Science.gov

Sample records for consciousness related neural

  1. Cortical Neural Synchronization Underlies Primary Visual Consciousness of Qualia: Evidence from Event-Related Potentials

    PubMed Central

    Babiloni, Claudio; Marzano, Nicola; Soricelli, Andrea; Cordone, Susanna; Millán-Calenti, José Carlos; Del Percio, Claudio; Buján, Ana

    2016-01-01

    This article reviews three experiments on event-related potentials (ERPs) testing the hypothesis that primary visual consciousness (stimulus self-report) is related to enhanced cortical neural synchronization as a function of stimulus features. ERP peak latency and sources were compared between “seen” trials and “not seen” trials, respectively related and unrelated to the primary visual consciousness. Three salient features of visual stimuli were considered (visuospatial, emotional face expression, and written words). Results showed the typical visual ERP components in both “seen” and “not seen” trials. There was no statistical difference in the ERP peak latencies between the “seen” and “not seen” trials, suggesting a similar timing of the cortical neural synchronization regardless the primary visual consciousness. In contrast, ERP sources showed differences between “seen” and “not seen” trials. For the visuospatial stimuli, the primary consciousness was related to higher activity in dorsal occipital and parietal sources at about 400 ms post-stimulus. For the emotional face expressions, there was greater activity in parietal and frontal sources at about 180 ms post-stimulus. For the written letters, there was higher activity in occipital, parietal and temporal sources at about 230 ms post-stimulus. These results hint that primary visual consciousness is associated with an enhanced cortical neural synchronization having entirely different spatiotemporal characteristics as a function of the features of the visual stimuli and possibly, the relative qualia (i.e., visuospatial, face expression, and words). In this framework, the dorsal visual stream may be synchronized in association with the primary consciousness of visuospatial and emotional face contents. Analogously, both dorsal and ventral visual streams may be synchronized in association with the primary consciousness of linguistic contents. In this line of reasoning, the ensemble

  2. Cortical Neural Synchronization Underlies Primary Visual Consciousness of Qualia: Evidence from Event-Related Potentials.

    PubMed

    Babiloni, Claudio; Marzano, Nicola; Soricelli, Andrea; Cordone, Susanna; Millán-Calenti, José Carlos; Del Percio, Claudio; Buján, Ana

    2016-01-01

    This article reviews three experiments on event-related potentials (ERPs) testing the hypothesis that primary visual consciousness (stimulus self-report) is related to enhanced cortical neural synchronization as a function of stimulus features. ERP peak latency and sources were compared between "seen" trials and "not seen" trials, respectively related and unrelated to the primary visual consciousness. Three salient features of visual stimuli were considered (visuospatial, emotional face expression, and written words). Results showed the typical visual ERP components in both "seen" and "not seen" trials. There was no statistical difference in the ERP peak latencies between the "seen" and "not seen" trials, suggesting a similar timing of the cortical neural synchronization regardless the primary visual consciousness. In contrast, ERP sources showed differences between "seen" and "not seen" trials. For the visuospatial stimuli, the primary consciousness was related to higher activity in dorsal occipital and parietal sources at about 400 ms post-stimulus. For the emotional face expressions, there was greater activity in parietal and frontal sources at about 180 ms post-stimulus. For the written letters, there was higher activity in occipital, parietal and temporal sources at about 230 ms post-stimulus. These results hint that primary visual consciousness is associated with an enhanced cortical neural synchronization having entirely different spatiotemporal characteristics as a function of the features of the visual stimuli and possibly, the relative qualia (i.e., visuospatial, face expression, and words). In this framework, the dorsal visual stream may be synchronized in association with the primary consciousness of visuospatial and emotional face contents. Analogously, both dorsal and ventral visual streams may be synchronized in association with the primary consciousness of linguistic contents. In this line of reasoning, the ensemble of the cortical neural networks

  3. Using brain stimulation to disentangle neural correlates of conscious vision

    PubMed Central

    de Graaf, Tom A.; Sack, Alexander T.

    2014-01-01

    Research into the neural correlates of consciousness (NCCs) has blossomed, due to the advent of new and increasingly sophisticated brain research tools. Neuroimaging has uncovered a variety of brain processes that relate to conscious perception, obtained in a range of experimental paradigms. But methods such as functional magnetic resonance imaging or electroencephalography do not always afford inference on the functional role these brain processes play in conscious vision. Such empirical NCCs could reflect neural prerequisites, neural consequences, or neural substrates of a conscious experience. Here, we take a closer look at the use of non-invasive brain stimulation (NIBS) techniques in this context. We discuss and review how NIBS methodology can enlighten our understanding of brain mechanisms underlying conscious vision by disentangling the empirical NCCs. PMID:25295015

  4. "Binaural Rivalry": Dichotic Listening as a Tool for the Investigation of the Neural Correlate of Consciousness

    ERIC Educational Resources Information Center

    Brancucci, Alfredo; Tommasi, Luca

    2011-01-01

    Since about two decades neuroscientists have systematically faced the problem of consciousness: the aim is to discover the neural activity specifically related to conscious perceptions, i.e. the biological properties of what philosophers call qualia. In this view, a neural correlate of consciousness (NCC) is a precise pattern of brain activity…

  5. Neural Plasticity Lessons from Disorders of Consciousness

    PubMed Central

    Demertzi, Athena; Schnakers, Caroline; Soddu, Andrea; Bruno, Marie-Aurélie; Gosseries, Olivia; Vanhaudenhuyse, Audrey; Laureys, Steven

    2010-01-01

    Communication and intentional behavior are supported by the brain's integrity at a structural and a functional level. When widespread loss of cerebral connectivity is brought about as a result of a severe brain injury, in many cases patients are not capable of conscious interactive behavior and are said to suffer from disorders of consciousness (e.g., coma, vegetative state/unresponsive wakefulness syndrome, minimally conscious states). This lesion paradigm has offered not only clinical insights, as how to improve diagnosis, prognosis, and treatment, but also put forward scientific opportunities to study the brain's plastic abilities. We here review interventional and observational studies performed in severely brain-injured patients with regards to recovery of consciousness. The study of the recovered conscious brain (spontaneous and/or after surgical or pharmacologic interventions), suggests a link between some specific brain areas and the capacity of the brain to sustain conscious experience, challenging at the same time the notion of fixed temporal boundaries in rehabilitative processes. Altered functional connectivity, cerebral structural reorganization as well as behavioral amelioration after invasive treatments will be discussed as the main indices for plasticity in these challenging patients. The study of patients with chronic disorders of consciousness may, thus, provide further insights not only at a clinical level (i.e., medical management and rehabilitation) but also from a scientific-theoretical perspective (i.e., the brain's plastic abilities and the pursuit of the neural correlate of consciousness). PMID:21833298

  6. Neural plasticity lessons from disorders of consciousness.

    PubMed

    Demertzi, Athena; Schnakers, Caroline; Soddu, Andrea; Bruno, Marie-Aurélie; Gosseries, Olivia; Vanhaudenhuyse, Audrey; Laureys, Steven

    2010-01-01

    Communication and intentional behavior are supported by the brain's integrity at a structural and a functional level. When widespread loss of cerebral connectivity is brought about as a result of a severe brain injury, in many cases patients are not capable of conscious interactive behavior and are said to suffer from disorders of consciousness (e.g., coma, vegetative state/unresponsive wakefulness syndrome, minimally conscious states). This lesion paradigm has offered not only clinical insights, as how to improve diagnosis, prognosis, and treatment, but also put forward scientific opportunities to study the brain's plastic abilities. We here review interventional and observational studies performed in severely brain-injured patients with regards to recovery of consciousness. The study of the recovered conscious brain (spontaneous and/or after surgical or pharmacologic interventions), suggests a link between some specific brain areas and the capacity of the brain to sustain conscious experience, challenging at the same time the notion of fixed temporal boundaries in rehabilitative processes. Altered functional connectivity, cerebral structural reorganization as well as behavioral amelioration after invasive treatments will be discussed as the main indices for plasticity in these challenging patients. The study of patients with chronic disorders of consciousness may, thus, provide further insights not only at a clinical level (i.e., medical management and rehabilitation) but also from a scientific-theoretical perspective (i.e., the brain's plastic abilities and the pursuit of the neural correlate of consciousness). PMID:21833298

  7. Consciousness.

    PubMed

    Zeman, A

    2001-07-01

    Consciousness is topical, for reasons including its renewed respectability among psychologists, rapid progress in the neuroscience of perception, memory and action, advances in artificial intelligence and dissatisfaction with the dualistic separation of mind and body. Consciousness is an ambiguous term. It can refer to (i) the waking state; (ii) experience; and (iii) the possession of any mental state. Self-consciousness is equally ambiguous, with senses including (i) proneness to embarrassment in social settings; (ii) the ability to detect our own sensations and recall our recent actions; (iii) self-recognition; (iv) the awareness of awareness; and (v) self-knowledge in the broadest sense. The understanding of states of consciousness has been transformed by the delineation of their electrical correlates, of structures in brainstem and diencephalon which regulate the sleep-wake cycle, and of these structures' cellular physiology and regional pharmacology. Clinical studies have defined pathologies of wakefulness: coma, the persistent vegetative state, the 'locked-in' syndrome, akinetic mutism and brain death. Interest in the neural basis of perceptual awareness has focused on vision. Increasingly detailed neuronal correlates of real and illusory visual experience are being defined. Experiments exploiting circumstances in which visual experience changes while external stimulation is held constant are tightening the experimental link between consciousness and its neural correlates. Work on unconscious neural processes provides a complementary approach. 'Unperceived' stimuli have detectable effects on neural events and subsequent action in a range of circumstances: blindsight provides the classical example. Other areas of cognitive neuroscience also promise experimental insights into consciousness, in particular the distinctions between implicit and explicit memory and deliberate and automatic action. Overarching scientific theories of consciousness include

  8. On the Neural Mechanisms Subserving Consciousness and Attention

    PubMed Central

    Tallon-Baudry, Catherine

    2012-01-01

    Consciousness, as described in the experimental literature, is a multi-faceted phenomenon, that impinges on other well-studied concepts such as attention and control. Do consciousness and attention refer to different aspects of the same core phenomenon, or do they correspond to distinct functions? One possibility to address this question is to examine the neural mechanisms underlying consciousness and attention. If consciousness and attention pertain to the same concept, they should rely on shared neural mechanisms. Conversely, if their underlying mechanisms are distinct, then consciousness and attention should be considered as distinct entities. This paper therefore reviews neurophysiological facts arguing in favor or against a tight relationship between consciousness and attention. Three neural mechanisms that have been associated with both attention and consciousness are examined (neural amplification, involvement of the fronto-parietal network, and oscillatory synchrony), to conclude that the commonalities between attention and consciousness at the neural level may have been overestimated. Last but not least, experiments in which both attention and consciousness were probed at the neural level point toward a dissociation between the two concepts. It therefore appears from this review that consciousness and attention rely on distinct neural properties, although they can interact at the behavioral level. It is proposed that a “cumulative influence model,” in which attention and consciousness correspond to distinct neural mechanisms feeding a single decisional process leading to behavior, fits best with available neural and behavioral data. In this view, consciousness should not be considered as a top-level executive function but should rather be defined by its experiential properties. PMID:22291674

  9. Imaging neural signatures of consciousness: 'what', 'when', 'where' and 'how' does it work?

    PubMed

    Sergent, C; Naccache, L

    2012-01-01

    'What' do we call consciousness? 'When' and 'Where' in the brain do conscious states occur, and 'How' conscious processing and conscious access to a given content work? In the present paper, we present a non-exhaustive overview of each of these 4 major issues, we provide the reader with a brief description of the major difficulties related to these issues, we highlight the current theoretical points of debate, and we advocate for the explanatory power of the "global workspace" model of consciousness (Baars 1989; Dehaene and Naccache 2001; Dehaene, Changeux et al. 2006) which can accommodate for a fairly large proportion of current experimental findings, and which can be used to reinterpret apparent contradictory findings within a single theoretical framework. Most notably, we emphasize the crucial importance to distinguish genuine neural signatures of conscious access from neural events correlated with consciousness but occurring either before ('upstream') or after ('downstream'). PMID:23165871

  10. Comparing the Neural Correlates of Conscious and Unconscious Conflict Control in a Masked Stroop Priming Task

    PubMed Central

    Jiang, Jun; Bailey, Kira; Xiang, Ling; Zhang, Li; Zhang, Qinglin

    2016-01-01

    Although previous studies have suggested that conflict control can occur in the absence of consciousness, the brain mechanisms underlying unconscious and conscious conflict control remain unclear. The current study used a rapid event-related functional magnetic resonance imaging design to collect data from 24 participants while they performed a masked Stroop priming task under both conscious and unconscious conditions. The results revealed that the fronto-parietal conflict network, including medial frontal cortex (MFC), left and right dorsal lateral prefrontal cortex (DLPFC), and posterior parietal cortex (PPC), was activated by both conscious and unconscious Stroop priming, even though in MFC and left DLPFC the activations elicited by unconscious Stroop priming were smaller than conscious Stroop priming. The findings provide evidence for the existence of quantitative differences between the neural substrates of conscious and unconscious conflict control. PMID:27378890

  11. Messages from the Brain Connectivity Regarding Neural Correlates of Consciousness

    PubMed Central

    Jin, Seung-Hyun

    2012-01-01

    Consciousness has become a legitimate theme of neuroscientific discourse over the last two decades. Neuroscientific investigation seeking neural correlates of consciousness (NCC) has ranged from the neuronal level to the system level. Regarding system level studies, there is a large body of evidence supporting the idea that functional connectivity studies can help in examining NCC. Functional connectivity studies have suggested the involvement of the thalamo-cortical, frontoparietal, and other cortico-cortical connectivity under anesthetic-induced unconsciousness and in disorders of consciousness. Likewise, effective connectivity has been used to investigate the causal interactions among elements of functional connectivity in various consciousness states, and provided a deeper understanding of NCC. Moreover, as an extended version of connectivity studies, complex network methods have also been used for studies on NCC. In this review, we focused on the aspect of the brain system level of NCC including functional and effective connectivity networks from methodological perspectives. In addition, as for states of consciousness, anesthetic-induced unconsciousness and disorders of consciousness are the main subjects. This review discusses what we have learned from recent studies about the exploration of human brain connectivity on consciousness and its neural correlates. PMID:23055789

  12. Consciousness

    PubMed Central

    Sejnowski, Terrence J.

    2016-01-01

    No one did more to draw neuroscientists’ attention to the problem of consciousness in the twentieth century than Francis Crick, who may be better known as the co-discoverer (with James Watson) of the structure of DNA. Crick focused his research on visual awareness and based his analysis on the progress made over the last fifty years in uncovering the neural mechanisms underlying visual perception. Because much of what happens in our brains occurs below the level of consciousness and many of our intuitions about unconscious processing are misleading, consciousness remains an elusive problem. In the end, when all of the brain mechanisms that underlie consciousness have been identified, will we still be asking: “What is consciousness?” Or will the question shift, just as the question “What is life?” is no longer the same as it was before Francis Crick? PMID:26900168

  13. Measuring consciousness: relating behavioural and neurophysiological approaches

    PubMed Central

    Seth, Anil K.; Dienes, Zoltán; Cleeremans, Axel; Overgaard, Morten; Pessoa, Luiz

    2009-01-01

    The resurgent science of consciousness has been accompanied by a recent emphasis on the problem of measurement. Having dependable measures of consciousness is essential both for mapping experimental evidence to theory and for designing perspicuous experiments. Here, we review a series of behavioural and brain-based measures, assessing their ability to track graded consciousness and clarifying how they relate to each other by showing what theories are presupposed by each. We identify possible and actual conflicts among measures that can stimulate new experiments, and we conclude that measures must prove themselves by iteratively building knowledge in the context of theoretical frameworks. Advances in measuring consciousness have implications for basic cognitive neuroscience, for comparative studies of consciousness and for clinical applications. PMID:18606562

  14. A frontal but not parietal neural correlate of auditory consciousness.

    PubMed

    Brancucci, Alfredo; Lugli, Victor; Perrucci, Mauro Gianni; Del Gratta, Cosimo; Tommasi, Luca

    2016-01-01

    Hemodynamic correlates of consciousness were investigated in humans during the presentation of a dichotic sequence inducing illusory auditory percepts with features analogous to visual multistability. The sequence consisted of a variation of the original stimulation eliciting the Deutsch's octave illusion, created to maintain a stable illusory percept long enough to allow the detection of the underlying hemodynamic activity using functional magnetic resonance imaging (fMRI). Two specular 500 ms dichotic stimuli (400 and 800 Hz) presented in alternation by means of earphones cause an illusory segregation of pitch and ear of origin which can yield up to four different auditory percepts per dichotic stimulus. Such percepts are maintained stable when one of the two dichotic stimuli is presented repeatedly for 6 s, immediately after the alternation. We observed hemodynamic activity specifically accompanying conscious experience of pitch in a bilateral network including the superior frontal gyrus (SFG, BA9 and BA10), medial frontal gyrus (BA6 and BA9), insula (BA13), and posterior lateral nucleus of the thalamus. Conscious experience of side (ear of origin) was instead specifically accompanied by bilateral activity in the MFG (BA6), STG (BA41), parahippocampal gyrus (BA28), and insula (BA13). These results suggest that the neural substrate of auditory consciousness, differently from that of visual consciousness, may rest upon a fronto-temporal rather than upon a fronto-parietal network. Moreover, they indicate that the neural correlates of consciousness depend on the specific features of the stimulus and suggest the SFG-MFG and the insula as important cortical nodes for auditory conscious experience. PMID:25344118

  15. An adaptive workspace hypothesis about the neural correlates of consciousness: insights from neuroscience and meditation studies.

    PubMed

    Raffone, Antonino; Srinivasan, Narayanan

    2009-01-01

    While enormous progress has been made to identify neural correlates of consciousness (NCC), crucial NCC aspects are still very controversial. A major hurdle is the lack of an adequate definition and characterization of different aspects of conscious experience and also its relationship to attention and metacognitive processes like monitoring. In this paper, we therefore attempt to develop a unitary theoretical framework for NCC, with an interdependent characterization of endogenous attention, access consciousness, phenomenal awareness, metacognitive consciousness, and a non-referential form of unified consciousness. We advance an adaptive workspace hypothesis about the NCC based on the global workspace model emphasizing transient resonant neurodynamics and prefrontal cortex function, as well as meditation-related characterizations of conscious experiences. In this hypothesis, transient dynamic links within an adaptive coding net in prefrontal cortex, especially in anterior prefrontal cortex, and between it and the rest of the brain, in terms of ongoing intrinsic and long-range signal exchanges, flexibly regulate the interplay between endogenous attention, access consciousness, phenomenal awareness, and metacognitive consciousness processes. Such processes are established in terms of complementary aspects of an ongoing transition between context-sensitive global workspace assemblies, modulated moment-to-moment by body and environment states. Brain regions associated to momentary interoceptive and exteroceptive self-awareness, or first-person experiential perspective as emphasized in open monitoring meditation, play an important modulatory role in adaptive workspace transitions. PMID:19733756

  16. A common neural code for similar conscious experiences in different individuals

    PubMed Central

    Naci, Lorina; Cusack, Rhodri; Anello, Mimma; Owen, Adrian M.

    2014-01-01

    The interpretation of human consciousness from brain activity, without recourse to speech or action, is one of the most provoking and challenging frontiers of modern neuroscience. We asked whether there is a common neural code that underpins similar conscious experiences, which could be used to decode these experiences in the absence of behavior. To this end, we used richly evocative stimulation (an engaging movie) portraying real-world events to elicit a similar conscious experience in different people. Common neural correlates of conscious experience were quantified and related to measurable, quantitative and qualitative, executive components of the movie through two additional behavioral investigations. The movie’s executive demands drove synchronized brain activity across healthy participants’ frontal and parietal cortices in regions known to support executive function. Moreover, the timing of activity in these regions was predicted by participants’ highly similar qualitative experience of the movie’s moment-to-moment executive demands, suggesting that synchronization of activity across participants underpinned their similar experience. Thus we demonstrate, for the first time to our knowledge, that a neural index based on executive function reliably predicted every healthy individual’s similar conscious experience in response to real-world events unfolding over time. This approach provided strong evidence for the conscious experience of a brain-injured patient, who had remained entirely behaviorally nonresponsive for 16 y. The patient’s executive engagement and moment-to-moment perception of the movie content were highly similar to that of every healthy participant. These findings shed light on the common basis of human consciousness and enable the interpretation of conscious experience in the absence of behavior. PMID:25225384

  17. A Deeper Look at the "Neural Correlate of Consciousness".

    PubMed

    Fink, Sascha Benjamin

    2016-01-01

    A main goal of the neuroscience of consciousness is: find the neural correlate to conscious experiences (NCC). When have we achieved this goal? The answer depends on our operationalization of "NCC." Chalmers (2000) shaped the widely accepted operationalization according to which an NCC is a neural system with a state which is minimally sufficient (but not necessary) for an experience. A deeper look at this operationalization reveals why it might be unsatisfactory: (i) it is not an operationalization of a correlate for occurring experiences, but of the capacity to experience; (ii) it is unhelpful for certain cases which are used to motivate a search for neural correlates of consciousness; (iii) it does not mirror the usage of "NCC" by scientists who seek for unique correlates; (iv) it hardly allows for a form of comparative testing of hypotheses, namely experimenta crucis. Because of these problems (i-iv), we ought to amend or improve on Chalmers's operationalization. Here, I present an alternative which avoids these problems. This "NCC2.0" also retains some benefits of Chalmers's operationalization, namely being compatible with contributions from extended, embedded, enacted, or embodied accounts (4E-accounts) and allowing for the possibility of non-biological or artificial experiencers. PMID:27507950

  18. Neural signature of the conscious processing of auditory regularities

    PubMed Central

    Bekinschtein, Tristan A.; Dehaene, Stanislas; Rohaut, Benjamin; Tadel, François; Cohen, Laurent; Naccache, Lionel

    2009-01-01

    Can conscious processing be inferred from neurophysiological measurements? Some models stipulate that the active maintenance of perceptual representations across time requires consciousness. Capitalizing on this assumption, we designed an auditory paradigm that evaluates cerebral responses to violations of temporal regularities that are either local in time or global across several seconds. Local violations led to an early response in auditory cortex, independent of attention or the presence of a concurrent visual task, whereas global violations led to a late and spatially distributed response that was only present when subjects were attentive and aware of the violations. We could detect the global effect in individual subjects using functional MRI and both scalp and intracerebral event-related potentials. Recordings from 8 noncommunicating patients with disorders of consciousness confirmed that only conscious individuals presented a global effect. Taken together these observations suggest that the presence of the global effect is a signature of conscious processing, although it can be absent in conscious subjects who are not aware of the global auditory regularities. This simple electrophysiological marker could thus serve as a useful clinical tool. PMID:19164526

  19. Behavioral, Neural, and Computational Principles of Bodily Self-Consciousness.

    PubMed

    Blanke, Olaf; Slater, Mel; Serino, Andrea

    2015-10-01

    Recent work in human cognitive neuroscience has linked self-consciousness to the processing of multisensory bodily signals (bodily self-consciousness [BSC]) in fronto-parietal cortex and more posterior temporo-parietal regions. We highlight the behavioral, neurophysiological, neuroimaging, and computational laws that subtend BSC in humans and non-human primates. We propose that BSC includes body-centered perception (hand, face, and trunk), based on the integration of proprioceptive, vestibular, and visual bodily inputs, and involves spatio-temporal mechanisms integrating multisensory bodily stimuli within peripersonal space (PPS). We develop four major constraints of BSC (proprioception, body-related visual information, PPS, and embodiment) and argue that the fronto-parietal and temporo-parietal processing of trunk-centered multisensory signals in PPS is of particular relevance for theoretical models and simulations of BSC and eventually of self-consciousness. PMID:26447578

  20. Isolating neural correlates of conscious perception from neural correlates of reporting one's perception

    PubMed Central

    Pitts, Michael A.; Metzler, Stephen; Hillyard, Steven A.

    2014-01-01

    To isolate neural correlates of conscious perception (NCCs), a standard approach has been to contrast neural activity elicited by identical stimuli of which subjects are aware vs. unaware. Because conscious experience is private, determining whether a stimulus was consciously perceived requires subjective report: e.g., button-presses indicating detection, visibility ratings, verbal reports, etc. This reporting requirement introduces a methodological confound when attempting to isolate NCCs: The neural processes responsible for accessing and reporting one's percept are difficult to distinguish from those underlying the conscious percept itself. Here, we review recent attempts to circumvent this issue via a modified inattentional blindness paradigm (Pitts et al., 2012) and present new data from a backward masking experiment in which task-relevance and visual awareness were manipulated in a 2 × 2 crossed design. In agreement with our previous inattentional blindness results, stimuli that were consciously perceived yet not immediately accessed for report (aware, task-irrelevant condition) elicited a mid-latency posterior ERP negativity (~200–240 ms), while stimuli that were accessed for report (aware, task-relevant condition) elicited additional components including a robust P3b (~380–480 ms) subsequent to the mid-latency negativity. Overall, these results suggest that some of the NCCs identified in previous studies may be more closely linked with accessing and maintaining perceptual information for reporting purposes than with encoding the conscious percept itself. An open question is whether the remaining NCC candidate (the ERP negativity at 200–240 ms) reflects visual awareness or object-based attention. PMID:25339922

  1. No-Report Paradigms: Extracting the True Neural Correlates of Consciousness.

    PubMed

    Tsuchiya, Naotsugu; Wilke, Melanie; Frässle, Stefan; Lamme, Victor A F

    2015-12-01

    The goal of consciousness research is to reveal the neural basis of phenomenal experience. To study phenomenology, experimenters seem obliged to ask reports from the subjects to ascertain what they experience. However, we argue that the requirement of reports has biased the search for the neural correlates of consciousness over the past decades. More recent studies attempt to dissociate neural activity that gives rise to consciousness from the activity that enables the report; in particular, no-report paradigms have been utilized to study conscious experience in the full absence of any report. We discuss the advantages and disadvantages of report-based and no-report paradigms, and ask how these jointly bring us closer to understanding the true neural basis of consciousness. PMID:26585549

  2. Posterior Cingulate, Precuneal & Retrosplenial Cortices: Cytology & Components of the Neural Network Correlates of Consciousness*

    PubMed Central

    Vogt, Brent A.; Laureys, Steven

    2008-01-01

    Neuronal aggregates involved in conscious awareness are not evenly distributed throughout the CNS but are comprised of key components referred to as the neural network correlates of consciousness (NNCC). A critical node in this network is the retrosplenial, posterior cingulate, and precuneal cortices (RSC/PCC/PrCC). The cytological and neurochemical composition of this region is reviewed in relation to the Brodmann map. This region has the highest level of brain glucose metabolism and cytochrome c oxidase activity. Monkey studies suggest that the anterior thalamic projection likely drives RSC and PCC metabolism and that the midbrain projection to the anteroventral thalamic nucleus is a key coupling site between the brainstem system for arousal and cortical systems for cognitive processing and awareness. The pivotal role of RSC/PCC/PrCC in consciousness is demonstrated with posterior cingulate epilepsy cases, midcingulate lesions that de-afferent this region and are associated with unilateral sensory neglect, observations from stroke and vegetative state patients, alterations in blood flow during sleep, and the actions of anesthetics. Since this region is critically involved in self reflection, it is not surprising that it is similarly a site for the NNCC. Interestingly, information processing during complex cognitive tasks and during aversive sensations such as pain induces efforts to terminate self reflection and result in decreased processing in PCC/PrCC. Finally, anatomical relations between the neural correlates of mind and NNCC in the cingulate gyrus do not appear to overlap and suggests that mental function and conscious awareness may be mediated by two neural networks. PMID:16186025

  3. Neural mechanisms underlying conscious and unconscious attentional shifts triggered by eye gaze.

    PubMed

    Sato, Wataru; Kochiyama, Takanori; Uono, Shota; Toichi, Motomi

    2016-01-01

    Behavioral studies have shown that eye gaze triggers attentional shifts both with and without conscious awareness. However, the neural substrates of conscious and unconscious attentional shifts triggered by eye gaze remain unclear. To investigate this issue, we measured brain activity using event-related functional magnetic resonance imaging while participants observed averted or straight eye-gaze cues presented supraliminally or subliminally in the central visual field and then localized a subsequent target in the peripheral visual field. Reaction times for localizing the targets were shorter under both supraliminal and subliminal conditions when eye-gaze cues were directionally congruent with the target locations than when they were directionally neutral. Conjunction analyses revealed that a bilateral cortical network, including the middle temporal gyri, inferior parietal lobules, anterior cingulate cortices, and superior and middle frontal gyri, was activated more in response to averted eyes than to straight eyes under both supraliminal and subliminal conditions. Interaction analyses revealed that the right inferior parietal lobule was specifically active when participants viewed averted eyes relative to straight eyes under the supraliminal condition; the bilateral subcortical regions, including the superior colliculus and amygdala, and the middle temporal and inferior frontal gyri in the right hemisphere were activated in response to averted versus straight eyes under the subliminal condition. These results suggest commonalities and differences in the neural mechanisms underlying conscious and unconscious attentional shifts triggered by eye gaze. PMID:26343316

  4. Neural networks, brainwaves, and ionic structures: acupuncture vs. altered states of consciousness.

    PubMed

    Rakovic, D

    1991-01-01

    It is shown that neural networks with embedded "brainwaves" can cross the gap between the fast parallel unconscious mode of neuroscience and the slow serial conscious mode of psychology. The electromagnetic (EM) component of ultra low frequency (ULF) "brainwaves" appears to enable perfect fitting with narrowed limits of conscious capacity in normal awake states and very extended limits in altered states of consciousness - due to the biophysical relativistic mechanism of dilated subjective time base. An additional complex low-dielectric (epsilon r approximately 1) structure is also necessary in these processes. This structure can be related to a displaced (from the body) part of acupuncture ionic system which can conduct ULF brainwave currents approximately 10(-7) A, inside the conductive channels of the initial ionic concentration approximately 10(-15) cm-3, with a tendency of deterioration during a period of approximately 1 hour. It provides an extraordinary biophysical basis for traditional psychology, including trans-personal experiences down to the ultimate state of thoughtless consciousness. Notions, such as "qi", "subtle body", and "causal body", are physically inevitably associated with ions, displaced (from the body) part of acupuncture ionic structure, and in it embedded an EM component of ULF brainwaves, respectively. PMID:1685625

  5. The neural substrates of conscious color perception demonstrated using fMRI.

    PubMed

    Morita, Tomoyo; Kochiyama, Takanori; Okada, Tomohisa; Yonekura, Yoshiharu; Matsumura, Michikazu; Sadato, Norihiro

    2004-04-01

    It is well established that seeing color activates the ventral occipital cortex, including the fusiform and lingual gyri, but less is known about whether the region directly relates to conscious color perception. We investigated the neural correlates of conscious color perception in the ventral occipital cortex. To vary conscious color perception with the stimuli-remaining constant, we took advantage of the McCollough effect, an illusory color effect that is contingent on the orientation of grating stimuli. Subjects were exposed to a specific combination of chromatic grating patterns for 10 min to induce the McCollough effect. We compared brain activities measured while the subjects viewed achromatic grating stimuli before (PRE) and after the induction of the McCollough effect (POST) using functional magnetic resonance imaging (fMRI). There were two groups: one group was informed that they would perceive illusory color during the session (INFORMED group), whereas the other group was not informed (UNINFORMED group). The successful induction of the McCollough effect was confirmed in all subjects after the fMRI experiment; nevertheless, only approximately half of the UNINFORMED subjects had been aware of the color during the POST session, while the other half had not. The left anterior portion of the color-selective area in the ventral occipital cortex, presumably V4alpha, was significantly active in subjects who had consciously perceived the color during MR scan. This study demonstrates the activity in a subregion of the color-selective area in the ventral occipital cortex directly related to conscious color perception. PMID:15050589

  6. Neural Signatures of Conscious Face Perception in an Inattentional Blindness Paradigm.

    PubMed

    Shafto, Juliet P; Pitts, Michael A

    2015-08-01

    Previous studies suggest that early stages of face-specific processing are performed preattentively and unconsciously, whereas conscious perception emerges with late-stage (>300 ms) neuronal activity. A conflicting view, however, posits that attention is necessary for face-specific processing and that early-to-mid latency neural responses (∼ 100-300 ms) correspond more closely with perceptual awareness. The current study capitalized on a recently developed method for manipulating attention and conscious perception during EEG recording (modified inattentional blindness paradigm) and used face stimuli that elicit a well known marker of early face processing, the N170 event-related potential (ERP). In Phase 1 of the experiment, subjects performed a demanding distracter task while line drawings of faces and matched control stimuli were presented in the center of their view. When queried, half of the subjects reported no awareness of the faces and were deemed inattentionally blind. In Phase 2, subjects performed the same distracter task, but now consciously perceived the face stimuli due to the intervening questioning. In Phase 3, subjects performed a discrimination task on the faces. Two primary contrasts were made: aware versus unaware (equally task irrelevant) and task-relevant versus task-irrelevant (equally aware). The N170 and a subsequent ERP component, the visual awareness negativity (∼ 260-300 ms), were absent during inattentional blindness and present in the aware conditions. The P3b (> 300 ms) was absent for task-irrelevant faces, even when consciously perceived, and present only when the faces were task relevant. These results inform contemporary theories of conscious face perception in particular and visual attention and perceptual awareness in general. PMID:26245958

  7. Large scale screening of neural signatures of consciousness in patients in a vegetative or minimally conscious state.

    PubMed

    Sitt, Jacobo Diego; King, Jean-Remi; El Karoui, Imen; Rohaut, Benjamin; Faugeras, Frederic; Gramfort, Alexandre; Cohen, Laurent; Sigman, Mariano; Dehaene, Stanislas; Naccache, Lionel

    2014-08-01

    In recent years, numerous electrophysiological signatures of consciousness have been proposed. Here, we perform a systematic analysis of these electroencephalography markers by quantifying their efficiency in differentiating patients in a vegetative state from those in a minimally conscious or conscious state. Capitalizing on a review of previous experiments and current theories, we identify a series of measures that can be organized into four dimensions: (i) event-related potentials versus ongoing electroencephalography activity; (ii) local dynamics versus inter-electrode information exchange; (iii) spectral patterns versus information complexity; and (iv) average versus fluctuations over the recording session. We analysed a large set of 181 high-density electroencephalography recordings acquired in a 30 minutes protocol. We show that low-frequency power, electroencephalography complexity, and information exchange constitute the most reliable signatures of the conscious state. When combined, these measures synergize to allow an automatic classification of patients' state of consciousness. PMID:24919971

  8. Large scale screening of neural signatures of consciousness in patients in a vegetative or minimally conscious state

    PubMed Central

    El Karoui, Imen; Rohaut, Benjamin; Faugeras, Frederic; Gramfort, Alexandre; Cohen, Laurent; Sigman, Mariano; Dehaene, Stanislas; Naccache, Lionel

    2014-01-01

    In recent years, numerous electrophysiological signatures of consciousness have been proposed. Here, we perform a systematic analysis of these electroencephalography markers by quantifying their efficiency in differentiating patients in a vegetative state from those in a minimally conscious or conscious state. Capitalizing on a review of previous experiments and current theories, we identify a series of measures that can be organized into four dimensions: (i) event-related potentials versus ongoing electroencephalography activity; (ii) local dynamics versus inter-electrode information exchange; (iii) spectral patterns versus information complexity; and (iv) average versus fluctuations over the recording session. We analysed a large set of 181 high-density electroencephalography recordings acquired in a 30 minutes protocol. We show that low-frequency power, electroencephalography complexity, and information exchange constitute the most reliable signatures of the conscious state. When combined, these measures synergize to allow an automatic classification of patients’ state of consciousness. PMID:24919971

  9. Consciousness.

    PubMed

    Searle, J R

    2000-01-01

    Until recently, most neuroscientists did not regard consciousness as a suitable topic for scientific investigation. This reluctance was based on certain philosophical mistakes, primarily the mistake of supposing that the subjectivity of consciousness made it beyond the reach of an objective science. Once we see that consciousness is a biological phenomenon like any other, then it can be investigated neurobiologically. Consciousness is entirely caused by neurobiological processes and is realized in brain structures. The essential trait of consciousness that we need to explain is unified qualitative subjectivity. Consciousness thus differs from other biological phenomena in that it has a subjective or first-person ontology, but this subjective ontology does not prevent us from having an epistemically objective science of consciousness. We need to overcome the philosophical tradition that treats the mental and the physical as two distinct metaphysical realms. Two common approaches to consciousness are those that adopt the building block model, according to which any conscious field is made of its various parts, and the unified field model, according to which we should try to explain the unified character of subjective states of consciousness. These two approaches are discussed and reasons are given for preferring the unified field theory to the building block model. Some relevant research on consciousness involves the subjects of blindsight, the split-brain experiments, binocular rivalry, and gestalt switching. PMID:10845075

  10. Measuring consciousness in coma and related states

    PubMed Central

    Di Perri, Carol; Thibaut, Aurore; Heine, Lizette; Soddu, Andrea; Demertzi, Athena; Laureys, Steven

    2014-01-01

    Consciousness is a prismatic and ambiguous concept that still eludes any universal definition. Severe acquired brain injuries resulting in a disorder of consciousness (DOC) provide a model from which insights into consciousness can be drawn. A number of recent studies highlight the difficulty in making a diagnosis in patients with DOC based only on behavioral assessments. Here we aim to provide an overview of how neuroimaging techniques can help assess patients with DOC. Such techniques are expected to facilitate a more accurate understanding of brain function in states of unconsciousness and to improve the evaluation of the patient’s cognitive abilities by providing both diagnostic and prognostic indicators. PMID:25170396

  11. Measuring consciousness in coma and related states.

    PubMed

    Di Perri, Carol; Thibaut, Aurore; Heine, Lizette; Soddu, Andrea; Demertzi, Athena; Laureys, Steven

    2014-08-28

    Consciousness is a prismatic and ambiguous concept that still eludes any universal definition. Severe acquired brain injuries resulting in a disorder of consciousness (DOC) provide a model from which insights into consciousness can be drawn. A number of recent studies highlight the difficulty in making a diagnosis in patients with DOC based only on behavioral assessments. Here we aim to provide an overview of how neuroimaging techniques can help assess patients with DOC. Such techniques are expected to facilitate a more accurate understanding of brain function in states of unconsciousness and to improve the evaluation of the patient's cognitive abilities by providing both diagnostic and prognostic indicators. PMID:25170396

  12. Neural signatures of conscious and unconscious emotional face processing in human infants.

    PubMed

    Jessen, Sarah; Grossmann, Tobias

    2015-03-01

    Human adults can process emotional information both with and without conscious awareness, and it has been suggested that the two processes rely on partly distinct brain mechanisms. However, the developmental origins of these brain processes are unknown. In the present event-related brain potential (ERP) study, we examined the brain responses of 7-month-old infants in response to subliminally (50 and 100 msec) and supraliminally (500 msec) presented happy and fearful facial expressions. Our results revealed that infants' brain responses (Pb and Nc) over central electrodes distinguished between emotions irrespective of stimulus duration, whereas the discrimination between emotions at occipital electrodes (N290 and P400) only occurred when faces were presented supraliminally (above threshold). This suggests that early in development the human brain not only discriminates between happy and fearful facial expressions irrespective of conscious perception, but also that, similar to adults, supraliminal and subliminal emotion processing relies on distinct neural processes. Our data further suggest that the processing of emotional facial expressions differs across infants depending on their behaviorally shown perceptual sensitivity. The current ERP findings suggest that distinct brain processes underpinning conscious and unconscious emotion perception emerge early in ontogeny and can therefore be seen as a key feature of human social functioning. PMID:25528130

  13. Selective Neural Synchrony Suppression as a Forward Gatekeeper to Piecemeal Conscious Perception.

    PubMed

    Levy, Jonathan; Vidal, Juan R; Fries, Pascal; Démonet, Jean-François; Goldstein, Abraham

    2016-07-01

    The emergence of conscious visual perception is assumed to ignite late (∼250 ms) gamma-band oscillations shortly after an initial (∼100 ms) forward sweep of neural sensory (nonconscious) information. However, this neural evidence is not utterly congruent with rich behavioral data which rather point to piecemeal (i.e., graded) perceptual processing. To address the unexplored neural mechanisms of piecemeal ignition of conscious perception, hierarchical script sensitivity of the putative visual word form area (VWFA) was exploited to signal null (i.e., sensory), partial (i.e., letter-level), and full (i.e., word-level) conscious perception. Two magnetoencephalography experiments were conducted in which healthy human participants viewed masked words (Experiment I: active task, Dutch words; Experiment II: passive task, Hebrew words) while high-frequency (broadband gamma) brain activity was measured. Findings revealed that piecemeal conscious perception did not ignite a linear piecemeal increase in oscillations. Instead, whereas late (∼250 ms) gamma-band oscillations signaled full conscious perception (i.e., word-level), partial conscious perception (i.e., letter-level) was signaled via the inhibition of the early (∼100 ms) forward sweep. This inhibition regulates the downstream broadcast to filter out irrelevant (i.e., masks) information. The findings thus highlight a local (VWFA) gatekeeping mechanism for conscious perception, operating by filtering out and in selective percepts. PMID:26045565

  14. An invisible touch: Body-related multisensory conflicts modulate visual consciousness.

    PubMed

    Salomon, Roy; Galli, Giulia; Łukowska, Marta; Faivre, Nathan; Ruiz, Javier Bello; Blanke, Olaf

    2016-07-29

    The majority of scientific studies on consciousness have focused on vision, exploring the cognitive and neural mechanisms of conscious access to visual stimuli. In parallel, studies on bodily consciousness have revealed that bodily (i.e. tactile, proprioceptive, visceral, vestibular) signals are the basis for the sense of self. However, the role of bodily signals in the formation of visual consciousness is not well understood. Here we investigated how body-related visuo-tactile stimulation modulates conscious access to visual stimuli. We used a robotic platform to apply controlled tactile stimulation to the participants' back while they viewed a dot moving either in synchrony or asynchrony with the touch on their back. Critically, the dot was rendered invisible through continuous flash suppression. Manipulating the visual context by presenting the dot moving on either a body form, or a non-bodily object we show that: (i) conflict induced by synchronous visuo-tactile stimulation in a body context is associated with a delayed conscious access compared to asynchronous visuo-tactile stimulation, (ii) this effect occurs only in the context of a visual body form, and (iii) is not due to detection or response biases. The results indicate that body-related visuo-tactile conflicts impact visual consciousness by facilitating access of non-conflicting visual information to awareness, and that these are sensitive to the visual context in which they are presented, highlighting the interplay between bodily signals and visual experience. PMID:26519553

  15. "Wanting," "liking," and their relation to consciousness.

    PubMed

    Anselme, Patrick; Robinson, Mike J F

    2016-04-01

    Most animal and human behaviors emanate from goal-directedness and pleasure seeking, suggesting that they are primarily under conscious control. However, "wanting" and "liking" are believed to be adaptive core subcortical processes working at an unconscious level and responsible for guiding behavior toward appropriate rewards. Here we examine whether "wanting" is an inherent property of conscious goals and "liking" an intrinsic component of conscious feelings. We argue that "wanting" and "liking" depend on mechanisms acting below the level of consciousness, explaining why individuals often struggle to enhance or refrain their motivations and emotions by means of conscious control. In particular, hyperreactivity of subcortical "wanting" systems has been tied to pathological behaviors such as drug addiction and gambling disorder. In addicts, cognitive processes intended to curb drug-seeking wage a constant battle against subcortical urges to take more drug that often ends in relapse following repeated assaults. Nevertheless, we suggest that in nonpathological contexts, "wanting" and "liking" interact with major cognitive processes to guide goal-directed actions. (PsycINFO Database Record PMID:26651179

  16. Direct behavioral and neural evidence for an offset-triggered conscious perception.

    PubMed

    Noguchi, Yasuki; Kimijima, Shintaro; Kakigi, Ryusuke

    2015-04-01

    Many previous theories of perceptual awareness assume that a conscious representation of a stimulus is created from sensory information carried by an onset (appearance) of the stimulus. In contrast, here we provide behavioral and neural evidence for a new phenomenon in which conscious perception is directly triggered by an offset (disappearance) of a stimulus. When a stimulus made invisible by inter-ocular suppression physically disappeared from a screen, subjects reported an appearance (not disappearance) of that stimulus, correctly reporting a color of the disappeared stimulus. Measurements of brain activity further confirmed that the physical offset of an invisible stimulus evoked neural activity reflecting conscious perception of that stimulus. Those results indicate a new role of a stimulus offset to facilitate (rather than inhibit) an emergence of consciousness. PMID:25725188

  17. Neural correlates of consciousness: what we know and what we have to learn!

    PubMed

    Calabrò, Rocco Salvatore; Cacciola, Alberto; Bramanti, Placido; Milardi, Demetrio

    2015-04-01

    Consciousness is a multifaceted concept with two major components: awareness of environment and of self (i.e., the content of consciousness) and wakefulness (i.e., the level of consciousness). Medically speaking, consciousness is the state of the patient's awareness of self and environment and his responsiveness to external stimulation and inner need. A basic understanding of consciousness and its neural correlates is of major importance for all clinicians, especially those involved with patients suffering from altered states of consciousness. To this end, in this review it is shown that consciousness is dependent on the brainstem and thalamus for arousal; that basic cognition is supported by recurrent electrical activity between the cortex and the thalamus at gamma band frequencies; and that some kind of working memory must, at least fleetingly, be present for awareness to occur. New advances in neuroimaging studies are also presented in order to better understand and demonstrate the neurophysiological basis of consciousness. In particular, recent functional magnetic resonance imaging studies have offered the possibility to measure directly and non-invasively normal and severely brain damaged subjects' brain activity, whilst diffusion tensor imaging studies have allowed evaluating white matter integrity in normal subjects and patients with disorder of consciousness. PMID:25588680

  18. Vector subtraction implemented neurally: a neurocomputational model of some sequential cognitive and conscious processes.

    PubMed

    Bickle, J; Worley, C; Bernstein, M

    2000-03-01

    Although great progress in neuroanatomy and physiology has occurred lately, we still cannot go directly to those levels to discover the neural mechanisms of higher cognition and consciousness. But we can use neurocomputational methods based on these details to push this project forward. Here we describe vector subtraction as an operation that computes sequential paths through high-dimensional vector spaces. Vector-space interpretations of network activity patterns are a fruitful resource in recent computational neuroscience. Vector subtraction also appears to be implemented neurally in primate frontal eye field activity, which computes dimensions of saccadic eye movements. We use this apparent neural implementation as a model and construct from it a general neurocomputational account of an important type of sequential cognitive and conscious process. We defend the biological plausibility of all components of the general model and show that it yields testable anatomical and physiological predictions. We close by suggesting some interesting consequences for consciousness if our model characterizes correctly the neural mechanisms producing a common type of episode in our conscious streams. PMID:10753496

  19. Consciousness: a neural capacity for objectivity, especially pronounced in humans.

    PubMed

    Dijker, Anton J M

    2014-01-01

    Consciousness tends to be viewed either as subjective experience of sensations and feelings, or as perception and internal representation of objects. This paper argues that neither view sufficiently acknowledges that consciousness may refer to the brain's most adaptive property: its capacity to produce states of objectivity. It is proposed that this capacity relies on multiple sensorimotor networks for internally representing objects and their properties in terms of expectancies, as well as on motivational and motor mechanisms involved in exploration, play, and care for vulnerable living and non-living objects. States of objectivity are associated with a very special phenomenal aspect; the experience that subjective aspects are absent and one is "just looking" at the world as it really is and can be. However, these states are normally closely preceded and followed by (and tend to be combined or fused with) sensations and feelings which are caused by activation of sensory and motivational mechanisms. A capacity for objectivity may have evolved in different species and can be conceived as a common basis for other elusive psychological properties such as intelligence, conscience, and esthetic experience; all three linked to crucial behaviors in human evolution such as tool making, cooperation, and art. The brain's pervasive tendency to objectify may be responsible for wrongly equating consciousness with feelings and wrongly opposing it to well-learned or habitual ("unconscious") patterns of perception and behavior. PMID:24672506

  20. Consciousness: a neural capacity for objectivity, especially pronounced in humans

    PubMed Central

    Dijker, Anton J. M.

    2014-01-01

    Consciousness tends to be viewed either as subjective experience of sensations and feelings, or as perception and internal representation of objects. This paper argues that neither view sufficiently acknowledges that consciousness may refer to the brain’s most adaptive property: its capacity to produce states of objectivity. It is proposed that this capacity relies on multiple sensorimotor networks for internally representing objects and their properties in terms of expectancies, as well as on motivational and motor mechanisms involved in exploration, play, and care for vulnerable living and non-living objects. States of objectivity are associated with a very special phenomenal aspect; the experience that subjective aspects are absent and one is “just looking” at the world as it really is and can be. However, these states are normally closely preceded and followed by (and tend to be combined or fused with) sensations and feelings which are caused by activation of sensory and motivational mechanisms. A capacity for objectivity may have evolved in different species and can be conceived as a common basis for other elusive psychological properties such as intelligence, conscience, and esthetic experience; all three linked to crucial behaviors in human evolution such as tool making, cooperation, and art. The brain’s pervasive tendency to objectify may be responsible for wrongly equating consciousness with feelings and wrongly opposing it to well-learned or habitual (“unconscious”) patterns of perception and behavior. PMID:24672506

  1. Spin-mediated consciousness theory: possible roles of neural membrane nuclear spin ensembles and paramagnetic oxygen.

    PubMed

    Hu, Huping; Wu, Maoxin

    2004-01-01

    A novel theory of consciousness is proposed in this paper. We postulate that consciousness is intrinsically connected to quantum spin since the latter is the origin of quantum effects in both Bohm and Hestenes quantum formulism and a fundamental quantum process associated with the structure of space-time. That is, spin is the "mind-pixel". The unity of mind is achieved by entanglement of the mind-pixels. Applying these ideas to the particular structures and dynamics of the brain, we theorize that human brain works as follows: through action potential modulated nuclear spin interactions and paramagnetic O2/NO driven activations, the nuclear spins inside neural membranes and proteins form various entangled quantum states some of which survive decoherence through quantum Zeno effects or in decoherence-free subspaces and then collapse contextually via irreversible and non-computable means producing consciousness and, in turn, the collective spin dynamics associated with said collapses have effects through spin chemistry on classical neural activities thus influencing the neural networks of the brain. Our proposal calls for extension of associative encoding of neural memories to the dynamical structures of neural membranes and proteins. Thus, according our theory, the nuclear spin ensembles are the "mind-screen" with nuclear spins as its pixels, the neural membranes and proteins are the mind-screen and memory matrices, and the biologically available paramagnetic species such as O2 and NO are pixel-activating agents. Together, they form the neural substrates of consciousness. We also present supporting evidence and make important predictions. We stress that our theory is experimentally verifiable with present technologies. Further, experimental realizations of intra-/inter-molecular nuclear spin coherence and entanglement, macroscopic entanglement of spin ensembles and NMR quantum computation, all in room temperatures, strongly suggest the possibility of a spin

  2. Neural relativity principle

    NASA Astrophysics Data System (ADS)

    Koulakov, Alexei

    Olfaction is the final frontier of our senses - the one that is still almost completely mysterious to us. Despite extensive genetic and perceptual data, and a strong push to solve the neural coding problem, fundamental questions about the sense of smell remain unresolved. Unlike vision and hearing, where relatively straightforward relationships between stimulus features and neural responses have been foundational to our understanding sensory processing, it has been difficult to quantify the properties of odorant molecules that lead to olfactory percepts. In a sense, we do not have olfactory analogs of ``red'', ``green'' and ``blue''. The seminal work of Linda Buck and Richard Axel identified a diverse family of about 1000 receptor molecules that serve as odorant sensors in the nose. However, the properties of smells that these receptors detect remain a mystery. I will review our current understanding of the molecular properties important to the olfactory system. I will also describe a theory that explains how odorant identity can be preserved despite substantial changes in the odorant concentration.

  3. Lateral information processing by spiking neurons: a theoretical model of the neural correlate of consciousness.

    PubMed

    Ebner, Marc; Hameroff, Stuart

    2011-01-01

    Cognitive brain functions, for example, sensory perception, motor control and learning, are understood as computation by axonal-dendritic chemical synapses in networks of integrate-and-fire neurons. Cognitive brain functions may occur either consciously or nonconsciously (on "autopilot"). Conscious cognition is marked by gamma synchrony EEG, mediated largely by dendritic-dendritic gap junctions, sideways connections in input/integration layers. Gap-junction-connected neurons define a sub-network within a larger neural network. A theoretical model (the "conscious pilot") suggests that as gap junctions open and close, a gamma-synchronized subnetwork, or zone moves through the brain as an executive agent, converting nonconscious "auto-pilot" cognition to consciousness, and enhancing computation by coherent processing and collective integration. In this study we implemented sideways "gap junctions" in a single-layer artificial neural network to perform figure/ground separation. The set of neurons connected through gap junctions form a reconfigurable resistive grid or sub-network zone. In the model, outgoing spikes are temporally integrated and spatially averaged using the fixed resistive grid set up by neurons of similar function which are connected through gap-junctions. This spatial average, essentially a feedback signal from the neuron's output, determines whether particular gap junctions between neurons will open or close. Neurons connected through open gap junctions synchronize their output spikes. We have tested our gap-junction-defined sub-network in a one-layer neural network on artificial retinal inputs using real-world images. Our system is able to perform figure/ground separation where the laterally connected sub-network of neurons represents a perceived object. Even though we only show results for visual stimuli, our approach should generalize to other modalities. The system demonstrates a moving sub-network zone of synchrony, within which the contents of

  4. Neural Competition for Conscious Representation across Time: An fMRI Study

    PubMed Central

    Slagter, Heleen A.; Johnstone, Tom; Beets, Iseult A. M.; Davidson, Richard J.

    2010-01-01

    Background The information processing capacity of the human mind is limited, as is evidenced by the attentional blink (AB) - a deficit in identifying the second of two temporally-close targets (T1 and T2) embedded in a rapid stream of distracters. Theories of the AB generally agree that it results from competition between stimuli for conscious representation. However, they disagree in the specific mechanisms, in particular about how attentional processing of T1 determines the AB to T2. Methodology/Principal Findings The present study used the high spatial resolution of functional magnetic resonance imaging (fMRI) to examine the neural mechanisms underlying the AB. Our research approach was to design T1 and T2 stimuli that activate distinguishable brain areas involved in visual categorization and representation. ROI and functional connectivity analyses were then used to examine how attentional processing of T1, as indexed by activity in the T1 representation area, affected T2 processing. Our main finding was that attentional processing of T1 at the level of the visual cortex predicted T2 detection rates Those individuals who activated the T1 encoding area more strongly in blink versus no-blink trials generally detected T2 on a lower percentage of trials. The coupling of activity between T1 and T2 representation areas did not vary as a function of conscious T2 perception. Conclusions/Significance These data are consistent with the notion that the AB is related to attentional demands of T1 for selection, and indicate that these demands are reflected at the level of visual cortex. They also highlight the importance of individual differences in attentional settings in explaining AB task performance. PMID:20479939

  5. The olfactory system as the gateway to the neural correlates of consciousness

    PubMed Central

    Merrick, Christina; Godwin, Christine A.; Geisler, Mark W.; Morsella, Ezequiel

    2014-01-01

    How consciousness is generated by the nervous system remains one of the greatest mysteries in science. Investigators from diverse fields have begun to unravel this puzzle by contrasting conscious and unconscious processes. In this way, it has been revealed that the two kinds of processes differ in terms of the underlying neural events and associated cognitive mechanisms. We propose that, for several reasons, the olfactory system provides a unique portal through which to examine this contrast. For this purpose, the olfactory system is beneficial in terms of its (a) neuroanatomical aspects, (b) phenomenological and cognitive/mechanistic properties, and (c) neurodynamic (e.g., brain oscillations) properties. In this review, we discuss how each of these properties and aspects of the olfactory system can illuminate the contrast between conscious and unconscious processing in the brain. We conclude by delineating the most fruitful avenues of research and by entertaining hypotheses that, in order for an olfactory content to be conscious, that content must participate in a network that is large-scale, both in terms of the neural systems involved and the scope of information integration. PMID:24454300

  6. The olfactory system as the gateway to the neural correlates of consciousness.

    PubMed

    Merrick, Christina; Godwin, Christine A; Geisler, Mark W; Morsella, Ezequiel

    2014-01-10

    How consciousness is generated by the nervous system remains one of the greatest mysteries in science. Investigators from diverse fields have begun to unravel this puzzle by contrasting conscious and unconscious processes. In this way, it has been revealed that the two kinds of processes differ in terms of the underlying neural events and associated cognitive mechanisms. We propose that, for several reasons, the olfactory system provides a unique portal through which to examine this contrast. For this purpose, the olfactory system is beneficial in terms of its (a) neuroanatomical aspects, (b) phenomenological and cognitive/mechanistic properties, and (c) neurodynamic (e.g., brain oscillations) properties. In this review, we discuss how each of these properties and aspects of the olfactory system can illuminate the contrast between conscious and unconscious processing in the brain. We conclude by delineating the most fruitful avenues of research and by entertaining hypotheses that, in order for an olfactory content to be conscious, that content must participate in a network that is large-scale, both in terms of the neural systems involved and the scope of information integration. PMID:24454300

  7. Neural correlates of conscious self-regulation of emotion.

    PubMed

    Beauregard, M; Lévesque, J; Bourgouin, P

    2001-09-15

    A fundamental question about the relationship between cognition and emotion concerns the neural substrate underlying emotional self-regulation. To address this issue, brain activation was measured in normal male subjects while they either responded in a normal manner to erotic film excerpts or voluntarily attempted to inhibit the sexual arousal induced by viewing erotic stimuli. Results demonstrated that the sexual arousal experienced, in response to the erotic film excerpts, was associated with activation in "limbic" and paralimbic structures, such as the right amygdala, right anterior temporal pole, and hypothalamus. In addition, the attempted inhibition of the sexual arousal generated by viewing the erotic stimuli was associated with activation of the right superior frontal gyrus and right anterior cingulate gyrus. No activation was found in limbic areas. These findings reinforce the view that emotional self-regulation is normally implemented by a neural circuit comprising various prefrontal regions and subcortical limbic structures. They also suggest that humans have the capacity to influence the electrochemical dynamics of their brains, by voluntarily changing the nature of the mind processes unfolding in the psychological space. PMID:11549754

  8. Neural repetition suppression in ventral occipito-temporal cortex occurs during conscious and unconscious processing of frequent stimuli.

    PubMed

    Vidal, Juan R; Perrone-Bertolotti, Marcela; Levy, Jonathan; De Palma, Luca; Minotti, Lorella; Kahane, Philippe; Bertrand, Olivier; Lutz, Antoine; Jerbi, Karim; Lachaux, Jean-Philippe

    2014-07-15

    Stimulus repetition can produce neural response attenuation in stimulus-category selective networks within the occipito-temporal lobe. It is hypothesized that this neural suppression reflects the functional sharpening of local neuronal assemblies which boosts information processing efficiency. This neural suppression phenomenon has been mainly reported during conditions of conscious stimulus perception. The question remains whether frequent stimuli processed in the absence of conscious perception also induce repetition suppression in those specialized networks. Using rare intracranial EEG recordings in the ventral occipito-temporal cortex (VOTC) of human epileptic patients we investigated neural repetition suppression in conditions of conscious and unconscious visual processing of words. To this end, we used an orthogonal design manipulating respectively stimulus repetition (frequent vs. unique stimuli) and conscious perception (masked vs. unmasked stimuli). By measuring the temporal dynamics of high-frequency broadband gamma activity in VOTC and testing for main and interaction effects, we report that early processing of words in word-form selective networks exhibits a temporal cascade of modulations by stimulus repetition and masking: neuronal attenuation initially is observed in response to repeated words (irrespective of consciousness), that is followed by a second modulation contingent upon word reportability (irrespective of stimulus repetition). Later on (>300ms post-stimulus), a significant effect of conscious perception on the extent of repetition suppression was observed. The temporal dynamics of consciousness, the recognition memory processes and their interaction revealed in this study advance our understanding of their contributions to the neural mechanisms of word processing in VOTC. PMID:24667455

  9. It is time to combine the two main traditions in the research on the neural correlates of consciousness: C = L × D

    PubMed Central

    Bachmann, Talis; Hudetz, Anthony G.

    2014-01-01

    Research on neural correlates of consciousness has been conducted and carried out mostly from within two relatively autonomous paradigmatic traditions – studying the specific contents of conscious experience and their brain-process correlates and studying the level of consciousness. In the present paper we offer a theoretical integration suggesting that an emphasis has to be put on understanding the mechanisms of consciousness (and not a mere correlates) and in doing this, the two paradigmatic traditions must be combined. We argue that consciousness emerges as a result of interaction of brain mechanisms specialized for representing the specific contents of perception/cognition – the data – and mechanisms specialized for regulating the level of activity of whatever data the content-carrying specific mechanisms happen to represent. Each of these mechanisms are necessary because without the contents there is no conscious experience and without the required level of activity the processed contents remain unconscious. Together the two mechanisms, when activated up to a necessary degree each, provide conditions sufficient for conscious experience to emerge. This proposal is related to pertinent experimental evidence. PMID:25202297

  10. Perceptual and contextual awareness: methodological considerations in the search for the neural correlates of consciousness.

    PubMed

    Navajas, Joaquin; Rey, Hernan G; Quian Quiroga, Rodrigo

    2014-01-01

    In the last decades, the neural correlates of consciousness (NCCs) have been explored using both invasive and non-invasive recordings by comparing the brain activity elicited by seen versus unseen visual stimuli (i.e., the contrastive analysis). Here, we review a selection of these studies and discuss a set of considerations to improve the search for the NCCs using the contrastive analysis. In particular, we first argue in favor of implementing paradigms where different perceptual outputs are obtained using identical visual inputs. Second, we propose that the large disagreement in the field -in terms of the dissimilar neural patterns proposed as NCCs- is partially explained by the fact that different studies report the neural correlates of different conscious processes in the brain. More specifically, we distinguish between the perceptual awareness of a visual stimulus, associated to a boost in object-selective neural assemblies, and a more elaborate process (contextual awareness) that we argue is reflected in the firing of concept neurons in the medial temporal lobe, triggering a rich representation of the context, associations, and memories linked to the specific stimulus. PMID:25221537

  11. Altered states of consciousness are related to higher sexual responsiveness.

    PubMed

    Costa, Rui M; Pestana, José; Costa, David; Wittmann, Marc

    2016-05-01

    Altered states of consciousness lead to profound changes in the sense of self, time and space. We assessed how these changes were related to sexual responsiveness during sex. 116 subjects reported (a) intensity of awareness concerning body, space and time, and (b) satisfaction, desire, arousal, and orgasm occurrence. We differentiated vaginal intercourse orgasm from noncoital orgasm. Female vaginal intercourse orgasm was further differentiated as with or without concurrent clitoral masturbation. Overall, sexual responsiveness was related to greater body awareness and lesser time and space awareness. Satisfaction, desire, and arousal were especially associated with less time awareness in women. Female orgasms during vaginal intercourse were related to greater body awareness and lesser time awareness, but noncoital orgasms were unrelated. Our findings provide empirical support for the hypotheses that altered states of consciousness with attentional absorption are strongly related to sexual responsiveness in women, and to a lesser extent in men. PMID:27003264

  12. Lateral Information Processing by Spiking Neurons: A Theoretical Model of the Neural Correlate of Consciousness

    PubMed Central

    Ebner, Marc; Hameroff, Stuart

    2011-01-01

    Cognitive brain functions, for example, sensory perception, motor control and learning, are understood as computation by axonal-dendritic chemical synapses in networks of integrate-and-fire neurons. Cognitive brain functions may occur either consciously or nonconsciously (on “autopilot”). Conscious cognition is marked by gamma synchrony EEG, mediated largely by dendritic-dendritic gap junctions, sideways connections in input/integration layers. Gap-junction-connected neurons define a sub-network within a larger neural network. A theoretical model (the “conscious pilot”) suggests that as gap junctions open and close, a gamma-synchronized subnetwork, or zone moves through the brain as an executive agent, converting nonconscious “auto-pilot” cognition to consciousness, and enhancing computation by coherent processing and collective integration. In this study we implemented sideways “gap junctions” in a single-layer artificial neural network to perform figure/ground separation. The set of neurons connected through gap junctions form a reconfigurable resistive grid or sub-network zone. In the model, outgoing spikes are temporally integrated and spatially averaged using the fixed resistive grid set up by neurons of similar function which are connected through gap-junctions. This spatial average, essentially a feedback signal from the neuron's output, determines whether particular gap junctions between neurons will open or close. Neurons connected through open gap junctions synchronize their output spikes. We have tested our gap-junction-defined sub-network in a one-layer neural network on artificial retinal inputs using real-world images. Our system is able to perform figure/ground separation where the laterally connected sub-network of neurons represents a perceived object. Even though we only show results for visual stimuli, our approach should generalize to other modalities. The system demonstrates a moving sub-network zone of synchrony, within which

  13. Modulating Conscious Movement Intention by Noninvasive Brain Stimulation and the Underlying Neural Mechanisms

    PubMed Central

    Douglas, Zachary H.; Maniscalco, Brian; Hallett, Mark; Wassermann, Eric M.

    2015-01-01

    Conscious intention is a fundamental aspect of the human experience. Despite long-standing interest in the basis and implications of intention, its underlying neurobiological mechanisms remain poorly understood. Using high-definition transcranial DC stimulation (tDCS), we observed that enhancing spontaneous neuronal excitability in both the angular gyrus and the primary motor cortex caused the reported time of conscious movement intention to be ∼60–70 ms earlier. Slow brain waves recorded ∼2–3 s before movement onset, as well as hundreds of milliseconds after movement onset, independently correlated with the modulation of conscious intention by brain stimulation. These brain activities together accounted for 81% of interindividual variability in the modulation of movement intention by brain stimulation. A computational model using coupled leaky integrator units with biophysically plausible assumptions about the effect of tDCS captured the effects of stimulation on both neural activity and behavior. These results reveal a temporally extended brain process underlying conscious movement intention that spans seconds around movement commencement. PMID:25948272

  14. Modulating conscious movement intention by noninvasive brain stimulation and the underlying neural mechanisms.

    PubMed

    Douglas, Zachary H; Maniscalco, Brian; Hallett, Mark; Wassermann, Eric M; He, Biyu J

    2015-05-01

    Conscious intention is a fundamental aspect of the human experience. Despite long-standing interest in the basis and implications of intention, its underlying neurobiological mechanisms remain poorly understood. Using high-definition transcranial DC stimulation (tDCS), we observed that enhancing spontaneous neuronal excitability in both the angular gyrus and the primary motor cortex caused the reported time of conscious movement intention to be ∼60-70 ms earlier. Slow brain waves recorded ∼2-3 s before movement onset, as well as hundreds of milliseconds after movement onset, independently correlated with the modulation of conscious intention by brain stimulation. These brain activities together accounted for 81% of interindividual variability in the modulation of movement intention by brain stimulation. A computational model using coupled leaky integrator units with biophysically plausible assumptions about the effect of tDCS captured the effects of stimulation on both neural activity and behavior. These results reveal a temporally extended brain process underlying conscious movement intention that spans seconds around movement commencement. PMID:25948272

  15. How and to what end may consciousness contribute to action? Attributing properties of consciousness to an embodied, minimally cognitive artificial neural network

    PubMed Central

    Cruse, Holk; Schilling, Malte

    2013-01-01

    An artificial neural network called reaCog is described which is based on a decentralized, reactive and embodied architecture developed to control non-trivial hexapod walking in an unpredictable environment (Walknet) while using insect-like navigation (Navinet). In reaCog, these basic networks are extended in such a way that the complete system, reaCog, adopts the capability of inventing new behaviors and – via internal simulation – of planning ahead. This cognitive expansion enables the reactive system to be enriched with additional procedures. Here, we focus on the question to what extent properties of phenomena to be characterized on a different level of description as for example consciousness can be found in this minimally cognitive system. Adopting a monist view, we argue that the phenomenal aspect of mental phenomena can be neglected when discussing the function of such a system. Under this condition, reaCog is discussed to be equipped with properties as are bottom-up and top-down attention, intentions, volition, and some aspects of Access Consciousness. These properties have not been explicitly implemented but emerge from the cooperation between the elements of the network. The aspects of Access Consciousness found in reaCog concern the above mentioned ability to plan ahead and to invent and guide (new) actions. Furthermore, global accessibility of memory elements, another aspect characterizing Access Consciousness is realized by this network. reaCog allows for both reactive/automatic control and (access-) conscious control of behavior. We discuss examples for interactions between both the reactive domain and the conscious domain. Metacognition or Reflexive Consciousness is not a property of reaCog. Possible expansions are discussed to allow for further properties of Access Consciousness, verbal report on internal states, and for Metacognition. In summary, we argue that already simple networks allow for properties of consciousness if leaving the

  16. Neural pathways associated with loss of consciousness caused by intracerebral microinjection of GABA A-active anesthetics.

    PubMed

    Sukhotinsky, I; Zalkind, V; Lu, J; Hopkins, D A; Saper, C B; Devor, M

    2007-03-01

    Anesthesia, slow-wave sleep, syncope, concussion and reversible coma are behavioral states characterized by loss of consciousness, slow-wave cortical electroencephalogram, and motor and sensory suppression. We identified a focal area in the rat brainstem, the mesopontine tegmental anesthesia area (MPTA), at which microinjection of pentobarbital and other GABA(A) receptor (GABA(A)-R) agonists reversibly induced an anesthesia-like state. This effect was attenuated by local pre-treatment with the GABA(A)-R antagonist bicuculline. Using neuroanatomical tracing we identified four pathways ascending from the MPTA that are positioned to mediate electroencephalographic synchronization and loss of consciousness: (i) projections to the intralaminar thalamic nuclei that, in turn, project to the cortex; (ii) projections to several pontomesencephalic, diencephalic and basal forebrain nuclei that project cortically and are considered parts of an ascending "arousal system"; (iii) a projection to other parts of the subcortical forebrain, including the septal area, hypothalamus, zona incerta and striato-pallidal system, that may indirectly affect cortical arousal and hippocampal theta rhythm; and (iv) modest projections directly to the frontal cortex. Several of these areas have prominent reciprocal projections back to the MPTA, notably the zona incerta, lateral hypothalamus and frontal cortex. We hypothesize that barbiturate anesthetics and related agents microinjected into the MPTA enhance the inhibitory response of local GABA(A)-R-bearing neurons to endogenous GABA released at baseline during wakefulness. This modulates activity in one or more of the identified ascending neural pathways, ultimately leading to loss of consciousness. PMID:17425568

  17. Identifying neural correlates of visual consciousness with ALE meta-analyses.

    PubMed

    Bisenius, Sandrine; Trapp, Sabrina; Neumann, Jane; Schroeter, Matthias L

    2015-11-15

    Neural correlates of consciousness (NCC) have been a topic of study for nearly two decades. In functional imaging studies, several regions have been proposed to constitute possible candidates for NCC, but as of yet, no quantitative summary of the literature on NCC has been done. The question whether single (striate or extrastriate) regions or a network consisting of extrastriate areas that project directly to fronto-parietal regions are necessary and sufficient neural correlates for visual consciousness is still highly debated [e.g., Rees et al., 2002, Nat Rev. Neurosci 3, 261-270; Tong, 2003, Nat Rev. Neurosci 4, 219-229]. The aim of this work was to elucidate this issue and give a synopsis of the present state of the art by conducting systematic and quantitative meta-analyses across functional magnetic resonance imaging (fMRI) studies using several standard paradigms for conscious visual perception. In these paradigms, consciousness is operationalized via perceptual changes, while the visual stimulus remains invariant. An activation likelihood estimation (ALE) meta-analysis was performed, representing the best approach for voxel-wise meta-analyses to date. In addition to computing a meta-analysis across all paradigms, separate meta-analyses on bistable perception and masking paradigms were conducted to assess whether these paradigms show common or different NCC. For the overall meta-analysis, we found significant clusters of activation in inferior and middle occipital gyrus; fusiform gyrus; inferior temporal gyrus; caudate nucleus; insula; inferior, middle, and superior frontal gyri; precuneus; as well as in inferior and superior parietal lobules. These results suggest a subcortical-extrastriate-fronto-parietal network rather than a single region that constitutes the necessary NCC. The results of our exploratory paradigm-specific meta-analyses suggest that this subcortical-extrastriate-fronto-parietal network might be differentially activated as a function of the

  18. Raising Relational Critical Consciousness to Enhance Empathy in Clinical Hypnosis.

    PubMed

    Vargas, H Luis

    2016-01-01

    Empathic involvement theory suggests that a trance-like experience occurs when a cross-relational empathic connection is achieved. The empathically-laden relational phenomenon is thought to enhance hypnosis. Empathic involvement theory suggests hypnotizables are highly empathic. By the same token, the relational empathic connection necessitates a highly empathic practitioner of hypnosis. In the United States, where values of individualism are thought to be socially embedded and internalized, practitioners of hypnosis and clients alike may be impeded by an individually oriented worldview to empathically connect with others. Raising a relational critical consciousness is promoted as a way to increase sensitivity to the marginalization of relationships, limit empathic-effort burn-out, and promote cross-relational empathic connection. PMID:26675156

  19. A TMS Study of the Ventral Projections from V1 with Implications for the Finding of Neural Correlates of Consciousness

    ERIC Educational Resources Information Center

    Overgaard, Morten; Nielsen, Jorgen Feldbaek; Fuglsang-Frederiksen, Anders

    2004-01-01

    The study of subliminal perception in normal and brain lesioned subjects has long been of interest to scholars studying the neural mechanisms behind conscious vision. Using brief durations and a developed methodology of introspective reporting, we present an experiment with visual stimuli that gives rise to little or no subliminal perception under…

  20. Conscious brain, metacognition and schizophrenia.

    PubMed

    Bob, Petr; Pec, Ondrej; Mishara, Aaron L; Touskova, Tereza; Lysaker, Paul H

    2016-07-01

    Recent findings indicate that the binding and synchronization of distributed neural activities are crucial for cognitive processes and consciousness. In addition, there is increasing evidence that disrupted feature binding is related to experiences of disintegration of consciousness in schizophrenia. These data suggest that the disrupted binding and disintegration of consciousness could be typically related to schizophrenia in terms of Bleuler's concept of "splitting". In this context, deficits in metacognitive capacity in schizophrenia may be conceptualized as a spectrum from more discrete to more synthetic activities, related to specific levels of neural binding and neurocognitive deficits. This review summarizes the recent research on metacognition and its relationship to deficits of conscious awareness that may be found in schizophrenia patients. Deficits in synthetic metacognition are likely linked to the integration of information during specific processes of neural binding. Those in turn may be related to a range of mental activities including reasoning style, learning potential and insight. PMID:27178724

  1. The neural basis of one's own conscious and unconscious emotional states.

    PubMed

    Smith, Ryan; Lane, Richard D

    2015-10-01

    The study of emotional states has recently received considerable attention within the cognitive and neural sciences. However, limited work has been done to synthesize this growing body of literature within a coherent hierarchical, neuro-cognitive framework. In this article, we review evidence pertaining to three interacting hierarchical neural systems associated with the generation, perception and regulation of one's own emotional state. In the framework we propose, emotion generation proceeds through a series of appraisal mechanisms - some of which appear to require more cognitively sophisticated computational processing (and hence more time) than others - that ultimately trigger iterative adjustments to one's bodily state (as well as to the modes of processing in other cognitive systems). Perceiving one's own emotions then involves a multi-stage interoceptive/somatosensory process by which these body state patterns are detected and assigned conceptual emotional meaning. Finally, emotion regulation can be understood as a hierarchical control system that, at various levels, modulates autonomic reactions, appraisal mechanisms, attention, the contents of working memory, and goal-directed action selection. We highlight implications this integrative model may have for competing theories of emotion and emotional consciousness and for guiding future research. PMID:26363579

  2. Closing in on the constitution of consciousness

    PubMed Central

    Miller, Steven M.

    2014-01-01

    The science of consciousness is a nascent and thriving field of research that is founded on identifying the minimally sufficient neural correlates of consciousness. However, I have argued that it is the neural constitution of consciousness that science seeks to understand and that there are no evident strategies for distinguishing the correlates and constitution of (phenomenal) consciousness. Here I review this correlation/constitution distinction problem and challenge the existing foundations of consciousness science. I present the main analyses from a longer paper in press on this issue, focusing on recording, inhibition, stimulation, and combined inhibition/stimulation strategies, including proposal of the Jenga analogy to illustrate why identifying the minimally sufficient neural correlates of consciousness should not be considered the ultimate target of consciousness science. Thereafter I suggest that while combined inhibition and stimulation strategies might identify some constitutive neural activities—indeed minimally sufficient constitutive neural activities—such strategies fail to identify the whole neural constitution of consciousness and thus the correlation/constitution distinction problem is not fully solved. Various clarifications, potential objections and related scientific and philosophical issues are also discussed and I conclude by proposing new foundational claims for consciousness science. PMID:25452738

  3. Beyond Relation: A Critical Exploration of "Relational Consciousness" for Spiritual Education

    ERIC Educational Resources Information Center

    Wills, Ruth

    2012-01-01

    This paper takes a philosophical view of the spiritual concept "relational consciousness" first proposed by Rebecca Nye in 1998. I will consider the "relational" aspect of spirituality through the ontology of Heidegger and the dialogical relationship "I and Thou" of Martin Buber, examining the problems that contingency and mediation within…

  4. Electrophysiological evidence for phenomenal consciousness.

    PubMed

    Revonsuo, Antti; Koivisto, Mika

    2010-09-01

    Abstract Recent evidence from event-related brain potentials (ERPs) lends support to two central theses in Lamme's theory. The earliest ERP correlate of visual consciousness appears over posterior visual cortex around 100-200 ms after stimulus onset. Its scalp topography and time window are consistent with recurrent processing in the visual cortex. This electrophysiological correlate of visual consciousness is mostly independent of later ERPs reflecting selective attention and working memory functions. Overall, the ERP evidence supports the view that phenomenal consciousness of a visual stimulus emerges earlier than access consciousness, and that attention and awareness are served by distinct neural processes. PMID:24168341

  5. Body-related self-conscious emotions relate to physical activity motivation and behavior in men.

    PubMed

    Castonguay, Andree L; Pila, Eva; Wrosch, Carsten; Sabiston, Catherine M

    2015-05-01

    The aim of this study was to examine the associations between the body-related self-conscious emotions of shame, guilt, and pride and physical activity motivation and behavior among adult males. Specifically, motivation regulations (external, introjected, indentified, intrinsic) were examined as possible mediators between each of the body-related self-conscious emotions and physical activity behavior. A cross-sectional study was conducted with adult men (N = 152; Mage = 23.72, SD = 10.92 years). Participants completed a questionnaire assessing body-related shame, guilt, authentic pride, hubristic pride, motivational regulations, and leisure-time physical activity. In separate multiple mediation models, body-related shame was positively associated with external and introjected regulations and negatively correlated with intrinsic regulation. Guilt was positively linked to external, introjected, and identified regulations. Authentic pride was negatively related to external regulation and positively correlated with both identified and intrinsic regulations and directly associated with physical activity behavior. Hubristic pride was positively associated with intrinsic regulation. Overall, there were both direct and indirect effects via motivation regulations between body-related self-conscious emotions and physical activity (R(2) shame = .15, guilt = .16, authentic pride = .18, hubristic pride = .16). These findings highlight the importance of targeting and understanding self-conscious emotions contextualized to the body and links to motivation and positive health behavior among men. PMID:24899517

  6. Dissociative States and Neural Complexity

    ERIC Educational Resources Information Center

    Bob, Petr; Svetlak, Miroslav

    2011-01-01

    Recent findings indicate that neural mechanisms of consciousness are related to integration of distributed neural assemblies. This neural integration is particularly vulnerable to past stressful experiences that can lead to disintegration and dissociation of consciousness. These findings suggest that dissociation could be described as a level of…

  7. Caring for the Past: On Relationality and Historical Consciousness

    ERIC Educational Resources Information Center

    Chinnery, Ann

    2013-01-01

    Over the past 20 years, there has been a shift in history education away from a view of history as the pursuit of an objective, universal story about the past toward "historical consciousness," which seeks to cultivate an understanding of the past as something that makes moral demands on us here and now. According to Roger Simon,…

  8. Neural correlates of visuospatial consciousness in 3D default space: insights from contralateral neglect syndrome.

    PubMed

    Jerath, Ravinder; Crawford, Molly W

    2014-08-01

    One of the most compelling questions still unanswered in neuroscience is how consciousness arises. In this article, we examine visual processing, the parietal lobe, and contralateral neglect syndrome as a window into consciousness and how the brain functions as the mind and we introduce a mechanism for the processing of visual information and its role in consciousness. We propose that consciousness arises from integration of information from throughout the body and brain by the thalamus and that the thalamus reimages visual and other sensory information from throughout the cortex in a default three-dimensional space in the mind. We further suggest that the thalamus generates a dynamic default three-dimensional space by integrating processed information from corticothalamic feedback loops, creating an infrastructure that may form the basis of our consciousness. Further experimental evidence is needed to examine and support this hypothesis, the role of the thalamus, and to further elucidate the mechanism of consciousness. PMID:25049208

  9. Self-Related Processing and Deactivation of Cortical Midline Regions in Disorders of Consciousness

    PubMed Central

    Crone, Julia Sophia; Höller, Yvonne; Bergmann, Jürgen; Golaszewski, Stefan; Trinka, Eugen; Kronbichler, Martin

    2013-01-01

    Self-related stimuli activate anterior parts of cortical midline regions, which normally show task-induced deactivation. Deactivation in medial posterior and frontal regions is associated with the ability to focus attention on the demands of the task, and therefore, with consciousness. Studies investigating patients with impaired consciousness, that is, patients in minimally conscious state and patients with unresponsive wakefulness syndrome (formerly vegetative state), demonstrate that these patients show responses to self-related content in the anterior cingulate cortex. However, it remains unclear if these responses are an indication for conscious processing of stimuli or are due to automatic processing. To shed further light on this issue, we investigated responses of cortical midline regions to the own and another name in 27 patients with a disorder of consciousness and compared them to task-induced deactivation. While almost all of the control subjects responding to the own name demonstrated higher activation due to the self-related content in anterior midline regions and additional deactivation, none of the responding patients did so. Differences between groups showed a similar pattern of findings. Despite the relation between behavioral responsiveness in patients and activation in response to the own name, the findings of this study do not provide evidence for a direct association of activation in anterior midline regions and conscious processing. The deficits in processing of self-referential content in anterior midline regions may rather be due to general impairments in cognitive processing and not particularly linked to impaired consciousness. PMID:23986685

  10. How consciousness will change our view on neuroscience.

    PubMed

    Overgaard, Morten

    2010-09-01

    Abstract Victor Lamme proposed that the study of consciousness should not be based on introspection. Nevertheless, Lamme understands consciousness as a subjective phenomenon, and introspection as the way in which we acquire knowledge about consciousness. This makes the task to find introspective-free methods to study consciousness difficult. Lamme attempts to make progress by introducing "neural arguments," but fails to show how such arguments are independent of introspective methods which seem necessary in order to decide how any neural process relates to mental phenomena. This commentary paper thus aims to show that our understanding of neural correlates is shaped by introspection. PMID:24168340

  11. Evolution of the neural basis of consciousness: a bird-mammal comparison.

    PubMed

    Butler, Ann B; Manger, Paul R; Lindahl, B I B; Arhem, Peter

    2005-09-01

    The main objective of this essay is to validate some of the principal, currently competing, mammalian consciousness-brain theories by comparing these theories with data on both cognitive abilities and brain organization in birds. Our argument is that, given that multiple complex cognitive functions are correlated with presumed consciousness in mammals, this correlation holds for birds as well. Thus, the neuroanatomical features of the forebrain common to both birds and mammals may be those that are crucial to the generation of both complex cognition and consciousness. The general conclusion is that most of the consciousness-brain theories appear to be valid for the avian brain. Even though some specific homologies are unresolved, most of the critical structures presumed necessary for consciousness in mammalian brains have clear homologues in avian brains. Furthermore, considering the fact that the reptile-bird brain transition shows more structural continuity than the stem amniote-mammalian transition, the line drawn at the origin of mammals for consciousness by several of the theorists seems questionable. An equally important point is that consciousness cannot be ruled out in the absence of complex cognition; it may in fact be the case that consciousness is a necessary prerequisite for complex cognition. PMID:16108067

  12. A Mechanistic Neural Field Theory of How Anesthesia Suppresses Consciousness: Synaptic Drive Dynamics, Bifurcations, Attractors, and Partial State Equipartitioning.

    PubMed

    Hou, Saing Paul; Haddad, Wassim M; Meskin, Nader; Bailey, James M

    2015-12-01

    With the advances in biochemistry, molecular biology, and neurochemistry there has been impressive progress in understanding the molecular properties of anesthetic agents. However, there has been little focus on how the molecular properties of anesthetic agents lead to the observed macroscopic property that defines the anesthetic state, that is, lack of responsiveness to noxious stimuli. In this paper, we use dynamical system theory to develop a mechanistic mean field model for neural activity to study the abrupt transition from consciousness to unconsciousness as the concentration of the anesthetic agent increases. The proposed synaptic drive firing-rate model predicts the conscious-unconscious transition as the applied anesthetic concentration increases, where excitatory neural activity is characterized by a Poincaré-Andronov-Hopf bifurcation with the awake state transitioning to a stable limit cycle and then subsequently to an asymptotically stable unconscious equilibrium state. Furthermore, we address the more general question of synchronization and partial state equipartitioning of neural activity without mean field assumptions. This is done by focusing on a postulated subset of inhibitory neurons that are not themselves connected to other inhibitory neurons. Finally, several numerical experiments are presented to illustrate the different aspects of the proposed theory. PMID:26438186

  13. The cognitive and neural correlates of "tactile consciousness": a multisensory perspective.

    PubMed

    Gallace, Alberto; Spence, Charles

    2008-03-01

    People's awareness of tactile stimuli has been investigated in far less detail than their awareness of stimuli in other sensory modalities. In an attempt to fill this gap, we provide an overview of studies that are pertinent to the topic of tactile consciousness. We discuss the results of research that has investigated phenomena such as "change blindness", phantom limb sensations, and numerosity judgments in tactile perception, together with the results obtained from the study of patients affected by deficits that can adversely affect tactile perception such as neglect, extinction, and numbsense. The similarities as well as some of the important differences that have emerged when visual and tactile conscious information processing have been compared using similar experimental procedures are highlighted. We suggest that conscious information processing in the tactile modality cannot be separated completely from the more general processing of spatial information in the brain. Finally, the importance of considering tactile consciousness within the larger framework of multisensory information processing is also discussed. PMID:17398116

  14. Body Consciousness, Illness-Related Impairment, and Patient Adherence in Hemodialysis.

    ERIC Educational Resources Information Center

    Christensen, Alan J.; And Others

    1996-01-01

    Examined the joint effects of private body consciousness (PBC) and degree of illness-related physical impairment on treatment regimen adherence in a sample of 52 hemodialysis patients. Predicted the effect of PBC on adherence would vary as a function of patients' level of illness-related physical impairment. Results are discussed in terms of…

  15. Neural Dynamics Underlying Event-Related Potentials

    NASA Technical Reports Server (NTRS)

    Shah, Ankoor S.; Bressler, Steven L.; Knuth, Kevin H.; Ding, Ming-Zhou; Mehta, Ashesh D.; Ulbert, Istvan; Schroeder, Charles E.

    2003-01-01

    There are two opposing hypotheses about the brain mechanisms underlying sensory event-related potentials (ERPs). One holds that sensory ERPs are generated by phase resetting of ongoing electroencephalographic (EEG) activity, and the other that they result from signal averaging of stimulus-evoked neural responses. We tested several contrasting predictions of these hypotheses by direct intracortical analysis of neural activity in monkeys. Our findings clearly demonstrate evoked response contributions to the sensory ERP in the monkey, and they suggest the likelihood that a mixed (Evoked/Phase Resetting) model may account for the generation of scalp ERPs in humans.

  16. Sample Entropy Analysis of EEG Signals via Artificial Neural Networks to Model Patients' Consciousness Level Based on Anesthesiologists Experience

    PubMed Central

    Jiang, George J. A.; Fan, Shou-Zen; Abbod, Maysam F.; Huang, Hui-Hsun; Lan, Jheng-Yan; Tsai, Feng-Fang; Chang, Hung-Chi; Yang, Yea-Wen; Chuang, Fu-Lan; Chiu, Yi-Fang; Jen, Kuo-Kuang; Wu, Jeng-Fu; Shieh, Jiann-Shing

    2015-01-01

    Electroencephalogram (EEG) signals, as it can express the human brain's activities and reflect awareness, have been widely used in many research and medical equipment to build a noninvasive monitoring index to the depth of anesthesia (DOA). Bispectral (BIS) index monitor is one of the famous and important indicators for anesthesiologists primarily using EEG signals when assessing the DOA. In this study, an attempt is made to build a new indicator using EEG signals to provide a more valuable reference to the DOA for clinical researchers. The EEG signals are collected from patients under anesthetic surgery which are filtered using multivariate empirical mode decomposition (MEMD) method and analyzed using sample entropy (SampEn) analysis. The calculated signals from SampEn are utilized to train an artificial neural network (ANN) model through using expert assessment of consciousness level (EACL) which is assessed by experienced anesthesiologists as the target to train, validate, and test the ANN. The results that are achieved using the proposed system are compared to BIS index. The proposed system results show that it is not only having similar characteristic to BIS index but also more close to experienced anesthesiologists which illustrates the consciousness level and reflects the DOA successfully. PMID:25738152

  17. Sample entropy analysis of EEG signals via artificial neural networks to model patients' consciousness level based on anesthesiologists experience.

    PubMed

    Jiang, George J A; Fan, Shou-Zen; Abbod, Maysam F; Huang, Hui-Hsun; Lan, Jheng-Yan; Tsai, Feng-Fang; Chang, Hung-Chi; Yang, Yea-Wen; Chuang, Fu-Lan; Chiu, Yi-Fang; Jen, Kuo-Kuang; Wu, Jeng-Fu; Shieh, Jiann-Shing

    2015-01-01

    Electroencephalogram (EEG) signals, as it can express the human brain's activities and reflect awareness, have been widely used in many research and medical equipment to build a noninvasive monitoring index to the depth of anesthesia (DOA). Bispectral (BIS) index monitor is one of the famous and important indicators for anesthesiologists primarily using EEG signals when assessing the DOA. In this study, an attempt is made to build a new indicator using EEG signals to provide a more valuable reference to the DOA for clinical researchers. The EEG signals are collected from patients under anesthetic surgery which are filtered using multivariate empirical mode decomposition (MEMD) method and analyzed using sample entropy (SampEn) analysis. The calculated signals from SampEn are utilized to train an artificial neural network (ANN) model through using expert assessment of consciousness level (EACL) which is assessed by experienced anesthesiologists as the target to train, validate, and test the ANN. The results that are achieved using the proposed system are compared to BIS index. The proposed system results show that it is not only having similar characteristic to BIS index but also more close to experienced anesthesiologists which illustrates the consciousness level and reflects the DOA successfully. PMID:25738152

  18. [Interpersonal relations in the consciousness of pupils and students].

    PubMed

    Kolarzyk, Emilia; Jaglarz, Małgorzata; Jaworska-Szyc, Jagoda

    2005-01-01

    The quality, satisfaction and being pleased of life depend on proper relations in the family, in the group of persons at the same age and at school or at the University. The aim of this study was the estimation of interpersonal relations in the chosen group of Cracovian secondary school pupils and medical students thanks the examinations conducted by auditory system with the use of an inquiry "Woman Self Image and Social Ideal". There were 713 persons belonging to 2 groups included in the examination: Group I: 313 pupils, including 128 boys and 185 girls attending to the second and third classes of two Cracovian secondary schools: Group II: 400 students of Medical Department and Health Protection Department of Collegium Medicum, Jagiellonian University in Cracow--106 male students and 294 female students. In the actual analysis the answers given to 64 questions of the "Interpersonal problems Inventory" questionnaire were estimated. Every question contained 5 possibilities: no, a little bit, more or less, much, very much. The hierarchy of these problems was estimated with the use of the method of step wise regression on the basis of the frequency of opposite answers to the particular questions. The most often the young persons stated (74%-63%) that it is never difficult for them to make a present to somebody else, to feel happy about one's happiness and to show positive emotions to others. About half of the examined persons (60%-47%) thought that they were never aggressive to others, that they never put their needs on the first position and they were not afraid of contacts with other people. In the questions connected with one's own personality determining the frequency of answers given to particular dystractors was not strongly marked e.g.: It is difficult for me to be alone: no (39%I/35%II), a little bit (18%I/16%II), moderately (13%I/11%II), much (13%I/18%II), very much (17%I/20%II); I am too credulous: no (46%I/37%II), a little bit (26%I/ 26%II), moderately (12

  19. A hierarchy of event-related potential markers of auditory processing in disorders of consciousness.

    PubMed

    Beukema, Steve; Gonzalez-Lara, Laura E; Finoia, Paola; Kamau, Evelyn; Allanson, Judith; Chennu, Srivas; Gibson, Raechelle M; Pickard, John D; Owen, Adrian M; Cruse, Damian

    2016-01-01

    Functional neuroimaging of covert perceptual and cognitive processes can inform the diagnoses and prognoses of patients with disorders of consciousness, such as the vegetative and minimally conscious states (VS;MCS). Here we report an event-related potential (ERP) paradigm for detecting a hierarchy of auditory processes in a group of healthy individuals and patients with disorders of consciousness. Simple cortical responses to sounds were observed in all 16 patients; 7/16 (44%) patients exhibited markers of the differential processing of speech and noise; and 1 patient produced evidence of the semantic processing of speech (i.e. the N400 effect). In several patients, the level of auditory processing that was evident from ERPs was higher than the abilities that were evident from behavioural assessment, indicating a greater sensitivity of ERPs in some cases. However, there were no differences in auditory processing between VS and MCS patient groups, indicating a lack of diagnostic specificity for this paradigm. Reliably detecting semantic processing by means of the N400 effect in passively listening single-subjects is a challenge. Multiple assessment methods are needed in order to fully characterise the abilities of patients with disorders of consciousness. PMID:27595064

  20. Detecting consciousness in a total locked-in syndrome: an active event-related paradigm.

    PubMed

    Schnakers, Caroline; Perrin, Fabien; Schabus, Manuel; Hustinx, Roland; Majerus, Steve; Moonen, Gustave; Boly, Melanie; Vanhaudenhuyse, Audrey; Bruno, Marie-Aurelie; Laureys, Steven

    2009-08-01

    Total locked-in syndrome is characterized by tetraplegia, anarthria and paralysis of eye motility. In this study, consciousness was detected in a 21-year-old woman who presented a total locked-in syndrome after a basilar artery thrombosis (49 days post-injury) using an active event-related paradigm. The patient was presented sequences of names containing the patient's own name and other names. The patient was instructed to count her own name or to count another target name. Similar to 4 age- and gender-matched healthy controls, the P3 response recorded for the voluntarily counted own name was larger than while passively listening. This P3 response was observed 14 days before the first behavioral signs of consciousness. This study shows that our active event-related paradigm allowed to identify voluntary brain activity in a patient who would behaviorally be diagnosed as comatose. PMID:19241281

  1. [Neural representation of human body schema and corporeal self-consciousness].

    PubMed

    Naito, Eiichi; Morita, Tomoyo

    2014-04-01

    The human brain processes every sensation evoked by altered posture and builds up a constantly changing postural model of the body. This is called a body schema, and somatic signals originating from skeletal muscles and joints, i.e. proprioceptive signals, largely contribute its formation. Recent neuroimaging techniques have revealed neuronal substrates for human body schema. A dynamic limb position model seems to be computed in the central motor network (represented by the primary motor cortex). Here, proprioceptive (kinesthetic) signals from muscle spindles are transformed into motor commands, which may underlie somatic perception of limb movement and facilitate its efficient motor control. Somatic signals originating from different body parts are integrated in the course of hierarchical somatosensory processing, and activity in higher-order somatosensory parietal cortices is capable of representing a postural model of the entire body. The left fronto-parietal network associates internal motor representation with external object representation, allowing the embodiment of external objects. In contrast, the right fronto-parietal regions connected by the most inferior branch of superior longitudinal fasciculus fibers seem to have the functions of monitoring bodily states and updating body schema. We hypothesize that activity in these right-sided fronto-parietal regions is deeply involved in corporeal self-consciousness. PMID:24748084

  2. What about pain in disorders of consciousness?

    PubMed

    Schnakers, C; Chatelle, C; Demertzi, A; Majerus, S; Laureys, S

    2012-09-01

    The management and treatment of acute pain is very difficult in non-communicative patients with disorders of consciousness (i.e., vegetative state/unresponsive wakefulness syndrome (VS/UWS) and minimally conscious state), creating an ethical dilemma for caregivers and an emotional burden among both relatives and caregivers. In this review, we summarize recent findings about the neural substrates of nociception and pain in VS/UWS patients as well as recent behavioral assessment methods of nociception specifically designed for patients in altered states of consciousness. We will finally discuss implications for pain treatment in these patients. PMID:22528502

  3. Conscious behavior explained.

    PubMed

    Kurthen, M

    1999-06-01

    Current neurobiological research on temporal binding in binocular rivalry settings contributes to a better understanding of the neural correlate of perceptual consciousness. This research can easily be integrated into a theory of conscious behavior, but if it is meant to promote a naturalistic theory of perceptual consciousness itself, it is confronted with the notorious explanatory gap argument according to which any statement of psychophysical correlations (and their interpretation) leaves the phenomenal character of, e.g., states of perceptual consciousness open. It is argued that research on temporal binding plays no role in a naturalistic theory of consciousness if the gap argument can be solved on internal philosophical grounds or if it turns out to be unsolvable at the time being. But there may be a way to dissolve or deconstruct it, and the accessibility of this way may well depend on scientific progress, including neurobiological research on the neural correlate of perceptual consciousness. PMID:10447997

  4. Intraduodenal capsaicin inhibits gastric migrating motor complex via an extrinsic neural reflex in conscious dogs.

    PubMed

    Shibata, C; Naito, H; Ueno, T; Jin, X-L; Funayama, Y; Fukushima, K; Matsuno, S; Sasaki, I

    2002-10-01

    The aim was to study the effect of intraduodenal capsaicin on interdigestive gastric contractions. Mongrel dogs were equipped with strain-gauge force transducers to measure gastroduodenal motility. The effects of intraduodenal capsaicin with or without pharmacological antagonists on spontaneous and motilin-induced interdigestive gastric contractions and on plasma motilin were studied in dogs with intact stomachs. The effect of intraduodenal capsaicin on gastric contractions was also studied in vagally denervated gastric (Heidenhain) pouch and vagally innervated antral pouch. Intraduodenal capsaicin inhibited spontaneous and motilin-induced gastric contractions. The spontaneous peak in plasma motilin was inhibited by intraduodenal capsaicin. The effect of intraduodenal capsaicin on motilin-induced gastric contractions was not affected by blockade of nitric oxide synthase, or by beta-adrenoceptor antagonist. Administration of alpha-adrenergic blocker inhibited basal interdigestive gastric motility. Intraduodenal capsaicin had no effect on contractions in the Heidenhain pouch but inhibited those in vagally innervated antral pouch. Duodenal afferent fibres stimulated by capsaicin inhibit gastric contractions via a nitric oxide-independent extrinsic neural reflex. PMID:12358683

  5. Sleep Neuroimaging and Models of Consciousness

    PubMed Central

    Tagliazucchi, Enzo; Behrens, Marion; Laufs, Helmut

    2013-01-01

    Human deep sleep is characterized by reduced sensory activity, responsiveness to stimuli, and conscious awareness. Given its ubiquity and reversible nature, it represents an attractive paradigm to study the neural changes which accompany the loss of consciousness in humans. In particular, the deepest stages of sleep can serve as an empirical test for the predictions of theoretical models relating the phenomenology of consciousness with underlying neural activity. A relatively recent shift of attention from the analysis of evoked responses toward spontaneous (or “resting state”) activity has taken place in the neuroimaging community, together with the development of tools suitable to study distributed functional interactions. In this review we focus on recent functional Magnetic Resonance Imaging (fMRI) studies of spontaneous activity during sleep and their relationship with theoretical models for human consciousness generation, considering the global workspace theory, the information integration theory, and the dynamical core hypothesis. We discuss the venues of research opened by these results, emphasizing the need to extend the analytic methodology in order to obtain a dynamical picture of how functional interactions change over time and how their evolution is modulated during different conscious states. Finally, we discuss the need to experimentally establish absent or reduced conscious content, even when studying the deepest sleep stages. PMID:23717291

  6. Event-related brain potential correlates of two states of conscious awareness in memory

    PubMed Central

    Düzel, Emrah; Yonelinas, Andrew P.; Mangun, George R.; Heinze, Hans-Jochen; Tulving, Endel

    1997-01-01

    We report an event-related potential (ERP) experiment of human recognition memory that explored the relation between conscious awareness and electrophysiological activity of the brain. We recorded ERPs from healthy adults while they made “remember” and “know” recognition judgments about previously seen words. These two kinds of judgments reflect “autonoetic” and “noetic” awareness, respectively. The ERP effects differed between the two kinds of awareness while they were similar for “true” and “false” recognition. Noetic awareness was associated with a temporoparietal positivity in the N400 range (325–600 ms) and a late (600–1,000 ms) frontocentral negativity, whereas autonoetic awareness was associated with a widespread, late, bifrontal and left parietotemporal (600–1000 ms) positivity. In the very late (1,300–1,900 ms) time window, a right frontal positivity was observed for both remember and know judgments of both true and false targets. These results provide physiological evidence for two types of conscious awareness in episodic memory retrieval. PMID:9159185

  7. Trauma-related dissociation and altered states of consciousness: a call for clinical, treatment, and neuroscience research.

    PubMed

    Lanius, Ruth A

    2015-01-01

    The primary aim of this commentary is to describe trauma-related dissociation and altered states of consciousness in the context of a four-dimensional model that has recently been proposed (Frewen & Lanius, 2015). This model categorizes symptoms of trauma-related psychopathology into (1) those that occur within normal waking consciousness and (2) those that are dissociative and are associated with trauma-related altered states of consciousness (TRASC) along four dimensions: (1) time; (2) thought; (3) body; and (4) emotion. Clinical applications and future research directions relevant to each dimension are discussed. Conceptualizing TRASC across the dimensions of time, thought, body, and emotion has transdiagnostic implications for trauma-related disorders described in both the Diagnostic Statistical Manual and the International Classifications of Diseases. The four-dimensional model provides a framework, guided by existing models of dissociation, for future research examining the phenomenological, neurobiological, and physiological underpinnings of trauma-related dissociation. PMID:25994026

  8. Trauma-related dissociation and altered states of consciousness: a call for clinical, treatment, and neuroscience research

    PubMed Central

    Lanius, Ruth A.

    2015-01-01

    The primary aim of this commentary is to describe trauma-related dissociation and altered states of consciousness in the context of a four-dimensional model that has recently been proposed (Frewen & Lanius, 2015). This model categorizes symptoms of trauma-related psychopathology into (1) those that occur within normal waking consciousness and (2) those that are dissociative and are associated with trauma-related altered states of consciousness (TRASC) along four dimensions: (1) time; (2) thought; (3) body; and (4) emotion. Clinical applications and future research directions relevant to each dimension are discussed. Conceptualizing TRASC across the dimensions of time, thought, body, and emotion has transdiagnostic implications for trauma-related disorders described in both the Diagnostic Statistical Manual and the International Classifications of Diseases. The four-dimensional model provides a framework, guided by existing models of dissociation, for future research examining the phenomenological, neurobiological, and physiological underpinnings of trauma-related dissociation. PMID:25994026

  9. Occupational Consciousness

    PubMed Central

    Ramugondo, Elelwani L.

    2015-01-01

    Occupational consciousness refers to ongoing awareness of the dynamics of hegemony and recognition that dominant practices are sustained through what people do every day, with implications for personal and collective health. The emergence of the construct in post-apartheid South Africa signifies the country’s ongoing struggle with negotiating long-standing dynamics of power that were laid down during colonialism, and maintained under black majority rule. Consciousness, a key component of the new terminology, is framed from post-colonial perspectives – notably work by Biko and Fanon – and grounded in the philosophy of liberation, in order to draw attention to continuing unequal intersubjective relations that play out through human occupation. The paper also draws important links between occupational consciousness and other related constructs, namely occupational possibilities, occupational choice, occupational apartheid, and collective occupation. The use of the term ‘consciousness’ in sociology, with related or different meanings, is also explored. Occupational consciousness is then advanced as a critical notion that frames everyday doing as a potentially liberating response to oppressive social structures. This paper advances theorizing as a scholarly practice in occupational science, and could potentially expand inter or transdisciplinary work for critical conceptualizations of human occupation. PMID:26549984

  10. The Merit of Synesthesia for Consciousness Research.

    PubMed

    van Leeuwen, Tessa M; Singer, Wolf; Nikolić, Danko

    2015-01-01

    Synesthesia is a phenomenon in which additional perceptual experiences are elicited by sensory stimuli or cognitive concepts. Synesthetes possess a unique type of phenomenal experiences not directly triggered by sensory stimulation. Therefore, for better understanding of consciousness it is relevant to identify the mental and physiological processes that subserve synesthetic experience. In the present work we suggest several reasons why synesthesia has merit for research on consciousness. We first review the research on the dynamic and rapidly growing field of the studies of synesthesia. We particularly draw attention to the role of semantics in synesthesia, which is important for establishing synesthetic associations in the brain. We then propose that the interplay between semantics and sensory input in synesthesia can be helpful for the study of the neural correlates of consciousness, especially when making use of ambiguous stimuli for inducing synesthesia. Finally, synesthesia-related alterations of brain networks and functional connectivity can be of merit for the study of consciousness. PMID:26696921

  11. The Merit of Synesthesia for Consciousness Research

    PubMed Central

    van Leeuwen, Tessa M.; Singer, Wolf; Nikolić, Danko

    2015-01-01

    Synesthesia is a phenomenon in which additional perceptual experiences are elicited by sensory stimuli or cognitive concepts. Synesthetes possess a unique type of phenomenal experiences not directly triggered by sensory stimulation. Therefore, for better understanding of consciousness it is relevant to identify the mental and physiological processes that subserve synesthetic experience. In the present work we suggest several reasons why synesthesia has merit for research on consciousness. We first review the research on the dynamic and rapidly growing field of the studies of synesthesia. We particularly draw attention to the role of semantics in synesthesia, which is important for establishing synesthetic associations in the brain. We then propose that the interplay between semantics and sensory input in synesthesia can be helpful for the study of the neural correlates of consciousness, especially when making use of ambiguous stimuli for inducing synesthesia. Finally, synesthesia-related alterations of brain networks and functional connectivity can be of merit for the study of consciousness. PMID:26696921

  12. An Analysis of Inhabitants' Consciousness Related to Road Maintenance Status in View of Using Frequency

    NASA Astrophysics Data System (ADS)

    Takano, Shin-Ei; Fujii, Nao

    In our country, many infrastructures built in a highly economic growth period will be creaky. Therefore a need exists for a large amount of expense for maintenance and repair. On this account, application of asset management technique and budget for maintenance depending on an need are extremely important. Differences of consciousness structure of inhabitants that use frequency are high and low related to road maintenance management are analyzed, in case study of a tunnel coned off for four months by some troubles. In analysis results, persons show approval increase of maintenance expense, who feel that "maintenance administrative expense" is low and "satisfaction of administrative service related to road maintenance" is high. Whereas persons damaged by suspension of traffic disapprove expense increase. This result is totally reverse to original expectation and a very important for maintenance management policy.

  13. EEG oscillatory states as neuro-phenomenology of consciousness as revealed from patients in vegetative and minimally conscious states.

    PubMed

    Fingelkurts, Alexander A; Fingelkurts, Andrew A; Bagnato, Sergio; Boccagni, Cristina; Galardi, Giuseppe

    2012-03-01

    The value of resting electroencephalogram (EEG) in revealing neural constitutes of consciousness (NCC) was examined. We quantified the dynamic repertoire, duration and oscillatory type of EEG microstates in eyes-closed rest in relation to the degree of expression of clinical self-consciousness. For NCC a model was suggested that contrasted normal, severely disturbed state of consciousness and state without consciousness. Patients with disorders of consciousness were used. Results suggested that the repertoire, duration and oscillatory type of EEG microstates in resting condition quantitatively related to the level of consciousness expression in brain-damaged patients and healthy-conscious subjects. Specifically, results demonstrated that (a) decreased number of EEG microstate types was associated with altered states of consciousness, (b) unawareness was associated with the lack of diversity in EEG alpha-rhythmic microstates, and (c) the probability for the occurrence and duration of delta-, theta- and slow-alpha-rhythmic microstates were associated with unawareness, whereas the probability for the occurrence and duration of fast-alpha-rhythmic microstates were associated with consciousness. In conclusion, resting EEG has a potential value in revealing NCC. This work may have implications for clinical care and medical-legal decisions in patients with disorders of consciousness. PMID:22054641

  14. Objectified Body Consciousness in Relation to Recovery from an Eating Disorder

    PubMed Central

    Fitzsimmons, Ellen E.; Bardone-Cone, Anna M.; Kelly, Kathleen A.

    2011-01-01

    In Western society, the feminine body has been positioned as an object to be looked at and sexually gazed upon; thus, females often learn to view themselves as objects to be observed (i.e., objectified body consciousness (OBC)). This study examined the relation between OBC and eating disorder recovery by comparing its components across non-eating disorder controls, fully recovered, partially recovered, and active eating disorder cases. Results revealed that non-eating disorder controls and fully recovered individuals had similarly low levels of two components of OBC, body surveillance and body shame. Partially recovered individuals looked more similar to those with an active eating disorder on these constructs. The third component of OBC, control beliefs, and a conceptually similar construct, weight/shape self-efficacy, did not differ across groups. Results provide support for the importance of measuring aspects of self-objectification, particularly body surveillance and body shame, across the course of an eating disorder. PMID:22051364

  15. Distinct neural correlates of the preference-related valuation of supraliminally and subliminally presented faces.

    PubMed

    Ito, Ayahito; Abe, Nobuhito; Kawachi, Yousuke; Kawasaki, Iori; Ueno, Aya; Yoshida, Kazuki; Sakai, Shinya; Matsue, Yoshihiko; Fujii, Toshikatsu

    2015-08-01

    Recent neuroimaging studies have investigated the neural substrates involved in the valuation of supraliminally presented targets and the subsequent preference decisions. However, the neural mechanisms of the valuation of subliminally presented targets, which can guide subsequent preference decisions, remain to be explored. In the present study, we determined whether the neural systems associated with the valuation of supraliminally presented faces are involved in the valuation of subliminally presented faces. The subjects were supraliminally and subliminally presented with faces during functional magnetic resonance imaging (fMRI). Following fMRI, the subjects were presented with pairs of faces and were asked to choose which face they preferred. We analyzed brain activation by back-sorting the fMRI data according to the subjects' choices. The present study yielded two main findings. First, the ventral striatum and the ventromedial prefrontal cortex predict preferences only for supraliminally presented faces. Second, the dorsomedial prefrontal cortex may predict preferences for subliminally presented faces. These findings indicate that neural correlates of the preference-related valuation of faces are dissociable, contingent upon whether the subjects consciously perceive the faces. PMID:25880023

  16. Trauma-related altered states of consciousness: exploring the 4-D model.

    PubMed

    Frewen, Paul A; Lanius, Ruth A

    2014-01-01

    Frewen and Lanius (in press) recently articulated a 4-D model as a framework for classifying symptoms of posttraumatic stress into those that potentially occur within normal waking consciousness (NWC) versus those that intrinsically represent dissociative experiences of trauma-related altered states of consciousness (TRASC). Four dimensions were specified: time-memory, thought, body, and emotion. The 4-D model further hypothesizes that in traumatized persons, symptoms of TRASC, compared with NWC forms of distress, will be (a) observed less frequently; (b) less intercorrelated, especially as measured as moment-to-moment states; (c) observed more frequently in people with high dissociative symptomatology as measured independently; and (d) observed more often in people who have experienced repeated traumatization, particularly early developmental trauma. The aim of the present research was to begin to evaluate these 4 predictions of the 4-D model. Within a sample of 74 women with posttraumatic stress disorder (PTSD) primarily due to histories of childhood trauma, as well as within a 2nd sample of 504 undergraduates (384 females), the 1st 2 hypotheses of the 4-D model were supported. In addition, within the PTSD sample, the 3rd hypothesis was supported. However, inconsistent with the 4th hypothesis, severity of childhood trauma history was not strongly associated with TRASC. We conclude that the hypotheses articulated by the 4-D model were generally supported, although further research in different trauma-related disorders is needed, and the role of childhood trauma history in the etiology of TRASC requires further research. PMID:24650122

  17. Relational Neural Evolution Approach to Bank Failure Prediction

    NASA Astrophysics Data System (ADS)

    Abudu, Bolanle; Markose, Sheri

    2007-12-01

    Relational neural networks as a concept offers a unique opportunity for improving classification accuracy by exploiting relational structure in data. The premise is that a relational classification technique, which uses information implicit in relationships, should classify more accurately than techniques that only examine objects in isolation. In this paper, we study the use of relational neural networks for predicting bank failure. Alongside classical financial ratios normally used as predictor variables, we introduced new relational variables for the network. The relational neural network structure, specified as a combination of feed forward and recurrent neural networks, is determined by bank data through neuro-evolution. We discuss empirical results comparing performance of the relational approach to standard propositional methods used for bank failure prediction.

  18. Relational Neural Evolution Approach to Bank Failure Prediction

    SciTech Connect

    Abudu, Bolanle; Markose, Sheri

    2007-12-26

    Relational neural networks as a concept offers a unique opportunity for improving classification accuracy by exploiting relational structure in data. The premise is that a relational classification technique, which uses information implicit in relationships, should classify more accurately than techniques that only examine objects in isolation. In this paper, we study the use of relational neural networks for predicting bank failure. Alongside classical financial ratios normally used as predictor variables, we introduced new relational variables for the network. The relational neural network structure, specified as a combination of feed forward and recurrent neural networks, is determined by bank data through neuro-evolution. We discuss empirical results comparing performance of the relational approach to standard propositional methods used for bank failure prediction.

  19. Viewing brain processes as Critical State Transitions across levels of organization: Neural events in Cognition and Consciousness, and general principles.

    PubMed

    Werner, Gerhard

    2009-04-01

    In this theoretical and speculative essay, I propose that insights into certain aspects of neural system functions can be gained from viewing brain function in terms of the branch of Statistical Mechanics currently referred to as "Modern Critical Theory" [Stanley, H.E., 1987. Introduction to Phase Transitions and Critical Phenomena. Oxford University Press; Marro, J., Dickman, R., 1999. Nonequilibrium Phase Transitions in Lattice Models. Cambridge University Press, Cambridge, UK]. The application of this framework is here explored in two stages: in the first place, its principles are applied to state transitions in global brain dynamics, with benchmarks of Cognitive Neuroscience providing the relevant empirical reference points. The second stage generalizes to suggest in more detail how the same principles could also apply to the relation between other levels of the structural-functional hierarchy of the nervous system and between neural assemblies. In this view, state transitions resulting from the processing at one level are the input to the next, in the image of a 'bucket brigade', with the content of each bucket being passed on along the chain, after having undergone a state transition. The unique features of a process of this kind will be discussed and illustrated. PMID:19124060

  20. Predictable internal brain dynamics in EEG and its relation to conscious states

    PubMed Central

    Yoo, Jaewook; Kwon, Jaerock; Choe, Yoonsuck

    2014-01-01

    Consciousness is a complex and multi-faceted phenomenon defying scientific explanation. Part of the reason why this is the case is due to its subjective nature. In our previous computational experiments, to avoid such a subjective trap, we took a strategy to investigate objective necessary conditions of consciousness. Our basic hypothesis was that predictive internal dynamics serves as such a condition. This is in line with theories of consciousness that treat retention (memory), protention (anticipation), and primary impression as the tripartite temporal structure of consciousness. To test our hypothesis, we analyzed publicly available sleep and awake electroencephalogram (EEG) data. Our results show that EEG signals from awake or rapid eye movement (REM) sleep states have more predictable dynamics compared to those from slow-wave sleep (SWS). Since awakeness and REM sleep are associated with conscious states and SWS with unconscious or less consciousness states, these results support our hypothesis. The results suggest an intricate relationship among prediction, consciousness, and time, with potential applications to time perception and neurorobotics. PMID:24917813

  1. Assessing consciousness in coma and related states using transcranial magnetic stimulation combined with electroencephalography.

    PubMed

    Gosseries, O; Thibaut, A; Boly, M; Rosanova, M; Massimini, M; Laureys, S

    2014-02-01

    Thanks to advances in medical care, an increased number of patients recover from coma. However, some remain in vegetative/unresponsive wakefulness syndrome or in a minimally conscious state. Detection of awareness in severely brain-injured patients is challenging because it relies on behavioral assessments, which can be affected by motor, sensory and cognitive impairments of the patients. Other means of evaluation are needed to improve the accuracy of the diagnosis in this challenging population. We will here review the different altered states of consciousness occurring after severe brain damage, and explain the difficulties associated with behavioral assessment of consciousness. We will then describe a non-invasive technique, transcranial magnetic stimulation combined with high-density electroencephalography (TMS-EEG), which has allowed us to detect the presence or absence of consciousness in different physiological, pathological and pharmacological states. Some potential underlying mechanisms of the loss of consciousness will then be discussed. In conclusion, TMS-EEG is highly promising in identifying markers of consciousness at the individual level and might be of great value for clinicians in the assessment of consciousness. PMID:24393302

  2. Consciously Thinking about Consciousness

    ERIC Educational Resources Information Center

    Tribus, Myron

    2004-01-01

    Merker hypothesized that because mobile creatures move around and must constantly readjust their map of the world and because the demands are so great for continually processing information for a map of the world, evolution has created a space in the brain where such preprocessing has been eliminated. This space he calls consciousness with the…

  3. Sleep in disorders of consciousness

    PubMed Central

    Cologan, Victor; Schabus, Manvel; Ledoux, Didier; Moonen, Gustave; Maquet, Pierre; Laureys, Steven

    2010-01-01

    SUMMARY From a behavioral as well as neurobiological point of view, sleep and consciousness are intimately connected. A better understanding of sleep cycles and sleep architecture of patients suffering from disorders of consciousness (DOC) might therefore improve the clinical care for these patients as well as our understanding of the neural correlations of consciousness. Defining sleep in severely brain-injured patients is however problematic as both their electrophysiological and sleep patterns differ in many ways from healthy individuals. This paper discusses the concepts involved in the study of sleep of patients suffering from DOC and critically assesses the applicability of standard sleep criteria in these patients. The available literature on comatose and vegetative states as well as that on locked-in and related states following traumatic or non-traumatic severe brain injury will be reviewed. A wide spectrum of sleep disturbances ranging from almost normal patterns to severe loss and architecture disorganization are reported in cases of DOC and some patterns correlate with diagnosis and prognosis. At the present time the interactions of sleep and consciousness in brain-injured patients are a little studied subject but, the authors suggest, a potentially very interesting field of research. PMID:19524464

  4. Sleep in disorders of consciousness.

    PubMed

    Cologan, Victor; Schabus, Manvel; Ledoux, Didier; Moonen, Gustave; Maquet, Pierre; Laureys, Steven

    2010-04-01

    From a behavioral as well as neurobiological point of view, sleep and consciousness are intimately connected. A better understanding of sleep cycles and sleep architecture of patients suffering from disorders of consciousness (DOC) might therefore improve the clinical care for these patients as well as our understanding of the neural correlations of consciousness. Defining sleep in severely brain-injured patients is however problematic as both their electrophysiological and sleep patterns differ in many ways from healthy individuals. This paper discusses the concepts involved in the study of sleep of patients suffering from DOC and critically assesses the applicability of standard sleep criteria in these patients. The available literature on comatose and vegetative states as well as that on locked-in and related states following traumatic or non-traumatic severe brain injury will be reviewed. A wide spectrum of sleep disturbances ranging from almost normal patterns to severe loss and architecture disorganization are reported in cases of DOC and some patterns correlate with diagnosis and prognosis. At the present time the interactions of sleep and consciousness in brain-injured patients are a little studied subject but, the authors suggest, a potentially very interesting field of research. PMID:19524464

  5. Robust single trial identification of conscious percepts triggered by sensory events of variable saliency.

    PubMed

    Teixeira, Marta; Pires, Gabriel; Raimundo, Miguel; Nascimento, Sérgio; Almeida, Vasco; Castelo-Branco, Miguel

    2014-01-01

    The neural correlates of visual awareness are elusive because of its fleeting nature. Here we have addressed this issue by using single trial statistical "brain reading" of neurophysiological event related (ERP) signatures of conscious perception of visual attributes with different levels of saliency. Behavioral reports were taken at every trial in 4 experiments addressing conscious access to color, luminance, and local phase offset cues. We found that single trial neurophysiological signatures of target presence can be observed around 300 ms at central parietal sites. Such signatures are significantly related with conscious perception, and their probability is related to sensory saliency levels. These findings identify a general neural correlate of conscious perception at the single trial level, since conscious perception can be decoded as such independently of stimulus salience and fluctuations of threshold levels. This approach can be generalized to successfully detect target presence in other individuals. PMID:24465957

  6. Electrical stimulation of a small brain area reversibly disrupts consciousness.

    PubMed

    Koubeissi, Mohamad Z; Bartolomei, Fabrice; Beltagy, Abdelrahman; Picard, Fabienne

    2014-08-01

    The neural mechanisms that underlie consciousness are not fully understood. We describe a region in the human brain where electrical stimulation reproducibly disrupted consciousness. A 54-year-old woman with intractable epilepsy underwent depth electrode implantation and electrical stimulation mapping. The electrode whose stimulation disrupted consciousness was between the left claustrum and anterior-dorsal insula. Stimulation of electrodes within 5mm did not affect consciousness. We studied the interdependencies among depth recording signals as a function of time by nonlinear regression analysis (h(2) coefficient) during stimulations that altered consciousness and stimulations of the same electrode at lower current intensities that were asymptomatic. Stimulation of the claustral electrode reproducibly resulted in a complete arrest of volitional behavior, unresponsiveness, and amnesia without negative motor symptoms or mere aphasia. The disruption of consciousness did not outlast the stimulation and occurred without any epileptiform discharges. We found a significant increase in correlation for interactions affecting medial parietal and posterior frontal channels during stimulations that disrupted consciousness compared with those that did not. Our findings suggest that the left claustrum/anterior insula is an important part of a network that subserves consciousness and that disruption of consciousness is related to increased EEG signal synchrony within frontal-parietal networks. PMID:24967698

  7. Timing and awareness of movement decisions: does consciousness really come too late?

    PubMed Central

    Guggisberg, Adrian G.; Mottaz, Anaïs

    2013-01-01

    Since Libet's seminal observation that a brain potential related to movement preparation occurs before participants report to be aware of their movement intention, it has been debated whether consciousness has causal influence on movement decisions. Here we review recent advances that provide new insights into the dynamics of human decision-making and question the validity of different markers used for determining the onset of neural and conscious events. Motor decisions involve multiple stages of goal evaluation, intention formation, and action execution. While the validity of the Bereitschaftspotential (BP) as index of neural movement preparation is controversial, improved neural markers are able to predict decision outcome even at early stages. Participants report being conscious of their decisions only at the time of final intention formation, just before the primary motor cortex starts executing the chosen action. However, accumulating evidence suggests that this is an artifact of Libet's clock method used for assessing consciousness. More refined methods suggest that intention consciousness does not appear instantaneously but builds up progressively. In this view, early neural markers of decision outcome are not unconscious but simply reflect conscious goal evaluation stages which are not final yet and therefore not reported with the clock method. Alternatives to the Libet clock are discussed that might allow for assessment of consciousness during decision making with improved sensitivity to early decision stages and with less influence from meta-conscious and perceptual inferences. PMID:23966921

  8. Consciousness, Plasticity, and Connectomics: The Role of Intersubjectivity in Human Cognition

    PubMed Central

    Allen, Micah; Williams, Gary

    2011-01-01

    Consciousness is typically construed as being explainable purely in terms of either private, raw feels or higher-order, reflective representations. In contrast to this false dichotomy, we propose a new view of consciousness as an interactive, plastic phenomenon open to sociocultural influence. We take up our account of consciousness from the observation of radical cortical neuroplasticity in human development. Accordingly, we draw upon recent research on macroscopic neural networks, including the “default mode,” to illustrate cases in which an individual's particular “connectome” is shaped by encultured social practices that depend upon and influence phenomenal and reflective consciousness. On our account, the dynamically interacting connectivity of these networks bring about important individual differences in conscious experience and determine what is “present” in consciousness. Further, we argue that the organization of the brain into discrete anti-correlated networks supports the phenomenological distinction of prereflective and reflective consciousness, but we emphasize that this finding must be interpreted in light of the dynamic, category-resistant nature of consciousness. Our account motivates philosophical and empirical hypotheses regarding the appropriate time-scale and function of neuroplastic adaptation, the relation of high and low-frequency neural activity to consciousness and cognitive plasticity, and the role of ritual social practices in neural development and cognitive function. PMID:21687435

  9. Attention and olfactory consciousness.

    PubMed

    Keller, Andreas

    2011-01-01

    Understanding the relation between attention and consciousness is an important part of our understanding of consciousness. Attention, unlike consciousness, can be systematically manipulated in psychophysical experiments and a law-like relation between attention and consciousness is waiting to be discovered. Most attempts to discover the nature of this relation are focused on a special type of attention: spatial visual attention. In this review I want to introduce another type of attention to the discussion: attention to the olfactory modality. I will first clarify the position of attention to smells in a general taxonomy of attention. I will then review the mechanisms and neuroanatomy of attention and consciousness in the olfactory system before using the newly introduced system to provide evidence that attention is necessary for consciousness. PMID:22203813

  10. Hippocampus is place of interaction between unconscious and conscious memories.

    PubMed

    Züst, Marc Alain; Colella, Patrizio; Reber, Thomas Peter; Vuilleumier, Patrik; Hauf, Martinus; Ruch, Simon; Henke, Katharina

    2015-01-01

    Recent evidence suggests that humans can form and later retrieve new semantic relations unconsciously by way of hippocampus-the key structure also recruited for conscious relational (episodic) memory. If the hippocampus subserves both conscious and unconscious relational encoding/retrieval, one would expect the hippocampus to be place of unconscious-conscious interactions during memory retrieval. We tested this hypothesis in an fMRI experiment probing the interaction between the unconscious and conscious retrieval of face-associated information. For the establishment of unconscious relational memories, we presented subliminal (masked) combinations of unfamiliar faces and written occupations ("actor" or "politician"). At test, we presented the former subliminal faces, but now supraliminally, as cues for the reactivation of the unconsciously associated occupations. We hypothesized that unconscious reactivation of the associated occupation-actor or politician-would facilitate or inhibit the subsequent conscious retrieval of a celebrity's occupation, which was also actor or politician. Depending on whether the reactivated unconscious occupation was congruent or incongruent to the celebrity's occupation, we expected either quicker or delayed conscious retrieval process. Conscious retrieval was quicker in the congruent relative to a neutral baseline condition but not delayed in the incongruent condition. fMRI data collected during subliminal face-occupation encoding confirmed previous evidence that the hippocampus was interacting with neocortical storage sites of semantic knowledge to support relational encoding. fMRI data collected at test revealed that the facilitated conscious retrieval was paralleled by deactivations in the hippocampus and neocortical storage sites of semantic knowledge. We assume that the unconscious reactivation has pre-activated overlapping relational representations in the hippocampus reducing the neural effort for conscious retrieval. This

  11. Conscious, but not unconscious, logo priming of brands and related words.

    PubMed

    Brintazzoli, Gigliola; Soetens, Eric; Deroost, Natacha; Van den Bussche, Eva

    2012-06-01

    This study assessed whether real-life stimulus material can elicit conscious and unconscious priming. A typical masked priming paradigm was used, with brand logo primes. We used a rigorous method to assess participants' awareness of the subliminal information. Our results show that shortly presented and masked brand logos (e.g., logo of McDonald's) have the power to prime their brand names (e.g., "McDonald's") and, remarkably, words associated to the brand (e.g., "hamburger"). However, this only occurred when the logos could be categorized clearly above the consciousness threshold. Once the primes were presented close to the consciousness threshold, no subliminal influences on behavior were observed. PMID:22503412

  12. Adrenal responses to calcitonin gene-related peptide in conscious hypophysectomized calves.

    PubMed Central

    Bloom, S R; Edwards, A V; Jones, C T

    1989-01-01

    1. Right adrenal and various cardiovascular responses to an intra-aortic infusion of calcitonin gene-related peptide (CGRP; 4 micrograms min-1) have been investigated in the presence and absence of exogenous adrenocorticotrophin ACTH1-24 (2 or 5 ng min-1 kg-1, I.V.). The adrenal clamp technique was employed in conscious calves in which the pituitary stalk had been cauterized 3-7 days previously. 2. At the higher dose (5 ng min-1 kg-1) the I.V. infusion of ACTH raised mean plasma ACTH concentration by about 1000 pg ml-1 and mean right adrenal cortisol output by about 750 ng min-1 kg-1. Under these conditions the intra-aortic infusion of CGRP had no apparent effect on adrenal cortisol output by about 750 ng min-1 kg-1. Under these conditions the intra-aortic infusion of CGRP had no apparent effect on adrenal function, other than to produce moderate adrenal vasodilatation. In contrast, in the absence of exogenous ACTH, the same dose of CGRP produced a substantial rise in cortisol output, which rose steadily to a peak mean value of 409 +/- 31 pg min-1 kg-1 at 10 min. It also significantly inhibited the release of free, but not of total, met5-enkephalin-like immunoreactivity from the gland (P less than 0.001) together with a significantly greater fall in adrenal vascular resistance (P less than 0.001). 3. At the lower dose of ACTH (2 ng min-1 kg-1, I.V.) CGRP raised mean plasma cortisol output from 314 +/- 31 to 486 +/- 44 ng min-1 kg-1 (P less than 0.01) and this effect was not attributable to an increase in the adrenal presentation rate of ACTH. 4. It is concluded that this peptide exerts a steroidogenic action on the adrenal cortex which is manifest in the absence of exogenous ACTH in the functionally hypophysectomized calf. PMID:2555477

  13. Trauma-Related Altered States of Consciousness (TRASC) and Functional Impairment II: Perceived Causal Relationships in an Online Sample.

    PubMed

    Tzannidakis, Nicole C A; Frewen, Paul

    2015-01-01

    Research supports the existence of a dissociative subtype of posttraumatic stress disorder, although studies have not directly compared the perceived impact of dissociative versus nondissociative posttraumatic symptoms on social and occupational functioning. In addition, research is beginning to differentiate between posttraumatic distress associated with normal waking consciousness (NWC) and dissociative experiences of trauma-related altered states of consciousness (TRASC) along multiple phenomenological dimensions. The current study investigated perceived causal relationships between posttraumatic symptoms associated with NWC-distress and TRASC on the one hand and interpersonal and occupational functioning on the other. Although both TRASC and NWC-distress independently accounted for variance in self-reported interpersonal and occupational problems, perceived causal relationship results showed that individuals tended to attribute their social and work-related problems more strongly to NWC-distress than to TRASC. Future research directions are discussed. PMID:26308190

  14. Black Consciousness

    ERIC Educational Resources Information Center

    Hraba, Joseph; Siegman, Jack

    1974-01-01

    Black militancy is treated as an instance of class consciousness with criteria and scales developed to measure black consciousness and "self-placement" into black consciousness. These dimensions are then investigated with respect to the social and symbolic participation in the ideology of the black movement on the part of a sample of black…

  15. Mestiza Consciousness in Relation to Sustained Political Solidarity: A Chicana Feminist Interpretation of the Farmworker Movement

    ERIC Educational Resources Information Center

    Barvosa, Edwina

    2011-01-01

    Two of the most significant themes in Chicana feminist thought are the character of mestiza consciousness and the view that political solidarity--that is, the uniting of diverse people in common cause--should build upon diversity among peoples rather than on a single shared identity. Numerous Chicana and Latina feminists have connected these two…

  16. Aging Affects Neural Synchronization to Speech-Related Acoustic Modulations

    PubMed Central

    Goossens, Tine; Vercammen, Charlotte; Wouters, Jan; van Wieringen, Astrid

    2016-01-01

    As people age, speech perception problems become highly prevalent, especially in noisy situations. In addition to peripheral hearing and cognition, temporal processing plays a key role in speech perception. Temporal processing of speech features is mediated by synchronized activity of neural oscillations in the central auditory system. Previous studies indicate that both the degree and hemispheric lateralization of synchronized neural activity relate to speech perception performance. Based on these results, we hypothesize that impaired speech perception in older persons may, in part, originate from deviances in neural synchronization. In this study, auditory steady-state responses that reflect synchronized activity of theta, beta, low and high gamma oscillations (i.e., 4, 20, 40, and 80 Hz ASSR, respectively) were recorded in young, middle-aged, and older persons. As all participants had normal audiometric thresholds and were screened for (mild) cognitive impairment, differences in synchronized neural activity across the three age groups were likely to be attributed to age. Our data yield novel findings regarding theta and high gamma oscillations in the aging auditory system. At an older age, synchronized activity of theta oscillations is increased, whereas high gamma synchronization is decreased. In contrast to young persons who exhibit a right hemispheric dominance for processing of high gamma range modulations, older adults show a symmetrical processing pattern. These age-related changes in neural synchronization may very well underlie the speech perception problems in aging persons. PMID:27378906

  17. Neural co-activation as a yardstick of implicit motor learning and the propensity for conscious control of movement.

    PubMed

    Zhu, F F; Poolton, J M; Wilson, M R; Maxwell, J P; Masters, R S W

    2011-04-01

    Two studies examined EEG co-activation (coherence) between the verbal-analytical (T3) and motor planning (Fz) regions during a golf putting task. In Study 1, participants with a strong propensity to consciously monitor and control their movements, determined psychometrically by high scores on a movement specific Reinvestment Scale, displayed more alpha2 T3-Fz co-activation than participants with a weak propensity. In Study 2, participants who practiced a golf putting task implicitly (via an errorless learning protocol) displayed less alpha2 T3-Fz co-activation than those who practiced explicitly (by errorful learning). In addition, explicit but not implicit motor learners displayed more T3-Fz co-activation during golf putting under pressure, implying that verbal-analytical processing of putting movements increased under pressure. These findings provide neuropsychological evidence that supports claims that implicit motor learning can be used to limit movement specific reinvestment. PMID:21315795

  18. P3b, consciousness, and complex unconscious processing.

    PubMed

    Silverstein, Brian H; Snodgrass, Michael; Shevrin, Howard; Kushwaha, Ramesh

    2015-12-01

    How can perceptual consciousness be indexed in humans? Recent work with ERPs suggests that P3b, a relatively late component, may be a neural correlate of consciousness (NCC). This proposal dovetails with currently prevailing cognitive theory regarding the nature of conscious versus unconscious processes, which holds that the latter are simple and very brief, whereas consciousness is ostensibly required for more durable, complex cognitive processing. Using a P3b oddball paradigm, we instead show that P3b and even later, related slow wave activity occur under rigorously subliminal conditions. Additional principal component analysis (PCA) further differentiated the presence of both P3a and P3b components, demonstrating that the latter indeed occurred subliminally. Collectively, our results suggest that complex, sustained cognitive processing can occur unconsciously and that P3b is not an NCC after all. PMID:26474391

  19. Consciousness, brain, neuroplasticity

    PubMed Central

    Askenasy, Jean; Lehmann, Joseph

    2013-01-01

    Subjectivity, intentionality, self-awareness and will are major components of consciousness in human beings. Changes in consciousness and its content following different brain processes and malfunction have long been studied. Cognitive sciences assume that brain activities have an infrastructure, but there is also evidence that consciousness itself may change this infrastructure. The two-way influence between brain and consciousness has been at the center of philosophy and less so, of science. This so-called bottom-up and top-down interrelationship is controversial and is the subject of our article. We would like to ask: how does it happen that consciousness may provoke structural changes in the brain? The living brain means continuous changes at the synaptic level with every new experience, with every new process of learning, memorizing or mastering new and existing skills. Synapses are generated and dissolved, while others are preserved, in an ever-changing process of so-called neuroplasticity. Ongoing processes of synaptic reinforcements and decay occur during wakefulness when consciousness is present, but also during sleep when it is mostly absent. We suggest that consciousness influences brain neuroplasticity both during wakefulness as well as sleep in a top-down way. This means that consciousness really activates synaptic flow and changes brain structures and functional organization. The dynamic impact of consciousness on brain never stops despite the relative stationary structure of the brain. Such a process can be a target for medical intervention, e.g., by cognitive training. PMID:23847580

  20. Age-Grade Consciousness

    ERIC Educational Resources Information Center

    Johnstone, John W. C.

    1970-01-01

    Studies of generational phenomena have not paid sufficient attention to the distinction between cohort and kinship aspects of generations. Using empirical measures of class consciousness as a model, consciousness of kind based on age is measured and related to theoretically relevant determinants and consequences." (Author)

  1. Interactions between phasic alerting and consciousness in the fronto-striatal network.

    PubMed

    Chica, Ana B; Bayle, Dimitri J; Botta, Fabiano; Bartolomeo, Paolo; Paz-Alonso, Pedro M

    2016-01-01

    Only a small fraction of all the information reaching our senses can be the object of conscious report or voluntary action. Although some models propose that different attentional states (top-down amplification and vigilance) are necessary for conscious perception, few studies have explored how the brain activations associated with different attentional systems (such as top-down orienting and phasic alerting) lead to conscious perception of subsequent visual stimulation. The aim of the present study was to investigate the neural mechanisms associated with endogenous spatial attention and phasic alertness, and their interaction with the conscious perception of near-threshold stimuli. The only region demonstrating a neural interaction between endogenous attention and conscious perception was the thalamus, while a larger network of cortical and subcortical brain activations, typically associated with phasic alerting, was highly correlated with participants' conscious reports. Activation of the anterior cingulate cortex, supplementary motor area, frontal eye fields, thalamus, and caudate nucleus was related to perceptual consciousness. These data suggest that not all attentional systems are equally effective in enhancing conscious perception, highlighting the importance of thalamo-cortical circuits on the interactions between alerting and consciousness. PMID:27555378

  2. Interactions between phasic alerting and consciousness in the fronto-striatal network

    PubMed Central

    Chica, Ana B.; Bayle, Dimitri J.; Botta, Fabiano; Bartolomeo, Paolo; Paz-Alonso, Pedro M.

    2016-01-01

    Only a small fraction of all the information reaching our senses can be the object of conscious report or voluntary action. Although some models propose that different attentional states (top-down amplification and vigilance) are necessary for conscious perception, few studies have explored how the brain activations associated with different attentional systems (such as top-down orienting and phasic alerting) lead to conscious perception of subsequent visual stimulation. The aim of the present study was to investigate the neural mechanisms associated with endogenous spatial attention and phasic alertness, and their interaction with the conscious perception of near-threshold stimuli. The only region demonstrating a neural interaction between endogenous attention and conscious perception was the thalamus, while a larger network of cortical and subcortical brain activations, typically associated with phasic alerting, was highly correlated with participants’ conscious reports. Activation of the anterior cingulate cortex, supplementary motor area, frontal eye fields, thalamus, and caudate nucleus was related to perceptual consciousness. These data suggest that not all attentional systems are equally effective in enhancing conscious perception, highlighting the importance of thalamo-cortical circuits on the interactions between alerting and consciousness. PMID:27555378

  3. Fluctuation-response relation unifies dynamical behaviors in neural fields

    NASA Astrophysics Data System (ADS)

    Fung, C. C. Alan; Wong, K. Y. Michael; Mao, Hongzi; Wu, Si

    2015-08-01

    Anticipation is a strategy used by neural fields to compensate for transmission and processing delays during the tracking of dynamical information and can be achieved by slow, localized, inhibitory feedback mechanisms such as short-term synaptic depression, spike-frequency adaptation, or inhibitory feedback from other layers. Based on the translational symmetry of the mobile network states, we derive generic fluctuation-response relations, providing unified predictions that link their tracking behaviors in the presence of external stimuli to the intrinsic dynamics of the neural fields in their absence.

  4. Fluctuation-response relation unifies dynamical behaviors in neural fields.

    PubMed

    Fung, C C Alan; Wong, K Y Michael; Mao, Hongzi; Wu, Si

    2015-08-01

    Anticipation is a strategy used by neural fields to compensate for transmission and processing delays during the tracking of dynamical information and can be achieved by slow, localized, inhibitory feedback mechanisms such as short-term synaptic depression, spike-frequency adaptation, or inhibitory feedback from other layers. Based on the translational symmetry of the mobile network states, we derive generic fluctuation-response relations, providing unified predictions that link their tracking behaviors in the presence of external stimuli to the intrinsic dynamics of the neural fields in their absence. PMID:26382448

  5. Age-Related Changes in 1/f Neural Electrophysiological Noise

    PubMed Central

    Kramer, Mark A.; Case, John; Lepage, Kyle Q.; Tempesta, Zechari R.; Knight, Robert T.; Gazzaley, Adam

    2015-01-01

    Aging is associated with performance decrements across multiple cognitive domains. The neural noise hypothesis, a dominant view of the basis of this decline, posits that aging is accompanied by an increase in spontaneous, noisy baseline neural activity. Here we analyze data from two different groups of human subjects: intracranial electrocorticography from 15 participants over a 38 year age range (15–53 years) and scalp EEG data from healthy younger (20–30 years) and older (60–70 years) adults to test the neural noise hypothesis from a 1/f noise perspective. Many natural phenomena, including electrophysiology, are characterized by 1/f noise. The defining characteristic of 1/f is that the power of the signal frequency content decreases rapidly as a function of the frequency (f) itself. The slope of this decay, the noise exponent (χ), is often <−1 for electrophysiological data and has been shown to approach white noise (defined as χ = 0) with increasing task difficulty. We observed, in both electrophysiological datasets, that aging is associated with a flatter (more noisy) 1/f power spectral density, even at rest, and that visual cortical 1/f noise statistically mediates age-related impairments in visual working memory. These results provide electrophysiological support for the neural noise hypothesis of aging. SIGNIFICANCE STATEMENT Understanding the neurobiological origins of age-related cognitive decline is of critical scientific, medical, and public health importance, especially considering the rapid aging of the world's population. We find, in two separate human studies, that 1/f electrophysiological noise increases with aging. In addition, we observe that this age-related 1/f noise statistically mediates age-related working memory decline. These results significantly add to this understanding and contextualize a long-standing problem in cognition by encapsulating age-related cognitive decline within a neurocomputational model of 1/f noise

  6. The Neurogenetic Correlates of Consciousness

    NASA Astrophysics Data System (ADS)

    Grandy, John K.

    2013-09-01

    The neurogenetic correlates of consciousness (NgCC) is a new field of consciousness studies that focuses on genes that have an effect on or are involved in the continuum of neuron-based consciousness. A framework of consciousness based on the neural correlates of consciousness (NCC) has already been established by Francis Crick and Christof Kock. In this work I propose that there are NgCC underlying the NCC which are both active during the conscious experience. So how are genes involved? There are two significant connections between DNA and neurons that are involved in the conscious experience. First, any brain system can be adversely affected by underlying genetic abnormalities which can be expressed in an individual at birth, in adulthood, or later in life. Second, the DNA molecule does not lay dormant while the neuron runs on autopilot. DNA is active in translating and transcribing RNA and protein products that are utilized during neuron functioning. Without these products being continuously produced by the DNA during a conscious experience the neurons would cease to function correctly and be rendered unable to provide a continuum of human consciousness. Consequently, in addition to NCC, NgCC must be factored in when appreciating a conscious event. In this work I will discuss and explain some NgCC citing several examples.

  7. Consciousness, the brain, and spacetime geometry.

    PubMed

    Hameroff, S

    2001-04-01

    What is consciousness? Conventional approaches see it as an emergent property of complex interactions among individual neurons; however these approaches fail to address enigmatic features of consciousness. Accordingly, some philosophers have contended that "qualia," or an experiential medium from which consciousness is derived, exists as a fundamental component of reality. Whitehead, for example, described the universe as being composed of "occasions of experience." To examine this possibility scientifically, the very nature of physical reality must be re-examined. We must come to terms with the physics of spacetime--as described by Einstein's general theory of relativity, and its relation to the fundamental theory of matter--as described by quantum theory. Roger Penrose has proposed a new physics of objective reduction: "OR," which appeals to a form of quantum gravity to provide a useful description of fundamental processes at the quantum/classical borderline. Within the OR scheme, we consider that consciousness occurs if an appropriately organized system is able to develop and maintain quantum coherent superposition until a specific "objective" criterion (a threshold related to quantum gravity) is reached; the coherent system then self-reduces (objective reduction: OR). We contend that this type of objective self-collapse introduces non-computability, an essential feature of consciousness which distinguishes our minds from classical computers. Each OR is taken as an instantaneous event--the climax of a self-organizing process in fundamental spacetime--and a candidate for a conscious Whitehead "occasion of experience." How could an OR process occur in the brain, be coupled to neural activities, and account for other features of consciousness? We nominate a quantum computational OR process with the requisite characteristics to be occurring in cytoskeletal micro-tubules within the brain's neurons. In this model, quantum-superposed states develop in microtubule

  8. Neural Alterations in Acquired Age-Related Hearing Loss

    PubMed Central

    Mudar, Raksha A.; Husain, Fatima T.

    2016-01-01

    Hearing loss is one of the most prevalent chronic health conditions in older adults. Growing evidence suggests that hearing loss is associated with reduced cognitive functioning and incident dementia. In this mini-review, we briefly examine literature on anatomical and functional alterations in the brains of adults with acquired age-associated hearing loss, which may underlie the cognitive consequences observed in this population, focusing on studies that have used structural and functional magnetic resonance imaging, diffusion tensor imaging, and event-related electroencephalography. We discuss structural and functional alterations observed in the temporal and frontal cortices and the limbic system. These neural alterations are discussed in the context of common cause, information-degradation, and sensory-deprivation hypotheses, and we suggest possible rehabilitation strategies. Although, we are beginning to learn more about changes in neural architecture and functionality related to age-associated hearing loss, much work remains to be done. Understanding the neural alterations will provide objective markers for early identification of neural consequences of age-associated hearing loss and for evaluating benefits of intervention approaches. PMID:27313556

  9. Non-conscious visual cues related to affect and action alter perception of effort and endurance performance

    PubMed Central

    Blanchfield, Anthony; Hardy, James; Marcora, Samuele

    2014-01-01

    The psychobiological model of endurance performance proposes that endurance performance is determined by a decision-making process based on perception of effort and potential motivation. Recent research has reported that effort-based decision-making during cognitive tasks can be altered by non-conscious visual cues relating to affect and action. The effects of these non-conscious visual cues on effort and performance during physical tasks are however unknown. We report two experiments investigating the effects of subliminal priming with visual cues related to affect and action on perception of effort and endurance performance. In Experiment 1 thirteen individuals were subliminally primed with happy or sad faces as they cycled to exhaustion in a counterbalanced and randomized crossover design. A paired t-test (happy vs. sad faces) revealed that individuals cycled significantly longer (178 s, p = 0.04) when subliminally primed with happy faces. A 2 × 5 (condition × iso-time) ANOVA also revealed a significant main effect of condition on rating of perceived exertion (RPE) during the time to exhaustion (TTE) test with lower RPE when subjects were subliminally primed with happy faces (p = 0.04). In Experiment 2, a single-subject randomization tests design found that subliminal priming with action words facilitated a significantly longer TTE (399 s, p = 0.04) in comparison to inaction words. Like Experiment 1, this greater TTE was accompanied by a significantly lower RPE (p = 0.03). These experiments are the first to show that subliminal visual cues relating to affect and action can alter perception of effort and endurance performance. Non-conscious visual cues may therefore influence the effort-based decision-making process that is proposed to determine endurance performance. Accordingly, the findings raise notable implications for individuals who may encounter such visual cues during endurance competitions, training, or health related exercise. PMID:25566014

  10. Job satisfaction in relation to energy resource consciousness and perceptions of energy utilization in selected Illinois manufacturing firms

    SciTech Connect

    Haynes, T.S.

    1986-01-01

    This study was developed through a synthesis and review of literature and research related to the current status of job satisfaction, energy resources, and perceptions of how energy is utilized in the manufacturing work environment. This synthesis and review revolved around several proven contributing factors of job satisfaction, such as age, education, and challenge from work itself. Quality of work life programs and their components are discussed in relation to their impact on job satisfaction. The nature of energy resource utilization is traced back through history with an emphasis on the limitations of current resources and options for the future. The review highlights the current debate over what should be the future path of energy resource development. The concept of satisfaction of human needs is reviewed and related to job satisfaction and energy resources. The purpose of this research study was to contribute to the understanding of how perceptions of energy resources relate to job satisfaction. Results of the study indicated that there were no significant differences between an individual's energy resource consciousness and perceptions of energy utilization in the work place, energy resource consciousness and job satisfaction, and job satisfaction and perceptions of energy utilization in the workplace.

  11. Single units and conscious vision.

    PubMed Central

    Logothetis, N K

    1998-01-01

    Figures that can be seen in more than one way are invaluable tools for the study of the neural basis of visual awareness, because such stimuli permit the dissociation of the neural responses that underlie what we perceive at any given time from those forming the sensory representation of a visual pattern. To study the former type of responses, monkeys were subjected to binocular rivalry, and the response of neurons in a number of different visual areas was studied while the animals reported their alternating percepts by pulling levers. Perception-related modulations of neural activity were found to occur to different extents in different cortical visual areas. The cells that were affected by suppression were almost exclusively binocular, and their proportion was found to increase in the higher processing stages of the visual system. The strongest correlations between neural activity and perception were observed in the visual areas of the temporal lobe. A strikingly large number of neurons in the early visual areas remained active during the perceptual suppression of the stimulus, a finding suggesting that conscious visual perception might be mediated by only a subset of the cells exhibiting stimulus selective responses. These physiological findings, together with a number of recent psychophysical studies, offer a new explanation of the phenomenon of binocular rivalry. Indeed, rivalry has long been considered to be closely linked with binocular fusion and stereopsis, and the sequences of dominance and suppression have been viewed as the result of competition between the two monocular channels. The physiological data presented here are incompatible with this interpretation. Rather than reflecting interocular competition, the rivalry is most probably between the two different central neural representations generated by the dichoptically presented stimuli. The mechanisms of rivalry are probably the same as, or very similar to, those underlying multistable perception in

  12. Stroke and Disorders of Consciousness

    PubMed Central

    Dostović, Zikrija; Smajlović, Dževdet; Dostović, Ernestina; Ibrahimagić, Omer Ć.

    2012-01-01

    Objectives. To determine the severity of stroke and mortality in relation to the type of disturbance of consciousness and outcome of patients with disorders of consciousness. Patients and Methods. We retrospectively analyzed 201 patients. Assessment of disorders of consciousness is performed by Glasgow Coma Scale (Teasdale and Jennet, 1974) and the Diagnostic and Statistical Manual of Mental Disorders (Anonymous, 2000). The severity of stroke was determined by National Institutes of Health Stroke Scale (Lyden et al., 2011). Results. Fifty-four patients had disorders of consciousness (26.9%). Patients with disorders of consciousness on admission (P < 0.001) and discharge (P = 0.003) had a more severe stroke than patients without disturbances of consciousness. Mortality was significantly higher in patients with disorders of consciousness (P = 0.0001), and there was no difference in mortality in relation to the type of disturbance of consciousness. There is no statistically significant effect of specific predictors of survival in patients with disorders of consciousness. Conclusion. Patients with disorders of consciousness have a more severe stroke and higher mortality. There is no difference in mortality and severity of stroke between patients with quantitative and qualitative disorders of consciousness. There is no statistically significant effect of specific predictors of survival in patients with disorders of consciousness. PMID:22973503

  13. Stroke and disorders of consciousness.

    PubMed

    Dostović, Zikrija; Smajlović, Dževdet; Dostović, Ernestina; Ibrahimagić, Omer Ć

    2012-01-01

    Objectives. To determine the severity of stroke and mortality in relation to the type of disturbance of consciousness and outcome of patients with disorders of consciousness. Patients and Methods. We retrospectively analyzed 201 patients. Assessment of disorders of consciousness is performed by Glasgow Coma Scale (Teasdale and Jennet, 1974) and the Diagnostic and Statistical Manual of Mental Disorders (Anonymous, 2000). The severity of stroke was determined by National Institutes of Health Stroke Scale (Lyden et al., 2011). Results. Fifty-four patients had disorders of consciousness (26.9%). Patients with disorders of consciousness on admission (P < 0.001) and discharge (P = 0.003) had a more severe stroke than patients without disturbances of consciousness. Mortality was significantly higher in patients with disorders of consciousness (P = 0.0001), and there was no difference in mortality in relation to the type of disturbance of consciousness. There is no statistically significant effect of specific predictors of survival in patients with disorders of consciousness. Conclusion. Patients with disorders of consciousness have a more severe stroke and higher mortality. There is no difference in mortality and severity of stroke between patients with quantitative and qualitative disorders of consciousness. There is no statistically significant effect of specific predictors of survival in patients with disorders of consciousness. PMID:22973503

  14. Vegetative versus Minimally Conscious States: A Study Using TMS-EEG, Sensory and Event-Related Potentials

    PubMed Central

    Ragazzoni, Aldo; Pirulli, Cornelia; Veniero, Domenica; Feurra, Matteo; Cincotta, Massimo; Giovannelli, Fabio; Chiaramonti, Roberta; Lino, Mario; Rossi, Simone; Miniussi, Carlo

    2013-01-01

    Differential diagnoses between vegetative and minimally conscious states (VS and MCS, respectively) are frequently incorrect. Hence, further research is necessary to improve the diagnostic accuracy at the bedside. The main neuropathological feature of VS is the diffuse damage of cortical and subcortical connections. Starting with this premise, we used electroencephalography (EEG) recordings to evaluate the cortical reactivity and effective connectivity during transcranial magnetic stimulation (TMS) in chronic VS or MCS patients. Moreover, the TMS-EEG data were compared with the results from standard somatosensory-evoked potentials (SEPs) and event-related potentials (ERPs). Thirteen patients with chronic consciousness disorders were examined at their bedsides. A group of healthy volunteers served as the control group. The amplitudes (reactivity) and scalp distributions (connectivity) of the cortical potentials evoked by TMS (TEPs) of the primary motor cortex were measured. Short-latency median nerve SEPs and auditory ERPs were also recorded. Reproducible TEPs were present in all control subjects in both the ipsilateral and the contralateral hemispheres relative to the site of the TMS. The amplitudes of the ipsilateral and contralateral TEPs were reduced in four of the five MCS patients, and the TEPs were bilaterally absent in one MCS patient. Among the VS patients, five did not manifest ipsilateral or contralateral TEPs, and three of the patients exhibited only ipsilateral TEPs with reduced amplitudes. The SEPs were altered in five VS and two MCS patients but did not correlate with the clinical diagnosis. The ERPs were impaired in all patients and did not correlate with the clinical diagnosis. These TEP results suggest that cortical reactivity and connectivity are severely impaired in all VS patients, whereas in most MCS patients, the TEPs are preserved but with abnormal features. Therefore, TEPs may add valuable information to the current clinical and

  15. Vegetative versus minimally conscious states: a study using TMS-EEG, sensory and event-related potentials.

    PubMed

    Ragazzoni, Aldo; Pirulli, Cornelia; Veniero, Domenica; Feurra, Matteo; Cincotta, Massimo; Giovannelli, Fabio; Chiaramonti, Roberta; Lino, Mario; Rossi, Simone; Miniussi, Carlo

    2013-01-01

    Differential diagnoses between vegetative and minimally conscious states (VS and MCS, respectively) are frequently incorrect. Hence, further research is necessary to improve the diagnostic accuracy at the bedside. The main neuropathological feature of VS is the diffuse damage of cortical and subcortical connections. Starting with this premise, we used electroencephalography (EEG) recordings to evaluate the cortical reactivity and effective connectivity during transcranial magnetic stimulation (TMS) in chronic VS or MCS patients. Moreover, the TMS-EEG data were compared with the results from standard somatosensory-evoked potentials (SEPs) and event-related potentials (ERPs). Thirteen patients with chronic consciousness disorders were examined at their bedsides. A group of healthy volunteers served as the control group. The amplitudes (reactivity) and scalp distributions (connectivity) of the cortical potentials evoked by TMS (TEPs) of the primary motor cortex were measured. Short-latency median nerve SEPs and auditory ERPs were also recorded. Reproducible TEPs were present in all control subjects in both the ipsilateral and the contralateral hemispheres relative to the site of the TMS. The amplitudes of the ipsilateral and contralateral TEPs were reduced in four of the five MCS patients, and the TEPs were bilaterally absent in one MCS patient. Among the VS patients, five did not manifest ipsilateral or contralateral TEPs, and three of the patients exhibited only ipsilateral TEPs with reduced amplitudes. The SEPs were altered in five VS and two MCS patients but did not correlate with the clinical diagnosis. The ERPs were impaired in all patients and did not correlate with the clinical diagnosis. These TEP results suggest that cortical reactivity and connectivity are severely impaired in all VS patients, whereas in most MCS patients, the TEPs are preserved but with abnormal features. Therefore, TEPs may add valuable information to the current clinical and

  16. Impact of Emotion on Consciousness: Positive Stimuli Enhance Conscious Reportability

    PubMed Central

    Rømer Thomsen, Kristine; Lou, Hans C.; Joensson, Morten; Hyam, Jonathan A.; Holland, Peter; Parsons, Christine E.; Young, Katherine S.; Møller, Arne; Stein, Alan; Green, Alex L.; Kringelbach, Morten L.; Aziz, Tipu Z.

    2011-01-01

    Emotion and reward have been proposed to be closely linked to conscious experience, but empirical data are lacking. The anterior cingulate cortex (ACC) plays a central role in the hedonic dimension of conscious experience; thus potentially a key region in interactions between emotion and consciousness. Here we tested the impact of emotion on conscious experience, and directly investigated the role of the ACC. We used a masked paradigm that measures conscious reportability in terms of subjective confidence and objective accuracy in identifying the briefly presented stimulus in a forced-choice test. By manipulating the emotional valence (positive, neutral, negative) and the presentation time (16 ms, 32 ms, 80 ms) we measured the impact of these variables on conscious and subliminal (i.e. below threshold) processing. First, we tested normal participants using face and word stimuli. Results showed that participants were more confident and accurate when consciously seeing happy versus sad/neutral faces and words. When stimuli were presented subliminally, we found no effect of emotion. To investigate the neural basis of this impact of emotion, we recorded local field potentials (LFPs) directly in the ACC in a chronic pain patient. Behavioural findings were replicated: the patient was more confident and accurate when (consciously) seeing happy versus sad faces, while no effect was seen in subliminal trials. Mirroring behavioural findings, we found significant differences in the LFPs after around 500 ms (lasting 30 ms) in conscious trials between happy and sad faces, while no effect was found in subliminal trials. We thus demonstrate a striking impact of emotion on conscious experience, with positive emotional stimuli enhancing conscious reportability. In line with previous studies, the data indicate a key role of the ACC, but goes beyond earlier work by providing the first direct evidence of interaction between emotion and conscious experience in the human ACC. PMID

  17. Dynamic Neural Processing of Linguistic Cues Related to Death

    PubMed Central

    Ma, Yina; Qin, Jungang; Han, Shihui

    2013-01-01

    Behavioral studies suggest that humans evolve the capacity to cope with anxiety induced by the awareness of death’s inevitability. However, the neurocognitive processes that underlie online death-related thoughts remain unclear. Our recent functional MRI study found that the processing of linguistic cues related to death was characterized by decreased neural activity in human insular cortex. The current study further investigated the time course of neural processing of death-related linguistic cues. We recorded event-related potentials (ERP) to death-related, life-related, negative-valence, and neutral-valence words in a modified Stroop task that required color naming of words. We found that the amplitude of an early frontal/central negativity at 84–120 ms (N1) decreased to death-related words but increased to life-related words relative to neutral-valence words. The N1 effect associated with death-related and life-related words was correlated respectively with individuals’ pessimistic and optimistic attitudes toward life. Death-related words also increased the amplitude of a frontal/central positivity at 124–300 ms (P2) and of a frontal/central positivity at 300–500 ms (P3). However, the P2 and P3 modulations were observed for both death-related and negative-valence words but not for life-related words. The ERP results suggest an early inverse coding of linguistic cues related to life and death, which is followed by negative emotional responses to death-related information. PMID:23840787

  18. Interpersonal liking modulates motor-related neural regions.

    PubMed

    Sobhani, Mona; Fox, Glenn R; Kaplan, Jonas; Aziz-Zadeh, Lisa

    2012-01-01

    Observing someone perform an action engages brain regions involved in motor planning, such as the inferior frontal, premotor, and inferior parietal cortices. Recent research suggests that during action observation, activity in these neural regions can be modulated by membership in an ethnic group defined by physical differences. In this study we expanded upon previous research by matching physical similarity of two different social groups and investigating whether likability of an outgroup member modulates activity in neural regions involved in action observation. Seventeen Jewish subjects were familiarized with biographies of eight individuals, half of the individuals belonged to Neo-Nazi groups (dislikable) and half of which did not (likable). All subjects and actors in the stimuli were Caucasian and physically similar. The subjects then viewed videos of actors portraying the characters performing simple motor actions (e.g. grasping a water bottle and raising it to the lips), while undergoing fMRI. Using multivariate pattern analysis (MVPA), we found that a classifier trained on brain activation patterns successfully discriminated between the likable and dislikable action observation conditions within the right ventral premotor cortex. These data indicate that the spatial pattern of activity in action observation related neural regions is modulated by likability even when watching a simple action such as reaching for a cup. These findings lend further support for the notion that social factors such as interpersonal liking modulate perceptual processing in motor-related cortices. PMID:23071644

  19. An information integration theory of consciousness

    PubMed Central

    Tononi, Giulio

    2004-01-01

    shown here, these include the association of consciousness with certain neural systems rather than with others; the fact that neural processes underlying consciousness can influence or be influenced by neural processes that remain unconscious; the reduction of consciousness during dreamless sleep and generalized seizures; and the time requirements on neural interactions that support consciousness. Implications of the hypothesis The theory entails that consciousness is a fundamental quantity, that it is graded, that it is present in infants and animals, and that it should be possible to build conscious artifacts. PMID:15522121

  20. Harnessing anesthesia and brain imaging for the study of human consciousness.

    PubMed

    Långsjo, Jaakko W; Revonsuo, Antti; Scheinin, Harry

    2014-01-01

    Philosophers have been trying to solve the mind-body problem for hundreds of years. Consciousness is the core of this problem: How do subjective conscious sensations, perceptions, feelings, and thoughts arise out of objective physical brain activities? How is this subjective conscious world in causal interaction with the objective sensory and motor mechanisms of the brain and the body? Although we witness the seamless interaction of the mental and the physical worlds in our everyday lives, no scientific theory can yet fully describe or explain it. The hard problem of consciousness, the question why and how any brain activity should be accompanied by any subjective experiences at all, remains a mystery and a challenge for modern science. Anesthesia offers a unique and safe way to directly manipulate the state of consciousness and can, thus, be used as a tool in consciousness research. With neuroimaging, such as positron emission tomography (PET) and functional magnetic resonance imaging (fMRI) performed at different states of consciousness, it is possible to visualize the state-related changes and pinpoint the brain structures or neural mechanisms related to changes in consciousness. With these tools, neurosciences now show promise in disentangling the eternal enigma of human consciousness. In this article, we will review the recent advancements in the field. PMID:24025060

  1. Passive microwave relative humidity retrievals using feedforward neural networks

    SciTech Connect

    Cabrera-Mercader, C.R.; Staelin, D.H.

    1995-11-01

    A technique for retrieving atmospheric humidity profiles using passive microwave spectral observations from satellite and Multilayer Feedforward Neural Networks (MFNN) is introduced in this paper. Relative humidity retrievals on a global scale from simulated radiances at fifteen frequencies between 23.8 and 183.3 GHz yielded rms errors in relative humidity of 6--14% over ocean and 6--15% over land at pressure levels ranging from 131 mbar to 1,013 mbar. Comparison with a combined statistical and physical iterative retrieval scheme shows that superior retrievals can be obtained at a lower computational cost using MFNN.

  2. Consciousness in dreams.

    PubMed

    Kahn, David; Gover, Tzivia

    2010-01-01

    This chapter argues that dreaming is an important state of consciousness and that it has many features that complement consciousness in the wake state. The chapter discusses consciousness in dreams and how it comes about. It discusses the changes that occur in the neuromodulatory environment and in the neuronal connectivity of the brain as we fall asleep and begin our night journeys. Dreams evolve from internal sources though the dream may look different than any one of these since something entirely new may emerge through self-organizing processes. The chapter also explores characteristics of dreaming consciousness such as acceptance of implausibility and how that might lead to creative insight. Examples of studies, which have shown creativity in dream sleep, are provided to illustrate important characteristics of dreaming consciousness. The chapter also discusses the dream body and how it relates to our consciousness while dreaming. Differences and similarities between wake, lucid, non-lucid and day dreaming are explored and the chapter concludes with a discussion on what we can learn from each of these expressions of consciousness. PMID:20870068

  3. Trauma-Related Altered States of Consciousness (TRASC) and Functional Impairment I: Prospective Study in Acutely Traumatized Persons.

    PubMed

    Frewen, Paul; Hegadoren, Kathy; Coupland, Nick J; Rowe, Brian H; Neufeld, Richard W J; Lanius, Ruth

    2015-01-01

    A theoretical framework referred to as a 4-D model has been described for classifying posttraumatic stress symptoms into those potentially occurring within normal waking consciousness (NWC) versus those thought to intrinsically exemplify dissociative experiences, specifically, trauma-related altered states of consciousness (TRASC). As a further test of this theoretical distinction, this prospective study evaluated whether TRASC and NWC forms of distress incrementally and prospectively predicted functional impairment at 6 and 12 weeks following presentation at hospital emergency departments in the acute aftermath of traumatic events in 180 persons. Establishing the clinical significance of both TRASC and NWC-distress symptoms, we found that 6-week markers of TRASC and NWC-distress independently predicted 12-week self-reported levels of social and occupational impairment. We also observed broad support for various predictions of the 4-D model except that, in contrast with hypotheses, childhood trauma history was generally more strongly correlated with symptoms of NWC-distress than with TRASC. Future research directions are discussed. PMID:26378486

  4. Reversal of age-related neural timing delays with training.

    PubMed

    Anderson, Samira; White-Schwoch, Travis; Parbery-Clark, Alexandra; Kraus, Nina

    2013-03-12

    Neural slowing is commonly noted in older adults, with consequences for sensory, motor, and cognitive domains. One of the deleterious effects of neural slowing is impairment of temporal resolution; older adults, therefore, have reduced ability to process the rapid events that characterize speech, especially in noisy environments. Although hearing aids provide increased audibility, they cannot compensate for deficits in auditory temporal processing. Auditory training may provide a strategy to address these deficits. To that end, we evaluated the effects of auditory-based cognitive training on the temporal precision of subcortical processing of speech in noise. After training, older adults exhibited faster neural timing and experienced gains in memory, speed of processing, and speech-in-noise perception, whereas a matched control group showed no changes. Training was also associated with decreased variability of brainstem response peaks, suggesting a decrease in temporal jitter in response to a speech signal. These results demonstrate that auditory-based cognitive training can partially restore age-related deficits in temporal processing in the brain; this plasticity in turn promotes better cognitive and perceptual skills. PMID:23401541

  5. Reversal of age-related neural timing delays with training

    PubMed Central

    Anderson, Samira; White-Schwoch, Travis; Parbery-Clark, Alexandra; Kraus, Nina

    2013-01-01

    Neural slowing is commonly noted in older adults, with consequences for sensory, motor, and cognitive domains. One of the deleterious effects of neural slowing is impairment of temporal resolution; older adults, therefore, have reduced ability to process the rapid events that characterize speech, especially in noisy environments. Although hearing aids provide increased audibility, they cannot compensate for deficits in auditory temporal processing. Auditory training may provide a strategy to address these deficits. To that end, we evaluated the effects of auditory-based cognitive training on the temporal precision of subcortical processing of speech in noise. After training, older adults exhibited faster neural timing and experienced gains in memory, speed of processing, and speech-in-noise perception, whereas a matched control group showed no changes. Training was also associated with decreased variability of brainstem response peaks, suggesting a decrease in temporal jitter in response to a speech signal. These results demonstrate that auditory-based cognitive training can partially restore age-related deficits in temporal processing in the brain; this plasticity in turn promotes better cognitive and perceptual skills. PMID:23401541

  6. Neural Basis of Visual Distraction

    ERIC Educational Resources Information Center

    Kim, So-Yeon; Hopfinger, Joseph B.

    2010-01-01

    The ability to maintain focus and avoid distraction by goal-irrelevant stimuli is critical for performing many tasks and may be a key deficit in attention-related problems. Recent studies have demonstrated that irrelevant stimuli that are consciously perceived may be filtered out on a neural level and not cause the distraction triggered by…

  7. ["Osteo-neural" related factors - bridge over bone homeostasis].

    PubMed

    Sato, Tsuyoshi

    2016-08-01

    Bone tissues including bone marrow are comprised of various cells. A growing body of evidence suggests that nerve cells which exist in and around bone such as periosteal and bone marrow build a close relationship with bone cells. Namely, it was revealed that central nervous system governs bone tissues via peripheral nervous system and neurotransmitters or cytokines play a role for the communication between bone and nerve in the last decade. In this paper, I would like to review "osteo-neural" related factors which has been well-documented so far. PMID:27461495

  8. Fairness influences early signatures of reward-related neural processing.

    PubMed

    Massi, Bart; Luhmann, Christian C

    2015-12-01

    Many humans exhibit a strong preference for fairness during decision-making. Although there is evidence that social factors influence reward-related and affective neural processing, it is unclear if this effect is mediated by compulsory outcome evaluation processes or results from slower deliberate cognition. Here we show that the feedback-related negativity (FRN) and late positive potential (LPP), two signatures of early hedonic processing, are modulated by the fairness of rewards during a passive rating task. We find that unfair payouts elicit larger FRNs than fair payouts, whereas fair payouts elicit larger LPPs than unfair payouts. This is true both in the time-domain, where the FRN and LPP are related, and in the time-frequency domain, where the two signals are largely independent. Ultimately, this work demonstrates that fairness affects the early stages of reward and affective processing, suggesting a common biological mechanism for social and personal reward evaluation. PMID:25962511

  9. Reward-related neural responses are dependent on the beneficiary.

    PubMed

    Braams, Barbara R; Güroğlu, Berna; de Water, Erik; Meuwese, Rosa; Koolschijn, P Cédric; Peper, Jiska S; Crone, Eveline A

    2014-07-01

    Prior studies have suggested that positive social interactions are experienced as rewarding. Yet, it is not well understood how social relationships influence neural responses to other persons' gains. In this study, we investigated neural responses during a gambling task in which healthy participants (N = 31; 18 females) could win or lose money for themselves, their best friend or a disliked other (antagonist). At the moment of receiving outcome, person-related activity was observed in the dorsal medial prefrontal cortex (dmPFC), precuneus and temporal parietal junction (TPJ), showing higher activity for friends and antagonists than for self, and this activity was independent of outcome. The only region showing an interaction between the person-participants played for and outcome was the ventral striatum. Specifically, the striatum was more active following gains than losses for self and friends, whereas for the antagonist this pattern was reversed. Together, these results show that, in a context with social and reward information, social aspects are processed in brain regions associated with social cognition (mPFC, TPJ), and reward aspects are processed in primary reward areas (striatum). Furthermore, there is an interaction of social and reward information in the striatum, such that reward-related activity was dependent on social relationship. PMID:23720575

  10. The Use of Life History Collage to Explore Learning Related to the Enactment of Social Consciousness in Female Nonprofit Leaders

    ERIC Educational Resources Information Center

    Seymour, Susan R.

    2012-01-01

    The purpose of this study was to consider the development of social consciousness in female nonprofit leaders. The problem undergirding the study is that we do not know enough about social consciousness to know how it is learned, if it can be taught, if it is stable over a lifetime, and what factors and life events shape its unique expression. A…

  11. Evolving Complexity, Cognition, and Consciousness

    NASA Astrophysics Data System (ADS)

    Liljenström, H.

    2012-12-01

    All through the history of the universe there is an apparent tendency for increasing complexity, with the organization of matter in evermore elaborate and interactive systems. The living world in general, and the human brain in particular, provides the highest complexity known. It seems obvious that all of this complexity must be the result of physical, chemical and biological evolution, but it was only with Darwin that we began to get a scientific understanding of biological evolution. Darwinian principles are guiding in our understanding of such complex systems as the nervous system, but also for the evolution of human society and technology. Living organisms have to survive in a complex and changing environment. This implies response and adaption to environmental events and changes at several time scales. The interaction with the environment depends on the present state of the organism, as well as on previous experiences stored in its molecular and cellular structures. At a longer time scale, organisms can adapt to slow environmental changes, by storing information in the genetic material carried over from generation to generation. This phylogenetic learning is complemented by ontogenetic learning, which is adaptation at a shorter time scale, occuring in non-genetic structures. The evolution of a nervous system is a major transition in biological evolution and allows for an increasing capacity for information storage and processing, increasing chances of survival. Such neural knowledge processing, cognition, shows the same principal features as nonneural adaptive processes. Similarly, consciousness might appear, to different degrees, at different stages in evolution. Both cognition and consciousness depends critically on the organization and complexity of the organism. In this presentation, I will briefly discuss general principles for evolution of complexity, focussing on the evolution of the nervous system, which provides organisms with ever increasing

  12. The Neural Consequences of Age-Related Hearing Loss.

    PubMed

    Peelle, Jonathan E; Wingfield, Arthur

    2016-07-01

    During hearing, acoustic signals travel up the ascending auditory pathway from the cochlea to auditory cortex; efferent connections provide descending feedback. In human listeners, although auditory and cognitive processing have sometimes been viewed as separate domains, a growing body of work suggests they are intimately coupled. Here, we review the effects of hearing loss on neural systems supporting spoken language comprehension, beginning with age-related physiological decline. We suggest that listeners recruit domain general executive systems to maintain successful communication when the auditory signal is degraded, but that this compensatory processing has behavioral consequences: even relatively mild levels of hearing loss can lead to cascading cognitive effects that impact perception, comprehension, and memory, leading to increased listening effort during speech comprehension. PMID:27262177

  13. Pharmacological modulation of the state of awareness in patients with disorders of consciousness: an overview.

    PubMed

    Mura, Elisa; Pistoia, Francesca; Sara, Marco; Sacco, Simona; Carolei, Antonio; Govoni, Stefano

    2014-01-01

    The neurobiological approach to consciousness moves from the assumption that all phenomenal experiences are based on neuronal activity in the brain. Consciousness has two main components: wakefulness and awareness. While it may be relatively easy to determine the neuronal correlates of wakefulness, it is not the same for awareness, of which the neural correlates are poorly understood. Knowledge of the circuitry and the neurochemistry of the sleep/wake condition is necessary but not sufficient to understand the circuitry and neurochemistry of consciousness. Disorders of consciousness (DOCs) include coma, vegetative state and minimally conscious state. The study of DOCs and of the electrophysiological changes underlying general anaesthesia-induced loss of consciousness may help in understanding the neuronal correlates of consciousness. In turn, the understanding of the neural bases of consciousness may help in designing interventions aimed at restoring consciousness in DOC patients. Sporadic cases of recovery from a DOC have been reported after the administration of various pharmacological agents (baclofen, zolpidem, amantadine etc.). This review provides an overview of such drugs, which are from various and diverging classes but can be grouped into two main categories: CNS stimulants and CNS depressants. The available data seem to suggest an awakening effect obtained with CNS depressants rather than stimulants, the latter being more effective at improving functional cognitive and behavioral recovery in patients who have spontaneously regained an appreciable level of consciousness. There is a need for more rigorous systematic trials and further investigation of the above treatments, with particular attention paid to their mechanisms of action and the neurotransmitters involved. PMID:24025054

  14. ELT and Consciousness-Raising

    ERIC Educational Resources Information Center

    Al-Jardani, Khalid Salim Saif

    2012-01-01

    The paper highlights the concept of consciousness-raising. It relates it to different aspects of ELT such as explicit teaching, language awareness, language acquisition and practice. How these terms are related to the concept of consciousness-raising within the English Language teaching. Its main aim is to help learners to notice for themselves…

  15. Consciousness as a state of matter

    NASA Astrophysics Data System (ADS)

    Tegmark, Max

    2015-07-01

    I examine the hypothesis that consciousness can be understood as a state of matter, "perceptronium", with distinctive information processing abilities. I explore five basic principles that may distinguish conscious matter from other physical systems such as solids, liquids and gases: the information, integration, independence, dynamics and utility principles. This approach generalizes Giulio Tononi's integrated information framework for neural-network-based consciousness to arbitrary quantum systems, and provides interesting links to error-correcting codes and condensed matter criticality, as well as an interesting connections between the emergence of consciousness and the emergence of time. (For more technical details, see arXiv:1401.1219).

  16. Unconscious high-level information processing: implication for neurobiological theories of consciousness.

    PubMed

    van Gaal, Simon; Lamme, Victor A F

    2012-06-01

    Theories about the neural correlates and functional relevance of consciousness have traditionally assigned a crucial role to the prefrontal cortex in generating consciousness as well as in orchestrating high-level conscious control over behavior. However, recent neuroscientific findings show that prefrontal cortex can be activated unconsciously. The depth, direction, and scope of these activations depend on several top-down factors such as the task being probed (task-set, strategy) and on (temporal/spatial) attention. Regardless, such activations-when mediated by feedforward activation only-do not lead to a conscious sensation. Although unconscious, these prefrontal activations are functional, in the sense that they are associated with behavioral effects of cognitive control, such as response inhibition, task switching, conflict monitoring, and error detection. These findings challenge the pivotal role of the prefrontal cortex in consciousness. Instead, it appears that specific brain areas (or cognitive modules) may support specific cognitive functions but that consciousness is independent of this. Conscious sensations arise only when the brain areas involved engage in recurrent interactions enabling the long-lasting exchange of information between brain regions. Moreover, recent evidence suggests that also the state of consciousness, for example, in vegetative state patients or during sleep and anesthesia, is closely related to the scope and extent of residual recurrent interactions among brain regions. PMID:21628675

  17. New evidence of animal consciousness.

    PubMed

    Griffin, Donald R; Speck, Gayle B

    2004-01-01

    This paper reviews evidence that increases the probability that many animals experience at least simple levels of consciousness. First, the search for neural correlates of consciousness has not found any consciousness-producing structure or process that is limited to human brains. Second, appropriate responses to novel challenges for which the animal has not been prepared by genetic programming or previous experience provide suggestive evidence of animal consciousness because such versatility is most effectively organized by conscious thinking. For example, certain types of classical conditioning require awareness of the learned contingency in human subjects, suggesting comparable awareness in similarly conditioned animals. Other significant examples of versatile behavior suggestive of conscious thinking are scrub jays that exhibit all the objective attributes of episodic memory, evidence that monkeys sometimes know what they know, creative tool-making by crows, and recent interpretation of goal-directed behavior of rats as requiring simple nonreflexive consciousness. Third, animal communication often reports subjective experiences. Apes have demonstrated increased ability to use gestures or keyboard symbols to make requests and answer questions; and parrots have refined their ability to use the imitation of human words to ask for things they want and answer moderately complex questions. New data have demonstrated increased flexibility in the gestural communication of swarming honey bees that leads to vitally important group decisions as to which cavity a swarm should select as its new home. Although no single piece of evidence provides absolute proof of consciousness, this accumulation of strongly suggestive evidence increases significantly the likelihood that some animals experience at least simple conscious thoughts and feelings. The next challenge for cognitive ethologists is to investigate for particular animals the content of their awareness and what life is

  18. Consciousness Lost and Found: Subjective Experiences in an Unresponsive State

    ERIC Educational Resources Information Center

    Noreika, Valdas; Jylhankangas, Leila; Moro, Levente; Valli, Katja; Kaskinoro, Kimmo; Aantaa, Riku; Scheinin, Harry; Revonsuo, Antti

    2011-01-01

    Anesthetic-induced changes in the neural activity of the brain have been recently utilized as a research model to investigate the neural mechanisms of phenomenal consciousness. However, the anesthesiologic definition of consciousness as "responsiveness to the environment" seems to sidestep the possibility that an unresponsive individual may have…

  19. General and specific consciousness: a first-order representationalist approach

    PubMed Central

    Mehta, Neil; Mashour, George A.

    2013-01-01

    It is widely acknowledged that a complete theory of consciousness should explain general consciousness (what makes a state conscious at all) and specific consciousness (what gives a conscious state its particular phenomenal quality). We defend first-order representationalism, which argues that consciousness consists of sensory representations directly available to the subject for action selection, belief formation, planning, etc. We provide a neuroscientific framework for this primarily philosophical theory, according to which neural correlates of general consciousness include prefrontal cortex, posterior parietal cortex, and non-specific thalamic nuclei, while neural correlates of specific consciousness include sensory cortex and specific thalamic nuclei. We suggest that recent data support first-order representationalism over biological theory, higher-order representationalism, recurrent processing theory, information integration theory, and global workspace theory. PMID:23882231

  20. Environmentally conscious patent histories

    NASA Astrophysics Data System (ADS)

    Crouch, Dennis D.; Crouch, Henry L.

    2004-02-01

    There is a need for investigators, legislators, and business leaders to understand the magnitude of innovation and discovery in the field of environmentally conscious technologies (ECTs). Knowledge of the "big picture" is important to providing a national and global account of actual environmental stewardship over the last twenty-five years. A recitation of the Environmental Protection Agency (EPA) supported Acts which have been enacted into law reveals one facet of the multifaceted dynamic of environmental consciousness. The popular discussion and debate, as well as partisan lobbying, which created the political forces leading to environmentally conscious legislation is another facet. A third facet is the corporate response to the threats and opportunities predicted by CEO"s and others through environmental scanning. This paper examines changes in environmentally conscious inventive effort by comparing data from United States Patents issued from 1976 through 2003. Patents are useful tool for measuring technological innovation because they are publicly available records of innovative activity. Although not all inventions result in patent applications, the monopoly rights granted on the invention give the inventor a strong incentive to obtain patents on any viable product or process. Among the results, we found a significant increase in patents relating to environmentally conscious products and processes during the period in question. Specifically, a dramatic increase in patent activity was seen for the decade of the 1990"s. Surprisingly, the patenting rate from 2000 to 2003 seems to have stabilized. Additionally public discussion of ECTs appears to have a positive impact on patent filings.

  1. Neuronal function is necessary but not sufficient for consciousness: consciousness is necessary for will.

    PubMed

    Nussbaum, David; Ibrahim, Khadija

    2012-01-01

    Behavioral neuroscience has presented philosophers with the task of clarifying the relationship between neural determinism and free will. If neural functions encode information and govern decision-making, are the constructs of will, agency and indeed morality illusions of pre-scientific ignorance? This article will argue that neuronal function is necessary for representing distinct sensory-perceptual, cognitive, motivational, emotional states, and motor functions. However, neural transmission and action potentials are simply chemical-physical representations of these informational states but are not the embodiment of consciousness itself. By some yet undiscovered mechanism, consciousness "reads" the neuronal events into conscious experience. Absent a particular specialized brain region or sufficient relevant transmitters and receptors, relevant information cannot be processed and the individual cannot be conscious of that informational state. In natural and many artificial communication systems, communications proceed bi-directionally. By an argument of symmetry, if neuronal activity can communicate with consciousness, there is no reason to preclude consciousness from communicating back and influencing neuronal function. In the intervening conscious moment, information from diverse perceptual, motivational, cognitive, and emotional sources is weighted and will results. This process then biases resultant neural processes to actualize the willed target. This approach is limited in terms of operationalization into an experimental study because at present, there is no method to measure consciousness-independent of neuronal function and subjective report. PMID:23181011

  2. Maintenance of non-consciously presented information engages the prefrontal cortex

    PubMed Central

    Bergström, Fredrik; Eriksson, Johan

    2014-01-01

    Conscious processing is generally seen as required for flexible and willful actions, as well as for tasks that require durable information maintenance. Here we present research that questions the assumption that only consciously perceived information is durable (>500 ms). Using the attentional blink (AB) phenomenon, we rendered otherwise relatively clearly perceived letters non-conscious. In a first experiment we systematically manipulated the delay between stimulus presentation and response, for the purpose of estimating the durability of non-conscious perceptual representations. For items reported not seen, we found that behavioral performance was better than chance across intervals up to 15 s. In a second experiment we used fMRI to investigate the neural correlates underlying the maintenance of non-conscious perceptual representations. Critically, the relatively long delay period demonstrated in experiment 1 enabled isolation of the signal change specifically related to the maintenance period, separate from stimulus presentation and response. We found sustained BOLD signal change in the right mid-lateral prefrontal cortex, orbitofrontal cortex, and crus II of the cerebellum during maintenance of non-consciously perceived information. These findings are consistent with the controversial claim that working-memory mechanisms are involved in the short-term maintenance of non-conscious perceptual representations. PMID:25484862

  3. The Problem of Consciousness.

    ERIC Educational Resources Information Center

    Crick, Francis; Koch, Christof

    1992-01-01

    Discusses approaches to the problem presented in understanding consciousness as a yet undiscovered process of interacting neuron activity. Presents the historical context of research in the area of human awareness and identifies research necessary to scientifically explain how the brain relates to the mind. (MCO)

  4. From affective blindsight to emotional consciousness.

    PubMed

    Celeghin, Alessia; de Gelder, Beatrice; Tamietto, Marco

    2015-11-01

    Following destruction or denervation of the primary visual cortex (V1) cortical blindness ensues. Affective blindsight refers to the uncanny ability of such patients to respond correctly, or above chance level, to visual emotional expressions presented to their blind fields. Fifteen years after its original discovery, affective blindsight still fascinates neuroscientists and philosophers alike, as it offers a unique window on the vestigial properties of our visual system that, though present in the intact brain, tend to be unnoticed or even actively inhibited by conscious processes. Here we review available studies on affective blindsight with the intent to clarify its functional properties, neural bases and theoretical implications. Evidence converges on the role of subcortical structures of old evolutionary origin such as the superior colliculus, the pulvinar and the amygdala in mediating affective blindsight and nonconscious perception of emotions. We conclude that approaching consciousness, and its absence, from the vantage point of emotion processing may uncover important relations between the two phenomena, as consciousness may have evolved as an evolutionary specialization to interact with others and become aware of their social and emotional expressions. PMID:26058355

  5. Neural correlates of obsessive-compulsive related dysfunctional beliefs.

    PubMed

    Alonso, Pino; Orbegozo, Arantxa; Pujol, Jesús; López-Solà, Clara; Fullana, Miquel Àngel; Segalàs, Cinto; Real, Eva; Subirà, Marta; Martínez-Zalacaín, Ignacio; Menchón, José M; Harrison, Ben J; Cardoner, Narcís; Soriano-Mas, Carles

    2013-12-01

    There have been few attempts to integrate neurobiological and cognitive models of obsessive-compulsive disorder (OCD), although this might constitute a key approach to clarify the complex etiology of the disorder. Our study aimed to explore the neural correlates underlying dysfunctional beliefs hypothesized by cognitive models to be involved in the development and maintenance of OCD. We obtained a high-resolution magnetic resonance image from fifty OCD patients and 30 healthy controls, and correlated them, voxel-wise, with the severity of OC-related dysfunctional beliefs assessed by the Obsessive Beliefs Questionnaire-44. In healthy controls, significant negative correlations were observed between anterior temporal lobe (ATL) volume and scores on perfectionism/intolerance of uncertainty and overimportance/need to control thoughts. No significant correlations between OBQ-44 domains and regional gray matter volumes were observed in OCD patients. A post-hoc region-of-interest analysis detected that the ATLs was bilaterally smaller in OCD patients. On splitting subjects into high- and low-belief subgroups, we observed that such brain structural differences between OCD patients and healthy controls were explained by significantly larger ATL volumes among healthy subjects from the low-belief subgroup. Our results suggest a significant correlation between OC-related dysfunctional beliefs and morphometric variability in the anterior temporal lobe, a brain structure related to socio-emotional processing. Future studies should address the interaction of these correlations with environmental factors to fully characterize the bases of OC-related dysfunctional beliefs and to advance in the integration of biological and cognitive models of OCD. PMID:23911440

  6. Impaired consciousness during temporal lobe seizures is related to increased long-distance cortical-subcortical synchronization.

    PubMed

    Arthuis, Marie; Valton, Luc; Régis, Jean; Chauvel, Patrick; Wendling, Fabrice; Naccache, Lionel; Bernard, Christophe; Bartolomei, Fabrice

    2009-08-01

    Loss of consciousness (LOC) is a dramatic clinical manifestation of temporal lobe seizures. Its underlying mechanism could involve altered coordinated neuronal activity between the brain regions that support conscious information processing. The consciousness access hypothesis assumes the existence of a global workspace in which information becomes available via synchronized activity within neuronal modules, often widely distributed throughout the brain. Re-entry loops and, in particular, thalamo-cortical communication would be crucial to functionally bind different modules together. In the present investigation, we used intracranial recordings of cortical and subcortical structures in 12 patients, with intractable temporal lobe epilepsy (TLE), as part of their presurgical evaluation to investigate the relationship between states of consciousness and neuronal activity within the brain. The synchronization of electroencephalography signals between distant regions was estimated as a function of time by using non-linear regression analysis. We report that LOC occurring during temporal lobe seizures is characterized by increased long-distance synchronization between structures that are critical in processing awareness, including thalamus (Th) and parietal cortices. The degree of LOC was found to correlate with the amount of synchronization in thalamo-cortical systems. We suggest that excessive synchronization overloads the structures involved in consciousness processing, preventing them from treating incoming information, thus resulting in LOC. PMID:19416952

  7. Time to Loss of Consciousness and Its Relation to Behavior in Slaughter Pigs during Stunning with 80 or 95% Carbon Dioxide

    PubMed Central

    Verhoeven, Merel; Gerritzen, Marien; Velarde, Antonio; Hellebrekers, Ludo; Kemp, Bas

    2016-01-01

    Exposure to CO2 at high concentration is a much debated stunning method in pigs. Pigs respond aversively to high concentrations of CO2, and there is uncertainty about what behaviors occur before and after loss of consciousness. The aim was to assess timing of unconsciousness in pigs during exposure to high concentrations of CO2 based on changes in electroencephalogram (EEG) activity and the relation with the behaviors sniffing, retreat and escape attempts, lateral head movements, jumping, muscular contractions, loss of posture, and gasping. Pigs (108 ± 9 kg) were randomly assigned to 80% CO2 (80C, n = 24) or 95% CO2 (95C, n = 24). The time at which the gondola started descending into the well pre-filled with 80C or 95C was marked as T = 0. The CO2 exposure lasted 346 s after which the corneal reflex and breathing were assessed for 1 min. Visual assessment of changes in the amplitude and frequency of EEG traces after T = 0 was used to determine loss of consciousness. Time to loss of consciousness was longer in 80C pigs (47 ± 6 s) than in 95C pigs (33 ± 7 s). Time to an iso-electric EEG was similar in 80C pigs (75 ± 23 s) and 95C pigs (64 ± 32 s). When pigs descended into the well, the earlier entry of 95C pigs into high CO2 atmosphere rather than the concentration of CO2 by itself affected the latency of behavioral responses and decreasing brain activity. During exposure to the gas, 80C and 95C pigs exhibited sniffing, retreat attempts, lateral head movements, jumping, and gasping before loss of consciousness. 95C pigs exhibited all these behaviors on average earlier than 80C pigs after T = 0. But the interval between onset of these behaviors and loss of consciousness and the duration of these behaviors, except gasping, was similar for both treatments. Loss of posture was on average observed in both groups 10 s before EEG-based loss of consciousness. Furthermore, 88% of 80C pigs and 94% of 95C pigs

  8. The consciousness state space (CSS)—a unifying model for consciousness and self

    PubMed Central

    Berkovich-Ohana, Aviva; Glicksohn, Joseph

    2014-01-01

    Every experience, those we are aware of and those we are not, is embedded in a subjective timeline, is tinged with emotion, and inevitably evokes a certain sense of self. Here, we present a phenomenological model for consciousness and selfhood which relates time, awareness, and emotion within one framework. The consciousness state space (CSS) model is a theoretical one. It relies on a broad range of literature, hence has high explanatory and integrative strength, and helps in visualizing the relationship between different aspects of experience. Briefly, it is suggested that all phenomenological states fall into two categories of consciousness, core and extended (CC and EC, respectively). CC supports minimal selfhood that is short of temporal extension, its scope being the here and now. EC supports narrative selfhood, which involves personal identity and continuity across time, as well as memory, imagination and conceptual thought. The CSS is a phenomenological space, created by three dimensions: time, awareness and emotion. Each of the three dimensions is shown to have a dual phenomenological composition, falling within CC and EC. The neural spaces supporting each of these dimensions, as well as CC and EC, are laid out based on the neuroscientific literature. The CSS dynamics include two simultaneous trajectories, one in CC and one in EC, typically antagonistic in normal experiences. However, this characteristic behavior is altered in states in which a person experiences an altered sense of self. Two examples are laid out, flow and meditation. The CSS model creates a broad theoretical framework with explanatory and unificatory power. It constructs a detailed map of the consciousness and selfhood phenomenology, which offers constraints for the science of consciousness. We conclude by outlining several testable predictions raised by the CSS model. PMID:24808870

  9. The consciousness state space (CSS)-a unifying model for consciousness and self.

    PubMed

    Berkovich-Ohana, Aviva; Glicksohn, Joseph

    2014-01-01

    Every experience, those we are aware of and those we are not, is embedded in a subjective timeline, is tinged with emotion, and inevitably evokes a certain sense of self. Here, we present a phenomenological model for consciousness and selfhood which relates time, awareness, and emotion within one framework. The consciousness state space (CSS) model is a theoretical one. It relies on a broad range of literature, hence has high explanatory and integrative strength, and helps in visualizing the relationship between different aspects of experience. Briefly, it is suggested that all phenomenological states fall into two categories of consciousness, core and extended (CC and EC, respectively). CC supports minimal selfhood that is short of temporal extension, its scope being the here and now. EC supports narrative selfhood, which involves personal identity and continuity across time, as well as memory, imagination and conceptual thought. The CSS is a phenomenological space, created by three dimensions: time, awareness and emotion. Each of the three dimensions is shown to have a dual phenomenological composition, falling within CC and EC. The neural spaces supporting each of these dimensions, as well as CC and EC, are laid out based on the neuroscientific literature. The CSS dynamics include two simultaneous trajectories, one in CC and one in EC, typically antagonistic in normal experiences. However, this characteristic behavior is altered in states in which a person experiences an altered sense of self. Two examples are laid out, flow and meditation. The CSS model creates a broad theoretical framework with explanatory and unificatory power. It constructs a detailed map of the consciousness and selfhood phenomenology, which offers constraints for the science of consciousness. We conclude by outlining several testable predictions raised by the CSS model. PMID:24808870

  10. Roles of forebrain GABA receptors in controlling vasopressin secretion and related phenomena under basal and hyperosmotic circumstances in conscious rats.

    PubMed

    Yamaguchi, Ken'ichi; Yamada, Takaho

    2008-09-01

    Although the anteroventral third ventricular region (AV3V), a forebrain area essential for homeostatic responses, includes receptors for gamma-aminobutyric acid (GABA), the roles of these receptors in controlling vasopressin (AVP) secretion and related phenomena have not been clarified as yet. This study aimed to pursue this problem in conscious rats implanted with indwelling catheters. Cerebral injection sites were determined histologically. Applications of bicuculline, a GABA(A) receptor antagonist, to the AV3V induced prompt and marked augmentations in plasma AVP, osmolality, glucose, arterial pressure and heart rate, without affecting plasma electrolytes. Such phenomena did not occur when phaclofen, a GABA(B) receptor antagonist, was applied to the AV3V. All of the effects of AV3V-administered bicuculline were abolished by preadministration of the GABA(A) receptor agonist muscimol. Preadministration of either MK-801 or NBQX, ionotropic glutamatergic receptor antagonists, was also potent to abolish the AVP response to AV3V bicuculline. When hypertonic saline was infused intravenously, plasma AVP increased progressively, in parallel with rises in plasma osmolality, sodium and arterial pressure. AV3V application of muscimol or baclofen, a GABA(B) receptor agonist, was found to abolish the response of plasma AVP, without inhibiting that of the osmolality or sodium. The response of arterial pressure was also blocked by muscimol treatment, but not by baclofen treatment. Based on these results, we concluded that, under basal conditions, GABA receptors in the AV3V or vicinity may tonically operate to attenuate AVP secretion and cardiovascular functions through mechanisms associated with glutamatergic activity, and that plasma hyperosmolality may cause facilitation of AVP release by decreasing forebrain GABAergic activity. PMID:18639747

  11. Probing ERP correlates of verbal semantic processing in patients with impaired consciousness.

    PubMed

    Rohaut, Benjamin; Faugeras, Frédéric; Chausson, Nicolas; King, Jean-Rémi; Karoui, Imen El; Cohen, Laurent; Naccache, Lionel

    2015-01-01

    Our ability to identify covert cognitive abilities in non-communicating patients is of prime importance to improve diagnosis, to guide therapeutic decisions and to better predict their cognitive outcome. In the present study, we used a basic and rigorous paradigm contrasting pairs of words orthogonally. This paradigm enables the probing of semantic processing by comparing neural activity elicited by similar words delivered in various combinations. We describe the respective timing, topography and estimated cortical sources of two successive event-related potentials (ERP) components (N400 and late positive component (LPC)) using high-density EEG in conscious controls (N=20) and in minimally conscious (MCS; N=15) and vegetative states (VS; N=15) patients recorded at bedside. Whereas N400-like ERP components could be observed in the VS, MCS and conscious groups, only MCS and conscious groups showed a LPC response, suggesting that this late effect could be a potential specific marker of conscious semantic processing. This result is coherent with recent findings disentangling early and local non-conscious responses (e.g.: MMN in odd-ball paradigms, N400 in semantic violation paradigms) from late, distributed and conscious responses (e.g.: P3b to auditory rule violation) in controls and in patients with disorders of consciousness. However, N400 and LPC responses were not easily observed at the individual level, - even in conscious controls - , with standard ERP analyses, which is a limiting factor for its clinical use. Of potential interest, the only 3 patients presenting both significant N400 and LPC effects were MCS, and 2 of them regained consciousness and functional language abilities. PMID:25447058

  12. Dogs cannot bark: event-related brain responses to true and false negated statements as indicators of higher-order conscious processing.

    PubMed

    Herbert, Cornelia; Kübler, Andrea

    2011-01-01

    The present study investigated event-related brain potentials elicited by true and false negated statements to evaluate if discrimination of the truth value of negated information relies on conscious processing and requires higher-order cognitive processing in healthy subjects across different levels of stimulus complexity. The stimulus material consisted of true and false negated sentences (sentence level) and prime-target expressions (word level). Stimuli were presented acoustically and no overt behavioral response of the participants was required. Event-related brain potentials to target words preceded by true and false negated expressions were analyzed both within group and at the single subject level. Across the different processing conditions (word pairs and sentences), target words elicited a frontal negativity and a late positivity in the time window from 600-1000 msec post target word onset. Amplitudes of both brain potentials varied as a function of the truth value of the negated expressions. Results were confirmed at the single-subject level. In sum, our results support recent suggestions according to which evaluation of the truth value of a negated expression is a time- and cognitively demanding process that cannot be solved automatically, and thus requires conscious processing. Our paradigm provides insight into higher-order processing related to language comprehension and reasoning in healthy subjects. Future studies are needed to evaluate if our paradigm also proves sensitive for the detection of consciousness in non-responsive patients. PMID:22022414

  13. From unresponsive wakefulness to minimally conscious PLUS and functional locked-in syndromes: recent advances in our understanding of disorders of consciousness.

    PubMed

    Bruno, Marie-Aurélie; Vanhaudenhuyse, Audrey; Thibaut, Aurore; Moonen, Gustave; Laureys, Steven

    2011-07-01

    Functional neuroimaging and electrophysiology studies are changing our understanding of patients with coma and related states. Some severely brain damaged patients may show residual cortical processing in the absence of behavioural signs of consciousness. Given these new findings, the diagnostic errors and their potential effects on treatment as well as concerns regarding the negative associations intrinsic to the term vegetative state, the European Task Force on Disorders of Consciousness has recently proposed the more neutral and descriptive term unresponsive wakefulness syndrome. When vegetative/unresponsive patients show minimal signs of consciousness but are unable to reliably communicate the term minimally responsive or minimally conscious state (MCS) is used. MCS was recently subcategorized based on the complexity of patients' behaviours: MCS+ describes high-level behavioural responses (i.e., command following, intelligible verbalizations or non-functional communication) and MCS- describes low-level behavioural responses (i.e., visual pursuit, localization of noxious stimulation or contingent behaviour such as appropriate smiling or crying to emotional stimuli). Finally, patients who show non-behavioural evidence of consciousness or communication only measurable via para-clinical testing (i.e., functional MRI, positron emission tomography, EEG or evoked potentials) can be considered to be in a functional locked-in syndrome. An improved assessment of brain function in coma and related states is not only changing nosology and medical care but also offers a better-documented diagnosis and prognosis and helps to further identify the neural correlates of human consciousness. PMID:21674197

  14. Converging Intracranial Markers of Conscious Access

    PubMed Central

    Gaillard, Raphaël; Dehaene, Stanislas; Adam, Claude; Clémenceau, Stéphane; Hasboun, Dominique; Baulac, Michel; Cohen, Laurent; Naccache, Lionel

    2009-01-01

    We compared conscious and nonconscious processing of briefly flashed words using a visual masking procedure while recording intracranial electroencephalogram (iEEG) in ten patients. Nonconscious processing of masked words was observed in multiple cortical areas, mostly within an early time window (<300 ms), accompanied by induced gamma-band activity, but without coherent long-distance neural activity, suggesting a quickly dissipating feedforward wave. In contrast, conscious processing of unmasked words was characterized by the convergence of four distinct neurophysiological markers: sustained voltage changes, particularly in prefrontal cortex, large increases in spectral power in the gamma band, increases in long-distance phase synchrony in the beta range, and increases in long-range Granger causality. We argue that all of those measures provide distinct windows into the same distributed state of conscious processing. These results have a direct impact on current theoretical discussions concerning the neural correlates of conscious access. PMID:19296722

  15. Consciousness and Attention: On Sufficiency and Necessity

    PubMed Central

    van Boxtel, Jeroen J. A.; Tsuchiya, Naotsugu; Koch, Christof

    2010-01-01

    Recent research has slowly corroded a belief that selective attention and consciousness are so tightly entangled that they cannot be individually examined. In this review, we summarize psychophysical and neurophysiological evidence for a dissociation between top-down attention and consciousness. The evidence includes recent findings that show subjects can attend to perceptually invisible objects. More contentious is the finding that subjects can become conscious of an isolated object, or the gist of the scene in the near absence of top-down attention; we critically re-examine the possibility of “complete” absence of top-down attention. We also cover the recent flurry of studies that utilized independent manipulation of attention and consciousness. These studies have shown paradoxical effects of attention, including examples where top-down attention and consciousness have opposing effects, leading us to strengthen and revise our previous views. Neuroimaging studies with EEG, MEG, and fMRI are uncovering the distinct neuronal correlates of selective attention and consciousness in dissociative paradigms. These findings point to a functional dissociation: attention as analyzer and consciousness as synthesizer. Separating the effects of selective visual attention from those of visual consciousness is of paramount importance to untangle the neural substrates of consciousness from those for attention. PMID:21833272

  16. Science of consciousness and the hard problem

    SciTech Connect

    Stapp, H.P.

    1996-05-22

    Quantum theory is essentially a rationally coherent theory of the interaction of mind and matter, and it allows our conscious thoughts to play a causally efficacious and necessary role in brain dynamics. It therefore provides a natural basis, created by scientists, for the science of consciousness. As an illustration it is explained how the interaction of brain and consciousness can speed up brain processing, and thereby enhance the survival prospects of conscious organisms, as compared to similar organisms that lack consciousness. As a second illustration it is explained how, within the quantum framework, the consciously experienced {open_quotes}I{close_quotes} directs the actions of a human being. It is concluded that contemporary science already has an adequate framework for incorporating causally efficacious experimential events into the physical universe in a manner that: (1) puts the neural correlates of consciousness into the theory in a well defined way, (2) explains in principle how the effects of consciousness, per se, can enhance the survival prospects of organisms that possess it, (3) allows this survival effect to feed into phylogenetic development, and (4) explains how the consciously experienced {open_quotes}I{close_quotes} can direct human behaviour.

  17. Neural stem cells could serve as a therapeutic material for age-related neurodegenerative diseases

    PubMed Central

    Suksuphew, Sarawut; Noisa, Parinya

    2015-01-01

    Progressively loss of neural and glial cells is the key event that leads to nervous system dysfunctions and diseases. Several neurodegenerative diseases, for instance Alzheimer’s disease, Parkinson’s disease, and Huntington’s disease, are associated to aging and suggested to be a consequence of deficiency of neural stem cell pool in the affected brain regions. Endogenous neural stem cells exist throughout life and are found in specific niches of human brain. These neural stem cells are responsible for the regeneration of new neurons to restore, in the normal circumstance, the functions of the brain. Endogenous neural stem cells can be isolated, propagated, and, notably, differentiated to most cell types of the brain. On the other hand, other types of stem cells, such as mesenchymal stem cells, embryonic stem cells, and induced pluripotent stem cells can also serve as a source for neural stem cell production, that hold a great promise for regeneration of the brain. The replacement of neural stem cells, either endogenous or stem cell-derived neural stem cells, into impaired brain is highly expected as a possible therapeutic mean for neurodegenerative diseases. In this review, clinical features and current routinely treatments of age-related neurodegenerative diseases are documented. Noteworthy, we presented the promising evidence of neural stem cells and their derivatives in curing such diseases, together with the remaining challenges to achieve the best outcome for patients. PMID:25815135

  18. A recurrent neural network with exponential convergence for solving convex quadratic program and related linear piecewise equations.

    PubMed

    Xia, Youshen; Feng, Gang; Wang, Jun

    2004-09-01

    This paper presents a recurrent neural network for solving strict convex quadratic programming problems and related linear piecewise equations. Compared with the existing neural networks for quadratic program, the proposed neural network has a one-layer structure with a low model complexity. Moreover, the proposed neural network is shown to have a finite-time convergence and exponential convergence. Illustrative examples further show the good performance of the proposed neural network in real-time applications. PMID:15312842

  19. Volition and the Function of Consciousness

    NASA Astrophysics Data System (ADS)

    Lau, Hakwan C.

    What are the psychological functions that could only be performed consciously? People have intuitively assumed that many acts of volition are not influenced by unconscious information. These acts range from simple examples such as making a spontaneous motor movement, to higher cognitive control. How ever, the available evidence suggests that under suitable conditions, unconscious information can influence these behaviors and the underlying neural mechanisms. One possibility is that stimuli that are consciously perceived tend to yield strong signals in the brain, which makes us think that consciousness has the function of such strong signals. However, if we could create conditions where the stimuli could yield strong signals but not the conscious experience of perception, perhaps we would find that such stimuli are just as effective in influencing volitional be havior. Future studies that focus on clarifying this issue may tell us what the defining functions of consciousness are.

  20. Visual perception from the perspective of a representational, non-reductionistic, level-dependent account of perception and conscious awareness

    PubMed Central

    Overgaard, Morten; Mogensen, Jesper

    2014-01-01

    This article proposes a new model to interpret seemingly conflicting evidence concerning the correlation of consciousness and neural processes. Based on an analysis of research of blindsight and subliminal perception, the reorganization of elementary functions and consciousness framework suggests that mental representations consist of functions at several different levels of analysis, including truly localized perceptual elementary functions and perceptual algorithmic modules, which are interconnections of the elementary functions. We suggest that conscious content relates to the ‘top level’ of analysis in a ‘situational algorithmic strategy’ that reflects the general state of an individual. We argue that conscious experience is intrinsically related to representations that are available to guide behaviour. From this perspective, we find that blindsight and subliminal perception can be explained partly by too coarse-grained methodology, and partly by top-down enhancing of representations that normally would not be relevant to action. PMID:24639581

  1. Ecological Consciousness and Curriculum

    ERIC Educational Resources Information Center

    Morris, Marla

    2002-01-01

    This paper explores competing stories around consciousness, ecology and education, with particular reference to conceptual refinement of the idea of an "ecological consciousness." Phenomenological and functional models of consciousness are examined in terms of their implications for developing ecological consciousness in and for education.…

  2. An Essay on Consciousness.

    ERIC Educational Resources Information Center

    Webb, Wise B.

    1981-01-01

    Reviews the role of consciousness within the discipline of psychology (including psychology research and textbooks). Presents information on the nature of consciousness, problems with consciousness, the mind/ matter controversy, and the state of the art of consciousness within psychology today. Concludes that there is a shift in psychology toward…

  3. Consciousness without a cerebral cortex: a challenge for neuroscience and medicine.

    PubMed

    Merker, Bjorn

    2007-02-01

    A broad range of evidence regarding the functional organization of the vertebrate brain - spanning from comparative neurology to experimental psychology and neurophysiology to clinical data - is reviewed for its bearing on conceptions of the neural organization of consciousness. A novel principle relating target selection, action selection, and motivation to one another, as a means to optimize integration for action in real time, is introduced. With its help, the principal macrosystems of the vertebrate brain can be seen to form a centralized functional design in which an upper brain stem system organized for conscious function performs a penultimate step in action control. This upper brain stem system retained a key role throughout the evolutionary process by which an expanding forebrain - culminating in the cerebral cortex of mammals - came to serve as a medium for the elaboration of conscious contents. This highly conserved upper brainstem system, which extends from the roof of the midbrain to the basal diencephalon, integrates the massively parallel and distributed information capacity of the cerebral hemispheres into the limited-capacity, sequential mode of operation required for coherent behavior. It maintains special connective relations with cortical territories implicated in attentional and conscious functions, but is not rendered nonfunctional in the absence of cortical input. This helps explain the purposive, goal-directed behavior exhibited by mammals after experimental decortication, as well as the evidence that children born without a cortex are conscious. Taken together these circumstances suggest that brainstem mechanisms are integral to the constitution of the conscious state, and that an adequate account of neural mechanisms of conscious function cannot be confined to the thalamocortical complex alone. PMID:17475053

  4. [Functional pathophysiology of consciousness].

    PubMed

    Jellinger, Kurt A

    2009-01-01

    from important somatic and sensory pathways and acts as a control system of neuronal activities of the cerebral cortex. The principal function of the ARAS is to focus our alertness on specific stimuli or internal processes, which run via complex neuronal cell groups and numerous neurotransmitters that influence various aspects of consciousness and wakefulness. Stimulation of the ARAS produces an arousal reaction as the electric correlate of consciousness; its destruction causes coma and related states. The highest level are cortical (prefrontal and association) networks for recognition, motor activity, longterm memory and attention, the left hemisphere being considered as the dominant one. Different levels of consciousness are distinguished: 1. hyperalertness, 2. alertness (normal state of wakefulness), 3. somnolence or lethargy, 4. obtundation with tendency to fall asleep, 5. stupor, 6. coma and its subtypes, like akinetic mutism, apallic syndrome or persistent vegative state, locked-in syndrome, delirium, and catatonia. They are caused by damages in various functional levels of the brain, by psychogenic factors or experimentally, and are accompanied by characteristic neurological and psychiatric disorders. The relevant morphological lesions can be detected by electrophysiological and imaging studies. The bases of functional anatomy and pathophysiology of consciousness, its cognitive aspects and its major disorders, their causes and functional substrates with reference to sleep and both spontaneous and iatrogenic disorders of consciousness are critically summarized. PMID:19573504

  5. The self and its resting state in consciousness: an investigation of the vegetative state.

    PubMed

    Huang, Zirui; Dai, Rui; Wu, Xuehai; Yang, Zhi; Liu, Dongqiang; Hu, Jin; Gao, Liang; Tang, Weijun; Mao, Ying; Jin, Yi; Wu, Xing; Liu, Bin; Zhang, Yao; Lu, Lu; Laureys, Steven; Weng, Xuchu; Northoff, Georg

    2014-05-01

    Recent studies have demonstrated resting-state abnormalities in midline regions in vegetative state/unresponsive wakefulness syndrome and minimally conscious state patients. However, the functional implications of these resting-state abnormalities remain unclear. Recent findings in healthy subjects have revealed a close overlap between the neural substrate of self-referential processing and the resting-state activity in cortical midline regions. As such, we investigated task-related neural activity during active self-referential processing and various measures of resting-state activity in 11 patients with disorders of consciousness (DOC) and 12 healthy control subjects. Overall, the results revealed that DOC patients exhibited task-specific signal changes in anterior and posterior midline regions, including the perigenual anterior cingulate cortex (PACC) and posterior cingulate cortex (PCC). However, the degree of signal change was significantly lower in DOC patients compared with that in healthy subjects. Moreover, reduced signal differentiation in the PACC predicted the degree of consciousness in DOC patients. Importantly, the same midline regions (PACC and PCC) in DOC patients also exhibited severe abnormalities in the measures of resting-state activity, that is functional connectivity and the amplitude of low-frequency fluctuations. Taken together, our results provide the first evidence of neural abnormalities in both the self-referential processing and the resting state in midline regions in DOC patients. This novel finding has important implications for clinical utility and general understanding of the relationship between the self, the resting state, and consciousness. PMID:23818102

  6. Consciousness, cognition and brain networks: New perspectives.

    PubMed

    Aldana, E M; Valverde, J L; Fábregas, N

    2016-10-01

    A detailed analysis of the literature on consciousness and cognition mechanisms based on the neural networks theory is presented. The immune and inflammatory response to the anesthetic-surgical procedure induces modulation of neuronal plasticity by influencing higher cognitive functions. Anesthetic drugs can cause unconsciousness, producing a functional disruption of cortical and thalamic cortical integration complex. The external and internal perceptions are processed through an intricate network of neural connections, involving the higher nervous activity centers, especially the cerebral cortex. This requires an integrated model, formed by neural networks and their interactions with highly specialized regions, through large-scale networks, which are distributed throughout the brain collecting information flow of these perceptions. Functional and effective connectivity between large-scale networks, are essential for consciousness, unconsciousness and cognition. It is what is called the "human connectome" or map neural networks. PMID:26143337

  7. Neural Correlates of Appetite and Hunger-Related Evaluative Judgments

    PubMed Central

    Piech, Richard M.; Lewis, Jade; Parkinson, Caroline H.; Owen, Adrian M.; Roberts, Angela C.; Downing, Paul E.; Parkinson, John A.

    2009-01-01

    How much we desire a meal depends on both the constituent foods and how hungry we are, though not every meal becomes more desirable with increasing hunger. The brain therefore needs to be able to integrate hunger and meal properties to compute the correct incentive value of a meal. The present study investigated the functional role of the amygdala and the orbitofrontal cortex in mediating hunger and dish attractiveness. Furthermore, it explored neural responses to dish descriptions particularly susceptible to value-increase following fasting. We instructed participants to rate how much they wanted food menu items while they were either hungry or sated, and compared the rating differences in these states. Our results point to the representation of food value in the amygdala, and to an integration of attractiveness with hunger level in the orbitofrontal cortex. Dishes particularly desirable during hunger activated the thalamus and the insula. Our results specify the functions of evaluative structures in the context of food attractiveness, and point to a complex neural representation of dish qualities which contribute to state-dependent value. PMID:19672296

  8. Neural melanocortin receptors in obesity and related metabolic disorders

    PubMed Central

    Girardet, Clemence; Butler, Andrew A.

    2013-01-01

    Obesity is a global health issue, as it is associated with increased risk of developing chronic conditions associated with disorders of metabolism such as type 2 diabetes and cardiovascular disease. A better understanding of how excessive fat accumulation develops and causes diseases of the metabolic syndrome is urgently needed. The hypothalamic melanocortin system is an important point of convergence connecting signals of metabolic status with the neural circuitry that governs appetite and the autonomic and neuroendocrine system controling metabolism. This system has a critical role in the defense of body weight and maintenance of homeostasis. Two neural melanocortin receptors, melanocortin 3 and 4 receptors (MC3R and MC4R), play crucial roles in the regulation of energy balance. Mutations in the MC4R gene are the most common cause of monogenic obesity in humans, and a large literature indicates a role in regulating both energy intake through the control of satiety and energy expenditure. In contrast, MC3Rs have a more subtle role in energy homeostasis. Results from our lab indicate an important role for MC3Rs in synchronizing rhythms in foraging behavior with caloric cues and maintaining metabolic homeostasis during periods of nutrient scarcity. However, while deletion of the Mc3r gene in mice alters nutrient partitioning to favor accumulation of fat mass no obvious role for MC3R haploinsufficiency in human obesity has been reported. PMID:23680515

  9. How Do Theories of Cognition and Consciousness in Ancient Indian Thought Systems Relate to Current Western Theorizing and Research?

    PubMed Central

    Sedlmeier, Peter; Srinivas, Kunchapudi

    2016-01-01

    Unknown to most Western psychologists, ancient Indian scriptures contain very rich, empirically derived psychological theories that are, however, intertwined with religious and philosophical content. This article represents our attempt to extract the psychological theory of cognition and consciousness from a prominent ancient Indian thought system: Samkhya-Yoga. We derive rather broad hypotheses from this approach that may complement and extend Western mainstream theorizing. These hypotheses address an ancient personality theory, the effects of practicing the applied part of Samkhya-Yoga on normal and extraordinary cognition, as well as different ways of perceiving reality. We summarize empirical evidence collected (mostly without reference to the Indian thought system) in diverse fields of research that allows for making judgments about the hypotheses, and suggest more specific hypotheses to be examined in future research. We conclude that the existing evidence for the (broad) hypotheses is substantial but that there are still considerable gaps in theory and research to be filled. Theories of cognition contained in the ancient Indian systems have the potential to modify and complement existing Western mainstream accounts of cognition. In particular, they might serve as a basis for arriving at more comprehensive theories for several research areas that, so far, lack strong theoretical grounding, such as meditation research or research on aspects of consciousness. PMID:27014150

  10. Occipital MEG Activity in the Early Time Range (<300 ms) Predicts Graded Changes in Perceptual Consciousness.

    PubMed

    Andersen, Lau M; Pedersen, Michael N; Sandberg, Kristian; Overgaard, Morten

    2016-06-01

    Two electrophysiological components have been extensively investigated as candidate neural correlates of perceptual consciousness: An early, occipitally realized component occurring 130-320 ms after stimulus onset and a late, frontally realized component occurring 320-510 ms after stimulus onset. Recent studies have suggested that the late component may not be uniquely related to perceptual consciousness, but also to sensory expectations, task associations, and selective attention. We conducted a magnetoencephalographic study; using multivariate analysis, we compared classification accuracies when decoding perceptual consciousness from the 2 components using sources from occipital and frontal lobes. We found that occipital sources during the early time range were significantly more accurate in decoding perceptual consciousness than frontal sources during both the early and late time ranges. These results are the first of its kind where the predictive values of the 2 components are quantitatively compared, and they provide further evidence for the primary importance of occipital sources in realizing perceptual consciousness. The results have important consequences for current theories of perceptual consciousness, especially theories emphasizing the role of frontal sources. PMID:26009612

  11. The neurophysical basis of mind and consciousness

    NASA Astrophysics Data System (ADS)

    Beichler, James

    2012-04-01

    A living body is just a complex pattern of energetic particle exchanges to physicists when compared to the biochemical processes studied by chemists and biologists. New research has centered more upon the electric, magnetic and electromagnetic characteristics of life. It is easy to model mind and consciousness as the electric and magnetic counterparts of living organisms. Mind is an extremely complex electric scalar field pattern and consciousness is the corresponding magnetic vector potential field pattern. As humans, we may have the most complex and advanced mind and consciousness known, but all living organisms display mind and consciousness at various lower levels than our human mind and consciousness. Mind and consciousness have mistakenly become associated with the brain and no other part of the body because of the dense concentration of neurons in the brain. A strict study of the magnetic vector potential field patterns associated with neural microtubules, neurons and neural nets demonstrates how thoughts and streams of thought originate in the brain and are stored magnetically. Microtubules, which act as magnetic induction coils, are the primary structural bio-unit used for building, storing and retrieving memories in the mind.

  12. Hippocampal representation of related and opposing memories develop within distinct, hierarchically organized neural schemas.

    PubMed

    McKenzie, Sam; Frank, Andrea J; Kinsky, Nathaniel R; Porter, Blake; Rivière, Pamela D; Eichenbaum, Howard

    2014-07-01

    Recent evidence suggests that the hippocampus may integrate overlapping memories into relational representations, or schemas, that link indirectly related events and support flexible memory expression. Here we explored the nature of hippocampal neural population representations for multiple features of events and the locations and contexts in which they occurred. Hippocampal networks developed hierarchical organizations of associated elements of related but separately acquired memories within a context, and distinct organizations for memories where the contexts differentiated object-reward associations. These findings reveal neural mechanisms for the development and organization of relational representations. PMID:24910078

  13. Inferential bridging relations reveal distinct neural mechanisms: evidence from event-related brain potentials.

    PubMed

    Burkhardt, Petra

    2006-08-01

    This study investigates the online comprehension of Determiner Phrases (DPs) as a function of the given-new distinction in two-sentence texts in German and further focuses on DPs whose interpretation depends on inferential information (so-called 'bridging relations'). Previous reaction time studies report an advantage of given over new information. In the present study, this difference is reflected in distinct neural mechanisms: event-related potentials reveal that previously introduced (i.e., given) DPs elicit a reduced N400, while new DPs show an enhanced N400 followed by a P600. Crucially, inferentially bridged DPs, which are hypothesized to share properties with new and given information, first pattern with given DPs (showing an attenuated N400) and then with new DPs (showing an enhanced P600). The data demonstrate that salience relations between DPs and prior context ease DP integration and that additional cost arises from the establishment of independent reference. They further reveal that processing cost associated with the interpretation of bridged DPs results from the anaphoric complexity of introducing an independent referent. PMID:16725188

  14. Differential neural activity patterns for spatial relations in humans: a MEG study.

    PubMed

    Scott, Nicole M; Leuthold, Arthur; Sera, Maria D; Georgopoulos, Apostolos P

    2016-02-01

    Children learn the words for above-below relations earlier than for left-right relations, despite treating these equally well in a simple visual categorization task. Even as adults--conflicts in congruency, such as when a stimulus is depicted in a spatially incongruent manner with respect to salient global cues--can be challenging. Here we investigated the neural correlates of encoding and maintaining in working memory above-below and left-right relational planes in 12 adults using magnetoencephalography in order to discover whether above-below relations are represented by the brain differently than left-right relations. Adults performed perfectly on the task behaviorally, so any differences in neural activity were attributed to the stimuli's cognitive attributes. In comparing above-below to left-right relations during stimulus encoding, we found the greatest differences in neural activity in areas associated with space and movement. In comparing congruent to incongruent trials, we found the greatest differential activity in premotor areas. For both contrasts, brain areas involved in the encoding phase were also involved in the maintenance phase, which provides evidence that those brain areas are particularly important in representing the relational planes or congruency types throughout the trial. When comparing neural activity associated with the relational planes during working memory, additional right posterior areas were implicated, whereas the congruent-incongruent contrast implicated additional bilateral frontal and temporal areas. These findings are consistent with the hypothesis left-right relations are represented differently than above-below relations. PMID:26514809

  15. Adult Palatum as a Novel Source of Neural Crest-Related Stem Cells

    PubMed Central

    Widera, Darius; Zander, Christin; Heidbreder, Meike; Kasperek, Yvonne; Noll, Thomas; Seitz, Oliver; Saldamli, Belma; Sudhoff, Holger; Sader, Robert; Kaltschmidt, Christian; Kaltschmidt, Barbara

    2009-01-01

    Somatic neural and neural crest stem cells are promising sources for cellular therapy of several neurodegenerative diseases. However, because of practical considerations such as inadequate accessibility of the source material, the application of neural crest stem cells is strictly limited. The secondary palate is a highly regenerative and heavily innervated tissue, which develops embryonically under direct contribution of neural crest cells. Here, we describe for the first time the presence of nestin-positive neural crest-related stem cells within Meissner corpuscles and Merkel cell-neurite complexes located in the hard palate of adult Wistar rats. After isolation, palatal neural crest-related stem cells (pNC-SCs) were cultivated in the presence of epidermal growth factor and fibroblast growth factor under serum-free conditions, resulting in large amounts of neurospheres. We used immunocytochemical techniques and reverse transcriptase-polymerase chain reaction to assess the expression profile of pNC-SCs. In addition to the expression of neural crest stem cell markers such as Nestin, Sox2, and p75, we detected the expression of Klf4, Oct4, and c-Myc. pNC-SCs differentiated efficiently into neuronal and glial cells. Finally, we investigated the potential expression of stemness markers within the human palate. We identified expression of stem cell markers nestin and CD133 and the transcription factors needed for reprogramming of somatic cells into pluripotent cells: Sox2, Oct4, Klf4, and c-Myc. These data show that cells isolated from palatal rugae form neurospheres, are highly plastic, and express neural crest stem cell markers. In addition, pNC-SCs may have the ability to differentiate into functional neurons and glial cells, serving as a starting point for therapeutic studies. Stem Cells 2009;27:1899–1910 PMID:19544446

  16. A point process framework for relating neural spiking activity to spiking history, neural ensemble, and extrinsic covariate effects.

    PubMed

    Truccolo, Wilson; Eden, Uri T; Fellows, Matthew R; Donoghue, John P; Brown, Emery N

    2005-02-01

    Multiple factors simultaneously affect the spiking activity of individual neurons. Determining the effects and relative importance of these factors is a challenging problem in neurophysiology. We propose a statistical framework based on the point process likelihood function to relate a neuron's spiking probability to three typical covariates: the neuron's own spiking history, concurrent ensemble activity, and extrinsic covariates such as stimuli or behavior. The framework uses parametric models of the conditional intensity function to define a neuron's spiking probability in terms of the covariates. The discrete time likelihood function for point processes is used to carry out model fitting and model analysis. We show that, by modeling the logarithm of the conditional intensity function as a linear combination of functions of the covariates, the discrete time point process likelihood function is readily analyzed in the generalized linear model (GLM) framework. We illustrate our approach for both GLM and non-GLM likelihood functions using simulated data and multivariate single-unit activity data simultaneously recorded from the motor cortex of a monkey performing a visuomotor pursuit-tracking task. The point process framework provides a flexible, computationally efficient approach for maximum likelihood estimation, goodness-of-fit assessment, residual analysis, model selection, and neural decoding. The framework thus allows for the formulation and analysis of point process models of neural spiking activity that readily capture the simultaneous effects of multiple covariates and enables the assessment of their relative importance. PMID:15356183

  17. Feminist Consciousness and Objectified Body Consciousness

    ERIC Educational Resources Information Center

    McKinley, Nita Mary

    2011-01-01

    The author has been asked to write about how her article "The Objectified Body Consciousness Scale: Development and Validation" (McKinley & Hyde, 1996) came to be published in "Psychology of Women Quarterly" ("PWQ"). In this article, she recalls the contexts in which she developed her ideas about objectified body consciousness (OBC), the process…

  18. A systematic review of the neural bases of psychotherapy for anxiety and related disorders

    PubMed Central

    Brooks, Samantha J.; Stein, Dan J.

    2015-01-01

    Brain imaging studies over two decades have delineated the neural circuitry of anxiety and related disorders, particularly regions involved in fear processing and in obsessive-compulsive symptoms. The neural circuitry of fear processing involves the amygdala, anterior cingulate, and insular cortex, while cortico-striatal-thalamic circuitry plays a key role in obsessive-compulsive disorder. More recently, neuroimaging studies have examined how psychotherapy for anxiety and related disorders impacts on these neural circuits. Here we conduct a systematic review of the findings of such work, which yielded 19 functional magnetic resonance imaging studies examining the neural bases of cognitive-behavioral therapy (CBT) in 509 patients with anxiety and related disorders. We conclude that, although each of these related disorders is mediated by somewhat different neural circuitry, CBT may act in a similar way to increase prefrontal control of subcortical structures. These findings are consistent with an emphasis in cognitive-affective neuroscience on the potential therapeutic value of enhancing emotional regulation in various psychiatric conditions. PMID:26487807

  19. A systematic review of the neural bases of psychotherapy for anxiety and related disorders.

    PubMed

    Brooks, Samantha J; Stein, Dan J

    2015-09-01

    Brain imaging studies over two decades have delineated the neural circuitry of anxiety and related disorders, particularly regions involved in fear processing and in obsessive-compulsive symptoms. The neural circuitry of fear processing involves the amygdala, anterior cingulate, and insular cortex, while cortico-striatal-thalamic circuitry plays a key role in obsessive-compulsive disorder. More recently, neuroimaging studies have examined how psychotherapy for anxiety and related disorders impacts on these neural circuits. Here we conduct a systematic review of the findings of such work, which yielded 19 functional magnetic resonance imaging studies examining the neural bases of cognitive-behavioral therapy (CBT) in 509 patients with anxiety and related disorders. We conclude that, although each of these related disorders is mediated by somewhat different neural circuitry, CBT may act in a similar way to increase prefrontal control of subcortical structures. These findings are consistent with an emphasis in cognitive-affective neuroscience on the potential therapeutic value of enhancing emotional regulation in various psychiatric conditions. PMID:26487807

  20. Differences in Feedback- and Inhibition-Related Neural Activity in Adult ADHD

    ERIC Educational Resources Information Center

    Dibbets, Pauline; Evers, Lisbeth; Hurks, Petra; Marchetta, Natalie; Jolles, Jelle

    2009-01-01

    The objective of this study was to examine response inhibition- and feedback-related neural activity in adults with attention deficit hyperactivity disorder (ADHD) using event-related functional MRI. Sixteen male adults with ADHD and 13 healthy/normal controls participated in this study and performed a modified Go/NoGo task. Behaviourally,…

  1. Causal estimation of neural and overall baroreflex sensitivity in relation to carotid artery stiffness.

    PubMed

    Lipponen, Jukka A; Tarvainen, Mika P; Laitinen, Tomi; Karjalainen, Pasi A; Vanninen, Joonas; Koponen, Timo; Laitinen, Tiina M

    2013-12-01

    Continuous electrocardiogram, blood pressure and carotid artery ultrasound video were analyzed from 15 diabetics and 28 healthy controls. By using these measurements artery elasticity, overall baroreflex sensitivity (BRS) assessed between RR and systolic blood pressure variation, and neural BRS assessed between RR and artery diameter variation were estimated. In addition, BRS was estimated using traditional and causal methods which enable separation of feedforward and feedback variation. The aim of this study was to analyze overall and neural BRS in relation to artery stiffness and to validate the causal BRS estimation method in assessing these two types of BRS within the study population. The most significant difference between the healthy and diabetic groups (p < 0.0007) was found for the overall BRS estimated using the causal method. The difference between the groups was also significant for neural BRS (p < 0.0018). However neural BRS was normal in some old diabetics, which indicates normal functioning of autonomic nervous system (ANS), even though the elasticity in arteries of these subjects was reduced. The noncausal method overestimated neural BRS in low BRS values when compared to causal BRS. In conclusion, neural BRS estimated using the causal method is proposed as the best marker of ANS functioning. PMID:24168896

  2. [Altered states of consciousness].

    PubMed

    Gora, E P

    2005-01-01

    The review of modern ideas concerning the altered states of consciousness is presented in this article. Various methods of entry into the altered states of consciousness are looked over. It is shown that the altered states of consciousness are insufficiently known, but important aspects of human being existence. The role of investigation of the altered states of consciousness for the creation of integrative scientific conception base is discussed. PMID:15810684

  3. Nutri-epigenomic Studies Related to Neural Tube Defects: Does Folate Affect Neural Tube Closure Via Changes in DNA Methylation?

    PubMed

    Rochtus, Anne; Jansen, Katrien; Van Geet, Chris; Freson, Kathleen

    2015-01-01

    Neural tube defects (NTDs), affecting 1-2 per 1000 pregnancies, are severe congenital malformations that arise from the failure of neurulation during early embryonic development. The methylation hypothesis suggests that folate prevents NTDs by stimulating cellular methylation reactions. Folate is central to the one-carbon metabolism that produces pyrimidines and purines for DNA synthesis and for the generation of the methyldonor S-adenosyl-methionine. This review focuses on the relation between the folate-mediated one-carbon metabolism, DNA methylation and NTDs. Studies will be discussed that investigated global or locus-specific DNA methylation differences in patients with NTDs. Folate deficiency may increase NTD risk by decreasing DNA methylation, but to date, human studies vary widely in study design in terms of analyzing different clinical subtypes of NTDs, using different methylation quantification assays and using DNA isolated from diverse types of tissues. Some studies have focused mainly on global DNA methylation differences while others have quantified specific methylation differences for imprinted genes, transposable elements and DNA repair enzymes. Findings of global DNA hypomethylation and LINE-1 hypomethylation suggest that epigenetic alterations may disrupt neural tube closure. However, current research does not support a linear relation between red blood cell folate concentration and DNA methylation. Further studies are required to better understand the interaction between folate, DNA methylation changes and NTDs. PMID:26349489

  4. Nonneurocognitive Extended Consciousness

    ERIC Educational Resources Information Center

    Wojcik, Kevin; Chemero, Anthony

    2012-01-01

    One of the attributes necessary for Watson to be considered human is that it must be conscious. From Rachlin's (2012) point of view, that of teleological behaviorism, consciousness refers to the organization of behavioral complexity in which overt behavior is distributed widely over time. Consciousness is something that humans do, or achieve, in…

  5. Contributions of magno- and parvocellular channels to conscious and non-conscious vision

    PubMed Central

    Breitmeyer, Bruno G.

    2014-01-01

    The dorsal and ventral cortical pathways, driven predominantly by magnocellular (M) and parvocellular (P) inputs, respectively, assume leading roles in models of visual information processing. Although in prior proposals, the dorsal and ventral pathways support non-conscious and conscious vision, respectively, recent modelling and empirical developments indicate that each pathway plays important roles in both non-conscious and conscious vision. In these models, the ventral P-pathway consists of one subpathway processing an object's contour features, e.g. curvature, the other processing its surface attributes, e.g. colour. Masked priming studies have shown that feed-forward activity in the ventral P-pathway on its own supports non-conscious processing of contour and surface features. The dorsal M-pathway activity contributes directly to conscious vision of motion and indirectly to object vision by projecting to prefrontal cortex, which in turn injects top-down neural activity into the ventral P-pathway and there ‘ignites’ feed-forward–re-entrant loops deemed necessary for conscious vision. Moreover, an object's shape or contour remains invisible without the prior conscious registration of its surface properties, which for that reason are taken to comprise fundamental visual qualia. Besides suggesting avenues for future research, these developments bear on several recent and past philosophical issues. PMID:24639584

  6. Toward physics of the mind: Concepts, emotions, consciousness, and symbols

    NASA Astrophysics Data System (ADS)

    Perlovsky, Leonid I.

    2006-03-01

    Mathematical approaches to modeling the mind since the 1950s are reviewed, including artificial intelligence, pattern recognition, and neural networks. I analyze difficulties faced by these algorithms and neural networks and relate them to the fundamental inconsistency of logic discovered by Gödel. Mathematical discussions are related to those in neurobiology, psychology, cognitive science, and philosophy. Higher cognitive functions are reviewed including concepts, emotions, instincts, understanding, imagination, intuition, consciousness. Then, I describe a mathematical formulation, unifying the mind mechanisms in a psychologically and neuro-biologically plausible system. A mechanism of the knowledge instinct drives our understanding of the world and serves as a foundation for higher cognitive functions. This mechanism relates aesthetic emotions and perception of beauty to “everyday” functioning of the mind. The article reviews mechanisms of human symbolic ability. I touch on future directions: joint evolution of the mind, language, consciousness, and cultures; mechanisms of differentiation and synthesis; a manifold of aesthetic emotions in music and differentiated instinct for knowledge. I concentrate on elucidating the first principles; review aspects of the theory that have been proven in laboratory research, relationships between the mind and brain; discuss unsolved problems, and outline a number of theoretical predictions, which will have to be tested in future mathematical simulations and neuro-biological research.

  7. Slow cortical potentials and "inner time consciousness" - A neuro-phenomenal hypothesis about the "width of present".

    PubMed

    Northoff, Georg

    2016-05-01

    William James postulated a "stream of consciousness" that presupposes temporal continuity. The neuronal mechanisms underlying the construction of such temporal continuity remain unclear, however, in my contribution, I propose a neuro-phenomenal hypothesis that is based on slow cortical potentials and their extension of the present moment as described in the phenomenal term of "width of present". More specifically, I focus on the way the brain's neural activity needs to be encoded in order to make possible the "stream of consciousness." This leads us again to the low-frequency fluctuations of the brain's neural activity and more specifically to slow cortical potentials (SCPs). Due to their long phase duration as low-frequency fluctuations, SCPs can integrate different stimuli and their associated neural activity from different regions in one converging region. Such integration may be central for consciousness to occur, as it was recently postulated by He and Raichle. They leave open, however, the question of the exact neuronal mechanisms, like the encoding strategy, that make possible the association of the otherwise purely neuronal SCP with consciousness and its phenomenal features. I hypothesize that SCPs allow for linking and connecting different discrete points in physical time by encoding their statistically based temporal differences rather than the single discrete time points by themselves. This presupposes difference-based coding rather than stimulus-based coding. The encoding of such statistically based temporal differences makes it possible to "go beyond" the merely physical features of the stimuli; that is, their single discrete time points and their conduction delays (as related to their neural processing in the brain). This, in turn, makes possible the constitution of "local temporal continuity" of neural activity in one particular region. The concept of "local temporal continuity" signifies the linkage and integration of different discrete time points

  8. Spectral Parameters Modulation and Source Localization of Blink-Related Alpha and Low-Beta Oscillations Differentiate Minimally Conscious State from Vegetative State/Unresponsive Wakefulness Syndrome

    PubMed Central

    Bonfiglio, Luca; Piarulli, Andrea; Olcese, Umberto; Andre, Paolo; Arrighi, Pieranna; Frisoli, Antonio; Rossi, Bruno; Bergamasco, Massimo; Carboncini, Maria Chiara

    2014-01-01

    Recently, the cortical source of blink-related delta oscillations (delta BROs) in resting healthy subjects has been localized in the posterior cingulate cortex/precuneus (PCC/PCu), one of the main core-hubs of the default-mode network. This has been interpreted as the electrophysiological signature of the automatic monitoring of the surrounding environment while subjects are immersed in self-reflecting mental activities. Although delta BROs were directly correlated to the degree of consciousness impairment in patients with disorders of consciousness, they failed to differentiate vegetative state/unresponsive wakefulness syndrome (VS/UWS) from minimally conscious state (MCS). In the present study, we have extended the analysis of BROs to frequency bands other than delta in the attempt to find a biological marker that could support the differential diagnosis between VS/UWS and MCS. Four patients with VS/UWS, 5 patients with MCS, and 12 healthy matched controls (CTRL) underwent standard 19-channels EEG recordings during resting conditions. Three-second-lasting EEG epochs centred on each blink instance were submitted to time-frequency analyses in order to extract the normalized Blink-Related Synchronization/Desynchronization (nBRS/BRD) of three bands of interest (low-alpha, high-alpha and low-beta) in the time-window of 50–550 ms after the blink-peak and to estimate the corresponding cortical sources of electrical activity. VS/UWS nBRS/BRD levels of all three bands were lower than those related to both CTRL and MCS, thus enabling the differential diagnosis between MCS and VS/UWS. Furthermore, MCS showed an intermediate signal intensity on PCC/PCu between CTRL and VS/UWS and a higher signal intensity on the left temporo-parieto-occipital junction and inferior occipito-temporal regions when compared to VS/UWS. This peculiar pattern of activation leads us to hypothesize that resting MCS patients have a bottom-up driven activation of the task positive network and thus

  9. Age-related changes in neural gap detection thresholds in the rat auditory cortex.

    PubMed

    Zhao, Yin; Xu, Xiaoxiao; He, Juan; Xu, Jinghong; Zhang, Jiping

    2015-02-01

    The ability of the auditory system to resolve sound temporal information is crucial for the understanding of human speech and other species-specific communications. Gap detection threshold, i.e. the ability to detect the shortest duration of a silent interval in a sound, is commonly used to study the auditory temporal resolution. Behavioral studies in humans and rats have shown that normal developing infants have higher gap detection thresholds than adults; however, the underlying neural mechanism is not fully understood. In the present study, we determined and compared the neural gap detection thresholds in the primary auditory cortex of three age groups of rats: the juvenile group (postnatal day 20-30), adult group I (8-10 weeks), and adult group II (28-30 weeks). We found age-related changes in auditory temporal acuity in the auditory cortex, i.e. the proportion of cortical units with short neural gap detection thresholds (< 5 ms) was much lower in juvenile groups compared with that in both adult groups at a constant sound level, and no significant differences in neural gap detection thresholds were found between the two adult groups. In addition, units in the auditory cortex of each group generally showed better gap detection thresholds at higher sound levels than at lower sound levels, exhibiting a level-dependent temporal acuity. These results provided evidence for neural correlates of age-related changes in behavioral gap detection ability during postnatal hearing development. PMID:25388865

  10. Structural qualia: a solution to the hard problem of consciousness

    PubMed Central

    Loorits, Kristjan

    2014-01-01

    The hard problem of consciousness has been often claimed to be unsolvable by the methods of traditional empirical sciences. It has been argued that all the objects of empirical sciences can be fully analyzed in structural terms but that consciousness is (or has) something over and above its structure. However, modern neuroscience has introduced a theoretical framework in which also the apparently non-structural aspects of consciousness, namely the so called qualia or qualitative properties, can be analyzed in structural terms. That framework allows us to see qualia as something compositional with internal structures that fully determine their qualitative nature. Moreover, those internal structures can be identified which certain neural patterns. Thus consciousness as a whole can be seen as a complex neural pattern that misperceives some of its own highly complex structural properties as monadic and qualitative. Such neural pattern is analyzable in fully structural terms and thereby the hard problem is solved. PMID:24672510

  11. Acute loss of consciousness.

    PubMed

    Tristán, Bekinschtein; Gleichgerrcht, Ezequiel; Manes, Facundo

    2015-01-01

    Acute loss of consciousness poses a fascinating scenario for theoretical and clinical research. This chapter introduces a simple yet powerful framework to investigate altered states of consciousness. We then explore the different disorders of consciousness that result from acute brain injury, and techniques used in the acute phase to predict clinical outcome in different patient populations in light of models of acute loss of consciousness. We further delve into post-traumatic amnesia as a model for predicting cognitive sequels following acute loss of consciousness. We approach the study of acute loss of consciousness from a theoretical and clinical perspective to conclude that clinicians in acute care centers must incorporate new measurements and techniques besides the classic coma scales in order to assess their patients with loss of consciousness. PMID:25702218

  12. Music and Consciousness: A Continuing Project

    ERIC Educational Resources Information Center

    Clarke, David; Clarke, Eric

    2014-01-01

    If there is a topic on which the humanities might make a distinctive claim, it is that of consciousness--an essential aspect of human being. And within the humanities, music might make its own claims in relation to both consciousness and being human. To investigate this connection, David Clarke and Eric Clarke brought together a wide variety of…

  13. Resting state activity and the "stream of consciousness" in schizophrenia--neurophenomenal hypotheses.

    PubMed

    Northoff, Georg

    2015-01-01

    Schizophrenia is a multifaceted disorder with various symptoms including auditory hallucinations, egodisturbances, passivity phenomena, and delusions. Recent neurobiological approaches have focused on, especially, the abnormal contents of consciousness, the "substantive parts" as James said, to associate them with the neural mechanisms related to sensory, motor, and cognitive functions, and the brain's underlying stimulus-induced or task-evoked activity. This leaves open, however, the neural mechanisms that provide the temporal linkage or glue between the various contents, the transitive parts that makes possible the "stream of consciousness." Interestingly, schizophrenic patients seem to suffer from abnormalities specifically in the "transitive parts" when they experience contents as temporally disconnected or fragmented which in phenomenological psychiatry has been described as "temporal fragmentation." The aim of this article is to develop so-called neurophenomenal hypothesis about the direct relationship between phenomenal features of the "stream of consciousness," the "transitive parts," and the specific neuronal mechanisms in schizophrenia as based on healthy subjects. Rather than emphasizing stimulus-induced and task-evoked activity and sensory and lateral prefrontal cortical regions as in neurocognitive approaches with their focus on the "substantive parts," the focus shifts here to the brain's intrinsic activity, its resting state activity, which may account for the temporal linkage or glue between the contents of consciousness, the transitive parts. PMID:25150784

  14. Differential neural responses to humans vs. robots: an event-related potential study.

    PubMed

    Hirai, Masahiro; Hiraki, Kazuo

    2007-08-24

    Do we perceive humanoid robots as human beings? Recent neuroimaging studies have reported similarity in the neural processing of human and robot actions in the superior temporal sulcus area but a differential neural response in the premotor area. These studies suggest that the neural activity of the occipitotemporal region would not be affected by appearance information. Unlike those studies, in this study, by using the inversion effect as an index, we demonstrated for the first time that the appearance information of a presented action affects neural responses in the occipitotemporal region. In event-related potential (ERP) studies, the inversion effect is the phenomenon whereby an upright face- and body-sensitive ERP component in the occipitotemporal region is enhanced and delayed up to 200 ms in response to an inverted face and body, but not to an inverted object. We used three kinds of walking animation with different appearance information (human, robot, and point-light) as well as inverted stimuli of each appearance. The anatomical structure and walking speed of the presented stimuli were all identical. The results showed that the inversion effect occurred in the right occipitotemporal region only in response to human appearance, and not robotic and point-light appearances. That is, the amplitude of the inverted condition of human appearance was significantly larger than that of the upright condition only. Our results, which are contrary to other recent neuroimaging studies, suggested that appearance information affects the neural response in the occipitotemporal region. PMID:17658496

  15. Transient and sustained neural responses to death-related linguistic cues.

    PubMed

    Shi, Zhenhao; Han, Shihui

    2013-06-01

    Recent research showed that perception of death-related vs death-unrelated linguistic cues produced increased frontoparietal activity but decreased insular activity. This study investigated (i) whether the increased frontoparietal and decreased insular activities are, respectively, associated with transient trial-specific processes of death-related linguistic cues and sustained death-related thought during death-relevance judgments on linguistic cues and (ii) whether the neural activity underlying death-related thought can predict individuals' dispositional death anxiety. Participants were presented with death-related/unrelated words, life-related/unrelated words, and negative-valence/neutral words in separate sessions. Participants were scanned using functional magnetic resonance imaging while performing death-relevance, life-relevance, and valence judgments on the words, respectively. The contrast of death-related vs death-unrelated words during death-relevance judgments revealed transient increased activity in the left inferior parietal lobule, the right frontal eye field, and the right superior parietal lobule. The contrast of death-relevance judgments vs life-relevance/valence judgments showed decreased activity in the bilateral insula. The sustained insular activity was correlated with dispositional death anxiety, but only in those with weak transient frontoparietal responses to death-related words. Our results dissociate the transient and sustained neural responses to death-related linguistic cues and suggest that the combination of the transient and sustained neural activities can predict dispositional death anxiety. PMID:22422804

  16. Relating the sequential dynamics of excitatory neural networks to synaptic cellular automata.

    PubMed

    Nekorkin, V I; Dmitrichev, A S; Kasatkin, D V; Afraimovich, V S

    2011-12-01

    We have developed a new approach for the description of sequential dynamics of excitatory neural networks. Our approach is based on the dynamics of synapses possessing the short-term plasticity property. We suggest a model of such synapses in the form of a second-order system of nonlinear ODEs. In the framework of the model two types of responses are realized-the fast and the slow ones. Under some relations between their timescales a cellular automaton (CA) on the graph of connections is constructed. Such a CA has only a finite number of attractors and all of them are periodic orbits. The attractors of the CA determine the regimes of sequential dynamics of the original neural network, i.e., itineraries along the network and the times of successive firing of neurons in the form of bunches of spikes. We illustrate our approach on the example of a Morris-Lecar neural network. PMID:22225361

  17. Brain and conscious experience.

    PubMed

    Gazzaniga, M S

    1998-01-01

    brain possesses, the greater the awareness of capacities. Think of the variations in capacity within our own species; they are not unlike the vast differences between species. Years of split-brain research have informed us that the left hemisphere has many more mental capacities than the right one. The left is capable of logical feats that the right hemisphere cannot manage. Although the right has capacities such as facial recognition systems, it is a distant second with problem-solving skills. In short, the right hemisphere's level of awareness is limited. It knows precious little about a lot of things, but the limits to human capacity are everywhere in the population. No one need be offended to realize that just as someone with normal intelligence can understand Ohm's law, others, like yours truly, are clueless about Kepler's laws. I am ignorant about them and will remain so. I am unable to be aware about what they mean for the universe. The circuits that enable me to understand these things are not present in my brain. By emphasizing specialized circuits that arise from natural selection, we see that the brain is not a unified neural net that supports a general problem-solving device. With this being understood, we can concentrate on the possibility that smaller, more manageable circuits produce awareness of a species' capacities. Holding fast to the notion of a unified neural net means we can understand human conscious experience only by figuring out the interactions of billions of neurons. That task is hopeless. My scheme is not. Hence step 3. The very same split-brain research that exposed shocking differences between the two hemispheres also showed that the human left hemisphere has the interpreter. The left brain interpreter's job is to interpret our behavior and our responses, whether cognitive or emotional, to environmental challenges. It constantly establishes a running narrative of our actions, emotions, thoughts, and dreams. It is the glue that keeps our

  18. Correlates of reward-predictive value in learning-related hippocampal neural activity

    PubMed Central

    Okatan, Murat

    2009-01-01

    Temporal difference learning (TD) is a popular algorithm in machine learning. Two learning signals that are derived from this algorithm, the predictive value and the prediction error, have been shown to explain changes in neural activity and behavior during learning across species. Here, the predictive value signal is used to explain the time course of learning-related changes in the activity of hippocampal neurons in monkeys performing an associative learning task. The TD algorithm serves as the centerpiece of a joint probability model for the learning-related neural activity and the behavioral responses recorded during the task. The neural component of the model consists of spiking neurons that compete and learn the reward-predictive value of task-relevant input signals. The predictive-value signaled by these neurons influences the behavioral response generated by a stochastic decision stage, which constitutes the behavioral component of the model. It is shown that the time course of the changes in neural activity and behavioral performance generated by the model exhibits key features of the experimental data. The results suggest that information about correct associations may be expressed in the hippocampus before it is detected in the behavior of a subject. In this way, the hippocampus may be among the earliest brain areas to express learning and drive the behavioral changes associated with learning. Correlates of reward-predictive value may be expressed in the hippocampus through rate remapping within spatial memory representations, they may represent reward-related aspects of a declarative or explicit relational memory representation of task contingencies, or they may correspond to reward-related components of episodic memory representations. These potential functions are discussed in connection with hippocampal cell assembly sequences and their reverse reactivation during the awake state. The results provide further support for the proposal that neural

  19. Phase of neural excitation relative to basilar membrane motion in the organ of Corti: Theoretical considerations

    NASA Astrophysics Data System (ADS)

    Andoh, Masayoshi; Nakajima, Chihiro; Wada, Hiroshi

    2005-09-01

    Although the auditory transduction process is dependent on neural excitation of the auditory nerve in relation to motion of the basilar membrane (BM) in the organ of Corti (OC), specifics of this process are unclear. In this study, therefore, an attempt was made to estimate the phase of the neural excitation relative to the BM motion using a finite-element model of the OC at the basal turn of the gerbil, including the fluid-structure interaction with the lymph fluid. It was found that neural excitation occurs when the BM exhibits a maximum velocity toward the scala vestibuli at 10 Hz and shows a phase delay relative to the BM motion with increasing frequency up to 800 Hz. It then shows a phase advance until the frequency reaches 2 kHz. From 2 kHz, neural excitation again shows a phase delay with increasing frequency. From 800 Hz up to 2 kHz, the phase advances because the dominant force exerted on the hair bundle shifts from a velocity-dependent Couette flow-induced force to a displacement-dependent force induced by the pressure difference. The phase delay that occurs from 2 kHz is caused by the resonance process of the hair bundle of the IHC.

  20. Natural and Artificial Intelligence, Language, Consciousness, Emotion, and Anticipation

    NASA Astrophysics Data System (ADS)

    Dubois, Daniel M.

    2010-11-01

    The classical paradigm of the neural brain as the seat of human natural intelligence is too restrictive. This paper defends the idea that the neural ectoderm is the actual brain, based on the development of the human embryo. Indeed, the neural ectoderm includes the neural crest, given by pigment cells in the skin and ganglia of the autonomic nervous system, and the neural tube, given by the brain, the spinal cord, and motor neurons. So the brain is completely integrated in the ectoderm, and cannot work alone. The paper presents fundamental properties of the brain as follows. Firstly, Paul D. MacLean proposed the triune human brain, which consists to three brains in one, following the species evolution, given by the reptilian complex, the limbic system, and the neo-cortex. Secondly, the consciousness and conscious awareness are analysed. Thirdly, the anticipatory unconscious free will and conscious free veto are described in agreement with the experiments of Benjamin Libet. Fourthly, the main section explains the development of the human embryo and shows that the neural ectoderm is the whole neural brain. Fifthly, a conjecture is proposed that the neural brain is completely programmed with scripts written in biological low-level and high-level languages, in a manner similar to the programmed cells by the genetic code. Finally, it is concluded that the proposition of the neural ectoderm as the whole neural brain is a breakthrough in the understanding of the natural intelligence, and also in the future design of robots with artificial intelligence.

  1. The Influence of Consciousness Research

    ERIC Educational Resources Information Center

    Exceptional Children, 1978

    1978-01-01

    Presented is a conversation with Stanley Krippner, Program Planning Coordinator at the Humanistic Psychology Institute (San Francisco, California), on the field of psychoenergetics (the interdisciplinary investigation of the relationships among consciousness, energy, and matter) and its relation to special education. (SBH)

  2. Does perceptual learning require consciousness or attention?

    PubMed

    Meuwese, Julia D I; Post, Ruben A G; Scholte, H Steven; Lamme, Victor A F

    2013-10-01

    It has been proposed that visual attention and consciousness are separate [Koch, C., & Tsuchiya, N. Attention and consciousness: Two distinct brain processes. Trends in Cognitive Sciences, 11, 16-22, 2007] and possibly even orthogonal processes [Lamme, V. A. F. Why visual attention and awareness are different. Trends in Cognitive Sciences, 7, 12-18, 2003]. Attention and consciousness converge when conscious visual percepts are attended and hence become available for conscious report. In such a view, a lack of reportability can have two causes: the absence of attention or the absence of a conscious percept. This raises an important question in the field of perceptual learning. It is known that learning can occur in the absence of reportability [Gutnisky, D. A., Hansen, B. J., Iliescu, B. F., & Dragoi, V. Attention alters visual plasticity during exposure-based learning. Current Biology, 19, 555-560, 2009; Seitz, A. R., Kim, D., & Watanabe, T. Rewards evoke learning of unconsciously processed visual stimuli in adult humans. Neuron, 61, 700-707, 2009; Seitz, A. R., & Watanabe, T. Is subliminal learning really passive? Nature, 422, 36, 2003; Watanabe, T., Náñez, J. E., & Sasaki, Y. Perceptual learning without perception. Nature, 413, 844-848, 2001], but it is unclear which of the two ingredients-consciousness or attention-is not necessary for learning. We presented textured figure-ground stimuli and manipulated reportability either by masking (which only interferes with consciousness) or with an inattention paradigm (which only interferes with attention). During the second session (24 hr later), learning was assessed neurally and behaviorally, via differences in figure-ground ERPs and via a detection task. Behavioral and neural learning effects were found for stimuli presented in the inattention paradigm and not for masked stimuli. Interestingly, the behavioral learning effect only became apparent when performance feedback was given on the task to measure learning

  3. Age-Related Changes to the Neural Correlates of Social Evaluation

    PubMed Central

    Cassidy, Brittany S.; Shih, Joanne Y.; Gutchess, Angela H.

    2012-01-01

    Recent work suggests the existence of a specialized neural system underlying social processing that may be relatively spared with age, unlike pervasive aging-related decline occurring in many cognitive domains. We investigated how neural mechanisms underlying social evaluation are engaged with age, and how age-related changes to socioemotional goals affect recruitment of regions within this network. In a functional MRI study, fifteen young and fifteen older adults formed behavior-based impressions of individuals. They also responded to a prompt that was interpersonally meaningful, social but interpersonally irrelevant, or non-social. Both age groups engaged regions implicated in mentalizing and impression formation when making social relative to non-social evaluations, including dorsal and ventral medial prefrontal cortices, precuneus, and temporoparietal junction. Older adults had increased activation over young in right temporal pole when making social relative to non-social evaluations, suggesting reliance on past experiences when evaluating others. Young had greater activation than old in posterior cingulate gyrus when making interpersonally irrelevant, compared to interpersonally meaningful, evaluations, potentially reflecting enhanced valuation of this information. The findings demonstrate the age-related preservation of the neural correlates underlying social evaluation, and suggest that functioning in these regions might be mediated by age-related changes in socioemotional goals. PMID:22439896

  4. Exploring self-compassion as a refuge against recalling the body-related shaming of caregiver eating messages on dimensions of objectified body consciousness in college women.

    PubMed

    Daye, Chesnee A; Webb, Jennifer B; Jafari, Nadia

    2014-09-01

    Guided by an overarching body-related shame regulation framework, the present investigation examined the associations between caregiver eating messages and dimensions of objectified body consciousness and further explored whether self-compassion moderated these links in a sample of 322 U.S. college women. Correlational findings indicated that retrospective accounts of restrictive/critical caregiver eating messages were positively related to body shame and negatively related to self-compassion and appearance control beliefs. Recollections of experiencing pressure to eat from caregivers were positively correlated with body shame and inversely associated with appearance control beliefs. Higher self-compassion was associated with lower body shame and body surveillance. Self-compassion attenuated the associations between restrictive/critical caregiver eating messages and both body surveillance and body shame. Implications for advancing our understanding of the adaptive properties of a self-compassionate self-regulatory style in mitigating recall of familial body-related shaming on the internalized body-related shame regulating processes of body objectification in emerging adulthood are discussed. PMID:25195124

  5. Cognitive flexibility modulates maturation and music-training-related changes in neural sound discrimination.

    PubMed

    Saarikivi, Katri; Putkinen, Vesa; Tervaniemi, Mari; Huotilainen, Minna

    2016-07-01

    Previous research has demonstrated that musicians show superior neural sound discrimination when compared to non-musicians, and that these changes emerge with accumulation of training. Our aim was to investigate whether individual differences in executive functions predict training-related changes in neural sound discrimination. We measured event-related potentials induced by sound changes coupled with tests for executive functions in musically trained and non-trained children aged 9-11 years and 13-15 years. High performance in a set-shifting task, indexing cognitive flexibility, was linked to enhanced maturation of neural sound discrimination in both musically trained and non-trained children. Specifically, well-performing musically trained children already showed large mismatch negativity (MMN) responses at a young age as well as at an older age, indicating accurate sound discrimination. In contrast, the musically trained low-performing children still showed an increase in MMN amplitude with age, suggesting that they were behind their high-performing peers in the development of sound discrimination. In the non-trained group, in turn, only the high-performing children showed evidence of an age-related increase in MMN amplitude, and the low-performing children showed a small MMN with no age-related change. These latter results suggest an advantage in MMN development also for high-performing non-trained individuals. For the P3a amplitude, there was an age-related increase only in the children who performed well in the set-shifting task, irrespective of music training, indicating enhanced attention-related processes in these children. Thus, the current study provides the first evidence that, in children, cognitive flexibility may influence age-related and training-related plasticity of neural sound discrimination. PMID:26797826

  6. Consciousness: a neurological perspective.

    PubMed

    Cavanna, Andrea E; Shah, Sachin; Eddy, Clare M; Williams, Adrian; Rickards, Hugh

    2011-01-01

    Consciousness is a state so essentially entwined with human experience, yet so difficult to conceptually define and measure. In this article, we explore how a bidimensional model of consciousness involving both level of arousal and subjective awareness of the contents of consciousness can be used to differentiate a range of healthy and altered conscious states. These include the different sleep stages of healthy individuals and the altered states of consciousness associated with neurological conditions such as epilepsy, vegetative state and coma. In particular, we discuss how arousal and awareness are positively correlated in normal physiological states with the exception of REM sleep, while a disturbance in this relationship is characteristic of vegetative state, minimally conscious state, complex partial seizures and sleepwalking. PMID:21447904

  7. Global workspace dynamics: cortical "binding and propagation" enables conscious contents.

    PubMed

    Baars, Bernard J; Franklin, Stan; Ramsoy, Thomas Zoega

    2013-01-01

    A global workspace (GW) is a functional hub of binding and propagation in a population of loosely coupled signaling elements. In computational applications, GW architectures recruit many distributed, specialized agents to cooperate in resolving focal ambiguities. In the brain, conscious experiences may reflect a GW function. For animals, the natural world is full of unpredictable dangers and opportunities, suggesting a general adaptive pressure for brains to resolve focal ambiguities quickly and accurately. GW theory aims to understand the differences between conscious and unconscious brain events. In humans and related species the cortico-thalamic (C-T) core is believed to underlie conscious aspects of perception, thinking, learning, feelings of knowing (FOK), felt emotions, visual imagery, working memory, and executive control. Alternative theoretical perspectives are also discussed. The C-T core has many anatomical hubs, but conscious percepts are unitary and internally consistent at any given moment. Over time, conscious contents constitute a very large, open set. This suggests that a brain-based GW capacity cannot be localized in a single anatomical hub. Rather, it should be sought in a functional hub - a dynamic capacity for binding and propagation of neural signals over multiple task-related networks, a kind of neuronal cloud computing. In this view, conscious contents can arise in any region of the C-T core when multiple input streams settle on a winner-take-all equilibrium. The resulting conscious gestalt may ignite an any-to-many broadcast, lasting ∼100-200 ms, and trigger widespread adaptation in previously established networks. To account for the great range of conscious contents over time, the theory suggests an open repertoire of binding coalitions that can broadcast via theta/gamma or alpha/gamma phase coupling, like radio channels competing for a narrow frequency band. Conscious moments are thought to hold only 1-4 unrelated items; this small

  8. Calorie Restriction Alleviates Age-Related Decrease in Neural Progenitor Cell Division in the Aging Brain

    PubMed Central

    Park, June-Hee; Glass, Zachary; Sayed, Kasim; Michurina, Tatyana V.; Lazutkin, Alexander; Mineyeva, Olga; Velmeshev, Dmitry; Ward, Walter F.; Richardson, Arlan; Enikolopov, Grigori

    2013-01-01

    Production of new neurons from stem cells is important for cognitive function, and the reduction of neurogenesis in the aging brain may contribute to the accumulation of age-related cognitive deficits. Restriction of calorie intake and prolonged treatment with rapamycin have been shown to extend the lifespan of animals and delay the onset of age-related decline in tissue and organ function. Using a reporter line in which neural stem and progenitor cells are marked by the expression of GFP, we examined the effect of prolonged exposure to calorie restriction (CR) or rapamycin on hippocampal neural stem and progenitor cell proliferation in aging mice. We show that CR increases the number of dividing cells in the dentate gyrus (DG) of female mice. The majority of these cells corresponded to Nestin-GFP-expressing neural stem or progenitor cells; however, this increased proliferative activity of stem and progenitor cells did not result in a significant increase in the number of doublecortin-positive newborn neurons. Our results suggest that restricted calorie intake may increase the number of divisions that neural stem and progenitor cells undergo in the aging brain of females. PMID:23773068

  9. A neurofunctional theory of visual consciousness.

    PubMed

    Prinz, J

    2000-06-01

    This paper develops an empirically motivated theory of visual consciousness. It begins by outlining neuropsychological support for Jackendoff's (1987) hypothesis that visual consciousness involves mental representations at an intermediate level of processing. It then supplements that hypothesis with the further requirement that attention, which can come under the direction of high level representations, is also necessary for consciousness. The resulting theory is shown to have a number of philosophical consequences. If correct, higher-order thought accounts, the multiple drafts account, and the widely held belief that sensation precedes perception will all be found wanting. The theory will also be used to illustrate and defend a methodology that fills the gulf between functionalists who ignore the brain and neural reductionists who repudiate functionalism. PMID:10924244

  10. Neural Basis of Intrinsic Motivation: Evidence from Event-Related Potentials.

    PubMed

    Jin, Jia; Yu, Liping; Ma, Qingguo

    2015-01-01

    Human intrinsic motivation is of great importance in human behavior. However, although researchers have focused on this topic for decades, its neural basis was still unclear. The current study employed event-related potentials to investigate the neural disparity between an interesting stop-watch (SW) task and a boring watch-stop task (WS) to understand the neural mechanisms of intrinsic motivation. Our data showed that, in the cue priming stage, the cue of the SW task elicited smaller N2 amplitude than that of the WS task. Furthermore, in the outcome feedback stage, the outcome of the SW task induced smaller FRN amplitude and larger P300 amplitude than that of the WS task. These results suggested that human intrinsic motivation did exist and that it can be detected at the neural level. Furthermore, intrinsic motivation could be quantitatively indexed by the amplitude of ERP components, such as N2, FRN, and P300, in the cue priming stage or feedback stage. Quantitative measurements would also be convenient for intrinsic motivation to be added as a candidate social factor in the construction of a machine learning model. PMID:26491430

  11. Age-related decline in differentiated neural responses to rare target versus frequent standard stimuli

    PubMed Central

    Mott, Katherine K.; Alperin, Brittany R.; Holcomb, Phillip J.; Daffner, Kirk R.

    2014-01-01

    One mechanism hypothesized to contribute to cognitive aging is the failure to recruit specialized neural modules and generate differentiated neural responses to various classes of stimuli. Here, ERPs were used to examine the extent to which target and standard stimulus types were processed differently by well-matched adults ages 19–99. Subjects responded to designated visual target letters under low and high load conditions. Temporospatial PCA was used to parse the P3b component, an index of categorization/memory updating. The P3b amplitude difference between targets and standards decreased substantially as a function of age. Dedifferentiation began in middle age, and continued into old-old age. The reduced differentiation of neural responses was driven by an age-related decline in the size of the P3b to targets and an age-related increase in the P3b to standards. Larger P3b amplitude to standards among older subjects was associated with higher executive capacity and better task performance. In summary, dedifferentiation begins relatively early in adulthood and progresses in a linear fashion throughout the lifespan. The age-related augmentation of the P3b to standards appears to reflect a compensatory mechanism that helps maintain task performance. PMID:25171804

  12. Neural dissociation of food- and money-related reward processing using an abstract incentive delay task

    PubMed Central

    Skunde, Mandy; Wu, Mudan; Schnell, Knut; Herpertz, Sabine C.; Bendszus, Martin; Herzog, Wolfgang; Friederich, Hans-Christoph

    2015-01-01

    Food is an innate reward stimulus related to energy homeostasis and survival, whereas money is considered a more general reward stimulus that gains a rewarding value through learning experiences. Although the underlying neural processing for both modalities of reward has been investigated independently from one another, a more detailed investigation of neural similarities and/or differences between food and monetary reward is still missing. Here, we investigated the neural processing of food compared with monetary-related rewards in 27 healthy, normal-weight women using functional magnetic resonance imaging. We developed a task distinguishing between the anticipation and the receipt of either abstract food or monetary reward. Both tasks activated the ventral striatum during the expectation of a reward. Compared with money, greater food-related activations were observed in prefrontal, parietal and central midline structures during the anticipation and lateral orbitofrontal cortex (lOFC) during the receipt of food reward. Furthermore, during the receipt of food reward, brain activation in the secondary taste cortex was positively related to the body mass index. These results indicate that food-dependent activations encompass to a greater extent brain regions involved in self-control and self-reflection during the anticipation and phylogenetically older parts of the lOFC during the receipt of reward. PMID:25552570

  13. Neural dissociation of food- and money-related reward processing using an abstract incentive delay task.

    PubMed

    Simon, Joe J; Skunde, Mandy; Wu, Mudan; Schnell, Knut; Herpertz, Sabine C; Bendszus, Martin; Herzog, Wolfgang; Friederich, Hans-Christoph

    2015-08-01

    Food is an innate reward stimulus related to energy homeostasis and survival, whereas money is considered a more general reward stimulus that gains a rewarding value through learning experiences. Although the underlying neural processing for both modalities of reward has been investigated independently from one another, a more detailed investigation of neural similarities and/or differences between food and monetary reward is still missing. Here, we investigated the neural processing of food compared with monetary-related rewards in 27 healthy, normal-weight women using functional magnetic resonance imaging. We developed a task distinguishing between the anticipation and the receipt of either abstract food or monetary reward. Both tasks activated the ventral striatum during the expectation of a reward. Compared with money, greater food-related activations were observed in prefrontal, parietal and central midline structures during the anticipation and lateral orbitofrontal cortex (lOFC) during the receipt of food reward. Furthermore, during the receipt of food reward, brain activation in the secondary taste cortex was positively related to the body mass index. These results indicate that food-dependent activations encompass to a greater extent brain regions involved in self-control and self-reflection during the anticipation and phylogenetically older parts of the lOFC during the receipt of reward. PMID:25552570

  14. Age-related decline in differentiated neural responses to rare target versus frequent standard stimuli.

    PubMed

    Mott, Katherine K; Alperin, Brittany R; Holcomb, Phillip J; Daffner, Kirk R

    2014-10-31

    One mechanism hypothesized to contribute to cognitive aging is the failure to recruit specialized neural modules and generate differentiated neural responses to various classes of stimuli. Here, ERPs were used to examine the extent to which target and standard stimulus types were processed differently by well-matched adults ages 19-99. Subjects responded to designated visual target letters under low and high load conditions. Temporospatial PCA was used to parse the P3b component, an index of categorization/memory updating. The P3b amplitude difference between targets and standards decreased substantially as a function of age. Dedifferentiation began in middle age, and continued into old-old age. The reduced differentiation of neural responses was driven by an age-related decline in the size of the P3b to targets and an age-related increase in the P3b to standards. Larger P3b amplitude to standards among older subjects was associated with higher executive capacity and better task performance. In summary, dedifferentiation begins relatively early in adulthood and progresses in a linear fashion throughout the lifespan. The age-related augmentation of the P3b to standards appears to reflect a compensatory mechanism that helps maintain task performance. PMID:25171804

  15. Brain activations during judgments of positive self-conscious emotion and positive basic emotion: pride and joy.

    PubMed

    Takahashi, Hidehiko; Matsuura, Masato; Koeda, Michihiko; Yahata, Noriaki; Suhara, Tetsuya; Kato, Motoichiro; Okubo, Yoshiro

    2008-04-01

    We aimed to investigate the neural correlates associated with judgments of a positive self-conscious emotion, pride, and elucidate the difference between pride and a basic positive emotion, joy, at the neural basis level using functional magnetic resonance imaging. Study of the neural basis associated with pride might contribute to a better understanding of the pride-related behaviors observed in neuropsychiatric disorders. Sixteen healthy volunteers were studied. The participants read sentences expressing joy or pride contents during the scans. Pride conditions activated the right posterior superior temporal sulcus and left temporal pole, the regions implicated in the neural substrate of social cognition or theory of mind. However, against our prediction, we did not find brain activation in the medial prefrontal cortex, a region responsible for inferring others' intention or self-reflection. Joy condition produced activations in the ventral striatum and insula/operculum, the key nodes of processing of hedonic or appetitive stimuli. Our results support the idea that pride is a self-conscious emotion, requiring the ability to detect the intention of others. At the same time, judgment of pride might require less self-reflection compared with those of negative self-conscious emotions such as guilt or embarrassment. PMID:17638925

  16. Perception of race-related features modulates neural activity associated with action observation and imitation.

    PubMed

    Earls, Holly A; Englander, Zoë A; Morris, James P

    2013-05-29

    The present study examines whether race-specific features affect biological motion perception. Activation of the neural action observation and imitation network was measured using functional MRI. During scanning, individuals were asked to imitate and observe basic hand movements of own-race and other-race actors. Results indicate that three key areas often associated with action observation and imitation, the inferior parietal lobule, superior parietal lobule, and superior temporal sulcus, were more active when participants imitated and observed hand movements of own-race relative to other-race actors. These findings indicate that several regions associated with the neural imitation/observation network are sensitive to race-related features. PMID:23571693

  17. Relative entropy minimizing noisy non-linear neural network to approximate stochastic processes.

    PubMed

    Galtier, Mathieu N; Marini, Camille; Wainrib, Gilles; Jaeger, Herbert

    2014-08-01

    A method is provided for designing and training noise-driven recurrent neural networks as models of stochastic processes. The method unifies and generalizes two known separate modeling approaches, Echo State Networks (ESN) and Linear Inverse Modeling (LIM), under the common principle of relative entropy minimization. The power of the new method is demonstrated on a stochastic approximation of the El Niño phenomenon studied in climate research. PMID:24815743

  18. Measurement of relative density of tissue using wavelet analysis and neural nets

    NASA Astrophysics Data System (ADS)

    Suyatinov, Sergey I.; Kolentev, Sergey V.; Buldakova, Tatyana I.

    2001-01-01

    Development of methods for indirect measurement of substance's consistence and characteristics is highly actual problem of medical diagnostics. Many diseases bring about changes of tissue density or appearances of alien bodies (e.g. stones in kidneys or gallbladders). Propose to use wavelet-analysis and neural nets for indirect measurement of relative density of tissue by images of internal organs. It shall allow to reveal a disease on early stage.

  19. The evolution of consciousness

    SciTech Connect

    Stapp, H.P.

    1996-08-16

    It is argued that the principles of classical physics are inimical to the development of an adequate science of consciousness. The problem is that insofar as the classical principles are valid consciousness can have no effect on the behavior, and hence on the survival prospects, of the organisms in which it inheres. Thus within the classical framework it is not possible to explain in natural terms the development of consciousness to the high-level form found in human beings. In quantum theory, on the other hand, consciousness can be dynamically efficacious: quantum theory does allow consciousness to influence behavior, and thence to evolve in accordance with the principles of natural selection. However, this evolutionary requirement places important constraints upon the details of the formulation of the quantum dynamical principles.

  20. Perceptual Salience and Reward Both Influence Feedback-Related Neural Activity Arising from Choice.

    PubMed

    Lou, Bin; Hsu, Wha-Yin; Sajda, Paul

    2015-09-23

    For day-to-day decisions, multiple factors influence our choice between alternatives. Two dimensions of decision making that substantially affect choice are the objective perceptual properties of the stimulus (e.g., salience) and its subjective value. Here we measure EEGs in human subjects to relate their feedback-evoked EEG responses to estimates of prediction error given a neurally derived expected value for each trial. Unlike in traditional reinforcement learning paradigms, in our experiment the reward itself is not probabilistic; rather, it is a fixed value, which, when combined with the variable stimulus salience, yields uncertainty in the choice. We find that feedback-evoked event-related potentials (ERPs), specifically those classically termed feedback-related negativity, are modulated by both the reward level and stimulus salience. Using single-trial analysis of the EEG, we show stimulus-locked EEG components reflecting perceived stimulus salience can be combined with the level of reward to create an estimate of expected reward. This expected reward is used to form a prediction error that correlates with the trial-by-trial variability of the feedback ERPs for negative, but not positive, feedback. This suggests that the valence of prediction error is more important than the valence of the actual feedback, since only positive rewards were delivered in the experiment (no penalty or loss). Finally, we show that these subjectively defined prediction errors are informative of the riskiness of the subject's choice on the subsequent trial. In summary, our work shows that neural correlates of stimulus salience interact with value information to yield neural representations of subjective expected reward. Significance statement: How we make perceptual decisions depends on sensory evidence and the value of our options. These two factors often interact to yield subjective decisions; i.e., individuals integrate sensory evidence and value to form their own estimates of

  1. Perceptual Salience and Reward Both Influence Feedback-Related Neural Activity Arising from Choice

    PubMed Central

    Lou, Bin; Hsu, Wha-Yin

    2015-01-01

    For day-to-day decisions, multiple factors influence our choice between alternatives. Two dimensions of decision making that substantially affect choice are the objective perceptual properties of the stimulus (e.g., salience) and its subjective value. Here we measure EEGs in human subjects to relate their feedback-evoked EEG responses to estimates of prediction error given a neurally derived expected value for each trial. Unlike in traditional reinforcement learning paradigms, in our experiment the reward itself is not probabilistic; rather, it is a fixed value, which, when combined with the variable stimulus salience, yields uncertainty in the choice. We find that feedback-evoked event-related potentials (ERPs), specifically those classically termed feedback-related negativity, are modulated by both the reward level and stimulus salience. Using single-trial analysis of the EEG, we show stimulus-locked EEG components reflecting perceived stimulus salience can be combined with the level of reward to create an estimate of expected reward. This expected reward is used to form a prediction error that correlates with the trial-by-trial variability of the feedback ERPs for negative, but not positive, feedback. This suggests that the valence of prediction error is more important than the valence of the actual feedback, since only positive rewards were delivered in the experiment (no penalty or loss). Finally, we show that these subjectively defined prediction errors are informative of the riskiness of the subject's choice on the subsequent trial. In summary, our work shows that neural correlates of stimulus salience interact with value information to yield neural representations of subjective expected reward. SIGNIFICANCE STATEMENT How we make perceptual decisions depends on sensory evidence and the value of our options. These two factors often interact to yield subjective decisions; i.e., individuals integrate sensory evidence and value to form their own estimates of

  2. Neural Connectivity and Immunocytochemical Studies of Anatomical Sites Related to Nauseogenic and Emetic Reflexes

    NASA Technical Reports Server (NTRS)

    Fox, Robert A. (Principal Investigator)

    1992-01-01

    The studies conducted in this research project examined several aspects of neuroanatomical structures and neurochemical processes related to motion sickness in animal models. A principle objective of these studies was to investigate neurochemical changes in the central nervous system that are related to motion sickness with the objective of defining neural mechanisms important to this malady. For purposes of exposition, the studies and research finding have been classified into five categories. These are: immunoreactivity in the brainstem, vasopressin effects, lesion studies of area postrema, role of the vagus nerve, and central nervous system structure related to adaptation to microgravity.

  3. Why the Brain Knows More than We Do: Non-Conscious Representations and Their Role in the Construction of Conscious Experience

    PubMed Central

    Dresp-Langley, Birgitta

    2011-01-01

    Scientific studies have shown that non-conscious stimuli and representations influence information processing during conscious experience. In the light of such evidence, questions about potential functional links between non-conscious brain representations and conscious experience arise. This article discusses neural model capable of explaining how statistical learning mechanisms in dedicated resonant circuits could generate specific temporal activity traces of non-conscious representations in the brain. How reentrant signaling, top-down matching, and statistical coincidence of such activity traces may lead to the progressive consolidation of temporal patterns that constitute the neural signatures of conscious experience in networks extending across large distances beyond functionally specialized brain regions is then explained. PMID:24962683

  4. The Vegetative State and the Science of Consciousness*

    PubMed Central

    Shea, Nicholas; Bayne, Tim

    2012-01-01

    Consciousness in experimental subjects is typically inferred from reports and other forms of voluntary behaviour. A wealth of everyday experience confirms that healthy subjects do not ordinarily behave in these ways unless they are conscious. Investigation of consciousness in vegetative state patients has been based on the search for neural evidence that such broad functional capacities are preserved in some vegetative state patients. We call this the standard approach. To date, the results of the standard approach have suggested that some vegetative state patients might indeed be conscious, although they fall short of being demonstrative. The fact that some vegetative state patients show evidence of consciousness according to the standard approach is remarkable, for the standard approach to consciousness is rather conservative, and leaves open the pressing question of how to ascertain whether patients who fail such tests are conscious or not. We argue for a cluster-based ‘natural kind’ methodology that is adequate to that task, both as a replacement for the approach that currently informs research into the presence or absence of consciousness in vegetative state patients and as a methodology for the science of consciousness more generally. PMID:22654125

  5. Does Socio-Economic Status and Health Consciousness Influence How Women Respond to Health Related Messages in Media?

    ERIC Educational Resources Information Center

    Iversen, Anette Christine; Kraft, Pal

    2006-01-01

    During the past few decades, people have been increasingly exposed to health-related messages in the mass media, conveying recommendations for healthy lifestyles. The present study investigates whether these messages represent a stressor, and whether coping responses increase levels of motivation or levels of negative affect. A sample of 403 women…

  6. A unified 3D default space consciousness model combining neurological and physiological processes that underlie conscious experience

    PubMed Central

    Jerath, Ravinder; Crawford, Molly W.; Barnes, Vernon A.

    2015-01-01

    The Global Workspace Theory and Information Integration Theory are two of the most currently accepted consciousness models; however, these models do not address many aspects of conscious experience. We compare these models to our previously proposed consciousness model in which the thalamus fills-in processed sensory information from corticothalamic feedback loops within a proposed 3D default space, resulting in the recreation of the internal and external worlds within the mind. This 3D default space is composed of all cells of the body, which communicate via gap junctions and electrical potentials to create this unified space. We use 3D illustrations to explain how both visual and non-visual sensory information may be filled-in within this dynamic space, creating a unified seamless conscious experience. This neural sensory memory space is likely generated by baseline neural oscillatory activity from the default mode network, other salient networks, brainstem, and reticular activating system. PMID:26379573

  7. Folate-related gene variants in Irish families affected by neural tube defects

    PubMed Central

    Fisk Green, Ridgely; Byrne, Julianne; Crider, Krista S.; Gallagher, Margaret; Koontz, Deborah; Berry, Robert J.

    2013-01-01

    Periconceptional folic acid use can often prevent neural tube defects (NTDs). Variants of genes involved in folate metabolism in mothers and children have been associated with occurrence of NTDs. We identified Irish families with individuals affected by neural tube defects. In these families, we observed that neural tube defects and birth defects overall occurred at a higher rate in the maternal lineage compared with the paternal lineage. The goal of this study was to look for evidence for genetic effects that could explain the discrepancy in the occurrence of these birth defects in the maternal vs. paternal lineage. We genotyped blood samples from 322 individuals from NTD-affected Irish families, identified through their membership in spina bifida associations. We looked for differences in distribution in maternal vs. paternal lineages of five genetic polymorphisms: the DHFR 19 bp deletion, MTHFD1 1958G>A, MTHFR 1298A>C, MTHFR 677C>T, and SLC19A1 80A>G. In addition to looking at genotypes individually, we determined the number of genotypes associated with decreased folate metabolism in each relative (“risk genotypes”) and compared the distribution of these genotypes in maternal vs. paternal relatives. Overall, maternal relatives had a higher number of genotypes associated with lower folate metabolism than paternal relatives (p = 0.017). We expected that relatives would share the same risk genotype as the individuals with NTDs and/or their mothers. However, we observed that maternal relatives had an over-abundance of any risk genotype, rather than one specific genotype. The observed genetic effects suggest an epigenetic mechanism in which decreased folate metabolism results in epigenetic alterations related to the increased rate of NTDs and other birth defects seen in the maternal lineage. Future studies on the etiology of NTDs and other birth defects could benefit from including multigenerational extended families, in order to explore potential epigenetic

  8. ERPS to Monitor Non-conscious Mentation

    NASA Technical Reports Server (NTRS)

    Donchin, E.

    1984-01-01

    Event Related Brain Potentials (or ERPs) are extracted from the EEG that can be recorded between a pair of electrodes placed on a person's scalp. The EEG is recorded as a continual fluctuation in voltage. It is the results of the integration of the potential fields generated by a multitude of neuronal ensembles that are active as the brain goes about its business. Within this ongoing signal it is possible to distinguish voltage fluctuations that are triggered in neural structures by the occurrence of specific events. This activity, evoked as it is by an external event, is known as the Evoked, or Event Related, Potential. The ERPs provide a unique opportunity to monitor non-conscious mentation. The inferences that can be based on ERP data are described and the limits of these inferences are emphasized. This, however, will not be an exhaustive review of the use of ERPs in Engineering Psychology. The application, its scope, and its limitations will be illustrated by means of one example. This example is preceded by a brief technical introduction to the methodology used in the study of ERPs. The manner in which ERPs are used to study cognition is described.

  9. Sex-related similarities and differences in the neural correlates of beauty

    PubMed Central

    Cela-Conde, Camilo J.; Ayala, Francisco J.; Munar, Enric; Maestú, Fernando; Nadal, Marcos; Capó, Miguel A.; del Río, David; López-Ibor, Juan J.; Ortiz, Tomás; Mirasso, Claudio; Marty, Gisèle

    2009-01-01

    The capacity to appreciate beauty is one of our species' most remarkable traits. Although knowledge about its neural correlates is growing, little is known about any gender-related differences. We have explored possible differences between men and women's neural correlates of aesthetic preference. We have used magnetoencephalography to record the brain activity of 10 male and 10 female participants while they decided whether or not they considered examples of artistic and natural visual stimuli to be beautiful. Our results reveal significantly different activity between the sexes in parietal regions when participants judged the stimuli as beautiful. Activity in this region was bilateral in women, whereas it was lateralized to the right hemisphere in men. It is known that the dorsal visual processing stream, which encompasses the superior parietal areas, has been significantly modified throughout human evolution. We posit that the observed gender-related differences are the result of evolutionary processes that occurred after the splitting of the human and chimpanzee lineages. In view of previous results on gender differences with respect to the neural correlates of coordinate and categorical spatial strategies, we infer that the different strategies used by men and women in assessing aesthetic preference may reflect differences in the strategies associated with the division of labor between our male and female hunter-gatherer hominin ancestors. PMID:19237562

  10. Neural representation of orientation relative to gravity in the macaque cerebellum

    PubMed Central

    Laurens, Jean; Meng, Hui; Angelaki, Dora E.

    2013-01-01

    Summary A fundamental challenge for maintaining spatial orientation and interacting with the world is knowledge of our orientation relative to gravity, i.e. tilt. Sensing gravity is complicated because of Einstein’s equivalence principle, where gravitational and translational accelerations are physically indistinguishable. Theory has proposed that this ambiguity is solved by tracking head tilt through multisensory integration. Here we identify a group of Purkinje cells in the caudal cerebellar vermis with responses that reflect an estimate of head tilt. These tilt-selective cells are complementary to translation-selective Purkinje cells, such that their population activities sum to the net gravito-inertial acceleration encoded by the otolith organs, as predicted by theory. These findings reflect the remarkable ability of the cerebellum for neural computation and provide novel quantitative evidence for a neural representation of gravity, whose calculation relies on long-postulated theoretical concepts such as internal models and Bayesian priors. PMID:24360549