Science.gov

Sample records for constant heat flux

  1. Dimensional Analysis of Thermoelectric Modules Under Constant Heat Flux

    NASA Astrophysics Data System (ADS)

    Suzuki, Ryosuke O.; Fujisaka, Takeyuki; Ito, Keita O.; Meng, Xiangning; Sui, Hong-Tao

    2015-01-01

    Thermoelectric power generation is examined in the case of radiative heating. A constant heat flux is assumed in addition to consideration of the Seebeck effect, Peltier effect, and Joule heating with temperature-dependent material properties. Numerical evaluations are conducted using a combination of the finite-volume method and an original simultaneous solver for the heat transfer, thermoelectric, and electric transportation phenomena. Comparison with experimental results shows that the new solver could work well in the numerical calculations. The calculations predict that the Seebeck effect becomes larger for longer thermoelectric elements because of the larger temperature difference. The heat transfer to the cold surface is critical to determine the junction temperatures under a constant heat flux from the hot surface. The negative contribution from Peltier cooling and heating can be minimized when the current is smaller for longer elements. Therefore, a thicker TE module can generate more electric power even under a constant heat flux.

  2. Time and Space Resolved Heat Flux Measurements During Nucleate Boiling with Constant Heat Flux Boundary Conditions

    NASA Technical Reports Server (NTRS)

    Yerramilli, Vamsee K.; Myers, Jerry G.; Hussey, Sam W.; Yee, Glenda F.; Kim, Jungho

    2005-01-01

    The lack of temporally and spatially resolved measurements under nucleate bubbles has complicated efforts to fully explain pool-boiling phenomena. The objective of this current work was to acquire time and space resolved temperature distributions under nucleating bubbles on a constant heat flux surface using a microheater array with 100x 100 square microns resolution, then numerically determine the wall to liquid heat flux. This data was then correlated with high speed (greater than l000Hz) visual recordings of The bubble growth and departure from the heater surface acquired from below and from the side of the heater. The data indicate that microlayer evaporation and contact line heat transfer are not major heat transfer mechanisms for bubble growth. The dominant heat transfer mechanism appears to be transient conduction into the liquid as the liquid rewets the wall during the bubble departure process.

  3. Time and Space Resolved Heat Transfer Measurements Under Nucleate Bubbles with Constant Heat Flux Boundary Conditions

    NASA Technical Reports Server (NTRS)

    Myers, Jerry G.; Hussey, Sam W.; Yee, Glenda F.; Kim, Jungho

    2003-01-01

    Investigations into single bubble pool boiling phenomena are often complicated by the difficulties in obtaining time and space resolved information in the bubble region. This usually occurs because the heaters and diagnostics used to measure heat transfer data are often on the order of, or larger than, the bubble characteristic length or region of influence. This has contributed to the development of many different and sometimes contradictory models of pool boiling phenomena and dominant heat transfer mechanisms. Recent investigations by Yaddanapyddi and Kim and Demiray and Kim have obtained time and space resolved heat transfer information at the bubble/heater interface under constant temperature conditions using a novel micro-heater array (10x10 array, each heater 100 microns on a side) that is semi-transparent and doubles as a measurement sensor. By using active feedback to maintain a state of constant temperature at the heater surface, they showed that the area of influence of bubbles generated in FC-72 was much smaller than predicted by standard models and that micro-conduction/micro-convection due to re-wetting dominated heat transfer effects. This study seeks to expand on the previous work by making time and space resolved measurements under bubbles nucleating on a micro-heater array operated under constant heat flux conditions. In the planned investigation, wall temperature measurements made under a single bubble nucleation site will be synchronized with high-speed video to allow analysis of the bubble energy removal from the wall.

  4. Numerical Simulation of Flow Through Equilateral Triangular Duct Under Constant Wall Heat Flux Boundary Condition

    NASA Astrophysics Data System (ADS)

    Kumar, Rajneesh; Kumar, Anoop; Goel, Varun

    2016-06-01

    The force convective heat transfer in an equilateral triangular duct of different wall heat flux configurations was analysed for the laminar hydro-dynamically developed and thermally developing flow by the use of finite volume method. Unstructured meshing was generated by multi-block technique and set of governing equations were discretized using second-order accurate up-wind scheme and numerically solved by SIMPLE Algorithm. For ensuring accuracy, grid independence study was also done. Numerical methodology was verified by comparing results with previous work and predicted results showed good agreement with them (within error of ±5 %). The different combinations of constant heat flux boundary condition were analysed and their effect on heat transfer and fluid flow for different Reynolds number was also studied. The results of different combinations were compared with the case of force convective heat transfer in the equilateral triangular duct with constant heat flux on all three walls.

  5. A Methodology to Determine Self-Similarity, Illustrated by Example: Transient Heat Transfer with Constant Flux

    ERIC Educational Resources Information Center

    Monroe, Charles; Newman, John

    2005-01-01

    This simple example demonstrates the physical significance of similarity solutions and the utility of dimensional and asymptotic analysis of partial differential equations. A procedure to determine the existence of similarity solutions is proposed and subsequently applied to transient constant-flux heat transfer. Short-time expressions follow from…

  6. Time and Space Resolved Wall Temperature Measurements during Nucleate Boiling with Constant Heat Flux Boundary Conditions

    NASA Technical Reports Server (NTRS)

    Myers, Jerry G.; Hussey, Sam W.; Yee, Glenda F.; Yerramilli, Vamsee K.; Kim, Jungho

    2005-01-01

    The lack of temporally and spatially resolved measurements under nucleate bubbles has complicated efforts to fully explain pool-boiling phenomena. The objective of this current work is to acquire time and space resolved temperature distributions under nucleate bubbles on a constant heat flux surface. This was performed using a microheater array with 100 micron resolution that allowed effectively simultaneous measurements of surface temperature while supplying a constant dissipative heat flux. This data is then correlated with high speed (> 1000Hz) visual recordings of the bubble growth and departure from the heater surface acquired from below and from the side of the heater. The data indicate that a significant source of energy during bubble nucleation and initial growth is the superheated layer around the bubble. Bubble coalescence was not observed to decrease surface temperature as significantly as bubble departure from the surface. Since bubble departure is typically followed by a sharp increase in the heater surface temperature, it is surmised that the departing bubble effectively removes the superheated layer, allowing a high local heat transfer rate with the bulk fluid through transient conduction/micro-convection during rewetting.

  7. Mixed convection boundary layer flow over a horizontal elliptic cylinder with constant heat flux

    NASA Astrophysics Data System (ADS)

    Javed, Tariq; Ahmad, Hussain; Ghaffari, Abuzar

    2015-12-01

    Mixed convection boundary layer flow of a viscous fluid over a horizontal elliptic cylinder with a constant heat flux is investigated numerically. The governing partial differential equations are transformed to non-dimensional form and then are solved by an efficient implicit finite different scheme known as Keller-box method. The solutions are expressed in the form of skin friction and Nusselt number, which are plotted against the eccentric angle. The effect of pertinent parameters such as mixed convection parameter, aspect ratio (ratio of lengths of minor axis to major axis), and Prandtl number on skin friction and Nusselt number are illustrated through graphs for both blunt and slender orientations. The increase in the value of mixed convection parameter results in increase in skin friction coefficient and Nusselt number for blunt as well as slender orientations.

  8. Constant-flux discrete heating in a unit aspect-ratio annulus

    NASA Astrophysics Data System (ADS)

    Lopez, J. M.; Sankar, M.; Do, Younghae

    2012-10-01

    Natural convection in an annulus with a discrete heat source on the inner cylinder is studied numerically. The outer cylinder is isothermally cooled at a fixed low temperature, and the top wall, the bottom wall and unheated portions of the inner cylinder are thermally insulated. For low applied heat flux through the heater, as measured non-dimensionally by a Grashof number, Gr, the flow in the annular gap consists of a single-cell overturning meridional flow driven by the radial temperature gradient between the heater on the inner cylinder and the cold outer cylinder. In this regime, the flow is very weak and heat is transported primarily via conduction. The flow structure does not change until Gr ˜ 104, although the flow strength steadily increases with Gr. As the nonlinear convection terms become more important, the meridional circulation sweeps the isotherms from being almost vertical near the outer cylinder to almost horizontal near the bottom wall. By the end of the transition from the conduction-dominated regime (Gr < 104) to the convection-dominated regime (Gr ˜ 106), the flow becomes segregated into three distinct regions: (i) for vertical levels below that of the bottom of the heater, an essentially cold stagnant pool develops, with the heat flux through the outer cylinder dropping to zero. (ii) At vertical levels between the bottom and the top of the heater, most of the region in between the two cylinders is stably stratified with a relatively weak radial flow from the cold to the heated cylinder. The horizontal isotherms adjust to the temperatures on the cylinders in thin buoyancy boundary layers which drive fluid down the cold cylinder and up the heated cylinder segment. The boundary layer on the heater is about half as thick as that on the cold cylinder, but about twice as intense. (iii) The third region is above the heater top. The boundary layer flow from the heater continues upward where it meets the top endwall and bounces off of it. A wavy jet

  9. Modelling of the mixed convection in a lid-driven cavity with a constant heat flux boundary condition

    NASA Astrophysics Data System (ADS)

    Błasiak, Przemysław; Kolasiński, Piotr

    2016-03-01

    In this paper steady state two-dimensional mixed convection heat transfer problem in a lid-driven cavity heated via an uniformly distributed heat flux on the bottom wall is investigated numerically. The lid moves with constant velocity and is kept at low constant temperature, between two ideally thermally insulated vertical walls. A wide range of Prandtl Pr and Richardson Ri number is examined to study their effects on heat transfer rate and fluid flow. Governing parameters are 0.001 ≤ Ri ≤ 1.0 and 0.71 ≤ Pr ≤ 56.00. Grashof number Gr is fixed at 104. The results are presented in the form of isotherms and streamlines plots. Also, local and mean Nusselt number are depicted on charts. Numerical values of the surface averaged Nusselt number are also presented. Results show that increase of Prandtl number strongly influences enhancement of heat transfer rate and that decreasing of Richardson number increases surface averaged Nusselt number. Mechanisms responsible for intensification of heat transfer are identified and physical explanation of this phenomenon are also given.

  10. MHD boundary-layer flow of a micropolar fluid past a wedge with constant wall heat flux

    NASA Astrophysics Data System (ADS)

    Ishak, Anuar; Nazar, Roslinda; Pop, Ioan

    2009-01-01

    The steady laminar magnetohydrodynamic (MHD) boundary-layer flow past a wedge with constant surface heat flux immersed in an incompressible micropolar fluid in the presence of a variable magnetic field is investigated in this paper. The governing partial differential equations are transformed into a system of ordinary differential equations using similarity variables, and then they are solved numerically by means of an implicit finite-difference scheme known as the Keller-box method. Numerical results show that micropolar fluids display drag reduction and consequently reduce the heat transfer rate at the surface, compared to the Newtonian fluids. The opposite trends are observed for the effects of the magnetic field on the fluid flow and heat transfer characteristics.

  11. Chemically Reacting Hydromagnetic Unsteady Flow of a Radiating Fluid Past a Vertical Plate with Constant Heat Flux

    NASA Astrophysics Data System (ADS)

    Makinde, Oluwole Daniel

    2012-05-01

    The combined effects of thermal radiation absorption and magnetic field on an unsteady chemically reacting convective flow past an impulsively started vertical plate is studied in the presence of a constant wall heat flux. Boundary layer equations are derived and the resulting approximate nonlinear partial differential equations are solved numerically using a semi-discretization finite difference technique. A parametric study of all parameters involved is conducted, and a representative set of numerical results for the velocity, temperature, and concentration profiles as well as the skin-friction parameter and Sherwood number are illustrated graphically to show typical trends of the solutions. Further validation with previous works is carried out and an excellent agreement is achieved.

  12. Effect of heat generation on free convection boundary layer flow of a viscoelastic fluid past a horizontal circular cylinder with constant surface heat flux

    NASA Astrophysics Data System (ADS)

    Mohd Kasim, Abdul Rahman; Mohammad, Nurul Farahain; Shafie, Sharidan

    2012-05-01

    Effect of heat generation on free convection boundary layer flow of a viscoelastic fluid past a horizontal circular cylinder with constant surface heat flux has been investigated. The boundary layer equations are an order higher than those for the Newtonian (viscous) fluid and the adherence boundary conditions are insufficient to determine the solution of these equations completely. The governing equations are transformed into dimensionless non-similar equations by using a set of suitable transformations and solved numerically by the finite difference method along with Newton's linearization approximation. Computations are performed numerically by using Keller-box method by augmenting an extra boundary condition at infinity. We have focused our attention on the evaluation of velocity profiles, temperature profiles, shear stress in terms of local skin friction and the rate of heat transfer in terms of local Nusselt number for different values of heat generation parameter, viscoelastic parameter and the Prandlt number and the numerical results have been shown graphically.

  13. Heat flux measurements

    NASA Technical Reports Server (NTRS)

    Liebert, Curt H.; Weikle, Donald H.

    1989-01-01

    A new automated, computer controlled heat flux measurement facility is described. Continuous transient and steady-state surface heat flux values varying from about 0.3 to 6 MW/sq m over a temperature range of 100 to 1200 K can be obtained in the facility. An application of this facility is the development of heat flux gauges for continuous fast transient surface heat flux measurement on turbine blades operating in space shuttle main engine turbopumps. The facility is useful for durability testing at fast temperature transients.

  14. Heat Flux Sensor

    NASA Technical Reports Server (NTRS)

    1994-01-01

    A heat flux microsensor developed under a NASP Small Business Innovation Research (SBIR) has a wide range of potential commercial applications. Vatell Corporation originally designed microsensors for use in very high temperatures. The company then used the technology to develop heat flux sensors to measure the rate of heat energy flowing in and out of a surface as well as readings on the surface temperature. Additional major advantages include response to heat flux in less than 10 microseconds and the ability to withstand temperatures up to 1,200 degrees centigrade. Commercial applications are used in high speed aerodynamics, supersonic combustion, blade cooling, and mass flow measurements, etc.

  15. Mixed convection flow over a horizontal circular cylinder with constant heat flux embedded in a porous medium filled by a nanofluid: Buongiorno-Darcy model

    NASA Astrophysics Data System (ADS)

    Tham, Leony; Nazar, Roslinda; Pop, Ioan

    2015-11-01

    The steady laminar mixed convection boundary layer flow from a horizontal circular cylinder in a nanofluid embedded in a porous medium, which is maintained at a constant surface heat flux, has been studied by using the Buongiorno-Darcy nanofluid model for both cases of a heated and cooled cylinder. The resulting system of nonlinear partial differential equations is solved numerically using an implicit finite-difference scheme known as the Keller box method. The solutions for the flow and heat transfer characteristics are evaluated numerically and studied for various values of the governing parameters, namely the Lewis number, Brownian number, mixed convection parameter, buoyancy ratio parameter and thermophoresis parameter. It is also found that the boundary layer separation occurs at the opposing fluid flow, that is when the mixed convection parameter is negative. It is also observed that increasing the mixed convection parameter delays the boundary layer separation and the separation can be completely suppressed for sufficiently large values of the mixed convection parameter. The Brownian and buoyancy ratio parameters appear to affect the fluid flow and heat transfer profiles.

  16. Automated Heat-Flux-Calibration Facility

    NASA Technical Reports Server (NTRS)

    Liebert, Curt H.; Weikle, Donald H.

    1989-01-01

    Computer control speeds operation of equipment and processing of measurements. New heat-flux-calibration facility developed at Lewis Research Center. Used for fast-transient heat-transfer testing, durability testing, and calibration of heat-flux gauges. Calibrations performed at constant or transient heat fluxes ranging from 1 to 6 MW/m2 and at temperatures ranging from 80 K to melting temperatures of most materials. Facility developed because there is need to build and calibrate very-small heat-flux gauges for Space Shuttle main engine (SSME).Includes lamp head attached to side of service module, an argon-gas-recirculation module, reflector, heat exchanger, and high-speed positioning system. This type of automated heat-flux calibration facility installed in industrial plants for onsite calibration of heat-flux gauges measuring fluxes of heat in advanced gas-turbine and rocket engines.

  17. Electrostatic heat flux instabilities

    NASA Technical Reports Server (NTRS)

    Morrison, P. J.; Ionson, J. A.

    1980-01-01

    The electrostatic cyclotron and ion acoustic instabilities in a plasma driven by a combined heat flux and current were investigated. The minimum critical heat conduction speed (above which the plasma is unstable) is given as a function of the ratio of electron to ion temperatures.

  18. Optical heat flux gauge

    DOEpatents

    Noel, Bruce W.; Borella, Henry M.; Cates, Michael R.; Turley, W. Dale; MacArthur, Charles D.; Cala, Gregory C.

    1991-01-01

    A heat flux gauge comprising first and second thermographic phosphor layers separated by a layer of a thermal insulator, wherein each thermographic layer comprises a plurality of respective thermographic sensors in a juxtaposed relationship with respect to each other. The gauge may be mounted on a surface with the first thermographic phosphor in contact with the surface. A light source is directed at the gauge, causing the phosphors to luminesce. The luminescence produced by the phosphors is collected and its spectra analyzed in order to determine the heat flux on the surface. First and second phosphor layers must be different materials to assure that the spectral lines collected will be distinguishable.

  19. Optical heat flux gauge

    DOEpatents

    Noel, Bruce W.; Borella, Henry M.; Cates, Michael R.; Turley, W. Dale; MacArthur, Charles D.; Cala, Gregory C.

    1991-01-01

    A heat flux gauge comprising first and second thermographic phosphor layers separated by a layer of a thermal insulator wherein each thermographic layer comprises a plurality of respective thermographic phosphors. The gauge may be mounted on a surface with the first thermographic phosphor in contact with the surface. A light source is directed at the gauge, causing the phosphors to luminesce. The luminescence produced by the phosphors is collected and its spectra analyzed in order to determine the heat flux on the surface. First and second phosphor layers must be different materials to assure that the spectral lines collected will be distinguishable.

  20. Optical heat flux gauge

    DOEpatents

    Noel, Bruce W.; Borella, Henry M.; Cates, Michael R.; Turley, W. Dale; MaCarthur, Charles D.; Cala, Gregory C.

    1991-01-01

    A heat flux gauge comprising first and second thermographic phosphor layers separated by a layer of a thermal insulator. The gauge may be mounted on a surface with the first thermographic phosphor in contact with the surface. A light source is directed at the gauge, causing the phosphors to luminesce. The luminescence produced by the phosphors is collected and its spectra analyzed in order to determine the heat flux on the surface. First and second phosphor layers must be different materials to assure that the spectral lines collected will be distinguishable.

  1. Latent Heat in Soil Heat Flux Measurements

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The surface energy balance includes a term for soil heat flux. Soil heat flux is difficult to measure because it includes conduction and convection heat transfer processes. Accurate representation of soil heat flux is an important consideration in many modeling and measurement applications. Yet, the...

  2. Optical heat flux gauge

    DOEpatents

    Noel, B.W.; Borella, H.M.; Cates, M.R.; Turley, W.D.; MacArthur, C.D.; Cala, G.C.

    1991-04-09

    A heat flux gauge is disclosed comprising first and second thermographic phosphor layers separated by a layer of a thermal insulator, wherein each thermographic layer comprises a plurality of respective thermographic sensors in a juxtaposed relationship with respect to each other. The gauge may be mounted on a surface with the first thermographic phosphor in contact with the surface. A light source is directed at the gauge, causing the phosphors to luminesce. The luminescence produced by the phosphors is collected and its spectra analyzed in order to determine the heat flux on the surface. First and second phosphor layers must be different materials to assure that the spectral lines collected will be distinguishable. 9 figures.

  3. Heat Flux Sensor Testing

    NASA Technical Reports Server (NTRS)

    Clark, D. W.

    2002-01-01

    This viewgraph presentation provides information on the following objectives: Developing secondary calibration capabilities for MSFC's (Marshall Space Flight Center) Hot Gas Facility (HGF), a Mach 4 Aerothermal Wind Tunnel; Evaluating ASTM (American Society for Testing and Materials) slug/ thinskin calorimeters against current HGF heat flux sensors; Providing verification of baselined AEDC (Arnold Engineering Development Center) / Medtherm gage calibrations; Addressing future calibration issues involving NIST (National Institute of Standards and Technology) certified radiant gages.

  4. Heat-Flux-Measuring Facility

    NASA Technical Reports Server (NTRS)

    Liebert, Curt H.; Weikle, Donald H.

    1990-01-01

    Apparatus simulates conditions in turbine engines. Automated facility generates and measures transient and steady-state heat fluxes at flux densities from 0.3 to 6 MW/m(Sup2) and temperatures from 100 to 1,200 K. Positioning arm holds heat-flux gauge at focal point of arc lamp. Arm previously chilled gauge in liquid nitrogen in Dewar flask. Cooling water flows through lamp to heat exchanger. Used to develop heat-flux gauges for turbine blades and to test materials for durability under rapidly changing temperatures.

  5. High heat flux single phase heat exchanger

    NASA Technical Reports Server (NTRS)

    Valenzuela, Javier A.; Izenson, Michael G.

    1990-01-01

    This paper presents the results obtained to date in a program to develop a high heat flux, single-phase heat exchanger for spacecraft thermal management. The intended application is a net generation interface heat exchanger to couple the crew module water thermal bus to the two-phase ammonia main thermal bus in the Space Station Freedom. The large size of the interface heat exchanger is dictated by the relatively poor water-side heat transfer characteristics. The objective of this program is to develop a single-phase heat transfer approach which can achieve heat fluxes and heat transfer coefficients comparable to those of the evaporation ammonia side. A new heat exchanger concept has been developed to meet these objecties. The main feature of this heat exchanger is that it can achieve very high heat fluxes with a pressure drop one to two orders of magnitude lower than those of previous microchannel or jet impingement high heat flux heat exchangers. This paper describes proof-of-concept experiments performed in air and water and presents analytical model of the heat exchanger.

  6. Fundamentals of heat measurement. [heat flux transducers

    NASA Technical Reports Server (NTRS)

    Gerashchenko, O. A.

    1979-01-01

    Various methods and devices for obtaining experimental data on heat flux density over wide ranges of temperature and pressure are examined. Laboratory tests and device fabrication details are supplemented by theoretical analyses of heat-conduction and thermoelectric effects, providing design guidelines and information relevant to further research and development. A theory defining the measure of correspondence between transducer signal and the measured heat flux is established for individual (isolated) heat flux transducers subject to space and time-dependent loading. An analysis of the properties of stacked (series-connected) transducers of various types (sandwich-type, plane, and spiral) is used to derive a similarity theory providing general governing relationships. The transducers examined are used in 36 types of derivative devices involving direct heat loss measurements, heat conduction studies, radiation pyrometry, calorimetry in medicine and industry and nuclear reactor dosimetry.

  7. Radial heat flux transformer

    NASA Technical Reports Server (NTRS)

    Basiulis, A.; Buzzard, R. J.

    1971-01-01

    Unit moves heat radially from small diameter shell to larger diameter shell, or vice versa, with negligible temperature drop, making device useful wherever heating or cooling of concentrically arranged materials, substances, and structures is desired.

  8. High heat flux loop heat pipes

    NASA Technical Reports Server (NTRS)

    North, Mark T.; Sarraf, David B.; Rosenfeld, John H.; Maidanik, Yuri F.; Vershinin, Sergey

    1997-01-01

    Loop heat pipes (LHPs) can transport very large thermal power loads over long distances, through flexible, small diameter tubes against gravitational heads. In order to overcome the evaporator limit of LHPs, which is of about 0.07 MW/sq m, work was carried out to improve the efficiency by threefold to tenfold. The vapor passage geometry for the high heat flux conditions is shown. A bidisperse wick material within the circumferential vapor passages was used. Along with heat flux enhancement, several underlying issues were demonstrated, including the fabrication of bidisperse powder with controlled properties and the fabrication of a device geometry capable of replacing vapor passages with bidisperse powder.

  9. Marshak waves: Constant flux vs constant T-a (slight) paradigm shift

    SciTech Connect

    Rosen, M.D.

    1994-12-22

    We review the basic scaling laws for Marshak waves and point out the differences in results for wall loss, albedo, and Marshak depth when a constant absorbed flux is considered as opposed to a constant absorbed temperature. Comparisons with LASNEX simulations and with data are presented that imply that a constant absorbed flux is a more appropriate boundary condition.

  10. Heat flux solarimeter

    SciTech Connect

    Sartarelli, A.; Vera, S.; Cyrulies, E.; Echarri, R.; Samson, I.

    2010-12-15

    The solarimeter presented in this work is easy to assemble. It is calibrated and its performance is validated by means of Hottel's method. Finally, the curves obtained with this solarimeter are compared to the ones obtained with a commercial solarimeter. This device is based on the evaluation of the heat flow in a metal rod. In consequence, measurements are not affected by ambient temperature variations. On the other hand, there is a linear relationship between the temperatures measured at the rod ends and the incident radiation, as can be concluded both from the theory of its operation and the calibration lines obtained. The results obtained from the global irradiance measurements in the area of Los Polvorines (Buenos Aires Province), together with a preliminary evaluation of the solarimeter's response time, are presented in this work. (author)

  11. Effects of dynamic heat fluxes on model climate sensitivity Meridional sensible and latent heat fluxes

    NASA Technical Reports Server (NTRS)

    Gutowski, W. J., Jr.; Wang, W.-C.; Stone, P. H.

    1985-01-01

    The high- and low-latitude radiative-dynamic (HLRD) climatic model of Wang et al. (1984) was used to study the effect of meridional heat (MH) fluxes on climate changes caused by increases of CO2 abundance and solar constant variations. However, the empirical MH parameterization of the HLRD model was replaced by physically based parameterization, which gives separate meridional sensible and latent heat fluxes and provides a complete representation of the dependence of the flux on the mean temperature field. Both parameterization methods yielded about the same changes in global mean surface temperature and ice line, and both produced only small changes in meridional temperature gradient, although the latter were even smaller with the physically based parameterizations. At any latitude, the hemispheric mean surface temperature, rather than MH fluxes, dominates the surface temperature changes.

  12. Latent heat sink in soil heat flux measurements

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The surface energy balance includes a term for soil heat flux. Soil heat flux is difficult to measure because it includes conduction and convection heat transfer processes. Accurate representation of soil heat flux is an important consideration in many modeling and measurement applications. Yet, the...

  13. Advanced high temperature heat flux sensors

    NASA Technical Reports Server (NTRS)

    Atkinson, W.; Hobart, H. F.; Strange, R. R.

    1983-01-01

    To fully characterize advanced high temperature heat flux sensors, calibration and testing is required at full engine temperature. This required the development of unique high temperature heat flux test facilities. These facilities were developed, are in place, and are being used for advanced heat flux sensor development.

  14. Geometrical correction factors for heat flux meters

    NASA Technical Reports Server (NTRS)

    Baumeister, K. J.; Papell, S. S.

    1974-01-01

    General formulas are derived for determining gage averaging errors of strip-type heat flux meters used in the measurement of one-dimensional heat flux distributions. The local averaging error e(x) is defined as the difference between the measured value of the heat flux and the local value which occurs at the center of the gage. In terms of e(x), a correction procedure is presented which allows a better estimate for the true value of the local heat flux. For many practical problems, it is possible to use relatively large gages to obtain acceptable heat flux measurements.

  15. Investigation on critical heat flux of flow in pipes

    NASA Astrophysics Data System (ADS)

    Zhu, Senyuan

    1990-08-01

    This paper experimentally and theoretically investigates the critical heat flux of flow in pipes. From the analysis of the boiling mechanism and processing by means of the analogy principle of two-phase flow, a criterion equation to express critical heat flux has been derived. Correlated with six different coolants, 355 experimental data, the constant A and exponents K, m, and n are obtained. With a dimensionless correction term to calculate the effect on the varying slotted height of the cooling jacket, the previous equation will be a general equation to calculate the critical heat flux of flow in pipes.

  16. Dual active surface heat flux gage probe

    NASA Astrophysics Data System (ADS)

    Liebert, Curt H.; Kolodziej, Paul

    1995-02-01

    A unique plug-type heat flux gage probe was tested in the NASA Ames Research Center 2x9 turbulent flow duct facility. The probe was fabricated by welding a miniature dual active surface heat flux gage body to the end of a hollow metal cylindrical bolt containing a metal inner tube. Cooling air flows through the inner tube, impinges onto the back of the gage body and then flows out through the annulus formed between the inner tube and the hollow bolt wall. Heat flux was generated in the duct facility with a Huels arc heater. The duct had a rectangular cross section and one wall was fabricated from 2.54 centimeter thick thermal insulation rigid surface material mounted onto an aluminum plate. To measure heat flux, the probe was inserted through the plate and insulating materials with the from of the gage located flush with the hot gas-side insulation surface. Absorbed heat fluxes measured with the probe were compared with absorbed heat fluxes measured with six water-cooled reference calorimeters. These calorimeters were located in a water-cooled metal duct wall which was located across from the probe position. Correspondence of transient and steady heat fluxes measured with the reference calorimeters and heat flux gage probe was generally within a satisfactory plus or minus 10 percent. This good correspondence was achieved even though the much cooler probe caused a large surface temperature disruption of 1000K between the metal gage and the insulation. However, this temperature disruption did not seriously effect the accuracy of the heat flux measurement. A current application for dual active surface heat flux gages is for transient and steady absorbed heat flux, surface temperature and heat transfer coefficient measurements on the surface of an oxidizer turbine inlet deflector operating in a space shuttle test bed engine.

  17. Pyrolytic graphite gauge for measuring heat flux

    NASA Technical Reports Server (NTRS)

    Bunker, Robert C. (Inventor); Ewing, Mark E. (Inventor); Shipley, John L. (Inventor)

    2002-01-01

    A gauge for measuring heat flux, especially heat flux encountered in a high temperature environment, is provided. The gauge includes at least one thermocouple and an anisotropic pyrolytic graphite body that covers at least part of, and optionally encases the thermocouple. Heat flux is incident on the anisotropic pyrolytic graphite body by arranging the gauge so that the gauge surface on which convective and radiative fluxes are incident is perpendicular to the basal planes of the pyrolytic graphite. The conductivity of the pyrolytic graphite permits energy, transferred into the pyrolytic graphite body in the form of heat flux on the incident (or facing) surface, to be quickly distributed through the entire pyrolytic graphite body, resulting in small substantially instantaneous temperature gradients. Temperature changes to the body can thereby be measured by the thermocouple, and reduced to quantify the heat flux incident to the body.

  18. Effects of dynamical heat fluxes on model climate sensitivity

    NASA Technical Reports Server (NTRS)

    Wang, W.-C.; Molnar, G.; Mitchell, T. P.; Stone, P. H.

    1984-01-01

    A coupled high and low latitude radiative-dynamical model of the annual mean northern hemisphere has been constructed in order to study the interactions of the vertical and meridional heat fluxes and their feedback effect on model climate sensitivity. The model's climate sensitivity to solar constant changes and CO2 increases is investigated, and the effect of feedback in the dynamical fluxes on model climate sensitivity is examined. Nonlinear interactions between heat fluxes and other feedbacks such as radiation-temperature, ice albedo, and humidity are also discussed.

  19. Downstream Heat Flux Profile vs. Midplane T Profile in Tokamaks

    SciTech Connect

    Robert J. Goldston

    2009-08-20

    The relationship between the midplane scrape-off-layer electron temperature profile and the parallel heat flux profile at the divertor in tokamaks is investigated. A model is applied which takes into account anisotropic thermal diffusion, in a rectilinear geometry with constant density. Eigenmode analysis is applied to the simplified problem with constant thermal diffusivities. A self-similar nonlinear solution is found for the more realistic problem with anisotropically temperature-dependent thermal diffusivities. Numerical solutions are developed for both cases, with spatially dependent heat flux emerging from the plasma. For both constant and temperature-dependent thermal diffusivities it is found that, below about one-half of its peak, the heat flux profile shape at the divertor, compared with the midplane temperature profile shape, is robustly described by the simplest two-point model. However the physical processes are not those assumed in the simplest two-point model, nor is the numerical coefficient relating q||div to Tmp χ||mp/L|| as predicted. For realistic parameters the peak in the heat flux, moreover, can be reduced by a factor of two or more from the two-point model scaling which fits the remaining profile. For temperature profiles in the SOL region above the x-point set by marginal stability, the heat flux profile to the divertor can be largely decoupled from the prediction of the two-point model. These results suggest caveats for data interpretation, and possibly favorable outcomes for divertor configurations with extended field lines.

  20. Large scale surface heat fluxes. [through oceans

    NASA Technical Reports Server (NTRS)

    Sarachik, E. S.

    1984-01-01

    The heat flux through the ocean surface, Q, is the sum of the net radiation at the surface, the latent heat flux into the atmosphere, and the sensible heat flux into the atmosphere (all fluxes positive upwards). A review is presented of the geographical distribution of Q and its constituents, and the current accuracy of measuring Q by ground based measurements (both directly and by 'bulk formulae') is assessed. The relation of Q to changes of oceanic heat content, heat flux, and SST is examined and for each of these processes, the accuracy needed for Q is discussed. The needed accuracy for Q varies from process to process, varies geographically, and varies with the time and space scale considered.

  1. Heat flux viscosity in collisional magnetized plasmas

    SciTech Connect

    Liu, C.; Fox, W.; Bhattacharjee, A.

    2015-05-15

    Momentum transport in collisional magnetized plasmas due to gradients in the heat flux, a “heat flux viscosity,” is demonstrated. Even though no net particle flux is associated with a heat flux, in a plasma there can still be momentum transport owing to the velocity dependence of the Coulomb collision frequency, analogous to the thermal force. This heat-flux viscosity may play an important role in numerous plasma environments, in particular, in strongly driven high-energy-density plasma, where strong heat flux can dominate over ordinary plasma flows. The heat flux viscosity can influence the dynamics of the magnetic field in plasmas through the generalized Ohm's law and may therefore play an important role as a dissipation mechanism allowing magnetic field line reconnection. The heat flux viscosity is calculated directly using the finite-difference method of Epperlein and Haines [Phys. Fluids 29, 1029 (1986)], which is shown to be more accurate than Braginskii's method [S. I. Braginskii, Rev. Plasma Phys. 1, 205 (1965)], and confirmed with one-dimensional collisional particle-in-cell simulations. The resulting transport coefficients are tabulated for ease of application.

  2. Heat flux viscosity in collisional magnetized plasmas

    NASA Astrophysics Data System (ADS)

    Liu, C.; Fox, W.; Bhattacharjee, A.

    2015-05-01

    Momentum transport in collisional magnetized plasmas due to gradients in the heat flux, a "heat flux viscosity," is demonstrated. Even though no net particle flux is associated with a heat flux, in a plasma there can still be momentum transport owing to the velocity dependence of the Coulomb collision frequency, analogous to the thermal force. This heat-flux viscosity may play an important role in numerous plasma environments, in particular, in strongly driven high-energy-density plasma, where strong heat flux can dominate over ordinary plasma flows. The heat flux viscosity can influence the dynamics of the magnetic field in plasmas through the generalized Ohm's law and may therefore play an important role as a dissipation mechanism allowing magnetic field line reconnection. The heat flux viscosity is calculated directly using the finite-difference method of Epperlein and Haines [Phys. Fluids 29, 1029 (1986)], which is shown to be more accurate than Braginskii's method [S. I. Braginskii, Rev. Plasma Phys. 1, 205 (1965)], and confirmed with one-dimensional collisional particle-in-cell simulations. The resulting transport coefficients are tabulated for ease of application.

  3. Critical heat flux in subcooled flow boiling

    NASA Astrophysics Data System (ADS)

    Hall, David Douglas

    The critical heat flux (CHF) phenomenon was investigated for water flow in tubes with particular emphasis on the development of methods for predicting CHF in the subcooled flow boiling regime. The Purdue University Boiling and Two-Phase Flow Laboratory (PU-BTPFL) CHF database for water flow in a uniformly heated tube was compiled from the world literature dating back to 1949 and represents the largest CHF database ever assembled with 32,544 data points from over 100 sources. The superiority of this database was proven via a detailed examination of previous databases. The PU-BTPFL CHF database is an invaluable tool for the development of CHF correlations and mechanistic models that are superior to existing ones developed with smaller, less comprehensive CHF databases. In response to the many inaccurate and inordinately complex correlations, two nondimensional, subcooled CHF correlations were formulated, containing only five adjustable constants and whose unique functional forms were determined without using a statistical analysis but rather using the parametric trends observed in less than 10% of the subcooled CHF data. The correlation based on inlet conditions (diameter, heated length, mass velocity, pressure, inlet quality) was by far the most accurate of all known subcooled CHF correlations, having mean absolute and root-mean-square (RMS) errors of 10.3% and 14.3%, respectively. The outlet (local) conditions correlation was the most accurate correlation based on local CHF conditions (diameter, mass velocity, pressure, outlet quality) and may be used with a nonuniform axial heat flux. Both correlations proved more accurate than a recent CHF look-up table commonly employed in nuclear reactor thermal hydraulic computer codes. An interfacial lift-off, subcooled CHF model was developed from a consideration of the instability of the vapor-liquid interface and the fraction of heat required for liquid-vapor conversion as opposed to that for bulk liquid heating. Severe

  4. Comparison of the high temperature heat flux sensor to traditional heat flux gages under high heat flux conditions.

    SciTech Connect

    Blanchat, Thomas K.; Hanks, Charles R.

    2013-04-01

    Four types of heat flux gages (Gardon, Schmidt-Boelter, Directional Flame Temperature, and High Temperature Heat Flux Sensor) were assessed and compared under flux conditions ranging between 100-1000 kW/m2, such as those seen in hydrocarbon fire or propellant fire conditions. Short duration step and pulse boundary conditions were imposed using a six-panel cylindrical array of high-temperature tungsten lamps. Overall, agreement between all gages was acceptable for the pulse tests and also for the step tests. However, repeated tests with the HTHFS with relatively long durations at temperatures approaching 1000%C2%B0C showed a substantial decrease (10-25%) in heat flux subsequent to the initial test, likely due to the mounting technique. New HTHFS gages have been ordered to allow additional tests to determine the cause of the flux reduction.

  5. Fabrication of Thin Film Heat Flux Sensors

    NASA Technical Reports Server (NTRS)

    Will, Herbert A.

    1992-01-01

    Prototype thin film heat flux sensors have been constructed and tested. The sensors can be applied to propulsion system materials and components. The sensors can provide steady state and fast transient heat flux information. Fabrication of the sensor does not require any matching of the mounting surface. Heat flux is proportional to the temperature difference across the upper and lower surfaces of an insulation material. The sensor consists of an array of thermocouples on the upper and lower surfaces of a thin insulating layer. The thermocouples for the sensor are connected in a thermopile arrangement. A 100 thermocouple pair heat flux sensor has been fabricated on silicon wafers. The sensor produced an output voltage of 200-400 microvolts when exposed to a hot air heat gun. A 20 element thermocouple pair heat flux sensor has been fabricated on aluminum oxide sheet. Thermocouples are Pt-Pt/Rh with silicon dioxide as the insulating material. This sensor produced an output of 28 microvolts when exposed to the radiation of a furnace operating at 1000 C. Work is also underway to put this type of heat flux sensor on metal surfaces.

  6. Mixed convection boundary layer flow at the lower stagnation point of a sphere embedded in a porous medium in presence of heat source/sink: Constant heat flux case

    NASA Astrophysics Data System (ADS)

    Fauzi, Nur Fatihah; Ahmad, Syakila; Pop, Ioan

    2014-07-01

    The steady mixed convection flow of an incompressible viscous fluid over an isoflux sphere embedded in a porous medium with the existence of heat source/sink is theoretically considered for both the assisting and opposing flow cases with small Prandtl number. The transformed equations of the non-similar boundary layer at the lower stagnation point of the sphere are solved numerically using a finite-difference method known as the Keller-box scheme. Numerical results are presented for the skin friction coefficient and the local wall temperature, as well as the velocity and temperature profiles for different values of the porosity parameter, the heat source/sink parameter and the mixed convection parameter for air. It is noticed that the solution has two branches in a certain range of the mixed convection parameter.

  7. Heat flux microsensor measurements and calibrations

    NASA Technical Reports Server (NTRS)

    Terrell, James P.; Hager, Jon M.; Onishi, Shinzo; Diller, Thomas E.

    1992-01-01

    A new thin-film heat flux gage has been fabricated specifically for severe high temperature operation using platinum and platinum-10 percent rhodium for the thermocouple elements. Radiation calibrations of this gage were performed at the AEDC facility over the available heat flux range (approx. 1.0 - 1,000 W/cu cm). The gage output was linear with heat flux with a slight increase in sensitivity with increasing surface temperature. Survivability of gages was demonstrated in quench tests from 500 C into liquid nitrogen. Successful operation of gages to surface temperatures of 750 C has been achieved. No additional cooling of the gages is required because the gages are always at the same temperature as the substrate material. A video of oxyacetylene flame tests with real-time heat flux and temperature output is available.

  8. Direct computation of the sensible heat flux.

    USGS Publications Warehouse

    Watson, K.

    1980-01-01

    An algorithm to determine the sensible heat flux from simple field measurements (wind speed, air and ground temperatures) has been developed. It provides a direct solution, in parametric form, which can be displayed graphically or tabularly. -from Author

  9. Critical heat flux test apparatus

    DOEpatents

    Welsh, Robert E.; Doman, Marvin J.; Wilson, Edward C.

    1992-01-01

    An apparatus for testing, in situ, highly irradiated specimens at high temperature transients is provided. A specimen, which has a thermocouple device attached thereto, is manipulated into test position in a sealed quartz heating tube by a robot. An induction coil around a heating portion of the tube is powered by a radio frequency generator to heat the specimen. Sensors are connected to monitor the temperatures of the specimen and the induction coil. A quench chamber is located below the heating portion to permit rapid cooling of the specimen which is moved into this quench chamber once it is heated to a critical temperature. A vacuum pump is connected to the apparatus to collect any released fission gases which are analyzed at a remote location.

  10. Comparison of entrainment in constant volume and constant flux dense currents over sloping bottoms

    NASA Astrophysics Data System (ADS)

    Bhaganagar, K.; Nayamatullah, M.; Cenedese, C.

    2014-12-01

    Three dimensional high resolution large eddy simulations (LES) are employed to simulate lock-exchange and constant flux dense flows over inclined surface with the aim of investigating, visualizing and describing the turbulent structure and the evolution of bottom-propagating compositional density current at the channel bottom. The understanding of dynamics of density current is largely determined by the amount of interfacial mixing or entrainment between the ambient and dense fluids. No previous experimental or numerical studies have been done to estimate entrainment in classical lock-exchange system. The differences in entrainment between the lock-exchange and constant flux are explored. Comparing the results of flat bed with inclined surface results, flow exhibits significant differences near the leading edge or nose of the front of the density currents due to inclination of surface. Further, the instabilities are remarkably enhanced resulting Kelvin-Helmholtz and lobe-cleft type of instabilities arises much earlier in time. In this study, a brief analysis of entrainment on lock-exchange density current is presented using different bed slopes and a set of reduced gravity values (g'). We relate the entrainment value with different flow parameters such as Froude number (Fr) and Reynolds number (Re).

  11. Towards Improved Estimates of Ocean Heat Flux

    NASA Astrophysics Data System (ADS)

    Bentamy, Abderrahim; Hollman, Rainer; Kent, Elisabeth; Haines, Keith

    2014-05-01

    Recommendations and priorities for ocean heat flux research are for instance outlined in recent CLIVAR and WCRP reports, eg. Yu et al (2013). Among these is the need for improving the accuracy, the consistency, and the spatial and temporal resolution of air-sea fluxes over global as well as at region scales. To meet the main air-sea flux requirements, this study is aimed at obtaining and analyzing all the heat flux components (latent, sensible and radiative) at the ocean surface over global oceans using multiple satellite sensor observations in combination with in-situ measurements and numerical model analyses. The fluxes will be generated daily and monthly for the 20-year (1992-2011) period, between 80N and 80S and at 0.25deg resolution. Simultaneous estimates of all surface heat flux terms have not yet been calculated at such large scale and long time period. Such an effort requires a wide range of expertise and data sources that only recently are becoming available. Needed are methods for integrating many data sources to calculate energy fluxes (short-wave, long wave, sensible and latent heat) across the air-sea interface. We have access to all the relevant, recently available satellite data to perform such computations. Yu, L., K. Haines, M. Bourassa, M. Cronin, S. Gulev, S. Josey, S. Kato, A. Kumar, T. Lee, D. Roemmich: Towards achieving global closure of ocean heat and freshwater budgets: Recommendations for advancing research in air-sea fluxes through collaborative activities. INTERNATIONAL CLIVAR PROJECT OFFICE, 2013: International CLIVAR Publication Series No 189. http://www.clivar.org/sites/default/files/ICPO189_WHOI_fluxes_workshop.pdf

  12. Methodology for calibration and use of heat flux transducers

    NASA Astrophysics Data System (ADS)

    Ducharme, Michel B.; Frim, John

    1991-05-01

    The direct assessment of heat flux from the body is a basic measurement in thermal physiology. Heat flux transducers (HFTs) are being used increasingly for that purpose under different environmental conditions. However, questions have been raised regarding the accuracy of the manufacturer's constant of calibration, and also about the effect of the thermal resistance of the device on the true thermal flux from the skin. Two different types of waterproofed HFTs were checked for their calibration using the Rapid-k thermal conductivity instrument. A detailed description of the methodology used during the calibration is given. A model capable of simulating a large range of tissue insulation was used to study the effect of the underlying tissue insulation on the relative error in thermal flux due to the thermal resistance of the HFTs. The data show that the deviation from the true value of thermal flux increases with the reciprocal of the underlying tissue insulation (r = 0.99, p less than 0.001). The underestimation of the heat flux through the skin measured by an HFT is minimal when the device is used on vasoconstricted skin in cool subjects (3 to 13 pct. error), but becomes important when used on warm vasodilated subjects (29 to 35 pct. error), and even more important on metallic skin mannequins (greater than 60 pct. error). In order to optimize the accuracy of the heat flux measurements by HFTs, it is important to recalibrate the HFTs and to correct the heat flux values for the thermal resistance of the HFT when used on vasodilated tissues.

  13. Heat-Flux Gage thermophosphor system

    SciTech Connect

    Tobin, K.W.

    1991-08-01

    This document describes the installation, hardware requirements, and application of the Heat-Flux Gage (Version 1.0) software package developed by the Oak Ridge National Laboratory, Applied Technology Division. The developed software is a single component of a thermographic phosphor-based temperature and heat-flux measurement system. The heat-flux transducer was developed by EG G Energy Measurements Systems and consists of a 1- by 1-in. polymethylpentene sheet coated on the front and back with a repeating thermographic phosphor pattern. The phosphor chosen for this application is gadolinium oxysulphide doped with terbium. This compound has a sensitive temperature response from 10 to 65.6{degree}C (50--150{degree}F) for the 415- and 490-nm spectral emission lines. 3 refs., 17 figs.

  14. Heat flux sensors for infrared thermography in convective heat transfer.

    PubMed

    Carlomagno, Giovanni Maria; de Luca, Luigi; Cardone, Gennaro; Astarita, Tommaso

    2014-01-01

    This paper reviews the most dependable heat flux sensors, which can be used with InfraRed (IR) thermography to measure convective heat transfer coefficient distributions, and some of their applications performed by the authors' research group at the University of Naples Federico II. After recalling the basic principles that make IR thermography work, the various heat flux sensors to be used with it are presented and discussed, describing their capability to investigate complex thermo-fluid-dynamic flows. Several applications to streams, which range from natural convection to hypersonic flows, are also described. PMID:25386758

  15. Heat Flux Sensors for Infrared Thermography in Convective Heat Transfer

    PubMed Central

    Carlomagno, Giovanni Maria; de Luca, Luigi; Cardone, Gennaro; Astarita, Tommaso

    2014-01-01

    This paper reviews the most dependable heat flux sensors, which can be used with InfraRed (IR) thermography to measure convective heat transfer coefficient distributions, and some of their applications performed by the authors' research group at the University of Naples Federico II. After recalling the basic principles that make IR thermography work, the various heat flux sensors to be used with it are presented and discussed, describing their capability to investigate complex thermo-fluid-dynamic flows. Several applications to streams, which range from natural convection to hypersonic flows, are also described. PMID:25386758

  16. 2D divertor heat flux distribution using a 3D heat conduction solver in National Spherical Torus Experiment.

    PubMed

    Gan, K F; Ahn, J-W; Park, J-W; Maingi, R; McLean, A G; Gray, T K; Gong, X; Zhang, X D

    2013-02-01

    The divertor heat flux footprint in tokamaks is often observed to be non-axisymmetric due to intrinsic error fields, applied 3D magnetic fields or during transients such as edge localized modes. Typically, only 1D radial heat flux profiles are analyzed; however, analysis of the full 2D divertor measurements provides opportunities to study the asymmetric nature of the deposited heat flux. To accomplish this an improved 3D Fourier analysis method has been successfully applied in a heat conduction solver (TACO) to determine the 2D heat flux distribution at the lower divertor surface in the National Spherical Torus Experiment (NSTX) tokamak. This advance enables study of helical heat deposition onto the divertor. In order to account for heat transmission through poorly adhered surface layers on the divertor plate, a heat transmission coefficient, defined as the surface layer thermal conductivity divided by the thickness of the layer, was introduced to the solution of heat conduction equation. This coefficient is denoted as α and a range of values were tested in the model to ensure a reliable heat flux calculation until a specific value of α led to the constant total deposited energy in the numerical solution after the end of discharge. A comparison between 1D heat flux profiles from TACO and from a 2D heat flux calculation code, THEODOR, shows good agreement. Advantages of 2D heat flux distribution over the conventional 1D heat flux profile are also discussed, and examples of 2D data analysis in the study of striated heat deposition pattern as well as the toroidal degree of asymmetry of peak heat flux and heat flux width are demonstrated. PMID:23464209

  17. 2D divertor heat flux distribution using a 3D heat conduction solver in National Spherical Torus Experiment

    NASA Astrophysics Data System (ADS)

    Gan, K. F.; Ahn, J.-W.; Park, J.-W.; Maingi, R.; McLean, A. G.; Gray, T. K.; Gong, X.; Zhang, X. D.

    2013-02-01

    The divertor heat flux footprint in tokamaks is often observed to be non-axisymmetric due to intrinsic error fields, applied 3D magnetic fields or during transients such as edge localized modes. Typically, only 1D radial heat flux profiles are analyzed; however, analysis of the full 2D divertor measurements provides opportunities to study the asymmetric nature of the deposited heat flux. To accomplish this an improved 3D Fourier analysis method has been successfully applied in a heat conduction solver (TACO) to determine the 2D heat flux distribution at the lower divertor surface in the National Spherical Torus Experiment (NSTX) tokamak. This advance enables study of helical heat deposition onto the divertor. In order to account for heat transmission through poorly adhered surface layers on the divertor plate, a heat transmission coefficient, defined as the surface layer thermal conductivity divided by the thickness of the layer, was introduced to the solution of heat conduction equation. This coefficient is denoted as α and a range of values were tested in the model to ensure a reliable heat flux calculation until a specific value of α led to the constant total deposited energy in the numerical solution after the end of discharge. A comparison between 1D heat flux profiles from TACO and from a 2D heat flux calculation code, THEODOR, shows good agreement. Advantages of 2D heat flux distribution over the conventional 1D heat flux profile are also discussed, and examples of 2D data analysis in the study of striated heat deposition pattern as well as the toroidal degree of asymmetry of peak heat flux and heat flux width are demonstrated.

  18. Heat flux boundary anomalies and thermal winds

    NASA Astrophysics Data System (ADS)

    Dietrich, Wieland; Wicht, Johannes

    2013-04-01

    Several studies have shown strong effects of outer boundary heat flux patterns on the dynamo mechanism in planets. For example, the hemispherical field of the ancient Martian dynamo can be explained by a large scale sinusoidal anomaly of the core mantle boundary heat flux triggered by large scale mantle convection or giant impacts. The magnetic fields show typically the desired effect - though dynamo action is locally stronger where the underneath heat flux is higher. However, it remains an open question if these effects still apply for more realistic planetary parameters, such as vigor of the convection (Rayleigh number) or the rotation rate (Ekman). The sinusoidal variation of the CMB heat flux along the colatitude with larger heat flux in the southern and smaller in the northern hemisphere as used for Mars can lead to a concentration of magnetic field in the south. The shape of such a hemispherical dynamo matches the crustal magnetization pattern at the surface and seems therefore an admissible mode for the ancient Martian dynamo. As the consequence of the emerging latitudinal temperature gradients convection and induction are dominated by thermal winds. These zonal flows were found to be equatorial antisymmetric, axisymmetric, ageostrophic, of strong amplitude and have therefore a severe effect on core convection and especially the induction process. We measure the underlying thermal anomalies as a function of Rayleigh and Ekman number and show that they are responsible for the thermal winds. Our results suggest that temperature anomalies decrease clearly with the supercriticality of the convection due to faster stirring and mixing, but show no additional dependence on the Ekman number. Interestingly, the decline of the latitudinal temperature anomaly follows a recently suggested scaling law for the thickness of thermal boundary layers. Even though the convective supercriticality of planetary cores is rather large and therefore only a minor effect of thermal

  19. Constant of heat conduction and stabilization of bus bar conductor

    NASA Astrophysics Data System (ADS)

    López, G.

    Using the one-dimensional, time-independent conduction state, a constant of heat conduction is given bringing about the known stabilization theorem and a closed expression for the bus bar to be cryogenically stable in superconducting accelerators.

  20. Measurement of local high-level, transient surface heat flux

    NASA Technical Reports Server (NTRS)

    Liebert, Curt H.

    1988-01-01

    This study is part of a continuing investigation to develop methods for measuring local transient surface heat flux. A method is presented for simultaneous measurements of dual heat fluxes at a surface location by considering the heat flux as a separate function of heat stored and heat conducted within a heat flux gage. Surface heat flux information is obtained from transient temperature measurements taken at points within the gage. Heat flux was determined over a range of 4 to 22 MW/sq m. It was concluded that the method is feasible. Possible applications are for heat flux measurements on the turbine blade surfaces of space shuttle main engine turbopumps and on the component surfaces of rocket and advanced gas turbine engines and for testing sensors in heat flux gage calibrators.

  1. On the relation between coronal heating, flux tube divergence, and the solar wind proton flux and flow speed

    NASA Technical Reports Server (NTRS)

    Sandbaek, Onulf; Leer, Egil; Hansteen, Viggo H.

    1994-01-01

    A one-fluid solar wind model is used to investigate some relations between coronal heating, the flux tube divergence near the Sun, and the solar wind proton flux and flow speed. The effects of energy addition to the supersonic region of the flow are also studied. We allow for a mechanical energy flux that heats the corona, and an Alfven wave energy flux that adds energy, mainly to the supersonic flow, both as momentum and as heat. We find that the mechanical energy flux determines the solar wind mass flux, and in order to keep an almost constant proton flux at the orbit of Earth with changing flow geometry, that the mechanical energy flux must vary linearly with the magnetic field in the inner corona. This thermally driven wind generally has a low asymptotic flow speed. When Alfven waves are added to the thermally driven flow, the asymptotic flow speed is increased and is determined by the ratio of the Alfven wave and the mechanical energy fluxes at the coronal base. Flow speeds characteristic of recurrent high-speed solar wind streams can be obtained only when the Alfven wave energy flux, deposited in the supersonic flow, is larger than the mechanical energy flux heating the corona.

  2. A crossflow filtration system for constant permeate flux membrane fouling characterization.

    PubMed

    Miller, Daniel J; Paul, Donald R; Freeman, Benny D

    2013-03-01

    Membrane fouling is often characterized using a crossflow filtration apparatus. Typically, the transmembrane pressure (TMP) difference is fixed, and the flux is allowed to decline as the membrane fouls and the resistance to mass transfer increases. However, as flux varies, so too does the rate at which foulants are brought to the membrane surface, so the observed fouling behavior is not solely the result of membrane∕foulant interactions. Constant flux experiments, where the permeate flux is fixed and the TMP difference varies, minimize such variations in the hydrodynamic conditions at the membrane surface, but constant TMP difference experiments dominate the fouling literature because they are more straightforward to execute than constant flux experiments. Additionally, most industrial water purification membrane installations operate at constant flux rather than at constant TMP. Here, we describe the construction and operation of a constant flux crossflow fouling apparatus. System measurement accuracy was validated by comparison of pure water permeance measurements to values specified by the membrane manufacturer, reported elsewhere, and measured by another technique. Fouling experiments were performed with two membrane∕foulant systems: polysulfone ultrafiltration membranes with a soybean oil emulsion foulant and PVDF microfiltration membranes with a polystyrene latex bead suspension foulant. Automatic permeate flux control facilitated flux stepping experiments, which are commonly used to determine the threshold flux or critical flux of a membrane∕foulant pair. Comparison of a flux stepping experiment with a literature report yielded good agreement. PMID:23556842

  3. Contactless heat flux control with photonic devices

    SciTech Connect

    Ben-Abdallah, Philippe; Biehs, Svend-Age

    2015-05-15

    The ability to control electric currents in solids using diodes and transistors is undoubtedly at the origin of the main developments in modern electronics which have revolutionized the daily life in the second half of 20th century. Surprisingly, until the year 2000 no thermal counterpart for such a control had been proposed. Since then, based on pioneering works on the control of phononic heat currents new devices were proposed which allow for the control of heat fluxes carried by photons rather than phonons or electrons. The goal of the present paper is to summarize the main advances achieved recently in the field of thermal energy control with photons.

  4. Radiative convection with a fixed heat flux

    NASA Astrophysics Data System (ADS)

    Aumaı̂tre, S.

    2001-10-01

    We have determined the marginal stability curve of convective instability in the usual Rayleigh-Bénard configuration with radiative transfer and a fixed total heat flux at the boundaries instead of a fixed temperature. In the Milne-Eddington approximation, radiative transfer introduces a new length scale and breaks the invariance of the Boussinesq equations under an arbitrary temperature shift, which occurs when the heat flux is fixed at the boundaries. The convergence to the limits where the non-radiative cases are expected is studied in this approximation. Then, using a second-order perturbative calculation, we show that the presence of radiation can change qualitatively the instability pattern: there is a range of optical parameters where the Cahn-Hillard equation is not anymore the one appropriate to describe the instability near the threshold.

  5. Enceladus' extreme heat flux as revealed by its relaxed craters

    NASA Astrophysics Data System (ADS)

    Bland, Michael T.; Singer, Kelsi N.; McKinnon, William B.; Schenk, Paul M.

    2012-09-01

    Enceladus' cratered terrains contain large numbers of unusually shallow craters consistent with deformation by viscous relaxation of water ice under conditions of elevated heat flow. Here we use high-resolution topography to measure the relaxation fraction of craters on Enceladus far from the active South Pole. We find that many craters are shallower than expected, with craters as small as 2 km in diameter having relaxation fractions in excess of 90%. These measurements are compared with numerical simulations of crater relaxation to constrain the minimum heat flux required to reproduce these observations. We find that Enceladus' nominal cold surface temperature (70 K) and low surface gravity strongly inhibit viscous relaxation. Under such conditions less than 3% relaxation occurs over 2 Ga even for relatively large craters (diameter 24 km) and high, constant heat fluxes (150 mW m-2). Greater viscous relaxation occurs if the effective temperature at the top of the lithosphere is greater than the surface temperature due to insulating regolith and/or plume material. Even for an effective temperature of 120 K, however, heat fluxes in excess of 150 mW m-2 are required to produce the degree of relaxation observed. Simulations of viscous relaxation of Enceladus' largest craters suggest that relaxation is best explained by a relatively short-lived period of intense heating that decayed quickly. We show that infilling of craters by plume material cannot explain the extremely shallow craters at equatorial and higher northern latitudes. Thus, like Enceladus' tectonic terrains, the cratered regions of Enceladus have experienced periods of extreme heat flux.

  6. Heat flux in a granular gas

    NASA Astrophysics Data System (ADS)

    Brey, J. J.; Ruiz-Montero, M. J.

    2012-11-01

    A peculiarity of the hydrodynamic Navier-Stokes equations for a granular gas is the modification of the Fourier law, with the presence of an additional contribution to the heat flux that is proportional to the density gradient. Consequently, the constitutive relation involves, in the case of a one-component granular gas, two transport coefficients: the usual (thermal) heat conductivity and a diffusive heat conductivity. A very simple physical interpretation of this effect, in terms of the mean free path and the mean free time is provided. It leads to the modified Fourier law with an expression for the diffusive Fourier coefficient that differs in a factor of the order of unity from the expression obtained by means of the inelastic Boltzmann equation. Also, some aspects of the Chapman-Enskog computation of the new transport coefficients as well as of the comparison between simulation results and theory are discussed.

  7. Development of heat flux sensors in turbine airfoils

    NASA Technical Reports Server (NTRS)

    Atkinson, W. H.; Strange, R. R.

    1984-01-01

    The objective is to develop heat flux sensors suitable for use on turbine airfoils and to verify the operation of the heat flux measurement techniques through laboratory experiments. The requirements for a program to investigate the measurement of heat flux on airfoils in areas of strong non-one-dimensional flow were also identified.

  8. Role of surface heat fluxes underneath cold pools

    PubMed Central

    Garelli, Alix; Park, Seung‐Bu; Nie, Ji; Torri, Giuseppe; Kuang, Zhiming

    2016-01-01

    Abstract The role of surface heat fluxes underneath cold pools is investigated using cloud‐resolving simulations with either interactive or horizontally homogenous surface heat fluxes over an ocean and a simplified land surface. Over the ocean, there are limited changes in the distribution of the cold pool temperature, humidity, and gust front velocity, yet interactive heat fluxes induce more cold pools, which are smaller, and convection is then less organized. Correspondingly, the updraft mass flux and lateral entrainment are modified. Over the land surface, the heat fluxes underneath cold pools drastically impact the cold pool characteristics with more numerous and smaller pools, which are warmer and more humid and accompanied by smaller gust front velocities. The interactive fluxes also modify the updraft mass flux and reduce convective organization. These results emphasize the importance of interactive surface fluxes instead of prescribed flux boundary conditions, as well as the formulation of surface heat fluxes, when studying convection. PMID:27134320

  9. Role of surface heat fluxes underneath cold pools

    NASA Astrophysics Data System (ADS)

    Gentine, Pierre; Garelli, Alix; Park, Seung-Bu; Nie, Ji; Torri, Giuseppe; Kuang, Zhiming

    2016-01-01

    The role of surface heat fluxes underneath cold pools is investigated using cloud-resolving simulations with either interactive or horizontally homogenous surface heat fluxes over an ocean and a simplified land surface. Over the ocean, there are limited changes in the distribution of the cold pool temperature, humidity, and gust front velocity, yet interactive heat fluxes induce more cold pools, which are smaller, and convection is then less organized. Correspondingly, the updraft mass flux and lateral entrainment are modified. Over the land surface, the heat fluxes underneath cold pools drastically impact the cold pool characteristics with more numerous and smaller pools, which are warmer and more humid and accompanied by smaller gust front velocities. The interactive fluxes also modify the updraft mass flux and reduce convective organization. These results emphasize the importance of interactive surface fluxes instead of prescribed flux boundary conditions, as well as the formulation of surface heat fluxes, when studying convection.

  10. One-dimensional, steady compressible flow with friction factor and uniform heat flux at the wall specified

    SciTech Connect

    Landram, C.S.

    1997-10-27

    The purpose of this work is to present generalized graphical results to readily permit passage design for monatomic gases, the results including accommodation of any independently specified friction factor, heat transfer coefficient, and wall heat flux. Only constant area passages are considered, and the specified wall heat flux is taken to be uniform.

  11. Convective heat flux in a laser-heated thruster

    NASA Technical Reports Server (NTRS)

    Wu, P. K. S.

    1978-01-01

    An analysis is performed to estimate the convective heating to the wall in a laser-heated thruster on the basis of a solution of the laminar boundary-layer equations with variable transport properties. A local similiarity approximation is used, and it is assumed that the gas phase is in equilibrium. For the thruster described by Wu (1976), the temperature and pressure distributions along the nozzle are obtained from the core calculation. The similarity solutions and heat flux are obtained from the freestream conditions of the boundary layer, in order to determine if it is necessary to couple the boundary losses directly to the core calculation. In addition, the effects of mass injection on the convective heat transfer across the boundary layer with large density-viscosity product gradient are examined.

  12. ACCURACY OF SOIL HEAT FLUX MEASUREMENTS MADE WITH FLUX PLATES OF CONTRASTING PROPERTIES

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Flux plate measurements of soil heat flux (G) may include significant errors unless the plates are carefully installed and known errors accounted for. The objective of this research was to quantify potential errors in G when using soil heat flux plates of contrasting designs. Five flux plates with...

  13. USE OF PELTIER COOLERS AS SOIL HEAT FLUX TRANSDUCERS.

    USGS Publications Warehouse

    Weaver, H.L.; Campbell, G.S.

    1985-01-01

    Peltier coolers were modified and calibrated to serve as soil heat flux transducers. The modification was to fill their interiors with epoxy. The average calibration constant on 21 units was 13. 6 plus or minus 0. 8 kW m** minus **2 V** minus **1 at 20 degree C. This sensitivity is about eight times that of the two thermopile transducers with which comparisons were made. The thermal conductivity of the Peltier cooler transducers was 0. 4 W m** minus **1 degree C** minus **1, which is comparable to that of dry soil.

  14. Soil profile method for soil thermal diffusivity, conductivity and heat flux:Comparison to soil heat flux plates

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Diffusive heat flux at the soil surface is commonly determined as a mean value over a time period using heat flux plates buried at some depth (e.g., 5 to 8 cm) below the surface with a correction to surface flux based on the change in heat storage during the corresponding time period in the soil lay...

  15. Critical heat flux of subcooled flow boiling with water for high heat flux application

    NASA Astrophysics Data System (ADS)

    Inasaka, Fujio; Nariai, Hideki

    1993-11-01

    Subcooled flow boiling in water is thought to be advantageous in removing high heat load of more than 10 MW/m2. Characteristics of the critical heat flux (CHF), which determines the upper limit of heat removal, are very important for the design of cooling systems. In this paper, studies on subcooled flow boiling CHF, which have been conducted by the authors, are reported. Experiments were conducted using direct current heating of stainless steel tube. For uniform heating conditions, CHF increment in small diameter tubes (1 - 3 mm inside diameter) and the CHF characteristics in tubes with internal twisted tapes were investigated, and also the existing CHF correlations for ordinary tubes (more than 3 mm inside diameter) were evaluated. For peripherally non-uniform heating conditions using the tube, whose wall thickness was partly reduced, the CHF for swirl flow was higher than the CHF under uniform heating conditions with an increase of the non-uniformity factor.

  16. Heat flux measurements on ceramics with thin film thermocouples

    NASA Technical Reports Server (NTRS)

    Holanda, Raymond; Anderson, Robert C.; Liebert, Curt H.

    1993-01-01

    Two methods were devised to measure heat flux through a thick ceramic using thin film thermocouples. The thermocouples were deposited on the front and back face of a flat ceramic substrate. The heat flux was applied to the front surface of the ceramic using an arc lamp Heat Flux Calibration Facility. Silicon nitride and mullite ceramics were used; two thicknesses of each material was tested, with ceramic temperatures to 1500 C. Heat flux ranged from 0.05-2.5 MW/m2(sup 2). One method for heat flux determination used an approximation technique to calculate instantaneous values of heat flux vs time; the other method used an extrapolation technique to determine the steady state heat flux from a record of transient data. Neither method measures heat flux in real time but the techniques may easily be adapted for quasi-real time measurement. In cases where a significant portion of the transient heat flux data is available, the calculated transient heat flux is seen to approach the extrapolated steady state heat flux value as expected.

  17. Dual Nature of Heat Flux in Stable Atmospheric Surface Layer

    NASA Astrophysics Data System (ADS)

    Srivastava, P.; Sharan, M.

    2015-12-01

    The behavior of heat flux (H) with respect to the stability parameter (ζ) in stable surface layer (SSL) is analyzed with in the framework of Monin-Obukhov similarity (MOS) theory. The analytical expressions of H are obtained as functions of wind speed (U) and wind shear (dU/dz) using the linear similarity functions and accordingly two cases, (i) U = δ (constant) and (ii) dU/dz = δ are considered. The mathematical analysis shows that the magnitude of H increases with ζ till it attains a maximum value at ζ =ζc and then starts decreasing with increasing stability suggesting the dual characteristic of heat flux with stability parameter. The point of maximum heat flux is found to be dependent on the roughness length (z0) as well as the height above the surface. An attempt has been made to analyze the sensitivity of this dual characteristic of H with ζ using the non-linear similarity functions. The analysis shows that the dual nature of H persists in the case of linear as well as non-linear similarity functions. However, the point of extremum appears to be dependent on the nature of the similarity functions. Turbulent data over a tropical site Ranchi (India) is analyzed to validate the observed nature of H with the theoretical nature as predicted by MOS. The analysis of observational data reveals the non-existence of any preferred stability state in SSL as speculated by Wang and Bras (2010, 2011) and supports the conclusions of Malhi 1995, Derbyshire 1999, van de Wiel et al. 2007, Basu et al. 2008, and van de Wiel et al. 2011. Thus, the non-uniqueness of MOS equations does not appear to be a mathematical artifact and it is consistent with the observations as far as the nature of heat flux with respect to stability parameter in SSL is concerned.

  18. Heat pump system and heat pump device using a constant flow reverse stirling cycle

    SciTech Connect

    Fineblum, S.S.

    1993-08-31

    A constant flow reverse Stirling cycle heat pump system is described comprising: a constant flow isothermal compression means for compressing a working gas, the compression means including a drive means, an inlet, and an outlet, and further including a cooling means to remove heat of compression from the working gas; a constant flow isothermal expansion means for expanding the working gas, the expansion means including an inlet, an outlet, and a heat source means to provide isothermal expansion of the working gas while removing heat from said heat source means; and a constant volume regenerative heat exchange means for transferring heat from compressed working gas to expanded working gas, the constant volume regenerative heat exchange means comprising: an enclosure, the enclosure containing a high pressure portion with an inlet receiving compressed working gas from the compression means outlet and with an outlet discharging cooled working gas to the expansion means inlet, a low pressure portion with an inlet receiving expanded working gas from the expansion means outlet and with an outlet discharging heated working gas to the compression means inlet, a slotted rotor in a central portion of the enclosure, the rotor containing a plurality of radially extending slots, and a plurality of radially sliding vanes mounted in the slots and extending to seal against a wall of the enclosure, wherein a first portion of the wall having a constant first radial distance from the rotor cooperates with the vanes to form a first constant volume channel defining the high pressure portion and a second portion of the wall having a constant second radial distance from the rotor cooperates with the vanes to form a second constant volume channel defining the low pressure portion; and heat transfer means in thermal contact with the high pressure portion and the low pressure portion for transferring heat from the compressed working gas to the expanded working gas.

  19. Heat transfer in pulsating laminar flow in a pipe - A constant wall temperature

    NASA Astrophysics Data System (ADS)

    Kita, Y.; Hirose, K.; Hayashi, T.

    1982-02-01

    An analytical model of heat transfer in a pulsating laminar pipe flow with a constant wall temperature is presented. Governing equations for the velocity profile and the wall shear stress are defined and the temperature field is studied for an instantaneous Nusselt number. Cases of steady and unsteady temperature fields are considered, along with the heat flux in the unsteady state, and a ratio for the Nusselt number in the steady state to that in the pulsating flow is obtained. A method for deriving the instantaneous pipe friction factor is demonstrated and the range of the pressure-gradient amplitudes is determined. Finally, conditions are formulated in which the temperature field, including the heat flux, at the wall are equal to that of the steady state.

  20. Thin Film Heat Flux Sensors: Design and Methodology

    NASA Technical Reports Server (NTRS)

    Fralick, Gustave C.; Wrbanek, John D.

    2013-01-01

    Thin Film Heat Flux Sensors: Design and Methodology: (1) Heat flux is one of a number of parameters, together with pressure, temperature, flow, etc. of interest to engine designers and fluid dynamists, (2) The measurement of heat flux is of interest in directly determining the cooling requirements of hot section blades and vanes, and (3)In addition, if the surface and gas temperatures are known, the measurement of heat flux provides a value for the convective heat transfer coefficient that can be compared with the value provided by CFD codes.

  1. Non-contact heat flux measurement using a transparent sensor

    NASA Technical Reports Server (NTRS)

    Ng, Daniel; Spuckler, Charles M.

    1993-01-01

    A working non-contact heat flux sensor was demonstrated using a transparent material (sapphire) and a multiwavelength pyrometer. The pyrometer is used to measure the temperatures of the two surfaces of the sensor from the spectrum of radiation originating from them. The heat conducted through the material is determined from the temperature difference of the two surfaces and the thermal conductivity of the material. The measured heat flux is equal to the incident heat flux within experimental error indicating that no calibration would be necessary. A steady state heat flux of 100 kW/sq m was easily achieved.

  2. Computation of the gas mass and heat fluxes in a rectangular channel in the free molecular regime

    NASA Astrophysics Data System (ADS)

    Germider, O. V.; Popov, V. N.; Yushkanov, A. A.

    2016-06-01

    The problem of heat- and mass transfer in a long rectangular channel of a constant cross section is solved in the free molecular regime. The distributions of the mass flow rate and the heat flux vector over the channel cross section are calculated. The specific gas mass flux and heat flux are calculated. The results are compared with those obtained for nearly free molecular flows.

  3. Method for limiting heat flux in double-wall tubes

    DOEpatents

    Hwang, Jaw-Yeu

    1982-01-01

    A method of limiting the heat flux in a portion of double-wall tubes including heat treating the tubes so that the walls separate when subjected to high heat flux and supplying an inert gas mixture to the gap at the interface of the double-wall tubes.

  4. Bidirectional solar wind electron heat flux events

    NASA Technical Reports Server (NTRS)

    Gosling, J. T.; Baker, D. N.; Bame, S. J.; Feldman, W. C.; Zwickl, R. D.; Smith, E. J.

    1987-01-01

    ISEE 3 plasma and magnetic field data are used here to document the general characteristics of bidirectional electron heat flux events (BEHFEs). Significant field rotations often occur at the beginning and/or end of such events and, at times, the large-field rotations characteristic of 'magnetic clouds' are present. Approximately half of all BEHFEs are associated with and follow interplanetary shocks, while the other events have no obvious shock associations. When shock-associated, the delay from shock passage typically is about 13 hours, corresponding to a radial separation of about 0.16 AU. When independent of any shock association, BEHFEs typically are about 0.13 AU thick in the radial direction. It is suggested that BEHFEs are one of the more prominent signatures of coronal mass ejection events in the solar wind at 1 AU.

  5. Gradient chromatography under constant frictional heat: realization and application.

    PubMed

    Gritti, Fabrice; Guiochon, Georges

    2013-05-10

    A new mode of gradient elution in liquid chromatography is proposed. It is derived from simple theoretical considerations and is particularly suitable for applications to fast, very-high pressure gradients. It is designed to improve the injection-to-injection repeatability of chromatographic runs at either constant flow (cF, cooling case scenario) or constant pressure (cP, heating case scenario). The purpose of this original gradient mode is to minimize the variations of the temperatures and the pressures across and along the column during the gradient time. These variations are caused by the heat generated in the column due to the friction of the eluent percolating the bed. Any temperature fluctuation affects to some extent the precision of the measurements of retention times and bandwidths of eluted compounds. The minimization of this effect was achieved by maintaining constant the frictional heat power (i.e., the product of the flow rate by the column pressure drop) generated during the gradient run, the washing step, and the re-equilibration time. The eluent temperature was recorded at the column outlet. One useful application of gradient chromatography at constant frictional heat (cFH) is illustrated for a 50-100% volume gradient of acetonitrile in water using a 4.6mm × 150 mm column packed with 3.5 μm BEH-C18 particles and operated with an Agilent 1290 Infinity liquid chromatograph. The reproducibility (eleven consecutive injections) of the retention times and peak variances of nine small molecules (RPLC check-out sample mixture) using cF, cP, and cFH gradients were compared for the same amount of heat produced (403 J) during each run time. The RSDs of the retention times and the peak variances for four consecutive injections were systematically below 0.035 and 0.50% in constant frictional heat gradient chromatography, after three initial injections. These RSDs were markedly higher for cF (0.050 and 0.90%) and cP (0.070 and 1.80%) gradients. PMID:23566917

  6. Critical heat flux experiments in an internally heated annulus with a non-uniform, alternate high and low axial heat flux distribution (AWBA Development Program)

    SciTech Connect

    Beus, S.G.; Seebold, O.P.

    1981-02-01

    Critical heat flux experiments were performed with an alternate high and low heat flux profile in an internally heated annulus. The heated length was 84 inches (213 cm) with a chopped wave heat flux profile over the last 24 inches (61 cm) having a maximum-to-average heat flux ratio of 1.26. Three test sections were employed: one with an axially uniform heat flux profile as a base case and two with 60 inch (152 cm) uniform and 24 inch (61 cm) alternating high and low heat flux sections. The third test section had a 2.15 inch (5.46 cm) section with a peak-to-average heat flux ratio of 2.19 (hot patch) superimposed at the exit end of the alternating high and low heat flux profile.

  7. Heat flux measurement in SSME turbine blade tester

    SciTech Connect

    Liebert, C.H.

    1990-11-01

    Surface heat flux values were measured in the turbine blade thermal cycling tester located at NASA-Marshall. This is the first time heat flux has been measured in a space shuttle main engine turbopump environment. Plots of transient and quasi-steady state heat flux data over a range of about 0 to 15 MW/sq m are presented. Data were obtained with a miniature heat flux gage device developed at NASA-Lewis. The results from these tests are being incorporated into turbine design models. Also, these gages are being considered for airfoil surface heat flux measurement on turbine vanes mounted in SSME turbopump test bed engine nozzles at Marshall. Heat flux effects that might be observed on degraded vanes are discussed.

  8. Electron heat flux constraints in the solar wind

    SciTech Connect

    Gary, S.P.; Skoug, R.M.; Daughton, W.

    1999-06-01

    Enhanced fluctuations from electromagnetic heat flux instabilities may, through wave-particle scattering, constrain the electron heat flux which flows parallel to the background magnetic field in the solar wind. A corollary of this hypothesis is that instability thresholds should correspond to observable bounds on the heat flux. Here plasma and magnetic field data from February and March 1995 of the Ulysses mission is analyzed in terms of the core/halo electron model to yield scaling relations of dimensionless electron parameters and empirical upper bounds on the dimensionless heat flux as functions of the core {beta}. Use of these scaling relations in linear Vlasov theory for the whistler and Alfv{acute e}n heat flux instabilities in homogeneous plasmas yields threshold conditions on the dimensionless heat flux which are also functions of the electron core {beta}. The empirical bounds and the theoretical thresholds are similar and are therefore consistent with the hypothesis. {copyright} {ital 1999 American Institute of Physics.}

  9. High heat flux engineering in solar energy applications

    SciTech Connect

    Cameron, C.P.

    1993-07-01

    Solar thermal energy systems can produce heat fluxes in excess of 10,000 kW/m{sup 2}. This paper provides an introduction to the solar concentrators that produce high heat flux, the receivers that convert the flux into usable thermal energy, and the instrumentation systems used to measure flux in the solar environment. References are incorporated to direct the reader to detailed technical information.

  10. A study of oceanic surface heat fluxes in the Greenland, Norwegian, and Barents Seas

    NASA Technical Reports Server (NTRS)

    Hakkinen, Sirpa; Cavalieri, Donald J.

    1989-01-01

    This study examines oceanic surface heat fluxes in the Norwegian, Greenland, and Barents seas using the gridded Navy Fleet Numerical Oceanography Central surface analysis and the First GARP Global Experiment (FGGE) IIc cloudiness data bases. Monthly and annual means of net and turbulent heat fluxes are computed for the FGGE year 1979. The FGGE IIb data base consisting of individual observations provides particularly good data coverage in this region for a comparison with the gridded Navy winds and air temperatures. The standard errors of estimate between the Navy and FGGE IIb winds and air temperatures are 3.6 m/s and 2.5 C, respectively. The computations for the latent and sensible heat fluxes are based on bulk formulas with the same constant heat exchange coefficient of 0.0015. The results show extremely strong wintertime heat fluxes in the northern Greenland Sea and especially in the Barents Sea in contrast to previous studies.

  11. The measurement of surface heat flux using the Peltier effect

    SciTech Connect

    Shewen, E.C. ); Hollands, K.G.T., Raithby, G.D. )

    1989-08-01

    Calorimetric methods for measuring surface heat flux use Joulean heating to keep the surface isothermal. This limits them to measuring the heat flux of surfaces that are hotter than their surroundings. Presented in this paper is a method whereby reversible Peltier effect heat transfer is used to maintain this isothermality, making it suitable for surfaces that are either hotter or colder than the surroundings. The paper outlines the theory for the method and describes physical models that have been constructed, calibrated, and tested. The tested physical models were found capable of measuring heat fluxes with an absolute accuracy of 1 percent over a wide range of temperature (5-50C) and heat flux (15-500 W/m{sup 2}), while maintaining isothermality to within 0.03 K. A drawback of the method is that it appears to be suited only for measuring the heat flux from thick metallic plates.

  12. Transient critical heat flux and blowdown heat-transfer studies

    SciTech Connect

    Leung, J.C.

    1980-05-01

    Objective of this study is to give a best-estimate prediction of transient critical heat flux (CHF) during reactor transients and hypothetical accidents. To accomplish this task, a predictional method has been developed. Basically it involves the thermal-hydraulic calculation of the heated core with boundary conditions supplied from experimental measurements. CHF predictions were based on the instantaneous ''local-conditions'' hypothesis, and eight correlations (consisting of round-tube, rod-bundle, and transient correlations) were tested against most recent blowdown heat-transfer test data obtained in major US facilities. The prediction results are summarized in a table in which both CISE and Biasi correlations are found to be capable of predicting the early CHF of approx. 1 s. The Griffith-Zuber correlation is credited for its prediction of the delay CHF that occurs in a more tranquil state with slowly decaying mass velocity. In many instances, the early CHF can be well correlated by the x = 1.0 criterion; this is certainly indicative of an annular-flow dryout-type crisis. The delay CHF occurred at near or above 80% void fraction, and the success of the modified Zuber pool-boiling correlation suggests that this CHF is caused by flooding and pool-boiling type hydrodynamic crisis.

  13. Numerical investigation of the thermal stratification in cryogenic tanks subjected to wall heat flux

    SciTech Connect

    Lin, Chinshun; Hasan, M.H.

    1990-01-01

    The flow pattern and thermal stratification of a cryogenic cylindrical tank are numerically studied. The tank sidewall is subjected to either a uniform heat-flux or two discrete levels of uniform heat-flux at the upper and lower halves of the tank wall. The tank bottom is kept at a constant temperature controlled by the heat exchanger of a thermodynamic vent system. The tank pressure is also assumed constant resulting in a constant saturation temperature at the interface which is higher than the tank bottom temperature. The effects of vapor motion and vapor superheat on the mass and heat transfer processes at the interface are assumed negligible such that the calculations of liquid region can be decoupled from the vapor region. Dimensionless steady-state conservation equations are solved by a finite-difference method. The effects of modified Rayleigh number, Prandtl number, tank aspect ratio, wall heat-flux parameter, and wall heat-flux distribution on the liquid velocity and temperature fields are investigated. Also, their effects on the rate of heat transfer through the interface and the tank bottom are examined.

  14. Heat flux splitter for near-field thermal radiation

    SciTech Connect

    Ben-Abdallah, P.; Belarouci, A.; Frechette, L.; Biehs, S.-A.

    2015-08-03

    We demonstrate the possibility to efficiently split the near-field heat flux exchanged between graphene nano-disks by tuning their doping. This result paves the way for the development of an active control of propagation directions for heat fluxes exchanged in the near field throughout integrated nanostructured networks.

  15. Evaluation of a new, perforated heat flux plate design

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Accurate measurement of heat flux is essential to optimize structural and process design and to improve understanding of energy transfer in natural systems. Laboratory and field experiments evaluated the performance of a new, perforated heat flux plate designed for environmental applications. Labora...

  16. Tracking heat flux sensors for concentrating solar applications

    DOEpatents

    Andraka, Charles E; Diver, Jr., Richard B

    2013-06-11

    Innovative tracking heat flux sensors located at or near the solar collector's focus for centering the concentrated image on a receiver assembly. With flux sensors mounted near a receiver's aperture, the flux gradient near the focus of a dish or trough collector can be used to precisely position the focused solar flux on the receiver. The heat flux sensors comprise two closely-coupled thermocouple junctions with opposing electrical polarity that are separated by a thermal resistor. This arrangement creates an electrical signal proportional to heat flux intensity, and largely independent of temperature. The sensors are thermally grounded to allow a temperature difference to develop across the thermal resistor, and are cooled by a heat sink to maintain an acceptable operating temperature.

  17. Development of heat flux sensors for turbine airfoils

    NASA Technical Reports Server (NTRS)

    Atkinson, William H.; Cyr, Marcia A.; Strange, Richard R.

    1985-01-01

    The objectives of this program are to develop heat flux sensors suitable for installation in hot section airfoils of advanced aircraft turbine engines and to experimentally verify the operation of these heat flux sensors in a cylinder in a cross flow experiment. Embedded thermocouple and Gardon gauge sensors were developed and fabricated into both blades and vanes. These were then calibrated using a quartz lamp bank heat source and finally subjected to thermal cycle and thermal soak testing. These sensors were also fabricated into cylindrical test pieces and tested in a burner exhaust to verify heat flux measurements produced by these sensors. The results of the cylinder in cross flow tests are given.

  18. Development of heat flux sensors for turbine airfoils

    NASA Astrophysics Data System (ADS)

    Atkinson, William H.; Cyr, Marcia A.; Strange, Richard R.

    1985-10-01

    The objectives of this program are to develop heat flux sensors suitable for installation in hot section airfoils of advanced aircraft turbine engines and to experimentally verify the operation of these heat flux sensors in a cylinder in a cross flow experiment. Embedded thermocouple and Gardon gauge sensors were developed and fabricated into both blades and vanes. These were then calibrated using a quartz lamp bank heat source and finally subjected to thermal cycle and thermal soak testing. These sensors were also fabricated into cylindrical test pieces and tested in a burner exhaust to verify heat flux measurements produced by these sensors. The results of the cylinder in cross flow tests are given.

  19. Miniature Convection Cooled Plug-type Heat Flux Gauges

    NASA Technical Reports Server (NTRS)

    Liebert, Curt H.

    1994-01-01

    Tests and analysis of a new miniature plug-type heat flux gauge configuration are described. This gauge can simultaneously measure heat flux on two opposed active surfaces when heat flux levels are equal to or greater than about 0.2 MW/m(sup 2). The performance of this dual active surface gauge was investigated over a wide transient and steady heat flux and temperature range. The tests were performed by radiatively heating the front surface with an argon arc lamp while the back surface was convection cooled with air. Accuracy is about +20 percent. The gauge is responsive to fast heat flux transients and is designed to withstand the high temperature (1300 K), high pressure (15 MPa), erosive and corrosive environments in modern engines. This gauge can be used to measure heat flux on the surfaces of internally cooled apparatus such as turbine blades and combustors used in jet propulsion systems and on the surfaces of hypersonic vehicles. Heat flux measurement accuracy is not compromised when design considerations call for various size gauges to be fabricated into alloys of various shapes and properties. Significant gauge temperature reductions (120 K), which can lead to potential gauge durability improvement, were obtained when the gauges were air-cooled by forced convection.

  20. An Experimental Study of a Radially Arranged Thin Film Heat Flux Gauge

    NASA Technical Reports Server (NTRS)

    Cho, Christoper S. K.; Fralick, Gustave C.; Bhatt, Hemanshu D.

    1997-01-01

    A new thin-film heat-flux gauge was designed and fabricated on three different substrate materials. Forty pairs of Pt-Pt/10% Rh thermocouple junctions were deposited in a circular pattern on the same plane of the substrate. Over the thermocouples, 5 and 10 micron thick thermal resistance layers were deposited to create a temperature gradient across those layers. Calibration and testing of these gauges were carried out in an arc-lamp calibration facility. The heat flux calculated from the gauge output is in good agreement with the value obtained from the pre-calibrated standard sensor. A CO2 laser was also used to test the steady-state and dynamic responses of the heat-flux gauge. During the steady-state test, the time constant for the heating period was 30 s. The frequency response of the heat-flux gauge was measured in the frequency domain using a CO2 laser and a chopper. The responses from an infrared detector and the heat-flux gauge were measured simultaneously and compared. It was found that the thin-film heat-flux gauge has a dynamic frequency response of 3 kHz.

  1. Transient heat flux shielding using thermal metamaterials

    NASA Astrophysics Data System (ADS)

    Narayana, Supradeep; Savo, Salvatore; Sato, Yuki

    2013-05-01

    We have developed a heat shield based on a metamaterial engineering approach to shield a region from transient diffusive heat flow. The shield is designed with a multilayered structure to prescribe the appropriate spatial profile for heat capacity, density, and thermal conductivity of the effective medium. The heat shield was experimentally compared to other isotropic materials.

  2. Uncertainty analysis of heat flux measurements estimated using a one-dimensional, inverse heat-conduction program.

    SciTech Connect

    Nakos, James Thomas; Figueroa, Victor G.; Murphy, Jill E.

    2005-02-01

    The measurement of heat flux in hydrocarbon fuel fires (e.g., diesel or JP-8) is difficult due to high temperatures and the sooty environment. Un-cooled commercially available heat flux gages do not survive in long duration fires, and cooled gages often become covered with soot, thus changing the gage calibration. An alternate method that is rugged and relatively inexpensive is based on inverse heat conduction methods. Inverse heat-conduction methods estimate absorbed heat flux at specific material interfaces using temperature/time histories, boundary conditions, material properties, and usually an assumption of one-dimensional (1-D) heat flow. This method is commonly used at Sandia.s fire test facilities. In this report, an uncertainty analysis was performed for a specific example to quantify the effect of input parameter variations on the estimated heat flux when using the inverse heat conduction method. The approach used was to compare results from a number of cases using modified inputs to a base-case. The response of a 304 stainless-steel cylinder [about 30.5 cm (12-in.) in diameter and 0.32-cm-thick (1/8-in.)] filled with 2.5-cm-thick (1-in.) ceramic fiber insulation was examined. Input parameters of an inverse heat conduction program varied were steel-wall thickness, thermal conductivity, and volumetric heat capacity; insulation thickness, thermal conductivity, and volumetric heat capacity, temperature uncertainty, boundary conditions, temperature sampling period; and numerical inputs. One-dimensional heat transfer was assumed in all cases. Results of the analysis show that, at the maximum heat flux, the most important parameters were temperature uncertainty, steel thickness and steel volumetric heat capacity. The use of a constant thermal properties rather than temperature dependent values also made a significant difference in the resultant heat flux; therefore, temperature-dependent values should be used. As an example, several parameters were varied to

  3. Supercritical convection, critical heat flux, and coking characteristics of propane

    NASA Technical Reports Server (NTRS)

    Rousar, D. C.; Gross, R. S.; Boyd, W. C.

    1984-01-01

    The heat transfer characteristics of propane at subcritical and supercritical pressure were experimentally evaluated using electrically heated Monel K-500 tubes. A design correlation for supercritical heat transfer coefficient was established using the approach previously applied to supercritical oxygen. Flow oscillations were observed and the onset of these oscillations at supercritical pressures was correlated with wall-to-bulk temperature ratio and velocity. The critical heat flux measured at subcritical pressure was correlated with the product of velocity and subcooling. Long duration tests at fixed heat flux conditions were conducted to evaluate coking on the coolant side tube wall and coking rates comparable to RP-1 were observed.

  4. Electron Heat Flux Instabilities: Ulysses and LEIA Observations

    NASA Astrophysics Data System (ADS)

    Spangler, Robert; Balkey, Matthew; Boivin, Robert; Kline, John; Scime, Earl

    1999-11-01

    Electron heat flux, the non-vanishing third moment of an electron velocity distribution, represent of source of free energy that can drive electromagnetic instabilities. Linear Vlasov theory calculations indicate that at high electron beta, beta 1, the whistler heat flux instability is the most unstable electromagnetic mode. Assuming that the growth of the instability leads to electron velocity space diffusion that reduces the electron heat flux, it is possible to calculate the maximum allowable electron heat flux in a high beta plasma. Observations by the Ulysses spacecraft over 1 to 5 AU are generally supportive of a model of electron heat flux regulation based on excitation of the whistler heat flux instability. To perform controlled experiments on similar high beta plasmas, an electron gun has been installed in the Large Experiment on Instabilities and Anisotropies (LEIA) space simulation chamber. The electron gun is rapidly scanned in energy to simulate an energetic electron tail, an electron heat flux. Comparisons of Ulysses and LEIA electron distribution functions and plasma parameters will be presented. The electron distributions in LEIA are measured with a retarding potential analyzer and a curved plate electrostatic analyzer probe. Measurements of electromagnetic fluctuations in LEIA will be presented if available.

  5. A new method for simultaneous measurement of convective and radiative heat flux in car underhood applications

    NASA Astrophysics Data System (ADS)

    Khaled, M.; Garnier, B.; Harambat, F.; Peerhossaini, H.

    2010-02-01

    A new experimental technique is presented that allows simultaneous measurement of convective and radiative heat flux in the underhood. The goal is to devise an easily implemented and accurate experimental method for application in the vehicle underhood compartment. The new method is based on a technique for heat-flux measurement developed by the authors (Heat flow (flux) sensors for measurement of convection, conduction and radiation heat flow 27036-2, © Rhopoint Components Ltd, Hurst Green, Oxted, RH8 9AX, UK) that uses several thermocouples in the thickness of a thermal resistive layer (foil heat-flux sensor). The method proposed here uses a pair of these thermocouples with different radiative properties. Measurements validating this novel technique are carried out on a flat plate with a prescribed constant temperature in both natural- and forced-convection flow regimes. The test flat plate is instrumented by this new technique, and also with a different technique that is intrusive but very accurate, used as reference here (Bardon J P and Jarny Y 1994 Procédé et dispositif de mesure transitoire de température et flux surfacique Brevet n°94.011996, 22 February). Discrepancies between the measurements by the two techniques are less than 10% for both convective and radiative heat flux. Error identification and sensitivity analysis of the new method are also presented.

  6. Soil heat flux determined from diel water content and temperature variations

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soil heat flux for a measurement interval is commonly determined using heat flux plates buried at some depth below the surface. The heat flux values are adjusted to represent the soil surface heat flux by determining the heat stored in the layer between the plate and surface. Heat storage is calcula...

  7. Tropical Gravity Wave Momentum Fluxes and Latent Heating Distributions

    NASA Technical Reports Server (NTRS)

    Geller, Marvin A.; Zhou, Tiehan; Love, Peter T.

    2015-01-01

    Recent satellite determinations of global distributions of absolute gravity wave (GW) momentum fluxes in the lower stratosphere show maxima over the summer subtropical continents and little evidence of GW momentum fluxes associated with the intertropical convergence zone (ITCZ). This seems to be at odds with parameterizations forGWmomentum fluxes, where the source is a function of latent heating rates, which are largest in the region of the ITCZ in terms of monthly averages. The authors have examined global distributions of atmospheric latent heating, cloud-top-pressure altitudes, and lower-stratosphere absolute GW momentum fluxes and have found that monthly averages of the lower-stratosphere GW momentum fluxes more closely resemble the monthly mean cloud-top altitudes rather than the monthly mean rates of latent heating. These regions of highest cloud-top altitudes occur when rates of latent heating are largest on the time scale of cloud growth. This, plus previously published studies, suggests that convective sources for stratospheric GW momentum fluxes, being a function of the rate of latent heating, will require either a climate model to correctly model this rate of latent heating or some ad hoc adjustments to account for shortcomings in a climate model's land-sea differences in convective latent heating.

  8. Spatial resolution of anthropogenic heat fluxes into urban aquifers.

    PubMed

    Benz, Susanne A; Bayer, Peter; Menberg, Kathrin; Jung, Stephan; Blum, Philipp

    2015-08-15

    Urban heat islands in the subsurface contain large quantities of energy in the form of elevated groundwater temperatures caused by anthropogenic heat fluxes (AHFS) into the subsurface. The objective of this study is to quantify these AHFS and the heat flow they generate in two German cities, Karlsruhe and Cologne. Thus, statistical and spatial analytical heat flux models were developed for both cities. The models include the spatial representation of various sources of AHFS: (1) elevated ground surface temperatures, (2) basements, (3) sewage systems, (4) sewage leakage, (5) subway tunnels, and (6) district heating networks. The results show that the district heating networks induce the largest AHFS with values greater than 60 W/m(2) and one order of magnitude higher than fluxes from other sources. A covariance analysis indicates that the spatial distribution of the total flux depends mainly on the thermal gradient in the unsaturated zone. On a citywide scale, basements and elevated ground surface temperatures are the dominant sources of heat flow. Overall, 2.1 PJ/a and 1.0 PJ/a of heat are accumulated on average in Karlsruhe and the western part of Cologne, respectively. Extracting this anthropogenically originated energy could sustainably supply significant parts of the urban heating demand. Furthermore, using this heat could also keep groundwater temperatures from rising further. PMID:25930242

  9. Thin-Film Resistance Heat-Flux Sensors

    NASA Technical Reports Server (NTRS)

    Fralick, Gustave C.; Wrbanek, John D.; Blaha, Charles A.

    2005-01-01

    Thin-film heat-flux sensors of a proposed type would offer advantages over currently available thin-film heat flux sensors. Like a currently available thin-film heat-flux sensor, a sensor according to the proposal would be based on measurement of voltages related to the temperatures of thin metal films on the hotter and colder faces of a layer of an electrically insulating and moderately thermally conductive material. The heat flux through such a device is proportional to the difference between the temperatures and to the thermal conductivity of the layer. The advantages of the proposed sensors over the commercial ones would arise from the manner in which the temperature-related voltages would be generated and measured.

  10. Heat flux expressions that satisfy the conservation laws in atomistic system involving multibody potentials

    NASA Astrophysics Data System (ADS)

    Fu, Yao; Song, Jeong-Hoon

    2015-08-01

    Heat flux expressions are derived for multibody potential systems by extending the original Hardy's methodology and modifying Admal & Tadmor's formulas. The continuum thermomechanical quantities obtained from these two approaches are easy to compute from molecular dynamics (MD) results, and have been tested for a constant heat flux model in two distinctive systems: crystalline iron and polyethylene (PE) polymer. The convergence criteria and affecting parameters, i.e. spatial and temporal window size, and specific forms of localization function are found to be different between the two systems. The conservation of mass, momentum, and energy are discussed and validated within this atomistic-continuum bridging.

  11. Heat flux expressions that satisfy the conservation laws in atomistic system involving multibody potentials

    SciTech Connect

    Fu, Yao Song, Jeong-Hoon

    2015-08-01

    Heat flux expressions are derived for multibody potential systems by extending the original Hardy's methodology and modifying Admal & Tadmor's formulas. The continuum thermomechanical quantities obtained from these two approaches are easy to compute from molecular dynamics (MD) results, and have been tested for a constant heat flux model in two distinctive systems: crystalline iron and polyethylene (PE) polymer. The convergence criteria and affecting parameters, i.e. spatial and temporal window size, and specific forms of localization function are found to be different between the two systems. The conservation of mass, momentum, and energy are discussed and validated within this atomistic–continuum bridging.

  12. Wind-Speed—Surface-Heat-Flux Feedback in Dust Devils

    NASA Astrophysics Data System (ADS)

    Ito, Junshi; Niino, Hiroshi

    2016-06-01

    Strong winds associated with dust devils can induce locally large heat fluxes from the surface, and resulting enhanced buoyancy may further intensify the dust devils. This positive wind—surface-heat-flux feedback is studied using a large-eddy simulation of a convective boundary layer. A comparison of the results with and without the feedback process for the same environment demonstrates the significance of the feedback process for simulated dust devils.

  13. Divertor Heat Flux Mitigation in the National Spherical Torus Experiment

    SciTech Connect

    Soukhanovskii, V A; Maingi, R; Gates, D A; Menard, J E; Paul, S F; Raman, R; Roquemore, A L; Bell, M G; Bell, R E; Boedo, J A; Bush, C E; Kaita, R; Kugel, H W; LeBlanc, B P; Mueller, D

    2008-08-04

    Steady-state handling of divertor heat flux is a critical issue for both ITER and spherical torus-based devices with compact high power density divertors. Significant reduction of heat flux to the divertor plate has been achieved simultaneously with favorable core and pedestal confinement and stability properties in a highly-shaped lower single null configuration in the National Spherical Torus Experiment (NSTX) [M. Ono et al., Nucl. Fusion 40, 557 2000] using high magnetic flux expansion at the divertor strike point and the radiative divertor technique. A partial detachment of the outer strike point was achieved with divertor deuterium injection leading to peak flux reduction from 4-6 MW m{sup -2} to 0.5-2 MW m{sup -2} in small-ELM 0.8-1.0 MA, 4-6 MW neutral beam injection-heated H-mode discharges. A self-consistent picture of outer strike point partial detachment was evident from divertor heat flux profiles and recombination, particle flux and neutral pressure measurements. Analytic scrape-off layer parallel transport models were used for interpretation of NSTX detachment experiments. The modeling showed that the observed peak heat flux reduction and detachment are possible with high radiated power and momentum loss fractions, achievable with divertor gas injection, and nearly impossible to achieve with main electron density, divertor neutral density or recombination increases alone.

  14. Divertor heat flux mitigation in the National Spherical Torus Experiment

    SciTech Connect

    Soukhanovskii, V. A.; Maingi, R.; Gates, D.A.; Menard, J.E.; Bush, C.E.

    2009-01-01

    Steady-state handling of divertor heat flux is a critical issue for both ITER and spherical torus-based devices with compact high power density divertors. Significant reduction of heat flux to the divertor plate has been achieved simultaneously with favorable core and pedestal confinement and stability properties in a highly shaped lower single null configuration in the National Spherical Torus Experiment (NSTX) [M. Ono , Nucl. Fusion 40, 557 2000] using high magnetic flux expansion at the divertor strike point and the radiative divertor technique. A partial detachment of the outer strike point was achieved with divertor deuterium injection leading to peak flux reduction from 4-6 MW m(-2) to 0.5-2 MW m(-2) in small-ELM 0.8-1.0 MA, 4-6 MW neutral beam injection-heated H-mode discharges. A self-consistent picture of the outer strike point partial detachment was evident from divertor heat flux profiles and recombination, particle flux and neutral pressure measurements. Analytic scrape-off layer parallel transport models were used for interpretation of NSTX detachment experiments. The modeling showed that the observed peak heat flux reduction and detachment are possible with high radiated power and momentum loss fractions, achievable with divertor gas injection, and nearly impossible to achieve with main electron density, divertor neutral density or recombination increases alone.

  15. Anthropogenic heat flux estimation from space: first results

    NASA Astrophysics Data System (ADS)

    Chrysoulakis, Nektarios; Heldens, Wieke; Gastellu-Etchegorry, Jean-Philippe; Grimmond, Sue; Feigenwinter, Christian; Lindberg, Fredrik; Del Frate, Fabio; Klostermann, Judith; Mitraka, Zina; Esch, Thomas; Albitar, Ahmad; Gabey, Andrew; Parlow, Eberhard; Olofson, Frans

    2016-04-01

    While Earth Observation (EO) has made significant advances in the study of urban areas, there are several unanswered science and policy questions to which it could contribute. To this aim the recently launched Horizon 2020 project URBANFLUXES (URBan ANthrpogenic heat FLUX from Earth observation Satellites) investigates the potential of EO to retrieve anthropogenic heat flux, as a key component in the urban energy budget. The anthropogenic heat flux is the heat flux resulting from vehicular emissions, space heating and cooling of buildings, industrial processing and the metabolic heat release by people. Optical, thermal and SAR data from existing satellite sensors are used to improve the accuracy of the radiation balance spatial distribution calculation, using also in-situ reflectance measurements of urban materials are for calibration. EO-based methods are developed for estimating turbulent sensible and latent heat fluxes, as well as urban heat storage flux and anthropogenic heat flux spatial patterns at city scale and local scale by employing an energy budget closure approach. Independent methods and models are engaged to evaluate the derived products and statistical analyses provide uncertainty measures as well. Ultimate goal of the URBANFLUXES is to develop a highly automated method for estimating urban energy budget components to use with Copernicus Sentinel data, enabling its integration into applications and operational services. Thus, URBANFLUXES prepares the ground for further innovative exploitation of European space data in scientific activities (i.e. Earth system modelling and climate change studies in cities) and future and emerging applications (i.e. sustainable urban planning) by exploiting the improved data quality, coverage and revisit times of the Copernicus data. The URBANFLUXES products will therefore have the potential to support both sustainable planning strategies to improve the quality of life in cities, as well as Earth system models to

  16. Characterization of local heat fluxes around ICRF antennas on JET

    NASA Astrophysics Data System (ADS)

    Campergue, A.-L.; Jacquet, P.; Bobkov, V.; Milanesio, D.; Monakhov, I.; Colas, L.; Arnoux, G.; Brix, M.; Sirinelli, A.; JET-EFDA Contributors

    2014-02-01

    When using Ion Cyclotron Range of Frequency (ICRF) heating, enhanced power deposition on Plasma-Facing Components (PFCs) close to the antennas can occur. Experiments have recently been carried out on JET with the new ITER-Like-Wall (ILW) to characterize the heat fluxes on the protection of the JET ICRF antennas, using Infra-Red (IR) thermography measurement. The measured heat flux patterns along the poloidal limiters surrounding powered antennas were compared to predictions from a simple RF sheath rectification model. The RF electric field, parallel to the static magnetic field in front of the antenna, was evaluated using the TOPICA code, integrating a 3D flattened model of the JET A2 antennas. The poloidal density variation in front of the limiters was obtained from the mapping of the Li-beam or edge reflectometry measurements using the flux surface geometry provided by EFIT equilibrium reconstruction. In many cases, this simple model can well explain the position of the maximum heat flux on the different protection limiters and the heat-flux magnitude, confirming that the parallel RF electric field and the electron plasma density in front of the antenna are the main driving parameters for ICRF-induced local heat fluxes.

  17. Characterization of local heat fluxes around ICRF antennas on JET

    SciTech Connect

    Campergue, A.-L.; Jacquet, P.; Monakhov, I.; Arnoux, G.; Brix, M.; Sirinelli, A.; Milanesio, D.; Colas, L.; Collaboration: JET-EFDA Contributors

    2014-02-12

    When using Ion Cyclotron Range of Frequency (ICRF) heating, enhanced power deposition on Plasma-Facing Components (PFCs) close to the antennas can occur. Experiments have recently been carried out on JET with the new ITER-Like-Wall (ILW) to characterize the heat fluxes on the protection of the JET ICRF antennas, using Infra-Red (IR) thermography measurement. The measured heat flux patterns along the poloidal limiters surrounding powered antennas were compared to predictions from a simple RF sheath rectification model. The RF electric field, parallel to the static magnetic field in front of the antenna, was evaluated using the TOPICA code, integrating a 3D flattened model of the JET A2 antennas. The poloidal density variation in front of the limiters was obtained from the mapping of the Li-beam or edge reflectometry measurements using the flux surface geometry provided by EFIT equilibrium reconstruction. In many cases, this simple model can well explain the position of the maximum heat flux on the different protection limiters and the heat-flux magnitude, confirming that the parallel RF electric field and the electron plasma density in front of the antenna are the main driving parameters for ICRF-induced local heat fluxes.

  18. On the surface heat fluxes in the Weddell Sea

    NASA Astrophysics Data System (ADS)

    Launiainen, Jouko; Vihma, Timo

    Turbulent surface fluxes of sensible and latent heat in the Weddell Sea were studied using drifting marine meteorological buoys with satellite telemetry. In 1990-1992 a total of 5 buoys were deployed on the sea ice, in the open ocean, and on the edge of a floating continental ice shelf. The buoys measured, among others, wind speed, air temperature and humidity with duplicate sensors and yielded year-round time series. The heat fluxes were calculated by the gradient and bulk methods based on the Monin-Obukhov similarity theory. Over the sea ice, a downward flux of 15 to 20 W/m2 was observed in winter (with typical variations of 10 to 20 W/m2 between successive days) and 5 W/m2 in summer. For the latent heat flux, the results suggested a small evaporation of 0 to 5 W/m2 in summer and weak condensation in winter. The highest diurnal values, up to 20 W/m2, were connected with evaporation. Because of stable stratification, the transfer coefficients of heat and moisture were reduced to 80% of their neutral values, on the average. Over the leads and coastal polynyas, an upward sensible heat flux of 100 to 300 W/m2 was typical, except in summer when the air temperature was close to the sea surface temperature. Over the continental shelf ice, the sensible heat flux was predominantly downwards (15 to 20 W/m2), compensating the negative radiation balance of the snow surface. Over the snow and ice surfaces the magnitude of turbulent fluxes was smaller than that of radiative fluxes, while over the open water in winter sensible heat flux was the largest term. Modification of the continental air-mass flowing out from the shelf ice to the open sea was studied with aerological soundings made from a research vessel. Associated turbulent heat exchange was estimated on the basis of three methods: modification in the temperature profiles, surface observations, and diabatic resistance laws for the atmospheric boundary layer. If we estimate an area-averaged turbulent heat exchange

  19. Explosive Boiling at Very Low Heat Fluxes: A Microgravity Phenomenon

    NASA Technical Reports Server (NTRS)

    Hasan, M. M.; Lin, C. S.; Knoll, R. H.; Bentz, M. D.

    1993-01-01

    The paper presents experimental observations of explosive boiling from a large (relative to bubble sizes) flat heating surface at very low heat fluxes in microgravity. The explosive boiling is characterized as either a rapid growth of vapor mass over the entire heating surface due to the flashing of superheated liquid or a violent boiling spread following the appearance of single bubbles on the heating surface. Pool boiling data with saturated Freon 113 was obtained in the microgravity environment of the space shuttle. The unique features of the experimental results are the sustainability of high liquid superheat for long periods and the occurrence of explosive boiling at low heat fluxes (0.2 to 1.2 kW/sq m). For a heat flux of 1.0 kW/sq m a wall superheat of 17.9 degrees C was attained in ten minutes of heating. This was followed by an explosive boiling accompanied with a pressure spike and a violent bulk liquid motion. However, at this heat flux the vapor blanketing the heating surface could not be sustained. Stable nucleate boiling continued following the explosive boiling.

  20. Parameterization of the Meridional Eddy Heat and Momentum Fluxes.

    NASA Astrophysics Data System (ADS)

    Zou, Cheng-Zhi; Gal-Chen, Tzvi

    1999-06-01

    Green's eddy diffusive transfer representation is used to parameterize the meridional eddy heat flux. The structural function obtained by Branscome for the diagonal component Kyy in the tensor of the transfer coefficients is adopted. A least squares method that uses the observed data of eddy heat flux is proposed to evaluate the magnitude of Kyy and the structure of the nondiagonal component Kyz in the transfer coefficient tensor. The optimum motion characteristic at the steering level is used as a constraint for the relationship between Kyy and Kyz. The obtained magnitude of Kyy is two to three times larger than that of the Branscome's, which is obtained in a linear analysis with the assumption of Kyz = 0.Green's vertically integrated expression for the meridional eddy momentum flux is used to test the coefficients obtained in the eddy heat flux. In this parameterization, the eddy momentum flux is related to the eddy fluxes of two conserved quantities: potential vorticity and potential temperature. The transfer coefficient is taken to be the sum of that obtained in the parameterization of eddy heat flux, plus a correction term suggested by Stone and Yao, which ensures the global net eddy momentum transport to be zero. What makes the present method attractive is that, even though only the data of eddy heat flux are used to evaluate the magnitude of the transfer coefficients, the obtained magnitude of the eddy momentum flux is in good agreement with observations. For the annual mean calculation, the obtained peak values of eddy momentum flux are 94% of the observation for the Northern Hemisphere and 101% for the Southern Hemisphere. This result significantly improves the result of Stone and Yao, who obtained 34% for the Northern Hemisphere and 16% for the Southern Hemisphere in a similar calculation, but in which Kyz = 0 was assumed.

  1. Surface Energy Heat Fluxes Using Remotely Sensed Parameters

    NASA Technical Reports Server (NTRS)

    Toll, David L.; Vukovich, Fred M.; Pontikes, Elizabeth G.

    1997-01-01

    Realistic estimates of surface energy heat fluxes are needed for the study of water and energy interactions between the land and atmosphere. The primary objective of this work is to study the estimation of surface heat energy fluxes using remote sensing derived parameters under different spatial and temporal conditions. Surface energy fluxes and remote sensing derived data from two sources were analyzed. First, we used surface heat flux, remote sensing, and ancillary data from the International Satellite Land Surface Climatology Project (ISLSCP), mapped at a 1 deg. x 1 deg. grid. Second, we used NOAA AVHRR (1 km), weather station, and ancillary data to derive estimates of surface latent and sensible heat energy fluxes over a 100 sq kilometers area for three test sites: 1) First ISLSCP Field Experiment (FIFE) grassland site, Konza Prairie, Kansas; 2) Howland, Maine Forest Ecosystem Dynamics Site; and 3) Walnut Gulch, scrubland site, surrounding Tombstone, Arizona. Satellite derived estimates of land surface temperature, surface albedo, and spectral vegetation index are used in selected models to provide estimates of surface heat fluxes. Analysis of results from the 1 deg. x 1 deg. grid for North America indicated there were similar, overall correlations between sensible and latent heat energy fluxes versus remotely sensed vegetation index and ground temperature during dry and wet year conditions. However, there were significant differences in correlations between years when stratified by land cover class. Analysis of 100 km x 100 km data (1 km resolution) indicated partitioning the areas in to primary versus secondary cover, with the secondary cover comprising less than 5% of the area, significantly improved surface heat energy flux estimates.

  2. Intercomparison of Latent Heat Fluxes Over Global Oceans

    NASA Technical Reports Server (NTRS)

    Chou, Shu-Hsien; Nelkin, Eric; Ardizzone, Joe; Atlas, Robert M.; Chou, Ming-Dah

    2003-01-01

    Turbulent fluxes of momentum, moisture, and heat at the air-sea interface are essential for climate studies. Version 2 Goddard Satellite-based Surface Turbulent Fluxes (GSSTF2) has been derived from the Special Sensor Microwave/Imager (SSM/I) radiance measurements. This dataset, covering the period July 1987-December 2000 over global oceans, has a spatial resolution of 1 deg x 1 deg lat-long and a temporal resolution of 1 day. Turbulent fluxes are derived from the SSM/I surface winds and surface air humidity, as well as the 2-m air and sea surface temperatures (SST) of the NCEP/NCAR reanalysis, using a bulk aerodynamic algorithm based on the surface layer similarity theory. The GSSTF2 bulk flux model, and retrieved daily wind stress, latent heat flux, wind speed, and surface air humidity validate well with ship observations of ten field experiments over the tropical and midlatitude oceans during 1991-99. The global distributions of 1988-2000 annual- and seasonal-mean turbulent fluxes show reasonable patterns related to the atmospheric general circulation and seasonal variations. Latent heat fluxes and related input parameters over global oceans during 1992-93 have been compared among GSSTF1 (version 1), GSSTF2, HOAPS (Hamburg Ocean Atmosphere Parameters and Fluxes from Satellite Data), NCEP/NCAR reanalysis, and one based on COADS (Comprehensive Ocean-Atmosphere Data Set). Our analyses suggest that the GSSTF2 latent heat flux, surface air humidity, surface wind, and SST are quite realistic compared to the other four flux datasets examined. However, significant differences are found among these five flux datasets. The GSSTF2, available at http://daac.gsfc.nasa.gov/CAMPAIGN_DOCS/hydrology/hd_gsstf2.O.html, is useful for climate studies.

  3. Effects of Heat Flux, Oxygen Concentration and Glass Fiber Volume Fraction on Pyrolysate Mass Flux from Composite Solids

    NASA Technical Reports Server (NTRS)

    Rich, D. B.; Lautenberger, C. W.; Yuan, Z.; Fernandez-Pello, A. C.

    2004-01-01

    Experimental work on the effects of heat flux, oxygen concentration and glass fiber volume fraction on pyrolysate mass flux from samples of polypropylene/glass fiber composite (PP/G) is underway. The research is conducted as part of a larger project to develop a test methodology for flammability of materials, particularly composites, in the microgravity and variable oxygen concentration environment of spacecraft and space structures. Samples of PP/G sized at 30 x 30 x 10 mm are flush mounted in a flow tunnel, which provides a flow of oxidizer over the surface of the samples at a fixed value of 1 m/s and oxygen concentrations varying between 18 and 30%. Each sample is exposed to a constant external radiant heat flux at a given value, which varies between tests from 10 to 24 kW/sq m. Continuous sample mass loss and surface temperature measurements are recorded for each test. Some tests are conducted with an igniter and some are not. In the former case, the research goal is to quantify the critical mass flux at ignition for the various environmental and material conditions described above. The later case generates a wider range of mass flux rates than those seen prior to ignition, providing an opportunity to examine the protective effects of blowing on oxidative pyrolysis and heating of the surface. Graphs of surface temperature and sample mass loss vs. time for samples of 30% PPG at oxygen concentrations of 18 and 21% are presented in the figures below. These figures give a clear indication of the lower pyrolysis rate and extended time to ignition that accompany a lower oxygen concentration. Analysis of the mass flux rate at the time of ignition gives good repeatability but requires further work to provide a clear indication of mass flux trends accompanying changes in environmental and material properties.

  4. Effects of Heat Flux, Oxygen Concentration and Glass Fiber Volume Fraction on Pyrolysate Mass Flux from Composite Solids

    NASA Technical Reports Server (NTRS)

    Rich, D. B.; Lautenberger, C. W.; Yuan, Z.; Fernandez-Pello, A. C.

    2004-01-01

    Experimental work on the effects of heat flux, oxygen concentration and glass fiber volume fraction on pyrolysate mass flux from samples of polypropylene/glass fiber composite (PP/G) is underway. The research is conducted as part of a larger project to develop a test methodology for flammability of materials, particularly composites, in the microgravity and variable oxygen concentration environment of spacecraft and space structures. Samples of PP/G sized at 30x30x10 mm are flush mounted in a flow tunnel, which provides a flow of oxidizer over the surface of the samples at a fixed value of 1 m/s and oxygen concentrations varying between 18 and 30%. Each sample is exposed to a constant external radiant heat flux at a given value, which varies between tests from 10 to 24 kW/m2. Continuous sample mass loss and surface temperature measurements are recorded for each test. Some tests are conducted with an igniter and some are not. In the former case, the research goal is to quantify the critical mass flux at ignition for the various environmental and material conditions described above. The later case generates a wider range of mass flux rates than those seen prior to ignition, providing an opportunity to examine the protective effects of blowing on oxidative pyrolysis and heating of the surface. Graphs of surface temperature and sample mass loss vs. time for samples of 30% PPG at oxygen concentrations of 18 and 21% are presented in the figures below. These figures give a clear indication of the lower pyrolysis rate and extended time to ignition that accompany a lower oxygen concentration. Analysis of the mass flux rate at the time of ignition gives good repeatability but requires further work to provide a clear indication of mass flux trends accompanying changes in environmental and material properties.

  5. Constant Temperature Storage House Heated by the Respiration Heat of Agricultural Products

    NASA Astrophysics Data System (ADS)

    Kobiyama, Masayoshi; Takegata, Kiyohide; Hashimoto, Yoshiaki; Kawamoto, Syuroh; Ohno, Syozi

    HIMURO type storage house, cooled by natural snow/ice, has been practically applied by means of its good storing condition and of the easy handling. As this type storage house is constructed by enough insulation structure, it can been used not only for a cool house in the summer but also a constant temperature storage house in the winter. In this paper, the authors suggested that the HIMURO type storage house might be used as the constant temperature house in the severe cold winter season after the theoretical investigation on the thermal characteristics of it. In general, the conventional type constant temperature storage house is heated by heater throughout storing period, that of this paper is self heated by the respiration heat of agricultural products stored in this house, so the house proposed in this paper look forward to smaller heat addition than that of conventional house. The practical experiment was performed to verify the theoretical investigation and to observe the storing condition of the product and we obtained enough results.

  6. High heat flux measurements and experimental calibrations/characterizations

    NASA Technical Reports Server (NTRS)

    Kidd, Carl T.

    1992-01-01

    Recent progress in techniques employed in the measurement of very high heat-transfer rates in reentry-type facilities at the Arnold Engineering Development Center (AEDC) is described. These advances include thermal analyses applied to transducer concepts used to make these measurements; improved heat-flux sensor fabrication methods, equipment, and procedures for determining the experimental time response of individual sensors; performance of absolute heat-flux calibrations at levels above 2,000 Btu/cu ft-sec (2.27 kW/cu cm); and innovative methods of performing in-situ run-to-run characterizations of heat-flux probes installed in the test facility. Graphical illustrations of the results of extensive thermal analyses of the null-point calorimeter and coaxial surface thermocouple concepts with application to measurements in aerothermal test environments are presented. Results of time response experiments and absolute calibrations of null-point calorimeters and coaxial thermocouples performed in the laboratory at intermediate to high heat-flux levels are shown. Typical AEDC high-enthalpy arc heater heat-flux data recently obtained with a Calspan-fabricated null-point probe model are included.

  7. QUANTIFICATION OF HEAT FLUX FROM A REACTING THERMITE SPRAY

    SciTech Connect

    Eric Nixon; Michelle Pantoya

    2009-07-01

    Characterizing the combustion behaviors of energetic materials requires diagnostic tools that are often not readily or commercially available. For example, a jet of thermite spray provides a high temperature and pressure reaction that can also be highly corrosive and promote undesirable conditions for the survivability of any sensor. Developing a diagnostic to quantify heat flux from a thermite spray is the objective of this study. Quick response sensors such as thin film heat flux sensors can not survive the harsh conditions of the spray, but more rugged sensors lack the response time for the resolution desired. A sensor that will allow for adequate response time while surviving the entire test duration was constructed. The sensor outputs interior temperatures of the probes at known locations and utilizes an inverse heat conduction code to calculate heat flux values. The details of this device are discussed and illustrated. Temperature and heat flux measurements of various thermite spray conditions are reported. Results indicate that this newly developed energetic material heat flux sensor provides quantitative data with good repeatability.

  8. Numerical Analysis of a Radiant Heat Flux Calibration System

    NASA Technical Reports Server (NTRS)

    Jiang, Shanjuan; Horn, Thomas J.; Dhir, V. K.

    1998-01-01

    A radiant heat flux gage calibration system exists in the Flight Loads Laboratory at NASA's Dryden Flight Research Center. This calibration system must be well understood if the heat flux gages calibrated in it are to provide useful data during radiant heating ground tests or flight tests of high speed aerospace vehicles. A part of the calibration system characterization process is to develop a numerical model of the flat plate heater element and heat flux gage, which will help identify errors due to convection, heater element erosion, and other factors. A 2-dimensional mathematical model of the gage-plate system has been developed to simulate the combined problem involving convection, radiation and mass loss by chemical reaction. A fourth order finite difference scheme is used to solve the steady state governing equations and determine the temperature distribution in the gage and plate, incident heat flux on the gage face, and flat plate erosion. Initial gage heat flux predictions from the model are found to be within 17% of experimental results.

  9. A diagnostic for quantifying heat flux from a thermite spray

    NASA Astrophysics Data System (ADS)

    Nixon, E. P.; Pantoya, M. L.; Prentice, D. J.; Steffler, E. D.; Daniels, M. A.; D'Arche, S. P.

    2010-02-01

    Characterizing the combustion behaviors of energetic materials requires diagnostic tools that are often not readily or commercially available. For example, a jet of thermite spray provides a high temperature and pressure reaction that can also be highly corrosive and promote undesirable conditions for the survivability of any sensor. Developing a diagnostic to quantify heat flux from a thermite spray is the objective of this study. Quick response sensors such as thin film heat flux sensors cannot survive the harsh conditions of the spray, but more rugged sensors lack the response time for the resolution desired. A sensor that will allow for adequate response time while surviving the entire test duration was constructed. The sensor outputs interior temperatures of the probes at known locations and utilizes an inverse heat conduction code to calculate heat flux values. The details of this device are discussed and illustrated. Temperature and heat flux measurements of various thermite sprays are reported. Results indicate that this newly designed heat flux sensor provides quantitative data with good repeatability suitable for characterizing energetic material combustion.

  10. Turbine blade and vane heat flux sensor development, phase 1

    NASA Technical Reports Server (NTRS)

    Atkinson, W. H.; Cyr, M. A.; Strange, R. R.

    1984-01-01

    Heat flux sensors available for installation in the hot section airfoils of advanced aircraft gas turbine engines were developed. Two heat flux sensors were designed, fabricated, calibrated, and tested. Measurement techniques are compared in an atmospheric pressure combustor rig test. Sensors, embedded thermocouple and the Gordon gauge, were fabricated that met the geometric and fabricability requirements and could withstand the hot section environmental conditions. Calibration data indicate that these sensors yielded repeatable results and have the potential to meet the accuracy goal of measuring local heat flux to within 5%. Thermal cycle tests and thermal soak tests indicated that the sensors are capable of surviving extended periods of exposure to the environment conditions in the turbine. Problems in calibration of the sensors caused by severe non-one dimensional heat flow were encountered. Modifications to the calibration techniques are needed to minimize this problem and proof testing of the sensors in an engine is needed to verify the designs.

  11. Turbine blade and vane heat flux sensor development, phase 1

    NASA Astrophysics Data System (ADS)

    Atkinson, W. H.; Cyr, M. A.; Strange, R. R.

    1984-08-01

    Heat flux sensors available for installation in the hot section airfoils of advanced aircraft gas turbine engines were developed. Two heat flux sensors were designed, fabricated, calibrated, and tested. Measurement techniques are compared in an atmospheric pressure combustor rig test. Sensors, embedded thermocouple and the Gordon gauge, were fabricated that met the geometric and fabricability requirements and could withstand the hot section environmental conditions. Calibration data indicate that these sensors yielded repeatable results and have the potential to meet the accuracy goal of measuring local heat flux to within 5%. Thermal cycle tests and thermal soak tests indicated that the sensors are capable of surviving extended periods of exposure to the environment conditions in the turbine. Problems in calibration of the sensors caused by severe non-one dimensional heat flow were encountered. Modifications to the calibration techniques are needed to minimize this problem and proof testing of the sensors in an engine is needed to verify the designs.

  12. Turbine blade and vane heat flux sensor development, phase 2

    NASA Technical Reports Server (NTRS)

    Atkinson, W. H.; Cyr, M. A.; Strange, R. R.

    1985-01-01

    The development of heat flux sensors for gas turbine blades and vanes and the demonstration of heat transfer measurement methods are reported. The performance of the heat flux sensors was evaluated in a cylinder in cross flow experiment and compared with two other heat flux measurement methods, the slug calorimeter and a dynamic method based on fluctuating gas and surface temperature. Two cylinders, each instrumented with an embedded thermocouple sensor, a Gardon gauge, and a slug calorimeter, were fabricated. Each sensor type was calibrated using a quartz lamp bank facility. The instrumented cylinders were then tested in an atmospheric pressure combustor rig at conditions up to gas stream temperatures of 1700K and velocities to Mach 0.74. The test data are compared to other measurements and analytical prediction.

  13. Distribution of heat flux by working fluid in loop heat pipe

    NASA Astrophysics Data System (ADS)

    Nemec, Patrik; Malcho, Milan

    2016-03-01

    The main topics of article are construction of loop heat pipe, thermal visualization of working fluid dynamics and research results interpretation. The work deals about heat flux transport by working fluid in loop heat pipe from evaporator to condenser evolution. The result of the work give us how the hydrodynamic and thermal processes which take place inside the loop of heat pipe affect on the overall heat transport by loop heat pipe at start-up and during operation.

  14. Corrections of Heat Flux Measurements on Launch Vehicles

    NASA Technical Reports Server (NTRS)

    Reinarts, Thomas R.; Matson, Monique L.; Walls, Laurie K.

    2002-01-01

    Knowledge of aerothermally induced convective heat transfer is important in the design of thermal protection systems for launch vehicles. Aerothermal models are typically calibrated via the data from circular, in-flight, flush-mounted surface heat flux gauges exposed to the thermal and velocity boundary layers of the external flow. Typically, copper or aluminum Schmidt- Boelter gauges, which take advantage of the one-dimensional Fourier's law of heat conduction, are used to measure the incident heat flux. This instrumentation, when surrounded by low-conductivity insulation, has a wall temperature significantly lower than the insulation. As a result of this substantial disturbance to the thermal boundary layer, the heat flux incident on the gauge tends to be considerably higher than it would have been on the insulation had the calorimeter not been there. In addition, radial conductive heat transfer from the hotter insulation can cause the calorimeter to indicate heat fluxes higher than actual. An overview of an effort to develop and calibrate gauge correction techniques for both of these effects will be presented.

  15. An analytical quantification of mass fluxes and natural attenuation rate constants at a former gasworks site

    NASA Astrophysics Data System (ADS)

    Bockelmann, Alexander; Ptak, Thomas; Teutsch, Georg

    2001-12-01

    A new integral groundwater investigation approach was used for the first time to quantify natural attenuation rates at field scale. In this approach, pumping wells positioned along two control planes were operated at distances of 140 and 280 m downstream of a contaminant source zone at a former gasworks site polluted with BTEX- (benzene, toluene, ethyl-benzene, o-, p-xylene) and PAH- (polycyclic aromatic hydrocarbons) compounds. Based on the quantified changes in total contaminant mass fluxes between the control planes, first-order natural attenuation rate constants could be estimated. For BTEX-compounds, these ranged from 1.4e-02 to 1.3e-01 day -1, whereas for PAH-compounds natural attenuation rate constants of 3.7e-04 to 3.1e-02 day -1 were observed. Microbial degradation activity at the site was indicated by an increase in dissolved iron mass flux and a reduction in sulphate mass flux between the two investigated control planes. In addition to information about total contaminant mass fluxes and average concentrations, an analysis of the concentration-time series measured at the control planes also allowed to semi-quantitatively delineate the aquifer regions most likely contaminated by the BTEX- and PAH-compounds.

  16. An analytical quantification of mass fluxes and natural attenuation rate constants at a former gasworks site.

    PubMed

    Bockelmann, A; Ptak, T; Teutsch, G

    2001-12-15

    A new integral groundwater investigation approach was used for the first time to quantify natural attenuation rates at field scale. In this approach, pumping wells positioned along two control planes were operated at distances of 140 and 280 m downstream of a contaminant source zone at a former gasworks site polluted with BTEX- (benzene, toluene, ethyl-benzene, o-, p-xylene) and PAH- (polycyclic aromatic hydrocarbons) compounds. Based on the quantified changes in total contaminant mass fluxes between the control planes, first-order natural attenuation rate constants could be estimated. For BTEX-compounds, these ranged from 1.4e-02 to 1.3e-01 day(-1) whereas for PAH-compounds natural attenuation rate constants of 3.7e-04 to 3.1e-02 day(-1) were observed. Microbial degradation activity at the site was indicated by an increase in dissolved iron mass flux and a reduction in sulphate mass flux between the two investigated control planes. In addition to information about total contaminant mass fluxes and average concentrations, an analysis of the concentration-time series measured at the control planes also allowed to semi-quantitatively delineate the aquifer regions most likely contaminated by the BTEX- and PAH-compounds. PMID:11820481

  17. Nonlinear aspects of high heat flux nucleate boiling heat transfer. Part 1, Formulation

    SciTech Connect

    Sadasivan, P.; Unal, C.; Nelson, R.

    1994-04-01

    This paper outlines the essential details of the formulation and numerical implementation of a model used to study nonlinear aspects of the macrolayer-controlled heat transfer process associated with high heat flux nucleate boiling and the critical heat flux. The model addresses the three-dimensional transient conduction heat transfer process within the problem domain comprised of the macrolayer and heater. Heat dissipation from the heater is modeled as the sum of transient transport into the macrolayer, and the heat loss resulting from evaporation of menisci associated with vapor stems.

  18. Evaluation of six parameterization approaches for the ground heat flux

    NASA Astrophysics Data System (ADS)

    Liebethal, C.; Foken, T.

    2007-01-01

    There are numerous approaches to the parameterization of the ground heat flux that use different input data, are valid for different times of the day, and deliver results of different quality. Six of these approaches are tested in this study: three approaches calculating the ground heat flux from net radiation, one approach using the turbulent sensible heat flux, one simplified in situ measurement approach, and the force-restore method. On the basis of a data set recorded during the LITFASS-2003 experiment, the strengths and weaknesses of the approaches are assessed. The quality of the best approaches (simplified measurement and force-restore) approximates that of the measured data set. An approach calculating the ground heat flux from net radiation and the diurnal amplitude of the soil surface temperature also delivers satisfactory daytime results. The remaining approaches all have such serious drawbacks that they should only be applied with care. Altogether, this study demonstrates that ground heat flux parameterization has the potential to produce results matching measured ones very well, if all conditions and restrictions of the respective approaches are taken into account.

  19. Heat flux: thermohydraulic investigation of solar air heaters used in agro-industrial applications

    NASA Astrophysics Data System (ADS)

    Rahmati Aidinlou, H.; Nikbakht, A. M.

    2016-07-01

    A new design of solar air heater simulator is presented to comply with the extensive applications inagro-industry. A wise installation of increased heat transfer surface area provided uniform and efficient heat diffusion over the duct. Nusselt number and friction factor have been investigated based on the constant roughness parameters such as relative roughness height (e/D), relative roughness pitch (P/e), angle of attack (α) and aspect ratio with Reynolds numbers ranging from 5000 to 19,000 in the fully developed region. Heat fluxes of 800, 900 and 1000 Wm-2 were provided. The enhancement in friction factor is observed to be 3.1656, 3.47 and 3.0856 times, and for the Nusselt number either, augmentation is calculated to be 1.4437, 1.4963 and 1.535 times, respectively, over the smooth duct for 800, 900 and 1000 Wm-2 heat fluxes. Thermohydraulic performance is plotted versus the Reynolds number based on the aforementioned roughness parameters at varying heat fluxes. The results show up that thermohydraulic performance is found to be maximum for 1000 Wm-2 at the average Reynolds number of 5151. Based on the results, we can verify that the introduced solar simulator can help analyzing and developing solar collector installations at the simulated heat fluxes.

  20. Remote high-temperature insulatorless heat-flux gauge

    DOEpatents

    Noel, Bruce W.

    1993-01-01

    A remote optical heat-flux gauge for use in extremely high temperature environments is described. This application is possible because of the use of thermographic phosphors as the sensing media, and the omission of the need for an intervening layer of insulator between phosphor layers. The gauge has no electrical leads, but is interrogated with ultraviolet or laser light. The luminescence emitted by the two phosphor layers, which is indicative of the temperature of the layers, is collected and analyzed in order to determine the heat flux incident on the surface being investigated. The two layers of thermographic phosphor must be of different materials to assure that the spectral lines collected will be distinguishable. Spatial heat-flux measurements can be made by scanning the light across the surface of the gauge.

  1. Remote high-temperature insulatorless heat-flux gauge

    DOEpatents

    Noel, B.W.

    1993-12-28

    A remote optical heat-flux gauge for use in extremely high temperature environments is described. This application is possible because of the use of thermographic phosphors as the sensing media, and the omission of the need for an intervening layer of insulator between phosphor layers. The gauge has no electrical leads, but is interrogated with ultraviolet or laser light. The luminescence emitted by the two phosphor layers, which is indicative of the temperature of the layers, is collected and analyzed in order to determine the heat flux incident on the surface being investigated. The two layers of thermographic phosphor must be of different materials to assure that the spectral lines collected will be distinguishable. Spatial heat-flux measurements can be made by scanning the light across the surface of the gauge. 3 figures.

  2. Peak pool boiling heat flux in viscous liquids

    NASA Technical Reports Server (NTRS)

    Dhir, V. K.; Lienhard, J. H.

    1974-01-01

    The stability of a gas jet in a surrounding viscous liquid is studied. An expression is developed for the critical velocity at which the jet becomes unstable in a returning viscous liquid. The stability analysis is made to correspond with the geometrical configuration of gas jets and liquid columns similar to those observed near the peak pool boiling heat flux. The critical velocity of the gas jet is then used to obtain the functional form of the peak heat flux on flat plates and cylindrical heaters. The expressions are compared with original observations of the peak heat flux in very viscous liquids on flat plate, and cylindrical, heaters at both earth-normal, and elevated, gravities.

  3. Long-term evolution of anthropogenic heat fluxes into a subsurface urban heat island.

    PubMed

    Menberg, Kathrin; Blum, Philipp; Schaffitel, Axel; Bayer, Peter

    2013-09-01

    Anthropogenic alterations in urban areas influence the thermal environment causing elevated atmospheric and subsurface temperatures. The subsurface urban heat island effect is observed in several cities. Often shallow urban aquifers exist with thermal anomalies that spread laterally and vertically, resulting in the long-term accumulation of heat. In this study, we develop an analytical heat flux model to investigate possible drivers such as increased ground surface temperatures (GSTs) at artificial surfaces and heat losses from basements of buildings, sewage systems, subsurface district heating networks, and reinjection of thermal wastewater. By modeling the anthropogenic heat flux into the subsurface of the city of Karlsruhe, Germany, in 1977 and 2011, we evaluate long-term trends in the heat flux processes. It revealed that elevated GST and heat loss from basements are dominant factors in the heat anomalies. The average total urban heat flux into the shallow aquifer in Karlsruhe was found to be ∼759 ± 89 mW/m(2) in 1977 and 828 ± 143 mW/m(2) in 2011, which represents an annual energy gain of around 1.0 × 10(15) J. However, the amount of thermal energy originating from the individual heat flux processes has changed significantly over the past three decades. PMID:23895264

  4. Distributed Sensible Heat Flux Measurements for Wireless Sensor Networks

    NASA Astrophysics Data System (ADS)

    Huwald, H.; Brauchli, T.; Lehning, M.; Higgins, C. W.

    2015-12-01

    The sensible heat flux component of the surface energy balance is typically computed using eddy covariance or two point profile measurements while alternative approaches such as the flux variance method based on convective scaling has been much less explored and applied. Flux variance (FV) certainly has a few limitations and constraints but may be an interesting and competitive method in low-cost and power limited wireless sensor networks (WSN) with the advantage of providing spatio-temporal sensible heat flux over the domain of the network. In a first step, parameters such as sampling frequency, sensor response time, and averaging interval are investigated. Then we explore the applicability and the potential of the FV method for use in WSN in a field experiment. Low-cost sensor systems are tested and compared against reference instruments (3D sonic anemometers) to evaluate the performance and limitations of the sensors as well as the method with respect to the standard calculations. Comparison experiments were carried out at several sites to gauge the flux measurements over different surface types (gravel, grass, water) from the low-cost systems. This study should also serve as an example of spatially distributed sensible heat flux measurements.

  5. Simulation for heat flux mitigation by gas puffing in KSTAR

    NASA Astrophysics Data System (ADS)

    Shim, Seung Bo; Kotov, Vladislav; Hong, Suk-Ho; Detlev, Reiter; Kim, Jin Yong; Na, Yong Su; Lee, Hae June

    2013-10-01

    Control of heat flux is very important to achieve high performance long pulse operation in tokamaks. There are so many efforts to reduce the heat flux like change of divertor structure, snowflake divertor, and RMP, etc. Detachment by gas puffing is used for long time to reduce the heat flux. In this paper edge plasma scenarios of KSTAR are analyzed numerically by well-known B2-Eirene code package(SOLPS4.3). High performance discharges with heating power ~ 8 MW and core flux ~ 1021 s-1 is used. Gas puffed on the outer mid-plane(OMP), both divertors is likely to stay attached. So, gas puffed on the outer target, one is near the private flux region(PFR) and the other is near the scrape-off-layer(SOL). When gas puffed near the SOL is still attached, and it is worse than gas puff from OMP because it is too close to cryo-pump. The case near the PFR shows high recycling region easily compared with OMP case. When one forth gas puffed on the PFR, results are similar with OMP case. But it is still not good for detachment operation. Detachment operation window is too small for the gas puffing on the PFR. This work was supported by the National Research Foundation of Korea(NRF) grant funded by the Korea government(MEST)(No. 2012-0000579).

  6. Toward evaluation of heat fluxes in the convective boundary layer

    SciTech Connect

    Sorbjan, Z.

    1995-05-01

    This article demonstrates that vertical profiles of the heat flux in the convective boundary layer can be diagnosed through an integration over height of the time change rates of observed potential temperature profiles. Moreover, the basic characteristics of the convective boundary layer, such as the mixed-layer height z{sub t}, the depth of the interfacial (entrainment) layer, and the heat flux zero-crossing height h{sub 0} can be uniquely evaluated based on a time evolution of potential temperature profiles in the lower atmosphere. 12 refs., 12 figs., 1 tab.

  7. Infrared Camera Diagnostic for Heat Flux Measurements on NSTX

    SciTech Connect

    D. Mastrovito; R. Maingi; H.W. Kugel; A.L. Roquemore

    2003-03-25

    An infrared imaging system has been installed on NSTX (National Spherical Torus Experiment) at the Princeton Plasma Physics Laboratory to measure the surface temperatures on the lower divertor and center stack. The imaging system is based on an Indigo Alpha 160 x 128 microbolometer camera with 12 bits/pixel operating in the 7-13 {micro}m range with a 30 Hz frame rate and a dynamic temperature range of 0-700 degrees C. From these data and knowledge of graphite thermal properties, the heat flux is derived with a classic one-dimensional conduction model. Preliminary results of heat flux scaling are reported.

  8. Estimating interfacial thermal conductivity in metamaterials through heat flux mapping

    SciTech Connect

    Canbazoglu, Fatih M.; Vemuri, Krishna P.; Bandaru, Prabhakar R.

    2015-04-06

    The variability of the thickness as well as the thermal conductivity of interfaces in composites may significantly influence thermal transport characteristics and the notion of a metamaterial as an effective medium. The consequent modulations of the heat flux passage are analytically and experimentally examined through a non-contact methodology using radiative imaging, on a model anisotropic thermal metamaterial. It was indicated that a lower Al layer/silver interfacial epoxy ratio of ∼25 compared to that of a Al layer/alumina interfacial epoxy (of ∼39) contributes to a smaller deviation of the heat flux bending angle.

  9. DIRECT MEASUREMENT OF HEAT FLUX FROM COOLING LAKE THERMAL IMAGERY

    SciTech Connect

    Garrett, A; Eliel Villa-Aleman, E; Robert Kurzeja, R; Malcolm Pendergast, M; Timothy Brown, T; Saleem Salaymeh, S

    2007-12-19

    Laboratory experiments show a linear relationship between the total heat flux from a water surface to air and the standard deviation of the surface temperature field, {sigma}, derived from thermal images of the water surface over a range of heat fluxes from 400 to 1800 Wm{sup -2}. Thermal imagery and surface data were collected at two power plant cooling lakes to determine if the laboratory relationship between heat flux and {sigma} exists in large heated bodies of water. The heat fluxes computed from the cooling lake data range from 200 to 1400 Wm{sup -2}. The linear relationship between {sigma} and Q is evident in the cooling lake data, but it is necessary to apply band pass filtering to the thermal imagery to remove camera artifacts and non-convective thermal gradients. The correlation between {sigma} and Q is improved if a correction to the measured {sigma} is made that accounts for wind speed effects on the thermal convection. Based on more than a thousand cooling lake images, the correlation coefficients between {sigma} and Q ranged from about 0.8 to 0.9.

  10. Heat flux instrumentation for Hyflite thermal protection system

    NASA Technical Reports Server (NTRS)

    Diller, T. E.

    1994-01-01

    Using Thermal Protection Tile core samples supplied by NASA, the surface characteristics of the FRCI, TUFI, and RCG coatings were evaluated. Based on these results, appropriate methods of surface preparation were determined and tested for the required sputtering processes. Sample sensors were fabricated on the RCG coating and adhesion was acceptable. Based on these encouraging results, complete Heat Flux Microsensors were fabricated on the RCG coating. The issue of lead attachment was addressed with the annnealing and welding methods developed at NASA Lewis. Parallel gap welding appears to be the best method of lead attachment with prior heat treatment of the sputtered pads. Sample Heat Flux Microsensors were submitted for testing in the NASA Ames arc jet facility. Details of the project are contained in two attached reports. One additional item of interest is contained in the attached AIAA paper, which gives details of the transient response of a Heat Flux Microsensors in a shock tube facility at Virginia Tech. The response of the heat flux sensor was measured to be faster than 10 micro-s.

  11. Heat flux instrumentation for Hyflite thermal protection system

    NASA Astrophysics Data System (ADS)

    Diller, T. E.

    Using Thermal Protection Tile core samples supplied by NASA, the surface characteristics of the FRCI, TUFI, and RCG coatings were evaluated. Based on these results, appropriate methods of surface preparation were determined and tested for the required sputtering processes. Sample sensors were fabricated on the RCG coating and adhesion was acceptable. Based on these encouraging results, complete Heat Flux Microsensors were fabricated on the RCG coating. The issue of lead attachment was addressed with the annnealing and welding methods developed at NASA Lewis. Parallel gap welding appears to be the best method of lead attachment with prior heat treatment of the sputtered pads. Sample Heat Flux Microsensors were submitted for testing in the NASA Ames arc jet facility. Details of the project are contained in two attached reports. One additional item of interest is contained in the attached AIAA paper, which gives details of the transient response of a Heat Flux Microsensors in a shock tube facility at Virginia Tech. The response of the heat flux sensor was measured to be faster than 10 micro-s.

  12. Spatially averaged heat flux and convergence measurements at the ARM regional flux experiment

    SciTech Connect

    Porch, W.; Barnes, F.; Buchwald, M.; Clements, W.; Cooper, D.; Hoard, D. ); Doran, C.; Hubbe, J.; Shaw, W. ); Coulter, R.; Martin, T. ); Kunkel, K. )

    1991-01-01

    Cloud formation and its relation to climate change is the greatest weakness in current numerical climate models. Surface heat flux in some cases causes clouds to form and in other to dissipate and the differences between these cases are subtle enough to make parameterization difficult in a numerical model. One of the goals of the DOE Atmospheric Radiation Measurement program is to make long term measurements at representative sites to improve radiation and cloud formation parameterization. This paper compares spatially averaged optical measurements of heat flux and convergence with a goal of determining how point measurements of heat fluxes scale up to the larger scale used for climate modeling. It was found that the various optical techniques used in this paper compared well with each other and with independent measurements. These results add confidence that spatially averaging optical techniques can be applied to transform point measurements to the larger scales needed for mesoscale and climate modeling. 10 refs., 6 figs. (MHB)

  13. Heat-Flux Sensor For Hot Engine Cylinders

    NASA Technical Reports Server (NTRS)

    Kim, Walter S.; Barrows, Richard F.; Smith, Floyd A.; Koch, John

    1989-01-01

    Heat-flux sensor includes buried wire thermocouple and thin-film surface thermocouple, made of platinum and platinum with 13 percent rhodium. Sensor intended for use in ceramic-insulated, low-heat-rejection diesel engine at temperatures of about 1,000 K. Thermocouple junction resists environment in cylinder of advanced high-temperature diesel engine created by depositing overlapping films of Pt and 0.87 Pt/0.13 Rh on iron plug. Plug also contains internal thermocouple.

  14. Coronal Heating and the Magnetic Flux Content of the Network

    NASA Astrophysics Data System (ADS)

    Moore, R. L.; Falconer, D. A.; Porter, J. G.; Hathaway, D. H.

    2003-05-01

    We investigate the heating of the quiet corona by measuring the increase of coronal luminosity with the amount of magnetic flux in the underlying network at solar minimum when there were no active regions on the face of the Sun. The coronal luminosity is measured from Fe IX/X-Fe XII pairs of coronal images from SOHO/EIT. The network magnetic flux content is measured from SOHO/MDI magnetograms. We find that the luminosity of the corona in our quiet regions increases roughly in proportion to the square root of the magnetic flux content of the network and roughly in proportion to the length of the perimeter of the network magnetic flux clumps. From (1) this result, (2) other observations of many fine-scale explosive events at the edges of network flux clumps, and (3) a demonstration that it is energetically feasible for the heating of the corona in quiet regions to be driven by explosions of granule-sized sheared-core magnetic bipoles embedded in the edges of network flux clumps, we infer that in quiet regions that are not influenced by active regions the corona is mainly heated by such magnetic activity in the edges of the network flux clumps. Our observational results together with our feasibility analysis allow us to predict that (1) at the edges of the network flux clumps there are many transient sheared-core bipoles of the size and lifetime of granules and having transverse field strengths > 100 G, (2) 30 of these bipoles are present per supergranule, and (3) most spicules are produced by explosions of these bipoles. This work was supported by NASA's Office of Space Science through its Solar and Heliospheric Physics Supporting Research and Technology Program and its Sun-Earth Connection Guest Investigator Program.

  15. Measurement of Heat Flux and Heat Transfer Coefficient Due to Spray Application for the Die Casting Process

    SciTech Connect

    Sabau, Adrian S

    2007-01-01

    Lubricant spray application experiments were conducted for the die casting process. The heat flux was measured in situ using a differential thermopile sensor for three application techniques. First, the lubricant was applied under a constant flowrate while the nozzle was held in the same position. Second, the lubricant was applied in a pulsed, static manner, in which the nozzle was held over the same surface while it was turned on and off several times. Third, the lubricant was applied in a sweeping manner, in which the nozzle was moved along the die surface while it was held open. The experiments were conducted at several die temperatures and at sweep speeds of 20, 23, and 68 cm/s. The heat flux data, which were obtained with a sensor that was located in the centre of the test plate, were presented and discussed. The sensor can be used to evaluate lubricants, monitor the consistency of die lubrication process, and obtain useful process data, such as surface temperature, heat flux, and heat transfer coefficients. The heat removed from the die surface during lubricant application is necessary for (a) designing the cooling channels in the die, i.e. their size and placement, and (b) performing accurate numerical simulations of the die casting process.

  16. Transverse flux induction heating of aluminum alloy strip

    NASA Astrophysics Data System (ADS)

    Waggott, R.; Walker, D. J.; Gibson, R. C.; Johnson, R. C.

    1981-07-01

    Transverse flux induction heating, an efficient electrical technique particularly suited to the continuous heat treatment of metal strip, is explained. Also described is a 1MW transverse flux inductor designed and built at the Electricity Council Research Centre, Capenhurst, and installed in a tension leveller line at Alcan Plate Ltd., Birmingham, UK. It has been successfully used for the continuous heat treatment of wide (1200-1250 mm) aluminum alloy strip, involving full and partial annealing at line speeds up to 2/ms as well as the solution treatment of certain high strength aluminum alloys. The advantages of this form of induction heating are compactness, controllability, hence ease of automation, and high efficiency. As a consequence, compared with existing batch and continuous heat treatment equipment, major economies in plant operation result due to reduced energy consumption as well as reduced capital and labor costs. The compactness of the technique allows the possibility of introducing transverse flux induction heat treatment furnaces into existing process lines.

  17. Self-contained constant-temperature heat absorber

    NASA Technical Reports Server (NTRS)

    Lopez, R. W.; Vaniman, J. L.; Fisher, R. R.

    1976-01-01

    System maintains precise thermal control of heat producing component, is not affected by changes in external pressure, ambient thermal environment, or gravity, and operates in both static and spinning attitudes. Size of device's spin axis-oriented orifice determines container pressure which establishes boiling temperature of heat absorption medium.

  18. Spatial resolution of subsurface anthropogenic heat fluxes in cities

    NASA Astrophysics Data System (ADS)

    Benz, Susanne; Bayer, Peter; Menberg, Kathrin; Blum, Philipp

    2015-04-01

    Urban heat islands in the subsurface contain large quantities of energy in the form of elevated groundwater temperatures caused by anthropogenic heat fluxes (AHFS) into the subsurface. Hence, the objective of this study is to exemplarily quantify these AHFS and the generated thermal powers in two German cities, Karlsruhe and Cologne. A two-dimensional (2D) statistical analytical model of the vertical subsurface anthropogenic heat fluxes across the unsaturated zone was developed. The model consists of a so-called Local Monte Carlo approach that introduces a spatial representation of the following sources of AHFS: (1) elevated ground surface temperatures, (2) basements, (3) sewage systems, (4) sewage leakage, (5) subway tunnels, and (6) district heating networks. The results show that district heating networks induce the largest local AHFS with values larger than 60 W/m2 and one order of magnitude higher than the other evaluated heat sources. Only sewage pipes and basements reaching into the groundwater cause equally high heat fluxes, with maximal values of 40.37 W/m2 and 13.60 W/m2, respectively. While dominating locally, the district heating network is rather insignificant for the citywide energy budget in both urban subsurfaces. Heat from buildings (1.51 ± 1.36 PJ/a in Karlsruhe; 0.31 ± 0.14 PJ/a in Cologne) and elevated GST (0.34 ± 0.10 PJ/a in Karlsruhe; 0.42 ± 0.13 PJ/a in Cologne) are dominant contributors to the anthropogenic thermal power of the urban aquifer. In Karlsruhe, buildings are the source of 70% of the annual heat transported into the groundwater, which is mainly caused by basements reaching into the groundwater. A variance analysis confirms these findings: basement depth is the most influential factor to citywide thermal power in the studied cities with high groundwater levels. The spatial distribution of fluxes, however, is mostly influenced by the prevailing thermal gradient across the unsaturated zone. A relatively cold groundwater

  19. Heat flux measurements for use in physiological and clothing research.

    PubMed

    Niedermann, R; Psikuta, A; Rossi, R M

    2014-08-01

    Scientists use passive heat flow meters to measure body heat exchanges with the environment. In recent years, several such sensors have been developed and concerns about their proper calibration have been addressed. However, calibration methods have differed in the geometry of the heated device as well as in the heat transfer mechanism. Therefore, a comparison of calibration methods is needed in order to understand the obtained differences in calibration lines. We chose three commercially available heat flux sensors and placed them on four different heated devices: a hot plate, double hot plate, nude cylinder and a cylinder covered with a spacer material. We found differences between the calibration line of the manufacturer and our own measurements, especially when forced convection was involved as the main heat transfer mechanism. The results showed clearly that the calibration method should be chosen according to the intended purpose of use. In addition, we recommend use a thin, light heat flux sensor with good thermal conduction in human subject studies. PMID:23824222

  20. Heat flux measurements for use in physiological and clothing research

    NASA Astrophysics Data System (ADS)

    Niedermann, R.; Psikuta, A.; Rossi, R. M.

    2014-08-01

    Scientists use passive heat flow meters to measure body heat exchanges with the environment. In recent years, several such sensors have been developed and concerns about their proper calibration have been addressed. However, calibration methods have differed in the geometry of the heated device as well as in the heat transfer mechanism. Therefore, a comparison of calibration methods is needed in order to understand the obtained differences in calibration lines. We chose three commercially available heat flux sensors and placed them on four different heated devices: a hot plate, double hot plate, nude cylinder and a cylinder covered with a spacer material. We found differences between the calibration line of the manufacturer and our own measurements, especially when forced convection was involved as the main heat transfer mechanism. The results showed clearly that the calibration method should be chosen according to the intended purpose of use. In addition, we recommend use a thin, light heat flux sensor with good thermal conduction in human subject studies.

  1. Study on heat flux from resin to mold in injection molding process

    SciTech Connect

    Nishiwaki, Nobuhiko; Hori, Sankei

    1999-07-01

    Recently, an injection molding of thermoplastic is widely used in many industries, because this manufacturing method is very suitable for mass production. For injection molding processes, a number of software packages for simulating an injection molding process have been developed. It is assumed in these software packages that the heat transfer coefficient between the resin and the mold surface is constant at the filling or cooling stages. In general, when melted resin flows into the mold, heat is generated in the flowing resin because of the high viscosity at the filling stage. Moreover at the cooling stage, a separation of the molded part from the mold surface generally occurs because of shrinkage of the molded material. Therefore, the heat transfer coefficient has not been accurately obtained yet at these stages. In this paper, the temperature near the surface of the mold cavity has been experimentally measured, so the heat flux that flows from the resin to the mold has been able to be analytically estimated by an inverse conduction method. On the other hand, the separating behavior of the resin from the mold surface has been measured using an ultrasonic transducer attached to the outer surface of the stationary mold. The heat flux that flows from the resin to the mold has been analytically estimated. The apparent heat transfer coefficient can be obtained from the heat flux and the representative temperature difference, which is measured by an ultrasonic technique. It was discovered that the heat flux and the apparent heat transfer coefficient are hardly influenced by the separation.

  2. Spatial and temporal variation of the surface temperature and heat flux for saturated pool nucleate boiling at lower heat fluxes

    SciTech Connect

    Unal, C.; Pasamehmetoglu, K.O.

    1993-10-01

    The spatial and temporal variations of local surface temperature and heat flux for saturated pool nucleate boiling are investigated parametrically using a numerical model. The numerical model consisted of solving the three-dimensional transient heat conduction equation within the heater subjected to nucleate boiling over its upper surface. The surface topography model to distribute the cavities over the boiling surface used a Monte Carlo scheme. All cavities were assumed to be conical in shape. The cavity radii are obtained using an exponential probability density function with a known mean value. Local surface temperatures showed significant spatial and temporal variations, depending upon the surface topography and the heater material and thickness. However, the surface-averaged temperature showed practically no temporal variation. The temporal variations in local temperatures caused the surface-averaged heat flux to vary significantly. The temporal variations in the surface-averaged heat flux were similar for smooth and rough and thick and thin copper and nickel plates. Results indicated that the use of a classical energy balance equation to evaluate the surface heat flux must consider the spatial variation of the temperature. Results also showed that any thermocouple embedded beneath the surface of the heater does not follow the temporal variations at the surface.

  3. Light-intensity modulator withstands high heat fluxes

    NASA Technical Reports Server (NTRS)

    Maples, H. G.; Strass, H. K.

    1966-01-01

    Mechanism modulates and controls the intensity of luminous radiation in light beams associated with high-intensity heat flux. This modulator incorporates two fluid-cooled, externally grooved, contracting metal cylinders which when rotated about their longitudinal axes present a circular aperture of varying size depending on the degree of rotation.

  4. Reconnection Between Twisted Flux Tubes - Implications for Coronal Heating

    NASA Astrophysics Data System (ADS)

    Knizhnik, K. J.; Antiochos, S. K.; DeVore, C. R.; Klimchuk, J. A.; Wyper, P. F.

    2015-12-01

    The nature of the heating of the Sun's corona has been a long-standing unanswered problem in solar physics. Beginning with the work of Parker (1972), many authors have argued that the corona is continuously heated through numerous small-scale reconnection events known as nanoflares. In these nanoflare models, stressing of magnetic flux tubes by photospheric motions causes the field to become misaligned, producing current sheets in the corona. These current sheets then reconnect, converting the free energy stored in the magnetic field into heat. In this work, we use the Adaptively Refined MHD Solver (ARMS) to perform 3D MHD simulations that dynamically resolve regions of strong current to study the reconnection between twisted flux tubes in a plane-parallel Parker configuration. We investigate the energetics of the process, and show that the flux tubes accumulate stress gradually before undergoing impulsive reconnection. We study the motion of the individual field lines during reconnection, and demonstrate that the connectivity of the configuration becomes extremely complex, with multiple current sheets being formed, which could lead to enhanced heating. In addition, we show that there is considerable interaction between the twisted flux tubes and the surrounding untwisted field, which contributes further to the formation of current sheets. The implications for observations will be discussed. This work was funded by a NASA Earth and Space Science Fellowship, and by the NASA TR&T Program.

  5. Integral Plug-Type Heat-Flux Gauge

    NASA Technical Reports Server (NTRS)

    Liebert, Curt H.; Koch, John, Jr.

    1991-01-01

    Integral thermoplug gauge measures flux of heat across specimen of material. New gauge not screwed or welded into place, but instead thermoplug and annulus electrical-discharge-machined (EDM) into specimen material. EDM process leaves no interface between material and thermoplug, thus inherently increasing gauge accuracy by eliminating interface and associated temperature discontinuity. Process also conducive to accurate fabrication of minute gauges.

  6. Thermal Accommodation Coefficients Based on Heat-Flux Measurements

    NASA Astrophysics Data System (ADS)

    Gallis, Michael A.; Trott, Wayne M.; Torczynski, John R.; Rader, Daniel J.

    2006-11-01

    A new method to determine the thermal accommodation coefficient of gases on solid surfaces based on heat-flux measurements is presented. An experimental chamber and supporting diagnostics have been developed that allow accurate heat-flux measurements between two parallel plates. The heat flux is inferred from temperature-difference measurements across the plates using precision thermistors, where the plate temperatures are set with two carefully controlled thermal baths. The resulting heat flux is used in a recently derived semi-empirical formula to determine the thermal accommodation coefficient. This formula has the advantage of eliminating the ˜8% discrepancy between molecular simulations and the predictions of the more approximate Sherman-Lees formula used in most studies. Nitrogen, argon, and helium on stainless steel with various finishes and on other silicon-based surfaces are examined. The thermal accommodation coefficients thus determined indicate that the Maxwell gas-surface interaction model can adequately represent all of the experimental observations. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  7. A microscale thermophoretic turbine driven by external diffusive heat flux

    NASA Astrophysics Data System (ADS)

    Yang, Mingcheng; Liu, Rui; Ripoll, Marisol; Chen, Ke

    2014-10-01

    We propose a theoretical prototype of a micro-scale turbine externally driven by diffusive heat flux without the need for macroscopic particle flux, which is in sharp contrast to conventional turbines. The prototypes are described analytically and validated by computer simulations. Our results indicate that a micro-scale turbine composed of anisotropic blades can rotate unidirectionally in an external temperature gradient due to the anisotropic thermophoresis effect. The rotational direction and speed depend on the temperature gradient, the geometry and the thermophoretic properties of the turbine. The proposed thermophoretic turbines can be experimentally realized and implemented on micro-devices such as computer-chips to recover waste heat or to facilitate cooling.We propose a theoretical prototype of a micro-scale turbine externally driven by diffusive heat flux without the need for macroscopic particle flux, which is in sharp contrast to conventional turbines. The prototypes are described analytically and validated by computer simulations. Our results indicate that a micro-scale turbine composed of anisotropic blades can rotate unidirectionally in an external temperature gradient due to the anisotropic thermophoresis effect. The rotational direction and speed depend on the temperature gradient, the geometry and the thermophoretic properties of the turbine. The proposed thermophoretic turbines can be experimentally realized and implemented on micro-devices such as computer-chips to recover waste heat or to facilitate cooling. Electronic supplementary information (ESI) available. See DOI: 10.1039/c4nr03990d

  8. Surface heat flux data from energy balance Bowen ratio systems

    SciTech Connect

    Wesely, M.L.; Cook, D.R.; Coulter, R.L.

    1995-06-01

    The 350 {times} 400 km domain of the Atmospheric Radiation Measurement (ARM) Program`s Clouds and Radiation Testbed (CART) site in the southern Great Plains is equipped with 10 energy balance Bowen ratio (EBBR) stations at grassland sites; they measure the net radiation, ground heat flux, and temperature/humidity differences between 1.0 and 2.0 m heights. The latter differences provide estimates of the geometric Bowen ratio ({beta}), which are used to estimate sensible and latent heat fluxes. This paper addresses the problem that occurs when the value of {beta} is near {minus}1 and to demonstrate the effectiveness of the EBBR stations in collecting energy flux data at the CART site.

  9. Forced Convection Boiling and Critical Heat Flux of Ethanol in Electrically Heated Tube Tests

    NASA Technical Reports Server (NTRS)

    Meyer, Michael L.; Linne, Diane L.; Rousar, Donald C.

    1998-01-01

    Electrically heated tube tests were conducted to characterize the critical heat flux (transition from nucleate to film boiling) of subcritical ethanol flowing at conditions relevant to the design of a regeneratively cooled rocket engine thrust chamber. The coolant was SDA-3C alcohol (95% ethyl alcohol, 5% isopropyl alcohol by weight), and tests were conducted over the following ranges of conditions: pressure from 144 to 703 psia, flow velocities from 9.7 to 77 ft/s, coolant subcooling from 33 to 362 F, and critical heat fluxes up to 8.7 BTU/in(exp 2)/sec. For the data taken near 200 psia, critical heat flux was correlated as a function of the product of velocity and fluid subcooling to within +/- 20%. For data taken at higher pressures, an additional pressure term is needed to correlate the critical heat flux. It was also shown that at the higher test pressures and/or flow rates, exceeding the critical heat flux did not result in wall burnout. This result may significantly increase the engine heat flux design envelope for higher pressure conditions.

  10. Maximum allowable heat flux for a submerged horizontal tube bundle

    SciTech Connect

    McEligot, D.M.

    1995-08-14

    For application to industrial heating of large pools by immersed heat exchangers, the socalled maximum allowable (or {open_quotes}critical{close_quotes}) heat flux is studied for unconfined tube bundles aligned horizontally in a pool without forced flow. In general, we are considering boiling after the pool reaches its saturation temperature rather than sub-cooled pool boiling which should occur during early stages of transient operation. A combination of literature review and simple approximate analysis has been used. To date our main conclusion is that estimates of q inch chf are highly uncertain for this configuration.

  11. Measurement of a surface heat flux and temperature

    NASA Astrophysics Data System (ADS)

    Davis, R. M.; Antoine, G. J.; Diller, T. E.; Wicks, A. L.

    1994-04-01

    The Heat Flux Microsensor is a new sensor which was recently patented by Virginia Tech and is just starting to be marketed by Vatell Corp. The sensor is made using the thin-film microfabrication techniques directly on the material that is to be measured. It consists of several thin-film layers forming a differential thermopile across a thermal resistance layer. The measured heat flux q is proportional to the temperature difference across the resistance layer q= k(sub g)/delta(sub g) x (t(sub 1) - T(sub 2)), where k(sub g) is the thermal conductivity and delta (sub g) is the thickness of the thermal resistance layer. Because the gages are sputter coated directly onto the surface, their total thickness is less than 2 micrometers, which is two orders of magnitude thinner than previous gages. The resulting temperature difference across the thermal resistance layer (delta is less than 1 micrometer) is very small even at high heat fluxes. To generate a measurable signal many thermocouple pairs are put in series to form a differential thermopile. The combination of series thermocouple junctions and thin-film design creates a gage with very attractive characteristics. It is not only physically non-intrusive to the flow, but also causes minimal disruption of the surface temperature. Because it is so thin, the response time is less than 20 microsec. Consequently, the frequency response is flat from 0 to over 50 kHz. Moreover, the signal of the Heat Flux Microsensor is directly proportional to the heat flux. Therefore, it can easily be used in both steady and transient flows, and it measures both the steady and unsteady components of the surface heat flux. A version of the Heat Flux Microsensor has been developed to meet the harsh demands of combustion environments. These gages use platinum and platinum-10 percent rhodium as the thermoelectric materials. The thermal resistance layer is silicon monoxide and a protective coating of Al2O3 is deposited on top of the sensor. The

  12. Measurement of a surface heat flux and temperature

    NASA Technical Reports Server (NTRS)

    Davis, R. M.; Antoine, G. J.; Diller, T. E.; Wicks, A. L.

    1994-01-01

    The Heat Flux Microsensor is a new sensor which was recently patented by Virginia Tech and is just starting to be marketed by Vatell Corp. The sensor is made using the thin-film microfabrication techniques directly on the material that is to be measured. It consists of several thin-film layers forming a differential thermopile across a thermal resistance layer. The measured heat flux q is proportional to the temperature difference across the resistance layer q= k(sub g)/delta(sub g) x (t(sub 1) - T(sub 2)), where k(sub g) is the thermal conductivity and delta (sub g) is the thickness of the thermal resistance layer. Because the gages are sputter coated directly onto the surface, their total thickness is less than 2 micrometers, which is two orders of magnitude thinner than previous gages. The resulting temperature difference across the thermal resistance layer (delta is less than 1 micrometer) is very small even at high heat fluxes. To generate a measurable signal many thermocouple pairs are put in series to form a differential thermopile. The combination of series thermocouple junctions and thin-film design creates a gage with very attractive characteristics. It is not only physically non-intrusive to the flow, but also causes minimal disruption of the surface temperature. Because it is so thin, the response time is less than 20 microsec. Consequently, the frequency response is flat from 0 to over 50 kHz. Moreover, the signal of the Heat Flux Microsensor is directly proportional to the heat flux. Therefore, it can easily be used in both steady and transient flows, and it measures both the steady and unsteady components of the surface heat flux. A version of the Heat Flux Microsensor has been developed to meet the harsh demands of combustion environments. These gages use platinum and platinum-10 percent rhodium as the thermoelectric materials. The thermal resistance layer is silicon monoxide and a protective coating of Al2O3 is deposited on top of the sensor. The

  13. Azimuthal Stress and Heat Flux In Radiatively Inefficient Accretion Flows

    NASA Astrophysics Data System (ADS)

    Devlen, Ebru

    2016-07-01

    Radiatively Inefficient Accretion Flows (RIAFs) have low radiative efficiencies and/or low accretion rates. The accreting gas may retain most of its binding energy in the form of heat. This lost energy for hot RIAFs is one of the problems heavily worked on in the literature. RIAF observations on the accretion to super massive black holes (e.g., Sagittarius A* in the center of our Galaxy) have shown that the observational data are not consistent with either advection-dominated accretion flow (ADAF) or Bondi models. For this reason, it is very important to theoretically comprehend the physical properties of RIAFs derived from observations with a new disk/flow model. One of the most probable candidates for definition of mass accretion and the source of excess heat energy in RIAFs is the gyroviscous modified magnetorotational instability (GvMRI). Dispersion relation is derived by using MHD equations containing heat flux term based on viscosity in the energy equation. Numerical solutions of the disk equations are done and the growth rates of the instability are calculated. This additional heat flux plays an important role in dissipation of energy. The rates of the angular momentum and heat flux which are obtained from numerical calculations of the turbulence brought about by the GVMRI are also discussed.

  14. Performance of thermal barrier coatings in high heat flux environments

    NASA Technical Reports Server (NTRS)

    Miller, R. A.; Berndt, C. C.

    1984-01-01

    Thermal barrier coatings were exposed to the high temperature and high heat flux produced by a 30 kW plasma torch. Analysis of the specimen heating rates indicates that the temperature drop across the thickness of the 0.038 cm ceramic layer was about 1100 C after 0.5 sec in the flame. An as-sprayed ZrO2-8%Y2O3 specimens survived 3000 of the 0.5 sec cycles with failing. Surface spalling was observed when 2.5 sec cycles were employed but this was attributed to uneven heating caused by surface roughness. This surface spalling was prevented by smoothing the surface with silicon carbide paper or by laser glazing. A coated specimen with no surface modification but which was heat treated in argon also did not surface spall. Heat treatment in air led to spalling in as early as 2 cycle from heating stresses. Failures at edges were investigated and shown to be a minor source of concern. Ceramic coatings formed from ZrO2-12%Y2O3 or ZrO2-20%Y2O3 were shown to be unsuited for use under the high heat flux conditions of this study.

  15. Robust Cooling of High Heat Fluxes Using Hybrid Loop Technology

    NASA Astrophysics Data System (ADS)

    Zuo, Jon; Park, Chanwoo; Sarraf, David; Paris, Anthony

    2005-02-01

    This paper discusses the development of an advanced hybrid loop technology that incorporates elements from both passive and active loop technologies. The result is a simple yet high performance cooling technology that can be used to remove high heat fluxes from large heat input areas. Operating principles and test results of prototype hybrid loops are discussed. Prototype hybrid loops have been demonstrated to remove heat fluxes in excess of 350W/cm2 from heat input areas over 4cm2 with evaporator thermal resistances between 0.008 and 0.065°C/W/cm2. Also importantly, this performance was achieved without the need to actively adjust or control the flows in the loops, even when the heat inputs varied between 0 and 350W/cm2. These performance characteristics represent substantial improvements over state of the art heat pipes, loop heat pipes and spray cooling devices. The hybrid loop technology was demonstrated to operate effectively at all orientations.

  16. Performance of thermal barrier coatings in high heat flux environments

    NASA Technical Reports Server (NTRS)

    Miller, R. A.; Berndt, C. C.

    1984-01-01

    Thermal barrier coatings were exposed to the high temperature and high heat flux produced by a 30 kW plasma torch. Analysis of the specimen heating rates indicates that the temperature drop across the thickness of the 0.038 cm ceramic layer was about 1100 C after 0.5 sec in the flame. An as-sprayed ZrO2-8 percent Y2O3 specimens survived 3000 of the 0.5 sec cycles with falling. Surface spalling was observed when 2.5 sec cycles were employed but this was attributed to uneven heating caused by surface roughness. This surface spalling was prevented by smoothing the surface with silicon carbide paper or by laser glazing. A coated specimen with no surface modification but which was heat treated in argon also did not surface spall. Heat treatment in air led to spalling in as early as 1 cycle from heating stresses. Failures at edges were investigated and shown to be a minor source of concern. Ceramic coatings formed from ZrO2-12 percent Y2O3 or ZrO2-2O percent Y2O3 were shown to be unsuited for use under the high heat flux conditions of this study.

  17. Performance of thermal barrier coatings in high heat flux environments

    NASA Technical Reports Server (NTRS)

    Miller, R. A.; Berndt, C. C.

    1984-01-01

    Thermal barrier coatings were exposed to the high temperature and high heat flux produced by a 30 kW plasma torch. Analysis of the specimen heating rates indicates that the temperature drop across the thickness of the 0.038 cm ceramic layer was about 1100 C after 0.5 sec in the flame. An as-sprayed ZrO2-8 percent Y203 specimens survived 3000 of the 0.5 sec cycles with failing. Surface spalling was observed when 2.5 sec cycles were employed but this was attributed to uneven heating caused by surface roughness. This surface spalling was prevented by smoothing the surface with silicon carbide paper or by laser glazing. A coated specimen with no surface modification but which was heat treated in argon also did not surface spall. Heat treatment in air led to spalling in as early as 2 cycle from heating stresses. Failures at edges were investigated and shown to be a minor source of concern. Ceramic coatings formed from ZrO2-12 percent Y2O3 or ZrO2-20 percent Y2O3 were shown to be unsuited for use under the high heat flux conditions of this study.

  18. Global Intercomparison of 12 Land Surface Heat Flux Estimates

    NASA Technical Reports Server (NTRS)

    Jimenez, C.; Prigent, C.; Mueller, B.; Seneviratne, S. I.; McCabe, M. F.; Wood, E. F.; Rossow, W. B.; Balsamo, G.; Betts, A. K.; Dirmeyer, P. A.; Fisher, J. B.; Jung, M.; Kanamitsu, M.; Reichle, R. H.; Reichstein, M.; Rodell, M.; Sheffield, J.; Tu, K.; Wang, K.

    2011-01-01

    A global intercomparison of 12 monthly mean land surface heat flux products for the period 1993-1995 is presented. The intercomparison includes some of the first emerging global satellite-based products (developed at Paris Observatory, Max Planck Institute for Biogeochemistry, University of California Berkeley, University of Maryland, and Princeton University) and examples of fluxes produced by reanalyses (ERA-Interim, MERRA, NCEP-DOE) and off-line land surface models (GSWP-2, GLDAS CLM/ Mosaic/Noah). An intercomparison of the global latent heat flux (Q(sub le)) annual means shows a spread of approx 20 W/sq m (all-product global average of approx 45 W/sq m). A similar spread is observed for the sensible (Q(sub h)) and net radiative (R(sub n)) fluxes. In general, the products correlate well with each other, helped by the large seasonal variability and common forcing data for some of the products. Expected spatial distributions related to the major climatic regimes and geographical features are reproduced by all products. Nevertheless, large Q(sub le)and Q(sub h) absolute differences are also observed. The fluxes were spatially averaged for 10 vegetation classes. The larger Q(sub le) differences were observed for the rain forest but, when normalized by mean fluxes, the differences were comparable to other classes. In general, the correlations between Q(sub le) and R(sub n) were higher for the satellite-based products compared with the reanalyses and off-line models. The fluxes were also averaged for 10 selected basins. The seasonality was generally well captured by all products, but large differences in the flux partitioning were observed for some products and basins.

  19. High-heat-flux testing of helium-cooled heat exchangers for fusion applications

    SciTech Connect

    Youchison, D.L.; Izenson, M.G.; Baxi, C.B.; Rosenfeld, J.H.

    1996-07-01

    High-heat-flux experiments on three types of helium-cooled divertor mock-ups were performed on the 30-kW electron beam test system and its associated helium flow loop at Sandia National Laboratories. A dispersion-strengthened copper alloy (DSCu) was used in the manufacture of all the mock-ups. The first heat exchanger provides for enhanced heat transfer at relatively low flow rates and much reduced pumping requirements. The Creare sample was tested to a maximum absorbed heat flux of 5.8 MW/m{sup 2}. The second used low pressure drops and high mass flow rates to achieve good heat removal. The GA specimen was tested to a maximum absorbed heat flux of 9 MW/m{sup 2} while maintaining a surface temperature below 400{degree}C. A second experiment resulted in a maximum absorbed heat flux of 34 MW/m{sup 2} and surface temperatures near 533{degree}C. The third specimen was a DSCu, axial flow, helium-cooled divertor mock-up filled with a porous metal wick which effectively increases the available heat transfer area. Low mass flow and high pressure drop operation at 4.0 MPa were characteristic of this divertor module. It survived a maximum absorbed heat flux of 16 MW/m{sup 2} and reached a surface temperature of 740{degree}C. Thermacore also manufactured a follow-on, dual channel porous metal-type heat exchanger, which survived a maximum absorbed heat flux of 14 MW/m{sup 2} and reached a maximum surface temperature of 690{degree}C. 11refs., 20 figs., 3 tabs.

  20. Natural convection flow in porous enclosure with localized heating from below with heat flux

    NASA Astrophysics Data System (ADS)

    Siddiki, Md. Noor-A.-Alam; Molla, Md. Mamun; Saha, Suvash C.

    2016-07-01

    Unsteady natural convection flow in a two dimensional fluid saturated porous enclosure with localized heating from below with heat flux, symmetrical cooling from the sides and the insulated top wall has been investigated numerically. The governing equations are the Darcy's law for the porous media and the energy equation for the temperature field has been considered. The non-dimensional Darcy's law in terms of the stream function is solved by finite difference method using the successive over-relaxation (SOR) scheme and the energy equation is solved by Alternative Direction Alternative (ADI) scheme. The uniform heat flux source is located centrally at the bottom wall. The numerical results are presented in terms of the streamlines and isotherms, as well as the local and average rate of heat transfer for the wide range of the Darcy's Rayleigh number and the length of the heat flux source at the bottom wall.

  1. Constraints on hydrothermal heat flux through the oceanic lithosphere from global heat flow

    NASA Technical Reports Server (NTRS)

    Stein, Carol A.; Stein, Seth

    1994-01-01

    A significant discrepancy exists between the heat flow measured at the seafloor and the higher values predicted by thermal models of the cooling lithosphere. This discrepancy is generally interpreted as indicating that the upper oceanic crust is cooled significantly by hydrothermal circulation. The magnitude of this heat flow discrepancy is the primary datum used to estimate the volume of hydrothermal flow, and the variation in the discrepancy with lithospheric age is the primary constraint on how the hydrothermal flux is divided between near-ridge and off-ridge environments. The resulting estimates are important for investigation of both the thermal structure of the lithosphere and the chemistry of the oceans. We reevaluate the magnitude and age variation of the discrepancy using a global heat flow data set substantially larger than in earlier studies, and the GDHI (Global Depth and Heat Flow) model that better predicts the heat flow. We estimate that of the predicted global oceanic heat flux of 32 x 10(exp 12) W, 34% (11 x 10(exp 12) W) occurs by hydrothermal flow. Approximately 30% of the hydrothermal heat flux occurs in crust younger than 1 Ma, so the majority of this flux is off-ridge. These hydrothermal heat flux estimates are upper bounds, because heat flow measurements require sediment at the site and so are made preferentially at topographic lows, where heat flow may be depressed. Because the water temperature for the near-ridge flow exceeds that for the off-ridge flow, the near-ridge water flow will be even a smaller fraction of the total water flow. As a result, in estimating fluxes from geochemical data, use of the high water temperatures appropriate for the ridge axis may significantly overestimate the heat flux for an assumed water flux or underestimate the water flux for an assumed heat flux. Our data also permit improved estimates of the 'sealing' age, defined as the age where the observed heat flow approximately equals that predicted, suggesting

  2. Spectral estimates of net radiation and soil heat flux

    USGS Publications Warehouse

    Daughtry, C.S.T.; Kustas, W.P.; Moran, M.S.; Pinter, P. J., Jr.; Jackson, R. D.; Brown, P.W.; Nichols, W.D.; Gay, L.W.

    1990-01-01

    Conventional methods of measuring surface energy balance are point measurements and represent only a small area. Remote sensing offers a potential means of measuring outgoing fluxes over large areas at the spatial resolution of the sensor. The objective of this study was to estimate net radiation (Rn) and soil heat flux (G) using remotely sensed multispectral data acquired from an aircraft over large agricultural fields. Ground-based instruments measured Rn and G at nine locations along the flight lines. Incoming fluxes were also measured by ground-based instruments. Outgoing fluxes were estimated using remotely sensed data. Remote Rn, estimated as the algebraic sum of incoming and outgoing fluxes, slightly underestimated Rn measured by the ground-based net radiometers. The mean absolute errors for remote Rn minus measured Rn were less than 7%. Remote G, estimated as a function of a spectral vegetation index and remote Rn, slightly overestimated measured G; however, the mean absolute error for remote G was 13%. Some of the differences between measured and remote values of Rn and G are associated with differences in instrument designs and measurement techniques. The root mean square error for available energy (Rn - G) was 12%. Thus, methods using both ground-based and remotely sensed data can provide reliable estimates of the available energy which can be partitioned into sensible and latent heat under nonadvective conditions. ?? 1990.

  3. Laminar flow of constant-flux released gravity currents: Friction factor-Reynolds number relationship

    NASA Astrophysics Data System (ADS)

    Testik, Firat; Yilmaz, Nazli; Chowdhury, Mijanur

    2012-11-01

    This study aims to provide a relationship for the friction factor, Cf, in terms of the Reynolds number, Re, for two-dimensional constant-flux release gravity currents during viscous-buoyancy propagation phase. Motivation of this study was related to the pipeline disposal of high-concentration dredged fluid-mud. Such disposal operations form non-Newtonian gravity currents that propagate over the coastal seafloor. Our theoretical and experimental analysis resulted in Cf-Re relationships for both Newtonian (e.g. saline solution) and power-law (e.g. non-Newtonian fluid mud) fluids. A large number of experiments were conducted with different concentrations of both fluid mud mixtures (Kaolinite clay mixed with tap water) and saline solutions in a laboratory tank [dimensions: 4.3 m × 0.25 m × 0.5 m]. In the experiments, different depths of ambient fluid (tap water) were considered. To determine the experimental Cf values for the viscous-buoyancy propagation phase, theoretical analysis was conducted to relate Cf to the experimental measurables. Based upon experimental observations, Cf is shown to relate to Re of the gravity currents inversely for both Newtonian and power-law fluids. While Newtonian gravity currents revealed a single value of the constant of proportionality for the Cf-Re relationship, power-law gravity currents revealed multiple values of the constant of proportionality that depends on the fluid-mud concentration.

  4. Scaling Relationships for ELM Diverter Heat Flux on DIII D

    NASA Astrophysics Data System (ADS)

    Peters, E. A.; Makowski, M. A.; Leonard, A. W.

    2015-11-01

    Edge Localized Modes (ELMs) are periodic plasma instabilities that occur during H-mode operation in tokamaks. Left unmitigated, these instabilities result in concentrated particle and heat fluxes at the divertor and stand to cause serious damage to the plasma facing components of tokamaks. The purpose of this research is to find scaling relationships that predict divertor heat flux due to ELMs based on plasma parameters at the time of instability. This will be accomplished by correlating characteristic ELM parameters with corresponding plasma measurements and analyzing the data for trends. One early assessment is the effect of the heat transmission coefficient ? on the in/out asymmetry of the calculated ELM heat fluxes. Using IR camera data, further assessments in this study will continue to emphasize in/out asymmetry in ELMs, as this has important implications for ITER operation. Work supported in part by the US DOE, DE-AC52-07NA27344, DE-FC02-04ER54698, Office of Workforce Development for Teachers and Scientists (WDTS) under the Science Undergraduate Laboratory Internships Program (SULI).

  5. A high heat flux experiment for verification of thermostructural analysis

    NASA Technical Reports Server (NTRS)

    Gladden, Herbert J.; Melis, Matthew E.

    1988-01-01

    A major concern in advancing the state of the art technologies for hypersonic vehicles is the development of an aeropropulsion system capable of handling the high heat fluxes during flight. The leading edges of such systems must not only tolerate the maximum heating rates, but must also minimize distortions to the flow field due to excessive blunting and/or thermal warping of the compression surface to achieve the high inlet performance required. A combined analytical and experimental effort to study the aerothermodynamic loads on actively cooled structures for hypersonic applications was established. A hydrogen/oxygen rocket engine was modified to establish a high enthalpy high heat flux environment. The facility provides heat flux levels from about 200 up to 10000 Btu/sq ft/sec. Cross flow and parallel flow regeneratively cooled model can be tested and analyzed by using cooling fluids of water and hydrogen. Results are presented of the experiment and the characteristics of the Hot Gas Test Facility. The predicted temperature results of the cross flow model are compared with the experimental data on the first monolithic specimens and are found to be in good agreement. Thermal stress analysis results are also presented.

  6. Heat flux and quantum correlations in dissipative cascaded systems

    NASA Astrophysics Data System (ADS)

    Lorenzo, Salvatore; Farace, Alessandro; Ciccarello, Francesco; Palma, G. Massimo; Giovannetti, Vittorio

    2015-02-01

    We study the dynamics of heat flux in the thermalization process of a pair of identical quantum systems that interact dissipatively with a reservoir in a cascaded fashion. Despite that the open dynamics of the bipartite system S is globally Lindbladian, one of the subsystems "sees" the reservoir in a state modified by the interaction with the other subsystem and hence it undergoes a non-Markovian dynamics. As a consequence, the heat flow exhibits a nonexponential time behavior which can greatly deviate from the case where each party is independently coupled to the reservoir. We investigate both thermal and correlated initial states of S and show that the presence of correlations at the beginning can considerably affect the heat-flux rate. We carry out our study in two paradigmatic cases—a pair of harmonic oscillators with a reservoir of bosonic modes and two qubits with a reservoir of fermionic modes—and compare the corresponding behaviors. In the case of qubits and for initial thermal states, we find that the trace distance discord is at any time interpretable as the correlated contribution to the total heat flux.

  7. Heat flux in soil amended with biochar: modelling approach

    NASA Astrophysics Data System (ADS)

    Usowicz, Boguslaw; Lipiec, Jerzy; Lukowski, Mateusz; Marczewski, Wojciech; Usowicz, Jerzy

    2016-04-01

    Temperature of soil has important influences on many soil processes and plant growth. It depends on the energy balance on the active surface, where the process of energy exchange between the Earth's surface and the atmosphere occurs. Heat flux is one of the components of the energy balance and can be influenced by biochar application to the soil, along with inherent texture and variables: moisture, density, and temperature of soil, as well as external conditions like climate, topography and surface properties related to the land use and vegetation cover. In this work we present the statistical-physical modelling approach for predicting the thermal conductivity and soil heat flux dynamics, based on temperature and soil moisture measurements, obtained from bare and grass fields with different rates of biochar. Adding biochar caused significant reduction of the thermal conductivity, diffusivity and heat capacity of the soil in the dry state and their significant increase in the wet state. The soil heat fluxes in bare and grassed soil were similar or different, depending on weather conditions, insolation, plant growth stage and changed with the soil depth, moisture as well as the rate of biochar applied.

  8. A 2-D imaging heat-flux gauge

    SciTech Connect

    Noel, B.W.; Borella, H.M. ); Beshears, D.L.; Sartory, W.K.; Tobin, K.W.; Williams, R.K. ); Turley, W.D. . Santa Barbara Operations)

    1991-07-01

    This report describes a new leadless two-dimensional imaging optical heat-flux gauge. The gauge is made by depositing arrays of thermorgraphic-phosphor (TP) spots onto the faces of a polymethylpentene is insulator. In the first section of the report, we describe several gauge configurations and their prototype realizations. A satisfactory configuration is an array of right triangles on each face that overlay to form squares when the gauge is viewed normal to the surface. The next section of the report treats the thermal conductivity of TPs. We set up an experiment using a comparative longitudinal heat-flow apparatus to measure the previously unknown thermal conductivity of these materials. The thermal conductivity of one TP, Y{sub 2}O{sub 3}:Eu, is 0.0137 W/cm{center dot}K over the temperature range from about 300 to 360 K. The theories underlying the time response of TP gauges and the imaging characteristics are discussed in the next section. Then we discuss several laboratory experiments to (1) demonstrate that the TP heat-flux gauge can be used in imaging applications; (2) obtain a quantum yield that enumerates what typical optical output signal amplitudes can be obtained from TP heat-flux gauges; and (3) determine whether LANL-designed intensified video cameras have sufficient sensitivity to acquire images from the heat-flux gauges. We obtained positive results from all the measurements. Throughout the text, we note limitations, areas where improvements are needed, and where further research is necessary. 12 refs., 25 figs., 4 tabs.

  9. Heat flux sensors for burner liners and turbine blades and vanes

    NASA Technical Reports Server (NTRS)

    Alwang, W. G.

    1982-01-01

    The technology of heat flux measurement is addressed. The development of total heat flux sensors for burner liners and also the demonstration of total and radiant heat flux sensors in a combustor test is covered. A thorough review of potential approaches is conducted including both transient and steady state measurements. Measurement of total heat flux was emphasized, consequently configurations are sought which produce minimum disturbance to the heat flux which would be present without the sensor in place. Approaches to the turbine blade and vane heat flux sensor program are discussed.

  10. Controlling the shape of the ion energy distribution at constant ion flux and constant mean ion energy with tailored voltage waveforms

    NASA Astrophysics Data System (ADS)

    Bruneau, Bastien; Lafleur, Trevor; Booth, Jean-Paul; Johnson, Erik

    2016-04-01

    In this paper, we investigate the excitation of a capacitively coupled plasma using a non-sinusoidal voltage waveform whose amplitude- and slope-asymmetry varies continuously with a period which is a multiple of the fundamental RF period. We call this period the ‘beating’ period. Through particle-in-cell (PIC) simulations, we show that such waveforms cause oscillation of the self-bias at this beating frequency, corresponding to the charging and discharging of the external capacitor. The amplitude of this self-bias oscillation depends on the beating period, the value of the external capacitor, and the ion flux to the electrodes. This self-bias oscillation causes temporal modulation of the ion flux distribution function (IFDF), albeit at a constant ion flux and constant mean ion energy, and allows the energy width of the IFDF (averaged over the beating period) to be varied in a controlled fashion.

  11. Diamond Microchannel Heat Sink Designs For High Heat Flux Thermal Control

    NASA Astrophysics Data System (ADS)

    Corbin, Michael V.; DeBenedictis, Matthew M.; James, David B.; LeBlanc, Stephen P.; Paradis, Leo R.

    2002-08-01

    Directed energy weapons, wide band gap semiconductor based radars, and other powerful systems present significant thermal control challenges to component designers. heat Flux levels approaching 2000 W/cm(2) are encountered at the base of laser diodes, and levels as high as 500 WI /cm(2) are expected in laser slabs and power amplifier tube collectors. These impressive heat flux levels frequently combine with strict operating temperature requirements to further compound the thermal control problem. Many investigators have suggested the use of diamond heat spreaders to reduce flux levels at or near to its source, and some have suggested that diamond microchannel heat sinks ultimately may play a significant role in the solution of these problems. Design engineers at Raytheon Company have investigated the application of all-diamond microchannel heat sinks to representative high heat flux problems and have found the approach promising. Diamond microchannel fabrication feasibility has been demonstrated; integration into packaging systems and the accompanying material compatibility issues have been addressed; and thermal and hydrodynamic performance predictions have been made for selected, possible applications. An example of a practical, all diamond microchannel heat sink has been fabricated, and another is in process and will be performance tested. The heat sink assembly is made entirely of optical quality, CVD diamond and is of sufficient strength to withstand the thermal and pressure-induced mechanical loads associated with manufacture and use in tactical weapons environment. The work presented describes the development program's accomplishments to date, and highlights many of the areas for future study.

  12. A microscale thermophoretic turbine driven by external diffusive heat flux.

    PubMed

    Yang, Mingcheng; Liu, Rui; Ripoll, Marisol; Chen, Ke

    2014-11-21

    We propose a theoretical prototype of a micro-scale turbine externally driven by diffusive heat flux without the need for macroscopic particle flux, which is in sharp contrast to conventional turbines. The prototypes are described analytically and validated by computer simulations. Our results indicate that a micro-scale turbine composed of anisotropic blades can rotate unidirectionally in an external temperature gradient due to the anisotropic thermophoresis effect. The rotational direction and speed depend on the temperature gradient, the geometry and the thermophoretic properties of the turbine. The proposed thermophoretic turbines can be experimentally realized and implemented on micro-devices such as computer-chips to recover waste heat or to facilitate cooling. PMID:25268245

  13. Heat and Flux Configurations on Offshore Wind Farms

    NASA Astrophysics Data System (ADS)

    Kucuksahin, D.; Bot, E. T. G.

    2014-12-01

    This study aims to determine the best configurations of the Heat and Flux concept for more profitable and utilizable settings in a wind farm in terms of increase in the energy yield and reduction in loadings. The computations are performed with alteration of a single parameter at a time. The reference farm for this study is EWTW, the ECN test farm in Wieringermeer, as this farm was also the reference for the validation of both the Heat and Flux concept and the software tool FarmFlow. All the studies are performed with FarmFlow developed by ECN, which computes wake deficits and turbulence intensities, resulting in the energy yield of all turbines in the farm.

  14. Phase-controlled superconducting heat-flux quantum modulator

    NASA Astrophysics Data System (ADS)

    Giazotto, F.; Martínez-Pérez, M. J.

    2012-09-01

    We theoretically put forward the concept of a phase-controlled superconducting heat-flux quantum modulator. Its operation relies on phase-dependent heat current predicted to occur in temperature-biased Josephson tunnel junctions. The device behavior is investigated as a function of temperature bias across the junctions, bath temperature, and junctions asymmetry as well. In a realistic Al-based setup the structure could provide temperature modulation amplitudes up to ˜50 mK with flux-to-temperature transfer coefficients exceeding ˜125 mK/Φ0 below 1 K, and temperature modulation frequency of the order of a few MHz. The proposed structure appears as a promising building-block for the implementation of caloritronic devices operating at cryogenic temperatures.

  15. Method of fission heat flux determination from experimental data

    SciTech Connect

    Paxton, F.A.

    1999-09-28

    A method is provided for determining the fission heat flux of a prime specimen inserted into a specimen of a test reactor. A pair of thermocouple test specimens are positioned at the same level in the holder and a determination is made of various experimental data including the temperature of the thermocouple test specimens, the temperature of bulk water channels located in the test holder, the gamma scan count ratios for the thermocouple test specimens and the prime specimen, and the thicknesses of the outer clads, the fuel fillers, and the backclad of the thermocouple test specimen. Using this experimental data, the absolute value of the fission heat flux for the thermocouple test specimens and prime specimen can be calculated.

  16. Method of fission heat flux determination from experimental data

    DOEpatents

    Paxton, Frank A.

    1999-01-01

    A method is provided for determining the fission heat flux of a prime specimen inserted into a specimen of a test reactor. A pair of thermocouple test specimens are positioned at the same level in the holder and a determination is made of various experimental data including the temperature of the thermocouple test specimens, the temperature of bulk water channels located in the test holder, the gamma scan count ratios for the thermocouple test specimens and the prime specimen, and the thicknesses of the outer clads, the fuel fillers, and the backclad of the thermocouple test specimen. Using this experimental data, the absolute value of the fission heat flux for the thermocouple test specimens and prime specimen can be calculated.

  17. Geodesic acoustic mode in anisotropic plasma with heat flux

    SciTech Connect

    Ren, Haijun

    2015-10-15

    Geodesic acoustic mode (GAM) in an anisotropic tokamak plasma is investigated in fluid approximation. The collisionless anisotropic plasma is described within the 16-momentum magnetohydrodynamic (MHD) fluid closure model, which takes into account not only the pressure anisotropy but also the anisotropic heat flux. It is shown that the GAM frequency agrees better with the kinetic result than the standard Chew-Goldberger-Low (CGL) MHD model. When zeroing the anisotropy, the 16-momentum result is identical with the kinetic one to the order of 1/q{sup 2}, while the CGL result agrees with the kinetic result only on the leading order. The discrepancies between the results of the CGL fluid model and the kinetic theory are well removed by considering the heat flux effect in the fluid approximation.

  18. Development of advanced high-temperature heat flux sensors

    NASA Technical Reports Server (NTRS)

    Atkinson, W. H.; Strange, R. R.

    1982-01-01

    Various configurations of high temperature, heat flux sensors were studied to determine their suitability for use in experimental combustor liners of advanced aircraft gas turbine engines. It was determined that embedded thermocouple sensors, laminated sensors, and Gardon gauge sensors, were the most viable candidates. Sensors of all three types were fabricated, calibrated, and endurance tested. All three types of sensors met the fabricability survivability, and accuracy requirements established for their application.

  19. Heat flux induced dryout and rewet in thin films

    NASA Technical Reports Server (NTRS)

    Stroes, Gustave; Fricker, Darren; Issacci, Farrokh; Catton, Ivan

    1990-01-01

    Heat flux induced dryout of thin liquid films on an inclined copper plate was studied. Rewet of the dried out area is also considered. The four fluids used to form the thin films exhibited very different dryout and rewet characteristics. The contact angle and hysteresis effects were found to be important, but they must be considered in context with other parameters. No single variable was found to independently determine the pattern of dryout and rewet.

  20. Heat flux instrumentation for HYFLITE thermal protection system

    NASA Technical Reports Server (NTRS)

    Diller, T. E.

    1994-01-01

    Tasks performed in this project were defined in a September 9, 1994 meeting of representatives of Vatell, NASA Lewis and Virginia Tech. The overall objective agreed upon in the meeting was 'to demonstrate the viability of thin film techniques for heat flux and temperature sensing in HYSTEP thermal protection systems'. We decided to attempt a combination of NASA's and Vatell's best heat flux sensor technology in a sensor which would be tested in the Vortek facility at Lewis early in 1995. The NASA concept for thermocouple measurement of surface temperature was adopted, and Vatell methods for fabrication of sensors on small diameter substrates of aluminum nitride were used to produce a sensor. This sensor was then encapsulated in a NARloy-Z housing. Various improvements to the Vatell substrate design were explored without success. The basic NASA and Vatell sensor layouts were analyzed by finite element modeling, in an attempt to better understand the effects of material properties, dimensions and thermal differential element location on sensor symmetry, bandwidth and sensitivity. This analysis showed that, as long as the thermal resistivity of the thermal differential element material is much larger (10X) than that of the substrate material, the simplest arrangement of layer is best. During calibration of the sensor produced in this project, undesirable side-effects of combining the heat flux and temperature sensor return leads were observed. The sensor did not cleanly separate the heat flux and temperature signals, as sensors with four leads have consistently done before. Task 7 and 8 discussed in the meeting will be performed with a continuation of funding in 1995. The following is a discussion of each of the tasks performed as outlined in the statement of work dated september 26, 1994. Task 1A was added to cover further investigation into the NASA sensor concept.

  1. Solid propellant combustion response to oscillatory radiant heat flux

    NASA Technical Reports Server (NTRS)

    Strand, L. D.; Weil, M. T.; Cohen, N. S.

    1989-01-01

    A progress report is given on a research project to use the microwave Doppler velocimeter technique to measure the combustion response to an oscillating thermal radiation source (CO2 laser). The test technique and supporting analyses are described, and the results are presented for an initial test series on the nonmetallized, composite propellant, Naval Weapons Center formulation A-13. It is concluded that in-depth transmission of radiant heat flux is not a factor at the CO2 laser wave length.

  2. Measuring Response Of Propellant To Oscillatory Heat Flux

    NASA Technical Reports Server (NTRS)

    Strand, Leon D.; Schwartz, Ken; Burns, Shawn P.

    1990-01-01

    Apparatus for research in combustion of solid propellants measures oscillatory response of rate of burning to oscillating thermal radiation from modulated CO2 laser. Determines response to rate of burning to equivalent oscillation in pressure. Rod of propellant mounted in burner assembly including waveguide at one end and infrared window at other end. Microwave Doppler velocimeter measures motion of combustion front. Microwave, laser-current, and heat-flux signals processed into and recorded in forms useful in determining desired response of propellent.

  3. Analytical and numerical study on cooling flow field designs performance of PEM fuel cell with variable heat flux

    NASA Astrophysics Data System (ADS)

    Afshari, Ebrahim; Ziaei-Rad, Masoud; Jahantigh, Nabi

    2016-06-01

    In PEM fuel cells, during electrochemical generation of electricity more than half of the chemical energy of hydrogen is converted to heat. This heat of reactions, if not exhausted properly, would impair the performance and durability of the cell. In general, large scale PEM fuel cells are cooled by liquid water that circulates through coolant flow channels formed in bipolar plates or in dedicated cooling plates. In this paper, a numerical method has been presented to study cooling and temperature distribution of a polymer membrane fuel cell stack. The heat flux on the cooling plate is variable. A three-dimensional model of fluid flow and heat transfer in cooling plates with 15 cm × 15 cm square area is considered and the performances of four different coolant flow field designs, parallel field and serpentine fields are compared in terms of maximum surface temperature, temperature uniformity and pressure drop characteristics. By comparing the results in two cases, the constant and variable heat flux, it is observed that applying constant heat flux instead of variable heat flux which is actually occurring in the fuel cells is not an accurate assumption. The numerical results indicated that the straight flow field model has temperature uniformity index and almost the same temperature difference with the serpentine models, while its pressure drop is less than all of the serpentine models. Another important advantage of this model is the much easier design and building than the spiral models.

  4. Local Heat Flux Measurements with Single Element Coaxial Injectors

    NASA Technical Reports Server (NTRS)

    Jones, Gregg; Protz, Christopher; Bullard, Brad; Hulka, James

    2006-01-01

    To support the mission for the NASA Vision for Space Exploration, the NASA Marshall Space Flight Center conducted a program in 2005 to improve the capability to predict local thermal compatibility and heat transfer in liquid propellant rocket engine combustion devices. The ultimate objective was to predict and hence reduce the local peak heat flux due to injector design, resulting in a significant improvement in overall engine reliability and durability. Such analyses are applicable to combustion devices in booster, upper stage, and in-space engines, as well as for small thrusters with few elements in the injector. In this program, single element and three-element injectors were hot-fire tested with liquid oxygen and ambient temperature gaseous hydrogen propellants at The Pennsylvania State University Cryogenic Combustor Laboratory from May to August 2005. Local heat fluxes were measured in a 1-inch internal diameter heat sink combustion chamber using Medtherm coaxial thermocouples and Gardon heat flux gauges. Injectors were tested with shear coaxial and swirl coaxial elements, including recessed, flush and scarfed oxidizer post configurations, and concentric and non-concentric fuel annuli. This paper includes general descriptions of the experimental hardware, instrumentation, and results of the hot-fire testing for three of the single element injectors - recessed-post shear coaxial with concentric fuel, flush-post swirl coaxial with concentric fuel, and scarfed-post swirl coaxial with concentric fuel. Detailed geometry and test results will be published elsewhere to provide well-defined data sets for injector development and model validatation.

  5. Observational & modeling analysis of surface heat and moisture fluxes

    SciTech Connect

    Smith, E.

    1995-09-01

    An observational and modeling study was conducted to help assess how well current GCMs are predicting surface fluxes under the highly variable cloudiness and flow conditions characteristic of the real atmosphere. The observational data base for the study was obtained from a network of surface flux stations operated during the First ISLSCP Field Experiment (FIFE). The study included examination of a surface-driven secondary circulation in the boundary layer resulting from a persistent cross-site gradient in soil moisture, to demonstrate the sensitivity of boundary layer dynamics to heterogeneous surface fluxes, The performance of a biosphere model in reproducing the measured surface fluxes was evaluated with and without the use of satellite retrieval of three key canopy variables with RMS uncertainties commensurate with those of the measurements themselves. Four sensible heat flux closure schemes currently being used in GCMs were then evaluated against the FIFE observations. Results indicate that the methods by which closure models are calibrated lead to exceedingly large errors when the schemes are applied to variable boundary layer conditions. 4 refs., 2 figs.

  6. Homogeneous Thermal Cloak with Constant Conductivity and Tunable Heat Localization

    PubMed Central

    Han, Tiancheng; Yuan, Tao; Li, Baowen; Qiu, Cheng-Wei

    2013-01-01

    Invisible cloak has long captivated the popular conjecture and attracted intensive research in various communities of wave dynamics, e.g., optics, electromagnetics, acoustics, etc. However, their inhomogeneous and extreme parameters imposed by transformation-optic method will usually require challenging realization with metamaterials, resulting in narrow bandwidth, loss, polarization-dependence, etc. In this paper, we demonstrate that thermodynamic cloak can be achieved with homogeneous and finite conductivity only employing naturally available materials. It is demonstrated that the thermal localization inside the coating layer can be tuned and controlled robustly by anisotropy, which enables an incomplete cloak to function perfectly. Practical realization of such homogeneous thermal cloak has been suggested by using two naturally occurring conductive materials, which provides an unprecedentedly plausible way to flexibly realize thermal cloak and manipulate heat flow with phonons. PMID:23549139

  7. Homogeneous thermal cloak with constant conductivity and tunable heat localization.

    PubMed

    Han, Tiancheng; Yuan, Tao; Li, Baowen; Qiu, Cheng-Wei

    2013-01-01

    Invisible cloak has long captivated the popular conjecture and attracted intensive research in various communities of wave dynamics, e.g., optics, electromagnetics, acoustics, etc. However, their inhomogeneous and extreme parameters imposed by transformation-optic method will usually require challenging realization with metamaterials, resulting in narrow bandwidth, loss, polarization-dependence, etc. In this paper, we demonstrate that thermodynamic cloak can be achieved with homogeneous and finite conductivity only employing naturally available materials. It is demonstrated that the thermal localization inside the coating layer can be tuned and controlled robustly by anisotropy, which enables an incomplete cloak to function perfectly. Practical realization of such homogeneous thermal cloak has been suggested by using two naturally occurring conductive materials, which provides an unprecedentedly plausible way to flexibly realize thermal cloak and manipulate heat flow with phonons. PMID:23549139

  8. Estimating sensible heat flux in agricultural screenhouses by the flux-variance and half-order time derivative methods

    NASA Astrophysics Data System (ADS)

    Achiman, Ori; Mekhmandarov, Yonatan; Pirkner, Moran; Tanny, Josef

    2016-04-01

    Previous studies have established that the eddy covariance (EC) technique is reliable for whole canopy flux measurements in agricultural crops covered by porous screens, i.e., screenhouses. Nevertheless, the eddy covariance technique remains difficult to apply in the farm due to costs, operational complexity, and post-processing of data - thereby inviting alternative techniques to be developed. The subject of this research was estimating the sensible heat flux by two turbulent transport techniques, namely, Flux-Variance (FV) and Half-order Time Derivative (HTD) whose instrumentation needs and operational demands are not as elaborate as the EC. The FV is based on the standard deviation of high frequency temperature measurements and a similarity constant CT. The HTD method requires mean air temperature and air velocity data. Measurements were carried out in two types of screenhouses: (i) a banana plantation in a light shading (8%) screenhouse; (ii) a pepper crop in a dense insect-proof (50-mesh) screenhouse. In each screenhouse an EC system was deployed for reference and high frequency air temperature measurements were conducted using miniature thermocouples installed at several levels to identify the optimal measurement height. Quality control analysis showed that turbulence development and flow stationarity conditions in the two structures were suitable for flux measurements by the EC technique. Energy balance closure slopes in the two screenhouses were larger than 0.71, in agreement with results for open fields. Regressions between sensible heat flux measured by EC and estimated by FV resulted with CT values that were usually larger than 1, the typical value for open field. In both shading and insect-proof screenhouses the CT value generally increased with height. The optimal measurement height, defined as the height with maximum R2 of the regression between EC and FV sensible heat fluxes, was just above the screen. CT value at optimal height was 2.64 and 1.52 for

  9. Critical heat flux maxima during boiling crisis on textured surfaces.

    PubMed

    Dhillon, Navdeep Singh; Buongiorno, Jacopo; Varanasi, Kripa K

    2015-01-01

    Enhancing the critical heat flux (CHF) of industrial boilers by surface texturing can lead to substantial energy savings and global reduction in greenhouse gas emissions, but fundamentally this phenomenon is not well understood. Prior studies on boiling crisis indicate that CHF monotonically increases with increasing texture density. Here we report on the existence of maxima in CHF enhancement at intermediate texture density using measurements on parametrically designed plain and nano-textured micropillar surfaces. Using high-speed optical and infrared imaging, we study the dynamics of dry spot heating and rewetting phenomena and reveal that the dry spot heating timescale is of the same order as that of the gravity and liquid imbibition-induced dry spot rewetting timescale. Based on these insights, we develop a coupled thermal-hydraulic model that relates CHF enhancement to rewetting of a hot dry spot on the boiling surface, thereby revealing the mechanism governing the hitherto unknown CHF enhancement maxima. PMID:26346098

  10. Critical heat flux maxima during boiling crisis on textured surfaces

    PubMed Central

    Dhillon, Navdeep Singh; Buongiorno, Jacopo; Varanasi, Kripa K.

    2015-01-01

    Enhancing the critical heat flux (CHF) of industrial boilers by surface texturing can lead to substantial energy savings and global reduction in greenhouse gas emissions, but fundamentally this phenomenon is not well understood. Prior studies on boiling crisis indicate that CHF monotonically increases with increasing texture density. Here we report on the existence of maxima in CHF enhancement at intermediate texture density using measurements on parametrically designed plain and nano-textured micropillar surfaces. Using high-speed optical and infrared imaging, we study the dynamics of dry spot heating and rewetting phenomena and reveal that the dry spot heating timescale is of the same order as that of the gravity and liquid imbibition-induced dry spot rewetting timescale. Based on these insights, we develop a coupled thermal-hydraulic model that relates CHF enhancement to rewetting of a hot dry spot on the boiling surface, thereby revealing the mechanism governing the hitherto unknown CHF enhancement maxima. PMID:26346098

  11. Critical heat flux maxima during boiling crisis on textured surfaces

    NASA Astrophysics Data System (ADS)

    Dhillon, Navdeep Singh; Buongiorno, Jacopo; Varanasi, Kripa K.

    2015-09-01

    Enhancing the critical heat flux (CHF) of industrial boilers by surface texturing can lead to substantial energy savings and global reduction in greenhouse gas emissions, but fundamentally this phenomenon is not well understood. Prior studies on boiling crisis indicate that CHF monotonically increases with increasing texture density. Here we report on the existence of maxima in CHF enhancement at intermediate texture density using measurements on parametrically designed plain and nano-textured micropillar surfaces. Using high-speed optical and infrared imaging, we study the dynamics of dry spot heating and rewetting phenomena and reveal that the dry spot heating timescale is of the same order as that of the gravity and liquid imbibition-induced dry spot rewetting timescale. Based on these insights, we develop a coupled thermal-hydraulic model that relates CHF enhancement to rewetting of a hot dry spot on the boiling surface, thereby revealing the mechanism governing the hitherto unknown CHF enhancement maxima.

  12. Solar Flux Deposition And Heating Rates In Jupiter's Atmosphere

    NASA Astrophysics Data System (ADS)

    Perez-Hoyos, Santiago; Sánchez-Lavega, A.

    2009-09-01

    We discuss here the solar downward net flux in the 0.25 - 2.5 µm range in the atmosphere of Jupiter and the associated heating rates under a number of vertical cloud structure scenarios focusing in the effect of clouds and hazes. Our numerical model is based in the doubling-adding technique to solve the radiative transfer equation and it includes gas absorption by CH4, NH3 and H2, in addition to Rayleigh scattering by a mixture of H2 plus He. Four paradigmatic Jovian regions have been considered (hot-spots, belts, zones and Polar Regions). The hot-spots are the most transparent regions with downward net fluxes of 2.5±0.5 Wm-2 at the 6 bar level. The maximum solar heating is 0.04±0.01 K/day and occurs above 1 bar. Belts and zones characterization result in a maximum net downward flux of 0.5 Wm-2 at 2 bar and 0.015 Wm-2 at 6 bar. Heating is concentrated in the stratospheric and tropospheric hazes. Finally, Polar Regions are also explored and the results point to a considerable stratospheric heating of 0.04±0.02 K/day. In all, these calculations suggest that the role of the direct solar forcing in the Jovian atmospheric dynamics is limited to the upper 1 - 2 bar of the atmosphere except in the hot-spot areas. Acknowledgments: This work has been funded by Spanish MEC AYA2006-07735 with FEDER support and Grupos Gobierno Vasco IT-464-07.

  13. Boundary layer structure over areas of heterogeneous heat fluxes

    SciTech Connect

    Doran, J.C. ); Barnes, F.J. ); Coulter, R.L. ); Crawford, T.L. . Air Resources Lab. Atmospheric Turbulence and Diffusion Div.)

    1993-01-01

    In general circulation models (GCMs), some properties of a grid element are necessarily considered homogeneous. That is, for each grid volume there is associated a particular combination of boundary layer depth, vertical profiles of wind and temperature, surface fluxes of sensible and latent heat, etc. In reality, all of these quantities may exhibit significant spatial variations the grid area, and the larger the area the greater the likely variations. In balancing the benefits of higher resolution against increased computational time and expense, it is useful to consider what the consequences of such subgrid-scale variability may be. Moreover, in interpreting the results of a simulation, one must be able to define an appropriate average value over a grid. There are two aspects of this latter problem: (1) in observations, how does one take a set of discrete or volume-averaged measurements and relate these to properties of the entire domain, and (2) in computations, how can subgrid-scale features be accounted for in the model parameterizations To address these and related issues, two field campaigns were carried out near Boardman, Oregon, in June 1991 and 1992. These campaigns were designed to measure the surface fluxes of latent and sensible heat over adjacent areas with strongly contrasting surface types and to measure the response of the boundary layer to those fluxes. This paper discusses some initial findings from those campaigns.

  14. Boundary layer structure over areas of heterogeneous heat fluxes

    SciTech Connect

    Doran, J.C.; Barnes, F.J.; Coulter, R.L.; Crawford, T.L.

    1993-04-01

    In general circulation models (GCMs), some properties of a grid element are necessarily considered homogeneous. That is, for each grid volume there is associated a particular combination of boundary layer depth, vertical profiles of wind and temperature, surface fluxes of sensible and latent heat, etc. In reality, all of these quantities may exhibit significant spatial variations within the grid area, and the larger the area the greater the likely variations. In balancing the benefits of higher resolution against increased computational time and expense, it is useful to consider what the consequences of such subgrid-scale variability may be. Moveover, in interpreting the results of a simulation, one must be able to define an appropriate average value over a grid. There are two aspects of this latter problem: (1) in observations, how does one take a set of discrete or volume-averaged measurements and relate these to properties of the entire domain, and (2) in computations, how can subgrid-scale features be accounted for in the model parameterizations? To address these and related issues, two field campaigns were carried out near Boardman, Oregon, in June 1991 and 1992. These campaigns were designed to measure the surface fluxes of latent and sensible heat over adjacent areas with strongly contrasting surface types and to measure the response of the boundary layer to those fluxes. This paper discuses some initial findings from those campaigns.

  15. Boundary layer structure over areas of heterogeneous heat fluxes

    SciTech Connect

    Doran, J.C.; Barnes, F.J.; Coulter, R.L.; Crawford, T.L.

    1993-01-01

    In general circulation models (GCMs), some properties of a grid element are necessarily considered homogeneous. That is, for each grid volume there is associated a particular combination of boundary layer depth, vertical profiles of wind and temperature, surface fluxes of sensible and latent heat, etc. In reality, all of these quantities may exhibit significant spatial variations the grid area, and the larger the area the greater the likely variations. In balancing the benefits of higher resolution against increased computational time and expense, it is useful to consider what the consequences of such subgrid-scale variability may be. Moreover, in interpreting the results of a simulation, one must be able to define an appropriate average value over a grid. There are two aspects of this latter problem: (1) in observations, how does one take a set of discrete or volume-averaged measurements and relate these to properties of the entire domain, and (2) in computations, how can subgrid-scale features be accounted for in the model parameterizations? To address these and related issues, two field campaigns were carried out near Boardman, Oregon, in June 1991 and 1992. These campaigns were designed to measure the surface fluxes of latent and sensible heat over adjacent areas with strongly contrasting surface types and to measure the response of the boundary layer to those fluxes. This paper discusses some initial findings from those campaigns.

  16. Boundary layer structure over areas of heterogeneous heat fluxes

    SciTech Connect

    Doran, J.C. ); Barnes, F.J. ); Coulter, R.L. ); Crawford, T.L. . Air Resources Lab. Atmospheric Turbulence and Diffusion Div.)

    1993-01-01

    In general circulation models (GCMs), some properties of a grid element are necessarily considered homogeneous. That is, for each grid volume there is associated a particular combination of boundary layer depth, vertical profiles of wind and temperature, surface fluxes of sensible and latent heat, etc. In reality, all of these quantities may exhibit significant spatial variations within the grid area, and the larger the area the greater the likely variations. In balancing the benefits of higher resolution against increased computational time and expense, it is useful to consider what the consequences of such subgrid-scale variability may be. Moveover, in interpreting the results of a simulation, one must be able to define an appropriate average value over a grid. There are two aspects of this latter problem: (1) in observations, how does one take a set of discrete or volume-averaged measurements and relate these to properties of the entire domain, and (2) in computations, how can subgrid-scale features be accounted for in the model parameterizations To address these and related issues, two field campaigns were carried out near Boardman, Oregon, in June 1991 and 1992. These campaigns were designed to measure the surface fluxes of latent and sensible heat over adjacent areas with strongly contrasting surface types and to measure the response of the boundary layer to those fluxes. This paper discuses some initial findings from those campaigns.

  17. Effect of Particle Size Distribution on Wall Heat Flux in Pulverized-Coal Furnaces and Boilers

    NASA Astrophysics Data System (ADS)

    Lu, Jun

    A mathematical model of combustion and heat transfer within a cylindrical enclosure firing pulverized coal has been developed and tested against two sets of measured data (one is 1993 WSU/DECO Pilot test data, the other one is the International Flame Research Foundation 1964 Test (Beer, 1964)) and one independent code FURN3D from the Argonne National Laboratory (Ahluwalia and IM, 1992). The model called PILC assumes that the system is a sequence of many well-stirred reactors. A char burnout model combining diffusion to the particle surface, pore diffusion, and surface reaction is employed for predicting the char reaction, heat release, and evolution of char. The ash formation model included relates the ash particle size distribution to the particle size distribution of pulverized coal. The optical constants of char and ash particles are calculated from dispersion relations derived from reflectivity, transmissivity and extinction measurements. The Mie theory is applied to determine the extinction and scattering coefficients. The radiation heat transfer is modeled using the virtual zone method, which leads to a set of simultaneous nonlinear algebraic equations for the temperature field within the furnace and on its walls. This enables the heat fluxes to be evaluated. In comparisons with the experimental data and one independent code, the model is successful in predicting gas temperature, wall temperature, and wall radiative flux. When the coal with greater fineness is burnt, the particle size of pulverized coal has a consistent influence on combustion performance: the temperature peak was higher and nearer to burner, the radiation flux to combustor wall increased, and also the absorption and scattering coefficients of the combustion products increased. The effect of coal particle size distribution on absorption and scattering coefficients and wall heat flux is significant. But there is only a small effect on gas temperature and fuel fraction burned; it is speculated

  18. Enthalpy Distributions of Arc Jet Flow Based on Measured Laser Induced Fluorescence, Heat Flux and Stagnation Pressure Distributions

    NASA Technical Reports Server (NTRS)

    Suess, Leonard E.; Milhoan, James D.; Oelke, Lance; Godfrey, Dennis; Larin, Maksim Y.; Scott, Carl D.; Grinstead, Jay H.; DelPapa, Steven

    2011-01-01

    The centerline total enthalpy of arc jet flow is determined using laser induced fluorescence of oxygen and nitrogen atoms. Each component of the energy, kinetic, thermal, and chemical can be determined from LIF measurements. Additionally, enthalpy distributions are inferred from heat flux and pressure probe distribution measurements using an engineering formula. Average enthalpies are determined by integration over the radius of the jet flow, assuming constant mass flux and a mass flux distribution estimated from computational fluid dynamics calculations at similar arc jet conditions. The trends show favorable agreement, but there is an uncertainty that relates to the multiple individual measurements and assumptions inherent in LIF measurements.

  19. On Cattaneo-Christov heat flux in MHD flow of Oldroyd-B fluid with homogeneous-heterogeneous reactions

    NASA Astrophysics Data System (ADS)

    Hayat, Tasawar; Imtiaz, Maria; Alsaedi, Ahmed; Almezal, Saleh

    2016-03-01

    This paper investigates the steady two-dimensional magnetohydrodynamic (MHD) flow of an Oldroyd-B fluid over a stretching surface with homogeneous-heterogeneous reactions. Characteristics of relaxation time for heat flux are captured by employing new heat flux model proposed by Christov. A system of ordinary differential equations is obtained by using suitable transformations. Convergent series solutions are derived. Impacts of various pertinent parameters on the velocity, temperature and concentration are discussed. Analysis of the obtained results shows that fluid relaxation and retardation time constants have reverse behavior on the velocity and concentration fields. Also temperature distribution decreases for larger values of thermal relaxation time.

  20. New technique of the local heat flux measurement in combustion chambers of steam boilers

    NASA Astrophysics Data System (ADS)

    Taler, Jan; Taler, Dawid; Sobota, Tomasz; Dzierwa, Piotr

    2011-12-01

    A new method for measurement of local heat flux to water-walls of steam boilers was developed. A flux meter tube was made from an eccentric tube of short length to which two longitudinal fins were attached. These two fins prevent the boiler setting from heating by a thermal radiation from the combustion chamber. The fins are not welded to the adjacent water-wall tubes, so that the temperature distribution in the heat flux meter is not influenced by neighbouring water-wall tubes. The thickness of the heat flux tube wall is larger on the fireside to obtain a greater distance between the thermocouples located inside the wall which increases the accuracy of heat flux determination. Based on the temperature measurements at selected points inside the heat flux meter, the heat flux absorbed by the water-wall, heat transfer coefficient on the inner tube surface and temperature of the water-steam mixture was determined.

  1. Experimental Performance of a Micromachined Heat Flux Sensor

    NASA Technical Reports Server (NTRS)

    Stefanescu, S.; DeAnna, R. G.; Mehregany, M.

    1998-01-01

    Steady-state and frequency response calibration of a microfabricated heat-flux sensor have been completed. This sensor is batch fabricated using standard, micromachining techniques, allowing both miniaturization and the ability to create arrays of sensors and their corresponding interconnects. Both high-frequency and spatial response is desired, so the sensors are both thin and of small cross-sectional area. Thin-film, temperature-sensitive resistors are used as the active gauge elements. Two sensor configurations are investigated: (1) a Wheatstone-bridge using four resistors; and (2) a simple, two-resistor design. In each design, one resistor (or pair) is covered by a thin layer (5000 A) thermal barrier; the other resistor (or pair) is covered by a thick (5 microns) thermal barrier. The active area of a single resistor is 360 microns by 360 microns; the total gauge area is 1.5 mm square. The resistors are made of 2000 A-thick metal; and the entire gauge is fabricated on a 25 microns-thick flexible, polyimide substrate. Heat flux through the surface changes the temperature of the resistors and produces a corresponding change in resistance. Sensors were calibrated using two radiation heat sources: (1) a furnace for steady-state, and (2) a light and chopper for frequency response.

  2. A Novel Coil Distribution for Transverse Flux Induction Heating

    NASA Astrophysics Data System (ADS)

    Sun, Yu; Wang, Youhua; Yang, Xiaoguang; Pang, Lingling

    For solving the problem of inhomogeneous temperature distribution on the surface of the work piece at the transverse flux induction heating (TFIH) device outlet, a novel coil distribution of the inductor is presented in this paper. The relationship between coil geometry and temperature distribution was analyzed firstly. According to the theoretical analysis results, the novel coil geometry was designed in order to get a uniform temperature distribution. Then the non-linear coupled electromagnetic- thermal problem in TFIH was simulated. The distributions of the magnetic flux density and eddy current of the novel and the traditional rectangular coil geometry were presented. Finally, a prototype was developed according to the numerical results. The experimental results of the temperature distribution agreed with the numerical analysis.

  3. Heat flux distribution and rectification of complex networks

    NASA Astrophysics Data System (ADS)

    Liu, Zonghua; Wu, Xiang; Yang, Huijie; Gupte, Neelima; Li, Baowen

    2010-02-01

    It was recently found that the heterogeneity of complex networks can enhance transport properties such as epidemic spreading, electric energy transfer, etc. A trivial deduction would be that the presence of hubs in complex networks can also accelerate the heat transfer although no concrete research has been done so far. In the present study, we have studied this problem and have found a surprising answer: the heterogeneity does not favor but prevents the heat transfer. We present a model to study heat conduction in complex networks and find that the network topology greatly affects the heat flux. The heat conduction decreases with the increase of heterogeneity of the network caused by both degree distribution and the clustering coefficient. Its underlying mechanism can be understood by using random matrix theory. Moreover, we also study the rectification effect and find that it is related to the degree difference of the network, and the distance between the source and the sink. These findings may have potential applications in real networks, such as nanotube/nanowire networks and biological networks.

  4. Modeling of a heat sink and high heat flux vapor chamber

    NASA Astrophysics Data System (ADS)

    Vadnjal, Aleksander

    An increasing demand for a higher heat flux removal capability within a smaller volume for high power electronics led us to focus on a novel cold plate design. A high heat flux evaporator and micro channel heat sink are the main components of a cold plate which is capable of removing couple of 100 W/cm2. In order to describe performance of such porous media device a proper modeling has to be addressed. A universal approach based on the volume average theory (VAT) to transport phenomena in porous media is shown. An approach on how to treat the closure for momentum and energy equations is addressed and a proper definition for friction factors and heat transfer coefficients are discussed. A numerical scheme using a solution to Navier-Stokes equations over a representative elementary volume (REV) and the use of VAT is developed to show how to compute friction factors and heat transfer coefficients. The calculation show good agreement with the experimental data. For the heat transfer coefficient closure, a proper average for both fluid and solid is investigated. Different types of heating are also investigated in order to determine how it influences the heat transfer coefficient. A higher heat fluxes in small area condensers led us to the micro channels in contrast to the classical heat fin design. A micro channel can have various shapes to enhance heat transfer, but the shape that will lead to a higher heat flux removal with a moderate pumping power needs to be determined. The standard micro-channel terminology is usually used for channels with a simple cross section, e.g. square, round, triangle, etc., but here the micro channel cross section is going to be expanded to describe more complicated and interconnected micro scale channel cross sections. The micro channel geometries explored are pin fins (in-line and staggered) and sintered porous micro channels. The problem solved here is a conjugate problem involving two heat transfer mechanisms; (1) porous media

  5. Coronal Heating and the Magnetic Flux Content of the Network

    NASA Technical Reports Server (NTRS)

    Falconer, D. A.; Moore, R. L.; Porter, J. G.; Hathaway, D. H.; Rose, M. Franklin (Technical Monitor)

    2001-01-01

    Previously, from analysis of SOHO coronal images in combination with Kitt Peak magnetograms, we found that the quiet corona is the sum of two components: the large-scale corona and the coronal network. The large-scale corona consists of all coronal-temperature (T approximately 10(exp 6) K) structures larger than supergranules (greater than approximately 30,000 kilometers). The coronal network (1) consists of all coronal-temperature structures smaller than supergranules, (2) is rooted in and loosely traces the photospheric magnetic network, (3) has its brightest features seated on polarity dividing lines (neutral lines) in the network magnetic flux, and (4) produces only about 5% of the total coronal emission in quiet regions. The heating of the coronal network is apparently magnetic in origin. Here, from analysis of EIT coronal images of quiet regions in combination with magnetograms of the same quiet regions from SOHO/MDI and from Kitt Peak, we examine the other 95% of the quiet corona and its relation to the underlying magnetic network. We find: (1) Dividing the large-scale corona into its bright and dim halves divides the area into bright "continents" and dark "oceans" having spans of 2-4 supergranules. (2) These patterns are also present in the photospheric magnetograms: the network is stronger under the bright half and weaker under the dim half. (3) The radiation from the large-scale corona increases roughly as the cube root of the magnetic flux content of the underlying magnetic network. In contrast, the coronal radiation from an active region increases roughly linearly with the magnetic flux content of the active region. We assume, as is widely held, that nearly all of the large-scale corona is magnetically rooted in the network. Our results suggest that either the coronal heating in quiet regions has a large non-magnetic component, or, if the heating is predominantly produced via the magnetic field, the mechanism is significantly different than in active

  6. A Summary of Heat-Flux Sensor Calibration Data

    PubMed Central

    Murthy, A. V.; Fraser, G. T.; DeWitt, D. P.

    2005-01-01

    This paper presents a statistical evaluation of the responsivity data on a number of heat-flux sensors, calibrated using an electrical substitution radiometer as a transfer standard up to 5 W·cm−2. The sensors, furnished by the customers, were of circular-foil or thermopile type. Comparison of the NIST and the customer measured responsivity values showed that the measurements agree within 3 % for more than half the number of sensors tested, so far. Considering the variation in the customer calibration techniques and the wide measuring range of the sensors used in the calibration, the agreement is encouraging. PMID:27308106

  7. Applicability of copper alloys for DEMO high heat flux components

    NASA Astrophysics Data System (ADS)

    Zinkle, Steven J.

    2016-02-01

    The current state of knowledge of the mechanical and thermal properties of high-strength, high conductivity Cu alloys relevant for fusion energy high heat flux applications is reviewed, including effects of thermomechanical and joining processes and neutron irradiation on precipitation- or dispersion-strengthened CuCrZr, Cu-Al2O3, CuNiBe, CuNiSiCr and CuCrNb (GRCop-84). The prospects for designing improved versions of wrought copper alloys and for utilizing advanced fabrication processes such as additive manufacturing based on electron beam and laser consolidation methods are discussed. The importance of developing improved structural materials design criteria is also noted.

  8. Investigation of Instabilities and Heat Transfer Phenomena in Supercritical Fuels at High Heat Flux and Temperatures

    NASA Technical Reports Server (NTRS)

    Linne, Diane L.; Meyer, Michael L.; Braun, Donald C.; Keller, Dennis J.

    2000-01-01

    A series of heated tube experiments was performed to investigate fluid instabilities that occur during heating of supercritical fluids. In these tests, JP-7 flowed vertically through small diameter tubes at supercritical pressures. Test section heated length, diameter, mass flow rate, inlet temperature, and heat flux were varied in an effort to determine the range of conditions that trigger the instabilities. Heat flux was varied up to 4 BTU/sq in./s, and test section wall temperatures reached as high as 1950 F. A statistical model was generated to explain the trends and effects of the control variables. The model included no direct linear effect of heat flux on the occurrence of the instabilities. All terms involving inlet temperature were negative, and all terms involving mass flow rate were positive. Multiple tests at conditions that produced instabilities provided inconsistent results. These inconsistencies limit the use of the model as a predictive tool. Physical variables that had been previously postulated to control the onset of the instabilities, such as film temperature, velocity, buoyancy, and wall-to-bulk temperature ratio, were evaluated here. Film temperatures at or near critical occurred during both stable and unstable tests. All tests at the highest velocity were stable, but there was no functional relationship found between the instabilities and velocity, or a combination of velocity and temperature ratio. Finally, all of the unstable tests had significant buoyancy at the inlet of the test section, but many stable tests also had significant buoyancy forces.

  9. Transectional heat transfer in thermoregulating bigeye tuna (Thunnus obesus) - a 2D heat flux model.

    PubMed

    Boye, Jess; Musyl, Michael; Brill, Richard; Malte, Hans

    2009-11-01

    We developed a 2D heat flux model to elucidate routes and rates of heat transfer within bigeye tuna Thunnus obesus Lowe 1839 in both steady-state and time-dependent settings. In modeling the former situation, we adjusted the efficiencies of heat conservation in the red and the white muscle so as to make the output of the model agree as closely as possible with observed cross-sectional isotherms. In modeling the latter situation, we applied the heat exchanger efficiencies from the steady-state model to predict the distribution of temperature and heat fluxes in bigeye tuna during their extensive daily vertical excursions. The simulations yielded a close match to the data recorded in free-swimming fish and strongly point to the importance of the heat-producing and heat-conserving properties of the white muscle. The best correspondence between model output and observed data was obtained when the countercurrent heat exchangers in the blood flow pathways to the red and white muscle retained 99% and 96% (respectively) of the heat produced in these tissues. Our model confirms that the ability of bigeye tuna to maintain elevated muscle temperatures during their extensive daily vertical movements depends on their ability to rapidly modulate heating and cooling rates. This study shows that the differential cooling and heating rates could be fully accounted for by a mechanism where blood flow to the swimming muscles is either exclusively through the heat exchangers or completely shunted around them, depending on the ambient temperature relative to the body temperature. Our results therefore strongly suggest that such a mechanism is involved in the extensive physiological thermoregulatory abilities of endothermic bigeye tuna. PMID:19880733

  10. Using Gravity Inversion to Estimate Antarctic Geothermal Heat Flux

    NASA Astrophysics Data System (ADS)

    Vaughan, Alan P. M.; Kusznir, Nick J.; Ferraccioli, Fausto; Leat, Phil T.; Jordan, Tom A. R. M.; Purucker, Michael E.; (Sasha) Golynsky, A. V.; Rogozhina, Irina

    2014-05-01

    New modelling studies for Greenland have recently underlined the importance of GHF for long-term ice sheet behaviour (Petrunin et al. 2013). Revised determinations of top basement heat-flow for Antarctica and adjacent rifted continental margins using gravity inversion mapping of crustal thickness and continental lithosphere thinning (Chappell & Kusznir 2008), using BedMap2 data have provided improved estimates of geothermal heat flux (GHF) in Antarctica where it is very poorly known. Continental lithosphere thinning and post-breakup residual thicknesses of continental crust determined from gravity inversion have been used to predict the preservation of continental crustal radiogenic heat productivity and the transient lithosphere heat-flow contribution within thermally equilibrating rifted continental and oceanic lithosphere. The sensitivity of present-day Antarctic top basement heat-flow to initial continental radiogenic heat productivity, continental rift and margin breakup age has been examined. Recognition of the East Antarctic Rift System (EARS), a major Permian to Cretaceous age rift system that appears to extend from the continental margin at the Lambert Rift to the South Pole region, a distance of 2500 km (Ferraccioli et al. 2011) and is comparable in scale to the well-studied East African rift system, highlights that crustal variability in interior Antarctica is much greater than previously assumed. GHF is also important to understand proposed ice accretion at the base of the EAIS in the GSM and its links to sub-ice hydrology (Bell et al. 2011). References Bell, R.E., Ferraccioli, F., Creyts, T.T., Braaten, D., Corr, H., Das, I., Damaske, D., Frearson, N., Jordan, T., Rose, K., Studinger, M. & Wolovick, M. 2011. Widespread persistent thickening of the East Antarctic Ice Sheet by freezing from the base. Science, 331 (6024), 1592-1595. Chappell, A.R. & Kusznir, N.J. 2008. Three-dimensional gravity inversion for Moho depth at rifted continental margins

  11. A study of heat flux induced dryout in capillary grooves

    NASA Astrophysics Data System (ADS)

    Murphy, Timothy J.

    1992-12-01

    This is an experimental study of ethanol flowing in the narrow grooves of a copper plate which is subjected to heat fluxes sufficient to evaporate more liquid than can be replaced by capillary pumping. Three groove geometries are used: square, rectangle, and trapezoid. The objective is to simulate aspects of liquid flow in heat pipes with axial grooves. In order to validate analytical models of capillary flow in grooves, the capillary limit, dryout front location, and dryout front movement in response to power draw downs are documented. The results show the rewet performance of the groove is dependent on geometry. Grooves of higher heat transfer capacity can be poor for recovering from dryout, like the trapezoidal groove. Comparisons of the theoretical maximum heat transfer with the data are good for the square and rectangle, but overestimate the value for the trapezoid. No theory sufficiently predicted the location of the dryout front for the three geometries. For both a quiescent dryout front and a boiling dryout front, the theory does not utilize an accurate description of the geometry of the liquid front which is critical for determining the capillary pressure difference.

  12. Diamond thin film temperature and heat-flux sensors

    NASA Technical Reports Server (NTRS)

    Aslam, M.; Yang, G. S.; Masood, A.; Fredricks, R.

    1995-01-01

    Diamond film temperature and heat-flux sensors are developed using a technology compatible with silicon integrated circuit processing. The technology involves diamond nucleation, patterning, doping, and metallization. Multi-sensor test chips were designed and fabricated to study the thermistor behavior. The minimum feature size (device width) for 1st and 2nd generation chips are 160 and 5 micron, respectively. The p-type diamond thermistors on the 1st generation test chip show temperature and response time ranges of 80-1270 K and 0.29-25 microseconds, respectively. An array of diamond thermistors, acting as heat flux sensors, was successfully fabricated on an oxidized Si rod with a diameter of 1 cm. Some problems were encountered in the patterning of the Pt/Ti ohmic contacts on the rod, due mainly to the surface roughness of the diamond film. The use of thermistors with a minimum width of 5 micron (to improve the spatial resolution of measurement) resulted in lithographic problems related to surface roughness of diamond films. We improved the mean surface roughness from 124 nm to 30 nm by using an ultra high nucleation density of 10(exp 11)/sq cm. To deposit thermistors with such small dimensions on a curved surface, a new 3-D diamond patterning technique is currently under development. This involves writing a diamond seed pattern directly on the curved surface by a computer-controlled nozzle.

  13. The Surface Heat Flux as a Function of Ground Cover for Climate Models

    NASA Technical Reports Server (NTRS)

    Vukovich, Fred M.; Wayland, Robert; Toll, David

    1997-01-01

    Surface heat fluxes were examined as a function of surface properties and meteorological conditions in a 100 km x 100 km grid square at 1-km spatial resolution centered at the location of the First ISLSCP (International Satellite Land Surface Climatology Project) Field Experiment (FIFE), the Forest Ecosystem Dynamics site in central Maine, and a semiarid rangeland site around Walnut Gulch, Arizona. This investigation treats the surface heat flux variability within a GCM grid box to provide insight into methods for treating that variability in climate models. The heat fluxes were calculated using NOAA AVHRR and available meteorological data. The average heat fluxes that were estimated using the various area ground-cover representations were compared with the ensemble average heat fluxes for the entire area, which were assumed to be the best representation of the heat fluxes for the areas. Average beat fluxes were estimated for the entire 100 km x 100 km area based on a single ground-cover representation, and the mean error for the area sensible heat flux was about 10% and for the area latent heat flux, 21%. The estimation error was reduced, and in some cases significantly reduced, when the area heat fluxes were estimated by partitioning the area according to significant ground cover. The most significant effect of the partitioning was on the latent heat flux estimates.

  14. Flow and heat transfer of ferrofluids over a flat plate with uniform heat flux

    NASA Astrophysics Data System (ADS)

    Khan, W. A.; Khan, Z. H.; Haq, R. U.

    2015-04-01

    The present work is dedicated to analyze the flow and heat transport of ferrofluids along a flat plate subjected to uniform heat flux and slip velocity. A magnetic field is applied in the transverse direction to the plate. Moreover, three different kinds of magnetic nanoparticles (Fe3O4, CoFe2O4, Mn-ZnFe2O4 are incorporated within the base fluid. We have considered two different kinds of base fluids (kerosene and water) having poor thermal conductivity as compared to solid magnetic nanoparticles. Self-similar solutions are obtained and are compared with the available data for special cases. A simulation is performed for each ferrofluid mixture by considering the dominant effects of slip and uniform heat flux. It is found that the present results are in an excellent agreement with the existing literature. The variation of skin friction and heat transfer is also performed at the surface of the plate and then the better heat transfer and of each mixture is analyzed. Kerosene-based magnetite Fe3O4 provides the higher heat transfer rate at the wall as compared to the kerosene-based cobalt ferrite and Mn-Zn ferrite. It is also concluded that the primary effect of the magnetic field is to accelerate the dimensionless velocity and to reduce the dimensionless surface temperature as compared to the hydrodynamic case, thereby increasing the skin friction and the heat transfer rate of ferrofluids.

  15. Vertical heat fluxes through the Beaufort Sea Thermohaline staircase

    NASA Astrophysics Data System (ADS)

    Padman, Laurie; Dillon, Thomas M.

    1987-09-01

    Microstructure profiles of temperature, conductivity, and velocity shear during the Arctic Internal Wave Experiment (AIWEX) in March-April 1985 in the Beaufort Sea are used to investigate the thermodynamic processes in a diffusive thermohaline staircase. The staircase occurs between depths of about 320 and 430 m, above the core of the relatively warm, salty Atlantic water, where the mean temperature and salinity are increasing with depth. Individual isothermal layers can be tracked for at least several hours, suggesting a horizontal length scale of several hundred meters or more, assuming a typical relative velocity of 0.01 m s-1 at this time. Over the depth range 320-430 m the mean (average over several steps) density ratio = β varies between 4 and 6, while the typical temperature difference between layers decreases from 0.012° to 0.004°C. The mean thickness of the layers also varies, from 1 m at 320 m depth to 2 m at 430 m. The relationship proposed by Kelley (1984), relating layer height to , , and molecular properties of the fluid, overestimates the mean layer thickness by about a factor of 2. The variability of staircase characteristics suggests that oceanic staircases may rarely, if ever, be steady state, but in general be slowly evolving from previous perturbations. Heat fluxes estimated from laboratory-based flux laws, involving Rρ and ΔT, are in the range 0.02 heat fluxes through the maximum interfacial temperature gradients. There are no interfaces where the kinetic energy dissipation rate (averaged over 0.5 m) exceeds the lower limit for diapycnal mixing, 24.5νN2.

  16. βp Scaling of the Heat Flux Width in DIII-D

    NASA Astrophysics Data System (ADS)

    Makowski, M. A.; Lasnier, C. J.; Leonard, A. W.; Osborne, T. H.

    2015-11-01

    The scaling of the heat flux width with poloidal beta at the outer midplane, βp, is a stringent test of the critical gradient model that posits that the heat flux width is set by an edge stability limit dependent on the separatrix pressure gradient. As βp was varied by means of a combined density and power scan, the measured pressure gradient was found to scale linearly with βp at both low (0.5 MA) and high (1.5 MA) plasma currents, and lie significantly below the infinite-n ideal ballooning limit critical pressure gradient as computed by the BALOO code. At fixed Ip, this implies that the separatrix pressure gradient scale length is approximately constant, which is consistent with the kinetic profile measurements. The ballooning limit was found to be constant in the βp scan and set by the equilibrium with only a minor dependency on the edge pressure and current profiles. Both the pressure gradient and βp varied by more than a factor of 2 in the scans. Work supported by the US Department of Energy by LLNL under DE-AC52-07NA27344 and the US DOE under DE-FC02-04ER54698 and DE-FG02-95ER54309.

  17. Estimating Antarctic Geothermal Heat Flux using Gravity Inversion

    NASA Astrophysics Data System (ADS)

    Vaughan, Alan P. M.; Kusznir, Nick J.; Ferraccioli, Fausto; Leat, Phil T.; Jordan, Tom A. R. M.; Purucker, Michael E.; Golynsky, A. V.; Sasha Rogozhina, Irina

    2013-04-01

    Geothermal heat flux (GHF) in Antarctica is very poorly known. We have determined (Vaughan et al. 2012) top basement heat-flow for Antarctica and adjacent rifted continental margins using gravity inversion mapping of crustal thickness and continental lithosphere thinning (Chappell & Kusznir 2008). Continental lithosphere thinning and post-breakup residual thicknesses of continental crust determined from gravity inversion have been used to predict the preservation of continental crustal radiogenic heat productivity and the transient lithosphere heat-flow contribution within thermally equilibrating rifted continental and oceanic lithosphere. The sensitivity of present-day Antarctic top basement heat-flow to initial continental radiogenic heat productivity, continental rift and margin breakup age has been examined. Knowing GHF distribution for East Antarctica and the Gamburtsev Subglacial Mountains (GSM) region in particular is critical because: 1) The GSM likely acted as key nucleation point for the East Antarctic Ice Sheet (EAIS); 2) the region may contain the oldest ice of the EAIS - a prime target for future ice core drilling; 3) GHF is important to understand proposed ice accretion at the base of the EAIS in the GSM and its links to sub-ice hydrology (Bell et al. 2011). An integrated multi-dataset-based GHF model for East Antarctica is planned that will resolve the wide range of estimates previously published using single datasets. The new map and existing GHF distribution estimates available for Antarctica will be evaluated using direct ice temperature measurements obtained from deep ice cores, estimates of GHF derived from subglacial lakes, and a thermodynamic ice-sheet model of the Antarctic Ice Sheet driven by past climate reconstructions and each of analysed heat flow maps, as has recently been done for the Greenland region (Rogozhina et al. 2012). References Bell, R.E., Ferraccioli, F., Creyts, T.T., Braaten, D., Corr, H., Das, I., Damaske, D., Frearson, N

  18. An Investigation of the Compatibility of Radiation and Convection Heat Flux Measurements

    NASA Technical Reports Server (NTRS)

    Liebert, Curt H.

    1996-01-01

    A method for determining time-resolved absorbed surface heat flux and surface temperature in radiation and convection environments is described. The method is useful for verification of aerodynamic, heat transfer and durability models. A practical heat flux gage fabrication procedure and a simple one-dimensional inverse heat conduction model and calculation procedure are incorporated in this method. The model provides an estimate of the temperature and heat flux gradient in the direction of heat transfer through the gage. This paper discusses several successful time-resolved tests of this method in hostile convective heating and cooling environments.

  19. In Situ Monitoring of Soil Thermal Properties and Heat Flux during Freezing and Thawing

    Technology Transfer Automated Retrieval System (TEKTRAN)

    When soil freezes or thaws, latent heat fluxes occur and conventional methods for monitoring soil heat flux are inaccurate, often wildly so. This prevents the forcing of surface energy balance closure that is used in Bowen ratio flux measurements and the assessment of closure that is used as a check...

  20. Improving surface energy balance closure by reducing errors in soil heat flux measurement

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The flux plate method is the most commonly employed method for measuring soil heat flux (G) in surface energy balance studies. Although relatively simple to use, the flux plate method is susceptible to significant errors. Two of the most common errors are heat flow divergence around the plate and fa...

  1. A Comparison of Latent Heat Fluxes over Global Oceans for Four Flux Products

    NASA Technical Reports Server (NTRS)

    Chou, Shu-Hsien; Nelkin, Eric; Ardizzone, Joe; Atlas, Robert M.

    2003-01-01

    To improve our understanding of global energy and water cycle variability, and to improve model simulations of climate variations, it is vital to have accurate latent heat fluxes (LHF) over global oceans. Monthly LHF, 10-m wind speed (U10m), 10-m specific humidity (Q10h), and sea-air humidity difference (Qs-Q10m) of GSSTF2 (version 2 Goddard Satellite-based Surface Turbulent Fluxes) over global Oceans during 1992-93 are compared with those of HOAPS (Hamburg Ocean Atmosphere Parameters and Fluxes from Satellite Data), NCEP (NCEP/NCAR reanalysis). The mean differences, standard deviations of differences, and temporal correlation of these monthly variables over global Oceans during 1992-93 between GSSTF2 and each of the three datasets are analyzed. The large-scale patterns of the 2yr-mean fields for these variables are similar among these four datasets, but significant quantitative differences are found. The temporal correlation is higher in the northern extratropics than in the south for all variables, with the contrast being especially large for da Silva as a result of more missing ship data in the south. The da Silva has extremely low temporal correlation and large differences with GSSTF2 for all variables in the southern extratropics, indicating that da Silva hardly produces a realistic variability in these variables. The NCEP has extremely low temporal correlation (0.27) and large spatial variations of differences with GSSTF2 for Qs-Q10m in the tropics, which causes the low correlation for LHF. Over the tropics, the HOAPS LHF is significantly smaller than GSSTF2 by approx. 31% (37 W/sq m), whereas the other two datasets are comparable to GSSTF2. This is because the HOAPS has systematically smaller LHF than GSSTF2 in space, while the other two datasets have very large spatial variations of large positive and negative LHF differences with GSSTF2 to cancel and to produce smaller regional-mean differences. Our analyses suggest that the GSSTF2 latent heat flux

  2. Organization of ice flow by localized regions of elevated geothermal heat flux

    NASA Astrophysics Data System (ADS)

    Pittard, M. L.; Galton-Fenzi, B. K.; Roberts, J. L.; Watson, C. S.

    2016-04-01

    The impact of localized regions of elevated geothermal heat flux on ice sheet dynamics is largely unknown. Simulations of ice dynamics are produced using poorly resolved and low-resolution estimates of geothermal heat flux. Observations of crustal heat production within the continental crust underneath the Lambert-Amery glacial system in East Antarctica indicate that high heat flux regions of at least 120 mW m-2 exist. Here we investigate the influence of simulated but plausible, localized regions of elevated geothermal heat flux on ice dynamics using a numerical ice sheet model of the Lambert-Amery glacial system. We find that high heat flux regions have a significant effect across areas of slow-moving ice with the influence extending both upstream and downstream of the geothermal anomaly, while fast-moving ice is relatively unaffected. Our results suggest that localized regions of elevated geothermal heat flux may play an important role in the organization of ice sheet flow.

  3. Design and calibration of a novel transient radiative heat flux meter for a spacecraft thermal test

    NASA Astrophysics Data System (ADS)

    Sheng, Chunchen; Hu, Peng; Cheng, Xiaofang

    2016-06-01

    Radiative heat flux measurement is significantly important for a spacecraft thermal test. To satisfy the requirements of both high accuracy and fast response, a novel transient radiative heat flux meter was developed. Its thermal receiver consists of a central thermal receiver and two thermal guarded annular plates, which ensure the temperature distribution of the central thermal receiver to be uniform enough for reasonably applying lumped heat capacity method in a transient radiative heat flux measurement. This novel transient radiative heat flux meter design can also take accurate measurements regardless of spacecraft surface temperature and incident radiation spectrum. The measurement principle was elaborated and the coefficients were calibrated. Experimental results from testing a blackbody furnace and an Xenon lamp show that this novel transient radiative heat flux meter can be used to measure transient radiative heat flux up to 1400 W/m2 with high accuracy and the response time of less than 10 s.

  4. Design and calibration of a novel transient radiative heat flux meter for a spacecraft thermal test.

    PubMed

    Sheng, Chunchen; Hu, Peng; Cheng, Xiaofang

    2016-06-01

    Radiative heat flux measurement is significantly important for a spacecraft thermal test. To satisfy the requirements of both high accuracy and fast response, a novel transient radiative heat flux meter was developed. Its thermal receiver consists of a central thermal receiver and two thermal guarded annular plates, which ensure the temperature distribution of the central thermal receiver to be uniform enough for reasonably applying lumped heat capacity method in a transient radiative heat flux measurement. This novel transient radiative heat flux meter design can also take accurate measurements regardless of spacecraft surface temperature and incident radiation spectrum. The measurement principle was elaborated and the coefficients were calibrated. Experimental results from testing a blackbody furnace and an Xenon lamp show that this novel transient radiative heat flux meter can be used to measure transient radiative heat flux up to 1400 W/m(2) with high accuracy and the response time of less than 10 s. PMID:27370482

  5. Development of advanced high-temperature heat flux sensors. Phase 2: Verification testing

    NASA Technical Reports Server (NTRS)

    Atkinson, W. H.; Cyr, M. A.; Strange, R. R.

    1985-01-01

    A two-phase program is conducted to develop heat flux sensors capable of making heat flux measurements throughout the hot section of gas turbine engines. In Phase 1, three types of heat flux sensors are selected; embedded thermocouple, laminated, and Gardon gauge sensors. A demonstration of the ability of these sensors to operate in an actual engine environment is reported. A segmented liner of each of two combustors being used in the Broad Specification Fuels Combustor program is instrumented with the three types of heat flux sensors then tested in a high pressure combustor rig. Radiometer probes are also used to measure the radiant heat loads to more fully characterize the combustor environment. Test results show the heat flux sensors to be in good agreement with radiometer probes and the predicted data trends. In general, heat flux sensors have strong potential for use in combustor development programs.

  6. The surface latent heat flux anomalies related to major earthquake

    NASA Astrophysics Data System (ADS)

    Jing, Feng; Shen, Xuhui; Kang, Chunli; Xiong, Pan; Hong, Shunying

    2011-12-01

    SLHF (Surface Latent Heat Flux) is an atmospheric parameter, which can describe the heat released by phase changes and dependent on meteorological parameters such as surface temperature, relative humidity, wind speed etc. There is a sharp difference between the ocean surface and the land surface. Recently, many studies related to the SLHF anomalies prior to earthquakes have been developed. It has been shown that the energy exchange enhanced between coastal surface and atmosphere prior to earthquakes can increase the rate of the water-heat exchange, which will lead to an obviously increases in SLHF. In this paper, two earthquakes in 2010 (Haiti earthquake and southwest of Sumatra in Indonesia earthquake) have been analyzed using SLHF data by STD (standard deviation) threshold method. It is shows that the SLHF anomaly may occur in interpolate earthquakes or intraplate earthquakes and coastal earthquakes or island earthquakes. And the SLHF anomalies usually appear 5-6 days prior to an earthquake, then disappear quickly after the event. The process of anomaly evolution to a certain extent reflects a dynamic energy change process about earthquake preparation, that is, weak-strong-weak-disappeared.

  7. Latent Heat and Sensible Heat Fluxes Simulation in Maize Using Artificial Neural Networks

    NASA Astrophysics Data System (ADS)

    Safa, B.

    2015-12-01

    Latent Heat (LE) and Sensible Heat (H) flux are two major components of the energy balance at the earth's surface which play important roles in the water cycle and global warming. There are various methods for their estimation or measurement. Eddy covariance is a direct and accurate technique for their measurement. Some limitations lead to prevention of the extensive use of the eddy covariance technique. Therefore, simulation approaches can be utilized for their estimation. ANNs are the information processing systems, which can inspect the empirical data and investigate the relations (hidden rules) among them, and then make the network structure. In this study, multi-layer perceptron neural network trained by the steepest descent Back-Propagation (BP) algorithm was tested to simulate LE and H flux above two maize sites (rain-fed & irrigated) near Mead, Nebraska. Network training and testing was fulfilled using hourly data of including year, local time of day (DTime), leaf area index (LAI), soil water content (SWC) in 10 and 25 cm depths, soil temperature (Ts) in 10 cm depth, air temperature (Ta), vapor pressure deficit (VPD), wind speed (WS), irrigation and precipitation (P), net radiation (Rn), and the fraction of incoming Photosynthetically Active Radiation (PAR) absorbed by the canopy (fPAR), which were selected from days of year (DOY) 169 to 222 for 2001, 2003, 2005, 2007, and 2009. The results showed high correlation between actual and estimated data; the R² values for LE flux in irrigated and rain-fed sites were 0.9576, and 0.9642; and for H flux 0.8001, and 0.8478, respectively. Furthermore, the RMSE values ranged from 0.0580 to 0.0721 W/m² for LE flux and from 0.0824 to 0.0863 W/m² for H flux. In addition, the sensitivity of the fluxes with respect to each input was analyzed over the growth stages. Thus, the most powerful effects among the inputs for LE flux were identified net radiation, leaf area index, vapor pressure deficit, wind speed, and for H

  8. Numerical and experimental analyses of the radiant heat flux produced by quartz heating systems

    NASA Technical Reports Server (NTRS)

    Turner, Travis L.; Ash, Robert L.

    1994-01-01

    A method is developed for predicting the radiant heat flux distribution produced by tungsten filament, tubular fused-quartz envelope heating systems with reflectors. The method is an application of Monte Carlo simulation, which takes the form of a random walk or ray tracing scheme. The method is applied to four systems of increasing complexity, including a single lamp without a reflector, a single lamp with a Hat reflector, a single lamp with a parabolic reflector, and up to six lamps in a six-lamp contoured-reflector heating unit. The application of the Monte Carlo method to the simulation of the thermal radiation generated by these systems is discussed. The procedures for numerical implementation are also presented. Experiments were conducted to study these quartz heating systems and to acquire measurements of the corresponding empirical heat flux distributions for correlation with analysis. The experiments were conducted such that several complicating factors could be isolated and studied sequentially. Comparisons of the experimental results with analysis are presented and discussed. Good agreement between the experimental and simulated results was obtained in all cases. This study shows that this method can be used to analyze very complicated quartz heating systems and can account for factors such as spectral properties, specular reflection from curved surfaces, source enhancement due to reflectors and/or adjacent sources, and interaction with a participating medium in a straightforward manner.

  9. ESTIMATION OF BARE-SOIL EVAPORATION USING A CALORIMETRIC APPROACH WITH HEAT FLUX MEASURED AT MULTIPLE DEPTHS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    An assumption in calorimetric methods for soil heat flux is that sensible heat terms can be balanced (i.e., if the heat flux is known at one depth, the heat flux at another depth may be determined by monitoring the change in heat storage). Latent heat from water evaporation is assigned to the energy...

  10. Analysis of the operational error of heat flux transducers placed on wall surfaces

    NASA Astrophysics Data System (ADS)

    Baba, Tetsuya; Ono, Akira; Hattori, Susumu

    1985-07-01

    The operational error in the heat flux measurements is theoretically investigated when the heat flux from a furnace wall to the environment is measured by a heat flux transducer. Change of the original heat flux, which is caused by placing a transducer on the furnace wall, is clarified by solving a three-dimensional heat transfer problem. The operational error is explicitly given by a simple equation taking into account the thermal properties of the furnace wall and the transducer. Numerical results are also provided for a typical application to industrial furnaces.