Science.gov

Sample records for consequence code system

  1. MELCOR Accident Consequence Code System (MACCS)

    SciTech Connect

    Jow, H.N.; Sprung, J.L.; Ritchie, L.T. ); Rollstin, J.A. ); Chanin, D.I. )

    1990-02-01

    This report describes the MACCS computer code. The purpose of this code is to simulate the impact of severe accidents at nuclear power plants on the surrounding environment. MACCS has been developed for the US Nuclear Regulatory Commission to replace the previously used CRAC2 code, and it incorporates many improvements in modeling flexibility in comparison to CRAC2. The principal phenomena considered in MACCS are atmospheric transport, mitigative actions based on dose projection, dose accumulation by a number of pathways including food and water ingestion, early and latent health effects, and economic costs. The MACCS code can be used for a variety of applications. These include (1) probabilistic risk assessment (PRA) of nuclear power plants and other nuclear facilities, (2) sensitivity studies to gain a better understanding of the parameters important to PRA, and (3) cost-benefit analysis. This report is composed of three volumes. Volume I, the User's Guide, describes the input data requirements of the MACCS code and provides directions for its use as illustrated by three sample problems. Volume II, the Model Description, describes the underlying models that are implemented in the code, and Volume III, the Programmer's Reference Manual, describes the code's structure and database management. 59 refs., 14 figs., 15 tabs.

  2. MELCOR Accident Consequence Code System (MACCS)

    SciTech Connect

    Chanin, D.I. ); Sprung, J.L.; Ritchie, L.T.; Jow, Hong-Nian )

    1990-02-01

    This report describes the MACCS computer code. The purpose of this code is to simulate the impact of severe accidents at nuclear power plants on the surrounding environment. MACCS has been developed for the US Nuclear Regulatory Commission to replace the previous CRAC2 code, and it incorporates many improvements in modeling flexibility in comparison to CRAC2. The principal phenomena considered in MACCS are atmospheric transport, mitigative actions based on dose projection, dose accumulation by a number of pathways including food and water ingestion, early and latent health effects, and economic costs. The MACCS code can be used for a variety of applications. These include (1) probabilistic risk assessment (PRA) of nuclear power plants and other nuclear facilities, (2) sensitivity studies to gain a better understanding of the parameters important to PRA, and (3) cost-benefit analysis. This report is composed of three volumes. This document, Volume 1, the Users's Guide, describes the input data requirements of the MACCS code and provides directions for its use as illustrated by three sample problems.

  3. Documentation for RISKIN: A risk integration code for MACCS (MELCOR Accident Consequence Code System) output

    SciTech Connect

    Rollstin, J.A. ); Hong, Kou-John )

    1990-11-01

    This document has been prepared as a user's guide for the computer program RISKIN developed at Sandia National Laboratories. The RISKIN code generates integrated risk tables and the weighted mean risk associated with a user-selected set of consequences from up to five output files generated by the MELCOR Accident Consequence Code System (MACCS). Each MACCS output file can summarize the health and economic consequences resulting from up to 60 distinct severe accident source terms. Since the accident frequency associated with these source terms is not included as a MACCS input parameter a postprocessor is required to derived results that must incorporate accident frequency. The RISKIN code is such a postprocessor. RISKIN will search the MACCS output files for the mean and peak consequence values and the complementary cumulative distributive function (CCDF) tables for each requested consequence. Once obtained, RISKIN combines this data with accident frequency data to produce frequency weighted results. A postprocessor provides RISKIN an interface to the proprietary DISSPLA plot package. The RISKIN code has been written using ANSI Standard FORTRAN 77 to maximize its portability.

  4. Quality assurance and verification of the MACCS (MELCOR Accident Consequence Code System) code, Version 1. 5

    SciTech Connect

    Dobbe, C.A.; Carlson, E.R.; Marshall, N.H.; Marwil, E.S.; Tolli, J.E. )

    1990-02-01

    An independent quality assurance (QA) and verification of Version 1.5 of the MELCOR Accident Consequence Code System (MACCS) was performed. The QA and verification involved examination of the code and associated documentation for consistent and correct implementation of the models in an error-free FORTRAN computer code. The QA and verification was not intended to determine either the adequacy or appropriateness of the models that are used MACCS 1.5. The reviews uncovered errors which were fixed by the SNL MACCS code development staff prior to the release of MACCS 1.5. Some difficulties related to documentation improvement and code restructuring are also presented. The QA and verification process concluded that Version 1.5 of the MACCS code, within the scope and limitations process concluded that Version 1.5 of the MACCS code, within the scope and limitations of the models implemented in the code is essentially error free and ready for widespread use. 15 refs., 11 tabs.

  5. Reactor Accident Consequence Code

    SciTech Connect

    2015-11-02

    MACCS1.5 performs probabilistic calculations of potential off site consequences of the atmospheric releases of radioactive material in reactor accidents. The principal phenomena considered in MACCS are atmospheric transport, environmental contamination, emergency response, long term mitigative actions based on dose projection, dose accumulation by a number of pathways including food and water ingestion, early and latent health effects, and economic costs. MACCS can be used for a variety of applications including probabilistic risk assessment (PRA) of nuclear power plants and other nuclear facilities, sensitivity studies to gain a better understanding of the parameters important to PRA, and cost benefit analysis. The time scale after the accident is divided into three phases: emergency, intermediate, and long term. The region surrounding the reactor is divided into a polar-coordinate grid, with the reactor located at the center, for the calculations. Two preprocessors, MAXGC and DOSFAC, are included. MAXGC generates the maximum allowable ground concentrations based on protective action guide (PAG) dose levels. DOSFAC generates the dose conversion data used by MACCS.

  6. Reactor Accident Consequence Code

    Energy Science and Technology Software Center (ESTSC)

    2015-11-02

    MACCS1.5 performs probabilistic calculations of potential off site consequences of the atmospheric releases of radioactive material in reactor accidents. The principal phenomena considered in MACCS are atmospheric transport, environmental contamination, emergency response, long term mitigative actions based on dose projection, dose accumulation by a number of pathways including food and water ingestion, early and latent health effects, and economic costs. MACCS can be used for a variety of applications including probabilistic risk assessment (PRA) ofmore » nuclear power plants and other nuclear facilities, sensitivity studies to gain a better understanding of the parameters important to PRA, and cost benefit analysis. The time scale after the accident is divided into three phases: emergency, intermediate, and long term. The region surrounding the reactor is divided into a polar-coordinate grid, with the reactor located at the center, for the calculations. Two preprocessors, MAXGC and DOSFAC, are included. MAXGC generates the maximum allowable ground concentrations based on protective action guide (PAG) dose levels. DOSFAC generates the dose conversion data used by MACCS.« less

  7. Code System Model for Assessing the Consequences of Release of Radioactive Material into the Oceans.

    Energy Science and Technology Software Center (ESTSC)

    1987-12-01

    Version 00 MARINRAD is a system of computer programs designed to evaluate the consequences from release of radioactive waste into the ocean. It has been used for safety assessment studies for the Subseabed Disposal Program, Sandia National Laboratories. It calculates radionuclide concentrations as a function of time, steady-state food-chain concentration factors, dose and health effects to man, and doses to aquatic biota.

  8. A review of the Melcor Accident Consequence Code System (MACCS): Capabilities and applications

    SciTech Connect

    Young, M.

    1995-02-01

    MACCS was developed at Sandia National Laboratories (SNL) under U.S. Nuclear Regulatory Commission (NRC) sponsorship to estimate the offsite consequences of potential severe accidents at nuclear power plants (NPPs). MACCS was publicly released in 1990. MACCS was developed to support the NRC`s probabilistic safety assessment (PSA) efforts. PSA techniques can provide a measure of the risk of reactor operation. PSAs are generally divided into three levels. Level one efforts identify potential plant damage states that lead to core damage and the associated probabilities, level two models damage progression and containment strength for establishing fission-product release categories, and level three efforts evaluate potential off-site consequences of radiological releases and the probabilities associated with the consequences. MACCS was designed as a tool for level three PSA analysis. MACCS performs probabilistic health and economic consequence assessments of hypothetical accidental releases of radioactive material from NPPs. MACCS includes models for atmospheric dispersion and transport, wet and dry deposition, the probabilistic treatment of meteorology, environmental transfer, countermeasure strategies, dosimetry, health effects, and economic impacts. The computer systems MACCS is designed to run on are the 386/486 PC, VAX/VMS, E3M RISC S/6000, Sun SPARC, and Cray UNICOS. This paper provides an overview of MACCS, reviews some of the applications of MACCS, international collaborations which have involved MACCS, current developmental efforts, and future directions.

  9. Evaluation of severe accident risks: Quantification of major input parameters: MAACS (MELCOR Accident Consequence Code System) input

    SciTech Connect

    Sprung, J.L.; Jow, H-N ); Rollstin, J.A. ); Helton, J.C. )

    1990-12-01

    Estimation of offsite accident consequences is the customary final step in a probabilistic assessment of the risks of severe nuclear reactor accidents. Recently, the Nuclear Regulatory Commission reassessed the risks of severe accidents at five US power reactors (NUREG-1150). Offsite accident consequences for NUREG-1150 source terms were estimated using the MELCOR Accident Consequence Code System (MACCS). Before these calculations were performed, most MACCS input parameters were reviewed, and for each parameter reviewed, a best-estimate value was recommended. This report presents the results of these reviews. Specifically, recommended values and the basis for their selection are presented for MACCS atmospheric and biospheric transport, emergency response, food pathway, and economic input parameters. Dose conversion factors and health effect parameters are not reviewed in this report. 134 refs., 15 figs., 110 tabs.

  10. Code System for Calculating Early Offsite Consequences from Nuclear Reactor Accidents.

    Energy Science and Technology Software Center (ESTSC)

    1992-06-10

    SMART calculates early offsite consequences from nuclear reactor accidents. Once the air and ground concentrations of the radionuclide are estimated, the early dose to an individual is calculated via three pathways: cloudshine, short-term groundshine, and inhalation.

  11. PROBCON-HDW: A probability and consequence system of codes for long-term analysis of Hanford defense wastes

    SciTech Connect

    Piepho, M.G.; Nguyen, T.H.

    1988-12-01

    The PROBCON-HDW (PROBability and CONsequence analysis for Hanford defense waste) computer code system calculates the long-term cumulative releases of radionuclides from the Hanford defense wastes (HDW) to the accessible environment and compares the releases to environmental release limits as defined in 40 CFR 191. PROBCON-HDW takes into account the variability of input parameter values used in models to calculate HDW release and transport in the vadose zone to the accessible environment (taken here as groundwater). A human intrusion scenario, which consists of drilling boreholes into the waste beneath the waste sites and bringing waste to the surface, is also included in PROBCON-HDW. PROBCON-HDW also includes the capability to combine the cumulative releases according to various long-term (10,000 year) scenarios into a composite risk curve or complementary cumulative distribution function (CCDF). The system structure of the PROBCON-HDW codes, the mathematical models in PROBCON-HDW, the input files, the input formats, the command files, and the graphical output results of several HDW release scenarios are described in the report. 3 refs., 7 figs., 9 tabs.

  12. Review of the chronic exposure pathways models in MACCS (MELCOR Accident Consequence Code System) and several other well-known probabilistic risk assessment models

    SciTech Connect

    Tveten, U. )

    1990-06-01

    The purpose of this report is to document the results of the work performed by the author in connection with the following task, performed for US Nuclear Regulatory Commission, (USNRC) Office of Nuclear Regulatory Research, Division of Systems Research: MACCS Chronic Exposure Pathway Models: Review the chronic exposure pathway models implemented in the MELCOR Accident Consequence Code System (MACCS) and compare those models to the chronic exposure pathway models implemented in similar codes developed in countries that are members of the OECD. The chronic exposures concerned are via: the terrestrial food pathways, the water pathways, the long-term groundshine pathway, and the inhalation of resuspended radionuclides pathway. The USNRC has indicated during discussions of the task that the major effort should be spent on the terrestrial food pathways. There is one chapter for each of the categories of chronic exposure pathways listed above.

  13. Myelography CPT Coding Updates: Effects of 4 New Codes and Unintended Consequences.

    PubMed

    Chokshi, F H; Tu, R K; Nicola, G N; Hirsch, J A

    2016-06-01

    The Current Procedural Terminology of the American Medical Association has recently introduced coding changes for myelography with the introduction of new bundled codes. The aim of this review was to help neuroradiologists understand these code changes and their unintended consequences and to discuss various scenarios in which permutations of various codes could occur in clinical practice. PMID:26744447

  14. Tokamak Systems Code

    SciTech Connect

    Reid, R.L.; Barrett, R.J.; Brown, T.G.; Gorker, G.E.; Hooper, R.J.; Kalsi, S.S.; Metzler, D.H.; Peng, Y.K.M.; Roth, K.E.; Spampinato, P.T.

    1985-03-01

    The FEDC Tokamak Systems Code calculates tokamak performance, cost, and configuration as a function of plasma engineering parameters. This version of the code models experimental tokamaks. It does not currently consider tokamak configurations that generate electrical power or incorporate breeding blankets. The code has a modular (or subroutine) structure to allow independent modeling for each major tokamak component or system. A primary benefit of modularization is that a component module may be updated without disturbing the remainder of the systems code as long as the imput to or output from the module remains unchanged.

  15. Binary concatenated coding system

    NASA Technical Reports Server (NTRS)

    Monford, L. G., Jr.

    1973-01-01

    Coding, using 3-bit binary words, is applicable to any measurement having integer scale up to 100. System using 6-bit data words can be expanded to read from 1 to 10,000, and 9-bit data words can increase range to 1,000,000. Code may be ''read'' directly by observation after memorizing simple listing of 9's and 10's.

  16. FORTRAN code-evaluation system

    NASA Technical Reports Server (NTRS)

    Capps, J. D.; Kleir, R.

    1977-01-01

    Automated code evaluation system can be used to detect coding errors and unsound coding practices in any ANSI FORTRAN IV source code before they can cause execution-time malfunctions. System concentrates on acceptable FORTRAN code features which are likely to produce undesirable results.

  17. Software Systems: Consequence versus Functionality

    SciTech Connect

    Berg, Ray; Winter, Victor L.

    1999-08-05

    The purpose of this panel is to present different perspectives and opinions regarding the issues surrounding why software should or shouldn't be entrusted with critical (high consequence) functionality.

  18. RISKIND: An enhanced computer code for National Environmental Policy Act transportation consequence analysis

    SciTech Connect

    Biwer, B.M.; LePoire, D.J.; Chen, S.Y.

    1996-03-01

    The RISKIND computer program was developed for the analysis of radiological consequences and health risks to individuals and the collective population from exposures associated with the transportation of spent nuclear fuel (SNF) or other radioactive materials. The code is intended to provide scenario-specific analyses when evaluating alternatives for environmental assessment activities, including those for major federal actions involving radioactive material transport as required by the National Environmental Policy Act (NEPA). As such, rigorous procedures have been implemented to enhance the code`s credibility and strenuous efforts have been made to enhance ease of use of the code. To increase the code`s reliability and credibility, a new version of RISKIND was produced under a quality assurance plan that covered code development and testing, and a peer review process was conducted. During development of the new version, the flexibility and ease of use of RISKIND were enhanced through several major changes: (1) a Windows{sup {trademark}} point-and-click interface replaced the old DOS menu system, (2) the remaining model input parameters were added to the interface, (3) databases were updated, (4) the program output was revised, and (5) on-line help has been added. RISKIND has been well received by users and has been established as a key component in radiological transportation risk assessments through its acceptance by the U.S. Department of Energy community in recent environmental impact statements (EISs) and its continued use in the current preparation of several EISs.

  19. High Consequence System Surety process description

    SciTech Connect

    Randall, G.T.

    1995-09-01

    This report documents work-in-progress accomplished prior to programmatic changes that negated bringing this effort to conclusion as originally intended. The High Consequence System Surety (HCS{sup 2}) project pulls together a multi-disciplinary team to integrate the elements of surety safety, security, control, reliability and quality--into a new, encompassing process. The benefit of using this process is enhanced surety in the design of a high consequence system through an up-front, designed-in approach. This report describes the integrated, high consequence surety process and includes a hypothetical example to illustrate the process.

  20. Reactor System Transient Code.

    Energy Science and Technology Software Center (ESTSC)

    1999-07-14

    RELAP3B describes the behavior of water-cooled nuclear reactors during postulated accidents or power transients, such as large reactivity excursions, coolant losses or pump failures. The program calculates flows, mass and energy inventories, pressures, temperatures, and steam qualities along with variables associated with reactor power, reactor heat transfer, or control systems. Its versatility allows one to describe simple hydraulic systems as well as complex reactor systems.

  1. High Consequence System Surety. Issue 1

    SciTech Connect

    Randall, G.T.

    1994-07-11

    High Consequence System Surety is an ongoing project at Sandia National Laboratories. This project pulls together a multi- disciplinary team to integrate the elements of surety into an encompassing process. The surety process will be augmented and validated by applying it to an automated system handling a critical nuclear weapon component at the Mason & Hanger Pantex Plant. This paper presents the development to date of an integrated, high consequence surety process.

  2. ETR/ITER systems code

    SciTech Connect

    Barr, W.L.; Bathke, C.G.; Brooks, J.N.; Bulmer, R.H.; Busigin, A.; DuBois, P.F.; Fenstermacher, M.E.; Fink, J.; Finn, P.A.; Galambos, J.D.; Gohar, Y.; Gorker, G.E.; Haines, J.R.; Hassanein, A.M.; Hicks, D.R.; Ho, S.K.; Kalsi, S.S.; Kalyanam, K.M.; Kerns, J.A.; Lee, J.D.; Miller, J.R.; Miller, R.L.; Myall, J.O.; Peng, Y-K.M.; Perkins, L.J.; Spampinato, P.T.; Strickler, D.J.; Thomson, S.L.; Wagner, C.E.; Willms, R.S.; Reid, R.L.

    1988-04-01

    A tokamak systems code capable of modeling experimental test reactors has been developed and is described in this document. The code, named TETRA (for Tokamak Engineering Test Reactor Analysis), consists of a series of modules, each describing a tokamak system or component, controlled by an optimizer/driver. This code development was a national effort in that the modules were contributed by members of the fusion community and integrated into a code by the Fusion Engineering Design Center. The code has been checked out on the Cray computers at the National Magnetic Fusion Energy Computing Center and has satisfactorily simulated the Tokamak Ignition/Burn Experimental Reactor II (TIBER) design. A feature of this code is the ability to perform optimization studies through the use of a numerical software package, which iterates prescribed variables to satisfy a set of prescribed equations or constraints. This code will be used to perform sensitivity studies for the proposed International Thermonuclear Experimental Reactor (ITER). 22 figs., 29 tabs.

  3. Software development methodology for high consequence systems

    SciTech Connect

    Baca, L.S.; Bouchard, J.F.; Collins, E.W.; Eisenhour, M.; Neidigk, D.D.; Shortencarier, M.J.; Trellue, P.A.

    1997-10-01

    This document describes a Software Development Methodology for High Consequence Systems. A High Consequence System is a system whose failure could lead to serious injury, loss of life, destruction of valuable resources, unauthorized use, damaged reputation or loss of credibility or compromise of protected information. This methodology can be scaled for use in projects of any size and complexity and does not prescribe any specific software engineering technology. Tasks are described that ensure software is developed in a controlled environment. The effort needed to complete the tasks will vary according to the size, complexity, and risks of the project. The emphasis of this methodology is on obtaining the desired attributes for each individual High Consequence System.

  4. A coded tracking telemetry system

    USGS Publications Warehouse

    Howey, P.W.; Seegar, W.S.; Fuller, M.R.; Titus, K.

    1989-01-01

    We describe the general characteristics of an automated radio telemetry system designed to operate for prolonged periods on a single frequency. Each transmitter sends a unique coded signal to a receiving system that encodes and records only the appropriater, pre-programmed codes. A record of the time of each reception is stored on diskettes in a micro-computer. This system enables continuous monitoring of infrequent signals (e.g. one per minute or one per hour), thus extending operation life or allowing size reduction of the transmitter, compared to conventional wildlife telemetry. Furthermore, when using unique codes transmitted on a single frequency, biologists can monitor many individuals without exceeding the radio frequency allocations for wildlife.

  5. Human factors in high consequence manufacturing systems

    SciTech Connect

    Forsythe, C.; Grose, E.

    1997-11-01

    A high consequence system is often defined as one in which the potential exists for severe or catastrophic accidents. Familiar examples include nuclear power plants, airline and other mass transportation, dams and reservoirs, and large-scale food processing. Many manufacturing systems also qualify as high consequence systems. Much of the authors` experience with high consequence systems derives from work associated with the surveillance and dismantlement of nuclear weapons for the US Department of Energy. With such operations, there exists a risk of high explosive detonation accompanied by radiological dispersal and, potentially, nuclear detonation. Analysis of major industrial accidents such as Three Mile Island, Chernobyl and Bhopal have revealed that these incidents were not attributable to a single event or direct cause, but were the result of multiple factors that combined to create a condition ripe for an accident. In each case, human error was a critical factor contributing to the accident. Consequently, many authors have emphasized the need for greater appreciation of systematic factors and in particular, human activities. This paper discusses approaches used in hazard analysis of US nuclear weapons operations to assess risk associated with human factors.

  6. System Safety and the Unintended Consequence

    NASA Technical Reports Server (NTRS)

    Watson, Clifford

    2012-01-01

    The analysis and identification of risks often result in design changes or modification of operational steps. This paper identifies the potential of unintended consequences as an over-looked result of these changes. Examples of societal changes such as prohibition, regulatory changes including mandating lifeboats on passenger ships, and engineering proposals or design changes to automobiles and spaceflight hardware are used to demonstrate that the System Safety Engineer must be cognizant of the potential for unintended consequences as a result of an analysis. Conclusions of the report indicate the need for additional foresight and consideration of the potential effects of analysis-driven design, processing changes, and/or operational modifications.

  7. Calculations of reactor-accident consequences, Version 2. CRAC2: computer code user's guide

    SciTech Connect

    Ritchie, L.T.; Johnson, J.D.; Blond, R.M.

    1983-02-01

    The CRAC2 computer code is a revision of the Calculation of Reactor Accident Consequences computer code, CRAC, developed for the Reactor Safety Study. The CRAC2 computer code incorporates significant modeling improvements in the areas of weather sequence sampling and emergency response, and refinements to the plume rise, atmospheric dispersion, and wet deposition models. New output capabilities have also been added. This guide is to facilitate the informed and intelligent use of CRAC2. It includes descriptions of the input data, the output results, the file structures, control information, and five sample problems.

  8. The EGS5 Code System

    SciTech Connect

    Hirayama, Hideo; Namito, Yoshihito; Bielajew, Alex F.; Wilderman, Scott J.; U., Michigan; Nelson, Walter R.; /SLAC

    2005-12-20

    In the nineteen years since EGS4 was released, it has been used in a wide variety of applications, particularly in medical physics, radiation measurement studies, and industrial development. Every new user and every new application bring new challenges for Monte Carlo code designers, and code refinements and bug fixes eventually result in a code that becomes difficult to maintain. Several of the code modifications represented significant advances in electron and photon transport physics, and required a more substantial invocation than code patching. Moreover, the arcane MORTRAN3[48] computer language of EGS4, was highest on the complaint list of the users of EGS4. The size of the EGS4 user base is difficult to measure, as there never existed a formal user registration process. However, some idea of the numbers may be gleaned from the number of EGS4 manuals that were produced and distributed at SLAC: almost three thousand. Consequently, the EGS5 project was undertaken. It was decided to employ the FORTRAN 77 compiler, yet include as much as possible, the structural beauty and power of MORTRAN3. This report consists of four chapters and several appendices. Chapter 1 is an introduction to EGS5 and to this report in general. We suggest that you read it. Chapter 2 is a major update of similar chapters in the old EGS4 report[126] (SLAC-265) and the old EGS3 report[61] (SLAC-210), in which all the details of the old physics (i.e., models which were carried over from EGS4) and the new physics are gathered together. The descriptions of the new physics are extensive, and not for the faint of heart. Detailed knowledge of the contents of Chapter 2 is not essential in order to use EGS, but sophisticated users should be aware of its contents. In particular, details of the restrictions on the range of applicability of EGS are dispersed throughout the chapter. First-time users of EGS should skip Chapter 2 and come back to it later if necessary. With the release of the EGS4 version

  9. Computer access security code system

    NASA Technical Reports Server (NTRS)

    Collins, Earl R., Jr. (Inventor)

    1990-01-01

    A security code system for controlling access to computer and computer-controlled entry situations comprises a plurality of subsets of alpha-numeric characters disposed in random order in matrices of at least two dimensions forming theoretical rectangles, cubes, etc., such that when access is desired, at least one pair of previously unused character subsets not found in the same row or column of the matrix is chosen at random and transmitted by the computer. The proper response to gain access is transmittal of subsets which complete the rectangle, and/or a parallelepiped whose opposite corners were defined by first groups of code. Once used, subsets are not used again to absolutely defeat unauthorized access by eavesdropping, and the like.

  10. TDRSS telecommunication system PN code analysis

    NASA Technical Reports Server (NTRS)

    Gold, R.

    1977-01-01

    The pseudonoise (PN) code library for the Tracking and Data Relay Satellite System (TDRSS) Services was defined and described. The code library was chosen to minimize user transponder hardware requirements and optimize system performance. Special precautions were taken to insure sufficient code phase separation to minimize cross-correlation sidelobes, and to avoid the generation of spurious code components which would interfere with system performance.

  11. An Interactive Concatenated Turbo Coding System

    NASA Technical Reports Server (NTRS)

    Liu, Ye; Tang, Heng; Lin, Shu; Fossorier, Marc

    1999-01-01

    This paper presents a concatenated turbo coding system in which a Reed-Solomon outer code is concatenated with a binary turbo inner code. In the proposed system, the outer code decoder and the inner turbo code decoder interact to achieve both good bit error and frame error performances. The outer code decoder helps the inner turbo code decoder to terminate its decoding iteration while the inner turbo code decoder provides soft-output information to the outer code decoder to carry out a reliability-based soft- decision decoding. In the case that the outer code decoding fails, the outer code decoder instructs the inner code decoder to continue its decoding iterations until the outer code decoding is successful or a preset maximum number of decoding iterations is reached. This interaction between outer and inner code decoders reduces decoding delay. Also presented in the paper are an effective criterion for stopping the iteration process of the inner code decoder and a new reliability-based decoding algorithm for nonbinary codes.

  12. Distributed wavefront coding for wide angle imaging system

    NASA Astrophysics Data System (ADS)

    Larivière-Bastien, Martin; Zhang, Hu; Thibault, Simon

    2011-10-01

    The emerging paradigm of imaging systems, known as wavefront coding, which employs joint optimization of both the optical system and the digital post-processing system, has not only increased the degrees of design freedom but also brought several significant system-level benefits. The effectiveness of wavefront coding has been demonstrated by several proof-of-concept systems in the reduction of focus-related aberrations and extension of depth of focus. While previous research on wavefront coding was mainly targeted at imaging systems having a small or modest field of view (FOV), we present a preliminary study on wavefront coding applied to panoramic optical systems. Unlike traditional wavefront coding systems, which only require the constancy of the modulation transfer function (MTF) over an extended focus range, wavefront-coded panoramic systems particularly emphasize the mitigation of significant off-axis aberrations such as field curvature, coma, and astigmatism. The restrictions of using a traditional generalized cubic polynomial pupil phase mask for wide angle systems are studied in this paper. It is shown that a traditional approach can be used when the variation of the off-axis aberrations remains modest. Consequently, we propose to study how a distributed wavefront coding approach, where two surfaces are used for encoding the wavefront, can be applied to wide angle lenses. A few cases designed using Zemax are presented and discussed

  13. Tandem Mirror Reactor Systems Code (Version I)

    SciTech Connect

    Reid, R.L.; Finn, P.A.; Gohar, M.Y.; Barrett, R.J.; Gorker, G.E.; Spampinaton, P.T.; Bulmer, R.H.; Dorn, D.W.; Perkins, L.J.; Ghose, S.

    1985-09-01

    A computer code was developed to model a Tandem Mirror Reactor. Ths is the first Tandem Mirror Reactor model to couple, in detail, the highly linked physics, magnetics, and neutronic analysis into a single code. This report describes the code architecture, provides a summary description of the modules comprising the code, and includes an example execution of the Tandem Mirror Reactor Systems Code. Results from this code for two sensitivity studies are also included. These studies are: (1) to determine the impact of center cell plasma radius, length, and ion temperature on reactor cost and performance at constant fusion power; and (2) to determine the impact of reactor power level on cost.

  14. SSAC - SPACE SYSTEM ARCHITECTURE CODE

    NASA Technical Reports Server (NTRS)

    Jan, D. L.

    1994-01-01

    The Space System Architecture Code (SSAC) is a computer program for performing sensitivity studies on operating parameters of space missions. Data is included for a mission to Mars and back to Earth (launch parameters are for even numbered years between 2014 and 2028). SSAC is a menu-driven tool that can examine the effects of varying such parameters as crew size for piloted missions, chemical vs. nuclear electric propulsion, specific impulse, and other variables. The structure of SSAC allows user control over the following options: 1) mass scaling; 2) number of stages for multistage missions; 3) specific impulse; 4) electric propulsion efficiency; 5) aerobraking; 6) payload mass; 7) Mars Lander parameters; 8) crew resource requirements; 9) escape spiral times; 10) total propulsion times; 11) attitude control parameters; 12) telecommunications options and 13) optimum trajectories. This package is written in FORTRAN 77 for DEC VAX series computers running VMS and is intended to be run interactively, although it can be modified for batch mode. The program has a menu-based user interface and requires 59K of main memory. Many different parameter dependencies can be graphically displayed on Tektronix-compatible output devices. SSAC is available in DEC VAX BACKUP format on a 9-track 1600 BPI magnetic tape (standard distribution media) or a TK50 tape cartridge. This program was developed in 1990 and is a copyrighted work with all copyright vested in NASA. DEC, VAX, and VMS are trademarks of Digital Equipment Corporation. Tektronix is a trademark of Tektronix, Inc.

  15. Production code control system for hydrodynamics simulations

    SciTech Connect

    Slone, D.M.

    1997-08-18

    We describe how the Production Code Control System (pCCS), written in Perl, has been used to control and monitor the execution of a large hydrodynamics simulation code in a production environment. We have been able to integrate new, disparate, and often independent, applications into the PCCS framework without the need to modify any of our existing application codes. Both users and code developers see a consistent interface to the simulation code and associated applications regardless of the physical platform, whether an MPP, SMP, server, or desktop workstation. We will also describe our use of Perl to develop a configuration management system for the simulation code, as well as a code usage database and report generator. We used Perl to write a backplane that allows us plug in preprocessors, the hydrocode, postprocessors, visualization tools, persistent storage requests, and other codes. We need only teach PCCS a minimal amount about any new tool or code to essentially plug it in and make it usable to the hydrocode. PCCS has made it easier to link together disparate codes, since using Perl has removed the need to learn the idiosyncrasies of system or RPC programming. The text handling in Perl makes it easy to teach PCCS about new codes, or changes to existing codes.

  16. Radiological Safety Analysis Code System.

    Energy Science and Technology Software Center (ESTSC)

    2009-12-22

    Version 03 RSAC-6.2 can be used to model complex accidents and radiological consequences to individuals from the release of radionuclides to the atmosphere. A user can generate a fission product inventory; decay and ingrow the inventory during transport through processes, facilities, and the environment; model the downwind dispersion of the activity; and calculate doses to downwind individuals. Doses are calculated through the inhalation, immersion, ground surface and ingestion pathways. New to RSAC-6.2 are the abilitiesmore » to calculate inhalation from release to a room, inhalation from resuspension of activities, and a new model for dry deposition. Doses can now be calculated as close as 10 meters from the release point. RSAC-6.2 has been subjected to extensive independent verification and validation for use in performing safety-related dose calculations to support safety analysis reports. WinRP 2.0, a windows based overlay to RSAC-6.2, assists users in creating and running RSAC-6.2 input files. RSAC-6, Rev. 6.2 (03/11/02) corrects an earlier issue with RSAC-6, compiled with F77L-EM/32 Fortran 77 Version 5.10, which would not allow the executable to run with XP or VISTA Windows operating systems. Because this version is still in use at some facilities, it is being released through RSICC in addition to the new RSAC 7 (CCC-761).« less

  17. Coordinated design of coding and modulation systems

    NASA Technical Reports Server (NTRS)

    Massey, J. L.

    1976-01-01

    Work on partial unit memory codes continued; it was shown that for a given virtual state complexity, the maximum free distance over the class of all convolutional codes is achieved within the class of unit memory codes. The effect of phase-lock loop (PLL) tracking error on coding system performance was studied by using the channel cut-off rate as the measure of quality of a modulation system. Optimum modulation signal sets for a non-white Gaussian channel considered an heuristic selection rule based on a water-filling argument. The use of error correcting codes to perform data compression by the technique of syndrome source coding was researched and a weight-and-error-locations scheme was developed that is closely related to LDSC coding.

  18. Monte Carlo Nucleon Meson Transport Code System.

    Energy Science and Technology Software Center (ESTSC)

    2000-11-17

    Version 00 NMTC/JAERI97 is an upgraded version of the code system NMTC/JAERI, which was developed in 1982 at JAERI and is based on the CCC-161/NMTC code system. NMTC/JAERI97 simulates high energy nuclear reactions and nucleon-meson transport processes.

  19. HERCULES: A Pattern Driven Code Transformation System

    SciTech Connect

    Kartsaklis, Christos; Hernandez, Oscar R; Hsu, Chung-Hsing; Ilsche, Thomas; Joubert, Wayne; Graham, Richard L

    2012-01-01

    New parallel computers are emerging, but developing efficient scientific code for them remains difficult. A scientist must manage not only the science-domain complexity but also the performance-optimization complexity. HERCULES is a code transformation system designed to help the scientist to separate the two concerns, which improves code maintenance, and facilitates performance optimization. The system combines three technologies, code patterns, transformation scripts and compiler plugins, to provide the scientist with an environment to quickly implement code transformations that suit his needs. Unlike existing code optimization tools, HERCULES is unique in its focus on user-level accessibility. In this paper we discuss the design, implementation and an initial evaluation of HERCULES.

  20. Performance of code division multiple access systems

    NASA Technical Reports Server (NTRS)

    Weber, C. L.; Huth, G. K.; Batson, B. H.

    1980-01-01

    The performance of code division multiple-access (CDMA) systems is determined using direct sequence spectral spreading. Under relatively ideal conditions, the degradation in system performance as a function of the number of users is shown to have a threshold effect. This basic limitation in the number of users of the system is further limited if the powers are unequal. For two users, system performance as a function of their power ratio also has a threshold effect. System performance as a function of the amount of spectral spreading is determined. The performance of both coded and uncoded systems is predicted.

  1. Safety assessment of high consequence robotics system

    SciTech Connect

    Robinson, D.G.; Atcitty, C.B.

    1996-08-01

    This paper outlines the use of a failure modes and effects analysis for the safety assessment of a robotic system being developed at Sandia National Laboratories. The robotic system, the weigh and leak check system, is to replace a manual process for weight and leakage of nuclear materials at the DOE Pantex facility. Failure modes and effects analyses were completed for the robotics process to ensure that safety goals for the systems have been met. Due to the flexible nature of the robot configuration, traditional failure modes and effects analysis (FMEA) were not applicable. In addition, the primary focus of safety assessments of robotics systems has been the protection of personnel in the immediate area. In this application, the safety analysis must account for the sensitivities of the payload as well as traditional issues. A unique variation on the classical FMEA was developed that permits an organized and quite effective tool to be used to assure that safety was adequately considered during the development of the robotic system. The fundamental aspects of the approach are outlined in the paper.

  2. Systems Improved Numerical Fluids Analysis Code

    NASA Technical Reports Server (NTRS)

    Costello, F. A.

    1990-01-01

    Systems Improved Numerical Fluids Analysis Code, SINFAC, consists of additional routines added to April, 1983, version of SINDA. Additional routines provide for mathematical modeling of active heat-transfer loops. Simulates steady-state and pseudo-transient operations of 16 different components of heat-transfer loops, including radiators, evaporators, condensers, mechanical pumps, reservoirs, and many types of valves and fittings. Program contains property-analysis routine used to compute thermodynamic properties of 20 different refrigerants. Source code written in FORTRAN 77.

  3. Code Usage Analysis System (CUAS)

    NASA Technical Reports Server (NTRS)

    Horsley, P. H.; Oliver, J. D.

    1976-01-01

    A set of computer programs is offered to aid a user in evaluating performance of an application program. The system provides reports of subroutine usage, program errors, and segment loading which occurred during the execution of an application program. It is presented in support of the development and validation of the space vehicle dynamics project.

  4. Cavity approach to the Sourlas code system.

    PubMed

    Huang, Haiping; Zhou, Haijun

    2009-11-01

    The statistical physics properties of regular and irregular Sourlas codes are investigated in this paper by the cavity method. At finite temperatures, the free-energy density of these coding systems is derived and compared with the result obtained by the replica method. In the zero-temperature limit, the Shannon's bound is recovered in the case of infinite-body interactions while the code rate is still finite. However, the decoding performance as obtained by the replica theory has not considered the zero-temperature entropic effect. The cavity approach is able to consider the ground-state entropy. It leads to a set of evanescent cavity fields propagation equations which further improve the decoding performance as confirmed by our numerical simulations on single instances. For the irregular Sourlas code, we find that it takes the trade-off between good dynamical property and high performance of decoding. In agreement with the results found from the algorithmic point of view, the decoding exhibits a first-order phase transition as occurs in the regular code system with three-body interactions. The cavity approach for the Sourlas code system can be extended to consider first-step replica symmetry breaking. PMID:20365049

  5. Cavity approach to the Sourlas code system

    NASA Astrophysics Data System (ADS)

    Huang, Haiping; Zhou, Haijun

    2009-11-01

    The statistical physics properties of regular and irregular Sourlas codes are investigated in this paper by the cavity method. At finite temperatures, the free-energy density of these coding systems is derived and compared with the result obtained by the replica method. In the zero-temperature limit, the Shannon’s bound is recovered in the case of infinite-body interactions while the code rate is still finite. However, the decoding performance as obtained by the replica theory has not considered the zero-temperature entropic effect. The cavity approach is able to consider the ground-state entropy. It leads to a set of evanescent cavity fields propagation equations which further improve the decoding performance as confirmed by our numerical simulations on single instances. For the irregular Sourlas code, we find that it takes the trade-off between good dynamical property and high performance of decoding. In agreement with the results found from the algorithmic point of view, the decoding exhibits a first-order phase transition as occurs in the regular code system with three-body interactions. The cavity approach for the Sourlas code system can be extended to consider first-step replica symmetry breaking.

  6. Thermal Hydraulic Computer Code System.

    Energy Science and Technology Software Center (ESTSC)

    1999-07-16

    Version 00 RELAP5 was developed to describe the behavior of a light water reactor (LWR) subjected to postulated transients such as loss of coolant from large or small pipe breaks, pump failures, etc. RELAP5 calculates fluid conditions such as velocities, pressures, densities, qualities, temperatures; thermal conditions such as surface temperatures, temperature distributions, heat fluxes; pump conditions; trip conditions; reactor power and reactivity from point reactor kinetics; and control system variables. In addition to reactor applications,more » the program can be applied to transient analysis of other thermal‑hydraulic systems with water as the fluid. This package contains RELAP5/MOD1/029 for CDC computers and RELAP5/MOD1/025 for VAX or IBM mainframe computers.« less

  7. Fast decoding algorithms for coded aperture systems

    NASA Astrophysics Data System (ADS)

    Byard, Kevin

    2014-08-01

    Fast decoding algorithms are described for a number of established coded aperture systems. The fast decoding algorithms for all these systems offer significant reductions in the number of calculations required when reconstructing images formed by a coded aperture system and hence require less computation time to produce the images. The algorithms may therefore be of use in applications that require fast image reconstruction, such as near real-time nuclear medicine and location of hazardous radioactive spillage. Experimental tests confirm the efficacy of the fast decoding techniques.

  8. Phobos lander coding system: Software and analysis

    NASA Technical Reports Server (NTRS)

    Cheung, K.-M.; Pollara, F.

    1988-01-01

    The software developed for the decoding system used in the telemetry link of the Phobos Lander mission is described. Encoders and decoders are provided to cover the three possible telemetry configurations. The software can be used to decode actual data or to simulate the performance of the telemetry system. The theoretical properties of the codes chosen for this mission are analyzed and discussed.

  9. The Basis Code Development System

    Energy Science and Technology Software Center (ESTSC)

    1994-03-15

    BASIS9.4 is a system for developing interactive computer programs in Fortran, with some support for C and C++ as well. Using BASIS9.4 you can create a program that has a sophisticated programming language as its user interface so that the user can set, calculate with, and plot, all the major variables in the program. The program author writes only the scientific part of the program; BASIS9.4 supplies an environment in which to exercise that scientificmore » programming which includes an interactive language, an interpreter, graphics, terminal logs, error recovery, macros, saving and retrieving variables, formatted I/O, and online documentation.« less

  10. The World Anti-Doping Code 2003--consequences for physicians associated with elite athletes.

    PubMed

    Striegel, H; Rössner, D; Simon, P; Niess, A M

    2005-04-01

    The purpose of the World Anti-Doping Code 2003 and the 2004 Prohibited List is to create a universal international standard to fight doping in competitive sports. The result of this is a whole series of changes for doctors with regard to their work with competitive athletes. The revised definition of doping now includes physicians in the group of persons who can fulfil the elements of a doping offence. Moreover, the mere possession of substances appearing on the Prohibited List represents a violation of anti-doping regulations. The 2004 Prohibited List includes several changes to the Olympic Movement List from 2003. Caffeine, for example, was removed from the list. Cannabinoids, on the other hand, are now prohibited in competition for all sports. The same is true for all forms of glucocorticosteroids. Therapeutic use exemptions in an abbreviated process are possible for the administration of glucocorticosteroids by non-systemic routes, as well as inhalative therapy with the beta-2-agonists formoterol, salbutamol, salmeterol, and termbutalin. In other cases, a therapeutic use exemption is possible using a standard application process. Further changes will become effective in the 2005 Prohibited List. In 2005, it is essential that beta-2-agonists are prohibited in and out of competition. HCG and LH are prohibited for all athletes. Dermatological preparations of glucocorticosteroids are no longer prohibited, and intravenous infusions will be a prohibited method in 2005, except as a legitimate acute medical treatment. In cases of violations of anti-doping regulations where it is permissible for the affected person to furnish proof of exoneration, the burden of proof is not higher than that required to prove the violation. The sanctions provided for in the World Anti-Doping Code follow a principle of rules and exceptions which at first glance seems difficult to understand. In the case of doping violations by physicians, the anti-doping code provides--as a general rule

  11. High rate concatenated coding systems using multidimensional bandwidth-efficient trellis inner codes

    NASA Astrophysics Data System (ADS)

    Deng, Robert H.; Costello, Daniel J., Jr.

    1989-10-01

    A concatenated coding system using two-dimensional trellis-coded MPSK inner codes and Reed-Solomon outer codes for application in high-speed satellite communication systems was proposed previously by the authors (1989). The authors extend their results to systems using symbol-oriented, multidimensional, trellis-coded MPSK inner codes. The concatenated coding systems are divided into two classes according to their achievable effective information rates. The first class uses multidimensional trellis-coded 8-PSK inner codes and achieves effective information rates around 1 b/dimension (spectral efficiency 2 b/s/Hz). The second class employs multidimensional trellis-coded 16-PSK inner codes and provides effective information rates around 1.5 b/dimension (spectral efficiency 3 b/s/Hz). Both classes provide significant coding gains over an uncoded reference system with the same effective information rate as the coded system. The results show that the symbol-oriented nature of multidimensional inner codes can provide an improvement of up to 1 dB in the overall performance of a concatenated coding system when these codes replace bit-oriented two-dimensional codes.

  12. Symbol synchronization in convolutionally coded systems

    NASA Technical Reports Server (NTRS)

    Baumert, L. D.; Mceliece, R. J.; Van Tilborg, H. C. A.

    1979-01-01

    Alternate symbol inversion is sometimes applied to the output of convolutional encoders to guarantee sufficient richness of symbol transition for the receiver symbol synchronizer. A bound is given for the length of the transition-free symbol stream in such systems, and those convolutional codes are characterized in which arbitrarily long transition free runs occur.

  13. Bilingual processing of ASL-English code-blends: The consequences of accessing two lexical representations simultaneously.

    PubMed

    Emmorey, Karen; Petrich, Jennifer; Gollan, Tamar H

    2012-07-01

    Bilinguals who are fluent in American Sign Language (ASL) and English often produce code-blends - simultaneously articulating a sign and a word while conversing with other ASL-English bilinguals. To investigate the cognitive mechanisms underlying code-blend processing, we compared picture-naming times (Experiment 1) and semantic categorization times (Experiment 2) for code-blends versus ASL signs and English words produced alone. In production, code-blending did not slow lexical retrieval for ASL and actually facilitated access to low-frequency signs. However, code-blending delayed speech production because bimodal bilinguals synchronized English and ASL lexical onsets. In comprehension, code-blending speeded access to both languages. Bimodal bilinguals' ability to produce code-blends without any cost to ASL implies that the language system either has (or can develop) a mechanism for switching off competition to allow simultaneous production of close competitors. Code-blend facilitation effects during comprehension likely reflect cross-linguistic (and cross-modal) integration at the phonological and/or semantic levels. The absence of any consistent processing costs for code-blending illustrates a surprising limitation on dual-task costs and may explain why bimodal bilinguals code-blend more often than they code-switch. PMID:22773886

  14. NUCRAC: a code for the estimation of adversary-action consequences in the nuclear power fuel cycle

    SciTech Connect

    Kaul, D.C.; Ritzman, R.L.; Roberts, J.A.; Sachs, E.S.

    1986-02-01

    A program sponsored by the Nuclear Regulatory Commission (NRC) and designed to estimate the potential consequences of adversary actions in the nuclear power fuel cycle has been completed. So that the results of this consequence analysis would be comparable to that of the reactor Safety Study (RSS), the methodology described in the RSS and implemented in the Calculation of Reactor Accident Consequences (CRAC) code served as the baseline for consequence evaluation in this study. Four portions of the RSS methodology were modified for use in this study: the atmospheric dispersion model, the inhalation dose factors, the criterion for early mortality from lung dose, and the model for chronic pathways to man. Implementation of these modifications to the CRAC code resulted in the preparation and application of a revised code termed NUCRAC. These modifications are described in detail. Detailed instructions for the operation of NUCRAC are presented in the form of a user-manual. Inputs and outputs for an example calculation are also presented.

  15. An integrated radiation physics computer code system.

    NASA Technical Reports Server (NTRS)

    Steyn, J. J.; Harris, D. W.

    1972-01-01

    An integrated computer code system for the semi-automatic and rapid analysis of experimental and analytic problems in gamma photon and fast neutron radiation physics is presented. Such problems as the design of optimum radiation shields and radioisotope power source configurations may be studied. The system codes allow for the unfolding of complex neutron and gamma photon experimental spectra. Monte Carlo and analytic techniques are used for the theoretical prediction of radiation transport. The system includes a multichannel pulse-height analyzer scintillation and semiconductor spectrometer coupled to an on-line digital computer with appropriate peripheral equipment. The system is geometry generalized as well as self-contained with respect to material nuclear cross sections and the determination of the spectrometer response functions. Input data may be either analytic or experimental.

  16. User Instructions for the Systems Assessment Capability, Rev. 1, Computer Codes Volume 3: Utility Codes

    SciTech Connect

    Eslinger, Paul W.; Aaberg, Rosanne L.; Lopresti, Charles A.; Miley, Terri B.; Nichols, William E.; Strenge, Dennis L.

    2004-09-14

    This document contains detailed user instructions for a suite of utility codes developed for Rev. 1 of the Systems Assessment Capability. The suite of computer codes for Rev. 1 of Systems Assessment Capability performs many functions.

  17. LPGS. Code System for Calculating Radiation Exposure

    SciTech Connect

    White, J.E.; Eckerman, K.F.

    1983-01-01

    LPGS was developed to calculate the radiological impacts resulting from radioactive releases to the hydrosphere. The name LPGS was derived from the Liquid Pathway Generic Study for which the original code was used primarily as an analytic tool in the assessment process. The hydrosphere is represented by the following types of water bodies: estuary, small river, well, lake, and one-dimensional (1-d) river. LPGS is designed to calculate radiation dose (individual and population) to body organs as a function of time for the various exposure pathways. The radiological consequences to the aquatic biota are estimated. Several simplified radionuclide transport models are employed with built-in formulations to describe the release rate of the radionuclides. A tabulated user-supplied release model can be input, if desired. Printer plots of dose versus time for the various exposure pathways are provided.

  18. BCH codes for large IC random-access memory systems

    NASA Technical Reports Server (NTRS)

    Lin, S.; Costello, D. J., Jr.

    1983-01-01

    In this report some shortened BCH codes for possible applications to large IC random-access memory systems are presented. These codes are given by their parity-check matrices. Encoding and decoding of these codes are discussed.

  19. High Energy Particle Transport Code System.

    Energy Science and Technology Software Center (ESTSC)

    2003-12-17

    Version 00 NMTC/JAM is an upgraded version of the code CCC-694/NMTC-JAERI97, which was developed in 1982 at JAERI and is based on the CCC-161/NMTC code system. NMTC/JAM simulates high energy nuclear reactions and nuclear meson transport processes. The applicable energy range of NMTC/JAM was extended in principle up to 200 GeV for nucleons and mesons by introducing the high energy nuclear reaction code Jet-Aa Microscopic (JAM) for the intra-nuclear cascade part. For the evaporation andmore » fission process, a new model, GEM, can be used to describe the light nucleus production from the excited residual nucleus. According to the extension of the applicable energy, the nucleon-nucleus non-elastic, elastic and differential elastic cross section data were upgraded. In addition, the particle transport in a magnetic field was implemented for beam transport calculations. Some new tally functions were added, and the format of input and output of data is more user friendly. These new calculation functions and utilities provide a tool to carry out reliable neutronics study of a large scale target system with complex geometry more accurately and easily than with the previous model. It implements an intranuclear cascade model taking account of the in-medium nuclear effects and the preequilibrium calculation model based on the exciton one. For treating the nucleon transport process, the nucleon-nucleus cross sections are revised to those derived by the systematics of Pearlstein. Moreover, the level density parameter derived by Ignatyuk is included as a new option for particle evaporation calculation. A geometry package based on the Combinatorial Geometry with multi-array system and the importance sampling technique is implemented in the code. Tally function is also employed for obtaining such physical quantities as neutron energy spectra, heat deposition and nuclide yield without editing a history file. The code can simulate both the primary spallation reaction and the

  20. Internal Dosimetry Code System Using Biokinetics Models

    Energy Science and Technology Software Center (ESTSC)

    2003-11-12

    Version 00 InDose is an internal dosimetry code to calculate dose estimations using biokinetic models (presented in ICRP-56 to ICRP71) as well as older ones. The code uses the ICRP-66 respiratory tract model and the ICRP-30 gastrointestinal tract model as well as the new and old biokinetic models. The code was written in such a way that the user can change any parameters of any one of the models without recompiling the code. All parametersmore » are given in well annotated parameters files that the user may change. As default, these files contain the values listed in ICRP publications. The full InDose code was planned to have three parts: 1) the main part includes the uptake and systemic models and is used to calculate the activities in the body tissues and excretion as a function of time for a given intake. 2) An optimization module for automatic estimation of the intake for a specific exposure case. 3) A module to calculate the dose due to the estimated intake. Currently, the code is able to perform only it`s main task (part 1) while the other two have to be done externally using other tools. In the future, developers would like to add these modules in order to provide a complete solution. The code was tested extensively to verify accuracy of its results. The verification procedure was divided into three parts: 1) verification of the implementation of each model, 2) verification of the integrity of the whole code, and 3) usability test. The first two parts consisted of comparing results obtained with InDose to published results for the same cases. For example ICRP-78 monitoring data. The last part consisted of participating in the 3rd EIE-IDA and assessing some of the scenarios provided in this exercise. These tests where presented in a few publications. Good agreement was found between the results of InDose and published data.« less

  1. Comparison of MACCS users calculations for the international comparison exercise on probabilistic accident consequence assessment code, October 1989--June 1993

    SciTech Connect

    Neymotin, L.

    1994-04-01

    Over the past several years, the OECD/NEA and CEC sponsored an international program intercomparing a group of six probabilistic consequence assessment (PCA) codes designed to simulate health and economic consequences of radioactive releases into atmosphere of radioactive materials following severe accidents at nuclear power plants (NPPs): ARANO (Finland), CONDOR (UK), COSYMA (CEC), LENA (Sweden), MACCS (USA), and OSCAAR (Japan). In parallel with this effort, two separate groups performed similar calculations using the MACCS and COSYMA codes. Results produced in the MACCS Users Group (Greece, Italy, Spain, and USA) calculations and their comparison are contained in the present report. Version 1.5.11.1 of the MACCS code was used for the calculations. Good agreement between the results produced in the four participating calculations has been reached, with the exception of the results related to the ingestion pathway dose predictions. The main reason for the scatter in those particular results is attributed to the lack of a straightforward implementation of the specifications for agricultural production and counter-measures criteria provided for the exercise. A significantly smaller scatter in predictions of other consequences was successfully explained by differences in meteorological files and weather sampling, grids, rain distance intervals, dispersion model options, and population distributions.

  2. Analog system for computing sparse codes

    DOEpatents

    Rozell, Christopher John; Johnson, Don Herrick; Baraniuk, Richard Gordon; Olshausen, Bruno A.; Ortman, Robert Lowell

    2010-08-24

    A parallel dynamical system for computing sparse representations of data, i.e., where the data can be fully represented in terms of a small number of non-zero code elements, and for reconstructing compressively sensed images. The system is based on the principles of thresholding and local competition that solves a family of sparse approximation problems corresponding to various sparsity metrics. The system utilizes Locally Competitive Algorithms (LCAs), nodes in a population continually compete with neighboring units using (usually one-way) lateral inhibition to calculate coefficients representing an input in an over complete dictionary.

  3. Point-Kernel Shielding Code System.

    Energy Science and Technology Software Center (ESTSC)

    1982-02-17

    Version 00 QAD-BSA is a three-dimensional, point-kernel shielding code system based upon the CCC-48/QAD series. It is designed to calculate photon dose rates and heating rates using exponential attenuation and infinite medium buildup factors. Calculational provisions include estimates of fast neutron penetration using data computed by the moments method. Included geometry routines can describe complicated source and shield geometries. An internal library contains data for many frequently used structural and shielding materials, enabling the codemore » to solve most problems with only source strengths and problem geometry required as input. This code system adapts especially well to problems requiring multiple sources and sources with asymmetrical geometry. In addition to being edited separately, the total interaction rates from many sources may be edited at each detector point. Calculated photon interaction rates agree closely with those obtained using QAD-P5A.« less

  4. Performance Evaluation of Hybrid SCM/SAC-OCDMA Transmissions System using Dynamic Cyclic Shift Code

    NASA Astrophysics Data System (ADS)

    Abd, Thanaa Hussein; Aljunid, S. A.; Fadhil, Hilal Adnan; Radhi, Ibrahim Fadhil; Saad, N. M.

    2012-12-01

    In this paper, the performance of a hybrid scheme of Subcarrier Multiplexing (SCM) technique in a Spectral Amplitude Coding (SAC) Optical Code Division Multiple Access (CDMA) transmissions system is evaluated. The hybrid system is design using new code family; we call it Dynamic Cyclic Shift (DCS) code. The DCS code design for SAC-OCDMA system to reduce the effect of Multi Access Interference due to it property of low cross-correlation (λC ≤ 1) between code words. In contrast, the SCM scheme shows the ability to increase the data rate of SAC-OCDMA system. Consequently, the hybrid SCM/SAC-OCDMA system could be one promising solution to the high-capacity access network with low cost effective, good flexibility and enhanced security, which makes an attractive candidate for next-generation broadband access network.

  5. Regulatory consequences of neuronal ELAV-like protein binding to coding and non-coding RNAs in human brain.

    PubMed

    Scheckel, Claudia; Drapeau, Elodie; Frias, Maria A; Park, Christopher Y; Fak, John; Zucker-Scharff, Ilana; Kou, Yan; Haroutunian, Vahram; Ma'ayan, Avi; Buxbaum, Joseph D; Darnell, Robert B

    2016-01-01

    Neuronal ELAV-like (nELAVL) RNA binding proteins have been linked to numerous neurological disorders. We performed crosslinking-immunoprecipitation and RNAseq on human brain, and identified nELAVL binding sites on 8681 transcripts. Using knockout mice and RNAi in human neuroblastoma cells, we showed that nELAVL intronic and 3' UTR binding regulates human RNA splicing and abundance. We validated hundreds of nELAVL targets among which were important neuronal and disease-associated transcripts, including Alzheimer's disease (AD) transcripts. We therefore investigated RNA regulation in AD brain, and observed differential splicing of 150 transcripts, which in some cases correlated with differential nELAVL binding. Unexpectedly, the most significant change of nELAVL binding was evident on non-coding Y RNAs. nELAVL/Y RNA complexes were specifically remodeled in AD and after acute UV stress in neuroblastoma cells. We propose that the increased nELAVL/Y RNA association during stress may lead to nELAVL sequestration, redistribution of nELAVL target binding, and altered neuronal RNA splicing. PMID:26894958

  6. Regulatory consequences of neuronal ELAV-like protein binding to coding and non-coding RNAs in human brain

    PubMed Central

    Scheckel, Claudia; Drapeau, Elodie; Frias, Maria A; Park, Christopher Y; Fak, John; Zucker-Scharff, Ilana; Kou, Yan; Haroutunian, Vahram; Ma'ayan, Avi

    2016-01-01

    Neuronal ELAV-like (nELAVL) RNA binding proteins have been linked to numerous neurological disorders. We performed crosslinking-immunoprecipitation and RNAseq on human brain, and identified nELAVL binding sites on 8681 transcripts. Using knockout mice and RNAi in human neuroblastoma cells, we showed that nELAVL intronic and 3' UTR binding regulates human RNA splicing and abundance. We validated hundreds of nELAVL targets among which were important neuronal and disease-associated transcripts, including Alzheimer's disease (AD) transcripts. We therefore investigated RNA regulation in AD brain, and observed differential splicing of 150 transcripts, which in some cases correlated with differential nELAVL binding. Unexpectedly, the most significant change of nELAVL binding was evident on non-coding Y RNAs. nELAVL/Y RNA complexes were specifically remodeled in AD and after acute UV stress in neuroblastoma cells. We propose that the increased nELAVL/Y RNA association during stress may lead to nELAVL sequestration, redistribution of nELAVL target binding, and altered neuronal RNA splicing. DOI: http://dx.doi.org/10.7554/eLife.10421.001 PMID:26894958

  7. Selected Systems Engineering Process Deficiencies and Their Consequences

    NASA Technical Reports Server (NTRS)

    Thomas, Lawrence Dale

    2006-01-01

    The systems engineering process is well established and well understood. While this statement could be argued in the light of the many systems engineering guidelines and that have been developed, comparative review of these respective descriptions reveal that they differ primarily in the number of discrete steps or other nuances, and are at their core essentially common. Likewise, the systems engineering textbooks differ primarily in the context for application of systems engineering or in the utilization of evolved tools and techniques, not in the basic method. Thus, failures in systems engineering cannot credibly be attributed to implementation of the wrong systems engineering process among alternatives. However, numerous systems failures can be attributed to deficient implementation of the systems engineering process. What may clearly be perceived as a system engineering deficiency in retrospect can appear to be a well considered system engineering efficiency in real time - an efficiency taken to reduce cost or meet a schedule, or more often both. Typically these efficiencies are grounded on apparently solid rationale, such as reuse of heritage hardware or software. Over time, unintended consequences of a systems engineering process deficiency may begin to be realized, and unfortunately often the consequence is system failure. This paper describes several actual cases of system failures that resulted from deficiencies in their systems engineering process implementation, including the Ariane 5 and the Hubble Space Telescope.

  8. Parents' Cultural Belief Systems: Their Origins, Expressions, and Consequences.

    ERIC Educational Resources Information Center

    Harkness, Sara, Ed.; Super, Charles M., Ed.

    This volume presents observations and thinking of scholars from a variety of disciplines about parental cultural belief systems. The chapters are concerned with the sources and consequences of parental ethnotheories in a number of societies. The following chapters are included: (1) "Introduction" (Sara Harkness and Charles M. Super); (2) "Parents'…

  9. System code requirements for SBWR LOCA predictions

    SciTech Connect

    Rohatgi, U.S.; Slovik, G.; Kroeger, P.

    1994-12-31

    The simplified boiling water reactor (SBWR) is the latest design in the family of boiling water reactors (BWRs) from General Electric. The concept is based on many innovative, passive, safety systems that rely on naturally occurring phenomena, such as natural circulation, gravity flows, and condensation. Reliability has been improved by eliminating active systems such as pumps and valves. The reactor pressure vessel (RPV) is connected to heat exchangers submerged in individual water tanks, which are open to atmosphere. These heat exchanger, or isolation condensers (ICs), provide a heat sink to reduce the RPV pressure when isolated. The RPV is also connected to three elevated tanks of water called the gravity-driven cooling system (GDCS). During a loss-of-coolant accident (LOCA), the RPV is depressurized by the automatic depressurization system (ADS), allowing the gravity-driven flow from the GDCS tanks. The containment pressure is controlled by a passive containment cooling system (PCCS) and suppression pool. Similarly, there are new plant protection systems in the SBWR, such as fine-motion control rod drive, passive standby liquid control system, and the automatic feedwater runback system. These safety and plant protection systems respond to phenomena that are different from previous BWR designs. System codes must be upgraded to include models for the phenomena expected during transients for the SBWR.

  10. System analysis of bar code laser scanner

    NASA Astrophysics Data System (ADS)

    Wang, Jianpu; Chen, Zhaofeng; Lu, Zukang

    1996-10-01

    This paper focuses on realizing the three important aspects of bar code scanner: generating a high quality scanning light beam, acquiring a fairly even distribution characteristic of light collection, achieving a low signal dynamic range over a large depth of field. To do this, we analyze the spatial distribution and propagation characteristics of scanning laser beam, the vignetting characteristic of optical collection system and their respective optimal design; propose a novel optical automatic gain control method to attain a constant collection over a large working depth.

  11. Methods for nuclear air-cleaning-system accident-consequence assessment

    SciTech Connect

    Andrae, R.W.; Bolstad, J.W.; Gregory, W.S.

    1982-01-01

    This paper describes a multilaboratory research program that is directed toward addressing many questions that analysts face when performing air cleaning accident consequence assessments. The program involves developing analytical tools and supportive experimental data that will be useful in making more realistic assessments of accident source terms within and up to the atmospheric boundaries of nuclear fuel cycle facilities. The types of accidents considered in this study includes fires, explosions, spills, tornadoes, criticalities, and equipment failures. The main focus of the program is developing an accident analysis handbook (AAH). We will describe the contents of the AAH, which include descriptions of selected nuclear fuel cycle facilities, process unit operations, source-term development, and accident consequence analyses. Three computer codes designed to predict gas and material propagation through facility air cleaning systems are described. These computer codes address accidents involving fires (FIRAC), explosions (EXPAC), and tornadoes (TORAC). The handbook relies on many illustrative examples to show the analyst how to approach accident consequence assessments. We will use the FIRAC code and a hypothetical fire scenario to illustrate the accident analysis capability.

  12. SINFAC - SYSTEMS IMPROVED NUMERICAL FLUIDS ANALYSIS CODE

    NASA Technical Reports Server (NTRS)

    Costello, F. A.

    1994-01-01

    The Systems Improved Numerical Fluids Analysis Code, SINFAC, consists of additional routines added to the April 1983 revision of SINDA, a general thermal analyzer program. The purpose of the additional routines is to allow for the modeling of active heat transfer loops. The modeler can simulate the steady-state and pseudo-transient operations of 16 different heat transfer loop components including radiators, evaporators, condensers, mechanical pumps, reservoirs and many types of valves and fittings. In addition, the program contains a property analysis routine that can be used to compute the thermodynamic properties of 20 different refrigerants. SINFAC can simulate the response to transient boundary conditions. SINFAC was first developed as a method for computing the steady-state performance of two phase systems. It was then modified using CNFRWD, SINDA's explicit time-integration scheme, to accommodate transient thermal models. However, SINFAC cannot simulate pressure drops due to time-dependent fluid acceleration, transient boil-out, or transient fill-up, except in the accumulator. SINFAC also requires the user to be familiar with SINDA. The solution procedure used by SINFAC is similar to that which an engineer would use to solve a system manually. The solution to a system requires the determination of all of the outlet conditions of each component such as the flow rate, pressure, and enthalpy. To obtain these values, the user first estimates the inlet conditions to the first component of the system, then computes the outlet conditions from the data supplied by the manufacturer of the first component. The user then estimates the temperature at the outlet of the third component and computes the corresponding flow resistance of the second component. With the flow resistance of the second component, the user computes the conditions down stream, namely the inlet conditions of the third. The computations follow for the rest of the system, back to the first component

  13. The radiological assessment system for consequence analysis - RASCAL

    SciTech Connect

    Sjoreen, A.L.; Ramsdell, J.V.; Athey, G.F.

    1996-04-01

    The Radiological Assessment System for Consequence Analysis, Version 2.1 (RASCAL 2.1) has been developed for use during a response to radiological emergencies. The model estimates doses for comparison with U.S. Environmental Protection Agency (EPA) Protective Action Guides (PAGs) and thresholds for acute health effects. RASCAL was designed to be used by U.S. Nuclear Regulatory Commission (NRC) personnel who report to the site of a nuclear accident to conduct an independent evaluation of dose and consequence projections and personnel who conduct training and drills on emergency responses. It allows consideration of the dominant aspects of the source term, transport, dose, and consequences. RASCAL consists of three computational tools: ST-DOSE, FM-DOSE, and DECAY. ST-DOSE computes source term, atmospheric transport, and dose to man from accidental airborne releases of radionuclides. The source-term calculations are appropriate for accidents at U.S. power reactors. FM-DOSE computes doses from environmental concentrations of radionuclides in the air and on the ground. DECAY computes radiological decay and daughter in-growth. RASCAL 2.1 is a DOS application that can be run under Windows 3.1 and 95. RASCAL has been the starting point for other accident consequence models, notably INTERRAS, an international version of RASCAL, and HASCAL, an expansion of RASCAL that will model radiological, biological, and chemical accidents.

  14. Layered Low-Density Generator Matrix Codes for Super High Definition Scalable Video Coding System

    NASA Astrophysics Data System (ADS)

    Tonomura, Yoshihide; Shirai, Daisuke; Nakachi, Takayuki; Fujii, Tatsuya; Kiya, Hitoshi

    In this paper, we introduce layered low-density generator matrix (Layered-LDGM) codes for super high definition (SHD) scalable video systems. The layered-LDGM codes maintain the correspondence relationship of each layer from the encoder side to the decoder side. This resulting structure supports partial decoding. Furthermore, the proposed layered-LDGM codes create highly efficient forward error correcting (FEC) data by considering the relationship between each scalable component. Therefore, the proposed layered-LDGM codes raise the probability of restoring the important components. Simulations show that the proposed layered-LDGM codes offer better error resiliency than the existing method which creates FEC data for each scalable component independently. The proposed layered-LDGM codes support partial decoding and raise the probability of restoring the base component. These characteristics are very suitable for scalable video coding systems.

  15. Optical code division multiple access secure communications systems with rapid reconfigurable polarization shift key user code

    NASA Astrophysics Data System (ADS)

    Gao, Kaiqiang; Wu, Chongqing; Sheng, Xinzhi; Shang, Chao; Liu, Lanlan; Wang, Jian

    2015-09-01

    An optical code division multiple access (OCDMA) secure communications system scheme with rapid reconfigurable polarization shift key (Pol-SK) bipolar user code is proposed and demonstrated. Compared to fix code OCDMA, by constantly changing the user code, the performance of anti-eavesdropping is greatly improved. The Pol-SK OCDMA experiment with a 10 Gchip/s user code and a 1.25 Gb/s user data of payload has been realized, which means this scheme has better tolerance and could be easily realized.

  16. Vision aided inertial navigation system augmented with a coded aperture

    NASA Astrophysics Data System (ADS)

    Morrison, Jamie R.

    Navigation through a three-dimensional indoor environment is a formidable challenge for an autonomous micro air vehicle. A main obstacle to indoor navigation is maintaining a robust navigation solution (i.e. air vehicle position and attitude estimates) given the inadequate access to satellite positioning information. A MEMS (micro-electro-mechanical system) based inertial navigation system provides a small, power efficient means of maintaining a vehicle navigation solution; however, unmitigated error propagation from relatively noisy MEMS sensors results in the loss of a usable navigation solution over a short period of time. Several navigation systems use camera imagery to diminish error propagation by measuring the direction to features in the environment. Changes in feature direction provide information regarding direction for vehicle movement, but not the scale of movement. Movement scale information is contained in the depth to the features. Depth-from-defocus is a classic technique proposed to derive depth from a single image that involves analysis of the blur inherent in a scene with a narrow depth of field. A challenge to this method is distinguishing blurriness caused by the focal blur from blurriness inherent to the observed scene. In 2007, MIT's Computer Science and Artificial Intelligence Laboratory demonstrated replacing the traditional rounded aperture with a coded aperture to produce a complex blur pattern that is more easily distinguished from the scene. A key to measuring depth using a coded aperture then is to correctly match the blur pattern in a region of the scene with a previously determined set of blur patterns for known depths. As the depth increases from the focal plane of the camera, the observable change in the blur pattern for small changes in depth is generally reduced. Consequently, as the depth of a feature to be measured using a depth-from-defocus technique increases, the measurement performance decreases. However, a Fresnel zone

  17. EquiFACS: The Equine Facial Action Coding System.

    PubMed

    Wathan, Jen; Burrows, Anne M; Waller, Bridget M; McComb, Karen

    2015-01-01

    Although previous studies of horses have investigated their facial expressions in specific contexts, e.g. pain, until now there has been no methodology available that documents all the possible facial movements of the horse and provides a way to record all potential facial configurations. This is essential for an objective description of horse facial expressions across a range of contexts that reflect different emotional states. Facial Action Coding Systems (FACS) provide a systematic methodology of identifying and coding facial expressions on the basis of underlying facial musculature and muscle movement. FACS are anatomically based and document all possible facial movements rather than a configuration of movements associated with a particular situation. Consequently, FACS can be applied as a tool for a wide range of research questions. We developed FACS for the domestic horse (Equus caballus) through anatomical investigation of the underlying musculature and subsequent analysis of naturally occurring behaviour captured on high quality video. Discrete facial movements were identified and described in terms of the underlying muscle contractions, in correspondence with previous FACS systems. The reliability of others to be able to learn this system (EquiFACS) and consistently code behavioural sequences was high--and this included people with no previous experience of horses. A wide range of facial movements were identified, including many that are also seen in primates and other domestic animals (dogs and cats). EquiFACS provides a method that can now be used to document the facial movements associated with different social contexts and thus to address questions relevant to understanding social cognition and comparative psychology, as well as informing current veterinary and animal welfare practices. PMID:26244573

  18. EquiFACS: The Equine Facial Action Coding System

    PubMed Central

    Wathan, Jen; Burrows, Anne M.; Waller, Bridget M.; McComb, Karen

    2015-01-01

    Although previous studies of horses have investigated their facial expressions in specific contexts, e.g. pain, until now there has been no methodology available that documents all the possible facial movements of the horse and provides a way to record all potential facial configurations. This is essential for an objective description of horse facial expressions across a range of contexts that reflect different emotional states. Facial Action Coding Systems (FACS) provide a systematic methodology of identifying and coding facial expressions on the basis of underlying facial musculature and muscle movement. FACS are anatomically based and document all possible facial movements rather than a configuration of movements associated with a particular situation. Consequently, FACS can be applied as a tool for a wide range of research questions. We developed FACS for the domestic horse (Equus caballus) through anatomical investigation of the underlying musculature and subsequent analysis of naturally occurring behaviour captured on high quality video. Discrete facial movements were identified and described in terms of the underlying muscle contractions, in correspondence with previous FACS systems. The reliability of others to be able to learn this system (EquiFACS) and consistently code behavioural sequences was high—and this included people with no previous experience of horses. A wide range of facial movements were identified, including many that are also seen in primates and other domestic animals (dogs and cats). EquiFACS provides a method that can now be used to document the facial movements associated with different social contexts and thus to address questions relevant to understanding social cognition and comparative psychology, as well as informing current veterinary and animal welfare practices. PMID:26244573

  19. Multigroup Complex Geometry Neutron Diffusion Code System.

    Energy Science and Technology Software Center (ESTSC)

    2002-12-18

    Version 01 SNAP-3D is based on SNAP2 and is a one- two- or three-dimensional multigroup diffusion code system. It is primarily intended for neutron diffusion calculations, but it can also carry out gamma-ray calculations if the diffusion approximation is accurate enough. It is suitable for fast and thermal reactor core calculations and for shield calculations. SNAP-3D can solve the multi-group neutron diffusion equations using finite difference methods in (x,y,z), (r,theta,z), (TRI,z), (HEX,z) or (spherical) coordinates.more » The one-dimensional slab and cylindrical geometries and the two-dimensional (x,y), (r,z), (r,theta), (HEX) and (TRI) are all treated as simple special cases of three-dimensional geometries. Numerous reflective and periodic symmetry options are available and may be used to reduce the number of mesh points necessary to represent the system. Extrapolation lengths can be specified at internal and external boundaries. The problem classes are: 1) eigenvalue search for critical k-effective, 2) eigenvalue search for critical buckling, 3) eigenvalue search for critical time-constant, 4) fixed source problems in which the sources are functions of regions, 5) fixed source problems in which the sources are provided, on disc, for every mesh point and group.« less

  20. The effects of Reed-Solomon code shortening on the performance of coded telemetry systems

    NASA Technical Reports Server (NTRS)

    Deutsch, L. J.

    1983-01-01

    The theory of Reed-Solomon code shortening in general was developed and the degradation due to shortening in the context of concatenated coding was qualified. It is shown that in the NASA/ESA concatenated system, significant degradations occur only when N 180. A Reed-Solomon code was concatenated with an inner (7, 1/2) convolutional code. Under some circumstances, it would be desirable to use a shorter outer code word length. For example, the format of the data coming from science instruments on board a spacecraft may lend itself naturally to a word length of 200 symbols rather than 223. To accommodate such code word lengths, the Reed-Solomon code can be shortened to an (N, N-32) code where N can be any integer between 33 and 255. Shortening the code, however, changes its performance. On one hand, the amount of redundancy per information symbol increases. Because of this increased redundancy, the amount of energy per information symbol is decreased by code shortening. The overall effect is to degrade the performance of the code.

  1. The Therapy Process Observational Coding System for Child Psychotherapy Strategies Scale

    ERIC Educational Resources Information Center

    McLeod, Bryce D.; Weisz, John R.

    2010-01-01

    Most everyday child and adolescent psychotherapy does not follow manuals that document the procedures. Consequently, usual clinical care has remained poorly understood and rarely studied. The Therapy Process Observational Coding System for Child Psychotherapy-Strategies scale (TPOCS-S) is an observational measure of youth psychotherapy procedures…

  2. Communication Systems Simulator with Error Correcting Codes Using MATLAB

    ERIC Educational Resources Information Center

    Gomez, C.; Gonzalez, J. E.; Pardo, J. M.

    2003-01-01

    In this work, the characteristics of a simulator for channel coding techniques used in communication systems, are described. This software has been designed for engineering students in order to facilitate the understanding of how the error correcting codes work. To help students understand easily the concepts related to these kinds of codes, a…

  3. Hardware-based JPEG 2000 video coding system

    NASA Astrophysics Data System (ADS)

    Schuchter, Arthur R.; Uhl, Andreas

    2007-02-01

    In this paper, we discuss a hardware based low complexity JPEG 2000 video coding system. The hardware system is based on a software simulation system, where temporal redundancy is exploited by coding of differential frames which are arranged in an adaptive GOP structure whereby the GOP structure itself is determined by statistical analysis of differential frames. We present a hardware video coding architecture which applies this inter-frame coding system to a Digital Signal Processor (DSP). The system consists mainly of a microprocessor (ADSP-BF533 Blackfin Processor) and a JPEG 2000 chip (ADV202).

  4. Deductive Glue Code Synthesis for Embedded Software Systems Based on Code Patterns

    NASA Technical Reports Server (NTRS)

    Liu, Jian; Fu, Jicheng; Zhang, Yansheng; Bastani, Farokh; Yen, I-Ling; Tai, Ann; Chau, Savio N.

    2006-01-01

    Automated code synthesis is a constructive process that can be used to generate programs from specifications. It can, thus, greatly reduce the software development cost and time. The use of formal code synthesis approach for software generation further increases the dependability of the system. Though code synthesis has many potential benefits, the synthesis techniques are still limited. Meanwhile, components are widely used in embedded system development. Applying code synthesis to component based software development (CBSD) process can greatly enhance the capability of code synthesis while reducing the component composition efforts. In this paper, we discuss the issues and techniques for applying deductive code synthesis techniques to CBSD. For deductive synthesis in CBSD, a rule base is the key for inferring appropriate component composition. We use the code patterns to guide the development of rules. Code patterns have been proposed to capture the typical usages of the components. Several general composition operations have been identified to facilitate systematic composition. We present the technique for rule development and automated generation of new patterns from existing code patterns. A case study of using this method in building a real-time control system is also presented.

  5. Universal optical line terminal encoding and decoding architecture in two-code keying for noncoherent spectral amplitude coding optical code division multiple access systems

    NASA Astrophysics Data System (ADS)

    Yeh, Bih-Chyun; Lin, Cheing-Hong; Yang, De-Nian

    2014-01-01

    We propose a new code family, called extended shifted prime codes, and the universal encoding architecture for spectral amplitude coding optical code division multiple access systems using a two-code keying scheme. The proposed system can eliminate multiuser interference and suppress phase-induced intensity noise. In addition, we design the ESP codes to be an encoding/decoding architecture based on the array waveguide grating architecture and reduce the power loss and the complexity of the optical line terminal. The numerical results demonstrate that the proposed system with ESP codes outperforms the existing one-dimensional shifted prime codes system.

  6. Channel coding in the space station data system network

    NASA Technical Reports Server (NTRS)

    Healy, T.

    1982-01-01

    A detailed discussion of the use of channel coding for error correction, privacy/secrecy, channel separation, and synchronization is presented. Channel coding, in one form or another, is an established and common element in data systems. No analysis and design of a major new system would fail to consider ways in which channel coding could make the system more effective. The presence of channel coding on TDRS, Shuttle, the Advanced Communication Technology Satellite Program system, the JSC-proposed Space Operations Center, and the proposed 30/20 GHz Satellite Communication System strongly support the requirement for the utilization of coding for the communications channel. The designers of the space station data system have to consider the use of channel coding.

  7. Recent developments in the Los Alamos radiation transport code system

    SciTech Connect

    Forster, R.A.; Parsons, K.

    1997-06-01

    A brief progress report on updates to the Los Alamos Radiation Transport Code System (LARTCS) for solving criticality and fixed-source problems is provided. LARTCS integrates the Diffusion Accelerated Neutral Transport (DANT) discrete ordinates codes with the Monte Carlo N-Particle (MCNP) code. The LARCTS code is being developed with a graphical user interface for problem setup and analysis. Progress in the DANT system for criticality applications include a two-dimensional module which can be linked to a mesh-generation code and a faster iteration scheme. Updates to MCNP Version 4A allow statistical checks of calculated Monte Carlo results.

  8. Automatic counterfeit protection system code classification

    NASA Astrophysics Data System (ADS)

    Van Beusekom, Joost; Schreyer, Marco; Breuel, Thomas M.

    2010-01-01

    Wide availability of cheap high-quality printing techniques make document forgery an easy task that can easily be done by most people using standard computer and printing hardware. To prevent the use of color laser printers or color copiers for counterfeiting e.g. money or other valuable documents, many of these machines print Counterfeit Protection System (CPS) codes on the page. These small yellow dots encode information about the specific printer and allow the questioned document examiner in cooperation with the manufacturers to track down the printer that was used to generate the document. However, the access to the methods to decode the tracking dots pattern is restricted. The exact decoding of a tracking pattern is often not necessary, as tracking the pattern down to the printer class may be enough. In this paper we present a method that detects what CPS pattern class was used in a given document. This can be used to specify the printer class that the document was printed on. Evaluation proved an accuracy of up to 91%.

  9. High rate concatenated coding systems using bandwidth efficient trellis inner codes

    NASA Astrophysics Data System (ADS)

    Deng, Robert H.; Costello, Daniel J., Jr.

    1989-05-01

    High-rate concatenated coding systems with bandwidth-efficient trellis inner codes and Reed-Solomon (RS) outer codes are investigated for application in high-speed satellite communication systems. Two concatenated coding schemes are proposed. In one the inner code is decoded with soft-decision Viterbi decoding, and the outer RS code performs error-correction-only decoding (decoding without side information). In the other, the inner code is decoded with a modified Viterbi algorithm, which produces reliability information along with the decoded output. In this algorithm, path metrics are used to estimate the entire information sequence, whereas branch metrics are used to provide reliability information on the decoded sequence. This information is used to erase unreliable bits in the decoded output. An errors-and-erasures RS decoder is then used for the outer code. The two schemes have been proposed for high-speed data communication on NASA satellite channels. The rates considered are at least double those used in current NASA systems, and the results indicate that high system reliability can still be achieved.

  10. CORA - A Semiautomatic Coding System Application to the Coding of Markush Formulas

    ERIC Educational Resources Information Center

    Deforeit, Huguette; And Others

    1972-01-01

    A computer system, named CORA, has been devised for coding chemical structures by fragmentation elements. It has been used to encode Markush formulas in patents according to the Ring codes used in the Ringdoc and Pestdoc services and results in an easy, speedy, reliable and inexpensive method. (4 references) (Author)

  11. Electronics in cars: consequences for the energy-supply system

    NASA Astrophysics Data System (ADS)

    Beil, Falk

    The amount of electronics in cars is constantly increasing. Thus, the question arises, whether the current wiring designs will continue to be able to meet the required output related to this increase in the future. Which consequences result, then, for the design of the wiring system and its components? An examination of the electrical consumers currently installed in motor vehicles, and of those planned for future use, shows that the wiring system load during driving will increase to as much as 2000 W. Many new devices, such as the telephone, will also enjoy increasing use while the vehicle is at a standstill, which will result in the type of wiring system load changing in the future. In addition to this, loading will increase due to greater traffic density; the vehicle will be operated more often at idling speed, leading to a reduction in the available current. Thus, a balanced current supply can no longer be ensured with present designs. That means new energy supply concepts are required, e.g. the 24 V wiring system and energy management. In addition, the wiring system components must be optimized. This particularly applies to the battery, which must be further developed in order to obtain increased cell strength, a longer service life and improved temperature stability.

  12. Modern Nuclear Data Evaluation with the TALYS Code System

    SciTech Connect

    Koning, A.J.; Rochman, D.

    2012-12-15

    This paper presents a general overview of nuclear data evaluation and its applications as developed at NRG, Petten. Based on concepts such as robustness, reproducibility and automation, modern calculation tools are exploited to produce original nuclear data libraries that meet the current demands on quality and completeness. This requires a system which comprises differential measurements, theory development, nuclear model codes, resonance analysis, evaluation, ENDF formatting, data processing and integral validation in one integrated approach. Software, built around the TALYS code, will be presented in which all these essential nuclear data components are seamlessly integrated. Besides the quality of the basic data and its extensive format testing, a second goal lies in the diversity of processing for different type of users. The implications of this scheme are unprecedented. The most important are: 1. Complete ENDF-6 nuclear data files, in the form of the TENDL library, including covariance matrices, for many isotopes, particles, energies, reaction channels and derived quantities. All isotopic data files are mutually consistent and are supposed to rival those of the major world libraries. 2. More exact uncertainty propagation from basic nuclear physics to applied (reactor) calculations based on a Monte Carlo approach: 'Total' Monte Carlo (TMC), using random nuclear data libraries. 3. Automatic optimization in the form of systematic feedback from integral measurements back to the basic data. This method of work also opens a new way of approaching the analysis of nuclear applications, with consequences in both applied nuclear physics and safety of nuclear installations, and several examples are given here. This applied experience and feedback is integrated in a final step to improve the quality of the nuclear data, to change the users vision and finally to orchestrate their integration into simulation codes.

  13. Los Alamos radiation transport code system on desktop computing platforms

    SciTech Connect

    Briesmeister, J.F.; Brinkley, F.W.; Clark, B.A.; West, J.T. )

    1990-01-01

    The Los Alamos Radiation Transport Code System (LARTCS) consists of state-of-the-art Monte Carlo and discrete ordinates transport codes and data libraries. These codes were originally developed many years ago and have undergone continual improvement. With a large initial effort and continued vigilance, the codes are easily portable from one type of hardware to another. The performance of scientific work-stations (SWS) has evolved to the point that such platforms can be used routinely to perform sophisticated radiation transport calculations. As the personal computer (PC) performance approaches that of the SWS, the hardware options for desk-top radiation transport calculations expands considerably. The current status of the radiation transport codes within the LARTCS is described: MCNP, SABRINA, LAHET, ONEDANT, TWODANT, TWOHEX, and ONELD. Specifically, the authors discuss hardware systems on which the codes run and present code performance comparisons for various machines.

  14. ARAC: A flexible real-time dose consequence assessment system

    SciTech Connect

    Ellis, J.S.; Sullivan, T.J.

    1993-10-07

    Since its beginning, the Atmospheric Release Advisory Capability (ARAC), an emergency radiological dose assessment service of the US Government, has been called on to do consequence assessments for releases into the atmosphere of radionuclides and a variety of other substances. Some of the more noteworthy emergency responses have been for the Three Mile Island and Chernobyl nuclear power reactor accidents, and more recently, for a cloud of gases from a rail-car spill into the Sacramento river of the herbicide metam sodium, smoke from hundreds of burning oil wells in Kuwait, and ash clouds from the eruption of Mt. Pinatubo. The spatial scales of these responses range from local, to regional, to global, and the response periods from hours, to weeks, to months. Because of the variety of requirements of each unique assessment, ARAC has developed and maintains a flexible system of people, computer software and hardware.

  15. FORTRAN Automated Code Evaluation System (FACES) user's manual, version 2

    NASA Technical Reports Server (NTRS)

    1975-01-01

    A system which provides analysis services for FORTRAN based software systems not normally available from system software is presented. The system is not a compiler, and compiler syntax diagnostics are not duplicated. For maximum adaptation to FORTRAN dialects, the code presented to the system is assumed to be compiler acceptable. The system concentrates on acceptable FORTRAN code features which are likely to produce undesirable results and identifies potential trouble areas before they become execution time malfunctions.

  16. Generalized optical code construction for enhanced and Modified Double Weight like codes without mapping for SAC-OCDMA systems

    NASA Astrophysics Data System (ADS)

    Kumawat, Soma; Ravi Kumar, M.

    2016-07-01

    Double Weight (DW) code family is one of the coding schemes proposed for Spectral Amplitude Coding-Optical Code Division Multiple Access (SAC-OCDMA) systems. Modified Double Weight (MDW) code for even weights and Enhanced Double Weight (EDW) code for odd weights are two algorithms extending the use of DW code for SAC-OCDMA systems. The above mentioned codes use mapping technique to provide codes for higher number of users. A new generalized algorithm to construct EDW and MDW like codes without mapping for any weight greater than 2 is proposed. A single code construction algorithm gives same length increment, Bit Error Rate (BER) calculation and other properties for all weights greater than 2. Algorithm first constructs a generalized basic matrix which is repeated in a different way to produce the codes for all users (different from mapping). The generalized code is analysed for BER using balanced detection and direct detection techniques.

  17. Coding and transformations in the olfactory system.

    PubMed

    Uchida, Naoshige; Poo, Cindy; Haddad, Rafi

    2014-01-01

    How is sensory information represented in the brain? A long-standing debate in neural coding is whether and how timing of spikes conveys information to downstream neurons. Although we know that neurons in the olfactory bulb (OB) exhibit rich temporal dynamics, the functional relevance of temporal coding remains hotly debated. Recent recording experiments in awake behaving animals have elucidated highly organized temporal structures of activity in the OB. In addition, the analysis of neural circuits in the piriform cortex (PC) demonstrated the importance of not only OB afferent inputs but also intrinsic PC neural circuits in shaping odor responses. Furthermore, new experiments involving stimulation of the OB with specific temporal patterns allowed for testing the relevance of temporal codes. Together, these studies suggest that the relative timing of neuronal activity in the OB conveys odor information and that neural circuits in the PC possess various mechanisms to decode temporal patterns of OB input. PMID:24905594

  18. TDRSS telecommunications system, PN code analysis

    NASA Technical Reports Server (NTRS)

    Dixon, R.; Gold, R.; Kaiser, F.

    1976-01-01

    The pseudo noise (PN) codes required to support the TDRSS telecommunications services are analyzed and the impact of alternate coding techniques on the user transponder equipment, the TDRSS equipment, and all factors that contribute to the acquisition and performance of these telecommunication services is assessed. Possible alternatives to the currently proposed hybrid FH/direct sequence acquisition procedures are considered and compared relative to acquisition time, implementation complexity, operational reliability, and cost. The hybrid FH/direct sequence technique is analyzed and rejected in favor of a recommended approach which minimizes acquisition time and user transponder complexity while maximizing probability of acquisition and overall link reliability.

  19. Bar-Code System for a Microbiological Laboratory

    NASA Technical Reports Server (NTRS)

    Law, Jennifer; Kirschner, Larry

    2007-01-01

    A bar-code system has been assembled for a microbiological laboratory that must examine a large number of samples. The system includes a commercial bar-code reader, computer hardware and software components, plus custom-designed database software. The software generates a user-friendly, menu-driven interface.

  20. Digital system detects binary code patterns containing errors

    NASA Technical Reports Server (NTRS)

    Muller, R. M.; Tharpe, H. M., Jr.

    1966-01-01

    System of square loop magnetic cores associated with code input registers to react to input code patterns by reference to a group of control cores in such a manner that errors are canceled and patterns containing errors are accepted for amplification and processing. This technique improves reception capabilities in PCM telemetry systems.

  1. Performance Analysis of Optical Code Division Multiplex System

    NASA Astrophysics Data System (ADS)

    Kaur, Sandeep; Bhatia, Kamaljit Singh

    2013-12-01

    This paper presents the Pseudo-Orthogonal Code generator for Optical Code Division Multiple Access (OCDMA) system which helps to reduce the need of bandwidth expansion and improve spectral efficiency. In this paper we investigate the performance of multi-user OCDMA system to achieve data rate more than 1 Tbit/s.

  2. Throughput of Coded Optical CDMA Systems with AND Detectors

    NASA Astrophysics Data System (ADS)

    Memon, Kehkashan A.; Umrani, Fahim A.; Umrani, A. W.; Umrani, Naveed A.

    2012-09-01

    Conventional detection techniques used in optical code-division multiple access (OCDMA) systems are not optimal and result in poor bit error rate performance. This paper analyzes the coded performance of optical CDMA systems with AND detectors for enhanced throughput efficiencies and improved error rate performance. The results show that the use of AND detectors significantly improve the performance of an optical channel.

  3. Identification coding schemes for modulated reflectance systems

    DOEpatents

    Coates, Don M.; Briles, Scott D.; Neagley, Daniel L.; Platts, David; Clark, David D.

    2006-08-22

    An identifying coding apparatus employing modulated reflectance technology involving a base station emitting a RF signal, with a tag, located remotely from the base station, and containing at least one antenna and predetermined other passive circuit components, receiving the RF signal and reflecting back to the base station a modulated signal indicative of characteristics related to the tag.

  4. Wind turbine control systems: Dynamic model development using system identification and the fast structural dynamics code

    SciTech Connect

    Stuart, J.G.; Wright, A.D.; Butterfield, C.P.

    1996-10-01

    Mitigating the effects of damaging wind turbine loads and responses extends the lifetime of the turbine and, consequently, reduces the associated Cost of Energy (COE). Active control of aerodynamic devices is one option for achieving wind turbine load mitigation. Generally speaking, control system design and analysis requires a reasonable dynamic model of {open_quotes}plant,{close_quotes} (i.e., the system being controlled). This paper extends the wind turbine aileron control research, previously conducted at the National Wind Technology Center (NWTC), by presenting a more detailed development of the wind turbine dynamic model. In prior research, active aileron control designs were implemented in an existing wind turbine structural dynamics code, FAST (Fatigue, Aerodynamics, Structures, and Turbulence). In this paper, the FAST code is used, in conjunction with system identification, to generate a wind turbine dynamic model for use in active aileron control system design. The FAST code is described and an overview of the system identification technique is presented. An aileron control case study is used to demonstrate this modeling technique. The results of the case study are then used to propose ideas for generalizing this technique for creating dynamic models for other wind turbine control applications.

  5. RELAP5/MOD3 code manual: Code structure, system models, and solution methods. Volume 1

    SciTech Connect

    1995-08-01

    The RELAP5 code has been developed for best estimate transient simulation of light water reactor coolant systems during postulated accidents. The code models the coupled behavior of the reactor coolant system and the core for loss-of-coolant accidents, and operational transients, such as anticipated transient without scram, loss of offsite power, loss of feedwater, and loss of flow. A generic modeling, approach is used that permits simulating a variety of thermal hydraulic systems. Control system and secondary system components are included to permit modeling of plant controls, turbines, condensers, and secondary feedwater systems. RELAP5/MOD3 code documentation is divided into seven volumes: Volume I provides modeling theory and associated numerical schemes.

  6. System Measures Errors Between Time-Code Signals

    NASA Technical Reports Server (NTRS)

    Cree, David; Venkatesh, C. N.

    1993-01-01

    System measures timing errors between signals produced by three asynchronous time-code generators. Errors between 1-second clock pulses resolved to 2 microseconds. Basic principle of computation of timing errors as follows: central processing unit in microcontroller constantly monitors time data received from time-code generators for changes in 1-second time-code intervals. In response to any such change, microprocessor buffers count of 16-bit internal timer.

  7. Interface requirements for coupling a containment code to a reactor system thermal hydraulic codes

    SciTech Connect

    Baratta, A.J.

    1997-07-01

    To perform a complete analysis of a reactor transient, not only the primary system response but the containment response must also be accounted for. Such transients and accidents as a loss of coolant accident in both pressurized water and boiling water reactors and inadvertent operation of safety relief valves all challenge the containment and may influence flows because of containment feedback. More recently, the advanced reactor designs put forth by General Electric and Westinghouse in the US and by Framatome and Seimens in Europe rely on the containment to act as the ultimate heat sink. Techniques used by analysts and engineers to analyze the interaction of the containment and the primary system were usually iterative in nature. Codes such as RELAP or RETRAN were used to analyze the primary system response and CONTAIN or CONTEMPT the containment response. The analysis was performed by first running the system code and representing the containment as a fixed pressure boundary condition. The flows were usually from the primary system to the containment initially and generally under choked conditions. Once the mass flows and timing are determined from the system codes, these conditions were input into the containment code. The resulting pressures and temperatures were then calculated and the containment performance analyzed. The disadvantage of this approach becomes evident when one performs an analysis of a rapid depressurization or a long term accident sequence in which feedback from the containment can occur. For example, in a BWR main steam line break transient, the containment heats up and becomes a source of energy for the primary system. Recent advances in programming and computer technology are available to provide an alternative approach. The author and other researchers have developed linkage codes capable of transferring data between codes at each time step allowing discrete codes to be coupled together.

  8. Development of tokamak reactor system analysis code NEW-TORSAC

    NASA Astrophysics Data System (ADS)

    Kasai, Masao; Ida, Toshio; Nishikawa, Masana; Kameari, Akihisa; Nishio, Satoshi; Tone, Tatsuzo

    1987-07-01

    A systems analysis code named NEW-TORSAC (TOkamak Reactor Systems Analysis Code) has been developed by modifying the TORSAC which had been already developed by us. The NEW-TORSAC is available for tokamak reactor designs and evaluations from experimental machines to commercial reactor plants. It has functions to design tokamaks automatically from plasma parameter setting to determining configurations of reactor equipments and calculating main characteristics parameters of auxiliary systems and the capital costs. In the case of analyzing tokamak reactor plants, the code can calculate busbar energy costs. In addition to numerical output, some output of this code such as a reactor configuration, plasma equilibrium, electro-magnetic forces, etc., are graphically displayed. The code has been successfully applied to the scoping studies of the next generation machines and commercial reactor plants.

  9. Code system to compute radiation dose in human phantoms

    SciTech Connect

    Ryman, J.C.; Cristy, M.; Eckerman, K.F.; Davis, J.L.; Tang, J.S.; Kerr, G.D.

    1986-01-01

    Monte Carlo photon transport code and a code using Monte Carlo integration of a point kernel have been revised to incorporate human phantom models for an adult female, juveniles of various ages, and a pregnant female at the end of the first trimester of pregnancy, in addition to the adult male used earlier. An analysis code has been developed for deriving recommended values of specific absorbed fractions of photon energy. The computer code system and calculational method are described, emphasizing recent improvements in methods. (LEW)

  10. Arithmetic coding as a non-linear dynamical system

    NASA Astrophysics Data System (ADS)

    Nagaraj, Nithin; Vaidya, Prabhakar G.; Bhat, Kishor G.

    2009-04-01

    In order to perform source coding (data compression), we treat messages emitted by independent and identically distributed sources as imprecise measurements (symbolic sequence) of a chaotic, ergodic, Lebesgue measure preserving, non-linear dynamical system known as Generalized Luröth Series (GLS). GLS achieves Shannon's entropy bound and turns out to be a generalization of arithmetic coding, a popular source coding algorithm, used in international compression standards such as JPEG2000 and H.264. We further generalize GLS to piecewise non-linear maps (Skewed-nGLS). We motivate the use of Skewed-nGLS as a framework for joint source coding and encryption.

  11. Finite-connectivity systems as error-correcting codes

    NASA Astrophysics Data System (ADS)

    Vicente, Renato; Saad, David; Kabashima, Yoshiyuki

    1999-11-01

    We investigate the performance of parity check codes using the mapping onto Ising spin systems proposed by Sourlas [Nature (London) 339, 693 (1989); Europhys. Lett. 25, 159 (1994)]. We study codes where each parity check comprises products of K bits selected from the original digital message with exactly C checks per message bit. We show, using the replica method, that these codes saturate Shannon's coding bound for K-->∞ when the code rate K/C is finite. We then examine the finite temperature case to assess the use of simulated annealing methods for decoding, study the performance of the finite K case, and extend the analysis to accommodate different types of noisy channels. The connection between statistical physics and belief propagation decoders is discussed and the dynamics of the decoding itself is analyzed. Further insight into new approaches for improving the code performance is given.

  12. Concatenated coding systems employing a unit-memory convolutional code and a byte-oriented decoding algorithm

    NASA Technical Reports Server (NTRS)

    Lee, L. N.

    1976-01-01

    Concatenated coding systems utilizing a convolutional code as the inner code and a Reed-Solomon code as the outer code are considered. In order to obtain very reliable communications over a very noisy channel with relatively small coding complexity, it is proposed to concatenate a byte oriented unit memory convolutional code with an RS outer code whose symbol size is one byte. It is further proposed to utilize a real time minimal byte error probability decoding algorithm, together with feedback from the outer decoder, in the decoder for the inner convolutional code. The performance of the proposed concatenated coding system is studied, and the improvement over conventional concatenated systems due to each additional feature is isolated.

  13. Concatenated coding systems employing a unit-memory convolutional code and a byte-oriented decoding algorithm

    NASA Technical Reports Server (NTRS)

    Lee, L.-N.

    1977-01-01

    Concatenated coding systems utilizing a convolutional code as the inner code and a Reed-Solomon code as the outer code are considered. In order to obtain very reliable communications over a very noisy channel with relatively modest coding complexity, it is proposed to concatenate a byte-oriented unit-memory convolutional code with an RS outer code whose symbol size is one byte. It is further proposed to utilize a real-time minimal-byte-error probability decoding algorithm, together with feedback from the outer decoder, in the decoder for the inner convolutional code. The performance of the proposed concatenated coding system is studied, and the improvement over conventional concatenated systems due to each additional feature is isolated.

  14. Vision-based reading system for color-coded bar codes

    NASA Astrophysics Data System (ADS)

    Schubert, Erhard; Schroeder, Axel

    1996-02-01

    Barcode systems are used to mark commodities, articles and products with price and article numbers. The advantage of the barcode systems is the safe and rapid availability of the information about the product. The size of the barcode depends on the used barcode system and the resolution of the barcode scanner. Nevertheless, there is a strong correlation between the information content and the length of the barcode. To increase the information content, new 2D-barcode systems like CodaBlock or PDF-417 are introduced. In this paper we present a different way to increase the information content of a barcode and we would like to introduce the color coded barcode. The new color coded barcode is created by offset printing of the three colored barcodes, each barcode with different information. Therefore, three times more information content can be accommodated in the area of a black printed barcode. This kind of color coding is usable in case of the standard 1D- and 2D-barcodes. We developed two reading devices for the color coded barcodes. First, there is a vision based system, consisting of a standard color camera and a PC-based color frame grabber. Omnidirectional barcode decoding is possible with this reading device. Second, a bi-directional handscanner was developed. Both systems use a color separation process to separate the color image of the barcodes into three independent grayscale images. In the case of the handscanner the image consists of one line only. After the color separation the three grayscale barcodes can be decoded with standard image processing methods. In principle, the color coded barcode can be used everywhere instead of the standard barcode. Typical applications with the color coded barcodes are found in the medicine technique, stock running and identification of electronic modules.

  15. MORSE Monte Carlo radiation transport code system

    SciTech Connect

    Emmett, M.B.

    1983-02-01

    This report is an addendum to the MORSE report, ORNL-4972, originally published in 1975. This addendum contains descriptions of several modifications to the MORSE Monte Carlo Code, replacement pages containing corrections, Part II of the report which was previously unpublished, and a new Table of Contents. The modifications include a Klein Nishina estimator for gamma rays. Use of such an estimator required changing the cross section routines to process pair production and Compton scattering cross sections directly from ENDF tapes and writing a new version of subroutine RELCOL. Another modification is the use of free form input for the SAMBO analysis data. This required changing subroutines SCORIN and adding new subroutine RFRE. References are updated, and errors in the original report have been corrected. (WHK)

  16. Performance results for a hybrid coding system.

    NASA Technical Reports Server (NTRS)

    Hoffman, L. B.

    1971-01-01

    Results of computer simulation studies of the hybrid pull-up bootstrap decoding algorithm, using a constraint length 24, nonsystematic, rate 1/2 convolutional code for the symmetric channel with both binary and eight-level quantized outputs. Computational performance was used to measure the effect of several decoder parameters and determine practical operating constraints. Results reveal that the track length may be reduced to 500 information bits with small degradation in performance. The optimum number of tracks per block was found to be in the range from 7 to 11. An effective technique was devised to efficiently allocate computational effort and identify reliably decoded data sections. Long simulations indicate that a practical bootstrap decoding configuration has a computational performance about 1.0 dB better than sequential decoding and an output bit error rate about .0000025 near the R sub comp point.

  17. CODING IN THE MAMMALIAN GUSTATORY SYSTEM

    PubMed Central

    Carleton, Alan; Accolla, Riccardo; Simon, Sidney A.

    2010-01-01

    To understand gustatory physiology and associated dysfunctions it is important to know how stimuli placed in the mouth are encoded both in the periphery and in taste-related brain centres. The identification of distinct taste receptors, together with electrophysiological recordings and behavioural assessments in response to taste stimuli, suggest that information about distinct taste modalities (e.g., sweet versus bitter) are transmitted from the periphery to the brain via segregated pathways. In contrast, gustatory neurons throughout the brain are more broadly tuned, indicating that ensembles of neurons encode taste qualities. Recent evidence reviewed here suggests that the coding of gustatory stimuli is not immutable, but is dependant on a variety of factors including appetite regulating molecules and associative learning. PMID:20493563

  18. BWR Core Heat Transfer Code System.

    Energy Science and Technology Software Center (ESTSC)

    1999-04-27

    Version 00 MOXY is used for the thermal analysis of a planar section of a boiling water reactor (BWR) fuel element during a loss-of-coolant accident (LOCA). The code emplyoys models that describe heat transfer by conduction, convection, and thermal radiation, and heat generation by metal-water reaction and fission product decay. Models are included for considering fuel-rod swelling and rupture, energy transport across the fuel-to-cladding gap, and the thermal response of the canister. MOXY requires thatmore » time-dependent data during the blowdown process for the power normalized to the steady-state power, for the heat-transfer coefficient, and for the fluid temperature be provided as input. Internal models provide these parameters during the heatup and emergency cooling phases.« less

  19. Code System for Spent Fuel Heating Analysis.

    Energy Science and Technology Software Center (ESTSC)

    1999-05-24

    Version 00 SFHA calculates steady-state fuel rod temperatures for hexagon and square-fuel bundles. The code is used to perform sensitivity studies and confirmatory analyses of results submitted by applicants for spent fuel storage licenses. All three modes of heat transfer are considered; radiation, convection, and conduction. Each is modeled separately. SFHA benchmark calculations were made with test data to validate the use of a simple one-dimensional heat transfer model for estimating fuel rod temperatures. Benchmarkmore » results show that SFHA is capable of calculating spent fuel rod temperatures for square and hexagonal fuel bundles under various environments for the consolidated or unconsolidated condition. The program is menu-driven and executes automatically after all required information is entered.« less

  20. Codes, standards, and PV power systems. A 1996 status report

    SciTech Connect

    Wiles, J

    1996-06-01

    As photovoltaic (PV) electrical power systems gain increasing acceptance for both off-grid and utility-interactive applications, the safety, durability, and performance of these systems gains in importance. Local and state jurisdictions in many areas of the country require that all electrical power systems be installed in compliance with the requirements of the National Electrical Code{reg_sign} (NEC{reg_sign}). Utilities and governmental agencies are now requiring that PV installations and components also meet a number of Institute of Electrical and Electronic Engineers (IEEE) standards. PV installers are working more closely with licensed electricians and electrical contractors who are familiar with existing local codes and installation practices. PV manufacturers, utilities, balance of systems manufacturers, and standards representatives have come together to address safety and code related issues for future PV installations. This paper addresses why compliance with the accepted codes and standards is needed and how it is being achieved.

  1. Code-modulated interferometric imaging system using phased arrays

    NASA Astrophysics Data System (ADS)

    Chauhan, Vikas; Greene, Kevin; Floyd, Brian

    2016-05-01

    Millimeter-wave (mm-wave) imaging provides compelling capabilities for security screening, navigation, and bio- medical applications. Traditional scanned or focal-plane mm-wave imagers are bulky and costly. In contrast, phased-array hardware developed for mass-market wireless communications and automotive radar promise to be extremely low cost. In this work, we present techniques which can allow low-cost phased-array receivers to be reconfigured or re-purposed as interferometric imagers, removing the need for custom hardware and thereby reducing cost. Since traditional phased arrays power combine incoming signals prior to digitization, orthogonal code-modulation is applied to each incoming signal using phase shifters within each front-end and two-bit codes. These code-modulated signals can then be combined and processed coherently through a shared hardware path. Once digitized, visibility functions can be recovered through squaring and code-demultiplexing operations. Pro- vided that codes are selected such that the product of two orthogonal codes is a third unique and orthogonal code, it is possible to demultiplex complex visibility functions directly. As such, the proposed system modulates incoming signals but demodulates desired correlations. In this work, we present the operation of the system, a validation of its operation using behavioral models of a traditional phased array, and a benchmarking of the code-modulated interferometer against traditional interferometer and focal-plane arrays.

  2. Child Injury Deaths: Comparing Prevention Information from Two Coding Systems

    PubMed Central

    Schnitzer, Patricia G.; Ewigman, Bernard G.

    2006-01-01

    Objectives The International Classification of Disease (ICD) external cause of injury E-codes do not sufficiently identify injury circumstances amenable to prevention. The researchers developed an alternative classification system (B-codes) that incorporates behavioral and environmental factors, for use in childhood injury research, and compare the two coding systems in this paper. Methods All fatal injuries among children less than age five that occurred between January 1, 1992, and December 31, 1994, were classified using both B-codes and E-codes. Results E-codes identified the most common causes of injury death: homicide (24%), fires (21%), motor vehicle incidents (21%), drowning (10%), and suffocation (9%). The B-codes further revealed that homicides (51%) resulted from the child being shaken or struck by another person; many fires deaths (42%) resulted from children playing with matches or lighters; drownings (46%) usually occurred in natural bodies of water; and most suffocation deaths (68%) occurred in unsafe sleeping arrangements. Conclusions B-codes identify additional information with specific relevance for prevention of childhood injuries. PMID:15944169

  3. Thermal Reactor Code System for Reactor Design and Analysis.

    SciTech Connect

    SUZUKI, TADAKAZU

    2003-04-21

    Version: 00 SRAC95 is a general purpose neutronics code system applicable to core analyses of various types of reactors, including cell calculation with burn up, core calculation for any type of thermal reactor; where core burn up calculation and fuel management were done by an auxiliary code. Since the publication of JAERI-1302 for the revised SRAC in 1986, a number of additions and modifications were made for nuclear data libraries and programs. In this version, many new functions and data are implemented to support nuclear design studies of advanced reactors. SRAC95 can be used for burnup credit analysis within the ORIGEN2 and SWAT (CCC-714) code system.

  4. Intranuclear cascade with emission of light fragment code implemented in the transport code system PHITS

    NASA Astrophysics Data System (ADS)

    Sawada, Y.; Uozumi, Y.; Nogamine, S.; Yamada, T.; Iwamoto, Y.; Sato, T.; Niita, K.

    2012-11-01

    The Intranuclear Cascade with Emission of Light Fragment (INC-ELF) code has been developed and implemented in the Particle and Heavy Ion Transport code System (PHITS). The INC-ELF code explicitly includes nucleon correlations within the framework of the INC model to describe light fragment emissions from nuclear spallation reactions by using the model in Phys. Rev. C 84, (2011) 064617. In addition to the degrees of freedom of nucleons, the developed code also accounts for pions, Δs, and N∗s, and can cover energy ranges up to 3 GeV. The predictive capabilities of the ELF/PHITS system have been verified through comparison with a diverse set of experimental observations. In particular, the verification was conducted with abundant double-differential cross-section data covering a wide range of reactions (e.g., (p, p'x), (p, nx), (p, dx), (p, 3Hex), (p, αx) and (p, πx) reactions) over a wide energy range (between 400 MeV and 1.5 GeV). As a result, our ELF/PHITS code has demonstrated strong predictive capability for all of these data, although areas requiring future study remain due to the lack of experimental data on high-energy cluster production.

  5. Code System for the Radioactive Liquid Tank Failure Study.

    Energy Science and Technology Software Center (ESTSC)

    2000-01-03

    Version 01 RATAF calculates the consequences of radioactive liquid tank failures. In each of the processing systems considered, RATAF can calculate the tank isotopic concentrations in either the collector tank or the evaporator bottoms tank.

  6. Code System to Model Aqueous Geochemical Equilibria.

    Energy Science and Technology Software Center (ESTSC)

    2001-08-23

    Version: 00 MINTEQ is a geochemical program to model aqueous solutions and the interactions of aqueous solutions with hypothesized assemblages of solid phases. It was developed for the Environmental Protection Agency to perform the calculations necessary to simulate the contact of waste solutions with heterogeneous sediments or the interaction of ground water with solidified wastes. MINTEQ can calculate ion speciation/solubility, adsorption, oxidation-reduction, gas phase equilibria, and precipitation/dissolution ofsolid phases. MINTEQ can accept a finite massmore » for any solid considered for dissolution and will dissolve the specified solid phase only until its initial mass is exhausted. This ability enables MINTEQ to model flow-through systems. In these systems the masses of solid phases that precipitate at earlier pore volumes can be dissolved at later pore volumes according to thermodynamic constraints imposed by the solution composition and solid phases present. The ability to model these systems permits evaluation of the geochemistry of dissolved traced metals, such as low-level waste in shallow land burial sites. MINTEQ was designed to solve geochemical equilibria for systems composed of one kilogram of water, various amounts of material dissolved in solution, and any solid materials that are present. Systems modeled using MINTEQ can exchange energy and material (open systems) or just energy (closed systems) with the surrounding environment. Each system is composed of a number of phases. Every phase is a region with distinct composition and physically definable boundaries. All of the material in the aqueous solution forms one phase. The gas phase is composed of any gaseous material present, and each compositionally and structurally distinct solid forms a separate phase.« less

  7. Bilingual Processing of ASL-English Code-Blends: The Consequences of Accessing Two Lexical Representations Simultaneously

    ERIC Educational Resources Information Center

    Emmorey, Karen; Petrich, Jennifer A. F.; Gollan, Tamar H.

    2012-01-01

    Bilinguals who are fluent in American Sign Language (ASL) and English often produce "code-blends"--simultaneously articulating a sign and a word while conversing with other ASL-English bilinguals. To investigate the cognitive mechanisms underlying code-blend processing, we compared picture-naming times (Experiment 1) and semantic categorization…

  8. Effects of bar coding on a pharmacy stock replenishment system.

    PubMed

    Chester, M I; Zilz, D A

    1989-07-01

    A bar-code stock ordering system installed in the ambulatory-care pharmacy and sterile products area of a hospital pharmacy was compared with a manual paper system to quantify overall time demands and determine the error rate associated with each system. The bar-code system was implemented in the ambulatory-care pharmacy in November 1987 and in the sterile products area in January 1988. It consists of a Trakker 9440 transaction manager with a digital scanner; labels are printed with a dot matrix printer. Electronic scanning of bar-code labels and entry of the amount required using the key-pad on the transaction manager replaced use of a preprinted form for ordering items. With the bar-code system, ordering information is transferred electronically via cable to the pharmacy inventory computer; with the manual system, this information was input by a stockroom technician. To compare the systems, the work of technicians in the ambulatory-care pharmacy and sterile products area was evaluated before and after implementation of the bar-code system. The time requirements for information gathering and data transfer were recorded by direct observation; the prevalence of errors under each system was determined by comparing unprocessed ordering information with the corresponding computer-generated "pick lists" (itemized lists including the amount of each product ordered). Time consumed in extra trips to the stockroom to replace out-of-stock items was self-reported. Significantly less time was required to order stock and transfer data to the pharmacy inventory computer with the bar-code system than with the manual system.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:2757044

  9. A Combinatorial Geometry Code System with Model Testing Routines.

    Energy Science and Technology Software Center (ESTSC)

    1982-10-08

    GIFT, Geometric Information For Targets code system, is used to mathematically describe the geometry of a three-dimensional vehicle such as a tank, truck, or helicopter. The geometric data generated is merged in vulnerability computer codes with the energy effects data of a selected @munition to simulate the probabilities of malfunction or destruction of components when it is attacked by the selected munition. GIFT options include those which graphically display the vehicle, those which check themore » correctness of the geometry data, those which compute physical characteristics of the vehicle, and those which generate the geometry data used by vulnerability codes.« less

  10. An extensive Markov system for ECG exact coding.

    PubMed

    Tai, S C

    1995-02-01

    In this paper, an extensive Markov process, which considers both the coding redundancy and the intersample redundancy, is presented to measure the entropy value of an ECG signal more accurately. It utilizes the intersample correlations by predicting the incoming n samples based on the previous m samples which constitute an extensive Markov process state. Theories of the extensive Markov process and conventional n repeated applications of m-th order Markov process are studied first in this paper. After that, they are realized for ECG exact coding. Results show that a better performance can be achieved by our system. The average code length for the extensive Markov system on the second difference signals was 2.512 b/sample, while the average Huffman code length for the second difference signals was 3.326 b/sample. PMID:7868151

  11. Multiview image and depth map coding for holographic TV system

    NASA Astrophysics Data System (ADS)

    Senoh, Takanori; Wakunami, Koki; Ichihashi, Yasuyuki; Sasaki, Hisayuki; Oi, Ryutaro; Yamamoto, Kenji

    2014-11-01

    A holographic TV system based on multiview image and depth map coding and the analysis of coding noise effects in reconstructed images is proposed. A major problem for holographic TV systems is the huge amount of data that must be transmitted. It has been shown that this problem can be solved by capturing a three-dimensional scene with multiview cameras, deriving depth maps from multiview images or directly capturing them, encoding and transmitting the multiview images and depth maps, and generating holograms at the receiver side. This method shows the same subjective image quality as hologram data transmission with about 1/97000 of the data rate. Speckle noise, which masks coding noise when the coded bit rate is not extremely low, is shown to be the main determinant of reconstructed holographic image quality.

  12. Code System for Seismic Probabilistic Risk Assessment.

    Energy Science and Technology Software Center (ESTSC)

    2001-03-27

    Version 00 SEISIM1 calculates the probabilities of seismically induced failures for components and systems and propagates these calculations to determine the probability of accident sequences and the resulting total risk, which is quantified as an expected value of radiation release and exposure from a given nuclear power plant. SEISIM1 was developed as a fundamental tool for the systems analysis portion of the NRC's Seismic Safety Margins Research Program (SSMRP). The SSMRP provides a complete, self-containedmore » methodology to assess and quantify the risk to nuclear power plants from seismic events and seismically induced failures.« less

  13. The FORTRAN static source code analyzer program (SAP) system description

    NASA Technical Reports Server (NTRS)

    Decker, W.; Taylor, W.; Merwarth, P.; Oneill, M.; Goorevich, C.; Waligora, S.

    1982-01-01

    A source code analyzer program (SAP) designed to assist personnel in conducting studies of FORTRAN programs is described. The SAP scans FORTRAN source code and produces reports that present statistics and measures of statements and structures that make up a module. The processing performed by SAP and of the routines, COMMON blocks, and files used by SAP are described. The system generation procedure for SAP is also presented.

  14. Analytical considerations in the code qualification of piping systems

    SciTech Connect

    Antaki, G.A.

    1995-02-01

    The paper addresses several analytical topics in the design and qualification of piping systems which have a direct bearing on the prediction of stresses in the pipe and hence on the application of the equations of NB, NC and ND-3600 of the ASME Boiler and Pressure Vessel Code. For each of the analytical topics, the paper summarizes the current code requirements, if any, and the industry practice.

  15. The performance of a sequential acquisition system for PN codes

    NASA Astrophysics Data System (ADS)

    Kerr, R. W.; Arakaki, E. M.; Huang, M. Y.

    Direct sequence spread spectrum techniques are being applied in an increasing number of advanced communication systems where anti-jam (AJ), low probability of intercept (LPI), or code division multiple access (CDMA) capabilities are required. In all these systems, rapid acquisition of long PN code is a system necessity. Generally, acquisition of long PN codes is accomplished by correlation measurements of the incoming sequence with a locally generated code sequence. However, instead of utilizing fixed integration times, a sequential acquisition technique could also be used for active correlation, which results in greatly reduced acquisition times. TRW has designed and completed a limited production of 33 spread spectrum receivers for use with the NASA Tracking Data Relay Satellite System (TDRSS). The receivers provide multiple access and ranging capability while simultaneously decreasing the transmitted power flux density to meet CCIR restrictions. This paper presents the analysis, hardware description, and performance of the sequential code acquisition system implemented on these receivers. A unique noise calibration process, which holds the key to successful operation of these receivers, is described in detail.

  16. Fish stranding in freshwater systems: sources, consequences, and mitigation.

    PubMed

    Nagrodski, Alexander; Raby, Graham D; Hasler, Caleb T; Taylor, Mark K; Cooke, Steven J

    2012-07-30

    Fish can become stranded when water levels decrease, often rapidly, as a result of anthropogenic (e.g., canal drawdown, hydropeaking, vessel wakes) and natural (e.g., floods, drought, winter ice dynamics) events. We summarize existing research on stranding of fish in freshwater, discuss the sources, consequences, and mitigation options for stranding, and report current knowledge gaps. Our literature review revealed that ∼65.5% of relevant peer-reviewed articles were found to focus on stranding associated with hydropower operations and irrigation projects. In fact, anthropogenic sources of fish stranding represented 81.8% of available literature compared to only 19.9% attributed to natural fish stranding events. While fish mortality as a result of stranding is well documented, our analysis revealed that little is known about the sublethal and long-term consequences of stranding on growth and population dynamics. Furthermore, the contribution of stranding to annual mortality rates is poorly understood as are the potential ecosystem-scale impacts. Mitigation strategies available to deal with stranding include fish salvage, ramping rate limitations, and physical habitat works (e.g., to contour substrate to minimize stranding). However, a greater knowledge of the factors that cause fish stranding would promote the development and refinement of mitigation strategies that are economically and ecologically sustainable. PMID:22481278

  17. Top Event Matrix Analysis Code System.

    Energy Science and Technology Software Center (ESTSC)

    2000-06-19

    Version 00 TEMAC is designed to permit the user to easily estimate risk and to perform sensitivity and uncertainty analyses with a Boolean expression such as produced by the SETS computer program. SETS produces a mathematical representation of a fault tree used to model system unavailability. In the terminology of the TEMAC program, such a mathematical representation is referred to as a top event. The analysis of risk involves the estimation of the magnitude ofmore » risk, the sensitivity of risk estimates to base event probabilities and initiating event frequencies, and the quantification of the uncertainty in the risk estimates.« less

  18. European coding system for tissues and cells: a challenge unmet?

    PubMed

    Reynolds, Melvin; Warwick, Ruth M; Poniatowski, Stefan; Trias, Esteve

    2010-11-01

    The Comité Européen de Normalisation (European Committee for Standardization, CEN) Workshop on Coding of Information and Traceability of Human Tissues and Cells was established by the Expert Working Group of the Directorate General for Health and Consumer Affairs of the European Commission (DG SANCO) to identify requirements concerning the coding of information and the traceability of human tissues and cells, and propose guidelines and recommendations to permit the implementation of the European Coding system required by the European Tissues and Cells Directive 2004/23/EC (ED). The Workshop included over 70 voluntary participants from tissue, blood and eye banks, national ministries for healthcare, transplant organisations, universities and coding organisations; mainly from Europe with a small number of representatives from professionals in Canada, Australia, USA and Japan. The Workshop commenced in April 2007 and held its final meeting in February 2008. The draft Workshop Agreement went through a public comment phase from 15 December 2007 until 15 January 2008 and the endorsement period ran from 9 April 2008 until 2 May 2008. The endorsed CEN Workshop Agreement (CWA) set out the issues regarding a common coding system, qualitatively assessed what the industry felt was required of a coding system, reviewed coding systems that were put forward as potential European coding systems and established a basic specification for a proposed European coding system for human tissues and cells, based on ISBT 128, and which is compatible with existing systems of donation identification, traceability and nomenclatures, indicating how implementation of that system could be approached. The CWA, and the associated Workshop proposals with recommendations, were finally submitted to the European Commission and to the Committee of Member States that assists its management process under article 29 of the Directive 2004/23/EC on May 25 2008. In 2009 the European Commission initiated an

  19. 3D neutronic codes coupled with thermal-hydraulic system codes for PWR, and BWR and VVER reactors

    SciTech Connect

    Langenbuch, S.; Velkov, K.; Lizorkin, M.

    1997-07-01

    This paper describes the objectives of code development for coupling 3D neutronics codes with thermal-hydraulic system codes. The present status of coupling ATHLET with three 3D neutronics codes for VVER- and LWR-reactors is presented. After describing the basic features of the 3D neutronic codes BIPR-8 from Kurchatov-Institute, DYN3D from Research Center Rossendorf and QUABOX/CUBBOX from GRS, first applications of coupled codes for different transient and accident scenarios are presented. The need of further investigations is discussed.

  20. Use of post-Chernobyl data from Norway to validate the long-term exposure pathway models in the accident consequence code MACCS

    SciTech Connect

    Tveten, U. )

    1994-03-01

    This paper describes a task performed for the US Nuclear Regulatory Commission (NRC), consisting of using post-Chernobyl data from Norway to verify or find areas for possible improvement in the chronic exposure pathway models utilized in the NRC's program for probabilistic risk analysis, level 3, of the MELCOR accident consequence code system (MACCS), developed at Sandia National Laboratories, Albuquerque, New Mexico. Because of unfortunate combinations of weather conditions, the levels of Chernobyl fallout in parts of Norway were quite high, with large areas contaminated to more than 100 kBq/m[sup 2] of radioactive cesium. Approximately 6% of the total amount of radioactive cesium released from Chernobyl is deposited on Norwegian territory, according to a countrywide survey performed by the Norwegian National Institute for Radiation Hygiene. Accordingly, a very large monitoring effort was carried out in Norway, and some of the results of this effort have provided important new insights into the ways in which radioactive cesium behaves in the environment. In addition to collection and evaluation of post-Chernobyl monitoring results, some experiments were also performed as part of the task. Some experiments performed pre-Chernobyl were also relevant, and some conclusions could be drawn from these. In most connections, the data available show the models and data in MACCS to be appropriate. A few areas where the data indicate that the MACCS approach is inadequate are, however, also pointed out in the paper.

  1. Physical-layer network coding in coherent optical OFDM systems.

    PubMed

    Guan, Xun; Chan, Chun-Kit

    2015-04-20

    We present the first experimental demonstration and characterization of the application of optical physical-layer network coding in coherent optical OFDM systems. It combines two optical OFDM frames to share the same link so as to enhance system throughput, while individual OFDM frames can be recovered with digital signal processing at the destined node. PMID:25969046

  2. A Coding System for Analysing a Spoken Text Database.

    ERIC Educational Resources Information Center

    Cutting, Joan

    1994-01-01

    This paper describes a coding system devised to analyze conversations of graduate students in applied linguistics at Edinburgh University. The system was devised to test the hypothesis that as shared knowledge among conversation participants grows, the textual density of in-group members has more cues than that of strangers. The informal…

  3. Hydrogen Event Containment Response Code System.

    Energy Science and Technology Software Center (ESTSC)

    1999-11-23

    Version: 00 Distribution is restricted to the United States Only. HECTR1.5 (Hydrogen Event-Containment Transient Response) is a lumped-volume containment analysis program that is most useful for performing parametric studies. Its main purpose is to analyze nuclear reactor accidents involving the transport and combustion of hydrogen, but HECTR can also function as an experiment analysis tool and can solve a limited set of other containment problems. Six gases; steam, nitrogen, oxygen, hydrogen, carbon monoxide, and carbonmore » dioxide are modified along with sumps containing liquid water. HECTR can model virtually all the containment systems of importance in ice condenser, large dry and Mark III containments. A postprocessor, ACHILES1.5, is included. It processes the time-dependent variable output (compartment pressures, flow junction velocities, surface temperatures, etc.) produced by HECTR. ACHILES can produce tables and graphs of these data.« less

  4. Theory and Implementation of Nuclear Safety System Codes - Part II: System Code Closure Relations, Validation, and Limitations

    SciTech Connect

    Glenn A Roth; Fatih Aydogan

    2014-09-01

    This is Part II of two articles describing the details of thermal-hydraulic sys- tem codes. In this second part of the article series, the system code closure relationships (used to model thermal and mechanical non-equilibrium and the coupling of the phases) for the governing equations are discussed and evaluated. These include several thermal and hydraulic models, such as heat transfer coefficients for various flow regimes, two phase pressure correlations, two phase friction correlations, drag coefficients and interfacial models be- tween the fields. These models are often developed from experimental data. The experiment conditions should be understood to evaluate the efficacy of the closure models. Code verification and validation, including Separate Effects Tests (SETs) and Integral effects tests (IETs) is also assessed. It can be shown from the assessments that the test cases cover a significant section of the system code capabilities, but some of the more advanced reactor designs will push the limits of validation for the codes. Lastly, the limitations of the codes are discussed by considering next generation power plants, such as Small Modular Reactors (SMRs), analyz- ing not only existing nuclear power plants, but also next generation nuclear power plants. The nuclear industry is developing new, innovative reactor designs, such as Small Modular Reactors (SMRs), High-Temperature Gas-cooled Reactors (HTGRs) and others. Sub-types of these reactor designs utilize pebbles, prismatic graphite moderators, helical steam generators, in- novative fuel types, and many other design features that may not be fully analyzed by current system codes. This second part completes the series on the comparison and evaluation of the selected reactor system codes by discussing the closure relations, val- idation and limitations. These two articles indicate areas where the models can be improved to adequately address issues with new reactor design and development.

  5. Optical System Design For High Speed Bar Code Scanning

    NASA Astrophysics Data System (ADS)

    Hellekson, Ronald; Reddersen, Brad; Campbell, Scott

    1987-04-01

    Spectra-Physics recently introduced the Model 750 SL scanner for use in the European point-of-sale market, to meet the European requirement for a scanner of less than 13 cm height. The model 750 SL uses a higher density computer designed scan pattern with a retrodirective collection system to scan and detect UPC, EAN, and JAN bar codes. The scanner "reads" these bar codes in such a way that the user need not precisely align the bar code symbol with respect to the window in the scanner even at package speeds up to 100 inches per second. By using a unique geometrical arrangement of mirrors, a polygonal mirror assembly, and a custom-designed plastic bifocal lens, a design was developed to meet these requirements. This paper describes the design of this new low cost scanner, the use of computer-aided design in the development of this scanner, and some observations on the future of bar code scanning.

  6. Code System for Toxic Gas Accident Analysis.

    Energy Science and Technology Software Center (ESTSC)

    2001-09-24

    Version 00 TOXRISK is an interactive program developed to aid in the evaluation of nuclear power plant control room habitability in the event of a nearby toxic material release. The program uses a model which is consistent with the approach described in the NRC Regulatory Guide 1.78. Release of the gas is treated as an initial puff followed by a continuous plume. The relative proportions of these as well as the plume release rate aremore » supplied by the user. Transport of the gas is modeled as a Gaussian distribution and occurs through the action of a constant velocity, constant direction wind. Dispersion or diffusion of the gas during transport is described by modified Pasquill-Gifford dispersion coefficients. Great flexibility is afforded the user in specifying the release description, meteorological conditions, relative geometry of the accident and plant, and the plant ventilation system characteristics. Two types of simulation can be performed: multiple case (parametric) studies and probabilistic analyses.« less

  7. Spatiotemporal stochastic resonance and its consequences in neural model systems.

    PubMed

    Balazsi, Gabor; Kish, Laszlo B.; Moss, Frank E.

    2001-09-01

    The realization of spatiotemporal stochastic resonance is studied in a two-dimensional FitzHugh-Nagumo system, and in a one-dimensional system of integrate-and-fire neurons. We show that spatiotemporal stochastic resonance occurs in these neural model systems, independent of the method of modeling. Moreover, the ways of realization are analogous in the two model systems. The biological implications and open questions are discussed. (c) 2001 American Institute of Physics. PMID:12779493

  8. FORTRAN Automated Code Evaluation System (faces) system documentation, version 2, mod 0. [error detection codes/user manuals (computer programs)

    NASA Technical Reports Server (NTRS)

    1975-01-01

    A system is presented which processes FORTRAN based software systems to surface potential problems before they become execution malfunctions. The system complements the diagnostic capabilities of compilers, loaders, and execution monitors rather than duplicating these functions. Also, it emphasizes frequent sources of FORTRAN problems which require inordinate manual effort to identify. The principle value of the system is extracting small sections of unusual code from the bulk of normal sequences. Code structures likely to cause immediate or future problems are brought to the user's attention. These messages stimulate timely corrective action of solid errors and promote identification of 'tricky' code. Corrective action may require recoding or simply extending software documentation to explain the unusual technique.

  9. The glycine deportation system and its pharmacological consequences.

    PubMed

    Beyoğlu, Diren; Idle, Jeffrey R

    2012-08-01

    The glycine deportation system is an essential component of glycine catabolism in man whereby 400 to 800mg glycine per day are deported into urine as hippuric acid. The molecular escort for this deportation is benzoic acid, which derives from the diet and from gut microbiota metabolism of dietary precursors. Three components of this system, involving hepatic and renal metabolism, and renal active tubular secretion help regulate systemic and central nervous system levels of glycine. When glycine levels are pathologically high, as in congenital nonketotic hyperglycinemia, the glycine deportation system can be upregulated with pharmacological doses of benzoic acid to assist in normalization of glycine homeostasis. In congenital urea cycle enzymopathies, similar activation of the glycine deportation system with benzoic acid is useful for the excretion of excess nitrogen in the form of glycine. Drugs which can substitute for benzoic acid as substrates for the glycine deportation system have adverse reactions that may involve perturbations of glycine homeostasis. The cancer chemotherapeutic agent ifosfamide has an unacceptably high incidence of encephalopathy. This would appear to arise as a result of the production of toxic aldehyde metabolites which deplete ATP production and sequester NADH in the mitochondrial matrix, thereby inhibiting the glycine deportation system and causing de novo glycine synthesis by the glycine cleavage system. We hypothesize that this would result in hyperglycinemia and encephalopathy. This understanding may lead to novel prophylactic strategies for ifosfamide encephalopathy. Thus, the glycine deportation system plays multiple key roles in physiological and neurotoxicological processes involving glycine. PMID:22584143

  10. An engineering code to analyze hypersonic thermal management systems

    NASA Astrophysics Data System (ADS)

    Vangriethuysen, Valerie J.; Wallace, Clark E.

    1993-11-01

    This paper will describe an effort that is underway within the Advanced Propulsion Division of the Aero Propulsion and Power Directorate at Wright Patterson AFB to develop an engineering computer code to aid in the development of hypersonic thermal management systems. The goal of the Vehicle Integrated Thermal Management Code (VITMAC), is to thermally model the entire thermal management system on an integrated basis for an entire vehicle. A further goal is for it to be a stand-alone code. In other words, to predict the aerodynamic heating on the vehicle surface during the trajectory, to the heat loads from the propulsion system, subsystems and avionics, and to the heat transfer through the structure and insulation. In addition, VITMAC will be able to model the flow of the coolant through the network. All this is to determine if the vehicle is thermally balanced and if there are any areas in risk of melting or thermal degradation. The code also has the option to accept user data for aerodynamic heating, heat loads and user-specific components. To aid the user while inputting the vehicle configuration, geometry, components, and 'plumbing' data, a graphical user interface is being incorporated within te code. This will enable the user, even those with little experience in the area, with the aid of a mouse, to literally see the network on the screen as it is being inputted. This capability will speed up the input process, particularly for complex systems, as well as aid in error detection. This paper will further discuss the architecture of VITMAC. Also discussed will be its developmental status and capabilities, computer system that supports the code, its relevancy to other types of vehicles and applications, expansion capability and future plans.

  11. A systems neurophysiology approach to voluntary event coding.

    PubMed

    Petruo, Vanessa A; Stock, Ann-Kathrin; Münchau, Alexander; Beste, Christian

    2016-07-15

    Mechanisms responsible for the integration of perceptual events and appropriate actions (sensorimotor processes) have been subject to intense research. Different theoretical frameworks have been put forward with the "Theory of Event Coding (TEC)" being one of the most influential. In the current study, we focus on the concept of 'event files' within TEC and examine what sub-processes being dissociable by means of cognitive-neurophysiological methods are involved in voluntary event coding. This was combined with EEG source localization. We also introduce reward manipulations to delineate the neurophysiological sub-processes most relevant for performance variations during event coding. The results show that processes involved in voluntary event coding included predominantly stimulus categorization, feature unbinding and response selection, which were reflected by distinct neurophysiological processes (the P1, N2 and P3 ERPs). On a system's neurophysiological level, voluntary event-file coding is thus related to widely distributed parietal-medial frontal networks. Attentional selection processes (N1 ERP) turned out to be less important. Reward modulated stimulus categorization in parietal regions likely reflecting aspects of perceptual decision making but not in other processes. The perceptual categorization stage appears central for voluntary event-file coding. PMID:27153981

  12. Possible consequences of absence of "Jupiters" in planetary systems.

    PubMed

    Wetherill, G W

    1994-01-01

    The formation of the gas giant planets Jupiter and Saturn probably required the growth of massive approximately 15 Earth-mass cores on a time scale shorter than the approximately 10(7) time scale for removal of nebular gas. Relatively minor variations in nebular parameters could preclude the growth of full-size gas giants even in systems in which the terrestrial planet region is similar to our own. Systems containing "failed Jupiters," resembling Uranus and Neptune in their failure to capture much nebular gas, would be expected to contain more densely populated cometary source regions. They will also eject a smaller number of comets into interstellar space. If systems of this kind were the norm, observation of hyperbolic comets would be unexpected. Monte Carlo calculations of the orbital evolution of region of such systems (the Kuiper belt) indicate that throughout Earth history the cometary impact flux in their terrestrial planet regions would be approximately 1000 times greater than in our Solar System. It may be speculated that this could frustrate the evolution of organisms that observe and seek to understand their planetary system. For this reason our observation of these planets in our Solar System may tell us nothing about the probability of similar gas giants occurring in other planetary systems. This situation can be corrected by observation of an unbiased sample of planetary systems. PMID:11539457

  13. Satellite link protocols design for the CODE system

    NASA Astrophysics Data System (ADS)

    Fernandez, A.; Vidaller, L.; Miguel, C.; Briones, D.

    1989-05-01

    The design of satellite link protocols for Very Small Aperture Terminals (VSAT) systems is outlined. The CODE system (Cooperative Olympus Data Experiment) is a VSAT system with two main characteristics: very low bit error rate, and multiple access over FDM channels in the inbound link. The design of the link protocols for this system covers two main aspects: error control procedures and medium access control procedures. In order to analyze both aspects, a profile of the average user of the CODE system is defined in terms of types of traffic and of messages arrival and service rates for every type of traffic. An analysis of the mean time between failures is made, and the average delay and through-put for different access methods are computed, including stability analysis for Aloha-based systems.

  14. Bacteria sensing mechanisms in Drosophila gut: Local and systemic consequences.

    PubMed

    Capo, Florence; Charroux, Bernard; Royet, Julien

    2016-11-01

    All insects are colonized by microorganisms on their exoskeleton, their gut and even in some cases within their own somatic and germ line cells. This microbiota that can represent up to a few percent of the insect biomass may have a pervasive impact on many aspects of insect biology including physiology, nutrient acquisition, ageing, behaviour and resistance to infection. Mainly through ingestion of contaminated food, the mouth-gut axis represents the first and principal access of external bacteria to the host. Soon after ingestion, the feeding insect needs to rapidly and accurately identify the ingested microbes and decide whether to preserve them if beneficial or neutral, or to eliminate them if potentially harmful. We will review here the recent data acquired in Drosophila on the mechanisms that invertebrate enterocytes rely on to detect the presence of bacteria in the gut. We will compare these modes of bacteria sensing to those in other immune competent tissues and try to rationalize differences that may exist. We will also analyse the physiological consequences of bacteria detection not only locally for the gut itself but also for remote tissues. Finally, we will describe the physiological disorders that can occur due to inaccurate bacteria identification by the gut epithelium. PMID:26778296

  15. Earth system consequences of a Pine Island Glacier collapse

    NASA Astrophysics Data System (ADS)

    Green, Mattias; Schmittner, Andreas

    2016-04-01

    An intermediate complexity climate model is used to simulate the impact of an accelerated Pine Island Glacier mass loss on the large-scale ocean circulation and climate. Simulations are performed for pre-industrial conditions using hosing levels consistent with present day observation of 3,000 m3 s‑1, at an accelerated rate of 6,000 m3 s‑1, and at a total collapse rate of 100,000 m3 s‑1, and in all experiments the hosing lasted 100 years. It is shown that even a modest input of meltwater from the glacier can introduce an initial cooling over the upper part of the Southern Ocean due to increased stratification and ice cover leading to a reduced upward heat flux from Circumpolar Deep Water. This causes global ocean heat content to increase and global surface air temperatures to decrease. The Atlantic Meridional Overturning Circulation (AMOC) increases, presumably due to changes in the density difference between Antarctic Intermediate Water and North Atlantic Deep Water. Simulations with a simultaneous hosing and increases of atmospheric CO2 concentrations show smaller effects of the hosing on global surface air temperature and ocean heat content, which we attribute to the melting of Southern Ocean sea ice. The sensitivity of the AMOC to the hosing is also reduced as the warming by the atmosphere completely dominates the perturbations. Further consequences for oceanic biogeochemical cycles in realistic future warming scenarios are discussed.

  16. Thermal Reactor Code System for Reactor Design and Analysis.

    Energy Science and Technology Software Center (ESTSC)

    2003-04-21

    Version: 00 SRAC95 is a general purpose neutronics code system applicable to core analyses of various types of reactors, including cell calculation with burn up, core calculation for any type of thermal reactor; where core burn up calculation and fuel management were done by an auxiliary code. Since the publication of JAERI-1302 for the revised SRAC in 1986, a number of additions and modifications were made for nuclear data libraries and programs. In this version,more » many new functions and data are implemented to support nuclear design studies of advanced reactors. SRAC95 can be used for burnup credit analysis within the ORIGEN2 and SWAT (CCC-714) code system.« less

  17. Reed-Solomon coded optically preamplified PPM system

    NASA Astrophysics Data System (ADS)

    Cryan, R. A.

    1995-06-01

    A Reed-Solomon coded optically preamplified pulse-position modulation system is analyzed. Results are presented at a bit rate of 622 Mbit/s and a wavelength of 1.537 micron, comparing the system with an equivalent on-off nonreturn-to-zero (OOK NRZ) system. The theoretical results demonstrate that the system offers a potential sensitivity of 7 photons/bit, which represents an improvement of 7.5 dB over the equivalent OOK system and is comparable with that of the best coherent systems reported to date.

  18. A novel super-FEC code based on concatenated code for high-speed long-haul optical communication systems

    NASA Astrophysics Data System (ADS)

    Yuan, Jianguo; Ye, Wenwei; Jiang, Ze; Mao, Youju; Wang, Wei

    2007-05-01

    The structures of the novel super forward error correction (Super-FEC) code type based on the concatenated code for high-speed long-haul optical communication systems are studied in this paper. The Reed-Solomon (RS) (255, 239) + Bose-Chaudhuri-Hocguenghem (BCH) (1023, 963) concatenated code is presented after the characteristics of the concatenated code and the two Super-FEC code type presented in ITU-T G.975.1 have theoretically been analyzed, the simulation result shows that this novel code type, compared with the RS (255, 239) + convolutional-self-orthogonal-code (CSOC) ( k0/ n0 = 6/7, J = 8) code in ITU-T G.975.1, has a lower redundancy and better error-correction capabilities, and its net coding gain (NCG) at the third iteration is 0.57 dB more than that of RS (255, 239) + CSOC ( k0/ n0 = 6/7, J = 8) code in ITU-T G.975.1 at the third iteration for the bit error rate (BER) of 10 -12. Therefore, the novel code type can better be used in long-haul, larger capacity and higher bit-rate optical communication systems. Furthermore, the design and implementation of the novel concatenated code type are also discussed.

  19. The Facial Expression Coding System (FACES): Development, Validation, and Utility

    ERIC Educational Resources Information Center

    Kring, Ann M.; Sloan, Denise M.

    2007-01-01

    This article presents information on the development and validation of the Facial Expression Coding System (FACES; A. M. Kring & D. Sloan, 1991). Grounded in a dimensional model of emotion, FACES provides information on the valence (positive, negative) of facial expressive behavior. In 5 studies, reliability and validity data from 13 diverse…

  20. Origin and evolution of the Saturn system: Observational consequences

    NASA Technical Reports Server (NTRS)

    Pollack, J. B.

    1978-01-01

    A number of important cosmogonic questions concerning the Saturn system can be addressed with a Saturn-orbiter-dual-probe spacecraft mission. These questions include: The origin of the Saturn system; the source of Saturn's excess luminosity; the mechanism by which the irregular satellites were captured; the influence of Saturn's early luminosity on the composition of its regular satellites; and the origin of the rings. The first two topics can be studied by measurements made from an entry probe into Saturn's atmosphere, while the remaining issues can be investigated by measurements conducted from an orbiter. Background information is provided on these five questions describing the critical experiments needed to help resolve them.

  1. Performance improvement of spectral amplitude coding-optical code division multiple access systems using NAND detection with enhanced double weight code

    NASA Astrophysics Data System (ADS)

    Ahmed, Nasim; Aljunid, Syed Alwee; Ahmad, R. Badlishah; Fadhil, Hilal A.; Rashid, Mohd Abdur

    2012-01-01

    The bit-error rate (BER) performance of the spectral amplitude coding-optical code division multiple access (SACOCDMA) system has been investigated by using NAND subtraction detection technique with enhanced double weight (EDW) code. The EDW code is the enhanced version of double weight (DW) code family where the code weight is any odd number and greater than one with ideal cross-correlation. In order to evaluate the performance of the system, we used mathematical analysis extensively along with the simulation experiment. The evaluation results obtained using the NAND subtraction detection technique was compared with those obtained using the complementary detection technique for the same number of active users. The comparison results revealed that the BER performance of the system using NAND subtraction detection technique has greatly been improved as compared to the complementary technique.

  2. Code System To Analyze Radiological Impact From Radwaste Transportation.

    Energy Science and Technology Software Center (ESTSC)

    1988-05-01

    Version 00 RADSHIP-2 is a computer code system used to analyze the environmental impact of radwaste transportation in Taiwan. The specific transport scheme including the land transport by truck and sea transport by ship or barge were considered in the analysis for normal transport and transport accident conditions. The code combines meteorological, population, health physics, transportation, packaging and material factors and has the capability to obtain the results of the expected annual population radiation exposure,more » the expected number of annual latent cancer fatalities and the annual probability of a given number of early fatalities.« less

  3. Monte-Carlo Continuous Energy Burnup Code System.

    Energy Science and Technology Software Center (ESTSC)

    2007-08-31

    Version 00 MCB is a Monte Carlo Continuous Energy Burnup Code for a general-purpose use to calculate a nuclide density time evolution with burnup or decay. It includes eigenvalue calculations of critical and subcritical systems as well as neutron transport calculations in fixed source mode or k-code mode to obtain reaction rates and energy deposition that are necessary for burnup calculations. The MCB-1C patch file and data packages as distributed by the NEADB are verymore » well organized and are being made available through RSICC as received. The RSICC package includes the MCB-1C patch and MCB data libraries. Installation of MCB requires MCNP4C source code and utility programs, which are not included in this MCB distribution. They were provided with the now obsolete CCC-700/MCNP-4C package.« less

  4. Confidence Intervals for Error Rates Observed in Coded Communications Systems

    NASA Astrophysics Data System (ADS)

    Hamkins, J.

    2015-05-01

    We present methods to compute confidence intervals for the codeword error rate (CWER) and bit error rate (BER) of a coded communications link. We review several methods to compute exact and approximate confidence intervals for the CWER, and specifically consider the situation in which the true CWER is so low that only a handful, if any, codeword errors are able to be simulated. In doing so, we answer the question of how long an error-free simulation must be run in order to certify that a given CWER requirement is met with a given level of confidence, and discuss the bias introduced by aborting a simulation after observing the first codeword error. Next, we turn to the lesser studied problem of determining confidence intervals for the BER of coded systems. Since bit errors in systems that use coding or higher-order modulation do not occur independently, blind application of a method that assumes independence leads to inappropriately narrow confidence intervals. We present a new method to compute the confidence interval properly, using the first and second sample moments of the number of bit errors per codeword. This is the first method we know of to compute a confidence interval for the BER of a coded or higher-order modulation system.

  5. Testing geochemical modeling codes using New Zealand hydrothermal systems

    SciTech Connect

    Bruton, C.J.; Glassley, W.E.; Bourcier, W.L.

    1993-12-01

    Hydrothermal systems in the Taupo Volcanic Zone, North Island, New Zealand are being used as field-based modeling exercises for the EQ3/6 geochemical modeling code package. Comparisons of the observed state and evolution of selected portions of the hydrothermal systems with predictions of fluid-solid equilibria made using geochemical modeling codes will: (1) ensure that we are providing adequately for all significant processes occurring in natural systems; (2) determine the adequacy of the mathematical descriptions of the processes; (3) check the adequacy and completeness of thermodynamic data as a function of temperature for solids, aqueous species and gases; and (4) determine the sensitivity of model results to the manner in which the problem is conceptualized by the user and then translated into constraints in the code input. Preliminary predictions of mineral assemblages in equilibrium with fluids sampled from wells in the Wairakei geothermal field suggest that affinity-temperature diagrams must be used in conjunction with EQ6 to minimize the effect of uncertainties in thermodynamic and kinetic data on code predictions. The kinetics of silica precipitation in EQ6 will be tested using field data from silica-lined drain channels carrying hot water away from the Wairakei borefield.

  6. Two Serial Data to Pulse Code Modulation System Interfaces

    NASA Technical Reports Server (NTRS)

    Hamory, Phil

    2006-01-01

    Two pulse code modulation (PCM) system interfaces for asynchronous serial data are described. One interface is for global positioning system (GPS) data on the NASA Dryden Flight Research Center (DFRC) F-15B (McDonnell Douglas Corporation, St. Louis, Missouri) airplane, tail number 836 (F-15B/836). The other is for flight control computer data on the duPont Aerospace (La Jolla, California) DP-1, a 53-percent scale model of the duPont Aerospace DP-2.

  7. Code for Analyzing and Designing Spacecraft Power System Radiators

    NASA Technical Reports Server (NTRS)

    Juhasz, Albert

    2005-01-01

    GPHRAD is a computer code for analysis and design of disk or circular-sector heat-rejecting radiators for spacecraft power systems. A specific application is for Stirling-cycle/linear-alternator electric-power systems coupled to radioisotope general-purpose heat sources. GPHRAD affords capabilities and options to account for thermophysical properties (thermal conductivity, density) of either metal-alloy or composite radiator materials.

  8. Corrosion consequences of microfouling in water reclamation systems

    NASA Technical Reports Server (NTRS)

    Ford, Tim; Mitchell, Ralph

    1991-01-01

    This paper examines the potential fouling and corrosion problems associated with microbial film formation throughout the water reclamation system (WRS) designed for the Space Station Freedom. It is shown that the use of advanced metal sputtering techiques combined with image analysis and FTIR spectroscopy will present realistic solutions for investigating the formation and function of biofilm on different alloys, the subsequent corrosion, and the efficiency of different treatments. These techniques, used in combination with electrochemical measurements of corrosion, will provide a powerful approach to examinations of materials considered for use in the WRS.

  9. A novel 2D wavelength-time chaos code in optical CDMA system

    NASA Astrophysics Data System (ADS)

    Zhang, Qi; Xin, Xiangjun; Wang, Yongjun; Zhang, Lijia; Yu, Chongxiu; Meng, Nan; Wang, Houtian

    2012-11-01

    Two-dimensional wavelength-time chaos code is proposed and constructed for a synchronous optical code division multiple access system. The access performance is compared between one-dimensional chaos code, WDM/chaos code and the proposed code. Comparison shows that two-dimensional wavelength-time chaos code possesses larger capacity, better spectral efficiency and bit-error ratio than WDM/chaos combinations and one-dimensional chaos code.

  10. An Expert System for the Development of Efficient Parallel Code

    NASA Technical Reports Server (NTRS)

    Jost, Gabriele; Chun, Robert; Jin, Hao-Qiang; Labarta, Jesus; Gimenez, Judit

    2004-01-01

    We have built the prototype of an expert system to assist the user in the development of efficient parallel code. The system was integrated into the parallel programming environment that is currently being developed at NASA Ames. The expert system interfaces to tools for automatic parallelization and performance analysis. It uses static program structure information and performance data in order to automatically determine causes of poor performance and to make suggestions for improvements. In this paper we give an overview of our programming environment, describe the prototype implementation of our expert system, and demonstrate its usefulness with several case studies.

  11. Upgrades to the NESS (Nuclear Engine System Simulation) Code

    NASA Technical Reports Server (NTRS)

    Fittje, James E.

    2007-01-01

    In support of the President's Vision for Space Exploration, the Nuclear Thermal Rocket (NTR) concept is being evaluated as a potential propulsion technology for human expeditions to the moon and Mars. The need for exceptional propulsion system performance in these missions has been documented in numerous studies, and was the primary focus of a considerable effort undertaken during the 1960's and 1970's. The NASA Glenn Research Center is leveraging this past NTR investment in their vehicle concepts and mission analysis studies with the aid of the Nuclear Engine System Simulation (NESS) code. This paper presents the additional capabilities and upgrades made to this code in order to perform higher fidelity NTR propulsion system analysis and design.

  12. Code System for Reactor Physics and Fuel Cycle Simulation.

    Energy Science and Technology Software Center (ESTSC)

    1999-04-21

    Version 00 VSOP94 (Very Superior Old Programs) is a system of codes linked together for the simulation of reactor life histories. It comprises neutron cross section libraries and processing routines, repeated neutron spectrum evaluation, 2-D diffusion calculation based on neutron flux synthesis with depletion and shut-down features, in-core and out-of-pile fuel management, fuel cycle cost analysis, and thermal hydraulics (at present restricted to Pebble Bed HTRs). Various techniques have been employed to accelerate the iterativemore » processes and to optimize the internal data transfer. The code system has been used extensively for comparison studies of reactors, their fuel cycles, and related detailed features. In addition to its use in research and development work for the High Temperature Reactor, the system has been applied successfully to Light Water and Heavy Water Reactors.« less

  13. Distributed magnetic field positioning system using code division multiple access

    NASA Technical Reports Server (NTRS)

    Prigge, Eric A. (Inventor)

    2003-01-01

    An apparatus and methods for a magnetic field positioning system use a fundamentally different, and advantageous, signal structure and multiple access method, known as Code Division Multiple Access (CDMA). This signal architecture, when combined with processing methods, leads to advantages over the existing technologies, especially when applied to a system with a large number of magnetic field generators (beacons). Beacons at known positions generate coded magnetic fields, and a magnetic sensor measures a sum field and decomposes it into component fields to determine the sensor position and orientation. The apparatus and methods can have a large `building-sized` coverage area. The system allows for numerous beacons to be distributed throughout an area at a number of different locations. A method to estimate position and attitude, with no prior knowledge, uses dipole fields produced by these beacons in different locations.

  14. System code requirements for safety analysis of SBWR

    SciTech Connect

    Andersen, J.G.M.; Shiralkar, B.S.

    1994-12-31

    The simplified boiling water reactor (SBWR) being developed by General Electric Nuclear Energy is an advanced boiling water reactor relying on natural circulation during normal operation and passive safety features. The major elements of the passive safety features are the automatic depressurization of the reactor pressure vessel (RPV) following a loss-of-coolant accident (LOCA) through safety/relief valves and depressurization valves, the gravity-driven coolant system (GDCS), and the passive containment cooling system (PCCS) for residual heat removal. These passive safety systems, although based on existing technology, have generated new requirements for the computer codes used in safety and design analysis. TRACG is the computer code used for safety and design analysis for the SBWR.

  15. Code System for Reactor Physics and Fuel Cycle Simulation.

    SciTech Connect

    TEUCHERT, E.

    1999-04-21

    Version 00 VSOP94 (Very Superior Old Programs) is a system of codes linked together for the simulation of reactor life histories. It comprises neutron cross section libraries and processing routines, repeated neutron spectrum evaluation, 2-D diffusion calculation based on neutron flux synthesis with depletion and shut-down features, in-core and out-of-pile fuel management, fuel cycle cost analysis, and thermal hydraulics (at present restricted to Pebble Bed HTRs). Various techniques have been employed to accelerate the iterative processes and to optimize the internal data transfer. The code system has been used extensively for comparison studies of reactors, their fuel cycles, and related detailed features. In addition to its use in research and development work for the High Temperature Reactor, the system has been applied successfully to Light Water and Heavy Water Reactors.

  16. Systemic ceramide accumulation leads to severe and varied pathological consequences.

    PubMed

    Alayoubi, Abdulfatah M; Wang, James C M; Au, Bryan C Y; Carpentier, Stéphane; Garcia, Virginie; Dworski, Shaalee; El-Ghamrasni, Samah; Kirouac, Kevin N; Exertier, Mathilde J; Xiong, Zi Jian; Privé, Gilbert G; Simonaro, Calogera M; Casas, Josefina; Fabrias, Gemma; Schuchman, Edward H; Turner, Patricia V; Hakem, Razqallah; Levade, Thierry; Medin, Jeffrey A

    2013-06-01

    Farber disease (FD) is a severe inherited disorder of lipid metabolism characterized by deficient lysosomal acid ceramidase (ACDase) activity, resulting in ceramide accumulation. Ceramide and metabolites have roles in cell apoptosis and proliferation. We introduced a single-nucleotide mutation identified in human FD patients into the murine Asah1 gene to generate the first model of systemic ACDase deficiency. Homozygous Asah1(P361R/P361R) animals showed ACDase defects, accumulated ceramide, demonstrated FD manifestations and died within 7-13 weeks. Mechanistically, MCP-1 levels were increased and tissues were replete with lipid-laden macrophages. Treatment of neonates with a single injection of human ACDase-encoding lentivector diminished the severity of the disease as highlighted by enhanced growth, decreased ceramide, lessened cellular infiltrations and increased lifespans. This model of ACDase deficiency offers insights into the pathophysiology of FD and the roles of ACDase, ceramide and related sphingolipids in cell signaling and growth, as well as facilitates the development of therapy. PMID:23681708

  17. Correlation channel modeling for practical Slepian-Wolf distributed video compression system using irregular LDPC codes

    NASA Astrophysics Data System (ADS)

    Li, Li; Hu, Xiao; Zeng, Rui

    2007-11-01

    The development of practical distributed video coding schemes is based on the consequence of information-theoretic bounds established in the 1970s by Slepian and Wolf for distributed lossless coding, and by Wyner and Ziv for lossy coding with decoder side information. In distributed video compression application, it is hard to accurately describe the non-stationary behavior of the virtual correlation channel between X and side information Y although it plays a very important role in overall system performance. In this paper, we implement a practical Slepian-Wolf asymmetric distributed video compression system using irregular LDPC codes. Moreover, based on exploiting the dependencies of previously decode bit planes from video frame X and side information Y, we present improvement schemes to divide different reliable regions. Our simulation results show improving schemes of exploiting the dependencies between previously decoded bit planes can get better overall encoding rate performance as BER approach zero. We also show, compared with BSC model, BC channel model is more suitable for distributed video compression scenario because of the non-stationary properties of the virtual correlation channel and adaptive detecting channel model parameters from previously adjacent decoded bit planes can provide more accurately initial belief messages from channel at LDPC decoder.

  18. A new two dimensional spectral/spatial multi-diagonal code for noncoherent optical code division multiple access (OCDMA) systems

    NASA Astrophysics Data System (ADS)

    Kadhim, Rasim Azeez; Fadhil, Hilal Adnan; Aljunid, S. A.; Razalli, Mohamad Shahrazel

    2014-10-01

    A new two dimensional codes family, namely two dimensional multi-diagonal (2D-MD) codes, is proposed for spectral/spatial non-coherent OCDMA systems based on the one dimensional MD code. Since the MD code has the property of zero cross correlation, the proposed 2D-MD code also has this property. So that, the multi-access interference (MAI) is fully eliminated and the phase induced intensity noise (PIIN) is suppressed with the proposed code. Code performance is analyzed in terms of bit error rate (BER) while considering the effect of shot noise, PIIN, and thermal noise. The performance of the proposed code is compared with the related MD, modified quadratic congruence (MQC), two dimensional perfect difference (2D-PD) and two dimensional diluted perfect difference (2D-DPD) codes. The analytical and the simulation results reveal that the proposed 2D-MD code outperforms the other codes. Moreover, a large number of simultaneous users can be accommodated at low BER and high data rate.

  19. Photovoltaic power systems and the National Electrical Code: Suggested practices

    SciTech Connect

    Wiles, J.

    1996-12-01

    This guide provides information on how the National Electrical Code (NEC) applies to photovoltaic systems. The guide is not intended to supplant or replace the NEC; it paraphrases the NEC where it pertains to photovoltaic systems and should be used with the full text of the NEC. Users of this guide should be thoroughly familiar with the NEC and know the engineering principles and hazards associated with electrical and photovoltaic power systems. The information in this guide is the best available at the time of publication and is believed to be technically accurate; it will be updated frequently. Application of this information and results obtained are the responsibility of the user.

  20. Neural map formation and sensory coding in the vomeronasal system.

    PubMed

    Brignall, Alexandra C; Cloutier, Jean-François

    2015-12-01

    Sensory systems enable us to encode a clear representation of our environment in the nervous system by spatially organizing sensory stimuli being received. The organization of neural circuitry to form a map of sensory activation is critical for the interpretation of these sensory stimuli. In rodents, social communication relies strongly on the detection of chemosignals by the vomeronasal system, which regulates a wide array of behaviours, including mate recognition, reproduction, and aggression. The binding of these chemosignals to receptors on vomeronasal sensory neurons leads to activation of second-order neurons within glomeruli of the accessory olfactory bulb. Here, vomeronasal receptor activation by a stimulus is organized into maps of glomerular activation that represent phenotypic qualities of the stimuli detected. Genetic, electrophysiological and imaging studies have shed light on the principles underlying cell connectivity and sensory map formation in the vomeronasal system, and have revealed important differences in sensory coding between the vomeronasal and main olfactory system. In this review, we summarize the key factors and mechanisms that dictate circuit formation and sensory coding logic in the vomeronasal system, emphasizing differences with the main olfactory system. Furthermore, we discuss how detection of chemosignals by the vomeronasal system regulates social behaviour in mice, specifically aggression. PMID:26329476

  1. A seismic data compression system using subband coding

    NASA Technical Reports Server (NTRS)

    Kiely, A. B.; Pollara, F.

    1995-01-01

    This article presents a study of seismic data compression techniques and a compression algorithm based on subband coding. The algorithm includes three stages: a decorrelation stage, a quantization stage that introduces a controlled amount of distortion to allow for high compression ratios, and a lossless entropy coding stage based on a simple but efficient arithmetic coding method. Subband coding methods are particularly suited to the decorrelation of nonstationary processes such as seismic events. Adaptivity to the nonstationary behavior of the waveform is achieved by dividing the data into separate blocks that are encoded separately with an adaptive arithmetic encoder. This is done with high efficiency due to the low overhead introduced by the arithmetic encoder in specifying its parameters. The technique could be used as a progressive transmission system, where successive refinements of the data can be requested by the user. This allows seismologists to first examine a coarse version of waveforms with minimal usage of the channel and then decide where refinements are required. Rate-distortion performance results are presented and comparisons are made with two block transform methods.

  2. Investigation on Coding Method of Dental X-ray Image for Integrated Hospital Information System

    NASA Astrophysics Data System (ADS)

    Seki, Takashi; Hamamoto, Kazuhiko

    Recently, medical information system in dental field goes into digital system. In the system, X-ray image can be taken in digital modality and input to the system directly. Consequently, it is easy to combine the image data with alpha-numerical data which are stored in the conventional medical information system. It is useful to manipulate alpha-numerical data and image data simultaneously. The purpose of this research is to develop a new coding method for dental X-ray image. The method enables to reduce a disk space to store the images and transmit the images through Internet or LAN lightly. I attempt to apply multi-resolution analysis (wavelet transform) to accomplish the purpose. Proposed method achieves low bit-rate compared with conventional method.

  3. Status of the LAHET{trademark} Code System

    SciTech Connect

    Waters, L.S.; Prael, R.E.

    1995-12-31

    The LAHET Code System (LCS) is extensively used for medium energy accelerator applications, including spallation target design and deep penetration shielding problems. Current applications include Accelerator Production of Tritium (APT), Accelerator Driven Transmutation Technologies (ADTT), LANSCE and WNR spallation target upgrades, as well as various medical projects. We will discuss recent upgrades to the MCNP and LAHET components of LCS, AND review the work in progress now funded under the APT program.

  4. Code System to Calculate Reactor Coolant System Leak Rate.

    Energy Science and Technology Software Center (ESTSC)

    1999-10-19

    Version 00 RCSLK9 was developed to analyze the leak tightness of the primary coolant system for any pressurized water reactor (PWR). From given system conditions, water levels in tanks, and certain system design parameters, RCSLK9 calculates the loss of water from the reactor coolant system (RCS) and the increase of water in the leakage collection system during an arbitrary time interval. The program determines the system leak rates and displays or prints a report ofmore » the results. During the initial application to a specific reactor, RCSLK9 creates a file of system parameters and saves it for future use.« less

  5. Code System to Calculate Reactor Coolant System Leak Rate.

    SciTech Connect

    Bell, Pat

    1999-10-19

    Version 00 RCSLK9 was developed to analyze the leak tightness of the primary coolant system for any pressurized water reactor (PWR). From given system conditions, water levels in tanks, and certain system design parameters, RCSLK9 calculates the loss of water from the reactor coolant system (RCS) and the increase of water in the leakage collection system during an arbitrary time interval. The program determines the system leak rates and displays or prints a report of the results. During the initial application to a specific reactor, RCSLK9 creates a file of system parameters and saves it for future use.

  6. Enabling Handicapped Nonreaders to Independently Obtain Information: Initial Development of an Inexpensive Bar Code Reader System.

    ERIC Educational Resources Information Center

    VanBiervliet, Alan

    A project to develop and evaluate a bar code reader system as a self-directed information and instructional aid for handicapped nonreaders is described. The bar code technology involves passing a light sensitive pen or laser over a printed code with bars which correspond to coded numbers. A system would consist of a portable device which could…

  7. An Automated, Multi-Step Monte Carlo Burnup Code System.

    SciTech Connect

    TRELLUE, HOLLY R.

    2003-07-14

    Version 02 MONTEBURNS Version 2 calculates coupled neutronic/isotopic results for nuclear systems and produces a large number of criticality and burnup results based on various material feed/removal specifications, power(s), and time intervals. MONTEBURNS is a fully automated tool that links the LANL MCNP Monte Carlo transport code with a radioactive decay and burnup code. Highlights on changes to Version 2 are listed in the transmittal letter. Along with other minor improvements in MONTEBURNS Version 2, the option was added to use CINDER90 instead of ORIGEN2 as the depletion/decay part of the system. CINDER90 is a multi-group depletion code developed at LANL and is not currently available from RSICC. This MONTEBURNS release was tested with various combinations of CCC-715/MCNPX 2.4.0, CCC-710/MCNP5, CCC-700/MCNP4C, CCC-371/ORIGEN2.2, ORIGEN2.1 and CINDER90. Perl is required software and is not included in this distribution. MCNP, ORIGEN2, and CINDER90 are not included.

  8. Advanced coding techniques for few mode transmission systems.

    PubMed

    Okonkwo, Chigo; van Uden, Roy; Chen, Haoshuo; de Waardt, Huug; Koonen, Ton

    2015-01-26

    We experimentally verify the advantage of employing advanced coding schemes such as space-time coding and 4 dimensional modulation formats to enhance the transmission performance of a 3-mode transmission system. The performance gain of space-time block codes for extending the optical signal-to-noise ratio tolerance in multiple-input multiple-output optical coherent spatial division multiplexing transmission systems with respect to single-mode transmission performance are evaluated. By exploiting the spatial diversity that few-mode-fibers offer, with respect to single mode fiber back-to-back performance, significant OSNR gains of 3.2, 4.1, 4.9, and 6.8 dB at the hard-decision forward error correcting limit are demonstrated for DP-QPSK 8, 16 and 32 QAM, respectively. Furthermore, by employing 4D constellations, 6 × 28Gbaud 128 set partitioned quadrature amplitude modulation is shown to outperform conventional 8 QAM transmission performance, whilst carrying an additional 0.5 bit/symbol. PMID:25835899

  9. An Automated, Multi-Step Monte Carlo Burnup Code System.

    Energy Science and Technology Software Center (ESTSC)

    2003-07-14

    Version 02 MONTEBURNS Version 2 calculates coupled neutronic/isotopic results for nuclear systems and produces a large number of criticality and burnup results based on various material feed/removal specifications, power(s), and time intervals. MONTEBURNS is a fully automated tool that links the LANL MCNP Monte Carlo transport code with a radioactive decay and burnup code. Highlights on changes to Version 2 are listed in the transmittal letter. Along with other minor improvements in MONTEBURNS Version 2,more » the option was added to use CINDER90 instead of ORIGEN2 as the depletion/decay part of the system. CINDER90 is a multi-group depletion code developed at LANL and is not currently available from RSICC. This MONTEBURNS release was tested with various combinations of CCC-715/MCNPX 2.4.0, CCC-710/MCNP5, CCC-700/MCNP4C, CCC-371/ORIGEN2.2, ORIGEN2.1 and CINDER90. Perl is required software and is not included in this distribution. MCNP, ORIGEN2, and CINDER90 are not included.« less

  10. Code-Time Diversity for Direct Sequence Spread Spectrum Systems

    PubMed Central

    Hassan, A. Y.

    2014-01-01

    Time diversity is achieved in direct sequence spread spectrum by receiving different faded delayed copies of the transmitted symbols from different uncorrelated channel paths when the transmission signal bandwidth is greater than the coherence bandwidth of the channel. In this paper, a new time diversity scheme is proposed for spread spectrum systems. It is called code-time diversity. In this new scheme, N spreading codes are used to transmit one data symbol over N successive symbols interval. The diversity order in the proposed scheme equals to the number of the used spreading codes N multiplied by the number of the uncorrelated paths of the channel L. The paper represents the transmitted signal model. Two demodulators structures will be proposed based on the received signal models from Rayleigh flat and frequency selective fading channels. Probability of error in the proposed diversity scheme is also calculated for the same two fading channels. Finally, simulation results are represented and compared with that of maximal ration combiner (MRC) and multiple-input and multiple-output (MIMO) systems. PMID:24982925

  11. Defending public interests in private lands: compliance, costs and potential environmental consequences of the Brazilian Forest Code in Mato Grosso.

    PubMed

    Stickler, Claudia M; Nepstad, Daniel C; Azevedo, Andrea A; McGrath, David G

    2013-06-01

    Land-use regulations are a critical component of forest governance and conservation strategies, but their effectiveness in shaping landholder behaviour is poorly understood. We conducted a spatial and temporal analysis of the Brazilian Forest Code (BFC) to understand the patterns of regulatory compliance over time and across changes in the policy, and the implications of these compliance patterns for the perceived costs to landholders and environmental performance of agricultural landscapes in the southern Amazon state of Mato Grosso. Landholdings tended to remain in compliance or not according to their status at the beginning of the study period. The perceived economic burden of BFC compliance on soya bean and beef producers (US$3-5.6 billion in net present value of the land) may in part explain the massive, successful campaign launched by the farm lobby to change the BFC. The ecological benefits of compliance (e.g. greater connectivity and carbon) with the BFC are diffuse and do not compete effectively with the economic benefits of non-compliance that are perceived by landholders. Volatile regulation of land-use decisions that affect billions in economic rent that could be captured is an inadequate forest governance instrument; effectiveness of such regulations may increase when implemented in tandem with positive incentives for forest conservation. PMID:23610168

  12. Defending public interests in private lands: compliance, costs and potential environmental consequences of the Brazilian Forest Code in Mato Grosso

    PubMed Central

    Stickler, Claudia M.; Nepstad, Daniel C.; Azevedo, Andrea A.; McGrath, David G.

    2013-01-01

    Land-use regulations are a critical component of forest governance and conservation strategies, but their effectiveness in shaping landholder behaviour is poorly understood. We conducted a spatial and temporal analysis of the Brazilian Forest Code (BFC) to understand the patterns of regulatory compliance over time and across changes in the policy, and the implications of these compliance patterns for the perceived costs to landholders and environmental performance of agricultural landscapes in the southern Amazon state of Mato Grosso. Landholdings tended to remain in compliance or not according to their status at the beginning of the study period. The perceived economic burden of BFC compliance on soya bean and beef producers (US$3–5.6 billion in net present value of the land) may in part explain the massive, successful campaign launched by the farm lobby to change the BFC. The ecological benefits of compliance (e.g. greater connectivity and carbon) with the BFC are diffuse and do not compete effectively with the economic benefits of non-compliance that are perceived by landholders. Volatile regulation of land-use decisions that affect billions in economic rent that could be captured is an inadequate forest governance instrument; effectiveness of such regulations may increase when implemented in tandem with positive incentives for forest conservation. PMID:23610168

  13. Nexus: a modular workflow management system for quantum simulation codes

    DOE PAGESBeta

    Krogel, Jaron T.

    2015-08-24

    The management of simulation workflows is a significant task for the individual computational researcher. Automation of the required tasks involved in simulation work can decrease the overall time to solution and reduce sources of human error. A new simulation workflow management system, Nexus, is presented to address these issues. Nexus is capable of automated job management on workstations and resources at several major supercomputing centers. Its modular design allows many quantum simulation codes to be supported within the same framework. Current support includes quantum Monte Carlo calculations with QMCPACK, density functional theory calculations with Quantum Espresso or VASP, and quantummore » chemical calculations with GAMESS. Users can compose workflows through a transparent, text-based interface, resembling the input file of a typical simulation code. A usage example is provided to illustrate the process.« less

  14. Nexus: a modular workflow management system for quantum simulation codes

    SciTech Connect

    Krogel, Jaron T.

    2015-08-24

    The management of simulation workflows is a significant task for the individual computational researcher. Automation of the required tasks involved in simulation work can decrease the overall time to solution and reduce sources of human error. A new simulation workflow management system, Nexus, is presented to address these issues. Nexus is capable of automated job management on workstations and resources at several major supercomputing centers. Its modular design allows many quantum simulation codes to be supported within the same framework. Current support includes quantum Monte Carlo calculations with QMCPACK, density functional theory calculations with Quantum Espresso or VASP, and quantum chemical calculations with GAMESS. Users can compose workflows through a transparent, text-based interface, resembling the input file of a typical simulation code. A usage example is provided to illustrate the process.

  15. Code System for Fluid-Structure Interaction Analysis.

    Energy Science and Technology Software Center (ESTSC)

    2001-05-30

    Version 00 PELE-IC is a two-dimensional semi-implicit Eulerian hydrodynamics program for the solution of incompressible flow coupled to flexible structures. The code was developed to calculate fluid-structure interactions and bubble dynamics of a pressure-suppression system following a loss-of-coolant accident (LOCA). The fluid, structure, and coupling algorithms have been verified by calculation of benchmark problems and air and steam blowdown experiments. The code is written for both plane and cylindrical coordinates. The coupling algorithm is generalmore » enough to handle a wide variety of structural shapes. The concepts of void fractions and interface orientation are used to track the movement of free surfaces, allowing great versatility in following fluid-gas interfaces both for bubble definition and water surface motion without the use of marker particles.« less

  16. Nexus: A modular workflow management system for quantum simulation codes

    NASA Astrophysics Data System (ADS)

    Krogel, Jaron T.

    2016-01-01

    The management of simulation workflows represents a significant task for the individual computational researcher. Automation of the required tasks involved in simulation work can decrease the overall time to solution and reduce sources of human error. A new simulation workflow management system, Nexus, is presented to address these issues. Nexus is capable of automated job management on workstations and resources at several major supercomputing centers. Its modular design allows many quantum simulation codes to be supported within the same framework. Current support includes quantum Monte Carlo calculations with QMCPACK, density functional theory calculations with Quantum Espresso or VASP, and quantum chemical calculations with GAMESS. Users can compose workflows through a transparent, text-based interface, resembling the input file of a typical simulation code. A usage example is provided to illustrate the process.

  17. National Combustion Code: A Multidisciplinary Combustor Design System

    NASA Technical Reports Server (NTRS)

    Stubbs, Robert M.; Liu, Nan-Suey

    1997-01-01

    The Internal Fluid Mechanics Division conducts both basic research and technology, and system technology research for aerospace propulsion systems components. The research within the division, which is both computational and experimental, is aimed at improving fundamental understanding of flow physics in inlets, ducts, nozzles, turbomachinery, and combustors. This article and the following three articles highlight some of the work accomplished in 1996. A multidisciplinary combustor design system is critical for optimizing the combustor design process. Such a system should include sophisticated computer-aided design (CAD) tools for geometry creation, advanced mesh generators for creating solid model representations, a common framework for fluid flow and structural analyses, modern postprocessing tools, and parallel processing. The goal of the present effort is to develop some of the enabling technologies and to demonstrate their overall performance in an integrated system called the National Combustion Code.

  18. Validation of hydrogeochemical codes using the New Zealand geothermal system

    SciTech Connect

    Glassley, W.

    1992-12-01

    Evaluation of the performance of a nuclear waste repository requires that numerous parameters be evaluated over a broad range of conditions using codes. The capabilities of these codes must be demonstrated using complex natural systems in which the processes of interest have already occurred or are occurring. We have initiated such a test of geochemical and hydrological simulation codes, using the geothermal areas of the Taupo Volcanic Zone, New Zealand. Areas that have been evolving for a few tens to a few tens of thousands of years are of particular interest. This effort will help determine the extent to which simplified modeling approaches can be used in performance assessment calculations. To guide the selection of natural systems, we are attempting to map potential repository regions dominated by equilibrium processes and those dominated by kinetically controlled processes. To do so, fluid velocities and temperatures were computed using the V-TOUGH code assuming an equivalent continuum, dual porosity model. These results were then used to compare advective fluid flow rate with silica dissolution/precipitation rates, using Damkoehler numbers. Only the first 5000 years of repository operation were considered. The results identify a migrating envelope of kinetically dominated activity several meters wide in the vicinity of waste packages that contrasts with other parts of the repository. The Lake Rotokawa region, New Zealand, has been used in our first test effort, since it contains environments that are examples of kinetic and equilibrium processes. The results of tests involving equilibrium processes show excellent correspondence between simulated and observed mineral alteration sequences, although discrepancies in some mineral parageneses demonstrate that operator decisions in conducting simulations must be considered an integral part of validation efforts.

  19. Hazardous material analysis and coding system (HAZMZCS). Final report

    SciTech Connect

    Bryant, J.W.

    1991-06-01

    A new hazardous material classification system is being implemented. It consists of 55 Hazardous Characteristic Codes (HCC). The HCC will provide critical information needed to effectively manage, store and ship hazardous materials such as poisons, pesticides, radioactive materials, oxidizers, corrosive liquids and explosives. With implementation of new automated Defense Logistics Agency (DLA) Warehousing and Shipping Procedures (DWASP), DLA depot receiving personnel will be required to assign the HCC if it it missing from pertinent documents. Without the HCC, the DWASP system will not assign a depot storage location. Because the new HCC must be assigned quickly and accurately, an expert systems approach offers a feasible and practical means for providing this support. Accordingly, the Hazardous Material Analysis and Coding System (HAZMACS) was developed. HAZMACS is a PC-based expert system which queries the user about the known characteristics of suspected hazardous material and assigns an HCC based on the user's responses. HAZMACS consists of a main knowledge base file which chains to any of 13 other hazard-specific knowledge base files.

  20. SALT (System Analysis Language Translater): A steady state and dynamic systems code

    SciTech Connect

    Berry, G.; Geyer, H.

    1983-01-01

    SALT (System Analysis Language Translater) is a lumped parameter approach to system analysis which is totally modular. The modules are all precompiled and only the main program, which is generated by SALT, needs to be compiled for each unique system configuration. This is a departure from other lumped parameter codes where all models are written by MACROS and then compiled for each unique configuration, usually after all of the models are lumped together and sorted to eliminate undetermined variables. The SALT code contains a robust and sophisticated steady-sate finder (non-linear equation solver), optimization capability and enhanced GEAR integration scheme which makes use of sparsity and algebraic constraints. The SALT systems code has been used for various technologies. The code was originally developed for open-cycle magnetohydrodynamic (MHD) systems. It was easily extended to liquid metal MHD systems by simply adding the appropriate models and property libraries. Similarly, the model and property libraries were expanded to handle fuel cell systems, flue gas desulfurization systems, combined cycle gasification systems, fluidized bed combustion systems, ocean thermal energy conversion systems, geothermal systems, nuclear systems, and conventional coal-fired power plants. Obviously, the SALT systems code is extremely flexible to be able to handle all of these diverse systems. At present, the dynamic option has only been used for LMFBR nuclear power plants and geothermal power plants. However, it can easily be extended to other systems and can be used for analyzing control problems. 12 refs.

  1. Code System for Static and Dynamic Piping System Analysis.

    Energy Science and Technology Software Center (ESTSC)

    2000-07-07

    EPIPE is used for design or design evaluation of complex large piping systems. The piping systems can be viewed as a network of straight pipe elements (or tangents) and curved elements (pipe bends) interconnected at joints (or nodes) with intermediate supports and anchors. The system may be subject to static loads such as thermal, dead weight, internal pressure, or dynamic loads such as earthquake motions and flow-induced vibrations, or any combination of these.

  2. An engineering code to analyze hypersonic thermal management systems

    NASA Technical Reports Server (NTRS)

    Vangriethuysen, Valerie J.; Wallace, Clark E.

    1993-01-01

    Thermal loads on current and future aircraft are increasing and as a result are stressing the energy collection, control, and dissipation capabilities of current thermal management systems and technology. The thermal loads for hypersonic vehicles will be no exception. In fact, with their projected high heat loads and fluxes, hypersonic vehicles are a prime example of systems that will require thermal management systems (TMS) that have been optimized and integrated with the entire vehicle to the maximum extent possible during the initial design stages. This will not only be to meet operational requirements, but also to fulfill weight and performance constraints in order for the vehicle to takeoff and complete its mission successfully. To meet this challenge, the TMS can no longer be two or more entirely independent systems, nor can thermal management be an after thought in the design process, the typical pervasive approach in the past. Instead, a TMS that was integrated throughout the entire vehicle and subsequently optimized will be required. To accomplish this, a method that iteratively optimizes the TMS throughout the vehicle will not only be highly desirable, but advantageous in order to reduce the manhours normally required to conduct the necessary tradeoff studies and comparisons. A thermal management engineering computer code that is under development and being managed at Wright Laboratory, Wright-Patterson AFB, is discussed. The primary goal of the code is to aid in the development of a hypersonic vehicle TMS that has been optimized and integrated on a total vehicle basis.

  3. System Design Considerations In Bar-Code Laser Scanning

    NASA Astrophysics Data System (ADS)

    Barkan, Eric; Swartz, Jerome

    1984-08-01

    The unified transfer function approach to the design of laser barcode scanner signal acquisition hardware is considered. The treatment of seemingly disparate system areas such as the optical train, the scanning spot, the electrical filter circuits, the effects of noise, and printing errors is presented using linear systems theory. Such important issues as determination of depth of modulation, filter specification, tolerancing of optical components, and optimi-zation of system performance in the presence of noise are discussed. The concept of effective spot size to allow for impact of optical system and analog processing circuitry upon depth of modulation is introduced. Considerations are limited primarily to Gaussian spot profiles, but also apply to more general cases. Attention is paid to realistic bar-code symbol models and to implications with respect to printing tolerances.

  4. Neutron Activation Analysis PRognosis and Optimization Code System.

    Energy Science and Technology Software Center (ESTSC)

    2004-08-20

    Version 00 NAAPRO predicts the results and main characteristics (detection limits, determination limits, measurement limits and relative precision of the analysis) of neutron activation analysis (instrumental and radiochemical). Gamma-ray dose rates for different points of time after sample irradiation and input count rate of the spectrometry system are also predicted. The code uses standard Windows user interface and extensive graphical tools for the visualization of the spectrometer characteristics (efficiency, response and background) and simulated spectrum.more » Optimization part is not included in the current version of the code. This release is designated NAAPRO, Version 01.beta. The MCNP code was used for generating detector responses. PREPRO-2000 and FCONV programs were used at the preparation of the program nuclear databases. A special program was developed for viewing, editing and updating of the program databases (not included into the present program package). The MCNP, PREPRO-2000 and FCONV software packages are not included in the NAAPRO package.« less

  5. Trellis coded multilevel DPSK system with doppler correction for mobile satellite channels

    NASA Technical Reports Server (NTRS)

    Divsalar, Dariush (Inventor); Simon, Marvin K. (Inventor)

    1991-01-01

    A trellis coded multilevel differential phase shift keyed mobile communication system. The system of the present invention includes a trellis encoder for translating input signals into trellis codes; a differential encoder for differentially encoding the trellis coded signals; a transmitter for transmitting the differentially encoded trellis coded signals; a receiver for receiving the transmitted signals; a differential demodulator for demodulating the received differentially encoded trellis coded signals; and a trellis decoder for decoding the differentially demodulated signals.

  6. [Data coding in the Israeli healthcare system - do choices provide the answers to our system's needs?].

    PubMed

    Zelingher, Julian; Ash, Nachman

    2013-05-01

    The IsraeLi healthcare system has undergone major processes for the adoption of health information technologies (HIT), and enjoys high Levels of utilization in hospital and ambulatory care. Coding is an essential infrastructure component of HIT, and ts purpose is to represent data in a simplified and common format, enhancing its manipulation by digital systems. Proper coding of data enables efficient identification, storage, retrieval and communication of data. UtiLization of uniform coding systems by different organizations enables data interoperability between them, facilitating communication and integrating data elements originating in different information systems from various organizations. Current needs in Israel for heaLth data coding include recording and reporting of diagnoses for hospitalized patients, outpatients and visitors of the Emergency Department, coding of procedures and operations, coding of pathology findings, reporting of discharge diagnoses and causes of death, billing codes, organizational data warehouses and national registries. New national projects for cLinicaL data integration, obligatory reporting of quality indicators and new Ministry of Health (MOH) requirements for HIT necessitate a high Level of interoperability that can be achieved only through the adoption of uniform coding. Additional pressures were introduced by the USA decision to stop the maintenance of the ICD-9-CM codes that are also used by Israeli healthcare, and the adoption of ICD-10-C and ICD-10-PCS as the main coding system for billing purpose. The USA has also mandated utilization of SNOMED-CT as the coding terminology for the ELectronic Health Record problem list, and for reporting quality indicators to the CMS. Hence, the Israeli MOH has recently decided that discharge diagnoses will be reported using ICD-10-CM codes, and SNOMED-CT will be used to code the cLinical information in the EHR. We reviewed the characteristics, strengths and weaknesses of these two coding

  7. Speckle noise in laser bar-code-scanner systems

    NASA Astrophysics Data System (ADS)

    Yu, Daoqi; Stern, Miklos; Katz, Joseph

    1996-07-01

    We present a theoretical model and its experimental verification for speckle-induced noise in laser-based bar-code-scanner systems. We measured the dependence of the signal-to-speckle-noise ratio on distance, spot size, and detector size. Analyses of the power spectra of both the speckle noise and of the measured surface profiles of different substrates suggest that the paper surface granularity can be approximated by a white Gaussian noise process, thus confirming the assumption of the theoretical model.

  8. Quantum Random Access Codes Using Single d -Level Systems

    NASA Astrophysics Data System (ADS)

    Tavakoli, Armin; Hameedi, Alley; Marques, Breno; Bourennane, Mohamed

    2015-05-01

    Random access codes (RACs) are used by a party to, with limited communication, access an arbitrary subset of information held by another party. Quantum resources are known to enable RACs that break classical limitations. Here, we study quantum and classical RACs with high-level communication. We derive average performances of classical RACs and present families of high-level quantum RACs. Our results show that high-level quantum systems can significantly increase the advantage of quantum RACs over their classical counterparts. We demonstrate our findings in an experimental realization of a quantum RAC with four-level communication.

  9. A LONE code for the sparse control of quantum systems

    NASA Astrophysics Data System (ADS)

    Ciaramella, G.; Borzì, A.

    2016-03-01

    In many applications with quantum spin systems, control functions with a sparse and pulse-shaped structure are often required. These controls can be obtained by solving quantum optimal control problems with L1-penalized cost functionals. In this paper, the MATLAB package LONE is presented aimed to solving L1-penalized optimal control problems governed by unitary-operator quantum spin models. This package implements a new strategy that includes a globalized semi-smooth Krylov-Newton scheme and a continuation procedure. Results of numerical experiments demonstrate the ability of the LONE code in computing accurate sparse optimal control solutions.

  10. Cause-consequence analysis of a generic Space Station computer system

    NASA Astrophysics Data System (ADS)

    Pauperas, John

    This paper reviews the application of a cause-consequence analysis technique to summarize the safety concerns and proposed safeguards for a generic Space Station computer system. The cause-consequence diagram included in this paper presents a summary of causal factors for the initiating event. The diagram also identifies the inherent safety features of the computer system, both hardware and software, that preclude unwanted command and control functions. Additional safeguards needed to prevent or minimize the occurrence of the noted safety critical hazards are also shown in the event tree portion of the diagram. A complex safety analysis of a computer system application is summarized on a single page for management review.

  11. The Application Programming Interface for the PVMEXEC Program and Associated Code Coupling System

    SciTech Connect

    Walter L. Weaver III

    2005-03-01

    This report describes the Application Programming Interface for the PVMEXEC program and the code coupling systems that it implements. The information in the report is intended for programmers wanting to add a new code into the coupling system.

  12. YALINA analytical benchmark analyses using the deterministic ERANOS code system.

    SciTech Connect

    Gohar, Y.; Aliberti, G.; Nuclear Engineering Division

    2009-08-31

    The growing stockpile of nuclear waste constitutes a severe challenge for the mankind for more than hundred thousand years. To reduce the radiotoxicity of the nuclear waste, the Accelerator Driven System (ADS) has been proposed. One of the most important issues of ADSs technology is the choice of the appropriate neutron spectrum for the transmutation of Minor Actinides (MA) and Long Lived Fission Products (LLFP). This report presents the analytical analyses obtained with the deterministic ERANOS code system for the YALINA facility within: (a) the collaboration between Argonne National Laboratory (ANL) of USA and the Joint Institute for Power and Nuclear Research (JIPNR) Sosny of Belarus; and (b) the IAEA coordinated research projects for accelerator driven systems (ADS). This activity is conducted as a part of the Russian Research Reactor Fuel Return (RRRFR) Program and the Global Threat Reduction Initiative (GTRI) of DOE/NNSA.

  13. A new balanced modulation code for a phase-image-based holographic data storage system

    NASA Astrophysics Data System (ADS)

    John, Renu; Joseph, Joby; Singh, Kehar

    2005-08-01

    We propose a new balanced modulation code for coding data pages for phase-image-based holographic data storage systems. The new code addresses the coding subtleties associated with phase-based systems while performing a content-based search in a holographic database. The new code, which is a balanced modulation code, is a modification of the existing 8:12 modulation code, and removes the false hits that occur in phase-based content-addressable systems due to phase-pixel subtractions. We demonstrate the better performance of the new code using simulations and experiments in terms of discrimination ratio while content addressing through a holographic memory. The new code is compared with the conventional coding scheme to analyse the false hits due to subtraction of phase pixels.

  14. Coded multicarrier 16 QAM system for land mobile communications

    NASA Astrophysics Data System (ADS)

    Sasaoka, Hideichi; Omori, Youko

    1995-06-01

    This paper studies a coded multicarrier 16 QAM system for land mobile communications and proposed methods for improving quality and bit-rate and spectral efficiency. The proposed system uses a symbol-timing adjustment method in addition to a multicarrier transmission scheme to provide immunity against frequency-selective fading distortion which becomes more severe for high bit-rate transmission. The system uses pilot-symbol aided 16 QAM to increase spectral efficiency. It also uses methods of symbol allocation to carriers and symbol interleaving, in addition to Reed-Solomon coding with maximum likelihood decoding, to increase the bit error rate (BER) performance. Space diversity method, with maximum ratio combining, can be used to further improve the BER performance. A computer simulation of the proposed system is carried out with a bandwidth of 200 kHz and a total information rate of 256 kbit/s. The simulation results show that the proposed system provides immunity against frequency-selective fading and that space diversity further improves this. A BER of less than 10(exp -4) is obtained at a E(sub b)/N(sub 0) of 30 dB and a delay spread of 3.4 microsecs in the case of non-diversity. A BER of less 10(exp -4) is also obtained at a E(sub b)/N(sub 0) of 15 dB and a delay spread of 5.5 microsecs in the case of diversity. These results confirm that the proposed system can achieve high quality and high bit-rate transmission with high spectral efficiency.

  15. System for Processing Coded OFDM Under Doppler and Fading

    NASA Technical Reports Server (NTRS)

    Tsou, Haiping; Darden, Scott; Lee, Dennis; Yan, Tsun-Yee

    2005-01-01

    An advanced communication system has been proposed for transmitting and receiving coded digital data conveyed as a form of quadrature amplitude modulation (QAM) on orthogonal frequency-division multiplexing (OFDM) signals in the presence of such adverse propagation-channel effects as large dynamic Doppler shifts and frequency-selective multipath fading. Such adverse channel effects are typical of data communications between mobile units or between mobile and stationary units (e.g., telemetric transmissions from aircraft to ground stations). The proposed system incorporates novel signal processing techniques intended to reduce the losses associated with adverse channel effects while maintaining compatibility with the high-speed physical layer specifications defined for wireless local area networks (LANs) as the standard 802.11a of the Institute of Electrical and Electronics Engineers (IEEE 802.11a). OFDM is a multi-carrier modulation technique that is widely used for wireless transmission of data in LANs and in metropolitan area networks (MANs). OFDM has been adopted in IEEE 802.11a and some other industry standards because it affords robust performance under frequency-selective fading. However, its intrinsic frequency-diversity feature is highly sensitive to synchronization errors; this sensitivity poses a challenge to preserve coherence between the component subcarriers of an OFDM system in order to avoid intercarrier interference in the presence of large dynamic Doppler shifts as well as frequency-selective fading. As a result, heretofore, the use of OFDM has been limited primarily to applications involving small or zero Doppler shifts. The proposed system includes a digital coherent OFDM communication system that would utilize enhanced 802.1la-compatible signal-processing algorithms to overcome effects of frequency-selective fading and large dynamic Doppler shifts. The overall transceiver design would implement a two-frequency-channel architecture (see figure

  16. 10 CFR 434.99 - Explanation of numbering system for codes.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... designating a section, the system employed in the Code of Federal Regulations (CFR) will be employed. The... Code of Federal Regulations' numbering system allows the researcher using the CFR easy access to the... MULTI-FAMILY HIGH RISE RESIDENTIAL BUILDINGS § 434.99 Explanation of numbering system for codes. (a)...

  17. 10 CFR 434.99 - Explanation of numbering system for codes.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... designating a section, the system employed in the Code of Federal Regulations (CFR) will be employed. The... Code of Federal Regulations' numbering system allows the researcher using the CFR easy access to the... MULTI-FAMILY HIGH RISE RESIDENTIAL BUILDINGS § 434.99 Explanation of numbering system for codes. (a)...

  18. 10 CFR 434.99 - Explanation of numbering system for codes.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... designating a section, the system employed in the Code of Federal Regulations (CFR) will be employed. The... Code of Federal Regulations' numbering system allows the researcher using the CFR easy access to the... MULTI-FAMILY HIGH RISE RESIDENTIAL BUILDINGS § 434.99 Explanation of numbering system for codes. (a)...

  19. 10 CFR 434.99 - Explanation of numbering system for codes.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... designating a section, the system employed in the Code of Federal Regulations (CFR) will be employed. The... Code of Federal Regulations' numbering system allows the researcher using the CFR easy access to the... MULTI-FAMILY HIGH RISE RESIDENTIAL BUILDINGS § 434.99 Explanation of numbering system for codes. (a)...

  20. 42 CFR 405.512 - Carriers' procedural terminology and coding systems.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 42 Public Health 2 2013-10-01 2013-10-01 false Carriers' procedural terminology and coding systems... Determining Reasonable Charges § 405.512 Carriers' procedural terminology and coding systems. (a) General. Procedural terminology and coding systems are designed to provide physicians and third party payers with...

  1. Code System to Simulate 3D Tracer Dispersion in Atmosphere.

    Energy Science and Technology Software Center (ESTSC)

    2002-01-25

    Version 00 SHREDI is a shielding code system which executes removal-diffusion computations for bi-dimensional shields in r-z or x-y geometries. It may also deal with monodimensional problems (infinitely high cylinders or slabs). MESYST can simulate 3D tracer dispersion in the atmosphere. Three programs are part of this system: CRE_TOPO prepares the terrain data for MESYST. NOABL calculates three-dimensional free divergence windfields over complex terrain. PAS computes tracer concentrations and depositions on a given domain. Themore » purpose of this work is to develop a reliable simulation tool for pollutant atmospheric dispersion, which gives a realistic approach and allows one to compute the pollutant concentrations over complex terrains with good accuracy. The factional brownian model, which furnishes more accurate concentration values, is introduced to calculate pollutant atmospheric dispersion. The model was validated on SIESTA international experiments.« less

  2. Coded aperture systems as non-conventional lensless imagers for the visible and infrared

    NASA Astrophysics Data System (ADS)

    Slinger, Chris; Gordon, Neil; Lewis, Keith; McDonald, Gregor; McNie, Mark; Payne, Doug; Ridley, Kevin; Strens, Malcolm; De Villiers, Geoff; Wilson, Rebecca

    2007-10-01

    Coded aperture imaging (CAI) has been used extensively at gamma- and X-ray wavelengths, where conventional refractive and reflective techniques are impractical. CAI works by coding optical wavefronts from a scene using a patterned aperture, detecting the resulting intensity distribution, then using inverse digital signal processing to reconstruct an image. This paper will consider application of CAI to the visible and IR bands. Doing so has a number of potential advantages over existing imaging approaches at these longer wavelengths, including low mass, low volume, zero aberrations and distortions and graceful failure modes. Adaptive coded aperture (ACAI), facilitated by the use of a reconfigurable mask in a CAI configuration, adds further merits, an example being the ability to implement agile imaging modes with no macroscopic moving parts. However, diffraction effects must be considered and photon flux reductions can have adverse consequences on the image quality achievable. An analysis of these benefits and limitations is described, along with a description of a novel micro optical electro mechanical (MOEMS) microshutter technology for use in thermal band infrared ACAI systems. Preliminary experimental results are also presented.

  3. Spatiotemporal Coding of Individual Chemicals by the Gustatory System

    PubMed Central

    Reiter, Sam; Campillo Rodriguez, Chelsey; Sun, Kui

    2015-01-01

    Four of the five major sensory systems (vision, olfaction, somatosensation, and audition) are thought to use different but partially overlapping sets of neurons to form unique representations of vast numbers of stimuli. The only exception is gustation, which is thought to represent only small numbers of basic taste categories. However, using new methods for delivering tastant chemicals and making electrophysiological recordings from the tractable gustatory system of the moth Manduca sexta, we found chemical-specific information is as follows: (1) initially encoded in the population of gustatory receptor neurons as broadly distributed spatiotemporal patterns of activity; (2) dramatically integrated and temporally transformed as it propagates to monosynaptically connected second-order neurons; and (3) observed in tastant-specific behavior. Our results are consistent with an emerging view of the gustatory system: rather than constructing basic taste categories, it uses a spatiotemporal population code to generate unique neural representations of individual tastant chemicals. SIGNIFICANCE STATEMENT Our results provide a new view of taste processing. Using a new, relatively simple model system and a new set of techniques to deliver taste stimuli and to examine gustatory receptor neurons and their immediate followers, we found no evidence for labeled line connectivity, or basic taste categories such as sweet, salty, bitter, and sour. Rather, individual tastant chemicals are represented as patterns of spiking activity distributed across populations of receptor neurons. These representations are transformed substantially as multiple types of receptor neurons converge upon follower neurons, leading to a combinatorial coding format that uniquely, rapidly, and efficiently represents individual taste chemicals. Finally, we found that the information content of these neurons can drive tastant-specific behavior. PMID:26338341

  4. FPGA based digital phase-coding quantum key distribution system

    NASA Astrophysics Data System (ADS)

    Lu, XiaoMing; Zhang, LiJun; Wang, YongGang; Chen, Wei; Huang, DaJun; Li, Deng; Wang, Shuang; He, DeYong; Yin, ZhenQiang; Zhou, Yu; Hui, Cong; Han, ZhengFu

    2015-12-01

    Quantum key distribution (QKD) is a technology with the potential capability to achieve information-theoretic security. Phasecoding is an important approach to develop practical QKD systems in fiber channel. In order to improve the phase-coding modulation rate, we proposed a new digital-modulation method in this paper and constructed a compact and robust prototype of QKD system using currently available components in our lab to demonstrate the effectiveness of the method. The system was deployed in laboratory environment over a 50 km fiber and continuously operated during 87 h without manual interaction. The quantum bit error rate (QBER) of the system was stable with an average value of 3.22% and the secure key generation rate is 8.91 kbps. Although the modulation rate of the photon in the demo system was only 200 MHz, which was limited by the Faraday-Michelson interferometer (FMI) structure, the proposed method and the field programmable gate array (FPGA) based electronics scheme have a great potential for high speed QKD systems with Giga-bits/second modulation rate.

  5. EMPIRE: Nuclear Reaction Model Code System for Data Evaluation

    SciTech Connect

    Herman, M. Capote, R.; Carlson, B.V.; Oblozinsky, P.; Sin, M.; Trkov, A.; Wienke, H.; Zerkin, V.

    2007-12-15

    EMPIRE is a modular system of nuclear reaction codes, comprising various nuclear models, and designed for calculations over a broad range of energies and incident particles. A projectile can be a neutron, proton, any ion (including heavy-ions) or a photon. The energy range extends from the beginning of the unresolved resonance region for neutron-induced reactions ({approx} keV) and goes up to several hundred MeV for heavy-ion induced reactions. The code accounts for the major nuclear reaction mechanisms, including direct, pre-equilibrium and compound nucleus ones. Direct reactions are described by a generalized optical model (ECIS03) or by the simplified coupled-channels approach (CCFUS). The pre-equilibrium mechanism can be treated by a deformation dependent multi-step direct (ORION + TRISTAN) model, by a NVWY multi-step compound one or by either a pre-equilibrium exciton model with cluster emission (PCROSS) or by another with full angular momentum coupling (DEGAS). Finally, the compound nucleus decay is described by the full featured Hauser-Feshbach model with {gamma}-cascade and width-fluctuations. Advanced treatment of the fission channel takes into account transmission through a multiple-humped fission barrier with absorption in the wells. The fission probability is derived in the WKB approximation within the optical model of fission. Several options for nuclear level densities include the EMPIRE-specific approach, which accounts for the effects of the dynamic deformation of a fast rotating nucleus, the classical Gilbert-Cameron approach and pre-calculated tables obtained with a microscopic model based on HFB single-particle level schemes with collective enhancement. A comprehensive library of input parameters covers nuclear masses, optical model parameters, ground state deformations, discrete levels and decay schemes, level densities, fission barriers, moments of inertia and {gamma}-ray strength functions. The results can be converted into ENDF-6 formatted

  6. Overview of Particle and Heavy Ion Transport Code System PHITS

    NASA Astrophysics Data System (ADS)

    Sato, Tatsuhiko; Niita, Koji; Matsuda, Norihiro; Hashimoto, Shintaro; Iwamoto, Yosuke; Furuta, Takuya; Noda, Shusaku; Ogawa, Tatsuhiko; Iwase, Hiroshi; Nakashima, Hiroshi; Fukahori, Tokio; Okumura, Keisuke; Kai, Tetsuya; Chiba, Satoshi; Sihver, Lembit

    2014-06-01

    A general purpose Monte Carlo Particle and Heavy Ion Transport code System, PHITS, is being developed through the collaboration of several institutes in Japan and Europe. The Japan Atomic Energy Agency is responsible for managing the entire project. PHITS can deal with the transport of nearly all particles, including neutrons, protons, heavy ions, photons, and electrons, over wide energy ranges using various nuclear reaction models and data libraries. It is written in Fortran language and can be executed on almost all computers. All components of PHITS such as its source, executable and data-library files are assembled in one package and then distributed to many countries via the Research organization for Information Science and Technology, the Data Bank of the Organization for Economic Co-operation and Development's Nuclear Energy Agency, and the Radiation Safety Information Computational Center. More than 1,000 researchers have been registered as PHITS users, and they apply the code to various research and development fields such as nuclear technology, accelerator design, medical physics, and cosmic-ray research. This paper briefly summarizes the physics models implemented in PHITS, and introduces some important functions useful for specific applications, such as an event generator mode and beam transport functions.

  7. A novel method for performance improvement of optical CDMA system using alterable concatenated code

    NASA Astrophysics Data System (ADS)

    Qiu, Kun; Zhang, Chongfu

    2007-04-01

    A novel method using alterable concatenated code to pre-encode is proposed to reduce the impact of system impairment and multiple access interference (MAI) in optical code division multiple access (OCDMA) system, comprehensive comparisons between different concatenated code type and forward error correcting (FEC) scheme are studied by simulation. In the scheme, we apply concatenated coding to the embedded modulation scheme, and optical orthogonal code (OOC) is employed as address sequence code, an avalanche photodiode (APD) is selected as the system receiver. The bit error rate (BER) performance is derived taking into account the effect of some noises, dispersion power penalty and the MAI. From both theoretical analysis and numerical results, we can show that the proposed system has good performance at a BER of 10 -9 with a gain of 6.4 dB improvement achieved using the concatenated code as the pre-code, and this scheme permits implementation of a cost effective OCDMA system.

  8. Multiwavelength optical code-division-multiple-access communication systems

    NASA Astrophysics Data System (ADS)

    Lam, Cedric Fung

    1999-10-01

    There has been tremendous interest in applying spread spectrum and code division multiple access (CDMA) techniques to fiber optic communication systems. In this dissertation, we review the previous work on optical CDMA systems, and we propose and then demonstrate new optical CDMA system designs. The explosive growth in bandwidth demand during the recent years have compelled engineers to achieve one bit per hertz or more bandwidth utilization in optical fibers. We point out that in order to achieve efficient bandwidth utilization, full orthogonality is required in optical CDMA system. At the same time, one would like to avoid having an optical local oscillator, which significantly increases the system complexity. We have studied two spectrally encoded optical CDMA systems, both of which give us full orthogonality. A balanced optical detector, which `computes' the difference between two photodetectors signals, is used to obtain negative outputs from positive-only optical intensity signals, thus achieving full orthogonality in both systems. The first system, complementary spectral intensity encoding, is a fully non-coherent. A novel balanced transmitter has been invented for this system. Unfortunately, the performance of this system is limited by beat noise interference, sometimes called speckle noise. In the second system, spectral phase encoding, a multi-wavelength mode-locked laser source is employed. Spectral phase encoding is applied to various frequency components. By sending the unmodulated carrier along the optical fiber to the receiver, we can achieve the effect of coherent demodulation without using an optical local oscillator. While this system can avoid speckle noise, it is eventually limited by cumulative shot noise. We will show in this dissertation, that cumulative shot noise is unavoidable in all optical CDMA systems. Therefore the ultimate achievable performance of optical CDMA systems under shot noise limitation will be analyzed in this work. Lastly

  9. Video coding for next-generation surveillance systems

    NASA Astrophysics Data System (ADS)

    Klasen, Lena M.; Fahlander, Olov

    1997-02-01

    Video is used as recording media in surveillance system and also more frequently by the Swedish Police Force. Methods for analyzing video using an image processing system have recently been introduced at the Swedish National Laboratory of Forensic Science, and new methods are in focus in a research project at Linkoping University, Image Coding Group. The accuracy of the result of those forensic investigations often depends on the quality of the video recordings, and one of the major problems when analyzing videos from crime scenes is the poor quality of the recordings. Enhancing poor image quality might add manipulative or subjective effects and does not seem to be the right way of getting reliable analysis results. The surveillance system in use today is mainly based on video techniques, VHS or S-VHS, and the weakest link is the video cassette recorder, (VCR). Multiplexers for selecting one of many camera outputs for recording is another problem as it often filters the video signal, and recording is limited to only one of the available cameras connected to the VCR. A way to get around the problem of poor recording is to simultaneously record all camera outputs digitally. It is also very important to build such a system bearing in mind that image processing analysis methods becomes more important as a complement to the human eye. Using one or more cameras gives a large amount of data, and the need for data compression is more than obvious. Crime scenes often involve persons or moving objects, and the available coding techniques are more or less useful. Our goal is to propose a possible system, being the best compromise with respect to what needs to be recorded, movements in the recorded scene, loss of information and resolution etc., to secure the efficient recording of the crime and enable forensic analysis. The preventative effective of having a well functioning surveillance system and well established image analysis methods is not to be neglected. Aspects of

  10. Mitigation of multiple access interference using two-dimensional modified double weight codes for optical code division multiple access systems

    NASA Astrophysics Data System (ADS)

    Jamil Abdullah, Amir Razif Arief; Aljunid, Syed Alwee; Safar, Anuar Mat; Nordin, Junita Mohd; Ahmad, R. Badlishah

    2012-06-01

    We proposed newly two-dimensional (2-D) spectral amplitude coding optical code division multiple access (OCDMA) scheme using modified double weight (MDW) code capable of suppressing phase-induced intensity noise (PIIN). The architecture of the spectral/spatial MDW OCDMA system with the property of multi-access interference cancellation is presented. The proposed code exhibits good cross-correlation property. At the optimized data transmission rate of 0.745 Gbps, 2-D MDW, M=63, N=3, reaches maximum cardinality of 200% increases compared to 2-D perfect difference code, M=57, N=3. The performance is severely deteriorated if the data rate further increases above 0.745 Gbps. The proposed code meets the optical transmission requirements at 10-9 bit error rate error floor, with lowest effective transmitted power (Psr), -17.5 dBm, in comparison to the others through minimizing interference noise that result in PIIN suppression. The proposed system reaches optimum requirements performance in terms of cardinality, data transmission rate, and low effective transmitted power.

  11. Biometric iris image acquisition system with wavefront coding technology

    NASA Astrophysics Data System (ADS)

    Hsieh, Sheng-Hsun; Yang, Hsi-Wen; Huang, Shao-Hung; Li, Yung-Hui; Tien, Chung-Hao

    2013-09-01

    Biometric signatures for identity recognition have been practiced for centuries. Basically, the personal attributes used for a biometric identification system can be classified into two areas: one is based on physiological attributes, such as DNA, facial features, retinal vasculature, fingerprint, hand geometry, iris texture and so on; the other scenario is dependent on the individual behavioral attributes, such as signature, keystroke, voice and gait style. Among these features, iris recognition is one of the most attractive approaches due to its nature of randomness, texture stability over a life time, high entropy density and non-invasive acquisition. While the performance of iris recognition on high quality image is well investigated, not too many studies addressed that how iris recognition performs subject to non-ideal image data, especially when the data is acquired in challenging conditions, such as long working distance, dynamical movement of subjects, uncontrolled illumination conditions and so on. There are three main contributions in this paper. Firstly, the optical system parameters, such as magnification and field of view, was optimally designed through the first-order optics. Secondly, the irradiance constraints was derived by optical conservation theorem. Through the relationship between the subject and the detector, we could estimate the limitation of working distance when the camera lens and CCD sensor were known. The working distance is set to 3m in our system with pupil diameter 86mm and CCD irradiance 0.3mW/cm2. Finally, We employed a hybrid scheme combining eye tracking with pan and tilt system, wavefront coding technology, filter optimization and post signal recognition to implement a robust iris recognition system in dynamic operation. The blurred image was restored to ensure recognition accuracy over 3m working distance with 400mm focal length and aperture F/6.3 optics. The simulation result as well as experiment validates the proposed code

  12. Code System for Evaluation of Control Room Habitability.

    Energy Science and Technology Software Center (ESTSC)

    2002-04-11

    Version: 01 HABIT 1.1 is a suite of computer codes designed for evaluating control room habitability in the event of an accidental release of toxic chemicals or radioactive materials. EXTRAN 1.2, CHEM, TACT5, FPFP_2, and CONHAB are included in the system. HABIT was used in the verification and validation of RADTRAD, which NRC now uses to assess radiation exposure, typically in the control room, as well as site boundary doses, and to estimate dose attenuationmore » due to modification of a facility or accident sequence. RADTRAD does not assess chemical exposure, so HABIT is retained in the RSICC collection for this purpose. RADTRAD is available from Alion Science http://radtrad.com/.« less

  13. Verification of ARES transport code system with TAKEDA benchmarks

    NASA Astrophysics Data System (ADS)

    Zhang, Liang; Zhang, Bin; Zhang, Penghe; Chen, Mengteng; Zhao, Jingchang; Zhang, Shun; Chen, Yixue

    2015-10-01

    Neutron transport modeling and simulation are central to many areas of nuclear technology, including reactor core analysis, radiation shielding and radiation detection. In this paper the series of TAKEDA benchmarks are modeled to verify the critical calculation capability of ARES, a discrete ordinates neutral particle transport code system. SALOME platform is coupled with ARES to provide geometry modeling and mesh generation function. The Koch-Baker-Alcouffe parallel sweep algorithm is applied to accelerate the traditional transport calculation process. The results show that the eigenvalues calculated by ARES are in excellent agreement with the reference values presented in NEACRP-L-330, with a difference less than 30 pcm except for the first case of model 3. Additionally, ARES provides accurate fluxes distribution compared to reference values, with a deviation less than 2% for region-averaged fluxes in all cases. All of these confirms the feasibility of ARES-SALOME coupling and demonstrate that ARES has a good performance in critical calculation.

  14. Hybrid Compton camera/coded aperture imaging system

    DOEpatents

    Mihailescu, Lucian; Vetter, Kai M.

    2012-04-10

    A system in one embodiment includes an array of radiation detectors; and an array of imagers positioned behind the array of detectors relative to an expected trajectory of incoming radiation. A method in another embodiment includes detecting incoming radiation with an array of radiation detectors; detecting the incoming radiation with an array of imagers positioned behind the array of detectors relative to a trajectory of the incoming radiation; and performing at least one of Compton imaging using at least the imagers and coded aperture imaging using at least the imagers. A method in yet another embodiment includes detecting incoming radiation with an array of imagers positioned behind an array of detectors relative to a trajectory of the incoming radiation; and performing Compton imaging using at least the imagers.

  15. Development of a New Class of Zero Cross Correlation Codes for Optical CDMA Systems

    NASA Astrophysics Data System (ADS)

    Rashidi, Che Bin Mohd; Aljunid, S. A.; Ghani, F.; Anuar, M. S.

    2012-03-01

    The paper presents a method for the development of a new class of zero cross correlation optical code for Optical Code Division Multiple Access (OCDMA) system using Spectral Amplitude Coding. The proposed code is called Modified Zero Cross Correlation Code (MZCC). The code has minimum length and can be constructed quite simply for any number of users and for any code weights. The code has better spectrum slicing properties and noise performance in term of Bit Error Rate. The Modified Zero Cross Correlation Code will be demonstrated in simulation using OptiSys. 6.0 to observe noise performance which is better as compared to the existing Zero Cross Correlation Code.

  16. Performance analysis of multiple interference suppression over asynchronous/synchronous optical code-division multiple-access system based on complementary/prime/shifted coding scheme

    NASA Astrophysics Data System (ADS)

    Nieh, Ta-Chun; Yang, Chao-Chin; Huang, Jen-Fa

    2011-08-01

    A complete complementary/prime/shifted prime (CPS) code family for the optical code-division multiple-access (OCDMA) system is proposed. Based on the ability of complete complementary (CC) code, the multiple-access interference (MAI) can be suppressed and eliminated via spectral amplitude coding (SAC) OCDMA system under asynchronous/synchronous transmission. By utilizing the shifted prime (SP) code in the SAC scheme, the hardware implementation of encoder/decoder can be simplified with a reduced number of optical components, such as arrayed waveguide grating (AWG) and fiber Bragg grating (FBG). This system has a superior performance as compared to previous bipolar-bipolar coding OCDMA systems.

  17. A Simple Model of Optimal Population Coding for Sensory Systems

    PubMed Central

    Doi, Eizaburo; Lewicki, Michael S.

    2014-01-01

    A fundamental task of a sensory system is to infer information about the environment. It has long been suggested that an important goal of the first stage of this process is to encode the raw sensory signal efficiently by reducing its redundancy in the neural representation. Some redundancy, however, would be expected because it can provide robustness to noise inherent in the system. Encoding the raw sensory signal itself is also problematic, because it contains distortion and noise. The optimal solution would be constrained further by limited biological resources. Here, we analyze a simple theoretical model that incorporates these key aspects of sensory coding, and apply it to conditions in the retina. The model specifies the optimal way to incorporate redundancy in a population of noisy neurons, while also optimally compensating for sensory distortion and noise. Importantly, it allows an arbitrary input-to-output cell ratio between sensory units (photoreceptors) and encoding units (retinal ganglion cells), providing predictions of retinal codes at different eccentricities. Compared to earlier models based on redundancy reduction, the proposed model conveys more information about the original signal. Interestingly, redundancy reduction can be near-optimal when the number of encoding units is limited, such as in the peripheral retina. We show that there exist multiple, equally-optimal solutions whose receptive field structure and organization vary significantly. Among these, the one which maximizes the spatial locality of the computation, but not the sparsity of either synaptic weights or neural responses, is consistent with known basic properties of retinal receptive fields. The model further predicts that receptive field structure changes less with light adaptation at higher input-to-output cell ratios, such as in the periphery. PMID:25121492

  18. Low-density parity-check codes for volume holographic memory systems.

    PubMed

    Pishro-Nik, Hossein; Rahnavard, Nazanin; Ha, Jeongseok; Fekri, Faramarz; Adibi, Ali

    2003-02-10

    We investigate the application of low-density parity-check (LDPC) codes in volume holographic memory (VHM) systems. We show that a carefully designed irregular LDPC code has a very good performance in VHM systems. We optimize high-rate LDPC codes for the nonuniform error pattern in holographic memories to reduce the bit error rate extensively. The prior knowledge of noise distribution is used for designing as well as decoding the LDPC codes. We show that these codes have a superior performance to that of Reed-Solomon (RS) codes and regular LDPC counterparts. Our simulation shows that we can increase the maximum storage capacity of holographic memories by more than 50 percent if we use irregular LDPC codes with soft-decision decoding instead of conventionally employed RS codes with hard-decision decoding. The performance of these LDPC codes is close to the information theoretic capacity. PMID:12593489

  19. Low-density parity-check codes for volume holographic memory systems

    NASA Astrophysics Data System (ADS)

    Pishro-Nik, Hossein; Rahnavard, Nazanin; Ha, Jeongseok; Fekri, Faramarz; Adibi, Ali

    2003-02-01

    We investigate the application of low-density parity-check (LDPC) codes in volume holographic memory (VHM) systems. We show that a carefully designed irregular LDPC code has a very good performance in VHM systems. We optimize high-rate LDPC codes for the nonuniform error pattern in holographic memories to reduce the bit error rate extensively. The prior knowledge of noise distribution is used for designing as well as decoding the LDPC codes. We show that these codes have a superior performance to that of Reed-Solomon (RS) codes and regular LDPC counterparts. Our simulation shows that we can increase the maximum storage capacity of holographic memories by more than 50 percent if we use irregular LDPC codes with soft-decision decoding instead of conventionally employed RS codes with hard-decision decoding. The performance of these LDPC codes is close to the information theoretic capacity.

  20. Performance Analysis of Wavelength Multiplexed Sac Ocdma Codes in Beat Noise Mitigation in Sac Ocdma Systems

    NASA Astrophysics Data System (ADS)

    Alhassan, A. M.; Badruddin, N.; Saad, N. M.; Aljunid, S. A.

    2013-07-01

    In this paper we investigate the use of wavelength multiplexed spectral amplitude coding (WM SAC) codes in beat noise mitigation in coherent source SAC OCDMA systems. A WM SAC code is a low weight SAC code, where the whole code structure is repeated diagonally (once or more) in the wavelength domain to achieve the same cardinality as a higher weight SAC code. Results show that for highly populated networks, the WM SAC codes provide better performance than SAC codes. However, for small number of active users the situation is reversed. Apart from their promising improvement in performance, these codes are more flexible and impose less complexity on the system design than their SAC counterparts.

  1. Identification codes for organizations listed in computerized data systems of the U.S. Geological Survey

    USGS Publications Warehouse

    Edwards, Melvin D.; Drilleau, Margery O.

    1976-01-01

    This report contains codes for the identification of public and private organizations listed in computerized data systems. These codes are used by the U.S. Geological Survey 's National Water Data Exchange (NAWDEX), National Water Data Storage and Retrieval System (WATSTORE), and National Cartographic Information Center (NCIC). The format structure of the codes is discussed and instructions are given for requesting new codes. (Woodard-USGS)

  2. Identification codes for organizations listed in computerized data systems of the U.S. Geological Survey

    USGS Publications Warehouse

    Edwards, Melvin D.; Josefson, Beverly M.

    1982-01-01

    This report contains codes for the identification of public and private organizations listed in computerized data systems. These codes are used by the U.S. Geological Survey 's National Water Data Exchange (NAWDEX), National Water Data Storage and Retrieval System (WATSTORE), National Cartographic Information Center (NCIC), Office of Water Data Coordination (OWDC). The format structure of the codes is discussed and instructions are given for requesting new codes. (USGS)

  3. Identification codes for organizations listed in computerized data systems of the U.S. Geological Survey

    USGS Publications Warehouse

    Edwards, Melvin D.; Myers, Beverly M.

    1979-01-01

    This report contains codes for the identification of public and private organizations listed in computerized data systems. These codes are used by the U.S. Geological Survey 's National Water Data Exchange (NAWDEX), National Water Data Storage and Retrieval System (WATSTORE), National Cartographic Information Center (NCIC), and Office of Water Data Coordination (OWDC). The format structure of the codes is discussed and instructions are given for requesting new codes. (Woodard-USGS)

  4. Identification codes for organizations listed in computerized data systems of the U.S. Geological Survey

    USGS Publications Warehouse

    Edwards, Melvin D.; Drilleau, Margery O.

    1978-01-01

    This report contains codes for the identification of public and private organizations listed in computerized data systems. These codes are used by the U.S. Geological Survey 's National Water Data Exchange (NAWDEX), National Water Data Storage and Retrieval System (WATSTORE), National Cartographic Information Center (NCIC), and Office of Water Data Coordination (OWDC). The format structure of the codes is discussed and instructions are given for requesting new codes. (Woodard-USGS)

  5. Identification codes for organizations listed in computerized data systems of the U.S. Geological Survey

    USGS Publications Warehouse

    Edwards, Melvin D.; Myers, Beverly M.

    1981-01-01

    This report contains codes for the identification of public and private organizations listed in computerized data systems. These codes are used by the U.S. Geological Survey 's National Water Data Exchange (NAWDEX), National Water Data Storage and Retrieval System (WATSTORE), National Cartographic Information Center (NCIC), and Office of Water Data Coordination (OWDC). The format structure of the codes is discussed and instructions are given for requesting new codes. (USGS)

  6. Comparison of PSF maxima and minima of multiple annuli coded aperture (MACA) and complementary multiple annuli coded aperture (CMACA) systems

    NASA Astrophysics Data System (ADS)

    Ratnam, Challa; Lakshmana Rao, Vadlamudi; Lachaa Goud, Sivagouni

    2006-10-01

    In the present paper, and a series of papers to follow, the Fourier analytical properties of multiple annuli coded aperture (MACA) and complementary multiple annuli coded aperture (CMACA) systems are investigated. First, the transmission function for MACA and CMACA is derived using Fourier methods and, based on the Fresnel-Kirchoff diffraction theory, the formulae for the point spread function are formulated. The PSF maxima and minima are calculated for both the MACA and CMACA systems. The dependence of these properties on the number of zones is studied and reported in this paper.

  7. Moment Tensor code for the Antelope Environmental Monitoring System

    NASA Astrophysics Data System (ADS)

    Reyes, J.; Newman, R.; Vernon, F.; van den Hazel, G.

    2012-04-01

    The time domain seismic moment tensor inversion software package written by Dreger (2003) and updated by Minson & Dreger (2008) has been rewritten for inclusion into the open-source contributed code repository for the Boulder Real Time Technology (BRTT) Antelope Environmental Monitoring System. The new code-base was written natively in the Python language and utilizes the Python interface to Antelope (Lindquist et al., 2008) for data access, Scientific Tools for Python library (Eric Jones et al., 2001) for computation and analysis, and the ObsPy library (Beyreuther et al., 2010) for graphical representation. The new code archives all data products into a Center for Seismic Studies (CSS) 3.0 schema table for easy access and distribution of solutions. Stability of the analysis, verification of results and correlation of solutions with similar methods are discussed in this presentation. Analysis is focused on regional earthquakes recorded by Earthscope's USArray network and event parameters are taken from real time and post-event processed data analysis at the Array Network Facility (ANF). A calibrated velocity model representative of the south-west continental United States is used for the analysis. Beyreuther, M., Barsch, R., Krischer, L., Megies, T., Behr, Y. and Wassermann, J. (2010) ObsPy: A Python Toolbox for Seismology, Seismic Research Letters, 81(3), 530-533. Dreger, D. (2003) TDMT_INV: Time Domain Seismic Moment Tensor INVersion, International Handbook of Earthquake and Engineering Seismology, Volume 81B, p 1627. Eric Jones, Travis Oliphant, Pearu Peterson (2001) SciPy: Open Source Scientific Tools for Python, "http://www.scipy.org/" Lindquist, K.G., Clemesha, A., Newman, R.L. and Vernon, F.L. (2008) The Python Interface to Antelope and Applications. Eos Trans. AGU 89(53), Fall Meet. Suppl., Abstract G43A-0671 Minson, S. & Dreger, D. (2008) Stable inversions for complete moment tensors. Geophys. J. Int., 174, 585-592 Saikia, C. (1994) Modified frequency

  8. Time-Dependent, Parallel Neutral Particle Transport Code System.

    Energy Science and Technology Software Center (ESTSC)

    2009-09-10

    Version 00 PARTISN (PARallel, TIme-Dependent SN) is the evolutionary successor to CCC-547/DANTSYS. The PARTISN code package is a modular computer program package designed to solve the time-independent or dependent multigroup discrete ordinates form of the Boltzmann transport equation in several different geometries. The modular construction of the package separates the input processing, the transport equation solving, and the post processing (or edit) functions into distinct code modules: the Input Module, the Solver Module, and themore » Edit Module, respectively. PARTISN is the evolutionary successor to the DANTSYSTM code system package. The Input and Edit Modules in PARTISN are very similar to those in DANTSYS. However, unlike DANTSYS, the Solver Module in PARTISN contains one, two, and three-dimensional solvers in a single module. In addition to the diamond-differencing method, the Solver Module also has Adaptive Weighted Diamond-Differencing (AWDD), Linear Discontinuous (LD), and Exponential Discontinuous (ED) spatial differencing methods. The spatial mesh may consist of either a standard orthogonal mesh or a block adaptive orthogonal mesh. The Solver Module may be run in parallel for two and three dimensional problems. One can now run 1-D problems in parallel using Energy Domain Decomposition (triggered by Block 5 input keyword npeg>0). EDD can also be used in 2-D/3-D with or without our standard Spatial Domain Decomposition. Both the static (fixed source or eigenvalue) and time-dependent forms of the transport equation are solved in forward or adjoint mode. In addition, PARTISN now has a probabilistic mode for Probability of Initiation (static) and Probability of Survival (dynamic) calculations. Vacuum, reflective, periodic, white, or inhomogeneous boundary conditions are solved. General anisotropic scattering and inhomogeneous sources are permitted. PARTISN solves the transport equation on orthogonal (single level or block-structured AMR) grids in 1-D

  9. A bandwidth and power-efficient coded modulation system for commercial satellite applications

    NASA Astrophysics Data System (ADS)

    Hemmati, F.; Miller, S.

    1992-03-01

    Coded modulation techniques for development of a B-ISDN-compatible modem/codec are investigated. The selected baseband processor system must support transmission of 155.52 Mbit/s of data over an Intelsat 72-MHz transponder. Performance objectives and fundamental system parameters, including channel symbol rate, code rate, and the modulation scheme, are determined. From several candidate codes, a concatenated coding system, consisting of a coded octal phase shift keying modulation as the inner code and a high-rate Reed-Solomon as the outer code, is selected, and its bit error rate performance is analyzed by computer simulation. The hardware implementation of the decoder for the selected code is also described.

  10. Coding of object location in the vibrissal thalamocortical system.

    PubMed

    Yu, Chunxiu; Horev, Guy; Rubin, Naama; Derdikman, Dori; Haidarliu, Sebastian; Ahissar, Ehud

    2015-03-01

    In whisking rodents, object location is encoded at the receptor level by a combination of motor and sensory related signals. Recoding of the encoded signals can result in various forms of internal representations. Here, we examined the coding schemes occurring at the first forebrain level that receives inputs necessary for generating such internal representations--the thalamocortical network. Single units were recorded in 8 thalamic and cortical stations in artificially whisking anesthetized rats. Neuronal representations of object location generated across these stations and expressed in response latency and magnitude were classified based on graded and binary coding schemes. Both graded and binary coding schemes occurred across the entire thalamocortical network, with a general tendency of graded-to-binary transformation from thalamus to cortex. Overall, 63% of the neurons of the thalamocortical network coded object position in their firing. Thalamocortical responses exhibited a slow dynamics during which the amount of coded information increased across 4-5 whisking cycles and then stabilized. Taken together, the results indicate that the thalamocortical network contains dynamic mechanisms that can converge over time on multiple coding schemes of object location, schemes which essentially transform temporal coding to rate coding and gradual to labeled-line coding. PMID:24062318