Science.gov

Sample records for conserve fungal diversity

  1. The Contribution of DNA Metabarcoding to Fungal Conservation: Diversity Assessment, Habitat Partitioning and Mapping Red-Listed Fungi in Protected Coastal Salix repens Communities in the Netherlands

    PubMed Central

    Geml, József; Gravendeel, Barbara; van der Gaag, Kristiaan J.; Neilen, Manon; Lammers, Youri; Raes, Niels; Semenova, Tatiana A.; de Knijff, Peter; Noordeloos, Machiel E.

    2014-01-01

    Western European coastal sand dunes are highly important for nature conservation. Communities of the creeping willow (Salix repens) represent one of the most characteristic and diverse vegetation types in the dunes. We report here the results of the first kingdom-wide fungal diversity assessment in S. repens coastal dune vegetation. We carried out massively parallel pyrosequencing of ITS rDNA from soil samples taken at ten sites in an extended area of joined nature reserves located along the North Sea coast of the Netherlands, representing habitats with varying soil pH and moisture levels. Fungal communities in Salix repens beds are highly diverse and we detected 1211 non-singleton fungal 97% sequence similarity OTUs after analyzing 688,434 ITS2 rDNA sequences. Our comparison along a north-south transect indicated strong correlation between soil pH and fungal community composition. The total fungal richness and the number OTUs of most fungal taxonomic groups negatively correlated with higher soil pH, with some exceptions. With regard to ecological groups, dark-septate endophytic fungi were more diverse in acidic soils, ectomycorrhizal fungi were represented by more OTUs in calcareous sites, while detected arbuscular mycorrhizal genera fungi showed opposing trends regarding pH. Furthermore, we detected numerous red listed species in our samples often from previously unknown locations, indicating that some of the fungal species currently considered rare may be more abundant in Dutch S. repens communities than previously thought. PMID:24937200

  2. The contribution of DNA metabarcoding to fungal conservation: diversity assessment, habitat partitioning and mapping red-listed fungi in protected coastal Salix repens communities in the Netherlands.

    PubMed

    Geml, József; Gravendeel, Barbara; van der Gaag, Kristiaan J; Neilen, Manon; Lammers, Youri; Raes, Niels; Semenova, Tatiana A; de Knijff, Peter; Noordeloos, Machiel E

    2014-01-01

    Western European coastal sand dunes are highly important for nature conservation. Communities of the creeping willow (Salix repens) represent one of the most characteristic and diverse vegetation types in the dunes. We report here the results of the first kingdom-wide fungal diversity assessment in S. repens coastal dune vegetation. We carried out massively parallel pyrosequencing of ITS rDNA from soil samples taken at ten sites in an extended area of joined nature reserves located along the North Sea coast of the Netherlands, representing habitats with varying soil pH and moisture levels. Fungal communities in Salix repens beds are highly diverse and we detected 1211 non-singleton fungal 97% sequence similarity OTUs after analyzing 688,434 ITS2 rDNA sequences. Our comparison along a north-south transect indicated strong correlation between soil pH and fungal community composition. The total fungal richness and the number OTUs of most fungal taxonomic groups negatively correlated with higher soil pH, with some exceptions. With regard to ecological groups, dark-septate endophytic fungi were more diverse in acidic soils, ectomycorrhizal fungi were represented by more OTUs in calcareous sites, while detected arbuscular mycorrhizal genera fungi showed opposing trends regarding pH. Furthermore, we detected numerous red listed species in our samples often from previously unknown locations, indicating that some of the fungal species currently considered rare may be more abundant in Dutch S. repens communities than previously thought. PMID:24937200

  3. The diversity of fungal genome.

    PubMed

    Mohanta, Tapan Kumar; Bae, Hanhong

    2015-01-01

    The genome size of an organism varies from species to species. The C-value paradox enigma is a very complex puzzle with regards to vast diversity in genome sizes in eukaryotes. Here we reported the detailed genomic information of 172 fungal species among different fungal genomes and found that fungal genomes are very diverse in nature. In fungi, the diversity of genomes varies from 8.97 Mb to 177.57 Mb. The average genome sizes of Ascomycota and Basidiomycota fungi are 36.91 and 46.48 Mb respectively. But higher genome size is observed in Oomycota (74.85 Mb) species, a lineage of fungus-like eukaryotic microorganisms. The average coding genes of Oomycota species are almost doubled than that of Acomycota and Basidiomycota fungus. PMID:25866485

  4. Topographic diversity of fungal and bacterial communities in human skin.

    PubMed

    Findley, Keisha; Oh, Julia; Yang, Joy; Conlan, Sean; Deming, Clayton; Meyer, Jennifer A; Schoenfeld, Deborah; Nomicos, Effie; Park, Morgan; Kong, Heidi H; Segre, Julia A

    2013-06-20

    Traditional culture-based methods have incompletely defined the microbial landscape of common recalcitrant human fungal skin diseases, including athlete's foot and toenail infections. Skin protects humans from invasion by pathogenic microorganisms and provides a home for diverse commensal microbiota. Bacterial genomic sequence data have generated novel hypotheses about species and community structures underlying human disorders. However, microbial diversity is not limited to bacteria; microorganisms such as fungi also have major roles in microbial community stability, human health and disease. Genomic methodologies to identify fungal species and communities have been limited compared with those that are available for bacteria. Fungal evolution can be reconstructed with phylogenetic markers, including ribosomal RNA gene regions and other highly conserved genes. Here we sequenced and analysed fungal communities of 14 skin sites in 10 healthy adults. Eleven core-body and arm sites were dominated by fungi of the genus Malassezia, with only species-level classifications revealing fungal-community composition differences between sites. By contrast, three foot sites--plantar heel, toenail and toe web--showed high fungal diversity. Concurrent analysis of bacterial and fungal communities demonstrated that physiologic attributes and topography of skin differentially shape these two microbial communities. These results provide a framework for future investigation of the contribution of interactions between pathogenic and commensal fungal and bacterial communities to the maintainenace of human health and to disease pathogenesis. PMID:23698366

  5. Resource availability controls fungal diversity across a plant diversity gradient

    USGS Publications Warehouse

    Waldrop, M.P.; Zak, D.R.; Blackwood, C.B.; Curtis, C.D.; Tilman, D.

    2006-01-01

    Despite decades of research, the ecological determinants of microbial diversity remain poorly understood. Here, we test two alternative hypotheses concerning the factors regulating fungal diversity in soil. The first states that higher levels of plant detritus production increase the supply of limiting resources (i.e. organic substrates) thereby increasing fungal diversity. Alternatively, greater plant diversity increases the range of organic substrates entering soil, thereby increasing the number of niches to be filled by a greater array of heterotrophic fungi. These two hypotheses were simultaneously examined in experimental plant communities consisting of one to 16 species that have been maintained for a decade. We used ribosomal intergenic spacer analysis (RISA), in combination with cloning and sequencing, to quantify fungal community composition and diversity within the experimental plant communities. We used soil microbial biomass as a temporally integrated measure of resource supply. Plant diversity was unrelated to fungal diversity, but fungal diversity was a unimodal function of resource supply. Canonical correspondence analysis (CCA) indicated that plant diversity showed a relationship to fungal community composition, although the occurrence of RISA bands and operational taxonomic units (OTUs) did not differ among the treatments. The relationship between fungal diversity and resource availability parallels similar relationships reported for grasslands, tropical forests, coral reefs, and other biotic communities, strongly suggesting that the same underlying mechanisms determine the diversity of organisms at multiple scales. ?? 2006 Blackwell Publishing Ltd/CNRS.

  6. Fungal endophyte diversity in Sarracenia

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fungal endophytes were isolated from four species of the carnivorous pitcher plant genus Sarracenia: S. minor, S. oreophila, S. purpurea, and S. psittacina. Twelve taxa of fungi, eight within the Ascomycota and four within the Basidiomycota, were identified based on PCR amplification and sequencing ...

  7. Fungal Endophyte Diversity in Sarracenia

    PubMed Central

    Glenn, Anthony; Bodri, Michael S.

    2012-01-01

    Fungal endophytes were isolated from 4 species of the carnivorous pitcher plant genus Sarracenia: S. minor, S. oreophila, S. purpurea, and S. psittacina. Twelve taxa of fungi, 8 within the Ascomycota and 4 within the Basidiomycota, were identified based on PCR amplification and sequencing of the internal transcribed spacer sequences of nuclear ribosomal DNA (ITS rDNA) with taxonomic identity assigned using the NCBI nucleotide megablast search tool. Endophytes are known to produce a large number of metabolites, some of which may contribute to the protection and survival of the host. We speculate that endophyte-infected Sarracenia may benefit from their fungal associates by their influence on nutrient availability from within pitchers and, possibly, by directly influencing the biota within pitchers. PMID:22427921

  8. Root exudate diversity regulates soil fungal community composition and diversity

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Plant diversity is thought to influence diversity of the soil microbial community, though how this occurs is poorly understood. We report that under greenhouse conditions, two model plant species (Arabidopsis thaliana and Medicago truncatula) show an inability to support the native soil fungal comm...

  9. Fungal phylogenetic diversity drives plant facilitation.

    PubMed

    Montesinos-Navarro, Alicia; Segarra-Moragues, J G; Valiente-Banuet, A; Verdú, M

    2016-06-01

    Plant-plant facilitation is a crucial ecological process, as many plant species (facilitated) require the presence of an established individual (nurse) to recruit. Some plant facilitative interactions disappear during the ontogenetic development of the facilitated plant but others persist, even when the two plants are adults. We test whether the persistence of plant facilitative interactions is explained by the phylogenetic diversity of mutualistic and non-mutualistic fungi that the nurse and the facilitated species add to the shared rhizosphere. We classify plant facilitative interactions as persistent and non-persistent interactions and quantify the phylogenetic diversity of mutualistic and non-mutualistic fungi added by the plant species to the shared rhizosphere. Our results show that the facilitated species add less phylogenetic diversity of non-mutualistic fungi when plant facilitative interactions persist than when they do not persist. However, persistent and non-persistent facilitative interactions did not differ in the phylogenetic diversity of mutualistic fungi added by the facilitated species to the shared rhizosphere. Finally, the fungal phylogenetic diversity added by the nurse to the shared rhizosphere did not differ between persistent and non-persistent interactions. This study suggests that considering the fungal associates of the plant species involved in facilitative interactions can shed light on the mechanisms of persistence for plant-plant interactions. PMID:26915080

  10. A fungal perspective on conservation biology.

    PubMed

    Heilmann-Clausen, Jacob; Barron, Elizabeth S; Boddy, Lynne; Dahlberg, Anders; Griffith, Gareth W; Nordén, Jenni; Ovaskainen, Otso; Perini, Claudia; Senn-Irlet, Beatrice; Halme, Panu

    2015-02-01

    Hitherto fungi have rarely been considered in conservation biology, but this is changing as the field moves from addressing single species issues to an integrative ecosystem-based approach. The current emphasis on biodiversity as a provider of ecosystem services throws the spotlight on the vast diversity of fungi, their crucial roles in terrestrial ecosystems, and the benefits of considering fungi in concert with animals and plants. We reviewed the role of fungi in ecosystems and composed an overview of the current state of conservation of fungi. There are 5 areas in which fungi can be readily integrated into conservation: as providers of habitats and processes important for other organisms; as indicators of desired or undesired trends in ecosystem functioning; as indicators of habitats of conservation value; as providers of powerful links between human societies and the natural world because of their value as food, medicine, and biotechnological tools; and as sources of novel tools and approaches for conservation of megadiverse organism groups. We hope conservation professionals will value the potential of fungi, engage mycologists in their work, and appreciate the crucial role of fungi in nature. PMID:25185751

  11. Intraspecific Diversity Regulates Fungal Productivity and Respiration

    PubMed Central

    Wilkinson, Anna; Solan, Martin; Taylor, Andrew F. S.; Alexander, Ian J.; Johnson, David

    2010-01-01

    Individuals and not just species are key components of biodiversity, yet the relationship between intraspecific diversity and ecosystem functioning in microbial systems remains largely untested. This limits our ability to understand and predict the effects of altered genetic diversity in regulating key ecosystem processes and functions. Here, we use a model fungal system to test the hypothesis that intraspecific genotypic richness of Paxillus obscurosporus stimulates biomass and CO2 efflux, but that this is dependent on nitrogen supply. Using controlled experimental microcosms, we show that populations containing several genotypes (maximum 8) of the fungus had greater productivity and produced significantly more CO2 than those with fewer genotypes. Moreover, intraspecific diversity had a much stronger effect than a four-fold manipulation of the carbon:nitrogen ratio of the growth medium. The effects of intraspecific diversity were underpinned by strong roles of individuals, but overall intraspecific diversity increased the propensity of populations to over-yield, indicating that both complementarity and selection effects can operate within species. Our data demonstrate the importance of intraspecific diversity over a range of nitrogen concentrations, and the need to consider fine scale phylogenetic information of microbial communities in understanding their contribution to ecosystem processes. PMID:20830299

  12. Fungal biogeography. Global diversity and geography of soil fungi.

    PubMed

    Tedersoo, Leho; Bahram, Mohammad; Põlme, Sergei; Kõljalg, Urmas; Yorou, Nourou S; Wijesundera, Ravi; Villarreal Ruiz, Luis; Vasco-Palacios, Aída M; Thu, Pham Quang; Suija, Ave; Smith, Matthew E; Sharp, Cathy; Saluveer, Erki; Saitta, Alessandro; Rosas, Miguel; Riit, Taavi; Ratkowsky, David; Pritsch, Karin; Põldmaa, Kadri; Piepenbring, Meike; Phosri, Cherdchai; Peterson, Marko; Parts, Kaarin; Pärtel, Kadri; Otsing, Eveli; Nouhra, Eduardo; Njouonkou, André L; Nilsson, R Henrik; Morgado, Luis N; Mayor, Jordan; May, Tom W; Majuakim, Luiza; Lodge, D Jean; Lee, Su See; Larsson, Karl-Henrik; Kohout, Petr; Hosaka, Kentaro; Hiiesalu, Indrek; Henkel, Terry W; Harend, Helery; Guo, Liang-dong; Greslebin, Alina; Grelet, Gwen; Geml, Jozsef; Gates, Genevieve; Dunstan, William; Dunk, Chris; Drenkhan, Rein; Dearnaley, John; De Kesel, André; Dang, Tan; Chen, Xin; Buegger, Franz; Brearley, Francis Q; Bonito, Gregory; Anslan, Sten; Abell, Sandra; Abarenkov, Kessy

    2014-11-28

    Fungi play major roles in ecosystem processes, but the determinants of fungal diversity and biogeographic patterns remain poorly understood. Using DNA metabarcoding data from hundreds of globally distributed soil samples, we demonstrate that fungal richness is decoupled from plant diversity. The plant-to-fungus richness ratio declines exponentially toward the poles. Climatic factors, followed by edaphic and spatial variables, constitute the best predictors of fungal richness and community composition at the global scale. Fungi show similar latitudinal diversity gradients to other organisms, with several notable exceptions. These findings advance our understanding of global fungal diversity patterns and permit integration of fungi into a general macroecological framework. PMID:25430773

  13. Algal and fungal diversity in Antarctic lichens.

    PubMed

    Park, Chae Haeng; Kim, Kyung Mo; Elvebakk, Arve; Kim, Ok-Sun; Jeong, Gajin; Hong, Soon Gyu

    2015-01-01

    The composition of lichen ecosystems except mycobiont and photobiont has not been evaluated intensively. In addition, recent studies to identify algal genotypes have raised questions about the specific relationship between mycobiont and photobiont. In the current study, we analyzed algal and fungal community structures in lichen species from King George Island, Antarctica, by pyrosequencing of eukaryotic large subunit (LSU) and algal internal transcribed spacer (ITS) domains of the nuclear rRNA gene. The sequencing results of LSU and ITS regions indicated that each lichen thallus contained diverse algal species. The major algal operational taxonomic unit (OTU) defined at a 99% similarity cutoff of LSU sequences accounted for 78.7-100% of the total algal community in each sample. In several cases, the major OTUs defined by LSU sequences were represented by two closely related OTUs defined by 98% sequence similarity of ITS domain. The results of LSU sequences indicated that lichen-associated fungi belonged to the Arthoniomycetes, Eurotiomycetes, Lecanoromycetes, Leotiomycetes, and Sordariomycetes of the Ascomycota, and Tremellomycetes and Cystobasidiomycetes of the Basidiomycota. The composition of major photobiont species and lichen-associated fungal community were mostly related to the mycobiont species. The contribution of growth forms or substrates on composition of photobiont and lichen-associated fungi was not evident. PMID:25105247

  14. Calnexin induces expansion of antigen-specific CD4(+) T cells that confer immunity to fungal ascomycetes via conserved epitopes.

    PubMed

    Wüthrich, Marcel; Brandhorst, Tristan T; Sullivan, Thomas D; Filutowicz, Hanna; Sterkel, Alana; Stewart, Douglas; Li, Mengyi; Lerksuthirat, Tassanee; LeBert, Vanessa; Shen, Zu Ting; Ostroff, Gary; Deepe, George S; Hung, Chiung Yu; Cole, Garry; Walter, Jennifer A; Jenkins, Marc K; Klein, Bruce

    2015-04-01

    Fungal infections remain a threat due to the lack of broad-spectrum fungal vaccines and protective antigens. Recent studies showed that attenuated Blastomyces dermatitidis confers protection via T cell recognition of an unknown but conserved antigen. Using transgenic CD4(+) T cells recognizing this antigen, we identify an amino acid determinant within the chaperone calnexin that is conserved across diverse fungal ascomycetes. Calnexin, typically an ER protein, also localizes to the surface of yeast, hyphae, and spores. T cell epitope mapping unveiled a 13-residue sequence conserved across Ascomycota. Infection with divergent ascomycetes, including dimorphic fungi, opportunistic molds, and the agent causing white nose syndrome in bats, induces expansion of calnexin-specific CD4(+) T cells. Vaccine delivery of calnexin in glucan particles induces fungal antigen-specific CD4(+) T cell expansion and resistance to lethal challenge with multiple fungal pathogens. Thus, the immunogenicity and conservation of calnexin make this fungal protein a promising vaccine target. PMID:25800545

  15. Calnexin induces expansion of antigen-specific CD4+ T cells that confer immunity to fungal ascomycetes via conserved epitopes

    PubMed Central

    Wüthrich, Marcel; Brandhorst, Tristan T.; Sullivan, Thomas D.; Filutowicz, Hanna; Sterkel, Alana; Stewart, Douglas; Li, Mengyi; Lerksuthirat, Tassanee; LeBert, Vanessa; Shen, Zu Ting; Ostroff, Gary; Deepe, George S.; Hung, Chiung Yu; Cole, Garry; Walter, Jennifer A.; Jenkins, Marc K.; Klein, Bruce

    2015-01-01

    Fungal infections remain a threat due to the lack of broad spectrum fungal vaccines and protective antigens. Recent studies showed that attenuated Blastomyces dermatitidis confers protection via T cell recognition of an unknown, but conserved antigen. Using transgenic CD4+ T cells recognizing this antigen, we identify an amino acid determinant within the chaperone calnexin that is conserved across diverse fungal ascomycetes. Calnexin, typically an ER protein, also localizes to the surface of yeast, hyphae and spores. T cell epitope mapping unveiled a 13-residue sequence conserved across Ascomycota. Infection with divergent ascomycetes including dimorphic fungi, opportunistic molds, and the agent causing white nose syndrome in bats induces expansion of calnexin-specific CD4+ T cells. Vaccine delivery of calnexin in glucan particles induces fungal antigen-specific CD4+ T cell expansion and resistance to lethal challenge with multiple fungal pathogens. Thus, the immunogeneticity and conservation of calnexin make this fungal protein a promising vaccine target. PMID:25800545

  16. Effect of Cover Crops on Soil Fungal Diversity and Biomass

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The effects of various cover crops (sordan, mustard, canola, honeysweet, and fallow) to influence soil fungal biomass and diversity were tested in a potato field in the San Luis Valley, Colorado. Soil samples (0-5 cm depth) were randomly selected from each cover crop plot and soil fungal communitie...

  17. First genomic survey of human skin fungal diversity

    Cancer.gov

    Fungal infections of the skin affect 29 million people in the United States. In the first study of human fungal skin diversity, National Institutes of Health researchers sequenced the DNA of fungi that thrive at different skin sites of healthy adults to d

  18. 454-Pyrosequencing Reveals Variable Fungal Diversity Across Farming Systems

    PubMed Central

    Kazeeroni, Elham A.; Al-Sadi, Abdullah M.

    2016-01-01

    Oasis farming system is common in some parts of the world, especially in the Arabian Peninsula and several African countries. In Oman, the farming system in the majority of farms follows a semi-oasis farming (SOF) system, which is characterized by growing multiple crops mainly for home consumption, but also for local market. This study was conducted to investigate fungal diversity using pyrosequencing approach in soils from a farm utilizing a SOF system which is cultivated with date palms, acid limes and cucumbers. Fungal diversity from this farm was compared to that from an organic farm (OR) growing cucumbers and tomatoes. Fungal diversity was found to be variable among different crops in the same farm. The observed OTUs, Chao1 richness estimates and Shannon diversity values indicated that soils from date palms and acid limes have higher fungal diversity compared to soil from cucumbers (SOF). In addition, they also indicated that the level of fungal diversity is higher in the rhizosphere of cucumbers grown in OR compared to SOF. Ascomycota was the most dominant phylum in most of the samples from the OR and SOF farms. Other dominant phyla are Microsporidia, Chytridiomycota, and Basidiomycota. The differential level of fungal diversity within the SOF could be related to the variation in the cultural practices employed for each crop. PMID:27014331

  19. 454-Pyrosequencing Reveals Variable Fungal Diversity Across Farming Systems.

    PubMed

    Kazeeroni, Elham A; Al-Sadi, Abdullah M

    2016-01-01

    Oasis farming system is common in some parts of the world, especially in the Arabian Peninsula and several African countries. In Oman, the farming system in the majority of farms follows a semi-oasis farming (SOF) system, which is characterized by growing multiple crops mainly for home consumption, but also for local market. This study was conducted to investigate fungal diversity using pyrosequencing approach in soils from a farm utilizing a SOF system which is cultivated with date palms, acid limes and cucumbers. Fungal diversity from this farm was compared to that from an organic farm (OR) growing cucumbers and tomatoes. Fungal diversity was found to be variable among different crops in the same farm. The observed OTUs, Chao1 richness estimates and Shannon diversity values indicated that soils from date palms and acid limes have higher fungal diversity compared to soil from cucumbers (SOF). In addition, they also indicated that the level of fungal diversity is higher in the rhizosphere of cucumbers grown in OR compared to SOF. Ascomycota was the most dominant phylum in most of the samples from the OR and SOF farms. Other dominant phyla are Microsporidia, Chytridiomycota, and Basidiomycota. The differential level of fungal diversity within the SOF could be related to the variation in the cultural practices employed for each crop. PMID:27014331

  20. Diversity of fungal isolates from three Hawaiian marine sponges.

    PubMed

    Li, Quanzi; Wang, Guangyi

    2009-01-01

    Sponges harbor diverse prokaryotic and eukaryotic microbes. However, the nature of sponge-fungal association and diversity of sponge-derived fungi have barely been addressed. In this study, the cultivation-dependent approach was applied to study fungal diversity in the Hawaiian sponges Gelliodes fibrosa, Haliclona caerulea, and Mycale armata. The cultivated fungal isolates were representatives of 8 taxonomic orders, belonging to at least 25 genera of Ascomycota and 1 of Basidiomycota. A portion of these isolates (n=15, 17%) were closely affiliated with fungal isolates isolated from other marine habitats; the rest of the isolates had affiliation with terrestrial fungal strains. Cultivated fungal isolates were classified into 3 groups: 'sponge-generalists'-found in all sponge species, 'sponge-associates'-found in more than one sponge species, and 'sponge-specialists'-found only in one sponge species. Individuals of G. fibrosa collected at two different locations shared the same group of 'sponge-specialists'. Also, representatives of 15 genera were identified for the first time in marine sponges. Large-scale phylogenetic analysis of sponge-derived fungi may provide critical information to distinguish between 'resident fungi' and 'transient fungi' in sponges as it has been done in other marine microbial groups. This is the first report of the host specificity analysis of culturable fungal communities in marine sponges. PMID:17681460

  1. Conservative ecological and evolutionary patterns in liverwort-fungal symbioses.

    PubMed

    Bidartondo, Martin I; Duckett, Jeffrey G

    2010-02-01

    Liverworts, the most ancient group of land plants, form a range of intimate associations with fungi that may be analogous to the mycorrhizas of vascular plants. Most thalloid liverworts contain arbuscular mycorrhizal glomeromycete fungi similar to most vascular plants. In contrast, a range of leafy liverwort genera and one simple thalloid liverwort family (the Aneuraceae) have switched to basidiomycete fungi. These liverwort switches away from glomeromycete fungi may be expected to parallel switches undergone by vascular plants that target diverse lineages of basidiomycete fungi to form ectomycorrhizas. To test this hypothesis, we used a cultivation-independent approach to examine the basidiomycete fungi associated with liverworts in varied worldwide locations by generating fungal DNA sequence data from over 200 field collections of over 30 species. Here we show that eight leafy liverwort genera predominantly and consistently associate with members of the Sebacina vermifera species complex and that Aneuraceae thalloid liverworts associate nearly exclusively with Tulasnella species. Furthermore, within sites where multiple liverwort species co-occur, they almost never share the same fungi. Our analyses reveal a strikingly conservative ecological and evolutionary pattern of liverwort symbioses with basidiomycete fungi that is unlike that of vascular plant mycorrhizas. PMID:19812075

  2. Conservative ecological and evolutionary patterns in liverwort–fungal symbioses

    PubMed Central

    Bidartondo, Martin I.; Duckett, Jeffrey G.

    2010-01-01

    Liverworts, the most ancient group of land plants, form a range of intimate associations with fungi that may be analogous to the mycorrhizas of vascular plants. Most thalloid liverworts contain arbuscular mycorrhizal glomeromycete fungi similar to most vascular plants. In contrast, a range of leafy liverwort genera and one simple thalloid liverwort family (the Aneuraceae) have switched to basidiomycete fungi. These liverwort switches away from glomeromycete fungi may be expected to parallel switches undergone by vascular plants that target diverse lineages of basidiomycete fungi to form ectomycorrhizas. To test this hypothesis, we used a cultivation-independent approach to examine the basidiomycete fungi associated with liverworts in varied worldwide locations by generating fungal DNA sequence data from over 200 field collections of over 30 species. Here we show that eight leafy liverwort genera predominantly and consistently associate with members of the Sebacina vermifera species complex and that Aneuraceae thalloid liverworts associate nearly exclusively with Tulasnella species. Furthermore, within sites where multiple liverwort species co-occur, they almost never share the same fungi. Our analyses reveal a strikingly conservative ecological and evolutionary pattern of liverwort symbioses with basidiomycete fungi that is unlike that of vascular plant mycorrhizas. PMID:19812075

  3. Multi-stressor impacts on fungal diversity and ecosystem functions in streams: natural vs. anthropogenic stress.

    PubMed

    Tolkkinen, M; Mykrä, H; Annala, M; Markkola, A M; Vuori, K M; Muotka, T

    2015-03-01

    Biological assemblages are often subjected to multiple stressors emerging from both anthropogenic activities and naturally stressful conditions, and species' responses to simultaneous stressors may differ from those predicted based on the individual effects of each stressor alone. We studied the influence of land-use disturbance (forest drainage) on fungal decomposer assemblages and leaf decomposition rates in naturally harsh (low pH caused by black-shale dominated geology) vs. circumneutral streams. We used pyrosequencing to determine fungal richness and assemblage structure. Decomposition rates did not differ between circumneutral and naturally acidic reference sites. However, the effect of forest drainage on microbial decomposition was more pronounced in the naturally acidic streams than in circumneutral streams. Single-effect responses of fungal assemblages were mainly related to geology. Community similarity was significantly higher in the naturally acidic disturbed sites than in corresponding reference sites, suggesting that land-use disturbance simplifies fungal assemblages in naturally stressful conditions. Naturally acidic streams supported distinct fungal assemblages with many OTUs (operational taxonomic unit) unique to these streams. Our results indicate that fungal assemblages in streams are sensitive to both structural and functional impairment in response to multiple stressors. Anthropogenic degradation of naturally acidic streams may decrease regional fungal diversity and impair ecosystem functions, and these globally occurring environments therefore deserve special attention in conservation planning. PMID:26236864

  4. Impact of metal pollution on fungal diversity and community structures.

    PubMed

    Op De Beeck, Michiel; Lievens, Bart; Busschaert, Pieter; Rineau, Francois; Smits, Mark; Vangronsveld, Jaco; Colpaert, Jan V

    2015-06-01

    The impact of metal pollution on plant communities has been studied extensively in the past, but little is known about the effects of metal pollution on fungal communities that occur in metal-polluted soils. Metal-tolerant ecotypes of the ectomycorrhizal fungus Suillus luteus are frequently found in pioneer pine forests in the Campine region in Belgium on metal-polluted soils. We hypothesized that metal pollution would play an important role in shaping below-ground fungal communities that occur in these soils and that Suillus luteus would be a dominant player. To test these hypotheses, the fungal communities in a young pine plantation in soil polluted with zinc, and cadmium were studied using 454 amplicon pyrosequencing. Results show that zinc, cadmium and soil organic matter content were strongly correlated with the fungal community composition, but no effects on fungal diversity were observed. As hypothesized, S. luteus was found to be a dominant member of the studied fungal communities. However, other dominant fungal species, such as Sistotrema sp., Wilcoxina mikolae and Cadophora finlandica were found as well. Their presence in metal-polluted sites is discussed. PMID:24947496

  5. Diverse Honeydew-Consuming Fungal Communities Associated with Scale Insects

    PubMed Central

    Dhami, Manpreet K.; Weir, Bevan S.; Taylor, Michael W.; Beggs, Jacqueline R.

    2013-01-01

    Sooty mould fungi are ubiquitous, abundant consumers of insect-honeydew that have been little-studied. They form a complex of unrelated fungi that coexist and compete for honeydew, which is a chemically complex resource. In this study, we used scanning electron microscopy in combination with T-RFLP community profiling and ITS-based tag-pyrosequencing to extensively describe the sooty mould community associated with the honeydews of two ecologically important New Zealand coelostomidiid scale insects, Coelostomidia wairoensis and Ultracoelostoma brittini. We tested the influence of host plant on the community composition of associated sooty moulds, and undertook limited analyses to examine the influence of scale insect species and geographic location. We report here a previously unknown degree of fungal diversity present in this complex, with pyrosequencing detecting on average 243 operational taxonomic units across the different sooty mould samples. In contrast, T-RFLP detected only a total of 24 different “species” (unique peaks). Nevertheless, both techniques identified similar patterns of diversity suggesting that either method is appropriate for community profiling. The composition of the microbial community associated with individual scale insect species varied although the differences may in part reflect variation in host preference and site. Scanning electron microscopy visualised an intertwined mass of fungal hyphae and fruiting bodies in near-intact physical condition, but was unable to distinguish between the different fungal communities on a morphological level, highlighting the need for molecular research. The substantial diversity revealed for the first time by pyrosequencing and our inability to identify two-thirds of the diversity to further than the fungal division highlights the significant gap in our knowledge of these fungal groups. This study provides a first extensive look at the community diversity of the fungal community closely associated

  6. Conservation businesses and conservation planning in a biological diversity hotspot.

    PubMed

    Di Minin, Enrico; Macmillan, Douglas Craig; Goodman, Peter Styan; Escott, Boyd; Slotow, Rob; Moilanen, Atte

    2013-08-01

    The allocation of land to biological diversity conservation competes with other land uses and the needs of society for development, food, and extraction of natural resources. Trade-offs between biological diversity conservation and alternative land uses are unavoidable, given the realities of limited conservation resources and the competing demands of society. We developed a conservation-planning assessment for the South African province of KwaZulu-Natal, which forms the central component of the Maputaland-Pondoland-Albany biological diversity hotspot. Our objective was to enhance biological diversity protection while promoting sustainable development and providing spatial guidance in the resolution of potential policy conflicts over priority areas for conservation at risk of transformation. The conservation-planning assessment combined spatial-distribution models for 646 conservation features, spatial economic-return models for 28 alternative land uses, and spatial maps for 4 threats. Nature-based tourism businesses were competitive with other land uses and could provide revenues of >US$60 million/year to local stakeholders and simultaneously help meeting conservation goals for almost half the conservation features in the planning region. Accounting for opportunity costs substantially decreased conflicts between biological diversity, agricultural use, commercial forestry, and mining. Accounting for economic benefits arising from conservation and reducing potential policy conflicts with alternative plans for development can provide opportunities for successful strategies that combine conservation and sustainable development and facilitate conservation action. PMID:23565917

  7. Serpentine Soils Do Not Limit Mycorrhizal Fungal Diversity

    PubMed Central

    Branco, Sara; Ree, Richard H.

    2010-01-01

    Background Physiologically stressful environments tend to host depauperate and specialized biological communities. Serpentine soils exemplify this phenomenon by imposing well-known constraints on plants; however, their effect on other organisms is still poorly understood. Methodology/Principal Findings We used a combination of field and molecular approaches to test the hypothesis that serpentine fungal communities are species-poor and specialized. We conducted surveys of ectomycorrhizal fungal diversity from adjacent serpentine and non-serpentine sites, described fungal communities using nrDNA Internal Transcribed Spacer (ITS) fragment and sequence analyses, and compared their phylogenetic community structure. Although we detected low fungal overlap across the two habitats, we found serpentine soils to support rich fungal communities that include representatives from all major fungal lineages. We failed to detect the phylogenetic signature of endemic clades that would result from specialization and adaptive radiation within this habitat. Conclusions/Significance Our results indicate that serpentine soils do not constitute an extreme environment for ectomycorrhizal fungi, and raise important questions about the role of symbioses in edaphic tolerance and the maintenance of biodiversity. PMID:20668696

  8. Fungal diversity in cow, goat and ewe milk.

    PubMed

    Delavenne, Emilie; Mounier, Jerome; Asmani, Katia; Jany, Jean-Luc; Barbier, Georges; Le Blay, Gwenaelle

    2011-12-01

    Knowledge of fungal diversity in the environment is poor compared with bacterial biodiversity. In this study, we applied the denaturing high-performance liquid chromatography (D-HPLC) technique, combined with the amplification of the ITS1 region from fungal rDNA, for the rapid identification of major fungal species in 9 raw milk samples from cow, ewe and goat, collected at different periods of the year. A total of 27 fungal species were identified. Yeast species belonged to Candida, Cryptococcus, Debaryomyces, Geotrichum, Kluyveromyces, Malassezia, Pichia, Rhodotorula and Trichosporon genera; and mold species belonged to Aspergillus, Chrysosporium, Cladosporium, Engyodontium, Fusarium, Penicillium and Torrubiella genera. Cow milk samples harbored the highest fungal diversity with a maximum of 15 species in a single sample, whereas a maximum of 4 and 6 different species were recovered in goat and ewe milk respectively. Commonly encountered genera in cow and goat milk were Geotrichum candidum, Kluyveromyces marxianus and Candida spp. (C. catenulata and C. inconspicua); whereas Candida parapsilosis was frequently found in ewe milk samples. Most of detected species were previously described in literature data. A few species were uncultured fungi and others (Torrubiella and Malassezia) were described for the first time in milk. PMID:21944758

  9. Application of species richness estimators for the assessment of fungal diversity.

    PubMed

    Unterseher, Martin; Schnittler, Martin; Dormann, Carsten; Sickert, Andreas

    2008-05-01

    Species richness and distribution patterns of wood-inhabiting fungi and mycetozoans (slime moulds) were investigated in the canopy of a Central European temperate mixed deciduous forest. Species richness was described with diversity indices and species-accumulation curves. Nonmetrical multidimensional scaling was used to assess fungal species composition on different tree species. Different species richness estimators were used to extrapolate species richness beyond our own data. The reliability of the abundance-based coverage estimator, Chao, Jackknife and other estimators of species richness was evaluated for mycological surveys. While the species-accumulation curve of mycetozoans came close to saturation, that of wood-inhabiting fungi was continuously rising. The Chao 2 richness estimator was considered most appropriate to predict the number of species at the investigation site if sampling were continued. Gray's predictor of species richness should be used if statements of the number of species in larger areas are required. Multivariate analysis revealed the importance of different tree species for the conservation and maintenance of fungal diversity within forests, because each tree species possessed a characteristic fungal community. The described mathematical approaches of estimating species richness possess great potential to address fungal diversity on a regional, national, and global scale. PMID:18355274

  10. Ectomycorrhizal fungal diversity and saprotrophic fungal diversity are linked to different tree community attributes in a field-based tree experiment.

    PubMed

    Nguyen, Nhu H; Williams, Laura J; Vincent, John B; Stefanski, Artur; Cavender-Bares, Jeannine; Messier, Christian; Paquette, Alain; Gravel, Dominique; Reich, Peter B; Kennedy, Peter G

    2016-08-01

    Exploring the link between above- and belowground biodiversity has been a major theme of recent ecological research, due in large part to the increasingly well-recognized role that soil microorganisms play in driving plant community processes. In this study, we utilized a field-based tree experiment in Minnesota, USA, to assess the effect of changes in plant species richness and phylogenetic diversity on the richness and composition of both ectomycorrhizal and saprotrophic fungal communities. We found that ectomycorrhizal fungal species richness was significantly positively influenced by increasing plant phylogenetic diversity, while saprotrophic fungal species richness was significantly affected by plant leaf nitrogen content, specific root length and standing biomass. The increasing ectomycorrhizal fungal richness associated with increasing plant phylogenetic diversity was driven by the combined presence of ectomycorrhizal fungal specialists in plots with both gymnosperm and angiosperm hosts. Although the species composition of both the ectomycorrhizal and saprotrophic fungal communities changed significantly in response to changes in plant species composition, the effect was much greater for ectomycorrhizal fungi. In addition, ectomycorrhizal but not saprotrophic fungal species composition was significantly influenced by both plant phylum (angiosperm, gymnosperm, both) and origin (Europe, America, both). The phylum effect was caused by differences in ectomycorrhizal fungal community composition, while the origin effect was attributable to differences in community heterogeneity. Taken together, this study emphasizes that plant-associated effects on soil fungal communities are largely guild-specific and provides a mechanistic basis for the positive link between plant phylogenetic diversity and ectomycorrhizal fungal richness. PMID:27284759

  11. Conservation of diversity in forest trees

    SciTech Connect

    Ledig, F.T.

    1988-07-01

    This article discusses the threat to forest from population growth and concomitant poverty. Deforestation, pollution, and climatic change threaten forest diversity; and because forests are the habitats for diverse organisms, the threat extends to all flora and fauna associated with forests. Three different objectives included under the rubric of gene conservation are discussed: protection, particularly of domesticated plants, from genetic vulnerability; protection of endangered species; and preservation of genes for future use.

  12. Diversity and bioprospection of fungal community present in oligotrophic soil of continental Antarctica

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The diversity of fungal communities from different substrates in Antarctica were studied and their capability to produce bioactive compounds. A one hundred and one fungal isolates were identified by molecular analysis in 35 different fungal taxa from 20 genera. Pseudogymnoascus sp. 3, Pseudogymnoasc...

  13. Biogeography in the air: fungal diversity over land and oceans

    NASA Astrophysics Data System (ADS)

    Fröhlich-Nowoisky, J.; Burrows, S. M.; Xie, Z.; Engling, G.; Solomon, P. A.; Fraser, M. P.; Mayol-Bracero, O. L.; Artaxo, P.; Begerow, D.; Conrad, R.; Andreae, M. O.; Després, V. R.; Pöschl, U.

    2011-07-01

    Biogenic aerosols are relevant for the Earth system, climate, and public health on local, regional, and global scales. Up to now, however, little is known about the diversity and biogeography of airborne microorganisms. We present the first DNA-based analysis of airborne fungi on global scales, showing pronounced geographic patterns and boundaries. In particular we found that the ratio of species richness between Basidiomycota and Ascomycota is much higher in continental air than in marine air. This may be an important difference between the "blue ocean" and "green ocean" regimes in the formation of clouds and precipitation, for which fungal spores can act as nuclei. Our findings also suggest that air flow patterns and the global atmospheric circulation are important for the evolution of microbial ecology and for the understanding of global changes in biodiversity.

  14. Biogeography in the air: fungal diversity over land and oceans

    NASA Astrophysics Data System (ADS)

    Fröhlich-Nowoisky, J.; Burrows, S. M.; Xie, Z.; Engling, G.; Solomon, P. A.; Fraser, M. P.; Mayol-Bracero, O. L.; Artaxo, P.; Begerow, D.; Conrad, R.; Andreae, M. O.; Després, V. R.; Pöschl, U.

    2012-03-01

    Biogenic aerosols are relevant for the Earth system, climate, and public health on local, regional, and global scales. Up to now, however, little is known about the diversity and biogeography of airborne microorganisms. We present the first DNA-based analysis of airborne fungi on global scales, showing pronounced geographic patterns and boundaries. In particular we find that the ratio of species richness between Basidiomycota and Ascomycota is much higher in continental air than in marine air. This may be an important difference between the "blue ocean" and "green ocean" regimes in the formation of clouds and precipitation, for which fungal spores can act as nuclei. Our findings also suggest that air flow patterns and the global atmospheric circulation are important for the understanding of global changes in biodiversity.

  15. Evolutionary Conserved Positions Define Protein Conformational Diversity.

    PubMed

    Saldaño, Tadeo E; Monzon, Alexander M; Parisi, Gustavo; Fernandez-Alberti, Sebastian

    2016-03-01

    Conformational diversity of the native state plays a central role in modulating protein function. The selection paradigm sustains that different ligands shift the conformational equilibrium through their binding to highest-affinity conformers. Intramolecular vibrational dynamics associated to each conformation should guarantee conformational transitions, which due to its importance, could possibly be associated with evolutionary conserved traits. Normal mode analysis, based on a coarse-grained model of the protein, can provide the required information to explore these features. Herein, we present a novel procedure to identify key positions sustaining the conformational diversity associated to ligand binding. The method is applied to an adequate refined dataset of 188 paired protein structures in their bound and unbound forms. Firstly, normal modes most involved in the conformational change are selected according to their corresponding overlap with structural distortions introduced by ligand binding. The subspace defined by these modes is used to analyze the effect of simulated point mutations on preserving the conformational diversity of the protein. We find a negative correlation between the effects of mutations on these normal mode subspaces associated to ligand-binding and position-specific evolutionary conservations obtained from multiple sequence-structure alignments. Positions whose mutations are found to alter the most these subspaces are defined as key positions, that is, dynamically important residues that mediate the ligand-binding conformational change. These positions are shown to be evolutionary conserved, mostly buried aliphatic residues localized in regular structural regions of the protein like β-sheets and α-helix. PMID:27008419

  16. Evolutionary Conserved Positions Define Protein Conformational Diversity

    PubMed Central

    Saldaño, Tadeo E.; Monzon, Alexander M.; Parisi, Gustavo; Fernandez-Alberti, Sebastian

    2016-01-01

    Conformational diversity of the native state plays a central role in modulating protein function. The selection paradigm sustains that different ligands shift the conformational equilibrium through their binding to highest-affinity conformers. Intramolecular vibrational dynamics associated to each conformation should guarantee conformational transitions, which due to its importance, could possibly be associated with evolutionary conserved traits. Normal mode analysis, based on a coarse-grained model of the protein, can provide the required information to explore these features. Herein, we present a novel procedure to identify key positions sustaining the conformational diversity associated to ligand binding. The method is applied to an adequate refined dataset of 188 paired protein structures in their bound and unbound forms. Firstly, normal modes most involved in the conformational change are selected according to their corresponding overlap with structural distortions introduced by ligand binding. The subspace defined by these modes is used to analyze the effect of simulated point mutations on preserving the conformational diversity of the protein. We find a negative correlation between the effects of mutations on these normal mode subspaces associated to ligand-binding and position-specific evolutionary conservations obtained from multiple sequence-structure alignments. Positions whose mutations are found to alter the most these subspaces are defined as key positions, that is, dynamically important residues that mediate the ligand-binding conformational change. These positions are shown to be evolutionary conserved, mostly buried aliphatic residues localized in regular structural regions of the protein like β-sheets and α-helix. PMID:27008419

  17. Fungal diversity on fallen leaves of Ficus in northern Thailand* §

    PubMed Central

    Wang, Hong-kai; Hyde, Kevin D.; Soytong, Kasem; Lin, Fu-cheng

    2008-01-01

    Fallen leaves of Ficus altissima, F. virens, F. benjamina, F. fistulosa and F. semicordata, were collected in Chiang Mai Province in northern Thailand and examined for fungi. Eighty taxa were identified, comprising 56 anamorphic taxa, 23 ascomycetes and 1 basidiomycete. Common fungal species occurring on five host species with high frequency of occurrence were Beltraniella nilgirica, Lasiodiplodia theobromae, Ophioceras leptosporum, Periconia byssoides and Septonema harknessi. Colletotrichum and Stachybotrys were also common genera. The leaves of different Ficus species supported diverse fungal taxa, and the fungal assemblages on the different hosts showed varying overlap. The fungal diversity of saprobes at the host species level is discussed. PMID:18837113

  18. Fungal community composition in neotropical rain forests: the influence of tree diversity and precipitation.

    PubMed

    McGuire, Krista L; Fierer, Noah; Bateman, Carling; Treseder, Kathleen K; Turner, Benjamin L

    2012-05-01

    Plant diversity is considered one factor structuring soil fungal communities because the diversity of compounds in leaf litter might determine the extent of resource heterogeneity for decomposer communities. Lowland tropical rain forests have the highest plant diversity per area of any biome. Since fungi are responsible for much of the decomposition occurring in forest soils, understanding the factors that structure fungi in tropical forests may provide valuable insight for predicting changes in global carbon and nitrogen fluxes. To test the role of plant diversity in shaping fungal community structure and function, soil (0-20 cm) and leaf litter (O horizons) were collected from six established 1-ha forest census plots across a natural plant diversity gradient on the Isthmus of Panama. We used 454 pyrosequencing and phospholipid fatty acid analysis to evaluate correlations between microbial community composition, precipitation, soil nutrients, and plant richness. In soil, the number of fungal taxa increased significantly with increasing mean annual precipitation, but not with plant richness. There were no correlations between fungal communities in leaf litter and plant diversity or precipitation, and fungal communities were found to be compositionally distinct between soil and leaf litter. To directly test for effects of plant species richness on fungal diversity and function, we experimentally re-created litter diversity gradients in litter bags with 1, 25, and 50 species of litter. After 6 months, we found a significant effect of litter diversity on decomposition rate between one and 25 species of leaf litter. However, fungal richness did not track plant species richness. Although studies in a broader range of sites is required, these results suggest that precipitation may be a more important factor than plant diversity or soil nutrient status in structuring tropical forest soil fungal communities. PMID:22080256

  19. High-throughput sequencing-based analysis of endogenetic fungal communities inhabiting the Chinese Cordyceps reveals unexpectedly high fungal diversity.

    PubMed

    Xia, Fei; Chen, Xin; Guo, Meng-Yuan; Bai, Xiao-Hui; Liu, Yan; Shen, Guang-Rong; Li, Yu-Ling; Lin, Juan; Zhou, Xuan-Wei

    2016-01-01

    Chinese Cordyceps, known in Chinese as "DongChong XiaCao", is a parasitic complex of a fungus (Ophiocordyceps sinensis) and a caterpillar. The current study explored the endogenetic fungal communities inhabiting Chinese Cordyceps. Samples were collected from five different geographical regions of Qinghai and Tibet, and the nuclear ribosomal internal transcribed spacer-1 sequences from each sample were obtained using Illumina high-throughput sequencing. The results showed that Ascomycota was the dominant fungal phylum in Chinese Cordyceps and its soil microhabitat from different sampling regions. Among the Ascomycota, 65 genera were identified, and the abundant operational taxonomic units showed the strongest sequence similarity to Ophiocordyceps, Verticillium, Pseudallescheria, Candida and Ilyonectria Not surprisingly, the genus Ophiocordyceps was the largest among the fungal communities identified in the fruiting bodies and external mycelial cortices of Chinese Cordyceps. In addition, fungal communities in the soil microhabitats were clustered separately from the external mycelial cortices and fruiting bodies of Chinese Cordyceps from different sampling regions. There was no significant structural difference in the fungal communities between the fruiting bodies and external mycelial cortices of Chinese Cordyceps. This study revealed an unexpectedly high diversity of fungal communities inhabiting the Chinese Cordyceps and its microhabitats. PMID:27625176

  20. Diverse Bacteria Inhabit Living Hyphae of Phylogenetically Diverse Fungal Endophytes▿ †

    PubMed Central

    Hoffman, Michele T.; Arnold, A. Elizabeth

    2010-01-01

    Both the establishment and outcomes of plant-fungus symbioses can be influenced by abiotic factors, the interplay of fungal and plant genotypes, and additional microbes associated with fungal mycelia. Recently bacterial endosymbionts were documented in soilborne Glomeromycota and Mucoromycotina and in at least one species each of mycorrhizal Basidiomycota and Ascomycota. Here we show for the first time that phylogenetically diverse endohyphal bacteria occur in living hyphae of diverse foliar endophytes, including representatives of four classes of Ascomycota. We examined 414 isolates of endophytic fungi, isolated from photosynthetic tissues of six species of cupressaceous trees in five biogeographic provinces, for endohyphal bacteria using microscopy and molecular techniques. Viable bacteria were observed within living hyphae of endophytic Pezizomycetes, Dothideomycetes, Eurotiomycetes, and Sordariomycetes from all tree species and biotic regions surveyed. A focus on 29 fungus/bacterium associations revealed that bacterial and fungal phylogenies were incongruent with each other and with taxonomic relationships of host plants. Overall, eight families and 15 distinct genotypes of endohyphal bacteria were recovered; most were members of the Proteobacteria, but a small number of Bacillaceae also were found, including one that appears to occur as an endophyte of plants. Frequent loss of bacteria following subculturing suggests a facultative association. Our study recovered distinct lineages of endohyphal bacteria relative to previous studies, is the first to document their occurrence in foliar endophytes representing four of the most species-rich classes of fungi, and highlights for the first time their diversity and phylogenetic relationships with regard both to the endophytes they inhabit and the plants in which these endophyte-bacterium symbiota occur. PMID:20435775

  1. Diversity and bioprospecting of fungal communities associated with endemic and cold-adapted macroalgae in Antarctica

    PubMed Central

    Godinho, Valéria M; Furbino, Laura E; Santiago, Iara F; Pellizzari, Franciane M; Yokoya, Nair S; Pupo, Diclá; Alves, Tânia MA; S Junior, Policarpo A; Romanha, Alvaro J; Zani, Carlos L; Cantrell, Charles L; Rosa, Carlos A; Rosa, Luiz H

    2013-01-01

    We surveyed the distribution and diversity of fungi associated with eight macroalgae from Antarctica and their capability to produce bioactive compounds. The collections yielded 148 fungal isolates, which were identified using molecular methods as belonging to 21 genera and 50 taxa. The most frequent taxa were Geomyces species (sp.), Penicillium sp. and Metschnikowia australis. Seven fungal isolates associated with the endemic Antarctic macroalgae Monostroma hariotii (Chlorophyte) displayed high internal transcribed spacer sequences similarities with the psychrophilic pathogenic fungus Geomyces destructans. Thirty-three fungal singletons (66%) were identified, representing rare components of the fungal communities. The fungal communities displayed high diversity, richness and dominance indices; however, rarefaction curves indicated that not all of the fungal diversity present was recovered. Penicillium sp. UFMGCB 6034 and Penicillium sp. UFMGCB 6120, recovered from the endemic species Palmaria decipiens (Rhodophyte) and M. hariotii, respectively, yielded extracts with high and selective antifungal and/or trypanocidal activities, in which a preliminary spectral analysis using proton nuclear magnetic resonance spectroscopy indicated the presence of highly functionalised aromatic compounds. These results suggest that the endemic and cold-adapted macroalgae of Antarctica shelter a rich, diversity and complex fungal communities consisting of a few dominant indigenous or mesophilic cold-adapted species, and a large number of rare and/or endemic taxa, which may provide an interesting model of algal–fungal interactions under extreme conditions as well as a potential source of bioactive compounds. PMID:23702515

  2. Genetic selection and conservation of genetic diversity*.

    PubMed

    Blackburn, H D

    2012-08-01

    For 100s of years, livestock producers have employed various types of selection to alter livestock populations. Current selection strategies are little different, except our technologies for selection have become more powerful. Genetic resources at the breed level have been in and out of favour over time. These resources are the raw materials used to manipulate populations, and therefore, they are critical to the past and future success of the livestock sector. With increasing ability to rapidly change genetic composition of livestock populations, the conservation of these genetic resources becomes more critical. Globally, awareness of the need to steward genetic resources has increased. A growing number of countries have embarked on large scale conservation efforts by using in situ, ex situ (gene banking), or both approaches. Gene banking efforts have substantially increased and data suggest that gene banks are successfully capturing genetic diversity for research or industry use. It is also noteworthy that both industry and the research community are utilizing gene bank holdings. As pressures grow to meet consumer demands and potential changes in production systems, the linkage between selection goals and genetic conservation will increase as a mechanism to facilitate continued livestock sector development. PMID:22827378

  3. Fungal diversity of rice straw for meju fermentation.

    PubMed

    Kim, Dae-Ho; Kim, Seon-Hwa; Kwon, Soon-Wo; Lee, Jong-Kyu; Hong, Seung-Beom

    2013-12-01

    Rice straw is closely associated with meju fermentation and it is generally known that the rice straw provides meju with many kinds of microorganisms. In order to elucidate the origin of meju fungi, the fungal diversity of rice straw was examined. Rice straw was collected from 12 Jang factories where meju are produced, and were incubated under nine different conditions by altering the media (MEA, DRBC, and DG18), and temperature (15°C, 25°C, and 35°C). In total, 937 strains were isolated and identified as belonging to 39 genera and 103 species. Among these, Aspergillus, Cladosporium, Eurotium, Fusarium, and Penicillium were the dominant genera. Fusarium asiaticum (56.3%), Cladosporium cladosporioides (48.6%), Aspergillus tubingensis (37.5%), A. oryzae (31.9%), Eurotium repens (27.1%), and E. chevalieri (25.0%) were frequently isolated from the rice straw obtained from many factories. Twelve genera and 40 species of fungi that were isolated in the rice straw in this study were also isolated from meju. Specifically, A. oryzae, C. cladosporioides, E. chevalieri, E. repens, F. asiaticum, and Penicillium polonicum (11.8%), which are abundant species in meju, were also isolated frequently from rice straw. C. cladosporioides, F. asiaticum, and P. polonicum, which are abundant in the low temperature fermentation process of meju fermentation, were frequently isolated from rice straw incubated at 15°C and 25°C, whereas A. oryzae, E. repens, and E. chevalieri, which are abundant in the high temperature fermentation process of meju fermentation, were frequently isolated from rice straw incubated at 25°C and 35°C. This suggests that the mycobiota of rice straw has a large influence in the mycobiota of meju. The influence of fungi on the rice straw as feed and silage for livestock, and as plant pathogens for rice, are discussed as well. PMID:24043125

  4. Molecular and functional diversity of yeast and fungal lipases: their role in biotechnology and cellular physiology.

    PubMed

    Gupta, Rani; Kumari, Arti; Syal, Poonam; Singh, Yogesh

    2015-01-01

    Lipase catalyzes hydrolysis of fats in lipid water interphase and perform variety of biotransformation reactions under micro aqueous conditions. The major sources include microbial lipases; among these yeast and fungal lipases are of special interest because they can carry out various stereoselective reactions. These lipases are highly diverse and are categorized into three classes on the basis of oxyanion hole: GX, GGGX and Y. The detailed phylogenetic analysis showed that GX family is more diverse than GGGX and Y family. Sequence and structural comparisons revealed that lipases are conserved only in the signature sequence region. Their characteristic structural determinants viz. lid, binding pocket and oxyanion hole are hotspots for mutagenesis. Few examples are cited in this review to highlight the multidisciplinary approaches for designing novel enzyme variants with improved thermo stability and substrate specificity. In addition, we present a brief account on biotechnological applications of lipases. Lipases have also gained attention as virulence factors, therefore, we surveyed the role of lipases in yeast physiology related to colonization, adhesion, biofilm formation and pathogenesis. The new genomic era has opened numerous possibilities to genetically manipulate lipases for food, fuel and pharmaceuticals. PMID:25573113

  5. Diversity and distribution of fungal communities in the marine sediments of Kongsfjorden, Svalbard (High Arctic)

    PubMed Central

    Zhang, Tao; Fei Wang, Neng; Qin Zhang, Yu; Yu Liu, Hong; Yan Yu, Li

    2015-01-01

    This study assessed the diversity and distribution of fungal communities in eight marine sediments of Kongsfjorden (Svalbard, High Arctic) using 454 pyrosequencing with fungal-specific primers targeting the internal transcribed spacer (ITS) region of the ribosomal rRNA gene. Sedimentary fungal communities showed high diversity with 42,219 reads belonging to 113 operational taxonomic units (OTUs). Of these OTUs, 62 belonged to the Ascomycota, 26 to Basidiomycota, 2 to Chytridiomycota, 1 to Zygomycota, 1 to Glomeromycota, and 21 to unknown fungi. The major known orders included Hypocreales and Saccharomycetales. The common fungal genera were Pichia, Fusarium, Alternaria, and Malassezia. Interestingly, most fungi occurring in these Arctic sediments may originate from the terrestrial habitats and different basins in Kongsfjorden (i.e., inner basin, central basin, and outer basin) harbor different sedimentary fungal communities. These results suggest the existence of diverse fungal communities in the Arctic marine sediments, which may serve as a useful community model for further ecological and evolutionary study of fungi in the Arctic. PMID:26494429

  6. Diversity and distribution of fungal communities in the marine sediments of Kongsfjorden, Svalbard (High Arctic)

    NASA Astrophysics Data System (ADS)

    Zhang, Tao; Fei Wang, Neng; Qin Zhang, Yu; Yu Liu, Hong; Yan Yu, Li

    2015-10-01

    This study assessed the diversity and distribution of fungal communities in eight marine sediments of Kongsfjorden (Svalbard, High Arctic) using 454 pyrosequencing with fungal-specific primers targeting the internal transcribed spacer (ITS) region of the ribosomal rRNA gene. Sedimentary fungal communities showed high diversity with 42,219 reads belonging to 113 operational taxonomic units (OTUs). Of these OTUs, 62 belonged to the Ascomycota, 26 to Basidiomycota, 2 to Chytridiomycota, 1 to Zygomycota, 1 to Glomeromycota, and 21 to unknown fungi. The major known orders included Hypocreales and Saccharomycetales. The common fungal genera were Pichia, Fusarium, Alternaria, and Malassezia. Interestingly, most fungi occurring in these Arctic sediments may originate from the terrestrial habitats and different basins in Kongsfjorden (i.e., inner basin, central basin, and outer basin) harbor different sedimentary fungal communities. These results suggest the existence of diverse fungal communities in the Arctic marine sediments, which may serve as a useful community model for further ecological and evolutionary study of fungi in the Arctic.

  7. How Should Beta-Diversity Inform Biodiversity Conservation?

    PubMed

    Socolar, Jacob B; Gilroy, James J; Kunin, William E; Edwards, David P

    2016-01-01

    To design robust protected area networks, accurately measure species losses, or understand the processes that maintain species diversity, conservation science must consider the organization of biodiversity in space. Central is beta-diversity--the component of regional diversity that accumulates from compositional differences between local species assemblages. We review how beta-diversity is impacted by human activities, including farming, selective logging, urbanization, species invasions, overhunting, and climate change. Beta-diversity increases, decreases, or remains unchanged by these impacts, depending on the balance of processes that cause species composition to become more different (biotic heterogenization) or more similar (biotic homogenization) between sites. While maintaining high beta-diversity is not always a desirable conservation outcome, understanding beta-diversity is essential for protecting regional diversity and can directly assist conservation planning. PMID:26701706

  8. Yeast and Fungal Morphogenesis: Evolution of Morphologic Diversity

    PubMed Central

    Wedlich-Soldner, Roland; Li, Rong

    2008-01-01

    Cellular morphogenesis is a complex process and molecular studies in the last few decades have amassed a large amount of information that is difficult to grasp in any completeness. Fungal systems, in particular the budding and fission yeasts, have been important players in unravelling the basic structural and regulatory elements involved in a wide array of cellular processes. In this article, we address the design principles underlying the various processes of yeast and fungal morphogenesis. We attempt to explain the apparent molecular complexity from the perspective of the evolutionary theory of “facilitated variation”. Following a summary of some of the most studied morphogenetic phenomena, we discuss, using recent examples, the underlying core processes and their associated “weak” regulatory linkages that bring about variation in morphogenetic phenotypes. PMID:18299240

  9. Relationship between soil fungal diversity and temperature in the maritime Antarctic

    NASA Astrophysics Data System (ADS)

    Newsham, Kevin K.; Hopkins, David W.; Carvalhais, Lilia C.; Fretwell, Peter T.; Rushton, Steven P.; O'Donnell, Anthony G.; Dennis, Paul G.

    2016-02-01

    Soil fungi have pivotal ecological roles as decomposers, pathogens and symbionts. Alterations to their diversity arising from climate change could have substantial effects on ecosystems, particularly those undergoing rapid warming that contain few species. Here, we report a study using pyrosequencing to assess fungal diversity in 29 soils sampled from a 1,650 km climatic gradient through the maritime Antarctic, the most rapidly warming region in the Southern Hemisphere. Using a `space-for-time’ substitution approach, we show that soil fungal diversity is higher in warmer habitats, with increases of 4.7 (observed) and 11.3 (predicted) fungal taxa per degree Celsius rise in surface temperature along the transect. Among 22 predictor variables, air temperature was the strongest and most consistent predictor of diversity. We propose that the current rapid warming in the maritime Antarctic (0.34 °C per decade) will facilitate the colonization of soil by a wider diversity of fungi than at present, with data from regression models suggesting 20-27% increases in fungal species richness in the southernmost soils by 2100. Such increases in diversity, which provide a sentinel for changes at lower latitudes, are likely to have substantial effects on nutrient cycling and, ultimately, productivity in the species-poor soils of maritime Antarctica.

  10. Indoor fungal composition is geographically patterned and more diverse in temperate zones than in the tropics

    PubMed Central

    Amend, Anthony S.; Seifert, Keith A.; Samson, Robert; Bruns, Thomas D.

    2010-01-01

    Fungi are ubiquitous components of indoor human environments, where most contact between humans and microbes occurs. The majority of these organisms apparently play a neutral role, but some are detrimental to human lifestyles and health. Recent studies that used culture-independent sampling methods demonstrated a high diversity of indoor fungi distinct from that of outdoor environments. Others have shown temporal fluctuations of fungal assemblages in human environments and modest correlations with human activity, but global-scale patterns have not been examined, despite the manifest significance of biogeography in other microbial systems. Here we present a global survey of fungi from indoor environments (n = 72), using both taxonomic and phylogeny-informative molecular markers to determine whether global or local indoor factors determine indoor fungal composition. Contrary to common ecological patterns, we show that fungal diversity is significantly higher in temperate zones than in the tropics, with distance from the equator being the best predictor of phylogenetic community similarity. Fungal composition is significantly auto-correlated at the national and hemispheric spatial scales. Remarkably, building function has no significant effect on indoor fungal composition, despite stark contrasts between architecture and materials of some buildings in close proximity. Distribution of individual taxa is significantly range- and latitude-limited compared with a null model of randomized distribution. Our results suggest that factors driving fungal composition are primarily global rather than mediated by building design or function. PMID:20616017

  11. The fungal community structure of barley malts from diverse geographical regions correlates with malt quality parameters.

    PubMed

    Kaur, Mandeep; Bowman, John P; Stewart, Doug C; Evans, David E

    2015-12-23

    Malt is a preferred base for fermentations that produce beer or whisky. Barley for malt is grown under diverse environments in different geographical locations. Malt provides an ecological niche for a varied range of microorganisms with both positive and negative effects on its quality for brewing. Little information exists in the literature on the microbial community structure of Australian malt as well as broader global geographical differences in the associated fungal and bacterial communities. The aims of the present study were to compare the bacterial and fungal community structures of Australian commercial malt with its international counterparts originating from different geographical regions using terminal restriction fragment length polymorphism (TRFLP) fingerprinting and clone library analyses of ribosomal RNA genes. Further, the relationship between malt associated microbial communities and conventional malt quality parameters was also compared. Results showed that differences in fungal communities of malts from different geographical location were more pronounced than bacterial communities. TRFLP analysis discriminated high quality commercial malts with low fungal loads from malts deliberately infected with fungal inocula (Fusarium/Penicillium). Malt moisture, beta-amylase, α-amylase and limit dextrinase contents showed significant correlations with fungal community structure. This investigation concluded that fungal community structure was more important to subsequent malt quality outcomes than bacteria. PMID:26340674

  12. Fungal disease incidence along tree diversity gradients depends on latitude in European forests.

    PubMed

    Nguyen, Diem; Castagneyrol, Bastien; Bruelheide, Helge; Bussotti, Filippo; Guyot, Virginie; Jactel, Hervé; Jaroszewicz, Bogdan; Valladares, Fernando; Stenlid, Jan; Boberg, Johanna

    2016-04-01

    European forests host a diversity of tree species that are increasingly threatened by fungal pathogens, which may have cascading consequences for forest ecosystems and their functioning. Previous experimental studies suggest that foliar and root pathogen abundance and disease severity decrease with increasing tree species diversity, but evidences from natural forests are rare. Here, we tested whether foliar fungal disease incidence was negatively affected by tree species diversity in different forest types across Europe. We measured the foliar fungal disease incidence on 16 different tree species in 209 plots in six European countries, representing a forest-type gradient from the Mediterranean to boreal forests. Forest plots of single species (monoculture plots) and those with different combinations of two to five tree species (mixed species plots) were compared. Specifically, we analyzed the influence of tree species richness, functional type (conifer vs. broadleaved) and phylogenetic diversity on overall fungal disease incidence. The effect of tree species richness on disease incidence varied with latitude and functional type. Disease incidence tended to increase with tree diversity, in particular in northern latitudes. Disease incidence decreased with tree species richness in conifers, but not in broadleaved trees. However, for specific damage symptoms, no tree species richness effects were observed. Although the patterns were weak, susceptibility of forests to disease appears to depend on the forest site and tree type. PMID:27066232

  13. Leaf and Root-Associated Fungal Assemblages Do Not Follow Similar Elevational Diversity Patterns

    PubMed Central

    Coince, Aurore; Cordier, Tristan; Lengellé, Juliette; Defossez, Emmanuel; Vacher, Corinne; Robin, Cécile

    2014-01-01

    The diversity of fungi along environmental gradients has been little explored in contrast to plants and animals. Consequently, environmental factors influencing the composition of fungal assemblages are poorly understood. The aim of this study was to determine whether the diversity and composition of leaf and root-associated fungal assemblages vary with elevation and to investigate potential explanatory variables. High-throughput sequencing of the Internal Transcribed Spacer 1 region was used to explore fungal assemblages along three elevation gradients, located in French mountainous regions. Beech forest was selected as a study system to minimise the host effect. The variation in species richness and specific composition was investigated for ascomycetes and basidiomycetes assemblages with a particular focus on root-associated ectomycorrhizal fungi. The richness of fungal communities associated with leaves or roots did not significantly relate to any of the tested environmental drivers, i.e. elevation, mean temperature, precipitation or edaphic variables such as soil pH or the ratio carbon∶nitrogen. Nevertheless, the ascomycete species richness peaked at mid-temperature, illustrating a mid-domain effect model. We found that leaf and root-associated fungal assemblages did not follow similar patterns of composition with elevation. While the composition of the leaf-associated fungal assemblage correlated primarily with the mean annual temperature, the composition of root-associated fungal assemblage was explained equally by soil pH and by temperature. The ectomycorrhizal composition was also related to these variables. Our results therefore suggest that above and below-ground fungal assemblages are not controlled by the same main environmental variables. This may be due to the larger amplitude of climatic variables in the tree foliage compared to the soil environment. PMID:24971637

  14. Leaf and root-associated fungal assemblages do not follow similar elevational diversity patterns.

    PubMed

    Coince, Aurore; Cordier, Tristan; Lengellé, Juliette; Defossez, Emmanuel; Vacher, Corinne; Robin, Cécile; Buée, Marc; Marçais, Benoît

    2014-01-01

    The diversity of fungi along environmental gradients has been little explored in contrast to plants and animals. Consequently, environmental factors influencing the composition of fungal assemblages are poorly understood. The aim of this study was to determine whether the diversity and composition of leaf and root-associated fungal assemblages vary with elevation and to investigate potential explanatory variables. High-throughput sequencing of the Internal Transcribed Spacer 1 region was used to explore fungal assemblages along three elevation gradients, located in French mountainous regions. Beech forest was selected as a study system to minimise the host effect. The variation in species richness and specific composition was investigated for ascomycetes and basidiomycetes assemblages with a particular focus on root-associated ectomycorrhizal fungi. The richness of fungal communities associated with leaves or roots did not significantly relate to any of the tested environmental drivers, i.e. elevation, mean temperature, precipitation or edaphic variables such as soil pH or the ratio carbon∶nitrogen. Nevertheless, the ascomycete species richness peaked at mid-temperature, illustrating a mid-domain effect model. We found that leaf and root-associated fungal assemblages did not follow similar patterns of composition with elevation. While the composition of the leaf-associated fungal assemblage correlated primarily with the mean annual temperature, the composition of root-associated fungal assemblage was explained equally by soil pH and by temperature. The ectomycorrhizal composition was also related to these variables. Our results therefore suggest that above and below-ground fungal assemblages are not controlled by the same main environmental variables. This may be due to the larger amplitude of climatic variables in the tree foliage compared to the soil environment. PMID:24971637

  15. Unexpectedly High Beta-Diversity of Root-Associated Fungal Communities in the Bolivian Andes

    PubMed Central

    Barnes, Christopher J.; Maldonado, Carla; Frøslev, Tobias G.; Antonelli, Alexandre; Rønsted, Nina

    2016-01-01

    Bolivia is one of the most biologically diverse countries on the planet. Between the Andes and the Amazon drainage basin spans the Yungas, a vast forested region shown to be extremely species rich in macro-organisms. However, it remains unclear whether this high diversity is also reflected in microbial diversity. Here we assess the genetic, taxonomic and functional diversity of root-associated fungi surrounding Cinchona calisaya trees, a typical element of the intermediate altitudes of the Bolivian Yungas. We determine the relative effects of edaphic properties, climate, and geography in regulating fungal community assembly. We show that α-diversity for these fungal communities was similar to temperate and arid ecosystems, averaging 90.1 operational taxonomic units (OTUs) per sample, with reads predominantly assigned to the Ascomycota phylum and with a saprotrophic lifestyle. ß-diversity was calculated as the distance-decay rate, and in contrast to α-diversity, was exceptionally high with a rate of −0.407. Soil properties (pH and P) principally regulated fungal community assembly in an analogous manner to temperate environments, with pH and phosphorus explaining 7.8 and 7.2% of community variation respectively. Surprisingly, altitude does not influence community formation, and there is limited evidence that climate (precipitation and temperature) play a role. Our results suggest that sampling should be performed over a wide geographical and environmental range in order to capture the full root-associated fungal diversity in subtropical regions. This study sheds further light on the diversity and distribution of the world's “hidden biodiversity.”

  16. Methylated glycans as conserved targets of animal and fungal innate defense

    PubMed Central

    Wohlschlager, Therese; Butschi, Alex; Grassi, Paola; Sutov, Grigorij; Gauss, Robert; Hauck, Dirk; Schmieder, Stefanie S.; Knobel, Martin; Titz, Alexander; Dell, Anne; Haslam, Stuart M.; Hengartner, Michael O.; Aebi, Markus; Künzler, Markus

    2014-01-01

    Effector proteins of innate immune systems recognize specific non-self epitopes. Tectonins are a family of β-propeller lectins conserved from bacteria to mammals that have been shown to bind bacterial lipopolysaccharide (LPS). We present experimental evidence that two Tectonins of fungal and animal origin have a specificity for O-methylated glycans. We show that Tectonin 2 of the mushroom Laccaria bicolor (Lb-Tec2) agglutinates Gram-negative bacteria and exerts toxicity toward the model nematode Caenorhabditis elegans, suggesting a role in fungal defense against bacteria and nematodes. Biochemical and genetic analysis of these interactions revealed that both bacterial agglutination and nematotoxicity of Lb-Tec2 depend on the recognition of methylated glycans, namely O-methylated mannose and fucose residues, as part of bacterial LPS and nematode cell-surface glycans. In addition, a C. elegans gene, termed samt-1, coding for a candidate membrane transport protein for the presumptive donor substrate of glycan methylation, S-adenosyl-methionine, from the cytoplasm to the Golgi was identified. Intriguingly, limulus lectin L6, a structurally related antibacterial protein of the Japanese horseshoe crab Tachypleus tridentatus, showed properties identical to the mushroom lectin. These results suggest that O-methylated glycans constitute a conserved target of the fungal and animal innate immune system. The broad phylogenetic distribution of O-methylated glycans increases the spectrum of potential antagonists recognized by Tectonins, rendering this conserved protein family a universal defense armor. PMID:24879441

  17. Methylated glycans as conserved targets of animal and fungal innate defense.

    PubMed

    Wohlschlager, Therese; Butschi, Alex; Grassi, Paola; Sutov, Grigorij; Gauss, Robert; Hauck, Dirk; Schmieder, Stefanie S; Knobel, Martin; Titz, Alexander; Dell, Anne; Haslam, Stuart M; Hengartner, Michael O; Aebi, Markus; Künzler, Markus

    2014-07-01

    Effector proteins of innate immune systems recognize specific non-self epitopes. Tectonins are a family of β-propeller lectins conserved from bacteria to mammals that have been shown to bind bacterial lipopolysaccharide (LPS). We present experimental evidence that two Tectonins of fungal and animal origin have a specificity for O-methylated glycans. We show that Tectonin 2 of the mushroom Laccaria bicolor (Lb-Tec2) agglutinates Gram-negative bacteria and exerts toxicity toward the model nematode Caenorhabditis elegans, suggesting a role in fungal defense against bacteria and nematodes. Biochemical and genetic analysis of these interactions revealed that both bacterial agglutination and nematotoxicity of Lb-Tec2 depend on the recognition of methylated glycans, namely O-methylated mannose and fucose residues, as part of bacterial LPS and nematode cell-surface glycans. In addition, a C. elegans gene, termed samt-1, coding for a candidate membrane transport protein for the presumptive donor substrate of glycan methylation, S-adenosyl-methionine, from the cytoplasm to the Golgi was identified. Intriguingly, limulus lectin L6, a structurally related antibacterial protein of the Japanese horseshoe crab Tachypleus tridentatus, showed properties identical to the mushroom lectin. These results suggest that O-methylated glycans constitute a conserved target of the fungal and animal innate immune system. The broad phylogenetic distribution of O-methylated glycans increases the spectrum of potential antagonists recognized by Tectonins, rendering this conserved protein family a universal defense armor. PMID:24879441

  18. Soil fungal community and fuctional diversity assessments of agroecosystems in the Southern High Plains

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soil fungi perform a variety of ecosystem functions that are crucial to maintaining agroecosystem sustainability including aggregate stability and soil carbon storage. The purpose of this study was to compare soil fungal communities and functional diversity in integrated crop and livestock (ICL) sy...

  19. Phylogenetic and chemical diversity of fungal endophytes isolated from Silybum marianum (L) Gaertn. (milk thistle)

    PubMed Central

    Raja, Huzefa A.; Kaur, Amninder; El-Elimat, Tamam; Figueroa, Mario; Kumar, Rahul; Deep, Gagan; Agarwal, Rajesh; Faeth, Stanley H.; Cech, Nadja B.; Oberlies, Nicholas H.

    2015-01-01

    Use of the herb milk thistle (Silybum marianum) is widespread, and its chemistry has been studied for over 50 years. However, milk thistle endophytes have not been studied previously for their fungal and chemical diversity. We examined the fungal endophytes inhabiting this medicinal herb to determine: (1) species composition and phylogenetic diversity of fungal endophytes; (2) chemical diversity of secondary metabolites produced by these organisms; and (3) cytotoxicity of the pure compounds against the human prostate carcinoma (PC-3) cell line. Forty-one fungal isolates were identified from milk thistle comprising 25 operational taxonomic units based on BLAST search via GenBank using published authentic sequences from nuclear ribosomal internal transcribed spacer sequence data. Maximum likelihood analyses of partial 28S rRNA gene showed that these endophytes had phylogenetic affinities to four major classes of Ascomycota, the Dothideomycetes, Sordariomycetes, Eurotiomycetes, and Leotiomycetes. Chemical studies of solid–substrate fermentation cultures led to the isolation of four new natural products. In addition, 58 known secondary metabolites, representing diverse biosynthetic classes, were isolated and characterized using a suite of nuclear magnetic resonance and mass spectrometry techniques. Selected pure compounds were tested against the PC-3 cell line, where six compounds displayed cytotoxicity. PMID:26000195

  20. Endophytic Fungal Communities Associated with Vascular Plants in the High Arctic Zone Are Highly Diverse and Host-Plant Specific.

    PubMed

    Zhang, Tao; Yao, Yi-Feng

    2015-01-01

    This study assessed the diversity and distribution of endophytic fungal communities associated with the leaves and stems of four vascular plant species in the High Arctic using 454 pyrosequencing with fungal-specific primers targeting the ITS region. Endophytic fungal communities showed high diversity. The 76,691 sequences obtained belonged to 250 operational taxonomic units (OTUs). Of these OTUs, 190 belonged to Ascomycota, 50 to Basidiomycota, 1 to Chytridiomycota, and 9 to unknown fungi. The dominant orders were Helotiales, Pleosporales, Capnodiales, and Tremellales, whereas the common known fungal genera were Cryptococcus, Rhizosphaera, Mycopappus, Melampsora, Tetracladium, Phaeosphaeria, Mrakia, Venturia, and Leptosphaeria. Both the climate and host-related factors might shape the fungal communities associated with the four Arctic plant species in this region. These results suggested the presence of an interesting endophytic fungal community and could improve our understanding of fungal evolution and ecology in the Arctic terrestrial ecosystems. PMID:26067836

  1. Endophytic Fungal Communities Associated with Vascular Plants in the High Arctic Zone Are Highly Diverse and Host-Plant Specific

    PubMed Central

    Zhang, Tao; Yao, Yi-Feng

    2015-01-01

    This study assessed the diversity and distribution of endophytic fungal communities associated with the leaves and stems of four vascular plant species in the High Arctic using 454 pyrosequencing with fungal-specific primers targeting the ITS region. Endophytic fungal communities showed high diversity. The 76,691 sequences obtained belonged to 250 operational taxonomic units (OTUs). Of these OTUs, 190 belonged to Ascomycota, 50 to Basidiomycota, 1 to Chytridiomycota, and 9 to unknown fungi. The dominant orders were Helotiales, Pleosporales, Capnodiales, and Tremellales, whereas the common known fungal genera were Cryptococcus, Rhizosphaera, Mycopappus, Melampsora, Tetracladium, Phaeosphaeria, Mrakia, Venturia, and Leptosphaeria. Both the climate and host-related factors might shape the fungal communities associated with the four Arctic plant species in this region. These results suggested the presence of an interesting endophytic fungal community and could improve our understanding of fungal evolution and ecology in the Arctic terrestrial ecosystems. PMID:26067836

  2. Book review: Black bass diversity: Multidisciplinary science for conservation

    USGS Publications Warehouse

    Jelks, Howard

    2016-01-01

    Review info: Black bass diversity: Multidisciplinary science for conservation. Edited by Michael D. Tringali, James M. Long, Timothy W. Birdsong, and Michael S. Allen, 2015. ISBN: 978-1-934874-40-0, 685 pp.

  3. The impact of tillage practices on arbuscular mycorrhizal fungal diversity in subtropical crops.

    PubMed

    Alguacil, M M; Lumini, E; Roldán, A; Salinas-García, J R; Bonfante, P; Bianciotto, V

    2008-03-01

    Arbuscular mycorrhizal fungi (AMF) are a main component of soil microbiota in most agrosystems. As obligately mutualistic symbionts, they colonize the roots of the majority of plants, including crop plants. We used molecular techniques to investigate how different tillage systems (moldboard, shred-bedding, subsoil-bedding, and no tillage) can influence the AM fungal community colonizing maize, bean, and sorghum roots in an experimental site located in northern Tamaulipas, Mexico. Roots from 36 plants were analyzed using AM fungal-specific primers to partially amplify the small subunit (SSU) of the ribosomal DNA genes. More than 880 clones were screened for restriction fragment length polymorphism (RFLP) variation, and 173 of these were sequenced. Ten AM fungal types were identified and clustered into three AM fungal families: Gigasporaceae, Glomaceae, and Paraglomaceae. Glomus was the dominating taxon in all the samples. Four of the 10 identified types were distinct from any previously published sequences and could correspond to either known unsequenced species or unknown species. The fungal diversity was low in the four agriculture management systems, but the multidimensional scaling (MDS) analysis and log-linear-saturated model indicated that the composition of the AMF community was significantly affected by the tillage system. In conclusion, since some fungal types were treatment specific, agricultural practices could directly or indirectly influence AM biodiversity. PMID:18488613

  4. Improved coverage of fungal diversity in polluted groundwaters by semi-nested PCR.

    PubMed

    Solé, M; Chatzinotas, A; Sridhar, K R; Harms, H; Krauss, G

    2008-11-15

    Traditional methods used for studying communities of aquatic hyphomycetes are based on the detection and identification of their asexual spores under a microscope. These techniques limit detection to aquatic fungi present in sufficient quantity and capable of sporulating under laboratory conditions. Our objective was to develop a molecular approach to detect and monitor all types of fungi (i.e. strictly or facultatively aquatic) in harsh habitats (i.e. groundwater wells and heavily polluted surface water) where fungal biomass may become limited. We developed a semi-nested PCR protocol for fungal 18S ribosomal RNA genes coupled to subsequent analysis of the PCR products by Temperature Gradient Gel Electrophoresis (TGGE) to monitor the fungal community structure in aquatic habitats characterized by a pollution gradient. Our TGGE-protocol was compared with the traditional morphological approach and revealed a higher diversity in groundwaters and in some polluted surface waters. Thus, PCR-TGGE is a promising alternative in particular in habitats with low fungal biomass. The dynamics of fungal biomass and sporulation rates during the first weeks of leaf colonization showed that habitats with adverse ecological conditions allow only reduced fungal growth, which might subsequently impact upper trophic levels and thus interfere with key ecological processes of leaf decomposition. PMID:18715627

  5. Fungal Diversity Is Not Determined by Mineral and Chemical Differences in Serpentine Substrates

    PubMed Central

    Daghino, Stefania; Murat, Claude; Sizzano, Elisa; Girlanda, Mariangela; Perotto, Silvia

    2012-01-01

    The physico-chemical properties of serpentine soils lead to strong selection of plant species. Whereas many studies have described the serpentine flora, little information is available on the fungal communities dwelling in these sites. Asbestos minerals, often associated with serpentine rocks, can be weathered by serpentine-isolated fungi, suggesting an adaptation to this substrate. In this study, we have investigated whether serpentine substrates characterized by the presence of rocks with distinct mineral composition could select for different fungal communities. Both fungal isolation and 454 pyrosequencing of amplicons obtained from serpentine samples following direct DNA extraction revealed some fungal taxa shared by the four ophiolitic substrates, but also highlighted several substrate-specific taxa. Bootstrap analysis of 454 OTU abundances indicated weak clustering of fungal assemblages from the different substrates, which did not match substrate classification based on exchangeable macronutrients and metals. Intra-substrate variability, as assessed by DGGE profiles, was similar across the four serpentine substrates, and comparable to inter-substrate variability. These findings indicate the absence of a correlation between the substrate (mineral composition and available cations) and the diversity of the fungal community. Comparison of culture-based and culture-independent methods supports the higher taxonomic precision of the former, as complementation of the better performance of the latter. PMID:23028507

  6. Fungal diversity from deep marine subsurface sediments (IODP 317, Canterbury Basin, New Zealand)

    NASA Astrophysics Data System (ADS)

    Redou, V.; Arzur, D.; Burgaud, G.; Barbier, G.

    2012-12-01

    Recent years have seen a growing interest regarding micro-eukaryotic communities in extreme environments as a third microbial domain after Bacteria and Archaea. However, knowledge is still scarce and the diversity of micro-eukaryotes in such environments remains hidden and their ecological role unknown. Our research program is based on the deep sedimentary layers of the Canterbury Basin in New Zealand (IODP 317) from the subsurface to the record depth of 1884 meters below seafloor. The objectives of our study are (i) to assess the genetic diversity of fungi in deep-sea sediments and (ii) identify the functional part in order to better understand the origin and the ecological role of fungal communities in this extreme ecosystem. Fingerprinting-based methods using capillary electrophoresis single-strand conformation polymorphism and denaturing high-performance liquid chromatography were used as a first step to raise our objectives. Molecular fungal diversity was assessed using amplification of ITS1 (Internal Transcribed Spacer 1) as a biomarker on 11 samples sediments from 3.76 to 1884 meters below seafloor. Fungal molecular signatures were detected throughout the sediment core. The phyla Ascomycota and Basidiomycota were revealed with DNA as well as cDNA. Most of the phylotypes are affiliated to environmental sequences and some to common fungal cultured species. The discovery of a present and metabolically active fungal component in this unique ecosystem allows some interesting first hypotheses that will be further combined to culture-based methods and deeper molecular methods (454 pyrosequencing) to highlight essential informations regarding physiology and ecological role of fungal communities in deep marine sediments.

  7. Biogeography in the Air: Fungal Diversity over Land and Oceans

    EPA Science Inventory

    Biogenic aerosols are relevant for the Earth system, climate, and public health on local, regional, and global scales. Up to now, however, little is known about the diversity and biogeography of airborne microorganisms. We present the first DNA-based analysis of airborne fungi on...

  8. Low multifunctional redundancy of soil fungal diversity at multiple scales.

    PubMed

    Mori, Akira S; Isbell, Forest; Fujii, Saori; Makoto, Kobayashi; Matsuoka, Shunsuke; Osono, Takashi

    2016-03-01

    Theory suggests that biodiversity might help sustain multiple ecosystem functions. To evaluate possible biodiversity-multifunctionality relationships in a natural setting, we considered different spatial scales of diversity metrics for soil fungi in the northern forests of Japan. We found that multifunctionality increased with increasing local species richness, suggesting a limited degree of multifunctional redundancy. This diversity-multifunctionality relationship was independent of the compositional uniqueness of each community. However, we still found the importance of community composition, because there was a positive correlation between community dissimilarity and multifunctional dissimilarity across the landscape. This result suggests that functional redundancy can further decrease when spatial variations in identities of both species and functions are simultaneously considered at larger spatial scales. We speculate that different scales of diversity could provide multiple levels of insurance against the loss of functioning if high-levels of local species diversity and compositional variation across locations are both maintained. Alternatively, making species assemblages depauperate may result in the loss of multifunctionality. PMID:26689733

  9. Investigation of bacterial and fungal diversity in tarag using high-throughput sequencing.

    PubMed

    Sun, Zhihong; Liu, Wenjun; Bao, Qiuhua; Zhang, Jiachao; Hou, Qiangchuan; Kwok, Laiyu; Sun, Tiansong; Zhang, Heping

    2014-10-01

    This is the first study on the bacterial and fungal community diversity in 17 tarag samples (naturally fermented dairy products) through a metagenomic approach involving high-throughput pyrosequencing. Our results revealed the presence of a total of 47 bacterial and 43 fungal genera in all tarag samples, in which Lactobacillus and Galactomyces were the predominant genera of bacteria and fungi, respectively. The number of some microbial genera, such as Lactococcus, Acetobacter, Saccharomyces, Trichosporon, and Kluyveromyces, among others, was found to vary between different samples. Altogether, our results showed that the microbial flora in different samples may be stratified by geographic region. PMID:25129502

  10. FUNGAL BIOGEOGRAPHY. Comment on "Global diversity and geography of soil fungi".

    PubMed

    Schadt, Christopher W; Rosling, Anna

    2015-06-26

    Tedersoo et al. (Research Article, 28 November 2014, p. 1078) present a compelling study regarding patterns of biodiversity of fungi, carried out at a scale unprecedented to date for fungal biogeographical studies. The study demonstrates strong global biogeographic patterns in richness and community composition of soil fungi. What concerns us with the study is what we do not see. Unfortunately, this study underestimates the fungal diversity of one key group of soil fungi due to reliance on a single primer with known flaws. PMID:26113712

  11. Soil DNA pyrosequencing and fruitbody surveys reveal contrasting diversity for various fungal ecological guilds in chestnut orchards.

    PubMed

    Baptista, Paula; Reis, Francisca; Pereira, Eric; Tavares, Rui M; Santos, Pedro M; Richard, Franck; Selosse, Marc-André; Lino-Neto, Teresa

    2015-12-01

    Fungal diversity in Mediterranean forest soils is poorly documented, particularly when considering saprobic and pathogenic organisms. Next-generation sequencing (NGS) methods applied to soil fungi provide the opportunity to unveil the most inconspicuous functional guilds (e.g. saprobes) and life forms (e.g. Corticiaceae) of this tremendous diversity. We used fruitbody surveys over 2 years and soil 454 metabarcoding in Castanea sativa orchards to evaluate respectively the reproductive (fruitbodies) and vegetative (mycelia) parts of fungal communities in three 100-year-old stands. Analysis of 839 fruitbodies and 210 291 ITS1 reads revealed high fungal diversity, mainly shown by belowground analysis, with high (dominant) abundance of mycorrhizal fruitbodies and reads. Both methods displayed contrasted composition and structure of fungal communities, with Basidio- and Ascomycetes dominating above- and belowground, respectively. For the two dominant fungal guilds (i.e. ectomycorrhizal and saprobic), diversity above- and belowground overlapped weakly. This study is the first assessment of the complementarity of fruitbody surveys and NGS for analysing fungal diversity in Mediterranean ecosystems and shows that belowground methods still need to be completed by fruiting diversity to provide a comprehensive overview of the different fungal guilds. The results shed light on chestnut soil biodiversity and question the spatial distribution and synergies among fungal guilds. PMID:26391727

  12. Daldionin, an Unprecedented Binaphthyl Derivative, and Diverse Polyketide Congeners from a Fungal Orchid Endophyte.

    PubMed

    Barnes, Emma C; Jumpathong, Juangjun; Lumyong, Saisamorn; Voigt, Kerstin; Hertweck, Christian

    2016-03-18

    Thailand possesses a rich diversity of orchid species that, in turn, live in symbiosis with a wide variety of fungi. Such endophytes have the potential to produce secondary metabolites with bioactivity against orchid and/or human pathogens. The orchid-associated fungal strain Daldinia eschscholtzii was found to produce a diverse range of aromatic polyketides including the new naphthalene derivatives daldionin, nodulones B and C, and daldinones F and G along with eight known compounds. Daldionin possesses an unprecedented oxane-linked binaphthyl ring system. These compounds demonstrate the high diversity of structural variations that are constructed during fungal biosynthesis, and the results include important observations concerning the biosynthesis of binaphthyl derivatives. Daldionin was found to have weak antiproliferative activity against HUVEC and K-562 cell lines. All but one of the isolated compounds showed moderate antimicrobial activity towards at least one of the four tested microbial strains. PMID:26880363

  13. Behavioral indicators for conserving mammal diversity.

    PubMed

    Morris, Douglas W; Kotler, Burt P; Brown, Joel S; Sundararaj, Vijayan; Ale, Som B

    2009-04-01

    Mammals are threatened with population decline and extinction. Numerous species require immediate conservation intervention. But our ability to identify species on the brink of decline, and to intervene successfully, depends on developing reliable leading indicators of population, community, and environmental change. Classic approaches, such as population and life history assessment, as well as indicator species, trail environmental change. Adaptive behaviors honed by natural selection to respond quickly to environmental changes represent true leading indicators that we can learn to apply to conservation and management. Excellent examples of useful behaviors for conservation include foraging behavior, patch use, and habitat selection. Comparisons among giving-up densities collected in artificial resource patches can effectively indicate the forager's predation costs, its habitat quality, mechanisms of coexistence, and environmental richness. Patterns of adaptive habitat use can similarly reveal the relative value of different types of habitat, the location, and amounts of source versus sink habitat in a landscape, the effects of human disturbance, and projections on future extinction risk. Each behavior is likely to change more quickly than population size. As useful as these and related indicators may be to managers and conservationists, similar behaviors can emerge from different causes, and immediate returns of behavior to fitness may cause rapid evolution of associated morphological and physiological traits. Conservation strategies will thereby often be most effective if they build on research programs targeting the processes influencing adaptive behaviors and that assess whether wild-type or novel behaviors are most likely to sustain populations into the future. PMID:19432655

  14. Severe plant invasions can increase mycorrhizal fungal abundance and diversity

    PubMed Central

    Lekberg, Ylva; Gibbons, Sean M; Rosendahl, Søren; Ramsey, Philip W

    2013-01-01

    Invasions by non-native plants can alter ecosystem functions and reduce native plant diversity, but relatively little is known about their effect on belowground microbial communities. We show that invasions by knapweed (Centaurea stoebe) and leafy spurge (Euphorbia esula, hereafter spurge)—but not cheatgrass (Bromus tectorum)—support a higher abundance and diversity of symbiotic arbuscular mycorrhizal fungi (AMF) than multi-species native plant communities. The higher AMF richness associated with knapweed and spurge is unlikely due to a co-invasion by AMF, because a separate sampling showed that individual native forbs hosted a similar AMF abundance and richness as exotic forbs. Native grasses associated with fewer AMF taxa, which could explain the reduced AMF richness in native, grass-dominated communities. The three invasive plant species harbored distinct AMF communities, and analyses of co-occurring native and invasive plants indicate that differences were partly driven by the invasive plants and were not the result of pre-invasion conditions. Our results suggest that invasions by mycotrophic plants that replace poorer hosts can increase AMF abundance and richness. The high AMF richness in monodominant plant invasions also indicates that the proposed positive relationship between above and belowground diversity is not always strong. Finally, the disparate responses among exotic plants and consistent results between grasses and forbs suggest that AMF respond more to plant functional group than plant provenance. PMID:23486251

  15. Tree diversity and the role of non-host neighbour tree species in reducing fungal pathogen infestation

    PubMed Central

    Hantsch, Lydia; Bien, Steffen; Radatz, Stine; Braun, Uwe; Auge, Harald; Bruelheide, Helge

    2014-01-01

    The degree to which plant pathogen infestation occurs in a host plant is expected to be strongly influenced by the level of species diversity among neighbouring host and non-host plant species. Since pathogen infestation can negatively affect host plant performance, it can mediate the effects of local biodiversity on ecosystem functioning. We tested the effects of tree diversity and the proportion of neighbouring host and non-host species with respect to the foliar fungal pathogens of Tilia cordata and Quercus petraea in the Kreinitz tree diversity experiment in Germany. We hypothesized that fungal pathogen richness increases while infestation decreases with increasing local tree diversity. In addition, we tested whether fungal pathogen richness and infestation are dependent on the proportion of host plant species present or on the proportion of particular non-host neighbouring tree species. Leaves of the two target species were sampled across three consecutive years with visible foliar fungal pathogens on the leaf surface being identified macro- and microscopically. Effects of diversity among neighbouring trees were analysed: (i) for total fungal species richness and fungal infestation on host trees and (ii) for infestation by individual fungal species. We detected four and five fungal species on T. cordata and Q. petraea, respectively. High local tree diversity reduced (i) total fungal species richness and infestation of T. cordata and fungal infestation of Q. petraea and (ii) infestation by three host-specialized fungal pathogen species. These effects were brought about by local tree diversity and were independent of host species proportion. In general, host species proportion had almost no effect on fungal species richness and infestation. Strong effects associated with the proportion of particular non-host neighbouring tree species on fungal species richness and infestation were, however, recorded. Synthesis. For the first time, we experimentally

  16. Effects of species diversity on establishment and coexistence: a phylloplane fungal community model system.

    PubMed

    Stohr, S N; Dighton, J

    2004-10-01

    A model system was devised, evaluating the influence that species diversity (species richness) has on fungal establishment and coexistence. Seven members of the fungal phylloplane community of Vaccinium macrocarpon (American cranberry) were selected to assess how species diversity affected development and coexistence of another community member, Pestalotia vaccinii. Pestalotia was engaged in competitive interactions on 1% Malt Extract Agar (MEA) petri dishes with each of the seven individual saprotrophs (two-way interaction), in random combinations with three of the seven saprotrophs (four-way interaction), and in random combinations with five of the seven saprotrophs (six-way interaction). The saprotrophic fungi used in this study were Aspergillus sp., Alternaria alternata, Cladosporium cladosporoides, Curvularia lunata, Epicoccum purpuracens, Penicillium sp., and Pithomyces chartarum. We hypothesized that species diversity would have a significant impact on the establishment and coexistence of Pestalotia vaccinii in culture. In an effort to minimize density-dependent effects, the number of viable spores employed in the three types of interactions was kept constant. Target spore concentrations of 50 viable spores of P. vaccinii and 50 saprotroph spores were used, regardless of the number of species involved in the interaction. This proved to be a very important factor in the experiment. As our results show, species diversity had little or no effect on the establishment and coexistence of Pestalotia vaccinii; however, spore density played an extremely important role in the establishment and development of fungal propagules in our model. PMID:15692863

  17. Biological diversity conservation: A public policy perspective

    NASA Astrophysics Data System (ADS)

    Pipkin, James

    1996-11-01

    While extinctions of individual species are part of a normal cycle, the current rate of extinctions should be a concern to us all. The maintenance of biological diversity is important for utilitarian reasons, quality of life considerations, and because biodiversity is important to sustainable regional economies. Single-species approaches are too limited to protect biodiversity at the landscape, habitat, and watershed levels. New approaches are necessary to deal with the complexity of biological diversity. The administration is using provisions in the Endangered Species Act to bring about broader multispecies habitat protection. The ecosystem approach provides a framework for ensuring that ecological considerations are taken into account, along with economic and social factors, and that all interested parties are able to participate in the decision-making process.

  18. Comparison of DNA extraction methodologies used for assessing fungal diversity via ITS sequencing

    PubMed Central

    Rittenour, William R.; Park, Ju-Hyeong; Cox-Ganser, Jean M.; Beezhold, Donald H.; Green, Brett J.

    2015-01-01

    Traditional methods of assessing fungal exposure have been confounded by a number of limiting variables. The recent utilization of molecular methods such as internal transcribed spacer (ITS) sequencing of ribosomal RNA genes has provided improved insight into the diversity of fungal bioaerosols in indoor, outdoor and occupational environments. However, ITS analyses may also be confounded by a number of methodological limitations. In this study, we have optimized this technology for use in occupational or environmental studies. Three commonly used DNA extraction methodologies (UltraClean Soil kit, High Pure PCR Template kit, and EluQuik/DNeasy kit) were compared in terms of sensitivity and susceptibility to PCR inhibitors in dust for three common fungal bioaerosols, Aspergillus versicolor, Rhizopus microsporus and Wallemia sebi. Environmental dust samples were then studied using each extraction methodology and results were compared to viable culture data. The extraction methods differed in terms of their ability to efficiently extract DNA from particular species of fungi (e.g. Aspergillus versicolor). In addition, the ability to remove PCR inhibitors from dust samples was most effective using the soil DNA extraction kit. The species composition varied greatly between ITS clone libraries generated with the different DNA extraction kits. However, compared to viable culture data, ITS clone libraries included additional fungal species that are incapable of growth on solid culture medium. Collectively, our data indicated that DNA extraction methodologies used in ITS sequencing studies of occupational or environmental dust samples can greatly influence the fungal species that are detected. PMID:22230933

  19. Host associations and beta diversity of fungal endophyte communities in New Guinea rainforest trees.

    PubMed

    Vincent, J B; Weiblen, G D; May, G

    2016-02-01

    Processes shaping the distribution of foliar fungal endophyte species remain poorly understood. Despite increasing evidence that these cryptic fungal symbionts of plants mediate interactions with pathogens and herbivores, there remain basic questions regarding the extent to which dispersal limitation and host specificity might shape fungal endophyte community composition in rainforests. To assess the relative importance of spatial pattern and host specificity, we isolated fungi from a sample of mapped trees in lowland Papua New Guinea. Sequences of the internal transcribed spacer (ITS) region were obtained for 2079 fungal endophytes from three sites and clustered into molecular operational taxonomic units (MOTUs) at 95% similarity. Multivariate analyses suggest that host affinity plays a significant role in structuring endophyte community composition whereas there was no evidence of endophyte spatial pattern at the scale of tens to hundreds of metres. Differences in endophyte communities between sampled trees were weakly correlated with variation in foliar traits but not with tree species relatedness. The dominance of relatively few generalist endophytes and the presence of a large number of rare MOTUs was a consistent observation at three sites separated by hundreds of kilometres and regional turnover was low. Host specificity appears to play a relatively weak but more important role than dispersal limitation in shaping the distribution of fungal endophyte communities in New Guinea forests. Our results suggest that in the absence of strong ecological gradients and host turnover, beta diversity of endophyte communities could be low in large areas of contiguous forest. PMID:26661903

  20. Distribution and diversity of fungal species in and adjacent to the Los Alamos National Laboratory

    SciTech Connect

    Balice, R.G.; Jarmie, N.; Rogers, F.J.

    1997-12-01

    Fungi have demonstrated their ability to diversify and specialize to take advantage of new environments (Murphy 1996). These species are essential to the normal functioning of ecosystems and the impacts of human activities may be harmful to fungi. There is a need to inventory fungi throughout the range of their environments. Previously archived information representing 43 sample locations was used to perform a preliminary evaluation of the distributions and diversity of fungal species at the Los Alamos National Laboratory and in adjacent environments. Presence-absence data for 71 species of fungi in five habitats, pinon-juniper, canyon-bottom ponderosa pine, ponderosa pine, canyon-bottom mixed conifer, and mixed conifer were analyzed. The results indicate that even though fungi occur in each of the habitats, fungal species are not distributed evenly among these habitats. The richness of fungal species is greater in the canyon-bottom mixed conifer and mixed conifer habitats than in the pinon-juniper, canyon-bottom ponderosa pine or ponderosa pine habitats. All but three of the fungal species were recorded in either the canyon-bottom mixed conifer or the mixed conifer habitats, and all but seven of the fungal species were found in the mixed conifer habitat.

  1. Diversity and bioprospection of fungal community present in oligotrophic soil of continental Antarctica.

    PubMed

    Godinho, Valéria M; Gonçalves, Vívian N; Santiago, Iara F; Figueredo, Hebert M; Vitoreli, Gislaine A; Schaefer, Carlos E G R; Barbosa, Emerson C; Oliveira, Jaquelline G; Alves, Tânia M A; Zani, Carlos L; Junior, Policarpo A S; Murta, Silvane M F; Romanha, Alvaro J; Kroon, Erna Geessien; Cantrell, Charles L; Wedge, David E; Duke, Stephen O; Ali, Abbas; Rosa, Carlos A; Rosa, Luiz H

    2015-05-01

    We surveyed the diversity and capability of producing bioactive compounds from a cultivable fungal community isolated from oligotrophic soil of continental Antarctica. A total of 115 fungal isolates were obtained and identified in 11 taxa of Aspergillus, Debaryomyces, Cladosporium, Pseudogymnoascus, Penicillium and Hypocreales. The fungal community showed low diversity and richness, and high dominance indices. The extracts of Aspergillus sydowii, Penicillium allii-sativi, Penicillium brevicompactum, Penicillium chrysogenum and Penicillium rubens possess antiviral, antibacterial, antifungal, antitumoral, herbicidal and antiprotozoal activities. Bioactive extracts were examined using (1)H NMR spectroscopy and detected the presence of secondary metabolites with chemical shifts. Our results show that the fungi present in cold-oligotrophic soil from Antarctica included few dominant species, which may have important implications for understanding eukaryotic survival in cold-arid oligotrophic soils. We hypothesize that detailed further investigations may provide a greater understanding of the evolution of Antarctic fungi and their relationships with other organisms described in that region. Additionally, different wild pristine bioactive fungal isolates found in continental Antarctic soil may represent a unique source to discover prototype molecules for use in drug and biopesticide discovery studies. PMID:25809294

  2. Phylogenetic diversity of fungal communities in areas accessible and not accessible to tourists in Naracoorte Caves.

    PubMed

    Adetutu, Eric M; Thorpe, Krystal; Bourne, Steven; Cao, Xiangsheng; Shahsavari, Esmaeil; Kirby, Greg; Ball, Andrew S

    2011-01-01

    The fungal diversity in areas accessible and not accessible to tourists at UNESCO World Heritage-listed Naracoorte Caves was investigated with culture-dependent and culture-independent techniques for assistance in cave management protocol development. The caves were selected based on tourist numbers and configurations: Stick Tomato (open, high numbers), Alexandra (lockable openings, high numbers) and Strawhaven (control; no access). Culture-based survey revealed Ascomycota dominance irrespective of sampling area with Microascales (Trichurus sp.) being most frequently isolated. Some Hypocreales-like sequences belonging to Fusarium sp., Trichoderma sp. and Neonectria sp. (Stick Tomato) were cultured only from areas not accessible to tourists. These orders also were detected by DGGE assay irrespective of sampling area. The predominance of Ascomycota (especially Microascales) suggested their important ecological roles in these caves. Culture-independent analysis showed higher Shannon fungal diversity values (from ITS-based DGGE profiles) in tourist-accessible areas of these caves than in inaccessible areas with the fungal community banding patterns being substantially different in Stick Tomato Cave. Further investigations are needed to determine the cause of the differences in the fungal communities of Stick Tomato Cave, although cave-related factors such as use, configuration and sediment heterogeneity might have contributed to these differences. PMID:21642344

  3. Fungal diversity from various marine habitats deduced through culture-independent studies.

    PubMed

    Manohar, Cathrine Sumathi; Raghukumar, Chandralata

    2013-04-01

    Studies on the molecular diversity of the micro-eukaryotic community have shown that fungi occupy a central position in a large number of marine habitats. Environmental surveys using molecular tools have shown the presence of fungi from a large number of marine habitats such as deep-sea habitats, pelagic waters, coastal regions, hydrothermal vent ecosystem, anoxic habitats, and ice-cold regions. This is of interest to a variety of research disciplines like ecology, evolution, biogeochemistry, and biotechnology. In this review, we have summarized how molecular tools have helped to broaden our understanding of the fungal diversity in various marine habitats. Majority of the environmental phylotypes could be grouped as novel clades within Ascomycota, Basidiomycota, and Chytridiomycota or as basal fungal lineages. Deep-branching novel environmental clusters could be grouped within Ascomycota as the Pezizomycotina clone group, deep-sea fungal group-I, and soil clone group-I, within Basidiomycota as the hydrothermal and/or anaerobic fungal group, and within Chytridiomycota as Cryptomycota or the Rozella clade. However, a basal true marine environmental cluster is still to be identified as most of the clusters include representatives from terrestrial regions. The challenge for future research is to explore the true marine fungi using molecular techniques. PMID:23363246

  4. Novel and highly diverse fungal endophytes in soybean revealed by the consortium of two different techniques.

    PubMed

    de Souza Leite, Tiago; Cnossen-Fassoni, Andréia; Pereira, Olinto Liparini; Mizubuti, Eduardo Seiti Gomide; de Araújo, Elza Fernandes; de Queiroz, Marisa Vieira

    2013-02-01

    Fungal endophytes were isolated from the leaves of soybean cultivars in Brazil using two different isolation techniques - fragment plating and the innovative dilution-to-extinction culturing - to increase the species richness, frequency of isolates and diversity. A total of 241 morphospecies were obtained corresponding to 62 taxa that were identified by analysis of the internal transcribed spacer (ITS) of the ribosomal DNA (rDNA). The Phylum Ascomycota predominated, representing 99% and 95.2% of isolates in the Monsoy and Conquista cultivars, respectively, whereas the Phylum Basidiomycota represented 1% and 4.8% of isolates, respectively. The genera Ampelomyces, Annulohypoxylon, Guignardia, Leptospora, Magnaporthe, Ophiognomonia, Paraconiothyrium, Phaeosphaeriopsis, Rhodotorula, Sporobolomyces, and Xylaria for the first time were isolated from soybean; this suggests that soybean harbours novel and highly diverse fungi. The yeasts genera Rhodotorula and Sporobolomyces (subphylum Pucciniomycotina) represent the Phylum Basidiomycota. The species richness was greater when both isolation techniques were used. The diversity of fungal endophytes was similar in both cultivars when the same isolation technique was used except for Hill's index, N1. The use of ITS region sequences allowed the isolates to be grouped according to Order, Class and Phylum. Ampelomyces, Chaetomium, and Phoma glomerata are endophytic species that may play potential roles in the biological control of soybean pathogens. This study is one of the first to apply extinction-culturing to isolate fungal endophytes in plant leaves, thus contributing to the development and improvement of this technique for future studies. PMID:23456713

  5. Diversity of fungal endophytes in non-native Phragmites australis in the Great Lakes

    USGS Publications Warehouse

    Clay, Keith; Shearin, Zachery; Bourke, Kimberly; Bickford, Wesley A.; Kowalski, Kurt P.

    2016-01-01

    Plant–microbial interactions may play a key role in plant invasions. One common microbial interaction takes place between plants and fungal endophytes when fungi asymptomatically colonize host plant tissues. The objectives of this study were to isolate and sequence fungal endophytes colonizing non-native Phragmites australis in the Great Lakes region to evaluate variation in endophyte community composition among three host tissue types and three geographical regions. We collected entire ramets from multiple clones and populations, surface sterilized plant tissues, and plated replicate tissue samples from leaves, stems, and rhizomes on corn meal agar plates to culture and isolate fungal endophytes. Isolates were then subjected to Sanger sequencing of the ITS region of the nuclear ribosomal DNA. Sequences were compared to fungal databases to define operational taxonomic units (OTUs) that were analyzed statistically for community composition. In total, we obtained 173 endophyte isolates corresponding to 55 OTUs, 39 of which were isolated only a single time. The most common OTU corresponded most closely to Sarocladium strictum and comprised 25 % of all fungal isolates. More OTUs were found in stem tissues, but endophyte diversity was greatest in rhizome tissues. PERMANOVA analyses indicated significant differences in endophyte communities among tissue types, geographical regions, and the interaction between those factors, but no differences among individual ramets were detected. The functional role of the isolated endophytes is not yet known, but one genus isolated here (Stagonospora) has been reported to enhance Phragmites growth. Understanding the diversity and functions of Phragmites endophytes may provide targets for control measures based on disrupting host plant/endophyte interactions.

  6. Soil fungal pathogens and the relationship between plant diversity and productivity.

    PubMed

    Maron, John L; Marler, Marilyn; Klironomos, John N; Cleveland, Cory C

    2011-01-01

    One robust result from many small-scale experiments has been that plant community productivity often increases with increasing plant diversity. Most frequently, resource-based or competitive interactions are thought to drive this positive diversity-productivity relationship. Here, we ask whether suppression of plant productivity by soil fungal pathogens might also drive a positive diversity-productivity relationship. We created plant assemblages that varied in diversity and crossed this with a ± soil fungicide treatment. In control (non-fungicide treated) assemblages there was a strong positive relationship between plant diversity and above-ground plant biomass. However, in fungicide-treated assemblages this relationship disappeared. This occurred because fungicide increased plant production by an average of 141% at the lower ends of diversity but boosted production by an average of only 33% at the higher ends of diversity, essentially flattening the diversity-productivity curve. These results suggest that soil pathogens might be a heretofore unappreciated driver of diversity-productivity relationships. PMID:21073641

  7. Metagenomic Analysis of Fungal Diversity on Strawberry Plants and the Effect of Management Practices on the Fungal Community Structure of Aerial Organs

    PubMed Central

    Abdelfattah, Ahmed; Wisniewski, Michael; Li Destri Nicosia, Maria Giulia; Cacciola, Santa Olga

    2016-01-01

    An amplicon metagenomic approach based on the ITS2 region of fungal rDNA was used to identify the composition of fungal communities associated with different strawberry organs (leaves, flowers, immature and mature fruits), grown on a farm using management practices that entailed the routine use of various chemical pesticides. ITS2 sequences clustered into 316 OTUs and Ascomycota was the dominant phyla (95.6%) followed by Basidiomycota (3.9%). Strawberry plants supported a high diversity of microbial organisms, but two genera, Botrytis and Cladosporium, were the most abundant, representing 70–99% of the relative abundance (RA) of all detected sequences. According to alpha and beta diversity analyses, strawberry organs displayed significantly different fungal communities with leaves having the most diverse fungal community, followed by flowers, and fruit. The interruption of chemical treatments for one month resulted in a significant modification in the structure of the fungal community of leaves and flowers while immature and mature fruit were not significantly affected. Several plant pathogens of other plant species, that would not be intuitively expected to be present on strawberry plants such as Erysiphe, were detected, while some common strawberry pathogens, such as Rhizoctonia, were less evident or absent. PMID:27490110

  8. Metagenomic Analysis of Fungal Diversity on Strawberry Plants and the Effect of Management Practices on the Fungal Community Structure of Aerial Organs.

    PubMed

    Abdelfattah, Ahmed; Wisniewski, Michael; Li Destri Nicosia, Maria Giulia; Cacciola, Santa Olga; Schena, Leonardo

    2016-01-01

    An amplicon metagenomic approach based on the ITS2 region of fungal rDNA was used to identify the composition of fungal communities associated with different strawberry organs (leaves, flowers, immature and mature fruits), grown on a farm using management practices that entailed the routine use of various chemical pesticides. ITS2 sequences clustered into 316 OTUs and Ascomycota was the dominant phyla (95.6%) followed by Basidiomycota (3.9%). Strawberry plants supported a high diversity of microbial organisms, but two genera, Botrytis and Cladosporium, were the most abundant, representing 70-99% of the relative abundance (RA) of all detected sequences. According to alpha and beta diversity analyses, strawberry organs displayed significantly different fungal communities with leaves having the most diverse fungal community, followed by flowers, and fruit. The interruption of chemical treatments for one month resulted in a significant modification in the structure of the fungal community of leaves and flowers while immature and mature fruit were not significantly affected. Several plant pathogens of other plant species, that would not be intuitively expected to be present on strawberry plants such as Erysiphe, were detected, while some common strawberry pathogens, such as Rhizoctonia, were less evident or absent. PMID:27490110

  9. Diversity of Marine-Derived Fungal Cultures Exposed by DNA Barcodes: The Algorithm Matters

    PubMed Central

    Andreakis, Nikos; Høj, Lone; Kearns, Philip; Hall, Michael R.; Ericson, Gavin; Cobb, Rose E.; Gordon, Benjamin R.; Evans-Illidge, Elizabeth

    2015-01-01

    Marine fungi are an understudied group of eukaryotic microorganisms characterized by unresolved genealogies and unstable classification. Whereas DNA barcoding via the nuclear ribosomal internal transcribed spacer (ITS) provides a robust and rapid tool for fungal species delineation, accurate classification of fungi is often arduous given the large number of partial or unknown barcodes and misidentified isolates deposited in public databases. This situation is perpetuated by a paucity of cultivable fungal strains available for phylogenetic research linked to these data sets. We analyze ITS barcodes produced from a subsample (290) of 1781 cultured isolates of marine-derived fungi in the Bioresources Library located at the Australian Institute of Marine Science (AIMS). Our analysis revealed high levels of under-explored fungal diversity. The majority of isolates were ascomycetes including representatives of the subclasses Eurotiomycetidae, Hypocreomycetidae, Sordariomycetidae, Pleosporomycetidae, Dothideomycetidae, Xylariomycetidae and Saccharomycetidae. The phylum Basidiomycota was represented by isolates affiliated with the genera Tritirachium and Tilletiopsis. BLAST searches revealed 26 unknown OTUs and 50 isolates corresponding to previously uncultured, unidentified fungal clones. This study makes a significant addition to the availability of barcoded, culturable marine-derived fungi for detailed future genomic and physiological studies. We also demonstrate the influence of commonly used alignment algorithms and genetic distance measures on the accuracy and comparability of estimating Operational Taxonomic Units (OTUs) by the automatic barcode gap finder (ABGD) method. Large scale biodiversity screening programs that combine datasets using algorithmic OTU delineation pipelines need to ensure compatible algorithms have been used because the algorithm matters. PMID:26308620

  10. Only a Few Fungal Species Dominate Highly Diverse Mycofloras Associated with the Common Reed

    PubMed Central

    Neubert, Karin; Mendgen, Kurt; Brinkmann, Henner; Wirsel, Stefan G. R.

    2006-01-01

    Plants are naturally colonized by many fungal species that produce effects ranging from beneficial to pathogenic. However, how many of these fungi are linked with a single host plant has not been determined. Furthermore, the composition of plant-associated fungal communities has not been rigorously determined. We investigated these essential issues by employing the perennial wetland reed Phragmites australis as a model. DNA extracted from roots, rhizomes, stems, and leaves was used for amplification and cloning of internal transcribed spacer rRNA gene fragments originating from reed-associated fungi. A total of 1,991 clones from 15 clone libraries were differentiated by restriction fragment length polymorphism analyses into 345 operational taxonomical units (OTUs). Nonparametric estimators for total richness (Chao1 and ACE) and also a parametric log normal model predicted a total of about 750 OTUs if the libraries were infinite. Sixty-two percent of the OTUs sequenced were novel at a threshold of 3%. Several of these OTUs represented undocumented fungal species, which also included higher taxonomic levels. In spite of the high diversity of the OTUs, the mycofloras of vegetative organs were dominated by just a few typical fungi, which suggested that competition and niche differentiation influence the composition of plant-associated fungal communities. This suggestion was independently supported by the results of nested PCR assays specifically monitoring two OTUs over 3 years, which revealed significant preferences for host habitat and host organ. PMID:16461657

  11. The Diversity of Anti-Microbial Secondary Metabolites Produced by Fungal Endophytes: An Interdisciplinary Perspective

    PubMed Central

    Mousa, Walaa Kamel; Raizada, Manish N.

    2013-01-01

    Endophytes are microbes that inhabit host plants without causing disease and are reported to be reservoirs of metabolites that combat microbes and other pathogens. Here we review diverse classes of secondary metabolites, focusing on anti-microbial compounds, synthesized by fungal endophytes including terpenoids, alkaloids, phenylpropanoids, aliphatic compounds, polyketides, and peptides from the interdisciplinary perspectives of biochemistry, genetics, fungal biology, host plant biology, human and plant pathology. Several trends were apparent. First, host plants are often investigated for endophytes when there is prior indigenous knowledge concerning human medicinal uses (e.g., Chinese herbs). However, within their native ecosystems, and where investigated, endophytes were shown to produce compounds that target pathogens of the host plant. In a few examples, both fungal endophytes and their hosts were reported to produce the same compounds. Terpenoids and polyketides are the most purified anti-microbial secondary metabolites from endophytes, while flavonoids and lignans are rare. Examples are provided where fungal genes encoding anti-microbial compounds are clustered on chromosomes. As different genera of fungi can produce the same metabolite, genetic clustering may facilitate sharing of anti-microbial secondary metabolites between fungi. We discuss gaps in the literature and how more interdisciplinary research may lead to new opportunities to develop bio-based commercial products to combat global crop and human pathogens. PMID:23543048

  12. Fire regime, not time-since-fire, affects soil fungal community diversity and composition in temperate grasslands.

    PubMed

    Egidi, Eleonora; McMullan-Fisher, Sapphire; Morgan, John W; May, Tom; Zeeman, Ben; Franks, Ashley E

    2016-09-01

    Frequent burning is commonly undertaken to maintain diversity in temperate grasslands of southern Australia. How burning affects below-ground fungal community diversity remains unknown. We show, using a fungal rDNA metabarcoding approach (Illumina MiSeq), that the fungal community composition was influenced by fire regime (frequency) but not time-since-fire. Fungal community composition was resilient to direct fire effects, most likely because grassland fires transfer little heat to the soil. Differences in the fungal community composition due to fire regime was likely due to associated changes that occur in vegetation with recurrent fire, via the break up of obligate symbiotic relationships. However, fire history only partially explains the observed dissimilarity in composition among the soil samples, suggesting a distinctiveness in composition in each grassland site. The importance of considering changes in soil microbe communities when managing vegetation with fire is highlighted. PMID:27528692

  13. Novel chytrid lineages dominate fungal sequences in diverse marine and freshwater habitats.

    PubMed

    Comeau, André M; Vincent, Warwick F; Bernier, Louis; Lovejoy, Connie

    2016-01-01

    In aquatic environments, fungal communities remain little studied despite their taxonomic and functional diversity. To extend the ecological coverage of this group, we conducted an in-depth analysis of fungal sequences within our collection of 3.6 million V4 18S rRNA pyrosequences originating from 319 individual marine (including sea-ice) and freshwater samples from libraries generated within diverse projects studying Arctic and temperate biomes in the past decade. Among the ~1.7 million post-filtered reads of highest taxonomic and phylogenetic quality, 23,263 fungal sequences were identified. The overall mean proportion was 1.35%, but with large variability; for example, from 0.01 to 59% of total sequences for Arctic seawater samples. Almost all sample types were dominated by Chytridiomycota-like sequences, followed by moderate-to-minor contributions of Ascomycota, Cryptomycota and Basidiomycota. Species and/or strain richness was high, with many novel sequences and high niche separation. The affinity of the most common reads to phytoplankton parasites suggests that aquatic fungi deserve renewed attention for their role in algal succession and carbon cycling. PMID:27444055

  14. Novel chytrid lineages dominate fungal sequences in diverse marine and freshwater habitats

    PubMed Central

    Comeau, André M.; Vincent, Warwick F.; Bernier, Louis; Lovejoy, Connie

    2016-01-01

    In aquatic environments, fungal communities remain little studied despite their taxonomic and functional diversity. To extend the ecological coverage of this group, we conducted an in-depth analysis of fungal sequences within our collection of 3.6 million V4 18S rRNA pyrosequences originating from 319 individual marine (including sea-ice) and freshwater samples from libraries generated within diverse projects studying Arctic and temperate biomes in the past decade. Among the ~1.7 million post-filtered reads of highest taxonomic and phylogenetic quality, 23,263 fungal sequences were identified. The overall mean proportion was 1.35%, but with large variability; for example, from 0.01 to 59% of total sequences for Arctic seawater samples. Almost all sample types were dominated by Chytridiomycota-like sequences, followed by moderate-to-minor contributions of Ascomycota, Cryptomycota and Basidiomycota. Species and/or strain richness was high, with many novel sequences and high niche separation. The affinity of the most common reads to phytoplankton parasites suggests that aquatic fungi deserve renewed attention for their role in algal succession and carbon cycling. PMID:27444055

  15. Novel chytrid lineages dominate fungal sequences in diverse marine and freshwater habitats

    NASA Astrophysics Data System (ADS)

    Comeau, André M.; Vincent, Warwick F.; Bernier, Louis; Lovejoy, Connie

    2016-07-01

    In aquatic environments, fungal communities remain little studied despite their taxonomic and functional diversity. To extend the ecological coverage of this group, we conducted an in-depth analysis of fungal sequences within our collection of 3.6 million V4 18S rRNA pyrosequences originating from 319 individual marine (including sea-ice) and freshwater samples from libraries generated within diverse projects studying Arctic and temperate biomes in the past decade. Among the ~1.7 million post-filtered reads of highest taxonomic and phylogenetic quality, 23,263 fungal sequences were identified. The overall mean proportion was 1.35%, but with large variability; for example, from 0.01 to 59% of total sequences for Arctic seawater samples. Almost all sample types were dominated by Chytridiomycota-like sequences, followed by moderate-to-minor contributions of Ascomycota, Cryptomycota and Basidiomycota. Species and/or strain richness was high, with many novel sequences and high niche separation. The affinity of the most common reads to phytoplankton parasites suggests that aquatic fungi deserve renewed attention for their role in algal succession and carbon cycling.

  16. PHYMYCO-DB: A Curated Database for Analyses of Fungal Diversity and Evolution

    PubMed Central

    Mahé, Stéphane; Duhamel, Marie; Le Calvez, Thomas; Guillot, Laetitia; Sarbu, Ludmila; Bretaudeau, Anthony; Collin, Olivier; Dufresne, Alexis; Kiers, E. Toby; Vandenkoornhuyse, Philippe

    2012-01-01

    Background In environmental sequencing studies, fungi can be identified based on nucleic acid sequences, using either highly variable sequences as species barcodes or conserved sequences containing a high-quality phylogenetic signal. For the latter, identification relies on phylogenetic analyses and the adoption of the phylogenetic species concept. Such analysis requires that the reference sequences are well identified and deposited in public-access databases. However, many entries in the public sequence databases are problematic in terms of quality and reliability and these data require screening to ensure correct phylogenetic interpretation. Methods and Principal Findings To facilitate phylogenetic inferences and phylogenetic assignment, we introduce a fungal sequence database. The database PHYMYCO-DB comprises fungal sequences from GenBank that have been filtered to satisfy stringent sequence quality criteria. For the first release, two widely used molecular taxonomic markers were chosen: the nuclear SSU rRNA and EF1-α gene sequences. Following the automatic extraction and filtration, a manual curation is performed to remove problematic sequences while preserving relevant sequences useful for phylogenetic studies. As a result of curation, ∼20% of the automatically filtered sequences have been removed from the database. To demonstrate how PHYMYCO-DB can be employed, we test a set of environmental Chytridiomycota sequences obtained from deep sea samples. Conclusion PHYMYCO-DB offers the tools necessary to: (i) extract high quality fungal sequences for each of the 5 fungal phyla, at all taxonomic levels, (ii) extract already performed alignments, to act as ‘reference alignments’, (iii) launch alignments of personal sequences along with stored data. A total of 9120 SSU rRNA and 672 EF1-α high-quality fungal sequences are now available. The PHYMYCO-DB is accessible through the URL http://phymycodb.genouest.org/. PMID:23028445

  17. Systematic Conservation Planning for Groundwater Ecosystems Using Phylogenetic Diversity

    PubMed Central

    Asmyhr, Maria G.; Linke, Simon; Hose, Grant; Nipperess, David A.

    2014-01-01

    Aquifer ecosystems provide a range of important services including clean drinking water. These ecosystems, which are largely inaccessible to humans, comprise a distinct invertebrate fauna (stygofauna), which is characterized by narrow distributions, high levels of endemism and cryptic species. Although being under enormous anthropogenic pressure, aquifers have rarely been included in conservation planning because of the general lack of knowledge of species diversity and distribution. Here we use molecular sequence data and phylogenetic diversity as surrogates for stygofauna diversity in aquifers of New South Wales, Australia. We demonstrate how to incorporate these data as conservation features in the systematic conservation planning software Marxan. We designated each branch of the phylogenetic tree as a conservation feature, with the branch length as a surrogate for the number of distinct characters represented by each branch. Two molecular markers (nuclear 18S ribosomal DNA and mitochondrial cytochrome oxidase subunit I) were used to evaluate how marker variability and the resulting tree topology affected the site-selection process. We found that the sites containing the deepest phylogenetic branches were deemed the most irreplaceable by Marxan. By integrating phylogenetic data, we provide a method for including taxonomically undescribed groundwater fauna in systematic conservation planning. PMID:25514422

  18. Diversity of endophytic fungal and bacterial communities in Ilex paraguariensis grown under field conditions.

    PubMed

    Pérez, María Laura; Collavino, Mónica Mariana; Sansberro, Pedro Alfonso; Mroginski, Luis Amado; Galdeano, Ernestina

    2016-04-01

    The composition and diversity of the endophytic community associated with yerba mate (Ilex paraguariensis) was investigated using culture-depending methods. Fungi were identified based on their micromorphological characteristics and internal transcribed spacer rDNA sequence analysis; for bacteria 16S rDNA sequence analysis was used. Fungal and bacterial diversity did not show significant differences between organ age. The highest fungal diversity was registered during fall season and the lowest in winter. Bacterial diversity was higher in stems and increased from summer to winter, in contrast with leaves, which decreased. The most frequently isolated fungus was Fusarium, followed by Colletotrichum; they were both present in all the sampling seasons and organ types assayed. Actinobacteria represented 57.5 % of all bacterial isolates. The most dominant bacterial taxa were Curtobacterium and Microbacterium. Other bacteria frequently found were Methylobacterium, Sphingomonas, Herbiconiux and Bacillus. Nitrogen fixation and phosphate solubilization activity, ACC deaminase production and antagonism against plant fungal pathogens were assayed in endophytic bacterial strains. In the case of fungi, strains of Trichoderma, Penicillium and Aspergillus were assayed for antagonism against pathogenic Fusarium sp. All microbial isolates assayed showed at least one growth promoting activity. Strains of Bacillus, Pantoea, Curtobacterium, Methylobacterium, Brevundimonas and Paenibacillus had at least two growth-promoting activities, and Bacillus, Paenibacillus and the three endophytic fungi showed high antagonistic activity against Fusarium sp. In this work we have made a wide study of the culturable endophytic community within yerba mate plants and found that several microbial isolates could be considered as potential inoculants useful for improving yerba mate production. PMID:26925623

  19. FUNGAL SYMBIONTS. Global assessment of arbuscular mycorrhizal fungus diversity reveals very low endemism.

    PubMed

    Davison, J; Moora, M; Öpik, M; Adholeya, A; Ainsaar, L; Bâ, A; Burla, S; Diedhiou, A G; Hiiesalu, I; Jairus, T; Johnson, N C; Kane, A; Koorem, K; Kochar, M; Ndiaye, C; Pärtel, M; Reier, Ü; Saks, Ü; Singh, R; Vasar, M; Zobel, M

    2015-08-28

    The global biogeography of microorganisms remains largely unknown, in contrast to the well-studied diversity patterns of macroorganisms. We used arbuscular mycorrhizal (AM) fungus DNA from 1014 plant-root samples collected worldwide to determine the global distribution of these plant symbionts. We found that AM fungal communities reflected local environmental conditions and the spatial distance between sites. However, despite AM fungi apparently possessing limited dispersal ability, we found 93% of taxa on multiple continents and 34% on all six continents surveyed. This contrasts with the high spatial turnover of other fungal taxa and with the endemism displayed by plants at the global scale. We suggest that the biogeography of AM fungi is driven by unexpectedly efficient dispersal, probably via both abiotic and biotic vectors, including humans. PMID:26315436

  20. Richness and diversity of mammalian fungal communities shape innate and adaptive immunity in health and disease.

    PubMed

    Rizzetto, Lisa; De Filippo, Carlotta; Cavalieri, Duccio

    2014-11-01

    Human holobiomes are networks of mutualistic interactions between human cells and complex communities of bacteria and fungi that colonize the human body. The immune system must tolerate colonization with commensal bacteria and fungi but defend against invasion by either organism. Molecular ecological surveys of the human prokaryotic microbiota performed to date have revealed a remarkable degree of bacterial diversity and functionality. However, there is a dearth of information regarding the eukaryotic composition of the microbiota. In this review, we describe the ecology and the human niches of our fungal "fellow travelers" in both health and disease, discriminating between passengers, colonizers, and pathogens based on the interaction of these fungi with the human immune system. We conclude by highlighting the need to reconsider the etiology of many fungal and immune-related diseases in the context of the crosstalk between the human system and its resident microbial communities. PMID:25257052

  1. Fungal Diversity in Permafrost and Tallgrass Prairie Soils under Experimental Warming Conditions

    PubMed Central

    StLouis, Derek; Cole, James R.; Luo, Yiqi; Wu, Liyou; Schuur, E. A. G; Zhou, Jizhong; Tiedje, James M.

    2013-01-01

    Soil fungi play a major role in terrestrial ecosystem functioning through interactions with soil structure, plants, micro- and mesofauna, and nutrient cycling through predation, pathogenesis, mutualistic, and saprotrophic roles. The diversity of soil fungi was assessed by sequencing their 28S rRNA gene in Alaskan permafrost and Oklahoma tallgrass prairie soils at experimental sites where the effect of climate warming is under investigation. A total of 226,695 reads were classified into 1,063 genera, covering 62% of the reference data set. Using the Bayesian Classifier offered by the Ribosomal Database Project (RDP) with 50% bootstrapping classification confidence, approximately 70% of sequences were returned as “unclassified” at the genus level, although the majority (∼65%) were classified at the class level, which provided insight into these lesser-known fungal lineages. Those unclassified at the genus level were subjected to BLAST analysis against the ARB-SILVA database, where ∼50% most closely matched nonfungal taxa. Compared to the more abundant sequences, a higher proportion of rare operational taxonomic units (OTU) were successfully classified to genera at 50% bootstrap confidence, indicating that the fungal rare biosphere in these sites is not composed of sequencing artifacts. There was no significant effect after 1 year of warming on the fungal community structure at both sites, except perhaps for a few minor members, but there was a significant effect of sample depth in the permafrost soils. Despite overall significant community structure differences driven by variations in OTU dominance, the prairie and permafrost soils shared 90% and 63% of all fungal sequences, respectively, indicating a fungal “seed bank” common between both sites. PMID:24014534

  2. Metabarcoding Analysis of Fungal Diversity in the Phyllosphere and Carposphere of Olive (Olea europaea).

    PubMed

    Abdelfattah, Ahmed; Li Destri Nicosia, Maria Giulia; Cacciola, Santa Olga; Droby, Samir; Schena, Leonardo

    2015-01-01

    The fungal diversity associated with leaves, flowers and fruits of olive (Olea europaea) was investigated in different phenological stages (May, June, October and December) using an implemented metabarcoding approach. It consisted of the 454 pyrosequencing of the fungal ITS2 region and the subsequent phylogenetic analysis of relevant genera along with validated reference sequences. Most sequences were identified up to the species level or were associated with a restricted number of related taxa enabling supported speculations regarding their biological role. Analyses revealed a rich fungal community with 195 different OTUs. Ascomycota was the dominating phyla representing 93.6% of the total number of detected sequences followed by unidentified fungi (3.6%) and Basidiomycota (2.8%). A higher level of diversity was revealed for leaves compared to flowers and fruits. Among plant pathogens the genus Colletotrichum represented by three species (C. godetiae syn. C. clavatum, C. acutatum s.s and C. karstii) was the most abundant on ripe fruits but it was also detected in other organs. Pseudocercospora cladosporioides was detected with a high frequency in all leaf samples and to a less extent in ripe fruits. A much lower relative frequency was revealed for Spilocaea oleagina and for other putative pathogens including Fusarium spp., Neofusicoccum spp., and Alternaria spp. Among non-pathogen taxa, Aureobasidium pullulans, the species complex of Cladosporium cladosporioides and Devriesia spp. were the most represented. This study highlights the existence of a complex fungal consortium including both phytopathogenic and potentially antagonistic microorganisms that can have a significant impact on olive productions. PMID:26132745

  3. Metabarcoding Analysis of Fungal Diversity in the Phyllosphere and Carposphere of Olive (Olea europaea)

    PubMed Central

    Abdelfattah, Ahmed; Li Destri Nicosia, Maria Giulia; Cacciola, Santa Olga; Droby, Samir; Schena, Leonardo

    2015-01-01

    The fungal diversity associated with leaves, flowers and fruits of olive (Olea europaea) was investigated in different phenological stages (May, June, October and December) using an implemented metabarcoding approach. It consisted of the 454 pyrosequencing of the fungal ITS2 region and the subsequent phylogenetic analysis of relevant genera along with validated reference sequences. Most sequences were identified up to the species level or were associated with a restricted number of related taxa enabling supported speculations regarding their biological role. Analyses revealed a rich fungal community with 195 different OTUs. Ascomycota was the dominating phyla representing 93.6% of the total number of detected sequences followed by unidentified fungi (3.6%) and Basidiomycota (2.8%). A higher level of diversity was revealed for leaves compared to flowers and fruits. Among plant pathogens the genus Colletotrichum represented by three species (C. godetiae syn. C. clavatum, C. acutatum s.s and C. karstii) was the most abundant on ripe fruits but it was also detected in other organs. Pseudocercospora cladosporioides was detected with a high frequency in all leaf samples and to a less extent in ripe fruits. A much lower relative frequency was revealed for Spilocaea oleagina and for other putative pathogens including Fusarium spp., Neofusicoccum spp., and Alternaria spp. Among non-pathogen taxa, Aureobasidium pullulans, the species complex of Cladosporium cladosporioides and Devriesia spp. were the most represented. This study highlights the existence of a complex fungal consortium including both phytopathogenic and potentially antagonistic microorganisms that can have a significant impact on olive productions. PMID:26132745

  4. Culture-free survey reveals diverse and distinctive fungal communities associated with developing figs (Ficus spp.) in Panama.

    PubMed

    Martinson, Ellen O; Herre, Edward Allen; Machado, Carlos A; Arnold, A Elizabeth

    2012-11-01

    The ancient association of figs (Ficus spp.) and their pollinating wasps (fig wasps; Chalcidoidea, Hymenoptera) is one of the most interdependent plant-insect mutualisms known. In addition to pollinating wasps, a diverse community of organisms develops within the microcosm of the fig inflorescence and fruit. To better understand the multipartite context of the fig-fig wasp association, we used a culture-free approach to examine fungal communities associated with syconia of six species of Ficus and their pollinating wasps in lowland Panama. Diverse fungi were recovered from surface-sterilized flowers of all Ficus species, including gall- and seed flowers at four developmental stages. Fungal communities in syconia and on pollinating wasps were similar, dominated by diverse and previously unknown Saccharomycotina, and distinct from leaf- and stem endophyte communities in the same region. Before pollination, fungal communities were similar between gall- and seed flowers and among Ficus species. However, fungal communities differed significantly in flowers after pollination vs. before pollination, and between anciently diverged lineages of Ficus with active vs. passive pollination syndromes. Within groups of relatively closely related figs, there was little evidence for strict-sense host specificity between figs and particular fungal species. Instead, mixing of fungal communities among related figs, coupled with evidence for possible transfer by pollinating wasps, is consistent with recent suggestions of pollinator mixing within syconia. In turn, changes in fungal communities during fig development and ripening suggest an unexplored role of yeasts in the context of the fig-pollinator wasp mutualism. PMID:22729017

  5. Fungal endophytes of aquatic macrophytes: diverse host-generalists characterized by tissue preferences and geographic structure

    PubMed Central

    Sandberg, Dustin C.; Battista, Lorna J.; Arnold, A. Elizabeth

    2014-01-01

    Most studies of endophytic symbionts have focused on terrestrial plants, neglecting the ecologically and economically important plants present in aquatic ecosystems. We evaluated the diversity, composition, host- and tissue affiliations, and geographic structure of fungal endophytes associated with common aquatic plants in northern Arizona, USA. Endophytes were isolated in culture from roots and photosynthetic tissues during two growing seasons. A total of 226 isolates representing 60 putative species was recovered from 9,600 plant tissue segments. Although isolation frequency was low, endophytes were phylogenetically diverse and species-rich. Comparisons among the most thoroughly sampled species and reservoirs revealed that isolation frequency and diversity did not differ significantly between collection periods, among species, among reservoirs, or as a function of depth. However, community structure differed significantly among reservoirs and tissue types. Phylogenetic analyses of a focal genus (Penicillium) corroborated estimates of species boundaries and informed community analyses, highlighting clade- and genotype-level affiliations of aquatic endophytes with both sediment- and waterborne fungi, and endophytes of proximate terrestrial plants. Together these analyses provide a first quantitative examination of endophytic associations in roots and foliage of aquatic plants and can be used to optimize survey strategies for efficiently capturing fungal biodiversity at local and regional scales. PMID:24402358

  6. Ecological restoration as a strategy for conserving biological diversity

    NASA Astrophysics Data System (ADS)

    Jordan, William R.; Peters, Robert L.; Allen, Edith B.

    1988-01-01

    Though the restoration of disturbed ecosystems has so far played a relatively modest role in the effort to conserve biological diversity, there are reasons to suspect that its role will increase and that its contribution to the maintenance of diversity will ultimately prove crucial as techniques are further refined and as pristine areas for preservation become scarcer and more expensive. It is now possible to restore a number of North American communities with some confidence. However, it should be noted that many current efforts to return degraded lands to productive use, like attempts to reclaim land disturbed by mining, try only for rehabilitation to a socially acceptable condition and fall considerably short of actually restoring a native ecological community. Possible uses for restoration in the conservation of biodiversity include not only the creation of habitat on derelict sites, but also techniques for enlarging and redesigning existing reserves. Restoration may even make it possible to move reserves entirely in response to long-term events, such as changes in climate. Restoration in the form of reintroduction of single species to preexisting or restored habitat is also a critical link in programs to conserve species ex situ in the expectation of eventually returning them to the wild. And restoration provides opportunities to increase diversity through activities as diverse as management of utility corridors, transportation rights-of-way, and parks.

  7. Split diversity in constrained conservation prioritization using integer linear programming

    PubMed Central

    Chernomor, Olga; Minh, Bui Quang; Forest, Félix; Klaere, Steffen; Ingram, Travis; Henzinger, Monika; von Haeseler, Arndt

    2015-01-01

    Phylogenetic diversity (PD) is a measure of biodiversity based on the evolutionary history of species. Here, we discuss several optimization problems related to the use of PD, and the more general measure split diversity (SD), in conservation prioritization. Depending on the conservation goal and the information available about species, one can construct optimization routines that incorporate various conservation constraints. We demonstrate how this information can be used to select sets of species for conservation action. Specifically, we discuss the use of species' geographic distributions, the choice of candidates under economic pressure, and the use of predator–prey interactions between the species in a community to define viability constraints. Despite such optimization problems falling into the area of NP hard problems, it is possible to solve them in a reasonable amount of time using integer programming. We apply integer linear programming to a variety of models for conservation prioritization that incorporate the SD measure. We exemplarily show the results for two data sets: the Cape region of South Africa and a Caribbean coral reef community. Finally, we provide user-friendly software at http://www.cibiv.at/software/pda. PMID:25893087

  8. Soil bacterial and fungal community responses across a conservation reserve program chronosequence in Texas high plains region

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We investigated changes in soil bacterial and fungal communities with increasing restoration time across a Conservation Reserve Program chronosequence (CRP) on fine sandy loam soils in the Texas high plains region. Soil samples (0-10cm) were collected in 2012 and 2014 from seven dryland croplands (0...

  9. Diversity of fungal flora in raw milk from the Italian Alps in relation to pasture altitude.

    PubMed

    Panelli, Simona; Brambati, Eva; Bonacina, Cesare; Feligini, Maria

    2013-01-01

    The present paper explores the diversity of mycobiota inhabiting raw milk sampled at different altitudes (1400 m, 1800 m, 2200 m) from cows grazing Alpine pastures of Valle d'Aosta (North-Western Italian Alps). To this aim, multilocus sequencing was performed at barcodes commonly used for fungal identification (ITS1, D1/D2 domains of the 26S rRNA gene, and part of the β-tubulin gene). A total of 31 species were detected, most of them yeasts, followed by moulds and by 2 sequences of macroscopic fungi. Several yeasts and moulds were well-characterized inhabitants of the dairy environment, known to positively contribute to cheesemaking. Among these, Candida was the most represented genus with a tendency to cluster at the highest altitudes (6 over 8 observations at ≥ 1800 m), and Kluyveromyces marxianus the most abundant single species, retrieved at all altitudes. The environmental ascomycetous Atrotorquata lineata, never put in relation with food nor described outside North-America, was another species among those most frequently retrieved and was detected in 6 milks at 1400 and 1800 m. The remaining fungi, in general never reported in milk, were mostly environmental. Many of them resulted associated with plants as pathogens or symbionts. Finally, the highest sampled altitude yielded a significant fungal diversity (17 species). This work enlarges the knowledge of fungal consortia inhabiting raw milk and introduces microbial ecology among the altitude-dependent factors, in the composition of Alpine pastures, with the potential of shaping the properties of milks and cheeses, together with the already described physical, chemical and botanical variables. PMID:24024093

  10. Structure Analysis Uncovers a Highly Diverse but Structurally Conserved Effector Family in Phytopathogenic Fungi

    PubMed Central

    Gracy, Jérome; Fournier, Elisabeth; Kroj, Thomas; Padilla, André

    2015-01-01

    Phytopathogenic ascomycete fungi possess huge effector repertoires that are dominated by hundreds of sequence-unrelated small secreted proteins. The molecular function of these effectors and the evolutionary mechanisms that generate this tremendous number of singleton genes are largely unknown. To get a deeper understanding of fungal effectors, we determined by NMR spectroscopy the 3-dimensional structures of the Magnaporthe oryzae effectors AVR1-CO39 and AVR-Pia. Despite a lack of sequence similarity, both proteins have very similar 6 β-sandwich structures that are stabilized in both cases by a disulfide bridge between 2 conserved cysteins located in similar positions of the proteins. Structural similarity searches revealed that AvrPiz-t, another effector from M. oryzae, and ToxB, an effector of the wheat tan spot pathogen Pyrenophora tritici-repentis have the same structures suggesting the existence of a family of sequence-unrelated but structurally conserved fungal effectors that we named MAX-effectors (Magnaporthe Avrs and ToxB like). Structure-informed pattern searches strengthened this hypothesis by identifying MAX-effector candidates in a broad range of ascomycete phytopathogens. Strong expansion of the MAX-effector family was detected in M. oryzae and M. grisea where they seem to be particularly important since they account for 5–10% of the effector repertoire and 50% of the cloned avirulence effectors. Expression analysis indicated that the majority of M. oryzae MAX-effectors are expressed specifically during early infection suggesting important functions during biotrophic host colonization. We hypothesize that the scenario observed for MAX-effectors can serve as a paradigm for ascomycete effector diversity and that the enormous number of sequence-unrelated ascomycete effectors may in fact belong to a restricted set of structurally conserved effector families. PMID:26506000

  11. Understanding the function of conserved variations in the catalytic loops of fungal glycoside hydrolase family 12.

    PubMed

    Damásio, André R L; Rubio, Marcelo V; Oliveira, Leandro C; Segato, Fernando; Dias, Bruno A; Citadini, Ana P; Paixão, Douglas A; Squina, Fabio M

    2014-08-01

    Enzymes that cleave the xyloglucan backbone at unbranched glucose residues have been identified in GH families 5, 7, 12, 16, 44, and 74. Fungi produce enzymes that populate 20 of 22 families that are considered critical for plant biomass deconstruction. We searched for GH12-encoding genes in 27 Eurotiomycetes genomes. After analyzing 50 GH12-related sequences, the conserved variations of the amino acid sequences were examined. Compared to the endoglucanases, the endo-xyloglucanase-associated YSG deletion at the negative subsites of the catalytic cleft with a SST insertion at the reducing end of the substrate-binding crevice is highly conserved. In addition, a highly conserved alanine residue was identified in all xyloglucan-specific enzymes, and this residue is substituted by arginine in more promiscuous glucanases. To understand the basis for the xyloglucan specificity displayed by certain GH12 enzymes, two fungal GH12 endoglucanases were chosen for mutagenesis and functional studies: an endo-xyloglucanase from Aspergillus clavatus (AclaXegA) and an endoglucanase from A. terreus (AtEglD). Comprehensive molecular docking studies and biochemical analyses were performed, revealing that mutations at the entrance of the catalytic cleft in AtEglD result in a wider binding cleft and the alteration of the substrate-cleavage pattern, implying that a trio of residues coordinates the interactions and binding to linear glycans. The loop insertion at the crevice-reducing end of AclaXegA is critical for catalytic efficiency to hydrolyze xyloglucan. The understanding of the structural elements governing endo-xyloglucanase activity on linear and branched glucans will facilitate future enzyme modifications with potential applications in industrial biotechnology. PMID:24578305

  12. Fungal Endophyte Diversity and Bioactivity in the Indian Medicinal Plant Ocimum sanctum Linn

    PubMed Central

    Chowdhary, Kanika; Kaushik, Nutan

    2015-01-01

    Endophytic mycopopulation isolated from India’s Queen of herbs Tulsi (Ocimum sanctum) were explored and investigated for their diversity and antiphytopathogenic activity against widespread plant pathogens Botrytis cinerea, Sclerotinia sclerotiorum, Rhizoctonia solani and Fusarium oxysporum. 90 fungal isolates, representing 17 genera were recovered from 313 disease-free and surface sterilised plant segments (leaf and stem tissues) from three different geographic locations (Delhi, Hyderabad and Mukteshwar) during distinct sampling times in consequent years 2010 and 2011 in India. Fungal endophytes were subjected to molecular identification based on rDNA ITS sequence analysis. Plant pathogens such as F. verticillioides, B. maydis, C. coarctatum, R. bataticola, Hypoxylon sp., Diaporthe phaseolorum, Alternaria tenuissima and A. alternata have occurred as endophyte only during second sampling (second sampling in 2011) in the present study. Bi-plot generated by principal component analysis suggested tissue specificity of certain fungal endophytes. Dendrogram revealed species abundance as a function of mean temperature of the location at the time of sampling. Shannon diversity in the first collection is highest in Hyderabad leaf tissues (H' = 1.907) whereas in second collection it was highest from leaf tissues of Delhi (H' = 1.846). Mukteshwar (altitude: 7500 feet) reported least isolation rate in second collection. Nearly 23% of the total fungal isolates were considered as potent biocontrol agent. Hexane extract of M. phaseolina recovered from Hyderabad in first collection demonstrated highest activity against S. sclerotiorum with IC50 value of 0.38 mg/ml. Additionally, its components 2H-pyran-2-one, 5,6-dihydro-6-pentyl and palmitic acid, methyl ester as reported by GC-MS Chromatogram upon evaluation for their antiphytopathogenic activity exhibited IC50 value of 1.002 and 0.662 against respectively S. sclerotiorum indicating their significant role in

  13. Fungal Endophyte Diversity and Bioactivity in the Indian Medicinal Plant Ocimum sanctum Linn.

    PubMed

    Chowdhary, Kanika; Kaushik, Nutan

    2015-01-01

    Endophytic mycopopulation isolated from India's Queen of herbs Tulsi (Ocimum sanctum) were explored and investigated for their diversity and antiphytopathogenic activity against widespread plant pathogens Botrytis cinerea, Sclerotinia sclerotiorum, Rhizoctonia solani and Fusarium oxysporum. 90 fungal isolates, representing 17 genera were recovered from 313 disease-free and surface sterilised plant segments (leaf and stem tissues) from three different geographic locations (Delhi, Hyderabad and Mukteshwar) during distinct sampling times in consequent years 2010 and 2011 in India. Fungal endophytes were subjected to molecular identification based on rDNA ITS sequence analysis. Plant pathogens such as F. verticillioides, B. maydis, C. coarctatum, R. bataticola, Hypoxylon sp., Diaporthe phaseolorum, Alternaria tenuissima and A. alternata have occurred as endophyte only during second sampling (second sampling in 2011) in the present study. Bi-plot generated by principal component analysis suggested tissue specificity of certain fungal endophytes. Dendrogram revealed species abundance as a function of mean temperature of the location at the time of sampling. Shannon diversity in the first collection is highest in Hyderabad leaf tissues (H' = 1.907) whereas in second collection it was highest from leaf tissues of Delhi (H' = 1.846). Mukteshwar (altitude: 7500 feet) reported least isolation rate in second collection. Nearly 23% of the total fungal isolates were considered as potent biocontrol agent. Hexane extract of M. phaseolina recovered from Hyderabad in first collection demonstrated highest activity against S. sclerotiorum with IC50 value of 0.38 mg/ml. Additionally, its components 2H-pyran-2-one, 5,6-dihydro-6-pentyl and palmitic acid, methyl ester as reported by GC-MS Chromatogram upon evaluation for their antiphytopathogenic activity exhibited IC50 value of 1.002 and 0.662 against respectively S. sclerotiorum indicating their significant role in antiphytopathogenic

  14. Generating Phenotypic Diversity in a Fungal Biocatalyst to Investigate Alcohol Stress Tolerance Encountered during Microbial Cellulosic Biofuel Production

    PubMed Central

    Hennessy, Rosanna C.; Doohan, Fiona; Mullins, Ewen

    2013-01-01

    Consolidated bioprocessing (CBP) of lignocellulosic biomass offers an alternative route to renewable energy. The crop pathogen Fusarium oxysporum is a promising fungal biocatalyst because of its broad host range and innate ability to co-saccharify and ferment lignocellulose to bioethanol. A major challenge for cellulolytic CBP-enabling microbes is alcohol inhibition. This research tested the hypothesis that Agrobacterium tumefaciens - mediated transformation (ATMT) could be exploited as a tool to generate phenotypic diversity in F. oxysporum to investigate alcohol stress tolerance encountered during CBP. A random mutagenesis library of gene disruption transformants (n=1,563) was constructed and screened for alcohol tolerance in order to isolate alcohol sensitive or tolerant phenotypes. Following three rounds of screening, exposure of select transformants to 6% ethanol and 0.75% n-butanol resulted respectively in increased (≥11.74%) and decreased (≤43.01%) growth compared to the wild –type (WT). Principal component analysis (PCA) quantified the level of phenotypic diversity across the population of genetically transformed individuals and isolated candidate strains for analysis. Characterisation of one strain, Tr. 259, ascertained a reduced growth phenotype under alcohol stress relative to WT and indicated the disruption of a coding region homologous to a putative sugar transporter (FOXG_09625). Quantitative PCR (RT-PCR) showed FOXG_09625 was differentially expressed in Tr. 259 compared to WT during alcohol-induced stress (P<0.05). Phylogenetic analysis of putative sugar transporters suggests diverse functional roles in F. oxysporum and other filamentous fungi compared to yeast for which sugar transporters form part of a relatively conserved family. This study has confirmed the potential of ATMT coupled with a phenotypic screening program to select for genetic variation induced in response to alcohol stress. This research represents a first step in the

  15. Phylogenetic diversity (PD) and biodiversity conservation: some bioinformatics challenges

    PubMed Central

    Faith, Daniel P.; Baker, Andrew M.

    2007-01-01

    Biodiversity conservation addresses information challenges through estimations encapsulated in measures of diversity. A quantitative measure of phylogenetic diversity, “PD”, has been defined as the minimum total length of all the phylogenetic branches required to span a given set of taxa on the phylogenetic tree (Faith 1992a). While a recent paper incorrectly characterizes PD as not including information about deeper phylogenetic branches, PD applications over the past decade document the proper incorporation of shared deep branches when assessing the total PD of a set of taxa. Current PD applications to macroinvertebrate taxa in streams of New South Wales, Australia illustrate the practical importance of this definition. Phylogenetic lineages, often corresponding to new, “cryptic”, taxa, are restricted to a small number of stream localities. A recent case of human impact causing loss of taxa in one locality implies a higher PD value for another locality, because it now uniquely represents a deeper branch. This molecular-based phylogenetic pattern supports the use of DNA barcoding programs for biodiversity conservation planning. Here, PD assessments side-step the contentious use of barcoding-based “species” designations. Bio-informatics challenges include combining different phylogenetic evidence, optimization problems for conservation planning, and effective integration of phylogenetic information with environmental and socio-economic data. PMID:19455206

  16. New Primers for Discovering Fungal Diversity Using Nuclear Large Ribosomal DNA

    PubMed Central

    Gloor, Gregory B.; Lindo, Zoë

    2016-01-01

    Metabarcoding has become an important tool in the discovery of biodiversity, including fungi, which are the second most speciose group of eukaryotes, with diverse and important ecological roles in terrestrial ecosystems. We have designed and tested new PCR primers that target the D1 variable region of nuclear large subunit (LSU) ribosomal DNA; one set that targets the phylum Ascomycota and another that recovers all other fungal phyla. The primers yield amplicons compatible with the Illumina MiSeq platform, which is cost-effective and has a lower error rate than other high throughput sequencing platforms. The new primer set LSU200A-F/LSU476A-R (Ascomycota) yielded 95–98% of reads of target taxa from environmental samples, and primers LSU200-F/LSU481-R (all other fungi) yielded 72–80% of target reads. Both primer sets have fairly low rates of data loss, and together they cover a wide variety of fungal taxa. We compared our results with these primers by amplifying and sequencing a subset of samples using the previously described ITS3_KYO2/ITS4_KYO3 primers, which amplify the internal transcribed spacer 2 (ITS2) of Ascomycota and Basidiomycota. With approximately equivalent read depth, our LSU primers recovered a greater number and phylogenetic diversity of sequences than the ITS2 primers. For instance, ITS3_KYO2/ITS4_KYO3 primers failed to pick up any members of Eurotiales, Mytilinidiales, Pezizales, Saccharomycetales, or Venturiales within Ascomycota, or members of Exobasidiomycetes, Microbotryomycetes, Pucciniomycetes, or Tremellomycetes within Basidiomycota, which were retrieved in good numbers from the same samples by our LSU primers. Among the OTUs recovered using the LSU primers were 127 genera and 28 species that were not obtained using the ITS2 primers, although the ITS2 primers recovered 10 unique genera and 16 species that were not obtained using either of the LSU primers These features identify the new primer sets developed in this study as useful

  17. The influence of genotypic variation on metabolite diversity in populations of two endophytic fungal species.

    PubMed

    Seymour, Fabian A; Cresswell, James E; Fisher, P Jack; Lappin-Scott, Hilary M; Haag, Hubert; Talbot, Nicholas J

    2004-07-01

    The relationship between metabolite production and genotypic diversity in two endophytic fungi was investigated. We selected populations of Cylindrocarpon destructans and Heliscus lugdunensis from the roots of a single tree. A total of 49 isolates of both species were selected and classified by simple genotypic tests (random amplified polymorphic DNA analysis and rDNA-ITS sequencing). In a blind test, the ability of these fungi to produce natural products was tested by ethyl acetate extraction of hyphae and culture filtrates, followed by high-performance liquid chromatography analysis (HPLC). A positive relationship was found between genotype classification and the pattern of natural products produced by a given isolate. To test the robustness of this correlation, a discriminate selection procedure was carried out by collecting fungal isolates from a second site and selecting a sub-set of the population, on the basis of genotypic variability. This sub-set of fungal isolates produced greater numbers of unique metabolites than those selected indiscriminately. PMID:15275667

  18. Ectomycorrhizal fungal diversity in orchards of cultivated pecan (Carya illinoinensis; Juglandaceae).

    PubMed

    Bonito, Gregory; Brenneman, Timothy; Vilgalys, Rytas

    2011-10-01

    Carya illinoinensis (pecan) belongs to the Juglandaceae (walnut family) and is a major economic nut crop in the southern USA. Although evidence suggests that some species in the Juglandaceae are ectomycorrhizal, investigations on their ectomycorrhizal fungal symbionts are quite limited. Here we assessed the ectomycorrhizal fungal diversity in cultivated orchards of C. illinoinensis. Five pecan orchards in southern Georgia, USA, were studied, three of which were known to fruit the native edible truffle species Tuber lyonii. We sequenced rDNA from single ectomycorrhizal root tips sampled from a total of 50 individual trees. Mycorrhizae were identified by ITS and LSU rDNA sequence-based methods. Forty-four distinct ectomycorrhizal taxa were detected. Sequestrate taxa including Tuber and Scleroderma were particularly abundant. The two most abundant sequence types belonged to T. lyonii (17%) and an undescribed Tuber species (~20%). Because of our interest in the ecology of T. lyonii, we also conducted greenhouse studies to determine whether this species would colonize and form ectomycorrhizae on roots of pecan, oak, or pine species endemic to the region. T. lyonii ectomycorrhizae were formed on pecan and oak seedlings, but not pine, when these were inoculated with spores. That oak and pecan seedling roots were receptive to truffle spores indicates that spore slurry inoculation could be a suitable method for commercial use and that, ecologically, T. lyonii may function as a pioneer ectomycorrhizal species for these hosts. PMID:21369784

  19. The biological diversity conservation district: A rain forest conservation tool for the future

    SciTech Connect

    Simons, M.

    1995-12-01

    Over the next twenty years, the Earth`s rain forests may decrease by forty percent! This paper presents a revolutionary corporate entity for the protection of those forests, the biological diversity conservation district (biodistricts). The underlying cause of rain forest destruction is unfettered competition for limited resources. The competitors are many: farmers, business, local and national governments, the biotechnology and ecotourism industries, multinational companies, public utilities, and indigenous groups. To varying degrees, all compete within the marketplace. biodistricts will bring together two forces once thought to be antithetical: conservation an development. They will be set up in corporate form, owned and controlled by groups claiming access to the forest resources. Because the various groups will fight for the same resources habitats, ecosystems, and genetic diversity-each will prevent the others from destroying them. The district members will ensure that all businesses maintain sustainable development practices because the economic success of the district depends upon the area`s natural beauty and biological diversity. This paper analyzes the effects on the culture, politics, economy and conservation there. It will conclude that the comprehensive approach taken by biodistricts is the only method for solving the problem of rain forest destruction; that it is economically feasible, culturally viable, and ethically defensible. By March 1, 1995, the paper will represent not only the culmination of eighteen months of research, writing and interviews regarding biological diversity conservation, but also the impetus to push the thinking of environmentalists and business persons in a new direction, perhaps the only direction that will allow the nations of the world to protect their forests for the next twenty years and beyond.

  20. Characterizing fish community diversity across Virginia landscapes: Prerequisite for conservation

    USGS Publications Warehouse

    Angermeier, P.L.; Winston, M.R.

    1999-01-01

    The number of community types occurring within landscapes is an important, but often unprotected, component of biological diversity. Generally applicable protocols for characterizing community diversity need to be developed to facilitate conservation. We used several multivariate techniques to analyze geographic variation in the composition of fish communities in Virginia streams. We examined relationships between community composition and six landscape variables: drainage basin, physiography, stream order, elevation, channel slope, and map coordinates. We compared patterns at two scales (statewide and subdrainage-specific) to assess sensitivity of community classification to spatial scale. We also compared patterns based on characterizing communities by species composition vs. ecological composition. All landscape variables explained significant proportions of the variance in community composition. Statewide, they explained 32% of the variance in species composition and 48% of the variance in ecological composition. Typical communities in each drainage or physiography were statistically distinctive. Communities in different combinations of drainage, physiography, and stream size were even more distinctive, but composition was strongly spatially autocorrelated. Ecological similarity and species similarity of community pairs were strongly related, but replacement by ecologically similar species was common among drainage-physiography combinations. Landscape variables explained significant proportions of variance in community composition within selected subdrainages, but proportions were less than at the statewide scale, and the explanatory power of individual variables varied considerably among subdrainages. Community variation within subdrainages appeared to be much more closely related to environmental variation than to replacement among ecologically similar species. Our results suggest that taxonomic and ecological characterizations of community composition are

  1. Phylogenetic Resolution of Deep Eukaryotic and Fungal Relationships Using Highly Conserved Low-Copy Nuclear Genes.

    PubMed

    Ren, Ren; Sun, Yazhou; Zhao, Yue; Geiser, David; Ma, Hong; Zhou, Xiaofan

    2016-01-01

    A comprehensive and reliable eukaryotic tree of life is important for many aspects of biological studies from comparative developmental and physiological analyses to translational medicine and agriculture. Both gene-rich and taxon-rich approaches are effective strategies to improve phylogenetic accuracy and are greatly facilitated by marker genes that are universally distributed, well conserved, and orthologous among divergent eukaryotes. In this article, we report the identification of 943 low-copy eukaryotic genes and we show that many of these genes are promising tools in resolving eukaryotic phylogenies, despite the challenges of determining deep eukaryotic relationships. As a case study, we demonstrate that smaller subsets of ∼20 and 52 genes could resolve controversial relationships among widely divergent taxa and provide strong support for deep relationships such as the monophyly and branching order of several eukaryotic supergroups. In addition, the use of these genes resulted in fungal phylogenies that are congruent with previous phylogenomic studies that used much larger datasets, and successfully resolved several difficult relationships (e.g., forming a highly supported clade with Microsporidia, Mitosporidium and Rozella sister to other fungi). We propose that these genes are excellent for both gene-rich and taxon-rich analyses and can be applied at multiple taxonomic levels and facilitate a more complete understanding of the eukaryotic tree of life. PMID:27604879

  2. Metagenomic analysis of fungal diversity in Korean traditional wheat-based fermentation starter nuruk.

    PubMed

    Bal, Jyotiranjan; Yun, Suk-Hyun; Yeo, Soo-Hwan; Kim, Jung-Mi; Kim, Dae-Hyuk

    2016-12-01

    Nuruk, a traditional natural starter, is extensively used in the brewing of Makgeolli, one of Korea's most popular alcoholic beverages that has been recently gaining global popularity. Thus, the quality of traditional nuruk needs to be enhanced. The nuruk mycobiome greatly influences both fermentation process as well as palatability enhancement. Limitations of culture-dependent identification restrict an accurate analysis of fungal diversity and distribution in nuruks. 454 pyrosequencing of two traditional wheat-based nuruks, prepared at two representative temperature conditions revealed a total of 153 and 53 OTUs for nuruks A and B, respectively, from a total of 33,157 ITS sequences. Phylogenetic assignments indicated that nuruk A mycobiota was dominated by the genera Aspergillus and Mucorales, whereas nuruk B by Rhizomucor. Species-level identification indicated that Mucorales sp., Aspergillus candidus, and Aspergillus cibarius predominated in nuruk A mycoflora whereas Rhizomucor pusillus, Mucorales sp., and Thermoascus crustaceus in nuruk B. The alpha diversity indices suggest nuruk A mycobiota to be more diverse than that of nuruk B at almost all time points of fermentation. Resemblances of patterns of predominant species composition and succession between culture-dependent and -independent phylogenetic analysis creates the potential to reconstruct the nuruk mycobiome in vitro, which allows the establishment of a standard inoculum for scientific comparison. PMID:27554148

  3. Effects of Bromelia pinguin (Bromeliaceae) on soil ecosystem function and fungal diversity in the lowland forests of Costa Rica

    PubMed Central

    2014-01-01

    Background Bromelia pinguin (Bromeliaceae) is a terrestrial bromeliad commonly found under forest stands throughout the Neotropics that has been shown to have antifungal activity in vitro. We have hypothesized that this bromeliad would also have an effect on the fungal populations in nearby soil by decreasing fungaldiversity and negatively impacting C and N cycle-related activities. A previous study in the lowland forest of Costa Rica showed the soil beneath these bromeliads had decreased fungal ITS DNA and differences in C and N levels compared to adjacent primary forest soils. Results In this follow-up study, we found that the bromeliad soils had lower rates of C and N biomass development and lower phenol oxidase activity (suggesting less decreased fungal decomposition activity). The results of T-RFLP and cloning-based taxonomic analyses showed the community level diversity and abundance of fungal ITS DNA was less in bromeliad soils. Sequence analysis of fungal ITS DNA clones showed marked differences in fungal community structure between habitats of Basidiomycota (Tremellales, Agricales, Thelephorales), Ascomycota (Helotiales), and Zycomycota populations. Conclusions The data show there to be differences in the soil nutrient dynamics and fungal community structure and activity associated with these bromeliads, as compared to the adjacent primary forest. This suggests the possibility that the anti-fungal activity of the bromeliad extends into the soil. The bromeliad-dense regions of these primary forest habitats provide a unique natural micro-habitat within the forests and the opportunity to better identify the role of fungal communities in the C and N cycles in tropical soils. PMID:24885984

  4. Next generation sequencing to define prokaryotic and fungal diversity in the bovine rumen.

    PubMed

    Fouts, Derrick E; Szpakowski, Sebastian; Purushe, Janaki; Torralba, Manolito; Waterman, Richard C; MacNeil, Michael D; Alexander, Leeson J; Nelson, Karen E

    2012-01-01

    A combination of Sanger and 454 sequences of small subunit rRNA loci were used to interrogate microbial diversity in the bovine rumen of 12 cows consuming a forage diet. Observed bacterial species richness, based on the V1-V3 region of the 16S rRNA gene, was between 1,903 to 2,432 species-level operational taxonomic units (OTUs) when 5,520 reads were sampled per animal. Eighty percent of species-level OTUs were dominated by members of the order Clostridiales, Bacteroidales, Erysipelotrichales and unclassified TM7. Abundance of Prevotella species varied widely among the 12 animals. Archaeal species richness, also based on 16S rRNA, was between 8 and 13 OTUs, representing 5 genera. The majority of archaeal OTUs (84%) found in this study were previously observed in public databases with only two new OTUs discovered. Observed rumen fungal species richness, based on the 18S rRNA gene, was between 21 and 40 OTUs with 98.4-99.9% of OTUs represented by more than one read, using Good's coverage. Examination of the fungal community identified numerous novel groups. Prevotella and Tannerella were overrepresented in the liquid fraction of the rumen while Butyrivibrio and Blautia were significantly overrepresented in the solid fraction of the rumen. No statistical difference was observed between the liquid and solid fractions in biodiversity of archaea and fungi. The survey of microbial communities and analysis of cross-domain correlations suggested there is a far greater extent of microbial diversity in the bovine rumen than previously appreciated, and that next generation sequencing technologies promise to reveal novel species, interactions and pathways that can be studied further in order to better understand how rumen microbial community structure and function affects ruminant feed efficiency, biofuel production, and environmental impact. PMID:23144861

  5. Role of vermicompost chemical composition, microbial functional diversity, and fungal community structure in their microbial respiratory response to three pesticides.

    PubMed

    Fernández-Gómez, Manuel J; Nogales, Rogelio; Insam, Heribert; Romero, Esperanza; Goberna, Marta

    2011-10-01

    The relationships between vermicompost chemical features, enzyme activities, community-level physiological profiles (CLPPs), fungal community structures, and its microbial respiratory response to pesticides were investigated. Fungal community structure of vermicomposts produced from damaged tomato fruits (DT), winery wastes (WW), olive-mill waste and biosolids (OB), and cattle manure (CM) were determined by denaturing gradient gel electrophoresis of 18S rDNA. MicroResp™ was used for assessing vermicompost CLPPs and testing the microbial response to metalaxyl, imidacloprid, and diuron. Vermicompost enzyme activities and CLPPs indicated that WW, OB, and DT had higher microbial functional diversity than CM. The microbiota of the former tolerated all three pesticides whereas microbial respiration in CM was negatively affected by metalaxyl and imidacloprid. The response of vermicompost microbiota to the fungicide metalaxyl was correlated to its fungal community structure. The results suggest that vermicomposts with higher microbial functional diversity can be useful for the management of pesticide pollution in agriculture. PMID:21865033

  6. The effects of climate change on fungal diversity patterns in the UK and Greece: Contrasting trends and ecological interpretations

    NASA Astrophysics Data System (ADS)

    Damialis, A.; Gange, A. C.; Mohammad, A. B.; Halley, J. M.

    2013-05-01

    It is well known that climate change has been affecting the ecology of living organisms. However, very little research has been done concerning alterations in fungal ecology. The changes in climate are expected to have an impact on fungal biodiversity patterns. Such changes in turn might have implications for public health since the spores of certain fungal taxa (e.g. Alternaria, Cladosporium) cause respiratory problems in sensitised individuals, with symptoms manifested even as acute respiratory failure. The objectives of this study were: a) to perform a comprehensive analysis of trends in long-term time series of fungal fruiting and sporulation variables for a wide range of fungal taxa, b) to investigate the response of fungal abundance and diversity to environmental variability. Data from two different geoclimatic areas were used: a) England, UK from more than 350 fungal species belonging to 10 different functional groups and with phenological records of fungal fruiting (start, end and duration) since 1950, b) Thessaloniki, Greece for 14 airborne fungal types with quantitative records (total annual concentration) and phenological records (start, peak, end, duration) of the atmospheric spore season since 1987. In parallel, various meteorological factors were examined in both areas in order to elucidate the relationship between climate and fungal diversity patterns. Long-term trends were found in most cases: these were particularly pronounced in the UK, where more than 300 species (~82%) displayed trends. Of these, ~77% were towards an earlier beginning and ~81% towards a later ending of the fruiting season; overall, an extension of the fruiting season seems to occur in more than 200 species. On a per-functional-group basis, except for manure, soil and mycorrhizal deciduous fungal species, all the other (137 species) exhibited earlier first fruiting dates and extended seasons. On the other hand, in Greece, although a tendency was observed towards lower yearly

  7. Ruminal bacterial, archaeal, and fungal diversity of dairy cows in response to ingestion of lauric or myristic acid

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The objective of this experiment, part of a larger study, was to investigate changes in rumen bacterial, archaeal, and fungal diversity in cows with normal and reduced protozoal populations. In the main study, 6 lactating dairy cows were dosed intraruminally with 240 g/cow per day of stearic (contr...

  8. Higher fungal diversity is correlated with lower CO2 emissions from dead wood in a natural forest.

    PubMed

    Yang, Chunyan; Schaefer, Douglas A; Liu, Weijie; Popescu, Viorel D; Yang, Chenxue; Wang, Xiaoyang; Wu, Chunying; Yu, Douglas W

    2016-01-01

    Wood decomposition releases almost as much CO2 to the atmosphere as does fossil-fuel combustion, so the factors regulating wood decomposition can affect global carbon cycling. We used metabarcoding to estimate the fungal species diversities of naturally colonized decomposing wood in subtropical China and, for the first time, compared them to concurrent measures of CO2 emissions. Wood hosting more diverse fungal communities emitted less CO2, with Shannon diversity explaining 26 to 44% of emissions variation. Community analysis supports a 'pure diversity' effect of fungi on decomposition rates and thus suggests that interference competition is an underlying mechanism. Our findings extend the results of published experiments using low-diversity, laboratory-inoculated wood to a high-diversity, natural system. We hypothesize that high levels of saprotrophic fungal biodiversity could be providing globally important ecosystem services by maintaining dead-wood habitats and by slowing the atmospheric contribution of CO2 from the world's stock of decomposing wood. However, large-scale surveys and controlled experimental tests in natural settings will be needed to test this hypothesis. PMID:27553882

  9. Exhaustive search for conservation networks of populations representing genetic diversity.

    PubMed

    Diniz-Filho, J A F; Diniz, J V B P L; Telles, M P C

    2016-01-01

    Conservation strategies routinely use optimization methods to identify the smallest number of units required to represent a set of features that need to be conserved, including biomes, species, and populations. In this study, we provide R scripts to facilitate exhaustive search for solutions that represent all of the alleles in networks with the smallest possible number of populations. The script also allows other variables to be added to describe the populations, thereby providing the basis for multi-objective optimization and the construction of Pareto curves by averaging the values in the solutions. We applied this algorithm to an empirical dataset that comprised 23 populations of Eugenia dysenterica, which is a tree species with a widespread distribution in the Cerrado biome. We observed that 15 populations would be necessary to represent all 249 alleles based on 11 microsatellite loci, and that the likelihood of representing all of the alleles with random networks is less than 0.0001. We selected the solution (from two with the smallest number of populations) obtained for the populations with a higher level of climatic stability as the best strategy for in situ conservation of genetic diversity of E. dysenterica. The scripts provided in this study are a simple and efficient alternative to more complex optimization methods, especially when the number of populations is relatively small (i.e., <25 populations). PMID:26909939

  10. Conservation of native Pacific trout diversity in western North America

    USGS Publications Warehouse

    Penaluna, Brooke E.; Abadía-Cardoso, Alicia; Dunham, Jason; García de León, Francisco J; Gresswell, Robert E.; Luna, Arturo Ruiz; Taylor, Eric B.; Shepard, Bradley B.; Al-Chokhachy, Robert K.; Muhlfeld, Clint C.; Bestgen, Kevin R.; Rogers, Kevin H.; Escalante, Marco A; Keeley, Ernest R; Temple, Gabriel; Williams, Jack E.; Matthews, Kathleen; Pierce, Ron; Mayden, Richard L.; Kovach, Ryan; Garza, John Carlos; Fausch, Kurt D.

    2016-01-01

    Pacific trout Oncorhynchus spp. in western North America are strongly valued in ecological, socioeconomic, and cultural views, and have been the subject of substantial research and conservation efforts. Despite this, the understanding of their evolutionary histories, overall diversity, and challenges to their conservation is incomplete. We review the state of knowledge on these important issues, focusing on Pacific trout in the genus Oncorhynchus. Although most research on salmonid fishes emphasizes Pacific salmon, we focus on Pacific trout because they share a common evolutionary history, and many taxa in western North America have not been formally described, particularly in the southern extent of their ranges. Research in recent decades has led to the revision of many hypotheses concerning the origin and diversification of Pacific trout throughout their range. Although there has been significant success at addressing past threats to Pacific trout, contemporary and future threats represented by nonnative species, land and water use activities, and climate change pose challenges and uncertainties. Ultimately, conservation of Pacific trout depends on how well these issues are understood and addressed, and on solutions that allow these species to coexist with a growing scope of human influences.

  11. Effects on diversity of soil fungal community and fate of an artificially applied Beauveria bassiana strain assessed through 454 pyrosequencing.

    PubMed

    Hirsch, Jacqueline; Galidevara, Sandhya; Strohmeier, Stephan; Devi, K Uma; Reineke, Annette

    2013-10-01

    The entomopathogenic fungus Beauveria bassiana is widely used as a biological control agent (BCA) for insect pest control, with fungal propagules being either incorporated into the potting media or soil or sprayed directly onto the foliage or soil. To gain a better understanding of entomopathogenic fungal ecology when applied as a BCA to the soil environment, a case study using tag-encoded 454 pyrosequencing of fungal ITS sequences was performed to assess the fate and potential effect of an artificially applied B. bassiana strain on the diversity of soil fungal communities in an agricultural field in India. Results show that the overall fungal diversity was not influenced by application of B. bassiana during the 7 weeks of investigation. Strain-specific microsatellite markers indicated both an establishment of the applied B. bassiana strain in the treated plot and its spread to the neighboring nontreated control plot. These results might be important for proper risk assessment of entomopathogenic fungi-based BCAs. PMID:23736813

  12. Blue reflectance in tarantulas is evolutionarily conserved despite nanostructural diversity

    PubMed Central

    Hsiung, Bor-Kai; Deheyn, Dimitri D.; Shawkey, Matthew D.; Blackledge, Todd A.

    2015-01-01

    Slight shifts in arrangement within biological photonic nanostructures can produce large color differences, and sexual selection often leads to high color diversity in clades with structural colors. We use phylogenetic reconstruction, electron microscopy, spectrophotometry, and optical modeling to show an opposing pattern of nanostructural diversification accompanied by unusual conservation of blue color in tarantulas (Araneae: Theraphosidae). In contrast to other clades, blue coloration in phylogenetically distant tarantulas peaks within a narrow 20-nm region around 450 nm. Both quasi-ordered and multilayer nanostructures found in different tarantulas produce this blue color. Thus, even within monophyletic lineages, tarantulas have evolved strikingly similar blue coloration through divergent mechanisms. The poor color perception and lack of conspicuous display during courtship of tarantulas argue that these colors are not sexually selected. Therefore, our data contrast with sexual selection that typically produces a diverse array of colors with a single structural mechanism by showing that natural selection on structural color in tarantulas resulted in convergence on similar color through diverse structural mechanisms. PMID:26702433

  13. Two species of the Asian endemic genus Keteleeria form ectomycorrhizas with diverse fungal symbionts in southwestern China.

    PubMed

    Ge, Zai-Wei; Smith, Matthew E; Zhang, Qing-Ying; Yang, Zhu L

    2012-07-01

    The ectomycorrhizal status of Keteleeria species is reported for the first time based on morphological and molecular analyses of root tips from southwestern China. Based on internal transcribed spacer rDNA sequences, we detected 26 ectomycorrhizal (ECM) fungal species on roots of Keteleeria evelyniana and Keteleeria davidiana collected from natural sites and a botanical garden in Kunming, China. These ECM symbionts represent six fungal lineages, including /russula-lactarius, /inocybe, /sebacina, /tomentella-thelephora, /wilcoxina, and /cenococcum. Our results provide the first evidence of ECM formation by Keteleeria and also supply ecologically important information for conservation and restoration efforts to recover populations of Keteleeria. PMID:21997220

  14. Fungal diversity in grape must and wine fermentation assessed by massive sequencing, quantitative PCR and DGGE.

    PubMed

    Wang, Chunxiao; García-Fernández, David; Mas, Albert; Esteve-Zarzoso, Braulio

    2015-01-01

    The diversity of fungi in grape must and during wine fermentation was investigated in this study by culture-dependent and culture-independent techniques. Carignan and Grenache grapes were harvested from three vineyards in the Priorat region (Spain) in 2012, and nine samples were selected from the grape must after crushing and during wine fermentation. From culture-dependent techniques, 362 isolates were randomly selected and identified by 5.8S-ITS-RFLP and 26S-D1/D2 sequencing. Meanwhile, genomic DNA was extracted directly from the nine samples and analyzed by qPCR, DGGE and massive sequencing. The results indicated that grape must after crushing harbored a high species richness of fungi with Aspergillus tubingensis, Aureobasidium pullulans, or Starmerella bacillaris as the dominant species. As fermentation proceeded, the species richness decreased, and yeasts such as Hanseniaspora uvarum, Starmerella bacillaris and Saccharomyces cerevisiae successively occupied the must samples. The "terroir" characteristics of the fungus population are more related to the location of the vineyard than to grape variety. Sulfur dioxide treatment caused a low effect on yeast diversity by similarity analysis. Because of the existence of large population of fungi on grape berries, massive sequencing was more appropriate to understand the fungal community in grape must after crushing than the other techniques used in this study. Suitable target sequences and databases were necessary for accurate evaluation of the community and the identification of species by the 454 pyrosequencing of amplicons. PMID:26557110

  15. Fine-scale diversity and distribution of ectomycorrhizal fungal mycelium in a Scots pine forest.

    PubMed

    Anderson, Ian C; Genney, David R; Alexander, Ian J

    2014-03-01

    Ectomycorrhizal (ECM) mycelium is a key component of the ectomycorrhizal symbiosis, yet we know little regarding the fine-scale diversity and distribution of mycelium in ECM fungal communities. We collected four 20 × 20 × 2-cm(3) (800-cm(3)) slices of Scots pine (Pinus sylvestris) forest soil and divided each into 100 2 × 2 × 2-cm(3) (8-cm(3)) cubes. The presence of mycelium of ECM fungi was determined using an internal transcribed spacer (ITS) database terminal restriction fragment length polymorphism (T-RFLP) approach. As expected, many more ECM fungi were detected as mycelium than as ectomycorrhizas in a cube or slice. More surprisingly, up to one-quarter of the 43 species previously detected as ectomycorrhizas over an area of 400 m(2) could be detected in a single 8-cm(3) cube, and up to three-quarters in a single 800-cm(3) slice. ECM mycelium frequency decreased markedly with depth and there were distinct 'hotspots' of mycelium in the moss/F1 layer. Our data demonstrate a high diversity of ECM mycelium in a small (8-cm(3) ) volume of substrate, and indicate that the spatial scale at which ECM species are distributed as mycelium may be very different from the spatial scale at which they are distributed as tips. PMID:24345261

  16. [Characteristics of arbuscular mycorrhizal fungal diversity and functions in saline-alkali land].

    PubMed

    Yang, Hai-xia; Guo, Shao-xia; Liu, Run-jin

    2015-01-01

    Arbuscular mycorrhizal (AM) fungi, widely distributing in various terrestrial ecosys- tems, are one of the important functional biotic components in soil habitats and play a vital role in improving soil evolution, maintaining soil health and sustainable productivity. Saline-alkali soil is a special habitat affecting plant growth and grain yield. Under the influence of a series of factors, such as human activities on the nature, S and N deposition, ozone, greenhouse effect, climate anomalies, and alien species invasions etc., soil salinization, biodiversity and functions of saline farmlands may be greatly affected, which could consequently influence agricultural production and the sustainable development of ecosystems. Followed by an introduction of the changing characteristics of saline soil area and the secondary salinization under the background of global changes, the present review mainly discussed the changing features of diversity and functions of AM fungi in saline habitats, summarized the factors influencing AM fungal diversity and functions, and the factors' changing characters under the global changes, in order to provide new ideas and ways in further elucidating the position, role and function of AM fungi in saline soil, and in strengthening saline farmland remediation in response to global changes. PMID:25985684

  17. Diversity-oriented combinatorial biosynthesis of benzenediol lactone scaffolds by subunit shuffling of fungal polyketide synthases

    PubMed Central

    Xu, Yuquan; Zhou, Tong; Zhang, Shuwei; Espinosa-Artiles, Patricia; Wang, Luoyi; Zhang, Wei; Lin, Min; Gunatilaka, A. A. Leslie; Zhan, Jixun; Molnár, István

    2014-01-01

    Combinatorial biosynthesis aspires to exploit the promiscuity of microbial anabolic pathways to engineer the synthesis of new chemical entities. Fungal benzenediol lactone (BDL) polyketides are important pharmacophores with wide-ranging bioactivities, including heat shock response and immune system modulatory effects. Their biosynthesis on a pair of sequentially acting iterative polyketide synthases (iPKSs) offers a test case for the modularization of secondary metabolic pathways into “build–couple–pair” combinatorial synthetic schemes. Expression of random pairs of iPKS subunits from four BDL model systems in a yeast heterologous host created a diverse library of BDL congeners, including a polyketide with an unnatural skeleton and heat shock response-inducing activity. Pairwise heterocombinations of the iPKS subunits also helped to illuminate the innate, idiosyncratic programming of these enzymes. Even in combinatorial contexts, these biosynthetic programs remained largely unchanged, so that the iPKSs built their cognate biosynthons, coupled these building blocks into chimeric polyketide intermediates, and catalyzed intramolecular pairing to release macrocycles or α-pyrones. However, some heterocombinations also provoked stuttering, i.e., the relaxation of iPKSs chain length control to assemble larger homologous products. The success of such a plug and play approach to biosynthesize novel chemical diversity bodes well for bioprospecting unnatural polyketides for drug discovery. PMID:25049383

  18. Fungal diversity in grape must and wine fermentation assessed by massive sequencing, quantitative PCR and DGGE

    PubMed Central

    Wang, Chunxiao; García-Fernández, David; Mas, Albert; Esteve-Zarzoso, Braulio

    2015-01-01

    The diversity of fungi in grape must and during wine fermentation was investigated in this study by culture-dependent and culture-independent techniques. Carignan and Grenache grapes were harvested from three vineyards in the Priorat region (Spain) in 2012, and nine samples were selected from the grape must after crushing and during wine fermentation. From culture-dependent techniques, 362 isolates were randomly selected and identified by 5.8S-ITS-RFLP and 26S-D1/D2 sequencing. Meanwhile, genomic DNA was extracted directly from the nine samples and analyzed by qPCR, DGGE and massive sequencing. The results indicated that grape must after crushing harbored a high species richness of fungi with Aspergillus tubingensis, Aureobasidium pullulans, or Starmerella bacillaris as the dominant species. As fermentation proceeded, the species richness decreased, and yeasts such as Hanseniaspora uvarum, Starmerella bacillaris and Saccharomyces cerevisiae successively occupied the must samples. The “terroir” characteristics of the fungus population are more related to the location of the vineyard than to grape variety. Sulfur dioxide treatment caused a low effect on yeast diversity by similarity analysis. Because of the existence of large population of fungi on grape berries, massive sequencing was more appropriate to understand the fungal community in grape must after crushing than the other techniques used in this study. Suitable target sequences and databases were necessary for accurate evaluation of the community and the identification of species by the 454 pyrosequencing of amplicons. PMID:26557110

  19. Genetic diversity and conservation in a small endangered horse population.

    PubMed

    Janova, Eva; Futas, Jan; Klumplerova, Marie; Putnova, Lenka; Vrtkova, Irena; Vyskocil, Mirko; Frolkova, Petra; Horin, Petr

    2013-08-01

    The Old Kladruber horses arose in the 17th century as a breed used for ceremonial purposes. Currently, grey and black coat colour varieties exist as two sub-populations with different recent breeding history. As the population underwent historical bottlenecks and intensive inbreeding, loss of genetic variation is considered as the major threat. Therefore, genetic diversity in neutral and non-neutral molecular markers was examined in the current nucleus population. Fifty microsatellites, 13 single nucleotide polymorphisms (SNPs) in immunity-related genes, three mutations in coat colour genes and one major histocompatibility (MHC-DRA) gene were studied for assessing genetic diversity after 15 years of conservation. The results were compared to values obtained in a similar study 13 years ago. The extent of genetic diversity of the current population was comparable to other breeds, despite its small size and isolation. The comparison between 1997 and 2010 did not show differences in the extent of genetic diversity and no loss of allele richness and/or heterozygosity was observed. Genetic differences identified between the black and grey sub-populations observed 13 years ago persisted. Deviations from the Hardy-Weinberg equilibrium found in 19 microsatellite loci and in five SNP loci are probably due to selective breeding. No differences between neutral and immunity-related markers were found. No changes in the frequencies of markers associated with two diseases, melanoma and insect bite hypersensitivity, were observed, due probably to the short interval of time between comparisons. It, thus, seems that, despite its small size, previous bottlenecks and inbreeding, the molecular variation of Old Kladruber horses is comparable to other horse breeds and that the current breeding policy does not compromise genetic variation of this endangered population. PMID:23649723

  20. Pyrosequencing-Derived Bacterial, Archaeal, and Fungal Diversity of Spacecraft Hardware Destined for Mars

    PubMed Central

    Vaishampayan, Parag; Nilsson, Henrik R.; Torok, Tamas; Venkateswaran, Kasthuri

    2012-01-01

    Spacecraft hardware and assembly cleanroom surfaces (233 m2 in total) were sampled, total genomic DNA was extracted, hypervariable regions of the 16S rRNA gene (bacteria and archaea) and ribosomal internal transcribed spacer (ITS) region (fungi) were subjected to 454 tag-encoded pyrosequencing PCR amplification, and 203,852 resulting high-quality sequences were analyzed. Bioinformatic analyses revealed correlations between operational taxonomic unit (OTU) abundance and certain sample characteristics, such as source (cleanroom floor, ground support equipment [GSE], or spacecraft hardware), cleaning regimen applied, and location about the facility or spacecraft. National Aeronautics and Space Administration (NASA) cleanroom floor and GSE surfaces gave rise to a larger number of diverse bacterial communities (619 OTU; 20 m2) than colocated spacecraft hardware (187 OTU; 162 m2). In contrast to the results of bacterial pyrosequencing, where at least some sequences were generated from each of the 31 sample sets examined, only 13 and 18 of these sample sets gave rise to archaeal and fungal sequences, respectively. As was the case for bacteria, the abundance of fungal OTU in the GSE surface samples dramatically diminished (9× less) once cleaning protocols had been applied. The presence of OTU representative of actinobacteria, deinococci, acidobacteria, firmicutes, and proteobacteria on spacecraft surfaces suggests that certain bacterial lineages persist even following rigorous quality control and cleaning practices. The majority of bacterial OTU observed as being recurrent belonged to actinobacteria and alphaproteobacteria, supporting the hypothesis that the measures of cleanliness exerted in spacecraft assembly cleanrooms (SAC) inadvertently select for the organisms which are the most fit to survive long journeys in space. PMID:22729532

  1. Higher fungal diversity is correlated with lower CO2 emissions from dead wood in a natural forest

    PubMed Central

    Yang, Chunyan; Schaefer, Douglas A.; Liu, Weijie; Popescu, Viorel D.; Yang, Chenxue; Wang, Xiaoyang; Wu, Chunying; Yu, Douglas W.

    2016-01-01

    Wood decomposition releases almost as much CO2 to the atmosphere as does fossil-fuel combustion, so the factors regulating wood decomposition can affect global carbon cycling. We used metabarcoding to estimate the fungal species diversities of naturally colonized decomposing wood in subtropical China and, for the first time, compared them to concurrent measures of CO2 emissions. Wood hosting more diverse fungal communities emitted less CO2, with Shannon diversity explaining 26 to 44% of emissions variation. Community analysis supports a ‘pure diversity’ effect of fungi on decomposition rates and thus suggests that interference competition is an underlying mechanism. Our findings extend the results of published experiments using low-diversity, laboratory-inoculated wood to a high-diversity, natural system. We hypothesize that high levels of saprotrophic fungal biodiversity could be providing globally important ecosystem services by maintaining dead-wood habitats and by slowing the atmospheric contribution of CO2 from the world’s stock of decomposing wood. However, large-scale surveys and controlled experimental tests in natural settings will be needed to test this hypothesis. PMID:27553882

  2. Mycorrhizal fungal diversity and community composition in a lithophytic and epiphytic orchid.

    PubMed

    Xing, Xiaoke; Gai, Xuege; Liu, Qiang; Hart, Miranda M; Guo, Shunxing

    2015-05-01

    Some orchid species are present as epiphytes and lithophytes in the same habitat, but little is known about the differences of their mycorrhizal fungal communities. We used Coelogyne viscosa, which occurs both as an epiphyte and a lithophyte, as a study system to investigate orchid mycorrhizal fungal communities in lithophytes and epiphytes in Xishuangbanna National Nature Reserve (Yunnan Province, China). Twenty-three fungal operational taxonomic units (OTUs) from 18 sampling sites were identified. Results indicated that mycorrhizal fungal community composition was different between epi- and lithophytes. When we analyzed the Tulasnellaceae and Sebacinales communities separately, we found that the Sebacinales fungal communities were significantly different in the two growth habitats, but the Tulasnellaceae fungal communities were not. Our results provide evidence for distinct orchid mycorrhiza fungal communities depending on the growth habitat of the orchid. Consistent with some recent investigations of mycorrhizal fungus community composition, this study suggests that for one orchid, growth habitat affects mycorrhizal symbioses. PMID:25319065

  3. Shrines in Central Italy conserve plant diversity and large trees.

    PubMed

    Frascaroli, Fabrizio; Bhagwat, Shonil; Guarino, Riccardo; Chiarucci, Alessandro; Schmid, Bernhard

    2016-05-01

    Sacred natural sites (SNS) are instances of biocultural landscapes protected for spiritual motives. These sites frequently host important biological values in areas of Asia and Africa, where traditional resource management is still upheld by local communities. In contrast, the biodiversity value of SNS has hardly been quantitatively tested in Western contexts, where customs and traditions have relatively lost importance due to modernization and secularization. To assess whether SNS in Western contexts retain value for biodiversity, we studied plant species composition at 30 SNS in Central Italy and compared them with a paired set of similar but not sacred reference sites. We demonstrate that SNS are important for conserving stands of large trees and habitat heterogeneity across different land-cover types. Further, SNS harbor higher plant species richness and a more valuable plant species pool, and significantly contribute to diversity at the landscape scale. We suggest that these patterns are related not only to pre-existent features, but also to traditional management. Conservation of SNS should take into account these specificities, and their cultural as well as biological values, by supporting the continuation of traditional management practices. PMID:26701326

  4. Detection and diversity of copper containing nitrite reductase genes (nirK) in prokaryotic and fungal communities of agricultural soils.

    PubMed

    Long, Andrew; Song, Bongkeun; Fridey, Kelly; Silva, Amy

    2015-02-01

    Microorganisms are capable of producing N2 and N2O gases as the end products of denitrification. Copper-containing nitrite reductase (NirK), a key enzyme in the microbial N-cycle, has been found in bacteria, archaea and fungi. This study seeks to assess the diversity of nirK genes in the prokaryotic and fungal communities of agricultural soils in the United States. New primers targeting the nirK genes in fungi were developed, while nirK genes in archaea and bacteria were detected using previously published methods. The new primers were able to detect fungal nirK genes as well as bacterial nirK genes from a group that could not be observed with previously published primers. Based on the sequence analyses from three different primer sets, five clades of nirK genes were identified, which were associated with soil archaea, ammonium-oxidizing bacteria, denitrifying bacteria and fungi. The diversity of nirK genes in the two denitrifying bacteria clades was higher than the diversity found in other clades. Using a newly designed primer set, this study showed the detection of fungal nirK genes from environmental samples. The newly designed PCR primers in this study enhance the ability to detect the diversity of nirK-encoding microorganisms in soils. PMID:25764542

  5. Taxa-area relationship and neutral dynamics influence the diversity of fungal communities on senesced tree leaves.

    PubMed

    Feinstein, Larry M; Blackwood, Christopher B

    2012-06-01

    This study utilized individual senesced sugar maple and beech leaves as natural sampling units within which to quantify saprotrophic fungal diversity. Quantifying communities in individual leaves allowed us to determine if fungi display a classic taxa-area relationship (species richness increasing with area). We found a significant taxa-area relationship for sugar maple leaves, but not beech leaves, consistent with Wright's species-energy theory. This suggests that energy availability as affected plant biochemistry is a key factor regulating the scaling relationships of fungal diversity. We also compared taxa rank abundance distributions to models associated with niche or neutral theories of community assembly, and tested the influence of leaf type as an environmental niche factor controlling fungal community composition. Among rank abundance distribution models, the zero-sum model derived from neutral theory showed the best fit to our data. Leaf type explained only 5% of the variability in community composition. Habitat (vernal pool, upland or riparian forest floor) and site of collection explained > 40%, but could be attributed to either niche or neutral processes. Hence, although niche dynamics may regulate fungal communities at the habitat scale, our evidence points towards neutral assembly of saprotrophic fungi on individual leaves, with energy availability constraining the taxa-area relationship. PMID:22489632

  6. Assessment of the fungal diversity and succession of ligninolytic endophytes in Camellia japonica leaves using clone library analysis.

    PubMed

    Hirose, Dai; Matsuoka, Shunsuke; Osono, Takashi

    2013-01-01

    Fungal assemblages in live, newly shed and partly decomposed leaves of Camellia japonica were investigated with a clone library analysis to assess the fungal diversity and succession in a subtropical forest in southern Japan. Partly decomposed leaves were divided into bleached and adjacent nonbleached portions to estimate the fungi functionally associated with lignin decomposition in the bleached portions, with an emphasis on Coccomyces sinensis (Rhytismataceae, Ascomycota). From 144 cloned 28S ribosomal DNA (rDNA) sequences, 48 operational taxonomic units (OTUs) were defined based on a sequence similarity threshold of 98%. Forty-one (85%) of the 48 OTUs belonged to the Ascomycota and seven OTUs (15%) to the Basidiomycota. Twenty-six OTUs (54%) were detected only once (singletons). The number of OTUs and the diversity indices of the fungal assemblages in the different leaves were in this order: live leaves > newly shed leaves > bleached portions > nonbleached portions of partly decomposed leaves. The fungal assemblages were similar in newly shed leaves and the bleached portions of partly decomposed leaves. Ligninolytic fungi of the genera Coccomyces, Lophodermium and Xylaria were frequently detected in the bleached portions. OTU3, identified as Coccomyces sinensis, was detected in live and newly shed leaves and the bleached portions of partly decomposed leaves, suggesting that this fungus latently infects live leaves, persists after leaf fall and takes part in lignin decomposition. PMID:23709486

  7. Nitrogen addition, not initial phylogenetic diversity, increases litter decomposition by fungal communities.

    PubMed

    Amend, Anthony S; Matulich, Kristin L; Martiny, Jennifer B H

    2015-01-01

    Fungi play a critical role in the degradation of organic matter. Because different combinations of fungi result in different rates of decomposition, determining how climate change will affect microbial composition and function is fundamental to predicting future environments. Fungal response to global change is patterned by genetic relatedness, resulting in communities with comparatively low phylogenetic diversity (PD). This may have important implications for the functional capacity of disturbed communities if lineages sensitive to disturbance also contain unique traits important for litter decomposition. Here we tested the relationship between PD and decomposition rates. Leaf litter fungi were isolated from the field and deployed in microcosms as mock communities along a gradient of initial PD, while species richness was held constant. Replicate communities were subject to nitrogen fertilization comparable to anthropogenic deposition levels. Carbon mineralization rates were measured over the course of 66 days. We found that nitrogen fertilization increased cumulative respiration by 24.8%, and that differences in respiration between fertilized and ambient communities diminished over the course of the experiment. Initial PD failed to predict respiration rates or their change in response to nitrogen fertilization, and there was no correlation between community similarity and respiration rates. Last, we detected no phylogenetic signal in the contributions of individual isolates to respiration rates. Our results suggest that the degree to which PD predicts ecosystem function will depend on environmental context. PMID:25741330

  8. Divergence Times and Phylogenetic Patterns of Sebacinales, a Highly Diverse and Widespread Fungal Lineage

    PubMed Central

    Garnica, Sigisfredo; Riess, Kai; Schön, Max E.; Oberwinkler, Franz; Setaro, Sabrina D.

    2016-01-01

    Patterns of geographic distribution and composition of fungal communities are still poorly understood. Widespread occurrence in terrestrial ecosystems and the unique richness of interactions of Sebacinales with plants make them a target group to study evolutionary events in the light of nutritional lifestyle. We inferred diversity patterns, phylogenetic structures and divergence times of Sebacinales with respect to their nutritional lifestyles by integrating data from fossil-calibrated phylogenetic analyses. Relaxed molecular clock analyses indicated that Sebacinales originated late Permian within Basidiomycota, and their split into Sebacinaceae and Serendipitaceae nom. prov. likely occurred during the late Jurassic and the early Cretaceous, coinciding with major diversifications of land plants. In Sebacinaceae, diversification of species with ectomycorrhizal lifestyle presumably started during the Paleocene. Lineage radiations of the core group of ericoid and cavendishioid mycorrhizal Sebacinales started probably in the Eocene, coinciding with diversification events of their hosts. The diversification of Sebacinales with jungermannioid interactions started during the Oligocene, and occurred much later than the diversification of their hosts. Sebacinales communities associated either with ectomycorrhizal plants, achlorophyllous orchids, ericoid and cavendishioid Ericaceae or liverworts were phylogenetically clustered and globally distributed. Major Sebacinales lineage diversifications started after the continents had drifted apart. We also briefly discuss dispersal patterns of extant Sebacinales. PMID:26938104

  9. Fungal diversity and natural occurrence of deoxynivalenol and zearalenone in freshly harvested wheat grains from Brazil.

    PubMed

    Tralamazza, Sabina Moser; Bemvenuti, Renata Heidtmann; Zorzete, Patrícia; de Souza Garcia, Fábio; Corrêa, Benedito

    2016-04-01

    This study investigated the fungal diversity and presence of deoxynivalenol and zearalenone in 150 samples of freshly harvested wheat grains collected in three regions of Brazil (Sao Paulo, Parana, and Rio Grande do Sul). Analysis of the mycobiota showed a predominance of Alternaria sp., Fusarium sp. and Epicoccum sp. Microdochium nivale (23%), a fungus rarely found in Brazilian crops, was detected in Sao Paulo. Four members of the Fusarium graminearum species complex were isolated: F. graminearum s.s. (37%), Fusarium meridionale (46%), Fusarium cortaderiae (13%), and Fusarium austroamericanum (3%). Toxin analysis revealed 99% contamination with deoxynivalenol (mean 706 μg/kg). The frequency of zearalenone varied greatly across regions: wheat grains from Rio Grande do Sul (84%) and Sao Paulo (12%) had median concentrations of 70.9 and 57.9 μg/kg, respectively. ZEA was not detected in the samples from Parana. A total of six samples were above the maximum tolerated level recommended by the European Commission for ZEA in wheat grains. This study provided new insights into the natural mycobiota of Brazilian wheat, demonstrating contamination of most samples with deoxynivalenol and high frequency of zearalenone in samples from Rio Grande do Sul. PMID:26593513

  10. Diversity of fungal endophytes in recent and ancient wheat ancestors Triticum dicoccoides and Aegilops sharonensis.

    PubMed

    Ofek-Lalzar, Maya; Gur, Yonatan; Ben-Moshe, Sapir; Sharon, Or; Kosman, Evsey; Mochli, Elad; Sharon, Amir

    2016-10-01

    Endophytes have profound impacts on plants, including beneficial effects on agriculturally important traits. We hypothesized that endophytes in wild plants include beneficial endophytes that are absent or underrepresented in domesticated crops. In this work, we studied the structure of endophyte communities in wheat-related grasses, Triticum dicoccoides and Aegilops sharonensis, and compared it to an endophyte community from wheat (T. aeastivum). Endophytes were isolated by cultivation and by cultivation-independent methods. In total, 514 intergenic spacer region sequences from single cultures were analyzed. Categorization at 97% sequence similarity resulted in 67 operational taxonomic units (OTUs) that were evenly distributed between the different plant species. A narrow core community of Alternaria spp. was found in all samples, but each plant species also contained a significant portion of unique endophytes. The cultivation-independent analysis identified a larger number of OTUs than the cultivation method, half of which were singletons or doubletons. For OTUs with a relative abundance >0.5%, similar numbers were obtained by both methods. Collectively, our data show that wild grass relatives of wheat contain a wealth of taxonomically diverse fungal endophytes that are not found in modern wheat, some of which belong to taxa with known beneficial effects. PMID:27402714

  11. Nitrogen addition, not initial phylogenetic diversity, increases litter decomposition by fungal communities

    PubMed Central

    Amend, Anthony S.; Matulich, Kristin L.; Martiny, Jennifer B. H.

    2015-01-01

    Fungi play a critical role in the degradation of organic matter. Because different combinations of fungi result in different rates of decomposition, determining how climate change will affect microbial composition and function is fundamental to predicting future environments. Fungal response to global change is patterned by genetic relatedness, resulting in communities with comparatively low phylogenetic diversity (PD). This may have important implications for the functional capacity of disturbed communities if lineages sensitive to disturbance also contain unique traits important for litter decomposition. Here we tested the relationship between PD and decomposition rates. Leaf litter fungi were isolated from the field and deployed in microcosms as mock communities along a gradient of initial PD, while species richness was held constant. Replicate communities were subject to nitrogen fertilization comparable to anthropogenic deposition levels. Carbon mineralization rates were measured over the course of 66 days. We found that nitrogen fertilization increased cumulative respiration by 24.8%, and that differences in respiration between fertilized and ambient communities diminished over the course of the experiment. Initial PD failed to predict respiration rates or their change in response to nitrogen fertilization, and there was no correlation between community similarity and respiration rates. Last, we detected no phylogenetic signal in the contributions of individual isolates to respiration rates. Our results suggest that the degree to which PD predicts ecosystem function will depend on environmental context. PMID:25741330

  12. Divergence Times and Phylogenetic Patterns of Sebacinales, a Highly Diverse and Widespread Fungal Lineage.

    PubMed

    Garnica, Sigisfredo; Riess, Kai; Schön, Max E; Oberwinkler, Franz; Setaro, Sabrina D

    2016-01-01

    Patterns of geographic distribution and composition of fungal communities are still poorly understood. Widespread occurrence in terrestrial ecosystems and the unique richness of interactions of Sebacinales with plants make them a target group to study evolutionary events in the light of nutritional lifestyle. We inferred diversity patterns, phylogenetic structures and divergence times of Sebacinales with respect to their nutritional lifestyles by integrating data from fossil-calibrated phylogenetic analyses. Relaxed molecular clock analyses indicated that Sebacinales originated late Permian within Basidiomycota, and their split into Sebacinaceae and Serendipitaceae nom. prov. likely occurred during the late Jurassic and the early Cretaceous, coinciding with major diversifications of land plants. In Sebacinaceae, diversification of species with ectomycorrhizal lifestyle presumably started during the Paleocene. Lineage radiations of the core group of ericoid and cavendishioid mycorrhizal Sebacinales started probably in the Eocene, coinciding with diversification events of their hosts. The diversification of Sebacinales with jungermannioid interactions started during the Oligocene, and occurred much later than the diversification of their hosts. Sebacinales communities associated either with ectomycorrhizal plants, achlorophyllous orchids, ericoid and cavendishioid Ericaceae or liverworts were phylogenetically clustered and globally distributed. Major Sebacinales lineage diversifications started after the continents had drifted apart. We also briefly discuss dispersal patterns of extant Sebacinales. PMID:26938104

  13. Higher diversity in fungal species discriminates children with type 1 diabetes mellitus from healthy control

    PubMed Central

    Kowalewska, Beata; Zorena, Katarzyna; Szmigiero-Kawko, Małgorzata; Wąż, Piotr; Myśliwiec, Małgorzata

    2016-01-01

    Objective To conduct qualitative and quantitative assessment of yeast-like fungi in the feces of children and adolescents with type 1 diabetes mellitus (T1DM) with respect to their metabolic control and duration of the disease. Materials and methods The studied materials included samples of fresh feces collected from 53 children and adolescents with T1DM. Control group included 30 age- and sex-matched healthy individuals. Medical history was taken and physical examination was conducted in the two study arms. Prevalence of the yeast-like fungi in the feces was determined as well as their amounts, species diversity, drug susceptibility, and enzymatic activity. Results The yeast-like fungi were found in the samples of feces from 75.4% of T1DM patients and 70% controls. In the group of T1DM patients, no correlation was found between age (Rs=0.253, P=0.068), duration of diabetes (Rs=−0.038, P=0.787), or body mass index (Rs=0.150, P=0.432) and the amount of the yeast-like fungi isolated in the feces. Moreover, no correlation was seen between the amount of the yeast-like fungi and glycated hemoglobin (Rs=0.0324, P=0.823), systolic blood pressure (Rs=0.102, P=0.483), or diastolic blood pressure (Rs=0.271, P=0.345). Conclusion Our research has shown that children and adolescents with T1DM show higher species diversity of the yeast-like fungi, with Candida albicans being significantly less prevalent versus control subjects. Moreover, fungal species in patients with T1DM turn out to be more resistant to antifungal treatment. PMID:27143864

  14. PCR primers to study the diversity of expressed fungal genes encoding lignocellulolytic enzymes in soils using high-throughput sequencing.

    PubMed

    Barbi, Florian; Bragalini, Claudia; Vallon, Laurent; Prudent, Elsa; Dubost, Audrey; Fraissinet-Tachet, Laurence; Marmeisse, Roland; Luis, Patricia

    2014-01-01

    Plant biomass degradation in soil is one of the key steps of carbon cycling in terrestrial ecosystems. Fungal saprotrophic communities play an essential role in this process by producing hydrolytic enzymes active on the main components of plant organic matter. Open questions in this field regard the diversity of the species involved, the major biochemical pathways implicated and how these are affected by external factors such as litter quality or climate changes. This can be tackled by environmental genomic approaches involving the systematic sequencing of key enzyme-coding gene families using soil-extracted RNA as material. Such an approach necessitates the design and evaluation of gene family-specific PCR primers producing sequence fragments compatible with high-throughput sequencing approaches. In the present study, we developed and evaluated PCR primers for the specific amplification of fungal CAZy Glycoside Hydrolase gene families GH5 (subfamily 5) and GH11 encoding endo-β-1,4-glucanases and endo-β-1,4-xylanases respectively as well as Basidiomycota class II peroxidases, corresponding to the CAZy Auxiliary Activity family 2 (AA2), active on lignin. These primers were experimentally validated using DNA extracted from a wide range of Ascomycota and Basidiomycota species including 27 with sequenced genomes. Along with the published primers for Glycoside Hydrolase GH7 encoding enzymes active on cellulose, the newly design primers were shown to be compatible with the Illumina MiSeq sequencing technology. Sequences obtained from RNA extracted from beech or spruce forest soils showed a high diversity and were uniformly distributed in gene trees featuring the global diversity of these gene families. This high-throughput sequencing approach using several degenerate primers constitutes a robust method, which allows the simultaneous characterization of the diversity of different fungal transcripts involved in plant organic matter degradation and may lead to the

  15. PCR Primers to Study the Diversity of Expressed Fungal Genes Encoding Lignocellulolytic Enzymes in Soils Using High-Throughput Sequencing

    PubMed Central

    Barbi, Florian; Bragalini, Claudia; Vallon, Laurent; Prudent, Elsa; Dubost, Audrey; Fraissinet-Tachet, Laurence; Marmeisse, Roland; Luis, Patricia

    2014-01-01

    Plant biomass degradation in soil is one of the key steps of carbon cycling in terrestrial ecosystems. Fungal saprotrophic communities play an essential role in this process by producing hydrolytic enzymes active on the main components of plant organic matter. Open questions in this field regard the diversity of the species involved, the major biochemical pathways implicated and how these are affected by external factors such as litter quality or climate changes. This can be tackled by environmental genomic approaches involving the systematic sequencing of key enzyme-coding gene families using soil-extracted RNA as material. Such an approach necessitates the design and evaluation of gene family-specific PCR primers producing sequence fragments compatible with high-throughput sequencing approaches. In the present study, we developed and evaluated PCR primers for the specific amplification of fungal CAZy Glycoside Hydrolase gene families GH5 (subfamily 5) and GH11 encoding endo-β-1,4-glucanases and endo-β-1,4-xylanases respectively as well as Basidiomycota class II peroxidases, corresponding to the CAZy Auxiliary Activity family 2 (AA2), active on lignin. These primers were experimentally validated using DNA extracted from a wide range of Ascomycota and Basidiomycota species including 27 with sequenced genomes. Along with the published primers for Glycoside Hydrolase GH7 encoding enzymes active on cellulose, the newly design primers were shown to be compatible with the Illumina MiSeq sequencing technology. Sequences obtained from RNA extracted from beech or spruce forest soils showed a high diversity and were uniformly distributed in gene trees featuring the global diversity of these gene families. This high-throughput sequencing approach using several degenerate primers constitutes a robust method, which allows the simultaneous characterization of the diversity of different fungal transcripts involved in plant organic matter degradation and may lead to the

  16. A comparison of the community diversity of foliar fungal endophytes between seedling and adult loblolly pines (Pinus taeda).

    PubMed

    Oono, Ryoko; Lefèvre, Emilie; Simha, Anita; Lutzoni, François

    2015-10-01

    Fungal endophytes represent one of the most ubiquitous plant symbionts on Earth and are phylogenetically diverse. The structure and diversity of endophyte communities have been shown to depend on host taxa and climate, but there have been relatively few studies exploring endophyte communities throughout host maturity. We compared foliar fungal endophyte communities between seedlings and adult trees of loblolly pines (Pinus taeda) at the same seasons and locations by culturing and culture-independent methods. We sequenced the internal transcribed spacer region and adjacent partial large subunit nuclear ribosomal RNA gene (ITS-LSU amplicon) to delimit operational taxonomic units and phylogenetically characterize the communities. Despite the lower infection frequency in seedlings compared to adult trees, seedling needles were receptive to a more diverse community of fungal endophytes. Culture-free method confirmed the presence of commonly cultured OTUs from adult needles but revealed several new OTUs from seedling needles that were not found with culturing methods. The two most commonly cultured OTUs in adults were rarely cultured from seedlings, suggesting that host age is correlated with a selective enrichment for specific endophytes. This shift in endophyte species dominance may be indicative of a functional change between these fungi and their loblolly pine hosts. PMID:26399186

  17. Fungal endophyte diversity in coffee plants from Colombia, Hawaii, Mexico and Puerto Rico

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A survey of fungal endophytes in coffee plants was conducted in Colombia, Hawaii, Mexico and Puerto Rico. Coffee plant sections were sterilized and fungal endophytes were isolated using standard techniques, followed by DNA extraction and sequencing of the internal transcribed spacer region (ITS) of...

  18. Detection and diversity of fungal nitric oxide reductase genes (p450nor) in agricultural soils

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Members of the Fungi convert nitrate (NO3-) and nitrite (NO2-) to gaseous nitrous oxide (N2O) (denitrification), but the fungal contributions to N-loss from soil remain uncertain. Cultivation-based methodologies that include antibiotics to selectively assess fungal activities have limitations and co...

  19. Diversity and Composition of Airborne Fungal Community Associated with Particulate Matters in Beijing during Haze and Non-haze Days

    PubMed Central

    Yan, Dong; Zhang, Tao; Su, Jing; Zhao, Li-Li; Wang, Hao; Fang, Xiao-Mei; Zhang, Yu-Qin; Liu, Hong-Yu; Yu, Li-Yan

    2016-01-01

    To assess the diversity and composition of airborne fungi associated with particulate matters (PMs) in Beijing, China, a total of 81 PM samples were collected, which were derived from PM2.5, PM10 fractions, and total suspended particles during haze and non-haze days. The airborne fungal community in these samples was analyzed using the Illumina Miseq platform with fungi-specific primers targeting the internal transcribed spacer 1 region of the large subunit rRNA gene. A total of 797,040 reads belonging to 1633 operational taxonomic units were observed. Of these, 1102 belonged to Ascomycota, 502 to Basidiomycota, 24 to Zygomycota, and 5 to Chytridiomycota. The dominant orders were Pleosporales (29.39%), Capnodiales (27.96%), Eurotiales (10.64%), and Hypocreales (9.01%). The dominant genera were Cladosporium, Alternaria, Fusarium, Penicillium, Sporisorium, and Aspergilus. Analysis of similarities revealed that both particulate matter sizes (R = 0.175, p = 0.001) and air quality levels (R = 0.076, p = 0.006) significantly affected the airborne fungal community composition. The relative abundance of many fungal genera was found to significantly differ among various PM types and air quality levels. Alternaria and Epicoccum were more abundant in total suspended particles samples, Aspergillus in heavy-haze days and PM2.5 samples, and Malassezia in PM2.5 samples and heavy-haze days. Canonical correspondence analysis and permutation tests showed that temperature (p < 0.01), NO2 (p < 0.01), PM10 (p < 0.01), SO2(p < 0.01), CO (p < 0.01), and relative humidity (p < 0.05) were significant factors that determine airborne fungal community composition. The results suggest that diverse airborne fungal communities are associated with particulate matters and may provide reliable data for studying the responses of human body to the increasing level of air pollution in Beijing. PMID:27148180

  20. Diversity and Composition of Airborne Fungal Community Associated with Particulate Matters in Beijing during Haze and Non-haze Days.

    PubMed

    Yan, Dong; Zhang, Tao; Su, Jing; Zhao, Li-Li; Wang, Hao; Fang, Xiao-Mei; Zhang, Yu-Qin; Liu, Hong-Yu; Yu, Li-Yan

    2016-01-01

    To assess the diversity and composition of airborne fungi associated with particulate matters (PMs) in Beijing, China, a total of 81 PM samples were collected, which were derived from PM2.5, PM10 fractions, and total suspended particles during haze and non-haze days. The airborne fungal community in these samples was analyzed using the Illumina Miseq platform with fungi-specific primers targeting the internal transcribed spacer 1 region of the large subunit rRNA gene. A total of 797,040 reads belonging to 1633 operational taxonomic units were observed. Of these, 1102 belonged to Ascomycota, 502 to Basidiomycota, 24 to Zygomycota, and 5 to Chytridiomycota. The dominant orders were Pleosporales (29.39%), Capnodiales (27.96%), Eurotiales (10.64%), and Hypocreales (9.01%). The dominant genera were Cladosporium, Alternaria, Fusarium, Penicillium, Sporisorium, and Aspergilus. Analysis of similarities revealed that both particulate matter sizes (R = 0.175, p = 0.001) and air quality levels (R = 0.076, p = 0.006) significantly affected the airborne fungal community composition. The relative abundance of many fungal genera was found to significantly differ among various PM types and air quality levels. Alternaria and Epicoccum were more abundant in total suspended particles samples, Aspergillus in heavy-haze days and PM2.5 samples, and Malassezia in PM2.5 samples and heavy-haze days. Canonical correspondence analysis and permutation tests showed that temperature (p < 0.01), NO2 (p < 0.01), PM10 (p < 0.01), SO2(p < 0.01), CO (p < 0.01), and relative humidity (p < 0.05) were significant factors that determine airborne fungal community composition. The results suggest that diverse airborne fungal communities are associated with particulate matters and may provide reliable data for studying the responses of human body to the increasing level of air pollution in Beijing. PMID:27148180

  1. Diverse ecological roles within fungal communities in decomposing logs of Picea abies.

    PubMed

    Ottosson, Elisabet; Kubartová, Ariana; Edman, Mattias; Jönsson, Mari; Lindhe, Anders; Stenlid, Jan; Dahlberg, Anders

    2015-03-01

    Fungal communities in Norway spruce (Picea abies) logs in two forests in Sweden were investigated by 454-sequence analyses and by examining the ecological roles of the detected taxa. We also investigated the relationship between fruit bodies and mycelia in wood and whether community assembly was affected by how the dead wood was formed. Fungal communities were highly variable in terms of phylogenetic composition and ecological roles: 1910 fungal operational taxonomic units (OTUs) were detected; 21% were identified to species level. In total, 58% of the OTUs were ascomycetes and 31% basidiomycetes. Of the 231 337 reads, 38% were ascomycetes and 60% basidiomycetes. Ecological roles were assigned to 35% of the OTUs, accounting for 62% of the reads. Wood-decaying fungi were the most common group; however, other saprotrophic, mycorrhizal, lichenized, parasitic and endophytic fungi were also common. Fungal communities in logs formed by stem breakage were different to those in logs originating from butt breakage or uprooting. DNA of specific species was detected in logs many years after the last recorded fungal fruiting. Combining taxonomic identification with knowledge of ecological roles may provide valuable insights into properties of fungal communities; however, precise ecological information about many fungal species is still lacking. PMID:25764460

  2. A unified approach to characterize and conserve adaptive and neutral genetic diversity in subdivided populations.

    PubMed

    Wellmann, Robin; Bennewitz, Jörn; Meuwissen, Theo H E

    2014-01-01

    As extinction of local domestic breeds and of isolated subpopulations of wild species continues, and the resources available for conservation programs are limited, prioritizing subpopulations for conservation is of high importance to halt the erosion of genetic diversity observed in endangered species. Current approaches usually only take neutral genetic diversity into account. However, adaptation of subpopulations to different environments also contributes to the diversity found in the species. This paper introduces two notions of adaptive variation. The adaptive diversity in a trait is the excess of variance found in genotypic values relative to the variance that would have been expected in the absence of selection. The adaptivity coverage of a set of subpopulations quantifies how well the subpopulations could adapt to a large range of environments within a limited time span. Additionally, genome-based notions of neutral diversities were obtained that correspond to well known pedigree-based definitions. The values of subpopulations for conservation of adaptivity coverage were compared with their conservation values for adaptive diversity and neutral diversities using simulated data. Conservation values for adaptive diversity and neutral diversities were only slightly correlated, but the values for conservation of adaptivity coverage showed a reasonable correlation with both kinds if the time span was chosen appropriately. Hence, maintaining adaptivity coverage is a promising approach to prioritize subpopulations for conservation decisions. PMID:25578300

  3. Examination of soil and cotton root-associated fungal and bacterial populations under conservation tillage management

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Background: Conservation tillage is common management practice utilized in the hopes of reducing soil erosion and increasing soil carbon. Additional evidence indicates that conservation tillage may lead to habitat improvement for soil microorganisms. Potential beneficial changes in rhizosphere bacte...

  4. Antibody to a conserved antigenic target is protective against diverse prokaryotic and eukaryotic pathogens.

    PubMed

    Cywes-Bentley, Colette; Skurnik, David; Zaidi, Tanweer; Roux, Damien; Deoliveira, Rosane B; Garrett, Wendy S; Lu, Xi; O'Malley, Jennifer; Kinzel, Kathryn; Zaidi, Tauqeer; Rey, Astrid; Perrin, Christophe; Fichorova, Raina N; Kayatani, Alexander K K; Maira-Litràn, Tomas; Gening, Marina L; Tsvetkov, Yury E; Nifantiev, Nikolay E; Bakaletz, Lauren O; Pelton, Stephen I; Golenbock, Douglas T; Pier, Gerald B

    2013-06-11

    Microbial capsular antigens are effective vaccines but are chemically and immunologically diverse, resulting in a major barrier to their use against multiple pathogens. A β-(1→6)-linked poly-N-acetyl-d-glucosamine (PNAG) surface capsule is synthesized by four proteins encoded in genetic loci designated intercellular adhesion in Staphylococcus aureus or polyglucosamine in selected Gram-negative bacterial pathogens. We report that many microbial pathogens lacking an identifiable intercellular adhesion or polyglucosamine locus produce PNAG, including Gram-positive, Gram-negative, and fungal pathogens, as well as protozoa, e.g., Trichomonas vaginalis, Plasmodium berghei, and sporozoites and blood-stage forms of Plasmodium falciparum. Natural antibody to PNAG is common in humans and animals and binds primarily to the highly acetylated glycoform of PNAG but is not protective against infection due to lack of deposition of complement opsonins. Polyclonal animal antibody raised to deacetylated glycoforms of PNAG and a fully human IgG1 monoclonal antibody that both bind to native and deacetylated glycoforms of PNAG mediated complement-dependent opsonic or bactericidal killing and protected mice against local and/or systemic infections by Streptococcus pyogenes, Streptococcus pneumoniae, Listeria monocytogenes, Neisseria meningitidis serogroup B, Candida albicans, and P. berghei ANKA, and against colonic pathology in a model of infectious colitis. PNAG is also a capsular polysaccharide for Neisseria gonorrhoeae and nontypable Hemophilus influenzae, and protects cells from environmental stress. Vaccination targeting PNAG could contribute to immunity against serious and diverse prokaryotic and eukaryotic pathogens, and the conserved production of PNAG suggests that it is a critical factor in microbial biology. PMID:23716675

  5. Dynamics of the diversity of fungal and Fusarium communities during continuous cropping of cucumber in the greenhouse.

    PubMed

    Zhou, Xingang; Wu, Fengzhi

    2012-05-01

    The continuous cropping of cucumber in the same potting soils may result in a reduction of yield and quality of the crop, a phenomenon described as soil sickness. The changes of soil microbial communities as affected by continuous cropping and the link between these changes and soil sickness of cucumber are still not clear. In the present study, cucumber was cropped in pots under greenhouse conditions for nine successive cropping cycles. Structures and sizes of rhizosphere fungal and Fusarium (Ascomycota, Fungi) communities, both ubiquitous and ecologically important in soils, were analysed with PCR-denaturing gradient gel electrophoresis and quantitative reverse transcription PCR, respectively. Cucumber showed retarded growth in the seventh cropping cycle. The RNA- and DNA-based fungal community structures derived from the same sample differed from each other, and the active soil fungal communities were more sensitive to continuous cropping. The RNA-based fungal and Fusarium community sizes were larger in the seventh cropping cycle than in the other cropping cycles. Overall, the findings of this study indicate that the population sizes rather than the diversity of fungi and Fusarium communities are linked to the soil sickness associated with cucumber cultivation. PMID:22273443

  6. Diversity and Distribution of Aquatic Fungal Communities in the Ny-Ålesund Region, Svalbard (High Arctic) : Aquatic Fungi in the Arctic.

    PubMed

    Zhang, Tao; Wang, Neng-Fei; Zhang, Yu-Qin; Liu, Hong-Yu; Yu, Li-Yan

    2016-04-01

    We assessed the diversity and distribution of fungi in 13 water samples collected from four aquatic environments (stream, pond, melting ice water, and estuary) in the Ny-Ålesund Region, Svalbard (High Arctic) using 454 pyrosequencing with fungi-specific primers targeting the internal transcribed spacer (ITS) region of the ribosomal rRNA gene. Aquatic fungal communities in this region showed high diversity, with a total of 43,061 reads belonging to 641 operational taxonomic units (OTUs) being found. Of these OTUs, 200 belonged to Ascomycota, 196 to Chytridiomycota, 120 to Basidiomycota, 13 to Glomeromycota, and 10 to early diverging fungal lineages (traditional Zygomycota), whereas 102 belonged to unknown fungi. The major orders were Helotiales, Eurotiales, and Pleosporales in Ascomycota; Chytridiales and Rhizophydiales in Chytridiomycota; and Leucosporidiales and Sporidiobolales in Basidiomycota. The common fungal genera Penicillium, Rhodotorula, Epicoccum, Glaciozyma, Holtermanniella, Betamyces, and Phoma were identified. Interestingly, the four aquatic environments in this region harbored different aquatic fungal communities. Salinity, conductivity, and temperature were important factors in determining the aquatic fungal diversity and community composition. The results suggest the presence of diverse fungal communities and a considerable number of potentially novel fungal species in Arctic aquatic environments, which can provide reliable data for studying the ecological and evolutionary responses of fungi to climate change in the Arctic ecosystem. PMID:26492897

  7. Impact of seasonal changes on fungal diversity of a semi-arid ecosystem revealed by 454 pyrosequencing.

    PubMed

    Vargas-Gastélum, Lluvia; Romero-Olivares, Adriana L; Escalante, Ana E; Rocha-Olivares, Axayácatl; Brizuela, Carlos; Riquelme, Meritxell

    2015-05-01

    Fungi play fundamental ecological roles in terrestrial ecosystems. However, their distribution and diversity remain poorly described in natural communities, particularly in arid and semi-arid ecosystems. In order to identify environmental factors determining fungal community structure in these systems, we assessed their diversity in conjunction with soil physicochemical characteristics in a semi-arid ecosystem in Baja California, Mexico, endemic for Coccidioidomycosis (Valley Fever). Two different microhabitats, burrows (influenced by rodent activity) and topsoil, were compared in winter and summer. Using a metagenomic approach, the ITS1 region of nuclear ribosomal DNA was used as barcode. A total of 1940 Operational Taxonomic Units (OTUs) were identified from 362 332 ITS1 sequences obtained by 454 pyrosequencing. Differences in fungal composition between seasons were clearly identified. Moreover, differences in composition between microhabitats were mainly correlated to significant differences in environmental factors, such as moisture and clay content in topsoil samples, and temperature and electrical conductivity in burrow samples. Overall, the fungal community structure (dominated by Ascomycota and Basidiomycota) was less variable between seasons in burrow than in topsoil samples. Coccidioides spp. went undetected by pyrosequencing. However, a nested PCR approach revealed its higher prevalence in burrows. PMID:25877341

  8. Effects of inter and intraspecific diversity and genetic divergence of aquatic fungal communities on leaf litter decomposition-a microcosm experiment.

    PubMed

    Andrade, Ricardo; Pascoal, Cláudia; Cássio, Fernanda

    2016-07-01

    Freshwater fungi play a key role in plant litter decomposition and have been used to investigate the relationships between biodiversity and ecosystem functioning in streams. Although there is evidence of positive effects of biodiversity on ecosystem processes, particularly on biomass produced, some studies have shown that neutral or negative effects may occur. We manipulated the composition and the number of species and genotypes in aquatic fungal assemblages creating different levels of genetic divergence to assess effects of fungal diversity on biomass produced and leaf decomposition. Generally, diversity effects on fungal biomass produced were positive, suggesting complementarity between species, but in assemblages with more species positive diversity effects were reduced. Genotype diversity and genetic divergence had net positive effects on leaf mass loss, but in assemblages with higher diversity leaf decomposition decreased. Our results highlight the importance of considering multiple biodiversity measures when investigating the relationship between biodiversity and ecosystem functioning. PMID:27183974

  9. Fungal diversity in adult date palm (Phoenix dactylifera L.) revealed by culture-dependent and culture-independent approaches*

    PubMed Central

    Ben Chobba, Ines; Elleuch, Amine; Ayadi, Imen; Khannous, Lamia; Namsi, Ahmed; Cerqueira, Frederique; Drira, Noureddine; Gharsallah, Néji; Vallaeys, Tatiana

    2013-01-01

    Endophytic flora plays a vital role in the colonization and survival of host plants, especially in harsh environments, such as arid regions. This flora may, however, contain pathogenic species responsible for various troublesome host diseases. The present study is aimed at investigating the diversity of both cultivable and non-cultivable endophytic fungal floras in the internal tissues (roots and leaves) of Tunisian date palm trees (Phoenix dactylifera). Accordingly, 13 isolates from both root and leaf samples, exhibiting distinct colony morphology, were selected from potato dextrose agar (PDA) medium and identified by a sequence match search wherein their 18S–28S internal transcribed spacer (ITS) sequences were compared to those available in public databases. These findings revealed that the cultivable root and leaf isolates fell into two groups, namely Nectriaceae and Pleosporaceae. Additionally, total DNA from palm roots and leaves was further extracted and ITS fragments were amplified. Restriction fragment length polymorphism (RFLP) analysis of the ITS from 200 fungal clones (leaves: 100; roots: 100) using HaeIII restriction enzyme revealed 13 distinct patterns that were further sequenced and led to the identification of Alternaria, Cladosporium, Davidiella (Cladosporium teleomorph), Pythium, Curvularia, and uncharacterized fungal endophytes. Both approaches confirmed that while the roots were predominantly colonized by Fusaria (members of the Nectriaceae family), the leaves were essentially colonized by Alternaria (members of the Pleosporaceae family). Overall, the findings of the present study constitute, to the authors’ knowledge, the first extensive report on the diversity of endophytic fungal flora associated with date palm trees (P. dactylifera). PMID:24302709

  10. Soil fungal community development in a high Arctic glacier foreland follows a directional replacement model, with a mid-successional diversity maximum

    PubMed Central

    Dong, Ke; Tripathi, Binu; Moroenyane, Itumeleng; Kim, Woosung; Li, Nan; Chu, Haiyan; Adams, Jonathan

    2016-01-01

    Directional replacement and directional non-replacement models are two alternative paradigms for community development in primary successional environments. The first model emphasizes turnover in species between early and late successional niches. The second emphasizes accumulation of additional diversity over time. To test whether the development of soil fungal communities in the foreland of an Arctic glacier conforms to either of these models, we collected samples from the Midtre Lovénbreen Glacier, Svalbard, along a soil successional series spanning >80 years. Soil DNA was extracted, and fungal ITS1 region was amplified and sequenced on an Illumina Miseq. There was a progressive change in community composition in the soil fungal community, with greatest fungal OTU richness in the Mid Stage (50–80 years). A nestedness analysis showed that the Early Stage (20–50 years) and the Late Stage (>80 years) fungal communities were nested within the Mid Stage communities. These results imply that fungal community development in this glacier succession follows a directional replacement model. Soil development processes may initially be important in facilitating arrival of additional fungal species, to give a mid-successional diversity maximum that contains both early- and late-successional fungi. Competition may then decrease the overall diversity due to the loss of early successional species. PMID:27240660

  11. Soil fungal community development in a high Arctic glacier foreland follows a directional replacement model, with a mid-successional diversity maximum.

    PubMed

    Dong, Ke; Tripathi, Binu; Moroenyane, Itumeleng; Kim, Woosung; Li, Nan; Chu, Haiyan; Adams, Jonathan

    2016-01-01

    Directional replacement and directional non-replacement models are two alternative paradigms for community development in primary successional environments. The first model emphasizes turnover in species between early and late successional niches. The second emphasizes accumulation of additional diversity over time. To test whether the development of soil fungal communities in the foreland of an Arctic glacier conforms to either of these models, we collected samples from the Midtre Lovénbreen Glacier, Svalbard, along a soil successional series spanning >80 years. Soil DNA was extracted, and fungal ITS1 region was amplified and sequenced on an Illumina Miseq. There was a progressive change in community composition in the soil fungal community, with greatest fungal OTU richness in the Mid Stage (50-80 years). A nestedness analysis showed that the Early Stage (20-50 years) and the Late Stage (>80 years) fungal communities were nested within the Mid Stage communities. These results imply that fungal community development in this glacier succession follows a directional replacement model. Soil development processes may initially be important in facilitating arrival of additional fungal species, to give a mid-successional diversity maximum that contains both early- and late-successional fungi. Competition may then decrease the overall diversity due to the loss of early successional species. PMID:27240660

  12. Modified culture method detects a high diversity of fungal species in cystic fibrosis patients.

    PubMed

    Masoud-Landgraf, Lilian; Badura, Alexandra; Eber, Ernst; Feierl, Gebhard; Marth, Egon; Buzina, Walter

    2014-02-01

    Cystic fibrosis (CF) is one of the most common genetic lung diseases worldwide. The production of sticky viscous mucus leads to enhanced bacterial colonization and infection, but yeasts and filamentous fungi are also found abundantly in the mucus of patients suffering from CF. The role of fungi in the airways of CF patients is still not understood completely. Furthermore, recent investigations have shown that the spectrum of fungi isolated from the airways of CF patients depends strongly on the methods used. In this study, different mycological culture methods were compared: culture with a native inoculum, culture with homogenization of CF sputum, and culture after homogenization and serial dilutions of CF sputum. Altogether, 934 sputum samples from 113 patients were examined from July 2009 through December 2011. A total of 1,744 fungal isolates was recovered; 20 different yeasts and 14 filamentous fungal species were identified. Candida albicans, C. dubliniensis, and C. parapsilosis were the most common species of yeast. For the filamentous fungi, Aspergillus fumigatus was the most common, followed by Scedosporium apiospermum/Pseudallescheria boydii group and A. terreus. Many fungal, species such as Exophiala dermatitidis, Rasamsonia (Geosmithia) argillacea, and others, were isolated only from homogenized sputum samples. The longitudinal data also show that fungal colonization of CF patients is quite stable, even when treated with itraconazole. In conclusion, we recommend homogenizing CF sputa with a mucolyticum, to prepare serial dilutions, and to use appropriate fungal culture media with added antibiotics. PMID:23651180

  13. A fungal conserved gene from the basidiomycete Hebeloma cylindrosporum is essential for efficient ectomycorrhiza formation.

    PubMed

    Doré, Jeanne; Marmeisse, Roland; Combier, Jean-Philippe; Gay, Gilles

    2014-10-01

    We used Agrobacterium-mediated insertional mutagenesis to identify genes in the ectomycorrhizal fungus Hebeloma cylindrosporum that are essential for efficient mycorrhiza formation. One of the mutants presented a dramatically reduced ability to form ectomycorrhizas when grown in the presence of Pinus pinaster. It failed to form mycorrhizas in the presence of glucose at 0.5 g liter(-1), a condition favorable for mycorrhiza formation by the wild-type strain. However, it formed few mycorrhizas when glucose was replaced by fructose or when glucose concentration was increased to 1 g liter(-1). Scanning electron microscopy examination of these mycorrhizas revealed that this mutant was unable to differentiate true fungal sheath and Hartig net. Molecular analyses showed that the single-copy disrupting T-DNA was integrated 6,884 bp downstream from the start codon, of an open reading frame potentially encoding a 3,096-amino-acid-long protein. This gene, which we named HcMycE1, has orthologs in numerous fungi as well as different other eukaryotic microorganisms. RNAi inactivation of HcMycE1 in the wild-type strain also led to a mycorrhizal defect, demonstrating that the nonmycorrhizal phenotype of the mutant was due to mutagenic T-DNA integration in HcMycE1. In the wild-type strain colonizing P. pinaster roots, HcMycE1 was transiently upregulated before symbiotic structure differentiation. Together with the inability of the mutant to differentiate these structures, this suggests that HcMycE1 plays a crucial role upstream of the fungal sheath and Hartig net differentiation. This study provides the first characterization of a fungal mutant altered in mycorrhizal ability. PMID:24918768

  14. The conformal supercurrents in diverse dimensions and conserved superconformal currents

    NASA Astrophysics Data System (ADS)

    Korovin, Yegor; Kuzenko, Sergei M.; Theisen, Stefan

    2016-05-01

    Given a conserved and traceless energy-momentum tensor and a conformal Killing vector, one obtains a conserved current. We generalise this construction to superconformal theories in three, four, five and six dimensions with various amounts of supersymmetry by working in the appropriate superspaces.

  15. Plant and Fungal Diversity in Gut Microbiota as Revealed by Molecular and Culture Investigations

    PubMed Central

    Gouba, Nina; Raoult, Didier; Drancourt, Michel

    2013-01-01

    Background Few studies describing eukaryotic communities in the human gut microbiota have been published. The objective of this study was to investigate comprehensively the repertoire of plant and fungal species in the gut microbiota of an obese patient. Methodology/Principal Findings A stool specimen was collected from a 27-year-old Caucasian woman with a body mass index of 48.9 who was living in Marseille, France. Plant and fungal species were identified using a PCR-based method incorporating 25 primer pairs specific for each eukaryotic phylum and universal eukaryotic primers targeting 18S rRNA, internal transcribed spacer (ITS) and a chloroplast gene. The PCR products amplified using these primers were cloned and sequenced. Three different culture media were used to isolate fungi, and these cultured fungi were further identified by ITS sequencing. A total of 37 eukaryotic species were identified, including a Diatoms (Blastocystis sp.) species, 18 plant species from the Streptophyta phylum and 18 fungal species from the Ascomycota, Basidiomycota and Chytridiocomycota phyla. Cultures yielded 16 fungal species, while PCR-sequencing identified 7 fungal species. Of these 7 species of fungi, 5 were also identified by culture. Twenty-one eukaryotic species were discovered for the first time in human gut microbiota, including 8 fungi (Aspergillus flavipes, Beauveria bassiana, Isaria farinosa, Penicillium brevicompactum, Penicillium dipodomyicola, Penicillium camemberti, Climacocystis sp. and Malassezia restricta). Many fungal species apparently originated from food, as did 11 plant species. However, four plant species (Atractylodes japonica, Fibraurea tinctoria, Angelica anomala, Mitella nuda) are used as medicinal plants. Conclusions/Significance Investigating the eukaryotic components of gut microbiota may help us to understand their role in human health. PMID:23555039

  16. AM fungal diversity and modularity reveal different trends in the mycorrhizal association with generalist and specialist plant species.

    NASA Astrophysics Data System (ADS)

    Torrecillas, Emma; del Mar Alguacil, Mª; Roldán, Antonio; Díaz, Gisela; Montesinos-Navarro, Alicia; Torres, Mª Pilar

    2013-04-01

    The plant communities present on gypsum soils include one of the most remarkable groups of edaphic "specialists", which coexist with edaphic "generalists". This study hypothesized that plant-arbuscular mycorrhizal fungi(AMF) associations can be related with specific functional plant strategies in gypsum soils.We analyzed, using network analysis, a plant-AMF mutualistic system in a gypsum environment, to characterize the plant-AMF interaction patterns according to their modularity or the tendency of species to be grouped into modules.Taking into account the total area studied (gypsum soil and marly-limestone soil), our results show that the factors determining the AM fungal community's distribution were soil type and plant species, with gypsovags harboring a different AM fungal community in gypsum and non-gypsum soils. But, there were no differences in the community diversity between specialist and generalist plants. Modularity analysis revealed that, when only gypsum soils are considered, there were some AM fungal groups with a tendency to interact differently with gypsophytes(specialists) and gypsovags (generalists).

  17. Fungal hemolysins

    PubMed Central

    Nayak, Ajay P.; Green, Brett J.; Beezhold, Donald H.

    2015-01-01

    Hemolysins are a class of proteins defined by their ability to lyse red cells but have been described to exhibit pleiotropic functions. These proteins have been extensively studied in bacteria and more recently in fungi. Within the last decade, a number of studies have characterized fungal hemolysins and revealed a fascinating yet diverse group of proteins. The purpose of this review is to provide a synopsis of the known fungal hemolysins with an emphasis on those belonging to the aegerolysin protein family. New insight and perspective into fungal hemolysins in biotechnology and health are additionally presented. PMID:22769586

  18. Fungal Endophytes of Alpinia officinarum Rhizomes: Insights on Diversity and Variation across Growth Years, Growth Sites, and the Inner Active Chemical Concentration

    PubMed Central

    Shubin, Li; Juan, Huang; RenChao, Zhou; ShiRu, Xu; YuanXiao, Jin

    2014-01-01

    In the present study, the terminal-restriction fragment length polymorphism (T-RFLP) technique, combined with the use of a clone library, was applied to assess the baseline diversity of fungal endophyte communities associated with rhizomes of Alpinia officinarum Hance, a medicinal plant with a long history of use. A total of 46 distinct T-RFLP fragment peaks were detected using HhaI or MspI mono-digestion-targeted, amplified fungal rDNA ITS sequences from A. officinarum rhizomes. Cloning and sequencing of representative sequences resulted in the detection of members of 10 fungal genera: Pestalotiopsis, Sebacina, Penicillium, Marasmius, Fusarium, Exserohilum, Mycoleptodiscus, Colletotrichum, Meyerozyma, and Scopulariopsis. The T-RFLP profiles revealed an influence of growth year of the host plant on fungal endophyte communities in rhizomes of this plant species; whereas, the geographic location where A. officinarum was grown contributed to only limited variation in the fungal endophyte communities of the host tissue. Furthermore, non-metric multidimensional scaling (NMDS) analysis across all of the rhizome samples showed that the fungal endophyte community assemblages in the rhizome samples could be grouped according to the presence of two types of active indicator chemicals: total volatile oils and galangin. Our present results, for the first time, address a diverse fungal endophyte community is able to internally colonize the rhizome tissue of A. officinarum. The diversity of the fungal endophytes found in the A. officinarum rhizome appeared to be closely correlated with the accumulation of active chemicals in the host plant tissue. The present study also provides the first systematic overview of the fungal endophyte communities in plant rhizome tissue using a culture-independent method. PMID:25536070

  19. Rich and cold: diversity, distribution and drivers of fungal communities in patterned-ground ecosystems of the North American Arctic.

    PubMed

    Timling, I; Walker, D A; Nusbaum, C; Lennon, N J; Taylor, D L

    2014-07-01

    Fungi are abundant and functionally important in the Arctic, yet comprehensive studies of their diversity in relation to geography and environment are not available. We sampled soils in paired plots along the North American Arctic Transect (NAAT), which spans all five bioclimatic subzones of the Arctic. Each pair of plots contrasted relatively bare, cryoturbated patterned-ground features (PGFs) and adjacent vegetated between patterned-ground features (bPGFs). Fungal communities were analysed via sequencing of 7834 ITS-LSU clones. We recorded 1834 OTUs - nearly half the fungal richness previously reported for the entire Arctic. These OTUs spanned eight phyla, 24 classes, 75 orders and 120 families, but were dominated by Ascomycota, with one-fifth belonging to lichens. Species richness did not decline with increasing latitude, although there was a decline in mycorrhizal taxa that was offset by an increase in lichen taxa. The dominant OTUs were widespread even beyond the Arctic, demonstrating no dispersal limitation. Yet fungal communities were distinct in each subzone and were correlated with soil pH, climate and vegetation. Communities in subzone E were distinct from the other subzones, but similar to those of the boreal forest. Fungal communities on disturbed PGFs differed significantly from those of paired stable areas in bPGFs. Indicator species for PGFs included lichens and saprotrophic fungi, while bPGFs were characterized by ectomycorrhizal and pathogenic fungi. Our results suggest that the Arctic does not host a unique mycoflora, while Arctic fungi are highly sensitive to climate and vegetation, with potential to migrate rapidly as global change unfolds. PMID:24689939

  20. Firing range soils yield a diverse array of fungal isolates capable of organic acid production and Pb mineral solubilization.

    PubMed

    Sullivan, Tarah S; Gottel, Neil R; Basta, Nicholas; Jardine, Philip M; Schadt, Christopher W

    2012-09-01

    Anthropogenic sources of lead contamination in soils include mining and smelting activities, effluents and wastes, agricultural pesticides, domestic garbage dumps, and shooting ranges. While Pb is typically considered relatively insoluble in the soil environment, some fungi may potentially contribute to mobilization of heavy metal cations by means of secretion of low-molecular-weight organic acids (LMWOAs). We sought to better understand the potential for metal mobilization within an indigenous fungal community at an abandoned shooting range in Oak Ridge, TN, where soil Pb contamination levels ranged from 24 to >2,700 mg Pb kg dry soil(-1). We utilized culture-based assays to determine organic acid secretion and Pb-carbonate dissolution of a diverse collection of soil fungal isolates derived from the site and verified isolate distribution patterns within the community by 28S rRNA gene analysis of whole soils. The fungal isolates examined included both ascomycetes and basidiomycetes that excreted high levels (up to 27 mM) of a mixture of LMWOAs, including oxalic and citric acids, and several isolates demonstrated a marked ability to dissolve Pb-carbonate at high concentrations up to 10.5 g liter(-1) (18.5 mM) in laboratory assays. Fungi within the indigenous community of these highly Pb-contaminated soils are capable of LMWOA secretion at levels greater than those of well-studied model organisms, such as Aspergillus niger. Additionally, these organisms were found in high relative abundance (>1%) in some of the most heavily contaminated soils. Our data highlight the need to understand more about autochthonous fungal communities at Pb-contaminated sites and how they may impact Pb biogeochemistry, solubility, and bioavailability, thus consequently potentially impacting human and ecosystem health. PMID:22729539

  1. Firing Range Soils Yield a Diverse Array of Fungal Isolates Capable of Organic Acid Production and Pb Mineral Solubilization

    PubMed Central

    Sullivan, Tarah S.; Gottel, Neil R.; Basta, Nicholas; Jardine, Philip M.

    2012-01-01

    Anthropogenic sources of lead contamination in soils include mining and smelting activities, effluents and wastes, agricultural pesticides, domestic garbage dumps, and shooting ranges. While Pb is typically considered relatively insoluble in the soil environment, some fungi may potentially contribute to mobilization of heavy metal cations by means of secretion of low-molecular-weight organic acids (LMWOAs). We sought to better understand the potential for metal mobilization within an indigenous fungal community at an abandoned shooting range in Oak Ridge, TN, where soil Pb contamination levels ranged from 24 to >2,700 mg Pb kg dry soil−1. We utilized culture-based assays to determine organic acid secretion and Pb-carbonate dissolution of a diverse collection of soil fungal isolates derived from the site and verified isolate distribution patterns within the community by 28S rRNA gene analysis of whole soils. The fungal isolates examined included both ascomycetes and basidiomycetes that excreted high levels (up to 27 mM) of a mixture of LMWOAs, including oxalic and citric acids, and several isolates demonstrated a marked ability to dissolve Pb-carbonate at high concentrations up to 10.5 g liter−1 (18.5 mM) in laboratory assays. Fungi within the indigenous community of these highly Pb-contaminated soils are capable of LMWOA secretion at levels greater than those of well-studied model organisms, such as Aspergillus niger. Additionally, these organisms were found in high relative abundance (>1%) in some of the most heavily contaminated soils. Our data highlight the need to understand more about autochthonous fungal communities at Pb-contaminated sites and how they may impact Pb biogeochemistry, solubility, and bioavailability, thus consequently potentially impacting human and ecosystem health. PMID:22729539

  2. Structural and functional diversity of soil bacterial and fungal communities following woody plant encroachment in the southern Great Plains

    SciTech Connect

    Hollister, Emily B; Schadt, Christopher Warren; Palumbo, Anthony Vito; Ansley, R J; Boutton, Thomas W

    2010-01-01

    In the southern Great Plains (USA), encroachment of grassland ecosystems by Prosopis glandulosa (honey mesquite) is widespread. Mesquite encroachment alters net primary productivity, enhances stores of C and N in plants and soil, and leads to increased levels of soil microbial biomass and activity. While mesquite's impact on the biogeochemistry of the region is well established, it effects on soil microbial diversity and function are unknown. In this study, soils associated with four plant types (C{sub 3} perennial grasses, C{sub 4} midgrasses, C{sub 4} shortgrasses, and mesquite) from a mesquite-encroached mixed grass prairie were surveyed to in an attempt to characterize the structure, diversity, and functional capacity of their soil microbial communities. rRNA gene cloning and sequencing were used in conjunction with the GeoChip functional gene array to evaluate these potential differences. Mesquite soil supported increased bacterial and fungal diversity and harbored a distinct fungal community relative to other plant types. Despite differences in composition and diversity, few significant differences were detected with respect to the potential functional capacity of the soil microbial communities. These results may suggest that a high level of functional redundancy exists within the bacterial portion of the soil communities; however, given the bias of the GeoChip toward bacterial functional genes, potential functional differences among soil fungi could not be addressed. The results of this study illustrate the linkages shared between above- and belowground communities and demonstrate that soil microbial communities, and in particular soil fungi, may be altered by the process of woody plant encroachment.

  3. Hidden Genetic Diversity in an Asexually Reproducing Lichen Forming Fungal Group

    PubMed Central

    Del-Prado, Ruth; Divakar, Pradeep Kumar; Lumbsch, H. Thorsten; Crespo, Ana M.

    2016-01-01

    Asexual species with vegetative propagation of both symbiont partners (soredia) in lichens may harbor lower species diversity because they may indeed represent evolutionary dead ends or clones. In this study we aim to critically examine species boundaries in the sorediate lichen forming fungi Parmotrema reticulatum–Parmotrema pseudoreticulatum complex applying coalescent-based approaches and other recently developed DNA-based methods. To this end, we gathered 180 samples from Africa, Asia, Australasia, Europe, North and South America and generated sequences of internal transcribed spacer of nuclear ribosomal DNA (ITS) and DNA replication licensing factor MCM7 (MCM7). The dataset was analysed using different approaches such as traditional phylogeny–maximum likelihood and Bayesian–genetic distances, automatic barcode gap discovery and coalescent-based methods–PTP, GMYC, spedeSTEM and *Beast–in order to test congruence among results. Additionally, the divergence times were also estimated to elucidate diversification events. Delimitations inferred from the different analyses are comparable with only minor differences, and following a conservative approach we propose that the sampled specimens of the P. reticulatum–P. pseudoreticulatum complex belong to at least eight distinct species-level lineages. Seven are currently classified under P. reticulatum and one as P. pseudoreticulatum. In this work we discuss one of only few examples of cryptic species that have so far been found in sorediate reproducing lichen forming fungi. Additionally our estimates suggest a recent origin of the species complex–during the Miocene. Consequently, the wide distribution of several of the cryptic species has to be explained by intercontinental long-distance dispersal events. PMID:27513649

  4. Hidden Genetic Diversity in an Asexually Reproducing Lichen Forming Fungal Group.

    PubMed

    Del-Prado, Ruth; Divakar, Pradeep Kumar; Lumbsch, H Thorsten; Crespo, Ana M

    2016-01-01

    Asexual species with vegetative propagation of both symbiont partners (soredia) in lichens may harbor lower species diversity because they may indeed represent evolutionary dead ends or clones. In this study we aim to critically examine species boundaries in the sorediate lichen forming fungi Parmotrema reticulatum-Parmotrema pseudoreticulatum complex applying coalescent-based approaches and other recently developed DNA-based methods. To this end, we gathered 180 samples from Africa, Asia, Australasia, Europe, North and South America and generated sequences of internal transcribed spacer of nuclear ribosomal DNA (ITS) and DNA replication licensing factor MCM7 (MCM7). The dataset was analysed using different approaches such as traditional phylogeny-maximum likelihood and Bayesian-genetic distances, automatic barcode gap discovery and coalescent-based methods-PTP, GMYC, spedeSTEM and *Beast-in order to test congruence among results. Additionally, the divergence times were also estimated to elucidate diversification events. Delimitations inferred from the different analyses are comparable with only minor differences, and following a conservative approach we propose that the sampled specimens of the P. reticulatum-P. pseudoreticulatum complex belong to at least eight distinct species-level lineages. Seven are currently classified under P. reticulatum and one as P. pseudoreticulatum. In this work we discuss one of only few examples of cryptic species that have so far been found in sorediate reproducing lichen forming fungi. Additionally our estimates suggest a recent origin of the species complex-during the Miocene. Consequently, the wide distribution of several of the cryptic species has to be explained by intercontinental long-distance dispersal events. PMID:27513649

  5. Global patterns of terrestrial vertebrate diversity and conservation.

    PubMed

    Jenkins, Clinton N; Pimm, Stuart L; Joppa, Lucas N

    2013-07-01

    Identifying priority areas for biodiversity is essential for directing conservation resources. Fundamentally, we must know where individual species live, which ones are vulnerable, where human actions threaten them, and their levels of protection. As conservation knowledge and threats change, we must reevaluate priorities. We mapped priority areas for vertebrates using newly updated data on >21,000 species of mammals, amphibians, and birds. For each taxon, we identified centers of richness for all species, small-ranged species, and threatened species listed with the International Union for the Conservation of Nature. Importantly, all analyses were at a spatial grain of 10 × 10 km, 100 times finer than previous assessments. This fine scale is a significant methodological improvement, because it brings mapping to scales comparable with regional decisions on where to place protected areas. We also mapped recent species discoveries, because they suggest where as-yet-unknown species might be living. To assess the protection of the priority areas, we calculated the percentage of priority areas within protected areas using the latest data from the World Database of Protected Areas, providing a snapshot of how well the planet's protected area system encompasses vertebrate biodiversity. Although the priority areas do have more protection than the global average, the level of protection still is insufficient given the importance of these areas for preventing vertebrate extinctions. We also found substantial differences between our identified vertebrate priorities and the leading map of global conservation priorities, the biodiversity hotspots. Our findings suggest a need to reassess the global allocation of conservation resources to reflect today's improved knowledge of biodiversity and conservation. PMID:23803854

  6. The Dilemma of Hiring Minorities and Conservative Resistance: The Diversity Game

    ERIC Educational Resources Information Center

    Antwi-Boasiako, Kwame Badu

    2008-01-01

    This paper defines affirmative action in the context of hiring practices in educational institutions and the public sector. It discusses discrimination, gender, equality, and conservative resistance to diversity programs. Cases are cited to illustrate the legal dilemmas of diversity in public and educational institutions. The monograph concludes…

  7. Defining conservation priorities for freshwater fishes according to taxonomic, functional, and phylogenetic diversity

    USGS Publications Warehouse

    Strecker, Angela; Olden, Julian D.; Whittier, Joanna B.; Paukert, Craig P.

    2011-01-01

    To date, the predominant use of systematic conservation planning has been to evaluate and conserve areas of high terrestrial biodiversity. Although studies in freshwater ecosystems have received recent attention, research has rarely considered the potential trade-offs between protecting different dimensions of biodiversity and the ecological processes that maintain diversity. We provide the first systematic prioritization for freshwaters (focusing on the highly threatened and globally distinct fish fauna of the Lower Colorado River Basin, USA) simultaneously considering scenarios of: taxonomic, functional, and phylogenetic diversity; contemporary threats to biodiversity (including interactions with nonnative species); and future climate change and human population growth. There was 75% congruence between areas of highest conservation priority for different aspects of biodiversity, suggesting that conservation efforts can concurrently achieve strong complementarity among all types of diversity. However, sizable fractions of the landscape were incongruent across conservation priorities for different diversity scenarios, underscoring the importance of considering multiple dimensions of biodiversity and highlighting catchments that contribute disproportionately to taxonomic, functional, and phylogenetic diversity in the region. Regions of projected human population growth were not concordant with conservation priorities; however, higher human population abundance will likely have indirect effects on native biodiversity by increasing demand for water. This will come in direct conflict with projected reductions in precipitation and warmer temperatures, which have substantial overlap with regions of high contemporary diversity. Native and endemic fishes in arid ecosystems are critically endangered by both current and future threats, but our results highlight the use of systematic conservation planning for the optimal allocation of limited resources that incorporates

  8. Defining conservation priorities for freshwater fishes according to taxonomic, functional, and phylogenetic diversity

    USGS Publications Warehouse

    Strecker, A.L.; Olden, J.D.; Whittier, Joanna B.; Paukert, C.P.

    2011-01-01

    To date, the predominant use of systematic conservation planning has been to evaluate and conserve areas of high terrestrial biodiversity. Although studies in freshwater ecosystems have received recent attention, research has rarely considered the potential tradeoffs between protecting different dimensions of biodiversity and the ecological processes that maintain diversity. We provide the first systematic prioritization for freshwaters (focusing on the highly threatened and globally distinct fish fauna of the Lower Colorado River Basin, USA) simultaneously considering scenarios of: taxonomic, functional, and phylogenetic diversity;contemporary threats to biodiversity (including interactions with nonnative species);and future climate change and human population growth. There was 75% congruence between areas of highest conservation priority for different aspects of biodiversity, suggesting that conservation efforts can concurrently achieve strong complementarity among all types of diversity. However, sizable fractions of the landscape were incongruent across conservation priorities for different diversity scenarios, underscoring the importance of considering multiple dimensions of biodiversity and highlighting catchments that contribute disproportionately to taxonomic, functional, and phylogenetic diversity in the region. Regions of projected human population growth were not concordant with conservation priorities;however, higher human population abundance will likely have indirect effects on native biodiversity by increasing demand for water. This will come in direct conflict with projected reductions in precipitation and warmer temperatures, which have substantial overlap with regions of high contemporary diversity. Native and endemic fishes in arid ecosystems are critically endangered by both current and future threats, but our results highlight the use of systematic conservation planning for the optimal allocation of limited resources that incorporates multiple

  9. Fungal diversity of saprotrophic litter fungi in a Mediterranean maquis environment.

    PubMed

    Lunghini, D; Granito, V M; Di Lonardo, D P; Maggi, O; Persiani, A M

    2013-01-01

    Monospecific and mixed-leaf litters from plant species of Mediterranean maquis (Quercus ilex, Phillyrea angustifolia, Pistacia lentiscus, Cistus spp.) in an undisturbed area in southern Italy were studied with respect to the structure and composition of their decomposer fungal community over an incubation period of 403 d. The data matrix structure was analyzed by means of detrended correspondence analysis (DCA), while indicator species analysis (ISA) was used to determine the preferential association of species with a substrate, a succession phase and monospecific/mixed experimental conditions. The ecological nature of the gradient expressed by the DCA axes was investigated by means of experimental and main chemical leaf-litter variables. The litter mixture had non-additive effects on the decomposition process even though the fungal species richness of the mixed litter was considerably higher than that of the monospecific litter. Our findings highlight the occurrence of shifts in the fungal community during decomposition in response to changes in the substrate, such as those related to the cellulose content and lignin/N ratio. PMID:23921238

  10. Fungal endophyte diversity and bioactivity in the Mediterranean cypress Cupressus sempervirens.

    PubMed

    Soltani, Jalal; Hosseyni Moghaddam, Mahdieh S

    2015-04-01

    Fungal endophytes were isolated from the Mediterranean cypress Cupressus sempervirens. Eleven taxa of fungi, all within the Ascomycota, were identified based on PCR amplification and sequencing of the internal transcribed spacer sequences of nuclear ribosomal DNA (ITS rDNA) with taxonomic identity assigned using the NCBI nucleotide megablast search tool. The endophytic fungi included Alternaria multiformis, Didymella sp., Phoma sp., Phoma herbarum, Pyrenochaeta sp. (Dothideomycetes), Penicillium brevicompactum, Talaromyces sp. (Eurotiomycetes), Ascorhizoctonia sp. (Pezizomycetes), Thielavia microspora, and Thielavia spp. (Sordariomycetes). Considering the former findings in US, this indicates that similar ascomycetous classes of fungi, all from Pezizomycotina, associate with the healthy Cupressaceous trees in Iran. The recovered endophytes produced antifungal and antiproliferative metabolites which may contribute to the protection and survival of the host. We speculate that endophyte-infected C. sempervirens may benefit from their fungal associates by their influence on the ecology and biotic stress tolerance of the host plant. Moreover, a novel niche for the identified fungal species is being introduced. PMID:25527365

  11. Native fungal endophytes suppress an exotic dominant and increase plant diversity over small and large spatial scales.

    PubMed

    Afkhami, Michelle E; Strauss, Sharon Y

    2016-05-01

    Understanding community dynamics and processes, such as the factors that generate and maintain biodiversity, drive succession, and affect invasion susceptibility, is a central goal in ecology and evolution. While most studies of how species interactions affect communities have focused on highly visible macroorganisms, we show that mutualistic microfungal endophytes have community-level effects across their host plant's range and provide the first example of fungal endophytes enhancing plant diversity. A three-year field study in which we experimentally manipulated endophyte abundance in a native Californian grass showed that despite their minute biomass, endophytes dramatically increased plant community diversity (~110% greater increase with endophytes) by suppressing a dominant invasive grass, Bromus diandrus. This effect was also detectable, but smaller, across five additional common gardens spanning ecologically diverse habitats, different climates, and > 400 km of the host grass' range as well as at microspatial scales within gardens. Our study illustrates that mutualistic microbes, while often hidden players, can have unexpectedly large ecological impacts across a wide range of habitats and scales and may be important for promoting diverse communities and ecosystems. PMID:27349093

  12. Waterfowl populations of conservation concern: learning from diverse challenges, models, and conservation strategies

    USGS Publications Warehouse

    Austin, Jane E.; Slattery, Stuart; Clark, Robert G.

    2014-01-01

    There are 30 threatened or endangered species of waterfowl worldwide, and several sub-populations are also threatened. Some of these species occur in North America, and others there are also of conservation concern due to declining population trends and their importance to hunters. Here we review conservation initiatives being undertaken for several of these latter species, along with conservation measures in place in Europe, to seek common themes and approaches that could be useful in developing broad conservation guidelines. While focal species may vary in their life histories, population threats and geopolitical context, most conservation efforts have used a systematic approach to understand factors limiting populations and o identify possible management or policy actions. This approach generally includes a priori identification of plausible hypotheses about population declines or status, incorporation of hypotheses into conceptual or quantitative planning models, and the use of some form of structured decision making and adaptive management to develop and implement conservation actions in the face of many uncertainties. A climate of collaboration among jurisdictions sharing these birds is important to the success of a conservation or management programme. The structured conservation approach exemplified herein provides an opportunity to involve stakeholders at all planning stages, allows for all views to be examined and incorporated into model structures, and yields a format for improved communication, cooperation and learning, which may ultimately be one of the greatest benefits of this strategy.

  13. A conserved interdomain communication pathway of pseudosymmetrically distributed residues affects substrate specificity of the fungal multidrug transporter Cdr1p.

    PubMed

    Kolaczkowski, Marcin; Sroda-Pomianek, Kamila; Kolaczkowska, Anna; Michalak, Krystyna

    2013-02-01

    Understanding the communication pathways between remote sites in proteins is of key importance for understanding their function and mechanism of action. These remain largely unexplored among the pleiotropic drug resistance (PDR) representatives of the ubiquitous superfamily of ATP-binding cassette (ABC) transporters. To identify functionally coupled residues important for the polyspecific transport by the fungal ABC multidrug transporter Cdr1p a new selection strategy, towards increased resistance to a preferred substrate of the homologous Snq2p, was applied to a library of randomly generated mutants. The single amino acid substitutions, located pseudosymmetrically in each domain of the internally duplicated protein: the H-loop of the N-terminal nucleotide binding domain (NBD1) (C363R) and in the C-terminal NBD2 region preceding Walker A (V885G). The central regions of the first transmembrane helices 1 and 7 of both transmembrane domains were also affected by the G521S/D and A1208V substitutions respectively. Although the mutants were expressed at a similar level and located correctly to the plasma membrane, they selectively affected transport of multiple drugs, including azole antifungals. The synergistic effects of combined mutations on drug resistance, drug dependent ATPase activity and transport support the view inferred from the statistical coupling analysis (SCA) of aminoacid coevolution and mutational analysis of other ABC transporter families that these residues are an important part of the conserved, allosterically coupled interdomain communication network. Our results shed new light on the communication between the pseudosymmetrically arranged domains in a fungal PDR ABC transporter and reveal its profound influence on substrate specificity. PMID:23122779

  14. Light Controls Growth and Development via a Conserved Pathway in the Fungal Kingdom

    PubMed Central

    2005-01-01

    Light inhibits mating and haploid fruiting of the human fungal pathogen Cryptococcus neoformans, but the mechanisms involved were unknown. Two genes controlling light responses were discovered through candidate gene and insertional mutagenesis approaches. Deletion of candidate genes encoding a predicted opsin or phytochrome had no effect on mating, while strains mutated in the white collar 1 homolog gene BWC1 mated equally well in the light or the dark. The predicted Bwc1 protein shares identity with Neurospora crassa WC-1, but lacks the zinc finger DNA binding domain. BWC1 regulates cell fusion and repression of hyphal development after fusion in response to blue light. In addition, bwc1 mutant strains are hypersensitive to ultraviolet light. To identify other components required for responses to light, a novel self-fertile haploid strain was created and subjected to Agrobacterium-mediated insertional mutagenesis. One UV-sensitive mutant that filaments equally well in the light and the dark was identified and found to have an insertion in the BWC2 gene, whose product is structurally similar to N. crassa WC-2. The C. neoformans Bwc1 and Bwc2 proteins interact in the yeast two-hybrid assay. Deletion of BWC1 or BWC2 reduces the virulence of C. neoformans in a murine model of infection; the Bwc1-Bwc2 system thus represents a novel protein complex that influences both development and virulence in a pathogenic fungus. These results demonstrate that a role for blue/UV light in controlling development is an ancient process that predates the divergence of the fungi into the ascomycete and basidiomycete phyla. PMID:15760278

  15. A comparison of fungal endophytic community diversity in tree leaves of rural and urban temperate forests of Kanto district, eastern Japan.

    PubMed

    Matsumura, Emi; Fukuda, Kenji

    2013-03-01

    To clarify the effects of forest fragmentation and a change in tree species composition following urbanization on endophytic fungal communities, we isolated fungal endophytes from the foliage of nine tree species in suburban (Kashiwa City, Chiba) and rural (Mt. Wagakuni, Ibaraki; Mt. Takao, Tokyo) forests and compared the fungal communities between sites and host tree species. Host specificity was evaluated using the index of host specificity (Si), and the number of isolated species, total isolation frequency, and the diversity index were calculated. From just one to several host-specific species were recognized in all host tree species at all sites. The total isolation frequency of all fungal species on Quercus myrsinaefolia, Quercus serrata, and Chamaecyparis obtusa and the total isolation frequency of host-specific species on Q. myrsinaefolia, Q. serrata, and Eurya japonica were significantly lower in Kashiwa than in the rural forests. The similarity indices (nonmetric multidimensional scaling (NMS) and CMH) of endophytic communities among different tree species were higher in Kashiwa, as many tree species shared the same fungal species in the suburban forest. Endophytic fungi with a broad host range were grouped into four clusters suggesting their preference for conifer/broadleaves and evergreen/deciduous trees. Forest fragmentation and isolation by urbanization have been shown to cause the decline of host-specific fungal species and a decrease in β diversity of endophytic communities, i.e., endophytic communities associated with tree leaves in suburban forests were found to be depauperate. PMID:23537876

  16. Phylogenetic Analysis of a Spontaneous Cocoa Bean Fermentation Metagenome Reveals New Insights into Its Bacterial and Fungal Community Diversity

    PubMed Central

    Illeghems, Koen; De Vuyst, Luc; Papalexandratou, Zoi; Weckx, Stefan

    2012-01-01

    This is the first report on the phylogenetic analysis of the community diversity of a single spontaneous cocoa bean box fermentation sample through a metagenomic approach involving 454 pyrosequencing. Several sequence-based and composition-based taxonomic profiling tools were used and evaluated to avoid software-dependent results and their outcome was validated by comparison with previously obtained culture-dependent and culture-independent data. Overall, this approach revealed a wider bacterial (mainly γ-Proteobacteria) and fungal diversity than previously found. Further, the use of a combination of different classification methods, in a software-independent way, helped to understand the actual composition of the microbial ecosystem under study. In addition, bacteriophage-related sequences were found. The bacterial diversity depended partially on the methods used, as composition-based methods predicted a wider diversity than sequence-based methods, and as classification methods based solely on phylogenetic marker genes predicted a more restricted diversity compared with methods that took all reads into account. The metagenomic sequencing analysis identified Hanseniaspora uvarum, Hanseniaspora opuntiae, Saccharomyces cerevisiae, Lactobacillus fermentum, and Acetobacter pasteurianus as the prevailing species. Also, the presence of occasional members of the cocoa bean fermentation process was revealed (such as Erwinia tasmaniensis, Lactobacillus brevis, Lactobacillus casei, Lactobacillus rhamnosus, Lactococcus lactis, Leuconostoc mesenteroides, and Oenococcus oeni). Furthermore, the sequence reads associated with viral communities were of a restricted diversity, dominated by Myoviridae and Siphoviridae, and reflecting Lactobacillus as the dominant host. To conclude, an accurate overview of all members of a cocoa bean fermentation process sample was revealed, indicating the superiority of metagenomic sequencing over previously used techniques. PMID:22666442

  17. Abundance and Diversity of Bacterial, Archaeal, and Fungal Communities Along an Altitudinal Gradient in Alpine Forest Soils: What Are the Driving Factors?

    PubMed

    Siles, José A; Margesin, Rosa

    2016-07-01

    Shifts in soil microbial communities over altitudinal gradients and the driving factors are poorly studied. Their elucidation is indispensable to gain a comprehensive understanding of the response of ecosystems to global climate change. Here, we investigated soil archaeal, bacterial, and fungal communities at four Alpine forest sites representing a climosequence, over an altitudinal gradient from 545 to 2000 m above sea level (asl), regarding abundance and diversity by using qPCR and Illumina sequencing, respectively. Archaeal community was dominated by Thaumarchaeota, and no significant shifts were detected in abundance or community composition with altitude. The relative bacterial abundance increased at higher altitudes, which was related to increasing levels of soil organic matter and nutrients with altitude. Shifts in bacterial richness and diversity as well as community structure (comprised basically of Proteobacteria, Acidobacteria, Actinobacteria, and Bacteroidetes) significantly correlated with several environmental and soil chemical factors, especially soil pH. The site at the lowest altitude harbored the highest bacterial richness and diversity, although richness/diversity community properties did not show a monotonic decrease along the gradient. The relative size of fungal community also increased with altitude and its composition comprised Ascomycota, Basidiomycota, and Zygomycota. Changes in fungal richness/diversity and community structure were mainly governed by pH and C/N, respectively. The variation of the predominant bacterial and fungal classes over the altitudinal gradient was the result of the environmental and soil chemical factors prevailing at each site. PMID:26961712

  18. Phylogenic diversity and tissue specificity of fungal endophytes associated with the pharmaceutical plant, Stellera chamaejasme L. revealed by a cultivation-independent approach.

    PubMed

    Jin, Hui; Yang, Xiaoyan; Lu, Dengxue; Li, Chunjie; Yan, Zhiqiang; Li, Xiuzhuang; Zeng, Liming; Qin, Bo

    2015-10-01

    The fungal endophytes associated with medicinal plants have been demonstrated as a reservoir with novel natural products useful in medicine and agriculture. It is desirable to explore the species composition, diversity and tissue specificity of endophytic fungi that inhabit in different tissues of medicinal plants. In this study, a culture-independent survey of fungal diversity in the rhizosphere, leaves, stems and roots of a toxic medicinal plant, Stellera chamaejasme L., was conducted by sequence analysis of clone libraries of the partial internal transcribed spacer region. Altogether, 145 fungal OTUs (operational taxonomic units), represented by 464 sequences, were found in four samples, of these 109 OTUs (75.2 %) belonging to Ascomycota, 20 (13.8 %) to Basidiomycota, 14 (9.7 %) to Zygomycota, 1 (0.7 %) to Chytridiomycota, and 1 (0.7 %) to Glomeromycota. The richness and diversity of fungal communities were strongly influenced by plant tissue environments, and the roots are associated with a surprisingly rich endophyte community. The endophyte assemblages associated with S. chamaejasme were strongly shaped by plant tissue environments, and exhibited a certain degree of tissue specificity. Our results suggested that a wide variety of fungal assemblages inhabit in S. chamaejasme, and plant tissue environments conspicuously influence endophyte community structure. PMID:26194722

  19. Fungal spore content of the atmosphere of the Cave of Nerja (southern Spain): diversity and origin.

    PubMed

    Docampo, Silvia; Trigo, M Mar; Recio, Marta; Melgar, Marta; García-Sánchez, José; Cabezudo, Baltasar

    2011-01-15

    Fungal spores are of great interest in aerobiology and allergy due to their high incidence in both outdoor and indoor environments and their widely recognized ability to cause respiratory diseases and other pathologies. In this work, we study the spore content of the atmosphere of the Cave of Nerja, a karstic cavity and an important tourist attraction situated on the eastern coast of Malaga (southern Spain), which receives more than half a million visitors every year. This study was carried out over an uninterrupted period of 4 years (2002-2005) with the aid of two Hirst-type volumetric pollen traps (Lanzoni VPPS 2000) situated in different halls of the cave. In the atmosphere of the Cave of Nerja, 72 different spore types were detected during the studied period and daily mean concentrations of up to 282,195 spores/m(3) were reached. Thirty-five of the spore types detected are included within Ascomycota and Basidiomycota (19 and 16 types, respectively). Of the remaining spore types, 32 were categorized within the group of so-called imperfect fungi, while Oomycota and Myxomycota were represented by 2 and 3 spore types, respectively. Aspergillus/Penicillium was the most abundant spore type with a yearly mean percentage that represented 50% of the total, followed by Cladosporium. Finally, the origin of the fungal spores found inside the cave is discussed on the basis of the indoor/outdoor concentrations and the seasonal behaviour observed. PMID:21138779

  20. Plant diversity and conservation in China: planning a strategic bioresource for a sustainable future.

    PubMed

    Huang, Hongwen

    2011-01-01

    China is one of the richest countries for plant diversity with approximately 33 000 vascular plant species, ranking second in the world. However, the plant diversity in China is increasingly threatened, with an estimated 4000–5000 plant species being threatened or on the verge of extinction, making China, proportionally, one of the highest priorities for global plant biodiversity conservation. Coming in the face of the current ecological crisis, it is timely that China has launched China's Strategy for Plant Conservation (CSPC). China has increasingly recognized the importance of plant diversity in efforts to conserve and sustainably use its plant diversity. More than 3000 nature reserves have been established, covering approximately 16% of the land surface of China. These natural reserves play important roles in plant conservation, covering more than 85% of types of terrestrial natural ecosystems, 40% of types of natural wetlands, 20% of native forests and 65% of natural communities of vascular plants. Meanwhile, the flora conserved in botanical gardens is also extensive. A recent survey shows that the 10 largest botanical gardens have living collections of 43 502 taxa, with a total of 24 667 species in ex situ conservation. These provide an important reserve of plant resources for sustainable economic and social development in China. Plant diversity is the basis for bioresources and sustainable utilization. The 21st century is predicted to be an era of bio-economy driven by advances of bioscience and biotechnology. Bio-economy may become the fourth economy form after agricultural, industrial, and information and information technology economies, having far-reaching impacts on sustainable development in agriculture, forestry, environmental protection, light industry, food supply and health care and other micro-economy aspects. Thus, a strategic and forward vision for conservation of plant diversity and sustainable use of plant resources in the 21st century is of

  1. The Bacterial and Fungal Diversity of an Aged PAH- and Heavy Metal-Contaminated Soil is Affected by Plant Cover and Edaphic Parameters.

    PubMed

    Bourceret, Amélia; Cébron, Aurélie; Tisserant, Emilie; Poupin, Pascal; Bauda, Pascale; Beguiristain, Thierry; Leyval, Corinne

    2016-04-01

    Industrial wasteland soils with aged PAH and heavy metal contaminations are environments where pollutant toxicity has been maintained for decades. Although the communities may be well adapted to the presence of stressors, knowledge about microbial diversity in such soils is scarce. Soil microbial community dynamics can be driven by the presence of plants, but the impact of plant development on selection or diversification of microorganisms in these soils has not been established yet. To test these hypotheses, aged-contaminated soil samples from a field trial were collected. Plots planted with alfalfa were compared to bare soil plots, and bacterial and fungal diversity and abundance were assessed after 2 and 6 years. Using pyrosequencing of 16S rRNA gene and ITS amplicons, we showed that the bacterial community was dominated by Proteobacteria, Actinobacteria, and Bacteroidetes and was characterized by low Acidobacteria abundance, while the fungal community was mainly represented by members of the Ascomycota. The short-term toxic impact of pollutants usually reduces the microbial diversity, yet in our samples bacterial and fungal species richness and diversity was high suggesting that the community structure and diversity adapted to the contaminated soil over decades. The presence of plants induced higher bacterial and fungal diversity than in bare soil. It also increased the relative abundance of bacterial members of the Actinomycetales, Rhizobiales, and Xanthomonadales orders and of most fungal orders. Multivariate analysis showed correlations between microbial community structure and heavy metal and PAH concentrations over time, but also with edaphic parameters (C/N, pH, phosphorus, and nitrogen concentrations). PMID:26440298

  2. Conservation phylogeography: does historical diversity contribute to regional vulnerability in European tree frogs (Hyla arborea)?

    PubMed

    Dufresnes, Christophe; Wassef, Jérôme; Ghali, Karim; Brelsford, Alan; Stöck, Matthias; Lymberakis, Petros; Crnobrnja-Isailovic, Jelka; Perrin, Nicolas

    2013-11-01

    Documenting and preserving the genetic diversity of populations, which conditions their long-term survival, have become a major issue in conservation biology. The loss of diversity often documented in declining populations is usually assumed to result from human disturbances; however, historical biogeographic events, otherwise known to strongly impact diversity, are rarely considered in this context. We apply a multilocus phylogeographic study to investigate the late-Quaternary history of a tree frog (Hyla arborea) with declining populations in the northern and western part of its distribution range. Mitochondrial and nuclear polymorphisms reveal high genetic diversity in the Balkan Peninsula, with a spatial structure moulded by the last glaciations. While two of the main refugial lineages remained limited to the Balkans (Adriatic coast, southern Balkans), a third one expanded to recolonize Northern and Western Europe, loosing much of its diversity in the process. Our findings show that mobile and a priori homogeneous taxa may also display substructure within glacial refugia ('refugia within refugia') and emphasize the importance of the Balkans as a major European biodiversity centre. Moreover, the distribution of diversity roughly coincides with regional conservation situations, consistent with the idea that historically impoverished genetic diversity may interact with anthropogenic disturbances, and increase the vulnerability of populations. Phylogeographic models seem important to fully appreciate the risks of local declines and inform conservation strategies. PMID:24102652

  3. Nematode Hsp90: highly conserved but functionally diverse.

    PubMed

    Gillan, Victoria; Devaney, Eileen

    2014-08-01

    Nematodes are amongst the most successful and abundant organisms on the planet with approximately 30 000 species described, although the actual number of species is estimated to be one million or more. Despite sharing a relatively simple and invariant body plan, there is considerable diversity within the phylum. Nematodes have evolved to colonize most ecological niches, and can be free-living or can parasitize plants or animals to the detriment of the host organism. In this review we consider the role of heat shock protein 90 (Hsp90) in the nematode life cycle. We describe studies on Hsp90 in the free-living nematode Caenorhabditis elegans and comparative work on the parasitic species Brugia pahangi, and consider whether a dependence upon Hsp90 can be exploited for the control of parasitic species. PMID:24721950

  4. Fungal diversity and ecosystem function data from wine fermentation vats and microcosms.

    PubMed

    Boynton, Primrose J; Greig, Duncan

    2016-09-01

    Grape must is the precursor to wine, and consists of grape juice and its resident microbial community. We used Illumina MiSeq® to track changes in must fungal community composition over time in winery vats and laboratory microcosms. We also measured glucose consumption and biomass in microcosms derived directly from must, and glucose consumption in artificially assembled microcosms. Functional impacts of individual must yeasts in artificially assembled communities were calculated using a "keystone index," developed for "Species richness influences wine ecosystem function through a dominant species" [1]. Community composition data and functional measurements are included in this article. DNA sequences were deposited in GenBank (GenBank: SRP073276). Discussion of must succession and ecosystem functioning in must are provided in [1]. PMID:27331092

  5. Isolation, structure, and HIV-1-integrase inhibitory activity of structurally diverse fungal metabolites.

    PubMed

    Singh, Sheo B; Jayasuriya, Hiranthi; Dewey, Raymond; Polishook, Jon D; Dombrowski, Anne W; Zink, Deborah L; Guan, Ziqiang; Collado, Javier; Platas, Gonzalo; Pelaez, Fernando; Felock, Peter J; Hazuda, Daria J

    2003-12-01

    HIV-1 integrase is a critical enzyme for replication of HIV, and its inhibition is one of the most promising new drug strategies for anti-retroviral therapy, with potentially significant advantages over existing therapies. In this report, a series of HIV-1 inhibitors isolated from the organic extract of fermentations from terrestrial fungi is described. These fungal species, belonging to a variety of genera, were collected from throughout the world following the strict guidelines of Rio Convention on Biodiversity. The polyketide- and terpenoid-derived inhibitors are represented by two naphthoquinones, a biphenyl and two triphenyls, a benzophenone, four aromatics with or without catechol units, a linear aliphatic terpenoid, a diterpenoid, and a sesterterpenoid. These compounds inhibited the coupled and strand-transfer reaction of HIV-1 integrase with an IC(50) value of 0.5-120 micro M. The bioassay-directed isolation, structure elucidation, and HIV-1 inhibitory activity of these compounds are described. PMID:14714192

  6. Distribution, diversity and bioprospecting of bioactive compounds from cryptic fungal communities associated with endemic and cold-adapted macroalgae in Antarctica

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We surveyed the distribution and diversity of fungi associated with eight macroalgae from Antarctica and their capability to produce bioactive compounds. The collections yielded 148 fungal isolates identified using molecular methods into 21 genera and 43 species. The most frequent taxa were Geomyces...

  7. Genetic diversity of Swiss sheep breeds in the focus of conservation research.

    PubMed

    Glowatzki-Mullis, M-L; Muntwyler, J; Bäumle, E; Gaillard, C

    2009-04-01

    There is constant pressure to improve evaluation of animal genetic resources in order to prevent their erosion. Maintaining the integrity of livestock species as well as their genetic diversity is of paramount interest for long-term agricultural policies. One major use of DNA techniques in conservation is to reveal genetic diversity within and between populations. Forty-one microsatellites were analysed to assess genetic diversity in nine Swiss sheep breeds and to measure the loss of the overall diversity when one breed would become extinct. The expected heterozygosities varied from 0.65 to 0.74 and 10.8% of the total genetic diversity can be explained by the variation among breeds. Based on the proportion of shared alleles, each of the nine breeds were clearly defined in their own cluster in the neighbour-joining tree describing the relationships among the breeds. Bayesian clustering methods assign individuals to groups based on their genetic similarity and infer the number of populations. In STRUCTURE, this approach pooled the Valais Blacknose and the Valais Red. With BAPS method the two Valais sheep breeds could be separated. Caballero & Toro approach (2002) was used to calculate the loss or gain of genetic diversity when each of the breeds would be removed from the set. The changes in diversity based on between-breed variation ranged from -12.2% (Valais Blacknose) to 0% (Swiss Black Brown Mountain and Mirror Sheep); based on within-breed diversity the removal of a breed could also produce an increase in diversity (-0.6% to + 0.6%). Allelic richness ranged from 4.9 (Valais Red) to 6.7 (Brown Headed Meat sheep and Red Engadine Sheep). Breed conservation decisions cannot be limited to genetic diversity alone. In Switzerland, conservation goals are embedded in the desire to carry the cultural legacy over to future generations. PMID:19320774

  8. Genome-Wide Identification of Mitogen-Activated Protein Kinase Gene Family across Fungal Lineage Shows Presence of Novel and Diverse Activation Loop Motifs

    PubMed Central

    Mohanta, Tapan Kumar; Mohanta, Nibedita; Parida, Pratap; Panda, Sujogya Kumar; Ponpandian, Lakshmi Narayanan; Bae, Hanhong

    2016-01-01

    The mitogen-activated protein kinase (MAPK) is characterized by the presence of the T-E-Y, T-D-Y, and T-G-Y motifs in its activation loop region and plays a significant role in regulating diverse cellular responses in eukaryotic organisms. Availability of large-scale genome data in the fungal kingdom encouraged us to identify and analyse the fungal MAPK gene family consisting of 173 fungal species. The analysis of the MAPK gene family resulted in the discovery of several novel activation loop motifs (T-T-Y, T-I-Y, T-N-Y, T-H-Y, T-S-Y, K-G-Y, T-Q-Y, S-E-Y and S-D-Y) in fungal MAPKs. The phylogenetic analysis suggests that fungal MAPKs are non-polymorphic, had evolved from their common ancestors around 1500 million years ago, and are distantly related to plant MAPKs. We are the first to report the presence of nine novel activation loop motifs in fungal MAPKs. The specificity of the activation loop motif plays a significant role in controlling different growth and stress related pathways in fungi. Hence, the presences of these nine novel activation loop motifs in fungi are of special interest. PMID:26918378

  9. The Tree versus the Forest: The Fungal Tree of Life and the Topological Diversity within the Yeast Phylome

    PubMed Central

    Marcet-Houben, Marina; Gabaldón, Toni

    2009-01-01

    A recurrent topic in phylogenomics is the combination of various sequence alignments to reconstruct a tree that describes the evolutionary relationships within a group of species. However, such approach has been criticized for not being able to properly represent the topological diversity found among gene trees. To evaluate the representativeness of species trees based on concatenated alignments, we reconstruct several fungal species trees and compare them with the complete collection of phylogenies of genes encoded in the Saccharomyces cerevisiae genome. We found that, despite high levels of among-gene topological variation, the species trees do represent widely supported phylogenetic relationships. Most topological discrepancies between gene and species trees are concentrated in certain conflicting nodes. We propose to map such information on the species tree so that it accounts for the levels of congruence across the genome. We identified the lack of sufficient accuracy of current alignment and phylogenetic methods as an important source for the topological diversity encountered among gene trees. Finally, we discuss the implications of the high levels of topological variation for phylogeny-based orthology prediction strategies. PMID:19190756

  10. Next generation sequencing to define prokaryotic and fungal diversity in the bovine rumen

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A combination of Sanger and 454 sequences of small subunit rRNA loci were used to interrogate the microbial diversity in the bovine rumen of 14 pasture-fed animals. The observed bacterial species richness, based on the V1-V3 region of the 15S rRNA gene, was between 1902 to 2596 species-level operati...

  11. Maize Leaf Epiphytic Bacteria Diversity Patterns Are Genetically Correlated with Resistance to Fungal Pathogen Infection

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Plant leaves host a specific set of microbial epiphytes. These phyllosphere organisms form a large community, with annual crops alone covering millions of hectares each year. Host plant genetic factors and abiotic stresses such as UV-B are key in shaping patterns of epiphyte diversity; we analyzed...

  12. The price of conserving avian phylogenetic diversity: a global prioritization approach.

    PubMed

    Nunes, Laura A; Turvey, Samuel T; Rosindell, James

    2015-02-19

    The combination of rapid biodiversity loss and limited funds available for conservation represents a major global concern. While there are many approaches for conservation prioritization, few are framed as financial optimization problems. We use recently published avian data to conduct a global analysis of the financial resources required to conserve different quantities of phylogenetic diversity (PD). We introduce a new prioritization metric (ADEPD) that After Downlisting a species gives the Expected Phylogenetic Diversity at some future time. Unlike other metrics, ADEPD considers the benefits to future PD associated with downlisting a species (e.g. moving from Endangered to Vulnerable in the International Union for Conservation of Nature Red List). Combining ADEPD scores with data on the financial cost of downlisting different species provides a cost-benefit prioritization approach for conservation. We find that under worst-case spending $3915 can save 1 year of PD, while under optimal spending $1 can preserve over 16.7 years of PD. We find that current conservation spending patterns are only expected to preserve one quarter of the PD that optimal spending could achieve with the same total budget. Maximizing PD is only one approach within the wider goal of biodiversity conservation, but our analysis highlights more generally the danger involved in uninformed spending of limited resources. PMID:25561665

  13. Benefits to poorly studied taxa of conservation of bird and mammal diversity on islands.

    PubMed

    Aslan, Clare; Holmes, Nick; Tershy, Bernie; Spatz, Dena; Croll, Donald A

    2015-02-01

    Protected area delineation and conservation action are urgently needed on marine islands, but the potential biodiversity benefits of these activities can be difficult to assess due to lack of species diversity information for lesser known taxa. We used linear mixed effects modeling and simple spatial analyses to investigate whether conservation activities based on the diversity of well-known insular taxa (birds and mammals) are likely to also capture the diversity of lesser known taxa (reptiles, amphibians, vascular land plants, ants, land snails, butterflies, and tenebrionid beetles). We assembled total, threatened, and endemic diversity data for both well-known and lesser known taxa and combined these with physical island biogeography characteristics for 1190 islands from 109 archipelagos. Among physical island biogeography factors, island area was the best indicator of diversity of both well-known and little-known taxa. Among taxonomic factors, total mammal species richness was the best indicator of total diversity of lesser known taxa, and the combination of threatened mammal and threatened bird diversity was the best indicator of lesser known endemic richness. The results of other intertaxon diversity comparisons were highly variable, however. Based on our results, we suggest that protecting islands above a certain minimum threshold area may be the most efficient use of conservation resources. For example, using our island database, if the threshold were set at 10 km(2) and the smallest 10% of islands greater than this threshold were protected, 119 islands would be protected. The islands would range in size from 10 to 29 km(2) and would include 268 lesser known species endemic to a single island, along with 11 bird and mammal species endemic to a single island. Our results suggest that for islands of equivalent size, prioritization based on total or threatened bird and mammal diversity may also capture opportunities to protect lesser known species endemic to

  14. Arbuscular mycorrhizal fungal diversity in the Tuber melanosporum brûlé.

    PubMed

    Mello, Antonietta; Lumini, Erica; Napoli, Chiara; Bianciotto, Valeria; Bonfante, Paola

    2015-06-01

    The development of the fruiting body (truffle) of the ectomycorrhizal fungus Tuber melanosporum is associated with the production of an area (commonly referred to with the French word brûlé) around its symbiotic plant that has scanty vegetation. As truffles produce metabolites that can mediate fungal-plant interactions, the authors wondered whether the brûlé could affect the arbuscular mycorrhizal fungi (AMF) that colonize the patchy herbaceous plants inside the brûlé. A morphological evaluation of the roots of plants collected in 2009 from a T. melanosporum/Quercus pubescens brûlé in France has shown that the herbaceous plants are colonized by AMF to a great extent. An analysis of the 18S rRNA sequences obtained from roots and soil inside the brûlé has shown that the AMF community structure seemed to be affected in the soil inside the brûlé, where less richness was observed compared to outside the brûlé. PMID:25986549

  15. Fungal arthritis

    MedlinePlus

    ... and irritation (inflammation) of a joint by a fungal infection. It is also called mycotic arthritis. Causes Fungal ... symptoms of fungal arthritis. Prevention Thorough treatment of fungal infections elsewhere in the body may help prevent fungal ...

  16. On the Brink of Extinction: Conserving the Diversity of Life. Worldwatch Paper 78.

    ERIC Educational Resources Information Center

    Wolf, Edward C.

    Concerns associated with biological diversity and the extinction of species are addressed in this report. Major topic areas examined include: (1) historical records of extinctions; (2) conservation biology and tropical ecology; (3) human-management regeneration potentials; (4) restoration ecology; (5) experimental restoration efforts; (6)…

  17. Sponsored Neo-Conservative Challenges to Diversity and Intercultural Competence in the US Undergraduate Curriculum

    ERIC Educational Resources Information Center

    Selden, Steven

    2013-01-01

    For the past six decades, conservative foundations in the United States have targeted their funding on a transformation of the public's understanding of markets, culture , and the undergraduate course of study. These foundations, and their sponsored researchers, have specifically challenged the place of diversity and intercultural competence…

  18. The rise and fall of arbuscular mycorrhizal fungal diversity during ecosystem retrogression.

    PubMed

    Krüger, Manuela; Teste, François P; Laliberté, Etienne; Lambers, Hans; Coghlan, Megan; Zemunik, Graham; Bunce, Michael

    2015-10-01

    Ecosystem retrogression following long-term pedogenesis is attributed to phosphorus (P) limitation of primary productivity. Arbuscular mycorrhizal fungi (AMF) enhance P acquisition for most terrestrial plants, but it has been suggested that this strategy becomes less effective in strongly weathered soils with extremely low P availability. Using next generation sequencing of the large subunit ribosomal RNA gene in roots and soil, we compared the composition and diversity of AMF communities in three contrasting stages of a retrogressive >2-million-year dune chronosequence in a global biodiversity hotspot. This chronosequence shows a ~60-fold decline in total soil P concentration, with the oldest stage representing some of the most severely P-impoverished soils found in any terrestrial ecosystem. The richness of AMF operational taxonomic units was low on young (1000's of years), moderately P-rich soils, greatest on relatively old (~120 000 years) low-P soils, and low again on the oldest (>2 000 000 years) soils that were lowest in P availability. A similar decline in AMF phylogenetic diversity on the oldest soils occurred, despite invariant host plant diversity and only small declines in host cover along the chronosequence. Differences in AMF community composition were greatest between the youngest and the two oldest soils, and this was best explained by differences in soil P concentrations. Our results point to a threshold in soil P availability during ecosystem regression below which AMF diversity declines, suggesting environmental filtering of AMF insufficiently adapted to extremely low P availability. PMID:26332084

  19. Large-scale fungal diversity assessment in the Andean Yungas forests reveals strong community turnover among forest types along an altitudinal gradient.

    PubMed

    Geml, József; Pastor, Nicolás; Fernandez, Lisandro; Pacheco, Silvia; Semenova, Tatiana A; Becerra, Alejandra G; Wicaksono, Christian Y; Nouhra, Eduardo R

    2014-05-01

    The Yungas, a system of tropical and subtropical montane forests on the eastern slopes of the Andes, are extremely diverse and severely threatened by anthropogenic pressure and climate change. Previous mycological works focused on macrofungi (e.g. agarics, polypores) and mycorrhizae in Alnus acuminata forests, while fungal diversity in other parts of the Yungas has remained mostly unexplored. We carried out Ion Torrent sequencing of ITS2 rDNA from soil samples taken at 24 sites along the entire latitudinal extent of the Yungas in Argentina. The sampled sites represent the three altitudinal forest types: the piedmont (400-700 m a.s.l.), montane (700-1500 m a.s.l.) and montane cloud (1500-3000 m a.s.l.) forests. The deep sequence data presented here (i.e. 4 108 126 quality-filtered sequences) indicate that fungal community composition correlates most strongly with elevation, with many fungi showing preference for a certain altitudinal forest type. For example, ectomycorrhizal and root endophytic fungi were most diverse in the montane cloud forests, particularly at sites dominated by Alnus acuminata, while the diversity values of various saprobic groups were highest at lower elevations. Despite the strong altitudinal community turnover, fungal diversity was comparable across the different zonal forest types. Besides elevation, soil pH, N, P, and organic matter contents correlated with fungal community structure as well, although most of these variables were co-correlated with elevation. Our data provide an unprecedented insight into the high diversity and spatial distribution of fungi in the Yungas forests. PMID:24762095

  20. Conserving the Stage: Climate Change and the Geophysical Underpinnings of Species Diversity

    PubMed Central

    Anderson, Mark G.; Ferree, Charles E.

    2010-01-01

    Conservationists have proposed methods for adapting to climate change that assume species distributions are primarily explained by climate variables. The key idea is to use the understanding of species-climate relationships to map corridors and to identify regions of faunal stability or high species turnover. An alternative approach is to adopt an evolutionary timescale and ask ultimately what factors control total diversity, so that over the long run the major drivers of total species richness can be protected. Within a single climatic region, the temperate area encompassing all of the Northeastern U.S. and Maritime Canada, we hypothesized that geologic factors may take precedence over climate in explaining diversity patterns. If geophysical diversity does drive regional diversity, then conserving geophysical settings may offer an approach to conservation that protects diversity under both current and future climates. Here we tested how well geology predicts the species diversity of 14 US states and three Canadian provinces, using a comprehensive new spatial dataset. Results of linear regressions of species diversity on all possible combinations of 23 geophysical and climatic variables indicated that four geophysical factors; the number of geological classes, latitude, elevation range and the amount of calcareous bedrock, predicted species diversity with certainty (adj. R2 = 0.94). To confirm the species-geology relationships we ran an independent test using 18,700 location points for 885 rare species and found that 40% of the species were restricted to a single geology. Moreover, each geology class supported 5–95 endemic species and chi-square tests confirmed that calcareous bedrock and extreme elevations had significantly more rare species than expected by chance (P<0.0001), strongly corroborating the regression model. Our results suggest that protecting geophysical settings will conserve the stage for current and future biodiversity and may be a robust

  1. DNA barcoding applied to ex situ tropical amphibian conservation programme reveals cryptic diversity in captive populations.

    PubMed

    Crawford, Andrew J; Cruz, Catalina; Griffith, Edgardo; Ross, Heidi; Ibáñez, Roberto; Lips, Karen R; Driskell, Amy C; Bermingham, Eldredge; Crump, Paul

    2013-11-01

    Amphibians constitute a diverse yet still incompletely characterized clade of vertebrates, in which new species are still being discovered and described at a high rate. Amphibians are also increasingly endangered, due in part to disease-driven threats of extinctions. As an emergency response, conservationists have begun ex situ assurance colonies for priority species. The abundance of cryptic amphibian diversity, however, may cause problems for ex situ conservation. In this study we used a DNA barcoding approach to survey mitochondrial DNA (mtDNA) variation in captive populations of 10 species of Neotropical amphibians maintained in an ex situ assurance programme at El Valle Amphibian Conservation Center (EVACC) in the Republic of Panama. We combined these mtDNA sequences with genetic data from presumably conspecific wild populations sampled from across Panama, and applied genetic distance-based and character-based analyses to identify cryptic lineages. We found that three of ten species harboured substantial cryptic genetic diversity within EVACC, and an additional three species harboured cryptic diversity among wild populations, but not in captivity. Ex situ conservation efforts focused on amphibians are therefore vulnerable to an incomplete taxonomy leading to misidentification among cryptic species. DNA barcoding may therefore provide a simple, standardized protocol to identify cryptic diversity readily applicable to any amphibian community. PMID:23280343

  2. Metagenomic analysis of fungal diversity on strawberry plants and the effect of management practices on the fungal community structure of aerial organs

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Metabarcoding, defined as Next Generation Sequencing (NGS) of amplicons of the ITS2 region (DNA barcode), was used to identify the composition of the fungal community on different strawberry organs i.e. leaves, flowers, and immature and mature fruits grown on a farm using disease and insect control ...

  3. Effect of trophic status in lakes on fungal species diversity and abundance.

    PubMed

    Pietryczuk, A; Cudowski, A; Hauschild, T

    2014-11-01

    The objective of this study was to determine the species diversity and abundance of fungi in relation to the hydrochemical conditions, with special emphasis on the trophic status and degree of pollution of lakes. The study was conducted in 14 lakes of the Augustów Lakeland (central Europe, NE Poland) with different hydrological conditions, type of stratification and trophic status. The analyses were performed in the hydrological year 2013. In the waters of the studied lakes, the mean abundance of fungi was 5600±3600 CFU/mL. The minimum value (800 CFU/mL) was recorded for the mesotrophic Płaskie Lake, and the maximum value (14,000 CFU/mL) was recorded for the eutrophic Pobojno Lake. A total of 38 species of fungi were identified, including 11 belonging to the aquatic hyphomycetes; up to 14 species were potentially pathogenic fungi. The potentially pathogenic fungi, particularly Candida albicans and Scopulariopsis fusca, were found in lakes with increased concentrations of chloride and sulphate(VI) ions and may thus serve as indicators of the degree of water pollution. This paper illustrates that the species diversity and abundance of fungi in limnic waters depend on the concentration of organic matter, chlorophyll a concentration, and the degree of water pollution. The results suggest that aquatic fungi can be a valuable indicator of the degree of pollution and the sanitary quality of the water. PMID:25145569

  4. Mycobiome of the Bat White Nose Syndrome Affected Caves and Mines Reveals Diversity of Fungi and Local Adaptation by the Fungal Pathogen Pseudogymnoascus (Geomyces) destructans

    PubMed Central

    Rajkumar, Sunanda S.; Li, Xiaojiang; Okoniewski, Joseph C.; Hicks, Alan C.; Davis, April D.; Broussard, Kelly; LaDeau, Shannon L.; Chaturvedi, Sudha; Chaturvedi, Vishnu

    2014-01-01

    Current investigations of bat White Nose Syndrome (WNS) and the causative fungus Pseudogymnoascus (Geomyces) destructans (Pd) are intensely focused on the reasons for the appearance of the disease in the Northeast and its rapid spread in the US and Canada. Urgent steps are still needed for the mitigation or control of Pd to save bats. We hypothesized that a focus on fungal community would advance the understanding of ecology and ecosystem processes that are crucial in the disease transmission cycle. This study was conducted in 2010–2011 in New York and Vermont using 90 samples from four mines and two caves situated within the epicenter of WNS. We used culture-dependent (CD) and culture-independent (CI) methods to catalogue all fungi (‘mycobiome’). CD methods included fungal isolations followed by phenotypic and molecular identifications. CI methods included amplification of DNA extracted from environmental samples with universal fungal primers followed by cloning and sequencing. CD methods yielded 675 fungal isolates and CI method yielded 594 fungal environmental nucleic acid sequences (FENAS). The core mycobiome of WNS comprised of 136 operational taxonomic units (OTUs) recovered in culture and 248 OTUs recovered in clone libraries. The fungal community was diverse across the sites, although a subgroup of dominant cosmopolitan fungi was present. The frequent recovery of Pd (18% of samples positive by culture) even in the presence of dominant, cosmopolitan fungal genera suggests some level of local adaptation in WNS-afflicted habitats, while the extensive distribution of Pd (48% of samples positive by real-time PCR) suggests an active reservoir of the pathogen at these sites. These findings underscore the need for integrated disease control measures that target both bats and Pd in the hibernacula for the control of WNS. PMID:25264864

  5. Mycobiome of the bat white nose syndrome affected caves and mines reveals diversity of fungi and local adaptation by the fungal pathogen Pseudogymnoascus (Geomyces) destructans.

    PubMed

    Zhang, Tao; Victor, Tanya R; Rajkumar, Sunanda S; Li, Xiaojiang; Okoniewski, Joseph C; Hicks, Alan C; Davis, April D; Broussard, Kelly; LaDeau, Shannon L; Chaturvedi, Sudha; Chaturvedi, Vishnu

    2014-01-01

    Current investigations of bat White Nose Syndrome (WNS) and the causative fungus Pseudogymnoascus (Geomyces) destructans (Pd) are intensely focused on the reasons for the appearance of the disease in the Northeast and its rapid spread in the US and Canada. Urgent steps are still needed for the mitigation or control of Pd to save bats. We hypothesized that a focus on fungal community would advance the understanding of ecology and ecosystem processes that are crucial in the disease transmission cycle. This study was conducted in 2010-2011 in New York and Vermont using 90 samples from four mines and two caves situated within the epicenter of WNS. We used culture-dependent (CD) and culture-independent (CI) methods to catalogue all fungi ('mycobiome'). CD methods included fungal isolations followed by phenotypic and molecular identifications. CI methods included amplification of DNA extracted from environmental samples with universal fungal primers followed by cloning and sequencing. CD methods yielded 675 fungal isolates and CI method yielded 594 fungal environmental nucleic acid sequences (FENAS). The core mycobiome of WNS comprised of 136 operational taxonomic units (OTUs) recovered in culture and 248 OTUs recovered in clone libraries. The fungal community was diverse across the sites, although a subgroup of dominant cosmopolitan fungi was present. The frequent recovery of Pd (18% of samples positive by culture) even in the presence of dominant, cosmopolitan fungal genera suggests some level of local adaptation in WNS-afflicted habitats, while the extensive distribution of Pd (48% of samples positive by real-time PCR) suggests an active reservoir of the pathogen at these sites. These findings underscore the need for integrated disease control measures that target both bats and Pd in the hibernacula for the control of WNS. PMID:25264864

  6. Conservation priorities of genetic diversity in domesticated metapopulations: a study in taurine cattle breeds

    PubMed Central

    Medugorac, Ivica; Veit-Kensch, Claudia E; Ramljak, Jelena; Brka, Muhamed; Marković, Božidarka; Stojanović, Srđan; Bytyqi, Hysen; Kochoski, Ljupche; Kume, Kristaq; Grünenfelder, Hans-Peter; Bennewitz, Jörn; Förster, Martin

    2011-01-01

    We estimated neutral diversity of 21 European cattle breeds with 105 microsatellites. Nine of them resembled unselected Balkan Buša strains with diffuse breeding barriers and the 12 others were strongly differentiated, isolated breeds. Because of the impact of neutral genetic diversity on long-term population adaptive capacity, we discuss the long-term outcome of different conservation priorities in a subdivided metapopulation of the investigated cattle breeds. The optimal contribution to a pool of total genetic diversity allocated more than 95% of long-term relevant neutral diversity to virtually unselected strains of the Balkan Buša, while the maximization of total variance preferred inbred breeds. Current artificial selection methods, such as genomic selection sped up and a recovery of underestimated traits becomes quickly impossible. We emphasize that currently neutral and even deleterious alleles might be required for future genotypes in sustainable and efficient livestock breeding and production systems of a 21st century. We provide cumulative evidences that long-term survival relies on genetic complexity and complexity relies on allelic diversity. Our results suggest that virtually unselected, nonuniform strains harbor a crucial proportion of neutral diversity and should be conserved with high global priority. As one example, we suggest a cooperative maintenance of the nondifferentiated, highly fragmented, and fast vanishing metapopulation of Balkan Buša. PMID:22393510

  7. Targeting climate diversity in conservation planning to build resilience to climate change

    USGS Publications Warehouse

    Heller, Nicole E.; Kreitler, Jason R.; Ackerly, David; Weiss, Stuart; Recinos, Amanda; Branciforte, Ryan; Flint, Lorraine E.; Flint, Alan L.; Micheli, Elisabeth

    2015-01-01

    Climate change is raising challenging concerns for systematic conservation planning. Are methods based on the current spatial patterns of biodiversity effective given long-term climate change? Some conservation scientists argue that planning should focus on protecting the abiotic diversity in the landscape, which drives patterns of biological diversity, rather than focusing on the distribution of focal species, which shift in response to climate change. Climate is one important abiotic driver of biodiversity patterns, as different climates host different biological communities and genetic pools. We propose conservation networks that capture the full range of climatic diversity in a region will improve the resilience of biotic communities to climate change compared to networks that do not. In this study we used historical and future hydro-climate projections from the high resolution Basin Characterization Model to explore the utility of directly targeting climatic diversity in planning. Using the spatial planning tool, Marxan, we designed conservation networks to capture the diversity of climate types, at the regional and sub-regional scale, and compared them to networks we designed to capture the diversity of vegetation types. By focusing on the Conservation Lands Network (CLN) of the San Francisco Bay Area as a real-world case study, we compared the potential resilience of networks by examining two factors: the range of climate space captured, and climatic stability to 18 future climates, reflecting different emission scenarios and global climate models. We found that the climate-based network planned at the sub-regional scale captured a greater range of climate space and showed higher climatic stability than the vegetation and regional based-networks. At the same time, differences among network scenarios are small relative to the variance in climate stability across global climate models. Across different projected futures, topographically heterogeneous areas

  8. EcM fungal community structure, but not diversity, altered in a Pb-contaminated shooting range in a boreal coniferous forest site in Southern Finland.

    PubMed

    Hui, Nan; Jumpponen, Ari; Niskanen, Tuula; Liimatainen, Kare; Jones, Kenneth L; Koivula, Teija; Romantschuk, Martin; Strömmer, Rauni

    2011-04-01

    Boreal forests contain diverse fungal communities that form essential ectomycorrhizal symbioses with trees. To determine the effects of lead (Pb) contamination on ectomycorrhizal fungal communities associated with the dominant pine (Pinus sylvestris L.), we surveyed sporocarps for 3 years, analyzed morphotyped ectomycorrhizal root tips by direct sequencing, and 454-sequenced fungal communities that grew into in-growth bags during a 2-year incubation at a shooting range where sectors vary in the Pb load. We recorded a total of 32 ectomycorrhizal fungi that formed conspicuous sporocarps, 27 ectomycorrhizal fungal phylotypes from 294 root tips, and 116 ectomycorrhizal fungal operation taxonomic unit (OTUs) from a total of 8194 internal transcribed spacer-2 454 sequences. Our ordination analyses by nonparametric multidimensional scaling (NMS) indicated that the Pb enrichment induced a shift in the ectomycorrhizal community composition. This was visible as indicative trends in the sporocarp and root tip data sets, but was explicitly clear in the communities observed in the in-growth bags. The compositional shift in the ectomycorrhizal community was mainly attributable to an increase in the frequencies of OTUs assigned to genus Thelephora and to a decrease in the OTUs assigned to Pseudotomentella, Suillus, and Tylospora in Pb-contaminated areas when compared with the control. While the compositional shifts are clear, their functional consequences for the dominant trees or soil ecosystem function remain undetermined. PMID:21223331

  9. Soil moisture and chemistry influence diversity of ectomycorrhizal fungal communities associating with willow along an hydrologic gradient.

    PubMed

    Erlandson, Sonya R; Savage, Jessica A; Cavender-Bares, Jeannine M; Peay, Kabir G

    2016-01-01

    Influences of soil environment and willow host species on ectomycorrhizal fungi communities was studied across an hydrologic gradient in temperate North America. Soil moisture, organic matter and pH strongly predicted changes in fungal community composition. In contrast, increased fungal richness strongly correlated with higher plant-available phosphorus. The 93 willow trees sampled for ectomycorrhizal fungi included seven willow species. Host identity did not influence fungal richness or community composition, nor was there strong evidence of willow host preference for fungal species. Network analysis suggests that these mutualist interaction networks are not significantly nested or modular. Across a strong environmental gradient, fungal abiotic niche determined the fungal species available to associate with host plants within a habitat. PMID:26622067

  10. Meta-barcoded evaluation of the ISO standard 11063 DNA extraction procedure to characterize soil bacterial and fungal community diversity and composition

    PubMed Central

    Terrat, Sebastien; Plassart, Pierre; Bourgeois, Emilie; Ferreira, Stéphanie; Dequiedt, Samuel; Adele-Dit-De-Renseville, Nathalie; Lemanceau, Philippe; Bispo, Antonio; Chabbi, Abad; Maron, Pierre-Alain; Ranjard, Lionel

    2015-01-01

    This study was designed to assess the influence of three soil DNA extraction procedures, namely the International Organization for Standardization (ISO-11063, GnS-GII and modified ISO procedure (ISOm), on the taxonomic diversity and composition of soil bacterial and fungal communities. The efficacy of each soil DNA extraction method was assessed on five soils, differing in their physico-chemical characteristics and land use. A meta-barcoded pyrosequencing approach targeting 16S and 18S rRNA genes was applied to characterize soil microbial communities. We first observed that the GnS-GII introduced some heterogeneity in bacterial composition between replicates. Then, although no major difference was observed between extraction procedures for soil bacterial diversity, we saw that the number of fungal genera could be underestimated by the ISO-11063. In particular, this procedure underestimated the detection in several soils of the genera Cryptococcus, Pseudallescheria, Hypocrea and Plectosphaerella, which are of ecological interest. Based on these results, we recommend using the ISOm method for studies focusing on both the bacterial and fungal communities. Indeed, the ISOm procedure provides a better evaluation of bacterial and fungal communities and is limited to the modification of the mechanical lysis step of the existing ISO-11063 standard. PMID:25195809

  11. Fungal Diversity in a Dark Oligotrophic Volcanic Ecosystem (DOVE) on Mount Erebus, Antarctica

    PubMed Central

    Connell, Laurie; Staudigel, Hubert

    2013-01-01

    Fumarolic Ice caves on Antarctica’s Mt. Erebus contain a dark oligotrophic volcanic ecosystem (DOVE) and represent a deep biosphere habitat that can provide insight into microbial communities that utilize energy sources other than photosynthesis. The community assembly and role of fungi in these environments remains largely unknown. However, these habitats could be relatively easily contaminated during human visits. Sixty-one species of fungi were identified from soil clone libraries originating from Warren Cave, a DOVE on Mt. Erebus. The species diversity was greater than has been found in the nearby McMurdo Dry Valleys oligotrophic soil. A relatively large proportion of the clones represented Malassezia species (37% of Basidomycota identified). These fungi are associated with skin surfaces of animals and require high lipid content for growth, indicating that contamination may have occurred through the few and episodic human visits in this particular cave. These findings highlight the importance of fungi to DOVE environments as well as their potential use for identifying contamination by humans. The latter offers compelling evidence suggesting more strict management of these valuable research areas. PMID:24832809

  12. Genetic Diversity and Association Characters of Bacteria Isolated from Arbuscular Mycorrhizal Fungal Spore Walls

    PubMed Central

    Selvakumar, Gopal; Krishnamoorthy, Ramasamy; Kim, Kiyoon; Sa, Tong-Min

    2016-01-01

    Association between arbuscular mycorrhizal fungi (AMF) and bacteria has long been studied. However, the factors influencing their association in the natural environment is still unknown. This study aimed to isolate bacteria associated with spore walls of AMF and identify their potential characters for association. Spores collected from coastal reclamation land were differentiated based on their morphology and identified by 18S rDNA sequencing as Funneliformis caledonium, Racocetra alborosea and Funneliformis mosseae. Bacteria associated with AMF spore walls were isolated after treating them with disinfection solution at different time intervals. After 0, 10 and 20 min of spore disinfection, 86, 24 and 10 spore associated bacteria (SAB) were isolated, respectively. BOX-PCR fingerprinting analysis showed that diverse bacterial communities were associated to AMF spores. Bacteria belonging to the same genera could associate with different AMF spores. Gram positive bacteria were more closely associated with AMF spores. Isolated SAB were characterized and tested for spore association characters such as chitinase, protease, cellulase enzymes and exopolysaccharide production (EPS). Among the 120 SAB, 113 SAB were able to show one or more characters for association and seven SAB did not show any association characters. The 16S rDNA sequence of SAB revealed that bacteria belonging to the phyla Firmicutes, Proteobacteria, Actinobacteria and Bactereiodes were associated with AMF spore walls. PMID:27479250

  13. Fungal Diversity in a Dark Oligotrophic Volcanic Ecosystem (DOVE) on Mount Erebus, Antarctica.

    PubMed

    Connell, Laurie; Staudigel, Hubert

    2013-01-01

    Fumarolic Ice caves on Antarctica's Mt. Erebus contain a dark oligotrophic volcanic ecosystem (DOVE) and represent a deep biosphere habitat that can provide insight into microbial communities that utilize energy sources other than photosynthesis. The community assembly and role of fungi in these environments remains largely unknown. However, these habitats could be relatively easily contaminated during human visits. Sixty-one species of fungi were identified from soil clone libraries originating from Warren Cave, a DOVE on Mt. Erebus. The species diversity was greater than has been found in the nearby McMurdo Dry Valleys oligotrophic soil. A relatively large proportion of the clones represented Malassezia species (37% of Basidomycota identified). These fungi are associated with skin surfaces of animals and require high lipid content for growth, indicating that contamination may have occurred through the few and episodic human visits in this particular cave. These findings highlight the importance of fungi to DOVE environments as well as their potential use for identifying contamination by humans. The latter offers compelling evidence suggesting more strict management of these valuable research areas. PMID:24832809

  14. Soil Microbial Functional and Fungal Diversity as Influenced by Municipal Sewage Sludge Accumulation

    PubMed Central

    Frąc, Magdalena; Oszust, Karolina; Lipiec, Jerzy; Jezierska-Tys, Stefania; Nwaichi, Eucharia Oluchi

    2014-01-01

    Safe disposal of municipal sewage sludge is a challenging global environmental concern. The aim of this study was to assess the response of soil microbial functional diversity to the accumulation of municipal sewage sludge during landfill storage. Soil samples of a municipal sewage sludge (SS) and from a sewage sludge landfill that was 3 m from a SS landfill (SS3) were analyzed relative to an undisturbed reference soil. Biolog EcoPlatesTM were inoculated with a soil suspension, and the Average Well Color Development (AWCD), Richness (R) and Shannon-Weaver index (H) were calculated to interpret the results. The fungi isolated from the sewage sludge were identified using comparative rDNA sequencing of the LSU D2 region. The MicroSEQ® ID software was used to assess the raw sequence files, perform sequence matching to the MicroSEQ® ID-validated reference database and create Neighbor-Joining trees. Moreover, the genera of fungi isolated from the soil were identified using microscopic methods. Municipal sewage sludge can serve as a habitat for plant pathogens and as a source of pathogen strains for biotechnological applications. PMID:25170681

  15. Ion Torrent PGM as Tool for Fungal Community Analysis: A Case Study of Endophytes in Eucalyptus grandis Reveals High Taxonomic Diversity

    PubMed Central

    Kemler, Martin; Garnas, Jeff; Wingfield, Michael J.; Gryzenhout, Marieka; Pillay, Kerry-Anne; Slippers, Bernard

    2013-01-01

    The Kingdom Fungi adds substantially to the diversity of life, but due to their cryptic morphology and lifestyle, tremendous diversity, paucity of formally described specimens, and the difficulty in isolating environmental strains into culture, fungal communities are difficult to characterize. This is especially true for endophytic communities of fungi living in healthy plant tissue. The developments in next generation sequencing technologies are, however, starting to reveal the true extent of fungal diversity. One of the promising new technologies, namely semiconductor sequencing, has thus far not been used in fungal diversity assessments. In this study we sequenced the internal transcribed spacer 1 (ITS1) nuclear encoded ribosomal RNA of the endophytic community of the economically important tree, Eucalyptus grandis, from South Africa using the Ion Torrent Personal Genome Machine (PGM). We determined the impact of various analysis parameters on the interpretation of the results, namely different sequence quality parameter settings, different sequence similarity cutoffs for clustering and filtering of databases for removal of sequences with incomplete taxonomy. Sequence similarity cutoff values only had a marginal effect on the identified family numbers, whereas different sequence quality filters had a large effect (89 vs. 48 families between least and most stringent filters). Database filtering had a small, but statistically significant, effect on the assignment of sequences to reference sequences. The community was dominated by Ascomycota, and particularly by families in the Dothidiomycetes that harbor well-known plant pathogens. The study demonstrates that semiconductor sequencing is an ideal strategy for environmental sequencing of fungal communities. It also highlights some potential pitfalls in subsequent data analyses when using a technology with relatively short read lengths. PMID:24358124

  16. Use of inverse spatial conservation prioritization to avoid biological diversity loss outside protected areas.

    PubMed

    Kareksela, Santtu; Moilanen, Atte; Tuominen, Seppo; Kotiaho, Janne S

    2013-12-01

    Globally expanding human land use sets constantly increasing pressure for maintenance of biological diversity and functioning ecosystems. To fight the decline of biological diversity, conservation science has broken ground with methods such as the operational model of systematic conservation planning (SCP), which focuses on design and on-the-ground implementation of conservation areas. The most commonly used method in SCP is reserve selection that focuses on the spatial design of reserve networks and their expansion. We expanded these methods by introducing another form of spatial allocation of conservation effort relevant for land-use zoning at the landscape scale that avoids negative ecological effects of human land use outside protected areas. We call our method inverse spatial conservation prioritization. It can be used to identify areas suitable for economic development while simultaneously limiting total ecological and environmental effects of that development at the landscape level by identifying areas with highest economic but lowest ecological value. Our method is not based on a priori targets, and as such it is applicable to cases where the effects of land use on, for example, individual species or ecosystem types are relatively small and would not lead to violation of regional or national conservation targets. We applied our method to land-use allocation to peat mining. Our method identified a combination of profitable production areas that provides the needed area for peat production while retaining most of the landscape-level ecological value of the ecosystem. The results of this inverse spatial conservation prioritization are being used in land-use zoning in the province of Central Finland. PMID:24033397

  17. A Functionally Conserved Gene Regulatory Network Module Governing Olfactory Neuron Diversity.

    PubMed

    Li, Qingyun; Barish, Scott; Okuwa, Sumie; Maciejewski, Abigail; Brandt, Alicia T; Reinhold, Dominik; Jones, Corbin D; Volkan, Pelin Cayirlioglu

    2016-01-01

    Sensory neuron diversity is required for organisms to decipher complex environmental cues. In Drosophila, the olfactory environment is detected by 50 different olfactory receptor neuron (ORN) classes that are clustered in combinations within distinct sensilla subtypes. Each sensilla subtype houses stereotypically clustered 1-4 ORN identities that arise through asymmetric divisions from a single multipotent sensory organ precursor (SOP). How each class of SOPs acquires a unique differentiation potential that accounts for ORN diversity is unknown. Previously, we reported a critical component of SOP diversification program, Rotund (Rn), increases ORN diversity by generating novel developmental trajectories from existing precursors within each independent sensilla type lineages. Here, we show that Rn, along with BarH1/H2 (Bar), Bric-à-brac (Bab), Apterous (Ap) and Dachshund (Dac), constitutes a transcription factor (TF) network that patterns the developing olfactory tissue. This network was previously shown to pattern the segmentation of the leg, which suggests that this network is functionally conserved. In antennal imaginal discs, precursors with diverse ORN differentiation potentials are selected from concentric rings defined by unique combinations of these TFs along the proximodistal axis of the developing antennal disc. The combinatorial code that demarcates each precursor field is set up by cross-regulatory interactions among different factors within the network. Modifications of this network lead to predictable changes in the diversity of sensilla subtypes and ORN pools. In light of our data, we propose a molecular map that defines each unique SOP fate. Our results highlight the importance of the early prepatterning gene regulatory network as a modulator of SOP and terminally differentiated ORN diversity. Finally, our model illustrates how conserved developmental strategies are used to generate neuronal diversity. PMID:26765103

  18. A Functionally Conserved Gene Regulatory Network Module Governing Olfactory Neuron Diversity

    PubMed Central

    Okuwa, Sumie; Maciejewski, Abigail; Brandt, Alicia T.; Reinhold, Dominik; Jones, Corbin D.; Volkan, Pelin Cayirlioglu

    2016-01-01

    Sensory neuron diversity is required for organisms to decipher complex environmental cues. In Drosophila, the olfactory environment is detected by 50 different olfactory receptor neuron (ORN) classes that are clustered in combinations within distinct sensilla subtypes. Each sensilla subtype houses stereotypically clustered 1–4 ORN identities that arise through asymmetric divisions from a single multipotent sensory organ precursor (SOP). How each class of SOPs acquires a unique differentiation potential that accounts for ORN diversity is unknown. Previously, we reported a critical component of SOP diversification program, Rotund (Rn), increases ORN diversity by generating novel developmental trajectories from existing precursors within each independent sensilla type lineages. Here, we show that Rn, along with BarH1/H2 (Bar), Bric-à-brac (Bab), Apterous (Ap) and Dachshund (Dac), constitutes a transcription factor (TF) network that patterns the developing olfactory tissue. This network was previously shown to pattern the segmentation of the leg, which suggests that this network is functionally conserved. In antennal imaginal discs, precursors with diverse ORN differentiation potentials are selected from concentric rings defined by unique combinations of these TFs along the proximodistal axis of the developing antennal disc. The combinatorial code that demarcates each precursor field is set up by cross-regulatory interactions among different factors within the network. Modifications of this network lead to predictable changes in the diversity of sensilla subtypes and ORN pools. In light of our data, we propose a molecular map that defines each unique SOP fate. Our results highlight the importance of the early prepatterning gene regulatory network as a modulator of SOP and terminally differentiated ORN diversity. Finally, our model illustrates how conserved developmental strategies are used to generate neuronal diversity. PMID:26765103

  19. Ranking Mammal Species for Conservation and the Loss of Both Phylogenetic and Trait Diversity

    PubMed Central

    Redding, David W.; Mooers, Arne O.

    2015-01-01

    The 'edge of existence' (EDGE) prioritisation scheme is a new approach to rank species for conservation attention that aims to identify species that are both isolated on the tree of life and at imminent risk of extinction as defined by the World Conservation Union (IUCN). The self-stated benefit of the EDGE system is that it effectively captures unusual 'unique' species, and doing so will preserve the total evolutionary history of a group into the future. Given the EDGE metric was not designed to capture total evolutionary history, we tested this claim. Our analyses show that the total evolutionary history of mammals preserved is indeed much higher if EDGE species are protected than if at-risk species are chosen randomly. More of the total tree is also protected by EDGE species than if solely threat status or solely evolutionary distinctiveness were used for prioritisation. When considering how much trait diversity is captured by IUCN and EDGE prioritisation rankings, interestingly, preserving the highest-ranked EDGE species, or indeed just the most threatened species, captures more total trait diversity compared to sets of randomly-selected at-risk species. These results suggest that, as advertised, EDGE mammal species contribute evolutionary history to the evolutionary tree of mammals non-randomly, and EDGE-style rankings among endangered species can also capture important trait diversity. If this pattern holds for other groups, the EDGE prioritisation scheme has greater potential to be an efficient method to allocate scarce conservation effort. PMID:26630179

  20. The Role of DNA Barcodes in Understanding and Conservation of Mammal Diversity in Southeast Asia

    PubMed Central

    Francis, Charles M.; Borisenko, Alex V.; Ivanova, Natalia V.; Eger, Judith L.; Lim, Burton K.; Guillén-Servent, Antonio; Kruskop, Sergei V.; Mackie, Iain; Hebert, Paul D. N.

    2010-01-01

    Background Southeast Asia is recognized as a region of very high biodiversity, much of which is currently at risk due to habitat loss and other threats. However, many aspects of this diversity, even for relatively well-known groups such as mammals, are poorly known, limiting ability to develop conservation plans. This study examines the value of DNA barcodes, sequences of the mitochondrial COI gene, to enhance understanding of mammalian diversity in the region and hence to aid conservation planning. Methodology and Principal Findings DNA barcodes were obtained from nearly 1900 specimens representing 165 recognized species of bats. All morphologically or acoustically distinct species, based on classical taxonomy, could be discriminated with DNA barcodes except four closely allied species pairs. Many currently recognized species contained multiple barcode lineages, often with deep divergence suggesting unrecognized species. In addition, most widespread species showed substantial genetic differentiation across their distributions. Our results suggest that mammal species richness within the region may be underestimated by at least 50%, and there are higher levels of endemism and greater intra-specific population structure than previously recognized. Conclusions DNA barcodes can aid conservation and research by assisting field workers in identifying species, by helping taxonomists determine species groups needing more detailed analysis, and by facilitating the recognition of the appropriate units and scales for conservation planning. PMID:20838635

  1. Conservation tillage affects species composition but not species diversity: a comparative study in Northern Italy.

    PubMed

    Boscutti, Francesco; Sigura, Maurizia; Gambon, Nadia; Lagazio, Corrado; Krüsi, Bertil O; Bonfanti, Pierluigi

    2015-02-01

    Conservation tillage (CT) is widely considered to be a practice aimed at preserving several ecosystem functions. In the literature, however, there seems to be no clear pattern with regard to its benefits on species diversity and species composition. In Northern Italy, we compared species composition and diversity of both vascular plants and Carabids under two contrasting tillage systems, i.e., CT and conventional tillage, respectively. We hypothesized a significant positive impact of CT on both species diversity and composition. We also considered the potential influence of crop type. The tillage systems were studied under open field conditions with three types of annual crops (i.e., maize, soybean, and winter cereals), using a split-plot design on pairs of adjacent fields. Linear mixed models were applied to test tillage system, crop, and interaction effects on diversity indices. Plant and Carabids communities were analyzed by multivariate methods (CCA). On the whole, 136 plant and 51 carabid taxa were recorded. The two tillage systems studied did not differ in floristic or carabid diversity. Species composition, by contrast, proved to be characteristic for each combination of tillage system and crop type. In particular, CT fields were characterized by nutrient demanding weeds and the associated Carabids. The differences were especially pronounced in fields with winter cereals. The same was true for the flora and Carabids along the field boundaries. For studying the effects of CT practices on the sustainability of agro-ecosystems, therefore, the focus should be on species composition rather than on diversity measures. PMID:25392019

  2. Conservation Tillage Affects Species Composition But Not Species Diversity: A Comparative Study in Northern Italy

    NASA Astrophysics Data System (ADS)

    Boscutti, Francesco; Sigura, Maurizia; Gambon, Nadia; Lagazio, Corrado; Krüsi, Bertil O.; Bonfanti, Pierluigi

    2015-02-01

    Conservation tillage (CT) is widely considered to be a practice aimed at preserving several ecosystem functions. In the literature, however, there seems to be no clear pattern with regard to its benefits on species diversity and species composition. In Northern Italy, we compared species composition and diversity of both vascular plants and Carabids under two contrasting tillage systems, i.e., CT and conventional tillage, respectively. We hypothesized a significant positive impact of CT on both species diversity and composition. We also considered the potential influence of crop type. The tillage systems were studied under open field conditions with three types of annual crops (i.e., maize, soybean, and winter cereals), using a split-plot design on pairs of adjacent fields. Linear mixed models were applied to test tillage system, crop, and interaction effects on diversity indices. Plant and Carabids communities were analyzed by multivariate methods (CCA). On the whole, 136 plant and 51 carabid taxa were recorded. The two tillage systems studied did not differ in floristic or carabid diversity. Species composition, by contrast, proved to be characteristic for each combination of tillage system and crop type. In particular, CT fields were characterized by nutrient demanding weeds and the associated Carabids. The differences were especially pronounced in fields with winter cereals. The same was true for the flora and Carabids along the field boundaries. For studying the effects of CT practices on the sustainability of agro-ecosystems, therefore, the focus should be on species composition rather than on diversity measures.

  3. [Butterfly species diversity and its conservation in Wuyunjie National Nature Reserve, Hunan Province of China].

    PubMed

    Li, Mi; Zhou, Hong-Chun; Tan, Ji-Cai; Wang, Peng; Liu, Guo-Hua

    2011-06-01

    By using line-transect method, an investigation was conducted on the species diversity of butterfly in Wuyunjie National Nature Reserve, Changde City of Hunan Province from June 2008 to September 2010. Aiming at the main factors including plant species richness (D) , mean elevation (E) , average distance from stream/river (F), and human interference level (K) that affecting the species richness of butterfly in 31 segment-level transects in 4 line-transects, multiple regression analysis was made, and the diversity and similarity of the butterfly communities in the experimental zone, buffer zone, and core zone of the Reserve were compared. A total of 147 butterfly species were collected, belonging to 94 genera and 10 families, among which, 4 species was nationally conserved species. Multiple regression analysis showed that D, E, and K were the three most major factors affecting the distribution of butterfly. The species richness of butterfly had significant positive correlation with D (P < 0.01), and negative correlations with E and K (P < 0.05). The species diversity and evenness index of butterfly were higher in core zone than in experimental zone and buffer zone, dominance index was the highest in experimental zone, and a higher similarity index (0.526) was observed between buffer zone and core zone. To conserve the species diversity of butterfly in the Reserve, efforts should be made to protect the plant species richness, keep the natural forest succession, decrease the human interference properly, and tighten up the management of butterfly habitat. PMID:21941763

  4. Conservation of eelgrass (Zostera marina) genetic diversity in a mesocosm-based restoration experiment.

    PubMed

    Ort, Brian S; Cohen, C Sarah; Boyer, Katharyn E; Reynolds, Laura K; Tam, Sheh May; Wyllie-Echeverria, Sandy

    2014-01-01

    Eelgrass (Zostera marina) forms the foundation of an important shallow coastal community in protected estuaries and bays. Widespread population declines have stimulated restoration efforts, but these have often overlooked the importance of maintaining the evolutionary potential of restored populations by minimizing the reduction in genetic diversity that typically accompanies restoration. In an experiment simulating a small-scale restoration, we tested the effectiveness of a buoy-deployed seeding technique to maintain genetic diversity comparable to the seed source populations. Seeds from three extant source populations in San Francisco Bay were introduced into eighteen flow-through baywater mesocosms. Following seedling establishment, we used seven polymorphic microsatellite loci to compare genetic diversity indices from 128 shoots to those found in the source populations. Importantly, allelic richness and expected heterozygosity were not significantly reduced in the mesocosms, which also preserved the strong population differentiation present among source populations. However, the inbreeding coefficient F IS was elevated in two of the three sets of mesocosms when they were grouped according to their source population. This is probably a Wahlund effect from confining all half-siblings within each spathe to a single mesocosm, elevating F IS when the mesocosms were considered together. The conservation of most alleles and preservation of expected heterozygosity suggests that this seeding technique is an improvement over whole-shoot transplantation in the conservation of genetic diversity in eelgrass restoration efforts. PMID:24586683

  5. Genetic diversity in Napier grass (Pennisetum purpureum) cultivars: implications for breeding and conservation.

    PubMed

    Wanjala, Bramwel W; Obonyo, Meshack; Wachira, Francis N; Muchugi, Alice; Mulaa, Margaret; Harvey, Jagger; Skilton, Robert A; Proud, Janice; Hanson, Jean

    2013-01-01

    Napier grass is an important forage crop for dairy production in the tropics; as such, its existing genetic diversity needs to be assessed for conservation. The current study assessed the genetic variation of Napier grass collections from selected regions in Eastern Africa and the International Livestock Research Institute Forage Germplasm-Ethiopia. The diversity of 281 cultivars was investigated using five selective amplified fragment length polymorphism (AFLP) markers and classical population genetic parameters analysed using various software. The number of bands generated was 216 with fragments per primer set ranging from 50 to 115. Mean percentage polymorphic loci was 63.40. Genetic diversity coefficients based on Nei's genetic diversity ranged from 0.0783 to 0.2142 and Shannon's information index ranged from 0.1293 to 0.3445. The Fst value obtained was moderately significant (Fst = 0.1688). Neighbour-joining analysis gave two distinct clusters which did not reflect geographical locations. Analysis of molecular variance showed all variance components to be highly significant (P < 0.001), indicating more variation within (91 %) than between populations (9 %). Results suggested moderate genetic differentiation among Napier grass populations sampled, which could imply a high germplasm exchange within the region. The AFLP markers used in this study efficiently discriminate among cultivars and could be useful in identification and germplasm conservation. PMID:23671788

  6. Genetic diversity in Napier grass (Pennisetum purpureum) cultivars: implications for breeding and conservation

    PubMed Central

    Wanjala, Bramwel W.; Obonyo, Meshack; Wachira, Francis N.; Muchugi, Alice; Mulaa, Margaret; Harvey, Jagger; Skilton, Robert A.; Proud, Janice; Hanson, Jean

    2013-01-01

    Napier grass is an important forage crop for dairy production in the tropics; as such, its existing genetic diversity needs to be assessed for conservation. The current study assessed the genetic variation of Napier grass collections from selected regions in Eastern Africa and the International Livestock Research Institute Forage Germplasm-Ethiopia. The diversity of 281 cultivars was investigated using five selective amplified fragment length polymorphism (AFLP) markers and classical population genetic parameters analysed using various software. The number of bands generated was 216 with fragments per primer set ranging from 50 to 115. Mean percentage polymorphic loci was 63.40. Genetic diversity coefficients based on Nei's genetic diversity ranged from 0.0783 to 0.2142 and Shannon's information index ranged from 0.1293 to 0.3445. The Fst value obtained was moderately significant (Fst = 0.1688). Neighbour-joining analysis gave two distinct clusters which did not reflect geographical locations. Analysis of molecular variance showed all variance components to be highly significant (P < 0.001), indicating more variation within (91 %) than between populations (9 %). Results suggested moderate genetic differentiation among Napier grass populations sampled, which could imply a high germplasm exchange within the region. The AFLP markers used in this study efficiently discriminate among cultivars and could be useful in identification and germplasm conservation. PMID:23671788

  7. Habitat fragmentation is associated to gut microbiota diversity of an endangered primate: implications for conservation

    PubMed Central

    Barelli, Claudia; Albanese, Davide; Donati, Claudio; Pindo, Massimo; Dallago, Chiara; Rovero, Francesco; Cavalieri, Duccio; Michael Tuohy, Kieran; Christine Hauffe, Heidi; De Filippo, Carlotta

    2015-01-01

    The expansion of agriculture is shrinking pristine forest areas worldwide, jeopardizing the persistence of their wild inhabitants. The Udzungwa red colobus monkey (Procolobus gordonorum) is among the most threatened primate species in Africa. Primarily arboreal and highly sensitive to hunting and habitat destruction, they provide a critical model to understanding whether anthropogenic disturbance impacts gut microbiota diversity. We sampled seven social groups inhabiting two forests (disturbed vs. undisturbed) in the Udzungwa Mountains of Tanzania. While Ruminococcaceae and Lachnospiraceae dominated in all individuals, reflecting their role in extracting energy from folivorous diets, analysis of genus composition showed a marked diversification across habitats, with gut microbiota α-diversity significantly higher in the undisturbed forest. Functional analysis suggests that such variation may be associated with food plant diversity in natural versus human-modified habitats, requiring metabolic pathways to digest xenobiotics. Thus, the effects of changes in gut microbiota should not be ignored to conserve endangered populations. PMID:26445280

  8. Habitat fragmentation is associated to gut microbiota diversity of an endangered primate: implications for conservation.

    PubMed

    Barelli, Claudia; Albanese, Davide; Donati, Claudio; Pindo, Massimo; Dallago, Chiara; Rovero, Francesco; Cavalieri, Duccio; Tuohy, Kieran Michael; Hauffe, Heidi Christine; De Filippo, Carlotta

    2015-01-01

    The expansion of agriculture is shrinking pristine forest areas worldwide, jeopardizing the persistence of their wild inhabitants. The Udzungwa red colobus monkey (Procolobus gordonorum) is among the most threatened primate species in Africa. Primarily arboreal and highly sensitive to hunting and habitat destruction, they provide a critical model to understanding whether anthropogenic disturbance impacts gut microbiota diversity. We sampled seven social groups inhabiting two forests (disturbed vs. undisturbed) in the Udzungwa Mountains of Tanzania. While Ruminococcaceae and Lachnospiraceae dominated in all individuals, reflecting their role in extracting energy from folivorous diets, analysis of genus composition showed a marked diversification across habitats, with gut microbiota α-diversity significantly higher in the undisturbed forest. Functional analysis suggests that such variation may be associated with food plant diversity in natural versus human-modified habitats, requiring metabolic pathways to digest xenobiotics. Thus, the effects of changes in gut microbiota should not be ignored to conserve endangered populations. PMID:26445280

  9. Molecular Diversity of Fungal Phylotypes Co-Amplified Alongside Nematodes from Coastal and Deep-Sea Marine Environments

    PubMed Central

    Lambshead, John D.; Austen, Melanie C.; Smerdon, Gary R.; Rogers, Alex D.

    2011-01-01

    Nematodes and fungi are both ubiquitous in marine environments, yet few studies have investigated relationships between these two groups. Microbial species share many well-documented interactions with both free-living and parasitic nematode species, and limited data from previous studies have suggested ecological associations between fungi and nematodes in benthic marine habitats. This study aimed to further document the taxonomy and distribution of fungal taxa often co-amplified from nematode specimens. A total of 15 fungal 18S rRNA phylotypes were isolated from nematode specimens representing both deep-sea and shallow water habitats; all fungal isolates displayed high pairwise sequence identities with published data in Genbank (99–100%) and unpublished high-throughput 454 environmental datasets (>95%). BLAST matches indicate marine fungal sequences amplified in this study broadly represent taxa within the phyla Ascomycota and Basidiomycota, and several phylotypes showed robust groupings with known taxa in phylogenetic topologies. In addition, some fungal phylotypes appeared to be present in disparate geographic habitats, suggesting cosmopolitan distributions or closely related species complexes in at least some marine fungi. The present study was only able to isolate fungal DNA from a restricted set of nematode taxa; further work is needed to fully investigate the taxonomic scope and function of nematode-fungal interactions. PMID:22046287

  10. Marine fungal diversity: a comparison of natural and created salt marshes of the north-central Gulf of Mexico.

    PubMed

    Walker, Allison K; Campbell, Jinx

    2010-01-01

    Marine fungal communities of created salt marshes of differing ages were compared with those of two reference natural salt marshes. Marine fungi occurring on the lower 30 cm of salt marsh plants Spartina alterniflora and Juncus roemerianus were inventoried with morphological and molecular methods (ITS T-RFLP analysis) to determine fungal species richness, relative frequency of occurrence and ascomata density. The resulting profiles revealed similar fungal communities in natural salt marshes and created salt marshes 3 y old and older with a 1.5 y old created marsh showing less fungal colonization. A 26 y old created salt marsh consistently exhibited the highest fungal species richness. Ascomata density of the dominant fungal species on each host was significantly higher in natural marshes than in created marshes at all three sampling dates. This study indicates marine fungal saprotroph communities are present in these manmade coastal salt marshes as early as 1 y after marsh creation. The lower regions of both plant hosts were dominated by a small number of marine ascomycete species consistent with those species previously reported from salt marshes of the East Coast of USA. PMID:20524584