Science.gov

Sample records for constrained predictive control

  1. Model predictive control of constrained LPV systems

    NASA Astrophysics Data System (ADS)

    Yu, Shuyou; Böhm, Christoph; Chen, Hong; Allgöwer, Frank

    2012-06-01

    This article considers robust model predictive control (MPC) schemes for linear parameter varying (LPV) systems in which the time-varying parameter is assumed to be measured online and exploited for feedback. A closed-loop MPC with a parameter-dependent control law is proposed first. The parameter-dependent control law reduces conservativeness of the existing results with a static control law at the cost of higher computational burden. Furthermore, an MPC scheme with prediction horizon '1' is proposed to deal with the case of asymmetric constraints. Both approaches guarantee recursive feasibility and closed-loop stability if the considered optimisation problem is feasible at the initial time instant.

  2. Constrained predictive control using orthogonal expansions

    SciTech Connect

    Finn, C.K. ); Wahlberg, B. . Dept. of Automatic Control); Ydstie, B.E. . Dept. of Chemical Engineering)

    1993-11-01

    Orthogonal expansion is routinely used for multivariable predictive control and optimization in the chemical and petrochemical manufacturing industries. In this article, the authors approximate bounded operators by orthogonal expansion. The rate of convergence depends on the choice of basis functions. Markov-Laguerre functions give rapid convergence for open-loop stable systems with long delay. The Markov-Kautz model can be used for lightly damped systems, and a more general orthogonal expansion is developed for modeling multivariable systems with widely scattered poles. The finite impulse response model is a special case of these models. A-priori knowledge about dominant time constants, time delay and oscillatory modes is used to reduce the model complexity and to improve conditioning of the parameter estimation algorithm. Algorithms for predictive control are developed, as well as conditions for constraint compatibility, closed-loop stability and constraint satisfaction for the ideal case. An H[infinity]--like design technique proposed guarantees robust stability in the presence of input constraints; output constraints may give chatter. A chatter-free algorithm is proposed.

  3. Constrained model predictive control, state estimation and coordination

    NASA Astrophysics Data System (ADS)

    Yan, Jun

    In this dissertation, we study the interaction between the control performance and the quality of the state estimation in a constrained Model Predictive Control (MPC) framework for systems with stochastic disturbances. This consists of three parts: (i) the development of a constrained MPC formulation that adapts to the quality of the state estimation via constraints; (ii) the application of such a control law in a multi-vehicle formation coordinated control problem in which each vehicle operates subject to a no-collision constraint posed by others' imperfect prediction computed from finite bit-rate, communicated data; (iii) the design of the predictors and the communication resource assignment problem that satisfy the performance requirement from Part (ii). Model Predictive Control (MPC) is of interest because it is one of the few control design methods which preserves standard design variables and yet handles constraints. MPC is normally posed as a full-state feedback control and is implemented in a certainty-equivalence fashion with best estimates of the states being used in place of the exact state. However, if the state constraints were handled in the same certainty-equivalence fashion, the resulting control law could drive the real state to violate the constraints frequently. Part (i) focuses on exploring the inclusion of state estimates into the constraints. It does this by applying constrained MPC to a system with stochastic disturbances. The stochastic nature of the problem requires re-posing the constraints in a probabilistic form. In Part (ii), we consider applying constrained MPC as a local control law in a coordinated control problem of a group of distributed autonomous systems. Interactions between the systems are captured via constraints. First, we inspect the application of constrained MPC to a completely deterministic case. Formation stability theorems are derived for the subsystems and conditions on the local constraint set are derived in order to

  4. Stock management in hospital pharmacy using chance-constrained model predictive control.

    PubMed

    Jurado, I; Maestre, J M; Velarde, P; Ocampo-Martinez, C; Fernández, I; Tejera, B Isla; Prado, J R Del

    2016-05-01

    One of the most important problems in the pharmacy department of a hospital is stock management. The clinical need for drugs must be satisfied with limited work labor while minimizing the use of economic resources. The complexity of the problem resides in the random nature of the drug demand and the multiple constraints that must be taken into account in every decision. In this article, chance-constrained model predictive control is proposed to deal with this problem. The flexibility of model predictive control allows taking into account explicitly the different objectives and constraints involved in the problem while the use of chance constraints provides a trade-off between conservativeness and efficiency. The solution proposed is assessed to study its implementation in two Spanish hospitals. PMID:26724992

  5. Hybrid Active/Passive Control of Sound Radiation from Panels with Constrained Layer Damping and Model Predictive Feedback Control

    NASA Technical Reports Server (NTRS)

    Cabell, Randolph H.; Gibbs, Gary P.

    2000-01-01

    make the controller adaptive. For example, a mathematical model of the plant could be periodically updated as the plant changes, and the feedback gains recomputed from the updated model. To be practical, this approach requires a simple plant model that can be updated quickly with reasonable computational requirements. A recent paper by the authors discussed one way to simplify a feedback controller, by reducing the number of actuators and sensors needed for good performance. The work was done on a tensioned aircraft-style panel excited on one side by TBL flow in a low speed wind tunnel. Actuation was provided by a piezoelectric (PZT) actuator mounted on the center of the panel. For sensing, the responses of four accelerometers, positioned to approximate the response of the first radiation mode of the panel, were summed and fed back through the controller. This single input-single output topology was found to have nearly the same noise reduction performance as a controller with fifteen accelerometers and three PZT patches. This paper extends the previous results by looking at how constrained layer damping (CLD) on a panel can be used to enhance the performance of the feedback controller thus providing a more robust and efficient hybrid active/passive system. The eventual goal is to use the CLD to reduce sound radiation at high frequencies, then implement a very simple, reduced order, low sample rate adaptive controller to attenuate sound radiation at low frequencies. Additionally this added damping smoothes phase transitions over the bandwidth which promotes robustness to natural frequency shifts. Experiments were conducted in a transmission loss facility on a clamped-clamped aluminum panel driven on one side by a loudspeaker. A generalized predictive control (GPC) algorithm, which is suited to online adaptation of its parameters, was used in single input-single output and multiple input-single output configurations. Because this was a preliminary look at the potential

  6. Constrained off-line synthesis approach of model predictive control for networked control systems with network-induced delays.

    PubMed

    Tang, Xiaoming; Qu, Hongchun; Wang, Ping; Zhao, Meng

    2015-03-01

    This paper investigates the off-line synthesis approach of model predictive control (MPC) for a class of networked control systems (NCSs) with network-induced delays. A new augmented model which can be readily applied to time-varying control law, is proposed to describe the NCS where bounded deterministic network-induced delays may occur in both sensor to controller (S-A) and controller to actuator (C-A) links. Based on this augmented model, a sufficient condition of the closed-loop stability is derived by applying the Lyapunov method. The off-line synthesis approach of model predictive control is addressed using the stability results of the system, which explicitly considers the satisfaction of input and state constraints. Numerical example is given to illustrate the effectiveness of the proposed method. PMID:25538025

  7. Chance-constrained model predictive control applied to inventory management in hospitalary pharmacy.

    PubMed

    Maestre, Jose Maria; Ocampo-Martinez, Carlos

    2014-01-01

    This extended abstract addresses the preliminary results of applying uncertainty handling strategies and advanced control techniques to the inventary management of hospitality pharmacy. Inventory management is one of the main tasks that a pharmacy department has to carry out in a hospital. It is a complex problem because it requires to establish a tradeoff between contradictory optimization criteria. The final goal of the proposed research is to update the inventory management system of hospitals such that it is possible to reduce the average inventory while maintaining preestablished clinical guarantees. PMID:25488247

  8. Lithium-ion battery cell-level control using constrained model predictive control and equivalent circuit models

    NASA Astrophysics Data System (ADS)

    Xavier, Marcelo A.; Trimboli, M. Scott

    2015-07-01

    This paper introduces a novel application of model predictive control (MPC) to cell-level charging of a lithium-ion battery utilizing an equivalent circuit model of battery dynamics. The approach employs a modified form of the MPC algorithm that caters for direct feed-though signals in order to model near-instantaneous battery ohmic resistance. The implementation utilizes a 2nd-order equivalent circuit discrete-time state-space model based on actual cell parameters; the control methodology is used to compute a fast charging profile that respects input, output, and state constraints. Results show that MPC is well-suited to the dynamics of the battery control problem and further suggest significant performance improvements might be achieved by extending the result to electrochemical models.

  9. Lithium-ion battery cell-level control using constrained model predictive control and equivalent circuit models

    SciTech Connect

    Xavier, MA; Trimboli, MS

    2015-07-01

    This paper introduces a novel application of model predictive control (MPC) to cell-level charging of a lithium-ion battery utilizing an equivalent circuit model of battery dynamics. The approach employs a modified form of the MPC algorithm that caters for direct feed-though signals in order to model near-instantaneous battery ohmic resistance. The implementation utilizes a 2nd-order equivalent circuit discrete-time state-space model based on actual cell parameters; the control methodology is used to compute a fast charging profile that respects input, output, and state constraints. Results show that MPC is well-suited to the dynamics of the battery control problem and further suggest significant performance improvements might be achieved by extending the result to electrochemical models. (C) 2015 Elsevier B.V. All rights reserved.

  10. Testing a Constrained MPC Controller in a Process Control Laboratory

    ERIC Educational Resources Information Center

    Ricardez-Sandoval, Luis A.; Blankespoor, Wesley; Budman, Hector M.

    2010-01-01

    This paper describes an experiment performed by the fourth year chemical engineering students in the process control laboratory at the University of Waterloo. The objective of this experiment is to test the capabilities of a constrained Model Predictive Controller (MPC) to control the operation of a Double Pipe Heat Exchanger (DPHE) in real time.…

  11. Trajectory generation and constrained control of quadrotors

    NASA Astrophysics Data System (ADS)

    Tule, Carlos Alberto

    Unmanned Aerial Systems, although still in early development, are expected to grow in both the military and civil sectors. As part of the UAV sector, the Quadrotor helicopter platform has been receiving a lot of interest from various academic and research institutions because of their simplistic design and low cost to manufacture, yet remaining a challenging platform to control. Four different controllers were derived for the trajectory generation and constrained control of a quadrotor platform. The first approach involves the linear version of the Model Predictive Control (MPC) algorithm to solve the state constrained optimization problem. The second approach uses the State Dependent Coefficient (SDC) form to capture the system non-linearities into a pseudo-linear system matrix, which is used to derive the State Dependent Riccati Equation (SDRE) based optimal control. For the third approach, the SDC form is exploited for obtaining a nonlinear equivalent of the model predictive control. Lastly, a combination of the nonlinear MPC and SDRE optimal control algorithms is used to explore the feasibility of a near real-time nonlinear optimization technique.

  12. Prediction of noise constrained optimum takeoff procedures

    NASA Technical Reports Server (NTRS)

    Padula, S. L.

    1980-01-01

    An optimization method is used to predict safe, maximum-performance takeoff procedures which satisfy noise constraints at multiple observer locations. The takeoff flight is represented by two-degree-of-freedom dynamical equations with aircraft angle-of-attack and engine power setting as control functions. The engine thrust, mass flow and noise source parameters are assumed to be given functions of the engine power setting and aircraft Mach number. Effective Perceived Noise Levels at the observers are treated as functionals of the control functions. The method is demonstrated by applying it to an Advanced Supersonic Transport aircraft design. The results indicate that automated takeoff procedures (continuously varying controls) can be used to significantly reduce community and certification noise without jeopardizing safety or degrading performance.

  13. Geometrically constrained observability. [control theory

    NASA Technical Reports Server (NTRS)

    Brammer, R. F.

    1974-01-01

    This paper deals with observed processes in situations in which observations are available only when the state vector lies in certain regions. For linear autonomous observed processes, necessary and sufficient conditions are obtained for half-space observation regions. These results are shown to contain a theorem dual to a controllability result proved by the author for a linear autonomous control system whose control restraint set does not contain the origin as an interior point. Observability results relating to continuous observation systems and sampled data systems are presented, and an example of observing the state of an electrical network is given.

  14. Mixed-Strategy Chance Constrained Optimal Control

    NASA Technical Reports Server (NTRS)

    Ono, Masahiro; Kuwata, Yoshiaki; Balaram, J.

    2013-01-01

    This paper presents a novel chance constrained optimal control (CCOC) algorithm that chooses a control action probabilistically. A CCOC problem is to find a control input that minimizes the expected cost while guaranteeing that the probability of violating a set of constraints is below a user-specified threshold. We show that a probabilistic control approach, which we refer to as a mixed control strategy, enables us to obtain a cost that is better than what deterministic control strategies can achieve when the CCOC problem is nonconvex. The resulting mixed-strategy CCOC problem turns out to be a convexification of the original nonconvex CCOC problem. Furthermore, we also show that a mixed control strategy only needs to "mix" up to two deterministic control actions in order to achieve optimality. Building upon an iterative dual optimization, the proposed algorithm quickly converges to the optimal mixed control strategy with a user-specified tolerance.

  15. Force and motion control of a constrained flexible manipulator

    NASA Astrophysics Data System (ADS)

    Hu, Fon-Lin

    1992-01-01

    This dissertation reports the results of a comprehensive research study on the combined joint motion control, vibration control, and force control of a constrained rigid-flexible robot arm. An efficient and accurate approach to modeling for controller design is provided. Both regulation and tracking problems are considered, and a modified version of a Corless-Leitmann controller is developed. Experimental studies, which demonstrate the effectiveness of the proposed methods, are presented. In this work, the dynamic modeling of a constrained spherical coordinate robot arm, whose last link is very flexible, is studied for the purpose of combined force and motion control. The model is derived using a consistent modeling procedure which accounts for the axial force effects due to contract, and the coupling due to the effects of flexible motions on the rigid body motions. These effects are shown to be important in the prediction of the vibration frequencies. Galerkin's method is employed for spatial discretization of the flexible link deflections. A convergence study is presented to evaluate the appropriateness of the spatial approximating functions and to determine the number of modes required for obtaining accurate simulation results. Linear control design methods are shown to be adequate for solving the problem of hybrid force and position regulation for the constrained flexible robot arm. However, nonlinear control strategies show advantages (i.e., good response of the joint motion and contact force, and small magnitude of the structural vibration) in the tracking control of motion and force. A modified Corless-Leitmann controller is presented to enhance the control of the flexible motion using only joint actuators. Finally, an experimental implementation is used to validate the proposed controller designs, to assess the merit of measuring and feeding back the flexible motion and the contact force, and to evaluate the feasibility of combined force and motion control

  16. CCTOP: a Consensus Constrained TOPology prediction web server.

    PubMed

    Dobson, László; Reményi, István; Tusnády, Gábor E

    2015-07-01

    The Consensus Constrained TOPology prediction (CCTOP; http://cctop.enzim.ttk.mta.hu) server is a web-based application providing transmembrane topology prediction. In addition to utilizing 10 different state-of-the-art topology prediction methods, the CCTOP server incorporates topology information from existing experimental and computational sources available in the PDBTM, TOPDB and TOPDOM databases using the probabilistic framework of hidden Markov model. The server provides the option to precede the topology prediction with signal peptide prediction and transmembrane-globular protein discrimination. The initial result can be recalculated by (de)selecting any of the prediction methods or mapped experiments or by adding user specified constraints. CCTOP showed superior performance to existing approaches. The reliability of each prediction is also calculated, which correlates with the accuracy of the per protein topology prediction. The prediction results and the collected experimental information are visualized on the CCTOP home page and can be downloaded in XML format. Programmable access of the CCTOP server is also available, and an example of client-side script is provided. PMID:25943549

  17. CCTOP: a Consensus Constrained TOPology prediction web server

    PubMed Central

    Dobson, László; Reményi, István; Tusnády, Gábor E.

    2015-01-01

    The Consensus Constrained TOPology prediction (CCTOP; http://cctop.enzim.ttk.mta.hu) server is a web-based application providing transmembrane topology prediction. In addition to utilizing 10 different state-of-the-art topology prediction methods, the CCTOP server incorporates topology information from existing experimental and computational sources available in the PDBTM, TOPDB and TOPDOM databases using the probabilistic framework of hidden Markov model. The server provides the option to precede the topology prediction with signal peptide prediction and transmembrane-globular protein discrimination. The initial result can be recalculated by (de)selecting any of the prediction methods or mapped experiments or by adding user specified constraints. CCTOP showed superior performance to existing approaches. The reliability of each prediction is also calculated, which correlates with the accuracy of the per protein topology prediction. The prediction results and the collected experimental information are visualized on the CCTOP home page and can be downloaded in XML format. Programmable access of the CCTOP server is also available, and an example of client-side script is provided. PMID:25943549

  18. Vibration control of cylindrical shells using active constrained layer damping

    NASA Astrophysics Data System (ADS)

    Ray, Manas C.; Chen, Tung-Huei; Baz, Amr M.

    1997-05-01

    The fundamentals of controlling the structural vibration of cylindrical shells treated with active constrained layer damping (ACLD) treatments are presented. The effectiveness of the ACLD treatments in enhancing the damping characteristics of thin cylindrical shells is demonstrated theoretically and experimentally. A finite element model (FEM) is developed to describe the dynamic interaction between the shells and the ACLD treatments. The FEM is used to predict the natural frequencies and the modal loss factors of shells which are partially treated with patches of the ACLD treatments. The predictions of the FEM are validated experimentally using stainless steel cylinders which are 20.32 cm in diameter, 30.4 cm in length and 0.05 cm in thickness. The cylinders are treated with ACLD patches of different configurations in order to target single or multi-modes of lobar vibrations. The ACLD patches used are made of DYAD 606 visco-elastic layer which is sandwiched between two layers of PVDF piezo-electric films. Vibration attenuations of 85% are obtained with maximum control voltage of 40 volts. Such attenuations are attributed to the effectiveness of the ACLD treatment in increasing the modal damping ratios by about a factor of four over those of conventional passive constrained layer damping (PCLD) treatments. The obtained results suggest the potential of the ACLD treatments in controlling the vibration of cylindrical shells which constitute the major building block of many critical structures such as cabins of aircrafts, hulls of submarines and bodies of rockets and missiles.

  19. Natural enemy interactions constrain pest control in complex agricultural landscapes

    PubMed Central

    Martin, Emily A.; Reineking, Björn; Seo, Bumsuk; Steffan-Dewenter, Ingolf

    2013-01-01

    Biological control of pests by natural enemies is a major ecosystem service delivered to agriculture worldwide. Quantifying and predicting its effectiveness at large spatial scales is critical for increased sustainability of agricultural production. Landscape complexity is known to benefit natural enemies, but its effects on interactions between natural enemies and the consequences for crop damage and yield are unclear. Here, we show that pest control at the landscape scale is driven by differences in natural enemy interactions across landscapes, rather than by the effectiveness of individual natural enemy guilds. In a field exclusion experiment, pest control by flying insect enemies increased with landscape complexity. However, so did antagonistic interactions between flying insects and birds, which were neutral in simple landscapes and increasingly negative in complex landscapes. Negative natural enemy interactions thus constrained pest control in complex landscapes. These results show that, by altering natural enemy interactions, landscape complexity can provide ecosystem services as well as disservices. Careful handling of the tradeoffs among multiple ecosystem services, biodiversity, and societal concerns is thus crucial and depends on our ability to predict the functional consequences of landscape-scale changes in trophic interactions. PMID:23513216

  20. Natural enemy interactions constrain pest control in complex agricultural landscapes.

    PubMed

    Martin, Emily A; Reineking, Björn; Seo, Bumsuk; Steffan-Dewenter, Ingolf

    2013-04-01

    Biological control of pests by natural enemies is a major ecosystem service delivered to agriculture worldwide. Quantifying and predicting its effectiveness at large spatial scales is critical for increased sustainability of agricultural production. Landscape complexity is known to benefit natural enemies, but its effects on interactions between natural enemies and the consequences for crop damage and yield are unclear. Here, we show that pest control at the landscape scale is driven by differences in natural enemy interactions across landscapes, rather than by the effectiveness of individual natural enemy guilds. In a field exclusion experiment, pest control by flying insect enemies increased with landscape complexity. However, so did antagonistic interactions between flying insects and birds, which were neutral in simple landscapes and increasingly negative in complex landscapes. Negative natural enemy interactions thus constrained pest control in complex landscapes. These results show that, by altering natural enemy interactions, landscape complexity can provide ecosystem services as well as disservices. Careful handling of the tradeoffs among multiple ecosystem services, biodiversity, and societal concerns is thus crucial and depends on our ability to predict the functional consequences of landscape-scale changes in trophic interactions. PMID:23513216

  1. Active/Passive Control of Sound Radiation from Panels using Constrained Layer Damping

    NASA Technical Reports Server (NTRS)

    Gibbs, Gary P.; Cabell, Randolph H.

    2003-01-01

    A hybrid passive/active noise control system utilizing constrained layer damping and model predictive feedback control is presented. This system is used to control the sound radiation of panels due to broadband disturbances. To facilitate the hybrid system design, a methodology for placement of constrained layer damping which targets selected modes based on their relative radiated sound power is developed. The placement methodology is utilized to determine two constrained layer damping configurations for experimental evaluation of a hybrid system. The first configuration targets the (4,1) panel mode which is not controllable by the piezoelectric control actuator, and the (2,3) and (5,2) panel modes. The second configuration targets the (1,1) and (3,1) modes. The experimental results demonstrate the improved reduction of radiated sound power using the hybrid passive/active control system as compared to the active control system alone.

  2. A lexicographic approach to constrained MDP admission control

    NASA Astrophysics Data System (ADS)

    Panfili, Martina; Pietrabissa, Antonio; Oddi, Guido; Suraci, Vincenzo

    2016-02-01

    This paper proposes a reinforcement learning-based lexicographic approach to the call admission control problem in communication networks. The admission control problem is modelled as a multi-constrained Markov decision process. To overcome the problems of the standard approaches to the solution of constrained Markov decision processes, based on the linear programming formulation or on a Lagrangian approach, a multi-constraint lexicographic approach is defined, and an online implementation based on reinforcement learning techniques is proposed. Simulations validate the proposed approach.

  3. Constrained modes in control theory - Transmission zeros of uniform beams

    NASA Technical Reports Server (NTRS)

    Williams, T.

    1992-01-01

    Mathematical arguments are presented demonstrating that the well-established control system concept of the transmission zero is very closely related to the structural concept of the constrained mode. It is shown that the transmission zeros of a flexible structure form a set of constrained natural frequencies for it, with the constraints depending explicitly on the locations and the types of sensors and actuators used for control. Based on this formulation, an algorithm is derived and used to produce dimensionless plots of the zero of a uniform beam with a compatible sensor/actuator pair.

  4. Total energy control system autopilot design with constrained parameter optimization

    NASA Technical Reports Server (NTRS)

    Ly, Uy-Loi; Voth, Christopher

    1990-01-01

    A description is given of the application of a multivariable control design method (SANDY) based on constrained parameter optimization to the design of a multiloop aircraft flight control system. Specifically, the design method is applied to the direct synthesis of a multiloop AFCS inner-loop feedback control system based on total energy control system (TECS) principles. The design procedure offers a structured approach for the determination of a set of stabilizing controller design gains that meet design specifications in closed-loop stability, command tracking performance, disturbance rejection, and limits on control activities. The approach can be extended to a broader class of multiloop flight control systems. Direct tradeoffs between many real design goals are rendered systematic by proper formulation of the design objectives and constraints. Satisfactory designs are usually obtained in few iterations. Performance characteristics of the optimized TECS design have been improved, particularly in the areas of closed-loop damping and control activity in the presence of turbulence.

  5. Control of the constrained planar simple inverted pendulum

    NASA Technical Reports Server (NTRS)

    Bavarian, B.; Wyman, B. F.; Hemami, H.

    1983-01-01

    Control of a constrained planar inverted pendulum by eigenstructure assignment is considered. Linear feedback is used to stabilize and decouple the system in such a way that specified subspaces of the state space are invariant for the closed-loop system. The effectiveness of the feedback law is tested by digital computer simulation. Pre-compensation by an inverse plant is used to improve performance.

  6. Deadbeat Predictive Controllers

    NASA Technical Reports Server (NTRS)

    Juang, Jer-Nan; Phan, Minh

    1997-01-01

    Several new computational algorithms are presented to compute the deadbeat predictive control law. The first algorithm makes use of a multi-step-ahead output prediction to compute the control law without explicitly calculating the controllability matrix. The system identification must be performed first and then the predictive control law is designed. The second algorithm uses the input and output data directly to compute the feedback law. It combines the system identification and the predictive control law into one formulation. The third algorithm uses an observable-canonical form realization to design the predictive controller. The relationship between all three algorithms is established through the use of the state-space representation. All algorithms are applicable to multi-input, multi-output systems with disturbance inputs. In addition to the feedback terms, feed forward terms may also be added for disturbance inputs if they are measurable. Although the feedforward terms do not influence the stability of the closed-loop feedback law, they enhance the performance of the controlled system.

  7. Stable predictive control horizons

    NASA Astrophysics Data System (ADS)

    Estrada, Raúl; Favela, Antonio; Raimondi, Angelo; Nevado, Antonio; Requena, Ricardo; Beltrán-Carbajal, Francisco

    2012-04-01

    The stability theory of predictive and adaptive predictive control for processes of linear and stable nature is based on the hypothesis of a physically realisable driving desired trajectory (DDT). The formal theoretical verification of this hypothesis is trivial for processes with a stable inverse, but it is not for processes with an unstable inverse. The extended strategy of predictive control was developed with the purpose of overcoming methodologically this stability problem and it has delivered excellent performance and stability in its industrial applications given a suitable choice of the prediction horizon. From a theoretical point of view, the existence of a prediction horizon capable of ensuring stability for processes with an unstable inverse was proven in the literature. However, no analytical solution has been found for the determination of the prediction horizon values which guarantee stability, in spite of the theoretical and practical interest of this matter. This article presents a new method able to determine the set of prediction horizon values which ensure stability under the extended predictive control strategy formulation and a particular performance criterion for the design of the DDT generically used in many industrial applications. The practical application of this method is illustrated by means of simulation examples.

  8. Topics in constrained optimal control: Spacecraft formation flying, constrained attitude control, and rank minimization problems

    NASA Astrophysics Data System (ADS)

    Kim, Yoonsoo

    This dissertation focuses on cooperative control between multiple agents (e.g., spacecraft, UAVs). In particular, motivated by future NASA's multiple spacecraft missions, we have been guided to consider fundamental aspects of spacecraft formation flying, including collision avoidance issues; constraints on the relative position and attitude. In this venue, we have realized that one of the main challenges is dealing with nonconvex state constraints. In this dissertation, we will address such complications using classical control theory, heuristic techniques, and more recent semidefinite programming-based approaches. We then proceed to consider communication and interspacecraft sensing issues in multiple agent dynamic system setting. In this direction, we will study (1) how conventional control techniques should be augmented to meet our design objectives when the information flow between multiple agents is taken into account; (2) which information structures (e.g., information graphs) yield best performance guarantees in terms of stability, robustness, or fast agreement. In this work, we provide theoretical answers to these problems. Moreover, as many design problems involving information networks and graphs lead to combinatorial problems, which can be formulated as rank optimization problems over matrices, we consider these class of problems in this dissertation. Rank optimization problems also arise in system theory and are considered to be of paramount importance in modern control synthesis problems.

  9. Complexity Increases Predictability in Allometrically Constrained Food Webs.

    PubMed

    Iles, Alison C; Novak, Mark

    2016-07-01

    All ecosystems are subjected to chronic disturbances, such as harvest, pollution, and climate change. The capacity to forecast how species respond to such press perturbations is limited by our imprecise knowledge of pairwise species interaction strengths and the many direct and indirect pathways along which perturbations can propagate between species. Network complexity (size and connectance) has thereby been seen to limit the predictability of ecological systems. Here we demonstrate a counteracting mechanism in which the influence of indirect effects declines with increasing network complexity when species interactions are governed by universal allometric constraints. With these constraints, network size and connectance interact to produce a skewed distribution of interaction strengths whose skew becomes more pronounced with increasing complexity. Together, the increased prevalence of weak interactions and the increased relative strength and rarity of strong interactions in complex networks limit disturbance propagation and preserve the qualitative predictability of net effects even when pairwise interaction strengths exhibit substantial variation or uncertainty. PMID:27322124

  10. On identified predictive control

    NASA Technical Reports Server (NTRS)

    Bialasiewicz, Jan T.

    1993-01-01

    Self-tuning control algorithms are potential successors to manually tuned PID controllers traditionally used in process control applications. A very attractive design method for self-tuning controllers, which has been developed over recent years, is the long-range predictive control (LRPC). The success of LRPC is due to its effectiveness with plants of unknown order and dead-time which may be simultaneously nonminimum phase and unstable or have multiple lightly damped poles (as in the case of flexible structures or flexible robot arms). LRPC is a receding horizon strategy and can be, in general terms, summarized as follows. Using assumed long-range (or multi-step) cost function the optimal control law is found in terms of unknown parameters of the predictor model of the process, current input-output sequence, and future reference signal sequence. The common approach is to assume that the input-output process model is known or separately identified and then to find the parameters of the predictor model. Once these are known, the optimal control law determines control signal at the current time t which is applied at the process input and the whole procedure is repeated at the next time instant. Most of the recent research in this field is apparently centered around the LRPC formulation developed by Clarke et al., known as generalized predictive control (GPC). GPC uses ARIMAX/CARIMA model of the process in its input-output formulation. In this paper, the GPC formulation is used but the process predictor model is derived from the state space formulation of the ARIMAX model and is directly identified over the receding horizon, i.e., using current input-output sequence. The underlying technique in the design of identified predictive control (IPC) algorithm is the identification algorithm of observer/Kalman filter Markov parameters developed by Juang et al. at NASA Langley Research Center and successfully applied to identification of flexible structures.

  11. Rate-Controlled Constrained-Equilibrium Theory of Chemical Reactions

    NASA Astrophysics Data System (ADS)

    Keck, James C.

    2008-08-01

    The Rate-Controlled Constrained-Equilibrium (RCCE) method for simplifying the treatment of reactions in complex systems is summarized and the selection of constraints for both close-to and far-from equilibrium systems is discussed. Illustrative examples of RCCE calculations of carbon monoxide concentrations in the exhaust products of an internal combustion engine and ignition delays for methane-oxygen mixtures in a constant volume adiabatic chamber are given and compared with "detailed" calculations. The advantages of RCCE calculations over "detailed" calculations are discussed.

  12. Stall Recovery Guidance Algorithms Based on Constrained Control Approaches

    NASA Technical Reports Server (NTRS)

    Stepanyan, Vahram; Krishnakumar, Kalmanje; Kaneshige, John; Acosta, Diana

    2016-01-01

    Aircraft loss-of-control, in particular approach to stall or fully developed stall, is a major factor contributing to aircraft safety risks, which emphasizes the need to develop algorithms that are capable of assisting the pilots to identify the problem and providing guidance to recover the aircraft. In this paper we present several stall recovery guidance algorithms, which are implemented in the background without interfering with flight control system and altering the pilot's actions. They are using input and state constrained control methods to generate guidance signals, which are provided to the pilot in the form of visual cues. It is the pilot's decision to follow these signals. The algorithms are validated in the pilot-in-the loop medium fidelity simulation experiment.

  13. Developments in Stochastic Fuel Efficient Cruise Control and Constrained Control with Applications to Aircraft

    NASA Astrophysics Data System (ADS)

    McDonough, Kevin K.

    these sets for aircraft longitudinal and lateral aircraft dynamics are reported, and it is shown that these sets can be larger in size compared to the more commonly used safe sets. An approach to constrained maneuver planning based on chaining recoverable sets or integral safe sets is described and illustrated with a simulation example. To facilitate the application of this maneuver planning approach in aircraft loss of control (LOC) situations when the model is only identified at the current trim condition but when these sets need to be predicted at other flight conditions, the dependence trends of the safe and recoverable sets on aircraft flight conditions are characterized. The scaling procedure to estimate subsets of safe and recoverable sets at one trim condition based on their knowledge at another trim condition is defined. Finally, two control schemes that exploit integral safe sets are proposed. The first scheme, referred to as the controller state governor (CSG), resets the controller state (typically an integrator) to enforce the constraints and enlarge the set of plant states that can be recovered without constraint violation. The second scheme, referred to as the controller state and reference governor (CSRG), combines the controller state governor with the reference governor control architecture and provides the capability of simultaneously modifying the reference command and the controller state to enforce the constraints. Theoretical results that characterize the response properties of both schemes are presented. Examples are reported that illustrate the operation of these schemes on aircraft flight dynamics models and gas turbine engine dynamic models.

  14. Application of constrained optimization to active control of aeroelastic response

    NASA Technical Reports Server (NTRS)

    Newsom, J. R.; Mukhopadhyay, V.

    1981-01-01

    Active control of aeroelastic response is a complex in which the designer usually tries to satisfy many criteria which are often conflicting. To further complicate the design problem, the state space equations describing this type of control problem are usually of high order, involving a large number of states to represent the flexible structure and unsteady aerodynamics. Control laws based on the standard Linear-Quadratic-Gaussian (LQG) method are of the same high order as the aeroelastic plant. To overcome this disadvantage of the LQG mode, an approach developed for designing low order optimal control laws which uses a nonlinear programming algorithm to search for the values of the control law variables that minimize a composite performance index, was extended to the constrained optimization problem. The method involves searching for the values of the control law variables that minimize a basic performance index while satisfying several inequality constraints that describe the design criteria. The method is applied to gust load alleviation of a drone aircraft.

  15. Control of nanoparticle formation using the constrained dewetting of polymer brushes

    NASA Astrophysics Data System (ADS)

    Lee, Thomas; Hendy, Shaun C.; Neto, Chiara

    2015-03-01

    We have used coarse-grained molecular dynamics simulations to investigate the use of pinned micelles formed by the constrained dewetting of polymer brushes to act as a template for nanoparticle formation. The evaporation of a thin film containing a dissolved solute from a polymer brush was modeled to study the effect of solubility, concentration, grafting density, and evaporation rate on the nucleation and growth of nanoparticles. Control over particle nucleation could be imposed when the solution was dilute enough such that particle nucleation occurred following the onset of constrained dewetting. We predict that nanoparticles with sizes on the order of 1 nm to 10 nm could be produced from a range of organic molecules under experimentally accessable conditions. This method could allow the functionality of organic materials to be imparted onto surfaces without the need for synthetic modification of the functional molecule, and with control over particle size and aggregation, allowing for the preparation of surfaces with useful optical, pharmaceutical, or electronic properties. Now at Department of Civil and Environmental Engineering, Massachusettes Institute of Technology, Cambridge, MA.

  16. Predictive fuzzy controller for robotic motion control

    SciTech Connect

    Huang, S.J.; Hu, C.F.

    1995-12-31

    A system output prediction strategy incorporated with a fuzzy controller is proposed to manipulate the robotic motion control. Usually, the current position and velocity errors are used to operate the fuzzy logic controller for picking out a corresponding rule. When the system has fast planning speed or time varying behavior, the required tracking accuracy is difficult to achieve by adjusting the fuzzy rules. In order to improve the position control accuracy and system robustness for the industrial application, the current position error in the fuzzy rules look-up table is substituted by the predictive position error of the next step by using the grey predictive algorithm. This idea is implemented on a five degrees of freedom robot. The experimental results show that this fuzzy controller has effectively improve the system performance and achieved the facilitation of fuzzy controller implementation.

  17. Motion estimation and compensation based on region-constrained warping prediction

    NASA Astrophysics Data System (ADS)

    Chang, Dong-Il; Sung, Joon H.; Kim, Jeong K.; Lee, ChoongWoong

    1998-01-01

    The visually annoying artifacts resulting form block matching algorithm (BMA), blocky artifacts, become noticeable in applications for low bit rates. Warping prediction (WP) based schemes can remove the blocky artifacts of BMA successfully, but they also produce severe prediction errors around the boundaries of moving objects. Since the errors around the boundaries of objects are visually sensitive, they may sometimes look more annoying than blocky artifacts. The lack of ability of modeling motion discontinuities is the major reason of the errors from WP. Motion discontinuities usually exist in practical video sequences, so that it is required to develop a more reliable motion estimation and usually exist in practical video sequences, so that it is required to develop a more reliable motion estimation and compensation scheme for low bit rate applications. In this paper, we propose a new WP scheme, named region constrained warping prediction (RCWP), which places motion discontinuities according to the segmentation results. In RCWP, there is mutual dependency between estimated motion field and segmentation mask. Because of the mutual dependency, an iterative refinement process is also introduced. Experimental results have shown that the proposed algorithm can provide much better subjective and objective performance than the BMA and the conventional warping prediction.

  18. Investigation of Mixing and Chemical Reaction Interactions Using Rate-Controlled Constrained-Equilibrium

    NASA Astrophysics Data System (ADS)

    Hadi, Fatemeh; Janbozorgi, Mohammad; Sheikhi, Reza H.; Metghalchi, Hameed

    2014-11-01

    The Rate-Controlled Constrained-Equilibrium (RCCE) method is applied to study the interaction between mixing and chemical reaction in a constant pressure Partially-Stirred Reactor (PaSR). The objective is to understand the influence of mixing on RCCE predictions. The RCCE is a computationally efficient method based on thermodynamics to implement the combustion chemistry. In the RCCE the dynamics of reacting systems is described by a small number of rate-controlling reactions and slowly-varying constraints. The method is applied to study methane combustion via 12 constraints and 133 reaction steps. Simulations are carried out over a wide range of initial temperatures and equivalence ratios. The RCCE predictions are assessed by comparing with those of detailed kinetics model, in which the same kinetics, involving 29 species and 133 reaction steps, is integrated directly. Chemical kinetics and mixing interactions are studied for different residence and mixing time scales. Results show that the RCCE accurately represents the effect of mixing with different mixing strengths. An assessment of numerical performance of the RCCE is also performed. It is shown that the method is effective to reduce the stiffness of the kinetics and thus allows simulations with much lower computation costs.

  19. Predicting link directionality in gene regulation from gene expression profiles using volatility-constrained correlation.

    PubMed

    Ochiai, Tomoshiro; Nacher, Jose C

    2016-07-01

    To uncover potential disease molecular pathways and signaling networks, we do not only need undirected maps but also we need to infer the directionality of functional or physical interactions between cellular components. A wide range of methods for identifying functional interactions between genes relies on correlations between experimental gene expression measurements to some extent. However, the standard Pearson or Spearman correlation-based approaches can only determine undirected correlations between cellular components. Here, we apply a volatility-constrained correlation method for gene expression profiles that offers a new metric to capture directionality of interactions between genes. To evaluate the predictions we used four datasets distributed by the DREAM5 network inference challenge including an in silico-constructed network and three organisms such as S. aureus, E. coli and S. cerevisiae. The predictions performed by our proposed method were compared to a gold standard of experimentally verified directionality of genetic regulatory links. Our findings show that our method successfully predicts the genetic interaction directionality with a success rate higher than 0.5 with high statistical significance. PMID:27164307

  20. Multiplexed Predictive Control of a Large Commercial Turbofan Engine

    NASA Technical Reports Server (NTRS)

    Richter, hanz; Singaraju, Anil; Litt, Jonathan S.

    2008-01-01

    Model predictive control is a strategy well-suited to handle the highly complex, nonlinear, uncertain, and constrained dynamics involved in aircraft engine control problems. However, it has thus far been infeasible to implement model predictive control in engine control applications, because of the combination of model complexity and the time allotted for the control update calculation. In this paper, a multiplexed implementation is proposed that dramatically reduces the computational burden of the quadratic programming optimization that must be solved online as part of the model-predictive-control algorithm. Actuator updates are calculated sequentially and cyclically in a multiplexed implementation, as opposed to the simultaneous optimization taking place in conventional model predictive control. Theoretical aspects are discussed based on a nominal model, and actual computational savings are demonstrated using a realistic commercial engine model.

  1. Finite-horizon control-constrained nonlinear optimal control using single network adaptive critics.

    PubMed

    Heydari, Ali; Balakrishnan, Sivasubramanya N

    2013-01-01

    To synthesize fixed-final-time control-constrained optimal controllers for discrete-time nonlinear control-affine systems, a single neural network (NN)-based controller called the Finite-horizon Single Network Adaptive Critic is developed in this paper. Inputs to the NN are the current system states and the time-to-go, and the network outputs are the costates that are used to compute optimal feedback control. Control constraints are handled through a nonquadratic cost function. Convergence proofs of: 1) the reinforcement learning-based training method to the optimal solution; 2) the training error; and 3) the network weights are provided. The resulting controller is shown to solve the associated time-varying Hamilton-Jacobi-Bellman equation and provide the fixed-final-time optimal solution. Performance of the new synthesis technique is demonstrated through different examples including an attitude control problem wherein a rigid spacecraft performs a finite-time attitude maneuver subject to control bounds. The new formulation has great potential for implementation since it consists of only one NN with single set of weights and it provides comprehensive feedback solutions online, though it is trained offline. PMID:24808214

  2. Human energy - optimal control of disturbance rejection during constrained standing.

    PubMed

    Mihelj, M; Munih, M; Ponikvar, M

    2003-01-01

    An optimal control system that enables a subject to stand without hand support in the sagittal plane was designed. The subject was considered as a double inverted pendulum structure with a voluntarily controlled degree of freedom in the upper trunk and artificially controlled degree of freedom in the ankle joints. The control system design was based on a minimization of cost function that estimated the effort of the ankle joint muscles through observation of the ground reaction force position relative to the ankle joint axis. By maintaining the centre of pressure close to the ankle joint axis the objective of the upright stance is fulfilled with minimal ankle muscle energy cost. The performance of the developed controller was evaluated in a simulation-based study. The results were compared with the responses of an unimpaired subject to different disturbances in the sagittal plane. The proposed cost function was shown to produce a reasonable approximation of human natural behaviour. PMID:12936049

  3. State-Constrained Optimal Control Problems of Impulsive Differential Equations

    SciTech Connect

    Forcadel, Nicolas; Rao Zhiping Zidani, Hasnaa

    2013-08-01

    The present paper studies an optimal control problem governed by measure driven differential systems and in presence of state constraints. The first result shows that using the graph completion of the measure, the optimal solutions can be obtained by solving a reparametrized control problem of absolutely continuous trajectories but with time-dependent state-constraints. The second result shows that it is possible to characterize the epigraph of the reparametrized value function by a Hamilton-Jacobi equation without assuming any controllability assumption.

  4. Sensor/Actuator Selection for the Constrained Variance Control Problem

    NASA Technical Reports Server (NTRS)

    Delorenzo, M. L.; Skelton, R. E.

    1985-01-01

    The problem of designing a linear controller for systems subject to inequality variance constraints is considered. A quadratic penalty function approach is used to yield a linear controller. Both the weights in the quadratic penalty function and the locations of sensors and actuators are selected by successive approximations to obtain an optimal design which satisfies the input/output variance constraints. The method is applied to NASA's 64 meter Hoop-Column Space Antenna for satellite communications. In addition the solution for the control law, the main feature of these results is the systematic determination of actuator design requirements which allow the given input/output performance constraints to be satisfied.

  5. Extensions of output variance constrained controllers to hard constraints

    NASA Technical Reports Server (NTRS)

    Skelton, R.; Zhu, G.

    1989-01-01

    Covariance Controllers assign specified matrix values to the state covariance. A number of robustness results are directly related to the covariance matrix. The conservatism in known upperbounds on the H infinity, L infinity, and L (sub 2) norms for stability and disturbance robustness of linear uncertain systems using covariance controllers is illustrated with examples. These results are illustrated for continuous and discrete time systems. **** ONLY 2 BLOCK MARKERS FOUND -- RETRY *****

  6. Improved Sensitivity Relations in State Constrained Optimal Control

    SciTech Connect

    Bettiol, Piernicola; Frankowska, Hélène; Vinter, Richard B.

    2015-04-15

    Sensitivity relations in optimal control provide an interpretation of the costate trajectory and the Hamiltonian, evaluated along an optimal trajectory, in terms of gradients of the value function. While sensitivity relations are a straightforward consequence of standard transversality conditions for state constraint free optimal control problems formulated in terms of control-dependent differential equations with smooth data, their verification for problems with either pathwise state constraints, nonsmooth data, or for problems where the dynamic constraint takes the form of a differential inclusion, requires careful analysis. In this paper we establish validity of both ‘full’ and ‘partial’ sensitivity relations for an adjoint state of the maximum principle, for optimal control problems with pathwise state constraints, where the underlying control system is described by a differential inclusion. The partial sensitivity relation interprets the costate in terms of partial Clarke subgradients of the value function with respect to the state variable, while the full sensitivity relation interprets the couple, comprising the costate and Hamiltonian, as the Clarke subgradient of the value function with respect to both time and state variables. These relations are distinct because, for nonsmooth data, the partial Clarke subdifferential does not coincide with the projection of the (full) Clarke subdifferential on the relevant coordinate space. We show for the first time (even for problems without state constraints) that a costate trajectory can be chosen to satisfy the partial and full sensitivity relations simultaneously. The partial sensitivity relation in this paper is new for state constraint problems, while the full sensitivity relation improves on earlier results in the literature (for optimal control problems formulated in terms of Lipschitz continuous multifunctions), because a less restrictive inward pointing hypothesis is invoked in the proof, and because

  7. Predicting the future by explaining the past: constraining carbon-climate feedback using contemporary observations

    NASA Astrophysics Data System (ADS)

    Denning, S.

    2014-12-01

    The carbon-climate community has an historic opportunity to make a step-function improvement in climate prediction by using regional constraints to improve mechanistic model representation of carbon cycle processes. Interactions among atmospheric CO2, global biogeochemistry, and physical climate constitute leading sources of uncertainty in future climate. First-order differences among leading models of these processes produce differences in climate as large as differences in aerosol-cloud-radiation interactions and fossil fuel combustion. Emergent constraints based on global observations of interannual variations provide powerful constraints on model parameterizations. Additional constraints can be defined at regional scales. Organized intercomparison experiments have shown that uncertainties in future carbon-climate feedback arise primarily from model representations of the dependence of photosynthesis on CO2 and drought stress and the dependence of decomposition on temperature. Just as representations of net carbon fluxes have benefited from eddy flux, ecosystem manipulations, and atmospheric CO2, component carbon fluxes (photosynthesis, respiration, decomposition, disturbance) can be constrained at regional scales using new observations. Examples include biogeochemical tracers such as isotopes and carbonyl sulfide as well as remotely-sensed parameters such as chlorophyll fluorescence and biomass. Innovative model evaluation experiments will be needed to leverage the information content of new observations to improve process representations as well as to provide accurate initial conditions for coupled climate model simulations. Successful implementation of a comprehensive benchmarking program could have a huge impact on understanding and predicting future climate change.

  8. Finite Time Control Design for Bilateral Teleoperation System With Position Synchronization Error Constrained.

    PubMed

    Yang, Yana; Hua, Changchun; Guan, Xinping

    2016-03-01

    Due to the cognitive limitations of the human operator and lack of complete information about the remote environment, the work performance of such teleoperation systems cannot be guaranteed in most cases. However, some practical tasks conducted by the teleoperation system require high performances, such as tele-surgery needs satisfactory high speed and more precision control results to guarantee patient' health status. To obtain some satisfactory performances, the error constrained control is employed by applying the barrier Lyapunov function (BLF). With the constrained synchronization errors, some high performances, such as, high convergence speed, small overshoot, and an arbitrarily predefined small residual constrained synchronization error can be achieved simultaneously. Nevertheless, like many classical control schemes only the asymptotic/exponential convergence, i.e., the synchronization errors converge to zero as time goes infinity can be achieved with the error constrained control. It is clear that finite time convergence is more desirable. To obtain a finite-time synchronization performance, the terminal sliding mode (TSM)-based finite time control method is developed for teleoperation system with position error constrained in this paper. First, a new nonsingular fast terminal sliding mode (NFTSM) surface with new transformed synchronization errors is proposed. Second, adaptive neural network system is applied for dealing with the system uncertainties and the external disturbances. Third, the BLF is applied to prove the stability and the nonviolation of the synchronization errors constraints. Finally, some comparisons are conducted in simulation and experiment results are also presented to show the effectiveness of the proposed method. PMID:25823053

  9. Inhibitory Control Predicts Grammatical Ability

    PubMed Central

    Ibbotson, Paul; Kearvell-White, Jennifer

    2015-01-01

    We present evidence that individual variation in grammatical ability can be predicted by individual variation in inhibitory control. We tested 81 5-year-olds using two classic tests from linguistics and psychology (Past Tense and the Stroop). Inhibitory control was a better predicator of grammatical ability than either vocabulary or age. Our explanation is that giving the correct response in both tests requires using a common cognitive capacity to inhibit unwanted competition. The implications are that understanding the developmental trajectory of language acquisition can benefit from integrating the developmental trajectory of non-linguistic faculties, such as executive control. PMID:26659926

  10. Adaptive, Distributed Control of Constrained Multi-Agent Systems

    NASA Technical Reports Server (NTRS)

    Bieniawski, Stefan; Wolpert, David H.

    2004-01-01

    Product Distribution (PO) theory was recently developed as a broad framework for analyzing and optimizing distributed systems. Here we demonstrate its use for adaptive distributed control of Multi-Agent Systems (MASS), i.e., for distributed stochastic optimization using MAS s. First we review one motivation of PD theory, as the information-theoretic extension of conventional full-rationality game theory to the case of bounded rational agents. In this extension the equilibrium of the game is the optimizer of a Lagrangian of the (Probability dist&&on on the joint state of the agents. When the game in question is a team game with constraints, that equilibrium optimizes the expected value of the team game utility, subject to those constraints. One common way to find that equilibrium is to have each agent run a Reinforcement Learning (E) algorithm. PD theory reveals this to be a particular type of search algorithm for minimizing the Lagrangian. Typically that algorithm i s quite inefficient. A more principled alternative is to use a variant of Newton's method to minimize the Lagrangian. Here we compare this alternative to RL-based search in three sets of computer experiments. These are the N Queen s problem and bin-packing problem from the optimization literature, and the Bar problem from the distributed RL literature. Our results confirm that the PD-theory-based approach outperforms the RL-based scheme in all three domains.

  11. Empirically Constrained Predictions for Metal-line Emission from the Circumgalactic Medium

    NASA Astrophysics Data System (ADS)

    Corlies, Lauren; Schiminovich, David

    2016-08-01

    The circumgalactic medium (CGM) is one of the remaining least constrained components of galaxies and as such has significant potential for advancing galaxy formation theories. In this work, we vary the extragalactic ultraviolet background for a high-resolution cosmological simulation of a Milky-Way-like galaxy and examine the effect on the absorption and emission properties of metals in the CGM. We find that a reduced quasar background brings the column density predictions into better agreement with recent data. Similarly, when the observationally derived physical properties of the gas are compared to the simulation, we find that the simulation gas is always at temperatures approximately 0.5 dex higher. Thus, similar column densities can be produced from fundamentally different gas. However, emission maps can provide complementary information to the line-of-sight column densities to better derive gas properties. From the simulations, we find that the brightest emission is less sensitive to the extragalactic background and that it closely follows the fundamental filamentary structure of the halo. This becomes increasingly true as the galaxy evolves from z = 1 to z = 0 and the majority of the gas transitions to a hotter, more diffuse phase. For the brightest ions (C iii, C iv, O vi), detectable emission can extend as far as 120 kpc at z = 0. Finally, resolution is a limiting factor for the conclusions we can draw from emission observations, but with moderate resolution and reasonable detection limits, upcoming instrumentation should place constraints on the physical properties of the CGM.

  12. Building a predictive model of galaxy formation - I. Phenomenological model constrained to the z = 0 stellar mass function

    NASA Astrophysics Data System (ADS)

    Benson, Andrew J.

    2014-11-01

    We constrain a highly simplified semi-analytic model of galaxy formation using the z ≈ 0 stellar mass function of galaxies. Particular attention is paid to assessing the role of random and systematic errors in the determination of stellar masses, to systematic uncertainties in the model, and to correlations between bins in the measured and modelled stellar mass functions, in order to construct a realistic likelihood function. We derive constraints on model parameters and explore which aspects of the observational data constrain particular parameter combinations. We find that our model, once constrained, provides a remarkable match to the measured evolution of the stellar mass function to z = 1, although fails dramatically to match the local galaxy H I mass function. Several `nuisance parameters' contribute significantly to uncertainties in model predictions. In particular, systematic errors in stellar mass estimate are the dominant source of uncertainty in model predictions at z ≈ 1, with additional, non-negligble contributions arising from systematic uncertainties in halo mass functions and the residual uncertainties in cosmological parameters. Ignoring any of these sources of uncertainties could lead to viable models being erroneously ruled out. Additionally, we demonstrate that ignoring the significant covariance between bins the observed stellar mass function leads to significant biases in the constraints derived on model parameters. Careful treatment of systematic and random errors in the constraining data, and in the model being constrained, is crucial if this methodology is to be used to test hypotheses relating to the physics of galaxy formation.

  13. Programmable logic controller implementation of an auto-tuned predictive control based on minimal plant information.

    PubMed

    Valencia-Palomo, G; Rossiter, J A

    2011-01-01

    This paper makes two key contributions. First, it tackles the issue of the availability of constrained predictive control for low-level control loops. Hence, it describes how the constrained control algorithm is embedded in an industrial programmable logic controller (PLC) using the IEC 61131-3 programming standard. Second, there is a definition and implementation of a novel auto-tuned predictive controller; the key novelty is that the modelling is based on relatively crude but pragmatic plant information. Laboratory experiment tests were carried out in two bench-scale laboratory systems to prove the effectiveness of the combined algorithm and hardware solution. For completeness, the results are compared with a commercial proportional-integral-derivative (PID) controller (also embedded in the PLC) using the most up to date auto-tuning rules. PMID:21056412

  14. Adaptive, predictive controller for optimal process control

    SciTech Connect

    Brown, S.K.; Baum, C.C.; Bowling, P.S.; Buescher, K.L.; Hanagandi, V.M.; Hinde, R.F. Jr.; Jones, R.D.; Parkinson, W.J.

    1995-12-01

    One can derive a model for use in a Model Predictive Controller (MPC) from first principles or from experimental data. Until recently, both methods failed for all but the simplest processes. First principles are almost always incomplete and fitting to experimental data fails for dimensions greater than one as well as for non-linear cases. Several authors have suggested the use of a neural network to fit the experimental data to a multi-dimensional and/or non-linear model. Most networks, however, use simple sigmoid functions and backpropagation for fitting. Training of these networks generally requires large amounts of data and, consequently, very long training times. In 1993 we reported on the tuning and optimization of a negative ion source using a special neural network[2]. One of the properties of this network (CNLSnet), a modified radial basis function network, is that it is able to fit data with few basis functions. Another is that its training is linear resulting in guaranteed convergence and rapid training. We found the training to be rapid enough to support real-time control. This work has been extended to incorporate this network into an MPC using the model built by the network for predictive control. This controller has shown some remarkable capabilities in such non-linear applications as continuous stirred exothermic tank reactors and high-purity fractional distillation columns[3]. The controller is able not only to build an appropriate model from operating data but also to thin the network continuously so that the model adapts to changing plant conditions. The controller is discussed as well as its possible use in various of the difficult control problems that face this community.

  15. Constrained control landscape for population transfer in a two-level system.

    PubMed

    Moore Tibbetts, Katharine; Rabitz, Herschel

    2015-02-01

    The growing success of controlling the dynamics of quantum systems has been ascribed to the favorable topology of the quantum control landscape, which represents the physical observable as a function of the control field. The landscape contains no suboptimal trapping extrema when reasonable physical assumptions are satisfied, including that no significant constraints are placed on the control resources. A topic of prime interest is understanding the effects of control field constraints on the apparent landscape topology, as constraints on control resources are inevitable in the laboratory. This work particularly explores the effects of constraining the control field fluence on the topology and features of the control landscape for pure-state population transfer in a two-level system through numerical simulations, where unit probability population transfer in the system is only accessible in the strong coupling regime within the model explored here. With the fluence and three phase variables used for optimization, no local optima are found on the landscape, although saddle features are widespread at low fluence values. Global landscape optima are found to exist at two disconnected regions of the fluence that possess distinct topologies and structures. Broad scale connected optimal level sets are found when the fluence is sufficiently large, while the connectivity is reduced as the fluence becomes more constrained. These results suggest that seeking optimal fields with constrained fluence or other resources may encounter complex landscape features, calling for sophisticated algorithms that can efficiently find optimal controls. PMID:25515970

  16. Goal-directed mechanisms that constrain retrieval predict subsequent memory for new "foil" information.

    PubMed

    Vogelsang, David A; Bonnici, Heidi M; Bergström, Zara M; Ranganath, Charan; Simons, Jon S

    2016-08-01

    To remember a previous event, it is often helpful to use goal-directed control processes to constrain what comes to mind during retrieval. Behavioral studies have demonstrated that incidental learning of new "foil" words in a recognition test is superior if the participant is trying to remember studied items that were semantically encoded compared to items that were non-semantically encoded. Here, we applied subsequent memory analysis to fMRI data to understand the neural mechanisms underlying the "foil effect". Participants encoded information during deep semantic and shallow non-semantic tasks and were tested in a subsequent blocked memory task to examine how orienting retrieval towards different types of information influences the incidental encoding of new words presented as foils during the memory test phase. To assess memory for foils, participants performed a further surprise old/new recognition test involving foil words that were encountered during the previous memory test blocks as well as completely new words. Subsequent memory effects, distinguishing successful versus unsuccessful incidental encoding of foils, were observed in regions that included the left inferior frontal gyrus and posterior parietal cortex. The left inferior frontal gyrus exhibited disproportionately larger subsequent memory effects for semantic than non-semantic foils, and significant overlap in activity during semantic, but not non-semantic, initial encoding and foil encoding. The results suggest that orienting retrieval towards different types of foils involves re-implementing the neurocognitive processes that were involved during initial encoding. PMID:27431039

  17. Data-Based Predictive Control with Multirate Prediction Step

    NASA Technical Reports Server (NTRS)

    Barlow, Jonathan S.

    2010-01-01

    Data-based predictive control is an emerging control method that stems from Model Predictive Control (MPC). MPC computes current control action based on a prediction of the system output a number of time steps into the future and is generally derived from a known model of the system. Data-based predictive control has the advantage of deriving predictive models and controller gains from input-output data. Thus, a controller can be designed from the outputs of complex simulation code or a physical system where no explicit model exists. If the output data happens to be corrupted by periodic disturbances, the designed controller will also have the built-in ability to reject these disturbances without the need to know them. When data-based predictive control is implemented online, it becomes a version of adaptive control. One challenge of MPC is computational requirements increasing with prediction horizon length. This paper develops a closed-loop dynamic output feedback controller that minimizes a multi-step-ahead receding-horizon cost function with multirate prediction step. One result is a reduced influence of prediction horizon and the number of system outputs on the computational requirements of the controller. Another result is an emphasis on portions of the prediction window that are sampled more frequently. A third result is the ability to include more outputs in the feedback path than in the cost function.

  18. Broadband Noise Control Using Predictive Techniques

    NASA Technical Reports Server (NTRS)

    Eure, Kenneth W.; Juang, Jer-Nan

    1997-01-01

    Predictive controllers have found applications in a wide range of industrial processes. Two types of such controllers are generalized predictive control and deadbeat control. Recently, deadbeat control has been augmented to include an extended horizon. This modification, named deadbeat predictive control, retains the advantage of guaranteed stability and offers a novel way of control weighting. This paper presents an application of both predictive control techniques to vibration suppression of plate modes. Several system identification routines are presented. Both algorithms are outlined and shown to be useful in the suppression of plate vibrations. Experimental results are given and the algorithms are shown to be applicable to non- minimal phase systems.

  19. Constraining predictions of tundra permafrost and vegetation through model-data feedbacks and data-assimilation

    NASA Astrophysics Data System (ADS)

    Davidson, C. D.; Dietze, M.

    2011-12-01

    Arctic climate is warming at a rate disproportionate to the rest of the world, and recent interest has emerged in using terrestrial biosphere models to understand and predict the response of tundra ecosystems to such warming. Of particular interest are the potential feedbacks between permafrost melting, plant community dynamics, and biogeochemical cycles. Here, we report on efforts to calibrate and validate version 2 of the Ecosystem Demography model (ED2) for the Alaskan tundra and on the use of model analyses to motivate targeted field measurements. ED2 is a terrestrial biosphere model unique in its ability to scale physiological and plant community dynamics to regional levels. We began by assessing the ability of ED2's land surface model to capture permafrost thermodynamics and hydrology. Simulations at Barrow and Toolik Lake, Alaska bore several incongruities with observed data, with soil temperatures significantly higher and soil moisture lower than observed. Modifications were made to increase the soil column depth and to simulate the effect of wind compaction on snow density, and in turn, the insulation of winter soils. In addition to these changes, a new soil class was created to represent unique characteristics within the organic horizon of tundra soils. Together these changes significantly improved permafrost dynamics without substantially altering dynamics in the temperate region. To capture tundra vegetation dynamics, tundra species were classified into three plant functional types (graminoid, deciduous shrub, evergreen shrub). ED2 was then iteratively calibrated for the tundra using the Predictive Ecosystem Analyzer (PEcAn), a scientific workflow and ecoinformatics toolbox developed to aid model parameterization and analysis. Initial parameter estimates were derived from a formal Bayesian meta-analysis of compiled plant trait data. Sensitivity analyses and variance decomposition demonstrated that model uncertainties were driven by the minimum

  20. A self-adjusting compliant bilateral control scheme for time-delay teleoperation in constrained environment

    NASA Astrophysics Data System (ADS)

    Chen, Zhang; Liang, Bin; Zhang, Tao

    2016-05-01

    When teleoperations are implemented in the constrained environment, the lack of environment information would lead to contacts and undesired excessive contact forces, which are more evident with the existence of time delays. In this paper, a hybrid compliant bilateral controller is proposed to deal with this problem. The controller adopts a self-adjusting selecting scheme to divide the subspaces online. The master and slave manipulators are synchronized in the position subspace through an adaptive bilateral control scheme. At the same time, the slave manipulator is controlled by a local sliding mode impedance controller in order to achieve the desired compliant motion when contacting with the environment. Theoretical analysis proves the stability of the hybrid bilateral controller and concludes the transient performance of the teleoperators. Simulations are carried out to verify the effectiveness of the proposed approach. The results show that the control goals are all achieved.

  1. Robust Constrained Optimization Approach to Control Design for International Space Station Centrifuge Rotor Auto Balancing Control System

    NASA Technical Reports Server (NTRS)

    Postma, Barry Dirk

    2005-01-01

    This thesis discusses application of a robust constrained optimization approach to control design to develop an Auto Balancing Controller (ABC) for a centrifuge rotor to be implemented on the International Space Station. The design goal is to minimize a performance objective of the system, while guaranteeing stability and proper performance for a range of uncertain plants. The Performance objective is to minimize the translational response of the centrifuge rotor due to a fixed worst-case rotor imbalance. The robustness constraints are posed with respect to parametric uncertainty in the plant. The proposed approach to control design allows for both of these objectives to be handled within the framework of constrained optimization. The resulting controller achieves acceptable performance and robustness characteristics.

  2. Predictive Control of Speededness in Adaptive Testing

    ERIC Educational Resources Information Center

    van der Linden, Wim J.

    2009-01-01

    An adaptive testing method is presented that controls the speededness of a test using predictions of the test takers' response times on the candidate items in the pool. Two different types of predictions are investigated: posterior predictions given the actual response times on the items already administered and posterior predictions that use the…

  3. Generalized Predictive and Neural Generalized Predictive Control of Aerospace Systems

    NASA Technical Reports Server (NTRS)

    Kelkar, Atul G.

    2000-01-01

    The research work presented in this thesis addresses the problem of robust control of uncertain linear and nonlinear systems using Neural network-based Generalized Predictive Control (NGPC) methodology. A brief overview of predictive control and its comparison with Linear Quadratic (LQ) control is given to emphasize advantages and drawbacks of predictive control methods. It is shown that the Generalized Predictive Control (GPC) methodology overcomes the drawbacks associated with traditional LQ control as well as conventional predictive control methods. It is shown that in spite of the model-based nature of GPC it has good robustness properties being special case of receding horizon control. The conditions for choosing tuning parameters for GPC to ensure closed-loop stability are derived. A neural network-based GPC architecture is proposed for the control of linear and nonlinear uncertain systems. A methodology to account for parametric uncertainty in the system is proposed using on-line training capability of multi-layer neural network. Several simulation examples and results from real-time experiments are given to demonstrate the effectiveness of the proposed methodology.

  4. Model-data assimilation of multiple phenological observations to constrain and predict leaf area index.

    PubMed

    Viskari, Toni; Hardiman, Brady; Desai, Ankur R; Dietze, Michael C

    2015-03-01

    Our limited ability to accurately simulate leaf phenology is a leading source of uncertainty in models of ecosystem carbon cycling. We evaluate if continuously updating canopy state variables with observations is beneficial for predicting phenological events. We employed ensemble adjustment Kalman filter (EAKF) to update predictions of leaf area index (LAI) and leaf extension using tower-based photosynthetically active radiation (PAR) and moderate resolution imaging spectrometer (MODIS) data for 2002-2005 at Willow Creek, Wisconsin, USA, a mature, even-aged, northern hardwood, deciduous forest. The ecosystem demography model version 2 (ED2) was used as the prediction model, forced by offline climate data. EAKF successfully incorporated information from both the observations and model predictions weighted by their respective uncertainties. The resulting. estimate reproduced the observed leaf phenological cycle in the spring and the fall better than a parametric model prediction. These results indicate that during spring the observations contribute most in determining the correct bud-burst date, after which the model performs well, but accurately modeling fall leaf senesce requires continuous model updating from observations. While the predicted net ecosystem exchange (NEE) of CO2 precedes tower observations and unassimilated model predictions in the spring, overall the prediction follows observed NEE better than the model alone. Our results show state data assimilation successfully simulates the evolution of plant leaf phenology and improves model predictions of forest NEE. PMID:26263674

  5. Inverse Dynamics Control of Constrained Robots in the Presence of Joint Flexibility

    NASA Astrophysics Data System (ADS)

    IDER, S. KEMAL

    1999-07-01

    An inverse dynamics control algorithm for constrained flexible-joint robots is developed. It is shown that in a flexible-joint robot, the acceleration level inverse dynamic equations are singular because of the elastic media. Implicit numerical integration methods that account for the higher order derivative information are utilized for solving the singular set of differential equations. The control law proposed linearizes and decouples the system and achieves simultaneous and asymptotically stable trajectory tracking control of the end-effector motion and contact forces. Together with the integrators for improving robustness due to modelling errors and disturbances, a fifth order position error dynamics and a third order contact force error dynamics are obtained. A 3R spatial robot with all joints flexible is simulated to illustrate the performance of the method.

  6. Directional control of lamellipodia extension by constraining cell shape and orienting cell tractional forces

    NASA Technical Reports Server (NTRS)

    Parker, Kevin Kit; Brock, Amy Lepre; Brangwynne, Cliff; Mannix, Robert J.; Wang, Ning; Ostuni, Emanuele; Geisse, Nicholas A.; Adams, Josephine C.; Whitesides, George M.; Ingber, Donald E.

    2002-01-01

    Directed cell migration is critical for tissue morphogenesis and wound healing, but the mechanism of directional control is poorly understood. Here we show that the direction in which cells extend their leading edge can be controlled by constraining cell shape using micrometer-sized extracellular matrix (ECM) islands. When cultured on square ECM islands in the presence of motility factors, cells preferentially extended lamellipodia, filopodia, and microspikes from their corners. Square cells reoriented their stress fibers and focal adhesions so that tractional forces were concentrated in these corner regions. When cell tension was dissipated, lamellipodia extension ceased. Mechanical interactions between cells and ECM that modulate cytoskeletal tension may therefore play a key role in the control of directional cell motility.

  7. Interseismic modulation of stress orientations in southern California predicted by geodetically constrained block models

    NASA Astrophysics Data System (ADS)

    Langstaff, M. A.; Loveless, J. P.; Meade, B. J.

    2013-12-01

    We combine stressing rate estimates from geodetically constrained block models with candidate background stress fields to quantify the temporal evolution of stress over the earthquake cycle in southern California. Observations of p-axis rotations have been previously documented both before and after large earthquake events, and postmainshock seismicity indicates ~1.5 deg/yr of p-axis rotation in the vicinities of the Landers, Northridge, Elmore Ranch and Superstition Hills, and Ridgecrest earthquakes. Here we integrate regional stress rate estimates with the annual stress changes generated by interseismic fault system activity to place bounds on the regional background stress magnitudes that may be consistent with the inferred p-axis rotations. These models of time-dependent stress orientations also provide mechanical constraints on the range of stress variability possible through a simple earthquake cycle, including the orientation of stresses just prior to large ruptures.

  8. Neural adaptive chaotic control with constrained input using state and output feedback

    NASA Astrophysics Data System (ADS)

    Gao, Shi-Gen; Dong, Hai-Rong; Sun, Xu-Bin; Ning, Bin

    2015-01-01

    This paper presents neural adaptive control methods for a class of chaotic nonlinear systems in the presence of constrained input and unknown dynamics. To attenuate the influence of constrained input caused by actuator saturation, an effective auxiliary system is constructed to prevent the stability of closed loop system from being destroyed. Radial basis function neural networks (RBF-NNs) are used in the online learning of the unknown dynamics, which do not require an off-line training phase. Both state and output feedback control laws are developed. In the output feedback case, high-order sliding mode (HOSM) observer is utilized to estimate the unmeasurable system states. Simulation results are presented to verify the effectiveness of proposed schemes. Project supported by the National High Technology Research and Development Program of China (Grant No. 2012AA041701), the Fundamental Research Funds for Central Universities of China (Grant No. 2013JBZ007), the National Natural Science Foundation of China (Grant Nos. 61233001, 61322307, 61304196, and 61304157), and the Research Program of Beijing Jiaotong University, China (Grant No. RCS2012ZZ003).

  9. Optimization and static output-feedback control for half-car active suspensions with constrained information

    NASA Astrophysics Data System (ADS)

    Wang, Gang; Chen, Changzheng; Yu, Shenbo

    2016-09-01

    In this paper, the static output-feedback control problem of active suspension systems with information structure constraints is investigated. In order to simultaneously improve the ride comfort and stability, a half car model is used. Other constraints such as suspension deflection, actuator saturation, and controller constrained information are also considered. A novel static output-feedback design method based on the variable substitution is employed in the controller design. A single-step linear matrix inequality (LMI) optimization problem is solved to derive the initial feasible solution with a sparsity constraint. The initial infeasibility issue of the static output-feedback is resolved by using state-feedback information. Specifically, an optimization algorithm is proposed to search for less conservative results based on the feasible controller gain matrix. Finally, the validity of the designed controller for different road profiles is illustrated through numerical examples. The simulation results indicate that the optimized static output-feedback controller can achieve better suspension performances when compared with the feasible static output-feedback controller.

  10. Reinforcement learning solution for HJB equation arising in constrained optimal control problem.

    PubMed

    Luo, Biao; Wu, Huai-Ning; Huang, Tingwen; Liu, Derong

    2015-11-01

    The constrained optimal control problem depends on the solution of the complicated Hamilton-Jacobi-Bellman equation (HJBE). In this paper, a data-based off-policy reinforcement learning (RL) method is proposed, which learns the solution of the HJBE and the optimal control policy from real system data. One important feature of the off-policy RL is that its policy evaluation can be realized with data generated by other behavior policies, not necessarily the target policy, which solves the insufficient exploration problem. The convergence of the off-policy RL is proved by demonstrating its equivalence to the successive approximation approach. Its implementation procedure is based on the actor-critic neural networks structure, where the function approximation is conducted with linearly independent basis functions. Subsequently, the convergence of the implementation procedure with function approximation is also proved. Finally, its effectiveness is verified through computer simulations. PMID:26356598

  11. The use of atmospheric measurements to constrain model predictions of ozone change from chlorine perturbations

    NASA Technical Reports Server (NTRS)

    Douglass, Anne R.; Stolarski, Richard S.

    1987-01-01

    Atmospheric photochemistry models have been used to predict the sensitivity of the ozone layer to various perturbations. These same models also predict concentrations of chemical species in the present day atmosphere which can be compared to observations. Model results for both present day values and sensitivity to perturbation depend upon input data for reaction rates, photodissociation rates, and boundary conditions. A method of combining the results of a Monte Carlo uncertainty analysis with the existing set of present atmospheric species measurements is developed. The method is used to examine the range of values for the sensitivity of ozone to chlorine perturbations that is possible within the currently accepted ranges for input data. It is found that model runs which predict ozone column losses much greater than 10 percent as a result of present fluorocarbon fluxes produce concentrations and column amounts in the present atmosphere which are inconsistent with the measurements for ClO, HCl, NO, NO2, and HNO3.

  12. Predicting CME Ejecta and Sheath Front Arrival at L1 with a Data-constrained Physical Model

    NASA Astrophysics Data System (ADS)

    Hess, Phillip; Zhang, Jie

    2015-10-01

    We present a method for predicting the arrival of a coronal mass ejection (CME) flux rope in situ, as well as the sheath of solar wind plasma accumulated ahead of the driver. For faster CMEs, the front of this sheath will be a shock. The method is based upon geometrical separate measurement of the CME ejecta and sheath. These measurements are used to constrain a drag-based model, improved by including both a height dependence and accurate de-projected velocities. We also constrain the geometry of the model to determine the error introduced as a function of the deviation of the CME nose from the Sun-Earth line. The CME standoff-distance in the heliosphere fit is also calculated, fit, and combined with the ejecta model to determine sheath arrival. Combining these factors allows us to create predictions for both fronts at the L1 point and compare them against observations. We demonstrate an ability to predict the sheath arrival with an average error of under 3.5 hr, with an rms error of about 1.58 hr. For the ejecta the error is less than 1.5 hr, with an rms error within 0.76 hr. We also discuss the physical implications of our model for CME expansion and density evolution. We show the power of our method with ideal data and demonstrate the practical implications of having a permanent L5 observer with space weather forecasting capabilities, while also discussing the limitations of the method that will have to be addressed in order to create a real-time forecasting tool.

  13. Exploration of the dynamic properties of protein complexes predicted from spatially constrained protein-protein interaction networks.

    PubMed

    Yen, Eric A; Tsay, Aaron; Waldispuhl, Jerome; Vogel, Jackie

    2014-05-01

    Protein complexes are not static, but rather highly dynamic with subunits that undergo 1-dimensional diffusion with respect to each other. Interactions within protein complexes are modulated through regulatory inputs that alter interactions and introduce new components and deplete existing components through exchange. While it is clear that the structure and function of any given protein complex is coupled to its dynamical properties, it remains a challenge to predict the possible conformations that complexes can adopt. Protein-fragment Complementation Assays detect physical interactions between protein pairs constrained to ≤8 nm from each other in living cells. This method has been used to build networks composed of 1000s of pair-wise interactions. Significantly, these networks contain a wealth of dynamic information, as the assay is fully reversible and the proteins are expressed in their natural context. In this study, we describe a method that extracts this valuable information in the form of predicted conformations, allowing the user to explore the conformational landscape, to search for structures that correlate with an activity state, and estimate the abundance of conformations in the living cell. The generator is based on a Markov Chain Monte Carlo simulation that uses the interaction dataset as input and is constrained by the physical resolution of the assay. We applied this method to an 18-member protein complex composed of the seven core proteins of the budding yeast Arp2/3 complex and 11 associated regulators and effector proteins. We generated 20,480 output structures and identified conformational states using principle component analysis. We interrogated the conformation landscape and found evidence of symmetry breaking, a mixture of likely active and inactive conformational states and dynamic exchange of the core protein Arc15 between core and regulatory components. Our method provides a novel tool for prediction and visualization of the hidden

  14. Risk prediction for acute hypotensive patients by using gap constrained sequential contrast patterns.

    PubMed

    Ghosh, Shameek; Feng, Mengling; Nguyen, Hung; Li, Jinyan

    2014-01-01

    The development of acute hypotension in a critical care patient causes decreased tissue perfusion, which can lead to multiple organ failures. Existing systems that employ population level prognostic scores to stratify the risks of critical care patients based on hypotensive episodes are suboptimal in predicting impending critical conditions, or in directing an effective goal-oriented therapy. In this work, we propose a sequential pattern mining approach which target novel and informative sequential contrast patterns for the detection of hypotension episodes. Our results demonstrate the competitiveness of the approach, in terms of both prediction performance as well as knowledge interpretability. Hence, sequential patterns-based computational biomarkers can help comprehend unusual episodes in critical care patients ahead of time for early warning systems. Sequential patterns can thus aid in the development of a powerful critical care knowledge discovery framework for facilitating novel patient treatment plans. PMID:25954447

  15. Participation of African social scientists in malaria control: identifying enabling and constraining factors

    PubMed Central

    Ngalame, Paulyne M; Williams, Holly Ann; Jones, Caroline; Nyamongo, Isaac; Diop, Samba; Gaspar, Felisbela

    2004-01-01

    Objective To examine the enabling and constraining factors that influence African social scientists involvement in malaria control. Methods Convenience and snowball sampling was used to identify participants. Data collection was conducted in two phases: a mailed survey was followed by in-depth phone interviews with selected individuals chosen from the survey. Findings Most participants did not necessarily seek malaria as a career path. Having a mentor who provided research and training opportunities, and developing strong technical skills in malaria control and grant or proposal writing facilitated career opportunities in malaria. A paucity of jobs and funding and inadequate technical skills in malaria limited the type and number of opportunities available to social scientists in malaria control. Conclusion Understanding the factors that influence job satisfaction, recruitment and retention in malaria control is necessary for better integration of social scientists into malaria control. However, given the wide array of skills that social scientists have and the variety of deadly diseases competing for attention in Sub Saharan Africa, it might be more cost effective to employ social scientists to work broadly on issues common to communicable diseases in general rather than solely on malaria. PMID:15579214

  16. Stability and Control of Constrained Three-Dimensional Robotic Systems with Application to Bipedal Postural Movements

    NASA Astrophysics Data System (ADS)

    Kallel, Hichem

    Three classes of postural adjustments are investigated with the view of a better understanding of the control mechanisms involved in human movement. The control mechanisms and responses of human or computer models to deliberately induced disturbances in postural adjustments are the focus of this dissertation. The classes of postural adjustments are automatic adjustments, (i.e. adjustments not involving voluntary deliberate movement), adjustments involving imposition of constraints for the purpose of maintaining support forces, and adjustments involving violation and imposition of constraints for the purpose of maintaining balance, (i.e. taking one or more steps). For each class, based on the physiological attributes of the control mechanisms in human movements, control strategies are developed to synthesize the desired postural response. The control strategies involve position and velocity feedback control, on line relegation control, and pre-stored trajectory control. Stability analysis for constrained and unconstrained maneuvers is carried out based on Lyapunov stability theorems. The analysis is based on multi-segment biped robots. Depending on the class of postural adjustments, different biped models are developed. An eight-segment three dimensional biped model is formulated for the study of automatic adjustments and adjustments for balance. For the study of adjustments for support, a four segment lateral biped model is considered. Muscle synergies in automatic adjustments are analyzed based on a three link six muscle system. The muscle synergies considered involve minimal muscle number and muscle co-activation. The role of active and passive feedback in these automatic adjustments is investigated based on the specified stiffness and damping of the segments. The effectiveness of the control strategies and the role of muscle synergies in automatic adjustments are demonstrated by a number of digital computer simulations.

  17. A Robustly Stabilizing Model Predictive Control Algorithm

    NASA Technical Reports Server (NTRS)

    Ackmece, A. Behcet; Carson, John M., III

    2007-01-01

    A model predictive control (MPC) algorithm that differs from prior MPC algorithms has been developed for controlling an uncertain nonlinear system. This algorithm guarantees the resolvability of an associated finite-horizon optimal-control problem in a receding-horizon implementation.

  18. Improving prediction of hydraulic conductivity by constraining capillary bundle models to a maximum pore size

    NASA Astrophysics Data System (ADS)

    Iden, Sascha C.; Peters, Andre; Durner, Wolfgang

    2015-11-01

    The prediction of unsaturated hydraulic conductivity from the soil water retention curve by pore-bundle models is a cost-effective and widely applied technique. One problem for conductivity predictions from retention functions with continuous derivatives, i.e. continuous water capacity functions, is that the hydraulic conductivity curve exhibits a sharp drop close to water saturation if the pore-size distribution is wide. So far this artifact has been ignored or removed by introducing an explicit air-entry value into the capillary saturation function. However, this correction leads to a retention function which is not continuously differentiable. We present a new parameterization of the hydraulic properties which uses the original saturation function (e.g. of van Genuchten) and introduces a maximum pore radius only in the pore-bundle model. In contrast to models using an explicit air entry, the resulting conductivity function is smooth and increases monotonically close to saturation. The model concept can easily be applied to any combination of retention curve and pore-bundle model. We derive closed-form expressions for the unimodal and multimodal van Genuchten-Mualem models and apply the model concept to curve fitting and inverse modeling of a transient outflow experiment. Since the new model retains the smoothness and continuous differentiability of the retention model and eliminates the sharp drop in conductivity close to saturation, the resulting hydraulic functions are physically more reasonable and ideal for numerical simulations with the Richards equation or multiphase flow models.

  19. Control of nonlinear systems with applications to constrained robots and spacecraft attitude stabilization

    NASA Technical Reports Server (NTRS)

    Krishnan, Hariharan

    1993-01-01

    This thesis is organized in two parts. In Part 1, control systems described by a class of nonlinear differential and algebraic equations are introduced. A procedure for local stabilization based on a local state realization is developed. An alternative approach to local stabilization is developed based on a classical linearization of the nonlinear differential-algebraic equations. A theoretical framework is established for solving a tracking problem associated with the differential-algebraic system. First, a simple procedure is developed for the design of a feedback control law which ensures, at least locally, that the tracking error in the closed loop system lies within any given bound if the reference inputs are sufficiently slowly varying. Next, by imposing additional assumptions, a procedure is developed for the design of a feedback control law which ensures that the tracking error in the closed loop system approaches zero exponentially for reference inputs which are not necessarily slowly varying. The control design methodologies are used for simultaneous force and position control in constrained robot systems. The differential-algebraic equations are shown to characterize the slow dynamics of a certain nonlinear control system in nonstandard singularly perturbed form. In Part 2, the attitude stabilization (reorientation) of a rigid spacecraft using only two control torques is considered. First, the case of momentum wheel actuators is considered. The complete spacecraft dynamics are not controllable. However, the spacecraft dynamics are small time locally controllable in a reduced sense. The reduced spacecraft dynamics cannot be asymptotically stabilized using continuous feedback, but a discontinuous feedback control strategy is constructed. Next, the case of gas jet actuators is considered. If the uncontrolled principal axis is not an axis of symmetry, the complete spacecraft dynamics are small time locally controllable. However, the spacecraft attitude

  20. An efficient artificial bee colony algorithm with application to nonlinear predictive control

    NASA Astrophysics Data System (ADS)

    Ait Sahed, Oussama; Kara, Kamel; Benyoucef, Abousoufyane; Laid Hadjili, Mohamed

    2016-05-01

    In this paper a constrained nonlinear predictive control algorithm, that uses the artificial bee colony (ABC) algorithm to solve the optimization problem, is proposed. The main objective is to derive a simple and efficient control algorithm that can solve the nonlinear constrained optimization problem with minimal computational time. Indeed, a modified version, enhancing the exploring and the exploitation capabilities, of the ABC algorithm is proposed and used to design a nonlinear constrained predictive controller. This version allows addressing the premature and the slow convergence drawbacks of the standard ABC algorithm, using a modified search equation, a well-known organized distribution mechanism for the initial population and a new equation for the limit parameter. A convergence statistical analysis of the proposed algorithm, using some well-known benchmark functions is presented and compared with several other variants of the ABC algorithm. To demonstrate the efficiency of the proposed algorithm in solving engineering problems, the constrained nonlinear predictive control of the model of a Multi-Input Multi-Output industrial boiler is considered. The control performances of the proposed ABC algorithm-based controller are also compared to those obtained using some variants of the ABC algorithms.

  1. Prediction, Control and the Challenge to Complexity

    ERIC Educational Resources Information Center

    Radford, Mike

    2008-01-01

    The dominant discourse in research, management and teaching is one that may loosely be characterised as that of prediction and control. The objective of research is to identify causal correlations within policy, management, teaching strategies and educational outcomes that are sufficiently robust as to be able to predict outcomes and make…

  2. A Course in... Model Predictive Control.

    ERIC Educational Resources Information Center

    Arkun, Yaman; And Others

    1988-01-01

    Describes a graduate engineering course which specializes in model predictive control. Lists course outline and scope. Discusses some specific topics and teaching methods. Suggests final projects for the students. (MVL)

  3. Superpartners at LHC and future colliders: predictions from constrained compactified M-theory

    NASA Astrophysics Data System (ADS)

    Ellis, Sebastian A. R.; Kane, Gordon L.; Zheng, Bob

    2015-07-01

    We study a realistic top-down M-theory compactification with low-scale effective Supersymmetry, consistent with phenomenological constraints. A combination of top-down and generic phenomenological constraints fix the spectrum. Three and only three superpartner channels, , χ {2/0} χ {1/±} and χ {1/+} χ {1/-} (where χ {2/0} , χ {1/±} are Wino-like), are expected to be observable at LHC-14. We also investigate the prospects of finding heavy squarks and Higgsinos at future colliders. Gluino-stop-top, gluino-sbottom-bottom associated production and first generation squark associated production should be observable at a 100 TeV collider, along with direct production of heavy Higgsinos. Within this framework the discovery of a single sparticle is sufficient to determine uniquely the SUSY spectrum, yielding a number of concrete testable predictions for LHC-14 and future colliders, and determination of M 3/2 and thereby other fundamental quantities.

  4. Adaptive optimal control of unknown constrained-input systems using policy iteration and neural networks.

    PubMed

    Modares, Hamidreza; Lewis, Frank L; Naghibi-Sistani, Mohammad-Bagher

    2013-10-01

    This paper presents an online policy iteration (PI) algorithm to learn the continuous-time optimal control solution for unknown constrained-input systems. The proposed PI algorithm is implemented on an actor-critic structure where two neural networks (NNs) are tuned online and simultaneously to generate the optimal bounded control policy. The requirement of complete knowledge of the system dynamics is obviated by employing a novel NN identifier in conjunction with the actor and critic NNs. It is shown how the identifier weights estimation error affects the convergence of the critic NN. A novel learning rule is developed to guarantee that the identifier weights converge to small neighborhoods of their ideal values exponentially fast. To provide an easy-to-check persistence of excitation condition, the experience replay technique is used. That is, recorded past experiences are used simultaneously with current data for the adaptation of the identifier weights. Stability of the whole system consisting of the actor, critic, system state, and system identifier is guaranteed while all three networks undergo adaptation. Convergence to a near-optimal control law is also shown. The effectiveness of the proposed method is illustrated with a simulation example. PMID:24808590

  5. Model Constrained by Visual Hierarchy Improves Prediction of Neural Responses to Natural Scenes.

    PubMed

    Antolík, Ján; Hofer, Sonja B; Bednar, James A; Mrsic-Flogel, Thomas D

    2016-06-01

    Accurate estimation of neuronal receptive fields is essential for understanding sensory processing in the early visual system. Yet a full characterization of receptive fields is still incomplete, especially with regard to natural visual stimuli and in complete populations of cortical neurons. While previous work has incorporated known structural properties of the early visual system, such as lateral connectivity, or imposing simple-cell-like receptive field structure, no study has exploited the fact that nearby V1 neurons share common feed-forward input from thalamus and other upstream cortical neurons. We introduce a new method for estimating receptive fields simultaneously for a population of V1 neurons, using a model-based analysis incorporating knowledge of the feed-forward visual hierarchy. We assume that a population of V1 neurons shares a common pool of thalamic inputs, and consists of two layers of simple and complex-like V1 neurons. When fit to recordings of a local population of mouse layer 2/3 V1 neurons, our model offers an accurate description of their response to natural images and significant improvement of prediction power over the current state-of-the-art methods. We show that the responses of a large local population of V1 neurons with locally diverse receptive fields can be described with surprisingly limited number of thalamic inputs, consistent with recent experimental findings. Our structural model not only offers an improved functional characterization of V1 neurons, but also provides a framework for studying the relationship between connectivity and function in visual cortical areas. PMID:27348548

  6. Model Constrained by Visual Hierarchy Improves Prediction of Neural Responses to Natural Scenes

    PubMed Central

    Antolík, Ján; Hofer, Sonja B.; Bednar, James A.; Mrsic-Flogel, Thomas D.

    2016-01-01

    Accurate estimation of neuronal receptive fields is essential for understanding sensory processing in the early visual system. Yet a full characterization of receptive fields is still incomplete, especially with regard to natural visual stimuli and in complete populations of cortical neurons. While previous work has incorporated known structural properties of the early visual system, such as lateral connectivity, or imposing simple-cell-like receptive field structure, no study has exploited the fact that nearby V1 neurons share common feed-forward input from thalamus and other upstream cortical neurons. We introduce a new method for estimating receptive fields simultaneously for a population of V1 neurons, using a model-based analysis incorporating knowledge of the feed-forward visual hierarchy. We assume that a population of V1 neurons shares a common pool of thalamic inputs, and consists of two layers of simple and complex-like V1 neurons. When fit to recordings of a local population of mouse layer 2/3 V1 neurons, our model offers an accurate description of their response to natural images and significant improvement of prediction power over the current state-of-the-art methods. We show that the responses of a large local population of V1 neurons with locally diverse receptive fields can be described with surprisingly limited number of thalamic inputs, consistent with recent experimental findings. Our structural model not only offers an improved functional characterization of V1 neurons, but also provides a framework for studying the relationship between connectivity and function in visual cortical areas. PMID:27348548

  7. Experimental Investigation on Adaptive Robust Controller Designs Applied to Constrained Manipulators

    PubMed Central

    Nogueira, Samuel L.; Pazelli, Tatiana F. P. A. T.; Siqueira, Adriano A. G.; Terra, Marco H.

    2013-01-01

    In this paper, two interlaced studies are presented. The first is directed to the design and construction of a dynamic 3D force/moment sensor. The device is applied to provide a feedback signal of forces and moments exerted by the robotic end-effector. This development has become an alternative solution to the existing multi-axis load cell based on static force and moment sensors. The second one shows an experimental investigation on the performance of four different adaptive nonlinear ℋ∞ control methods applied to a constrained manipulator subject to uncertainties in the model and external disturbances. Coordinated position and force control is evaluated. Adaptive procedures are based on neural networks and fuzzy systems applied in two different modeling strategies. The first modeling strategy requires a well-known nominal model for the robot, so that the intelligent systems are applied only to estimate the effects of uncertainties, unmodeled dynamics and external disturbances. The second strategy considers that the robot model is completely unknown and, therefore, intelligent systems are used to estimate these dynamics. A comparative study is conducted based on experimental implementations performed with an actual planar manipulator and with the dynamic force sensor developed for this purpose. PMID:23598503

  8. An Experimental Path to Constraining the Origins of the Jupiter Trojans Using Observations, Theoretical Predictions, and Laboratory Simulants

    NASA Astrophysics Data System (ADS)

    Blacksberg, Jordana; Eiler, John; Brown, Mike; Ehlmann, Bethany; Hand, Kevin; Hodyss, Robert; Mahjoub, Ahmed; Poston, Michael; Liu, Yang; Choukroun, Mathieu; Carey, Elizabeth; Wong, Ian

    2014-11-01

    Hypotheses based on recent dynamical models (e.g. the Nice Model) shape our current understanding of solar system evolution, suggesting radical rearrangement in the first hundreds of millions of years of its history, changing the orbital distances of Jupiter, Saturn, and a large number of small bodies. The goal of this work is to build a methodology to concretely tie individual solar system bodies to dynamical models using observables, providing evidence for their origins and evolutionary pathways. Ultimately, one could imagine identifying a set of chemical or mineralogical signatures that could quantitatively and predictably measure the radial distance at which icy and rocky bodies first accreted. The target of the work presented here is the Jupiter Trojan asteroids, predicted by the Nice Model to have initially formed in the Kuiper belt and later been scattered inward to co-orbit with Jupiter. Here we present our strategy which is fourfold: (1) Generate predictions about the mineralogical, chemical, and isotopic compositions of materials accreted in the early solar system as a function of distance from the Sun. (2) Use temperature and irradiation to simulate evolutionary processing of ices and silicates, and measure the alteration in spectral properties from the UV to mid-IR. (3) Characterize simulants to search for potential fingerprints of origin and processing pathways, and (4) Use telescopic observations to increase our knowledge of the Trojan asteroids, collecting data on populations and using spectroscopy to constrain their compositions. In addition to the overall strategy, we will present preliminary results on compositional modeling, observations, and the synthesis, processing, and characterization of laboratory simulants including ices and silicates. This work has been supported by the Keck Institute for Space Studies (KISS). The research described here was carried out at the Jet Propulsion Laboratory, Caltech, under a contract with the National

  9. Robust predictive cruise control for commercial vehicles

    NASA Astrophysics Data System (ADS)

    Junell, Jaime; Tumer, Kagan

    2013-10-01

    In this paper we explore learning-based predictive cruise control and the impact of this technology on increasing fuel efficiency for commercial trucks. Traditional cruise control is wasteful when maintaining a constant velocity over rolling hills. Predictive cruise control (PCC) is able to look ahead at future road conditions and solve for a cost-effective course of action. Model- based controllers have been implemented in this field but cannot accommodate many complexities of a dynamic environment which includes changing road and vehicle conditions. In this work, we focus on incorporating a learner into an already successful model- based predictive cruise controller in order to improve its performance. We explore back propagating neural networks to predict future errors then take actions to prevent said errors from occurring. The results show that this approach improves the model based PCC by up to 60% under certain conditions. In addition, we explore the benefits of classifier ensembles to further improve the gains due to intelligent cruise control.

  10. Conformationally Constrained Histidines in the Design of Peptidomimetics: Strategies for the χ-Space Control

    PubMed Central

    Stefanucci, Azzurra; Pinnen, Francesco; Feliciani, Federica; Cacciatore, Ivana; Lucente, Gino; Mollica, Adriano

    2011-01-01

    A successful design of peptidomimetics must come to terms with χ-space control. The incorporation of χ-space constrained amino acids into bioactive peptides renders the χ1 and χ2 torsional angles of pharmacophore amino acids critical for activity and selectivity as with other relevant structural features of the template. This review describes histidine analogues characterized by replacement of native α and/or β-hydrogen atoms with alkyl substituents as well as analogues with α, β-didehydro unsaturation or Cα-Cβ cyclopropane insertion (ACC derivatives). Attention is also dedicated to the relevant field of β-aminoacid chemistry by describing the synthesis of β2- and β3-models (β-hHis). Structural modifications leading to cyclic imino derivatives such as spinacine, aza-histidine and analogues with shortening or elongation of the native side chain (nor-histidine and homo-histidine, respectively) are also described. Examples of the use of the described analogues to replace native histidine in bioactive peptides are also given. PMID:21686155

  11. Nonlinear model predictive control based on collective neurodynamic optimization.

    PubMed

    Yan, Zheng; Wang, Jun

    2015-04-01

    In general, nonlinear model predictive control (NMPC) entails solving a sequential global optimization problem with a nonconvex cost function or constraints. This paper presents a novel collective neurodynamic optimization approach to NMPC without linearization. Utilizing a group of recurrent neural networks (RNNs), the proposed collective neurodynamic optimization approach searches for optimal solutions to global optimization problems by emulating brainstorming. Each RNN is guaranteed to converge to a candidate solution by performing constrained local search. By exchanging information and iteratively improving the starting and restarting points of each RNN using the information of local and global best known solutions in a framework of particle swarm optimization, the group of RNNs is able to reach global optimal solutions to global optimization problems. The essence of the proposed collective neurodynamic optimization approach lies in the integration of capabilities of global search and precise local search. The simulation results of many cases are discussed to substantiate the effectiveness and the characteristics of the proposed approach. PMID:25608315

  12. Network-Constrained Group Lasso for High-Dimensional Multinomial Classification with Application to Cancer Subtype Prediction

    PubMed Central

    Tian, Xinyu; Wang, Xuefeng; Chen, Jun

    2014-01-01

    Classic multinomial logit model, commonly used in multiclass regression problem, is restricted to few predictors and does not take into account the relationship among variables. It has limited use for genomic data, where the number of genomic features far exceeds the sample size. Genomic features such as gene expressions are usually related by an underlying biological network. Efficient use of the network information is important to improve classification performance as well as the biological interpretability. We proposed a multinomial logit model that is capable of addressing both the high dimensionality of predictors and the underlying network information. Group lasso was used to induce model sparsity, and a network-constraint was imposed to induce the smoothness of the coefficients with respect to the underlying network structure. To deal with the non-smoothness of the objective function in optimization, we developed a proximal gradient algorithm for efficient computation. The proposed model was compared to models with no prior structure information in both simulations and a problem of cancer subtype prediction with real TCGA (the cancer genome atlas) gene expression data. The network-constrained mode outperformed the traditional ones in both cases. PMID:25635165

  13. Controlling vibrations of a cutting process using predictive control

    NASA Astrophysics Data System (ADS)

    Fischer, Achim; Eberhard, Peter

    2014-07-01

    Unwanted vibrations in machining are detrimental to the equipment and the quality of the result. Notably chatter vibrations due to the regenerative effect are difficult to control and limit the achievable results. Typically, active and passive means are employed to prevent chatter from happening. This work proposes a predictive control strategy that actively uses information about the system past to predict future disturbances. Using those predicitions allows to counter the regenerative effect more effectively. The strategy is tested in simulation and improves the dynamic stability of the system greatly. It is robust with respect to quantitative errors in the disturbance predictions.

  14. Neural predictive control for active buffet alleviation

    NASA Astrophysics Data System (ADS)

    Pado, Lawrence E.; Lichtenwalner, Peter F.; Liguore, Salvatore L.; Drouin, Donald

    1998-06-01

    The adaptive neural control of aeroelastic response (ANCAR) and the affordable loads and dynamics independent research and development (IRAD) programs at the Boeing Company jointly examined using neural network based active control technology for alleviating undesirable vibration and aeroelastic response in a scale model aircraft vertical tail. The potential benefits of adaptive control includes reducing aeroelastic response associated with buffet and atmospheric turbulence, increasing flutter margins, and reducing response associated with nonlinear phenomenon like limit cycle oscillations. By reducing vibration levels and thus loads, aircraft structures can have lower acquisition cost, reduced maintenance, and extended lifetimes. Wind tunnel tests were undertaken on a rigid 15% scale aircraft in Boeing's mini-speed wind tunnel, which is used for testing at very low air speeds up to 80 mph. The model included a dynamically scaled flexible fail consisting of an aluminum spar with balsa wood cross sections with a hydraulically powered rudder. Neural predictive control was used to actuate the vertical tail rudder in response to strain gauge feedback to alleviate buffeting effects. First mode RMS strain reduction of 50% was achieved. The neural predictive control system was developed and implemented by the Boeing Company to provide an intelligent, adaptive control architecture for smart structures applications with automated synthesis, self-optimization, real-time adaptation, nonlinear control, and fault tolerance capabilities. It is designed to solve complex control problems though a process of automated synthesis, eliminating costly control design and surpassing it in many instances by accounting for real world non-linearities.

  15. Predictive Control of Large Complex Networks

    NASA Astrophysics Data System (ADS)

    Haber, Aleksandar; Motter, Adilson E.

    Networks of coupled dynamical subsystems are increasingly used to represent complex natural and engineered systems. While recent technological developments give us improved means to actively control the dynamics of individual subsystems in various domains, network control remains a challenging problem due to difficulties imposed by intrinsic nonlinearities, control constraints, and the large-scale nature of the systems. In this talk, we will present a model predictive control approach that is effective while accounting for these realistic properties of complex networks. Our method can systematically identify control interventions that steer the trajectory to a desired state, even in the presence of strong nonlinearities and constraints. Numerical tests show that the method is applicable to a variety of networks, ranging from power grids to chemical reaction systems.

  16. Wind farms production: Control and prediction

    NASA Astrophysics Data System (ADS)

    El-Fouly, Tarek Hussein Mostafa

    Wind energy resources, unlike dispatchable central station generation, produce power dependable on external irregular source and that is the incident wind speed which does not always blow when electricity is needed. This results in the variability, unpredictability, and uncertainty of wind resources. Therefore, the integration of wind facilities to utility electrical grid presents a major challenge to power system operator. Such integration has significant impact on the optimum power flow, transmission congestion, power quality issues, system stability, load dispatch, and economic analysis. Due to the irregular nature of wind power production, accurate prediction represents the major challenge to power system operators. Therefore, in this thesis two novel models are proposed for wind speed and wind power prediction. One proposed model is dedicated to short-term prediction (one-hour ahead) and the other involves medium term prediction (one-day ahead). The accuracy of the proposed models is revealed by comparing their results with the corresponding values of a reference prediction model referred to as the persistent model. Utility grid operation is not only impacted by the uncertainty of the future production of wind farms, but also by the variability of their current production and how the active and reactive power exchange with the grid is controlled. To address this particular task, a control technique for wind turbines, driven by doubly-fed induction generators (DFIGs), is developed to regulate the terminal voltage by equally sharing the generated/absorbed reactive power between the rotor-side and the gridside converters. To highlight the impact of the new developed technique in reducing the power loss in the generator set, an economic analysis is carried out. Moreover, a new aggregated model for wind farms is proposed that accounts for the irregularity of the incident wind distribution throughout the farm layout. Specifically, this model includes the wake effect

  17. Real-time Adaptive Control Using Neural Generalized Predictive Control

    NASA Technical Reports Server (NTRS)

    Haley, Pam; Soloway, Don; Gold, Brian

    1999-01-01

    The objective of this paper is to demonstrate the feasibility of a Nonlinear Generalized Predictive Control algorithm by showing real-time adaptive control on a plant with relatively fast time-constants. Generalized Predictive Control has classically been used in process control where linear control laws were formulated for plants with relatively slow time-constants. The plant of interest for this paper is a magnetic levitation device that is nonlinear and open-loop unstable. In this application, the reference model of the plant is a neural network that has an embedded nominal linear model in the network weights. The control based on the linear model provides initial stability at the beginning of network training. In using a neural network the control laws are nonlinear and online adaptation of the model is possible to capture unmodeled or time-varying dynamics. Newton-Raphson is the minimization algorithm. Newton-Raphson requires the calculation of the Hessian, but even with this computational expense the low iteration rate make this a viable algorithm for real-time control.

  18. Optimization approaches to nonlinear model predictive control

    SciTech Connect

    Biegler, L.T. . Dept. of Chemical Engineering); Rawlings, J.B. . Dept. of Chemical Engineering)

    1991-01-01

    With the development of sophisticated methods for nonlinear programming and powerful computer hardware, it now becomes useful and efficient to formulate and solve nonlinear process control problems through on-line optimization methods. This paper explores and reviews control techniques based on repeated solution of nonlinear programming (NLP) problems. Here several advantages present themselves. These include minimization of readily quantifiable objectives, coordinated and accurate handling of process nonlinearities and interactions, and systematic ways of dealing with process constraints. We motivate this NLP-based approach with small nonlinear examples and present a basic algorithm for optimization-based process control. As can be seen this approach is a straightforward extension of popular model-predictive controllers (MPCs) that are used for linear systems. The statement of the basic algorithm raises a number of questions regarding stability and robustness of the method, efficiency of the control calculations, incorporation of feedback into the controller and reliable ways of handling process constraints. Each of these will be treated through analysis and/or modification of the basic algorithm. To highlight and support this discussion, several examples are presented and key results are examined and further developed. 74 refs., 11 figs.

  19. Spacecraft Magnetic Cleanliness Prediction and Control

    NASA Astrophysics Data System (ADS)

    Weikert, S.; Mehlem, K.; Wiegand, A.

    2012-05-01

    The paper describes a sophisticated and realistic control and prediction method for the magnetic cleanliness of spacecraft, covering all phases of a project till the final system test. From the first establishment of the so-called magnetic moment allocation list the necessary boom length can be determined. The list is then continuously updated by real unit test results with the goal to ensure that the magnetic cleanliness budget is not exceeded at a given probability level. A complete example is described. The synthetic spacecraft modeling which predicts only quite late the final magnetic state of the spacecraft is also described. Finally, the most important cleanliness verification, the spacecraft system test, is described shortly with an example. The emphasis of the paper is put on the magnetic dipole moment allocation method.

  20. Factors Controlling O3 in the Southeastern United States during Summer as Constrained by the SEAC4RS Campaign

    NASA Astrophysics Data System (ADS)

    Travis, K.; Jacob, D. J.; Fisher, J. A.; Marais, E. A.; Kim, S.; Zhu, L.; Yu, K.; Yantosca, R.; Payer Sulprizio, M.; Paulot, F.; Mao, J.; Wennberg, P. O.; Crounse, J.; Ryerson, T. B.; Wisthaler, A.; Huey, L. G.; Thompson, A. M.

    2014-12-01

    The Southeast United States (SEUS) is unique in its atmospheric chemistry and the difficulty of models in reproducing observed ozone (O3) (Fiore et al, 2009). Unlike the Western U.S., O3 variability is more heavily influenced by anthropogenic impacts than background sources such as wildfires, foreign transport, and stratospheric intrusions (Zhang et al, 2011). In addition, the SEUS has biogenic VOC emissions, important O3 precursors, which are among the highest in the world. We use observations from the SEAC4RS campaign over the SEUS in summer 2013, interpreted with the global chemical transport model GEOS-Chem, to evaluate the factors controlling O3 in this region. We use the GEOS-Chem model version v9-02 with significant updates, including improved treatment of isoprene nitrates (Lee et al, 2014), revised yields of MVK and MACR (Liu et al, 2013), improved treatment of isoprene epoxides (Bates et al, 2014), and faster deposition of isoprene oxidation products. The model significantly over predicts the observed O3, particularly in isoprene-rich, low-NOx regions. Properly capturing the fate of the isoprene peroxy radical (RO2) is essential to modeling O3 during the campaign. The amount of NOx in the SEUS is mainly driven by anthropogenic emissions with a smaller contribution from lightning and soil NOx, in addition to the amount of NOx recycled by isoprene nitrates. The variability in the amount of HOx available in the model can be influenced by the recycling of OH assumed in the GEOS-Chem chemical mechanism. We use the ratio of measured isoprene hydroxyperoxide (ISOPOOH) to isoprene nitrates (ISOPN) to constrain the modeled branching between the RO2 + HO2 and RO2 + NO2 pathways. Based on this ratio, we find that the RO2 + HO2 pathway is underestimated in our current chemical mechanism. Moreover, our NOx emissions may be overestimated by comparison with satellite tropospheric NO2 columns. We increase the importance of the RO2 + HO2 pathway with the inclusion of HONO

  1. Optimal Control of Distributed Energy Resources using Model Predictive Control

    SciTech Connect

    Mayhorn, Ebony T.; Kalsi, Karanjit; Elizondo, Marcelo A.; Zhang, Wei; Lu, Shuai; Samaan, Nader A.; Butler-Purry, Karen

    2012-07-22

    In an isolated power system (rural microgrid), Distributed Energy Resources (DERs) such as renewable energy resources (wind, solar), energy storage and demand response can be used to complement fossil fueled generators. The uncertainty and variability due to high penetration of wind makes reliable system operations and controls challenging. In this paper, an optimal control strategy is proposed to coordinate energy storage and diesel generators to maximize wind penetration while maintaining system economics and normal operation. The problem is formulated as a multi-objective optimization problem with the goals of minimizing fuel costs and changes in power output of diesel generators, minimizing costs associated with low battery life of energy storage and maintaining system frequency at the nominal operating value. Two control modes are considered for controlling the energy storage to compensate either net load variability or wind variability. Model predictive control (MPC) is used to solve the aforementioned problem and the performance is compared to an open-loop look-ahead dispatch problem. Simulation studies using high and low wind profiles, as well as, different MPC prediction horizons demonstrate the efficacy of the closed-loop MPC in compensating for uncertainties in wind and demand.

  2. Hybrid Stochastic Search Technique based Suboptimal AGC Regulator Design for Power System using Constrained Feedback Control Strategy

    NASA Astrophysics Data System (ADS)

    Ibraheem, Omveer, Hasan, N.

    2010-10-01

    A new hybrid stochastic search technique is proposed to design of suboptimal AGC regulator for a two area interconnected non reheat thermal power system incorporating DC link in parallel with AC tie-line. In this technique, we are proposing the hybrid form of Genetic Algorithm (GA) and simulated annealing (SA) based regulator. GASA has been successfully applied to constrained feedback control problems where other PI based techniques have often failed. The main idea in this scheme is to seek a feasible PI based suboptimal solution at each sampling time. The feasible solution decreases the cost function rather than minimizing the cost function.

  3. Computational Efficiency and Accuracy of the Two Forms of the Rate-Controlled Constrained-Equilibrium Method

    NASA Astrophysics Data System (ADS)

    Hadi, Fatemeh; Sheikhi, Reza

    2015-11-01

    In this study, the Rate-Controlled Constrained-Equilibrium (RCCE) method in constraint potential and constraint forms have been investigated in terms of accuracy and numerical performance. The RCCE originates from the observation that chemical systems evolve based on different time scales, dividing reactions into rate-controlling and fast reactions. Each group of rate-controlling reactions imposes a slowly changing constraint on the allowed states of the system. The fast reactions relax the system to the associated constrained-equilibrium state on a time scale shorter than that of constraints. The two RCCE formulations are equivalent mathematically; however, they involve different numerical procedures and thus show different computational performance. In this work, the RCCE method is applied to study methane oxygen combustion in an adiabatic, isobaric stirred reactor. The RCCE results are compared with those obtained by direct integration of detailed chemical kinetics. Both methods are shown to provide very accurate representation of the kinetics. It is also evidenced that while the constraint form involves less numerical stiffness, the constraint potential implementation results in more overall saving in computation time.

  4. Cascade generalized predictive control strategy for boiler drum level.

    PubMed

    Xu, Min; Li, Shaoyuan; Cai, Wenjian

    2005-07-01

    This paper proposes a cascade model predictive control scheme for boiler drum level control. By employing generalized predictive control structures for both inner and outer loops, measured and unmeasured disturbances can be effectively rejected, and drum level at constant load is maintained. In addition, nonminimum phase characteristic and system constraints in both loops can be handled effectively by generalized predictive control algorithms. Simulation results are provided to show that cascade generalized predictive control results in better performance than that of well tuned cascade proportional integral differential controllers. The algorithm has also been implemented to control a 75-MW boiler plant, and the results show an improvement over conventional control schemes. PMID:16082788

  5. Stability analysis of autonomous space systems in the presence of large disturbances: A Lyapunov-based constrained control strategy.

    PubMed

    Mazinan, A H

    2016-03-01

    The research addresses a Lyapunov-based constrained control strategy to deal with the autonomous space system in the presence of large disturbances. The aforementioned autonomous space system under control is first represented through a dynamics model and subsequently the proposed control strategy is fully investigated with a focus on the three-axis detumbling and the corresponding pointing mode control approaches. The three-axis detumbling mode control approach is designed to deal with the unwanted angular rates of the system to be zero, while the saturations of the actuators are taken into consideration. Moreover, the three-axis pointing mode control approach is designed in the similar state to deal with the rotational angles of the system to be desirable. The contribution of the research is mathematically made to propose a control law in connection with a new candidate of Lyapunov function to deal with the rotational angles and the related angular rates of the present autonomous space system with respect to state-of-the-art. A series of experiments are carried out to consider the efficiency of the proposed control strategy, as long as a number of benchmarks are realized in the same condition to verify and guarantee the strategy performance in both modes of control approaches. PMID:26850751

  6. Haar wavelet operational matrix method for solving constrained nonlinear quadratic optimal control problem

    NASA Astrophysics Data System (ADS)

    Swaidan, Waleeda; Hussin, Amran

    2015-10-01

    Most direct methods solve finite time horizon optimal control problems with nonlinear programming solver. In this paper, we propose a numerical method for solving nonlinear optimal control problem with state and control inequality constraints. This method used quasilinearization technique and Haar wavelet operational matrix to convert the nonlinear optimal control problem into a quadratic programming problem. The linear inequality constraints for trajectories variables are converted to quadratic programming constraint by using Haar wavelet collocation method. The proposed method has been applied to solve Optimal Control of Multi-Item Inventory Model. The accuracy of the states, controls and cost can be improved by increasing the Haar wavelet resolution.

  7. Nonconvex model predictive control for commercial refrigeration

    NASA Astrophysics Data System (ADS)

    Gybel Hovgaard, Tobias; Boyd, Stephen; Larsen, Lars F. S.; Bagterp Jørgensen, John

    2013-08-01

    We consider the control of a commercial multi-zone refrigeration system, consisting of several cooling units that share a common compressor, and is used to cool multiple areas or rooms. In each time period we choose cooling capacity to each unit and a common evaporation temperature. The goal is to minimise the total energy cost, using real-time electricity prices, while obeying temperature constraints on the zones. We propose a variation on model predictive control to achieve this goal. When the right variables are used, the dynamics of the system are linear, and the constraints are convex. The cost function, however, is nonconvex due to the temperature dependence of thermodynamic efficiency. To handle this nonconvexity we propose a sequential convex optimisation method, which typically converges in fewer than 5 or so iterations. We employ a fast convex quadratic programming solver to carry out the iterations, which is more than fast enough to run in real time. We demonstrate our method on a realistic model, with a full year simulation and 15-minute time periods, using historical electricity prices and weather data, as well as random variations in thermal load. These simulations show substantial cost savings, on the order of 30%, compared to a standard thermostat-based control system. Perhaps more important, we see that the method exhibits sophisticated response to real-time variations in electricity prices. This demand response is critical to help balance real-time uncertainties in generation capacity associated with large penetration of intermittent renewable energy sources in a future smart grid.

  8. Nonlinear Recurrent Neural Network Predictive Control for Energy Distribution of a Fuel Cell Powered Robot

    PubMed Central

    Chen, Qihong; Long, Rong; Quan, Shuhai

    2014-01-01

    This paper presents a neural network predictive control strategy to optimize power distribution for a fuel cell/ultracapacitor hybrid power system of a robot. We model the nonlinear power system by employing time variant auto-regressive moving average with exogenous (ARMAX), and using recurrent neural network to represent the complicated coefficients of the ARMAX model. Because the dynamic of the system is viewed as operating- state- dependent time varying local linear behavior in this frame, a linear constrained model predictive control algorithm is developed to optimize the power splitting between the fuel cell and ultracapacitor. The proposed algorithm significantly simplifies implementation of the controller and can handle multiple constraints, such as limiting substantial fluctuation of fuel cell current. Experiment and simulation results demonstrate that the control strategy can optimally split power between the fuel cell and ultracapacitor, limit the change rate of the fuel cell current, and so as to extend the lifetime of the fuel cell. PMID:24707206

  9. Predicting Loss-of-Control Boundaries Toward a Piloting Aid

    NASA Technical Reports Server (NTRS)

    Barlow, Jonathan; Stepanyan, Vahram; Krishnakumar, Kalmanje

    2012-01-01

    This work presents an approach to predicting loss-of-control with the goal of providing the pilot a decision aid focused on maintaining the pilot's control action within predicted loss-of-control boundaries. The predictive architecture combines quantitative loss-of-control boundaries, a data-based predictive control boundary estimation algorithm and an adaptive prediction method to estimate Markov model parameters in real-time. The data-based loss-of-control boundary estimation algorithm estimates the boundary of a safe set of control inputs that will keep the aircraft within the loss-of-control boundaries for a specified time horizon. The adaptive prediction model generates estimates of the system Markov Parameters, which are used by the data-based loss-of-control boundary estimation algorithm. The combined algorithm is applied to a nonlinear generic transport aircraft to illustrate the features of the architecture.

  10. Experimental results of a predictive neural network HVAC controller

    SciTech Connect

    Jeannette, E.; Assawamartbunlue, K.; Kreider, J.F.; Curtiss, P.S.

    1998-12-31

    Proportional, integral, and derivative (PID) control is widely used in many HVAC control processes and requires constant attention for optimal control. Artificial neural networks offer the potential for improved control of processes through predictive techniques. This paper introduces and shows experimental results of a predictive neural network (PNN) controller applied to an unstable hot water system in an air-handling unit. Actual laboratory testing of the PNN and PID controllers show favorable results for the PNN controller.

  11. Precise flight-path control using a predictive algorithm

    NASA Technical Reports Server (NTRS)

    Hess, R. A.; Jung, Y. C.

    1991-01-01

    Generalized predictive control describes an algorithm for the control of dynamic systems in which a control input is generated that minimizes a quadratic cost function consisting of a weighted sum of errors between desired and predicted future system output and future predicted control increments. The output predictions are obtained from an internal model of the plant dynamics. A design technique is discussed for applying the single-input/single-output generalized predictive control algorithm to a problem of longitudinal/vertical terrain-following flight of a rotorcraft. By using the generalized predictive control technique to provide inputs to a classically designed stability and control augmentation system, it is demonstrated that a robust flight-path control system can be created that exhibits excellent tracking performance.

  12. Distributing flow mismatches in supply-constrained irrigation canals through feedback control

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The operation of main irrigation canals is complicated in situations where the operator does not have full control over the canal inflow, or where there are very long transmission distances from the point of supply, or both. Experienced operators are able to control the canal, but often supply error...

  13. Optimal control landscape for the generation of unitary transformations with constrained dynamics

    SciTech Connect

    Hsieh, Michael; Wu, Rebing; Rabitz, Herschel; Lidar, Daniel

    2010-06-15

    The reliable and precise generation of quantum unitary transformations is essential for the realization of a number of fundamental objectives, such as quantum control and quantum information processing. Prior work has explored the optimal control problem of generating such unitary transformations as a surface-optimization problem over the quantum control landscape, defined as a metric for realizing a desired unitary transformation as a function of the control variables. It was found that under the assumption of nondissipative and controllable dynamics, the landscape topology is trap free, which implies that any reasonable optimization heuristic should be able to identify globally optimal solutions. The present work is a control landscape analysis, which incorporates specific constraints in the Hamiltonian that correspond to certain dynamical symmetries in the underlying physical system. It is found that the presence of such symmetries does not destroy the trap-free topology. These findings expand the class of quantum dynamical systems on which control problems are intrinsically amenable to a solution by optimal control.

  14. Source-Constrained Recall: Front-End and Back-End Control of Retrieval Quality

    ERIC Educational Resources Information Center

    Halamish, Vered; Goldsmith, Morris; Jacoby, Larry L.

    2012-01-01

    Research on the strategic regulation of memory accuracy has focused primarily on monitoring and control processes used to edit out incorrect information after it is retrieved (back-end control). Recent studies, however, suggest that rememberers also enhance accuracy by preventing the retrieval of incorrect information in the first place (front-end…

  15. Predictive and Neural Predictive Control of Uncertain Systems

    NASA Technical Reports Server (NTRS)

    Kelkar, Atul G.

    2000-01-01

    Accomplishments and future work are:(1) Stability analysis: the work completed includes characterization of stability of receding horizon-based MPC in the setting of LQ paradigm. The current work-in-progress includes analyzing local as well as global stability of the closed-loop system under various nonlinearities; for example, actuator nonlinearities; sensor nonlinearities, and other plant nonlinearities. Actuator nonlinearities include three major types of nonlineaxities: saturation, dead-zone, and (0, 00) sector. (2) Robustness analysis: It is shown that receding horizon parameters such as input and output horizon lengths have direct effect on the robustness of the system. (3) Code development: A matlab code has been developed which can simulate various MPC formulations. The current effort is to generalize the code to include ability to handle all plant types and all MPC types. (4) Improved predictor: It is shown that MPC design using better predictors that can minimize prediction errors. It is shown analytically and numerically that Smith predictor can provide closed-loop stability under GPC operation for plants with dead times where standard optimal predictor fails. (5) Neural network predictors: When neural network is used as predictor it can be shown that neural network predicts the plant output within some finite error bound under certain conditions. Our preliminary study shows that with proper choice of update laws and network architectures such bound can be obtained. However, much work needs to be done to obtain a similar result in general case.

  16. A non-linear model predictive controller with obstacle avoidance for a space robot

    NASA Astrophysics Data System (ADS)

    Wang, Mingming; Luo, Jianjun; Walter, Ulrich

    2016-04-01

    This study investigates the use of the non-linear model predictive control (NMPC) strategy for a kinematically redundant space robot to approach an un-cooperative target in complex space environment. Collision avoidance, traditionally treated as a high level planning problem, can be effectively translated into control constraints as part of the NMPC. The objective of this paper is to evaluate the performance of the predictive controller in a constrained workspace and to investigate the feasibility of imposing additional constraints into the NMPC. In this paper, we reformulated the issue of the space robot motion control by using NMPC with predefined objectives under input, output and obstacle constraints over a receding horizon. An on-line quadratic programming (QP) procedure is employed to obtain the constrained optimal control decisions in real-time. This study has been implemented for a 7 degree-of-freedom (DOF) kinematically redundant manipulator mounted on a 6 DOF free-floating spacecraft via simulation studies. Real-time trajectory tracking and collision avoidance particularly demonstrate the effectiveness and potential of the proposed NMPC strategy for the space robot.

  17. Predicting the Diagnostic and Statistical Manual of Mental Disorders (Fifth Edition): The Mystery of How to Constrain Unchecked Growth.

    PubMed

    Blashfield, Roger K; Fuller, A Kenneth

    2016-06-01

    Twenty years ago, slightly after the Diagnostic and Statistical Manual of Mental Disorders, Fourth Edition was published, we predicted the characteristics of the future Diagnostic and Statistical Manual of Mental Disorders (fifth edition) (). Included in our predictions were how many diagnoses it would contain, the physical size of the Diagnostic and Statistical Manual of Mental Disorders (fifth edition), who its leader would be, how many professionals would be involved in creating it, the revenue generated, and the color of its cover. This article reports on the accuracy of our predictions. Our largest prediction error concerned financial revenue. The earnings growth of the DSM's has been remarkable. Drug company investments, insurance benefits, the financial need of the American Psychiatric Association, and the research grant process are factors that have stimulated the growth of the DSM's. Restoring order and simplicity to the classification of mental disorders will not be a trivial task. PMID:26915017

  18. Predicting in vivo glioma growth with the reaction diffusion equation constrained by quantitative magnetic resonance imaging data

    NASA Astrophysics Data System (ADS)

    Hormuth, David A., II; Weis, Jared A.; Barnes, Stephanie L.; Miga, Michael I.; Rericha, Erin C.; Quaranta, Vito; Yankeelov, Thomas E.

    2015-07-01

    Reaction-diffusion models have been widely used to model glioma growth. However, it has not been shown how accurately this model can predict future tumor status using model parameters (i.e., tumor cell diffusion and proliferation) estimated from quantitative in vivo imaging data. To this end, we used in silico studies to develop the methods needed to accurately estimate tumor specific reaction-diffusion model parameters, and then tested the accuracy with which these parameters can predict future growth. The analogous study was then performed in a murine model of glioma growth. The parameter estimation approach was tested using an in silico tumor ‘grown’ for ten days as dictated by the reaction-diffusion equation. Parameters were estimated from early time points and used to predict subsequent growth. Prediction accuracy was assessed at global (total volume and Dice value) and local (concordance correlation coefficient, CCC) levels. Guided by the in silico study, rats (n = 9) with C6 gliomas, imaged with diffusion weighted magnetic resonance imaging, were used to evaluate the model’s accuracy for predicting in vivo tumor growth. The in silico study resulted in low global (tumor volume error <8.8%, Dice >0.92) and local (CCC values >0.80) level errors for predictions up to six days into the future. The in vivo study showed higher global (tumor volume error >11.7%, Dice <0.81) and higher local (CCC <0.33) level errors over the same time period. The in silico study shows that model parameters can be accurately estimated and used to accurately predict future tumor growth at both the global and local scale. However, the poor predictive accuracy in the experimental study suggests the reaction-diffusion equation is an incomplete description of in vivo C6 glioma biology and may require further modeling of intra-tumor interactions including segmentation of (for example) proliferative and necrotic regions.

  19. Predictive Direct Torque Control for Induction Motor Drive

    NASA Astrophysics Data System (ADS)

    Benzaioua, A.; Ouhrouche, M.; Merabet, A.

    2008-06-01

    A predictive control combined with the direct torque control (DTC) to induction motor drive is presented. A new switching strategy is used in DTC, where the constant switching frequency is taken constant, and the speed tracking is done by a predictive controller. The scheme control is applied to induction motor drive in order to perform the dynamic responses of electromagnetic torque, stator flux and speed. A comparison between the PI controller and predictive controller for speed tracking is done. Results of simulation show that the performance of the proposed control scheme for induction motor drive is accurately achieved.

  20. Vibration suppression using a constrained rate-feedback-threshold control strategy

    NASA Technical Reports Server (NTRS)

    Zimmerman, D. C.; Inman, D. J.; Juang, J.-N.

    1991-01-01

    A finite time, minimum force rate-feedback-threshold controller is developed to bring a system with or without known external disturbances back into an 'allowable' state bound in finite time. The disturbances are assumed to be expandable in terms of Fourier series. The optimal control is defined by a two-point boundary value problem coupled to a set of definite integral constraints. Quasi-closed form solutions are derived which replace the solution of the two-point boundary value problem and definite integral constraints with the solution of algebraic equations and the calculation of matrix exponentials. Examples are provided which demonstrate the threshold control technique and compare the quasi-closed form solutions with numerical and MACSYMA generated exact solutions.

  1. An Anatomically Constrained, Stochastic Model of Eye Movement Control in Reading

    ERIC Educational Resources Information Center

    McDonald, Scott A.; Carpenter, R. H. S.; Shillcock, Richard C.

    2005-01-01

    This article presents SERIF, a new model of eye movement control in reading that integrates an established stochastic model of saccade latencies (LATER; R. H. S. Carpenter, 1981) with a fundamental anatomical constraint on reading: the vertically split fovea and the initial projection of information in either visual field to the contralateral…

  2. A policy iteration approach to online optimal control of continuous-time constrained-input systems.

    PubMed

    Modares, Hamidreza; Naghibi Sistani, Mohammad-Bagher; Lewis, Frank L

    2013-09-01

    This paper is an effort towards developing an online learning algorithm to find the optimal control solution for continuous-time (CT) systems subject to input constraints. The proposed method is based on the policy iteration (PI) technique which has recently evolved as a major technique for solving optimal control problems. Although a number of online PI algorithms have been developed for CT systems, none of them take into account the input constraints caused by actuator saturation. In practice, however, ignoring these constraints leads to performance degradation or even system instability. In this paper, to deal with the input constraints, a suitable nonquadratic functional is employed to encode the constraints into the optimization formulation. Then, the proposed PI algorithm is implemented on an actor-critic structure to solve the Hamilton-Jacobi-Bellman (HJB) equation associated with this nonquadratic cost functional in an online fashion. That is, two coupled neural network (NN) approximators, namely an actor and a critic are tuned online and simultaneously for approximating the associated HJB solution and computing the optimal control policy. The critic is used to evaluate the cost associated with the current policy, while the actor is used to find an improved policy based on information provided by the critic. Convergence to a close approximation of the HJB solution as well as stability of the proposed feedback control law are shown. Simulation results of the proposed method on a nonlinear CT system illustrate the effectiveness of the proposed approach. PMID:23706414

  3. Constrained tension control of a tethered space-tug system with only length measurement

    NASA Astrophysics Data System (ADS)

    Wen, Hao; Zhu, Zheng H.; Jin, Dongping; Hu, Haiyan

    2016-02-01

    The paper presents a tension control law to stabilize the motions of a Tethered Space-Tug system during its deorbiting process by regulating the tension in the tether. The tension control law is designed on a basis of two straightforward ideas, i.e., the potential energy shaping and the damping injection. The law is expressed in an analytical feedback form in terms of only the tether length without the need of the feedback of full state information. Meanwhile, the requirements of measuring velocities are removed with the aid of a dynamic extension technique based on the feedback interconnection of Euler-Lagrange systems. The positive and bounded tension constraint is taken into consideration explicitly by including a pair of special saturation terms in the feedback control law. The relative motions of the space-tug and the debris are described with respect to a local non-inertial orbital frame of reference, whereas the orbital motion equations of the system are formulated in terms of the modified equinoctial elements of the orbit. Finally, the effectiveness of the proposed scheme is demonstrated via numerical case studies.

  4. Adaptive Neural Output Feedback Control of Output-Constrained Nonlinear Systems With Unknown Output Nonlinearity.

    PubMed

    Liu, Zhi; Lai, Guanyu; Zhang, Yun; Chen, Chun Lung Philip

    2015-08-01

    This paper addresses the problem of adaptive neural output-feedback control for a class of special nonlinear systems with the hysteretic output mechanism and the unmeasured states. A modified Bouc-Wen model is first employed to capture the output hysteresis phenomenon in the design procedure. For its fusion with the neural networks and the Nussbaum-type function, two key lemmas are established using some extended properties of this model. To avoid the bad system performance caused by the output nonlinearity, a barrier Lyapunov function technique is introduced to guarantee the prescribed constraint of the tracking error. In addition, a robust filtering method is designed to cancel the restriction that all the system states require to be measured. Based on the Lyapunov synthesis, a new neural adaptive controller is constructed to guarantee the prescribed convergence of the tracking error and the semiglobal uniform ultimate boundedness of all the signals in the closed-loop system. Simulations are implemented to evaluate the performance of the proposed neural control algorithm in this paper. PMID:25915964

  5. Finite dimensional approximation of a class of constrained nonlinear optimal control problems

    NASA Technical Reports Server (NTRS)

    Gunzburger, Max D.; Hou, L. S.

    1994-01-01

    An abstract framework for the analysis and approximation of a class of nonlinear optimal control and optimization problems is constructed. Nonlinearities occur in both the objective functional and in the constraints. The framework includes an abstract nonlinear optimization problem posed on infinite dimensional spaces, and approximate problem posed on finite dimensional spaces, together with a number of hypotheses concerning the two problems. The framework is used to show that optimal solutions exist, to show that Lagrange multipliers may be used to enforce the constraints, to derive an optimality system from which optimal states and controls may be deduced, and to derive existence results and error estimates for solutions of the approximate problem. The abstract framework and the results derived from that framework are then applied to three concrete control or optimization problems and their approximation by finite element methods. The first involves the von Karman plate equations of nonlinear elasticity, the second, the Ginzburg-Landau equations of superconductivity, and the third, the Navier-Stokes equations for incompressible, viscous flows.

  6. Analytical optimal controls for the state constrained addition and removal of cryoprotective agents

    PubMed Central

    Chicone, Carmen C.; Critser, John K.

    2014-01-01

    Cryobiology is a field with enormous scientific, financial and even cultural impact. Successful cryopreservation of cells and tissues depends on the equilibration of these materials with high concentrations of permeating chemicals (CPAs) such as glycerol or 1,2 propylene glycol. Because cells and tissues are exposed to highly anisosmotic conditions, the resulting gradients cause large volume fluctuations that have been shown to damage cells and tissues. On the other hand, there is evidence that toxicity to these high levels of chemicals is time dependent, and therefore it is ideal to minimize exposure time as well. Because solute and solvent flux is governed by a system of ordinary differential equations, CPA addition and removal from cells is an ideal context for the application of optimal control theory. Recently, we presented a mathematical synthesis of the optimal controls for the ODE system commonly used in cryobiology in the absence of state constraints and showed that controls defined by this synthesis were optimal. Here we define the appropriate model, analytically extend the previous theory to one encompassing state constraints, and as an example apply this to the critical and clinically important cell type of human oocytes, where current methodologies are either difficult to implement or have very limited success rates. We show that an enormous increase in equilibration efficiency can be achieved under the new protocols when compared to classic protocols, potentially allowing a greatly increased survival rate for human oocytes, and pointing to a direction for the cryopreservation of many other cell types. PMID:22527943

  7. Can riverside seismic monitoring constrain temporal and spatial variations in bedload transport during a controlled flood of the Trinity River?

    NASA Astrophysics Data System (ADS)

    Glasgow, M. E.; Schmandt, B.; Gaeuman, D.

    2015-12-01

    To evaluate the utility of riverside seismic monitoring for constraining temporal and spatial variations in coarse bedload transport in gravel-bed rivers we collected seismic data during a dam-controlled flood of the Trinity River in northern California in May 2015. This field area was chosen because the Trinity River Restoration Project conducts extensive monitoring of water and sediment transport, and riverbed morphology to guide management of the river with the goal of improving salmon habitat. Four three component broadband seismometers were collocated with water discharge and bedload physical sampling sites along a ~30 km reach of the Trinity River downstream of the Lewiston Dam. Arrays with 10-80 cable-free vertical component geophones were also deployed at each of the four sites in order to constrain spatial variability and amplitude decay of seismic signals emanating from the river. Nominal inter-station spacing within the geophone arrays was ~30 m. The largest geophone array consisted of 83 nodes along a 700 m reach of the Trinity River with a gravel augmentation site at its upstream end. Initial analyses of the seismic data show that ground velocity power from averaged from ~7 - 90 Hz is correlated with discharge at all sites. The array at the gravel injection site shows greater high frequency (>30 Hz) power at the upstream end where gravel was injected during the release compared to ~300 m downstream, consistent with bedload transport providing a significant source of seismic energy in addition to water discharge. Declining seismic power during a ~3 day plateau at peak discharge when physical sampler data shows decreasing bedload flux provides a further indication that the seismic data are sensitive to bedload transport. We will use the array data to back-project the seismic signals in multiple frequency bands into the channel to create maps of the time-varying spatial intensity of seismic energy production. We hypothesize that the greatest seismic

  8. Distributed multisensor processing, decision making, and control under constrained resources for remote health and environmental monitoring

    NASA Astrophysics Data System (ADS)

    Talukder, Ashit; Sheikh, Tanwir; Chandramouli, Lavanya

    2004-04-01

    Previous field-deployable distributed sensing systems for health/biomedical applications and environmental sensing have been designed for data collection and data transmission at pre-set intervals, rather than for on-board processing These previous sensing systems lack autonomous capabilities, and have limited lifespans. We propose the use of an integrated machine learning architecture, with automated planning-scheduling and resource management capabilities that can be used for a variety of autonomous sensing applications with very limited computing, power, and bandwidth resources. We lay out general solutions for efficient processing in a multi-tiered (three-tier) machine learning framework that is suited for remote, mobile sensing systems. Novel dimensionality reduction techniques that are designed for classification are used to compress each individual sensor data and pass only relevant information to the mobile multisensor fusion module (second-tier). Statistical classifiers that are capable of handling missing/partial sensory data due to sensor failure or power loss are used to detect critical events and pass the information to the third tier (central server) for manual analysis and/or analysis by advanced pattern recognition techniques. Genetic optimisation algorithms are used to control the system in the presence of dynamic events, and also ensure that system requirements (i.e. minimum life of the system) are met. This tight integration of control optimisation and machine learning algorithms results in a highly efficient sensor network with intelligent decision making capabilities. The applicability of our technology in remote health monitoring and environmental monitoring is shown. Other uses of our solution are also discussed.

  9. Voltage control in pulsed system by predict-ahead control

    DOEpatents

    Payne, Anthony N.; Watson, James A.; Sampayan, Stephen E.

    1994-01-01

    A method and apparatus for predict-ahead pulse-to-pulse voltage control in a pulsed power supply system is disclosed. A DC power supply network is coupled to a resonant charging network via a first switch. The resonant charging network is coupled at a node to a storage capacitor. An output load is coupled to the storage capacitor via a second switch. A de-Q-ing network is coupled to the resonant charging network via a third switch. The trigger for the third switch is a derived function of the initial voltage of the power supply network, the initial voltage of the storage capacitor, and the present voltage of the storage capacitor. A first trigger closes the first switch and charges the capacitor. The third trigger is asserted according to the derived function to close the third switch. When the third switch is closed, the first switch opens and voltage on the node is regulated. The second trigger may be thereafter asserted to discharge the capacitor into the output load.

  10. Voltage control in pulsed system by predict-ahead control

    DOEpatents

    Payne, A.N.; Watson, J.A.; Sampayan, S.E.

    1994-09-13

    A method and apparatus for predict-ahead pulse-to-pulse voltage control in a pulsed power supply system is disclosed. A DC power supply network is coupled to a resonant charging network via a first switch. The resonant charging network is coupled at a node to a storage capacitor. An output load is coupled to the storage capacitor via a second switch. A de-Q-ing network is coupled to the resonant charging network via a third switch. The trigger for the third switch is a derived function of the initial voltage of the power supply network, the initial voltage of the storage capacitor, and the present voltage of the storage capacitor. A first trigger closes the first switch and charges the capacitor. The third trigger is asserted according to the derived function to close the third switch. When the third switch is closed, the first switch opens and voltage on the node is regulated. The second trigger may be thereafter asserted to discharge the capacitor into the output load. 4 figs.

  11. Comparison of Predictive Control Methods for High Consumption Industrial Furnace

    PubMed Central

    2013-01-01

    We describe several predictive control approaches for high consumption industrial furnace control. These furnaces are major consumers in production industries, and reducing their fuel consumption and optimizing the quality of the products is one of the most important engineer tasks. In order to demonstrate the benefits from implementation of the advanced predictive control algorithms, we have compared several major criteria for furnace control. On the basis of the analysis, some important conclusions have been drawn. PMID:24319354

  12. Using metabolic flux data to further constrain the metabolic solution space and predict internal flux patterns: the Escherichia coli spectrum.

    PubMed

    Wiback, Sharon J; Mahadevan, Radhakrishnan; Palsson, Bernhard Ø

    2004-05-01

    Constraint-based metabolic modeling has been used to capture the genome-scale, systems properties of an organism's metabolism. The first generation of these models has been built on annotated gene sequence. To further this field, we now need to develop methods to incorporate additional "omic" data types including transcriptomics, metabolomics, and fluxomics to further facilitate the construction, validation, and predictive capabilities of these models. The work herein combines metabolic flux data with an in silico model of central metabolism of Escherichia coli for model centric integration of the flux data. The extreme pathways for this network, which define the allowable solution space for all possible flux distributions, are analyzed using the alpha-spectrum. The alpha-spectrum determines which extreme pathways can and cannot contribute to the metabolic flux distribution for a given condition and gives the allowable range of weightings on each extreme pathway that can contribute. Since many extreme pathways cannot be used under certain conditions, the result is a "condition-specific" solution space that is a subset of the original solution space. The alpha-spectrum results are used to create a "condition-specific" extreme pathway matrix that can be analyzed using singular value decomposition (SVD). The first mode of the SVD analysis characterizes the solution space for a given condition. We show that SVD analysis of the alpha-spectrum extreme pathway matrix that incorporates measured uptake and byproduct secretion rates, can predict internal flux trends for different experimental conditions. These predicted internal flux trends are, in general, consistent with the flux trends measured using experimental metabolic flux analysis techniques. PMID:15083512

  13. Planning of water resources management and pollution control for Heshui River watershed, China: A full credibility-constrained programming approach.

    PubMed

    Zhang, Y M; Huang, G; Lu, H W; He, Li

    2015-08-15

    A key issue facing integrated water resources management and water pollution control is to address the vague parametric information. A full credibility-based chance-constrained programming (FCCP) method is thus developed by introducing the new concept of credibility into the modeling framework. FCCP can deal with fuzzy parameters appearing concurrently in the objective and both sides of the constraints of the model, but also provide a credibility level indicating how much confidence one can believe the optimal modeling solutions. The method is applied to Heshui River watershed in the south-central China for demonstration. Results from the case study showed that groundwater would make up for the water shortage in terms of the shrinking surface water and rising water demand, and the optimized total pumpage of groundwater from both alluvial and karst aquifers would exceed 90% of its maximum allowable levels when credibility level is higher than or equal to 0.9. It is also indicated that an increase in credibility level would induce a reduction in cost for surface water acquisition, a rise in cost from groundwater withdrawal, and negligible variation in cost for water pollution control. PMID:25897733

  14. AQM router design for TCP network via input constrained fuzzy control of time-delay affine Takagi-Sugeno fuzzy models

    NASA Astrophysics Data System (ADS)

    Chang, Wen-Jer; Meng, Yu-Teh; Tsai, Kuo-Hui

    2012-12-01

    In this article, Takagi-Sugeno (T-S) fuzzy control theory is proposed as a key tool to design an effective active queue management (AQM) router for the transmission control protocol (TCP) networks. The probability control of packet marking in the TCP networks is characterised by an input constrained control problem in this article. By modelling the TCP network into a time-delay affine T-S fuzzy model, an input constrained fuzzy control methodology is developed in this article to serve the AQM router design. The proposed fuzzy control approach, which is developed based on the parallel distributed compensation technique, can provide smaller probability of dropping packets than previous AQM design schemes. Lastly, a numerical simulation is provided to illustrate the usefulness and effectiveness of the proposed design approach.

  15. Controlling state explosion during automatic verification of delay-insensitive and delay-constrained VLSI systems using the POM verifier

    NASA Technical Reports Server (NTRS)

    Probst, D.; Jensen, L.

    1991-01-01

    Delay-insensitive VLSI systems have a certain appeal on the ground due to difficulties with clocks; they are even more attractive in space. We answer the question, is it possible to control state explosion arising from various sources during automatic verification (model checking) of delay-insensitive systems? State explosion due to concurrency is handled by introducing a partial-order representation for systems, and defining system correctness as a simple relation between two partial orders on the same set of system events (a graph problem). State explosion due to nondeterminism (chiefly arbitration) is handled when the system to be verified has a clean, finite recurrence structure. Backwards branching is a further optimization. The heart of this approach is the ability, during model checking, to discover a compact finite presentation of the verified system without prior composition of system components. The fully-implemented POM verification system has polynomial space and time performance on traditional asynchronous-circuit benchmarks that are exponential in space and time for other verification systems. We also sketch the generalization of this approach to handle delay-constrained VLSI systems.

  16. Rear wheel torque vectoring model predictive control with velocity regulation for electric vehicles

    NASA Astrophysics Data System (ADS)

    Siampis, Efstathios; Velenis, Efstathios; Longo, Stefano

    2015-11-01

    In this paper we propose a constrained optimal control architecture for combined velocity, yaw and sideslip regulation for stabilisation of the vehicle near the limit of lateral acceleration using the rear axle electric torque vectoring configuration of an electric vehicle. A nonlinear vehicle and tyre model are used to find reference steady-state cornering conditions and design two model predictive control (MPC) strategies of different levels of fidelity: one that uses a linearised version of the full vehicle model with the rear wheels' torques as the input, and another one that neglects the wheel dynamics and uses the rear wheels' slips as the input instead. After analysing the relative trade-offs between performance and computational effort, we compare the two MPC strategies against each other and against an unconstrained optimal control strategy in Simulink and Carsim environment.

  17. Robot trajectory tracking with self-tuning predicted control

    NASA Technical Reports Server (NTRS)

    Cui, Xianzhong; Shin, Kang G.

    1988-01-01

    A controller that combines self-tuning prediction and control is proposed for robot trajectory tracking. The controller has two feedback loops: one is used to minimize the prediction error, and the other is designed to make the system output track the set point input. Because the velocity and position along the desired trajectory are given and the future output of the system is predictable, a feedforward loop can be designed for robot trajectory tracking with self-tuning predicted control (STPC). Parameters are estimated online to account for the model uncertainty and the time-varying property of the system. The authors describe the principle of STPC, analyze the system performance, and discuss the simplification of the robot dynamic equations. To demonstrate its utility and power, the controller is simulated for a Stanford arm.

  18. Chaos control for the output-constrained system by using adaptive dynamic surface technology and application to the brushless DC motor

    SciTech Connect

    Luo, Shaohua; Hou, Zhiwei; Chen, Zhong

    2015-12-15

    In this paper, chaos control is proposed for the output- constrained system with uncertain control gain and time delay and is applied to the brushless DC motor. Using the dynamic surface technology, the controller overcomes the repetitive differentiation of backstepping and boundedness hypothesis of pre-determined control gain by incorporating radial basis function neural network and adaptive technology. The tangent barrier Lyapunov function is employed for time-delay chaotic system to prevent constraint violation. It is proved that the proposed control approach can guarantee asymptotically stable in the sense of uniformly ultimate boundedness without constraint violation. Finally, the effectiveness of the proposed approach is demonstrated on the brushless DC motor example.

  19. Chaos control for the output-constrained system by using adaptive dynamic surface technology and application to the brushless DC motor

    NASA Astrophysics Data System (ADS)

    Luo, Shaohua; Hou, Zhiwei; Chen, Zhong

    2015-12-01

    In this paper, chaos control is proposed for the output- constrained system with uncertain control gain and time delay and is applied to the brushless DC motor. Using the dynamic surface technology, the controller overcomes the repetitive differentiation of backstepping and boundedness hypothesis of pre-determined control gain by incorporating radial basis function neural network and adaptive technology. The tangent barrier Lyapunov function is employed for time-delay chaotic system to prevent constraint violation. It is proved that the proposed control approach can guarantee asymptotically stable in the sense of uniformly ultimate boundedness without constraint violation. Finally, the effectiveness of the proposed approach is demonstrated on the brushless DC motor example.

  20. Pilots Rate Augmented Generalized Predictive Control for Reconfiguration

    NASA Technical Reports Server (NTRS)

    Soloway, Don; Haley, Pam

    2004-01-01

    The objective of this paper is to report the results from the research being conducted in reconfigurable fight controls at NASA Ames. A study was conducted with three NASA Dryden test pilots to evaluate two approaches of reconfiguring an aircraft's control system when failures occur in the control surfaces and engine. NASA Ames is investigating both a Neural Generalized Predictive Control scheme and a Neural Network based Dynamic Inverse controller. This paper highlights the Predictive Control scheme where a simple augmentation to reduce zero steady-state error led to the neural network predictor model becoming redundant for the task. Instead of using a neural network predictor model, a nominal single point linear model was used and then augmented with an error corrector. This paper shows that the Generalized Predictive Controller and the Dynamic Inverse Neural Network controller perform equally well at reconfiguration, but with less rate requirements from the actuators. Also presented are the pilot ratings for each controller for various failure scenarios and two samples of the required control actuation during reconfiguration. Finally, the paper concludes by stepping through the Generalized Predictive Control's reconfiguration process for an elevator failure.

  1. Rate-Based Model Predictive Control of Turbofan Engine Clearance

    NASA Technical Reports Server (NTRS)

    DeCastro, Jonathan A.

    2006-01-01

    An innovative model predictive control strategy is developed for control of nonlinear aircraft propulsion systems and sub-systems. At the heart of the controller is a rate-based linear parameter-varying model that propagates the state derivatives across the prediction horizon, extending prediction fidelity to transient regimes where conventional models begin to lose validity. The new control law is applied to a demanding active clearance control application, where the objectives are to tightly regulate blade tip clearances and also anticipate and avoid detrimental blade-shroud rub occurrences by optimally maintaining a predefined minimum clearance. Simulation results verify that the rate-based controller is capable of satisfying the objectives during realistic flight scenarios where both a conventional Jacobian-based model predictive control law and an unconstrained linear-quadratic optimal controller are incapable of doing so. The controller is evaluated using a variety of different actuators, illustrating the efficacy and versatility of the control approach. It is concluded that the new strategy has promise for this and other nonlinear aerospace applications that place high importance on the attainment of control objectives during transient regimes.

  2. Iterated non-linear model predictive control based on tubes and contractive constraints.

    PubMed

    Murillo, M; Sánchez, G; Giovanini, L

    2016-05-01

    This paper presents a predictive control algorithm for non-linear systems based on successive linearizations of the non-linear dynamic around a given trajectory. A linear time varying model is obtained and the non-convex constrained optimization problem is transformed into a sequence of locally convex ones. The robustness of the proposed algorithm is addressed adding a convex contractive constraint. To account for linearization errors and to obtain more accurate results an inner iteration loop is added to the algorithm. A simple methodology to obtain an outer bounding-tube for state trajectories is also presented. The convergence of the iterative process and the stability of the closed-loop system are analyzed. The simulation results show the effectiveness of the proposed algorithm in controlling a quadcopter type unmanned aerial vehicle. PMID:26850752

  3. Towards feasible and effective predictive wavefront control for adaptive optics

    SciTech Connect

    Poyneer, L A; Veran, J

    2008-06-04

    We have recently proposed Predictive Fourier Control, a computationally efficient and adaptive algorithm for predictive wavefront control that assumes frozen flow turbulence. We summarize refinements to the state-space model that allow operation with arbitrary computational delays and reduce the computational cost of solving for new control. We present initial atmospheric characterization using observations with Gemini North's Altair AO system. These observations, taken over 1 year, indicate that frozen flow is exists, contains substantial power, and is strongly detected 94% of the time.

  4. Power-constrained supercomputing

    NASA Astrophysics Data System (ADS)

    Bailey, Peter E.

    . Adaptive power balancing efficiently predicts where critical paths are likely to occur and distributes power to those paths. Greater power, in turn, allows increased thread concurrency levels, CPU frequency/voltage, or both. We describe these techniques in detail and show that, compared to the state-of-the-art technique of using statically predetermined, per-node power caps, Conductor leads to a best-case performance improvement of up to 30%, and an average improvement of 19.1%. At the node level, an accurate power/performance model will aid in selecting the right configuration from a large set of available configurations. We present a novel approach to generate such a model offline using kernel clustering and multivariate linear regression. Our model requires only two iterations to select a configuration, which provides a significant advantage over exhaustive search-based strategies. We apply our model to predict power and performance for different applications using arbitrary configurations, and show that our model, when used with hardware frequency-limiting in a runtime system, selects configurations with significantly higher performance at a given power limit than those chosen by frequency-limiting alone. When applied to a set of 36 computational kernels from a range of applications, our model accurately predicts power and performance; our runtime system based on the model maintains 91% of optimal performance while meeting power constraints 88% of the time. When the runtime system violates a power constraint, it exceeds the constraint by only 6% in the average case, while simultaneously achieving 54% more performance than an oracle. Through the combination of the above contributions, we hope to provide guidance and inspiration to research practitioners working on runtime systems for power-constrained environments. We also hope this dissertation will draw attention to the need for software and runtime-controlled power management under power constraints at various levels

  5. Predictive neuro-fuzzy controller for multilink robot manipulator

    NASA Astrophysics Data System (ADS)

    Kaymaz, Emre; Mitra, Sunanda

    1995-10-01

    A generalized controller based on fuzzy clustering and fuzzy generalized predictive control has been developed for nonlinear systems including multilink robot manipulators. The proposed controller is particularly useful when the dynamics of the nonlinear system to be controlled are difficult to yield exact solutions and the system specification can be obtained in terms of crisp input-output pairs. It inherits the advantages of both fuzzy logic and predictive control. The identification of the nonlinear mapping of the system to be controlled is realized by a three- layer feed-forward neural network model employing the input-output data obtained from the system. The speed of convergence of the neural network is improved by the introduction of a fuzzy logic controlled backpropagation learning algorithm. The neural network model is then used as a simulation tool to generate the input-output data for developing the predictive fuzzy logic controller for the chosen nonlinear system. The use of fuzzy clustering facilitates automatic generation of membership relations of the input-output data. Unlike the linguistic fuzzy logic controller which requires approximate knowledge of the shape and the numbers of the membership functions in the input and output universes of the discourse, this integrated neuro-fuzzy approach allows one to find the fuzzy relations and the membership functions more accurately. Furthermore, it is not necessary to tune the controller. For a two-link robot manipulator, the performance of this predictive fuzzy controller is shown to be superior to that of a conventional controller employing an ARMA model of the system in terms of accuracy and consumption of energy.

  6. Optimized continuous pharmaceutical manufacturing via model-predictive control.

    PubMed

    Rehrl, Jakob; Kruisz, Julia; Sacher, Stephan; Khinast, Johannes; Horn, Martin

    2016-08-20

    This paper demonstrates the application of model-predictive control to a feeding blending unit used in continuous pharmaceutical manufacturing. The goal of this contribution is, on the one hand, to highlight the advantages of the proposed concept compared to conventional PI-controllers, and, on the other hand, to present a step-by-step guide for controller synthesis. The derivation of the required mathematical plant model is given in detail and all the steps required to develop a model-predictive controller are shown. Compared to conventional concepts, the proposed approach allows to conveniently consider constraints (e.g. mass hold-up in the blender) and offers a straightforward, easy to tune controller setup. The concept is implemented in a simulation environment. In order to realize it on a real system, additional aspects (e.g., state estimation, measurement equipment) will have to be investigated. PMID:27317987

  7. Model predictive torque control with an extended prediction horizon for electrical drive systems

    NASA Astrophysics Data System (ADS)

    Wang, Fengxiang; Zhang, Zhenbin; Kennel, Ralph; Rodríguez, José

    2015-07-01

    This paper presents a model predictive torque control method for electrical drive systems. A two-step prediction horizon is achieved by considering the reduction of the torque ripples. The electromagnetic torque and the stator flux error between predicted values and the references, and an over-current protection are considered in the cost function design. The best voltage vector is selected by minimising the value of the cost function, which aims to achieve a low torque ripple in two intervals. The study is carried out experimentally. The results show that the proposed method achieves good performance in both steady and transient states.

  8. Predictive Feedback and Feedforward Control for Systems with Unknown Disturbances

    NASA Technical Reports Server (NTRS)

    Juang, Jer-Nan; Eure, Kenneth W.

    1998-01-01

    Predictive feedback control has been successfully used in the regulation of plate vibrations when no reference signal is available for feedforward control. However, if a reference signal is available it may be used to enhance regulation by incorporating a feedforward path in the feedback controller. Such a controller is known as a hybrid controller. This paper presents the theory and implementation of the hybrid controller for general linear systems, in particular for structural vibration induced by acoustic noise. The generalized predictive control is extended to include a feedforward path in the multi-input multi-output case and implemented on a single-input single-output test plant to achieve plate vibration regulation. There are cases in acoustic-induce vibration where the disturbance signal is not available to be used by the hybrid controller, but a disturbance model is available. In this case the disturbance model may be used in the feedback controller to enhance performance. In practice, however, neither the disturbance signal nor the disturbance model is available. This paper presents the theory of identifying and incorporating the noise model into the feedback controller. Implementations are performed on a test plant and regulation improvements over the case where no noise model is used are demonstrated.

  9. Self-Control Assessments and Implications for Predicting Adolescent Offending.

    PubMed

    Fine, Adam; Steinberg, Laurence; Frick, Paul J; Cauffman, Elizabeth

    2016-04-01

    Although low self-control is consistently related to adolescent offending, it is unknown whether self-report measures or laboratory behavior tasks yield better predictive utility, or if a combination yields incremental predictive power. This is particularly important because developmental theory indicates that self-control is related to adolescent offending and, consequently, risk assessments rely on self-control measures. The present study (a) examines relationships between self-reported self-control on the Weinberger Adjustment Inventory with Go/No-Go response inhibition, and (b) compares the predictive utility of both assessment strategies for short- and long-term adolescent reoffending. It uses longitudinal data from the Crossroads Study of male, first-time adolescent offenders ages 13-17 (N = 930; 46 % Hispanic/Latino, 37 % Black/African-American, 15 % non-Hispanic White, 2 % other race). The results of the study indicate that the measures are largely unrelated, and that the self-report measure is a better indicator of both short- and long-term reoffending. The laboratory task measure does not add value to what is already predicted by the self-report measure. Implications for assessing self-control during adolescence and consequences of assessment strategy are discussed. PMID:26792266

  10. Predicted torque equilibrium attitude utilization for Space Station attitude control

    NASA Technical Reports Server (NTRS)

    Kumar, Renjith R.; Heck, Michael L.; Robertson, Brent P.

    1990-01-01

    An approximate knowledge of the torque equilibrium attitude (TEA) is shown to improve the performance of a control moment gyroscope (CMG) momentum management/attitude control law for Space Station Freedom. The linearized equations of motion are used in conjunction with a state transformation to obtain a control law which uses full state feedback and the predicted TEA to minimize both attitude excursions and CMG peak and secular momentum. The TEA can be computationally determined either by observing the steady state attitude of a 'controlled' spacecraft using arbitrary initial attitude, or by simulating a fixed attitude spacecraft flying in desired orbit subject to realistic environmental disturbance models.

  11. Stabilisation of difference equations with noisy prediction-based control

    NASA Astrophysics Data System (ADS)

    Braverman, E.; Kelly, C.; Rodkina, A.

    2016-07-01

    We consider the influence of stochastic perturbations on stability of a unique positive equilibrium of a difference equation subject to prediction-based control. These perturbations may be multiplicative We begin by relaxing the control parameter in the deterministic equation, and deriving a range of values for the parameter over which all solutions eventually enter an invariant interval. Then, by allowing the variation to be stochastic, we derive sufficient conditions (less restrictive than known ones for the unperturbed equation) under which the positive equilibrium will be globally a.s. asymptotically stable: i.e. the presence of noise improves the known effectiveness of prediction-based control. Finally, we show that systemic noise has a "blurring" effect on the positive equilibrium, which can be made arbitrarily small by controlling the noise intensity. Numerical examples illustrate our results.

  12. Predicting psychological symptoms: the role of perceived thought control ability.

    PubMed

    Peterson, Rachel D; Klein, Jenny; Donnelly, Reesa; Renk, Kimberly

    2009-01-01

    The suppression of intrusive thoughts, which have been related significantly to depressive and anxious symptoms (Blumberg, 2000), has become an area of interest for those treating individuals with psychological disorders. The current study sought to extend the findings of Luciano, Algarabel, Tomas, and Martínez (2005), who developed the Thought Control Ability Questionnaire (TCAQ) and found that scores on this measure were predictive of psychopathology. In particular, this study examined the relationship between scores on the TCAQ and the Personality Assessment Inventory. Findings suggested that individuals' perceived thought control ability correlated significantly with several dimensions of commonly-occurring psychological symptoms (e.g. anxiety) and more severe and persistent psychological symptoms (e.g. schizophrenia). Regression analyses also showed that perceived thought control ability predicted significantly a range of psychological symptoms over and above individuals' sex and perceived stress. Findings suggested that thought control ability may be an important future research area in psychological assessment and intervention. PMID:19235599

  13. Neural Generalized Predictive Control: A Newton-Raphson Implementation

    NASA Technical Reports Server (NTRS)

    Soloway, Donald; Haley, Pamela J.

    1997-01-01

    An efficient implementation of Generalized Predictive Control using a multi-layer feedforward neural network as the plant's nonlinear model is presented. In using Newton-Raphson as the optimization algorithm, the number of iterations needed for convergence is significantly reduced from other techniques. The main cost of the Newton-Raphson algorithm is in the calculation of the Hessian, but even with this overhead the low iteration numbers make Newton-Raphson faster than other techniques and a viable algorithm for real-time control. This paper presents a detailed derivation of the Neural Generalized Predictive Control algorithm with Newton-Raphson as the minimization algorithm. Simulation results show convergence to a good solution within two iterations and timing data show that real-time control is possible. Comments about the algorithm's implementation are also included.

  14. Fuzzy Predictive Control Strategy in the Application of the Industrial Furnace Temperature Control

    NASA Astrophysics Data System (ADS)

    Dai, Luping; Chen, Xingliang; Chen, Liu; Liu, Xia

    Ceramic kiln with large heat capacity, big lag and nonlinear characteristic, this paper proposes a combining fuzzy control and predictive control of the control algorithm, to enhance the tracking and anti-interference ability of the algorithm. The simulation results show, this method compared with the control of PID has the high steady precision and dynamic characteristic.

  15. Predicting worsening asthma control following the common cold

    PubMed Central

    Walter, Michael J.; Castro, Mario; Kunselman, Susan J.; Chinchilli, Vernon M; Reno, Melissa; Ramkumar, Thiruvamoor P.; Avila, Pedro C.; Boushey, Homer A.; Ameredes, Bill T.; Bleecker, Eugene R.; Calhoun, William J.; Cherniack, Reuben M.; Craig, Timothy J.; Denlinger, Loren C.; Israel, Elliot; Fahy, John V.; Jarjour, Nizar N.; Kraft, Monica; Lazarus, Stephen C.; Lemanske, Robert F.; Martin, Richard J.; Peters, Stephen P.; Ramsdell, Joe W.; Sorkness, Christine A.; Rand Sutherland, E.; Szefler, Stanley J.; Wasserman, Stephen I.; Wechsler, Michael E.

    2008-01-01

    The asthmatic response to the common cold is highly variable and early characteristics that predict worsening of asthma control following a cold have not been identified. In this prospective multi-center cohort study of 413 adult subjects with asthma, we used the mini-Asthma Control Questionnaire (mini-ACQ) to quantify changes in asthma control and the Wisconsin Upper Respiratory Symptom Survey-21 (WURSS-21) to measure cold severity. Univariate and multivariable models examined demographic, physiologic, serologic, and cold-related characteristics for their relationship to changes in asthma control following a cold. We observed a clinically significant worsening of asthma control following a cold (increase in mini-ACQ of 0.69 ± 0.93). Univariate analysis demonstrated season, center location, cold length, and cold severity measurements all associated with a change in asthma control. Multivariable analysis of the covariates available within the first 2 days of cold onset revealed the day 2 and the cumulative sum of the day 1 and 2 WURSS-21 scores were significant predictors for the subsequent changes in asthma control. In asthmatic subjects the cold severity measured within the first 2 days can be used to predict subsequent changes in asthma control. This information may help clinicians prevent deterioration in asthma control following a cold. PMID:18768579

  16. Prediction of active control of subsonic centrifugal compressor rotating stall

    NASA Technical Reports Server (NTRS)

    Lawless, Patrick B.; Fleeter, Sanford

    1993-01-01

    A mathematical model is developed to predict the suppression of rotating stall in a centrifugal compressor with a vaned diffuser. This model is based on the employment of a control vortical waveform generated upstream of the impeller inlet to damp weak potential disturbances that are the early stages of rotating stall. The control system is analyzed by matching the perturbation pressure in the compressor inlet and exit flow fields with a model for the unsteady behavior of the compressor. The model was effective at predicting the stalling behavior of the Purdue Low Speed Centrifugal Compressor for two distinctly different stall patterns. Predictions made for the effect of a controlled inlet vorticity wave on the stability of the compressor show that for minimum control wave magnitudes, on the order of the total inlet disturbance magnitude, significant damping of the instability can be achieved. For control waves of sufficient amplitude, the control phase angle appears to be the most important factor in maintaining a stable condition in the compressor.

  17. The predictive protective control of the heat exchanger

    NASA Astrophysics Data System (ADS)

    Nevriva, Pavel; Filipova, Blanka; Vilimec, Ladislav

    2016-06-01

    The paper deals with the predictive control applied to flexible cogeneration energy system FES. FES was designed and developed by the VITKOVICE POWER ENGINEERING joint-stock company and represents a new solution of decentralized cogeneration energy sources. In FES, the heating medium is flue gas generated by combustion of a solid fuel. The heated medium is power gas, which is a gas mixture of air and water steam. Power gas is superheated in the main heat exchanger and led to gas turbines. To protect the main heat exchanger against damage by overheating, the novel predictive protective control based on the mathematical model of exchanger was developed. The paper describes the principle, the design and the simulation of the predictive protective method applied to main heat exchanger of FES.

  18. Model-predictive control of polymer composite manufacturing processes

    NASA Astrophysics Data System (ADS)

    Voorakaranam, Srikanth

    Quality control is crucial for reducing costs and enabling a more widespread use of fiber-resin composites. This research focuses on development of model-based control strategies for controlling product quality in continuous processes for manufacturing polymer composites with injected pultrusion as a prototype. The control objective is to maximize production rates, meeting quality criteria such as eliminating voids, achieving desired degree of cure and preventing backflow of resin from the die entrance. A 2-D mathematical model of IP developed by Kommu is extended to incorporate die dynamics. Exercising the model over a range of operating conditions, the requirements for a control system are formulated. Simultaneous requirements of optimization and control are met by using a cascade strategy consisting of supervisory and regulatory layers. The supervisory layer consists of an optimizer in conjunction with a steady-state cure model and an injection pressure model. The cure model is linear in important process variables. The injection pressure model is also linear in pullspeed. A linear program generates setpoints for pullspeed, injection pressure and temperatures in the three zones of the die which are implemented by the regulatory layer using multiple PID controllers. This formulation operates the process optimally. A major problem in feedback control of the IP process is the inability to measure quality variables on-line. An inferential control strategy is proposed to tackle this. It is then extended so that it can be implemented in a model predictive control formulation. This novel strategy called model predictive inferential control is general enough to accommodate multiple secondary measurements as well as nonlinear estimators and controllers. Collinearity among multiple measurements is addressed through principal component regression. The estimator uses frequent secondary measurements to estimate the effect of the disturbances on the primary variable which are

  19. Adaptive model predictive process control using neural networks

    DOEpatents

    Buescher, K.L.; Baum, C.C.; Jones, R.D.

    1997-08-19

    A control system for controlling the output of at least one plant process output parameter is implemented by adaptive model predictive control using a neural network. An improved method and apparatus provides for sampling plant output and control input at a first sampling rate to provide control inputs at the fast rate. The MPC system is, however, provided with a network state vector that is constructed at a second, slower rate so that the input control values used by the MPC system are averaged over a gapped time period. Another improvement is a provision for on-line training that may include difference training, curvature training, and basis center adjustment to maintain the weights and basis centers of the neural in an updated state that can follow changes in the plant operation apart from initial off-line training data. 46 figs.

  20. Adaptive model predictive process control using neural networks

    DOEpatents

    Buescher, Kevin L.; Baum, Christopher C.; Jones, Roger D.

    1997-01-01

    A control system for controlling the output of at least one plant process output parameter is implemented by adaptive model predictive control using a neural network. An improved method and apparatus provides for sampling plant output and control input at a first sampling rate to provide control inputs at the fast rate. The MPC system is, however, provided with a network state vector that is constructed at a second, slower rate so that the input control values used by the MPC system are averaged over a gapped time period. Another improvement is a provision for on-line training that may include difference training, curvature training, and basis center adjustment to maintain the weights and basis centers of the neural in an updated state that can follow changes in the plant operation apart from initial off-line training data.

  1. Implementation of model predictive control on a hydrothermal oxidation reactor

    SciTech Connect

    Muske, K.R.; Dell`Orco, P.C.; Le, L.A.; Flesner, R.L.

    1998-12-31

    This paper describes the model-based control algorithm developed for a hydrothermal oxidation reactor at the Pantex Department of Energy facility in Amarillo, Texas. The combination of base hydrolysis and hydrothermal oxidation is used for the disposal of PBX 9404 high explosive at Pantex. The reactor oxidizes the organic compounds in the hydrolysate solutions obtained from the base hydrolysis process. The objective of the model predictive controller is to minimize the total aqueous nitrogen compounds in the effluent of the reactor. The controller also maintains a desired excess oxygen concentration in the reactor effluent to ensure the complete destruction of the organic carbon compounds in the hydrolysate.

  2. Motivation to control prejudice predicts categorization of multiracials.

    PubMed

    Chen, Jacqueline M; Moons, Wesley G; Gaither, Sarah E; Hamilton, David L; Sherman, Jeffrey W

    2014-05-01

    Multiracial individuals often do not easily fit into existing racial categories. Perceivers may adopt a novel racial category to categorize multiracial targets, but their willingness to do so may depend on their motivations. We investigated whether perceivers' levels of internal motivation to control prejudice (IMS) and external motivation to control prejudice (EMS) predicted their likelihood of categorizing Black-White multiracial faces as Multiracial. Across four studies, IMS positively predicted perceivers' categorizations of multiracial faces as Multiracial. The association between IMS and Multiracial categorizations was strongest when faces were most racially ambiguous. Explicit prejudice, implicit prejudice, and interracial contact were ruled out as explanations for the relationship between IMS and Multiracial categorizations. EMS may be negatively associated with the use of the Multiracial category. Therefore, perceivers' motivations to control prejudice have important implications for racial categorization processes. PMID:24458216

  3. Nonlinear Dynamic Inversion Baseline Control Law: Architecture and Performance Predictions

    NASA Technical Reports Server (NTRS)

    Miller, Christopher J.

    2011-01-01

    A model reference dynamic inversion control law has been developed to provide a baseline control law for research into adaptive elements and other advanced flight control law components. This controller has been implemented and tested in a hardware-in-the-loop simulation; the simulation results show excellent handling qualities throughout the limited flight envelope. A simple angular momentum formulation was chosen because it can be included in the stability proofs for many basic adaptive theories, such as model reference adaptive control. Many design choices and implementation details reflect the requirements placed on the system by the nonlinear flight environment and the desire to keep the system as basic as possible to simplify the addition of the adaptive elements. Those design choices are explained, along with their predicted impact on the handling qualities.

  4. Effects of modeling errors on trajectory predictions in air traffic control automation

    NASA Technical Reports Server (NTRS)

    Jackson, Michael R. C.; Zhao, Yiyuan; Slattery, Rhonda

    1996-01-01

    Air traffic control automation synthesizes aircraft trajectories for the generation of advisories. Trajectory computation employs models of aircraft performances and weather conditions. In contrast, actual trajectories are flown in real aircraft under actual conditions. Since synthetic trajectories are used in landing scheduling and conflict probing, it is very important to understand the differences between computed trajectories and actual trajectories. This paper examines the effects of aircraft modeling errors on the accuracy of trajectory predictions in air traffic control automation. Three-dimensional point-mass aircraft equations of motion are assumed to be able to generate actual aircraft flight paths. Modeling errors are described as uncertain parameters or uncertain input functions. Pilot or autopilot feedback actions are expressed as equality constraints to satisfy control objectives. A typical trajectory is defined by a series of flight segments with different control objectives for each flight segment and conditions that define segment transitions. A constrained linearization approach is used to analyze trajectory differences caused by various modeling errors by developing a linear time varying system that describes the trajectory errors, with expressions to transfer the trajectory errors across moving segment transitions. A numerical example is presented for a complete commercial aircraft descent trajectory consisting of several flight segments.

  5. Decentralized robust nonlinear model predictive controller for unmanned aerial systems

    NASA Astrophysics Data System (ADS)

    Garcia Garreton, Gonzalo A.

    The nonlinear and unsteady nature of aircraft aerodynamics together with limited practical range of controls and state variables make the use of the linear control theory inadequate especially in the presence of external disturbances, such as wind. In the classical approach, aircraft are controlled by multiple inner and outer loops, designed separately and sequentially. For unmanned aerial systems in particular, control technology must evolve to a point where autonomy is extended to the entire mission flight envelope. This requires advanced controllers that have sufficient robustness, track complex trajectories, and use all the vehicles control capabilities at higher levels of accuracy. In this work, a robust nonlinear model predictive controller is designed to command and control an unmanned aerial system to track complex tight trajectories in the presence of internal and external perturbance. The Flight System developed in this work achieves the above performance by using: 1. A nonlinear guidance algorithm that enables the vehicle to follow an arbitrary trajectory shaped by moving points; 2. A formulation that embeds the guidance logic and trajectory information in the aircraft model, avoiding cross coupling and control degradation; 3. An artificial neural network, designed to adaptively estimate and provide aerodynamic and propulsive forces in real-time; and 4. A mixed sensitivity approach that enhances the robustness for a nonlinear model predictive controller overcoming the effect of un-modeled dynamics, external disturbances such as wind, and measurement additive perturbations, such as noise and biases. These elements have been integrated and tested in simulation and with previously stored flight test data and shown to be feasible.

  6. Model Predictive Control of Integrated Gasification Combined Cycle Power Plants

    SciTech Connect

    B. Wayne Bequette; Priyadarshi Mahapatra

    2010-08-31

    The primary project objectives were to understand how the process design of an integrated gasification combined cycle (IGCC) power plant affects the dynamic operability and controllability of the process. Steady-state and dynamic simulation models were developed to predict the process behavior during typical transients that occur in plant operation. Advanced control strategies were developed to improve the ability of the process to follow changes in the power load demand, and to improve performance during transitions between power levels. Another objective of the proposed work was to educate graduate and undergraduate students in the application of process systems and control to coal technology. Educational materials were developed for use in engineering courses to further broaden this exposure to many students. ASPENTECH software was used to perform steady-state and dynamic simulations of an IGCC power plant. Linear systems analysis techniques were used to assess the steady-state and dynamic operability of the power plant under various plant operating conditions. Model predictive control (MPC) strategies were developed to improve the dynamic operation of the power plants. MATLAB and SIMULINK software were used for systems analysis and control system design, and the SIMULINK functionality in ASPEN DYNAMICS was used to test the control strategies on the simulated process. Project funds were used to support a Ph.D. student to receive education and training in coal technology and the application of modeling and simulation techniques.

  7. Predictive onboard flow control for packet switching satellites

    NASA Technical Reports Server (NTRS)

    Bobinsky, Eric A.

    1992-01-01

    We outline two alternate approaches to predicting the onset of congestion in a packet switching satellite, and argue that predictive, rather than reactive, flow control is necessary for the efficient operation of such a system. The first method discussed is based on standard, statistical techniques which are used to periodically calculate a probability of near-term congestion based on arrival rate statistics. If this probability exceeds a present threshold, the satellite would transmit a rate-reduction signal to all active ground stations. The second method discussed would utilize a neural network to periodically predict the occurrence of buffer overflow based on input data which would include, in addition to arrival rates, the distributions of packet lengths, source addresses, and destination addresses.

  8. Model predictive control of a wind turbine modelled in Simpack

    NASA Astrophysics Data System (ADS)

    Jassmann, U.; Berroth, J.; Matzke, D.; Schelenz, R.; Reiter, M.; Jacobs, G.; Abel, D.

    2014-06-01

    Wind turbines (WT) are steadily growing in size to increase their power production, which also causes increasing loads acting on the turbine's components. At the same time large structures, such as the blades and the tower get more flexible. To minimize this impact, the classical control loops for keeping the power production in an optimum state are more and more extended by load alleviation strategies. These additional control loops can be unified by a multiple-input multiple-output (MIMO) controller to achieve better balancing of tuning parameters. An example for MIMO control, which has been paid more attention to recently by wind industry, is Model Predictive Control (MPC). In a MPC framework a simplified model of the WT is used to predict its controlled outputs. Based on a user-defined cost function an online optimization calculates the optimal control sequence. Thereby MPC can intrinsically incorporate constraints e.g. of actuators. Turbine models used for calculation within the MPC are typically simplified. For testing and verification usually multi body simulations, such as FAST, BLADED or FLEX5 are used to model system dynamics, but they are still limited in the number of degrees of freedom (DOF). Detailed information about load distribution (e.g. inside the gearbox) cannot be provided by such models. In this paper a Model Predictive Controller is presented and tested in a co-simulation with SlMPACK, a multi body system (MBS) simulation framework used for detailed load analysis. The analysis are performed on the basis of the IME6.0 MBS WT model, described in this paper. It is based on the rotor of the NREL 5MW WT and consists of a detailed representation of the drive train. This takes into account a flexible main shaft and its main bearings with a planetary gearbox, where all components are modelled flexible, as well as a supporting flexible main frame. The wind loads are simulated using the NREL AERODYN v13 code which has been implemented as a routine to

  9. Prediction as Persuasion and Threat: Interaction of Locus of Control and Locus of Prediction on Compliance and Reactance.

    ERIC Educational Resources Information Center

    Goggin, William C.

    A model of persuasion suggests that individuals comply with a prediction of their behavior because they are persuaded by that prediction; a model of threat suggests that they defy prediction because of its threat of control. College students with either internal (N=20) or external (N=20) loci of control were informed of the accuracy of the…

  10. Flutter prediction for a wing with active aileron control

    NASA Technical Reports Server (NTRS)

    Penning, K.; Sandlin, D. R.

    1983-01-01

    A method for predicting the vibrational stability of an aircraft with an analog active aileron flutter suppression system (FSS) is expained. Active aileron refers to the use of an active control system connected to the aileron to damp vibrations. Wing vibrations are sensed by accelerometers and the information is used to deflect the aileron. Aerodynamic force caused by the aileron deflection oppose wing vibrations and effectively add additional damping to the system.

  11. Punishment Sensitivity Predicts the Impact of Punishment on Cognitive Control

    PubMed Central

    Braem, Senne; Duthoo, Wout; Notebaert, Wim

    2013-01-01

    Cognitive control theories predict enhanced conflict adaptation after punishment. However, no such effect was found in previous work. In the present study, we demonstrate in a flanker task how behavioural adjustments following punishment signals are highly dependent on punishment sensitivity (as measured by the Behavioural Inhibition System (BIS) scale): Whereas low punishment-sensitive participants do show increased conflict adaptation after punishment, high punishment-sensitive participants show no such modulation. Interestingly, participants with a high punishment-sensitivity showed an overall reaction time increase after punishments. Our results stress the role of individual differences in explaining motivational modulations of cognitive control. PMID:24058520

  12. Experimental Investigations of Generalized Predictive Control for Tiltrotor Stability Augmentation

    NASA Technical Reports Server (NTRS)

    Nixon, Mark W.; Langston, Chester W.; Singleton, Jeffrey D.; Piatak, David J.; Kvaternik, Raymond G.; Bennett, Richard L.; Brown, Ross K.

    2001-01-01

    A team of researchers from the Army Research Laboratory, NASA Langley Research Center (LaRC), and Bell Helicopter-Textron, Inc. have completed hover-cell and wind-tunnel testing of a 1/5-size aeroelastically-scaled tiltrotor model using a new active control system for stability augmentation. The active system is based on a generalized predictive control (GPC) algorithm originally developed at NASA LaRC in 1997 for un-known disturbance rejection. Results of these investigations show that GPC combined with an active swashplate can significantly augment the damping and stability of tiltrotors in both hover and high-speed flight.

  13. Prediction and control of chaotic processes using nonlinear adaptive networks

    SciTech Connect

    Jones, R.D.; Barnes, C.W.; Flake, G.W.; Lee, K.; Lewis, P.S.; O'Rouke, M.K.; Qian, S.

    1990-01-01

    We present the theory of nonlinear adaptive networks and discuss a few applications. In particular, we review the theory of feedforward backpropagation networks. We then present the theory of the Connectionist Normalized Linear Spline network in both its feedforward and iterated modes. Also, we briefly discuss the theory of stochastic cellular automata. We then discuss applications to chaotic time series, tidal prediction in Venice lagoon, finite differencing, sonar transient detection, control of nonlinear processes, control of a negative ion source, balancing a double inverted pendulum and design advice for free electron lasers and laser fusion targets.

  14. Applying new optimization algorithms to more predictive control

    SciTech Connect

    Wright, S.J.

    1996-03-01

    The connections between optimization and control theory have been explored by many researchers and optimization algorithms have been applied with success to optimal control. The rapid pace of developments in model predictive control has given rise to a host of new problems to which optimization has yet to be applied. Concurrently, developments in optimization, and especially in interior-point methods, have produced a new set of algorithms that may be especially helpful in this context. In this paper, we reexamine the relatively simple problem of control of linear processes subject to quadratic objectives and general linear constraints. We show how new algorithms for quadratic programming can be applied efficiently to this problem. The approach extends to several more general problems in straightforward ways.

  15. Multiplexed model predictive control for active vehicle suspensions

    NASA Astrophysics Data System (ADS)

    Hu, Yinlong; Chen, Michael Z. Q.; Hou, Zhongsheng

    2015-02-01

    Multiplexed model predictive control (MMPC) is a recently proposed efficient model predictive control (MPC) algorithm, which can effectively reduce the computational burden of the online optimisation in MPC implementation by updating the control inputs in an asynchronous manner. This paper investigates the application of MMPC in active vehicle suspension design. An MMPC controller integrated with soft constraints and a Kalman filter is proposed based on a full-car model. Ride comfort, roadholding and suspension deflection are considered in this paper, where ride comfort and roadholding are formulated as a quadratic cost function in terms of sprung mass accelerations and tyre deflections, while suspension deflection performance is formulated as a hard constraint. The saturation of the actuator force is also considered and formulated as a hard constraint as well. Numerical simulation is performed with respect to different choices of weighting factors, vehicle speeds and control horizons. The results show that the overall performance of ride comfort and roadholding can be improved significantly by employing MMPC and the average time taken by MMPC to solve the individual quadratic programming problem is considerably smaller than that of the conventional MPC, which effectively demonstrate the effectiveness of the proposed method.

  16. A novel trajectory prediction control for proximate time-optimal digital control DC—DC converters

    NASA Astrophysics Data System (ADS)

    Qing, Wang; Ning, Chen; Shen, Xu; Weifeng, Sun; Longxing, Shi

    2014-09-01

    The purpose of this paper is to present a novel trajectory prediction method for proximate time-optimal digital control DC—DC converters. The control method provides pre-estimations of the duty ratio in the next several switching cycles, so as to compensate the computational time delay of the control loop and increase the control loop bandwidth, thereby improving the response speed. The experiment results show that the fastest transient response time of the digital DC—DC with the proposed prediction is about 8 μs when the load current changes from 0.6 to 0.1 A.

  17. An insula-frontostriatal network mediates flexible cognitive control by adaptively predicting changing control demands

    PubMed Central

    Jiang, Jiefeng; Beck, Jeffrey; Heller, Katherine; Egner, Tobias

    2015-01-01

    The anterior cingulate and lateral prefrontal cortices have been implicated in implementing context-appropriate attentional control, but the learning mechanisms underlying our ability to flexibly adapt the control settings to changing environments remain poorly understood. Here we show that human adjustments to varying control demands are captured by a reinforcement learner with a flexible, volatility-driven learning rate. Using model-based functional magnetic resonance imaging, we demonstrate that volatility of control demand is estimated by the anterior insula, which in turn optimizes the prediction of forthcoming demand in the caudate nucleus. The caudate's prediction of control demand subsequently guides the implementation of proactive and reactive attentional control in dorsal anterior cingulate and dorsolateral prefrontal cortices. These data enhance our understanding of the neuro-computational mechanisms of adaptive behaviour by connecting the classic cingulate-prefrontal cognitive control network to a subcortical control-learning mechanism that infers future demands by flexibly integrating remote and recent past experiences. PMID:26391305

  18. Control of nonlinear processes by using linear model predictive control algorithms.

    PubMed

    Gu, Bingfeng; Gupta, Yash P

    2008-04-01

    Most chemical processes are inherently nonlinear. However, because of their simplicity, linear control algorithms have been used for the control of nonlinear processes. In this study, the use of the dynamic matrix control algorithm and a simplified model predictive control algorithm for control of a bench-scale pH neutralization process is investigated. The nonlinearity is handled by dividing the operating region into sub-regions and by switching the controller model as the process moves from one sub-region to another. A simple modification for model predictive control algorithms is presented to handle the switching. The simulation and experimental results show that the modification can provide a significant improvement in the control of nonlinear processes. PMID:18255068

  19. A novel vehicle dynamics stability control algorithm based on the hierarchical strategy with constrain of nonlinear tyre forces

    NASA Astrophysics Data System (ADS)

    Li, Liang; Jia, Gang; Chen, Jie; Zhu, Hongjun; Cao, Dongpu; Song, Jian

    2015-08-01

    Direct yaw moment control (DYC), which differentially brakes the wheels to produce a yaw moment for the vehicle stability in a steering process, is an important part of electric stability control system. In this field, most control methods utilise the active brake pressure with a feedback controller to adjust the braked wheel. However, the method might lead to a control delay or overshoot because of the lack of a quantitative project relationship between target values from the upper stability controller to the lower pressure controller. Meanwhile, the stability controller usually ignores the implementing ability of the tyre forces, which might be restrained by the combined-slip dynamics of the tyre. Therefore, a novel control algorithm of DYC based on the hierarchical control strategy is brought forward in this paper. As for the upper controller, a correctional linear quadratic regulator, which not only contains feedback control but also contains feed forward control, is introduced to deduce the object of the stability yaw moment in order to guarantee the yaw rate and side-slip angle stability. As for the medium and lower controller, the quantitative relationship between the vehicle stability object and the target tyre forces of controlled wheels is proposed to achieve smooth control performance based on a combined-slip tyre model. The simulations with the hardware-in-the-loop platform validate that the proposed algorithm can improve the stability of the vehicle effectively.

  20. Cognitive control predicts use of model-based reinforcement learning.

    PubMed

    Otto, A Ross; Skatova, Anya; Madlon-Kay, Seth; Daw, Nathaniel D

    2015-02-01

    Accounts of decision-making and its neural substrates have long posited the operation of separate, competing valuation systems in the control of choice behavior. Recent theoretical and experimental work suggest that this classic distinction between behaviorally and neurally dissociable systems for habitual and goal-directed (or more generally, automatic and controlled) choice may arise from two computational strategies for reinforcement learning (RL), called model-free and model-based RL, but the cognitive or computational processes by which one system may dominate over the other in the control of behavior is a matter of ongoing investigation. To elucidate this question, we leverage the theoretical framework of cognitive control, demonstrating that individual differences in utilization of goal-related contextual information--in the service of overcoming habitual, stimulus-driven responses--in established cognitive control paradigms predict model-based behavior in a separate, sequential choice task. The behavioral correspondence between cognitive control and model-based RL compellingly suggests that a common set of processes may underpin the two behaviors. In particular, computational mechanisms originally proposed to underlie controlled behavior may be applicable to understanding the interactions between model-based and model-free choice behavior. PMID:25170791

  1. Predictive maintenance now available for controls and instrumentation

    SciTech Connect

    Frerichs, D.K.

    1999-11-01

    Predictive maintenance (PdM) methods now abound in all areas of the powerhouse. Vibration analysis methods for all rotating machinery, oil analysis for both lubricated parts and transformers, wear particle analysis, acoustic leak detection, and loose parts monitoring are commonplace. But what about the controls and instrumentation arena? Smart positioners/actuators are part of the answer. They can tell us that stroke times are different or something is sticking, and therefore some level of maintenance is in order. Smart transmitters and new sensing technologies allow those devices to hold their calibration longer. But how does one know when it is time to re-calibrate the sensor? When does an RTD or thermocouple and/or it`s signal converter begin to drift? When did the steam temperature controls start to behave sub-optimally? If you perform the maintenance too early, you waste maintenance dollars. If you do it too late, you could be running off normal and not realize it, which in turn wastes operation dollars. There are hundreds of controllers and sensors to be maintained (thousands in a large facility), so guessing wrong can waste a lot of O and M dollars. This paper will explore new technology that finally allows the science of predictive maintenance to lend its benefits to the field of controls and instrumentation.

  2. Robust model predictive control for optimal continuous drug administration.

    PubMed

    Sopasakis, Pantelis; Patrinos, Panagiotis; Sarimveis, Haralambos

    2014-10-01

    In this paper the model predictive control (MPC) technology is used for tackling the optimal drug administration problem. The important advantage of MPC compared to other control technologies is that it explicitly takes into account the constraints of the system. In particular, for drug treatments of living organisms, MPC can guarantee satisfaction of the minimum toxic concentration (MTC) constraints. A whole-body physiologically-based pharmacokinetic (PBPK) model serves as the dynamic prediction model of the system after it is formulated as a discrete-time state-space model. Only plasma measurements are assumed to be measured on-line. The rest of the states (drug concentrations in other organs and tissues) are estimated in real time by designing an artificial observer. The complete system (observer and MPC controller) is able to drive the drug concentration to the desired levels at the organs of interest, while satisfying the imposed constraints, even in the presence of modelling errors, disturbances and noise. A case study on a PBPK model with 7 compartments, constraints on 5 tissues and a variable drug concentration set-point illustrates the efficiency of the methodology in drug dosing control applications. The proposed methodology is also tested in an uncertain setting and proves successful in presence of modelling errors and inaccurate measurements. PMID:24986530

  3. Inverse problem to constrain the controlling parameters of large-scale heat transport processes: The Tiberias Basin example

    NASA Astrophysics Data System (ADS)

    Goretzki, Nora; Inbar, Nimrod; Siebert, Christian; Möller, Peter; Rosenthal, Eliyahu; Schneider, Michael; Magri, Fabien

    2015-04-01

    Salty and thermal springs exist along the lakeshore of the Sea of Galilee, which covers most of the Tiberias Basin (TB) in the northern Jordan- Dead Sea Transform, Israel/Jordan. As it is the only freshwater reservoir of the entire area, it is important to study the salinisation processes that pollute the lake. Simulations of thermohaline flow along a 35 km NW-SE profile show that meteoric and relic brines are flushed by the regional flow from the surrounding heights and thermally induced groundwater flow within the faults (Magri et al., 2015). Several model runs with trial and error were necessary to calibrate the hydraulic conductivity of both faults and major aquifers in order to fit temperature logs and spring salinity. It turned out that the hydraulic conductivity of the faults ranges between 30 and 140 m/yr whereas the hydraulic conductivity of the Upper Cenomanian aquifer is as high as 200 m/yr. However, large-scale transport processes are also dependent on other physical parameters such as thermal conductivity, porosity and fluid thermal expansion coefficient, which are hardly known. Here, inverse problems (IP) are solved along the NW-SE profile to better constrain the physical parameters (a) hydraulic conductivity, (b) thermal conductivity and (c) thermal expansion coefficient. The PEST code (Doherty, 2010) is applied via the graphical interface FePEST in FEFLOW (Diersch, 2014). The results show that both thermal and hydraulic conductivity are consistent with the values determined with the trial and error calibrations. Besides being an automatic approach that speeds up the calibration process, the IP allows to cover a wide range of parameter values, providing additional solutions not found with the trial and error method. Our study shows that geothermal systems like TB are more comprehensively understood when inverse models are applied to constrain coupled fluid flow processes over large spatial scales. References Diersch, H.-J.G., 2014. FEFLOW Finite

  4. Vehicle yaw stability control using active limited-slip differential via model predictive control methods

    NASA Astrophysics Data System (ADS)

    Rubin, Daniel; Arogeti, Shai A.

    2015-09-01

    In this paper, the problem of vehicle yaw control using an active limited-slip differential (ALSD) applied on the rear axle is addressed. The controller objective is to minimise yaw-rate and body slip-angle errors, with respect to target values. A novel model predictive controller is designed, using a linear parameter-varying (LPV) vehicle model, which takes into account the ALSD dynamics and its constraints. The controller is simulated using a 10DOF Matlab/Simulink simulation model and a CarSim model. These simulations exemplify the controller yaw-rate and slip-angle tracking performances, under challenging manoeuvres and road conditions. The model predictive controller performances surpass those of a reference sliding mode controller, and can narrow the loss of performances due to the ALSD's inability to transfer torque regardless of driving conditions.

  5. Self-Tuning of Design Variables for Generalized Predictive Control

    NASA Technical Reports Server (NTRS)

    Lin, Chaung; Juang, Jer-Nan

    2000-01-01

    Three techniques are introduced to determine the order and control weighting for the design of a generalized predictive controller. These techniques are based on the application of fuzzy logic, genetic algorithms, and simulated annealing to conduct an optimal search on specific performance indexes or objective functions. Fuzzy logic is found to be feasible for real-time and on-line implementation due to its smooth and quick convergence. On the other hand, genetic algorithms and simulated annealing are applicable for initial estimation of the model order and control weighting, and final fine-tuning within a small region of the solution space, Several numerical simulations for a multiple-input and multiple-output system are given to illustrate the techniques developed in this paper.

  6. Structural Acoustic Prediction and Interior Noise Control Technology

    NASA Technical Reports Server (NTRS)

    Mathur, G. P.; Chin, C. L.; Simpson, M. A.; Lee, J. T.; Palumbo, Daniel L. (Technical Monitor)

    2001-01-01

    This report documents the results of Task 14, "Structural Acoustic Prediction and Interior Noise Control Technology". The task was to evaluate the performance of tuned foam elements (termed Smart Foam) both analytically and experimentally. Results taken from a three-dimensional finite element model of an active, tuned foam element are presented. Measurements of sound absorption and sound transmission loss were taken using the model. These results agree well with published data. Experimental performance data were taken in Boeing's Interior Noise Test Facility where 12 smart foam elements were applied to a 757 sidewall. Several configurations were tested. Noise reductions of 5-10 dB were achieved over the 200-800 Hz bandwidth of the controller. Accelerometers mounted on the panel provided a good reference for the controller. Configurations with far-field error microphones outperformed near-field cases.

  7. Prediction in the Vestibular Control of Arm Movements.

    PubMed

    Blouin, Jean; Bresciani, Jean-Pierre; Guillaud, Etienne; Simoneau, Martin

    2015-01-01

    The contribution of vestibular signals to motor control has been evidenced in postural, locomotor, and oculomotor studies. Here, we review studies showing that vestibular information also contributes to the control of arm movements during whole-body motion. The data reviewed suggest that vestibular information is used by the arm motor system to maintain the initial hand position or the planned hand trajectory unaltered during body motion. This requires integration of vestibular and cervical inputs to determine the trunk motion dynamics. These studies further suggest that the vestibular control of arm movement relies on rapid and efficient vestibulomotor transformations that cannot be considered automatic. We also reviewed evidence suggesting that the vestibular afferents can be used by the brain to predict and counteract body-rotation-induced torques (e.g., Coriolis) acting on the arm when reaching for a target while turning the trunk. PMID:26595953

  8. Prediction and control of neural responses to pulsatile electrical stimulation

    NASA Astrophysics Data System (ADS)

    Campbell, Luke J.; Sly, David James; O'Leary, Stephen John

    2012-04-01

    This paper aims to predict and control the probability of firing of a neuron in response to pulsatile electrical stimulation of the type delivered by neural prostheses such as the cochlear implant, bionic eye or in deep brain stimulation. Using the cochlear implant as a model, we developed an efficient computational model that predicts the responses of auditory nerve fibers to electrical stimulation and evaluated the model's accuracy by comparing the model output with pooled responses from a group of guinea pig auditory nerve fibers. It was found that the model accurately predicted the changes in neural firing probability over time to constant and variable amplitude electrical pulse trains, including speech-derived signals, delivered at rates up to 889 pulses s-1. A simplified version of the model that did not incorporate adaptation was used to adaptively predict, within its limitations, the pulsatile electrical stimulus required to cause a desired response from neurons up to 250 pulses s-1. Future stimulation strategies for cochlear implants and other neural prostheses may be enhanced using similar models that account for the way that neural responses are altered by previous stimulation.

  9. GLI3 Constrains Digit Number by Controlling Both Progenitor Proliferation and BMP-Dependent Exit to Chondrogenesis

    PubMed Central

    Lopez-Rios, Javier; Speziale, Dario; Robay, Dimitri; Scotti, Martina; Osterwalder, Marco; Nusspaumer, Gretel; Galli, Antonella; Holländer, Georg A.; Kmita, Marie; Zeller, Rolf

    2015-01-01

    SUMMARY Inactivation of Gli3, a key component of Hedgehog signaling in vertebrates, results in formation of additional digits (polydactyly) during limb bud development. The analysis of mouse embryos constitutively lacking Gli3 has revealed the essential GLI3 functions in specifying the anteroposterior (AP) limb axis and digit identities. We conditionally inactivated Gli3 during mouse hand plate development, which uncoupled the resulting preaxial polydactyly from known GLI3 functions in establishing AP and digit identities. Our analysis revealed that GLI3 directly restricts the expression of regulators of the G1–S cell-cycle transition such as Cdk6 and constrains S phase entry of digit progenitors in the anterior hand plate. Furthermore, GLI3 promotes the exit of proliferating progenitors toward BMP-dependent chondrogenic differentiation by spatiotemporally restricting and terminating the expression of the BMP antagonist Gremlin1. Thus, Gli3 is a negative regulator of the proliferative expansion of digit progenitors and acts as a gatekeeper for the exit to chondrogenic differentiation. PMID:22465667

  10. Dinucleotide controlled null models for comparative RNA gene prediction

    PubMed Central

    Gesell, Tanja; Washietl, Stefan

    2008-01-01

    Background Comparative prediction of RNA structures can be used to identify functional noncoding RNAs in genomic screens. It was shown recently by Babak et al. [BMC Bioinformatics. 8:33] that RNA gene prediction programs can be biased by the genomic dinucleotide content, in particular those programs using a thermodynamic folding model including stacking energies. As a consequence, there is need for dinucleotide-preserving control strategies to assess the significance of such predictions. While there have been randomization algorithms for single sequences for many years, the problem has remained challenging for multiple alignments and there is currently no algorithm available. Results We present a program called SISSIz that simulates multiple alignments of a given average dinucleotide content. Meeting additional requirements of an accurate null model, the randomized alignments are on average of the same sequence diversity and preserve local conservation and gap patterns. We make use of a phylogenetic substitution model that includes overlapping dependencies and site-specific rates. Using fast heuristics and a distance based approach, a tree is estimated under this model which is used to guide the simulations. The new algorithm is tested on vertebrate genomic alignments and the effect on RNA structure predictions is studied. In addition, we directly combined the new null model with the RNAalifold consensus folding algorithm giving a new variant of a thermodynamic structure based RNA gene finding program that is not biased by the dinucleotide content. Conclusion SISSIz implements an efficient algorithm to randomize multiple alignments preserving dinucleotide content. It can be used to get more accurate estimates of false positive rates of existing programs, to produce negative controls for the training of machine learning based programs, or as standalone RNA gene finding program. Other applications in comparative genomics that require randomization of multiple

  11. Predictive control and estimation algorithms for the NASA/JPL 70-meter antennas

    NASA Technical Reports Server (NTRS)

    Gawronski, W.

    1991-01-01

    A modified output prediction procedure and a new controller design is presented based on the predictive control law. Also, a new predictive estimator is developed to complement the controller and to enhance system performance. The predictive controller is designed and applied to the tracking control of the Deep Space Network 70 m antennas. Simulation results show significant improvement in tracking performance over the linear quadratic controller and estimator presently in use.

  12. [The quality control based on the predictable performance].

    PubMed

    Zheng, D X

    2016-09-01

    The clinical performance can only be evaluated when it comes to the last step in the conventional way of prosthesis. However, it often causes the failure because of the unconformity between the expectation and final performance. Resulting from this kind of situation, quality control based on the predictable results has been suggested. It is a new idea based on the way of reverse thinking, and focuses on the need of patient and puts the final performance of the prosthesis to the first place. With the prosthodontically driven prodedure, dentists can complete the unification with the expectation and the final performance. PMID:27596338

  13. Model Predictive Control for the Operation of Building Cooling Systems

    SciTech Connect

    Ma, Yudong; Borrelli, Francesco; Hencey, Brandon; Coffey, Brian; Bengea, Sorin; Haves, Philip

    2010-06-29

    A model-based predictive control (MPC) is designed for optimal thermal energy storage in building cooling systems. We focus on buildings equipped with a water tank used for actively storing cold water produced by a series of chillers. Typically the chillers are operated at night to recharge the storage tank in order to meet the building demands on the following day. In this paper, we build on our previous work, improve the building load model, and present experimental results. The experiments show that MPC can achieve reduction in the central plant electricity cost and improvement of its efficiency.

  14. Dynamics and control for Constrained Multibody Systems modeled with Maggi's equation: Application to Differential Mobile Robots Partll

    NASA Astrophysics Data System (ADS)

    Amengonu, Yawo H.; Kakad, Yogendra P.

    2014-07-01

    Quasivelocity techniques were applied to derive the dynamics of a Differential Wheeled Mobile Robot (DWMR) in the companion paper. The present paper formulates a control system design for trajectory tracking of this class of robots. The method develops a feedback linearization technique for the nonlinear system using dynamic extension algorithm. The effectiveness of the nonlinear controller is illustrated with simulation example.

  15. Low inhibitory control and restrictive feeding practices predict weight outcomes

    PubMed Central

    Anzman, Stephanie L.; Birch, Leann L.

    2009-01-01

    Objective A priority for research is to identify individuals early in development who are particularly susceptible to weight gain in the current, obesogenic environment. This longitudinal study investigated whether early individual differences in inhibitory control, an aspect of temperament, predicted weight outcomes and whether parents’ restrictive feeding practices moderated this relation. Study design Participants included 197 non-Hispanic White girls and their parents; families were assessed when girls were 5, 7, 9, 11, 13, and 15 years old. Measures included mothers’ reports of girls’ inhibitory control levels, girls’ reports of parental restriction in feeding, girls’ body mass indexes (BMIs), and parents’ BMIs, education, and income. Results Girls with lower inhibitory control at age 7 had higher concurrent BMIs, greater weight gain, higher BMIs at all subsequent time points, and were 1.95 times more likely to be overweight at age 15. Girls who perceived higher parental restriction exhibited the strongest inverse relation between inhibitory control and weight status. Conclusion Variability in inhibitory control could help identify individuals who are predisposed to obesity risk; the current findings also highlight the importance of parenting practices as potentially modifiable factors which exacerbate or attenuate this risk. PMID:19595373

  16. Tuning the Model Predictive Control of a Crude Distillation Unit.

    PubMed

    Yamashita, André Shigueo; Zanin, Antonio Carlos; Odloak, Darci

    2016-01-01

    Tuning the parameters of the Model Predictive Control (MPC) of an industrial Crude Distillation Unit (CDU) is considered here. A realistic scenario is depicted where the inputs of the CDU system have optimizing targets, which are provided by the Real Time Optimization layer of the control structure. It is considered the nominal case, in which both the CDU model and the MPC model are the same. The process outputs are controlled inside zones instead of at fixed set points. Then, the tuning procedure has to define the weights that penalize the output error with respect to the control zone, the weights that penalize the deviation of the inputs from their targets, as well as the weights that penalize the input moves. A tuning approach based on multi-objective optimization is proposed and applied to the MPC of the CDU system. The performance of the controller tuned with the proposed approach is compared through simulation with the results of an existing approach also based on multi-objective optimization. The simulation results are similar, but the proposed approach has a computational load significantly lower than the existing method. The tuning effort is also much lower than in the conventional practical approaches that are usually based on ad-hoc procedures. PMID:26549567

  17. What`s new in multivariable predictive control

    SciTech Connect

    Colwell, L.W.; Poe, W.A.; Papadopoulos, M.N.; Gamez, J.P.

    1995-11-01

    Multivariable control techniques have been successfully applied to a variety of gas processing operations. The technology has been applied to CO{sub 2} recovery towers, cryogenic demethanizers, lean oil absorbers, rich oil demethanizers, rich oil stills, deethanizers, depropanizers, deisobutanizers, amine treaters, sulfur recovery units, nitrogen rejection units and compressors. The system has been developed with a modular structure and employs process model based predictions of key plant variables. Modules for each type of operation are available and, with minimal modification, can be applied to a specific unit since the key plant variables are usually common between plants and are affected by similar disturbances. Adaptive nonlinear multivariable control models allow continuous operation at optimum conditions within plant constraints. In most applications a personal computer (PC) containing the control software dan supervisory control and data acquisition (SCADA) system operates under a UNIX operating system and interfaces with the plant`s existing control system. The PC-based system dispatches setpoints that have been calculated to optimize on-line the profitability of the plant. A typical project can be implemented in 4-6 months with a payout of less than a year by increasing natural gas liquids (NGL) revenues and decreasing plant operating costs. This paper describes the technology and the initial installation results.

  18. Preview Scheduled Model Predictive Control For Horizontal Axis Wind Turbines

    NASA Astrophysics Data System (ADS)

    Laks, Jason H.

    This research investigates the use of model predictive control (MPC) in application to wind turbine operation from start-up to cut-out. The studies conducted are focused on the design of an MPC controller for a 650˜KW, three-bladed horizontal axis turbine that is in operation at the National Renewable Energy Laboratory's National Wind Technology Center outside of Golden, Colorado. This turbine is at the small end of utility scale turbines, but it provides advanced instrumentation and control capabilities, and there is a good probability that the approach developed in simulation for this thesis, will be field tested on the actual turbine. A contribution of this thesis is a method to combine the use of preview measurements with MPC while also providing regulation of turbine speed and cyclic blade loading. A common MPC technique provides integral-like control to achieve offset-free operation. At the same time in wind turbine applications, multiple studies have developed "feed-forward" controls based on applying a gain to an estimate of the wind speed changes obtained from an observer incorporating a disturbance model. These approaches are based on a technique that can be referred to as disturbance accommodating control (DAC). In this thesis, it is shown that offset-free tracking MPC is equivalent to a DAC approach when the disturbance gain is computed to satisfy a regulator equation. Although the MPC literature has recognized that this approach provides "structurally stable" disturbance rejection and tracking, this step is not typically divorced from the MPC computations repeated each sample hit. The DAC formulation is conceptually simpler, and essentially uncouples regulation considerations from MPC related issues. This thesis provides a self contained proof that the DAC formulation (an observer-controller and appropriate disturbance gain) provides structurally stable regulation.

  19. Predictive mechanisms in the control of contour following

    PubMed Central

    Tramper, Julian J.; Flanders, Martha

    2013-01-01

    In haptic exploration, when running a fingertip along a surface, the control system may attempt to anticipate upcoming changes in curvature in order to maintain a consistent level of contact force. Such predictive mechanisms are well known in the visual system, but have yet to be studied in the somatosensory system. Thus the present experiment was designed to reveal human capabilities for different types of haptic prediction. A robot arm with a large 3D workspace was attached to the index fingertip and was programmed to produce virtual surfaces with curvatures that varied within and across trials. With eyes closed, subjects moved the fingertip around elliptical hoops with flattened regions or Limaçon shapes, where the curvature varied continuously. Subjects anticipated the corner of the flattened region rather poorly, but for the Limaçon shapes they varied finger speed with upcoming curvature according to the two-thirds power law. Furthermore, although the Limaçon shapes were randomly presented in various 3D orientations, modulation of contact force also indicated good anticipation of upcoming changes in curvature. The results demonstrate that it is difficult to haptically anticipate the spatial location of an abrupt change in curvature, but smooth changes in curvature may be facilitated by anticipatory predictions. PMID:23649968

  20. Evidence for predictive control in lifting series of virtual objects.

    PubMed

    Mawase, Firas; Karniel, Amir

    2010-06-01

    The human motor control system gracefully behaves in a dynamic and time varying environment. Here, we explored the predictive capabilities of the motor system in a simple motor task of lifting a series of virtual objects. When a subject lifts an object, she/he uses an expectation of the weight of the object to generate a motor command. All models of motor learning employ learning algorithms that essentially expect the future to be similar to the previously experienced environment. In this study, we asked subjects to lift a series of increasing weights and determined whether they extrapolated from past experience and predicted the next weight in the series even though that weight had never been experienced. The grip force at the beginning of the lifting task is a clean indication of the motor expectation. In contrast to the motor learning literature asserting adaptation by means of expecting a weighted average based on past experience, our results suggest that the motor system is able to predict the subsequent weight that follows a series of increasing weights. PMID:20428856

  1. Predictive models of procedural human supervisory control behavior

    NASA Astrophysics Data System (ADS)

    Boussemart, Yves

    Human supervisory control systems are characterized by the computer-mediated nature of the interactions between one or more operators and a given task. Nuclear power plants, air traffic management and unmanned vehicles operations are examples of such systems. In this context, the role of the operators is typically highly proceduralized due to the time and mission-critical nature of the tasks. Therefore, the ability to continuously monitor operator behavior so as to detect and predict anomalous situations is a critical safeguard for proper system operation. In particular, such models can help support the decision J]l8king process of a supervisor of a team of operators by providing alerts when likely anomalous behaviors are detected By exploiting the operator behavioral patterns which are typically reinforced through standard operating procedures, this thesis proposes a methodology that uses statistical learning techniques in order to detect and predict anomalous operator conditions. More specifically, the proposed methodology relies on hidden Markov models (HMMs) and hidden semi-Markov models (HSMMs) to generate predictive models of unmanned vehicle systems operators. Through the exploration of the resulting HMMs in two distinct single operator scenarios, the methodology presented in this thesis is validated and shown to provide models capable of reliably predicting operator behavior. In addition, the use of HSMMs on the same data scenarios provides the temporal component of the predictions missing from the HMMs. The final step of this work is to examine how the proposed methodology scales to more complex scenarios involving teams of operators. Adopting a holistic team modeling approach, both HMMs and HSMMs are learned based on two team-based data sets. The results show that the HSMMs can provide valuable timing information in the single operator case, whereas HMMs tend to be more robust to increased team complexity. In addition, this thesis discusses the

  2. Study on Noise Prediction Model and Control Schemes for Substation

    PubMed Central

    Gao, Yang; Liu, Songtao

    2014-01-01

    With the government's emphasis on environmental issues of power transmission and transformation project, noise pollution has become a prominent problem now. The noise from the working transformer, reactor, and other electrical equipment in the substation will bring negative effect to the ambient environment. This paper focuses on using acoustic software for the simulation and calculation method to control substation noise. According to the characteristics of the substation noise and the techniques of noise reduction, a substation's acoustic field model was established with the SoundPLAN software to predict the scope of substation noise. On this basis, 4 reasonable noise control schemes were advanced to provide some helpful references for noise control during the new substation's design and construction process. And the feasibility and application effect of these control schemes can be verified by using the method of simulation modeling. The simulation results show that the substation always has the problem of excessive noise at boundary under the conventional measures. The excess noise can be efficiently reduced by taking the corresponding noise reduction methods. PMID:24672356

  3. Study on noise prediction model and control schemes for substation.

    PubMed

    Chen, Chuanmin; Gao, Yang; Liu, Songtao

    2014-01-01

    With the government's emphasis on environmental issues of power transmission and transformation project, noise pollution has become a prominent problem now. The noise from the working transformer, reactor, and other electrical equipment in the substation will bring negative effect to the ambient environment. This paper focuses on using acoustic software for the simulation and calculation method to control substation noise. According to the characteristics of the substation noise and the techniques of noise reduction, a substation's acoustic field model was established with the SoundPLAN software to predict the scope of substation noise. On this basis, 4 reasonable noise control schemes were advanced to provide some helpful references for noise control during the new substation's design and construction process. And the feasibility and application effect of these control schemes can be verified by using the method of simulation modeling. The simulation results show that the substation always has the problem of excessive noise at boundary under the conventional measures. The excess noise can be efficiently reduced by taking the corresponding noise reduction methods. PMID:24672356

  4. Humans are sensitive to attention control when predicting others' actions.

    PubMed

    Pesquita, Ana; Chapman, Craig S; Enns, James T

    2016-08-01

    Studies of social perception report acute human sensitivity to where another's attention is aimed. Here we ask whether humans are also sensitive to how the other's attention is deployed. Observers viewed videos of actors reaching to targets without knowing that those actors were sometimes choosing to reach to one of the targets (endogenous control) and sometimes being directed to reach to one of the targets (exogenous control). Experiments 1 and 2 showed that observers could respond more rapidly when actors chose where to reach, yet were at chance when guessing whether the reach was chosen or directed. This implicit sensitivity to attention control held when either actor's faces or limbs were masked (experiment 3) and when only the earliest actor's movements were visible (experiment 4). Individual differences in sensitivity to choice correlated with an independent measure of social aptitude. We conclude that humans are sensitive to attention control through an implicit kinematic process linked to empathy. The findings support the hypothesis that social cognition involves the predictive modeling of others' attentional states. PMID:27436897

  5. Design and Performance Analysis of Incremental Networked Predictive Control Systems.

    PubMed

    Pang, Zhong-Hua; Liu, Guo-Ping; Zhou, Donghua

    2016-06-01

    This paper is concerned with the design and performance analysis of networked control systems with network-induced delay, packet disorder, and packet dropout. Based on the incremental form of the plant input-output model and an incremental error feedback control strategy, an incremental networked predictive control (INPC) scheme is proposed to actively compensate for the round-trip time delay resulting from the above communication constraints. The output tracking performance and closed-loop stability of the resulting INPC system are considered for two cases: 1) plant-model match case and 2) plant-model mismatch case. For the former case, the INPC system can achieve the same output tracking performance and closed-loop stability as those of the corresponding local control system. For the latter case, a sufficient condition for the stability of the closed-loop INPC system is derived using the switched system theory. Furthermore, for both cases, the INPC system can achieve a zero steady-state output tracking error for step commands. Finally, both numerical simulations and practical experiments on an Internet-based servo motor system illustrate the effectiveness of the proposed method. PMID:26186798

  6. Geometrically unrestricted, topologically constrained control of liquid crystal defects using simultaneous holonomic magnetic and holographic optical manipulation

    NASA Astrophysics Data System (ADS)

    Varney, Michael C. M.; Jenness, Nathan J.; Smalyukh, Ivan I.

    2014-02-01

    Despite the recent progress in physical control and manipulation of various condensed matter, atomic, and particle systems, including individual atoms and photons, our ability to control topological defects remains limited. Recently, controlled generation, spatial translation, and stretching of topological point and line defects have been achieved using laser tweezers and liquid crystals as model defect-hosting systems. However, many modes of manipulation remain hindered by limitations inherent to optical trapping. To overcome some of these limitations, we integrate holographic optical tweezers with a magnetic manipulation system, which enables fully holonomic manipulation of defects by means of optically and magnetically controllable colloids used as "handles" to transfer forces and torques to various liquid crystal defects. These colloidal handles are magnetically rotated around determined axes and are optically translated along three-dimensional pathways while mechanically attached to defects, which, combined with inducing spatially localized nematic-isotropic phase transitions, allow for geometrically unrestricted control of defects, including previously unrealized modes of noncontact manipulation, such as the twisting of disclination clusters. These manipulation capabilities may allow for probing topological constraints and the nature of defects in unprecedented ways, providing the foundation for a tabletop laboratory to expand our understanding of the role defects play in fields ranging from subatomic particle physics to early-universe cosmology.

  7. Novel adaptive neural control design for a constrained flexible air-breathing hypersonic vehicle based on actuator compensation

    NASA Astrophysics Data System (ADS)

    Bu, Xiangwei; Wu, Xiaoyan; He, Guangjun; Huang, Jiaqi

    2016-03-01

    This paper investigates the design of a novel adaptive neural controller for the longitudinal dynamics of a flexible air-breathing hypersonic vehicle with control input constraints. To reduce the complexity of controller design, the vehicle dynamics is decomposed into the velocity subsystem and the altitude subsystem, respectively. For each subsystem, only one neural network is utilized to approach the lumped unknown function. By employing a minimal-learning parameter method to estimate the norm of ideal weight vectors rather than their elements, there are only two adaptive parameters required for neural approximation. Thus, the computational burden is lower than the ones derived from neural back-stepping schemes. Specially, to deal with the control input constraints, additional systems are exploited to compensate the actuators. Lyapunov synthesis proves that all the closed-loop signals involved are uniformly ultimately bounded. Finally, simulation results show that the adopted compensation scheme can tackle actuator constraint effectively and moreover velocity and altitude can stably track their reference trajectories even when the physical limitations on control inputs are in effect.

  8. Control when it counts: Change in executive control under stress predicts depression symptoms.

    PubMed

    Quinn, Meghan E; Joormann, Jutta

    2015-08-01

    Individual differences in the ability to regulate affect following stressful life events have been associated with an increased risk for experiencing depression symptoms. Research further suggests that emotion regulation may depend on executive control which, in turn, has been shown to decline following stress exposure. Whether individual differences in stress-induced change in executive control predict depression symptoms, however, remains unknown. The current study examined whether trait executive control as well as stress-induced change in executive control predicts depression symptoms during a stressful time of life. The current study recruited 43 individuals during their first year of college. Participants completed an executive control task before and after a laboratory stress induction. Participants reported baseline depression symptoms during the laboratory session and follow-up depression symptoms during the final weeks of the semester. Results demonstrate that stress-induced change in executive control predicted an increase in depression symptoms at the end of the semester. The findings suggest that individual differences in the degree of decline in executive control following stress exposure may be a key factor in explaining why some individuals are vulnerable to depression during a stressful time of life. PMID:26098731

  9. A Linear Programming Approach to Routing Control in Networks of Constrained Nonlinear Positive Systems with Concave Flow Rates

    NASA Technical Reports Server (NTRS)

    Arneson, Heather M.; Dousse, Nicholas; Langbort, Cedric

    2014-01-01

    We consider control design for positive compartmental systems in which each compartment's outflow rate is described by a concave function of the amount of material in the compartment.We address the problem of determining the routing of material between compartments to satisfy time-varying state constraints while ensuring that material reaches its intended destination over a finite time horizon. We give sufficient conditions for the existence of a time-varying state-dependent routing strategy which ensures that the closed-loop system satisfies basic network properties of positivity, conservation and interconnection while ensuring that capacity constraints are satisfied, when possible, or adjusted if a solution cannot be found. These conditions are formulated as a linear programming problem. Instances of this linear programming problem can be solved iteratively to generate a solution to the finite horizon routing problem. Results are given for the application of this control design method to an example problem. Key words: linear programming; control of networks; positive systems; controller constraints and structure.

  10. Cognitive control predicted by color vision, and vice versa.

    PubMed

    Colzato, Lorenza S; Sellaro, Roberta; Hulka, Lea M; Quednow, Boris B; Hommel, Bernhard

    2014-09-01

    One of the most important functions of cognitive control is to continuously adapt cognitive processes to changing and often conflicting demands of the environment. Dopamine (DA) has been suggested to play a key role in the signaling and resolution of such response conflict. Given that DA is found in high concentration in the retina, color vision discrimination has been suggested as an index of DA functioning and in particular blue-yellow color vision impairment (CVI) has been used to indicate a central hypodopaminergic state. We used color discrimination (indexed by the total color distance score; TCDS) to predict individual differences in the cognitive control of response conflict, as reflected by conflict-resolution efficiency in an auditory Simon task. As expected, participants showing better color discrimination were more efficient in resolving response conflict. Interestingly, participants showing a blue-yellow CVI were associated with less efficiency in handling response conflict. Our findings indicate that color vision discrimination might represent a promising predictor of cognitive controlability in healthy individuals. PMID:25058057

  11. Inlet Flow Control and Prediction Technologies for Embedded Propulsion Systems

    NASA Technical Reports Server (NTRS)

    McMillan, Michelle L.; Gissen, Abe; Vukasinovic, Bojan; Lakebrink, Matthew T.; Glezer, Ari; Mani, Mori; Mace, James

    2010-01-01

    Fail-safe inlet flow control may enable high-speed cruise efficiency, low noise signature, and reduced fuel-burn goals for hybrid wing-body aircraft. The objectives of this program are to develop flow control and prediction methodologies for boundary-layer ingesting (BLI) inlets used in these aircraft. This report covers the second of a three year program. The approach integrates experiments and numerical simulations. Both passive and active flow-control devices were tested in a small-scale wind tunnel. Hybrid actuation approaches, combining a passive microvane and active synthetic jet, were tested in various geometric arrangements. Detailed flow measurements were taken to provide insight into the flow physics. Results of the numerical simulations were correlated against experimental data. The sensitivity of results to grid resolution and turbulence models was examined. Aerodynamic benefits from microvanes and microramps were assessed when installed in an offset BLI inlet. Benefits were quantified in terms of recovery and distortion changes. Microvanes were more effective than microramps at improving recovery and distortion.

  12. Inlet Flow Control and Prediction Technologies for Embedded Propulsion Systems

    NASA Technical Reports Server (NTRS)

    McMillan, Michelle L.; Mackie, Scott A.; Gissen, Abe; Vukasinovic, Bojan; Lakebrink, Matthew T.; Glezer, Ari; Mani, Mori; Mace, James L.

    2011-01-01

    Fail-safe, hybrid, flow control (HFC) is a promising technology for meeting high-speed cruise efficiency, low-noise signature, and reduced fuel-burn goals for future, Hybrid-Wing-Body (HWB) aircraft with embedded engines. This report details the development of HFC technology that enables improved inlet performance in HWB vehicles with highly integrated inlets and embedded engines without adversely affecting vehicle performance. In addition, new test techniques for evaluating Boundary-Layer-Ingesting (BLI)-inlet flow-control technologies developed and demonstrated through this program are documented, including the ability to generate a BLI-like inlet-entrance flow in a direct-connect, wind-tunnel facility, as well as, the use of D-optimal, statistically designed experiments to optimize test efficiency and enable interpretation of results. Validated improvements in numerical analysis tools and methods accomplished through this program are also documented, including Reynolds-Averaged Navier-Stokes CFD simulations of steady-state flow physics for baseline, BLI-inlet diffuser flow, as well as, that created by flow-control devices. Finally, numerical methods were employed in a ground-breaking attempt to directly simulate dynamic distortion. The advances in inlet technologies and prediction tools will help to meet and exceed "N+2" project goals for future HWB aircraft.

  13. When Ethics Constrains Clinical Research: Trial Design of Control Arms in “Greater Than Minimal Risk” Pediatric Trials

    PubMed Central

    de Melo-Martín, Inmaculada; Sondhi, Dolan

    2011-01-01

    Abstract For more than three decades clinical research in the United States has been explicitly guided by the idea that ethical considerations must be central to research design and practice. In spite of the centrality of this idea, attempting to balance the sometimes conflicting values of advancing scientific knowledge and protecting human subjects continues to pose challenges. Possible conflicts between the standards of scientific research and those of ethics are particularly salient in relation to trial design. Specifically, the choice of a control arm is an aspect of trial design in which ethical and scientific issues are deeply entwined. Although ethical quandaries related to the choice of control arms may arise when conducting any type of clinical trials, they are conspicuous in early phase gene transfer trials that involve highly novel approaches and surgical procedures and have children as the research subjects. Because of children's and their parents' vulnerabilities, in trials that investigate therapies for fatal, rare diseases affecting minors, the scientific and ethical concerns related to choosing appropriate controls are particularly significant. In this paper we use direct gene transfer to the central nervous system to treat late infantile neuronal ceroid lipofuscinosis to illustrate some of these ethical issues and explore possible solutions to real and apparent conflicts between scientific and ethical considerations. PMID:21446781

  14. Dynamics and Control of Constrained Multibody Systems modeled with Maggi's equation: Application to Differential Mobile Robots Part I

    NASA Astrophysics Data System (ADS)

    Amengonu, Yawo H.; Kakad, Yogendra P.

    2014-07-01

    Quasivelocity techniques such as Maggi's and Boltzmann-Hamel's equations eliminate Lagrange multipliers from the beginning as opposed to the Euler-Lagrange method where one has to solve for the n configuration variables and the multipliers as functions of time when there are m nonholonomic constraints. Maggi's equation produces n second-order differential equations of which (n-m) are derived using (n-m) independent quasivelocities and the time derivative of the m kinematic constraints which add the remaining m second order differential equations. This technique is applied to derive the dynamics of a differential mobile robot and a controller which takes into account these dynamics is developed.

  15. Optimal Environmental Conditions and Anomalous Ecosystem Responses: Constraining Bottom-up Controls of Phytoplankton Biomass in the California Current System

    PubMed Central

    Jacox, Michael G.; Hazen, Elliott L.; Bograd, Steven J.

    2016-01-01

    In Eastern Boundary Current systems, wind-driven upwelling drives nutrient-rich water to the ocean surface, making these regions among the most productive on Earth. Regulation of productivity by changing wind and/or nutrient conditions can dramatically impact ecosystem functioning, though the mechanisms are not well understood beyond broad-scale relationships. Here, we explore bottom-up controls during the California Current System (CCS) upwelling season by quantifying the dependence of phytoplankton biomass (as indicated by satellite chlorophyll estimates) on two key environmental parameters: subsurface nitrate concentration and surface wind stress. In general, moderate winds and high nitrate concentrations yield maximal biomass near shore, while offshore biomass is positively correlated with subsurface nitrate concentration. However, due to nonlinear interactions between the influences of wind and nitrate, bottom-up control of phytoplankton cannot be described by either one alone, nor by a combined metric such as nitrate flux. We quantify optimal environmental conditions for phytoplankton, defined as the wind/nitrate space that maximizes chlorophyll concentration, and present a framework for evaluating ecosystem change relative to environmental drivers. The utility of this framework is demonstrated by (i) elucidating anomalous CCS responses in 1998–1999, 2002, and 2005, and (ii) providing a basis for assessing potential biological impacts of projected climate change. PMID:27278260

  16. Optimal Environmental Conditions and Anomalous Ecosystem Responses: Constraining Bottom-up Controls of Phytoplankton Biomass in the California Current System

    NASA Astrophysics Data System (ADS)

    Jacox, Michael G.; Hazen, Elliott L.; Bograd, Steven J.

    2016-06-01

    In Eastern Boundary Current systems, wind-driven upwelling drives nutrient-rich water to the ocean surface, making these regions among the most productive on Earth. Regulation of productivity by changing wind and/or nutrient conditions can dramatically impact ecosystem functioning, though the mechanisms are not well understood beyond broad-scale relationships. Here, we explore bottom-up controls during the California Current System (CCS) upwelling season by quantifying the dependence of phytoplankton biomass (as indicated by satellite chlorophyll estimates) on two key environmental parameters: subsurface nitrate concentration and surface wind stress. In general, moderate winds and high nitrate concentrations yield maximal biomass near shore, while offshore biomass is positively correlated with subsurface nitrate concentration. However, due to nonlinear interactions between the influences of wind and nitrate, bottom-up control of phytoplankton cannot be described by either one alone, nor by a combined metric such as nitrate flux. We quantify optimal environmental conditions for phytoplankton, defined as the wind/nitrate space that maximizes chlorophyll concentration, and present a framework for evaluating ecosystem change relative to environmental drivers. The utility of this framework is demonstrated by (i) elucidating anomalous CCS responses in 1998–1999, 2002, and 2005, and (ii) providing a basis for assessing potential biological impacts of projected climate change.

  17. Optimal Environmental Conditions and Anomalous Ecosystem Responses: Constraining Bottom-up Controls of Phytoplankton Biomass in the California Current System.

    PubMed

    Jacox, Michael G; Hazen, Elliott L; Bograd, Steven J

    2016-01-01

    In Eastern Boundary Current systems, wind-driven upwelling drives nutrient-rich water to the ocean surface, making these regions among the most productive on Earth. Regulation of productivity by changing wind and/or nutrient conditions can dramatically impact ecosystem functioning, though the mechanisms are not well understood beyond broad-scale relationships. Here, we explore bottom-up controls during the California Current System (CCS) upwelling season by quantifying the dependence of phytoplankton biomass (as indicated by satellite chlorophyll estimates) on two key environmental parameters: subsurface nitrate concentration and surface wind stress. In general, moderate winds and high nitrate concentrations yield maximal biomass near shore, while offshore biomass is positively correlated with subsurface nitrate concentration. However, due to nonlinear interactions between the influences of wind and nitrate, bottom-up control of phytoplankton cannot be described by either one alone, nor by a combined metric such as nitrate flux. We quantify optimal environmental conditions for phytoplankton, defined as the wind/nitrate space that maximizes chlorophyll concentration, and present a framework for evaluating ecosystem change relative to environmental drivers. The utility of this framework is demonstrated by (i) elucidating anomalous CCS responses in 1998-1999, 2002, and 2005, and (ii) providing a basis for assessing potential biological impacts of projected climate change. PMID:27278260

  18. Predictive wavefront control for Adaptive Optics with arbitrary control loop delays

    SciTech Connect

    Poyneer, L A; Veran, J

    2007-10-30

    We present a modification of the closed-loop state space model for AO control which allows delays that are a non-integer multiple of the system frame rate. We derive the new forms of the Predictive Fourier Control Kalman filters for arbitrary delays and show that they are linear combinations of the whole-frame delay terms. This structure of the controller is independent of the delay. System stability margins and residual error variance both transition gracefully between integer-frame delays.

  19. A pointwise constrained version of the Liapunov convexity theorem for vectorial linear first-order control systems

    NASA Astrophysics Data System (ADS)

    Carlota, Clara; Chá, Sílvia; Ornelas, António

    2016-07-01

    We generalize the Liapunov convexity theorem's version for vectorial control systems driven by linear ODEs of first-order p = 1, in any dimension d ∈ N, by including a pointwise state-constraint. More precisely, given a x ‾ (ṡ) ∈W p , 1 ([ a , b ] ,Rd) solving the convexified p-th order differential inclusion Lp x ‾ (t) ∈ co {u0 (t) ,u1 (t) , … ,um (t) } a.e., consider the general problem consisting in finding bang-bang solutions (i.e. Lp x ˆ (t) ∈ {u0 (t) ,u1 (t) , … ,um (t) } a.e.) under the same boundary-data, x ˆ (k) (a) =x ‾ (k) (a) &x ˆ (k) (b) =x ‾ (k) (b) (k = 0 , 1 , … , p - 1); but restricted, moreover, by a pointwise state constraint of the type < x ˆ (t) , ω > ≤ < x ‾ (t) , ω > ∀ t ∈ [ a , b ] (e.g. ω = (1 , 0 , … , 0) yielding xˆ1 (t) ≤x‾1 (t)). Previous results in the scalar d = 1 case were the pioneering Amar & Cellina paper (dealing with Lp x (ṡ) =x‧ (ṡ)), followed by Cerf & Mariconda results, who solved the general case of linear differential operators Lp of order p ≥ 2 with C0 ([ a , b ]) -coefficients. This paper is dedicated to: focus on the missing case p = 1, i.e. using Lp x (ṡ) =x‧ (ṡ) + A (ṡ) x (ṡ) ; generalize the dimension of x (ṡ) , from the scalar case d = 1 to the vectorial d ∈ N case; weaken the coefficients, from continuous to integrable, so that A (ṡ) now becomes a d × d-integrable matrix; and allow the directional vector ω to become a moving AC function ω (ṡ) . Previous vectorial results had constant ω, no matrix (i.e. A (ṡ) ≡ 0) and considered: constant control-vertices (Amar & Mariconda) and, more recently, integrable control-vertices (ourselves).

  20. Constraining controls on carbonate sequences with high-resolution chronostratigraphy: Upper Miocene, Cabo de Gata region, SE Spain

    USGS Publications Warehouse

    Montgomery, P.; Farr, M.R.; Franseen, E.K.; Goldstein, R.H.

    2001-01-01

    A high-resolution chronostratigraphy has been developed for Miocene shallow-water carbonate strata in the Cabo de Gata region of SE Spain for evaluation of local, regional and global factors that controlled platform architecture prior to and during the Messinian salinity crisis. Paleomagnetic data were collected from strata at three localities. Mean natural remanent magnetization (NRM) ranges between 1.53 ?? 10-8 and 5.2 ?? 10-3 Am2/kg. Incremental thermal and alternating field demagnetization isolated the characteristic remanent magnetization (ChRM). Rock magnetic studies show that the dominant magnetic mineral is magnetite, but mixtures of magnetite and hematite occur. A composite chronostratigraphy was derived from five stratigraphic sections. Regional stratigraphic data, biostratigraphic data, and an 40Ar/39Ar date of 8.5 ?? 0.1 Ma, for an interbedded volcanic flow, place the strata in geomagnetic polarity Chrons C4r to C3r. Sequence-stratigraphic and diagenetic evidence indicate a major unconformity at the base of depositional sequence (DS)3 that contains a prograding reef complex, suggesting that approximately 250 000 yr of record (Subchrons C3Br.2r to 3Br.1r) are missing near the Messinian-Tortonian boundary. Correlation to the GPTS shows that the studied strata represent five third- to fourth-order DSs. Basal units are temperate to subtropical ramps (DS1A, DS1B, DS2); these are overlain by subtropical to tropical reefal platforms (DS3), which are capped by subtropical to tropical cyclic carbonates (Terminal Carbonate Complex, TCC). Correlation of the Cabo de Gata record to the Melilla area of Morocco, and the Sorbas basin of Spain indicate that early - Late Tortonian ramp strata from these areas are partially time-equivalent. Similar strata are extensively developed in the Western Mediterranean and likely were influenced by a cool climate or influx of nutrients during an overall rise in global sea-level. After ramp deposition, a sequence boundary (SB3) in

  1. Predictive active disturbance rejection control for processes with time delay.

    PubMed

    Zheng, Qinling; Gao, Zhiqiang

    2014-07-01

    Active disturbance rejection control (ADRC) has been shown to be an effective tool in dealing with real world problems of dynamic uncertainties, disturbances, nonlinearities, etc. This paper addresses its existing limitations with plants that have a large transport delay. In particular, to overcome the delay, the extended state observer (ESO) in ADRC is modified to form a predictive ADRC, leading to significant improvements in the transient response and stability characteristics, as shown in extensive simulation studies and hardware-in-the-loop tests, as well as in the frequency response analysis. In this research, it is assumed that the amount of delay is approximately known, as is the approximated model of the plant. Even with such uncharacteristic assumptions for ADRC, the proposed method still exhibits significant improvements in both performance and robustness over the existing methods such as the dead-time compensator based on disturbance observer and the Filtered Smith Predictor, in the context of some well-known problems of chemical reactor and boiler control problems. PMID:24182516

  2. Factors Predicting Atypical Development of Nighttime Bladder Control

    PubMed Central

    Sullivan, Sarah; Heron, Jon

    2015-01-01

    ABSTRACT: Objective: To derive latent classes (longitudinal “phenotypes”) of frequency of bedwetting from 4 to 9 years and to examine their association with developmental delay, parental history of bedwetting, length of gestation and birth weight. Method: The authors used data from 8,769 children from the UK Avon Longitudinal Study of Parents and Children cohort. Mothers provided repeated reports on their child's frequency of bedwetting from 4 to 9 years. The authors used longitudinal latent class analysis to derive latent classes of bedwetting and examined their association with sex, developmental level at 18 months, parental history of wetting, birth weight, and gestational length. Results: The authors identified 5 latent classes: (1) “normative”—low probability of bedwetting; (2) “infrequent delayed”—delayed attainment of nighttime bladder control with bedwetting control with bedwetting ≥ twice a week; (4) “infrequent persistent”—persistent bedwetting < twice a week; and (5) “frequent persistent”—persistent bedwetting ≥ twice a week. Male gender (odds ratio = 3.20 [95% confidence interval = 2.36–4.34]), developmental delay, for example, delayed social skills (1.33 [1.11–1.58]), and maternal history of wetting (3.91 [2.60–5.88]) were associated with an increase in the odds of bedwetting at 4 to 9 years. There was little evidence that low birth weight and shorter gestation period were associated with bedwetting. Conclusion: The authors described patterns of development of nighttime bladder control and found evidence for factors that predict continuation of bedwetting at school age. Increased knowledge of risk factors for bedwetting is needed to identify children at risk of future problems attaining and maintaining continence. PMID:26468941

  3. Predicting Near Edge X-ray Absorption Spectra with the Spin-Free Exact-Two-Component Hamiltonian and Orthogonality Constrained Density Functional Theory.

    PubMed

    Verma, Prakash; Derricotte, Wallace D; Evangelista, Francesco A

    2016-01-12

    Orthogonality constrained density functional theory (OCDFT) provides near-edge X-ray absorption (NEXAS) spectra of first-row elements within one electronvolt from experimental values. However, with increasing atomic number, scalar relativistic effects become the dominant source of error in a nonrelativistic OCDFT treatment of core-valence excitations. In this work we report a novel implementation of the spin-free exact-two-component (X2C) one-electron treatment of scalar relativistic effects and its combination with a recently developed OCDFT approach to compute a manifold of core-valence excited states. The inclusion of scalar relativistic effects in OCDFT reduces the mean absolute error of second-row elements core-valence excitations from 10.3 to 2.3 eV. For all the excitations considered, the results from X2C calculations are also found to be in excellent agreement with those from low-order spin-free Douglas-Kroll-Hess relativistic Hamiltonians. The X2C-OCDFT NEXAS spectra of three organotitanium complexes (TiCl4, TiCpCl3, TiCp2Cl2) are in very good agreement with unshifted experimental results and show a maximum absolute error of 5-6 eV. In addition, a decomposition of the total transition dipole moment into partial atomic contributions is proposed and applied to analyze the nature of the Ti pre-edge transitions in the three organotitanium complexes. PMID:26584082

  4. Neural network-based nonlinear model predictive control vs. linear quadratic gaussian control

    USGS Publications Warehouse

    Cho, C.; Vance, R.; Mardi, N.; Qian, Z.; Prisbrey, K.

    1997-01-01

    One problem with the application of neural networks to the multivariable control of mineral and extractive processes is determining whether and how to use them. The objective of this investigation was to compare neural network control to more conventional strategies and to determine if there are any advantages in using neural network control in terms of set-point tracking, rise time, settling time, disturbance rejection and other criteria. The procedure involved developing neural network controllers using both historical plant data and simulation models. Various control patterns were tried, including both inverse and direct neural network plant models. These were compared to state space controllers that are, by nature, linear. For grinding and leaching circuits, a nonlinear neural network-based model predictive control strategy was superior to a state space-based linear quadratic gaussian controller. The investigation pointed out the importance of incorporating state space into neural networks by making them recurrent, i.e., feeding certain output state variables into input nodes in the neural network. It was concluded that neural network controllers can have better disturbance rejection, set-point tracking, rise time, settling time and lower set-point overshoot, and it was also concluded that neural network controllers can be more reliable and easy to implement in complex, multivariable plants.

  5. Controlled-Source Seismic Survey to Constrain Evolution of the Continental Cratonic Margin in Idaho and Eastern Oregon

    NASA Astrophysics Data System (ADS)

    Petit, R.; Davenport, K.; Hole, J. A.; Harder, S.; Tikoff, B.; Russo, R. M.; Vervoort, J. D.; Han, L.; Sabey, L.; Wang, K.

    2012-12-01

    In August 2012, crustal-scale wide-angle reflection and refraction data were collected across Idaho and eastern Oregon. A unique feature of this area is the narrow juxtaposition between the North American continental craton and accreted oceanic terranes. This narrowness is a result of the sub-vertical Western Idaho Shear Zone (WISZ) formed by late Cretaceous transpression. Geochemical studies suggest that the crustal portion of the WISZ was offset 120-150 km east of the lithospheric mantle portion by Sevier thrusting. Post-WISZ, the cratonic margin has been modified by emplacement of the Idaho Batholith east of the WISZ, Eocene extension and related Challis volcanism, and Miocene extension associated with the Basin and Range and Columbia River Basalts. The seismic survey is part of the multidisciplinary IDOR project, funded by Earthscope, encompassing geochemistry, geochronology, structural geology, and broadband and controlled-source seismology. IDOR's goal is to understand how the steep continental margin modified and was modified by magmatism and deformation that occurred since its formation. Primary targets at depth include the deep geometry of the WISZ, the root of the Idaho Batholith, and deep signatures of Cenozoic extension. The 440 km long seismic line, running from the accreted terranes in the west, across the shear zone, the Idaho Batholith and beyond, is long enough to obtain reflections from the Moho and refractions from upper mantle. Along this line a crew of over 60 volunteers from twenty-two different universities deployed ~2600 vertical component seismometers at a 100-200 meter spacing. These instruments recorded the energy from nine 2000 pound explosive shots. These data will be used to produce a seismic velocity and structure model of the crust and upper-most mantle. Preliminary data and observations will be presented.

  6. Predictive powertrain control using powertrain history and GPS data

    DOEpatents

    Weslati, Feisel; Krupadanam, Ashish A

    2015-03-03

    A method and powertrain apparatus that predicts a route of travel for a vehicle and uses historical powertrain loads and speeds for the predicted route of travel to optimize at least one powertrain operation for the vehicle.

  7. Autonomous formation flight of helicopters: Model predictive control approach

    NASA Astrophysics Data System (ADS)

    Chung, Hoam

    Formation flight is the primary movement technique for teams of helicopters. However, the potential for accidents is greatly increased when helicopter teams are required to fly in tight formations and under harsh conditions. This dissertation proposes that the automation of helicopter formations is a realistic solution capable of alleviating risks. Helicopter formation flight operations in battlefield situations are highly dynamic and dangerous, and, therefore, we maintain that both a high-level formation management system and a distributed coordinated control algorithm should be implemented to help ensure safe formations. The starting point for safe autonomous formation flights is to design a distributed control law attenuating external disturbances coming into a formation, so that each vehicle can safely maintain sufficient clearance between it and all other vehicles. While conventional methods are limited to homogeneous formations, our decentralized model predictive control (MPC) approach allows for heterogeneity in a formation. In order to avoid the conservative nature inherent in distributed MPC algorithms, we begin by designing a stable MPC for individual vehicles, and then introducing carefully designed inter-agent coupling terms in a performance index. Thus the proposed algorithm works in a decentralized manner, and can be applied to the problem of helicopter formations comprised of heterogenous vehicles. Individual vehicles in a team may be confronted by various emerging situations that will require the capability for in-flight reconfiguration. We propose the concept of a formation manager to manage separation, join, and synchronization of flight course changes. The formation manager accepts an operator's commands, information from neighboring vehicles, and its own vehicle states. Inside the formation manager, there are multiple modes and complex mode switchings represented as a finite state machine (FSM). Based on the current mode and collected

  8. A Constrained Differential Evolution Algorithm for Reservoir Management: Optimal Placement and Control of Wells for Geological Carbon Storage with Uncertainty in Reservoir Properties

    NASA Astrophysics Data System (ADS)

    Cihan, A.; Birkholzer, J. T.; Bianchi, M.

    2014-12-01

    Injection of large volume of CO2 into deep geological reservoirs for geologic carbon sequestration (GCS) is expected to cause significant pressure perturbations in subsurface. Large-scale pressure increases in injection reservoirs during GCS operations, if not controlled properly, may limit dynamic storage capacity and increase risk of environmental impacts. The high pressure may impact caprock integrity, induce fault slippage, and cause leakage of brine and/or CO2 into shallow fresh groundwater resources. Thus, monitoring and controlling pressure buildup are critically important for environmentally safe implementation of GCS projects. Extraction of native brine during GCS operations is a pressure management approach to reduce significant pressure buildup. Extracted brine can be transferred to the surface for utilization or re-injected into overlying/underlying saline aquifers. However, pumping, transportation, treatment and disposal of extracted brine can be challenging and costly. Therefore, minimizing volume of extracted brine, while maximizing CO2 storage, is an essential objective of the pressure management with brine extraction schemes. Selection of optimal well locations and extraction rates are critical for maximizing storage and minimizing brine extraction during GCS. However, placing of injection and extraction wells is not intuitive because of heterogeneity in reservoir properties and complex reservoir geometry. Efficient computerized algorithms combining reservoir models and optimization methods are needed to make proper decisions on well locations and control parameters. This study presents a global optimization methodology for pressure management during geologic CO2 sequestration. A constrained differential evolution (CDE) algorithm is introduced for solving optimization problems involving well placement and injection/extraction control. The CDE methodology is tested and applied for realistic CO2 storage scenarios with the presence of uncertainty in

  9. Predictable SCR co-benefits for mercury control

    SciTech Connect

    Pritchard, S.

    2009-01-15

    A test program, performed in cooperation with Dominion Power and the Babcock and Wilcox Co., was executed at Dominion Power's Mount Storm power plant in Grant County, W. Va. The program was focused on both the selective catalytic reduction (SCR) catalyst capability to oxide mercury as well as the scrubber's capability to capture and retain the oxidized mercury. This article focuses on the SCR catalyst performance aspects. The Mount Storm site consists of three units totaling approximately 1,660 MW. All units are equipped with SCR systems for NOx control. A full-scale test to evaluate the effect of the SCR was performed on Unit 2, a 550 MWT-fired boiler firing a medium sulfur bituminous coal. This test program demonstrated that the presence of an SCR catalyst can significantly affect the mercury speciation profile. Observation showed that in the absence of an SCR catalyst, the extent of oxidation of element a mercury at the inlet of the flue gas desulfurization system was about 64%. The presence of a Cornertech SCR catalyst improved this oxidation to levels greater than 95% almost all of which was captured by the downstream wet FGD system. Cornertech's proprietary SCR Hg oxidation model was used to accurately predict the field results. 1 ref., 2 figs., 1 tab.

  10. Exploratory Studies in Generalized Predictive Control for Active Aeroelastic Control of Tiltrotor Aircraft

    NASA Technical Reports Server (NTRS)

    Kvaternik, Raymond G.; Juang, Jer-Nan; Bennett, Richard L.

    2000-01-01

    The Aeroelasticity Branch at NASA Langley Research Center has a long and substantive history of tiltrotor aeroelastic research. That research has included a broad range of experimental investigations in the Langley Transonic Dynamics Tunnel (TDT) using a variety of scale models and the development of essential analyses. Since 1994, the tiltrotor research program has been using a 1/5-scale, semispan aeroelastic model of the V-22 designed and built by Bell Helicopter Textron Inc. (BHTI) in 1981. That model has been refurbished to form a tiltrotor research testbed called the Wing and Rotor Aeroelastic Test System (WRATS) for use in the TDT. In collaboration with BHTI, studies under the current tiltrotor research program are focused on aeroelastic technology areas having the potential for enhancing the commercial and military viability of tiltrotor aircraft. Among the areas being addressed, considerable emphasis is being directed to the evaluation of modern adaptive multi-input multi- output (MIMO) control techniques for active stability augmentation and vibration control of tiltrotor aircraft. As part of this investigation, a predictive control technique known as Generalized Predictive Control (GPC) is being studied to assess its potential for actively controlling the swashplate of tiltrotor aircraft to enhance aeroelastic stability in both helicopter and airplane modes of flight. This paper summarizes the exploratory numerical and experimental studies that were conducted as part of that investigation.

  11. Robust model predictive control of nonlinear systems with unmodeled dynamics and bounded uncertainties based on neural networks.

    PubMed

    Yan, Zheng; Wang, Jun

    2014-03-01

    This paper presents a neural network approach to robust model predictive control (MPC) for constrained discrete-time nonlinear systems with unmodeled dynamics affected by bounded uncertainties. The exact nonlinear model of underlying process is not precisely known, but a partially known nominal model is available. This partially known nonlinear model is first decomposed to an affine term plus an unknown high-order term via Jacobian linearization. The linearization residue combined with unmodeled dynamics is then modeled using an extreme learning machine via supervised learning. The minimax methodology is exploited to deal with bounded uncertainties. The minimax optimization problem is reformulated as a convex minimization problem and is iteratively solved by a two-layer recurrent neural network. The proposed neurodynamic approach to nonlinear MPC improves the computational efficiency and sheds a light for real-time implementability of MPC technology. Simulation results are provided to substantiate the effectiveness and characteristics of the proposed approach. PMID:24807443

  12. Multivariate Prediction of College Grades for Disadvantaged and Control Students

    ERIC Educational Resources Information Center

    Pedrini, Bonnie; Pedrini, D. T.

    1977-01-01

    Shows that attrition/persistence (dropouts or students not continuously enrolled versus students continuously enrolled) is the primary, significant, single variate in the prediction of grades, and that attrition/persistence and American College Test (ACT) scores are the significant multiple variates in the prediction of grade point average. (RL)

  13. Analysis, prediction and control of radio frequency interference with respect to DSN

    NASA Technical Reports Server (NTRS)

    Degroot, N. F.

    1982-01-01

    Susceptibility modeling, prediction of radio frequency interference from satellites, operational radio frequency interference control, and international regulations are considered. The existing satellite interference prediction program DSIP2 is emphasized. A summary status evaluation and recommendations for future work are given.

  14. Model Predictive Control of HVAC Systems: Implementation and Testing at the University of California, Merced

    SciTech Connect

    Haves, Phillip; Hencey, Brandon; Borrell, Francesco; Elliot, John; Ma, Yudong; Coffey, Brian; Bengea, Sorin; Wetter, Michael

    2010-06-29

    constrained and often determined by the chilled water return temperature (CHWR). The CHWR temperature is primarily comprised of warm water from the top of the TES tank. The CHWR temperature falls substantially as the thermocline approaches the top of the tank, which reduces the chiller loading. As a result, it has been determined that overcharging the TES tank can be detrimental to the chilled water plant efficiency. The resulting MPC policy differs from the current practice of fully charging the TES tank. A heuristic rule could possible avoid this problem without using predictive control. Similarly, the COP improvements from the change in CWS set-point were largely captured by a static set-point change by the operators. Further research is required to determine how much of the MPC savings could be garnered through simplified rules (based on the MPC study), with and without prediction.

  15. Intersecting transcription networks constrain gene regulatory evolution.

    PubMed

    Sorrells, Trevor R; Booth, Lauren N; Tuch, Brian B; Johnson, Alexander D

    2015-07-16

    Epistasis-the non-additive interactions between different genetic loci-constrains evolutionary pathways, blocking some and permitting others. For biological networks such as transcription circuits, the nature of these constraints and their consequences are largely unknown. Here we describe the evolutionary pathways of a transcription network that controls the response to mating pheromone in yeast. A component of this network, the transcription regulator Ste12, has evolved two different modes of binding to a set of its target genes. In one group of species, Ste12 binds to specific DNA binding sites, while in another lineage it occupies DNA indirectly, relying on a second transcription regulator to recognize DNA. We show, through the construction of various possible evolutionary intermediates, that evolution of the direct mode of DNA binding was not directly accessible to the ancestor. Instead, it was contingent on a lineage-specific change to an overlapping transcription network with a different function, the specification of cell type. These results show that analysing and predicting the evolution of cis-regulatory regions requires an understanding of their positions in overlapping networks, as this placement constrains the available evolutionary pathways. PMID:26153861

  16. Intersecting transcription networks constrain gene regulatory evolution

    PubMed Central

    Sorrells, Trevor R; Booth, Lauren N; Tuch, Brian B; Johnson, Alexander D

    2015-01-01

    Epistasis—the non-additive interactions between different genetic loci—constrains evolutionary pathways, blocking some and permitting others1–8. For biological networks such as transcription circuits, the nature of these constraints and their consequences are largely unknown. Here we describe the evolutionary pathways of a transcription network that controls the response to mating pheromone in yeasts9. A component of this network, the transcription regulator Ste12, has evolved two different modes of binding to a set of its target genes. In one group of species, Ste12 binds to specific DNA binding sites, while in another lineage it occupies DNA indirectly, relying on a second transcription regulator to recognize DNA. We show, through the construction of various possible evolutionary intermediates, that evolution of the direct mode of DNA binding was not directly accessible to the ancestor. Instead, it was contingent on a lineage-specific change to an overlapping transcription network with a different function, the specification of cell type. These results show that analyzing and predicting the evolution of cis-regulatory regions requires an understanding of their positions in overlapping networks, as this placement constrains the available evolutionary pathways. PMID:26153861

  17. Predictive motor control of sensory dynamics in auditory active sensing.

    PubMed

    Morillon, Benjamin; Hackett, Troy A; Kajikawa, Yoshinao; Schroeder, Charles E

    2015-04-01

    Neuronal oscillations present potential physiological substrates for brain operations that require temporal prediction. We review this idea in the context of auditory perception. Using speech as an exemplar, we illustrate how hierarchically organized oscillations can be used to parse and encode complex input streams. We then consider the motor system as a major source of rhythms (temporal priors) in auditory processing, that act in concert with attention to sharpen sensory representations and link them across areas. We discuss the circuits that could mediate this audio-motor interaction, notably the potential role of the somatosensory system. Finally, we reposition temporal predictions in the context of internal models, discussing how they interact with feature-based or spatial predictions. We argue that complementary predictions interact synergistically according to the organizational principles of each sensory system, forming multidimensional filters crucial to perception. PMID:25594376

  18. Predictive Techniques for Spacecraft Cabin Air Quality Control

    NASA Technical Reports Server (NTRS)

    Perry, J. L.; Cromes, Scott D. (Technical Monitor)

    2001-01-01

    As assembly of the International Space Station (ISS) proceeds, predictive techniques are used to determine the best approach for handling a variety of cabin air quality challenges. These techniques use equipment offgassing data collected from each ISS module before flight to characterize the trace chemical contaminant load. Combined with crew metabolic loads, these data serve as input to a predictive model for assessing the capability of the onboard atmosphere revitalization systems to handle the overall trace contaminant load as station assembly progresses. The techniques for predicting in-flight air quality are summarized along with results from early ISS mission analyses. Results from groundbased analyses of in-flight air quality samples are compared to the predictions to demonstrate the technique's relative conservatism.

  19. Prediction of forces and moments for flight vehicle control effectors. Part 1: Validation of methods for predicting hypersonic vehicle controls forces and moments

    NASA Technical Reports Server (NTRS)

    Maughmer, Mark D.; Ozoroski, L.; Ozoroski, T.; Straussfogel, D.

    1990-01-01

    Many types of hypersonic aircraft configurations are currently being studied for feasibility of future development. Since the control of the hypersonic configurations throughout the speed range has a major impact on acceptable designs, it must be considered in the conceptual design stage. The ability of the aerodynamic analysis methods contained in an industry standard conceptual design system, APAS II, to estimate the forces and moments generated through control surface deflections from low subsonic to high hypersonic speeds is considered. Predicted control forces and moments generated by various control effectors are compared with previously published wind tunnel and flight test data for three configurations: the North American X-15, the Space Shuttle Orbiter, and a hypersonic research airplane concept. Qualitative summaries of the results are given for each longitudinal force and moment and each control derivative in the various speed ranges. Results show that all predictions of longitudinal stability and control derivatives are acceptable for use at the conceptual design stage. Results for most lateral/directional control derivatives are acceptable for conceptual design purposes; however, predictions at supersonic Mach numbers for the change in yawing moment due to aileron deflection and the change in rolling moment due to rudder deflection are found to be unacceptable. Including shielding effects in the analysis is shown to have little effect on lift and pitching moment predictions while improving drag predictions.

  20. Constraining Predicted Secondary Organic Aerosol Formation and Processing Using Real-Time Observations of Aging Urban Emissions in an Oxidation Flow Reactor

    NASA Astrophysics Data System (ADS)

    Ortega, A. M.; Palm, B. B.; Hayes, P. L.; Day, D. A.; Cubison, M.; Brune, W. H.; Hu, W.; Graus, M.; Warneke, C.; Gilman, J.; De Gouw, J. A.; Jimenez, J. L.

    2014-12-01

    To investigate atmospheric processing of urban emissions, we deployed an oxidation flow reactor with measurements of size-resolved chemical composition of submicron aerosol during CalNex-LA, a field study investigating air quality and climate change at a receptor site in the Los Angeles Basin. The reactor produces OH concentrations up to 4 orders of magnitude higher than in ambient air, achieving equivalent atmospheric aging of hours to ~2 weeks in 5 minutes of processing. The OH exposure (OHexp) was stepped every 20 min to survey the effects of a range of oxidation exposures on gases and aerosols. This approach is a valuable tool for in-situ evaluation of changes in organic aerosol (OA) concentration and composition due to photochemical processing over a range of ambient atmospheric conditions and composition. Combined with collocated gas-phase measurements of volatile organic compounds, this novel approach enables the comparison of measured SOA to predicted SOA formation from a prescribed set of precursors. Results from CalNex-LA show enhancements of OA and inorganic aerosol from gas-phase precursors. The OA mass enhancement from aging was highest at night and correlated with trimethylbenzene, indicating the importance of relatively short-lived VOC (OH lifetime of ~12 hrs or less) as SOA precursors in the LA Basin. Maximum net SOA production is observed between 3-6 days of aging and decreases at higher exposures. Aging in the reactor shows similar behavior to atmospheric processing; the elemental composition of ambient and reactor measurements follow similar slopes when plotted in a Van Krevelen diagram. Additionally, for air processed in the reactor, oxygen-to-carbon ratios (O/C) of aerosol extended over a larger range compared to ambient aerosol observed in the LA Basin. While reactor aging always increases O/C, often beyond maximum observed ambient levels, a transition from net OA production to destruction occurs at intermediate OHexp, suggesting a transition

  1. Constrained Vapor Bubble

    NASA Technical Reports Server (NTRS)

    Huang, J.; Karthikeyan, M.; Plawsky, J.; Wayner, P. C., Jr.

    1999-01-01

    The nonisothermal Constrained Vapor Bubble, CVB, is being studied to enhance the understanding of passive systems controlled by interfacial phenomena. The study is multifaceted: 1) it is a basic scientific study in interfacial phenomena, fluid physics and thermodynamics; 2) it is a basic study in thermal transport; and 3) it is a study of a heat exchanger. The research is synergistic in that CVB research requires a microgravity environment and the space program needs thermal control systems like the CVB. Ground based studies are being done as a precursor to flight experiment. The results demonstrate that experimental techniques for the direct measurement of the fundamental operating parameters (temperature, pressure, and interfacial curvature fields) have been developed. Fluid flow and change-of-phase heat transfer are a function of the temperature field and the vapor bubble shape, which can be measured using an Image Analyzing Interferometer. The CVB for a microgravity environment, has various thin film regions that are of both basic and applied interest. Generically, a CVB is formed by underfilling an evacuated enclosure with a liquid. Classification depends on shape and Bond number. The specific CVB discussed herein was formed in a fused silica cell with inside dimensions of 3x3x40 mm and, therefore, can be viewed as a large version of a micro heat pipe. Since the dimensions are relatively large for a passive system, most of the liquid flow occurs under a small capillary pressure difference. Therefore, we can classify the discussed system as a low capillary pressure system. The studies discussed herein were done in a 1-g environment (Bond Number = 3.6) to obtain experience to design a microgravity experiment for a future NASA flight where low capillary pressure systems should prove more useful. The flight experiment is tentatively scheduled for the year 2000. The SCR was passed on September 16, 1997. The RDR is tentatively scheduled for October, 1998.

  2. Constraining Galileon inflation

    SciTech Connect

    Regan, Donough; Anderson, Gemma J.; Hull, Matthew; Seery, David E-mail: G.Anderson@sussex.ac.uk E-mail: D.Seery@sussex.ac.uk

    2015-02-01

    In this short paper, we present constraints on the Galileon inflationary model from the CMB bispectrum. We employ a principal-component analysis of the independent degrees of freedom constrained by data and apply this to the WMAP 9-year data to constrain the free parameters of the model. A simple Bayesian comparison establishes that support for the Galileon model from bispectrum data is at best weak.

  3. Adaptive Data-based Predictive Control for Short Take-off and Landing (STOL) Aircraft

    NASA Technical Reports Server (NTRS)

    Barlow, Jonathan Spencer; Acosta, Diana Michelle; Phan, Minh Q.

    2010-01-01

    Data-based Predictive Control is an emerging control method that stems from Model Predictive Control (MPC). MPC computes current control action based on a prediction of the system output a number of time steps into the future and is generally derived from a known model of the system. Data-based predictive control has the advantage of deriving predictive models and controller gains from input-output data. Thus, a controller can be designed from the outputs of complex simulation code or a physical system where no explicit model exists. If the output data happens to be corrupted by periodic disturbances, the designed controller will also have the built-in ability to reject these disturbances without the need to know them. When data-based predictive control is implemented online, it becomes a version of adaptive control. The characteristics of adaptive data-based predictive control are particularly appropriate for the control of nonlinear and time-varying systems, such as Short Take-off and Landing (STOL) aircraft. STOL is a capability of interest to NASA because conceptual Cruise Efficient Short Take-off and Landing (CESTOL) transport aircraft offer the ability to reduce congestion in the terminal area by utilizing existing shorter runways at airports, as well as to lower community noise by flying steep approach and climb-out patterns that reduce the noise footprint of the aircraft. In this study, adaptive data-based predictive control is implemented as an integrated flight-propulsion controller for the outer-loop control of a CESTOL-type aircraft. Results show that the controller successfully tracks velocity while attempting to maintain a constant flight path angle, using longitudinal command, thrust and flap setting as the control inputs.

  4. Mechanisms of Intentional Binding and Sensory Attenuation: The Role of Temporal Prediction, Temporal Control, Identity Prediction, and Motor Prediction

    ERIC Educational Resources Information Center

    Hughes, Gethin; Desantis, Andrea; Waszak, Florian

    2013-01-01

    Sensory processing of action effects has been shown to differ from that of externally triggered stimuli, with respect both to the perceived timing of their occurrence (intentional binding) and to their intensity (sensory attenuation). These phenomena are normally attributed to forward action models, such that when action prediction is consistent…

  5. Implementation of a model for census prediction and control.

    PubMed Central

    Swain, R W; Kilpatrick, K E; Marsh, J J

    1977-01-01

    A model is described that predicts hospital census and computes, for each day, the number of elective admissions that will maximize the census over the short run, subject to constraints on the probability of overflow. Where a computer is available the model provides detailed predictions of census in units as small as 10 beds; used with manual computation the model allows production of tables of the recommended numbers of elective admissions to the hospital as a whole. The model has been tested in five hospitals and is part of the admissions system in two of them; implementation is described, and the results obtained are discussed. PMID:591350

  6. An application of generalized predictive control to rotorcraft terrain-following flight

    NASA Technical Reports Server (NTRS)

    Hess, Ronald A.; Jung, Yoon C.

    1989-01-01

    Generalized predictive control (GPC) describes an algorithm for the control of dynamic systems in which a control input is generated which minimizes a quadratic cost function consisting of a weighted sum of errors between desired and predicted future system output and future predicted control increments. The output predictions are obtained from an internal model of the plant dynamics. The GPC algorithm is first applied to a simplified rotorcraft terrain-following problem, and GPC performance is compared to that of a conventional compensatory automatic system in terms of flight-path following, control activity, and control law implementation. Next, more realistic vehicle dynamics are utilized, and the GPC algorithm is applied to simultaneous terrain following and velocity control in the presence of atmospheric disturbances and errors in the internal model of the vehicle. The online computational and sensing requirements for implementing the GPC algorithm are minimal. Its use for manual control models appears promising.

  7. Self-tuning Generalized Predictive Control applied to terrain following flight

    NASA Technical Reports Server (NTRS)

    Hess, R. A.; Jung, Y. C.

    1989-01-01

    Generalized Predictive Control (GPC) describes an algorithm for the control of dynamic systems in which a control input is generated which minimizes a quadratic cost function consisting of a weighted sum of errors between desired and predicted future system output and future predicted control increments. The output predictions are obtained from an internal model of the plant dynamics. Self-tuning GPC refers to an implementation of the GPC algorithm in which the parameters of the internal model(s) are estimated on-line and the predictive control law tuned to the parameters so identified. The self-tuning GPC algorithm is applied to a problem of rotorcraft longitudinal/vertical terrain-following flight. The ability of the algorithm to tune to the initial vehicle parameters and to successfully adapt to a stability augmentation failure is demonstrated. Flight path performance is compared to a conventional, classically designed flight path control system.

  8. An Agent-Based Model for Analyzing Control Policies and the Dynamic Service-Time Performance of a Capacity-Constrained Air Traffic Management Facility

    NASA Technical Reports Server (NTRS)

    Conway, Sheila R.

    2006-01-01

    Simple agent-based models may be useful for investigating air traffic control strategies as a precursory screening for more costly, higher fidelity simulation. Of concern is the ability of the models to capture the essence of the system and provide insight into system behavior in a timely manner and without breaking the bank. The method is put to the test with the development of a model to address situations where capacity is overburdened and potential for propagation of the resultant delay though later flights is possible via flight dependencies. The resultant model includes primitive representations of principal air traffic system attributes, namely system capacity, demand, airline schedules and strategy, and aircraft capability. It affords a venue to explore their interdependence in a time-dependent, dynamic system simulation. The scope of the research question and the carefully-chosen modeling fidelity did allow for the development of an agent-based model in short order. The model predicted non-linear behavior given certain initial conditions and system control strategies. Additionally, a combination of the model and dimensionless techniques borrowed from fluid systems was demonstrated that can predict the system s dynamic behavior across a wide range of parametric settings.

  9. A Computerized Test of Self-Control Predicts Classroom Behavior

    ERIC Educational Resources Information Center

    Hoerger, Marguerite L.; Mace, F. Charles

    2006-01-01

    We assessed choices on a computerized test of self-control (CTSC) for a group of children with features of attention deficit hyperactivity disorder (ADHD) and a group of controls. Thirty boys participated in the study. Fifteen of the children had been rated by their parents as hyperactive and inattentive, and 15 were age- and gender-matched…

  10. Predicting Changes in Older Adults' Interpersonal Control Strivings

    ERIC Educational Resources Information Center

    Sorkin, Dara H.; Rook, Karen S.; Heckhausen, Jutta; Billimek, John

    2009-01-01

    People vary in the importance they ascribe to, and efforts they invest in, maintaining positive relationships with others. Research has linked such variation in interpersonal control strivings to the quality of social exchanges experienced, but little work has examined the predictors of interpersonal control strivings. Given the importance of…