Science.gov

Sample records for conserving energy saving

  1. Saving Money Through Energy Conservation.

    ERIC Educational Resources Information Center

    Presley, Michael H.; And Others

    This publication is an introduction to personal energy conservation. The first chapter presents a rationale for conserving energy and points out that private citizens control about one third of this country's energy consumption. Chapters two and three show how to save money by saving energy. Chapter two discusses energy conservation methods in the…

  2. Energy savings potential from energy-conserving irrigation systems

    SciTech Connect

    Wilfert, G.L.; Patton, W.P.; Harrer, B.J.; Clark, M.A.

    1982-11-01

    This report systematically compares, within a consistent framework, the technical and economic characteristics of energy-conserving irrigation systems with those of conventional irrigation systems and to determine total energy savings. Levelized annual costs of owning and operating both energy-conserving and conventional irrigation systems have been developed and compared for all 17 states to account for the differences in energy costs and irrigation conditions in each state. Market penetration of energy-conserving systems is assessed for those systems having lower levelized annual costs than conventional systems performing the same function. Annual energy savings were computed by matching the energy savings per system with an assumed maximum market penetration of 100 percent in those markets where the levelized annual costs of energy-conserving systems are lower than the levelized annual costs of conventional systems.

  3. Saving money with energy conservation: economic analysis of conservation measures

    SciTech Connect

    Bailey, J.E.; Roller, D.A.; Moor, W.C.

    1980-01-01

    The basic tools for performing simple economic analyses of energy-conservation measures are reviewed. Energy accounting establishes energy-utilization patterns and performance goals. Directions for analyzing the utility bill are presented. Part 2 introduces ways to calculate the payback period, return on investment, and present worth of energy-conservation measures. Examples are given for reducing parking lot and indoor lighting, adding storm windows, reducing ventilation-fan running time, recycling boiler condensate, and shifting electrical-demand peak. A discussion of the inflation, depreciation, and income-tax ramifications of energy conservation is offered.

  4. Study of State Energy Conservation Program: 1979 energy savings indicators. [Estimated Btu's and dollars

    SciTech Connect

    1980-06-01

    This study reviewed 1979 energy savings reports provided by states for conservation measures in four major categories of State Energy Conservation Program services, namely: (1) industrial, commercial, and institutional; (2) residential; (3) thermal and lighting; and (4) transportation. Conservation measures in these categories constitute a major portion of the total estimated 1980 savings for the State Energy Conservation Program. This study only addressed measures in these categories for which usable documentation had been submitted by states. Based on a review of measures supported by available documentation, the study estimates that energy savings associated with the conservation measures reviewed were 108 TBtu's for the calendar year 1979. These estimated energy savings for 1979 were converted into 540 million dollars for 1979 and 2.8 billion dollars over the projected life of the conservation measures.

  5. How a Little Conservation Can Save Energy and Big Money.

    ERIC Educational Resources Information Center

    Williams, Fred D.

    1985-01-01

    This school system cut its energy consumption by 40 percent by involving people throughout the school system in simple energy conservation measures suggested by an energy audit and undertaking structural improvement projects half-funded by federal grants. (DCS)

  6. Adult Education in Action: Saving Dollars by Energy Conservation.

    ERIC Educational Resources Information Center

    Moore, Allen B.; And Others

    1979-01-01

    Describes the energy conservation management communication network in the Northeast Georgia Area Planning and Development Commission, a ten-county regional planning agency. The authors state that the use of local citizens and community leaders in the energy conservation planning and program activities demonstrates adult education in action. (MF)

  7. Water Conservation Checklist for the Home. Save Water, Save Energy, Save Money. Program Aid No. 1192.

    ERIC Educational Resources Information Center

    Pifer, Glenda; And Others

    Few people realize that the average person uses about 60 gallons of water each day. Water shortages are already occurring on a regional scale; someday they may become a national problem. Accordingly, this checklist is designed to help house and apartment dwellers determine how efficiently they use water and identify additional ways to save it.…

  8. Energy conservation, energy efficiency and energy savings regulatory hypotheses - taxation, subsidies and underlying economics

    SciTech Connect

    Trumpy, T.

    1995-12-01

    More efficient use of energy resources can be promoted by various regulatory means, i.e., taxation, subsidies, and pricing. Various incentives can be provided by income and revenue tax breaks-deductible energy audit fees, energy saving investment credits, breaks for energy saving entrepreneurs, and energy savings accounts run through utility accounts. Value added and excise taxes can also be adjusted to reward energy saving investments and energy saving entrepreneurial activity. Incentives can be provided in the form of cash refunds, including trade-in-and-scrap programs and reimbursements or subsidies on audit costs and liability insurance. Pricing incentives include lower rates for less energy use, prepayment of deposit related to peak load use, electronically dispatched multiple tariffs, savings credits based on prior peak use, and subsidized {open_quotes}leasing{close_quotes} of more efficient appliances and lights. Credits, with an emphasis on pooling small loans, and 5-year energy savings contracts are also discussed.

  9. The Conservation Nexus: Valuing Interdependent Water and Energy Savings in Phoenix, Arizona

    NASA Astrophysics Data System (ADS)

    Chester, M.; Bartos, M.

    2013-12-01

    Energy and water resources are intrinsically linked, yet they are managed separately--even in the water-scarce American southwest. This study develops a spatially-explicit model of water-energy interdependencies in Arizona, and assesses the potential for co-beneficial conservation programs. Arizona consumes 2.8% of its water demand for thermoelectric power and 8% of its electricity demand for water infrastructure--roughly twice the national average. The interdependent benefits of investments in 7 conservation strategies are assessed. Deployment of irrigation retrofits and new reclaimed water facilities dominate potential water savings, while residential and commercial HVAC improvements dominate energy savings. Water conservation policies have the potential to reduce statewide electricity demand by 1.0-2.9%, satisfying 5-14% of mandated energy-efficiency goals. Likewise, adoption of energy-efficiency measures and renewable generation portfolios can reduce non-agricultural water demand by 2.0-2.6%. These co-benefits of conservation investments are typically not included in conservation plans or benefit-cost analyses. Residential water conservation measures produce significant water and energy savings, but are generally not cost-effective at current water prices. An evaluation of the true cost of water in Arizona would allow future water and energy savings to be compared objectively, and would help policymakers allocate scarce resources to the highest-value conservation measures. Water Transfers between Water Cycle Components in Arizona in 2008 Cumulative embedded energy in water cycle components in Arizona in 2008

  10. The conservation nexus: valuing interdependent water and energy savings in Arizona.

    PubMed

    Bartos, Matthew D; Chester, Mikhail V

    2014-02-18

    Water and energy resources are intrinsically linked, yet they are managed separately--even in the water-scarce American southwest. This study develops a spatially explicit model of water-energy interdependencies in Arizona and assesses the potential for cobeneficial conservation programs. The interdependent benefits of investments in eight conservation strategies are assessed within the context of legislated renewable energy portfolio and energy efficiency standards. The cobenefits of conservation are found to be significant. Water conservation policies have the potential to reduce statewide electricity demand by 0.82-3.1%, satisfying 4.1-16% of the state's mandated energy-efficiency standard. Adoption of energy-efficiency measures and renewable generation portfolios can reduce nonagricultural water demand by 1.9-15%. These conservation cobenefits are typically not included in conservation plans or benefit-cost analyses. Many cobenefits offer negative costs of saved water and energy, indicating that these measures provide water and energy savings at no net cost. Because ranges of costs and savings for water-energy conservation measures are somewhat uncertain, future studies should investigate the cobenefits of individual conservation strategies in detail. Although this study focuses on Arizona, the analysis can be extended elsewhere as renewable portfolio and energy efficiency standards become more common nationally and internationally. PMID:24460528

  11. Potential cost savings from investments in energy-conserving irrigation systems

    SciTech Connect

    Patton, W.P.; Wilfert, G.L.; Harrer, B.J.; Clark, M.A.; Sherman, K.L.

    1982-10-01

    A comparative analysis is presented of the levelized costs of selected irrigation systems, with an emphasis on the costs and benefits of energy savings. The net economic benefits are evaluated, measured as energy cost savings minus additional capital and operating costs, of some energy-conserving systems. Energy use in irrigation and descriptions of both the conventional and the energy-saving technologies involved in the analysis are discussed. The approach used in the analysis is outlined, and comparative analysis results are discussed. Detailed cost information is presented by state. (LEW)

  12. Selected bibliography: cost and energy savings of conservation and renewable energy technologies

    SciTech Connect

    1980-05-01

    This bibliography is a compilation of reports on the cost and energy savings of conservation and renewable energy applications throughout the United States. It is part of an overall effort to inform utilities of technological developments in conservation and renewable energy technologies and so aid utilities in their planning process to determine the most effective and economic combination of capital investments to meet customer needs. Department of Energy assessments of the applications, current costs and cost goals for the various technologies included in this bibliography are presented. These assessments are based on analyses performed by or for the respective DOE Program Offices. The results are sensitive to a number of variables and assumptions; however, the estimates presented are considered representative. These assessments are presented, followed by some conclusions regarding the potential role of the conservation and renewable energy alternative. The approach used to classify the bibliographic citations and abstracts is outlined.

  13. Saving Water Saves Energy

    SciTech Connect

    McMahon, James E.; Whitehead, Camilla Dunham; Biermayer, Peter

    2006-06-15

    Hot water use in households, for showers and baths as wellas for washing clothes and dishes, is a major driver of household energyconsumption. Other household uses of water (such as irrigatinglandscaping) require additional energy in other sectors to transport andtreat the water before use, and to treat wastewater. In California, 19percent of total electricity for all sectors combined and 32 percent ofnatural gas consumption is related to water. There is a criticalinterdependence between energy and water systems: thermal power plantsrequire cooling water, and water pumping and treatment require energy.Energy efficiency can be increased by a number of means, includingmore-efficient appliances (e.g., clothes washers or dishwashers that useless total water and less heated water), water-conserving plumbingfixtures and fittings (e.g., showerheads, faucets, toilets) and changesin consumer behavior (e.g., lower temperature set points for storagewater heaters, shorter showers). Water- and energy-conserving activitiescan help offset the stress imposed on limited water (and energy) suppliesfrom increasing population in some areas, particularly in drought years,or increased consumption (e.g., some new shower systems) as a result ofincreased wealth. This paper explores the connections between householdwater use and energy, and suggests options for increased efficiencies inboth individual technologies and systems. Studies indicate that urbanwater use can be reduced cost-effectively by up to 30 percent withcommercially available products. The energy savings associated with watersavings may represent a large additional and largely untappedcost-effective opportunity.

  14. Energy conserved and costs saved by small and medium-size manufacturers, 1988--1989

    SciTech Connect

    Kirsch, F.W.

    1991-05-01

    Energy Analysis and Diagnostic Centers (EADCs) provided energy-conserving and cost saving assistance in 339 small and medium-size manufacturing plants nationwide during 1988-89. This report presents the results of what was recommended to those manufacturers, the record of what was implemented by them, and an analysis of the financial rewards gained by them. It also includes an accounting of the financial returns to the federal government, derived from taxes upon the cost savings, or incremental income, of the manufacturers who implement the EADCs` recommendations. EADCs collect implementation data within a year of the energy audit, and for these results that time period extended through 1990. The EADCs are located at accredited engineering departments of universities and staffed by faculty and students. At present there are 18 EADCs serving manufacturers in 37 states; of these, two were established as a result of the 1989 competition, and five more were chosen competitively in 1990. Most of the results in this report were generated by 11 EADCs (named in the Appendix); two others withdrew voluntarily after completing only 10 energy audits during 1988-89. Primary responsibility for selecting, training, evaluating, and managing the EADCs belongs to the Industrial Technology and Energy Management (ITEM) division of University City Science Center (UCSC). The Department of Energy`s Office of Industrial Technologies sponsors the EADC program through an agreement with UCSC.

  15. I-SAVE: AN INTERACTIVE REAL-TIME MONITOR AND CONTROLLER TO INFLUENCE ENERGY CONSERVATION BEHAVIOR BY IMPULSE SAVING

    EPA Science Inventory

    Simulation-based model to explore the benefits of monitoring and control to energy saving opportunities in residential homes; an adaptive algorithm to predict the type of electrical loads; a prototype user friendly interface monitoring and control device to save energy; a p...

  16. Energy: Conservation, Energy Briefs

    ERIC Educational Resources Information Center

    Nation's Schools and Colleges, 1975

    1975-01-01

    A comprehensive energy conservation program at College of the Holy Cross has saved nearly one-third of the fuel oil and one-fifth of the electricity used at the college; briefs on boilers, lights, design. (Author/MLF)

  17. Save Energy: Save Money!

    ERIC Educational Resources Information Center

    Eccli, Eugene; And Others

    This publication is a collection of inexpensive energy saving tips and home improvements for home owners, particularly in low-income areas or in older homes. Section titles are: (1) Keeping Warm; (2) Getting Heat Where You Need It; (3) Using the Sun; (4) Furnaces, Stoves, and Fireplaces; (5) Insulation and Other Energy Needs; (6) Do-It-Yourself…

  18. Energy savings modelling of re-tuning energy conservation measures in large office buildings

    SciTech Connect

    Fernandez, Nick; Katipamula, Srinivas; Wang, Weimin; Huang, Yunzhi; Liu, Guopeng

    2014-10-20

    Today, many large commercial buildings use sophisticated building automation systems (BASs) to manage a wide range of building equipment. While the capabilities of BASs have increased over time, many buildings still do not fully use the BAS’s capabilities and are not properly commissioned, operated or maintained, which leads to inefficient operation, increased energy use, and reduced lifetimes of the equipment. This paper investigates the energy savings potential of several common HVAC system re-tuning measures on a typical large office building, using the Department of Energy’s building energy modeling software, EnergyPlus. The baseline prototype model uses roughly as much energy as an average large office building in existing building stock, but does not utilize any re-tuning measures. Individual re-tuning measures simulated against this baseline include automatic schedule adjustments, damper minimum flow adjustments, thermostat adjustments, as well as dynamic resets (set points that change continuously with building and/or outdoor conditions) to static pressure, supply-air temperature, condenser water temperature, chilled and hot water temperature, and chilled and hot water differential pressure set points. Six combinations of these individual measures have been formulated – each designed to conform to limitations to implementation of certain individual measures that might exist in typical buildings. All the individual measures and combinations were simulated in 16 climate locations representative of specific U.S. climate zones. The modeling results suggest that the most effective energy savings measures are those that affect the demand-side of the building (air-systems and schedules). Many of the demand-side individual measures were capable of reducing annual total HVAC system energy consumption by over 20% in most cities that were modeled. Supply side measures affecting HVAC plant conditions were only modestly successful (less than 5% annual HVAC energy

  19. Save Energy, Save Dollars. Information Bulletin 125.

    ERIC Educational Resources Information Center

    State Univ. of New York, Ithaca. Coll. of Human Ecology at Cornell Univ.

    This cooperative extension publication from Cornell University is a guide for energy conservation in homes, apartments, and transportation. Written in non-technical language, this guide provides the layperson with information about weatherization, home appliance use, recreation and transportation practices to conserve energy and, thus, save money.…

  20. How to Save Money by Saving Energy.

    ERIC Educational Resources Information Center

    Department of Energy, Washington, DC.

    This pamphlet presents energy conservation tips to help consumers save money. Conservation measures suggested here cover topics such as: (1) insulation; (2) space heating and cooling; (3) hot water heating; (4) cooking; (5) laundry; (6) lighting; (7) electrical appliances; (8) buying or building a home; and (9) buying, maintaining and driving a…

  1. Motor Energy Conservation Measures

    Energy Science and Technology Software Center (ESTSC)

    2010-12-31

    This software requires inputs of simple motor inventory information and calculates the energy and cost benefits of various retrofit opportunities. This tool includes energy conservation measures for: High Efficiency Motor retrofit and Cogged V-belts retrofit. This tool calculates energy savings, demand reduction, cost savings, and building life cycle costs including: simple payback, discounted payback, net-present value, and savings to investment ratio. In addition this tool also displays the environmental benefits of a project.

  2. Learning about saving energy

    SciTech Connect

    1995-02-01

    This fact sheet for use in primary and junior high school classes describes what energy is, how people use energy, and how energy can be conserved. This last section lists ways to save energy in heating and cooling, electric appliances, automobiles, and in manufacturing. A list of activities are suggested and resources for further information, both groups and books, are listed. A glossary is also included.

  3. Save Energy Now

    SciTech Connect

    Not Available

    2006-01-01

    This DOE Industrial Technologies Program brochure informs industrial audiences about Save Energy Now, part of ''Easy Ways to Save Energy'', a national campaign to save energy and ensure energy security.

  4. Energy conservation and savings in the food industry (citations from Food Science and Technology Abstracts). Report for Jan 1972-Nov 1979

    SciTech Connect

    Hippler, R.R.

    1980-02-01

    The citations cover world-wide literature on conservation and savings in energy use for the food industry. Industries covered are dairies (including milk, cheese, cream, ice cream), breweries, meat industry, food processing plants, food warehouses, bakeries, and sugar factories. Energy savings aspects are alternate energy forms, solar drying and dehydration (including for grains and fruits), energy recycling (waste energy usage), and use of by-products for energy, such as biogas. The articles cover techniques equipment, and design for energy conservation. (Contains 95 abstracts)

  5. Four Steps to Energy Savings.

    ERIC Educational Resources Information Center

    Stellar, Arthur

    2000-01-01

    An upstate New York district's energy-conservation measures over the past 19 months have saved $376,000 that can be invested in academic and additional energy-saving programs. The district advises developing people-oriented strategies; updating structures, systems, and equipment; finding appropriate resources; and investing in the future. (MLH)

  6. Energy Conservation vs. Energy Efficiency

    SciTech Connect

    Somasundaram, Sriram

    2010-09-30

    Energy conservation is considered by some as synonymous with energy efficiency, but to others, it has a meaning of getting fewer or lower quality energy services. The degree of confusion between these meanings varies widely by individual, culture, historic period and language spoken. In the context of this document, energy conservation means to keep from being lost or wasted; saved, and energy efficiency means the ability to produce a desired effect or product with a minimum of effort, expense or waste.

  7. South Jersey School Saves Energy

    ERIC Educational Resources Information Center

    Modern Schools, 1976

    1976-01-01

    At West Deptford High School in New Jersey, a group of students led by their teacher have developed a number of sound energy-conserving techniques that add up to substantial savings for the school budget. (Author/MLF)

  8. Energy Conservation for Schools.

    ERIC Educational Resources Information Center

    Ontario Dept. of Education, Toronto.

    Information intended for those concerned with the administration, planning, financing, operation, and maintenance of school facilities applies to both new and existing building. An examination of motivation and policies relating to energy conservation is followed by the methods used for quantitative assessment of energy savings relative to extra…

  9. Consumer behaviours: Teaching children to save energy

    NASA Astrophysics Data System (ADS)

    Grønhøj, Alice

    2016-08-01

    Energy-saving programmes are increasingly targeted at children to encourage household energy conservation. A study involving the assignment of energy-saving interventions to Girl Scouts shows that a child-focused intervention can improve energy-saving behaviours among children and their parents.

  10. Save Energy $.

    ERIC Educational Resources Information Center

    Hirsch, Thomas E., III; Shapiro, Robert F.

    1986-01-01

    Large institutional energy users can reduce energy costs by constructing and operating steam and electricity cogeneration facilities and purchasing their own gas at lower prices rather than relying on local distributors. (MSE)

  11. The National Fuel End-Use Efficiency Field Test: Energy Savings and Performance of an Improved Energy Conservation Measure Selection Technique

    SciTech Connect

    Ternes, M.P.

    1991-01-01

    The performance of an advanced residential energy conservation measure (ECM) selection technique was tested in Buffalo, New York, to verify the energy savings and program improvements achieved from use of the technique in conservation programs and provide input into determining whether utility investments in residential gas end-use conservation are cost effective. The technique analyzes a house to identify all ECMs that are cost effective in the building envelope, space-heating system, and water-heating system. The benefit-to-cost ratio (BCR) for each ECM is determined and cost-effective ECMs (BCR > 1.0) are selected once interactions between ECMs are taken into account. Eighty-nine houses with the following characteristics were monitored for the duration of the field test: occupants were low-income, houses were single-family detached houses but not mobile homes, and primary space- and water-heating systems were gas-fired. Forty-five houses received a mix of ECMs as selected by the measure selection technique (audit houses) and 44 served as a control group. Pre-weatherization data were collected from January to April 1988 and post-weatherization data were collected from December 1988 to April 1989. Space- and waterheating gas consumption and indoor temperature were monitored weekly during the two winters. A house energy consumption model and regression analysis were employed to normalize the space-heating energy savings to average outdoor temperature conditions and a 68 F indoor temperature. Space and water-heating energy savings for the audit houses were adjusted by the savings for the control houses. The average savings of 257 therms/year for the audit houses was 17% of the average pre-weatherization house gas consumption and 78% of that predicted. Average space-heating energy savings was 252 therms/year (25% of pre-weatherization space-heating energy consumption and 85% of the predicted value) and average water-heating savings was 5 therms/year (2% of pre

  12. Steam System Energy Conservation Measures

    Energy Science and Technology Software Center (ESTSC)

    2010-12-31

    This software requires inputs of simple system inventory information and calculates the energy and cost benefits of various retrofit opportunities. This tool includes energy conservation measures for: fixing steam leaks. This tool calculates energy savings, demand reduction, cost savings, and building life cycle costs including: simple payback, discounted payback, net-present value, and savings to investment ratio. In addition this tool also displays the environmental benefits of a project.

  13. Water Savings Through Conservation Tillage

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Through a partnership with the University of Georgia – College of Agriculture and Environmental Sciences, USDA-Agricultural Research Service, USDA-Natural Resource Conservation Service, Soil and Water Conservation Society and Resource Conservation and Development Councils to name a few, research and...

  14. Saving Energy Dollars.

    ERIC Educational Resources Information Center

    Cray, Douglas W.

    1993-01-01

    The Comprehensive National Energy Policy Act of 1992 encourages energy-conservation measures and proposes matching federal energy-conservation funds with state programs to achieve energy conservation in public buildings. Presents a sampler of conservation projects in Massachusetts, Connecticut, Florida, and Minnesota. (MLF)

  15. Environmental Protection Agency evaluation of the AUTOTHERM Energy Conservation System under Section 511 of the Motor Vehicle Information and Cost Savings Act. Technical report

    SciTech Connect

    Pidgeon, W.M.

    1985-01-01

    The document announces the conclusions of the EPA evaluation of the AUTOTHERM Energy Conservation System device under the provisions of Section 511 of the Motor Vehicle Information and Cost Savings Act. The evaluation of the AUTOTHERM Energy Conservation System was conducted upon the application of the manufacturer. The device allows using the vehicle's heater while parked with the engine off. Using the device is claimed to: (1) conserve fuel, (2) eliminate the exhaust pollutants that are generated when vehicle warmth is maintained by idling the engine, and, (3) lower maintenance costs. The device is also claimed to improve safety by eliminating the need to leave an unattended vehicle with its engine idling to maintain warmth. Carbon monoxide poisoning risks are also alleviated. EPA fully considered all of the information submitted by the applicant. The evaluation of the AUTOTHERM Energy Conservation System was based on that information and the results of an Air Force test project.

  16. Low-risk and cost-effective prior savings estimates for large-scale energy conservation projects in housing: Learning from the Fort Polk GHP project

    SciTech Connect

    Shonder, J.A.; Hughes, P.J.; Thornton, J.W.

    1997-08-01

    Many opportunities exist for large-scale energy conservation projects in housing. Energy savings performance contracting (ESPC) is now receiving greater attention, as a means to implement such projects. This paper proposes an improved method for prior (to construction) savings estimates for these projects. The proposed approach to prior estimates is verified against data from Fort Polk, LA. In the course of evaluating the ESPC at Fort Polk, the authors have collected energy use data which allowed them to develop calibrated engineering models which accurately predict pre-retrofit energy consumption. They believe that such calibrated models could be used to provide much more accurate estimates of energy savings in retrofit projects. The improved savings estimating approach described here is based on an engineering model calibrated to field-collected data from the pre-retrofit period. A dynamic model of pre-retrofit energy use was developed for all housing and non-housing loads on a complete electrical feeder at Fort Polk. The model included the heat transfer characteristics of the buildings, the pre-retrofit air source heat pump, a hot water consumption model and a profile for electrical use by lights and other appliances. Energy consumption for all 200 apartments was totaled, and by adjusting thermostat setpoints and outdoor air infiltration parameters, the models were matched to field-collected energy consumption data for the entire feeder. The energy conservation measures were then implemented in the calibrated model: the air source heat pumps were replaced by geothermal heat pumps with desuperheaters; hot water loads were reduced to account for the low-flow shower heads; and lighting loads were reduced to account for fixture delamping and replacement with compact fluorescent lights. The analysis of pre- and post-retrofit data indicates that the retrofits have saved 30.3% of pre-retrofit electrical energy consumption on the feeder modeled in this paper.

  17. Plugging into Energy Savings.

    ERIC Educational Resources Information Center

    Harrigan, Merrilee

    1999-01-01

    The nonprofit Alliance to Save Energy has been helping schools reduce energy consumption through a combination of retrofits, classroom instruction, and behavior. Lists eight small steps to big energy savings, among them: involve the whole school, stop leaks, turn off computers, and recycle. (MLF)

  18. Save Energy Now Resources

    SciTech Connect

    2008-03-01

    The U.S. Department of Energy (DOE) provides information resources to industrial energy users and partnering organizations to help the nation’s industrial sector save energy and improve productivity.

  19. Remanufacturing and energy savings.

    PubMed

    Gutowski, Timothy G; Sahni, Sahil; Boustani, Avid; Graves, Stephen C

    2011-05-15

    Remanufactured products that can substitute for new products are generally claimed to save energy. These claims are made from studies that look mainly at the differences in materials production and manufacturing. However, when the use phase is included, the situation can change radically. In this Article, 25 case studies for eight different product categories were studied, including: (1) furniture, (2) clothing, (3) computers, (4) electric motors, (5) tires, (6) appliances, (7) engines, and (8) toner cartridges. For most of these products, the use phase energy dominates that for materials production and manufacturing combined. As a result, small changes in use phase efficiency can overwhelm the claimed savings from materials production and manufacturing. These use phase energy changes are primarily due to efficiency improvements in new products, and efficiency degradation in remanufactured products. For those products with no, or an unchanging, use phase energy requirement, remanufacturing can save energy. For the 25 cases, we found that 8 cases clearly saved energy, 6 did not, and 11 were too close to call. In some cases, we could examine how the energy savings potential of remanufacturing has changed over time. Specifically, during times of significant improvements in energy efficiency, remanufacturing would often not save energy. A general design trend seems to be to add power to a previously unpowered product, and then to improve on the energy efficiency of the product over time. These trends tend to undermine the energy savings potential of remanufacturing. PMID:21513286

  20. Selling energy conservation.

    PubMed

    Hinrichsen, D

    1995-01-01

    This article concerns the Organization of the Petroleum Exporting Countries (OPEC) crisis and its impact on energy efficiency measures in the US. In 1985, when the OPEC collapsed, the US government had avoided the need to construct 350 gigawatts of new electric capacity. The most successful efficiency improvements, especially in household appliances and equipment, lighting and tightened energy efficiency standards in new buildings, resulted from the OPEC event. The real innovation of that time was the change in profit rules for utilities. This revolution and the way some US utilities view energy have not caught on elsewhere. Despite the initiative toward improving energy efficiency in homes, offices and industries, the change has been slow. Partly to blame are the big development banks, which pointed out that short-term conservation and efficiency measures could save at least 15% of the total energy demand without the need for major investment. The benefits of energy conservation was shown during the oil shock when per capita energy consumption fell by 5% in the member states of the Organization of Economic Cooperation and Development, while the per capita gross domestic product grew by a third. There has been a decrease in energy expenditure worldwide, and the scope for further energy savings is enormous, but governments need to recognize and seize the opportunity. PMID:12295818

  1. Energy conservation technologies

    SciTech Connect

    Courtright, H.A.

    1993-12-31

    The conservation of energy through the efficiency improvement of existing end-uses and the development of new technologies to replace less efficient systems is an important component of the overall effort to reduce greenhouse gases which may contribute to global climate change. Even though uncertainties exist on the degree and causes of global warming, efficiency improvements in end-use applications remain in the best interest of utilities, their customers and society because efficiency improvements not only reduce environmental exposures but also contribute to industrial productivity, business cost reductions and consumer savings in energy costs.

  2. Energy Control Systems: Energy Savings.

    ERIC Educational Resources Information Center

    School Business Affairs, 1980

    1980-01-01

    The installation of proper control systems is estimated as saving up to 25 percent of the energy used in schools. Other potential energy-saving areas are transmission (heat loss or gain through walls, especially ceilings); internal load (heat from students, lights, and machinery); ventilation; and equipment maintenance. (Author/MLF)

  3. Thermostatistics: Proven Energy Savings.

    ERIC Educational Resources Information Center

    Kwasnoski, John

    1983-01-01

    An apparatus simulating residential thermostat control was developed to test claim that lowering house thermostats saves energy and to give students a better understanding of how thermostats work. The apparatus (includes diagram of same) and student activity are described. (JN)

  4. Supply Curves of Conserved Energy

    SciTech Connect

    Meier, Alan Kevin

    1982-05-01

    Supply curves of conserved energy provide an accounting framework that expresses the potential for energy conservation. The economic worthiness of a conservation measure is expressed in terms of the cost of conserved energy, and a measure is considered economical when the cost of conserved energy is less than the price of the energy it replaces. A supply curve of conserved energy is independent of energy prices; however, the economical reserves of conserved energy will depend on energy prices. Double-counting of energy savings and error propagation are common problems when estimating conservation potentials, but supply curves minimize these difficulties and make their consequences predictable. The sensitivity of the cost of conserved energy is examined, as are variations in the optimal investment strategy in response to changes in inputs. Guidelines are presented for predicting the consequences of such changes. The conservation supply curve concept can be applied to peak power, water, pollution, and other markets where consumers demand a service rather than a particular good.

  5. The Oklahoma Field Test: Air-conditioning electricity savings from standard energy conservation measures, radiant barriers, and high-efficiency window air conditioners

    SciTech Connect

    Ternes, M.P.; Levins, W.P.

    1992-08-01

    A field test Involving 104 houses was performed in Tulsa, Oklahoma, to measure the air-conditioning electricity consumption of low-income houses equipped with window air conditioners, the reduction in this electricity consumption attributed to the installation of energy conservation measures (ECMS) as typically installed under the Oklahoma Weatherization Assistance Program (WAP), and the reduction achieved by the replacement of low-efficiency window air conditioners with high-efficiency units and the installation of attic radiant barriers. Air-conditioning electricity consumption and indoor temperature were monitored weekly during the pre-weatherization period (June to September 1988) and post-weatherization period (May to September 1989). House energy consumption models and regression analyses were used to normalize the air-conditioning electricity savings to average outdoor temperature conditions and the pre-weatherization indoor temperature of each house. The following conclusions were drawn from the study: (1) programs directed at reducing air-conditioning electricity consumption should be targeted at clients with high consumption to improve cost effectiveness; (2) replacing low-efficiency air conditioners with high-efficiency units should be considered an option in a weatherization program directed at reducing air-conditioning electricity consumption; (3) ECMs currently being installed under the Oklahoma WAP (chosen based on effectiveness at reducing space-heating energy consumption) should continue to be justified based on their space-heating energy savings potential only; and (4) attic radiant barriers should not be included in the Oklahoma WAP if alternatives with verified savings are available or until further testing demonstrates energy savings or other benefits in this typo of housing.

  6. Alternatives for Financing School Energy Savings Programs.

    ERIC Educational Resources Information Center

    Esteves, Rich

    1983-01-01

    This report compares shared-savings programs with financing through the use of internal funds, loans, leases, and lease purchase plans for financing energy conservation in nonprofit buildings. The shared savings option was found to offer the greatest benefits to the customer. (MLF)

  7. Creative Energy Management Can Save Money.

    ERIC Educational Resources Information Center

    Rose, Patricia

    1984-01-01

    Schools can launch energy conservation programs with simple money-saving measures like improving boiler maintenance, recalibrating utility meters, and obtaining preferred utility rates. Becoming more assertive in the marketplace and using "creative financing" when needed, they can then reinvest their savings in more extensive projects. (MCG)

  8. Nonprice incentives and energy conservation.

    PubMed

    Asensio, Omar I; Delmas, Magali A

    2015-02-10

    In the electricity sector, energy conservation through technological and behavioral change is estimated to have a savings potential of 123 million metric tons of carbon per year, which represents 20% of US household direct emissions in the United States. In this article, we investigate the effectiveness of nonprice information strategies to motivate conservation behavior. We introduce environment and health-based messaging as a behavioral strategy to reduce energy use in the home and promote energy conservation. In a randomized controlled trial with real-time appliance-level energy metering, we find that environment and health-based information strategies, which communicate the environmental and public health externalities of electricity production, such as pounds of pollutants, childhood asthma, and cancer, outperform monetary savings information to drive behavioral change in the home. Environment and health-based information treatments motivated 8% energy savings versus control and were particularly effective on families with children, who achieved up to 19% energy savings. Our results are based on a panel of 3.4 million hourly appliance-level kilowatt-hour observations for 118 residences over 8 mo. We discuss the relative impacts of both cost-savings information and environmental health messaging strategies with residential consumers. PMID:25583494

  9. Nonprice incentives and energy conservation

    PubMed Central

    Asensio, Omar I.; Delmas, Magali A.

    2015-01-01

    In the electricity sector, energy conservation through technological and behavioral change is estimated to have a savings potential of 123 million metric tons of carbon per year, which represents 20% of US household direct emissions in the United States. In this article, we investigate the effectiveness of nonprice information strategies to motivate conservation behavior. We introduce environment and health-based messaging as a behavioral strategy to reduce energy use in the home and promote energy conservation. In a randomized controlled trial with real-time appliance-level energy metering, we find that environment and health-based information strategies, which communicate the environmental and public health externalities of electricity production, such as pounds of pollutants, childhood asthma, and cancer, outperform monetary savings information to drive behavioral change in the home. Environment and health-based information treatments motivated 8% energy savings versus control and were particularly effective on families with children, who achieved up to 19% energy savings. Our results are based on a panel of 3.4 million hourly appliance-level kilowatt–hour observations for 118 residences over 8 mo. We discuss the relative impacts of both cost-savings information and environmental health messaging strategies with residential consumers. PMID:25583494

  10. National energy conservation

    NASA Technical Reports Server (NTRS)

    1975-01-01

    A set of energy conservation actions that cut across all sectors of the economy were analyzed so that all actions under consideration be analyzed systematically and as a whole. The actions considered were as follows: (1) roll back the price of newly discovered oil, (2) freeze gasoline production for 3 years at 1972 levels, (3) mandate automobile mileage improvements, (4) require industry to improve energy efficiency, (5) require manufacture of household appliances with greater efficiency, (6) force conversion of many power plants from gas and oil to coal. The results showed that considerable gas and oil would be saved by forcing switches to coal. However, the large scale switch to coal was shown to require greatly increased outputs from many other industries that in turn require more energy. It was estimated that nearly 2.5 quads of additional coal were needed to produce these additional requirements. Also, the indirect requirements would create more jobs.

  11. I-SAVE conservation program. Implementing title II of NECPA residential conservation service. Final draft

    SciTech Connect

    1980-05-30

    The I-SAVE (Iowa Saves America's Vital Energy) conservation plan provides comprehensive energy-conservation information and services to residential consumers served by large investor-owned electric and gas utilities and participating home-heating suppliers. The overall objective of the I-SAVE plan is to conserve energy by facilitating cost-effective retrofit of existing housing and promoting more-efficient energy use. The ultimate benefit available to the customer under the I-SAVE plan - reduction in energy use - is dependent upon the action he or she takes as a result of the program audit. Benefits to the utility and the ratepayers as a whole, however, will accrue only upon widespread customer acceptance and utilization of program services. This degree of program acceptance and the resulting benefits to ratepayers can be attained only through an aggressive educational and promotional effort by the covered utilities. All electric and gas utilities which have sales, other than resale, exceeding 750 million kWh of electricity or 10 billion cubic feet of gas and participating home-heating suppliers, shall provide a program announcement and shall offer conservation services to their customers who occupy a residential building containing at least one, but not more than four units, in a manner as provided by the rules. The text of the rules is presented. (MCW)

  12. A Graduate Course in Energy Conservation.

    ERIC Educational Resources Information Center

    Fickes, Michael

    1999-01-01

    Examines the University of Michigan's (Ann Arbor) success with a six-year energy conservation program (The Energy Star Program) offered by the Environmental Protection Agency. Describes the program's components and areas of savings the university has achieved. (GR)

  13. Energy conservation in swine buildings

    SciTech Connect

    Jones, D.D.; Friday, W.H.

    1980-05-01

    Saving energy in confinement swine buildings can be achieved by conserving existing animal heat through both proper building construction and control of the environment. Environmental management practices considered include building insulation and modifications, heating and cooling system selection, ventilation system adjustments, and proper building temperature. (MCW)

  14. An Energy Audit, and Some Down-Home Initiative, Paid Off for Our Schools with Substantial Savings As Well As Pace-Setting Energy Conservation.

    ERIC Educational Resources Information Center

    Rocchio, Frank

    1984-01-01

    By using an energy audit, the Cheyenne Mountain School District No. 12 (Colorado) identified fuel-consuming areas in its schools and reduced the annual increases for fuel from 25 to 5 percent. Six steps to energy savings will work for other districts as well. (JW)

  15. Energy Savings Performance Contract (ESPC) ENABLE Program

    SciTech Connect

    2012-06-01

    The Energy Savings Performance Contract (ESPC) ENABLE program, a new project funding approach, allows small Federal facilities to realize energy and water savings in six months or less. ESPC ENABLE provides a standardized and streamlined process to install targeted energy conservation measures (ECMs) such as lighting, water, and controls with measurement and verification (M&V) appropriate for the size and scope of the project. This allows Federal facilities smaller than 200,000 square feet to make progress towards important energy efficiency and water conservation requirements.

  16. The Oklahoma Field Test: Air-Conditioning Electricity Savings from Standard Energy Conservation Measures, Radiant Barriers, and High-Efficiency Window Air Conditioners

    SciTech Connect

    Ternes, M.P.

    1992-01-01

    A field test involving 104 houses was performed in Tulsa, Oklahoma, to measure the air-conditioning electricity consumption of low-income houses equipped with window air conditioners, the reduction in this electricity consumption attributed to the installation of energy conservation measures (ECMs) as typically installed under the Oklahoma Weatherization Assistance Program (WAP), and the reduction achieved by the replacement of low-efficiency window air conditioners with high-efficiency units and the installation of attic radiant barriers. Air-conditioning electricity consumption and indoor temperature were monitored weekly during the pre-weatherization period (June to September 1988) and post-weatherization period (May to September 1989). House energy consumption models and regression analyses were used to normalize the air-conditioning electricity savings to average outdoor temperature conditions and the pre-weatherization indoor temperature of each house. The average measured pre-weatherization air-conditioning electricity consumption was 1664 kWh/year ($119/year). Ten percent of the houses used less than 250 kWh/year, while another 10% used more than 3000 kWh/year. An average reduction in air-conditioning electricity consumption of 535 kWh/year ($38/year and 28% of pre-weatherization consumption) was obtained from replacement of one low-efficiency window air conditioner (EER less than 7.0) per house with a high-efficiency unit (EER greater than 9.0). For approximately the same cost, savings tripled to 1503 kWh/year ($107/year and 41% of pre-weatherization consumption) in those houses with initial air-conditioning electricity consumption greater than 2750 kWh/year. For these houses, replacement of a low-efficiency air conditioner with a high-efficiency unit was cost effective using the incremental cost of installing a new unit now rather than later; the average installation cost for these houses under a weatherization program was estimated to be $786. The

  17. Lighting Control Energy Savings

    Energy Science and Technology Software Center (ESTSC)

    1985-01-01

    CONTROLITE 1.0 is a lighting energy analysis program designed to calculate the energy savings and cost benefits obtainable using lighting controls in buildings. The program can compute the lighting energy reductions that result from using daylighting, scheduling, and other control strategies. When modeling daylight control systems, the program uses QUICKLITE to compute the daylight illuminances at specified points 5 times a day, 12 days a year (the 21st of each month), and for two skymore » conditions (clear and overcast skies). Fourier series techniques are used to fit a continuous curve through the computed illuminance points. The energy use for each of the 12 days is then computed given user-specified power-in/light-out characteristics of the modeled control system. The monthly and annual energy usage for overcast and clear conditions are found separately by fitting two long-term Fourier series curves to the energy use computed for each of the 12 days. Finally, the monthly energy use is calculated by taking a weighted average for the monthly energy use computed for the overcast and clear sky conditions. The program only treats the energy use directly attributable to lighting. The impact of lighting control strategies on building thermal loads is not computed. The program allows input of different control schedules (i.e., on/off times for the lighting system) for each day of the week, but every week of the year is treated the same; thus, holidays cannot be modeled explicitly. When used for daylighting purposes, CONTROLITE1.0 understands only clear and overcast conditions. User-supplied values for the proportion of clear and overcast hours for each month of the year are required to accommodate different climatic conditions.« less

  18. Incorporating the productivity benefits into the assessment of cost effective energy savings potential using conservation supply curves

    SciTech Connect

    Laitner, John A.; Ruth, Michael; Worrell, Ernst

    2001-07-24

    We review the relationship between energy efficiency improvement measures and productivity in industry. We propose a method to include productivity benefits in the economic assessment of the potential for energy efficiency improvement. The paper explores the implications of how this change in perspective might affect the evaluation of energy-efficient technologies for a study of the iron and steel industry in the U.S. It is found that including productivity benefits explicitly in the modeling parameters would double the cost-effective potential for energy efficiency improvement, compared to an analysis excluding those benefits. We provide suggestions for future research for this important area.

  19. How Trees Can Save Energy.

    ERIC Educational Resources Information Center

    Fazio, James R., Ed.

    1991-01-01

    This document might easily have been called "How To Use Trees To Save Energy". It presents the energy saving advantages of landscaping the home and community with trees. The discussion includes: (1) landscaping advice to obtain the benefits of tree shade; (2) the heat island phenomenon in cities; (3) how and where to properly plant trees for…

  20. Identification of cost effective energy conservation measures

    NASA Technical Reports Server (NTRS)

    Bierenbaum, H. S.; Boggs, W. H.

    1978-01-01

    In addition to a successful program of readily implemented conservation actions for reducing building energy consumption at Kennedy Space Center, recent detailed analyses have identified further substantial savings for buildings representative of technical facilities designed when energy costs were low. The techniques employed for determination of these energy savings consisted of facility configuration analysis, power and lighting measurements, detailed computer simulations and simulation verifications. Use of these methods resulted in identification of projected energy savings as large as $330,000 a year (approximately two year break-even period) in a single building. Application of these techniques to other commercial buildings is discussed

  1. Commitment and energy conservation

    SciTech Connect

    Pallak, M.S.; Cook, D.A.; Sullivan, J.J.

    1980-01-01

    The authors discuss the process of becoming committed to energy conservation research, then describe practical issues of field research and several data sets on household energy conservation. Their results show that taking a stand affected behavior in reducing the levels of natural gas and electricity usage, with the effect continuing even after the study ended. Although based on the assumption that homeowners were initially favorable toward energy conservation, the studies suggest that energy-related behavior is malleable and amenable to approaches familiar to psychologists. The study indicates that feedback on energy use during peak seasons could help to avoid power shortages. 16 references, 6 tables.

  2. Home Energy Conservation Primer.

    ERIC Educational Resources Information Center

    DeLuca, V. William; And Others

    This guide was prepared to support a program of training for community specialists in contemporary and practical techniques of home energy conservation. It is designed to assist professionals in efficient operation of energy conservation programs and to provide ideas for expanding education operations. Eight major sections are presented: (1)…

  3. Energy Conservation Simplified

    ERIC Educational Resources Information Center

    Hecht, Eugene

    2008-01-01

    The standard formulation of energy conservation involves the subsidiary ideas of kinetic energy ("KE"), work ("W"), thermal energy, internal energy, and a half-dozen different kinds of potential energy ("PE"): elastic, chemical, nuclear, gravitational, and so forth. These quantities came to be recognized during the centuries over which the…

  4. Energy Conservation Simplified

    NASA Astrophysics Data System (ADS)

    Hecht, Eugene

    2008-02-01

    The standard formulation of energy conservation involves the subsidiary ideas of kinetic energy (KE), work (W), thermal energy, internal energy, and a half-dozen different kinds of potential energy (PE): elastic, chemical, nuclear, gravitational, and so forth. These quantities came to be recognized during the centuries over which the principle developed. The final conservation law, although rich in specificity, is fairly involved. More significantly, it obscures a fundamental underlying simplicity, which could only be appreciated post-relativity (1905). Energy is the scalar measure of physical change. Using the special theory it will be shown that there are only two all-encompassing classifications of energy—energy of rest and energy of motion—and that we can apply the idea of conservation of energy to all physical processes using only these two energy types as quantified by mass and KE.

  5. Low-bay Lighting Energy Conservation Measures

    Energy Science and Technology Software Center (ESTSC)

    2010-12-31

    This software requires inputs of simple low-bay lighting system inventory information and calculates the energy and cost benefits of various retrofit opportunities. This tool includes energy conservation measures for: Low-wattage T8 lighting retrofit, T12 to T8 lighting retrofit, LED Exit signs retrofit, Occupancy sensors, Screw-in lighting retrofit, and central lighting controls. This tool calculates energy savings, demand reduction, cooling load reduction, heating load increases, cost savings, building life cycle costs including: Simple payback, discounted payback,more » net-present value, and savings to investment ratio. In addition this tool also displays the environmental benefits of a project.« less

  6. Low-bay Lighting Energy Conservation Measures

    SciTech Connect

    Ian Metzger, Jesse Dean

    2010-12-31

    This software requires inputs of simple low-bay lighting system inventory information and calculates the energy and cost benefits of various retrofit opportunities. This tool includes energy conservation measures for: Low-wattage T8 lighting retrofit, T12 to T8 lighting retrofit, LED Exit signs retrofit, Occupancy sensors, Screw-in lighting retrofit, and central lighting controls. This tool calculates energy savings, demand reduction, cooling load reduction, heating load increases, cost savings, building life cycle costs including: Simple payback, discounted payback, net-present value, and savings to investment ratio. In addition this tool also displays the environmental benefits of a project.

  7. High-bay Lighting Energy Conservation Measures

    SciTech Connect

    Ian Metzger, Jesse Dean

    2010-12-31

    This software requires inputs of simple high-bay lighting system inventory information and calculates the energy and cost benefits of various retrofit opportunities. This tool includes energy conservation measures for: 1000 Watt to 750 Watt High-pressure Sodium lighting retrofit, 400 Watt to 360 Watt High Pressure Sodium lighting retrofit, High Intensity Discharge to T5 lighting retrofit, High Intensity Discharge to T8 lighting retrofit, and Daylighting. This tool calculates energy savings, demand reduction, cost savings, building life cycle costs including: simple payback, discounted payback, net-present value, and savings to investment ratio. In addition this tool also displays the environmental benefits of a project.

  8. Saving Schoolhouse Energy. Final Report.

    ERIC Educational Resources Information Center

    Rudy, John; And Others

    The objective of the Saving Schoolhouse Energy Program was to generate information that school administrators and federal energy/education decision makers could use to identify ways of implementing specific, economical remedies to reduce energy waste in schools. This program was designed to have five phases: (1) Conduct an energy audit of ten…

  9. Pump up your energy savings

    SciTech Connect

    Power, R.B.

    1994-02-01

    Rising fuel costs and the necessity of operating more efficiently are forcing engineers to find innovative ways to conserve energy. A device called an ejector thermocompressor can help. This component recycles waste steam into steam for heating. The simple device, which can be used in many CPI applications, uses high-pressure steam to compress low-pressure, waste steam to a usable level of pressure. When attached to steam headers, for example, an ejector compresses waste steam that can then heat an evaporator, still, dryer roll or heater. Potential applications occur in any situation where a flow of vapor or gas is supplied at a pressure higher than the acceptable minimum. An ejector thermocompressor can accomplish a useful pumping effect at such a location. The new sizing and cost-estimating methods in this article make it easy for engineers to select appropriate ejector thermocompressors for their own applications. For companies, these methods translate directly to saved energy and money in the bank.

  10. Energy conservation is a waste

    SciTech Connect

    Inhaber, H.

    1998-07-01

    Energy conservation is virtually always a bust. Governments around the world continually trot out new schemes to reduce energy use and promote efficiency. The prime American example of this futility is government regulation of automobile gas mileage. Prompted by the Arab oil embargo of 1973, Congress mandated a doubling of gas mileage. What happened? Gasoline consumption rose from 1973 to the 1990s, as the roads were flooded with energy-efficient cars. Huge sport-utility vehicles crowd parking lots, also thanks to more efficient engines. Conservation fails because it takes no account of economics of human nature. The combination of greater engine efficiency and rising disposable income has produced a true golden age of motoring. In the same way, what is saved by installing special light bulbs is often wasted on new hot tubs, exterior lighting and a host of other energy uses, as homeowners assume that their electric bills will drop off substantially. In spite of these and dozens of other clear failures, the claims for conservation to solve virtually all the national energy dilemmas continue. Few if any are valid. While each of us can reduce energy use in one or two areas, one finds that the nation gradually uses more.

  11. Foundry energy conservation workbook

    SciTech Connect

    1990-10-01

    This report discusses methods for promoting energy conservation in foundries. Use of electric power, natural gas, and coke are evaluated. Waste heat recovery systems are considered. Energy consumption in the specific processes of electric melting, natural gas melting, heat treatments, ladle melting, and coke fuel melting is described. An example energy analysis is included. (GHH)

  12. Foundry energy conservation workbook

    SciTech Connect

    Not Available

    1990-12-31

    This report discusses methods for promoting energy conservation in foundries. Use of electric power, natural gas, and coke are evaluated. Waste heat recovery systems are considered. Energy consumption in the specific processes of electric melting, natural gas melting, heat treatments, ladle melting, and coke fuel melting is described. An example energy analysis is included. (GHH)

  13. Public perceptions of energy consumption and savings

    PubMed Central

    Attari, Shahzeen Z.; DeKay, Michael L.; Davidson, Cliff I.; Bruine de Bruin, Wändi

    2010-01-01

    In a national online survey, 505 participants reported their perceptions of energy consumption and savings for a variety of household, transportation, and recycling activities. When asked for the most effective strategy they could implement to conserve energy, most participants mentioned curtailment (e.g., turning off lights, driving less) rather than efficiency improvements (e.g., installing more efficient light bulbs and appliances), in contrast to experts’ recommendations. For a sample of 15 activities, participants underestimated energy use and savings by a factor of 2.8 on average, with small overestimates for low-energy activities and large underestimates for high-energy activities. Additional estimation and ranking tasks also yielded relatively flat functions for perceived energy use and savings. Across several tasks, participants with higher numeracy scores and stronger proenvironmental attitudes had more accurate perceptions. The serious deficiencies highlighted by these results suggest that well-designed efforts to improve the public's understanding of energy use and savings could pay large dividends. PMID:20713724

  14. Chinese hotel general managers' perspectives on energy-saving practices

    NASA Astrophysics Data System (ADS)

    Zhu, Yidan

    As hotels' concern about sustainability and budget-control is growing steadily, energy-saving issues have become one of the important management concerns hospitality industry face. By executing proper energy-saving practices, previous scholars believed that hotel operation costs can decrease dramatically. Moreover, they believed that conducting energy-saving practices may eventually help the hotel to gain other benefits such as an improved reputation and stronger competitive advantage. The energy-saving issue also has become a critical management problem for the hotel industry in China. Previous research has not investigated energy-saving in China's hotel segment. To achieve a better understanding of the importance of energy-saving, this document attempts to present some insights into China's energy-saving practices in the tourist accommodations sector. Results of the study show the Chinese general managers' attitudes toward energy-saving issues and the differences among the diverse hotel managers who responded to the study. Study results indicate that in China, most of the hotels' energy bills decrease due to the implementation of energy-saving equipments. General managers of hotels in operation for a shorter period of time are typically responsible for making decisions about energy-saving issues; older hotels are used to choosing corporate level concerning to this issue. Larger Chinese hotels generally have official energy-saving usage training sessions for employees, but smaller Chinese hotels sometimes overlook the importance of employee training. The study also found that for the Chinese hospitality industry, energy-saving practices related to electricity are the most efficient and common way to save energy, but older hotels also should pay attention to other ways of saving energy such as water conservation or heating/cooling system.

  15. Behaviour: Seeing heat saves energy

    NASA Astrophysics Data System (ADS)

    Steg, Linda

    2016-01-01

    Household energy conservation can help to significantly lower energy consumption. Visual cues provided by thermal imaging of heat loss in buildings are now shown to increase energy conserving behaviours and implementations among homeowners more effectively than just performing carbon footprint audits.

  16. Foundry energy conservation workbook

    SciTech Connect

    Not Available

    1990-01-01

    The foundry industry is a significant user of energy, and therefore, a natural candidate for efforts to save energy and improve efficiency by both governmental agencies and technical/trade associations. These efforts are designed to both improve the national energy position and improve the industry's efficiency and profitability. Increased energy cost and the reduced availability of fossil fuels at certain times have provided the incentive to curb waste and to utilize purchased energy wisely. Energy costs now approach and sometimes exceed 10% of the sales dollar of many foundries. Although energy use by foundries has gradually decreased on a per/ton basis in recent years, the foundry industry must continue to find ways to utilize energy more efficiently. This workbook provides ways to achieve this goal.

  17. Energy conservation in industry

    SciTech Connect

    Strub, A.S.; Ehringer, H.

    1984-01-01

    This book discusses combustion and heat recovery, engines and batteries, and applications and technologies. Some of the topics covered include: energy-saving technologies; heat exchangers, fluidized bed exchangers, industrial heat pumps; fluidized bed combustion; waste heat recovery; orc machines and cascading; engines and flywheels; new types of engines; advanced batteries; fuel cell; chemical industry and catalysis; metallurgy; textile industry; food industry; microwave applications; and cement and glass ceramic industry.

  18. Municipal program, municipalities and government working together to save fuel: Information, a catalogue of publications on transportation energy conservation opportunities. Revised edition

    SciTech Connect

    1990-12-31

    The Municipal Transportation Energy Program is aimed at increasing the energy and operational efficiency and productivity of Ontario`s transportation under municipal jurisdiction. This catalogue lists and annotates publications developed under that Program, covering such topics as analysis of transportation energy usage, identification of energy conservation and management needs, and implementation of energy management and efficiency measures. Includes source information where the item is only obtainable from the municipality involved, and a listing by subject of articles in the Municipal Transportation Energy and Efficiency Advisory Committee Newsletter.

  19. Look beyond the Obvious Energy Savers to Conserve School Dollars.

    ERIC Educational Resources Information Center

    Wisniewski, Adrian T.

    1985-01-01

    Describes a Milwaukee, Wisconsin, school system's energy conservation project that insulated utility tunnels and pipes in two schools. Energy savings will pay back the insulation cost in less than two years. (MD)

  20. Energy Conservation: Implementing an Effective Campus Program.

    ERIC Educational Resources Information Center

    Marsee, Jeff

    After reviewing the physical plant environment and temperature control equipment at Eastfield College (Texas), this paper explains how redirected efforts toward energy conservation can result in important cost/usage savings. Electricity billing rates are explained to provide a stronger usage strategy for cost effectiveness. Two methods of reducing…

  1. Compact cities: energy saving strategies for the eighties

    SciTech Connect

    Not Available

    1980-07-01

    This report is concerned with energy and urban form. One specific focus is on energy-saving land use patterns: how to halt urban sprawl with its excessive energy consumption. The second focus is on appropriate renewable energy sources and conservation incentives for cities.

  2. Energy Conservation Program Evaluation.

    ERIC Educational Resources Information Center

    Heilman, John G., Ed.

    1989-01-01

    Seven papers suggest ways in which theory informs evaluation research in the area of energy conservation. Perspectives of epistemology and methodology and political and bureaucratic issues are addressed. Examples show how theoretically informed concepts and propositions about personal choice and organizational process contribute to knowledge about…

  3. Energy-conservation indicators

    SciTech Connect

    Belzer, D.B.

    1982-06-01

    A series of Energy Conservation Indicators were developed for the Department of Energy to assist in the evaluation of current and proposed conservation strategies. As descriptive statistics that signify current conditions and trends related to efficiency of energy use, indicators provide a way of measuring, monitoring, or inferring actual responses by consumers in markets for energy services. Related sets of indicators are presented in some 30 one-page indicator summaries. Indicators are shown graphically, followed by several paragraphs that explain their derivation and highlight key findings. Indicators are classified according to broad end-use sectors: Aggregate (economy), Residential, Commercial, Industrial, and transportation. In most cases annual time series information is presented covering the period 1960 through 1981.

  4. Energy Conservation in Small Schools. Small Schools Digest.

    ERIC Educational Resources Information Center

    Gardener, Clark

    Information concerning methods and available materials for conserving energy is needed by small, rural schools to offset continued increasing energy costs and lack of financial support and technical assistance. The first step in developing an energy conservation policy is to obtain school board commitment and to establish an energy saving policy.…

  5. Energy savings in Polish buildings

    SciTech Connect

    Markel, L.C.; Gula, A.; Reeves, G.

    1995-12-31

    A demonstration of low-cost insulation and weatherization techniques was a part of phase 1 of the Krakow Clean Fossil Fuels and Energy Efficient Project. The objectives were to identify a cost-effective set of measures to reduce energy used for space heating, determine how much energy could be saved, and foster widespread implementation of those measures. The demonstration project focused on 4 11-story buildings in a Krakow housing cooperative. Energy savings of over 20% were obtained. Most important, the procedures and materials implemented in the demonstration project have been adapted to Polish conditions and applied to other housing cooperatives, schools, and hospitals. Additional projects are being planned, in Krakow and other cities, under the direction of FEWE-Krakow, the Polish Energie Cities Network, and Biuro Rozwoju Krakowa.

  6. Energy conservation in museums

    SciTech Connect

    Ucar, M.; Doering, G.C.

    1980-07-01

    An overall assessment of energy conservation in museums in New York is made in view of the special environmental considerations involved. The special relative humidity, temperature, and lighting requirements of museums were studied extensively. An energy consumption data base was formed with actual energy use data obtained from over fifty institutions across the state. The computerized energy consumption data base compiled covers an extremely wide range of energy usage levels. On-site energy consumption ranged from approximately 20,000 to 400,000 Btu/ft/sup 2/ year. The data base includes small rural institutions and large metropolitan museums, historic and modern structures, seasonal and year-round museums, single buildings and collections of buildings, single-story buildings and multiple-story buildings, an aquarium, and a zoo. Thus, it is difficult to identify trends in the energy consumption data and to make correlations with such parameters as age, type, size, etc. Walk-through or mini energy audits were performed on ten museums located in various parts of New York State. This project also included a thorough study of all potential funding sources to which museums can apply for financing energy conservation measures. Sources of technical assistance and information were also identified. (MCW)

  7. Saving Green on Energy Costs

    ERIC Educational Resources Information Center

    Tacke, Diane L.

    2006-01-01

    In recent years, colleges and universities have begun efforts to reduce their energy costs, an initiative that can not only save an institution money, but also strengthen relationships across campus. Board leadership has been central to this endeavor in setting goals, prioritizing projects, and financing those projects. Using her experiences with…

  8. Saving Energy Dollars Now.

    ERIC Educational Resources Information Center

    Buck, Jim

    1998-01-01

    In many states, electrical energy is moving from being a highly regulated commodity to a competitively priced product with optional associated services. Increased competition should result in lower prices. Schools can stay ahead of the game by initiating an energy-contract review, examining delivery contracts, negotiating rates, examining monthly…

  9. Save American Energy Act

    THOMAS, 111th Congress

    Sen. Schumer, Charles E. [D-NY

    2009-03-09

    04/22/2009 Committee on Energy and Natural Resources. Hearings held. Hearings printed: S.Hrg. 111-28. (All Actions) Tracker: This bill has the status IntroducedHere are the steps for Status of Legislation:

  10. Designing to Save Energy

    ERIC Educational Resources Information Center

    Santamaria, Joseph W.

    1977-01-01

    While tripling the campus size of Alvin Community College in Texas, architects and engineers cut back on nonessential lighting, recaptured waste heat, insulated everything possible, and let energy considerations dictate the size and shape of the building. (Author/MLF)

  11. Saving Watts of Energy

    ERIC Educational Resources Information Center

    Raloff, Janet

    1978-01-01

    Presented are different research program developments aimed at reducing the consumption of electrical energy for artificial lights. Explains the idea of the dimmers, where the amount of incoming daylight regulates the current needed for the lamp. (GA)

  12. Seventeen Ways to Save Energy.

    ERIC Educational Resources Information Center

    Carnell, John E.

    1979-01-01

    Friends School of Baltimore was one of 20 schools chosen by the Tenneco Corporation to participate in its Schoolhouse Energy Efficiency Demonstration (SEED). This article reports the recommendations from Tenneco's energy audit of the school and the costs of each suggested energy conservation measure. (Author/SJL)

  13. Social psychological aspects of energy conservation

    NASA Astrophysics Data System (ADS)

    Aronson, Elliot; Yates, Suzanne

    1985-11-01

    Although some increases in the adoption of energy-efficient practices have been noted, only a small fraction of the potential savings are being realized, perhaps because human behavior is too complex for existing economic models. The rational-economic model is able to predict behavior in many situations, but it has limitations. To design effective public policy, the social, cognitive, and personal forces, that in addition to the economic realities define the situation, must be understood. This chapter examines one aspect of current energy conservation policy, the home energy audit program mandated by the Residential Conservation Service, and attempts to show how existing social psychological research might be beneficially applied.

  14. Why not energy conservation?

    NASA Astrophysics Data System (ADS)

    Carlson, Shawn

    2016-01-01

    Energy conservation is a deep principle that is obeyed by all of the fundamental forces of nature. It puts stringent constraints on all systems, particularly systems that are ‘isolated,’ meaning that no energy can enter or escape. Notwithstanding the success of the principle of stationary action, it is fair to wonder to what extent physics can be formulated from the principle of stationary energy. We show that if one interprets mechanical energy as a state function, then its stationarity leads to a novel formulation of classical mechanics. However, unlike Lagrangian and Hamiltonian mechanics, which deliver their state functions via algebraic proscriptions (i.e., the Lagrangian is always the difference between a system’s kinetic and potential energies), this new formalism identifies its state functions as the solutions to a differential equation. This is an important difference because differential equations can generate more general solutions than algebraic recipes. When applied to Newtonian systems for which the energy function is separable, these state functions are always the mechanical energy. However, while the stationary state function for a charged particle moving in an electromagnetic field proves not to be energy, the function nevertheless correctly encodes the dynamics of the system. Moreover, the stationary state function for a free relativistic particle proves not to be the energy either. Rather, our differential equation yields the relativistic free-particle Lagrangian (plus a non-dynamical constant) in its correct dynamical context. To explain how this new formalism can consistently deliver stationary state functions that give the correct dynamics but that are not always the mechanical energy, we propose that energy conservation is a specific realization of a deeper principle of stationarity that governs both relativistic and non-relativistic mechanics.

  15. Simply saving energy

    SciTech Connect

    Howard, R. )

    1994-05-01

    This article describes actions taken by San Leandro's water pollution control plant to decrease operational costs and increase energy efficiency. The topics covered by this article include expansions of fine bubble aeration, replacement of an inefficient dissolved air flotation unit with a sieve drum concentrator, and replacement of a biotower pump.

  16. ECASTAR: Energy Conservation; an Assessment of Systems, Technologies and Requirements

    NASA Technical Reports Server (NTRS)

    1975-01-01

    A methodology for a systems approach display and assessment of the potential for energy conservation actions and the impacts of those actions was presented. The U.S. economy is divided into four sectors: energy industry, industry, residential/commercial and transportation. Each sector is assessed with respect to energy conservation actions and impacts. The four sectors are combined and three strategies for energy conservation actions for the combined sectors are assessed. The three strategies (national energy conservation, electrification and diversification) represent energy conservation actions for the near term (now to 1985), the mid term (1985 to 2000) and the far term (2000 and beyond). The assessment procedure includes input/output analysis to bridge the flows between the sectors, and net economics and net energetics as performance criteria for the conservation actions. Targets of opportunity for large net energy net energy savings and the application of technology to achieve these savings are discussed.

  17. Energy Conservation Code Decoded

    SciTech Connect

    Cole, Pam C.; Taylor, Zachary T.

    2006-09-01

    Designing an energy-efficient, affordable, and comfortable home is a lot easier thanks to a slime, easier to read booklet, the 2006 International Energy Conservation Code (IECC), published in March 2006. States, counties, and cities have begun reviewing the new code as a potential upgrade to their existing codes. Maintained under the public consensus process of the International Code Council, the IECC is designed to do just what its title says: promote the design and construction of energy-efficient homes and commercial buildings. Homes in this case means traditional single-family homes, duplexes, condominiums, and apartment buildings having three or fewer stories. The U.S. Department of Energy, which played a key role in proposing the changes that resulted in the new code, is offering a free training course that covers the residential provisions of the 2006 IECC.

  18. High-bay Lighting Energy Conservation Measures

    Energy Science and Technology Software Center (ESTSC)

    2010-12-31

    This software requires inputs of simple high-bay lighting system inventory information and calculates the energy and cost benefits of various retrofit opportunities. This tool includes energy conservation measures for: 1000 Watt to 750 Watt High-pressure Sodium lighting retrofit, 400 Watt to 360 Watt High Pressure Sodium lighting retrofit, High Intensity Discharge to T5 lighting retrofit, High Intensity Discharge to T8 lighting retrofit, and Daylighting. This tool calculates energy savings, demand reduction, cost savings, building lifemore » cycle costs including: simple payback, discounted payback, net-present value, and savings to investment ratio. In addition this tool also displays the environmental benefits of a project.« less

  19. Energy Savings Measure Packages: Existing Homes

    SciTech Connect

    Casey, S.; Booten, C.

    2011-11-01

    This document presents the most cost effective Energy Savings Measure Packages (ESMP) for existing mixed-fuel and all electric homes to achieve 15% and 30% savings for each BetterBuildings grantee location across the US. These packages are optimized for minimum cost to homeowners for given source energy savings given the local climate and prevalent building characteristics (i.e. foundation types). Maximum cost savings are typically found between 30% and 50% energy savings over the reference home. The dollar value of the maximum annual savings varies significantly by location but typically amounts to $300 - $700/year.

  20. Energy conservation through sealing technology

    NASA Technical Reports Server (NTRS)

    Stair, W. K.; Ludwig, L. P.

    1978-01-01

    Improvements in fluid film sealing resulting from a proposed research program could lead to an annual energy saving, on a national basis, equivalent to about 37 million bbl of oil or 0.3% of the total U.S. energy consumption. Further, the application of known sealing technology can result in an annual saving of an additional 10 million bbl of oil. The energy saving would be accomplished by reduction in process heat energy loss, reduction of frictional energy generated, and minimization of energy required to operate ancillary equipment associated with the seal system. In addition to energy saving, cost effectiveness is further enhanced by reduction in maintenance and in minimization of equipment for collecting leakage and for meeting environmental pollution standards.

  1. How Sweden Saves So Much Energy

    ERIC Educational Resources Information Center

    Keough, James

    1978-01-01

    Swedens necessity for and present efforts toward energy conservation are discussed. The district system for space heating and certain Swedish laws that promote energy conservation are described. (MDR)

  2. SWEEP - Save Water & Energy Education Program

    SciTech Connect

    Sullivan, Gregory P.; Elliott, Douglas B.; Hillman, Tim C.; Hadley, Adam; Ledbetter, Marc R.; Payson, David R.

    2001-05-03

    The objective of this study was to develop, monitor, analyze, and report on an integrated resource-conservation program highlighting efficient residential appliances and fixtures. The sites of study were 50 homes in two water-constrained communities located in Oregon. The program was designed to maximize water savings to these communities and to serve as a model for other communities seeking an integrated approach to energy and water resource efficiency. The program included the installation and in-place evaluation of energy- and water-efficient devices including the following: horizontal axis clothes washers (and the matching clothes dryers), resource-efficient dishwashers, an innovative dual flush low-flow toilet, low-flow showerheads, and faucet aerators. The significance of this activity lies in its integrated approach and unique metering evaluation of individual end-use, aggregated residential total use, and system-wide energy and water benefits.

  3. A Compendium of Energy Conservation Success Stories

    DOE R&D Accomplishments Database

    1988-09-01

    Three-quarters of DOE's Conservation R and D funds have been devoted to technology research and development: basic and applied research, exploratory R and D, engineering feasibility studies, pilot-scale prototype R and D, and technology demonstration. Non R and D projects have involved technology assessment program planning and analysis, model development, technology transfer and consumer information, health effects and safety research, and technical support for rule making. The success stories summarized in this compendium fall into three general categories: Completed Technology Success Stories, projects that have resulted in new energy-saving technologies that are presently being used in the private sector; Technical Success Stories, projects that have produced or disseminated important scientific/technical information likely to result in future energy savings; Program Success Stories, non-R and D activities that have resulted in nationally significant energy benefits. The Energy Conservation research and development program at DOE is managed by the Office of Conservation under the direction of the Deputy Assistant Secretary for Conservation. Three subordinate Program Offices correspond to the buildings, transportation, and industrial end-use sectors. A fourth subordinate Program Office{endash}Energy Utilization Research{endash}sponsors research and technical inventions for all end-use sectors.

  4. A compendium of energy conservation success stories

    SciTech Connect

    Not Available

    1988-09-01

    Three-quarters of DOE's Conservation R and D funds have been devoted to technology research and development: basic and applied research, exploratory R and D, engineering feasibility studies, pilot-scale prototype R and D, and technology demonstration. Non R and D projects have involved technology assessment program planning and analysis, model development, technology transfer and consumer information, health effects and safety research, and technical support for rule making. The success stories summarized in this compendium fall into three general categories: Completed Technology Success Stories, projects that have resulted in new energy-saving technologies that are presently being used in the private sector; Technical Success Stories, projects that have produced or disseminated important scientific/technical information likely to result in future energy savings; Program Success Stories, non-R and D activities that have resulted in nationally significant energy benefits. The Energy Conservation research and development program at DOE is managed by the Office of Conservation under the direction of the Deputy Assistant Secretary for Conservation. Three subordinate Program Offices correspond to the buildings, transportation, and industrial end-use sectors. A fourth subordinate Program Office/endash/Energy Utilization Research/endash/sponsors research and technical inventions for all end-use sectors.

  5. Energy Savings Measure Packages. Existing Homes

    SciTech Connect

    Casey, Sean; Booten, Chuck

    2011-11-01

    This document presents the most cost effective Energy Savings Measure Packages (ESMP) for existing mixed-fuel and all electric homes to achieve 15% and 30% savings for each BetterBuildings grantee location across the United States. These packages are optimized for minimum cost to homeowners for source energy savings given the local climate and prevalent building characteristics (i.e. foundation types). Maximum cost savings are typically found between 30% and 50% energy savings over the reference home; this typically amounts to $300 - $700/year.

  6. Energy conservation: Policies, programs, and general studies. Citations from the NTIS data base

    NASA Astrophysics Data System (ADS)

    Hundemann, A. S.

    1980-08-01

    National policies, programs, and general studies of ways to conserve energy are presented. Topic areas cover such subjects as electric load management, effects of price and taxation on energy conservation, public attitudes and behavior toward energy saving, energy savings through reduction in hot water consumption, and telecommunications substitutability for travel.

  7. Energy conservation: Policies, programs, and general studies. Citations from the NTIS data base

    NASA Astrophysics Data System (ADS)

    Hundemann, A. S.

    1980-08-01

    National policies, programs, and general studies or ways to conserve energy are presented. Topic areas cover such subjects as electric load management, effects of price and taxation on energy conservation, public attitudes and behavior toward energy saving, energy savings through reduction in hot water consumption, and telecommunications substitutability for travel.

  8. Energy conservation in museums and historic buildings

    SciTech Connect

    Ucar, M.; Doering, G.C.

    1983-08-01

    The special environmental needs of museums and historic buildings can be met through methods that conserve energy as well. The research reported in this article is a result of a project undertaken to assess the energy conservation possibilities in such buildings. The irreplaceable nature of museum collections and the historic structures which often house them mandates that proper care be taken not to cause any irreversible damage in the process of saving energy. This article outlines specific heating, cooling and humidity control guidelines to follow, and recommends that all such buildings have an energy audit performed on their facilities. It also describes an energy use data base which has been compiled to show the actual energy consumption of museums.

  9. Saving Energy. Managing School Facilities, Guide 3.

    ERIC Educational Resources Information Center

    Department for Education and Employment, London (England). Architects and Building Branch.

    This guide offers information on how schools can implement an energy saving action plan to reduce their energy costs. Various low-cost energy-saving measures are recommended covering heating levels and heating systems, electricity demand reduction and lighting, ventilation, hot water usage, and swimming pool energy management. Additional…

  10. How Scandinavia saves more energy

    SciTech Connect

    Mannstrom, B.

    1982-12-01

    In the fifties, the price of electrical energy and fuels was already very high in Finland and Sweden - this was an early incentive for the Scandinavian pulp and paper industry to minimize their process costs. Three companies are taken as examples to illustrate the combustion of fuels such as spent cooking liquors, wood wastes and peat for process heat and the processing of whole-tree thinnings. Further discussion follows on energy conservation in the pulping and papermaking processes and the application of energy management systems.

  11. Light Pipe Energy Savings Calculator

    NASA Astrophysics Data System (ADS)

    Owens, Erin; Behringer, Ernest R.

    2009-04-01

    Dependence on fossil fuels is unsustainable and therefore a shift to renewable energy sources such as sunlight is required. Light pipes provide a way to utilize sunlight for interior lighting, and can reduce the need for fossil fuel-generated electrical energy. Because consumers considering light pipe installation may be more strongly motivated by cost considerations than by sustainability arguments, an easy means to examine the corresponding costs and benefits is needed to facilitate informed decision-making. The purpose of this American Physical Society Physics and Society Fellowship project is to create a Web-based calculator to allow users to quantify the possible cost savings for their specific light pipe application. Initial calculations show that the illumination provided by light pipes can replace electric light use during the day, and in many cases can supply greater illumination levels than those typically given by electric lighting. While the installation cost of a light pipe is significantly greater than the avoided cost of electricity over the lifetime of the light pipe at current prices, savings may be realized if electricity prices increase.

  12. Energy conservation and air transportation

    NASA Technical Reports Server (NTRS)

    1973-01-01

    Air transportation demand and passenger energy demand are discussed, in relation to energy conservation. Alternatives to air travel are reviewed, along with airline advertising and ticket pricing. Cargo energy demand and airline systems efficiency are also examined, as well as fuel conservation techniques. Maximum efficiency of passenger aircraft, from B-747 to V/STOL to British Concorde, is compared.

  13. The Role of the Principal in Energy Conservation.

    ERIC Educational Resources Information Center

    Bamberger, Richard

    The principal's role in energy conservation includes being certain that steps have been taken within the school building to effect energy savings, and using his influence to make certain that his school system applies for an Energy Retrofitting Grant under the National Energy Act if appropriate. However, the principal's greater role is to take the…

  14. Goodyear Tire Plant Gains Traction on Energy Savings After Completing Save Energy Now Assessment (Revised)

    SciTech Connect

    Not Available

    2008-04-01

    This DOE Save Energy Now case study describes how the Goodyear Tire Plant saves approx. 93,000 MMBtu and $875,000 annually after increasing steam system energy efficiency in the Union City, TN, plant.

  15. Goodyear Tire Plant Gains Traction on Energy Savings After Completing Save Energy Now Assessment

    SciTech Connect

    2008-04-01

    This DOE Save Energy Now case study describes how the Goodyear Tire Plant saves approx. 93,000 MMBtu and $875,000 annually after increasing steam system energy efficiency in the Union City, TN, plant.

  16. A Compendium of Energy Conservation: Success Stories 90

    DOE R&D Accomplishments Database

    1990-12-01

    The Department of Energy's (DOE) Office of Conservation and Renewable Energy proudly presents this summary of some its most successful projects and activities. The projects included in this document have made significant contributions to improving energy efficiency and fuel flexibility in the United States. The energy savings that can be realized from these projects are considerable. Americans have shown an impressive ability to reduce energy consumption since 1973. Studies show that 34 quadrillion Btus (quads) of energy were saved in 1988 alone as a result of energy conservation and other factors. These savings, worth approximately $180 billion, represent more energy than the United States obtains from any other single source. The availability of new, energy-efficient technologies has been an important ingredient in achieving these savings. Federal efforts to develop and commercialize energy-saving technologies and processes are a part of the reason for this progress. Over the past 10 years, DOE has carefully invested more than $2 billion in hundreds of research and development (R&D) projects to ensure the availability of advanced technology in the marketplace. These energy-efficient projects are carried out through DOE's Office of Conservation and Renewable Energy and reflect opportunities in the three energy-consuming, end-use sectors of the economy: buildings, transportation, and industry.

  17. A compendium of energy conservation: Success stories 90

    SciTech Connect

    Not Available

    1990-12-01

    The Department of Energy's (DOE) Office of Conservation and Renewable Energy proudly presents this summary of some its most successful projects and activities. The projects included in this document have made significant contributions to improving energy efficiency and fuel flexibility in the United States. The energy savings that can be realized from these projects are considerable. Americans have shown an impressive ability to reduce energy consumption since 1973. Studies show that 34 quadrillion Btus (quads) of energy were saved in 1988 alone as a result of energy conservation and other factors. These savings, worth approximately $180 billion, represent more energy than the United States obtains from any other single source. The availability of new, energy-efficient technologies has been an important ingredient in achieving these savings. Federal efforts to develop and commercialize energy-saving technologies and processes are a part of the reason for this progress. Over the past 10 years, DOE has carefully invested more than $2 billion in hundreds of research and development (R D) projects to ensure the availability of advanced technology in the marketplace. These energy-efficient projects are carried out through DOE's Office of Conservation and Renewable Energy and reflect opportunities in the three energy-consuming, end-use sectors of the economy: buildings, transportation, and industry.

  18. Energy-conserving development regulations: current practice

    SciTech Connect

    Not Available

    1980-05-01

    Almost every aspect of land development has an effect on energy use, from minute architectural details to broad considerations of urban density. Energy-efficiency depends in part on how development is planned and carried out. Conventional development regulations, such as zoning ordinances and subdivision regulations, can be adapted in many ways to promote energy conservation at the community level. This report is about energy-efficient site and neighborhood design. It examines recent experiences of local governments that have adopted new development regulations or amended existing ones to promote energy conservation, more efficient generation and distribution, or a switch to alternative, renewable sources. Although much has been written in recent years about saving energy through community design, actual experience in applying these new ideas is still limited. To date, most communities have focused their efforts on studying the problem, documenting consumption patterns, and writing reports and plans. Only a handful have amended their land-use controls for the express purpose of saving energy. This study identifies 13 of these pioneering communities, after undertaking a survey of over 1400 local, regional, and state planning agencies. It takes a look at their experiences, to learn what has been done, how well it has worked, and what problems have been encountered.

  19. Energy Savers: Tips on Saving Money & Energy at Home

    SciTech Connect

    2014-05-01

    Provides consumers with home energy and money savings tips such as insulation, weatherization, heating, cooling, water heating, energy efficient windows, landscaping, lighting, and energy efficient appliances.

  20. Energy Savers: Tips on Saving Money & Energy at Home

    SciTech Connect

    2011-12-01

    Provides consumers with home energy and money savings tips such as insulation, weatherization, heating, cooling, water heating, energy efficient windows, landscaping, lighting, and energy efficient appliances.

  1. Energy conservation and cost benefits in the dairy processing industry

    SciTech Connect

    1982-01-01

    Guidance is given on measuring energy consumption in the plant and pinpointing areas where energy-conservation activities can return the most favorable economics. General energy-conservation techniques applicable to most or all segments of the dairy processing industry, including the fluid milk segment, are emphasized. These general techniques include waste heat recovery, improvements in electric motor efficiency, added insulation, refrigeration improvements, upgrading of evaporators, and increases in boiler efficiency. Specific examples are given in which these techniques are applied to dairy processing plants. The potential for energy savings by cogeneration of process steam and electricity in the dairy industry is also discussed. Process changes primarily applicable to specific milk products which have resulted in significant energy cost savings at some facilities or which promise significant contributions in the future are examined. A summary checklist of plant housekeeping measures for energy conservation and guidelines for economic evaluation of conservation alternatives are provided. (MHR)

  2. Energy conservation in quantum mechanics

    NASA Astrophysics Data System (ADS)

    Prentis, Jeffrey J.; Fedak, William A.

    2004-05-01

    In the classical mechanics of conservative systems, the position and momentum evolve deterministically such that the sum of the kinetic energy and potential energy remains constant in time. This canonical trademark of energy conservation is absent in the standard presentations of quantum mechanics based on the Schrödinger picture. We present a purely canonical proof of energy conservation that focuses exclusively on the time-dependent position x(t) and momentum p(t) operators. This treatment of energy conservation serves as an introduction to the Heisenberg picture and illuminates the classical-quantum connection. We derive a quantum-mechanical work-energy theorem and show explicitly how the time dependence of x and p and the noncommutivity of x and p conspire to bring about a perfect temporal balance between the evolving kinetic and potential parts of the total energy operator.

  3. Risk transfer via energy savings insurance

    SciTech Connect

    Mills, Evan

    2001-10-01

    Among the key barriers to investment in energy efficiency improvements are uncertainties about attaining projected energy savings and apprehension about potential disputes over these savings. The fields of energy management and risk management are thus intertwined. While many technical methods have emerged to manage performance risks (e.g. building commissioning), financial risk transfer techniques are less developed in the energy management arena than in other more mature segments of the economy. Energy Savings Insurance (ESI) - formal insurance of predicted energy savings - is one method of transferring financial risks away from the facility owner or energy services contractor. ESI offers a number of significant advantages over other forms of financial risk transfer, e.g. savings guarantees or performance bonds. ESI providers manage risk via pre-construction design review as well as post-construction commissioning and measurement and verification of savings. We found that the two mos t common criticisms of ESI - excessive pricing and onerous exclusions - are not born out in practice. In fact, if properly applied, ESI can potentially reduce the net cost of energy savings projects by reducing the interest rates charged by lenders, and by increasing the level of savings through quality control. Debt service can also be ensured by matching loan payments to projected energy savings while designing the insurance mechanism so that payments are made by the insurer in the event of a savings shortfall. We estimate the U.S. ESI market potential of $875 million/year in premium income. From an energy-policy perspective, ESI offers a number of potential benefits: ESI transfers performance risk from the balance sheet of the entity implementing the energy savings project, thereby freeing up capital otherwise needed to ''self-insure'' the savings. ESI reduces barriers to market entry of smaller energy services firms who do not have sufficiently strong balance sheets to self

  4. Opportunities for energy conservation through biotechnology

    SciTech Connect

    Young, J.K.; Griffin, E.A.; Russell, J.A.

    1984-11-01

    The purpose of this study is to identify and quantify potential energy savings available through the development and application of biotechnologies. This information is required in support of ECUT research planning efforts as an aid in identifying promising areas needing further consideration and development. It is also intended as background information for a companion ECUT study being conducted by the National Academy of Science to evaluate the use of bioprocessing methods to conserve energy. Several studies have been conducted recently to assess the status and implications of the development of biotechnology. The Office of Technology Assessment (OTA) considered institutional, economic, and scientific problems and barriers. The National Science Foundation sponsored a study to examine regulatory needs for this new and expanding technology. Somewhat in contrast to these studies, this report covers principally the technical issues. It should be emphasized that the practicality of many developments in biotechnology is not evaluated solely on the basis of energy considerations. Bioprocesses must often compete with well-established coal, petroleum, and natural gas technologies. A complete evaluation of the technical, economical, and ecological impacts of the large-scale applications discussed in this report is not possible within the scope of this study. Instead, this report assesses the potential of biotechnology to save energy so that research into all aspects of implementation will be stimulated for those industries with significant energy savings potential. 92 references, 6 figures, 24 tables.

  5. Energy Savings Performance Contracts (ESPC): FEMP Assistance

    SciTech Connect

    2012-11-01

    An ESPC is a working relationship between a Federal agency and an energy service company (ESCO). The ESCO conducts a comprehensive energy audit for the Federal facility and identifies improvements to save energy. In consultation with the Federal agency, the ESCO designs and constructs a project that meets the agency’s needs and arranges the necessary funding. The ESCO guarantees the improvements will generate energy cost savings sufficient to pay for the project over the term of the contract. After the contract ends, all additional cost savings accrue to the agency.

  6. Energy conservation in the food industry. (Latest citations from Food Science Technology abstracts (FSTA)). Published Search

    SciTech Connect

    Not Available

    1994-01-01

    The bibliography contains citations concerning energy conservation in the food industry. Energy requirements, basic approaches to energy audits, plant design, and the equipment and fuel for food processing are discussed. Alternative energy sources, energy recovery and other energy saving devices are considered as measures for conservation. Energy saving techniques and measures in dairies, meat packing plants, breweries, and various other processing plants are included. (Contains a minimum of 158 citations and includes a subject term index and title list.)

  7. Energy conservation in distillation: a technology applications manual

    SciTech Connect

    Not Available

    1980-05-01

    Distillation is the most widely practiced technique for separating mixtures of chemical species, but it is an energy intensive process. A 10% reduction in distillation energy consumption would effect a significant savings. On a national basis this would be an annual savings of 200 trillion Btu, or the equivalent of 36.5 million barrels of oil per year. Technology to achieve these savings in distillation energy is available and measures are presented to assist process engineers in technical and economic analysis of the energy conservation measures most suitable for particular distillation applications. The manual catalogs all of the energy conservation options applicable to distillation and the options by the investment required; describes in detail the options having a significant potential to reduce distillation energy requirements economically; provides guidelines that will allow the plant engineer to quickly screen each option for his application; and provides short-cut calculation procedures for use in a preliminary economic analysis of promising options.

  8. The Fourth R. Resourcefulness in School Energy Conservation. SEED: Schoolhouse Energy Efficiency Demonstration.

    ERIC Educational Resources Information Center

    Tenneco, Inc., Houston, TX.

    An energy audit is a building inspection that, when complete, provides a profile of the building's energy usage. The energy audit determines how energy is used; simple maintenance and operating procedures to conserve energy; and the need, if any, for purchase of new energy saving equipment or modifications to the building. Schoolhouse Energy…

  9. The High Cost of Saving Energy Dollars.

    ERIC Educational Resources Information Center

    Rose, Patricia

    1985-01-01

    In alternative financing a private company provides the capital and expertise for improving school energy efficiency. Savings are split between the school system and the company. Options for municipal leasing, cost sharing, and shared savings are explained along with financial, procedural, and legal considerations. (MLF)

  10. ECASTAR: Energy conservation. An assessment of systems, technologies and requirements

    NASA Technical Reports Server (NTRS)

    1975-01-01

    A methodology was presented for a systems approach to energy conservation actions and their potentials and impacts in the United States. Constraints affecting the approach were ranked, and the most important ones are the present economic and technical conditions. The following unresolved issues were identified: consumptive lifestyles vs. conservation ethic, environmental standards vs. energy conservation, capital availability, decentralization and vertical integration vs. centralization, fuel rich regions vs. fuel poor regions, supply vs. end use conservation, life cycle costing vs. initial cost, mandatory savings vs. voluntary savings, labor intensive vs. capital intensive, price control vs. free market. The following recommendations were made: provide action/impact assessment, establish regional energy centers, improve technology articulation with government, design total energy systems, utilize existing systems approach expertise.

  11. Cost and Energy Savings Opportunities with Heating, Air Conditioning and Lighting Systems in Schools.

    ERIC Educational Resources Information Center

    Electric Energy Association, New York, NY.

    Great potential exists for saving energy and operating costs with a wide variety of heat conservation systems. Two major electric services--space conditioning and lighting--afford cost and energy savings opportunities. These services are detailed in checklist fashion in this brochure, with the suggestions included under space conditioning…

  12. Energy Conservation in the Home. Performance Based Lesson Plans.

    ERIC Educational Resources Information Center

    Alabama State Dept. of Education, Montgomery. Home Economics Service.

    These ten performance-based lesson plans concentrate on tasks related to energy conservation in the home. They are (1) caulk cracks, holes, and joints; (2) apply weatherstripping to doors and windows; (3) add plastic/solar screen window covering; (4) arrange furniture for saving energy; (5) set heating/cooling thermostat; (6) replace faucet…

  13. Renewable energy and wildlife conservation

    USGS Publications Warehouse

    Khalil, Mona

    2016-01-01

    The renewable energy sector is rapidly expanding and diversifying the power supply of the country. Yet, as our Nation works to advance renewable energy and to conserve wildlife, some conflicts arise. To address these challenges, the U.S. Geological Survey (USGS) is conducting innovative research and developing workable solutions to reduce impacts of renewable energy production on wildlife.

  14. Science Activities in Energy: Conservation.

    ERIC Educational Resources Information Center

    Oak Ridge Associated Universities, TN.

    Presented is a science activities in energy package which includes 14 activities relating to energy conservation. Activities are simple, concrete experiments for fourth, fifth and sixth grades, which illustrate principles and problems relating to energy. Each activity is outlined on a simple card which is introduced by a question. A teacher's…

  15. Industrial energy conservation technology

    SciTech Connect

    Schmidt, P.S.; Williams, M.A.

    1980-01-01

    A separate abstract was prepared for each of the 60 papers included in this volume, all of which will appear in Energy Research Abstracts (ERA); 21 were selected for Energy Abstracts for Policy Analysis (EAPA). (MCW)

  16. Industrial Energy Conservation Technology

    SciTech Connect

    Not Available

    1980-01-01

    A separate abstract was prepared for each of the 55 papers presented in this volume, all of which will appear in Energy Research Abstracts (ERA); 18 were selected for Energy Abstracts for Policy Analysis (EAPA). (MCW)

  17. Annual Energy Usage Reduction and Cost Savings of a School: End-Use Energy Analysis

    PubMed Central

    Alghoul, M. A.; Bakhtyar, B.; Asim, Nilofar; Sopian, K.

    2014-01-01

    Buildings are among the largest consumers of energy. Part of the energy is wasted due to the habits of users and equipment conditions. A solution to this problem is efficient energy usage. To this end, an energy audit can be conducted to assess the energy efficiency. This study aims to analyze the energy usage of a primary school and identify the potential energy reductions and cost savings. A preliminary audit was conducted, and several energy conservation measures were proposed. The energy conservation measures, with reference to the MS1525:2007 standard, were modelled to identify the potential energy reduction and cost savings. It was found that the school's usage of electricity exceeded its need, incurring an excess expenditure of RM 2947.42. From the lighting system alone, it was found that there is a potential energy reduction of 5489.06 kWh, which gives a cost saving of RM 2282.52 via the improvement of lighting system design and its operating hours. Overall, it was found that there is a potential energy reduction and cost saving of 20.7% when the energy conservation measures are earnestly implemented. The previous energy intensity of the school was found to be 50.6 kWh/m2/year, but can theoretically be reduced to 40.19 kWh/mm2/year. PMID:25485294

  18. Annual energy usage reduction and cost savings of a school: end-use energy analysis.

    PubMed

    Roslizar, Aiman; Alghoul, M A; Bakhtyar, B; Asim, Nilofar; Sopian, K

    2014-01-01

    Buildings are among the largest consumers of energy. Part of the energy is wasted due to the habits of users and equipment conditions. A solution to this problem is efficient energy usage. To this end, an energy audit can be conducted to assess the energy efficiency. This study aims to analyze the energy usage of a primary school and identify the potential energy reductions and cost savings. A preliminary audit was conducted, and several energy conservation measures were proposed. The energy conservation measures, with reference to the MS1525:2007 standard, were modelled to identify the potential energy reduction and cost savings. It was found that the school's usage of electricity exceeded its need, incurring an excess expenditure of RM 2947.42. From the lighting system alone, it was found that there is a potential energy reduction of 5489.06 kWh, which gives a cost saving of RM 2282.52 via the improvement of lighting system design and its operating hours. Overall, it was found that there is a potential energy reduction and cost saving of 20.7% when the energy conservation measures are earnestly implemented. The previous energy intensity of the school was found to be 50.6 kWh/m(2)/year, but can theoretically be reduced to 40.19 kWh/mm(2)/year. PMID:25485294

  19. Energy Conservation. CORD Energy Technology Series.

    ERIC Educational Resources Information Center

    Center for Occupational Research and Development, Inc., Waco, TX.

    This course in energy conservation is one of 16 courses in the Energy Conservation-and-Use Technology curriculum. Intended for use in two-year postsecondary technical institutions to prepare technicians for employment, the courses are also useful in industry for updating employees in company-sponsored training programs. Comprised of seven modules,…

  20. Energy conservation in citrus processing. Final project report

    SciTech Connect

    Leo, M.A.; Lari, R.I.; Moore, N.R.; Broussard, M.R.; Gyamfi, M.

    1981-11-01

    Alternative energy conserving systems for use in citrus processing plants were synthesized and evaluated in terms of energy savings and economic return. The energy intensive operations that are carried out in citrus processing plants include conveying and extraction, concentration, peel drying, refrigeration, and pasteurization. The alternative energy conserving systems are synthesized from components and subsystems that are arranged to make use of energy cascading and thermodynamic regeneration to reduce the overall energy usage. System requirements such as air pollution rules and plant processing load cycles, a characterization of major operations, description of alternative system concepts, and the evaluation of alternative systems in terms of economic parameters and energy usage are identified.

  1. The NASA Energy Conservation Program

    NASA Technical Reports Server (NTRS)

    Gaffney, G. P.

    1977-01-01

    Large energy-intensive research and test equipment at NASA installations is identified, and methods for reducing energy consumption outlined. However, some of the research facilities are involved in developing more efficient, fuel-conserving aircraft, and tradeoffs between immediate and long-term conservation may be necessary. Major programs for conservation include: computer-based systems to automatically monitor and control utility consumption; a steam-producing solid waste incinerator; and a computer-based cost analysis technique to engineer more efficient heating and cooling of buildings. Alternate energy sources in operation or under evaluation include: solar collectors; electric vehicles; and ultrasonically emulsified fuel to attain higher combustion efficiency. Management support, cooperative participation by employees, and effective reporting systems for conservation programs, are also discussed.

  2. Energy Savings Performance Contract Success Stories

    SciTech Connect

    2009-07-27

    Three case study success stories showcasing energy savings performance contract projects at Dyess Air Force Base, Food and Drug Administration White Oaks Campus, and the Harold Washington Social Security Administration Center.

  3. Finding the Savings in Your Energy Bills.

    ERIC Educational Resources Information Center

    Hansen, Shirley J.

    1986-01-01

    Provides a detailed analysis on how to control energy consumption and billing in school systems. Understanding the utility company's rate structure and the uses of demand readings can increase savings. Includes two detailed charts. (MD)

  4. Designing effective incentives for energy conservation in the public sector

    NASA Astrophysics Data System (ADS)

    Drezner, Jeffrey Alan

    Understanding why government officials behave in certain ways under particular circumstances is an important theme in political science. This research explores the design of policies and incentives targeted at public sector officials, in particular the use of market based policy tools in a non-market environment, and the influence of that organizational environment on the effectiveness of the policy. The research examines the case of Department of Defense (DoD) facility energy management. DoD energy policy includes a provision for the retention of savings generated by conservation activities: two-thirds of the savings is retained at the installation generating the savings, half to used for further investment in energy conservation, and half to be used for general morale, welfare, and recreation activities. This policy creates a financial incentive for installation energy managers to establish higher quality and more active conservation programs. A formal written survey of installation energy managers within DoD was conducted, providing data to test hypotheses regarding policy effectiveness and factors affecting policy implementation. Additionally, two detailed implementation case studies were conducted in order to gain further insights. Results suggest that policy design needs to account for the environment within which the policy will be implemented, particularly organizational culture and standard operating procedures. The retention of savings policy failed to achieve its intended outcome---retention of savings for re-investment in energy conservation---because the role required of the financial management community was outside its normal mode of operation and interests and the budget process for allocating resources did not include a mechanism for retention of savings. The policy design did not adequately address these start-up barriers to implementation. This analysis has shown that in order for retention of savings, or similar policies based on market

  5. Energy conservation and the residential and commercial sector

    NASA Technical Reports Server (NTRS)

    1975-01-01

    A detailed analysis of energy conservation actions relevant to the residential and commercial sector has led to the conclusion that the potential for savings is great. The task will not be easy, however, since many of the actions require significant life style changes that are difficult to accomplish. Furthermore, many of the conservation actions cited as instant solutions to the energy crisis are those with only mid to long term potential, such as solar energy or heat pumps. Three significant conservation approaches are viable: adjusting price structure, mandating actions, and educating consumers. The first two appear to be the most feasible. But they are not without a price. Higher utility bills adversely affect the poor and the elderly on fixed incomes. Likewise, strict mandatory measures can be quite distasteful. But the effect of alternatives, such as voluntary savings accomplished through education processes, is minimal in a nation without a true conservation ethic.

  6. Designing for Energy Conservation.

    ERIC Educational Resources Information Center

    Estes, R. C.

    This document is a description of the energy efficient designs for new schools in the Alief Independent School District of Houston, Texas. Exhibit A shows how four major school projects differ from conventional designs. Parameters and designs for heating, ventilating, air conditioning, and lighting are given. Twenty year projected energy costs and…

  7. Energy conservation principles

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This paper and presentation discuss preliminary findings from energy audits conducted in cotton gins in six states including the allocation of motor horse power and kilowatt hours energy consumption per bale. General inferences will be drawn from information collected at gin plants of various bale...

  8. 78 FR 20097 - Energy Savings Performance Contracts

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-03

    ... ESPCs at 10 CFR part 436, Subpart B. (See, 60 FR 18334.) To facilitate and accelerate the use of ESPCs... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF ENERGY Office of Energy Efficiency and Renewable Energy Energy Savings Performance Contracts AGENCY: Office...

  9. Fluid flow systems analysis to save energy

    SciTech Connect

    Parekh, P.S.

    1999-07-01

    Industrial processes use rotating equipment (e.g.; pump, fan, blower, centrifugal compressor, positive displacement compressor) and pipe (or duct) to move fluid from point A to B, with many processes using electric motors as the prime mover. Most of the systems in the industry are over-designed to meet a peak load demand which might occur over a small fraction of the time or to satisfy a higher pressure demanded by a much smaller user in the same process. The system over-design will result in a selection of larger but inefficient rotating equipment and electric motor system. A careful life cycle cost and economic evaluation must be undertaken to ensure that the process audit, reengineering and equipment selections are not impacting the industrial process goals, but result in a least optimal cost over the life of the project. The paper will define, discuss, and present various process systems in chemical, hydrocarbon and pulp and paper industries. It will discuss the interactive impact of the changes in the mechanical system configuration and the changes in the process variables to better redesign the system and reduce the cost of operation. it will also present a check list of energy conservation measures (ECM) or opportunities. Such ECMs will be related to hydraulics, system components, process modifications, and system efficiency. Two or three case studies will be presented focusing on various conservation measures that improve electrical operating efficiency of a distillation column system. An incremental cost and payback analysis will be presented to assist the investment in process optimization and energy savings' measures.

  10. Energy conservation and efficiency in manufacturing: Employee decisions and actions

    NASA Astrophysics Data System (ADS)

    Corson, Marla D.

    Energy conservation and intensity reduction efforts are becoming increasingly more prevalent and ultimately necessary, especially for energy-intensive manufacturing companies in particular to stay in business. Typical actions are to change technology, and thus, realize an energy cost savings in overall utilities. However, in today's competitive market, with climate change and other environmental impacts as well, it is necessary for the cost of energy to be valued as a cost of making a product, and thus, managed at the same level as the cost of labor or materials. This research assessed human behavior at the individual and organizational levels both at work and at home that either prompted or prohibited employees from taking daily action to conserve energy or develop greater energy efficient practices. Ultimately, the questions began with questions regarding employee views and knowledge of energy at work and at home and what drives both behaviors toward conservation or efficiency. And, the contribution identifies the key drivers, barriers, and/or incentives that affect those behaviors. The results of this study show that the key driver and motivator for energy conservation both at home and work is cost savings. The study showed that to further motivate individuals to conserve energy at home and work, more knowledge of the impact their actions have or could have as well as tools would be needed. The most poinient aspect of the research was the level of importance placed on energy conservation and the desire to conserve. The feedback given to the open ended questions was quite impressive regarding what employees have done and continue to do particularly within their homes to conserve energy. These findings brought about final recommendations that were in fact not expected but could significantly influence an increase in energy conservation at work by leveraging the existing desire to conserve which is a key component to decision making.

  11. Conserving Energy in School Buildings.

    ERIC Educational Resources Information Center

    Boice, John R.

    Educational Facilities Laboratories is developing a computer-based technical service--The Public Schools Energy Conservation Service (PSECS). As presently envisioned, PSECS would be capable of providing each participating district with information in five areas: (1) guidelines and instruction for establishing an energy usage data base; (2) a…

  12. Energy Education/Conservation Examination.

    ERIC Educational Resources Information Center

    Wert, Jonathan M.

    This examination is designed to measure the general awareness level of high school students, teachers, and citizens in the area of energy development and conservation. It is composed of 100 true-false statements concerning energy education concepts. A sample examinee answer sheet and an examiner key are included. Reproduction of the exam is…

  13. 59 FR- Energy Conservation

    Federal Register 2010, 2011, 2012, 2013, 2014

    1994-09-13

    ... and indoor air quality. These results, plus the introduction of new building energy technologies which... Engineers (ASHRAE Standard 62 Ventilation for Acceptable Indoor Air Quality). This will improve temperature comfort levels, ventilation, and the indoor air quality of buildings. This will, in turn, improve...

  14. Saving energy at home - there's more you can do

    SciTech Connect

    Not Available

    1983-10-01

    About 20% of the homes now occupied were built after the oil embargo and have some energy-conservation elements built in. The average home uses 20% less energy now than 10 years ago. The 50/50 program (for 50 measures that promise 50% return on the investment each year) developed by the Energy Department is available in 35 states. Other programs are available but potential savings in little measures such as thermostat cutbacks while sleeping could cut 30% off annual energy consumption. 1 figure.

  15. Energy conservation in electric distribution

    SciTech Connect

    Lee, Chong-Jin

    1994-12-31

    This paper discusses the potential for energy and power savings that exist in electric power delivery systems. These savings translate into significant financial and environmental benefits for electricity producers and consumers as well as for society in general. AlliedSignal`s knowledge and perspectives on this topic are the result of discussions with hundreds of utility executives, government officials and other industry experts over the past decade in conjunction with marketing our Amorphous Metal technology for electric distribution transformers. Amorphous metal is a technology developed by AlliedSignal that significantly reduces the energy lost in electric distribution transformers at an incremental cost of just a few cents per kilo-Watt-hour. The purpose of this paper is to discuss: Amorphous Metal Alloy Technology; Energy Savings Opportunity; The Industrial Barriers and Remedies; Worldwide Demand; and A Low Risk Strategy. I wish this presentation will help KEPCO achieve their stated aims of ensuring sound development of the national economy and enhancement of public life through the economic and stable supply of electric power. AlliedSignal Korea Ltd. in conjunction with AlliedSignal Amorphous Metals in the U.S. are here to work with KEPCO, transformer manufacturers, industry, and government agencies to achieve greater efficiency in power distribution.

  16. Energy Conservation for Schools. 1978 Edition. Report Number 00654-78-09.

    ERIC Educational Resources Information Center

    British Columbia Dept. of Education, Victoria.

    This booklet tells how to set up an Energy Conservation Program in individual school districts. It discusses: (1) appointing an energy conservation manager; (2) keeping energy consumption records; and (3) assessing the energy saving potential of each school; and it outlines (4) some of the steps that can be taken to cut down energy waste.…

  17. Energy Conservation Program Cuts School Gas Use by 45%.

    ERIC Educational Resources Information Center

    Sampson, Walt

    1981-01-01

    Energy conservation measures at Longmont High School (Colorado), including reducing air entry, heating water only during school hours, and lowering lighting levels, are expected to save 45 percent in natural gas usage and 20 percent in electric usage. (Author/MLF)

  18. Energy conservation in the food industry. (Latest citations from Food Science & Technology Abstracts (FSTA)). Published Search

    SciTech Connect

    1995-05-01

    The bibliography contains citations concerning energy conservation methods and systems in the food industry. The general principles of energy savings and future prospects in sugar, dairy, meat, frozen foods, and brewing industries are reviewed. Energy saving estimates and measures in food processing are discussed. (Contains a minimum of 188 citations and includes a subject term index and title list.)

  19. Electric energy savings from new technologies

    SciTech Connect

    Moe, R.J.; Harrer, B.J.; Kellogg, M.A.; Lyke, A.J.; Imhoff, K.L.; Fisher, Z.J.

    1986-01-01

    Purpose of the report is to provide information about the electricity-saving potential of new technologies to OCEP that it can use in developing alternative long-term projections of US electricity consumption. Low-, base-, and high-case scenarios of the electricity savings for ten technologies were prepared. The total projected annual savings for the year 2000 for all ten technologies were 137 billion kilowatt hours (BkWh), 279 BkWh, and 470 BkWh, respectively, for the three cases. The magnitude of these savings projections can be gauged by comparing them to the Department's reference case projection for the 1985 National Energy Policy Plan. In the Department's reference case, total consumption in 2000 is projected to be 3319 BkWh. Thus, the savings projected here represent between 4% and 14% of total consumption projected for 2000. Because approximately 75% of the base-case estimate of savings are already incorporated into the reference forecast, reducing projected electricity consumption from what it otherwise would have been, the savings estimated here should not be directly subtracted from the reference forecast.

  20. Effects of Distributed Energy Resources on Conservation Voltage Reduction (CVR)

    SciTech Connect

    Singh, Ruchi; Tuffner, Francis K.; Fuller, Jason C.; Schneider, Kevin P.

    2011-10-10

    Conservation Voltage Reduction (CVR) is one of the cheapest technologies which can be intelligently leveraged to provide considerable energy savings. The addition of renewables in the form of distributed resources can affect the entire power system, but more importantly, affects the traditional substation control schemes at the distribution level. This paper looks at the effect on energy consumption, peak load reduction, and voltage profile changes due to the addition of distributed generation in a distribution feeder using combinations of volt var control. An IEEE 13-node system is used to simulate the various cases. Energy savings and peak load reduction for different simulation scenarios are compared.

  1. Economic Energy Savings Potential in Federal Buildings

    SciTech Connect

    Brown, Daryl R.; Dirks, James A.; Hunt, Diane M.

    2000-09-04

    The primary objective of this study was to estimate the current life-cycle cost-effective (i.e., economic) energy savings potential in Federal buildings and the corresponding capital investment required to achieve these savings, with Federal financing. Estimates were developed for major categories of energy efficiency measures such as building envelope, heating system, cooling system, and lighting. The analysis was based on conditions (building stock and characteristics, retrofit technologies, interest rates, energy prices, etc.) existing in the late 1990s. The potential impact of changes to any of these factors in the future was not considered.

  2. Energy conservation in the textile industry: 10 case histories

    SciTech Connect

    1982-01-01

    Presented are ten case studies of energy conserving technologies that have been implemented by the textile industry. For each case is given: the name and location of the plant and an employee contact, description of products, energy consumption and costs in years before and after the energy conserving technology was implemented, energy savings since the energy conserving technology was implemented, description of investment decision-making process, and description of any institutional and environmental considerations. Measures included are: tandem preparation line, dyebath reuse, bump-and-run (dyebath temperature drifts for the last 85% of the hold time), foam finishing, wastewater heat recovery, wastewater chlorination and reuse, oven exhaust air counterflow, boiler economizer, wood-fired boiler, and solar industrial process heat. Several other energy conserving technologies that were not studied are briefly summarized. (LEW)

  3. Energy Savings from Industrial Water Reductions

    SciTech Connect

    Rao, Prakash; McKane, Aimee; de Fontaine, Andre

    2015-08-03

    Although it is widely recognized that reducing freshwater consumption is of critical importance, generating interest in industrial water reduction programs can be hindered for a variety of reasons. These include the low cost of water, greater focus on water use in other sectors such as the agriculture and residential sectors, high levels of unbilled and/or unregulated self-supplied water use in industry, and lack of water metering and tracking capabilities at industrial facilities. However, there are many additional components to the resource savings associated with reducing site water use beyond the water savings alone, such as reductions in energy consumption, greenhouse gas emissions, treatment chemicals, and impact on the local watershed. Understanding and quantifying these additional resource savings can expand the community of businesses, NGOs, government agencies, and researchers with a vested interest in water reduction. This paper will develop a methodology for evaluating the embedded energy consumption associated with water use at an industrial facility. The methodology developed will use available data and references to evaluate the energy consumption associated with water supply and wastewater treatment outside of a facility’s fence line for various water sources. It will also include a framework for evaluating the energy consumption associated with water use within a facility’s fence line. The methodology will develop a more complete picture of the total resource savings associated with water reduction efforts and allow industrial water reduction programs to assess the energy and CO2 savings associated with their efforts.

  4. Energy conservation in regenerated chemical absorption processes

    SciTech Connect

    Thompson, R.E.

    1986-01-01

    Energy savings from split-flow design modifications or the installation of absorber intercoolers are quantified for solvent-based separation processes. Absorber-stripper systems that use aqueous monoethanolamine (MEA) or diethanolamine (DEA) to remove CO/sub 2/ or H/sub 2/S from natural gas streams are modeled. Use of split flow in regenerated chemical absorption processes with isothermal columns resulted in energy savings of over 50% for systems with large solute-recovery fractions. The energy savings are a linear function of the logarithm of percent unrecovered solute. Optimal values are found for the flow rate and withdrawal point of the split-flow stream. The optimal design and operating conditions for CO/sub 2/ systems with adiabatic columns are determined by the stripper column; the stripper exhibits a steam-consumption minimum with respect to the total solvent flow rate and the composition of the lean-solvent stream. In contrast, optimal conditions for H/sub 2/S systems are set by the absorber. These absorber-limited systems exhibit a steam consumption minimum for the lowest solvent flow which can achieve the specified solute recovery in the absorber. Absorber intercoolers conserve energy by reducing the solvent flow rate required for a specified solute recovery. The optimal intercooler location is near an acid-gas-to-amine ratio halfway between the same ratios for the lean and rich solvent streams. The intercooler location is near an acid-gas-to-amine ratio halfway between the same ratios for the lean and rich solvent streams. The intercooler is optically sized by equating the absorber-solvent-feed temperature, the absorber-intercooler process-outlet temperature, and the cooling-water effluent temperature.

  5. A new mechanism for energy conservation technology services

    SciTech Connect

    Yan, Feng

    1996-12-31

    In the ninth-five year plan of China, the socialist market economy model will be developed. In the stage of transferring from planning economy to market economy, the energy conservation technology services industry in China has met new challenges. Over the past ten to fifteen years, there has developed a new mechanism for financing energy efficiency investments in market economies. The process is simple. After inspecting an enterprise or an entity for energy saving opportunities, an Energy Service Company (ESCO) which business aimed at making money will review the recommended energy conservation opportunities with the enterprise or the entity (user) and implement those measures acceptable to the user at no front end cost to the user. The ESCO then guarantees that the energy savings will cover the cost of the capital renovations using the Performance Contracting.

  6. Energy Conservation through Architectural Design

    ERIC Educational Resources Information Center

    Thomson, Robert C., Jr.

    1977-01-01

    Describes a teaching unit designed to create in students an awareness of and an appreciation for the possibilities for energy conservation as they relate to architecture. It is noted that the unit can be adapted for use in many industrial programs and with different teaching methods due to the variety of activities that can be used. (Editor/TA)

  7. ENERGY CONSERVATION THROUGH SOURCE REDUCTION

    EPA Science Inventory

    This report deals with energy conservation through reduction in generation of post-consumer solid waste. The objective, scope, methodology and summary of the report are presented in Section 1. Section 2 contains the conclusions. Section 3 presents a review of output and input app...

  8. Computer simulated building energy consumption for verification of energy conservation measures in network facilities

    NASA Technical Reports Server (NTRS)

    Plankey, B.

    1981-01-01

    A computer program called ECPVER (Energy Consumption Program - Verification) was developed to simulate all energy loads for any number of buildings. The program computes simulated daily, monthly, and yearly energy consumption which can be compared with actual meter readings for the same time period. Such comparison can lead to validation of the model under a variety of conditions, which allows it to be used to predict future energy saving due to energy conservation measures. Predicted energy saving can then be compared with actual saving to verify the effectiveness of those energy conservation changes. This verification procedure is planned to be an important advancement in the Deep Space Network Energy Project, which seeks to reduce energy cost and consumption at all DSN Deep Space Stations.

  9. Small School Creates Large Energy Savings.

    ERIC Educational Resources Information Center

    Olsen, Wally

    1978-01-01

    The Folsom Cordova Unified School District decided to make a model energy-saver out of its Cordova Villa-Reymouth complex, a combined preschool, development center, and K-6 school for 300 students. Particular emphasis was given to cutting unnecessary lighting. Graphs of energy consumption and dollar savings are provided. (SJL)

  10. ESCOs: Helping Schools Save Money and Energy.

    ERIC Educational Resources Information Center

    School Planning & Management, 2000

    2000-01-01

    Discusses the use of energy savings performance contracts to help reduce costs and improve school infrastructure and the educational environment. Further discussed are how indoor air quality reduces health, productivity, and costs; and examples are provided of how other schools have achieved better school environments and reduced energy costs. (GR)

  11. Potential for energy conservation in the glass industry

    SciTech Connect

    Garrett-Price, B.A.; Fassbender, A.G.; Bruno, G.A.

    1986-06-01

    While the glass industry (flat glass, container glass, pressed and blown glass, and insulation fiber glass) has reduced its specific energy use (Btu/ton) by almost 30% since 1972, significant potential for further reduction still remains. State-of-the-art technologies are available which could lead to incremental improvements in glass industry energy productivity; however, these technologies must compete for capital with projects undertaken for other reasons (e.g., capacity expansion, equipment rebuild, labor cost reduction, product quality improvement, or compliance with environmental, health or safety regulations). Narrowing profit margins in the large tonnage segments of the glass industry in recent years and the fact that energy costs represent less than 25% of the value added in glass manufacture have combined to impede the widespread adoption of many state-of-the-art conservation technologies. Savings in energy costs alone have not provided the incentive to justify the capital expenditures required to realize the energy savings. Beyond implementation of state-of-the-art technologies, significant potential energy savings could accrue from advanced technologies which represent a radical departure from current glass making technology. Long-term research and development (R and D) programs, which address the technical and economic barriers associated with advanced, energy-conserving technologies, offer the opportunity to realize this energy-saving potential.

  12. Aerial thermography for energy conservation

    NASA Technical Reports Server (NTRS)

    Jack, J. R.

    1978-01-01

    Thermal infrared scanning from an aircraft is a convenient and commercially available means for determining relative rates of energy loss from building roofs. The need to conserve energy as fuel costs makes the mass survey capability of aerial thermography an attractive adjunct to community energy awareness programs. Background information on principles of aerial thermography is presented. Thermal infrared scanning systems, flight and environmental requirements for data acquisition, preparation of thermographs for display, major users and suppliers of thermography, and suggested specifications for obtaining aerial scanning services were reviewed.

  13. Remodeling kitchens: A smorgasbord of energy savings

    SciTech Connect

    Sullivan, B.

    1995-09-01

    The kitchen is often the busiest room in the house and is most likely to remodeled repeatedly over the life of a house. The kitchen also represents a concentration of household energy use. Remodeling a kitchen can mean introducing a host of new energy-saving features or making major energy blunders. This article discusses ways to utilized the best features: layout and design; appliances; lighting; windows and skylights; ventilation; insulation and air sealing; water; household recycling; green building materials.

  14. Energy conservation using face detection

    NASA Astrophysics Data System (ADS)

    Deotale, Nilesh T.; Kalbande, Dhananjay R.; Mishra, Akassh A.

    2011-10-01

    Computerized Face Detection, is concerned with the difficult task of converting a video signal of a person to written text. It has several applications like face recognition, simultaneous multiple face processing, biometrics, security, video surveillance, human computer interface, image database management, digital cameras use face detection for autofocus, selecting regions of interest in photo slideshows that use a pan-and-scale and The Present Paper deals with energy conservation using face detection. Automating the process to a computer requires the use of various image processing techniques. There are various methods that can be used for Face Detection such as Contour tracking methods, Template matching, Controlled background, Model based, Motion based and color based. Basically, the video of the subject are converted into images are further selected manually for processing. However, several factors like poor illumination, movement of face, viewpoint-dependent Physical appearance, Acquisition geometry, Imaging conditions, Compression artifacts makes Face detection difficult. This paper reports an algorithm for conservation of energy using face detection for various devices. The present paper suggests Energy Conservation can be done by Detecting the Face and reducing the brightness of complete image and then adjusting the brightness of the particular area of an image where the face is located using histogram equalization.

  15. 24 CFR 242.82 - Energy conservation.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 24 Housing and Urban Development 2 2014-04-01 2014-04-01 false Energy conservation. 242.82 Section... INSURANCE FOR HOSPITALS Miscellaneous Requirements § 242.82 Energy conservation. Construction, mechanical equipment, and energy and metering selections shall provide cost-effective energy conservation in...

  16. 24 CFR 242.82 - Energy conservation.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 24 Housing and Urban Development 2 2011-04-01 2011-04-01 false Energy conservation. 242.82 Section... INSURANCE FOR HOSPITALS Miscellaneous Requirements § 242.82 Energy conservation. Construction, mechanical equipment, and energy and metering selections shall provide cost-effective energy conservation in...

  17. 24 CFR 242.82 - Energy conservation.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 24 Housing and Urban Development 2 2013-04-01 2013-04-01 false Energy conservation. 242.82 Section... INSURANCE FOR HOSPITALS Miscellaneous Requirements § 242.82 Energy conservation. Construction, mechanical equipment, and energy and metering selections shall provide cost-effective energy conservation in...

  18. 24 CFR 242.82 - Energy conservation.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 24 Housing and Urban Development 2 2012-04-01 2012-04-01 false Energy conservation. 242.82 Section... INSURANCE FOR HOSPITALS Miscellaneous Requirements § 242.82 Energy conservation. Construction, mechanical equipment, and energy and metering selections shall provide cost-effective energy conservation in...

  19. 24 CFR 242.82 - Energy conservation.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 24 Housing and Urban Development 2 2010-04-01 2010-04-01 false Energy conservation. 242.82 Section... INSURANCE FOR HOSPITALS Miscellaneous Requirements § 242.82 Energy conservation. Construction, mechanical equipment, and energy and metering selections shall provide cost-effective energy conservation in...

  20. Practicing Sustainability in an Urban University: A Case Study of a Behavior Based Energy Conservation Project

    ERIC Educational Resources Information Center

    Chan, Stuart; Dolderman, Dan; Savan, Beth; Wakefield, Sarah

    2012-01-01

    This case study of the University of Toronto Sustainability Office's energy conservation project, Rewire, explores the implementation of a social marketing campaign that encourages energy efficient behavior. Energy conservation activities have reached approximately 3,000 students and staff members annually, and have saved electricity, thermal…

  1. Energy and Water: Conservation Suggestions for California's Elementary and Secondary Schools.

    ERIC Educational Resources Information Center

    California State Dept. of Education, Sacramento.

    This publication contains conservation suggestions for schools in California to save water and energy. Contents include: (1) a list of sources of additional energy education assistance and materials; (2) a discussion of energy conservation in schools including HVAC system operations, lighting and building design; (3) a summary outline of actions…

  2. Reactors Save Energy, Costs for Hydrogen Production

    NASA Technical Reports Server (NTRS)

    2014-01-01

    While examining fuel-reforming technology for fuel cells onboard aircraft, Glenn Research Center partnered with Garrettsville, Ohio-based Catacel Corporation through the Glenn Alliance Technology Exchange program and a Space Act Agreement. Catacel developed a stackable structural reactor that is now employed for commercial hydrogen production and results in energy savings of about 20 percent.

  3. Energy saving concepts relating to induction generators

    NASA Technical Reports Server (NTRS)

    Nola, F. J.

    1980-01-01

    Energy saving concepts relating to induction generators are presented. The first describes a regenerative scheme using an induction generator as a variable load for prime movers under test is described. A method for reducing losses in induction machines used specifically as wind driven generators is also described.

  4. Empirical impact evaluation of the energy savings resulting from BPA's Stage II irrigation system retrofit program: Final report

    SciTech Connect

    Harrer, B.J.; Tawil, J.W.; Lyke, A.J.; Nieves, L.A.; Edin, E.S.; Bailey, B.M.

    1987-07-01

    This report documents the results of an evaluation of the impacts on irrigation system energy consumption of conservation measures installed under the Bonneville Power Administration's Stage II retrofit program. Historical billing data and other farm records provided the basis for this evaluation. A number of different statistical techniques were used to estimate the actual energy savings resulting from the Stage II conservation measures. Results of the study reveal that the methodology used in predicting energy savings resulting from the Stage II program is accurate. The basis for energy savings predictions in the Stage II program are changes in brake horsepower, and, in this study, a 1% change in brake horsepower was found to result in slightly more than a 1% change in energy consumption. Overall, Stage II program conservation measures were found to reduce irrigation system energy use by an average of 34%. The average costs of obtaining these savings were 6 mills (.6 cents) per kWh saved.

  5. Rural Energy Savings Program Act

    THOMAS, 111th Congress

    Sen. Merkley, Jeff [D-OR

    2010-03-10

    06/17/2010 Committee on Agriculture, Nutrition, and Forestry Subcommittee on Energy. Hearings held. (All Actions) Tracker: This bill has the status IntroducedHere are the steps for Status of Legislation:

  6. Rural Energy Savings Program Act

    THOMAS, 111th Congress

    Rep. Clyburn, James E. [D-SC-6

    2010-03-09

    09/20/2010 Received in the Senate and Read twice and referred to the Committee on Energy and Natural Resources. (All Actions) Tracker: This bill has the status Passed HouseHere are the steps for Status of Legislation:

  7. Energy Conservation for Public Office Buildings

    ERIC Educational Resources Information Center

    Roush, Larry F.

    1973-01-01

    The energy conservation policy for public office buildings includes experimental designs of new federal office buildings in Manchester, New Hampshire and Saginaw, Michigan, as well as immediate energy conservation efforts. (Author/MF)

  8. Encouraging energy conservation in multifamily housing: RUBS and other methods of allocating energy costs to residents

    SciTech Connect

    McClelland, L

    1980-10-01

    Methods of encouraging energy conservation in multifamily housing by allocating energy costs to residents are discussed; specifically, methods appropriate for use in master metered buildings without equipment to monitor energy consumption in individual apartments are examined. Several devices available for monitoring individual energy consumption are also discussed plus methods of comparing the energy savings and cost effectiveness of monitoring devices with those of other means of promoting conservation. Specific information in Volume I includes a comparison study on energy use in master and individually metered buildings; types of appropriate conservation programs for master metered buildings; a description of the Resident Utility Billing System (RUBS); energy savings associated with RUBS; Resident reactions to RUBS; cost effectiveness of RUBS for property owners; potential abuses, factors limiting widespread use, and legal status of RUBS. Part I of Volume II contains a cost allocation decision guide and Part II in Volume II presents the RUBS Operations Manual. Pertinent appendices to some chapters are attached. (MCW)

  9. Energy conservation for pasteurizer apparatus

    SciTech Connect

    Huling, J.K.

    1981-07-21

    In the pasteurizing of beverages in closed containers, the containers arrive generally in a chilled state and are progressively raised in temperature approaching the pasteurizing temperature and, after being pasteurized for an appropriate time, are progressively cooled down. Apparatus of this type is provided with a source of chilled water which is available for use when skips occur in the supply of the containers, the chilled water being accumulated from the incoming containers and from common outside sources. The accumulated water in its chilled state saves substantial amounts of energy by eliminating mechanical or other means to produce the chill effect, and such source of water is constantly available under control which senses the presence of a skip in the supply of containers.

  10. Energy conservation in large buildings

    NASA Astrophysics Data System (ADS)

    Rosenfeld, A.; Hafemeister, D.

    1985-11-01

    As energy prices rise, newly energy aware designers use better tools and technology to create energy efficient buildings. Thus the U.S. office stock (average age 20 years) uses 250 kBTU/ft2 of resource energy, but the guzzler of 1972 uses 500 (up×2), and the 1986 ASHRAE standards call for 100-125 (less than 25% of their 1972 ancestors). Surprisingly, the first real cost of these efficient buildings has not risen since 1972. Scaling laws are used to calculate heat gains and losses of buildings to obtain the ΔT(free) which can be as large as 15-30 °C (30-60 °F) for large buildings. The net thermal demand and thermal time constants are determined for the Swedish Thermodeck buildings which need essentially no heat in the winter and no chillers in summer. The BECA and other data bases for large buildings are discussed. Off-peak cooling for large buildings is analyzed in terms of saving peak-electrical power. By downsizing chillers and using cheaper, off-peak power, cost-effective thermal storage in new commercial buildings can reduce U.S. peak power demands by 10-20 GW in 15 years. A further potential of about 40 GW is available from adopting partial thermal storage and more efficient air conditioners in existing buildings.

  11. Daylight metrics and energy savings

    SciTech Connect

    Mardaljevic, John; Heschong, Lisa; Lee, Eleanor

    2009-12-31

    The drive towards sustainable, low-energy buildings has increased the need for simple, yet accurate methods to evaluate whether a daylit building meets minimum standards for energy and human comfort performance. Current metrics do not account for the temporal and spatial aspects of daylight, nor of occupants comfort or interventions. This paper reviews the historical basis of current compliance methods for achieving daylit buildings, proposes a technical basis for development of better metrics, and provides two case study examples to stimulate dialogue on how metrics can be applied in a practical, real-world context.

  12. On energy conservation in extended magnetohydrodynamics

    SciTech Connect

    Kimura, Keiji; Morrison, P. J.

    2014-08-15

    A systematic study of energy conservation for extended magnetohydrodynamic models that include Hall terms and electron inertia is performed. It is observed that commonly used models do not conserve energy in the ideal limit, i.e., when viscosity and resistivity are neglected. In particular, a term in the momentum equation that is often neglected is seen to be needed for conservation of energy.

  13. Energy Experts Call for Conservation Steps

    ERIC Educational Resources Information Center

    Chemical and Engineering News, 1974

    1974-01-01

    Summarizes energy conservation measures suggested by a leading energy supplier, a leading energy consumer, and a top government official, involving more coal use as an energy resource and an adequate balance between energy supply and environmental restrictions. (CC)

  14. Saving Energy at Data Centers

    SciTech Connect

    2007-10-12

    Data centers provide mission-critical computing functions essential to the daily operation of top U.S. economic, scientific, and technological organizations. These data centers consume large amounts of energy to run and maintain their computer systems, servers, and associated high-performance components.

  15. Energy savings brought to bear.

    PubMed

    2009-01-01

    Health Estate Journal reports on wide-ranging and successful work undertaken by the Medway Maritime Hospital's estates team to cut energy consumption at, and reduce the carbon footprint of, the Kent hospital since the Medway NHS Foundation Trust signed up, last August, to the Chartered Institution of Building Services Engineers' (CIBSE) 2008 "100 Hours of Carbon Clean Up" campaign. PMID:19192595

  16. Reported Energy and Cost Savings from the DOE ESPC Program

    SciTech Connect

    Shonder, John A; Slattery, Bob S; Atkin, Erica

    2012-01-01

    The objective of this work was to determine the realization rate of energy and cost savings from the Department of Energy's Savings Performance Contract (ESPC) program based on information reported by the energy services companies (ESCOs) that are carrying out ESPC projects at federal sites. Information was extracted from 134 Measurement and Verification (M&V) reports to determine reported, estimated, and guaranteed cost savings and reported and estimated energy savings for the previous contract year. Because the quality of the reports varied, it was not possible to determine all of these parameters for each project. For 133 of the 134 projects, there was sufficient information to compare estimated, reported, and guaranteed cost savings. For this group, the total estimated cost savings for the reporting periods addressed were $95.7 million, total reported cost savings were $96.8 million, and total guaranteed cost savings were $92.1 million. This means that on average: ESPC contractors guaranteed 96% of the estimated cost savings, projects reported achieving 101% of the estimated cost savings, and projects reported achieving 105% of the guaranteed cost savings. For 129 of the projects examined, there was sufficient information to compare estimated and reported energy savings. On the basis of site energy, estimated savings for those projects for the previous year totaled 5.371 million MMBtu, and reported savings were 5.374 million MMBtu, just over 100% of the estimated energy savings. On the basis of source energy, total estimated energy savings for the 129 projects were 10.400 million MMBtu, and reported saving were 10.405 million MMBtu, again, just over 100.0% of the estimated energy savings.

  17. Achieving Deeper Energy Savings in Federal Energy Performance Contracts

    SciTech Connect

    Shonder, John A.; Nasseri, Cyrus

    2015-01-01

    Legislation requires each agency of the US federal government to reduce the aggregate energy use index of its buildings by 30% by 2015, with respect to a 2003 baseline. The declining availability of appropriated funding means that energy performance contracting will be key to achieving this goal. Historically however, energy performance contracts have been able to reduce energy use by only about 20% over baseline. Achieving 30% energy reductions using performance contracting will require new approaches and a specific focus on achieving higher energy savings, both by ESCOs and by agencies. This paper describes some of the ways federal agencies are meeting this challenge, and presents results from the efforts of one agency the US General Services Administration -- to achieve deeper energy savings in conventional energy savings performance contracts.

  18. Achieving Deeper Energy Savings in Federal Energy Performance Contracts

    DOE PAGESBeta

    Shonder, John A.; Nasseri, Cyrus

    2015-01-01

    Legislation requires each agency of the US federal government to reduce the aggregate energy use index of its buildings by 30% by 2015, with respect to a 2003 baseline. The declining availability of appropriated funding means that energy performance contracting will be key to achieving this goal. Historically however, energy performance contracts have been able to reduce energy use by only about 20% over baseline. Achieving 30% energy reductions using performance contracting will require new approaches and a specific focus on achieving higher energy savings, both by ESCOs and by agencies. This paper describes some of the ways federal agenciesmore » are meeting this challenge, and presents results from the efforts of one agency the US General Services Administration -- to achieve deeper energy savings in conventional energy savings performance contracts.« less

  19. Shared Savings Financing for College and University Energy Efficiency Investments.

    ERIC Educational Resources Information Center

    Business Officer, 1984

    1984-01-01

    Shared savings arrangements for campus energy efficient investments are discussed. Shared savings is a term for an agreement in which a private company offers to implement an energy efficiency program, including capital improvements, in exchange for a portion of the energy cost savings. Attention is directed to: types of shared savings…

  20. Will Renewable Energy Save Our Planet?

    NASA Astrophysics Data System (ADS)

    Bojić, Milorad

    2010-06-01

    This paper discusses some important fundamental issues behind application of renewable energy (RE) to evaluate its impact as a climate change mitigation technology. The discussed issues are the following: definition of renewable energy, concentration of RE by weight and volume, generation of electrical energy and its power at unit area, electrical energy demand per unit area, life time approach vs. layman approach, energy return time, energy return ratio, CO2 return time, energy mix for RES production and use, geographical distribution of RES use, huge scale of energy shift from RES to non-RES, increase in energy consumption, Thermodynamic equilibrium of earth, and probable solutions for energy future of our energy and environmental crisis of today. The future solution (that would enable to human civilization further welfare, and good living, but with lower release of CO2 in atmosphere) may not be only RES. This will rather be an energy mix that may contain nuclear energy, non-nuclear renewable energy, or fossil energy with CO2 sequestration, efficient energy technologies, energy saving, and energy consumption decrease.

  1. Providing for energy efficiency in homes and small buildings. Part I. Understanding and practicing energy conservation in buildings

    SciTech Connect

    Parady, W. Harold; Turner, J. Howard

    1980-06-01

    This is a training program to educate students and individuals in the importance of conserving energy and to provide for developing skills needed in the application of energy-saving techniques that result in energy-efficient buildings. A teacher guide and student workbook are available to supplement the basic guide, which contains three parts. Part I considers the following: understanding the importance of energy; developing a concern for conserving energy; understanding the use of energy in buildings; care and maintenance of energy-efficient buildings; and developing energy-saving habits. A bibliography is presented.

  2. 75 FR 17036 - Energy Conservation Program: Energy Conservation Standards for Small Electric Motors; Correction

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-05

    ... Part 431 RIN 1904-AB70 Energy Conservation Program: Energy Conservation Standards for Small Electric... rule regarding the energy conservation standards for small electric motors, which was published on... energy conservation standards for small electric motors. Due to a drafting error, an incorrect...

  3. Aerodynamic Drag and Drag Reduction: Energy and Energy Savings (Invited)

    NASA Technical Reports Server (NTRS)

    Wood, Richard M.

    2003-01-01

    An assessment of the role of fluid dynamic resistance and/or aerodynamic drag and the relationship to energy use in the United States is presented. Existing data indicates that up to 25% of the total energy consumed in the United States is used to overcome aerodynamic drag, 27% of the total energy used in the United States is consumed by transportation systems, and 60% of the transportation energy or 16% of the total energy consumed in the United States is used to overcome aerodynamic drag in transportation systems. Drag reduction goals of 50% are proposed and discussed which if realized would produce a 7.85% total energy savings. This energy savings correlates to a yearly cost savings in the $30Billion dollar range.

  4. Citizen Action Guide to Energy Conservation.

    ERIC Educational Resources Information Center

    Citizens Advisory Committee on Environmental Quality.

    This book is concerned with educating citizen leaders and public officials on matters of transportation energy, industrial and electrical energy, and residential and commercial energy usage. Also included are guidelines on developing a national energy conservation policy and mobilizing citizens for action in energy conservation concerns. A…

  5. Magnet-driven trains save energy

    SciTech Connect

    Not Available

    1983-12-01

    A new magnetically powered transit concept is being tested in Japan. It is claimed that the train uses less than 70% of the energy required to drive comparable coaches with motors because of the weight savings of the vehicles themselves. The rubber-tired trains are propelled by rotating belts in the track that have permanent magnets fixed to them. Electromagnets under the coaches are activated to respond to the belts.

  6. Energy Savings Potential of Radiative Cooling Technologies

    SciTech Connect

    Fernandez, Nicholas; Wang, Weimin; Alvine, Kyle J.; Katipamula, Srinivas

    2015-11-30

    Pacific Northwest National Laboratory (PNNL), with funding from the U.S. Department of Energy’s (DOE’s) Building Technologies Program (BTP), conducted a study to estimate, through simulation, the potential cooling energy savings that could be achieved through novel approaches to capturing free radiative cooling in buildings, particularly photonic ‘selective emittance’ materials. This report documents the results of that study.

  7. 77 FR 43015 - Energy Conservation Standards for Commercial and Industrial Electric Motors: Public Meeting and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-23

    ... Conservation Standards Rulemaking Framework Document for Commercial and Industrial Electric Motors'' (75 FR... energy savings (NES) and the net present value (NPV) of total customer costs and savings expected to... determined over a specified time period. The national NPV is the sum over time of the discounted net...

  8. Incorporating Non-energy Benefits into Energy Savings Performance Contracts

    SciTech Connect

    Larsen, Peter; Goldman, Charles; Gilligan, Donald; Singer, Terry

    2012-06-01

    This paper evaluates the issue of non-energy benefits within the context of the U.S. energy services company (ESCO) industry?a growing industry comprised of companies that provide energy savings and other benefits to customers through the use of performance-based contracting. Recent analysis has found that ESCO projects in the public/institutional sector, especially at K-12 schools, are using performance-based contracting, at the behest of the customers, to partially -- but not fully -- offset substantial accumulated deferred maintenance needs (e.g., asbestos removal, wiring) and measures that have very long paybacks (roof replacement). This trend is affecting the traditional economic measures policymakers use to evaluate success on a benefit to cost basis. Moreover, the value of non-energy benefits which can offset some or all of the cost of the non-energy measures -- including operations and maintenance (O&M) savings, avoided capital costs, and tradable pollution emissions allowances-- are not always incorporated into a formal cost-effectiveness analysis of ESCO projects. Nonenergy benefits are clearly important to customers, but state and federal laws that govern the acceptance of these types of benefits for ESCO projects vary widely (i.e., 0-100percent of allowable savings can come from one or more non-energy categories). Clear and consistent guidance on what types of savings are recognized in Energy Savings agreements under performance contracts is necessary, particularly where customers are searching for deep energy efficiency gains in the building sector.

  9. Energy savings opportunity survey, Energy Engineering Analysis Program (EEAP), Fort Campbell, Kentucky, final report - phase I. Executive summary. Final report

    SciTech Connect

    1993-11-12

    Systems Corp surveyed and completed energy analyses for 98 buildings, fifteen chiller plants, and roadway lighting. The energy conservation opportunities (ECOs) evaluated were lighting efficiency improvements, instantaneous water heaters, heat recovery from hot refrigerant gases, absorption chiller replacements, and ground water coupled heat pumps. Cost estimates were prepared using M-CACES. Life cycle cost analyses were performed using the Life Cycle Cost in Design (LCCID) computer program. Project development brochures (PDBs) and DD1391 forms were prepared for Energy Conservation Investment Program (ECIP) projects. The projects that were developed represent $2,257,000 in annual savings with favorable simple paybacks and saving to investment ratios (SIRs).

  10. IMPACT EVALUATION OF AN ENERGY SAVINGS PLAN PROJECT AT THE LINDE DIVISION OF UNION CARBIDE CORPORATION

    SciTech Connect

    Spanner, G. E.; Sullivan, G. P.

    1992-04-01

    This impact evaluation of an energy conservation measure (ECM) that was recently installed at the Linde Division of Union Carbide Corporation (Linde) was conducted far the Bonneville Power Administration (Bonneville) as part of an evaluation of its Energy Savings Plan (ESP) Program. The Program makes acquisition payments to firms that install energy conservation measures in their industrial processes. The objective of this impact evaluation was to assess how much electrical energy is being saved at Linde as a result of the ESP and to determine how much the savings cost Bonneville and the region. The impact of the ECM was evaluated with a combination of engineering analysis, financial analysis, site visit and interviews, and submittal reviews (Linde's Completion Report and Abstract). The ECM itself consists of replacing the plant's nitrogen feed compressor with a larger unit, which allows the plant to meet its argon demand using less compressed air and which results in net energy savings. Energy savings resulting from this ECM were 4,376,500 kWh/yr for the first two years after installation, but, because of a change in Linde's market position, long-term savings are expected to be lower at 2,549,200 kWh/yr. Linde considers energy consumption and savings on a per ton basis to be proprietary, so they are not reported here. The ECM cost $361,4.96 to install, and Linde received payment of $161,426 from Bonneville for the acquisition of energy savings. This ECM would not have been implemented without the acquisition payment from Bonneville. The levelized cost of these energy savings to Bonneville will be 4.5 mills/kWh over the ECM's expected 15-year life, and the levelized cost to th.e region will be 5.9 mills/kWh.

  11. Heat Recovery and Energy Conservation in Petroleum Refining.

    NASA Astrophysics Data System (ADS)

    Larsen, William Gale

    1990-01-01

    The focus of the analysis presented here is improved recovery (and use) of waste heat at existing petroleum refineries. The major energy-conservation opportunities associated with waste heat are systematically examined both physically and in terms of cost. The opportunities at the Study Refinery are systematically examined in detail. The presentation begins with an overview of the processes carried out in contemporary petroleum refineries including discussion of typical energy use. There follows a brief thermodynamic description of refinery energy flows with an emphasis on heat and on energy-efficiency analysis. The heart of the thesis is Chapters 3-5 describing heat recovery opportunities involving, respectively: extraction and use of heat from combustion gases being discharged through stacks, the exchange of heat between product streams, and uses for low-temperature waste heat. In Chapter 6, a unifying economic concept is introduced (with details in the Appendix): a "supply curve" for saved energy. This describes the potential rate of energy savings in barrels of oil-equivalent per year (in analogy with production capacity of oil or gas fields), as a function of the cost of saved energy in dollars per barrel (in analogy with the production cost of energy). The nature of the distribution is, of course, for the cost of saved energy to increase with increasing energy savings. In this chapter, estimates are presented for the energy conservation opportunities other than waste heat at the Study Refinery. All the opportunities are then summarized in a single supply curve. The extraordinary result in a cost-effective opportunity to reduce refinery energy use by some 26% at 1984 prices. This translates into roughly a 1 energy-cost reduction per 42-gallon barrel of petroleum input. Of course, investments are required; the net benefit would be about 1.5 cents per gallon of product. This would be a major benefit in relation to typical refinery earnings. The concluding

  12. Institutional Manager's Guide to Energy Conservation.

    ERIC Educational Resources Information Center

    Department of Energy, Washington, DC. Office of State and Local Programs.

    The information provided in this guidebook is based on a field evaluation of grantees in the Institutional Conservation Program (ICP). The ICP, authorized by the National Energy Conservation Policy Act of 1978 and administered by the Department of Energy, provides energy audits and 50 percent matching grants for detailed energy analyses and for…

  13. 36 CFR 910.36 - Energy conservation.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 36 Parks, Forests, and Public Property 3 2010-07-01 2010-07-01 false Energy conservation. 910.36... DEVELOPMENT AREA Standards Uniformly Applicable to the Development Area § 910.36 Energy conservation. All new development shall be designed to be economical in energy consumption. The Energy Guidelines of the...

  14. 36 CFR 910.36 - Energy conservation.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 36 Parks, Forests, and Public Property 3 2011-07-01 2011-07-01 false Energy conservation. 910.36... DEVELOPMENT AREA Standards Uniformly Applicable to the Development Area § 910.36 Energy conservation. All new development shall be designed to be economical in energy consumption. The Energy Guidelines of the...

  15. 36 CFR 910.36 - Energy conservation.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 36 Parks, Forests, and Public Property 3 2012-07-01 2012-07-01 false Energy conservation. 910.36... DEVELOPMENT AREA Standards Uniformly Applicable to the Development Area § 910.36 Energy conservation. All new development shall be designed to be economical in energy consumption. The Energy Guidelines of the...

  16. 36 CFR 910.36 - Energy conservation.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 36 Parks, Forests, and Public Property 3 2013-07-01 2012-07-01 true Energy conservation. 910.36... DEVELOPMENT AREA Standards Uniformly Applicable to the Development Area § 910.36 Energy conservation. All new development shall be designed to be economical in energy consumption. The Energy Guidelines of the...

  17. Introduction, Energy savings of reflective roofs

    SciTech Connect

    Akbari, H.

    1998-01-15

    Several experiments on individual buildings in California and Florida show that reflective (cool) roofs reduce air-conditioning energy use between 10 percent and 50 percent. The savings, of course, are strong functions of the thermal integrity of building and climate conditions. Darker roofs more quickly warm the air over urban areas, leading to the creation of summer urban ''heat islands.'' On the community scale, increasing the albedo (solar reflectivity) of roofs can limit or reverse an urban heat island effectively and inexpensively. This publication discusses the literature data and new research efforts in analyzing the impact of cool roofs on buildings' cooling and heating energy use.

  18. Good practice in saving energy at school

    NASA Astrophysics Data System (ADS)

    Veronesi, Paola; Bonazzi, Enrico

    2014-05-01

    We teach students between 14 and 18 years old at a high school in Italy. In the first class, one of the topics we treat is related to the atmosphere. The students learn the composition of air, the importance of the natural greenhouse effect in keeping the average temperature of the planet and how human activity is increasing the level of greenhouse gases, enhancing greenhouse effect and causing global warming. It is possible to reach this knowledge using different materials and methods such as schoolbooks, articles, websites or films, individual or group work, but as students gradually become aware of the problem of climate change due to global warming, it is necessary to propose a solution that can be experienced and measured by students. This is the aim of the project "Switch off the light, to switch on the future". The project doesn't need special materials to be carried out but all the people in the community who work and "live" at school should participate in it. The project deals directly with saving electric energy, by changing the habits of the use of electricity. Saving electric energy means saving CO2 emitted to atmosphere, and consequently contributing to the reduction of greenhouse gases emission. Normally, lights in the school are switched on in the early morning and switched off at the end of lessons. Nobody is responsible to turn out the lights in classes, so students choose one or two "Light guardians" who are responsible for the light management. Simple rules for light management are written and distributed in the classes so that the action of saving energy is spread all over the school. One class participates in the daily data collection from the electricity meter, before and after the beginning of the action. At the end of the year the data are treated and presented to the community, verifying if the electric consumption has been cut down or not. This presentation is public, with students who directly introduce collected data, results and

  19. Equity implications of utility energy conservation programs

    SciTech Connect

    Sutherland, R.J.

    1994-03-15

    This paper uses the Residential Energy Consumption Survey undertaken by the Energy Information Administration in 1990 to estimate the statistical association between household income and participation in electric utility energy conservation programs and the association between participation and the electricity consumption. The results indicate that utility rebates, energy audits, load management programs and other conservation measures tend to be undertaken at greater frequency by high income households than by low income households. Participants in conservation programs tend to occupy relatively new and energy efficient residences and undertake conservation measures other than utility programs, which suggests that utility sponsored programs are substitutes for other conservation investments. Electricity consumption during 1990 is not significantly less for households participating in utility programs than for nonparticipants, which also implies that utility conservation programs are displacing other conservation investments. Apparently, utility programs are not avoiding costs of new construction and instead are transferring wealth, particularly to high income participating households.

  20. Potential energy savings from aquifer thermal energy storage

    SciTech Connect

    Anderson, M.R.; Weijo, R.O.

    1988-07-01

    Pacific Northwest Laboratory researchers developed an aggregate-level model to estimate the short- and long-term potential energy savings from using aquifer thermal storage (ATES) in the United States. The objectives of this effort were to (1) develop a basis from which to recommend whether heat or chill ATES should receive future research focus and (2) determine which market sector (residential, commercial, or industrial) offers the largest potential energy savings from ATES. Information was collected on the proportion of US land area suitable for ATES applications. The economic feasibility of ATES applications was then evaluated. The potential energy savings from ATES applications was calculated. Characteristic energy use in the residential, commercial, and industrial sectors was examined, as was the relationship between waste heat production and consumption by industrial end-users. These analyses provided the basis for two main conclusions: heat ATES applications offer higher potential for energy savings than do chill ATES applications; and the industrial sector can achieve the highest potential energy savings for the large consumption markets. Based on these findings, it is recommended that future ATES research and development efforts be directed toward heat ATES applications in the industrial sector. 11 refs., 6 figs., 9 tabs.

  1. 48 CFR 23.205 - Energy-savings performance contracts.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... SOCIOECONOMIC PROGRAMS ENVIRONMENT, ENERGY AND WATER EFFICIENCY, RENEWABLE ENERGY TECHNOLOGIES, OCCUPATIONAL SAFETY, AND DRUG-FREE WORKPLACE Energy and Water Efficiency and Renewable Energy 23.205 Energy-savings... savings that result. (2) Except as provided in 10 CFR 436.34, ESPC's are subject to subpart 17.1. (c)...

  2. Energy savings through retrofits in a large medical center

    SciTech Connect

    Hutchins, P.F.

    1997-06-01

    A 600,000-square-foot medical center in the southeastern United States is presently undergoing major renovations which will result in savings of energy use and costs. The current project, funded for FY96 includes a number of modifications to the Heating and Cooling Plant and the hospital itself. These upgrades include: (1) High efficiency chillers, (2) Cooling tower replacement, (3) High efficiency condenser and chilled water pump motors, (4) New chilled water and condenser pumps and piping, (5) Condenser water reset controls, (6) Electricity demand reduction using gas-fired absorption chiller, (7) Secondary chilled water variable speed flow, (8) Boiler controls improvements, (9) Feedwater pump replacements, (10) Repair of air-side economizer HVAC system, (11) New 2x4 parabolic troffers with T-8 lamps and electronic ballasts, and (12) DDC controls. The current hospital energy use was modeled using Trane`s TRACE 600{reg_sign} computer simulation program to agree with recent historical energy use data. A second model was created implementing the energy conservation improvements listed above to quantify the associated energy and cost savings. Additional energy saving ideas were evaluated for cost effectiveness. These are: (1) New unattended boilers, (2) Boiler pressure reduction, (3) Boiler economizer, (4) Additional boiler controls, (5) Exhaust air heat recovery, (6) Domestic hot water decentralization, (7) Desiccant cooling, (8) Supply air reduction scheduling, (9) Compact fluorescents, (10) Variable air volume HVAC systems, and (11) Occupancy sensors. Another interesting aspect of this project was an evaluation of harmonic distortion due to electronic ballasts. Direct field measurements were made on similar lighting circuits to compare the harmonic currents generated by electronic and magnetic ballasts. A graphical as well as quantitative analysis is presented.

  3. Household energy conservation: a review of the federal residential conservation service

    SciTech Connect

    Hirst, E.

    1984-09-01

    Most electric and gas utilities provide free or low-cost energy audits to their residential customers, usually as part of the federal Residential Conservations Service (RCS). RCS programs in the few states where competent evaluations were done show incremental energy savings for participants of approximately 3.5 percent. Assessing the economic worth of RCS programs is particularly difficult (and very site-specific) because of factors such as future fuel prices, differences between marginal and average fuel prices, discount rates, and differences in how programs are implemented. The meager evidence on RCS program cost-effectiveness suggests that the economic benefits are generally small. 28 references, 2 figures, 3 tables.

  4. Energy saving opportunities of energy efficient air nozzles

    NASA Astrophysics Data System (ADS)

    Slootmaekers, Tim; Slaets, Peter; Bartsoen, Tom; Malfait, Lieven; Vanierschot, Maarten

    2015-12-01

    Compressed air is a common energy medium. The production of compressed air itself is not a very efficient process. Avoiding any unnecessary losses of air can lead to large reductions in electricity consumption. Since blowing applications are one of the main domains were compressed-air is used, any reduction in the mass flow needed for operation can lead to significant energy savings. In this paper the normal volumetric flow rate and generated impact force are compared between a stepped nozzle and a so called energy saving nozzle which allows extra air from the surroundings to be entrained. These two different nozzle geometries are used in industrial blowing applications. Until now there was no study available which compares the impact forces and volumetric flow rates for these types of nozzles. The flow field of the two nozzles was calculated by CFD simulations. The impact forces and volumetric flow rates are calculated out of this flow field. Each nozzle was simulated with three different input pressures. The nozzles were simulated with an input pressure of 3, 4 and 5 barg. The energy saving nozzle consumes only 1 % less volumetric flow rate then the stepped nozzle at the same inlet pressure. The replacement of a stepped nozzle with an energy saving nozzle will not immediately result in a decrease in input volumetric flow rate. The pressure at the inlet of the energy saving nozzle has to be reduced as well. After reducing the input pressure the energy saving nozzle generates the same impact force than the stepped nozzle. Hereby a decrease of 4.5 % in input volumetric flow rate was possible. The energy cost will decrease with 4.5 % as well because the normal volumetric flow rate is directly proportional to the energy cost. The replacement of a stepped nozzle with an energy saving nozzle while maintaining the same inlet pressure is only useful when the impact force from the stepped nozzle is not sufficient. The energy saving nozzle can generate 5.6 % more impact

  5. Design of an energy conservation building

    NASA Technical Reports Server (NTRS)

    Jensen, R. N.

    1981-01-01

    The concepts in designing and predicting energy consumption in a low energy use building are summarized. The building will use less than 30,000 Btu/sq.ft./yr. of boarder energy. The building's primary energy conservation features include heavy concrete walls with external insulation, a highly insulated ceiling, and large amounts of glass for natural lighting. A solar collector air system is integrated into the south wall. Calculations for energy conservation features were performed using NASA's NECAP Energy Program.

  6. Design of an energy conservation building

    NASA Astrophysics Data System (ADS)

    Jensen, R. N.

    1981-11-01

    The concepts in designing and predicting energy consumption in a low energy use building are summarized. The building will use less than 30,000 Btu/sq.ft./yr. of boarder energy. The building's primary energy conservation features include heavy concrete walls with external insulation, a highly insulated ceiling, and large amounts of glass for natural lighting. A solar collector air system is integrated into the south wall. Calculations for energy conservation features were performed using NASA's NECAP Energy Program.

  7. Energy and Economic Impacts of U.S. Federal Energy and Water Conservation Standards Adopted From 1987 Through 2010

    SciTech Connect

    Meyers, Stephen; Williams, Alison; Chan, Peter

    2011-12-07

    This paper presents estimates of the key impacts of the energy and water conservation standards that have been adopted from 1987 through 2010. The standards covered include those set by legislation as well as standards adopted by DOE through rulemaking. We estimate that energy efficiency standards for consumer products and certain commercial and industrial equipment that have been adopted from 1987 through 2010 saved 3.0 quads in 2010, have had a cumulative energy savings of 25.9 quads through 2010 and will achieve cumulative energy savings of 158 quads over the period 1990-2070. Thus, the majority of the savings are still to come as products subject to standards enter the stock. Furthermore, the standards will have a cumulative net present value (NPV) of consumer benefit of between $851 billion and $1,103 billion, using 7 percent and 3 percent discount rates, respectively. In addition, we estimate the water conservation standards, together with those energy conservation standards that also save water, saved residential consumers 1.5 trillion gallons of water in 2010, have had cumulative water savings of 11.7 trillion gallons through 2010, and will achieve cumulative water savings by 2040 of 51.4 trillion gallons.

  8. Energy and Educational Facilities: Costs and Conservation.

    ERIC Educational Resources Information Center

    Educational Facilities Labs., Inc., New York, NY.

    An analysis of energy costs and conservation in educational facilities in the United States is presented in this report. Tables and text give dollar figures for energy expenditures in education since the first oil embargo. Energy conservation through facilities management and through facilities modification is stressed. Recommendations are…

  9. 24 CFR 200.78 - Energy conservation.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 24 Housing and Urban Development 2 2014-04-01 2014-04-01 false Energy conservation. 200.78 Section... Eligibility Requirements for Existing Projects Property Requirements § 200.78 Energy conservation. Construction, mechanical equipment, and energy and metering selections shall provide cost effective...

  10. 24 CFR 200.78 - Energy conservation.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 24 Housing and Urban Development 2 2012-04-01 2012-04-01 false Energy conservation. 200.78 Section... Eligibility Requirements for Existing Projects Property Requirements § 200.78 Energy conservation. Construction, mechanical equipment, and energy and metering selections shall provide cost effective...

  11. 24 CFR 200.78 - Energy conservation.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 24 Housing and Urban Development 2 2010-04-01 2010-04-01 false Energy conservation. 200.78 Section... Eligibility Requirements for Existing Projects Property Requirements § 200.78 Energy conservation. Construction, mechanical equipment, and energy and metering selections shall provide cost effective...

  12. 24 CFR 200.78 - Energy conservation.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 24 Housing and Urban Development 2 2011-04-01 2011-04-01 false Energy conservation. 200.78 Section... Eligibility Requirements for Existing Projects Property Requirements § 200.78 Energy conservation. Construction, mechanical equipment, and energy and metering selections shall provide cost effective...

  13. 24 CFR 200.78 - Energy conservation.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 24 Housing and Urban Development 2 2013-04-01 2013-04-01 false Energy conservation. 200.78 Section... Eligibility Requirements for Existing Projects Property Requirements § 200.78 Energy conservation. Construction, mechanical equipment, and energy and metering selections shall provide cost effective...

  14. Interference and the Law of Energy Conservation

    ERIC Educational Resources Information Center

    Drosd, Robert; Minkin, Leonid; Shapovalov, Alexander S.

    2014-01-01

    Introductory physics textbooks consider interference to be a process of redistribution of energy from the wave sources in the surrounding space resulting in constructive and destructive interferences. As one can expect, the total energy flux is conserved. However, one case of apparent non-conservation energy attracts great attention. Imagine that…

  15. Simplified energy design economics: Principles of economics applied to energy conservation and solar energy investments in buildings

    NASA Astrophysics Data System (ADS)

    Marshall, H. E.; Ruegg, R. T.; Wilson, F.

    1980-01-01

    Economic analysis techniques for evaluating alternative energy conservation investments in buildings are presented. Life cycle cost, benefit cost, savings to investment, payback, and rate of return analyses are explained and illustrated. The procedure for discounting is described for a heat pump investment. Formulas, tables of discount factors, and detailed instructions are provided to give all information required to make economic evaluations of energy conserving building designs.

  16. Energy Savings Potential and Research & Development Opportunities for Commercial Refrigeration

    SciTech Connect

    none,

    2009-09-01

    This study documents the energy consumption of commercial refrigeration equipment (CRE) in the U.S. and evaluated the energy savings potential of various technologies and energy efficiency measures that could be applied to such equipment. The study provided an overview of CRE applications, assessed the energy-savings potential of CRE in the U.S., outline key barriers to adoption of energy-savings technologies, and recommended opportunities for advanced energy saving technology research. The study was modeled after an earlier 1996 report by Arthur D. Little, Inc., and updated key information, examined more equipment types, and outlined long-term research and development opportunities.

  17. Assessment of Impacts from Adopting the 2006 International Energy Conservation Code for Residential Buildings in Wyoming

    SciTech Connect

    Lucas, Robert G.

    2007-10-01

    The state of Wyoming currently does not have a statewide building energy efficiency code for residential buildings. The U.S. Department of Energy has requested Pacific Northwest National Laboratory (PNNL) to estimate the energy savings, economic impacts, and pollution reduction from adopting the 2006 International Energy Conservation Code (IECC). This report addresses the impacts for low-rise residential buildings only.

  18. Saving Energy Through Advanced Power Strips (Poster)

    SciTech Connect

    Christensen, D.

    2013-10-01

    Advanced Power Strips (APS) look just like ordinary power strips, except that they have built-in features that are designed to reduce the amount of energy used by many consumer electronics. There are several different types of APSs on the market, but they all operate on the same basic principle of shutting off the supply power to devices that are not in use. By replacing your standard power strip with an APS, you can signifcantly cut the amount of electricity used by your home office and entertainment center devices, and save money on your electric bill. This illustration summarizes the different options.

  19. 75 FR 80292 - Energy Conservation Program: Energy Conservation Standards for Electric Motors

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-22

    ...). 74 FR 12058 (March 23, 2009) It was recently discovered that the efficiency levels under 10 CFR 431... Part 431 RIN 1904-AB71 Energy Conservation Program: Energy Conservation Standards for Electric Motors..., promulgating energy conservation standards for certain electric motors as prescribed in the Energy Policy...

  20. Chrysler: Save Energy Now Assessment Enables a Vehicle Assembly Complex to Achieve Significant Natural Gas Savings

    SciTech Connect

    2008-02-01

    This DOE Save Energy Now case study describes how Chrysler LLC saves more than 70,000 MMBtu and $627,000 annually after increasing the steam system energy efficiency of a truck and minivan assembly plant in St. Louis, Missouri.

  1. Potential for energy savings in old and new auto engines

    NASA Astrophysics Data System (ADS)

    Reitz, John R.

    1985-11-01

    This paper disucsses the potential for energy savings in the transportation sector through the use of both improved and entirely new automotive engines. Although spark-ignition and diesel internal combustion engines will remain the dominant choices for passenger-car use throughout the rest of this century, improved versions of these engines (lean-burn, low-friction spark-ignition and adiabatic, low-friction diesel engines) could, in the long term, provide a 20-30 percent improvement in fuel economy over what is currently available. The use of new materials, and modifications to both vehicle structure and vehicle transmissions may yield further improvements. Over a longer time frame, the introduction of the high-temperature gas-turbine engine and the use of new synfuels may provide further opportunities for energy conservation.

  2. Communication and the adoption of energy conservation measures by the elderly

    SciTech Connect

    Griffin, R.J. )

    1989-01-01

    The author discusses a four-wave panel study conducted in a Midwest community to determine the relationship of communication to adoption of energy conservation behavior among homeowners. Special attention was paid to the communication and energy use constraints faced by the elderly. Analysis indicates that younger respondents adopted actions to save energy in the home at a faster rate than did older respondents. This study found that energy-related content in the mass media bears stronger relationships with the perceived importance of the energy problem than with adoption of energy conservation behavior. It is suggested that the role of communicators and educators in encouraging and reinforcing energy conservation remains very important.

  3. Shipper's guide to energy conservation

    SciTech Connect

    Marien, E.J.

    1980-01-01

    Recommendations are presented for money-saving tips for the shipping industry. Tips are included for the warehousing and distribution center management; transportation management; materials management for product packaging and shipping; and deployment and management of inventories sections in a firm.

  4. Energy conserving site design case study: Shenandoah, Georgia. Final report

    SciTech Connect

    Not Available

    1980-01-01

    The case study examines the means by which energy conservation can be achieved at an aggregate community level by using proper planning and analytical techniques for a new town, Shenandoah, Georgia, located twenty-five miles southwest of Atlanta's Hartsfield International Airport. A potentially implementable energy conservation community plan is achieved by a study team examining the land use options, siting characteristics of each building type, alternate infrastructure plans, possible decentralized energy options, and central utility schemes to determine how community energy conservation can be achieved by use of pre-construction planning. The concept for the development of mixed land uses as a passively sited, energy conserving community is based on a plan (Level 1 Plan) that uses the natural site characteristics, maximizes on passive energy siting requirement, and allows flexibility for the changing needs of the developers. The Level 2 Plan is identical with Level 1 plan plus a series of decentraized systems that have been added to the residential units: the single-family detached, the apartments, and the townhouses. Level 3 Plan is similar to the Level 1 Plan except that higher density dwellings have been moved to areas adjacent to central site. The total energy savings for each plan relative to the conventional plan are indicated. (MCW)

  5. Energy savings one and two years after participation in Minnesota home energy audit and retrofit loan programs

    SciTech Connect

    Hirst, E.; Goeltz, R.

    1985-01-01

    Northern States Power (NSP), the largest utility in Minnesota, operates several residential energy conservation programs. This report updates a 1983 detailed quantitative evaluation of two of these programs. The Minnesota Energy Conservation Service (MECS), Minnesota's version of the federal Residential Conservation Service, provides home energy audits and related services to households who live in structures with four or fewer dwelling units and pay gas or electricity bills to a utility participating in MECS. Between April 1981 and December 1982, NSP conducted almost 12 thousand audits. The data collected for this evaluation are described briefly. The factors that affect household energy use and how these factors might be included in models are discussed, from which estimates of program energy savings are derived. These sections focus primarily on differences between the present work and the earlier analysis of the NSP programs. The results of this analysis on total and net natural gas savings are presented.

  6. Energy Conservation Activity Packet, Grade 5.

    ERIC Educational Resources Information Center

    Bakke, Ruth

    This activity packet for grade 5 is one of a series developed in response to concern for energy conservation. It contains activities that stress an energy conservation ethic and includes many values clarification activities for grade five. The packet is divided into two parts and provides the teacher with background information, concepts and…

  7. Adoption of Energy Conservation among California Homeowners.

    ERIC Educational Resources Information Center

    Leonard-Barton, Dorothy; Rogers, Everett M.

    In spring 1977, just as California was emerging from one of the worst droughts in its history, 215 Palo Alto homeowners were interviewed about their views on energy and water conservation, and about the extent to which they had adopted 11 energy-conserving practices (ECP) in the home. The objective was to discover variables both important to…

  8. Energy conservation potential of surface modification technologies

    SciTech Connect

    Le, H.K.; Horne, D.M.; Silberglitt, R.S.

    1985-09-01

    This report assesses the energy conservation impact of surface modification technologies on the metalworking industries. The energy conservation impact of surface modification technologies on the metalworking industries is assessed by estimating their friction and wear tribological sinks and the subsequent reduction in these sinks when surface modified tools are used. Ion implantation, coatings, and laser and electron beam surface modifications are considered.

  9. 34 CFR 75.616 - Energy conservation.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...) and 1 CFR part 51. The incorporated document is on file at the Department of Education, Grants and... 34 Education 1 2014-07-01 2014-07-01 false Energy conservation. 75.616 Section 75.616 Education... Grantee? Construction § 75.616 Energy conservation. (a) To the extent feasible, a grantee shall design...

  10. Energy Conservation in Agriculture. Competency Based Curriculum.

    ERIC Educational Resources Information Center

    Lawrence, Layle D.

    This competency-based energy conservation in agriculture curriculum for grades 11 and 12 is organized into seven modules. Intended for use for individualized or group instruction, the lessons should fit into existing units in courses of study rather than be presented as a single comprehensive energy conservation unit. Each module is based on from…

  11. 34 CFR 75.616 - Energy conservation.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...) and 1 CFR part 51. The incorporated document is on file at the Department of Education, Grants and... 34 Education 1 2012-07-01 2012-07-01 false Energy conservation. 75.616 Section 75.616 Education... Grantee? Construction § 75.616 Energy conservation. (a) To the extent feasible, a grantee shall design...

  12. 34 CFR 75.616 - Energy conservation.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...) and 1 CFR part 51. The incorporated document is on file at the Department of Education, Grants and... 34 Education 1 2010-07-01 2010-07-01 false Energy conservation. 75.616 Section 75.616 Education... Grantee? Construction § 75.616 Energy conservation. (a) To the extent feasible, a grantee shall design...

  13. 34 CFR 75.616 - Energy conservation.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...) and 1 CFR part 51. The incorporated document is on file at the Department of Education, Grants and... 34 Education 1 2011-07-01 2011-07-01 false Energy conservation. 75.616 Section 75.616 Education... Grantee? Construction § 75.616 Energy conservation. (a) To the extent feasible, a grantee shall design...

  14. 34 CFR 75.616 - Energy conservation.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...) and 1 CFR part 51. The incorporated document is on file at the Department of Education, Grants and... 34 Education 1 2013-07-01 2013-07-01 false Energy conservation. 75.616 Section 75.616 Education... Grantee? Construction § 75.616 Energy conservation. (a) To the extent feasible, a grantee shall design...

  15. 77 FR 32381 - Energy Conservation Program: Energy Conservation Standards for Residential Clothes Washers

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-31

    .... 77, No. 105 / Thursday May 31, 2012 / Proposed Rules#0;#0; ] DEPARTMENT OF ENERGY 10 CFR Parts 429 and 430 RIN 1904-AB90 Energy Conservation Program: Energy Conservation Standards for Residential Clothes Washers AGENCY: Office of Energy Efficiency and Renewable Energy, Department of Energy....

  16. Using ITP Decision Tools to Save Energy Now

    SciTech Connect

    Not Available

    2006-02-01

    This DOE Industrial Technologies Program fact sheet describes how the program's software tools and information help manufacturers save energy and money, increase productivity, and improve reliability.

  17. An Analysis of Energy Savings Possible Through Advances in Automotive Tooling Technology

    SciTech Connect

    Rick Schmoyer, RLS

    2004-12-03

    inefficiencies. Total savings for an energy use component are estimated by scaling up the direct savings with an approximate total-to-direct savings ratio. Market penetration for new technology vehicles is estimated from projections about scrappage. Retrofit savings are assumed negligible, but savings are also assumed to accrue with increases in the fleet size, based on economic growth forecasts. It is assumed that as vehicles in the current fleet are scrapped, they are replaced with advanced-technology vehicles. Saving estimates are based on proportions of new vehicles, rather than new-vehicle mileages. In practice, of course, scrapped vehicles are often replaced with used vehicles, and used vehicles are replaced with new vehicles. Because new vehicles are typically driven more than old, savings estimates based on count rather than mileage proportions tend to be biased down (i.e., conservative). Savings are expressed in terms of gallons of fuel saved, metric tons of CO2 emissions reductions, and percentages relative to 2001 levels of fuel and CO2. The sensitivity of the savings projections to inputs such as energy-audit proportions of fuel consumed for rolling resistance, drag, braking, etc. is assessed by considering different scenarios. Though based on many approximations, the estimates approximate the potential energy savings possible because of improvements in tooling. For heavy trucks, annual diesel savings of 2.4-6.8 percent, and cumulative savings on the order of 54-154 percent, of 2001 consumption could accrue by 2050. By 2050, annual gasoline savings of 2.8-12 percent, and cumulative savings on the order of 83-350 percent of 2001 consumption could accrue for cars.

  18. Overcoming barriers to residential conservation: do energy audits help

    SciTech Connect

    Hoffman, W.L.

    1982-12-01

    A study on the effects of energy audits on the pace and choice of household investment in energy-saving improvements in the home is reported. An evaluation based on the household's assessment of the usefulness of the audit which was provided for their home was performed. The number and types of recent conservation actions among audited and unaudited samples of households are compared. The audit's effect on household knowledge about the economically attractive options for their home and on the choice of recent improvements is assessed. Possible reasons are suggested for the weak effect of audits in stimulating activity and reorienting investment choices. (LEW)

  19. Savings from energy efficient windows: Current and future savings from new fenestration technologies in the residential market

    SciTech Connect

    Frost, K.; Arasteh, D.; Eto, J.

    1993-04-01

    Heating and cooling energy lost through windows in the residential sector (estimated at two-thirds of the energy lost through windows in all sectors) currently accounts for 3 percent (or 2.8 quads) of total US energy use, costing over $26 billion annually in energy bills. Installation of energy-efficient windows is acting to reduce the amount of energy lost per unit window area. Installation of more energy efficient windows since 1970 has resulted in an annual savings of approximately 0.6 quads. If all windows utilized existing cost effective energy conserving technologies, then residential window energy losses would amount to less than 0.8 quads, directly saving $18 billion per year in avoided energy costs. The nationwide installation of windows that are now being developed could actually turn this energy loss into a net energy gain. Considering only natural replacement of windows and new construction, appropriate fenestration policies could help realize this potential by reducing annual residential window energy losses to 2.2 quids by the year 2012, despite a growing housing stock.

  20. Cool roofs as an energy conservation measure for federal buildings

    SciTech Connect

    Taha, Haider; Akbari, Hashem

    2003-04-07

    We have developed initial estimates of the potential benefits of cool roofs on federal buildings and facilities (building scale) as well as extrapolated the results to all national facilities under the administration of the Federal Energy Management Program (FEMP). In addition, a spreadsheet ''calculator'' is devised to help FEMP estimate potential energy and cost savings of cool roof projects. Based on calculations for an average insulation level of R-11 for roofs, it is estimated that nationwide annual savings in energy costs will amount to $16M and $32M for two scenarios of increased roof albedo (moderate and high increases), respectively. These savings, corresponding to about 3.8 percent and 7.5 percent of the base energy costs for FEMP facilities, include the increased heating energy use (penalties) in winter. To keep the cost of conserved energy (CCE) under $0.08 kWh-1 as a nationwide average, the calculations suggest that the incremental cost for cool roofs should not exceed $0.06 ft-2, assuming that cool roofs have the same life span as their non-cool counterparts. However, cool roofs usually have extended life spans, e.g., 15-30 years versus 10 years for conventional roofs, and if the costs of re-roofing are also factored in, the cutoff incremental cost to keep CCE under $0.08 kWh-1 can be much higher. In between these two ends, there is of course a range of various combinations and options.

  1. Public Schools Energy Conservation Measures, Report Number 9: Plover Whiting Elementary School, Stevens Point, Wisconsin.

    ERIC Educational Resources Information Center

    American Association of School Administrators, Arlington, VA.

    This report is part of the first phase of the five-part Saving Schoolhouse Energy Project initiated by the American Association of School Administrators and funded partially by the Federal Energy Administration. Presented is an investigation of energy conservation opportunities at Plover Whiting Elementary School, Stevens Point, Wisconsin. This…

  2. Rock the Watt: An Energy Conservation Campaign at Pacific Northwest National Lab

    SciTech Connect

    2016-01-01

    Case study describes Pacific Northwest National Laboratory's (PNNL) three-month Rock the Watt campaign to reduce energy use at its main campus in Richland, Washington. The campaign objectives were to educate PNNL employees about energy conservation opportunities in their workplace and to motivate them to help PNNL save energy and costs and to reduce greenhouse gas emissions.

  3. Public Schools Energy Conservation Measures, Report Number 10: Washington Elementary School, Kennewick, Washington.

    ERIC Educational Resources Information Center

    American Association of School Administrators, Arlington, VA.

    Reported is an engineering study of energy conservation opportunities at Washington Elementary School, Kennewick, Washington. The investigation is a component of the first phase of a five-part Saving Schoolhouse Energy Project initiated by the American Association of School Administrators and funded in part by the Federal Energy Administration.…

  4. Making an Energy Conservation Program Work.

    ERIC Educational Resources Information Center

    Rump, Erwin E.; Hunter, James L.

    The first step of an energy conservation program is to monitor energy consumption. A system is explained that, in order to determine which buildings are energy efficient (considering all types of energy that a building might use), monitors total energy consumption. All such consumptions can be reduced to a common denominator: Barrels of Energy…

  5. Conservation as an alternative energy source

    NASA Technical Reports Server (NTRS)

    Allen, D. E.

    1978-01-01

    A speech is given outlining the energy situation in the United States. It is warned that the existing energy situation cannot prevail and the time is fast running out for continued growth or even maintenance of present levels. Energy conservation measures are given as an aid to decrease U.S. energy consumption, which would allow more time to develop alternative sources of energy.

  6. Trends in household energy conservation attitudes and behaviors in the Northwest, 1983-1987

    SciTech Connect

    Schultz, R.W.

    1988-05-24

    This report presents the results of a 1987 telephone survey of attitudes and behaviors toward energy conservation and compares them with the results of similar surveys fielded in 1983 and 1985. The surveys were conducted in the Bonneville Power Administration service area. Asked to rate major socioeconomic issues about which they were ''very concerned,'' survey respondents indicated the following, ranked in descending order: crime, cost of energy, inflation, energy conservation, unemployment, and energy use in the home. Concern over energy-related issues has generally remained at a constant level over the study period. Respondents believe that investing in energy conservation saves them money and enhances the comfort and value of their homes.

  7. Energy saving in industry: Italian methods and experience

    NASA Astrophysics Data System (ADS)

    Dallavalle, F.; Denard, C.

    The usefulness and characteristics of the energy audits practiced by a research and technology transfer center (CISE) in industry are described. Italian public financial incentives to energy saving are discussed. The qualification of CISE in energy auditing is commented on.

  8. Energy and other resource conservation within urbanizing areas

    NASA Astrophysics Data System (ADS)

    Rowe, Peter G.

    1982-05-01

    The reported research seeks to answer several questions regarding energy conservation within urbanizing areas. As a practical matter, to what extent can dependence upon exhaustible resources be reduced? Can these reductions be achieved without severely impairing social well-being and environmental quality? And, what seem to be the prevailing institutional constraints limiting energy conservation within urbanizing areas? The study area was the proposed “downtown” of The Woodlands, a new town north of Houston, Texas. Two plans were developed for this area. In one, no particular attempt was made to conserve energy (conventional plan), while in the other, energy conservation was a primary consideration (conservation plan). For both plans, estimates were made of energy consumption within buildings, in the transportation sector, and in the actual production of building materials themselves (embodied energy). In addition, economic and environmental analyses were performed, including investigation of other resource issues such as water supply, solid waste disposal, stormwater management, and atmospheric emissions. Alternative on-site power systems were also investigated. Within the bounds of economic feasibility and development practicality, it was found that application of energy-conserving methods could yield annual energy savings of as much as 23%, and reduce dependence on prime fuels by 30%. Adverse economic effects on consumers were found to be minimal and environmental quality could be sustained. The major institutional constraints appeared to be those associated with traditional property ownership and with the use of common property resources. The resistance to change of everyday practices in land development and building industries also seemed to constrain potential applications.

  9. Energy Saving Effects of Wireless Sensor Networks: A Case Study of Convenience Stores in Taiwan

    PubMed Central

    Chen, Chih-Sheng; Lee, Da-Sheng

    2011-01-01

    Wireless sensor network (WSN) technology has been successfully applied to energy saving applications in many places, and plays a significant role in achieving power conservation. However, previous studies do not discuss WSN costs and cost-recovery. The application of WSNs is currently limited to research and laboratory experiments, and not mass industrial production, largely because business owners are unfamiliar with the possible favorable return and cost-recovery on WSN investments. Therefore, this paper focuses on the cost-recovery of WSNs and how to reduce air conditioning energy consumption in convenience stores. The WSN used in this study provides feedback to the gateway and adopts the predicted mean vote (PMV) and computational fluid dynamics (CFD) methods to allow customers to shop in a comfortable yet energy-saving environment. Four convenience stores in Taipei have used the proposed WSN since 2008. In 2008, the experiment was initially designed to optimize air-conditioning for energy saving, but additions to the set-up continued beyond 2008, adding the thermal comfort and crowds peak, off-peak features in 2009 to achieve human-friendly energy savings. Comparison with 2007 data, under the same comfort conditions, shows that the power savings increased by 40% (2008) and 53% (2009), respectively. The cost of the WSN equipment was 500 US dollars. Experimental results, including three years of analysis and calculations, show that the marginal energy conservation benefit of the four convenience stores achieved energy savings of up to 53%, recovering all costs in approximately 5 months. The convenience store group participating in this study was satisfied with the efficiency of energy conservation because of the short cost-recovery period. PMID:22319396

  10. Energy conservation in typical Asian countries

    SciTech Connect

    Yang, M.; Rumsey, P.

    1997-06-01

    Various policies and programs have been created to promote energy conservation in Asia. Energy conservation centers, energy conservation standards and labeling, commercial building codes, industrial energy use regulations, and utility demand-side management (DSM) are but a few of them. This article attempts to analyze the roles of these different policies and programs in seven typical Asian countries: China, Indonesia, Japan, Pakistan, South Korea, the Philippines, and Thailand. The conclusions show that the two most important features behind the success policies and programs are (1) government policy support and (2) long-run self-sustainability of financial support to the programs.

  11. Hands-on solutions to improve your profits and productivity: Energy-saving tips for small businesses

    SciTech Connect

    1996-03-01

    This booklet leads small business owners to examine the energy consumption of their business and implement significant energy saving modifications and practices. The topics of the booklet include evaluating energy use and suggestions for energy conservation in lighting systems, building envelope and materials, space conditioning, equipment and machines, motors, and vehicles.

  12. Advertising energy saving programs: The potential environmental cost of emphasizing monetary savings.

    PubMed

    Schwartz, Daniel; Bruine de Bruin, Wändi; Fischhoff, Baruch; Lave, Lester

    2015-06-01

    Many consumers have monetary or environmental motivations for saving energy. Indeed, saving energy produces both monetary benefits, by reducing energy bills, and environmental benefits, by reducing carbon footprints. We examined how consumers' willingness and reasons to enroll in energy-savings programs are affected by whether advertisements emphasize monetary benefits, environmental benefits, or both. From a normative perspective, having 2 noteworthy kinds of benefit should not decrease a program's attractiveness. In contrast, psychological research suggests that adding external incentives to an intrinsically motivating task may backfire. To date, however, it remains unclear whether this is the case when both extrinsic and intrinsic motivations are inherent to the task, as with energy savings, and whether removing explicit mention of extrinsic motivation will reduce its importance. We found that emphasizing a program's monetary benefits reduced participants' willingness to enroll. In addition, participants' explanations about enrollment revealed less attention to environmental concerns when programs emphasized monetary savings, even when environmental savings were also emphasized. We found equal attention to monetary motivations in all conditions, revealing an asymmetric attention to monetary and environmental motives. These results also provide practical guidance regarding the positioning of energy-saving programs: emphasize intrinsic benefits; the extrinsic ones may speak for themselves. PMID:25581089

  13. Energy-conserving technologies for industry: a summary of recent progress in research and development

    SciTech Connect

    Monarch, M.; Alston, T.; Macal, K.; Macal, C.; Tatar, J.; Hersh, H.; Blomquist, C.; Singh, M.; Larsen, R.

    1984-01-01

    Fifty-six summary sheets on energy-conserving industrial technologies were prepared. These summaries describe Office of Industrial Programs (OIP) energy-conservation and waste-recovery projects that have progressed to the point of potential industrial application. Possibilities for cross-industry applications are pointed out in many of the summary sheets. Each summary includes the following types of information: industrial application, process energy savings, conventional situation, new technology, R and D project development and status, technical information, economic analysis, and industry-wide savings.

  14. Energy Conservation in School Facilities. Energy Conservation in Existing School Facilities: An Overview. Energy Conservation Materials Package Number 1.

    ERIC Educational Resources Information Center

    Colorado State Dept. of Education, Denver. Interstate Energy Conservation Leadership.

    School energy-saving strategies can be developed and implemented at three levels: (1) programmatic--the educational program and schedule of activities taking place at the school, (2) operational--how the facility and its supporting systems are run to house and support these educational activities, and (3) physical plant and its operating system.…

  15. Energy conservation manual for builders in the Mid-Columbia Basin area

    SciTech Connect

    Mazzucchi, R.P.; Nieves, L.A.; Hopp, W.J.

    1981-03-01

    Results of a comprehensive cost-effectiveness evaluation of energy conservation measures currently available for use in typical residential buildings are presented. Section 2 discusses construction techniques for energy-efficient buildings and presents estimates of the cost of incorporating the conservation measures in the prototype building, the resultant annual energy savings, and the value of that annual energy savings based upon typical regional fuel prices. In Section 3 this information is summarized to prioritize conservation investments according to their economic effectiveness and offer general recommendations to home builders. Appendix A contains detailed information pertaining to the energy consumption calculations. Appendix B presents the methodology, assumptions, and results of a detail cash flow analysis of each of the conservation items for which sufficient performance and cost data are currently available. (MCW)

  16. Transportation Energy Use and Conservation Potential

    ERIC Educational Resources Information Center

    Hirst, Eric

    1973-01-01

    Analyzes transportation energy consumption and energy intensiveness for inter-city freight and passenger traffic and urban passenger traffic with the definition of energy intensiveness as Btu per ton-mile or per passenger-mile. Indicates that public education is one of three ways to achieve the goals of energy conservation. (CC)

  17. 77 FR 18477 - Energy Conservation Program: Energy Conservation Standards for Battery Chargers and External...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-27

    ... (CAIR, 70 FR 25162 (May 12, 2005)), but not the Clean Air Mercury Rule (CAMR, 70 FR 28606 (May 18, 2005... Conservation Standards for Battery Chargers and External Power Supplies; Proposed Rule #0;#0;Federal Register... 430 RIN 1904-AB57 Energy Conservation Program: Energy Conservation Standards for Battery Chargers...

  18. 75 FR 185 - Energy Conservation Program: Test Procedures for Walk-In Coolers and Walk-In Freezers

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-01-04

    ... equipment for energy conservation standards. See 74 FR 411 (Jan. 6, 2009) and 74 FR 1992 (Jan. 14, 2009... procedure should capture savings from a control strategy or variable-speed components, both of which...

  19. Missouri Agricultural Energy Saving Team-A Revolutionary Opportunity (MAESTRO)

    SciTech Connect

    McIntosh, Jane; Schumacher, Leon

    2014-10-23

    , and the homes on these farms. The expected measurable outcomes of the project were to improve the environment and stimulate the economy by: • Reducing annual fossil fuel emissions by 1,942 metric tons of carbon dioxide equivalent, reducing the total annual energy use on at least 323 small animal farms and 100 farm homes by at least 8,000 kWh and 2,343 therms per farm. • Stimulating the economy by creating or retaining at least 69 jobs, and saving small animal farmers an average of $2,071 per farm in annual energy expenditures. B. Project Scope The MAESTRO team chose the target population of small farms because while all agriculture is traditionally underserved in energy efficiency programs, small farms were particularly underserved because they lack the financial resources and access to energy efficiency technologies that larger farms deploy. The MAESTRO team reasoned that energy conservation, financial and educational programs developed while serving the agricultural community could serve as a national model for other states and their agricultural sectors. The target population was approximately 2,365 small animal farm operations in Missouri, specifically those farms that were not by definition a confined animal feeding operation (CAFO). The program was designed to create jobs by training Missouri contractors and Missouri University Extension staff how to conduct farm audits. The local economy would be stimulated by an increase in construction activity and an increasing demand for energy efficient farm equipment. Additionally, the energy savings were deemed critical in keeping Missouri farms in business. This project leveraged funds using a combination of funds from the Missouri Department of Natural Resources’ Missouri Energy Center and its Soil and Water Conservation Program, from the state's Linked Deposits, MASBDA's agricultural loan guarantee programs, and through the in-kind contribution of faculty and staff time to the project from these agencies and MU

  20. Electric load management and energy conservation

    NASA Technical Reports Server (NTRS)

    Kheir, N. A.

    1976-01-01

    Electric load management and energy conservation relate heavily to the major problems facing power industry at present. The three basic modes of energy conservation are identified as demand reduction, increased efficiency and substitution for scarce fuels. Direct and indirect load management objectives are to reduce peak loads and have future growth in electricity requirements in such a manner to cause more of it to fall off the system's peak. In this paper, an overview of proposed and implemented load management options is presented. Research opportunities exist for the evaluation of socio-economic impacts of energy conservation and load management schemes specially on the electric power industry itself.

  1. E-SMARRT: Energy Saving Melting and Revert Reduction Technology

    SciTech Connect

    2004-11-01

    This factsheet describes the Energy-Saving Melting and Revert Reduction Technology (E-SMARRT) program developed by Advanced Technology Institute (ATI). E-SMARRT is a balanced portfolio of projects to address energy-saving opportunities in the metalcasting industry.

  2. Energy conservation in the food industry. January, 1974-May, 1981 (citations from the Food Science and Technology Abstracts Data Base). Report for January 1974-May 1981

    SciTech Connect

    Not Available

    1981-05-01

    This retrospective bibliography contains citations concerning energy conservation in the food industry. Energy requirements, basic approaches to energy audits, plant design and the equipment, fuel, and processing steps are discussed. Alternate energy sources, energy recovery, and other energy saving devices are considered as measures for conservation. Energy saving in dairies, meat packing plants, breweries and other processing plants are discussed. (Contains 105 citations fully indexed and including a title list.)

  3. Net zero building energy conservation

    NASA Astrophysics Data System (ADS)

    Kadam, Rohit

    This research deals with energy studies performed as part of a net-zero energy study for buildings. Measured data of actual energy utilization by a building for a continuous period of 33 months was collected and studied. The peak design day on which the building consumes maximum energy was found. The averages of the energy consumption for the peak month were determined. The DOE EnergyPlus software was used to simulate the energy requirements for the building and also obtain peak energy requirements for the peak month. Alternative energy sources such as ground source heat pump, solar photovoltaic (PV) panels and day-lighting modifications were applied to redesign the energy consumption for the building towards meeting net-zero energy requirements. The present energy use by the building, DOE Energy software simulations for the building as well as the net-zero model for the building were studied. The extents of the contributions of the individual energy harvesting measures were studied. For meeting Net Zero Energy requirement, it was found that the total energy load for the building can be distributed between alternative energy methods as 5.4% to daylighting modifications, 58% to geothermal and 36.6% to solar photovoltaic panels for electricity supply and thermal energy. Thus the directions to proceed towards achieving complete net-zero energy status were identified.

  4. Energy Conservation Through Effective Utilization

    ERIC Educational Resources Information Center

    Berg, Charles A.

    1973-01-01

    Discusses various ways in which the demand for energy could be decreased, focusing not so much on discouraging demand by increasing prices, as on reducing energy consumption by improving efficiency of energy utilization in buildings and in industry. (JR)

  5. Energy savings opportunity survey, Energy Engineering Analysis Program, Fort Gordon, Georgia: Executive summary. Final report

    SciTech Connect

    1988-09-01

    This is the pre-final submittal of an Energy Savings Opportunity Survey (ESOS) performed at Fort Gordon, GA. This report presents potential energy conservation projects for this Installation. These projects, consisting of Energy Conservation Opportunities (ECOs), are summarized in Tables 1 and 2. The projects were developed based on project packaging instructions from the Installation and on follow-up phone calls with The Directorate of Installation Support (DIS). The ECOs have been extended to include buildings similar to those surveyed by the architect/engineer. Similarity was based on instructions from the Installation and on follow-up phone calls with DIS. Table 3 lists the buildings surveyed. Thirty nine buildings were surveyed totaling approximately 800,000 square feet. Of these, one was an example of Family Housing and 38 were examples of non-housing buildings. Over one hundred ECOs were considered at Fort Gordon. Of these 39 were applicable in non-housing and 5 in Family Housing.

  6. Energy-saving options for the mitigation of greenhouse gas emissions from the Mongolian energy sector

    SciTech Connect

    Dorjpurev, J.; Purevjal, O.; Erdenechimeg, Ch.

    1996-12-31

    The Energy sector is the largest contributor to GHG emission in Mongolia. The Energy sector emits 54 percent of CO2 and 4 percent of methane. All emissions of other greenhouse gases are accounted from energy related activities. The activities in this sector include coal production, fuel combustion, and biomass combustion at the thermal power stations and in private houses (stoves) for heating purposes. This paper presents some important Demand-side options considered for mitigation of CO2 emissions from energy sector such as Energy Conservation in Industrial Sector and in Buildings. Changes in energy policies and programmes in the Mongolian situation that promote more efficient and sustainable practices are presented in the paper. These energy saving measures will not only help reduce greenhouse gas emissions, but will also promote economic development and alleviate other environmental problems.

  7. Comparison of actual and predicted energy savings in Minnesota gas-heated single-family homes

    SciTech Connect

    Hirst, E.; Goeltz, R.

    1984-03-01

    Data available from a recent evaluation of a home energy audit program in Minnesota are sufficient to allow analysis of the actual energy savings achieved in audited homes and of the relationship between actual and predicted savings. The program, operated by Northern States Power in much of the southern half of the state, is part of Minnesota's version of the federal Residential Conservation Service. NSP conducted almost 12 thousand RCS audits between April 1981 (when the progam began) and the end of 1982. The data analyzed here, available for 346 homes that obtained an NSP energy audit, include monthly natural gas bills from October 1980 through April 1983; heating degree day data matched to the gas bills; energy audit reports; and information on household demographics, structure characteristics, and recent conservation actions from mail and telephone surveys. The actual reduction in weather-adjusted natural gas use between years 1 and 3 averaged 19 MBtu across these homes (11% of preprogram consumption); the median value of the saving was 16 MBtu/year. The variation in actual saving is quite large: gas consumption increased in almost 20% of the homes, while gas consumption decreased by more than 50 MBtu/year in more than 10% of the homes. These households reported an average expenditure of almost $1600 for the retrofit measures installed in their homes; the variation in retrofit cost, while large, was not as great as the variation in actual natural gas savings.

  8. Methods for evaluating and ranking transportation energy conservation programs

    NASA Astrophysics Data System (ADS)

    Santone, L. C.

    1981-04-01

    The energy conservation programs are assessed in terms of petroleum savings, incremental costs to consumers probability of technical and market success, and external impacts due to environmental, economic, and social factors. Three ranking functions and a policy matrix are used to evaluate the programs. The net present value measure which computes the present worth of petroleum savings less the present worth of costs is modified by dividing by the present value of DOE funding to obtain a net present value per program dollar. The comprehensive ranking function takes external impacts into account. Procedures are described for making computations of the ranking functions and the attributes that require computation. Computations are made for the electric vehicle, Stirling engine, gas turbine, and MPG mileage guide program.

  9. Implementation of Energy Saving Controller for Electromagnetic Ballast Fluorescent Lamps

    NASA Astrophysics Data System (ADS)

    Xiong, Zhi; Barsoum, Cheong; Barsoum, N. N.

    2010-06-01

    Fluorescent lamps have proven to be the most efficient lighting device. However, energy losses have been found in electromagnetic ballast due to high harmonic distortion and low power factor so energy is consumed unnecessarily. In today's energy demanding environment, energy efficiency of fluorescent lamps can be improved by introducing an energy saving controller in the electromagnetic ballast. The energy saving controller limits the supply voltage to an optimum level which tends to reduce the power losses in electromagnetic ballasts and fluorescent lamps. It is also anticipated that the energy saving controller has desirable characteristics of high power factor with dimmable illuminance level control. In comparison to electronic dimmable ballast, integration an energy saving controller with electromagnetic ballast fluorescent lamps results in less power consumption, dimmable illuminance control and longer life span at a much lower installation cost. Furthermore, there is no replacement cost for integrating the energy saving controller with existing electromagnetic fluorescent lamps system. In this paper, experimental works have been performed to investigate hardware implementation of the system which further supported by simulation on MATLAB Simulink. Experimental results based on the proposed energy saving controller showed that electromagnetic ballast fluorescent lamps can be dimmed without any problems down to 50% illuminance level output. In addition, experimental results show that 37.5% power consumption can be saved by reducing 15% of the supply voltage.

  10. Energy conservations from an environmental viewpoint

    SciTech Connect

    Hijikata, Kunio

    1993-12-31

    It is not incorrect to state that all major environmental problems, such as the greenhouse effect, destruction of the ozone layer from CFC`s, acid rain due to air pollution by NOx and SOx, etc., are caused by excessive industrial and residential energy consumption. Considering the finite world energy resources and limited global space, the day might be already upon us in which the total amount of energy consumption in the world should be reduced. To maintain a high living standard without increasing energy consumption, waste energy recovery and energy conservation are vitally important. In order to effective use of energy resources, we should really know the meaning of the energy consumption and the characteristics of energy resources. In this paper, the technological aspects of energy conservation are stated from the standpoint of available energy.

  11. Energy Conservation--Hero or Villian?

    ERIC Educational Resources Information Center

    Keith, William J. B.

    1985-01-01

    Energy conservation efforts have often hermetically sealed buildings without concern for air quality. The Waterloo County Board of Education, Ontario, has installed indicators to test air quality and has installed a "clean room" for children with allergies. (MLF)

  12. Analysis of 2009 International Energy Conservation Code Requirements for Residential Buildings in Utah

    SciTech Connect

    Cole, Pamala C.; Lucas, Robert G.

    2009-05-01

    The 2009 International Energy Conservation Code (IECC) contains several major improvements in energy efficiency over the current Utah code, the 2006 IECC. The most notable changes are improved duct sealing and efficient lighting requirements. A limited analysis of these changes resulted in estimated savings of $168 to $188 for an average new house in Utah at recent fuel prices.

  13. Living Lightly: Energy Conservation in Housing.

    ERIC Educational Resources Information Center

    Bender, Tom

    This publication contains a series of papers which promote the concepts of energy conservation and offer safe and convenient ways of handling all aspects of our lives affected by energy without having to depend in any way on fossil fuels or nuclear power. These changes, which can be brought about in homes and in energy flows affected by the…

  14. Energy conservation, ecological stability and environmental quality

    SciTech Connect

    Bourodimos, E.L.

    1980-12-01

    Energy is the lifeblood of the ecosystem and, therefore, of the human-social enterprise as well. The ecological stability in all levels of biosphere functions is a problem of environmental quality and ultimately of public health, economy and life styles: the impact of energy availability, its use and abuse. In the age of energy and natural resource scarcity with all sorts of disruptions in the industrial-economic fabric, the perilous energy crisis and the threat of ecological breakdown, a hard new look and evaluation of energy use and conservation potential is urgently needed. The following scheme of pertinent questions is in order: a. Energy and Mass Flow in the Ecosystems: Energy and the determinants of ecosystem structure and dynamics. Food chain and food webs. How much is needed. How much is wasted. What is an optimum ecological efficiency within conservation planning systems analysis. b. Energy and Mass Flow in the Human Environment: Human ecosystem adaptability. Environmental stresses and ecological instability. Biological control: energy conservation and the re-establishment of a tolerable stable state. c. Energy Conservation Planning: How much energy do we use and waste. How can energy use and waste be reduced in developed and developing countries within the context of enhancing ecological balance and economic-social growth.

  15. Bandwidth Study on Energy Use and Potential Energy Savings Opportunities in U.S. Petroleum Refining

    SciTech Connect

    Sabine Brueske, Caroline Kramer, Aaron Fisher

    2015-06-01

    Energy bandwidth studies of U.S. manufacturing sectors can serve as foundational references in framing the range (or bandwidth) of potential energy savings opportunities. This bandwidth study examines energy consumption and potential energy savings opportunities in U.S. petroleum refining. The study relies on multiple sources to estimate the energy used in nine individual process areas, representing 68% of sector-wide energy consumption. Energy savings opportunities for individual processes are based on technologies currently in use or under development; these potential savings are then extrapolated to estimate sector-wide energy savings opportunity.

  16. Bandwidth Study on Energy Use and Potential Energy Saving Opportunities in U.S. Chemical Manufacturing

    SciTech Connect

    Sabine Brueske, Caroline Kramer, Aaron Fisher

    2015-06-01

    Energy bandwidth studies of U.S. manufacturing sectors can serve as foundational references in framing the range (or bandwidth) of potential energy savings opportunities. This bandwidth study examines energy consumption and potential energy savings opportunities in U.S. chemical manufacturing. The study relies on multiple sources to estimate the energy used in the production of 74 individual chemicals, representing 57% of sector-wide energy consumption. Energy savings opportunities for individual chemicals and for 15 subsectors of chemicals manufacturing are based on technologies currently in use or under development; these potential savings are then extrapolated to estimate sector-wide energy savings opportunity.

  17. Do lightweight materials really save energy. [Automobile, life cycle energy use (LCEU)

    SciTech Connect

    Not Available

    1982-03-01

    The concept of life cycle energy use (LCEU) has been developed because of serious concerns over energy crises during recent years. This approach to energy conservation is based on the premise that the product consuming least energy in terms of manufacture and end use is preferred. Suppliers of aluminum and plastics are challenging the automobile industry on LCEU. One of their major tenets is that the high energy consumption needed for aluminum or plastic components is justified by the petroleum fuel savings of a lighter car during its lifetime. Four scenarios are considered representative of the life cycle energy position of lightweight materials substitution: high strength steel replacing conventional steel, aluminum replacing steel body sheet, plastic replacing steel body sheet, and aluminum castings replacing iron ones.

  18. Designing shared-savings incentive programs for energy efficiency: Balancing carrots and sticks

    SciTech Connect

    Schultz, D. . Div. of Ratepayer Advocates); Eto, J. )

    1990-12-01

    One promising approach for stimulating utility participation in the acquisition of cost-effective demand-side resources is called shared savings. In a shared-savings arrangement, the difference between the cost of a demand-side resource and its value measured in avoided supply-side resources is shared by utility shareholders and ratepayers. A shared-savings incentive mechanism consists of the three major components; the cost of the demand-side program, the amount of energy saved by the program, and the value of the supply-side activities avoided by the program. Measuring energy savings is an imperfect science. In principle, it should be performed after a demand-side program has been put in place and observed for some time. A particularly difficult measurement issue lies in properly accounting for effects that are not within the control of the utility but which affect energy savings (such as weather or occupant behavior). The collaborative decided to rely on prespecified engineering estimates of savings for individual measures, but to base aggregate savings on the actual numbers of installations made by the utility. This decision protects the utilities from uncertainties in the performance of individual measures while providing an incentive to increase program participation. The utilities also agreed to initiate comprehensive measurement programs to improve future estimates of the performance of energy efficiency measures. Avoided costs, like conservation program performance, are a subject to a large number of influences, only some which are under the control of the utility. Recovering the benefits of demand-side programs over a time period that closely parallels the realization of savings, means the utility will have to wait a considerable period of time before recovering its full share. The collaborative resolved this issue in a manner analogous to contractual agreements that pay qualifying facilities for non-utility generated power. 2 figs., 1 tab.

  19. Electrical energy and demand savings from a geothermal heat pump energy savings performance contract at Ft. Polk, LA

    SciTech Connect

    Shonder, J.A.; Hughes, P.J.

    1997-06-01

    At Fort Polk, LA the space conditioning systems of an entire city (4,003 military family housing units) have been converted to geothermal heat pumps (GHP) under an energy savings performance contract. At the same time, other efficiency measures such as compact fluorescent lights (CFLs), low-flow hot water outlets, and attic insulation were installed. Pre- and post-retrofit data were taken at 15-minute intervals on energy flows through the electrical distribution feeders that serve the family housing areas of the post. 15-minute interval data was also taken on energy use from a sample of the residences. This paper summarizes the electrical energy and demand savings observed in this data. Analysis of feeder-level data shows that for a typical year, the project will result in a 25.6 million kWh savings in electrical energy use, or 32.4% of the pre-retrofit electrical consumption in family housing. Results from analysis of building-level data compare well with this figure. Analysis of feeder-level data also shows that the project has resulted in a reduction of peak electrical demand of 6,541 kW, which is 39.6% of the pre-retrofit peak electrical demand. In addition to these electrical savings, the facility is also saving an estimated 260,000 therms per year of natural gas. It should be noted that the energy savings presented in this document are the apparent energy savings observed in the monitored data, and are not to be confused with the contracted energy savings used as the basis for payments. To determine the contracted energy savings, the apparent energy savings may require adjustments for such things as changes in indoor temperature performance criteria, additions of ceiling fans, and other factors.

  20. Idaho Energy and Cost Savings for New Single- and Multifamily Homes: 2012 IECC as Compared to the 2009 IECC

    SciTech Connect

    Lucas, Robert G.; Taylor, Zachary T.; Mendon, Vrushali V.; Goel, Supriya

    2012-07-03

    The 2012 International Energy Conservation Code (IECC) yields positive benefits for Idaho homeowners. Moving to the 2012 IECC from the 2009 IECC is cost-effective over a 30-year life cycle. On average, Idaho homeowners will save $4,057 with the 2012 IECC. Each year, the reduction to energy bills will significantly exceed increased mortgage costs. After accounting for up-front costs and additional costs financed in the mortgage, homeowners should see net positive cash flows (i.e., cumulative savings exceeding cumulative cash outlays) in 1 year for the 2012 IECC. Average annual energy savings are $285 for the 2012 IECC.

  1. Ohio Energy and Cost Savings for New Single- and Multifamily Homes: 2012 IECC as Compared to the 2009 IECC

    SciTech Connect

    Lucas, Robert G.; Taylor, Zachary T.; Mendon, Vrushali V.; Goel, Supriya

    2012-07-03

    The 2012 International Energy Conservation Code (IECC) yields positive benefits for Ohio homeowners. Moving to the 2012 IECC from the 2009 IECC is cost-effective over a 30-year life cycle. On average, Ohio homeowners will save $5,151 with the 2012 IECC. Each year, the reduction to energy bills will significantly exceed increased mortgage costs. After accounting for up-front costs and additional costs financed in the mortgage, homeowners should see net positive cash flows (i.e., cumulative savings exceeding cumulative cash outlays) in 1 year for the 2012 IECC. Average annual energy savings are $330 for the 2012 IECC.

  2. Nevada Energy and Cost Savings for New Single- and Multifamily Homes: 2012 IECC as Compared to the 2009 IECC

    SciTech Connect

    Lucas, Robert G.; Taylor, Zachary T.; Mendon, Vrushali V.; Goel, Supriya

    2012-07-03

    The 2012 International Energy Conservation Code (IECC) yields positive benefits for Nevada homeowners. Moving to the 2012 IECC from the 2009 IECC is cost-effective over a 30-year life cycle. On average, Nevada homeowners will save $4,736 with the 2012 IECC. Each year, the reduction to energy bills will significantly exceed increased mortgage costs. After accounting for up-front costs and additional costs financed in the mortgage, homeowners should see net positive cash flows (i.e., cumulative savings exceeding cumulative cash outlays) in 2 years for the 2012 IECC. Average annual energy savings are $360 for the 2012 IECC.

  3. Pennsylvania Energy and Cost Savings for New Single- and Multifamily Homes: 2012 IECC as Compared to the 2009 IRC

    SciTech Connect

    Lucas, Robert G.; Taylor, Zachary T.; Mendon, Vrushali V.; Goel, Supriya

    2012-07-03

    The 2012 International Energy Conservation Code (IECC) yields positive benefits for Pennsylvania homeowners. Moving to the 2012 IECC from Chapter 11 of the 2009 International Residential Code (IRC) is cost-effective over a 30-year life cycle. On average, Pennsylvania homeowners will save $8,632 with the 2012 IECC. Each year, the reduction to energy bills will significantly exceed increased mortgage costs. After accounting for up-front costs and additional costs financed in the mortgage, homeowners should see net positive cash flows (i.e., cumulative savings exceeding cumulative cash outlays) in 1 year for the 2012 IECC. Average annual energy savings are $515 for the 2012 IECC.

  4. Large Hospital 50% Energy Savings: Technical Support Document

    SciTech Connect

    Bonnema, E.; Studer, D.; Parker, A.; Pless, S.; Torcellini, P.

    2010-09-01

    This Technical Support Document documents the technical analysis and design guidance for large hospitals to achieve whole-building energy savings of at least 50% over ANSI/ASHRAE/IESNA Standard 90.1-2004 and represents a step toward determining how to provide design guidance for aggressive energy savings targets. This report documents the modeling methods used to demonstrate that the design recommendations meet or exceed the 50% goal. EnergyPlus was used to model the predicted energy performance of the baseline and low-energy buildings to verify that 50% energy savings are achievable. Percent energy savings are based on a nominal minimally code-compliant building and whole-building, net site energy use intensity. The report defines architectural-program characteristics for typical large hospitals, thereby defining a prototype model; creates baseline energy models for each climate zone that are elaborations of the prototype models and are minimally compliant with Standard 90.1-2004; creates a list of energy design measures that can be applied to the prototype model to create low-energy models; uses industry feedback to strengthen inputs for baseline energy models and energy design measures; and simulates low-energy models for each climate zone to show that when the energy design measures are applied to the prototype model, 50% energy savings (or more) are achieved.

  5. State industrial energy-conservation workshops

    SciTech Connect

    Murphy, P.T.; Tatar, J.J.; Evans, A.R.; Anderson, R.W.

    1981-01-01

    DOE's Office of Industrial Programs, in cooperation with the Office of State and Local Programs, sponsored a series of four workshops on state industrial energy-conservation programs in September and October, 1980. The workshops provided it a forum in which Federal and state officials could discuss: Federal programs supporting the development and implementation of industrial energy-conservation technology; Federal assistance available for state and local energy-conservation programs; states' programs and policy efforts to encourage industrial energy conservation, and identification of states' needs and recommendations for actions to meet the states' needs more effectively. The basic focus of the workshops was on industrial programs developed by the states through funding by the State Energy-Conservation Program. The objectives, background, and format of the workshops are described in Section 2. A summary of state industrial programs in Section 3 includes a program measure matrix and a discussion of elements in program design. Section 4 describes factors affecting the development, implementation, and evaluation of state industrial conservation programs. In Section 5 state needs, as perceived by the state representatives, are presented and discussed. Section 6 summarizes the states' suggestions as developed in the third session of each workshop.

  6. 78 FR 23335 - Energy Conservation Program: Energy Conservation Standards for Distribution Transformers

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-18

    ...The Energy Policy and Conservation Act of 1975 (EPCA), as amended, prescribes energy conservation standards for various consumer products and certain commercial and industrial equipment, including distribution transformers. EPCA also requires the U.S. Department of Energy (DOE) to determine whether more-stringent standards would be technologically feasible and economically justified, and would......

  7. 78 FR 77607 - Energy Conservation Program for Consumer Products: Energy Conservation Standards for Residential...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-24

    ... conservation standards for residential furnace fans published on October 25, 2013 (78 FR 64067) is extended to... (78 FR 64067) to make available and invite comments on the proposed rule regarding energy conservation... Standards for Residential Furnace Fans AGENCY: Office of Energy Efficiency and Renewable Energy,...

  8. 75 FR 21981 - Energy Conservation Program: Energy Conservation Standards for Residential Water Heaters, Direct...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-27

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF ENERGY 10 CFR Part 430 RIN 1904-AA90 Energy Conservation Program: Energy Conservation Standards for Residential Water Heaters, Direct Heating Equipment, and Pool Heaters Correction In rule document 2010-7611 beginning...

  9. 76 FR 22324 - Energy Conservation Program: Energy Conservation Standards for Residential Clothes Dryers and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-21

    ...The Energy Policy and Conservation Act (EPCA) prescribes energy conservation standards for various consumer products and commercial and industrial equipment, including residential clothes dryers and room air conditioners. EPCA also requires the U.S. Department of Energy (DOE) to determine if amended standards for these products are technologically feasible and economically justified, and would......

  10. Measured energy savings from using night temperature setback

    SciTech Connect

    Szydlowski, R.F.; Wrench, L.E.; O'Neill, P.J. ); Paton, J.B. )

    1993-01-01

    The measured energy savings resulting from using night temperature setback in typical light-construction wooden office buildings was determined. Researchers installed monitoring equipment in a six-building sample of two-story wooden buildings at Fort Devens, Massachusetts. Data obtained during both single-setting and night-setback operating modes were used to develop models of each building's heat consumption as a function of the difference between inside and outside temperature. These models were used to estimate seasonal savings that could be obtained from the use of night-setback thermostat control. The measured savings in heating energy from using night temperature setback for the six Fort Devens buildings ranged from 14% to 25%; the mean savings was 19.2%. Based on an energy cost of $0.65/therm of natural gas, the estimated average cost savings of using automatic setback thermostats in these buildings is $780 per year per building.

  11. Measured energy savings from using night temperature setback

    SciTech Connect

    Szydlowski, R.F.; Wrench, L.E.; O`Neill, P.J.; Paton, J.B.

    1992-10-01

    The measured energy savings resulting from using night temperature setback in typical light-construction wooden office buildings was determined. Researchers installed monitoring equipment in a six-building sample of two-story wooden buildings at Fort Devens, Massachusetts. Data obtained during both single-setting and night-setback operating modes were used to develop models of each building`s heat consumption as a function of the difference between inside and outside temperature. These models were used to estimate seasonal savings that could be obtained from the use of night-setback thermostat control. The measured savings in heating energy from using night temperature setback for the six Fort Devens buildings ranged from 14% to 25%; the mean savings was 19.2%. Based on an energy cost of $0.65/therm of natural gas, the estimated average cost savings of using automatic setback thermostats in these buildings is $780 per year per building.

  12. Measured energy savings from using night temperature setback

    SciTech Connect

    Szydlowski, R.F.; Wrench, L.E.; O'Neill, P.J. ); Paton, J.B. )

    1992-10-01

    The measured energy savings resulting from using night temperature setback in typical light-construction wooden office buildings was determined. Researchers installed monitoring equipment in a six-building sample of two-story wooden buildings at Fort Devens, Massachusetts. Data obtained during both single-setting and night-setback operating modes were used to develop models of each building's heat consumption as a function of the difference between inside and outside temperature. These models were used to estimate seasonal savings that could be obtained from the use of night-setback thermostat control. The measured savings in heating energy from using night temperature setback for the six Fort Devens buildings ranged from 14% to 25%; the mean savings was 19.2%. Based on an energy cost of $0.65/therm of natural gas, the estimated average cost savings of using automatic setback thermostats in these buildings is $780 per year per building.

  13. Measured energy savings from using night temperature setback

    SciTech Connect

    Szydlowski, R.F.; Wrench, L.E.; O`Neill, P.J.; Paton, J.B.

    1993-01-01

    The measured energy savings resulting from using night temperature setback in typical light-construction wooden office buildings was determined. Researchers installed monitoring equipment in a six-building sample of two-story wooden buildings at Fort Devens, Massachusetts. Data obtained during both single-setting and night-setback operating modes were used to develop models of each building`s heat consumption as a function of the difference between inside and outside temperature. These models were used to estimate seasonal savings that could be obtained from the use of night-setback thermostat control. The measured savings in heating energy from using night temperature setback for the six Fort Devens buildings ranged from 14% to 25%; the mean savings was 19.2%. Based on an energy cost of $0.65/therm of natural gas, the estimated average cost savings of using automatic setback thermostats in these buildings is $780 per year per building.

  14. Electric energy savings from new technologies. Revision 1

    SciTech Connect

    Harrer, B.J.; Kellogg, M.A.; Lyke, A.J.; Imhoff, K.L.; Fisher, Z.J.

    1986-09-01

    Purpose of the report is to provide information about the electricity-saving potential of new technologies to OCEP that it can use in developing alternative long-term projections of US electricity consumption. Low-, base-, and high-case scenarios of the electricity savings for 10 technologies were prepared. The total projected annual savings for the year 2000 for all 10 technologies were 137 billion kilowatt hours (BkWh), 279 BkWh, and 470 BkWh, respectively, for the three cases. The magnitude of these savings projections can be gauged by comparing them to the Department's reference case projection for the 1985 National Energy Policy Plan. In the Department's reference case, total consumption in 2000 is projected to be 3319 BkWh. Because approximately 75% of the base-case estimate of savings are already incorporated into the reference projection, only 25% of the savings estimated here should be subtracted from the reference projection for analysis purposes.

  15. Effects of energy conservation in residential and commercial buildings.

    PubMed

    Hirst, E; Hannon, B

    1979-08-17

    In 1977, heating, cooling, lighting, and other operations in residential and commercial buildings used 27 quads (1 quad = 10(15) British thermal units) of energy. This is more than one-third of the nation's total energy budget. Future trends in energy use in buildings are likely to depend strongly on fuel prices and government policies designed to save energy. Three scenarios are examined: (i) a base line in which fuel prices rise as projected by the Department of Energy; (ii) a conservation case that includes higher gas and oil prices plus the regulatory, financial incentive, and information programs authorized by the 94th Congress and proposed in the April 1977 National Energy Plan; and (iii) another conservation case that also includes new technologies (more efficient equipment, appliances, and structures). These scenarios are analyzed for changes in energy use, costs, and employment by means of detailed engineering-economic models of energy use in residential and commercial buildings developed at the Oak Ridge National Laboratory and input-output analyses developed at the University of Illinois. PMID:17781246

  16. An evaluation of the Fort Polk energy savings performance contract

    SciTech Connect

    Hughes, P.J.; Shonder, J.A.

    1998-11-01

    The US Army, in cooperation with an energy services company (ESCO), used private capital to retrofit 4,003 family housing units on the Fort Polk, Louisiana, military base with geothermal heat pumps (GHPs). The project was performed under an energy savings performance contract (ESPC) that provides for the Army and the ESCO to share the cost savings realized through the energy retrofit over the 20-year life of the contract. Under the terms of the contract, the ESCO is responsible for maintaining the GHPs and provides ongoing measurement and verification (M and V) to assure cost and energy savings to the Army. An independent evaluation conducted by the Department of Energy`s Oak Ridge National Laboratory indicates that the GHP systems in combination with other energy retrofit measures have reduced annual whole-community electrical consumption by 33%, and natural gas consumption by 100%. These energy savings correspond to an estimated reduction in CO{sub 2} emissions of 22,400 tons per year. Peak electrical demand has been reduced by 43%. The electrical energy and demand savings correspond to an improvement in the whole-community annual electric load factor from 0.52 to 0.62. As a result of the project, Fort Polk saves about $450,000 annually and benefits from complete renewal of the major energy consuming systems in family housing and maintenance of those systems for 20 years. Given the magnitude of the project, the cost and energy savings achieved, and the lessons learned during its design and implementation, the Fort Polk ESPC can provide a model for other housing-related energy savings performance contracts in both the public and private sectors.

  17. Analysis of shared savings vs. direct financing of energy retrofits in federal buildings. Final report

    SciTech Connect

    Not Available

    1984-05-01

    This study examines the merits of using shared savings contracts with the private sector to foster energy conservation retrofits in federally-owned buildings. Shared savings is a generic term used to refer to a contractual arrangement between a building owner and a private organization which specializes in energy retrofits. For the purposes of this analysis, the Federal Government and a shared savings company enter into an agreement wherein the company makes capital improvements and/or operating changes to improve the energy efficiency of a federally owned facility at no out-of-pocket cost to the government. The resulting savings in reduced (or less rapidly increasing) energy bills are shared by the two parties according to a predetermined formula for a finite period of time. This study sought to evaluate from the Federal Government's perspective the desirability of shared savings as compared with direct federal financing, under which the Federal Government uses conventional financing methods to undertake the same retrofits. Both options were compared with the status quo, in which retrofits are financed and performed by individual agencies, but where financial resources are lacking to undertake a comprehensive retrofit program on the scale made possible by shared savings. Using a simple cash flow model, shared savings and direct federal financing approaches were each applied to the retrofit of three hypothetical federally owned structures: a hospital, commissary, and a large office building. Federal Government (or agency) cash in-flows and out-flows were calculated for each scenario, and the net cost or savings to the Federal Government estimated. In addition to the quantitative analysis, interviews with members of the energy retrofit contracting industry and government officials were conducted.

  18. Energy and Energy Cost Savings Analysis of the 2015 IECC for Commercial Buildings

    SciTech Connect

    Zhang, Jian; Xie, YuLong; Athalye, Rahul A.; Zhuge, Jing Wei; Rosenberg, Michael I.; Hart, Philip R.; Liu, Bing

    2015-09-01

    As required by statute (42 USC 6833), DOE recently issued a determination that ANSI/ASHRAE/IES Standard 90.1-2013 would achieve greater energy efficiency in buildings subject to the code compared to the 2010 edition of the standard. Pacific Northwest National Laboratory (PNNL) conducted an energy savings analysis for Standard 90.1-2013 in support of its determination . While Standard 90.1 is the model energy standard for commercial and multi-family residential buildings over three floors (42 USC 6833), many states have historically adopted the International Energy Conservation Code (IECC) for both residential and commercial buildings. This report provides an assessment as to whether buildings constructed to the commercial energy efficiency provisions of the 2015 IECC would save energy and energy costs as compared to the 2012 IECC. PNNL also compared the energy performance of the 2015 IECC with the corresponding Standard 90.1-2013. The goal of this analysis is to help states and local jurisdictions make informed decisions regarding model code adoption.

  19. Energy and Energy Cost Savings Analysis of the 2015 IECC for Commercial Buildings

    SciTech Connect

    Zhang, Jian; Xie, YuLong; Athalye, Rahul A.; Zhuge, Jing Wei; Rosenberg, Michael I.; Hart, Philip R.; Liu, Bing

    2015-06-01

    As required by statute (42 USC 6833), DOE recently issued a determination that ANSI/ASHRAE/IES Standard 90.1-2013 would achieve greater energy efficiency in buildings subject to the code compared to the 2010 edition of the standard. Pacific Northwest National Laboratory (PNNL) conducted an energy savings analysis for Standard 90.1-2013 in support of its determination . While Standard 90.1 is the model energy standard for commercial and multi-family residential buildings over three floors (42 USC 6833), many states have historically adopted the International Energy Conservation Code (IECC) for both residential and commercial buildings. This report provides an assessment as to whether buildings constructed to the commercial energy efficiency provisions of the 2015 IECC would save energy and energy costs as compared to the 2012 IECC. PNNL also compared the energy performance of the 2015 IECC with the corresponding Standard 90.1-2013. The goal of this analysis is to help states and local jurisdictions make informed decisions regarding model code adoption.

  20. Demonstration of energy savings of cool roofs

    SciTech Connect

    Konopacki, S.; Gartland, L.; Akbari, H.; Rainer, L.

    1998-06-01

    Dark roofs raise the summertime air-conditioning demand of buildings. For highly-absorptive roofs, the difference between the surface and ambient air temperatures can be as high as 90 F, while for highly-reflective roofs with similar insulative properties, the difference is only about 20 F. For this reason, cool roofs are effective in reducing cooling energy use. Several experiments on individual residential buildings in California and Florida show that coating roofs white reduces summertime average daily air-conditioning electricity use from 2--63%. This demonstration project was carried out to address some of the practical issues regarding the implementation of reflective roofs in a few commercial buildings. The authors monitored air-conditioning electricity use, roof surface temperature, plenum, indoor, and outdoor air temperatures, and other environmental variables in three buildings in California: two medical office buildings in Gilroy and Davis and a retail store in San Jose. Coating the roofs of these buildings with a reflective coating increased the roof albedo from an average of 0.20--0.60. The roof surface temperature on hot sunny summer afternoons fell from 175 F--120 F after the coating was applied. Summertime average daily air-conditioning electricity use was reduced by 18% (6.3 kWh/1000ft{sup 2}) in the Davis building, 13% (3.6 kWh/1000ft{sup 2}) in the Gilroy building, and 2% (0.4 kWh/1000ft{sup 2}) in the San Jose store. In each building, a kiosk was installed to display information from the project in order to educate and inform the general public about the environmental and energy-saving benefits of cool roofs. They were designed to explain cool-roof coating theory and to display real-time measurements of weather conditions, roof surface temperature, and air-conditioning electricity use. 55 figs., 15 tabs.

  1. Michigan Energy and Cost Savings for New Single- and Multifamily Homes: 2012 IECC as Compared to the Michigan Uniform Energy Code

    SciTech Connect

    Lucas, Robert G.; Taylor, Zachary T.; Mendon, Vrushali V.; Goel, Supriya

    2012-07-03

    The 2012 International Energy Conservation Code (IECC) yields positive benefits for Michigan homeowners. Moving to the 2012 IECC from the Michigan Uniform Energy Code is cost-effective over a 30-year life cycle. On average, Michigan homeowners will save $10,081 with the 2012 IECC. Each year, the reduction to energy bills will significantly exceed increased mortgage costs. After accounting for up-front costs and additional costs financed in the mortgage, homeowners should see net positive cash flows (i.e., cumulative savings exceeding cumulative cash outlays) in 1 year for the 2012 IECC. Average annual energy savings are $604 for the 2012 IECC.

  2. Energy conservation and existing rental housing

    SciTech Connect

    Bleviss, D.L.; Gravitz, A.A.

    1984-01-01

    The authors take an in-depth look at the federal, state, and local policies affecting energy efficiency in US rental dwellings. They examine the incentives and barriers to conservation investments. Case studies show how federal, utility, non-profit energy service companies, and rental codes have approached the problems inherent in the housing market's failure to make energy conservation investment. The report recommends an evolutionary approach involving three phases that begins with the identification of needs and culminates in mandated retrofits. A major case study explores program options for North Carolina. 32 references, 3 figures, 18 tables.

  3. Promoting energy conservation: An analysis of behavioral research

    SciTech Connect

    Katzev, R.D.; Johnson, T.R.

    1987-01-01

    This book reviews and analyzes the past ten years of research on changing the energy-related behavior of individuals. It reviews the results of about 200 studies and presents them in a form usable by program designers, researchers, and auditors in the field. The book discusses the effectiveness of ways to change people's behavior to save more energy, e.g., to get them to recycle, carpool, or turn down the thermostat. The book analyzes three ways to motivate people to change their behavior: antecedent communications, consequences, and social influences. Antecedent communications are sent to people before they make energy conservation decisions, and include information, prompts, and persuasion. Techniques that change the consequences of acting in a certain way include feedback, incentives, and disincentives. Social influence techniques include group contingencies (rewards predicated on the behavior of a group of people, rather than one individual), demonstrations of ways to conserve energy, and solicitations of individual commitments to conserve. Katzev and Johnson derive lessons from the research on each type of technique.

  4. Potential for the Use of Energy Savings Performance Contracts to Reduce Energy Consumption and Provide Energy and Cost Savings in Non-Building Applications

    SciTech Connect

    Williams, Charles; Green, Andrew S.; Dahle, Douglas; Barnett, John; Butler, Pat; Kerner, David

    2013-08-01

    The findings of this study indicate that potential exists in non-building applications to save energy and costs. This potential could save billions of federal dollars, reduce reliance on fossil fuels, increase energy independence and security, and reduce greenhouse gas emissions. The Federal Government has nearly twenty years of experience with achieving similar energy cost reductions, and letting the energy costs savings pay for themselves, by applying energy savings performance contracts (ESPC) inits buildings. Currently, the application of ESPCs is limited by statute to federal buildings. This study indicates that ESPCs can be a compatible and effective contracting tool for achieving savings in non-building applications.

  5. ENCORE: Energy Conservation Resources for Education.

    ERIC Educational Resources Information Center

    Texas A and M Univ., College Station. Dept. of Industrial Education.

    This publication contains the energy education materials for middle schools from project ENCORE (Energy Conservation Resources for Education). These modules were originally field tested in Texas schools during the 1976-77 academic year. The revised materials in this publication are organized into four major units and thirteen chapters. The…

  6. Energy Conservation Through Rational Architecture and Planning

    ERIC Educational Resources Information Center

    Brubaker, C. William

    1976-01-01

    Buildings can be designed in harmony with the natural environment, and new techniques of "active" solar design exist to collect and use solar energy for space heating and cooling. Preservation and reuse of existing buildings and neighborhoods are other ways to conserve energy. (Author/MLF)

  7. Energy and Economic Impacts of U.S. Federal Energy and Water Conservation Standards Adopted From 1987 Through 2013

    SciTech Connect

    Meyers, Stephen; Williams, Alison; Chan, Peter

    2014-06-30

    This paper presents estimates of the key impacts of Federal energy and water conservation standards adopted from 1987 through 2013. The standards for consumer products and commercial and industrial equipment include those set by legislation as well as standards adopted by DOE through rulemaking. In 2013, the standards saved an estimated 4.05 quads of primary energy, which is equivalent to 4% of total U.S. energy consumption. The savings in operating costs for households and businesses totaled $56 billion. The average household saved $361 in operating costs as a result of residential and plumbing product standards. The estimated reduction in CO{sub 2} emissions associated with the standards in 2013 was 218 million metric tons, which is equivalent to 4% of total U.S. CO{sub 2} emissions. The estimated cumulative energy savings over the period 1990-2090 amount to 181 quads. Accounting for the increased upfront costs of more-efficient products and the operating cost (energy and water) savings over the products’ lifetime, the standards have a past and projected cumulative net present value (NPV) of consumer benefit of between $1,271 billion and $1,487 billion, using 7 percent and 3 percent discount rates, respectively. The water conservation standards, together with energy conservation standards that also save water, reduced water use by 1.9 trillion gallons in 2013, and will achieve cumulative water savings by 2090 of 55 trillion gallons. The estimated consumer savings in 2013 from reduced water use amounted to $16 billon.

  8. 76 FR 26656 - Energy Conservation Program: Energy Conservation Standards for Residential Clothes Dryers and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-09

    ... Clothes Dryers and Room Air Conditioners AGENCY: Office of Energy Efficiency and Renewable Energy... L. Witkowski, U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Building... energy conservation standards for clothes dryers and room air conditioners on April 21, 2011 (76 FR...

  9. Technical Support Document: 50% Energy Savings for Small Office Buildings

    SciTech Connect

    Thornton, Brian A.; Wang, Weimin; Huang, Yunzhi; Lane, Michael D.; Liu, Bing

    2010-04-30

    The Technical Support Document (TSD) for 50% energy savings in small office buildings documents the analysis and results for a recommended package of energy efficiency measures (EEMs) referred to as the advanced EEMs. These are changes to a building design that will reduce energy usage. The package of advanced EEMs achieves a minimum of 50% energy savings and a construction area weighted average energy savings of 56.6% over the ANSI/ASHRAE/IESNA Standard 90.1-2004 for 16 cities which represent the full range of climate zones in the United States. The 50% goal is for site energy usage reduction. The weighted average is based on data on the building area of construction in the various climate locations. Cost-effectiveness of the EEMs is determined showing an average simple payback of 6.7 years for all 16 climate locations. An alternative set of results is provided which includes a variable air volume HVAC system that achieves at least 50% energy savings in 7 of the 16 climate zones with a construction area weighted average savings of 48.5%. Other packages of EEMs may also achieve 50% energy savings; this report does not consider all alternatives but rather presents at least one way to reach the goal. Design teams using this TSD should follow an integrated design approach and utilize additional analysis to evaluate the specific conditions of a project.

  10. 10 CFR 436.20 - Net savings.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 3 2011-01-01 2011-01-01 false Net savings. 436.20 Section 436.20 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION FEDERAL ENERGY MANAGEMENT AND PLANNING PROGRAMS Methodology and Procedures for Life Cycle Cost Analyses § 436.20 Net savings. For a retrofit project, net savings may be found...

  11. 10 CFR 436.20 - Net savings.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 3 2013-01-01 2013-01-01 false Net savings. 436.20 Section 436.20 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION FEDERAL ENERGY MANAGEMENT AND PLANNING PROGRAMS Methodology and Procedures for Life Cycle Cost Analyses § 436.20 Net savings. For a retrofit project, net savings may be found...

  12. 10 CFR 436.20 - Net savings.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 3 2014-01-01 2014-01-01 false Net savings. 436.20 Section 436.20 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION FEDERAL ENERGY MANAGEMENT AND PLANNING PROGRAMS Methodology and Procedures for Life Cycle Cost Analyses § 436.20 Net savings. For a retrofit project, net savings may be found...

  13. 10 CFR 436.20 - Net savings.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 3 2010-01-01 2010-01-01 false Net savings. 436.20 Section 436.20 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION FEDERAL ENERGY MANAGEMENT AND PLANNING PROGRAMS Methodology and Procedures for Life Cycle Cost Analyses § 436.20 Net savings. For a retrofit project, net savings may be found...

  14. 10 CFR 436.20 - Net savings.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 3 2012-01-01 2012-01-01 false Net savings. 436.20 Section 436.20 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION FEDERAL ENERGY MANAGEMENT AND PLANNING PROGRAMS Methodology and Procedures for Life Cycle Cost Analyses § 436.20 Net savings. For a retrofit project, net savings may be found...

  15. Measuring savings in energy savings performance contracts using in-place energy management systems -- A case study

    SciTech Connect

    Heinemeier, K.E.; Akbari, H.; Kromer, S.

    1996-08-01

    Energy Management Control Systems (EMCSs) have been used in many projects as a monitoring device to provide information necessary for estimating savings from efficiency measures. This paper discusses a case study that looked in great depth at that use for evaluating savings in Energy Savings Performance Contracting (ESPC). ESPC is one of the increasingly important mechanisms for profiting from energy efficiency in commercial buildings. With ESPC, a contractor finances and installs energy-conversion measures, and the resulting savings in energy bills are shared between the contractor and the building owner. Hence, the method used for determining savings is key to the success of this financing scheme. As a part of their effort to establish measurement and verification methods, the Federal Energy Management Program (FEMP) carried out a pilot study of ESPC, and the EMCS was used in the savings verification for this ESPC contract. This case study also serves as a detailed and quantitative comparison of EMCS and conventional monitoring techniques, according to the guidelines developed in earlier work. This paper discusses the concept of different levels of monitoring savings for ESPC and presents an assessment of the use of EMCS for these levels of monitoring.

  16. 76 FR 71835 - Energy Conservation Program: Energy Conservation Standards for Direct Heating Equipment

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-18

    ... definitions and energy conservation standards for vented gas hearth direct heating equipment. 75 FR 20112. \\1... are excluded from DOE's regulations.'' 75 FR 20112, 20234 (April 16, 2010). In this final rule, DOE is... energy conservation standards for direct heating equipment manufactured on or after April 16, 2013. 75...

  17. 78 FR 42389 - Energy Conservation Program: Energy Conservation Standards for Residential Clothes Dryers and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-16

    ...This final rule corrects the energy conservation standards for room air conditioners. In the direct final rule establishing amended energy conservation standards for residential clothes dryers and room air conditioners, published in the Federal Register on April 21, 2011, and the subsequent notices of effective date and compliance dates for the direct final rule and amendment of compliance......

  18. 77 FR 22472 - Energy Conservation Program: Energy Conservation Standards for Certain External Power Supplies...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-16

    ... final rule was published on March 23, 2009. See 74 FR 12058. Subsequently, Congress revisited elements... a technical amendment to codify verbatim in regulation these statutory changes. See 76 FR 57897... Part 430 RIN 1904-AB57 Energy Conservation Program: Energy Conservation Standards for Certain...

  19. Energy Conservation Curriculum for Secondary and Post-Secondary Students. Module 11: Economics of Energy Conservation.

    ERIC Educational Resources Information Center

    Navarro Coll., Corsicana, TX.

    This module is the eleventh in a series of eleven modules in an energy conservation curriculum for secondary and postsecondary vocational students. It is designed for use by itself or as part of a sequence of four modules on energy conservation in building construction and operation (see also modules 8, 9, and 10). The objective of this module is…

  20. General Merchandise 50% Energy Savings Technical Support Document

    SciTech Connect

    Hale, E.; Leach, M.; Hirsch, A.; Torcellini, P.

    2009-09-01

    This report documents technical analysis for medium-box general merchandise stores aimed at providing design guidance that achieves whole-building energy savings of at least 50% over ASHRAE Standard 90.1-2004.

  1. Conservation in the energy industry

    NASA Technical Reports Server (NTRS)

    1975-01-01

    The basic energy supply and utilization problems faced by the United States were described. Actions which might alleviate the domestic shortfall of petroleum and natural gas are described, analyzed and overall impacts are assessed. Specific actions included are coal gasification, in situ shale oil production, improved oil and gas recovery, importation of liquid natural gas and deregulation of natural gas prices. These actions are weighed against each other as alternate techniques of alleviating or overcoming existing shortfalls.

  2. Energy Crisis: Resource Guide for Energy Conservation Education.

    ERIC Educational Resources Information Center

    Davey, Don; McDuffie, Claudia

    This publication is a resource guide to energy education and conservation materials and organizations. The stated purpose of this guide is to make teachers and other interested citizens of Oregon aware of some of the resources and sources of information on energy conservation education that are available in Oregon and in the United States and…

  3. Oklahoma Energy and Cost Savings for New Single- and Multifamily Homes: 2012 IECC as Compared to the 2009 IRC

    SciTech Connect

    Lucas, Robert G.; Taylor, Zachary T.; Mendon, Vrushali V.; Goel, Supriya

    2012-06-15

    The 2012 International Energy Conservation Code (IECC) yields positive benefits for Oklahoma homeowners. Moving to the 2012 IECC from Chapter 11 of the 2009 International Residential Code (IRC) is cost effective over a 30-year life cycle. On average, Oklahoma homeowners will save $5,786 with the 2012 IECC. After accounting for upfront costs and additional costs financed in the mortgage, homeowners should see net positive cash flows (i.e., cumulative savings exceeding cumulative cash outlays) in 1 year for the 2012 IECC. Average annual energy savings are $408 for the 2012 IECC.

  4. Iowa Energy and Cost Savings for New Single- and Multifamily Homes: 2012 IECC as Compared to the 2009 IECC

    SciTech Connect

    Lucas, Robert G.; Taylor, Zachary T.; Mendon, Vrushali V.; Goel, Supriya

    2012-06-15

    The 2012 International Energy Conservation Code (IECC) yields positive benefits for Iowa homeowners. Moving to the 2012 IECC from the 2009 IECC is cost effective over a 30-year life cycle. On average, Iowa homeowners will save $7,573 with the 2012 IECC. After accounting for upfront costs and additional costs financed in the mortgage, homeowners should see net positive cash flows (i.e., cumulative savings exceeding cumulative cash outlays) in 1 year for the 2012 IECC. Average annual energy savings are $454 for the 2012 IECC.

  5. Rhode Island Energy and Cost Savings for New Single- and Multifamily Homes: 2012 IECC as Compared to the 2009 IECC

    SciTech Connect

    Lucas, Robert G.; Taylor, Zachary T.; Mendon, Vrushali V.; Goel, Supriya

    2012-04-01

    The 2012 International Energy Conservation Code (IECC) yields positive benefits for Rhode Island homeowners. Moving to the 2012 IECC from the 2009 IECC is cost effective over a 30-year life cycle. On average, Rhode Island homeowners will save $11,011 with the 2012 IECC. After accounting for upfront costs and additional costs financed in the mortgage, homeowners should see net positive cash flows (i.e., cumulative savings exceeding cumulative cash outlays) in 1 year for the 2012 IECC. Average annual energy savings are $629 for the 2012 IECC.

  6. Delaware Energy and Cost Savings for New Single- and Multifamily Homes: 2012 IECC as Compared to the 2009 IECC

    SciTech Connect

    Lucas, Robert G.; Taylor, Zachary T.; Mendon, Vrushali V.; Goel, Supriya

    2012-04-01

    The 2012 International Energy Conservation Code (IECC) yields positive benefits for Delaware homeowners. Moving to the 2012 IECC from the 2009 IECC is cost effective over a 30-year life cycle. On average, Delaware homeowners will save $10,409 with the 2012 IECC. After accounting for upfront costs and additional costs financed in the mortgage, homeowners should see net positive cash flows (i.e., cumulative savings exceeding cumulative cash outlays) in 1 year for the 2012 IECC. Average annual energy savings are $616 for the 2012 IECC.

  7. Massachusetts Energy and Cost Savings for New Single- and Multifamily Homes: 2012 IECC as Compared to the 2009 IECC

    SciTech Connect

    Lucas, Robert G.; Taylor, Zachary T.; Mendon, Vrushali V.; Goel, Supriya

    2012-04-01

    The 2012 International Energy Conservation Code (IECC) yields positive benefits for Massachusetts homeowners. Moving to the 2012 IECC from the 2009 IECC is cost effective over a 30-year life cycle. On average, Massachusetts homeowners will save $10,848 with the 2012 IECC. After accounting for upfront costs and additional costs financed in the mortgage, homeowners should see net positive cash flows (i.e., cumulative savings exceeding cumulative cash outlays) in 1 year for the 2012 IECC. Average annual energy savings are $621 for the 2012 IECC.

  8. Texas Energy and Cost Savings for New Single- and Multifamily Homes: 2012 IECC as Compared to the 2009 IECC

    SciTech Connect

    Lucas, Robert G.; Taylor, Zachary T.; Mendon, Vrushali V.; Goel, Supriya

    2012-06-15

    The 2012 International Energy Conservation Code (IECC) yields positive benefits for Texas homeowners. Moving to the 2012 IECC from the 2009 IECC is cost effective over a 30-year life cycle. On average, Texas homeowners will save $3,456 with the 2012 IECC. After accounting for upfront costs and additional costs financed in the mortgage, homeowners should see net positive cash flows (i.e., cumulative savings exceeding cumulative cash outlays) in 2 years for the 2012 IECC. Average annual energy savings are $259 for the 2012 IECC.

  9. Reliable aerial thermography for energy conservation

    NASA Technical Reports Server (NTRS)

    Jack, J. R.; Bowman, R. L.

    1981-01-01

    A method for energy conservation, the aerial thermography survey, is discussed. It locates sources of energy losses and wasteful energy management practices. An operational map is presented for clear sky conditions. The map outlines the key environmental conditions conductive to obtaining reliable aerial thermography. The map is developed from defined visual and heat loss discrimination criteria which are quantized based on flat roof heat transfer calculations.

  10. Energy conservation study on Agripac Processing Plant, Salem, Oregon

    SciTech Connect

    Not Available

    1985-01-15

    An energy study on electrical energy using systems was performed at Agripac plant No. 1 in Salem, Oregon, in the late summer and fall of 1984. The plant processes mainly green beans, corn and squash. The respective products are inspected, prepared and graded, after which they are either canned or frozen in freeze tunnels or cold storage cells. The canned products are sent through pressure cookers. In the case of green beans and corn, some of the product is frozen in freeze tunnels and dumped into tote bins for the repack operation, while some is packaged in cartons and quick frozen in blast freeze cells. For squash, all the product processed is put into cartons and frozen in the cells. Energy conservation measures were calculated using a simple payback analysis. Conservation measures have been evaluated interactively to avoid overestimating savings, assuming that measures that are cost effective will be implemented as a package. In some cases, mutually exclusive conservation measures have been considered for a single application. These have been presented as an either/or measure. Details of the options are included in the text and the calculation sheets.

  11. Overview of energy-conservation research opportunities

    SciTech Connect

    Hopp, W.J.; Hauser, S.G.; Hane, G.J.; Gurwell, W.E.; Bird, S.P.; Cliff, W.C.; Williford, R.E.; Williams, T.A.; Ashton, W.B.

    1981-12-01

    This document is a study of research opportunities that are important to developing advanced technologies for efficient energy use. The study's purpose is to describe a wide array of attractive technical areas from which specific research and development programs could be implemented. Research areas are presented for potential application in each of the major end-use sectors. The study develops and applies a systematic approach to identifying and screening applied energy conservation research opportunities. To broadly cover the energy end-use sectors, this study develops useful information relating to the areas where federally-funded applied research will most likely play an important role in promoting energy conservation. This study is not designed to produce a detailed agenda of specific recommended research activities. The general information presented allows uniform comparisons of disparate research areas and as such provides the basis for formulating a cost-effective, comprehensive federal-applied energy conservation research strategy. Chapter 2 discusses the various methodologies that have been used in the past to identify research opportunities and details the approach used here. In Chapters 3, 4, and 5 the methodology is applied to the buildings, transportation, and industrial end-use sectors and the opportunities for applied research in these sectors are discussed.Chapter 6 synthesizes the results of the previous three chapters to give a comprehensive picture of applied energy conservation research opportunities across all end-use sectors and presents the conclusions to the report.

  12. 10 CFR 436.104 - Energy conservation measures and standards.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 3 2014-01-01 2014-01-01 false Energy conservation measures and standards. 436.104 Section 436.104 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION FEDERAL ENERGY MANAGEMENT AND PLANNING PROGRAMS Guidelines for General Operations Plans § 436.104 Energy conservation measures and standards....

  13. 10 CFR 436.104 - Energy conservation measures and standards.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 3 2013-01-01 2013-01-01 false Energy conservation measures and standards. 436.104 Section 436.104 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION FEDERAL ENERGY MANAGEMENT AND PLANNING PROGRAMS Guidelines for General Operations Plans § 436.104 Energy conservation measures and standards....

  14. 10 CFR 436.104 - Energy conservation measures and standards.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 3 2012-01-01 2012-01-01 false Energy conservation measures and standards. 436.104 Section 436.104 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION FEDERAL ENERGY MANAGEMENT AND PLANNING PROGRAMS Guidelines for General Operations Plans § 436.104 Energy conservation measures and standards....

  15. 10 CFR 436.104 - Energy conservation measures and standards.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 3 2011-01-01 2011-01-01 false Energy conservation measures and standards. 436.104 Section 436.104 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION FEDERAL ENERGY MANAGEMENT AND PLANNING PROGRAMS Guidelines for General Operations Plans § 436.104 Energy conservation measures and standards....

  16. 10 CFR 436.104 - Energy conservation measures and standards.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 3 2010-01-01 2010-01-01 false Energy conservation measures and standards. 436.104 Section 436.104 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION FEDERAL ENERGY MANAGEMENT AND PLANNING PROGRAMS Guidelines for General Operations Plans § 436.104 Energy conservation measures and standards....

  17. Labor and energy impacts of energy-conservation measures

    SciTech Connect

    Not Available

    1980-01-01

    Three papers are presented discussing the labor and energy impacts of energy-conservation measures, namely: Generation of the Industry/Occupation Wage Matrix and Related Matters, by Carole Green; Job Shifts from Energy Conservation (Salary Distribution Effects), by Robert A. Herendeen; and Energy and Labor Implication of Improving Thermal Integrity of New Houses, by John Joseph Nangle. A separate abstract was prepared for each paper.

  18. Chevron process reduces FCC/coker corrosion and saves energy

    SciTech Connect

    Knowlton, H.E.; Coombs, J.W.; Allen, E.R.

    1980-01-01

    The Chevron Polysulfide process for controlling cyanide-induced corrosion was installed in seven fluid catalytic cracking (FCC) and coker fractionation systems at six Chevron refineries. Besides reducing corrosion, the process conserves energy that would otherwise be required for foul water stripping, and provides environmental benefits that include a reduction in effluent volume due to less-stripped foul water, less ammonia in effluent, low cyanide in the stripped foul-water, additional foul-water stripper capacity, and reduced foul-water stripper corrosion. In all units, the process was economically justified by the energy and additive savings associated with its use (no credits were taken for corrosion benefits). The mechanism by which cyanide induces corrosion and hydrogen blistering, i.e., removal of the protective iron sulfide film, in vapor lines, knockout drums, compressors, heat exchangers, and fractionation columns, and their elimination by the Chevron Polysulfide process, which involves the reaction of purchased ammonium polysulfide with cyanide to form thiocyanate, are discussed based on the above case histories.

  19. Savings potential of ENERGY STAR (registered trademark) voluntary labeling programs

    SciTech Connect

    Webber, Carrie A.; Brown, Richard E.

    1998-06-19

    In 1993 the U.S. Environmental Protection Agency (EPA) introduced ENERGY STAR (registered trademark), a voluntary labeling program designed to identify and promote energy-efficient products. Since then EPA, now in partnership with the U.S. Department of Energy (DOE), has introduced programs for more than twenty products, spanning office equipment, residential heating and cooling equipment, new homes, commercial and residential lighting, home electronics, and major appliances. We present potential energy, dollar and carbon savings forecasts for these programs for the period 1998 to 2010. Our target market penetration case represents our best estimate of future ENERGY STAR savings. It is based on realistic market penetration goals for each of the products. We also provide results under the assumption of 100% market penetration; that is, we assume that all purchasers buy ENERGY STAR-compliant products instead of standard efficiency products throughout the analysis period. Finally, we assess the sensitivity of our target penetration case forecasts to greater or lesser marketing success by EPA and DOE, lower-than-expected future energy prices, and higher or lower rates of carbon emission by electricity generators. The potential savings of ENERGY STAR are substantial. If all purchasers chose Energy Star-compliant products instead of standard efficiency products over the next 15 years, they would save more than $100 billion on their energy bills during those 15 years. (Bill savings are in 1995 dollars, discounted at a 4% real discount rate.)

  20. Breakthrough Energy Savings with Waterjet Technology

    SciTech Connect

    Lee W. Saperstein; R. Larry Grayson; David A. Summers; Jorge Garcia-Joo; Greg Sutton; Mike Woodward; T.P. McNulty

    2007-05-15

    Experiments performed at the University of Missouri-Rolla's Waterjet Laboratory have demonstrated clearly the ability of waterjets to disaggregate, in a single step, four different mineral ores, including ores containing iron, lead and copper products. The study focused mainly on galena-bearing dolomite, a lead ore, and compared the new technology with that of traditional mining and milling to liberate the valuable constituent for the more voluminous host rock. The technical term for the disintegration of the ore to achieve this liberation is comminution. The potential for energy savings if this process can be improved, is immense. Further, if this separation can be made at the mining face, then the potential energy savings include avoidance of transportation (haulage and hoisting) costs to move, process and store this waste at the surface. The waste can, instead, be disposed into the available cavities within the mine. The savings also include the elimination of the comminution, crushing and grinding, stages in the processing plant. Future prototype developments are intended to determine if high-pressure waterjet mining and processing can be optimized to become cheaper than traditional fragmentation by drilling and blasting and to optimize the separation process. The basic new mining process was illustrated in tests on two local rock types, a low-strength sandstone with hematite inclusions, and a medium to high-strength dolomite commonly used for construction materials. Illustrative testing of liberation of minerals, utilized a lead-bearing dolomite, and included a parametric study of the optimal conditions needed to create a size distribution considered best for separation. The target goal was to have 50 percent of the mined material finer than 100 mesh (149 microns). Of the 21 tests that were run, five clearly achieved the target. The samples were obtained as run-of-mine lumps of ore, which exhibited a great deal of heterogeneity within the samples. This, in

  1. 14 CFR 152.609 - Energy conservation practices.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 3 2014-01-01 2014-01-01 false Energy conservation practices. 152.609... (CONTINUED) AIRPORTS AIRPORT AID PROGRAM Energy Conservation in Airport Aid Program § 152.609 Energy conservation practices. Each sponsor shall require fuel and energy conservation practices in the operation...

  2. 14 CFR 152.609 - Energy conservation practices.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Energy conservation practices. 152.609... (CONTINUED) AIRPORTS AIRPORT AID PROGRAM Energy Conservation in Airport Aid Program § 152.609 Energy conservation practices. Each sponsor shall require fuel and energy conservation practices in the operation...

  3. 14 CFR 152.609 - Energy conservation practices.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 3 2013-01-01 2013-01-01 false Energy conservation practices. 152.609... (CONTINUED) AIRPORTS AIRPORT AID PROGRAM Energy Conservation in Airport Aid Program § 152.609 Energy conservation practices. Each sponsor shall require fuel and energy conservation practices in the operation...

  4. 14 CFR 152.609 - Energy conservation practices.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 3 2012-01-01 2012-01-01 false Energy conservation practices. 152.609... (CONTINUED) AIRPORTS AIRPORT AID PROGRAM Energy Conservation in Airport Aid Program § 152.609 Energy conservation practices. Each sponsor shall require fuel and energy conservation practices in the operation...

  5. 14 CFR 152.609 - Energy conservation practices.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false Energy conservation practices. 152.609... (CONTINUED) AIRPORTS AIRPORT AID PROGRAM Energy Conservation in Airport Aid Program § 152.609 Energy conservation practices. Each sponsor shall require fuel and energy conservation practices in the operation...

  6. Investigating Energy-Saving Potentials in the Cloud

    PubMed Central

    Lee, Da-Sheng

    2014-01-01

    Collecting webpage messages can serve as a sensor for investigating the energy-saving potential of buildings. Focusing on stores, a cloud sensor system is developed to collect data and determine their energy-saving potential. The owner of a store under investigation must register online, report the store address, area, and the customer ID number on the electric meter. The cloud sensor system automatically surveys the energy usage records by connecting to the power company website and calculating the energy use index (EUI) of the store. Other data includes the chain store check, company capital, location price, and the influence of weather conditions on the store; even the exposure frequency of store under investigation may impact the energy usage collected online. After collecting data from numerous stores, a multi-dimensional data array is constructed to determine energy-saving potential by identifying stores with similarity conditions. Similarity conditions refer to analyzed results that indicate that two stores have similar capital, business scale, weather conditions, and exposure frequency on web. Calculating the EUI difference or pure technical efficiency of stores, the energy-saving potential is determined. In this study, a real case study is performed. An 8-dimensional (8D) data array is constructed by surveying web data related to 67 stores. Then, this study investigated the savings potential of the 33 stores, using a site visit, and employed the cloud sensor system to determine the saving potential. The case study results show good agreement between the data obtained by the site visit and the cloud investigation, with errors within 4.17%. Among 33 the samples, eight stores have low saving potentials of less than 5%. The developed sensor on the cloud successfully identifies them as having low saving potential and avoids wasting money on the site visit. PMID:24561405

  7. Investigating energy-saving potentials in the cloud.

    PubMed

    Lee, Da-Sheng

    2014-01-01

    Collecting webpage messages can serve as a sensor for investigating the energy-saving potential of buildings. Focusing on stores, a cloud sensor system is developed to collect data and determine their energy-saving potential. The owner of a store under investigation must register online, report the store address, area, and the customer ID number on the electric meter. The cloud sensor system automatically surveys the energy usage records by connecting to the power company website and calculating the energy use index (EUI) of the store. Other data includes the chain store check, company capital, location price, and the influence of weather conditions on the store; even the exposure frequency of store under investigation may impact the energy usage collected online. After collecting data from numerous stores, a multi-dimensional data array is constructed to determine energy-saving potential by identifying stores with similarity conditions. Similarity conditions refer to analyzed results that indicate that two stores have similar capital, business scale, weather conditions, and exposure frequency on web. Calculating the EUI difference or pure technical efficiency of stores, the energy-saving potential is determined. In this study, a real case study is performed. An 8-dimensional (8D) data array is constructed by surveying web data related to 67 stores. Then, this study investigated the savings potential of the 33 stores, using a site visit, and employed the cloud sensor system to determine the saving potential. The case study results show good agreement between the data obtained by the site visit and the cloud investigation, with errors within 4.17%. Among 33 the samples, eight stores have low saving potentials of less than 5%. The developed sensor on the cloud successfully identifies them as having low saving potential and avoids wasting money on the site visit. PMID:24561405

  8. Is Energy Conservation Education Effective? An Evaluation of the Powersave Schools Program

    ERIC Educational Resources Information Center

    DiMatteo, Julie; Radnitz, Cynthia; Zibulsky, Jamie; Brown, Jeffrey; Deleasa, Courtney; Jacobs, Stephanie

    2014-01-01

    To strengthen energy conservation knowledge and behaviors in youth, the PowerSave Schools Program (PSP) instructs students using hands-on projects. However, there is a lack of empirical support for the PSP. The present study is the first to use a repeated measures design to assess its effectiveness in two school districts. In District 1, there was…

  9. Energy-Saving Opportunities for Manufacturing Enterprises (International English Fact Sheet)

    SciTech Connect

    Not Available

    2011-02-01

    This fact sheet provides information about the Industrial Technologies Program Save Energy Now energy audit process, software tools, training, energy management standards, and energy efficient technologies to help U.S. companies identify energy cost savings.

  10. Energy savings opportunity survey, Energy Engineering Analysis Program (EEAP), Fort Campbell, Kentucky. Phase I, volume 1, sections 1-4. Final report

    SciTech Connect

    1993-11-12

    Systems Corp surveyed and completed energy analyses for 98 buildings, fifteen chiller plants, and roadway lighting. The energy conservation opportunities (ECOs) evaluated were lighting efficiency improvements, instantaneous water heaters, heat recovery from hot refrigerant gases, absorption chiller replacements, and ground water coupled heat pumps. Cost estimates were prepared using M-CACES. Life cycle cost analyses were performed using the Life Cycle Cost in Design (LCCID) computer program. Project development brochures (PDBs) and DD1391 forms were prepared for Energy Conservation Investment Program (ECIP) projects. The projects that were developed represent $2,257,000 in annual savings with favorable simple paybacks and saving to investment ratios (SIRs).

  11. Angular momentum conservation in dipolar energy transfer.

    PubMed

    Guo, Dong; Knight, Troy E; McCusker, James K

    2011-12-23

    Conservation of angular momentum is a familiar tenet in science but has seldom been invoked to understand (or predict) chemical processes. We have developed a general formalism based on Wigner's original ideas concerning angular momentum conservation to interpret the photo-induced reactivity of two molecular donor-acceptor assemblies with physical properties synthetically tailored to facilitate intramolecular energy transfer. Steady-state and time-resolved spectroscopic data establishing excited-state energy transfer from a rhenium(I)-based charge-transfer state to a chromium(III) acceptor can be fully accounted for by Förster theory, whereas the corresponding cobalt(III) adduct does not undergo an analogous reaction despite having a larger cross-section for dipolar coupling. Because this pronounced difference in reactivity is easily explained within the context of the angular momentum conservation model, this relatively simple construct may provide a means for systematizing a broad range of chemical reactions. PMID:22194572

  12. Effects of television modeling on residential energy conservation

    PubMed Central

    Winett, Richard A.; Leckliter, Ingrid N.; Chinn, Donna E.; Stahl, Brian; Love, Susie Q.

    1985-01-01

    A combination of social marketing, communications, social learning (particularly modeling), and behavior analysis may provide an effective framework for behavior change via films and television. We used this approach in developing special television programs about residential energy conservation. The programs were tailored and directed to preselected middle-class homeowners (N = 150), and delivered over a public access channel of a cable TV system. The results indicated that after one program exposure (about 20 minutes), viewers adopted simple strategies modeled in the programs which led to savings of approximately 10% on their home energy use for a substantial part of the cooling and heating season. Although the potential benefits to costs of large-scale media efforts seemed great, institutional barriers for such programs were identified. Less expensive, more local programs seem more viable. PMID:16795683

  13. Energy Conservation Research Study. Final Report.

    ERIC Educational Resources Information Center

    Cayemberg, Merlin; And Others

    This study explored the availability of energy conservation programs at community colleges; the apparent need for such programs or courses by industry, business, and government; and the types of programs, if any, which should be offered at the vocational/technical level. Information was sought from 52 current two-year programs, the fifty state…

  14. Energy conservation, using remote thermal scanning

    NASA Technical Reports Server (NTRS)

    Bowman, R. L.; Jack, J. R.

    1978-01-01

    Airborne thermal infrared scans and thermal maps utilized in NASA's energy conservation program have proven to be efficient cost-effective method for identifying heat losses from building roofs and heating system distribution lines. Method employs commercially available equipment in highly developed way.

  15. Thermal Comfort and Strategies for Energy Conservation.

    ERIC Educational Resources Information Center

    Rohles, Frederick H., Jr.

    1981-01-01

    Discusses studies in thermal comfort which served as the basis for the comfort standard. Examines seven variables in the human response to the thermal environment in terms of the ways in which they can be modified to conserve energy. (Author/MK)

  16. The Urgent Need for Energy Conservation

    ERIC Educational Resources Information Center

    Abelson, Philip H.

    1973-01-01

    Discusses the serious nature of the Energy Crisis'' and the dependence of the United States economy on imported hydrocarbons. Urges immediate action to alleviate the situation by increasing domestic production of oil, substituting coal for oil, and by conservation, especially in the use of automobile fuel. (JR)

  17. Low-Tech Energy Conservation for Schools.

    ERIC Educational Resources Information Center

    Stein, Benjamin

    The American Institute of Architects National Committee on Architecture for Education presents this guide which addresses methods of energy conservation in school buildings with simple design, construction, and equipment-control technology so that trained and creative people can take over functions normally done by machinery and automated…

  18. 36 CFR 910.36 - Energy conservation.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 36 Parks, Forests, and Public Property 3 2014-07-01 2014-07-01 false Energy conservation. 910.36 Section 910.36 Parks, Forests, and Public Property PENNSYLVANIA AVENUE DEVELOPMENT CORPORATION GENERAL GUIDELINES AND UNIFORM STANDARDS FOR URBAN PLANNING AND DESIGN OF DEVELOPMENT WITHIN THE PENNSYLVANIA...

  19. Energy Conservation Featured in Illinois High School

    ERIC Educational Resources Information Center

    Modern Schools, 1976

    1976-01-01

    The William Fremd High School in Palatine, Illinois, scheduled to open in 1977, is being built with energy conservation uppermost in mind. In this system, 70 heat pumps will heat and cool 300,000 square feet of educational facilities. (Author/MLF)

  20. Energy conservation indicators. 1982 annual report

    SciTech Connect

    Belzer, D.B.

    1982-09-01

    A series of Energy Conservation Indicators were developed for the Department of Energy to assist in the evaluation of current and proposed conservation strategies. As descriptive statistics that signify current conditions and trends related to efficiency of energy use, indicators provide a way of measuring, monitoring, or inferring actual responses by consumers in markets for energy services. Related sets of indicators are presented in some 40 one-page indicator summaries. Indicators are shown graphically, followed by several paragraphs that explain their derivation and highlight key findings. Indicators are classified according to broad end-use sectors: Aggregate (economy), Residential, Commercial, Industrial, Transportation and Electric Utilities. In most cases annual time series information is presented covering the period 1960 through 1981.

  1. Delivering energy savings through community-based Organizations

    SciTech Connect

    Berry, David

    2010-11-15

    To achieve greater energy savings through energy efficiency programs, participation in those programs must increase. Community-based organizations provide a potentially effective way to reach more residential and small commercial consumers and increase the adoption of energy efficiency measures. (author)

  2. Energy Savings Performance Contracts (ESPC): Frequently Asked Questions

    SciTech Connect

    2012-11-01

    An ESPC is a working relationship between a Federal agency and an energy service company (ESCO). The ESCO conducts a comprehensive energy audit for the Federal facility and identifies improvements to save energy. The following sections present a number of frequently asked questions from ESPC end-users and stakeholders.

  3. Small School District Saves Money with Energy Grant.

    ERIC Educational Resources Information Center

    Kussmaul, Donald L.

    1983-01-01

    Describes how the small Tiskilwa (Illinois) school district used a United States Department of Energy grant to replace and block windows and insulate the attic in the elementary school. Describes savings in dollars and energy resulting from the energy audit and technical assistance phases of the project. (SB)

  4. The Power of Flexibility: Autonomous Agents That Conserve Energy in Commercial Buildings

    NASA Astrophysics Data System (ADS)

    Kwak, Jun-young

    Agent-based systems for energy conservation are now a growing area of research in multiagent systems, with applications ranging from energy management and control on the smart grid, to energy conservation in residential buildings, to energy generation and dynamic negotiations in distributed rural communities. Contributing to this area, my thesis presents new agent-based models and algorithms aiming to conserve energy in commercial buildings. More specifically, my thesis provides three sets of algorithmic contributions. First, I provide online predictive scheduling algorithms to handle massive numbers of meeting/event scheduling requests considering flexibility , which is a novel concept for capturing generic user constraints while optimizing the desired objective. Second, I present a novel BM-MDP ( Bounded-parameter Multi-objective Markov Decision Problem) model and robust algorithms for multi-objective optimization under uncertainty both at the planning and execution time. The BM-MDP model and its robust algorithms are useful in (re)scheduling events to achieve energy efficiency in the presence of uncertainty over user's preferences. Third, when multiple users contribute to energy savings, fair division of credit for such savings to incentivize users for their energy saving activities arises as an important question. I appeal to cooperative game theory and specifically to the concept of Shapley value for this fair division. Unfortunately, scaling up this Shapley value computation is a major hindrance in practice. Therefore, I present novel approximation algorithms to efficiently compute the Shapley value based on sampling and partitions and to speed up the characteristic function computation. These new models have not only advanced the state of the art in multiagent algorithms, but have actually been successfully integrated within agents dedicated to energy efficiency: SAVES, TESLA and THINC. SAVES focuses on the day-to-day energy consumption of individuals and

  5. Energy conservation in ice skating rinks

    SciTech Connect

    Dietrich, B.K.; McAvoy, T.J.

    1980-01-01

    An economic and energy analysis of ice rinks was made to examine the areas in which energy could be profitably conserved. The areas where new equipment could make a major reduction in energy use are: the use of waste heat for space heating, the installation of a low emissivity false ceiling to reduce radiant heat, the use of a load cycling controller to reduce refrigeration costs, and the installation of more efficient lighting systems. Changes in rink operating procedure that could cut energy use are: higher refrigerant temperatures, thinner ice, the use of colder resurfacing water, turning the compressors and pumps off at night, and reducing ventilation.

  6. Energy Savings from GSA's National Deep Retrofit Program

    SciTech Connect

    Shonder, John A

    2014-09-01

    Under its National Deep Energy Retrofit (NDER) program, the U.S. General Services Administration (GSA) awarded 10 ESPC projects with the objectives of using innovative technologies and renewable energy technologies, and moving buildings toward net zero energy consumption. This report analyzes data on energy savings from the 10 NDER projects, and compares them with the savings of a sample of other recently awarded Federal ESPC projects. It is shown that by emphasizing the need for deeper energy savings, and by the establishment of a central Project Management Office (PMO) to provide authoritative contracting, technical and pricing assistance, the NDER projects achieved an average level of savings more than twice that of the other Federal ESPC projects. The level of savings achieved in each project seems to be dependent more on the availability of ECMs at the site than on energy price, energy cost per square foot, pre-retrofit EUI or the length of the contract term. This suggests that GSA can achieve similar results in a wide variety of building

  7. Energy conservation for dynamical black holes.

    PubMed

    Hayward, Sean A

    2004-12-17

    An energy conservation law is described, expressing the increase in mass-energy of a general black hole in terms of the energy densities of the infalling matter and gravitational radiation. This first law of black-hole dynamics describes how a black hole grows and is regular in the limit where it ceases to grow. An effective gravitational-radiation energy tensor is obtained, providing measures of both ingoing and outgoing, transverse and longitudinal gravitational radiation on and near a black hole. Corresponding energy-tensor forms of the first law involve a preferred time vector which plays the role of a stationary Killing vector. Identifying an energy flux, vanishing if and only if the horizon is null, allows a division into energy supply and work terms. The energy supply can be expressed in terms of area increase and a newly defined surface gravity, yielding a Gibbs-like equation. PMID:15697889

  8. Transportation energy conservation data book: Edition 4

    SciTech Connect

    Kulp, G.; Shonka, D.B.; Collins, M.J.; Murphy, B.J.; Reed, K.J.

    1980-09-01

    This is the fourth edition of the Transportation Energy Conservation Data Book, a statistical compendium compiled and published by ORNL for DOE. Secondary data on transportation characteristics by mode, on transportation energy use, and on other related variables are presented in tabular and/or graphic form. All major modes of transportation are represented: highway, air, rail, marine, and pipeline. The six main chapters focus on various characteristics of the transportation sector including (1) modal characteristics, (2) current energy use, efficiency and conservation, (3) projections of modal energy use, (4) impact of government activities, (5) supply and cost of energy, and (6) general demographic and economic characteristics. Included in the tables and figures are the following transportation stock and use statistics: number of vehicles, vehicle-miles traveled, passenger-miles and freight ton-miles, fleet characteristics, household automobile ownership, size mix of automobiles, vehicle travel characteristics, and commuting patterns. Energy characteristics presented include energy use by fuel source and transportation mode, energy intensity figures by mode, indirect energy use, production as a percent of consumption, imports as a percent of domestic production, energy prices from the wellhead to the retail outlet, and alternative fuels.

  9. Energy Conservation Guidebook : to be Used in Conjunction with the Energy Conservation Policies October 1993.

    SciTech Connect

    United States. Bonneville Power Administration.

    1993-11-01

    This guidebook is an instrument for implementing BPA`s Energy Conservation Policies established through the concensus of the four Area Office Managers and the Assistant Administrator for the Office of Energy Resources. As technical support for, and elaboration of, the Energy Conservation Policies, the Guidebook follows the format of the Policies themselves. The Guidebook tackles each section of the Policies in order, again assigning roles and responsibilities where appropriate, enlarging on policy issues and, where appropriate, outlining data considerations. The sections in order are: conservation load reduction, cost-effectiveness limits, BA management targets, consumer contributions, utility contribution, program verification, and program evaluation.

  10. Evaluating energy and non-energy impacts of energy conservation programs: A supply curve framework of analysis

    SciTech Connect

    Vine, E.; Harris, J.

    1989-06-01

    Historically, the evaluation of energy conservation programs has focused primarily on energy savings and costs. The recent, increased interest in global environmental problems (e.g., acid rain, ozone depletion, and the greenhouse effect), has made decision makers, as well as program evaluators, sensitive to the environmental impacts of all programs, including energy conservation programs. Economic impacts of programs remain important policy concerns. Many state and local jurisdictions are concerned with the net effects of energy policies on economic growth, jobs, and tax revenues, as well as the impacts of growth and development on local energy issues (e.g., construction of new power plants). Consequently, policy makers need a methodology to compare easily the energy and non-energy impacts of a specific program in a consistent way, for both retrospective analysis and for prospective planning. We present the general concepts of a proposed new approach to multi-attribute analysis, as an extension of the concept of ''supply curves of conserved energy.'' In their simplest form, energy conservation supply curves rank and display the savings from conservation measures in order of their cost-effectiveness. This simple concept is extended to reflect multiple decision criteria and some important linkages between energy and non-energy policy decisions (e.g., a ''supply curve of reduced carbon emissions, ''or a ''supply curve of net local job-creation''). The framework is flexible enough, so that policy makers can weigh and compare each of the impacts to reflect their concerns, and see the results in terms of program rankings. The advantages of this analysis framework are that it is simple to use, flexible, and replicable. 15 refs., 6 figs.

  11. Multi-faceted energy-conservation program. Final technical report

    SciTech Connect

    Not Available

    1981-01-01

    The purpose of this project was to design and build 19 solar thermosiphoning air panels, insulate walls, generally tighten up the library building, and install other energy conserving devices. Another purpose of the project was to serve as a model to other libraries in Kentucky, to commercial buildings in this area, and to homeowners in the area. After much discussion with architects and among ourselves, we chose a type of solar installation that would be visible to the public and easily replicated. We also carried out a number of procedures to make the library building more energy efficient: installed a 7-day programmable setback thermostat; insulated the walls; improved weatherstripping around the doors; added an economizer control to our air-handling system; and put an electric damper controlling supply air to a large but intermittently usedmeeting room. These changes resulted in approximately $700 in savings from December 1981, through February 1982. Thus far, we have carried out public education with a sign, brochures, press releases, and the purchase of appropriate books; librarians have received our brochure, and some have attended a workshop given here on energy conservation and solar energy.

  12. Mission aware energy saving strategies for Army ground vehicles

    NASA Astrophysics Data System (ADS)

    Dattathreya, Macam S.

    Fuel energy is a basic necessity for this planet and the modern technology to perform many activities on earth. On the other hand, quadrupled automotive vehicle usage by the commercial industry and military has increased fuel consumption. Military readiness of Army ground vehicles is very important for a country to protect its people and resources. Fuel energy is a major requirement for Army ground vehicles. According to a report, a department of defense has spent nearly $13.6 billion on fuel and electricity to conduct ground missions. On the contrary, energy availability on this plant is slowly decreasing. Therefore, saving energy in Army ground vehicles is very important. Army ground vehicles are embedded with numerous electronic systems to conduct missions such as silent and normal stationary surveillance missions. Increasing electrical energy consumption of these systems is influencing higher fuel consumption of the vehicle. To save energy, the vehicles can use any of the existing techniques, but they require complex, expensive, and time consuming implementations. Therefore, cheaper and simpler approaches are required. In addition, the solutions have to save energy according to mission needs and also overcome size and weight constraints of the vehicle. Existing research in the current literature do not have any mission aware approaches to save energy. This dissertation research proposes mission aware online energy saving strategies for stationary Army ground vehicles to save energy as well as to meet the electrical needs of the vehicle during surveillance missions. The research also proposes theoretical models of surveillance missions, fuzzy logic models of engine and alternator efficiency data, and fuzzy logic algorithms. Based on these models, two energy saving strategies are proposed for silent and normal surveillance type of missions. During silent mission, the engine is on and batteries power the systems. During normal surveillance mission, the engine is

  13. Market analysis, energy savings potential, and future development requirements for Radiance. Final report

    SciTech Connect

    Not Available

    1993-10-01

    The Department of Energy (DOE) Office of Conservation and Renewable Energy (CE), Building Equipment Division has funded the development of a sophisticated computer rendering program called Radiance at Lawrence Berkeley Laboratories (LBL). The project review study included: (1) Surveys of the lighting profession to determine how designers would use an improved, user-friendly Radiance, (2) Elucidation of features, including how Radiance could be used to save energy, which could be incorporated into Radiance to facilitate its more widespread use, (3) Outline of a development plan and determination of what costs the DOE might incur if it were to proceed with the development of an improved version, and (4) Weighing the anticipated development costs against anticipated energy-saving benefits.

  14. A Save-Energy, Save-Money Program That Pays Off

    ERIC Educational Resources Information Center

    Embersits, John F.

    1976-01-01

    Suggested guidelines for energy saving on campus include a 3-phase plan: (1) Quick Fix--effective management of what you already have; (2) Refitting--modification of existing systems and installation of simple controls; (3) Systems Convert--installation of computerized controls, waste-heat recovery, solid-waste recovery utilization and other…

  15. The role of thermal energy storage in industrial energy conservation

    NASA Technical Reports Server (NTRS)

    Duscha, R. A.; Masica, W. J.

    1979-01-01

    Thermal Energy Storage for Industrial Applications is a major thrust of the Department of Energy's Thermal Energy Storage Program. Utilizing Thermal Energy Storage (TES) with process or reject heat recovery systems is shown to be extremely beneficial for several applications. Recent system studies resulting from contracts awarded by the Department of Energy (DOE) identified four especially significant industries where TES appears attractive - food processing, paper and pulp, iron and steel, and cement. Potential annual fuel savings with large scale implementation of near term TES systems for these industries is over 9,000,000 bbl of oil. This savings is due to recuperation and storage in the food processing industry, direct fuel substitution in the paper and pulp industry and reduction in electric utility peak fuel use through inplant production of electricity from utilization of reject heat in the steel and cement industries.

  16. Gravitational Energy-Momentum and Conservation of Energy-Momentum in General Relativity

    NASA Astrophysics Data System (ADS)

    Wu, Zhao-Yan

    2016-06-01

    Based on a general variational principle, Einstein-Hilbert action and sound facts from geometry, it is shown that the long existing pseudotensor, non-localizability problem of gravitational energy-momentum is a result of mistaking different geometrical, physical objects as one and the same. It is also pointed out that in a curved spacetime, the sum vector of matter energy-momentum over a finite hyper-surface can not be defined. In curvilinear coordinate systems conservation of matter energy-momentum is not the continuity equations for its components. Conservation of matter energy-momentum is the vanishing of the covariant divergence of its density-flux tensor field. Introducing gravitational energy-momentum to save the law of conservation of energy-momentum is unnecessary and improper. After reasonably defining “change of a particle's energy-momentum”, we show that gravitational field does not exchange energy-momentum with particles. And it does not exchange energy-momentum with matter fields either. Therefore, the gravitational field does not carry energy-momentum, it is not a force field and gravity is not a natural force.

  17. Window Treatment Phase I and Other Energy II Conservation Measures.

    ERIC Educational Resources Information Center

    Donohue, Philip E.

    Six different energy-saving treatments for large window areas were tested by Tompkins-Cortland Community College (TCCC) to coordinate energy saving with building design. The TCCC building has an open space design with 33,000 square feet of external glass and other features causing heating problems and high energy costs. Phase I of the…

  18. 78 FR 62494 - Energy Conservation Program: Energy Conservation Standards for Ceiling Fans

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-10-22

    ... air conditioning usage. To inform interested parties and to facilitate this process, DOE has... energy-saving appliances because they reduce the use of air conditioning. (American Lighting Association... between ceiling fans and air conditioning products. Although DOE welcomes any relevant data on this...

  19. 75 FR 1121 - Energy Conservation Program: Energy Conservation Standards for Certain Consumer Products...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-01-08

    ... Net Present Value Analysis 1. General 2. Shipments a. New Construction Shipments b. Replacements and.... National Impact Analysis a. Amount and Significance of Energy Savings b. Net Present Value of Customer... without amended standards. The values refer to average impacts for the 4 percent of consumers who would...

  20. Energy-conservation opportunities in lighting

    SciTech Connect

    1981-04-01

    Technologies and techniques which can be employed by your existing personnel - without the need for consultants - to reduce your lighting costs by as much as 70% are discussed. Four basic steps to reduce energy costs and improve the effectiveness of the lighting system discussed are: get acquainted with some of the basic terminology and energy efficient lamps and fixtures which are on the market; conduct a survey of the building to determine where and how much energy and money can be saved in the process; implement the simple, low-cost or no-cost measures immediately; and calculate the payback period for capital investment modifications, and implement those which make economic sense. Case studies are used to illustrate the recommendations. (MCW)

  1. Save Energy Now Assessments Results 2008 Summary Report

    SciTech Connect

    Wright, Anthony L; Martin, Michaela A; Nimbalkar, Sachin U; Quinn, James; Glatt, Ms. Sandy; Orthwein, Mr. Bill

    2010-09-01

    In October 2005, U.S. Department of Energy Secretary Bodman launched his Easy Ways to Save Energy campaign with a promise to provide energy assessments to 200 of the largest U.S. manufacturing plants. DOE's Industrial Technologies Program (ITP) responded to the Secretary's campaign with its Save Energy Now initiative, featuring a new and highly cost-effective form of energy savings assessment. The approach for these assessments drew heavily on the existing resources of ITP's technology delivery component. Over the years, ITP Technology Delivery has worked with industry partners to assemble a suite of respected software tools, proven assessment protocols, training curricula, certified energy experts, and strong partnerships for deployment. The Save Energy Now assessments conducted in calendar year 2006 focused on natural gas savings and targeted many of the nation's largest manufacturing plants - those that consume at least 1 TBtu of energy annually. The 2006 Save Energy Now assessments focused primarily on assessments of steam and process heating systems, which account for an estimated 74% of all natural gas use by U.S. manufacturing plants. Because of the success of the Save Energy Now assessments conducted in 2006 and 2007, the program was expanded and enhanced in two major ways in 2008: (1) a new goal was set to perform at least 260 assessments; and (2) the assessment focus was expanded to include pumping, compressed air, and fan systems in addition to steam and process heating. DOE ITP also has developed software tools to assess energy efficiency improvement opportunities in pumping, compressed air, and fan systems. The Save Energy Now assessments integrate a strong training component designed to teach industrial plant personnel how to use DOE's opportunity assessment software tools. This approach has the advantages of promoting strong buy-in of plant personnel for the assessment and its outcomes and preparing them better to independently replicate the

  2. Save Energy Now Assessments Results 2008 Detailed Report

    SciTech Connect

    Wright, Anthony L; Martin, Michaela A; Nimbalkar, Sachin U; Quinn, James; Glatt, Ms. Sandy; Orthwein, Mr. Bill

    2010-09-01

    In October 2005, U.S. Department of Energy Secretary Bodman launched his Easy Ways to Save Energy campaign with a promise to provide energy assessments to 200 of the largest U.S. manufacturing plants. DOE's Industrial Technologies Program (ITP) responded to the Secretary's campaign with its Save Energy Now initiative, featuring a new and highly cost-effective form of energy savings assessment. The approach for these assessments drew heavily on the existing resources of ITP's technology delivery component. Over the years, ITP Technology Delivery has worked with industry partners to assemble a suite of respected software tools, proven assessment protocols, training curricula, certified energy experts, and strong partnerships for deployment. The Save Energy Now assessments conducted in calendar year 2006 focused on natural gas savings and targeted many of the nation's largest manufacturing plants - those that consume at least 1 TBtu of energy annually. The 2006 Save Energy Now assessments focused primarily on assessments of steam and process heating systems, which account for an estimated 74% of all natural gas use by U.S. manufacturing plants. Because of the success of the Save Energy Now assessments conducted in 2006 and 2007, the program was expanded and enhanced in two major ways in 2008: (1) a new goal was set to perform at least 260 assessments; and (2) the assessment focus was expanded to include pumping, compressed air, and fan systems in addition to steam and process heating. DOE ITP also has developed software tools to assess energy efficiency improvement opportunities in pumping, compressed air, and fan systems. The Save Energy Now assessments integrate a strong training component designed to teach industrial plant personnel how to use DOE's opportunity assessment software tools. This approach has the advantages of promoting strong buy-in of plant personnel for the assessment and its outcomes and preparing them better to independently replicate the

  3. Interference and the Law of Energy Conservation

    NASA Astrophysics Data System (ADS)

    Drosd, Robert; Minkin, Leonid; Shapovalov, Alexander S.

    2014-10-01

    Introductory physics textbooks consider interference to be a process of redistribution of energy from the wave sources in the surrounding space resulting in constructive and destructive interferences. As one can expect, the total energy flux is conserved. However, one case of apparent non-conservation energy attracts great attention.1,2 Imagine that a pair of coherent, point-like wave sources (located at the same position) radiates sinusoidal waves of amplitude A, spreading in a uniform medium. Assume also that radiation of the two sources is in phase. Since the energy of oscillation, E, is proportional to amplitude squared, one quickly arrives at an apparent paradox. That is, the energy of oscillation in every point due to only one source is E0=CA2 (C is the coefficient of proportionality), while according to the linear superposition principle, the combined amplitude of oscillations from the two sources is 2A and the energy of oscillations is E =C(2A)2=4CA2=4E0, i.e., four (not two) times greater than the energy of oscillation of one isolated source in the absence of the second. In the general case, superposition of two waves with identical amplitudes and wavelengths produces a wave with an intensity somewhere between zero and four times the intensity of a single wave source (depending on relative phase of the two waves). This leads to the obvious question: how can we account for the extra (or missing) energy that necessarily results from in-phase (or anti-phase) wave interference? This apparent violation of the principle of conservation energy, due to the superposition of waves, is the primary topic of this paper.

  4. Energy Savings From System Efficiency Improvements in Iowa's HVAC SAVE Program

    SciTech Connect

    Yee, S.; Baker, J.; Brand, L.; Wells, J.

    2013-08-01

    The objective of this project is to explore the energy savings potential of maximizing furnace and distribution system performance by adjusting operating, installation, and distribution conditions. The goal of the Iowa HVAC System Adjusted and Verified Efficiency (SAVE) program is to train contractors to measure installed system efficiency as a diagnostic tool to ensure that the homeowner achieves the energy reduction target for the home rather than simply performing a tune-up on the furnace or having a replacement furnace added to a leaky system. The PARR research team first examined baseline energy usage from a sample of 48 existing homes, before any repairs or adjustments were made, to calculate an average energy savings potential and to determine which system deficiencies were prevalent. The results of the baseline study of these homes found that, on average, about 10% of the space heating energy available from the furnace was not reaching the conditioned space. In the second part of the project, the team examined a sample of 10 homes that had completed the initial evaluation for more in-depth study. For these homes, the diagnostic data shows that it is possible to deliver up to 23% more energy from the furnace to the conditioned space by doing system tune ups with or without upgrading the furnace. Replacing the furnace provides additional energy reduction. The results support the author's belief that residential heating and cooling equipment should be tested and improved as a system rather than a collection of individual components.

  5. VO2 thermochromic smart window for energy savings and generation

    NASA Astrophysics Data System (ADS)

    Zhou, Jiadong; Gao, Yanfeng; Zhang, Zongtao; Luo, Hongjie; Cao, Chuanxiang; Chen, Zhang; Dai, Lei; Liu, Xinling

    2013-10-01

    The ability to achieve energy saving in architectures and optimal solar energy utilisation affects the sustainable development of the human race. Traditional smart windows and solar cells cannot be combined into one device for energy saving and electricity generation. A VO2 film can respond to the environmental temperature to intelligently regulate infrared transmittance while maintaining visible transparency, and can be applied as a thermochromic smart window. Herein, we report for the first time a novel VO2-based smart window that partially utilises light scattering to solar cells around the glass panel for electricity generation. This smart window combines energy-saving and generation in one device, and offers potential to intelligently regulate and utilise solar radiation in an efficient manner.

  6. Raytheon: Compressed Air System Upgrade Saves Energy and Improves Performance

    SciTech Connect

    Not Available

    2005-04-01

    In 2003, Raytheon Company upgraded the efficiency of the compressed air system at its Integrated Air Defense Center in Andover, Massachusetts, to save energy and reduce costs. Worn compressors and dryers were replaced, a more sophisticated control strategy was installed, and an aggressive leak detection and repair effort was carried out. The total cost of these improvements was $342,000; however, National Grid, a utility service provider, contributed a $174,000 incentive payment. Total annual energy and maintenance cost savings are estimated at $141,500, and energy savings are nearly 1.6 million kWh. This case study was prepared for the U.S. Department of Energy's Industrial Technologies Program.

  7. VO₂ thermochromic smart window for energy savings and generation.

    PubMed

    Zhou, Jiadong; Gao, Yanfeng; Zhang, Zongtao; Luo, Hongjie; Cao, Chuanxiang; Chen, Zhang; Dai, Lei; Liu, Xinling

    2013-01-01

    The ability to achieve energy saving in architectures and optimal solar energy utilisation affects the sustainable development of the human race. Traditional smart windows and solar cells cannot be combined into one device for energy saving and electricity generation. A VO2 film can respond to the environmental temperature to intelligently regulate infrared transmittance while maintaining visible transparency, and can be applied as a thermochromic smart window. Herein, we report for the first time a novel VO2-based smart window that partially utilises light scattering to solar cells around the glass panel for electricity generation. This smart window combines energy-saving and generation in one device, and offers potential to intelligently regulate and utilise solar radiation in an efficient manner. PMID:24157625

  8. VO2 thermochromic smart window for energy savings and generation

    PubMed Central

    Zhou, Jiadong; Gao, Yanfeng; Zhang, Zongtao; Luo, Hongjie; Cao, Chuanxiang; Chen, Zhang; Dai, Lei; Liu, Xinling

    2013-01-01

    The ability to achieve energy saving in architectures and optimal solar energy utilisation affects the sustainable development of the human race. Traditional smart windows and solar cells cannot be combined into one device for energy saving and electricity generation. A VO2 film can respond to the environmental temperature to intelligently regulate infrared transmittance while maintaining visible transparency, and can be applied as a thermochromic smart window. Herein, we report for the first time a novel VO2-based smart window that partially utilises light scattering to solar cells around the glass panel for electricity generation. This smart window combines energy-saving and generation in one device, and offers potential to intelligently regulate and utilise solar radiation in an efficient manner. PMID:24157625

  9. 75 FR 41102 - Energy Conservation Program: Energy Conservation Standards for Furnace Fans: Reopening of Public...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-15

    ... standards for furnace fans on June 3, 2010 by publishing a notice in the Federal Register (75 FR 31323). The... establish energy conservation standards for the use of electricity for purposes of circulating air...

  10. 78 FR 36315 - Energy Conservation Program: Energy Conservation Standards for Standby Mode and Off Mode for...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-17

    ... and Residential Dishwashers, Dehumidifiers, and Cooking Products'' (Framework Document).\\9\\ 71 FR... microwave oven product types. DOE's product testing and reverse-engineering analysis additionally determined... amended, prescribes energy conservation standards for various consumer products and certain commercial...

  11. Energy savings potential in air conditioners and chiller systems

    SciTech Connect

    Kaya, Durmus; Alidrisi, Hisham

    2014-01-22

    In the current paper we quantified and evaluated the energy saving potential in air conditioners and chiller systems. Here, we also showed how to reduce the cost of air conditioners and chiller systems in existing facilities on the basis of payback periods. Among the measures investigated were: (1) installing higher efficiency air conditioners, (2) installing higher efficiency chillers, (3) duty cycling air conditioning units, and (4) utilizing existing economizers on air conditioning units. For each method, examples were provided from Arizona, USA. In these examples, the amount of saved energy, the financial evaluation of this energy, and the investment cost and pay back periods were calculated.

  12. Energy savings potential in air conditioners and chiller systems

    DOE PAGESBeta

    Kaya, Durmus; Alidrisi, Hisham

    2014-01-22

    In the current paper we quantified and evaluated the energy saving potential in air conditioners and chiller systems. Here, we also showed how to reduce the cost of air conditioners and chiller systems in existing facilities on the basis of payback periods. Among the measures investigated were: (1) installing higher efficiency air conditioners, (2) installing higher efficiency chillers, (3) duty cycling air conditioning units, and (4) utilizing existing economizers on air conditioning units. For each method, examples were provided from Arizona, USA. In these examples, the amount of saved energy, the financial evaluation of this energy, and the investment costmore » and pay back periods were calculated.« less

  13. Retrofit energy conservation in residential buildings in southern California

    NASA Technical Reports Server (NTRS)

    Turner, R. H.; Birur, G. C.; Daksla, C.

    1982-01-01

    The common energy conservation techniques (ECTs) that can be retrofit-installed into residential buildings are surveyed. The quantity of saved energy for heating and cooling attributable to each ECT is evaluated for three common modes of heating: natural gas heating at 60/therm; heating via heat pump at $1.20/therm; and electric resistance heating at $2.40/therm. In every case, a life cycle cost comparison is made between the long term revenue due to energy conservation and a safe and conventional alternative investment that might be available to the prudent homeowner. The comparison between investment in an ECT and the alternative investment is brought into perspective using the life cycle payback period and an economic Figure of Merit (FOM). The FOM allows for relative ranking between candidate ECTs. Because the entire spectrum of winter heating climates in California is surveyed, the decision maker can determine whether or not a considered ECT is recommended in a given climate, and under what conditions an ECT investment becomes attractive.

  14. Energy conservation and management system using efficient building automation

    NASA Astrophysics Data System (ADS)

    Ahmed, S. Faiz; Hazry, D.; Tanveer, M. Hassan; Joyo, M. Kamran; Warsi, Faizan A.; Kamarudin, H.; Wan, Khairunizam; Razlan, Zuradzman M.; Shahriman A., B.; Hussain, A. T.

    2015-05-01

    In countries where the demand and supply gap of electricity is huge and the people are forced to endure increasing hours of load shedding, unnecessary consumption of electricity makes matters even worse. So the importance and need for electricity conservation increases exponentially. This paper outlines a step towards the conservation of energy in general and electricity in particular by employing efficient Building Automation technique. It should be noted that by careful designing and implementation of the Building Automation System, up to 30% to 40% of energy consumption can be reduced, which makes a huge difference for energy saving. In this study above mentioned concept is verified by performing experiment on a prototype experimental room and by implementing efficient building automation technique. For the sake of this efficient automation, Programmable Logic Controller (PLC) is employed as a main controller, monitoring various system parameters and controlling appliances as per required. The hardware test run and experimental findings further clarifies and proved the concept. The added advantage of this project is that it can be implemented to both small and medium level domestic homes thus greatly reducing the overall unnecessary load on the Utility provider.

  15. Solar energy, conservation, and rental housing

    SciTech Connect

    Levine, A.; Raab, J.

    1981-03-01

    Renters must pay the majority of energy costs either directly or in their rents. They have limited financial and legal abilities to make improvements necessary to increase substantially the energy efficiency of rental housing. This report discusses the problem of how to increase investments in energy conservation and solar energy devices for rental housing, which constitutes over one-third of US housing. As background, this report characterizes the rental-housing market, including owners' decision-making criteria. Federal, state, and local policies that affect energy-related investments in rental housing are described. Programs are divided into five major categories: (1) programs for tenants, (2) financial incentives for owners, (3) leasing of solar energy equipment, (4) mediation between tenants and landlords, and (5) regulation. The report concludes that energy and conservation programs aimed at the residential sector must disaggregate owner-occupied housing from rental housing for maximum effect. No one program is advocated since local rental-housing markets differ substantially. For improvements greater than no-cost or low-cost items, programs must be directed at rental-housing owners and not only at tenants.

  16. Vacuum Pump System Optimization Saves Energy at a Dairy Farm

    SciTech Connect

    2001-08-01

    In 1998, S&S Dairy optimized the vacuum pumping system at their dairy farm in Modesto, California. In an effort to reduce energy costs, S&S Dairy evaluated their vacuum pumping system to determine if efficiency gains and energy savings were possible.

  17. Compressed air system upgrade results in substantial energy savings

    SciTech Connect

    None, None

    2002-01-01

    This case study highlights a compressed air system upgrade at BWX Technologies manufacturing plant in Lynchburg, Virginia, which replaced antiquated compressors and dryers and implemented an improved control strategy, resulting in improved energy efficiency and savings in energy and maintenance costs.

  18. The Energy Smart Guide to Campus Cost Savings.

    ERIC Educational Resources Information Center

    Department of Energy, Washington, DC. Office of Energy Efficiency and Renewable Energy.

    Rebuild America is a program of the U.S. Department of Energy that focuses on energy-savings solutions as community solutions. It works with K-12 schools, colleges and universities, state and local governments, public and multifamily housing, and commercial buildings. This guide focuses on colleges and universities. Each chapter spells out options…

  19. Geothermal energy savings for a New Zealand alfalfa drying plant

    SciTech Connect

    van de Wydeven, F.; Freeston, D.H.

    1980-12-01

    The existing alfalfa drying plant was analyzed to determine the efficiency and cost of energy use per unit of production. Further studies are reported of possibilities for energy savings both in the existing plant and in the future development which will incorporate a second dryer and treble the output. (MHR)

  20. Low-cost energy conserving zip-up curtains

    SciTech Connect

    Wehrli, R.

    1985-01-01

    We originally estimated that sealed fabric curtains would be capable of saving 5% of the heat lost by windows. At the conclusion of our tests it was apparent that they were significantly more effective; and in fact, performed at a level more akin to double glazing by reducing window energy consumption by 20%. Zip-up curtains conserve energy by increasing the effective R-value of the windows they cover during the night while allowing beneficial solar gain during the day. According to the National Bureau of Standards, windows cause 5% of the Nation's energy losses. If zip-up curtains were adopted universally in the United States, they could save 20% of the the 5%, thereby reducing the Nation's energy losses 1%. The results of tests conducted on the zip-up curtains during the winter of 1981-1982 showed significant insulating value. In those tests, employment of the sealed fabric curtains showed an increase in window R-value to 1.77 from the 0.9 of single-glazed windows, nearly halving the energy loss. Many buildings have adopted double-glazing as a means of reducing energy use. When zip-up curtains are used on double-glazed windows, the R-value is increased by less than when they are used on single-glazed windows. The R-value for double glazed windows is 2.00 and when zip-up curtains are added, this is increased by 30% to 2.87 as compared to the almost 50% increase with single glazing. Therefore, it is necessary to take this into account in determining the national or regional impact of adoption of sealed-fabric curtains. 29 figures, 4 tables.

  1. Individual Action for Energy Conservation; Committee on Science and Astronautics, U.S. House of Representatives, Ninety-Third Congress, First Session. [Committee Print].

    ERIC Educational Resources Information Center

    Congress of the U.S., Washington, DC. House Committee on Science and Technology.

    This pamphlet lists suggestions for conserving energy. The suggestions are intended for use by citizens. It includes tips on transportation practices emphasizing driving and purchasing an automobile, cooling and heating residential homes, use of home appliances, and preparing for a vacation. The energy saving tips are also aimed at saving money…

  2. Comparison of software models for energy savings from cool roofs

    SciTech Connect

    New, Joshua; Miller, William A.; Huang, Yu; Levinson, Ronnen

    2015-06-07

    For this study, a web-based Roof Savings Calculator (RSC) has been deployed for the United States Department of Energy as an industry-consensus tool to help building owners, manufacturers, distributors, contractors and researchers easily run complex roof and attic simulations. RSC simulates multiple roof and attic technologies for side-by-side comparison including reflective roofs, different roof slopes, above sheathing ventilation, radiant barriers, low-emittance roof surfaces, duct location, duct leakage rates, multiple substrate types, and insulation levels. Annual simulations of hour-by-hour, whole-building performance are used to provide estimated annual energy and cost savings from reduced HVAC use. While RSC reported similar cooling savings to other simulation engines, heating penalty varied significantly. RSC results show reduced cool roofing cost-effectiveness, thus mitigating expected economic incentives for this countermeasure to the urban heat island effect. This paper consolidates comparison of RSC's projected energy savings to other simulation engines including DOE-2.1E, AtticSim, Micropas, and EnergyPlus. Also included are comparisons to previous simulation-based studies, analysis of RSC cooling savings and heating penalties, the role of radiative heat exchange in an attic assembly, and changes made for increased accuracy of the duct model. Finally, radiant heat transfer and duct interaction not previously modeled is considered a major contributor to heating penalties.

  3. Comparison of Software Models for Energy Savings from Cool Roofs

    SciTech Connect

    New, Joshua Ryan; Miller, William A; Huang, Yu; Levinson, Ronnen

    2016-01-01

    A web-based Roof Savings Calculator (RSC) has been deployed for the United States Department of Energy as an industry-consensus tool to help building owners, manufacturers, distributors, contractors and researchers easily run complex roof and attic simulations. RSC simulates multiple roof and attic technologies for side-by-side comparison including reflective roofs, different roof slopes, above sheathing ventilation, radiant barriers, low-emittance roof surfaces, duct location, duct leakage rates, multiple substrate types, and insulation levels. Annual simulations of hour-by-hour, whole-building performance are used to provide estimated annual energy and cost savings from reduced HVAC use. While RSC reported similar cooling savings to other simulation engines, heating penalty varied significantly. RSC results show reduced cool roofing cost-effectiveness, thus mitigating expected economic incentives for this countermeasure to the urban heat island effect. This paper consolidates comparison of RSC s projected energy savings to other simulation engines including DOE-2.1E, AtticSim, Micropas, and EnergyPlus. Also included are comparisons to previous simulation-based studies, analysis of RSC cooling savings and heating penalties, the role of radiative heat exchange in an attic assembly, and changes made for increased accuracy of the duct model. Radiant heat transfer and duct interaction not previously modeled is considered a major contributor to heating penalties.

  4. Federal Government Energy Management and Conservation Programs Fiscal Year 2008

    SciTech Connect

    None, None

    2014-03-01

    Annual reports on Federal energy management respond to section 548 of the National Energy Conservation Policy Act (NECPA, Pub. L. No. 95-619), as amended, and provide information on energy consumption in Federal buildings, operations, and vehicles. Compiled by the Federal Energy Management Program, these reports document activities conducted by Federal agencies under the: Energy management and energy consumption requirements of section 543 of NECPA, as amended (42 U.S.C. § 8253); Energy savings performance contract authority of section 801 of NECPA, Pub. L. No. 95-619, as amended (42 U.S.C. §§ 8287-8287d); Renewable energy purchase goal of section 203 of the Energy Policy Act (EPAct) of 2005, Pub. L. No. 109-58 (codified at 42 U.S.C. § 15852); Federal building performance standard requirements under Section 109 of EPAct 2005, Pub. L. No. 109-58 (codified at 42 U.S.C. § 6834(a)); Requirements on the procurement and identification of energy efficient products under section 161 of EPAct 1992, Pub. L. No. 102-486 (codified at 42 U.S.C. § 8262g); Sections 431, 432, and 434 of the Energy Independence and Security Act of 2007 (EISA), Pub. L. No. 110-140 (42 U.S.C. § 8253) and section 527 of EISA (42 U.S.C. § 17143); Executive Order 13423, Strengthening Federal Environmental, Energy, and Transportation Management, 72 Fed. Reg. 3,919 (Jan. 26, 2007); Executive Order 13514, Federal Leadership in Environmental, Energy, and Economic Performance, 74 Fed. Reg. 52,117 (Oct. 5, 2009).

  5. Federal Government Energy Management and Conservation Programs Fiscal Year 2009

    SciTech Connect

    None, None

    2014-03-01

    Annual reports on Federal energy management respond to section 548 of the National Energy Conservation Policy Act (NECPA, Pub. L. No. 95-619), as amended, and provide information on energy consumption in Federal buildings, operations, and vehicles. Compiled by the Federal Energy Management Program, these reports document activities conducted by Federal agencies under the: Energy management and energy consumption requirements of section 543 of NECPA, as amended (42 U.S.C. § 8253); Energy savings performance contract authority of section 801 of NECPA, Pub. L. No. 95-619, as amended (42 U.S.C. §§ 8287-8287d); Renewable energy purchase goal of section 203 of the Energy Policy Act (EPAct) of 2005, Pub. L. No. 109-58 (codified at 42 U.S.C. § 15852); Federal building performance standard requirements under Section 109 of EPAct 2005, Pub. L. No. 109-58 (codified at 42 U.S.C. § 6834(a)); Requirements on the procurement and identification of energy efficient products under section 161 of EPAct 1992, Pub. L. No. 102-486 (codified at 42 U.S.C. § 8262g); Sections 431, 432, and 434 of the Energy Independence and Security Act of 2007 (EISA), Pub. L. No. 110-140 (42 U.S.C. § 8253) and section 527 of EISA (42 U.S.C. § 17143); Executive Order 13423, Strengthening Federal Environmental, Energy, and Transportation Management, 72 Fed. Reg. 3,919 (Jan. 26, 2007); Executive Order 13514, Federal Leadership in Environmental, Energy, and Economic Performance, 74 Fed. Reg. 52,117 (Oct. 5, 2009).

  6. 24 CFR 965.306 - Energy conservation equipment and practices.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 24 Housing and Urban Development 4 2014-04-01 2014-04-01 false Energy conservation equipment and... URBAN DEVELOPMENT PHA-OWNED OR LEASED PROJECTS-GENERAL PROVISIONS Energy Audits and Energy Conservation Measures § 965.306 Energy conservation equipment and practices. In purchasing original or, when...

  7. 24 CFR 965.306 - Energy conservation equipment and practices.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 24 Housing and Urban Development 4 2013-04-01 2013-04-01 false Energy conservation equipment and... URBAN DEVELOPMENT PHA-OWNED OR LEASED PROJECTS-GENERAL PROVISIONS Energy Audits and Energy Conservation Measures § 965.306 Energy conservation equipment and practices. In purchasing original or, when...

  8. 24 CFR 965.306 - Energy conservation equipment and practices.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 24 Housing and Urban Development 4 2011-04-01 2011-04-01 false Energy conservation equipment and... URBAN DEVELOPMENT PHA-OWNED OR LEASED PROJECTS-GENERAL PROVISIONS Energy Audits and Energy Conservation Measures § 965.306 Energy conservation equipment and practices. In purchasing original or, when...

  9. 24 CFR 965.306 - Energy conservation equipment and practices.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 24 Housing and Urban Development 4 2012-04-01 2012-04-01 false Energy conservation equipment and... URBAN DEVELOPMENT PHA-OWNED OR LEASED PROJECTS-GENERAL PROVISIONS Energy Audits and Energy Conservation Measures § 965.306 Energy conservation equipment and practices. In purchasing original or, when...

  10. 24 CFR 965.306 - Energy conservation equipment and practices.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 24 Housing and Urban Development 4 2010-04-01 2010-04-01 false Energy conservation equipment and... URBAN DEVELOPMENT PHA-OWNED OR LEASED PROJECTS-GENERAL PROVISIONS Energy Audits and Energy Conservation Measures § 965.306 Energy conservation equipment and practices. In purchasing original or, when...

  11. 75 FR 30014 - Office of Energy Efficiency and Renewable Energy; Energy Efficiency and Conservation Block Grant...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-28

    ... of Energy Efficiency and Renewable Energy; Energy Efficiency and Conservation Block Grant Program AGENCY: Office of Energy Efficiency and Renewable Energy, Department of Energy. ACTION: Notice. SUMMARY... Efficiency and Renewable Energy (EERE), has experienced historic growth and unprecedented workload...

  12. Energy conservation for housing: A workbook

    NASA Astrophysics Data System (ADS)

    1982-05-01

    Multifamily housing project managers can reduce their energy costs from 30 to 60 percent by capitalizing on a variety of energy conservation opportunities (ECO's) identified in HUD research on the physical condition of public housing stock. This workbook prepares managers for this planning and for making individualized energy audits. It provides all the materials they need to proceed, including analysis sheets for calculating costs - benefit and payback periods for each of the 50 ECO's described. The ECO's listed all into four general categories: architectural improvements to the energy design of the building envelope; heating system ECO's to increase energy efficiency; secondary ECO's related to the domestic water supply, air conditioning systems, and central laundry equipment; and electric system ECO's reducing utility surcharges and increasing light bulb efficiency.

  13. Comparison of Software Models for Energy Savings from Cool Roofs

    SciTech Connect

    New, Joshua Ryan; Miller, William A; Huang, Yu; Levinson, Ronnen

    2014-01-01

    A web-based Roof Savings Calculator (RSC) has been deployed for the United States Department of Energy as an industry-consensus tool to help building owners, manufacturers, distributors, contractors and researchers easily run complex roof and attic simulations. This tool employs modern web technologies, usability design, and national average defaults as an interface to annual simulations of hour-by-hour, whole-building performance using the world-class simulation tools DOE-2.1E and AtticSim in order to provide estimated annual energy and cost savings. In addition to cool reflective roofs, RSC simulates multiple roof and attic configurations including different roof slopes, above sheathing ventilation, radiant barriers, low-emittance roof surfaces, duct location, duct leakage rates, multiple substrate types, and insulation levels. A base case and energy-efficient alternative can be compared side-by-side to estimate monthly energy. RSC was benchmarked against field data from demonstration homes in Ft. Irwin, California; while cooling savings were similar, heating penalty varied significantly across different simulation engines. RSC results reduce cool roofing cost-effectiveness thus mitigating expected economic incentives for this countermeasure to the urban heat island effect. This paper consolidates comparison of RSC s projected energy savings to other simulation engines including DOE-2.1E, AtticSim, Micropas, and EnergyPlus, and presents preliminary analyses. RSC s algorithms for capturing radiant heat transfer and duct interaction in the attic assembly are considered major contributing factors to increased cooling savings and heating penalties. Comparison to previous simulation-based studies, analysis on the force multiplier of RSC cooling savings and heating penalties, the role of radiative heat exchange in an attic assembly, and changes made for increased accuracy of the duct model are included.

  14. National Energy and Cost Savings for New Single- and Multifamily Homes: A Comparison of the 2006, 2009, and 2012 Editions of the IECC

    SciTech Connect

    Lucas, Robert G.; Taylor, Zachary T.; Mendon, Vrushali V.; Goel, Supriya

    2012-04-01

    The 2009 and 2012 International Energy Conservation Code (IECC) yield positive benefits for U.S. homeowners and significant energy savings for the nation. Moving from a baseline of the 2006 IECC to the 2009 IECC reduces average annual energy costs by 10.8%, while moving from the same baseline to the 2012 IECC reduces them by 32.1%. These reductions amount to annual energy cost savings of $168 and $497, respectively. The 2012 IECC saves $329 in energy costs compared to the 2009 IECC.

  15. Aggressive Strategies for Residential Energy and Carbon Savings by 2025

    NASA Astrophysics Data System (ADS)

    Ling, F. H.; Kammen, D. M.

    2004-12-01

    Energy efficiency technologies and practices have long been recognized as a low-cost, often least cost, option that can be deployed widely throughout the economy (Steve Nadel, 2002; Donald A. Hanson and John A. Laitner, 2003). We are engaged in a review of technology-based energy savings options throughout the U. S. economy with a joint focus on both immediate savings opportunities and long-term strategies for accelerating the innovation process and pipeline. For the near term, we developed scenarios based on available 'off the shelf' technologies and practices for achieving minimum energy consumption in lighting, standby power in electronics, and miscellaneous end-uses in the U.S. residential sector. In the business-as-usual (BAU) case, energy consumption continues to grow despite innovations at a current rate of 1.7 percent/year (Laitner, 2004). Nevertheless, the need for developing new energy supplies can be mitigated through the use of 'best current technologies' as the industry norm in 2025. Figure 1 (see URL below) shows this reduction in energy consumption and greenhouse gas emissions. The BAU model corresponds to the current rate of 'decarbonization' in the overall U.S. economy (Energy Information Administration, 2004). Over a twenty-year period, about 2 billion metric tons of carbon dioxide and 30 quads of primary fuel could be saved through the introduction of "best current technology" with the greatest reductions in the area of lighting technologies. In 2025, 1.5 quads of primary energy is saved with the breakdown in end-use electricity saved as follows: 113 TWh (0.39 quads), 70.8 TWh (0.24 quads), and 62 TWh (0.21 quads) for residential lighting, appliance standards, and standby power respectively. In addition, there is empirical evidence from specific technology sectors, from statewide programs in California, as well as on theoretical grounds (Laitner, 2004) that innovation and decarbonization rates of 3 to 5 percent/year have at times been, and could

  16. An Investigation on the Energy Saving Potential of Electromagnetic Ballast Fluorescent Lamps

    NASA Astrophysics Data System (ADS)

    Cheong, Z. X.; Barsoum, N. N.

    2009-08-01

    Energy saving issue is a matter of great concern for industry and electrical utilities. Energy saving from fluorescent lamp system can be achieved by means of optimizing lighting level, reducing power consumption and improving the efficiency of fluorescent lamps. This paper presents an alternative energy saving control method for electromagnetic ballast fluorescent lamps. Non-linearity characteristics of fluorescent lamps and the effect of energy saving controller are taken into account in the proposed energy saving controller. The proposed energy saving controller provides energy saving feature and dimmable illuminance level control for electromagnetic ballast fluorescent lamps. In comparison to electronic ballast, integration of an energy saving controller with electromagnetic ballast results in less power consumption, less green house gas emission and longer lifespan at a much lower installation cost. Experiment results based on the proposed controller showed that 37.5% energy can be saved by reducing 15% of the AC line voltage.

  17. Optimal residential water conservation strategies considering related energy in California

    NASA Astrophysics Data System (ADS)

    Escriva-Bou, Alvar; Lund, Jay R.; Pulido-Velazquez, Manuel

    2015-06-01

    Although most freshwater resources are used in agriculture, residential water use is a much more energy intensive user. Based on this, we analyze the increased willingness to adopt water conservation strategies if energy cost is included in the customers' utility function. Using a Water-Energy-CO2 emissions model for household water end uses and probability distribution functions for parameters affecting water and water-related energy use in 10 different locations in California, this research introduces a probabilistic two-stage optimization model considering technical and behavioral decision variables to obtain the most economical strategies to minimize household water and water-related energy bills and costs given both water and energy price shocks. Results can provide an upper bound of household savings for customers with well-behaved preferences, and show greater adoption rates to reduce energy intensive appliances when energy is accounted, resulting in an overall 24% reduction in indoor water use that represents a 30% reduction in water-related energy use and a 53% reduction in household water-related CO2 emissions. Previous use patterns and water and energy rate structures can affect greatly the potential benefits for customers and so their behavior. Given that water and energy are somewhat complementary goods for customers, we use results of the optimization to obtain own-price and cross-price elasticities of residential water use by simulating increases in water and energy prices. While the results are highly influenced by assumptions due to lack of empirical data, the method presented has no precedent in the literature and hopefully will stimulate the collection of additional relevant data.

  18. Real world financing opportunities for energy conservation projects

    SciTech Connect

    Tramonte, D.J.

    1988-01-01

    Do you have the resources, dollars, people expertise and general know-how to do all the energy conservation measures. If you have the funds, do it yourself. Historically you would save more if you hired a private concern because that is the only job the contractor does for you. You have other hats to wear and fires to put out. Using third-party financing can be a good decision based on your specific needs. Procrastination is not the answer - the cost of delay is extensive. Financing energy conservation measures is no different from financing your automobile or home. If the benefits outweigh the negatives, the answer is obvious. Remember, in any case of using private sector financing, your are joining a partnership arrangement. The only way to succeed is to be honest with each other on the front end. There need not be any surprises. Any reputable company will gladly have your attorney evaluate all agreements, amortization schedules, and attachments. Real world financing alternatives will continue to change as the market matures. It's not too good to be true. It is no more than a vehicle to make the efforts of capital improvements streamlined. The money or financing is the catalyst to the project and makes the other areas meld.

  19. Save Energy Now Reveals New Opportunities for Steel Manufacturers to Reduce Costs and Energy Use

    SciTech Connect

    Not Available

    2008-08-01

    This case study describes how the Industrial Technologies Program helps steel companies find ways to improve the efficiency of energy-intensive process heating and steam systems by performing Save Energy Now energy assessments.

  20. Measuring energy-saving retrofits: Experiences from the Texas LoanSTAR program

    SciTech Connect

    Haberl, J.S.; Reddy, T.A.; Claridge, D.E.; Turner, W.D.; O`Neal, D.L.; Heffington, W.M.

    1996-02-01

    In 1988 the Governor`s Energy Management Center of Texas received approval from the US Department of Energy to establish a $98.6 million state-wide retrofit demonstration revolving loan program to fund energy-conserving retrofits in state, public school, and local government buildings. As part of this program, a first-of-its-kind, statewide Monitoring and Analysis Program (MAP) was established to verify energy and dollar savings of the retrofits, reduce energy costs by identifying operational and maintenance improvements, improve retrofit selection in future rounds of the LoanSTAR program, and initiate a data base of energy use in institutional and commercial buildings located in Texas. This report discusses the LoanSTAR MAP with an emphasis on the process of acquiring and analyzing data to measure savings from energy conservation retrofits when budgets are a constraint. This report includes a discussion of the program structure, basic measurement techniques, data archiving and handling, data reporting and analysis, and includes selected examples from LoanSTAR agencies. A summary of the program results for the first two years of monitoring is also included.

  1. Energy Crisis, Will Technology Save Us

    ScienceCinema

    LLNL - University of California Television

    2009-09-01

    Will we run out of certain forms of energy, such as oil, and what are the replacement options? How does hydrogen fit into the future U.S. energy picture? What is carbon sequestration and why does it matter? What about sustainable energy sources such as solar, wind and geothermal? John Ziagos, Atmospheric, Earth, and Energy Department at Lawrence Livermore National Laboratory, and high school teacher Dean Reese present the latest information on the earth's total energy budget to see what forms of energy we will be harnessing in the future. Series: Science on Saturday [6/2008] [Science] [Show ID: 14494

  2. Energy conservation and the transportation sector

    NASA Technical Reports Server (NTRS)

    1975-01-01

    The present status of the energy implications of the transportation systems in the United States was illustrated, with primary emphasis on the technologies and methods for achieving a substantial reduction in the associated energy price (approximately 25% of the nation's energy is consumed directly in the operation of these systems). These technologies may be classified as follows: (1) improvement of system efficiency (system operations or technological), (2) substitution for scarce energy resources (electrification, alternate fuels, use of man power, recycling), (3) curtailment of end use (managed population growth rate, education of citizenry, alternatives to personal transportation, improved urban planning, reduced travel incentives). Examples and illustrations were given. Thirty-four actions were chosen on the basis of a preliminary filtering process with the objective of: (1) demonstrating a methodological approach to arrive at logical and consistent conservation action packages, (2) recommending a viable and supportable specific set of actions.

  3. Energy conservation and the rental housing market

    SciTech Connect

    Counihan, R.H.; Nemtzow, D.

    1981-03-01

    Problems unique to the rental housing market are discussed in detail. Market forces have been inadequate to encourage energy conservation because of the split between those who own the buildings and those who use the energy. Renters are unwilling to invest in property they do not own. Owners are unwilling because either (1) tenants pay the energy bills or (2) energy costs can be passed along in the rent. Federal, state, and community legislative efforts in this area are discussed as is the metering problem (master or separate metering). It is concluded that, unless accompanied by financial incentives or standards, a prohibition on master meters is inadvisable. Further involvement by state and local governments is encouraged. 132 references. (MJJ)

  4. Energy conservation: The main factor for reducing greenhouse gas emissions in the former Soviet Union

    SciTech Connect

    Bashmakov, I.A.; Chupyatov, V.P.

    1991-12-01

    The energy intensity of the former Soviet Union is more than twice that of other market economics in similar stages of economic development. Low energy efficiency in the Soviet Union has contributed significantly to global carbon and other greenhouse gas emissions. The technological potential for energy conservation in the former Soviet Union is the largest in the world. The inefficiencies of the previously command-system economy, however, have provided little incentive for conserving energy. The present transition to a market-based economy should encourage the incorporation of energy-efficiency improvements in order for the former Soviet Union to successfully lower its energy intensity. There are several obstacles that limit implementing energy conservation: for example, energy prices and discount rates influence the volume of investment in energy efficiency. Nevertheless, cost-effective measures for energy conservative do exist even in the most energy-intensive sectors of the Soviet economy and should form the core of any energy conservation program. The overall cost-effective potential for carbon savings in the former Soviet Union is estimated to be 280 to 367 million tons of carbon per year by the year 2005, or 23 to 29 percent of 1988 energy-related emissions.

  5. Final Report: Weatherization and Energy Conservation Education and Home Energy and Safety Review in the Aleutian Islands

    SciTech Connect

    Bruce Wright

    2011-08-30

    Aleutian/Pribilof Islands Association, Inc. (APIA) hired three part-time local community members that desire to be Energy Technicians. The energy technicians were trained in methods of weatherization assistance, energy conservation and home safety. They developed a listing of homes in the region that required weatherization, and conducted on-site weatherization and energy conservation education and a home energy and safety reviews in the communities of Akutan, False Pass, King Cove and Nelson Lagoon. Priority was given to these smaller communities as they tend to have the residences most in need of weatherization and energy conservation measures. Local residents were trained to provide all three aspects of the project: weatherization, energy conservation education and a home energy and safety review. If the total energy saved by installing these products is a 25% reduction (electrical and heating, both of which are usually produced by combustion of diesel fuel), and the average Alaska home produces 32,000 pounds of CO2 each year, so we have saved about: 66 homes x 16 tons of CO2 each year x .25 = 264 tons of CO2 each year.

  6. HOSPITAL VENTILATION STANDARDS AND ENERGY CONSERVATION: A REVIEW OF GOVERNMENTAL AND PRIVATE AGENCY ENERGY CONSERVATION INITIATIVES

    SciTech Connect

    Banks, Robert S.; Rainer, David

    1980-03-01

    This report presents the results of a recent research project originally concerned with review of governmental initiatives for changes to hospital design and operation standards at both the federal and state levels. However. it quickly became apparent that concern with energy conservation was not impacting hospital environmental standards, especially at the state level, irrespective of the energy implications. Consequently, the study was redirected to consider all energy conservation initiatives directed toward design and operating practices unique to the hospital environment. The scope was limited to agency programs (i.e., not undertaken at the initiative of individual hospitals), applicable to non-federal public and private hospitals.

  7. Building America Solution Center Shows Builders How to Save Materials Costs While Saving Energy

    SciTech Connect

    Gilbride, Theresa L.

    2015-06-15

    This short article was prepared for the U.S. Department of Energy's Building America Update newsletter. The article identifies energy and cost-saving benefits of using advanced framing techniques in new construction identified by research teams working with the DOE's Building America program. The article also provides links to guides in the Building America Solution Center that give how-to instructions for builders who want to implement advanced framing construction. The newsletter is issued monthly and can be accessed at http://energy.gov/eere/buildings/building-america-update-newsletter

  8. What Are Schools Doing to Save Energy?

    ERIC Educational Resources Information Center

    Fredrickson, John H.

    Many school districts are still approaching the energy crisis as though it were a temporary inconvenience. However, school districts that have recognized the gravity of the energy situation have conducted energy audits. Basically, there are two types of audits. The first is a simple walk through each building using a checklist format. The second…

  9. Energy Savings Performance Contract Case Studies.

    ERIC Educational Resources Information Center

    Lefevre, Jessica S.

    Building owners and managers can use performance-contracting Energy Service Companies (ESCOs) to partially or fully fund building renovations that include energy efficiency upgrades. This report provides building owners and managers with an introduction to the energy efficiency and building upgrade services provided by ESCOs. It uses 20 case…

  10. Energy Conservation: Guidelines for Action. Suggested Guidelines for Local School District Development of Energy Conservation Programs.

    ERIC Educational Resources Information Center

    Michigan Association of School Administrators, East Lansing.

    Curriculum guidelines for the local development of energy conservation programs in public schools reflect an interdisciplinary educational approach--the result of a coordinated effort by industry, commerce, education, and government agencies concerned with the energy crisis. The scope and nature of the problem, with its implications for education…

  11. 75 FR 34656 - Energy Conservation Program for Consumer Products: Energy Conservation Standards for Certain...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-18

    ... in the rulemaking process to consider energy conservation standards for certain ER, BR, and small diameter incandescent reflector lamps. 75 FR 23191. The document provided for the submission of written... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF ENERGY 10...

  12. Sweet Grass Elementary School: A Study in Energy Conservation. Energy Conservation: School Design.

    ERIC Educational Resources Information Center

    Edmonton Public Schools (Alberta).

    The results of building a new school in Edmonton (Alberta) in accordance with energy efficient principles are described in this report, the third and last in a series describing three projects utilizing different approaches to energy conservation. The Sweet Grass Elementary School project consisted in designing, building, and monitoring an energy…

  13. ENERGY CONSERVATION AND PRODUCTION AT WASTE CLEANUP SITES (ISSUE PAPER)

    EPA Science Inventory

    Saving energy used by hazardous waste cleanup remediation systems should interest those people working on waste cleanup sites. Presidential Executive Order 13123, "Greening the Government Through Efficient Energy Management", states that each agency shall strive to expand the us...

  14. Energy conservation with chilled-water storage

    SciTech Connect

    Fiorino, D.

    1993-05-01

    Thermal energy storage (TES) is widely recognized as a demand-side management technology for shifting cooling electrical demand from peak daytime periods to off-peak nighttime and weekend periods when utilities have reserve generating capacity. TES has enabled users to significantly reduce their electricity costs by reducing peak demand and taking advantage of lower off-peak usage rates, often with large utility incentive payments and sometimes with reduced capital costs. It has also enabled utilities to reduce peaks and fill valleys, thereby improving system load factors, reducing reliance on peaking units, increasing utilization of base load units and postponing the construction of additional generating units. Because TES has been so strongly categorized as a demand-shifting technology, its potential for energy conservation has received little recognition. And, certainly, there are many existing TES systems that use more electricity than conventional cooling systems and are beneficial only for shifting demand. However, recent advances in the technology have produced more efficient and better integrated TES systems that use less electricity and natural gas than conventional cooling/heating systems. To apprise engineers of thermal energy storage's potential for energy conservation, this article will study the design and operation of a TES system in one industrial retrofit application.

  15. Ames Energy: A Consumer's Guide to Energy Conservation.

    ERIC Educational Resources Information Center

    Women's Support Network, Inc., Santa Rosa, CA.

    Presented is an annotated bibliography of energy-related materials for the consumer. Materials (which include books, videotape recordings, magazines, pamphlets, and other media) are arranged by subject area. These area include: (1) earth sheltered buildings; (2) fuels; (3) general (including general energy conservation and insulation); (4) heat…

  16. Energy Savings Assessment for Digital-to-Analog Converter Boxes

    SciTech Connect

    Cheung, Hoi Ying Iris; Meier, Alan; Brown, Richard

    2011-01-18

    The Digital Television (DTV) Converter Box Coupon Program was administered by the U.S. government to subsidize purchases of digital-to-analog converter boxes, with up to two $40 coupons for each eligible household. In order to qualify as Coupon Eligible Converter Boxes (CECBs), these devices had to meet a number of minimum performance specifications, including energy efficiency standards. The Energy Star Program also established voluntary energy efficiency specifications that are more stringent than the CECB requirements. In this study, we measured the power and energy consumptions for a sample of 12 CECBs (including 6 Energy Star labeled models) in-use in homes and estimated aggregate energy savings produced by the energy efficiency policies. Based on the 35 million coupons redeemed through the end of the program, our analysis indicates that between 2500 and 3700 GWh per year are saved as a result of the energy efficiency policies implemented on digital-to-analog converter boxes. The energy savings generated are equivalent to the annual electricity use of 280,000 average US homes.

  17. A preliminary review of energy savings from EADC plant audits

    SciTech Connect

    Wilfert, G.L.; Kinzey, B.R.; Kaae, P.S.

    1993-03-01

    This paper reviews the long-term energy savings attributed to industrial plant energy audits conducted under the US Department of Energy`s (DOE`s) Energy Analysis and Diagnostic Center (EADC) Program. By the end of FY91, this program is expected to have performed over 3600 plant energy audits since it began in late 1976. During FY91, 500 of the 3600 are expected to be completed. Currently, 18 universities participate in the program. DOE`s expansion plan, as specified in the National Energy Strategy, calls for adding three universities to the program during FY92. This review, requested by the OIT as part of their program planning effort, is preliminary and limited in scope. The primary purpose of this paper is to independently assess the accuracy of past energy savings reporting, specifically: whether a 2-year assessment horizon for identifying implemented ECOs captures all the ECOs implemented under the program whether the number of implemented ECOs and thus, the energy savings associated with program audits, significantly decrease in years 3 through 7 after the audit.

  18. EnergySavers: Tips on Saving Money & Energy at Home (Brochure)

    SciTech Connect

    Not Available

    2011-12-01

    The U.S. Department of Energy's consumer guide to saving money and energy at home and on the road. It consists of the following articles: (1) Save Money and Energy Today - Get started with things you can do now, and use the whole-house approach to ensure that your investments are wisely made to save you money and energy; (2) Your Home's Energy Use - Find out how your home uses energy, and where it's losing the most energy so you can develop a plan to save in the short and long term; (3) Air Leaks and Insulation - Seal air leaks and insulate your home properly so your energy dollars don't seep through the cracks; (4) Heating and Cooling - Use efficient systems to heat and cool your home, and save money and increase comfort by properly maintaining and upgrading equipment; (5) Water Heating - Use the right water heater for your home, insulate it and lower its temperature, and use less water to avoid paying too much; (6) Windows - Enjoy light and views while saving money by installing energy-efficient windows, and use strategies to keep your current windows from losing energy; (7) Lighting - Choose today's energy-efficient lighting for some of the easiest and cheapest ways to reduce your electric bill; (8) Appliances - Use efficient appliances through-out your home, and get greater performance with lower energy bills; (9) Home Office and Electronics - Find out how much energy your electronics use, reduce their out-put when you're not using them, and choose efficient electronics to save money; (10) Renewable Energy - Use renewable energy at home such as solar and wind to save energy dollars while reducing environmental impact; (11) Transportation - Choose efficient transportation options and drive more efficiently to save at the gas pump; and (12) References - Use our reference list to learn more about energy efficiency and renewable energy.

  19. Energy savings in aluminum production, use, and recycling

    SciTech Connect

    Russell, A.S.

    1983-07-01

    Aluminum and energy have been intertwined since the initial isolation of the metal from its ore, and industry growth has depended on great quantities of inexpensive, available energy. In response to the modern need, the industry has significantly decreased the energy required for the chemical steps in aluminum production. That aggressive effort is catalogued here. The energy saving potential of a new smelting process is mentioned. The tremendous energy reduction achieved by recycling and improved design of the aluminum beverage can is detailed, and the potential for similar advantages for other products is presented. Finally, the important role of light weight aluminum in decreasing the nation's energy requirement for transportation is discussed.

  20. ASEAN-USAID Buildings Energy Conservation Project. Final report, Volume 3: Audits

    SciTech Connect

    Loewen, J.M.; Levine, M.D.; Busch, J.F.

    1992-06-01

    The auditing subproject of the ASEAN-USAID Buildings Energy Conservation Project has generated a great deal of auditing activity throughout the ASEAN region. Basic building characterisfic and energy consumption data were gathered for over 200 buildings and are presented in this volume. A large number of buildings were given more detailed audits and were modeled with either the ASEAM-2 computer program or the more complex DOE-2 program. These models were used to calculate the savings to be generated by conservabon measures. Specially audits were also conducted, including lighting and thermal comfort surveys. Many researchers in the ASEAN region were trained to perform energy audits in a series of training courses and seminars. The electricity intensifies of various types of ASEAN buildings have been calculated. A comparison to the electricity intensity of the US building stock tentatively concludes that ASEAN office buildings are comparable, first class hotels and retail stores are more ewctricity intensive than their US counterparts, and hospitals are less intensive. Philippine and Singapore lighting surveys indicate that illuminance levels in offices tend to be below the minimum accepted standard. Computer simulations of the energy use in various building types generally agree that for most ASEAN buildings, electricity consumption for air-conditioning (including fan power) consumes approximately 60% of total building electricity. A review of the many studies made during the Project to calculate the savings from energy conservation opportunities (ECOS) shows a median potential savings of approximately 10%, with some buildings saving as much as 50%. Singapore buildings, apparently as a result of previously implemented efficient energy-use practices, shows a lower potential for savings than the other ASEAN nations. Air-conditioning ECOs hold the greatest potential for savings.

  1. School District Energy Conservation Activities. R-96-J-2.

    ERIC Educational Resources Information Center

    New York State Office of the Comptroller, Albany. Div. of Management Audit.

    To help New York's State Department of Education assess public school districts' energy conservation activities, the results of an audit of school districts' energy conservation activities are presented. The audit shows that most school districts have made some efforts toward energy conservation and that the Department does provide some assistance…

  2. 41 CFR 101-25.112 - Energy conservation policy.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 41 Public Contracts and Property Management 2 2014-07-01 2012-07-01 true Energy conservation...-General Policies § 101-25.112 Energy conservation policy. (a) Agency officials responsible for procurement..., which has been established pursuant to Public Law 94-163, Energy Policy and Conservation Act. (b)...

  3. 41 CFR 101-25.112 - Energy conservation policy.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 41 Public Contracts and Property Management 2 2011-07-01 2007-07-01 true Energy conservation...-General Policies § 101-25.112 Energy conservation policy. (a) Agency officials responsible for procurement..., which has been established pursuant to Public Law 94-163, Energy Policy and Conservation Act. (b)...

  4. 41 CFR 101-25.112 - Energy conservation policy.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 41 Public Contracts and Property Management 2 2010-07-01 2010-07-01 true Energy conservation...-General Policies § 101-25.112 Energy conservation policy. (a) Agency officials responsible for procurement..., which has been established pursuant to Public Law 94-163, Energy Policy and Conservation Act. (b)...

  5. 41 CFR 101-25.112 - Energy conservation policy.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 41 Public Contracts and Property Management 2 2012-07-01 2012-07-01 false Energy conservation...-General Policies § 101-25.112 Energy conservation policy. (a) Agency officials responsible for procurement..., which has been established pursuant to Public Law 94-163, Energy Policy and Conservation Act. (b)...

  6. 41 CFR 101-25.112 - Energy conservation policy.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 41 Public Contracts and Property Management 2 2013-07-01 2012-07-01 true Energy conservation...-General Policies § 101-25.112 Energy conservation policy. (a) Agency officials responsible for procurement..., which has been established pursuant to Public Law 94-163, Energy Policy and Conservation Act. (b)...

  7. A case study of energy savings and environmental impact reduction for a textile facility

    SciTech Connect

    Mowery, D.K.; Risi, J.D.

    1996-05-01

    The Industrial Energy Center (IEC) is a university-based energy management group dedicated to improving energy efficiency in industrial facilities throughout Virginia, North Carolina and Tennessee. The goal of the IEC is to assist area industries by increasing their cost effectiveness and product quality in terms of energy use in manufacturing. The IEC aspires to become the responsive resource for industries who are seeking a manufacturing advantage, or experiencing problems, related to the usage and management of energy. Fulfilling these goals is accomplished through a combination of energy training and education, on-site surveys of various energy-intensive processes, technical assistance, and applied research. The underlying purpose of all the energy-awareness efforts is to motivate the implementation of a formal, permanent, energy management program as an integral part of the client`s operation. The initial survey report is only a partial list of energy-related cost savings opportunities. The IEC will continue to make its services available if more in-depth training or advising is desired to implement an energy management program or the energy conservation measures (ECM) identified in the report, or if, after the facility has acted on the initial recommendations, additional assistance is desired to identify further ECMs. The IEC was invited to performed an energy survey at a textile finishing facility in southwestern Virginia. The remainder of this paper is dedicated to an overview of this energy survey and a discussion of the conservation measures identified.

  8. Increasing the energy conservation awareness using the influential power of a lottery system

    NASA Astrophysics Data System (ADS)

    Nayak, Amruta Vijay

    This thesis presents an influence maximization-driven approach to promoting energy conservation awareness, with the objective to generate a competitive environment for energy consumption supervision. As consumers are typically reluctant to invest their time and effort in the activities beyond their business, an incentive-based distribution strategy is proposed to encourage consumers to actively take part in energy conservation. The key idea of the thesis lies in leveraging the consumer instincts as a driving factor for spreading positive social influence, via a smart lottery program. In the proposed framework, saving energy automatically increases the consumers' chances of winning the lottery, thereby motivating them to save more, while the smart winner selection will maximize the word-of-mouth effect of the program. The thesis collects and organizes a large body of literature in support of the claim that the spread of awareness in a social network can play a key role in the emergence of energy conscious behavior. It also reports on the findings of a survey conducted to determine the present day consumer perspective toward energy conservation and the level of influence required to motivate them to conserve more energy. Finally, a mathematical model for smart lottery winner selection is presented, and insightful observations are made concerning the properties of optimal solutions to tractable, small problem instances.

  9. Leveraging Lighting for Energy Savings: GSA Northwest/Artic Region

    SciTech Connect

    2016-01-01

    Case study describes how the Northwest/Arctic Region branch of the General Services Administration (GSA) improved safety and energy efficiency in its Fairbanks Federal Building parking garage used by federal employees, U.S. Marshals, and the District Court. A 74% savings was realized by replacing 220 high-pressure sodium fixtures with 220 light-emitting diode fixtures.

  10. Comparison of software models for energy savings from cool roofs

    DOE PAGESBeta

    New, Joshua; Miller, William A.; Huang, Yu; Levinson, Ronnen

    2015-06-07

    For this study, a web-based Roof Savings Calculator (RSC) has been deployed for the United States Department of Energy as an industry-consensus tool to help building owners, manufacturers, distributors, contractors and researchers easily run complex roof and attic simulations. RSC simulates multiple roof and attic technologies for side-by-side comparison including reflective roofs, different roof slopes, above sheathing ventilation, radiant barriers, low-emittance roof surfaces, duct location, duct leakage rates, multiple substrate types, and insulation levels. Annual simulations of hour-by-hour, whole-building performance are used to provide estimated annual energy and cost savings from reduced HVAC use. While RSC reported similar cooling savingsmore » to other simulation engines, heating penalty varied significantly. RSC results show reduced cool roofing cost-effectiveness, thus mitigating expected economic incentives for this countermeasure to the urban heat island effect. This paper consolidates comparison of RSC's projected energy savings to other simulation engines including DOE-2.1E, AtticSim, Micropas, and EnergyPlus. Also included are comparisons to previous simulation-based studies, analysis of RSC cooling savings and heating penalties, the role of radiative heat exchange in an attic assembly, and changes made for increased accuracy of the duct model. Finally, radiant heat transfer and duct interaction not previously modeled is considered a major contributor to heating penalties.« less

  11. Intrinsic Changes: Energy Saving Behaviour among Resident University Students

    ERIC Educational Resources Information Center

    Black, Rosemary; Davidson, Penny; Retra, Karen

    2010-01-01

    This paper presents the results of a study that explored the effectiveness of three intervention strategies in facilitating energy saving behaviour among resident undergraduate university students. In contrast to a dominant practice of motivating with rewards or competition this study sought to appeal to students' intrinsic motivations. An…

  12. The silver bullet myth of sustainable energy savings

    SciTech Connect

    Pasqualetti, Martin J.; Tabbert, Michael K.; Boscamp, Robert L.

    2010-10-15

    Especially in the U.S., people like to think that solving problems just requires finding the proper ''silver bullet.'' Such fixes are not sustainable. Any utility company wanting sustainable long-term savings in personal energy demand requires a more thorough commitment that might be referred to as ''head'' (education), ''heart'' (motivation), and ''hands'' (action). (author)

  13. Supersonic transport vis-a-vis energy savings

    NASA Technical Reports Server (NTRS)

    Cormery, G.

    1979-01-01

    The energy and economic saving modifications in supersonic transportation are studied. Modifications in the propulsion systems and in the aerodynamic configurations of the Concorde aircraft to reduce noise generation and increase fuel efficiency are discussed. The conversion of supersonic aircraft from fuel oils to synthetic fuels is examined.

  14. A preliminary review of energy savings from EADC plant audits

    SciTech Connect

    Wilfert, G.L.; Kinzey, B.R.; Kaae, P.S.

    1993-01-01

    This paper reviews the long-term energy savings attributed to industrial plant energy audits conducted under the US Department of Energy's (DOE's) Energy Analysis and Diagnostic Center (EADC) Program. By the end of FY91, this program is expected to have performed over 3600 plant energy audits since it began in late 1976. During FY91, 500 of the 3600 are expected to be completed. Currently, 18 universities participate in the program. DOE's expansion plan, as specified in the National Energy Strategy, calls for adding three universities to the program during FY92. This review, requested by the OIT as part of their program planning effort, is preliminary and limited in scope. The primary purpose of this paper is to independently assess the accuracy of past energy savings reporting, specifically: whether a 2-year assessment horizon for identifying implemented ECOs captures all the ECOs implemented under the program whether the number of implemented ECOs and thus, the energy savings associated with program audits, significantly decrease in years 3 through 7 after the audit.

  15. Savings Begin with an Energy Audit

    ERIC Educational Resources Information Center

    Vanderweil, Gary

    1976-01-01

    The audit establishes how much and what kind of energy is consumed by each energy user in a building. This identifies the most cost-effective changes to maximize the performance of the existing mechanical and electrical systems and the building skin. Available from Consulting Engineer, 1301 S. Grove Avenue, Barrington, Illinois 60010, $15.00 per…

  16. Residential Energy Savings Act of 2013

    THOMAS, 113th Congress

    Sen. Sanders, Bernard [I-VT

    2013-06-20

    06/25/2013 Committee on Energy and Natural Resources Subcommittee on Energy. Hearings held. With printed Hearing: S.Hrg. 113-70. (All Actions) Tracker: This bill has the status IntroducedHere are the steps for Status of Legislation:

  17. Minnesota Energy and Cost Savings for New Single- and Multifamily Homes: 2009 and 2012 IECC as Compared to the Minnesota Residential Energy Code

    SciTech Connect

    Lucas, Robert G.; Taylor, Zachary T.; Mendon, Vrushali V.; Goel, Supriya

    2012-04-01

    The 2009 and 2012 International Energy Conservation Codes (IECC) yield positive benefits for Minnesota homeowners. Moving to either the 2009 or 2012 IECC from the current Minnesota Residential Energy Code is cost effective over a 30-year life cycle. On average, Minnesota homeowners will save $1,277 over 30 years under the 2009 IECC, with savings still higher at $9,873 with the 2012 IECC. After accounting for upfront costs and additional costs financed in the mortgage, homeowners should see net positive cash flows (i.e., cumulative savings exceed cumulative cash outlays) in 3 years for the 2009 IECC and 1 year for the 2012 IECC. Average annual energy savings are $122 for the 2009 IECC and $669 for the 2012 IECC.

  18. Approaches for Acquiring Energy Savings in Commercial Sector Buildings : Environmental Assessment.

    SciTech Connect

    United States. Bonneville Power Administration.

    1991-09-01

    Bonneville has carefully considered the potential environmental impacts associated with installation of currently known Energy- efficient Conservation Measures (ECMs) in new and existing commercial buildings, and has implemented specific requirements to minimize those impacts. These Commercial Environmental Requirements would apply to the three proposed conservation approaches outlined in this environmental assessment. The cumulative energy savings from these proposed commercial programs will have a positive impact on the region. These savings will help reduce the region's dependence on other resource types needed to meet Bonneville's load requirements. However, the savings are not large enough to negate or replace other needed resources or other conservation programs. To summarize, the following environmental requirements have been incorporated in all BPA commercial conservation programs, including this proposal. Building owners are required to comply with all Federal, state, and local building and safety codes and environmental regulations. ASHRAE Standard 62-89 has been adopted by Bonneville as the required ventilation standard to improve indoor air quality in commercial buildings. Specific guidelines for installing HPS lighting indoors is provided to program participants. Guidance regarding disposal of fluorescent light ballasts which may contain PCBs is routinely provided to building owners. Bonneville will not fund removal and disposal of asbestos material. The use of urea formaldehyde foam insulation is not permitted in either new construction or in existing building retrofits. The use of toxic transfer fluids is not permitted in any ECM. All commercial buildings over 45 years old will be reviewed in accordance with Bonneville's PMOA with the Advisory Council on Historic Preservation and the State Historic Preservation Offices.

  19. Energetic and Ecological Analysis of Energy Saving and Passive Houses

    NASA Astrophysics Data System (ADS)

    Sanytsky, Myroslav; Sekret, Robert; Wojcikiewicz, Mariusz

    2012-06-01

    In this paper results of influence of building-installation system parameters on value of energetic coefficients were calculated. Three types of buildings (standard, energy saving and low energy) with heating surface of 100, 150 i 200 m2 were used. The above types of buildings differ on thermal barrier and heating system efficiency. The influence of the gravity and mechanical ventilation systems on the final heat energy of different kinds of houses was shown. Parameters of the certificate for energy characteristics of building were used. Mathematics models of influence of thermal barrier parameters and heating surface on the value of energy characteristics, namely final energy EF, primary energy EP and useful energy EU were established. Influence of such parameters as heating energy factors, ventilation system and energy sources on the energy efficiency improvement of buildings was analyzed. The building environmental assessment system was proposed on the base of energetic and ecological analysis of houses.

  20. Energy and peak power saved by passively cooled residences

    NASA Astrophysics Data System (ADS)

    Clark, G.; Loxsom, F.; Doderer, E.; Vieira, R.; Fleischhacker, P.

    1983-11-01

    The energy displacement potential of roof pond cooling in humid climates is sensitive to the type of dehumidification equipment employed and the humidity levels allowed. The simulated energy requirements of roof pond residences assisted by two high efficiency dehumidifier options are described. One dehumidifier was a vapor compression air conditioner with sensible cooling recovery by an air-to-air heat exchanger (improved mechanical dehumidification or IMD). The second option was a solar regenerated desiccant dehumidifier (SRDD). An IMD assisted roof pond house had energy savings of 30 to 65% in humid climates compared to the conventional house; an SRDD assisted roof pond house had energy savings of 70 to 75% in humid climates.

  1. 10 CFR 436.21 - Savings-to-investment ratio.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... Procedures for Life Cycle Cost Analyses § 436.21 Savings-to-investment ratio. The savings-to-investment ratio is the ratio of the present value savings to the present value costs of an energy or water conservation measure. The numerator of the ratio is the present value of net savings in energy or water and...

  2. 10 CFR 436.21 - Savings-to-investment ratio.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... Procedures for Life Cycle Cost Analyses § 436.21 Savings-to-investment ratio. The savings-to-investment ratio is the ratio of the present value savings to the present value costs of an energy or water conservation measure. The numerator of the ratio is the present value of net savings in energy or water and...

  3. 10 CFR 436.21 - Savings-to-investment ratio.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... Procedures for Life Cycle Cost Analyses § 436.21 Savings-to-investment ratio. The savings-to-investment ratio is the ratio of the present value savings to the present value costs of an energy or water conservation measure. The numerator of the ratio is the present value of net savings in energy or water and...

  4. Capturing Waste Gas: Saves Energy, Lower Costs

    SciTech Connect

    2013-07-12

    In June 2009, ArcelorMittal learned about the potential to receive a 50% cost-matching grant from the American Recovery and Reinvestment Act (ARRA) administered by the U.S. Department of Energy (DOE). ArcelorMittal applied for the competitive grant and, in November, received $31.6 million as a DOE cost-sharing award. By matching the federal funding, ArcelorMittal was able to construct a new, high efficiency Energy Recovery & Reuse 504 Boiler and supporting infrastructure.

  5. Confused by Energy Saving Claims? Help Is Available.

    ERIC Educational Resources Information Center

    Vance, D. Gary; Kieley, James D.

    1984-01-01

    Energy engineers can help schools build complete energy conservation systems. These specialists (1) conduct thorough energy audits, (2) design and supervise retrofitting, (3) recommend and supervise preventive maintenance programs, (4) recommend computerized controls, and (5) monitor utility bills. This article includes description of a school…

  6. Spending for Savings: Energy Awareness at Lincoln Land.

    ERIC Educational Resources Information Center

    Croteau, Suzanne

    1980-01-01

    Describes the development and implementation of Lincoln Land Community College's energy awareness program, focusing on: (1) resource management to reduce the consumption of fossil fuels on campus; (2) programs encouraging energy conservation and the production of alcohol fuels; (3) leadership in the field; and (4) planning energy-related…

  7. The Energy Savings in Reroll Casting From Primary Metal

    NASA Astrophysics Data System (ADS)

    Evans, J. F.; Fitzpatrick, N. P.

    1981-11-01

    Recent developments in the continuous casting of strip by belt casting, associated with the primary production of aluminum, offer substantial advantages in energy saving, through the direct conversion of molten metal into strip and through the reduction of melt loss. The total energy content (electrical and thermal) of the continuous casting route is compared to that involved in the conventional ingot casting and hot-rolling route for a typical semi-fabricated product.

  8. ESPC Overview. Cash Flows, Scenarios, and Associated Diagrams for Energy Savings Performance Contracts

    SciTech Connect

    Tetreault, T.; Regenthal, S.

    2011-05-01

    This document is meant to inform state and local decision makers about the process of energy savings performance contracts, and how projected savings and allocated energy-related budgets can be impacted by changes in utility prices.

  9. ESPC Overview: Cash Flows, Scenarios, and Associated Diagrams for Energy Savings Performance Contracts

    SciTech Connect

    Tetreault, T.; Regenthal, S.

    2011-05-01

    This document is meant to inform state and local decision makers about the process of energy savings performance contracts, and how projected savings and allocated energy-related budgets can be impacted by changes in utility prices.

  10. RenewableNY - An Industrial Energy Conservation Initiative

    SciTech Connect

    Lubarr, Tzipora

    2009-09-30

    The New York Industrial Retention Network (NYIRN) manages the RenewableNY program to assist industrial companies in New York City to implement energy efficiency projects. RenewableNY provides companies with project management assistance and grants to identify opportunities for energy savings and implement energy efficiency projects. The program helps companies identify energy efficient projects, complete an energy audit, and connect with energy contractors who install renewable energy and energy efficient equipment. It also provides grants to help cover the costs of installation for new systems and equipment. RenewableNY demonstrates that a small grant program that also provides project management assistance can incentivize companies to implement energy efficiency projects that might otherwise be avoided. Estimated savings through RenewableNY include 324,500 kWh saved through efficiency installations, 158 kW of solar energy systems installed, and 945 thm of gas avoided.

  11. HVAC systems and energy conservation in hotels

    SciTech Connect

    Wagner, J.R.

    1986-01-01

    This paper discusses the effect that the design of the basic HVAC has on the relative success of energy conservation efforts in hotels. The unusual nature of a hotel is explained along with the impact that it has on the HVAC system. The paper stresses the practical considerations which must be made by the HVAC system designer when he designs the guest rooms, public areas, back-of-the-house areas, temperature control system, and energy management system. The advantages of providing separate air-handling systems are presented. The benefits of line voltage electric controls for guest room fan coil units are explained. General recommendations for arrangement of ventilation systems and possible opportunities for heat recovery are included.

  12. Evaluation of the State Energy Conservation Program from program initiation to September 1978. Final report

    SciTech Connect

    Heller, James N.; Grossmann, John R.; Shochet, Susan; Bresler, Joel; Duggan, Noreene

    1980-03-01

    The State Energy Conservation Program was established in 1975 to promote energy conservation and to help states develop and implement their own conservation programs. Base (5) and supplemental (3) programs required states to implement programs including: mandatory thermal-efficiency standards and insulation requirements for new and renovated buildings; mandatory lighting efficiency standards for public buildings; mandatory standards and policies affecting the procurement practices of the state and its political subdivisions; program measures to promote the availability and use of carpools, vanpools, and public transportation; a traffic law or regulation which permits a right turn-on-red; and procedures to carry out a continuing public education effort to increase awareness of energy conservation; procedures which promote effective coordination among local, state, and Federal energy conservation programs; and procedures for carrying out energy audits on buildings and industrial plants. All 50 states and Puerto Rico, Guam, the Virgin Islands, American Samoa, and the District of Columbia participated in the program. The total 1980 energy savings projected by the states is about 5.9 quadrillion Btu's or about 7% of the DOE projected 1980 baseline consumption of just under 83 quads. The detailed summary is presented on the following: information the SECP evaluation; DOE response to the SECP; DOE's role in the program management process; the effectiveness of the states in managing the SECP; the status of program measure implementation; innovative state energy conservation programs; and the evaluation methodology.

  13. Maximizing Residential Energy Savings: Net Zero Energy House (ZEH) Technology Pathways

    SciTech Connect

    Anderson, R.; Roberts, D.

    2008-11-01

    To meet current U.S. Department of Energy zero-energy home performance goals, new technologies and solutions must increase whole-house efficiency savings by an additional 40% relative to those provided by best available components and systems.

  14. Energy Use Savings for a Typical New Residential Dwelling Unit Based on the 2009 and 2012 IECC as Compared to the 2006 IECC

    SciTech Connect

    Lucas, Robert G.; Mendon, Vrushali V.; Goel, Supriya

    2012-06-01

    The 2009 and 2012 International Energy Conservation Codes (IECC) require a substantial improvement in energy efficiency compared to the 2006 IECC. This report averages the energy use savings for a typical new residential dwelling unit based on the 2009 and 2012 IECC compared to the 2006 IECC. Results are reported by the eight climate zones in the IECC and for the national average.

  15. Potential for energy conservation in the cement industry

    SciTech Connect

    Garrett-Price, B.A.

    1985-02-01

    This report assesses the potential for energy conservation in the cement industry. Energy consumption per ton of cement decreased 20% between 1972 and 1982. During this same period, the cement industry became heavily dependent on coal and coke as its primary fuel source. Although the energy consumed per ton of cement has declined markedly in the past ten years, the industry still uses more than three and a half times the fuel that is theoretically required to produce a ton of clinker. Improving kiln thermal efficiency offers the greatest opportunity for saving fuel. Improving the efficiency of finish grinding offers the greatest potential for reducing electricity use. Technologies are currently available to the cement industry to reduce its average fuel consumption per ton by product by as much as 40% and its electricity consumption per ton by about 10%. The major impediment to adopting these technologies is the cement industry's lack of capital as a result of low or no profits in recent years.

  16. Electrorheology for energy production and conservation

    NASA Astrophysics Data System (ADS)

    Huang, Ke

    Recently, based on the physics of viscosity, we developed a new technology, which utilizes electric or magnetic fields to change the rheology of complex fluids to reduce the viscosity, while keeping the temperature unchanged. The method is universal and applicable to all complex fluids with suspended particles of nano-meter, submicrometer, or micrometer size. Completely different from the traditional viscosity reduction method, raising the temperature, this technology is energy-efficient, as it only requires small amount of energy to aggregate the suspended particles. In this thesis, we will first discuss this new technology in detail, both in theory and practice. Then, we will report applications of our technology to energy science research. Presently, 80% of all energy sources are liquid fuels. The viscosity of liquid fuels plays an important role in energy production and energy conservation. With an electric field, we can reduce the viscosity of asphalt-based crude oil. This is important and useful for heavy crude oil and off-shore crude oil production and transportation. Especially, since there is no practical way to raise the temperature of crude oil inside the deepwater pipelines, our technology may play a key role in future off-shore crude oil production. Electrorehology can also be used to reduce the viscosity of refinery fuels, such as diesel fuel and gasoline. When we apply this technology to fuel injection, the fuel droplets in the fuel atomization become smaller, leading to faster combustion in the engine chambers. As the fuel efficiency of internal combustion engines depends on the combustion speed and timing, the fast combustion produces much higher fuel efficiency. Therefore, adding our technology on existing engines improves the engine efficiency significantly. A theoretical model for the engine combustion, which explains how fast combustion improves the engine efficiency, is also presented in the thesis. As energy is the key to our national

  17. Energy Conservation Education. An Action Approach. Grades 4-9.

    ERIC Educational Resources Information Center

    Zamm, Michael; Samuel, Barry C.

    Seventeen lessons are provided in this curriculum designed to involve students (grades 4-9) in energy conservation. The lessons are presented in four parts. The three lessons in part I are intended to give students a preliminary conceptual framework for energy conservation and to motivate them to participate in the conservation-action projects…

  18. Energy Efficiency Improvement and Cost Saving Opportunities for Breweries: An ENERGY STAR(R) Guide for Energy and Plant Managers

    SciTech Connect

    Galitsky, Christina; Martin, Nathan; Worrell, Ernst; Lehman, Bryan

    2003-09-01

    Annually, breweries in the United States spend over $200 million on energy. Energy consumption is equal to 38 percent of the production costs of beer, making energy efficiency improvement an important way to reduce costs, especially in times of high energy price volatility. After a summary of the beer making process and energy use, we examine energy efficiency opportunities available for breweries. We provide specific primary energy savings for each energy efficiency measure based on case studies that have implemented the measures, as well as references to technical literature. If available, we have also listed typical payback periods. Our findings suggest that given available technology, there are still opportunities to reduce energy consumption cost-effectively in the brewing industry. Brewers value highly the quality, taste and drinkability of their beer. Brewing companies have and are expected to continue to spend capital on cost-effective energy conservation measures that meet these quality, taste and drinkability requirements. For individual plants, further research on the economics of the measures, as well as their applicability to different brewing practices, is needed to assess implementation of selected technologies.

  19. Green Energy in New Construction: Maximize Energy Savings and Minimize Cost

    ERIC Educational Resources Information Center

    Ventresca, Joseph

    2010-01-01

    People often use the term "green energy" to refer to alternative energy technologies. But green energy doesn't guarantee maximum energy savings at a minimum cost--a common misconception. For school business officials, green energy means getting the lowest energy bills for the lowest construction cost, which translates into maximizing green energy…

  20. Energy Conservation Curriculum for Secondary and Post-Secondary Students. Module 7: Appliance Energy Conservation Opportunities.

    ERIC Educational Resources Information Center

    Navarro Coll., Corsicana, TX.

    This module is the seventh in a series of eleven modules in an energy conservation curriculum for secondary and postsecondary vocational students. It is designed for use by itself or as part of a sequence of four modules on understanding utilities (see modules 3, 5, and 6). The objective of this module is to train students in the recognition,…