar, T

    2015-01-01

    Demand for developing novel delivery system for cancer treatment has increased due to the side effects present in intravenous injection of L-asparaginase. Nanoparticles are used for delivering the drugs to its destination in cancer cure. Nanobiocomposite of zinc oxide nanoparticles conjugated with L-asparaginase was produced by Aspergillus terreus and was confirmed using maximum UV-Vis absorption at 340 nm in the present work. The presence of functional groups like OH, C-H, -C=N and C=O on the surface of nanobiocomposite was found from Fourier transform infrared spectrum analysis. Size of the produced nanocomposite was found in the range of 28-63 nm using scanning electron microscope. The crystalline nature of the synthesized nanobiocomposites was confirmed by X-ray diffraction analysis. The presence of zinc oxide on synthesized nanobiocomposite was confirmed by energy dispersive spectrum analysis. The anti-cancerous nature of the synthesized zinc oxide conjugated L-asparaginase nanobiocomposite on MCF-7 cell line was studied using MTT assay. The viability of the MCF-7 cells was decreased to 35.02 % when it was treated with L-asparaginase conjugated zinc oxide nanobiocomposite. Hence it is proved that the synthesized nanobiocomposites of zinc oxide conjugated L-asparaginase has good anti-cancerous activity.

  8. Comparative cost effectiveness of varicella, hepatitis A, and pneumococcal conjugate vaccines.

    PubMed

    Jacobs, R J; Meyerhoff, A S

    2001-12-01

    Several state and local U.S. governments are considering making varicella, hepatitis A, and/or pneumococcal conjugate vaccination conditions of day care or school entry. These requirements will likely be issued sequentially, because simultaneous mandates exacerbate budget constraints and complicate communication with parents and providers. Cost-effectiveness assessments should aid the establishment of vaccination priorities, but comparing results of published studies is confounded by their dissimilar methods. We reviewed U.S. cost-effectiveness studies of childhood varicella, hepatitis A, and pneumococcal conjugate vaccines and identified four providing data required to standardize methods. Vaccination, disease treatment, and work-loss costs were estimated from original study results and current prices. Estimated life-years saved were derived from original study results, epidemiological evidence, and alternative procedures for discounting to present values. Hepatitis A vaccine would have the lowest health system costs per life-year saved. Varicella vaccine would provide the greatest reduction in societal costs, mainly through reduced parent work loss. Pneumococcal conjugate vaccine would cost twice the amount of varicella and hepatitis A vaccines combined and be less cost effective than the other vaccines. Hepatitis A and varicella vaccines, but not pneumococcal conjugate vaccine, meet or exceed conventional standards of cost effectiveness. Copyright 2001 American Health Foundation and Elsevier Science.

  9. Diazobenzene-containing conjugated polymers as dark quenchers.

    PubMed

    Wu, Jiatao; Tan, Ying; Xie, Yonghua; Wu, Yi; Zhao, Rui; Jiang, Yuyang; Tan, Chunyan

    2013-12-18

    The synthesis and photophysical characterization of new conjugated polymers (CPs) with alternating phenylethynylene and diazobenzene (azo-PPE) units were reported, which showed broadened absorption and no measurable fluorescence. Quenching studies showed that azo-PPEs displayed high efficiency over a wide wavelength range.

  10. Controlled gas-liquid interfacial plasmas for synthesis of nano-bio-carbon conjugate materials

    NASA Astrophysics Data System (ADS)

    Kaneko, Toshiro; Hatakeyama, Rikizo

    2018-01-01

    Plasmas generated in contact with a liquid have been recognized to be a novel reactive field in nano-bio-carbon conjugate creation because several new chemical reactions have been yielded at the gas-liquid interface, which were induced by the physical dynamics of non-equilibrium plasmas. One is the ion irradiation to a liquid, which caused the spatially selective dissociation of the liquid and the generation of additive reducing and oxidizing agents, resulting in the spatially controlled synthesis of nanostructures. The other is the electron irradiation to a liquid, which directly enhanced the reduction action at the plasma-liquid interface, resulting in temporally controlled nanomaterial synthesis. Using this novel reaction field, gold nanoparticles with controlled interparticle distance were synthesized using carbon nanotubes as a template. Furthermore, nanoparticle-biomolecule conjugates and nanocarbon-biomolecule conjugates were successfully synthesized by an aqueous-solution contact plasma and an electrolyte plasma, respectively, which were rapid and low-damage processes suitable for nano-bio-carbon conjugate materials.

  11. Fatty acid conjugation enhances the activities of antimicrobial peptides.

    PubMed

    Li, Zhining; Yuan, Penghui; Xing, Meng; He, Zhumei; Dong, Chuanfu; Cao, Yongchang; Liu, Qiuyun

    2013-04-01

    Antimicrobial peptides are small molecules that play a crucial role in innate immunity in multi-cellular organisms, and usually expressed and secreted constantly at basal levels to prevent infection, but local production can be augmented upon an infection. The clock is ticking as rising antibiotic abuse has led to the emergence of many drug resistance bacteria. Due to their broad spectrum antibiotic and antifungal activities as well as anti-viral and anti-tumor activities, efforts are being made to develop antimicrobial peptides into future microbial agents. This article describes some of the recent patents on antimicrobial peptides with fatty acid conjugation. Potency and selectivity of antimicrobial peptide can be modulated with fatty acid tails of variable length. Interaction between membranes and antimicrobial peptides was affected by fatty acid conjugation. At concentrations above the critical miscelle concentration (CMC), propensity of solution selfassembly hampered binding of the peptide to cell membranes. Overall, fatty acid conjugation has enhanced the activities of antimicrobial peptides, and occasionally it rendered inactive antimicrobial peptides to be bioactive. Antimicrobial peptides can not only be used as medicine but also as food additives.

  12. Covalent protein-oligonucleotide conjugates by copper-free click reaction

    PubMed Central

    Khatwani, Santoshkumar L.; Mullen, Daniel G.; Hast, Michael A.; Beese, Lorena S.; Distefano, Mark D.; Taton, T. Andrew

    2013-01-01

    Covalent protein-oligodeoxynucleotide (protein-ODN) conjugates are useful in a number of biological applications, but synthesizing discrete conjugates—where the connection between the two components is at a defined location in both the protein and the ODN—under mild conditions with significant yield can be a challenge. In this article, we demonstrate a strategy for synthesizing discrete protein-ODN conjugates using strain-promoted azide-alkyne [3+2] cycloaddition (SPAAC, a copper-free “click” reaction). Azide-functionalized proteins, prepared by enzymatic prenylation of C-terminal CVIA tags with synthetic azidoprenyl diphosphates, were “clicked” to ODNs that had been modified with a strained dibenzocyclooctyne (DIBO-ODN). The resulting protein-ODN conjugates were purified and characterized by size-exclusion chromatography and gel electrophoresis. We find that the yields and reaction times of the SPAAC bioconjugation reactions are comparable to those previously reported for copper-catalyzed azide-alkyne [3+2] cycloaddition (CuAAC) bioconjugation, but require no catalyst. The same SPAAC chemistry was used to immobilize azide-modified proteins onto surfaces, using surface-bound DIBO-ODN as a heterobifunctional linker. Cu-free click bioconjugation of proteins to ODNs is a simple and versatile alternative to Cu-catalyzed click methods. PMID:22682299

  13. Development and characterization of glutathione-conjugated albumin nanoparticles for improved brain delivery of hydrophilic fluorescent marker.

    PubMed

    Patel, Prerak J; Acharya, Niyati S; Acharya, Sanjeev R

    2013-01-01

    The glutathione-conjugated bovine serum albumin (BSA) nanoparticles were constructed in the present exploration as a novel biodegradable carrier for brain-specific drug delivery with evaluation of its in vitro and in vivo delivery properties. BSA nanocarriers were activated and conjugated to the distal amine functions of the glutathione via carbodiimide chemistry using EDAC as a mediator. These nanoparticles were characterized for particle shape, average size, SPAN value, drug entrapment and in vitro drug release. Further, presence of glutathione on the surface of BSA nanoparticles was confirmed by Ellman's assay, which has suggested that approximately 750 units of glutathione were conjugated per BSA nanoparticle. To evaluate the brain delivery properties of the glutathione-conjugated BSA nanoparticles fluorescein sodium was used as a model hydrophilic compound. Permeability and neuronal uptake properties of developed formulations were evaluated against the MDCK-MDR1 endothelial and neuro-glial cells, respectively. The permeability of glutathione-conjugated BSA nanoparticles across the monolayer of MDCK-MDR1 endothelial tight junction was shown significantly higher than that of unconjugated nanoparticles and fluorescein sodium solution. Similarly, glutathione-conjugated nanoparticles exhibited considerably higher uptake by neuro-glial cells which was inferred by high fluorescence intensity under microscope in comparison to unconjugated nanoparticles and fluorescein sodium solution. Following an intravenous administration, nearly three folds higher fluorescein sodium was carried to the rat brain by glutathione-conjugated nanoparticles as compared to unconjugated nanoparticles. The significant in vitro and in vivo results suggest that glutathione-conjugated BSA nanoparticles is a promising brain drug delivery system with low toxicity.

  14. All solid-state SBS phase conjugate mirror

    DOEpatents

    Dane, Clifford B.; Hackel, Lloyd A.

    1999-01-01

    A stimulated Brillouin scattering (SBS) phase conjugate laser mirror uses a solid-state nonlinear gain medium instead of the conventional liquid or high pressure gas medium. The concept has been effectively demonstrated using common optical-grade fused silica. An energy threshold of 2.5 mJ and a slope efficiency of over 90% were achieved, resulting in an overall energy reflectivity of >80% for 15 ns, 1 um laser pulses. The use of solid-state materials is enabled by a multi-pass resonant architecture which suppresses transient fluctuations that would otherwise result in damage to the SBS medium. This all solid state phase conjugator is safer, more reliable, and more easily manufactured than prior art designs. It allows nonlinear wavefront correction to be implemented in industrial and defense laser systems whose operating environments would preclude the introduction of potentially hazardous liquids or high pressure gases.

  15. All solid-state SBS phase conjugate mirror

    DOEpatents

    Dane, C.B.; Hackel, L.A.

    1999-03-09

    A stimulated Brillouin scattering (SBS) phase conjugate laser mirror uses a solid-state nonlinear gain medium instead of the conventional liquid or high pressure gas medium. The concept has been effectively demonstrated using common optical-grade fused silica. An energy threshold of 2.5 mJ and a slope efficiency of over 90% were achieved, resulting in an overall energy reflectivity of >80% for 15 ns, 1 um laser pulses. The use of solid-state materials is enabled by a multi-pass resonant architecture which suppresses transient fluctuations that would otherwise result in damage to the SBS medium. This all solid state phase conjugator is safer, more reliable, and more easily manufactured than prior art designs. It allows nonlinear wavefront correction to be implemented in industrial and defense laser systems whose operating environments would preclude the introduction of potentially hazardous liquids or high pressure gases. 8 figs.

  16. Computational selection of antibody-drug conjugate targets for breast cancer

    PubMed Central

    Fauteux, François; Hill, Jennifer J.; Jaramillo, Maria L.; Pan, Youlian; Phan, Sieu; Famili, Fazel; O'Connor-McCourt, Maureen

    2016-01-01

    The selection of therapeutic targets is a critical aspect of antibody-drug conjugate research and development. In this study, we applied computational methods to select candidate targets overexpressed in three major breast cancer subtypes as compared with a range of vital organs and tissues. Microarray data corresponding to over 8,000 tissue samples were collected from the public domain. Breast cancer samples were classified into molecular subtypes using an iterative ensemble approach combining six classification algorithms and three feature selection techniques, including a novel kernel density-based method. This feature selection method was used in conjunction with differential expression and subcellular localization information to assemble a primary list of targets. A total of 50 cell membrane targets were identified, including one target for which an antibody-drug conjugate is in clinical use, and six targets for which antibody-drug conjugates are in clinical trials for the treatment of breast cancer and other solid tumors. In addition, 50 extracellular proteins were identified as potential targets for non-internalizing strategies and alternative modalities. Candidate targets linked with the epithelial-to-mesenchymal transition were identified by analyzing differential gene expression in epithelial and mesenchymal tumor-derived cell lines. Overall, these results show that mining human gene expression data has the power to select and prioritize breast cancer antibody-drug conjugate targets, and the potential to lead to new and more effective cancer therapeutics. PMID:26700623

  17. Synthesis, characterisation and biomedical applications of curcumin conjugated chitosan microspheres.

    PubMed

    Saranya, T S; Rajan, V K; Biswas, Raja; Jayakumar, R; Sathianarayanan, S

    2018-04-15

    Curcumin is a diaryl heptanoid of curcuminoids class obtained from Curcuma longa. It possesses various biological activities like anti-inflammatory, hypoglycemic, antioxidant, wound-healing, and antimicrobial activities. Chitosan is a biocompatible, biodegradable and non-toxic natural polymer which enhances the adhesive property of the skin. Chemical conjugation will leads to sustained release action and to enhance the bioavailability. This study aims to synthesis and characterize biocompatible curcumin conjugated chitosan microspheres for bio-medical applications. The Schiff base reaction was carried out for the preparation of curcumin conjugated chitosan by microwave method and it was characterised using FTIR and NMR. Curcumin conjugated chitosan microspheres (CCCMs) were prepared by wet milling solvent evaporation method. SEM analysis showed these CCCMs were 2-5μm spherical particles. The antibacterial activities of the prepared CCCMs were studied against Staphylococcus aureus and Escherichia coli, the zone of inhibition was 28mm and 23mm respectively. Antioxidant activity of the prepared CCCMs was also studied by DPPH and H 2 O 2 method it showed IC 50 esteem value of 216μg/ml and 228μg/ml, and anti-inflammatory activity results showed that CCCMs having IC 50 value of 45μg/ml. The results conclude that the CCCMs having a good antibacterial, antioxidant and anti-inflammatory activities. This, the prepared CCCMs have potential application in preventing skin infections. Copyright © 2017. Published by Elsevier B.V.

  18. Factors affecting conjugated linoleic acid content in milk and meat.

    PubMed

    Dhiman, Tilak R; Nam, Seung-Hee; Ure, Amy L

    2005-01-01

    Conjugated linoleic acid (CLA) has been recently studied mainly because of its potential in protecting against cancer, atherogenesis, and diabetes. Conjugated linoleic acid (CLA) is a collective term for a series of conjugated dienoic positional and geometrical isomers of linoleic acid, which are found in relative abundance in milk and tissue fat of ruminants compared with other foods. The cis-9, trans-11 isomer is the principle dietary form of CLA found in ruminant products and is produced by partial ruminal biohydrogenation of linoleic acid or by endogenous synthesis in the tissues themselves. The CLA content in milk and meat is affected by several factors, such as animal's breed, age, diet, and management factors related to feed supplements affecting the diet. Conjugated linoleic acid in milk or meat has been shown to be a stable compound under normal cooking and storage conditions. Total CLA content in milk or dairy products ranges from 0.34 to 1.07% of total fat. Total CLA content in raw or processed beef ranges from 0.12 to 0.68% of total fat. It is currently estimated that the average adult consumes only one third to one half of the amount of CLA that has been shown to reduce cancer in animal studies. For this reason, increasing the CLA contents of milk and meat has the potential to raise the nutritive and therapeutic values of dairy products and meat.

  19. Self-assembly of conjugated oligomers and polymers at the interface: structure and properties.

    PubMed

    Xu, Lirong; Yang, Liu; Lei, Shengbin

    2012-08-07

    In this review, we give a brief account on the recent scanning tunneling microscopy investigation of interfacial structures and properties of π-conjugated semiconducting oligomers and polymers, either at the solid-air (including solid-vacuum) or at the solid-liquid interface. The structural aspects of the self-assembly of both oligomers and polymers are highlighted. Conjugated oligomers can form well ordered supramolecular assemblies either at the air-solid or liquid-solid interface, thanks to the relatively high mobility and structural uniformity in comparison with polymers. The backbone structure, substitution of side chains and functional groups can affect the assembling behavior significantly, which offers the opportunity to tune the supramolecular structure of these conjugated oligomers at the interface. For conjugated polymers, the large molecular weight limits the mobility on the surface and the distribution in size also prevents the formation of long range ordered supramolecular assembly. The submolecular resolution obtained on the assembling monolayers enables a detailed investigation of the chain folding at the interface, both the structural details and the effect on electronic properties. Besides the ability in studying the assembling structures at the interfaces, STM also provides a reasonable way to evaluate the distribution of the molecular weight of conjugated polymers by statistic of the contour length of the adsorbed polymer chains. Both conjugated oligomers and polymers can form composite assemblies with other materials. The ordered assembly of oligomers can act as a template to controllably disperse other molecules such as coronene or fullerene. These investigations open a new avenue to fine tune the assembling structure at the interface and in turn the properties of the composite materials. To summarize scanning tunneling microscopy has demonstrated its surprising ability in the investigation of the assembling structures and properties of

  20. 2-(Maleimidomethyl)-1,3-Dioxanes (MD): a Serum-Stable Self-hydrolysable Hydrophilic Alternative to Classical Maleimide Conjugation

    NASA Astrophysics Data System (ADS)

    Dovgan, Igor; Kolodych, Sergii; Koniev, Oleksandr; Wagner, Alain

    2016-08-01

    The vast majority of antibody-drug conjugates (ADC) are prepared through amine-to-thiol conjugation. To date, N-Succinimidyl-4-(maleimidomethyl) cyclohexanecarboxylate (SMCC) has been one of the most frequently applied reagents for the preparation of ADC and other functional conjugates. However, SMCC-based conjugates suffer from limited stability in blood circulation and from a hydrophobic character of the linker, which may give rise to major pharmacokinetic implications. To address this issue, we have developed a heterobifunctional analogue of a SMCC reagent, i.e., sodium 4-(maleimidomethyl)-1,3-dioxane-5-carbonyl)oxy)-2,3,5,6- tetrafluorobenzenesulfonate (MDTF) for amine-to-thiol conjugation. By replacing the cyclohexyl ring in the SMCC structure with the 1,3-dioxane, we increased the hydrophilicity of the linker. A FRET probe based on MD linker was prepared and showed superior stability compared to the MCC linker in human plasma, as well as in a variety of aqueous buffers. A detailed investigation demonstrated an accelerated succinimide ring opening for MD linker, resulting in stabilized conjugates. Finally, the MDTF reagent was applied for the preparation of serum stable antibody-dye conjugate.