Science.gov

Sample records for constructed wetland treating

  1. Particle retention in compact constructed wetlands treating highway stormwater.

    PubMed

    Chen, Yaoping; Park, Kisoo; Kim, Youngchul

    2014-01-01

    Three pilot-scale compact constructed wetland systems were constructed to treat stormwater from a highway. They each comprised a sedimentation tank, and a vertical flow (VF) wetland bed equipped with a recirculation device. The VF wetland beds were filled with woodchip, pumice and volcanic gravel, respectively. According to the analysis of the particle size distributions (0.52-500 μm), the predominant particles in stormwater ranged in size from 0.52-30 μm. In the sedimentation tank, with a 24 h settling time, the settling efficiencies of the particles increased with increasing particle size. In the VF wetland beds, further capture of the particles was achieved; however, the woodchip and volcanic gravel wetlands displayed relatively low trapping of micro-particles, due to the natural properties of the substrates. Recirculation caused a positive effect on the retention of particles in the woodchip wetland. Due to the employment of a pre-treatment tank and the high porosity of materials, the accumulated solids occupied very low proportions of the pore volume in the wetland substrates. The results also showed that the accumulation of copper, zinc and lead do not pose a problem for the disposal of the substrates when the wetlands reach the end of their operational lifetime. PMID:24718334

  2. The ecological value of constructed wetlands for treating urban runoff.

    PubMed

    Pankratz, S; Young, T; Cuevas-Arellano-, H; Kumar, R; Ambrose, R F; Suffet, I H

    2007-01-01

    The Sweetwater Authority's urban runoff diversion system (URDS) comprises constructed wetlands on a hillside between the town of Spring Valley and the Sweetwater Reservoir, California, USA. The URDS were designed to divert dry-weather and first-flush urban runoff flows from the Sweetwater reservoir. However, these constructed wetlands have developed into ecologically valuable habitat. This paper evaluates the following ecological questions related to the URDS: (1) the natural development of the species present and their growth pattern; (2) the biodiversity and pollutant stress on the plants and invertebrates; and (3) the question of habitat provided for endangered species. The URDS wetlands are comprised primarily of rush (Scirpus spp.) and cattails (Typha spp.). This vegetative cover ranged from 39-78% of the area of the individual wetland ponds. Current analyses of plant tissues and wetland sediment indicates the importance of sediment sorption for metals and plant uptake of nutrients. Analyses of URDS water following runoff events show the URDS wetlands do reduce the amount of nutrients and metals in the water column. Invertebrate surveys of the wetland ponds revealed lower habitat quality and environmental stress compared to unpolluted natural habitat. The value of the wetlands as wildlife habitat is constrained by low plant biodiversity and pollution stress from the runoff. Since the primary Sweetwater Authority goal is to maintain good water quality for drinking, any secondary utilization of URDS habitat by species (endangered or otherwise) is deemed an added benefit. PMID:17410841

  3. Greenhouse gas emissions from constructed wetlands treating dairy wastewater

    NASA Astrophysics Data System (ADS)

    Glass, Vimy M.

    In Nova Scotia, constructed wetland systems are widely considered as effective treatment systems for agricultural wastewater. Although research has examined the water quality treatment attributes, there has been limited focus on the air quality effects of these systems. Six operational pilot-scale constructed wetlands were built with flow-through chambers for quantifying greenhouse gas (GHG) emissions in Truro, NS. Utilized within this facility were three gas analyzers to monitor GHG emissions (CO2, N 2O, CH4) and the gaseous fluxes could then be determined using the mass balance micrometeorological technique. Prior to data collection, the site underwent testing to ensure valid conclusions and replicated responses from the wetland systems. Those wetlands receiving wastewater at a typical HLR (10.6 mm d-1) and with ample vegetation displayed the best concentration reductions. During the growing season (GS), average CO 2 consumption was large (approximately -44 g CO2m -2 d-1) for wetlands with dense vegetation (approximately 100% cover) at the typical loading rate. For those wetlands at higher loading rates, CO2 emissions were observed to be as high as +9.2 g CO 2m-2 d-1. Wetlands with typical loading rates and healthy aquatic vegetation produced average CH4 fluxes of approximately 43 g CO2 eq. m-2d-1, while higher loaded systems with little vegetation approached 90 g CO 2 eq. m-2d-1. During the non-growing season (NGS), all vegetated wetlands exhibited higher CH4 emissions than the non-vegetated systems (˜15 to 20% higher). Vegetation maturity played a strong role in the GHG balance. The average CO2consumption for wetlands with established vegetation was ˜ -36 g CO2 m -2 d-1 during the GS. Wetland 4, which had been newly transplanted in 2004, had the highest single day CO2 consumption of -152 g CO2m-2 d-1 . Methane emissions from wetlands with two-year-old vegetation followed the same pattern but were approximately half of the emissions recorded from 2003. The

  4. Oxygen transfer in marsh-pond-marsh constructed wetlands treating swine wastewater

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Marsh-pond-marsh (M-P-M) constructed wetlands have been used to treat wastewater from swine anaerobic lagoons. To mitigate undesired ammonia emission from M-P-M, ponds were covered with floating wetlands (M-FB-M). The pond sections of the M-FB-M were covered with floating wetlands consisted of recyc...

  5. [Nitrous oxide fluxes of constructed wetlands to treat sewage wastewater].

    PubMed

    Wu, Juan; Zhang, Jian; Jia, Wen-Lin; Xie, Hui-Jun; Roy, R Gu

    2009-11-01

    The nitrous oxide fluxes and ammonia-oxidizing bacterium in two typical constructed wetlands, i.e. subsurface flow (SF) and free water surface (FWS) were studied by the method of static chamber-gas chromatography. The results showed that the mean N2O fluxes were 296.5 microg x (m2 x h)(-1) and 28.2 microg x (m2 x h)(-1) respectively, and two typical wetlands were all the sources of atmosphere nitrous oxide as a whole. SF wetland exhibited a higher risk of N2O emissions, and the mean N2O flux in this system was higher than the values reported in the literature for ecosystems, e.g. farmland, forest, grassland and marsh. The nitrous oxide fluxes in test wetlands presented obvious seasonal and diurnal variation, and the highest N2O emission flux was in July. The highest flux was (762.9 +/- 239.3) microg x (m2 x h)(-1) and (91.9 +/- 20.3) microg x (m2 x h)(-1) in SF and FWS wetlands, respectively. The peak flux mostly occurred around midday, whereas the minimum flux likely occurred in the early morning. The results indicated that the growth of Phragmites australis and temperature were the key factors controlling the variation of N2O fluxes. The average N2O emission from the microsites above the inflow zones was higher than that above the outflow microsites. High influent strength promoted nitrification and denitrification, and high fluxes were obtained. The clone results showed that Nitrosomonas and Nitrosospira were the main ammonia-oxidizing microorganisms contributing to N2O production in constructed wetlands. PMID:20063721

  6. Vegetation Changes and Partitioning of Selenium in 4-Year-Old Constructed Wetlands Treating Agricultural Drainage

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The knowledge of vegetation management and the partitioning of selenium (Se) in treatment wetlands is essential for long-term effective operation of constructed wetlands treating Se-laden agricultural tile-drainage water in the San Joaquin Valley, California. Vegetation changes in six vegetated wetl...

  7. E. coli Regrowth in a Constructed Wetland Receiving Treated Sewage Effluent: A Threat to Human Health?

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Constructed wetlands are used throughout the world to filter toxins from treated wastewater and to increase wildlife habitat. Bird and mammal excretions result in background levels of enteric bacteria in any natural wetland, but regrowth of bacteria in wastewater effluent can further increase microb...

  8. Effect of polyaluminium chloride on phosphorus removal in constructed wetlands treated with swine wastewater.

    PubMed

    Reddy, G B; Forbes, Dean A; Hunt, P G; Cyrus, Johnsely S

    2011-01-01

    Total phosphorus (TP) removal in aged constructed wetlands poses a challenge, especially when treated with swine wastewater with high concentrations of phosphorus (P). Our earlier studies with anaerobic lagoon swine wastewater treatment in constructed wetlands showed a decline in P removal (45-22%) with increased years of operation. These particular wetlands have been treated with swine wastewater every year since the first application in 1997. Preliminary lab-scale studies were conducted to evaluate the efficiency of polyaluminium chloride (PAC) in the removal of phosphate-P (PO4-P) from swine wastewater. The experimental objective was to increase the phosphorus treatment efficiency in constructed wetland by adding PAC as a precipitating agent. PAC was added by continuous injection to each wetland system at a rate of 3 L day(-1) (1:5 dilution of concentrated PAC). Swine wastewater was added from an anaerobic lagoon to four constructed wetland cells (11m wide x 40m long) at TP loads of 5.4-6.1 kg ha(-1) day(-1) in two experimental periods, September to November of 2008 and 2009. Treatment efficiency of two wetland systems: marsh-pond-marsh (M-P-M) and continuous marsh (CM) was compared. The wetlands were planted with cattails (Typha latifolia L.) and bulrushes (Scirpus americanus). In 2008, PAC treatment showed an increase of 27.5 and 40.8% of TP removal over control in M-P-M and CM respectively. Similar trend was also observed in the following year. PAC as a flocculant and precipitating agent showed potential to enhance TP removal in constructed wetlands treated with swine wastewater. PMID:22049722

  9. Performance of Seasonally and Continuously Loaded Constructed Wetlands Treating Dairy Farm Wastewater.

    PubMed

    Wood, Jeffrey D; Gordon, Robert J; Madani, Ali; Stratton, Glenn W; Bromley, Heather M

    2015-11-01

    A 2-yr study compared the performance of seasonally and continuously loaded constructed wetlands treating dairy farm wastewater. One wetland was loaded during the growing season (GS) periods only, while the other was continuously loaded. Weekly samples were analyzed for 5-d biochemical oxygen demand (BOD), total suspended solids (TSS), total Kjeldahl N (TKN), total ammoniacal N (TAN), total P (TP), and . Annual average daily mass removal rates (kg ha) were similar for both wetlands in both years; however, seasonal differences were observed. With the exception of BOD in Year 2, average daily GS areal mass removal rates were higher for the seasonal wetland. However, GS mass exports from the seasonal wetland were higher by 28 to 94%, with the exception of BOD in Year 1. Annual mass reductions (MRs; %) for nutrients were higher for the continuous wetland in both years. Annual MRs were similar for in both years and for TSS in Year 2. Annual mass exports from the seasonal wetland were higher for nutrients and by 14 to 77% in both years. Pollutant MRs generally decreased during the nongrowing season (NGS) for the continuous wetland; however, in Year 2 when lower loading rates were used, the wetland still removed 84 to 99% of the pollutant masses. The continuous wetland also performed better during periods of high flow that occurred during the GS. Although there were minimal differences in annual treatment performance, continuously loaded systems require less additional infrastructure and should require less maintenance and may, therefore, be more attractive for agricultural applications. PMID:26641349

  10. Construction Simplicity and Cost as Selection Criteria Between Two Types of Constructed Wetlands Treating Highway Runoff

    NASA Astrophysics Data System (ADS)

    Manios, Thrassyvoulos; Fountoulakis, Michalis S.; Karathanasis, Anastasios D.

    2009-05-01

    Two free water surface (FWS) and two subsurface flow (SSF) pilot-size wetlands were constructed for the evaluation of their performance in treating highway runoff (HRO) in the heart of the Mediterranean region, the island of Crete, at the southernmost point of Greece. Detailed recordings of the resources involved during the construction allowed a thorough calculation of the cost of the systems and the requirements in materials, man-hours, and equipment. The two identical FWS systems had a surface area of 33 m2 each, while the two identical SSF covered 32 m2 each. One FWS and one SSF, named FWS12 and SSF12, respectively, were designed with a hydraulic retention time (HRT) of 12 h, with each one capable of treating a maximum HRO of 12.6 m3/day. The other couple, named FWS24 and SSF24, respectively, was designed with an HRT of 24 h, with each receiving a maximum HRO of 6.3 m3/days. An influent storage tank was required to hold the runoff during the common storm events and control the flow rate (and the hydraulic retention time) into the wetlands. This construction represented 25% of the total construction cost, while 5% was spent on the influent automated (and sun-powered) control and distribution system, from the storage tank to the wetlands. The respective total cost allocated to the two SSF systems (€14,676) was approximately 10% higher than that of the FWS (€13,596), mainly due to the three different-sized gravel layers used in the SSF substrate compared to the topsoil used in the FWS, which tripled the cost and placement time. The Total Annual Economic Cost (TAEC) was €1799/year and €1847/year for the FWS and SSF pair, respectively. TAEC was also used to compare the economic efficiency of the systems per cubic meter of HRO treated and kilograms of COD and TSS removed from the wetlands during their first operational year. Based on these estimations, FWS12 recorded the lowest TAECCOD and TAECTSS values (€89.09/kg and €43.69/kg, respectively) compared to

  11. Microbial nitrogen transformation in constructed wetlands treating contaminated groundwater.

    PubMed

    Coban, Oksana; Kuschk, Peter; Wells, Naomi S; Strauch, Gerhard; Knoeller, Kay

    2015-09-01

    Pathways of ammonium (NH4 (+)) removal were investigated using the stable isotope approach in constructed wetlands (CWs). We investigated and compared several types of CWs: planted horizontal subsurface flow (HSSF), unplanted HSSF, and floating plant root mat (FPRM), including spatial and seasonal variations. Plant presence was the key factor influencing efficiency of NH4 (+) removal in all CWs, what was illustrated by lower NH4 (+)-N removal by the unplanted HSSF CW in comparison with planted CWs. No statistically significant differences in NH4 (+) removal efficiencies between seasons were detected. Even though plant uptake accounted for 32-100 % of NH4 (+) removal during spring and summer in planted CWs, throughout the year, most of NH4 (+) was removed via simultaneous nitrification-denitrification, what was clearly shown by linear increase of δ(15)N-NH4 (+) with decrease of loads along the flow path and absence of nitrate (NO3 (-)) accumulation. Average yearly enrichment factor for nitrification was -7.9 ‰ for planted HSSF CW and -5.8 ‰ for FPRM. Lack of enrichment for δ(15)N-NO3 (-) implied that other processes, such as nitrification and mineralization were superimposed on denitrification and makes the stable isotope approach unsuitable for the estimation of denitrification in the systems obtaining NH4 (+) rich inflow water. PMID:25233917

  12. Comparison of aerated marsh-pond-marsh and continuous marsh constructed wetlands for treating swine wastewater

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Increased swine production in North Carolina has resulted in greater waste generation and is demanding some emerging new innovative technologies to effectively treat swine wastewater. One of the cost-effective and passive methods to treat swine wastewater is using constructed wetlands. The objective...

  13. Trace gas exchanges of marsh-pond-marsh constructed wetlands treating swine wastewater

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Marsh-pond-marsh (MPM) constructed wetlands have been used effectively to treat wastewater from swine anaerobic lagoons. However, at high N loading rates, a significant portion of ammonia in the wastewater could be volatilized into the atmosphere. To mitigate ammonia emission, ponds can be covered w...

  14. Ammonia and greenhouse gas emissions from constructed wetlands treating swine wastewater

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Ammonia and greenhouse gas emissions from marsh-pond-marsh constructed wetlands treating swine wastewater were measured with closed-chamber technique using a photoacoustic multigas analyzer. Theory behind the technique was discussed and the technique was demonstrated with actual field data. Nitrous ...

  15. Nitrogen mass balance and microbial analysis of constructed wetlands treating municipal landfill leachate.

    PubMed

    Sawaittayothin, Variga; Polprasert, Chongrak

    2007-02-01

    Experiments were conducted to investigate the feasibility of applying constructed wetlands to treat a sanitary landfill leachate containing high nitrogen and bacterial contents. Under a tropical condition (temperature of about 30 degrees C), the constructed wetland units operating at the hydraulic retention time of 8d yielded the best treatment efficiencies with BOD(5), TN and fecal coliforms removal of 91%, 96% and more than 99%, respectively. Cadmium removal in the SFCW bed was 99.7%. Mass balance analysis, based on total nitrogen contents of the plant biomass and dissolved oxygen and oxidation-reduction potential values, suggested that 88% of the input total nitrogen were uptaken by the plant biomass. Fluorescence in situ hybridization results revealed the predominance of bacteria, including heterotrophic and autotrophic, responsible for BOD(5) removal. Nitrifying bacteria was not present in the constructed wetland beds. PMID:16546377

  16. Retention of manganese by a constructed wetland treating drainage from a coal ash disposal site

    SciTech Connect

    Kerrick, K.H.; Horner, M.

    1998-12-31

    A 3,200 m{sup 2} wetland was constructed in 1988 to treat drainage from an ash disposal site at a coal-fired electricity generating plant in western Pennsylvania. Concentrations of Fe and Mn in the drainage range from 30--80 mg/L and 10--20 mg/L, respectively. Acidity levels of 60--180 mg/L and a pH between 5--5.6 are typical. The wetland has always produced a high quality effluent with respect to Fe concentrations (usually less than 1 mg/L) and pH (about 7). Initial performance of the wetland with respect to Mn was encouraging, with reductions in Mn concentrations of over 50% being common during the first six years of operation. The system was modified in 1994 by adding limestone riprap below some dams and covering diversion dikes with limestone. These alterations were followed by a significant improvement in Mn removal by the system, with effluent concentrations seldom exceeding 1 mg/L. Seasonal observations indicate that Mn removal in the wetland slows during the winter. In laboratory studies, wetland limestone increased Mn removal rates by as much as 6--7 times. These rates exhibited a temperature optimum of 27 C. The rate at near 0 C was about one half that at 27 C and the rate fell to near zero at 43 C. This suggests that biological activity associated with the limestone is an important factor in the success of this wetland.

  17. The potential for constructed wetlands to treat alkaline bauxite residue leachate: laboratory investigations.

    PubMed

    R, Buckley; T, Curtin; R, Courtney

    2016-07-01

    High alkalinity (pH > 12) of bauxite residue leachates presents challenges for the long-term storage and managements of the residue. Whilst the use of constructed wetlands is gaining in interest for its use in the treatment of alkaline waters, thus far, there is limited evidence of its suitability for treating NaOH dominated bauxite residue leachate. A series of batch trials were conducted to investigate the potential for constructed wetland conferred mechanisms (dilution water quality, contact with CO2, and substrate type) for treating NaOH solutions to levels permissible for discharge (p < 9). Results demonstrate that significant reductions in solution pH can be achieved depending on the diluting water quality. Levels achieved may not always be suitable for direct discharge (i.e. pH ≤ 9), but further reductions occur with carbonation and soil contact. The extent of pH decrease and the timeframe required are influenced by soil quality, with greater efficiency observed in soils with higher organic matter content. Decrease in solution pH to discharge permit values are possible through a combination of the mechanisms occurring in a constructed wetland. Formation of a calcite precipitate was observed in some treatments and further characterisation by XRD and XPS suggested surface coating with Na2CO3. It is therefore suggested that, under suitable conditions, constructed wetland technology can reduce leachate pH to <9 through mechanisms supporting the precipitation of sodium carbonate from solution. Further trials should investigate the activity under biological conditions representative of an operating constructed wetland. PMID:27048325

  18. Five year water and nitrogen balance for a constructed surface flow wetland treating agricultural drainage waters.

    PubMed

    Borin, Maurizio; Tocchetto, Davide

    2007-07-15

    The performance of a constructed surface flow wetland in reducing diffuse N pollution coming from croplands is being investigated in an ongoing experiment, begun in 1998 in NE Italy. The 0.32 ha wetland is vegetated with Phragmites australis (Cav.) Trin. and Typha latifolia (L.). It receives drainage water from 6 ha of land managed for an experiment on drainage systems, where maize, sugarbeet, winter wheat and soybean are cultivated. During the period 1998-2002, the wetland received from 4698 to 8412 mm of water per year (on average, about 9 times the environmental rainfall); its water regimen was discontinuous and flooding occurred on a variable number of days per year (from 13 to 126). Nitric nitrogen was the most important form of element load. Its concentration in the inflow water over time was rather discontinuous, with median values ranging from 0.2 (in 2001) to 4.5 (in 2000) mg L(-1). Inflow nitric N concentrations were occasionally in the 5-15 mg L(-1) range. Concentrations reduced passing through the wetland, with a more evident effect in the last year. Over 5 years, the wetland received slightly more than 2000 kg ha(-1) of nitrogen, 87% in nitric form mostly from farmland drainage. The remaining 13% of N was applied as organic slurry directly onto the wetland, with 5 distributions during 1998 to assess wetland performance in treating occasional organic loads. Field drainage loads had a discontinuous time pattern and occurred mostly during autumn-winter, with the exception of the 2001-2002 season which was a very dry. The wetland discharged 206 kg ha(-1) of N, over the 5-year period, with an apparent removal efficiency of about 90%. The disappearance was mostly due to plant uptake (1110 kg ha(-1)) and soil accumulation (570 kg ha(-1)), with the contribution of denitrification being estimated at around 7%. PMID:17270250

  19. The phytoremediation ability of a polyculture constructed wetland to treat boron from mine effluent.

    PubMed

    Türker, Onur Can; Böcük, Harun; Yakar, Anıl

    2013-05-15

    This study focuses on describing the ability of a small-scale, subsurface-flow-polyculture-constructed wetland (PCW) to treat boron (B) mine effluent from the world's largest borax mine (Kırka, Turkey) under field conditions. This application is among the first effluent treatment methods of this type in both Turkey and the world. This study represents an important resource on how subsurface-flow-constructed wetlands could be used to treat B mine effluents in the field conditions. To this end, an experimental wetland was vegetated with common reed (Phragmites australis) and cattails (Typha latifolia), and mine effluent was moved through the wetland. The results of the present study show that B concentrations of the mine effluent decreased from 187 to 123 mg l(-1) (32% removal rate) on average. The T. latifolia individuals absorbed a total of 250 mg kg(-1) whereas P. australis in the PCW absorbed a total of 38 mg kg(-1) B during the research period. PMID:23500796

  20. Potential of constructed wetlands in treating the eutrophic water: evidence from Taihu Lake of China.

    PubMed

    Li, Linfeng; Li, Yinghao; Biswas, Dilip Kumar; Nian, Yuegang; Jiang, Gaoming

    2008-04-01

    Three parallel units of pilot-scale constructed wetlands (CWs), i.e., vertical subsurface flow (VSF), horizontal subsurface flow (HSF) and free water surface flow (FWS) wetland were experimented to assess their capabilities in purifying eutrophic water of Taihu Lake, China. Lake water was continuously pumped into the CWs at a hydraulic loading rate of 0.64 m d(-1) for each treatment. One year's performance displayed that average removal rates of chemical oxygen demand (COD), ammonia nitrogen (NH(4)(+)-N), nitrate nitrogen (NO(3)(-)-N), total nitrogen (TN) and total phosphorous (TP) were 17-40%, 23-46%, 34-65%, 20-52% and 35-66%, respectively. The VSF and HSF showed statistically similar high potential for nutrients removal except NH(4)(+)-N, with the former being 14% higher than that of the latter. However, the FWS wetland showed the least effect compared to the VSF and HSF at the high hydraulic loading rate. Mean effluent TP concentrations in VSF (0.056 mg L(-1)) and HSF (0.052 mg L(-1)) nearly reached Grade III (0.05 mg L(-1) for lakes and reserviors) water quality standard of China. Wetland plants (Typha angustifolia) grew well in the three CWs. We noted that plant uptake and storage were both important factors responsible for nitrogen and phosphorous removal in the three CWs. However, harvesting of the above ground biomass contributed 20% N and 57% P of the total N and P removed in FWS wetland, whereas it accounted for only 5% and 7% N, and 14% and 17% P of the total N and P removed in VSF and HSF CWs, respectively. Our findings suggest that the constructed wetlands could well treat the eutrophic lake waters in Taihu. If land limiting is considered, VSF and HSF are more appropriate than FWS under higher hydraulic loading rate. PMID:17532209

  1. Distribution and removal efficiency of heavy metals in two constructed wetlands treating landfill leachate.

    PubMed

    Wojciechowska, Ewa; Waara, Sylvia

    2011-01-01

    The results of heavy metals (Fe, Mn, Zn, Ni, Cu, Cr, Pb, Cd) removal and partitioning between aqueous and solid phases at two treatment wetlands (TWs) treating municipal landfill leachates are presented. One of the TWs is a surface flow facility consisting of 10 ponds. The other TW is a newly constructed pilot-scale facility consisting of three beds with alternately vertical and horizontal subsurface flow. The metals concentrations were analysed in leachate (both TWs) and bottom sediments (surface flow TW). Very high (90.9-99.9%) removal rates of metals were observed in a mature surface flow TW. The effectiveness of metals removal in a newly constructed pilot-scale sub-surface flow wetland were considerably lower (range 0-73%). This is attributed to young age of the TW, different hydraulic conditions (sub-surface flow system with much shorter retention time, unoxic conditions) and presence of metallic complexes with refractory organic matter. PMID:22335101

  2. Purification ability and carbon dioxide flux from surface flow constructed wetlands treating sewage treatment plant effluent.

    PubMed

    Wu, Haiming; Lin, Li; Zhang, Jian; Guo, Wenshan; Liang, Shuang; Liu, Hai

    2016-11-01

    In this study, a two-year experiment was carried out to investigate variation of carbon dioxide (CO2) flux from free water surface constructed wetlands (FWS CW) systems treating sewage treatment plant effluent, and treatment performance was also evaluated. The better 74.6-76.6% COD, 92.7-94.4% NH4(+)-N, 60.1-84.7% TN and 49.3-70.7% TP removal efficiencies were achieved in planted CW systems compared with unplanted systems. The planted CW was a net CO2 sink, while the unplanted CW was a net CO2 source in the entire study period. An obvious annual and seasonal variability of CO2 fluxes from different wetland systems was also presented with the average CO2 flux ranging from -592.83mgm(-2)h(-1) to 553.91mgm(-2)h(-1) during 2012-2013. In addition, the net exchange of CO2 between CW systems and the atmosphere was significantly affected by air temperature, and the presence of plants also had the significant effect on total CO2 emissions. PMID:27544264

  3. An analysis of the effectiveness of a constructed wetland treating acid mine drainage

    SciTech Connect

    Huddleston, G.M. III; Grant, A.J.; Ramey, B.A.

    1994-12-31

    Acid mine drainage (AMD) from an abandoned coal mine in southcentral Kentucky had pH levels as low as 2.3 and iron concentrations as high as 641 mg/L. In the summer of 1992, the US Soil Conservation Service constructed a wetland system to treat the AMD that incorporated both physical and biological treatments. The AMD was initially fed into three anoxic limestone beds followed by an aeration pond and four cattail cells. A polishing pond served as the final stage of treatment. Flow of AMD was initiated in the fall of 1992, and treatment effectiveness was monitored for the next year. Chemical analysis and the cladoceran (Ceriodaphnia dubia) survival and reproduction test were performed on water samples collected along the flow path. Water chemistry analysis and determination of toxic levels indicated a substantial increase in pH and removal of metals prior to entering the cattail cells. Water quality in the cattail cells and polishing pond varied throughout the seasons, but had improved substantially by the end of the one-year monitoring period. The use of the wetland system by macroinvertebrates also was evaluated. Results indicated that a limited number of species were found in the cattail cells, while larger numbers were recovered from the polishing pond.

  4. Performance of a constructed wetland in treating brackish wastewater from commercial recirculating and super-intensive shrimp growout systems.

    PubMed

    Shi, Yonghai; Zhang, Genyu; Liu, Jianzhong; Zhu, Yazhu; Xu, Jiabo

    2011-10-01

    A recirculating aquaculture system was developed for treating Pacific white shrimp (Litopenaeus vannamei) production wastewater using an integrated vertical-flow (IVF) and five connected integrated horizontal flow (IHF) constructed wetlands as water treatment filters for mesohaline conditions (8.25‰-8.26‰ salinity). The constructed wetlands demonstrated the ability to reduce total nitrogen, total ammonia nitrogen, nitrite nitrogen, nitrate nitrogen, total phosphorous, chemical oxygen demand, and total suspended solids to levels significantly lower than those in effluents from culture tanks. Various water quality parameters in the culture tanks were deemed suitable for shrimp culture. The actual ratio of wetland area (A(w)) to culture tank area (A(t)) was 1.1439, and the estimated optimal ratio A(w)/A(t) was approximately 1. The IVF-IHF wetlands showed flexibility and reliability in consistently removing the main pollutants from commercial recirculating and super-intensive shrimp growout systems throughout the culture period. PMID:21852127

  5. Long-term purification efficiency of a wetland constructed to treat runoff from peat extraction.

    PubMed

    Karjalainen, Satu M; Heikkinen, Kaisa; Ihme, Raimo; Kløve, Bjørn

    2016-01-01

    Peat extraction increases the phosphorus, nitrogen, organic matter, suspended solids, and iron concentrations in runoff, resulting in negative effects on downstream water bodies. Wetlands are commonly used as natural cost-effective solutions to mitigate these negative effects. This study analyzed changes in the quality of runoff water from peat extraction areas and the long-term efficiency of constructed wetlands. The results indicate that the quality of runoff water changed after the initial drainage and during peat extraction. Nitrogen leached at high concentrations in the early stages of peat extraction following drainage, whereas the leaching of iron and phosphorus increased after peat extraction from deeper layers. Comparison of water quality and impurities retained immediately after treatment wetland construction and 14 years later showed that the treatment wetland remained functional, with good retention capacity, over a long period. PMID:26809932

  6. Use of stable nitrogen isotope fractionation to estimate denitrification in small constructed wetlands treating agricultural runoff.

    PubMed

    Søvik, Anne Kristine; Mørkved, Pål Tore

    2008-03-15

    Constructed wetlands (CWs) in the agricultural landscape reduce non-point source pollution through removal of nutrients and particles. The objective of this study was to evaluate if measurements of natural abundance of (15)NO(3)(-) can be used to determine the fate of NO(3)(-) in different types of small CWs treating agricultural runoff. Nitrogen removal was studied in wetland trenches filled with different filter materials (T1--sand and gravel; T3--mixture of peat, shell sand and light-weight aggregates; T8--barley straw) and a trench formed as a shallow pond (T4). The removal was highest during summer and lowest during autumn and winter. Trench T8 had the highest N removal during summer. Measurements of the natural abundance of (15)N in NO(3)(-) showed that denitrification was not significant during autumn/winter, while it was present in all trenches during summer, but only important for nitrogen removal in trench T8. The (15)N enrichment factors of NO(3)(-) in this study ranged from -2.5 to -5.9 per thousand (T3 and T8, summer), thus smaller than enrichment factors found in laboratory tests of isotope discrimination in denitrification, but similar to factors found for denitrification in groundwater and a large CW. The low enrichment factors compared to laboratory studies was attributed to assimilation in plants/microbes as well as diffusion effect. Based on a modified version of the method presented by Lund et al. [Lund LJ, Horne AJ, Williams AE, Estimating denitrification in a large constructed wetland using stable nitrogen isotope ratios. Ecol Engineer 2000; 14: 67-76], denitrification and assimilation were estimated to account for 53 to 99 and 1 to 47%, respectively, of the total N removal during summer. This method is, however, based on a number of assumptions, and there is thus a need for a better knowledge of the effect of plant uptake, microbial assimilation as well as nitrification on N isotopic fractionation before this method can be used to evaluate

  7. Performance of a wall cascade constructed wetland treating surfactant-polluted water.

    PubMed

    Tamiazzo, Jessica; Breschigliaro, Simone; Salvato, Michela; Borin, Maurizio

    2015-09-01

    Carwashes are highly water-consuming processes that require wastewater treatment before discharge into a sewer system due to the complex composition of leachate. Anionic surfactants (AS) are the main constituents of this wastewater because of their cleaning and solubilization properties; they can be potentially dangerous for the environment if not adequately treated. Constructed wetlands (CWs) are low-cost systems increasingly used to treat different types of wastewater; however, there are few studies on their use for the treatment of carwash wastewater. In this study, an innovative constructed wetland arranged in a "cascade" to simulate a wall system (WCCW) was experimented in 2010 and 2011 to treat AS. Three plant species were tested at different AS inlet concentrations (10, 50, and 100 mg L(-1)) with two hydraulic retention times (HRTs; 3 and 6 days): ribbon grass (Typhoides arundinacea (L.) Moench (syn. Phalaris arundinacea L.) var. picta; Ta), water mint (Mentha aquatica L.; Ma), and divided sedge (Carex divisa Hudson; Cd). All plant species grew constantly over the experimental period, showing a capacity to tolerate even the highest AS concentration. Using the HRT of 6 days, raising the inlet concentration increased the AS outlet concentration, with similar values for the treatments (median values of 0.13-0.15, 0.47-0.78, and 1.19-1.46 mg L(-1) at inlet concentrations in the order 10, 50, and 100 mg L(-1)). The shorter HRT led to significant differences among treatments in the reduction of outlet concentration, the best result being given by the tanks vegetated with Ma (A = 97.7 % with outlet concentration 0.35 mg L(-1)). After treatments of the WCCW, the AS content was reduced almost completely, with removal in the ranges 0.07-10.2 g m(-2) day(-1) for tanks planted with Ta, 0.10-9.1 g m(-2) day(-1) for Ma tanks, and 0.11-9.5 g m(-2) day(-1) for Cd tanks depending on the inlet concentration. PMID:25586615

  8. Suitability of macrophytes for nutrient removal from surface flow constructed wetlands receiving secondary treated sewage effluent in Queensland, Australia.

    PubMed

    Greenway, M

    2003-01-01

    From a botanical perspective the major difference between waste stabilisation ponds and wetlands is the dominance of algae or floating plants in the former and emergent plants in the latter. Algae, floating and submerged plants remove nutrients directly from the water column whereas emergent species remove nutrients from the sediment. Water depth is a crucial factor in determining which plant types will become established. Surface flow constructed wetlands offer the greatest potential to grow a wide variety of different types of macrophytes. In assessing the suitability of plant species for nutrient removal, consideration must be given not only to nutrient uptake for growth but also storage of nutrients as plant biomass. A survey of macrophytes in 15 surface flow constructed wetlands treating secondary effluent was conducted in Queensland; 63 native species and 14 introduced species were found. Emergent species have been able to tolerate deeper water than in their natural environment and permanent waterlogging. All species grew well in the higher nutrient enriched wastewater. Submerged, floating leaved-attached and free floating species had the highest tissue nutrient content, followed by aquatic creepers. All these species remove nutrients from the water column. Emergent species had lower nutrient content but a greater biomass and were therefore able to store more nutrients per unit area of wetland. In order to maximise the efficiency of constructed wetlands for nutrient removal, a range of species should be used. Native species should be selected in preference to introduced/exotic species. PMID:14510202

  9. Long-term performance of subsurface-flow constructed wetlands treating Cd wastewater.

    PubMed

    Visesmanee, Varangkana; Polprasert, Chongrak; Parkpian, Preeda

    2008-06-01

    This study was conducted to investigate the long-term performance of subsurface-flow constructed wetland (SFCW) units treating a wastewater containing cadmium (Cd). The hydraulic retention time (HRT) was found to have significant effects on the SFCW performance, especially on Cd removal. During the 320 days of Cd feeding, the HRTs of 1, 3, 5 and 8 days resulted in the Cd removal efficiencies of 50, 90, 99 and 99%, respectively. The actual Cd breakthrough times in the SFCW effluent were found to be longer than the theoretical values calculated from the maximum adsorption capacities only, especially at the HRTs longer than 1 day, and were dependent on the operating HRT and Cd loading. Other mechanisms such as filtration, sedimentation and plant uptake were also responsible for Cd removal in the SFCW beds. The extents of Cd plant uptake were 21 and 6% of the Cd inputs for the SFCW units operating at the HRTs of 3 and 1 days, respectively. Based on Cd mass balance and fractionation analysis, the SFCW media were found to be most effective in Cd removal through adsorption of the residual and Fe/Mn oxide bound fractions. The results of this long-term study re-affirmed the necessity to determine actual breakthrough times of Cd or other heavy metals in the SFCW effluent which are dependent on HRT and Cd loading and are usually longer than the theoretical values calculated from the maximum adsorption capacity only. PMID:18444079

  10. Nitrogen transformations and mass balance in an integrated constructed wetland treating domestic wastewater.

    PubMed

    Dzakpasu, Mawuli; Scholz, Miklas; McCarthy, Valerie; Jordan, Siobhán

    2014-01-01

    Nitrogen (N) transformations and removal in integrated constructed wetlands (ICWs) are often high, but the contributions of various pathways, including nitrification/denitrification, assimilation by plants and sediment storage, remain unclear. This study quantified the contributions of different N removal pathways in a typical multi-celled ICW system treating domestic wastewater. Findings showed near complete average total N retention of circa 95% at 102.3 g m⁻² yr⁻¹ during the 4-year period of operation. Variations in total N and NH4-N removal rates were associated with effluent flow volume rates and seasons. According to the mass balance estimation, assimilation by plants and sediment/soil storage accounted for approximately 23% and 20%, respectively, of the total N load removal. These were the major N removal route besides microbial transformations. Thus, the combination of plants with high biomass production offer valuable opportunities for improving ICW performance. The retrieval and use of sequestered N in the ICW sediment/soils require coherent management and provide innovative and valuable opportunities. PMID:25401313

  11. Comparison of the treatment performance of hybrid constructed wetlands treating stormwater runoff.

    PubMed

    Choi, J Y; Maniquiz-Redillas, M C; Hong, J S; Lee, S Y; Kim, L H

    2015-01-01

    This study was conducted to compare the treatment performance of two hybrid constructed wetlands (CWs) in treating stormwater runoff. The hybrid CWs were composed of a combination of free water surface (FWS) and horizontal subsurface flow (HSSF) CWs. Based on the results, strong correlation exists between potential runoff impacts and stormwater characteristics; however, the low correlations also suggest that not only the monitored parameters contribute to stormwater event mean concentrations (EMC) of pollutants, but other factors should also be considered as well. In the hydraulic and treatment performance of the hybrid CWs, a small surface area to catchment area (SA/CA) ratio, receiving a high concentration of influent EMC, will find it hard to achieve great removal efficiency; also a large SA/CA ratio, receiving low concentration of influent EMC, will find it hard to achieve great removal efficiency. With this, SA/CA ratio and influent characteristics such as EMC or load should be considered among the design factors of CWs. The performance data of the two CWs were used to consider the most cost-effective design of a hybrid CW. The optimum facility capacity (ratio of total runoff volume to storage volume) that is applicable for a target volume reduction and removal efficiency was provided in this study. PMID:26676013

  12. Oxygen transfer in marsh-pond-marsh constructed wetlands treating swine wastewater.

    PubMed

    Ro, Kyoung S; Hunt, Patrick G; Johnson, Melvin H; Matheny, Terry A; Forbes, Dean; Reddy, Gudigopuram B

    2010-01-01

    Oxygen transfer efficiencies of various components of the marsh-pond-marsh (M-P-M) and marsh-floating bed-marsh (M-FB-M) wetlands treating swine wastewater were determined by performing oxygen mass balance around the wetlands. Biological oxygen demand (BOD) and total nitrogen (TN) loading and escaping rates from each wetland were used to calculate carbonaceous and nitrogenous oxygen demands. Ammonia emissions were measured using a wind tunnel. Oxygen transfer efficiencies of the aerated ponds were estimated by conducting the ASCE standard oxygen transfer test in a tank using the same aeration device. Covering pond water surface with the floating bed slightly decreased oxygen transfer efficiency. The diffused membrane aeration (26.7 kg O2 ha-1 d-1) of M-P-M was surprisingly not as effective as plant aeration in the marsh (38.9 to 42.0 kg O2 ha-1 d-1). This unusually low oxygen transfer efficiency of the diffused aeration was attributed to its low submergence depth of 0.8 m compared to typical depth of 4.5 m. The wetlands consisting entirely of marsh removed similar amounts of C and N without investing additional equipment and energy costs of aerating ponds in the middle of wetlands. PMID:20390880

  13. Performance of a constructed wetland treating intensive shrimp aquaculture wastewater under high hydraulic loading rate.

    PubMed

    Lin, Ying-Feng; Jing, Shuh-Ren; Lee, Der-Yuan; Chang, Yih-Feng; Chen, Yi-Ming; Shih, Kai-Chung

    2005-04-01

    A water treatment unit, mainly consisting of free water surface (FWS) and subsurface flow (SF) constructed wetland cells, was integrated into a commercial-scale recirculating aquaculture system for intensive shrimp culture. This study investigated performance of the treatment wetlands for controlling water quality. The results showed that the FWS-SF cells effectively removed total suspended solids (55-66%), 5-day biochemical oxygen demand (37-54%), total ammonia (64-66%) and nitrite (83-94%) from the recirculating water under high hydraulic loading rates (1.57-1.95 m/day). This led to a water quality that was suitable for shrimp culture and effluent that always satisfied the discharge standards. The area ratios of wetlands to culture tank being demonstrated (0.43) and calculated (0.096) in this study were both significantly lower than the reported values. Accordingly, a constructed wetland was technically and economically feasible for managing water quality of an intensive aquaculture system. PMID:15620586

  14. A pilot study of a subsurface-flow constructed wetland treating membrane concentrate produced from reclaimed water.

    PubMed

    Chakraborti, Rajat K; Bays, James S; Ng, Thien; Balderrama, Lou; Kirsch, Terry

    2015-01-01

    A pilot study was conducted for 7 months for the City of Oxnard, California, on the use of constructed wetlands to treat concentrate produced by microfiltration and reverse osmosis (RO) of reclaimed wastewater. The treatment performance of a transportable subsurface-flow wetland was investigated by monitoring various forms of nitrogen, orthophosphate, oxygen demand, organic carbon, and selenium. Significant mass removal of constituents was measured under two hydraulic residence times (HRTs) (2.5 and 5 days). Inflow and outflow concentrations of nitrate-N and ammonia-N were significantly different for both HRTs, whereas nitrite-N and total organic carbon (TOC) were significantly different during HRT2. Mass removal by the constructed wetland averaged 61% of nitrate-N, 32% of nitrite-N, 42% of ammonia-N, 43% of biochemical oxygen demand, 19% of orthophosphate as P, 18% of TOC and 61% of selenium. Mass removal exceeded concentration reductions through water volume loss through evapotranspiration. Calibrated first-order area-based removal rates were consistent with literature ranges, and were greater during HRT1 consistent with greater mass loads, higher hydraulic loading and shorter HRTs. The rate constants may provide a basis for sizing a full-scale wetland receiving a similar quality of water. The results indicated that engineered wetlands can be useful in the management of RO membrane concentrate for reclaimed water reuse. PMID:26177409

  15. Temporal variation of nitrogen balance within constructed wetlands treating slightly polluted water using a stable nitrogen isotope experiment.

    PubMed

    Zhang, Wanguang; Lei, Qiongye; Li, Zhengkui; Han, Huayang

    2016-02-01

    Slightly polluted water has become one of the main sources of nitrogen contaminants in recent years, for which constructed wetlands (CW) is a typical and efficient treatment. However, the knowledge about contribution of individual nitrogen removal pathways and nitrogen balance in constructed wetlands is still limited. In this study, a stable-isotope-addition experiment was performed in laboratory-scale constructed wetlands treating slightly polluted water to determine quantitative contribution of different pathways and temporal variation of nitrogen balance using Na(15)NO3 as tracer. Microbial conversion and substrate retention were found to be the dominant pathways in nitrogen removal contributing 24.4-79.9 and 8.9-70.7 %, respectively, while plant contributed only 4.6-11.1 % through direct assimilation but promoted the efficiency of other pathways. In addition, microbial conversion became the major way to remove N whereas nitrogen retained in substrate at first was gradually released to be utilized by microbes and plants over time. The findings indicated that N2 emission representing microbial conversion was not only the major but also permanent nitrogen removal process, thus keeping a high efficiency of microbial conversion is important for stable and efficient nitrogen removal in constructed wetlands. PMID:26438366

  16. CONSTRUCTED WETLANDS IN THE USA

    EPA Science Inventory

    Constructed wetlands are becoming increasingly popular for wastewater treatment around the world. his interest has been due to their low construction and maintenance costs and their appeal as natural treatment systems. etlands have been used to treat a wide variety of wastewaters...

  17. Nitrogen removal performance in planted and unplanted horizontal subsurface flow constructed wetlands treating different influent COD/N ratios.

    PubMed

    Wang, Wei; Ding, Yi; Ullman, Jeffrey L; Ambrose, Richard F; Wang, Yuhui; Song, Xinshan; Zhao, Zhimiao

    2016-05-01

    Microcosm horizontal subsurface flow constructed wetlands (HSSFCWs) were used to examine the impacts of vegetation on nitrogen dynamics treating different influent COD/N ratios (1:1, 4:1, and 8:1). An increase in the COD/N ratio led to increased reductions in NO3 and total inorganic nitrogen (TIN) in planted and unplanted wetlands, but diminished removal of NH4. The HSSFCW planted with Canna indica L. exhibited a significant reduction in NH4 compared to the unplanted system, particularly in the active root zone where NH4 removal performance increased by up to 26 % at the COD/N ratio of 8:1. There was no significant difference in NO3 removal between the planted and unplanted wetlands. TIN removal efficiency in the planted wetland increased with COD/N ratios, which was likely influenced by plant uptake. NH4 reductions were greater in planted wetland at the 20- and 40-cm depths while NO3 reductions were uniformly greater with depth in all cases, but no statistical difference was impacted by depth on TIN removal. These findings show that planting a HSSFCW can provide some benefit in reducing nitrogen loads in effluents, but only when a sufficient carbon source is present. PMID:26822218

  18. Design and monitoring of horizontal subsurface-flow constructed wetlands for treating nursery leachates.

    PubMed

    Narváez, Lola; Cunill, Conrad; Cáceres, Rafaela; Marfà, Oriol

    2011-06-01

    Nursery leachates usually contain high concentrations of nitrates, phosphorus and potassium, so discharging them into the environment often causes pollution. Single-stage or two-stage horizontal subsurface flow constructed wetlands (HSSCW) filled with different substrates were designed to evaluate the effect and evolution over time of the removal of nitrogen and other nutrients contained in nursery leachates. The addition of sodium acetate to achieve a C:NO(3)(-)-N ratio of 3:1 was sufficient to reach complete denitrification in all HSSCW. The removal rate of nitrate was high throughout the operation period (over 98%). Nevertheless, the removal rate of ammonium decreased about halfway through the operation. Removal of the COD was enhanced by the use of two-stage HSSCW. In general, the substrates and the number of stages of the wetlands did not affect the removal of nitrogen, total phosphorus and potassium. PMID:21489781

  19. Clogging of vertical-flow constructed wetlands treating urban wastewater contaminated with a diesel spill.

    PubMed

    Al-Isawi, Rawaa; Scholz, Miklas; Wang, Yu; Sani, Abdulkadir

    2015-09-01

    Clogging often leads to a decrease of the treatment performance of wetlands. The aims of this study were to compare the impact of different design and operational variables on the treatment efficiency and clogging processes and to model suspended solid (SS) accumulation within the saturated wetland zone using the Wang-Scholz model. Different vertical-flow constructed wetlands were operated from June 2011 until April 2014. Four treatment periods were assessed: set-up, first year after set-up period, second year after set-up period and diesel spill (for selected filters only). The filter with the highest chemical oxygen demand (COD) loading but no diesel contamination performed the best in terms of COD and biochemical oxygen demand (BOD) removal for the fourth and final treatment period. Filters contaminated by diesel performed worse in terms of COD and BOD but considerably better regarding nitrate-nitrogen removal. Serious clogging phenomena impacting negatively on the treatment performance and the hydraulic conductivity were not observed. Modelling results were generally poor for the set-up period, adequate for the first 2 years after the set-up period and variable after the diesel spill. The Wang-Scholz model performed well for less complex operations. PMID:25339533

  20. Effects of the substrate depth on purification performance of a hybrid constructed wetland treating domestic sewage.

    PubMed

    Ren, Yong-Xiang; Zhang, Hai; Wang, Chao; Yang, Yong-Zhe; Qin, Zhen; Ma, Yun

    2011-01-01

    The depth of substrate in constructed wetlands (CWs) has a significant effect on the construction investment and the purification performance of CWs. In this study, a pilot scale CW system was operated in a domestic sewage treatment plant in Xi'an, China. The experimental systems included three-series CWs systems with substrate depths of 0.1m, 0.3 m and 0.6 m, respectively. Each series was composed of a hydroponic ditch, a horizontal subsurface flow CW and a vertical flow CW. The effluent from the primary clarifier in the sewage treatment plant was intermittently conducted to the wetlands at a flow rate of 0.3 m(3)/d. The hydraulic loading rate of each CWs system was regulated at 0.1 m(3)/m(2).d and the hydraulic retention time was 3 days. Canna indica L. was planted both in the hydroponic ditches and the CWs systems. Results showed that the highest removal efficiency of NH(+)(4)-N and TP was obtained in the hybrid CW with 0.1 m substrate depth. The average removal efficiency for NH(+)(4)-N and TP were 90.6 % and 80.0 %, respectively. The highest average removal efficiency of COD was obtained in hybrid CWs system with 0.6 m substrate depth. Therefore, a simultaneous removal of COD and nutrients can be achieved through the combination of different wetlands using different substrate depths. In addition, the substrate depth presents significant effects on the concentration of DO and root growth characteristics of canna in the system. As a result, the highest concentration of DO (>2 mg/L) and the highest amount of roots production were achieved in the 0.1 m substrate depth horizontal and vertical flow CWs. PMID:21644156

  1. Reactive transport simulation in a tropical horizontal subsurface flow constructed wetland treating domestic wastewater.

    PubMed

    Mburu, N; Rousseau, D P L; van Bruggen, J J A; Thumbi, G; Llorens, E; García, J; Lens, P N L

    2013-04-01

    A promising approach to the simulation of flow and conversions in the complex environment of horizontal subsurface flow constructed wetlands (HSSF-CWs) is the use of reactive transport models, in which the transport equation is solved together with microbial growth and mass-balance equations for substrate transformation and degradation. In this study, a tropical pilot scale HSSF-CW is simulated in the recently developed CWM1-RETRASO mechanistic model. The model predicts organic matter, nitrogen and sulfur effluent concentrations and their reaction rates within the HSSF-CW. Simulations demonstrated that these reactions took place simultaneously in the same (fermentation, methanogenesis and sulfate reduction) or at different (aerobic, anoxic and anaerobic) locations. Anaerobic reactions occurred over large areas of the simulated HSSF-CW and contributed (on average) to the majority (68%) of the COD removal, compared to aerobic (38%) and anoxic (1%) reactions. To understand the effort and compare computing resources needed for the application of a mechanistic model, the CWM1-RETRASO simulation is compared to a process-based, semi-mechanistic model, run with the same data. CWM1-RETRASO demonstrated the interaction of components within the wetland in a better way, i.e. concentrations of microbial functional groups, their competition for substrates and the formation of intermediary products within the wetland. The CWM1-RETRASO model is thus suitable for simulations aimed at a better understanding of the CW system transformation and degradation processes. However, the model does not support biofilm-based modeling, and it is expensive in computing and time resources required to perform the simulations. PMID:23434579

  2. Bioaugmentation in a pilot-scale constructed wetland to treat domestic wastewater in summer and autumn.

    PubMed

    Pei, Haiyan; Shao, Yuanyuan; Chanway, Christopher Peter; Hu, Wenrong; Meng, Panpan; Li, Zheng; Chen, Yang; Ma, Guangxiang

    2016-04-01

    In order to determine whether bioaugmentation is an effective technique in wetlands before the plants were harvested, the nitrogen (N) removal from a constructed wetland (CW) planted with Phragmites was evaluated after inoculating with Paenibacillus sp. XP1 in Northern China. The experiment was loaded with secondary effluent of rural domestic wastewater (RDW) using the batch-loaded method for over a 17-day period in summer and autumn. Chemical oxygen demand (CODcr), ammonia nitrogen (NH3-N), and total nitrogen (TN) decreased significantly in the CW with Phragmites inoculated with Paenibacillus sp. XP1. Four days after treatments were set up, the removal efficiencies were found to be 76.2 % for CODcr, 83 % for NH3-N, and 63.8 % for TN in summer and 69.5 % for CODcr, 76.9 % for NH3-N, and 55.6 % for TN in autumn, which were higher than the control group without inoculation during the entire 17-day experiment. The inoculated bacteria did not have a noticeable effect on total phosphorus (TP) removal in autumn. However, bioaugmentation still keep a low P concentration in the whole CW. First-order kinetic model represented well the CODcr, TN, and TP decay in CWs with bioaugmentation, resulting in very good coefficients of determination, which ranged from 0.97 to 0.99. It indicated that bioaugmentation would be an effective treatment for pollutant removal from RDW in the CWs. PMID:26755174

  3. Seasonal assessment of experimental vertical-flow constructed wetlands treating domestic wastewater.

    PubMed

    Sani, Abdulkadir; Scholz, Miklas; Bouillon, Ludivine

    2013-11-01

    The aim of this work was to compare the impact of different design (aggregate size) and operational (contact time, empty time and chemical oxygen demand (COD) loading) variables on the long-term and seasonal performance of vertical-flow constructed wetland filters operated in tidal flow mode. Compliance was achieved regarding ammonia-nitrogen, nitrate-nitrogen and suspended solids (SS), and non-compliance concerning biochemical oxygen demand (BOD) and ortho-phosphate-phosphorus. The filter with the highest COD loading performed the best regarding outflow COD concentration. Higher COD inflow concentrations had a significantly positive impact on the treatment performance for COD, ortho-phosphate-phosphorus and SS. The wetland with the largest aggregate size had the lowest mean nitrate-nitrogen outflow concentration. However, the results were similar regardless of aggregate size and resting time for most variables. Clear seasonal outflow concentration trends (low in summer) were recorded for COD, ammonia-nitrogen and nitrate-nitrogen. No filter clogging was observed. PMID:24016688

  4. Nitrous oxide exchanges with the atmosphere of a constructed wetland treating wastewater. Parameters and implications for emission factors

    NASA Astrophysics Data System (ADS)

    Johansson, A. E.; Kasimir Klemedtsson, Å.; Klemedtsson, L.; Svensson, B. H.

    2003-07-01

    Static chamber measurements of N2O fluxes were taken during the 1998 and 1999 growth seasons in a Swedish constructed wetland receiving wastewater. The dominating plant species in different parts of the wetland were Lemna minor L., Typha latifolia L., Spirogyra sp. and Glyceria maxima (Hartm.) and Phalaris arundinacea (L.), respectively. There were large temporal and spatial variations in N2O fluxes, which ranged from consumption at -350 to emissions at 1791 μg N2O m-2 h-1. The largest positive flux occurred in October 1999 and the lowest in the middle of July 1999. The average N2O flux for the two years was 130 μg N2O m-2 h-1 (SD = 220). No significant differences in N2O fluxes were found between the years, even though the two growing seasons differed considerably with respect to both air temperature and precipitation. 15% of the fluxes were negative, showing a consumption of N2O. Consumption occurred on a few occasions at most measurement sites and ranged from 1-350 μg N2O m-2 h-1. 13-43% of the variation in N2O fluxes was explained by multiple linear regression analysis including principal components. Emission factors were calculated according to IPCC methods from the N2O fluxes in the constructed wetland. The calculated emission factors were always lower (0.02-0.27%) compared to the default factor provided by the IPCC (0.75%). Thus, direct application of the IPCC default factor may lead to overestimation of N2O fluxes from constructed wastewater-treating wetlands.

  5. Phosphorus retention in a constructed wetland system used to treat dairy wastewater.

    PubMed

    O'Neill, A; Foy, R H; Phillips, D H

    2011-04-01

    The aim of this study was to develop an input/output mass balance to predict phosphorus retention in a five pond constructed wetland system (CWS) at Greenmount Farm, County Antrim, Northern Ireland. The mass balance was created using 14-months of flow data collected at inflow and outflow points on a weekly basis. Balance outputs were correlated with meteorological parameters, such as daily air temperature and hydrological flow, recorded daily onsite. The mass balance showed that phosphorus retention within the system exceeded phosphorus release, illustrating the success of this CWS to remove nutrients from agricultural effluent from a dairy farm. The last pond, pond 5, showed the greatest relative retention of 86%. Comparison of retention and mean air temperature highlighted a striking difference in trends between up-gradient and down-gradient ponds, with up-gradient ponds 1 and 2 displaying a positive quadratic relationship and down-gradient ponds 3 through 5 displaying a negative quadratic relationship. PMID:21367602

  6. Influence of substrate type on microbial community structure in vertical-flow constructed wetland treating polluted river water.

    PubMed

    Guan, Wei; Yin, Min; He, Tao; Xie, Shuguang

    2015-10-01

    Microorganisms attached on the surfaces of substrate materials in constructed wetland play crucial roles in the removal of organic and inorganic pollutants. However, the impact of substrate material on wetland microbial community structure remains unclear. Moreover, little is known about microbial community in constructed wetland purifying polluted surface water. In this study, Illumina high-throughput sequencing was applied to profile the spatial variation of microbial communities in three pilot-scale surface water constructed wetlands with different substrate materials (sand, zeolite, and gravel). Bacterial community diversity and structure showed remarkable spatial variation in both sand and zeolite wetland systems, but changed slightly in gravel wetland system. Bacterial community was found to be significantly influenced by wetland substrate type. A number of bacterial groups were detected in wetland systems, including Proteobacteria, Chloroflexi, Bacteroidetes, Acidobacteria, Cyanobacteria, Nitrospirae, Planctomycetes, Actinobacteria, Firmicutes, Chlorobi, Spirochaetae, Gemmatimonadetes, Deferribacteres, OP8, WS3, TA06, and OP3, while Proteobacteria (accounting for 29.1-62.3 %), mainly composed of Alpha-, Beta-, Gamma-, and Deltaproteobacteria, showed the dominance and might contribute to the effective reduction of organic pollutants. In addition, Nitrospira-like microorganisms were abundant in surface water constructed wetlands. PMID:26263887

  7. Nitrogen mass balance in a constructed wetland treating piggery wastewater effluent.

    PubMed

    Lee, Soyoung; Maniquiz-Redillas, Marla C; Choi, Jiyeon; Kim, Lee-Hyung

    2014-06-01

    The nitrogen changes and the nitrogen mass balance in a free water surface flow constructed wetland (CW) using the four-year monitoring data from 2008 to 2012 were estimated. The CW was composed of six cells in series that include the first settling basin (Cell 1), aeration pond (Cell 2), deep marsh (Cell 3), shallow marsh (Cell 4), deep marsh (Cell 5) and final settling basin (Cell 6). Analysis revealed that the NH(+)4-N concentration decreased because of ammonification which was then followed by nitrification. The NO(-)2-N and NO(-)2-N were also further reduced by means of microbial activities and plant uptake during photosynthesis. The average nitrogen concentration at the influent was 37,819 kg/year and approximately 45% of that amount exited the CW in the effluent. The denitrification amounted to 34% of the net nitrogen input, whereas the accretion of sediment was only 7%. The biomass uptake of plants was able to retain only 1% of total nitrogen load. In order to improve the nutrient removal by plant uptake, plant coverage in four cells (i.e., Cells 1, 3, 4 and 5) could be increased. PMID:25079834

  8. Performance of a pilot-scale constructed wetland system for treating simulated ash basin water.

    PubMed

    Dorman, Lane; Castle, James W; Rodgers, John H

    2009-05-01

    A pilot-scale constructed wetland treatment system (CWTS) was designed and built to decrease the concentration and toxicity of constituents of concern in ash basin water from coal-burning power plants. The CWTS was designed to promote the following treatment processes for metals and metalloids: precipitation as non-bioavailable sulfides, co-precipitation with iron oxyhydroxides, and adsorption onto iron oxides. Concentrations of Zn, Cr, Hg, As, and Se in simulated ash basin water were reduced by the CWTS to less than USEPA-recommended water quality criteria. The removal efficiency (defined as the percent concentration decrease from influent to effluent) was dependent on the influent concentration of the constituent, while the extent of removal (defined as the concentration of a constituent of concern in the CWTS effluent) was independent of the influent concentration. Results from toxicity experiments illustrated that the CWTS eliminated influent toxicity with regard to survival and reduced influent toxicity with regard to reproduction. Reduction in potential for scale formation and biofouling was achieved through treatment of the simulated ash basin water by the pilot-scale CWTS. PMID:19223060

  9. Recirculation or artificial aeration in vertical flow constructed wetlands: a comparative study for treating high load wastewater.

    PubMed

    Foladori, Paola; Ruaben, Jenny; Ortigara, Angela R C

    2013-12-01

    Vertical subsurface-flow constructed wetlands at pilot-scale have been applied to treat high hydraulic and organic loads by implementing the following configurations: (1) intermittent recirculation of the treated wastewater from the bottom to the top of the bed, (2) intermittent artificial aeration supplied at the bottom of the bed and (3) the combination of both. These configurations were operated with a saturated bottom layer for a 6h-treatment phase, followed by a free drainage phase prior to a new feeding. COD removal efficiency was 85-90% in all the configurations and removed loads were 54-70 gCOD m(-2)d(-1). The aerated and recirculated wetland resulted in a higher total nitrogen removal (8.6 gN m(-2)d(-1)) due to simultaneous nitrification/denitrification, even in the presence of intermittent aeration (6.8 Nm(3)m(-2)d(-1)). The extra investment needed for implementing aeration/recirculation would be compensated for by a reduction of the surface area per population equivalent, which decreased to 1.5m(2)/PE. PMID:24128403

  10. Water reduction by constructed wetlands treating waste landfill leachate in a tropical region.

    PubMed

    Ogata, Yuka; Ishigaki, Tomonori; Ebie, Yoshitaka; Sutthasil, Noppharit; Chiemchaisri, Chart; Yamada, Masato

    2015-10-01

    One of the key challenges in landfill leachate management is the prevention of environmental pollution by the overflow of untreated leachate. To evaluate the feasibility of constructed wetlands (CWs) for the treatment of waste landfill leachate in tropical regions, water reduction and pollutant removal by a CW subjected to different flow patterns (i.e., horizontal subsurface flow (HSSF) and free water surface (FWS)) were examined in both rainy and dry seasons in Thailand. A pilot-scale CW planted with cattail was installed at a landfill site in Thailand. With HSSF, the CW substantially removed pollutants from the landfill leachate without the need to harvest plants, whereas with FWS, it only slightly removed pollutants. Under both flow patterns, the CW significantly reduced the leachate volume to a greater extent than surface evaporation, which is regarded as an effect of the storage pond. Additionally, water reduction occurred regardless of season and precipitation, within the range 0-9 mm d(-1). In the case of low feeding frequency, water reduction by the CW with HSSF was lower than that with FWS. However, high feeding frequency improved water reduction by the CW with HSSF and resulted in a similar reduction to that observed with FWS, which exhibited maximum evapotranspiration. In terms of water reduction, with both HSSF in conjunction with high frequency feeding and FWS, the CW provided a high degree of evapotranspiration. However, pollutant removal efficiencies with HSSF were higher than for FWS. The present study suggested that CWs with HSSF and high frequency feeding could be useful for the prevention of uncontrollable dispersion of polluted leachate in the tropical climate zone. PMID:26209341

  11. A Constructed Wetland: From Monitoring To Action.

    ERIC Educational Resources Information Center

    Kowal, Dan

    1998-01-01

    Presents a water-quality monitoring project in a Denver school that has evolved into an experiment using a constructed wetland system to treat the acid-mine drainage from an abandoned gold mine. (PVD)

  12. Stable isotope fractionation related to microbial nitrogen turnover in constructed wetlands treating contaminated groundwater

    NASA Astrophysics Data System (ADS)

    Voloshchenko, O.; Knoeller, K.

    2013-12-01

    To improve the efficiency of ground- and wastewater treatment in constructed wetlands (CWs), better understanding of the occurring processes is necessary. This research explores N-isotope fractionations associated with the removal of ammonium from contaminated groundwater in pilot-scale CWs downstream of the chemical industrial area Leuna, Germany. The groundwater at the site is contaminated mainly by organic (BTEX, MTBE) and inorganic compounds (ammonium). We assume that the anaerobic ammonium oxidation (ANAMMOX) plays an important role in nitrogen removal in these CWs. However, to date, interactions between processes of aerobic and anaerobic ammonium oxidation in CWs still have not been well explored. Especially, the importance of the ANAMMOX process for the nitrogen removal is generally accepted, but its role in CWs is quite unknown. For this aim, three CWs were chosen: planted horizontal subsurface flow (HSSF); unplanted HSSF, and floating plant root mat (FPRM). Water samples were taken at the inflow and outflow as well as from the pore space at different distances (1, 2.5 and 4 m) from the inlet and at different depths (20, 30 and 40 cm in the HSSF-CWs, 30 cm in the FPRM). Samples were collected in a time interval of 1 to 6 weeks during 1 year with the exception of the winter season. Physicochemical parameters, nitrogen isotope signatures of ammonium, as well as nitrogen and oxygen isotope signatures of nitrate were analysed. Within the CWs, spatial concentration gradients of the nitrogen species (ammonium and nitrate) are observed. N-isotope variations of ammonium and nitrate are interpreted according to the prevailing processes of the N-transformations. Based on isotope mass-balance approach microbial processes such as nitrification, denitrification, and ANAMMOX are quantified. DNA from biofilms at roots and gravel was extracted using FastDNA Spin Kit For Soil (MP Biomedicals). PCR, quantitative PCR, cloning, and sequencing were applied with the purpose of

  13. Carbon and nitrogen dynamics and greenhouse gas emissions in constructed wetlands treating wastewater: a review

    NASA Astrophysics Data System (ADS)

    Jahangir, M. M. R.; Richards, K. G.; Healy, M. G.; Gill, L.; Müller, C.; Johnston, P.; Fenton, O.

    2016-01-01

    The removal efficiency of carbon (C) and nitrogen (N) in constructed wetlands (CWs) is very inconsistent and frequently does not reveal whether the removal processes are due to physical attenuation or whether the different species have been transformed to other reactive forms. Previous research on nutrient removal in CWs did not consider the dynamics of pollution swapping (the increase of one pollutant as a result of a measure introduced to reduce a different pollutant) driven by transformational processes within and around the system. This paper aims to address this knowledge gap by reviewing the biogeochemical dynamics and fate of C and N in CWs and their potential impact on the environment, and by presenting novel ways in which these knowledge gaps may be eliminated. Nutrient removal in CWs varies with the type of CW, vegetation, climate, season, geographical region, and management practices. Horizontal flow CWs tend to have good nitrate (NO3-) removal, as they provide good conditions for denitrification, but cannot remove ammonium (NH4+) due to limited ability to nitrify NH4+. Vertical flow CWs have good NH4+ removal, but their denitrification ability is low. Surface flow CWs decrease nitrous oxide (N2O) emissions but increase methane (CH4) emissions; subsurface flow CWs increase N2O and carbon dioxide (CO2) emissions, but decrease CH4 emissions. Mixed species of vegetation perform better than monocultures in increasing C and N removal and decreasing greenhouse gas (GHG) emissions, but empirical evidence is still scarce. Lower hydraulic loadings with higher hydraulic retention times enhance nutrient removal, but more empirical evidence is required to determine an optimum design. A conceptual model highlighting the current state of knowledge is presented and experimental work that should be undertaken to address knowledge gaps across CWs, vegetation and wastewater types, hydraulic loading rates and regimes, and retention times, is suggested. We recommend that

  14. Occurrence and removal of estrogens, progesterone and testosterone in three constructed wetlands treating municipal sewage in the Czech Republic.

    PubMed

    Vymazal, Jan; Březinová, Tereza; Koželuh, Milan

    2015-12-01

    Estrogenic hormones, progesterone and testosterone are endocrine-disrupting chemicals and their presence in aquatic environments represents a potentially adverse environmental and public health impact. There is a considerable amount of information about removal of estrogens, progesterone and testosterone in conventional wastewater treatment plants, namely activated sludge systems. However, the information about removal of these compounds in constructed wetlands is very limited. Three constructed wetlands with horizontal subsurface flow in the Czech Republic have been selected to evaluate removal of estrogens (estrone, estriol, 17β-estradiol, 17α-ethinylestradiol), testosterone and progesterone. Monitored constructed wetlands for 100, 150 and 200 PE have been in operation for more than 10 years and all systems exhibit very high treatment efficiency for organics and suspended solids. The results indicate that removal of all estrogens, progesterone and testosterone was high and only estrone was found in the outflow from one constructed wetland in concentrations above the limit of quantification 1 ng l(-1). The limits of quantification for other estrogens, i.e., 10 ng l(-1) for estriol, 1 ng l(-1) for 17β-estradiol and 2 ng l(-1) for 17α-ethinylestradiol were not exceeded in the outflow of all monitored constructed wetlands. Also, for progesterone and testosterone, all outflow concentrations were below the LOQ of 0.5 ng l(-1). The results indicated that constructed wetlands with horizontal subsurface flow are a promising technology for elimination of estrogens, progesterone and testosterone from municipal sewage but more information is needed to confirm this finding. PMID:26247691

  15. Mercury, monomethyl mercury, and dissolved organic carbon concentrations in surface water entering and exiting constructed wetlands treated with metal-based coagulants, Twitchell Island, California

    USGS Publications Warehouse

    Stumpner, Elizabeth B.; Kraus, Tamara E.C.; Fleck, Jacob A.; Hansen, Angela M.; Bachand, Sandra M.; Horwath, William R.; DeWild, John F.; Krabbenhoft, David P.; Bachand, Philip A.M.

    2015-01-01

    Following coagulation, but prior to passage through the wetland cells, coagulation treatments transferred dissolved mercury and carbon to the particulate fraction relative to untreated source water: at the wetland cell inlets, the coagulation treatments decreased concentrations of filtered total mercury by 59–76 percent, filtered monomethyl mercury by 40–70 percent, and dissolved organic carbon by 65–86 percent. Passage through the wetland cells decreased the particulate fraction of mercury in wetland cells that received coagulant-treated water. Changes in total mercury, monomethyl mercury, and dissolved organic carbon concentrations resulting from wetland passage varied both by treatment and season. Despite increased monomethyl mercury in the filtered fraction during wetland passage between March and August, the coagulation-wetland systems generally decreased total mercury (filtered plus particulate) and monomethyl mercury (filtered plus particulate) concentrations relative to source water. Coagulation—either alone or in association with constructed wetlands—could be an effective way to decrease concentrations of mercury and dissolved organic carbon in surface water as well as the bioavailability of mercury in the Sacramento–San Joaquin Delta.

  16. Can constructed wetlands treat wastewater for reuse in agriculture? Review of guidelines and examples in South Europe.

    PubMed

    Lavrnić, Stevo; Mancini, Maurizio L

    2016-01-01

    South Europe is one of the areas negatively affected by climate change. Issues with water shortage are already visible, and are likely to increase. Since agriculture is the biggest freshwater consumer, it is important to find new water sources that could mitigate the climate change impact. In order to overcome problems and protect the environment, a better approach towards wastewater management is needed. That includes an increase in the volume of wastewater that is treated and a paradigm shift towards a more sustainable system where wastewater is actually considered as a resource. This study evaluates the potential of constructed wetlands (CWs) to treat domestic wastewater and produce effluent that will be suitable for reuse in agriculture. In South Europe, four countries (Greece, Italy, Portugal and Spain) have national standards that regulate wastewater reuse in agriculture. Wastewater treatment plants (WWTPs) that are based on CWs in these four countries were analysed and their effluents compared with the quality needed for reuse. In general, it was found that CWs have trouble reaching the strictest standards, especially regarding microbiological parameters. However, their effluents are found to be suitable for reuse in areas that do not require water of the highest quality. PMID:27232397

  17. Microbial populations identified by fluorescence in situ hybridization in a constructed wetland treating acid coal mine drainage

    SciTech Connect

    Nicomrat, D.; Dick, W.A.; Tuovinen, O.H.

    2006-07-15

    Microorganisms are an integral part of the biogeochemical processes in wetlands, yet microbial communities in sediments within constructed wetlands receiving acid mine drainage (AMD) are only poorly understood. The purpose of this study was to characterize the microbial diversity and abundance in a wetland receiving AMD using fluorescence in situ hybridization (FISH) analysis. Seasonal samples of oxic surface sediments, comprised of Fe(III) precipitates, were collected from two treatment cells of the constructed wetland system. The pH of the bulk samples ranged between pH 2.1 and 3.9. Viable counts of acidophilic Fe and S oxidizers and heterotrophs were determined with a most probable number (MPN) method. The MPN counts were only a fraction of the corresponding FISH counts. The sediment samples contained microorganisms in the Bacteria (including the subgroups of acidophilic Fe- and S-oxidizing bacteria and Acidiphilium spp.) and Eukarya domains. Archaea were present in the sediment surface samples at < 0.01% of the total microbial community. The most numerous bacterial species in this wetland system was Acidithiobacillus ferrooxidans, comprising up to 37% of the bacterial population. Acidithiobacillus thiooxidans was also abundant.

  18. Potential pathogens, antimicrobial patterns, and genotypic diversity of Escherichia coli isolates in constructed wetlands treating swine wastewater

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The treatment and removal of contaminants such as nutrients, salts, microbes, and pharmaceutically active compounds from swine waste by constructed wetlands involves complex biological processes. However, little is known about the population structure and antibiotic resistant patterns of E. coli em...

  19. Mature experimental constructed wetlands treating urban water receiving high metal loads.

    PubMed

    Scholz, Miklas; Höhn, Patrick; Minall, Rowland

    2002-01-01

    The aim was to assess over 2 years the treatment efficiencies of vertical-flow wetland filters containing macrophytes and granular media of different adsorption capacities. Different concentrations of lead and copper sulfate (constant for 1 year each) were added to urban beck inflow water in order to simulate pretreated (pH adjustment assumed) mine wastewater. After 1 year of operation, the inflow concentrations for lead and copper were increased from 1.30 to 2.98 and from 0.98 to 1.93 mg/L, respectively. However, the metal mass load rates (mg/m(2)/d) were increased by a factor of approximately 4.9 for lead and 4.3 for copper. No breakthrough of metals was recorded. Lead and copper accumulated in the biomass of the litter zone and rhizomes of the macrophytes. Furthermore, microbiological activity decreased during the second year of operation. Bioindicators such as ciliated protozoa and zooplankton decreased sharply in numbers but diatoms increased. In conclusion, the use of macrophytes and adsorption media did not significantly enhance the filtration of lead and copper. Particulate lead is removed by filtration processes including straining. Furthermore, some expensive and time-consuming water quality variables can be predicted with less expensive ones such as temperature in order to reduce sampling costs. PMID:12467460

  20. Preliminary evaluation of a constructed wetland for treating extremely alkaline (pH 12) steel slag drainage.

    PubMed

    Mayes, W M; Aumônier, J; Jarvis, A P

    2009-01-01

    High pH (> 12) leachates are an environmental problem associated with drainage from lime (CaO)-rich industrial residues such as steel slags, lime spoil and coal combustion residues. Recent research has highlighted the potential for natural ('volunteer') wetlands to buffer extremely alkaline influent waters. This appears ascribable to high CO(2) partial pressures in the wetland waters from microbial respiration, which accelerates precipitation of calcium carbonate (CaCO(3)), and the high specific surface area for mineral precipitation offered by macrophytes. The research presented here builds on this and provides preliminary evaluation of a constructed wetland built in March 2008 to buffer drainage from steel slag heaps in north-east England. The drainage water from the slag mounds is characterised by a mean pH of 11.9, high concentrations of Ca (up to 700 mg/L), total alkalinity (up to 800 mg/L as CaCO(3)) and are slightly brackish (Na = 300 mg/L; Cl = 400 mg/L) reflecting native groundwaters at this coastal setting. Documented calcite precipitation rates (mean of 5 g CaCO(3)/m(2)/day) from nearby volunteer sites receiving steel slag drainage were used to scale the constructed wetland planted with Phragmites australis; a species found to spontaneously grow in the vicinity of the discharge. Improved performance of the wetland during summer months may at least in part be due to biological activity which enhances rates of calcite precipitation and thus lowering of pH. Secondary Ca-rich precipitates also serve as a sink for some trace elements present at low concentrations in the slag leachate such as Ni and V. The implications for scaling and applying constructed wetlands for highly alkaline drainage are discussed. PMID:19494466

  1. Effect of artificial aeration on the performance of vertical-flow constructed wetland treating heavily polluted river water.

    PubMed

    Dong, Huiyu; Qiang, Zhimin; Li, Tinggang; Jin, Hui; Chen, Weidong

    2012-01-01

    Three lab-scale vertical-flow constructed wetlands (VFCWs), including the non-aerated (NA), intermittently aerated (IA) and continuously aerated (CA) ones, were operated at different hydraulic loading rates (HLRs) to evaluate the effect of artificial aeration on the treatment efficiency of heavily polluted river water. Results indicated that artificial aeration increased the dissolved oxygen (DO) concentrations in IA and CA, which significantly favored the removal of organic matter and NH(4+)-N. The DO grads caused by intermittent aeration formed aerobic and anoxic regions in IA and thus promoted the removal of total nitrogen (TN). Although the removal efficiencies of COD(Cr), NH(4+)-N and TN in the three VFCWs all decreased with an increase in HLR, artificial aeration enhanced the reactor resistance to the fluctuation of pollutant loadings. The maximal removal efficiencies of COD(Cr), NH(4+)-N and total phosphorus (TP) (i.e., 81%, 87% and 37%, respectively) were observed in CA at 19 cm/day HLR, while the maximal TN removal (i.e., 57%) was achieved in IA. Although the improvement of artificial aeration on TP removal was limited, this study has demonstrated the feasibility of applying artificial aeration to VFCWs treating polluted river water, particularly at a high HLR. PMID:22894092

  2. Effluent quality and reuse potential of domestic wastewater treated in a pilot-scale hybrid constructed wetland system.

    PubMed

    Ayaz, Selma Ç; Aktaş, Özgür; Akça, Lütfi; Fındık, Nur

    2015-06-01

    The study investigates treatment and reuse potential of domestic wastewater of a small community of about 30 people sequentially by anaerobic pretreatment followed by horizontal (HSSF-CW) and vertical (VSSF-CW) sub-surface flow constructed wetlands operated in series. The organic and suspended solids load to the hybrid wetland system was decreased by anaerobic pretreatment. HSSF-CW mainly removed organic matter and supported denitrification whereas VSSF-CW mainly obtained nitrification and phosphorus removal. Recirculation of the effluent increased particularly total nitrogen removal in the wetland system. The study involves evaluation of the whole system in terms of effluent quality. It was achieved on average >95% organic matter and >90% nitrogen removal in the hybrid constructed wetland system with anaerobic pretreatment at a specific wetland surface area of only about 1 m(2) per person. Average mass removal rates were 21.17 gCOD/m(2)day, 5.58 gBOD5/m(2)day, 2.78 gTKN/m(2)day, 1.35 gTN/m(2)day, 0.44 gTP/m(2)day and 5.21 gTSS/m(2)day throughout the total duration of the operation. Consequently, the effluent met the regulations for discharge limits for organic matter and suspended solids. COD and TN concentrations decreased to below 20 mg/L in the effluent. It was also shown that effluent of the system could be reused for irrigation if it is disinfected properly. PMID:25841192

  3. Microbial populations identified by fluorescence in situ hybridization in a constructed wetland treating acid coal mine drainage.

    PubMed

    Nicomrat, Duongruitai; Dick, Warren A; Tuovinen, Olli H

    2006-01-01

    Microorganisms are an integral part of the biogeochemical processes in wetlands, yet microbial communities in sediments within constructed wetlands receiving acid mine drainage (AMD) are only poorly understood. The purpose of this study was to characterize the microbial diversity and abundance in a wetland receiving AMD using fluorescence in situ hybridization (FISH) analysis. Seasonal samples of oxic surface sediments, comprised of Fe(III) precipitates, were collected from two treatment cells of the constructed wetland system. The pH of the bulk samples ranged between pH 2.1 and 3.9. Viable counts of acidophilic Fe and S oxidizers and heterotrophs were determined with a most probable number (MPN) method. The MPN counts were only a fraction of the corresponding FISH counts. The sediment samples contained microorganisms in the Bacteria (including the subgroups of acidophilic Fe- and S-oxidizing bacteria and Acidiphilium spp.) and Eukarya domains. Archaea were present in the sediment surface samples at < 0.01% of the total microbial community. The most numerous bacterial species in this wetland system was Acidithiobacillus ferrooxidans, comprising up to 37% of the bacterial population. Acidithiobacillus thiooxidans was also abundant. Heterotrophs in the Acidiphilium genus totaled 20% of the bacterial population. Leptospirillum ferrooxidans was below the level of detection in the bacterial community. The results from the FISH technique from this field study are consistent with results from other experiments involving enumeration by most probable number, dot-blot hybridization, and denaturing gradient gel electrophoresis analyses and with the geochemistry of the site. PMID:16825452

  4. ENGINEERING BULLETIN: CONSTRUCTED WETLANDS TREATMENT

    EPA Science Inventory

    Constructed wetlands have been demonstrated effective in removing organic, metal, and nutrient elements including nitrogen and phosphorus from municipal wastewaters, mine drainage, industrial effluents, and agricultural runoff. The technology is waste stream-specific, requiring...

  5. CONSTRUCTED WETLAND DESIGN - THE FIRST GENERATION

    EPA Science Inventory

    A recent study for the U.S. EPA documented more than 150 constructed wetland systems in the United States, treating municipaland industrial wastewaters. During 1990 and 1991, visits were made to more than twenty of these sites for observations and dsicussions with the designers ...

  6. Nitrogen behavior in a free water surface constructed wetland used as posttreatment for anaerobically treated swine wastewater effluent.

    PubMed

    De Los Reyes, Catalina Plaza; Pozo, Guillermo; Vidal, Gladys

    2014-01-01

    The aim of this study was to evaluate the behavior of total nitrogen (TN) in its different forms in a Free Water Surface constructed wetland (FWS) used as posttreatment for anaerobically treated swine wastewater. The experiment was conducted in a glasshouse from July 2010 to November 2011. The system consists in a FWS mesocosm inoculated with Typha angustifolia L. using as pretreatment an UASB reactor (upflow anaerobic sludge blanket). The operation are based on the progressive increase of the nitrogen loading rate (NLR) (2.0-30.2 kg TN/ha·d) distributed in 12 loads, with an operational time of 20 d. The results indicate that the behavior of the TN in the FWS, mainly depends on the NLR applied, the amount of dissolved oxygen available and the seasonality. The FWS operated with an NLR between 2.0-30.2 kg TN/ha·d, presents average removal efficiency for TN of 54.8%, with a maximum removal (71.7%) between spring-summer seasons (17.3-21.7°C). The availability of dissolved oxygen hinders the nitrification/denitrification processes in the FWS representing a 0.3-5.6% of TN removed.The main route of TN removal is associated with ammonia volatilization processes (2.6-40.7%), mainly to NLR over 25.8 kg TN/ha· d and with temperatures higher than 18°C. In a smaller proportion, the incorporation of nitrogen via plant uptake was 10.8% whereas the TN accumulated in the sediments was a 5.0% of the TN applied during the entire operation (550 d). An appropriate control of the NLR applied, can reduce the ammonia volatilization processes and the phytotoxicity effects expressed as growth inhibition in 80.0% from 496.0 mg NH(+) 4-N/L (25.8 kg TN/ha·d). PMID:24171422

  7. Optimization of high-rate TN removal in a novel constructed wetland integrated with microelectrolysis system treating high-strength digestate supernatant.

    PubMed

    Guo, Luchen; He, Keli; Wu, Shubiao; Sun, Hao; Wang, Yanfei; Huang, Xu; Dong, Renjie

    2016-08-01

    The potential of high-rate TN removal in three aerated horizontal subsurface-flow constructed wetlands to treat high-strength anaerobic digestate supernatant was evaluated. Different strategies of intermittent aeration and effluent recirculation were applied to compare their effect on nitrogen depuration performance. Additional glucose supply and iron-activated carbon based post-treatment systems were established and examined, respectively, to further remove nitrate that accumulated in the effluents from aerated wetlands. The results showed that intermittent aeration (1 h on:1 h off) significantly improved nitrification with ammonium removal efficiency of 90% (18.1 g/(m(2)·d)), but limited TN removal efficiency (53%). Even though effluent recirculation (a ratio of 1:1) increased TN removal from 53% to 71%, the effluent nitrate concentration was still high. Additional glucose was used as a post-treatment option and further increased the TN removal to 82%; however, this implementation caused additional organic pollution. Furthermore, the iron-activated carbon system stimulated with a microelectrolysis process achieved greater than 85% effluent nitrate removal and resulted in 86% TN removal. Considering the high TN removal rate, aerated constructed wetlands integrated with a microelectrolysis-driven system show great potential for treating high-strength digestate supernatant. PMID:27136616

  8. Evaluation of the treatment performance and microbial communities of a combined constructed wetland used to treat industrial park wastewater.

    PubMed

    Xu, Ming; Liu, Weijing; Li, Chao; Xiao, Chun; Ding, Lili; Xu, Ke; Geng, Jinju; Ren, Hongqiang

    2016-06-01

    Constructed wetlands are ecosystems that use plants and microorganisms to remediate pollution in soil and water. In this study, two parallel pilot-scale vertical flow wetland and horizontal flow wetland (VF-HF) systems were implemented to investigate the treatment performance and microorganism community structure in the secondary effluent of an industrial park wastewater treatment plant (WWTP) with a loading rate of 100 mm/day near the Yangtze River in Suzhou City, East China. Removal efficiencies of 82.3, 69.8, 77.8, and 32.3 were achieved by the VF-HF systems for ammonium nitrogen (NH4 (+)-N), total nitrogen (TN), total phosphorus (TP), and chemical oxygen demand (COD), respectively. The VF system specialized in COD and NH4 (+)-N removal (73.6 and 79.2 %), whereas the HF system mainly contributed to TN removal (63.5 %). The effluents in all seasons are capable of achieving the "surface water environmental quality standard" (GB3838-2002) grade IV. In the VF system, the 16S gene and nirK gene were significantly correlated with depth, with the 16S gene showing significant correlations with the dissolved oxygen (DO) level (r = 0.954, p < 0.05), which was determined by real-time PCR and high-throughput sequencing. Many types of bacteria capable of biodegradation, including nitrifiers, denitrifiers, and polyaromatic hydrocarbon (PAH) degraders (improvement of the BOD5/COD ratio), were observed, and they contributed to approximately 90 % of the nitrogen removal in the VF-HF system. PMID:26903125

  9. Potential pathogens, antimicrobial patterns and genotypic diversity of Escherichia coli isolates in constructed wetlands treating swine wastewater.

    PubMed

    Ibekwe, A M; Murinda, Shelton E; DebRoy, Chitrita; Reddy, Gudigopura B

    2016-02-01

    Escherichia coli populations originating from swine houses through constructed wetlands were analyzed for potential pathogens, antimicrobial susceptibility patterns, and genotypic diversity. Escherichia coli isolates (n = 493) were screened for the presence of the following virulence genes: stx1, stx2 and eae (Shiga toxin-producing E. coli [STEC]), heat-labile enterotoxin (LT) genes and heat stable toxin STa and STb (enterotoxigenic E. coli (ETEC), cytotoxin necrotizing factors 1 and 2 (cnf1 and cnf2 [necrotoxigenic E. coli- NTEC]), as well as O and H antigens, and the presence of the antibiotic resistance genes blaTEM, blaSHV, blaCMY-2, tet A, tet B, tet C, mph(A), aadA, StrA/B, sul1, sul2 and sul3. The commensal strains were further screened for 16 antimicrobials and characterized by BOX AIR-1 PCR for unique genotypes. The highest antibiotic resistance prevalence was for tetracycline, followed by erythromycin, ampicillin, streptomycin, sulfisoxazole and kanamycin. Our data showed that most of the isolates had high distribution of single or multidrug-resistant (MDR) genotypes. Therefore, the occurrence of MDR E. coli in the wetland is a matter of great concern due to possible transfer of resistance genes from nonpathogenic to pathogenic strains or vice versa in the environment. PMID:26839381

  10. Performance predictions of mature experimental constructed wetlands which treat urban water receiving high loads of lead and copper.

    PubMed

    Scholz, Miklas

    2003-03-01

    The treatment efficiencies of vertical-flow wetland filters containing macrophytes and granular media of different adsorption capacities were investigated. Different concentrations of lead and copper sulphate were added to urban stream inflow water in order to simulate pre-treated (pH adjustment assumed) mine wastewater. After 1 year of operation, the metal mass load rate was increased by a factor of approximately 4.6. No breakthrough of metals was recorded. The use of macrophytes and adsorption media did not enhance heavy metal reduction significantly after 13 months of operation. A correlation analysis indicated strong positive correlations between conductivity on one side and other variables including temperature, total solids, dissolved oxygen and the redox potential on the other side. Some expensive or time-consuming variables (e.g., biochemical oxygen demand) can be predicted with less expensive ones (e.g., dissolved oxygen and temperature). The associated absolute mean errors were <10%. PMID:12598191

  11. Removal of metals in constructed wetlands

    SciTech Connect

    Crites, R.W.; Watson, R.C.; Williams, C.R.

    1996-12-31

    Trace metals are difficult to remove from municipal wastewater by conventional wastewater treatment methods. Constructed wetlands have the potential to trap and remove metals from the water column. Long term removal is expected to occur by accumulation and burial in the plant detritus in a manner similar to the removal of phosphorus. Few data are available in the literature on removal of metals by constructed wetlands. A free water surface constructed wetland at Sacramento Regional Wastewater Treatment Plant treating secondary municipal effluent has been operating since the spring of 1994. Removal data for 13 metals are presented for the period from August 1994 to May 1995. About 3,785 m{sup 3}/d (1 mgd) of pure oxygen activated sludge effluent, disinfected using UV light, is further treated through a 8 ha (20 acre) constructed wetlands Ten separate, parallel treatment cells are available to demonstrate the effects of detention time, vegetation management, and application frequency on the removal of metals, organics and ammonia. Detention time can be varied from 3 to 13 days by varying the flow and the water depth. The vegetation, primarily bulrush with some cattails, will be managed by different techniques to minimize mosquito production. Application frequency varies from continuous flow to batch flow (1 to 2 days of loading with 1 day of discharge).

  12. Are constructed treatment wetlands sustainable sanitation solutions?

    PubMed

    Langergraber, Guenter

    2013-01-01

    The main objective of sanitation systems is to protect and promote human health by providing a clean environment and breaking the cycle of disease. In order to be sustainable, a sanitation system has to be not only economically viable, socially acceptable and technically and institutionally appropriate, but it should also protect the environment and the natural resources. 'Resources-oriented sanitation' describes the approach in which human excreta and water from households are recognized as resource made available for reuse. Nowadays, 'resources-oriented sanitation' is understood in the same way as 'ecological sanitation'. For resources-oriented sanitation systems to be truly sustainable they have to comply with the definition of sustainable sanitation as given by the Sustainable Sanitation Alliance (SuSanA, www.susana.org). Constructed treatment wetlands meet the basic criteria of sustainable sanitation systems by preventing diseases, protecting the environment, and being an affordable, acceptable, and simple technology. Additionally, constructed treatment wetlands produce treated wastewater of high quality, which is fostering reuse, which in turn makes them applicable in resources-oriented sanitation systems. The paper discusses the features that make constructed treatment wetlands a suitable solution in sustainable resources-oriented sanitation systems, the importance of system thinking for sustainability, as well as key factors for sustainable implementation of constructed wetland systems. PMID:23676379

  13. Role of vegetation (Typha latifolia) on nutrient removal in a horizontal subsurface-flow constructed wetland treating UASB reactor-trickling filter effluent.

    PubMed

    da Costa, Jocilene Ferreira; Martins, Weber Luiz Pinto; Seidl, Martin; von Sperling, Marcos

    2015-01-01

    The main objective of the work is to characterize the role of plants in a constructed wetland in the removal of nitrogen (N) and phosphorus (P). The experiments were carried out in a full-scale system in the city of Belo Horizonte, Brazil, with two parallel horizontal subsurface-flow constructed wetland units (one planted with Typha latifolia and one unplanted) treating the effluent from a system composed of an upflow anaerobic sludge blanket reactor and a trickling filter (TF). Each wetland unit received a mean flow of approximately 8.5 m³ d⁻¹ (population equivalent around 60 inhabitants each), with a surface hydraulic loading rate 0.12 m³m⁻²d⁻¹. The experiments were conducted from September 2011 to July 2013. Mean effluent concentrations from the wetlands were: (a) planted unit total nitrogen (TN) 22 mg L⁻¹, ammonia-N 19 mg L⁻¹, nitrite-N 0.10 mg L⁻¹, nitrate-N 0.25 mg L⁻¹, P-total 1.31 mg L⁻¹; and (b) unplanted unit TN 24 mg L⁻¹, ammonia-N 20 mg L⁻¹, nitrite-N 0.54 mg mL⁻¹, nitrate-N 0.15 mg L⁻¹, P-total 1.31 mg L⁻¹. The aerial part of the plant contained mean values of 24.1 gN (kg dry matter)⁻¹ and 4.4 gP (kg dry matter)⁻¹, and the plant root zone was composed of 16.5 gN (kg dry matter)⁻¹ and 4.1 gP (kg dry matter)⁻¹. The mean extraction of N by the plant biomass was 726 kgN ha⁻¹y⁻¹, corresponding to 17% of the N load removed. For P, the extraction by the plant biomass was 105 kgP ha⁻¹y⁻¹, corresponding to 9% of the P load removed. These results reinforce the reports that N and P removal due to plant uptake is a minor mechanism in horizontal subsurface-flow constructed wetlands operating under similar loading rates, typical for polishing of sanitary effluent. PMID:25860702

  14. The effect of aeration and recirculation on a sand-based hybrid constructed wetland treating low-strength domestic wastewater.

    PubMed

    Zapater-Pereyra, M; Kyomukama, E; Namakula, V; van Bruggen, J J A; Lens, P N L

    2016-08-01

    The Duplex-constructed wetland (CW) is a hybrid system composed of a vertical flow (VF) CW on top of a horizontal flow filter (HFF). Each compartment is designed to play a different role: aerobic treatment in the VF CW due to intermittent feeding and anoxic treatment in the HFF due to saturated conditions. Three Duplex-CWs were used in this study: Control, Aerated and Recirculating. The role of each compartment was tested for pollutant removal and micro-invertebrate abundance. In all systems, the VF CW removed mainly organic matter, solids and NH4(+)-N. Pathogens were removed in both compartments. Likewise, total nitrogen removal occurred in both compartments, only the Recirculating HFF was not able to denitrify the nitrogen due to the slightly more oxic conditions as compared to the other systems. All systems met discharge guidelines for organic matter, but only the Control and Aerated systems met those for total nitrogen. At the applied loading rates, the pollutant removal was not significantly enhanced by the use of aeration and recirculation. Therefore, operation as in the Control system, without aeration or recirculation, is recommended for the tested Duplex-CWs. If artificial aeration will be used in CWs, the support material should be carefully selected to allow a proper air distribution. PMID:26732367

  15. Validity of manganese as a surrogate of heavy metals removal in constructed wetlands treating acidic mine water

    SciTech Connect

    Royer, E.; Unz, R.F.; Hellier, W.W.

    1998-12-31

    The evaluation of manganese as a surrogate for heavy metal behavior in two wetland treatment systems receiving acidic coal mine drainage in central Pennsylvania was investigated. The use of manganese as an indicator is based on physical/chemical treatment processes quite different from wetland treatment. The treatment systems represented one anoxic, subsurface flow system and one oxic surface flow system. Water quality parameters measured included pH, alkalinity, acidity, and a suite of metals. Correlation and linear regression analysis were used to evaluate the ability of a candidate predictor variable (indicator) to predict heavy metal concentrations and removal. The use of manganese as a predictor of effluent quality proved to be poor in both wetland treatment systems, as evidenced by low linear R{sup 2} values and negative correlations. Zinc emerged as the best predictor of the detectable heavy metals at the anoxic wetland. Zinc exhibited positive strong linear correlations with copper, cobalt, and nickel (R{sup 2} values of 0.843, 0.881, and 0.970, respectively). Effluent pH was a slightly better predictor of effluent copper levels in the anoxic wetland. Iron and cobalt effluent concentrations showed the only strong relationship (R{sup 2} value = 0.778) in the oxic system. The lack of good correlations with manganese strongly challenges its appropriateness as a surrogate for heavy metals in these systems.

  16. Long-term nitrogen compound removal trends of a hybrid subsurface constructed wetland treating milking parlor wastewater throughout its 7 years of operation.

    PubMed

    Harada, J; Inoue, T; Kato, K; Izumoto, H; Zhang, X; Sakuragi, H; Wu, D; Ietsugu, H; Sugawara, Y

    2016-01-01

    This study evaluated the nitrogen compound removal efficiency of a hybrid subsurface constructed wetland, which began treating milking parlor wastewater in Hokkaido, northern Japan, in 2006. The wetland's overall removal rates of total nitrogen (TN) and ammonium (NH4(+)-N) improved after the second year of operation, and its rate of organic nitrogen (Org-N) removal was stable at 90% efficiency. Only nitrate (NO3(-)-N) levels were increased following the treatment. Despite increased NO3(-)-N (maximum of 3 mg-N/L) levels, TN removal rates were only slightly affected. Removal rates of TN and Org-N were highest in the first vertical bed. NH4(+)-N removal rates were highest in the second vertical bed, presumably due to water recirculation and pH adjustment. Concentrations of NO3(-)-N appeared when total carbon (TC) levels were low, which suggests that low TC prevented complete denitrification in the second vertical bed and the final horizontal bed. In practice, the beds removed more nitrogen than the amount theoretically removed by denitrification, as calculated by the amount of carbon removed from the system. This carbon-nitrogen imbalance may be due to other nitrogen transformation mechanisms, which require less carbon. PMID:26942522

  17. Performance comparison of experimental constructed wetlands with different filter media and macrophytes treating industrial wastewater contaminated with lead and copper.

    PubMed

    Scholz, Miklas; Xu, Jing

    2002-06-01

    The aim of this study was to investigate the treatment efficiency of passive vertical-flow wetland filters containing different macrophytes (Phragmites and/or Typha) and granular media with different adsorption capacities. Gravel, sand, granular activated carbon, charcoal and Filtralite (light expanded clay) were used as filter media. Different concentrations of lead and copper sulfate were added to polluted urban stream inflow water to simulate pretreated mine wastewater. The relationships between growth media, microbial and plant communities as well as the reduction of predominantly lead, copper and five-day biochemical oxygen demand (BOD5) were investigated. An analysis of variance showed that concentration reductions (mg l(-1)) of lead, copper and BOD5 were significantly similar for the six experimental wetlands. Microbial diversity was low due to metal pollution and similar for all filters. There appears to be no additional benefit in using adsorption media and macrophytes to enhance biomass performance during the first 10 months of operation. PMID:12056494

  18. Review of Constructed Subsurface Flow vs. Surface Flow Wetlands

    SciTech Connect

    HALVERSON, NANCY

    2004-09-01

    The purpose of this document is to use existing documentation to review the effectiveness of subsurface flow and surface flow constructed wetlands in treating wastewater and to demonstrate the viability of treating effluent from Savannah River Site outfalls H-02 and H-04 with a subsurface flow constructed wetland to lower copper, lead and zinc concentrations to within National Pollutant Discharge Elimination System (NPDES) Permit limits. Constructed treatment wetlands are engineered systems that have been designed and constructed to use the natural functions of wetlands for wastewater treatment. Constructed wetlands have significantly lower total lifetime costs and often lower capital costs than conventional treatment systems. The two main types of constructed wetlands are surface flow and subsurface flow. In surface flow constructed wetlands, water flows above ground. Subsurface flow constructed wetlands are designed to keep the water level below the top of the rock or gravel media, thus minimizing human and ecological exposure. Subsurface flow wetlands demonstrate higher rates of contaminant removal per unit of land than surface flow (free water surface) wetlands, therefore subsurface flow wetlands can be smaller while achieving the same level of contaminant removal. Wetlands remove metals using a variety of processes including filtration of solids, sorption onto organic matter, oxidation and hydrolysis, formation of carbonates, formation of insoluble sulfides, binding to iron and manganese oxides, reduction to immobile forms by bacterial activity, and uptake by plants and bacteria. Metal removal rates in both subsurface flow and surface flow wetlands can be high, but can vary greatly depending upon the influent concentrations and the mass loading rate. Removal rates of greater than 90 per cent for copper, lead and zinc have been demonstrated in operating surface flow and subsurface flow wetlands. The constituents that exceed NPDES limits at outfalls H-02 a nd H

  19. Effect of treatment in a constructed wetland on toxicity of textile wastewater

    USGS Publications Warehouse

    Baughman, G.L.; Perkins, W.S.; Lasier, P.J.; Winger, P.V.

    2003-01-01

    Constructed wetlands for treating wastewater have proliferated in recent years and their characteristics have been studied extensively. In most cases, constructed wetlands have been used primarily for removal of nutrients and heavy metals. Extensive literature is available concerning construction and use of wetlands for treatment of wastewater. Even so, quantitative descriptions of wetland function and processes are highly empirical and difficult to extrapolate. The processes involved in removal of pollutants by wetlands are poorly understood, especially for waste streams as complex as textile effluents. The few studies conducted on treatment of textile wastewater in constructed wetlands were cited in earlier publications. Results of a two-year study of a full-scale wetland treating textile effluent are presented here. The paper describes the effects of the wetland on aquatic toxicity of the wastewater and draws conclusions about the utility and limitations of constructed wetlands for treatment of textile effluents.

  20. Use of Constructed Wetlands for Polishing Recharge Wastewater

    NASA Astrophysics Data System (ADS)

    Cardwell, W.

    2009-12-01

    The use of constructed wetlands for waste water treatment is becoming increasingly popular as more focus is being shifted to natural means of waste treatment. These wetlands employ processes that occur naturally and effectively remove pollutants and can greatly minimize costs when compared to full scale treatment plants. Currently, wetland design is based on basic “rules-of-thumb,” meaning engineers have a general understanding but not necessarily a thorough knowledge of the intricate physical, biological, and chemical processes involved in these systems. Furthermore, there is very little consideration given to use the wetland as a recharge pond to allow the treated water to percolate and recharge the local groundwater aquifers. The City of Foley, located in Alabama, and the Utilities Board of the City of Foley partnered with Wolf Bay Watershed Watch to evaluate alternative wastewater effluent disposal schemes. Rather than discharging the treated water into a local stream, a pilot program has been developed to allow water from the treatment process to flow into a constructed wetlands area where, after natural treatment, the treated water will then be allowed to percolate into a local unconfined aquifer. The goal of this study is to evaluate how constructed wetlands can be used for “polishing” effluent as well as how this treated water might be reused. Research has shown that constructed wetlands, with proper design and construction elements, are effective in the treatment of BOD, TSS, nitrogen, phosphorous, pathogens, metals, sulfates, organics, and other substances commonly found in wastewater. Mesocosms will be used to model the wetland, at a much smaller scale, in order to test and collect data about the wetland treatment capabilities. Specific objectives include: 1. Determine optimum flow rates for surface flow wetlands where water treatment is optimized. 2. Evaluate the capabilities of constructed wetlands to remove/reduce common over the counter

  1. Swine wastewater treatment in constructed wetlands

    Technology Transfer Automated Retrieval System (TEKTRAN)

    One of the passive technologies being used for animal wastewater treatment is constructed wetlands. We have investigated swine lagoon wastewater treatment in both continuous marsh and marsh-pond-marsh (MPM) type constructed wetlands for their nitrogen treatment efficiency, ammonia volatilization, de...

  2. Performance comparison and economics analysis of waste stabilization ponds and horizontal subsurface flow constructed wetlands treating domestic wastewater: a case study of the Juja sewage treatment works.

    PubMed

    Mburu, Njenga; Tebitendwa, Sylvie M; van Bruggen, Johan J A; Rousseau, Diederik P L; Lens, Piet N L

    2013-10-15

    The performance, effluent quality, land area requirement, investment and operation costs of a full-scale waste stabilization pond (WSP) and a pilot scale horizontal subsurface flow constructed wetland (HSSF-CW) at Jomo Kenyatta University of Agriculture and Technology (JKUAT) were investigated between November 2010 to January 2011. Both systems gave comparable medium to high levels of organic matter and suspended solids removal. However, the WSP showed a better removal for Total Phosphorus (TP) and Ammonium (NH4(+)-N). Based on the population equivalent calculations, the land area requirement per person equivalent of the WSP system was 3 times the area that would be required for the HSSF-CW to treat the same amount of wastewater. The total annual cost estimates consisting of capital, operation and maintenance (O&M) costs were comparable for both systems. However, the evaluation of the capital cost of either system showed that it is largely influenced by the size of the population served, local cost of land and the construction materials involved. Hence, one can select either system in terms of treatment efficiency. When land is available other factor including the volume of wastewater or the investment, and O&M costs determine the technology selection. PMID:23747372

  3. DESIGN AND CONSTRUCTION OF DEMONSTRATION/RESEARCH WETLANDS FOR TREATMENT OF DAIRY FARM WASTEWATER

    EPA Science Inventory

    There are no constructed wetlands currently used in Oregon for treating agricultural wastes. his report discusses the construction of nine wetland cells at the Oregon State University dairy farm. hese wetlands will be used in a long-term project which will attempt to: 1) Develop ...

  4. Process-Based Modeling of Constructed Wetlands

    NASA Astrophysics Data System (ADS)

    Baechler, S.; Brovelli, A.; Rossi, L.; Barry, D. A.

    2007-12-01

    Constructed wetlands (CWs) are widespread facilities for wastewater treatment. In subsurface flow wetlands, contaminated wastewater flows through a porous matrix, where oxidation and detoxification phenomena occur. Despite the large number of working CWs, system design and optimization are still mainly based upon empirical equations or simplified first-order kinetics. This results from an incomplete understanding of the system functioning, and may in turn hinder the performance and effectiveness of the treatment process. As a result, CWs are often considered not suitable to meet high water quality-standards, or to treat water contaminated with recalcitrant anthropogenic contaminants. To date, only a limited number of detailed numerical models have been developed and successfully applied to simulate constructed wetland behavior. Among these, one of the most complete and powerful is CW2D, which is based on Hydrus2D. The aim of this work is to develop a comprehensive simulator tailored to model the functioning of horizontal flow constructed wetlands and in turn provide a reliable design and optimization tool. The model is based upon PHWAT, a general reactive transport code for saturated flow. PHWAT couples MODFLOW, MT3DMS and PHREEQC-2 using an operator-splitting approach. The use of PHREEQC to simulate reactions allows great flexibility in simulating biogeochemical processes. The biogeochemical reaction network is similar to that of CW2D, and is based on the Activated Sludge Model (ASM). Kinetic oxidation of carbon sources and nutrient transformations (nitrogen and phosphorous primarily) are modeled via Monod-type kinetic equations. Oxygen dissolution is accounted for via a first-order mass-transfer equation. While the ASM model only includes a limited number of kinetic equations, the new simulator permits incorporation of an unlimited number of both kinetic and equilibrium reactions. Changes in pH, redox potential and surface reactions can be easily incorporated

  5. Experiences with constructed wetland systems in Korea

    NASA Astrophysics Data System (ADS)

    Youngchul, Kim; Gilson, Hwang; Jin-Woo, Lee; Je-Chul, Park; Dong-Sup, Kim; Min-Gi, Kang; in-Soung, Chang

    2006-10-01

    In spite of the low temperature during the winter season and the high land environment, the wetland treatment system is gaining popularity in Korea because of its lower construction cost and simplicity in operation and maintenance. Many different types of wetland treatment systems have been built during the last 10 years, among which the free water surface wetland has been predominant. Most of the large-scale systems are government projects for improving the water quality of the streams flowing into the estuary dikes and reservoirs. The covering plants used in this system are different in different areas but cattails and reeds or their combinations are common. Constructed wetlands in Korea can be characterized by their shallow depths and short hydraulic residence times. There is no established flow pattern and configuration rules for constructing wetlands, but many efforts have been made with a view to improving their ecological function. Flow control is the most difficult problem in designing a riverbed or riparian wetland. There have been scores of flow rate control devices developed for wetlands, but none of them guarantee wetlands’ safety against flooding. In earlier wetland construction, the building materials were mainly soil. Recently, strong and durable building materials such as rocks, gravel beds, concrete and steel are used at vulnerable places to protect them from erosion. Our investigation indicated that the wetland system would be an appropriate technology because it is not only cheaper to construct, but also requires less maintenance work. However, we suffer from the reduced effectiveness in performance during the winter. We need to evaluate the partial treatment accomplished during 6 to 7 months per year.

  6. Design and configuration criteria for wetland systems treating greywater.

    PubMed

    Paulo, P L; Begosso, L; Pansonato, N; Shrestha, Roshan R; Boncz, M A

    2009-01-01

    Design and configuration for wetlands treating greywater are usually based on literature data obtained from domestic wastewater operating wetlands. It is very important to determine proper criteria for design and configuration to provide efficiency and minimum maintenance, avoiding bad odour and clogging amongst others, ensuring the acceptance of householders. The aim of this work was to design a wetland system treating greywater for a household and determine whether the chosen criteria were appropriate. Some of the criteria taken into consideration for design and configuration were: quantitative and qualitative characteristics, desired removal of biochemical oxygen demand (BOD) and suspended solids (TSS), substrate and ornamental aspect of the system. The system was composed of a grease trap (kitchen), sedimentation tank, a horizontal flow constructed wetland (HF-CW), intermittent feeding system, and a vertical flow constructed wetland (VF-CW). The results showed that the suggested design and configuration were in accordance with the expected efficiency. Being a compact system, it was susceptible to peak flows, temporarily deteriorating the performance of the HF-CW. The hybrid system, however, showed to cope well with influent fluctuations. The overall performance of the system shows that the removal of turbidity, TSS, COD and BOD were over 88%, reaching 95% removal for both BOD and turbidity. PMID:19844046

  7. Modeling BOD removal in constructed wetlands with mixing cell method

    SciTech Connect

    Chen, S.; Wang, G.T.; Xue, S.K.

    1999-01-01

    A new concept, transport detention time, is proposed in this paper to describe solute-transport processes. Using this concept, a new mathematical model was developed to describe biochemical oxygen demand removal in constructed wetlands. By treating a constructed wetland as a series of continuous stir tank reactors, an nth-order ordinary differential equation was derived based on the principle of mass balance and convective-dispersive equation and by introducing transfer function and Laplace transform. The number of continuous stir tank reactors of a particular wetland was determined by the parameters, such as dispersion coefficient and flow velocity, occurring in the wetland. Two examples were presented to illustrate the applications of the model. Moment method and a combination of moment and optimization methods were used to estimate the model parameters from tracer experiment data. A comparison between the model presented in this paper and the currently used plug-flow-constructed wetland model indicated that the former was more accurate. Additionally, this model can be applied to transient conditions, is theoretically sound, and represents a theoretical advance in constructed wetland research.

  8. Influence of high organic loads during the summer period on the performance of hybrid constructed wetlands (VSSF + HSSF) treating domestic wastewater in the Alps region.

    PubMed

    Foladori, P; Ortigara, A R C; Ruaben, J; Andreottola, G

    2012-01-01

    One of the limits for the application of constructed wetlands (CWs) in mountain regions (such as the Alps) is associated with the considerable land area requirements. In some mountain areas, the treatment of domestic wastewater at popular tourist destinations is particularly difficult during the summer, when the presence of visitors increases hydraulic and organic loads. This paper aims to evaluate whether a hybrid CW plant designed on the basis of the resident population only, can treat also the additional load produced by the floating population during the tourist period (summer, when temperatures are favourable for biological treatment), without a drastic decrease of efficiency and without clogging problems. The research was carried out by considering two operational periods: the first one was based on literature indications (3.2 m(2)/PE in the VSSF unit) and the second one assumed higher hydraulic and organic loads (1.3 m(2)/PE in the VSSF unit). The removal efficiency in the hybrid CW system decreased slightly from 94 to 88% for COD removal and from 78 to 75% for total N removal, even after applying a double hydraulic (from 55 to 123 L m(-2) d(-1)) and organic load (from 37 to 87 g COD m(-2) d(-1) and from 4.4 to 10.3 g TKN m(-2) d(-1)). The results showed that in the summer period the application of high loads did not affect the efficiency of the hybrid CW plant significantly, suggesting that it is possible to refer the CW design to the resident population only, with subsequent considerable savings in superficial area. PMID:22339024

  9. The dynamics of low-chlorinated benzenes in a pilot-scale constructed wetland and a hydroponic plant root mat treating sulfate-rich groundwater.

    PubMed

    Chen, Zhongbing; Kuschk, Peter; Paschke, Heidrun; Kästner, Matthias; Köser, Heinz

    2015-03-01

    A rarely used hydroponic plant root mat filter (PRMF, of 6 m(2)) and a horizontal subsurface flow constructed wetland (HSSF CW, of 6 m(2)), operating in continuous flow and discontinuous outflow flushing modes, were investigated for treating sulfate-rich and organic carbon-lean groundwater contaminated with monochlorobenzene (MCB); 1,2-dichlorobenzene (1,2-DCB); 1,4-dichlorobenzene (1,4-DCB); and 2-chlorotoluene. Whereas the mean inflow loads ranged from 1 to 247 mg m(-2) days(-1), the range of mean inflow concentrations of the chlorobenzenes recorded over a period of 7 months was within 0.04 and 8 mg L(-1). A hydraulic surface loading rate of 30 L m(-2) days(-1) was obtained in both systems. The mean load removal efficiencies were found to vary between 87 and 93 % in the PRMF after a flow path of 4 m, while the removal efficiencies were found to range between 46 and 70 % and 71 to 73 % in the HSSF CW operating in a continuous flow mode and a discontinuous outflow flushing mode, respectively. Seasonal variations in the removal efficiencies were observed for all low-chlorinated hydrocarbons both in the PRMF and the HSSF CW, whereby the highest removal efficiencies were reached during the summer months. Sulfide formation occurred in the organic carbon-lean groundwater particularly in summer, which is probably due to the plant-derived organic carbon that fostered the microbial dissimilatory sulfate reduction. Higher redox potential in water was observed in the PRMF. In conclusion, the PRMF could be an option for the treatment of water contaminated with compounds which in particular need oxic conditions for their microbial degradation, such as in the case of low-chlorinated benzenes. PMID:25280503

  10. Constructed wetland treatment systems for the remediation of metal- bearing aqueous discharges. Final report

    SciTech Connect

    Woodis, A.L.

    1995-08-01

    Electric utility activities, such as coal mining, processing, and combustion, often produce aqueous (wastewater) discharges containing metals. Chemical treatment of these discharges to achieve compliance with National Pollution Discharge Elimination System (NPDES) requirements can be costly. Constructed wetland treatment systems offer an inexpensive, natural, low-maintenance, and potentially long-term solution for the treatment of aqueous discharges without chemical additives. At the present time, several electric utilities are using constructed wetland treatment systems to achieve NPDES compliance. Constructed wetland treatment systems take advantage of natural biogeochemical processes to treat utility wastewaters, thus meeting NPDES compliance levels in an environmentally effective manner. This report provides information on the natural science, wastewater treatment, and regulatory/jurisdictional aspects of constructed wetland treatment systems used within the electric utility industry. Included is data from a number of electric utility constructed wetland treatment sites. The principal advantages of using constructed wetland systems to treat wastewater are the low overall cost compared to more conventional chemical treatment methods, the simplicity of operation, and the capacity to provide long-term resource recovery. For example, using a lined constructed wetland treatment system with high retention efficiency for heavy metals provides the option of resource recovery at some future date from a discrete volume of wetland material. Contaminants that can be removed with high efficiency in a number of constructed wetland treatment systems include heavy metals, toxic organics, suspended solids, and nutrients. This report discusses the treatability of specific contaminants as well as metal uptake and translocation processes in constructed wetlands.

  11. Constructed wetlands as biofuel production systems

    NASA Astrophysics Data System (ADS)

    Liu, Dong; Wu, Xu; Chang, Jie; Gu, Baojing; Min, Yong; Ge, Ying; Shi, Yan; Xue, Hui; Peng, Changhui; Wu, Jianguo

    2012-03-01

    Clean biofuel production is an effective way to mitigate global climate change and energy crisis. Progress has been made in reducing greenhouse-gas (GHG) emissions and nitrogen fertilizer consumption through biofuel production. Here we advocate an alternative approach that efficiently produces cellulosic biofuel and greatly reduces GHG emissions using waste nitrogen through wastewater treatment with constructed wetlands in China. Our combined experimental and literature data demonstrate that the net life-cycle energy output of constructed wetlands is higher than that of corn, soybean, switchgrass, low-input high-diversity grassland and algae systems. Energy output from existing constructed wetlands is ~237% of the input for biofuel production and can be enhanced through optimizing the nitrogen supply, hydrologic flow patterns and plant species selection. Assuming that all waste nitrogen in China could be used by constructed wetlands, biofuel production can account for 6.7% of national gasoline consumption. We also find that constructed wetlands have a greater GHG reduction than the existing biofuel production systems in a full life-cycle analysis. This alternative approach is worth pursuing because of its great potential for straightforward operation, its economic competitiveness and many ecological benefits.

  12. Constructed wetlands in UK urban surface drainage systems.

    PubMed

    Shutes, B; Ellis, J B; Revitt, D M; Scholes, L N L

    2005-01-01

    This paper presents the outcome of an inventory of planted wetland systems in the UK which are classified according to land use type and are all examples of sustainable drainage systems. The introduction of constructed wetlands to treat surface runoff essentially followed a 1997 Environment Agency for England and Wales report advocating the use of "soft engineered" facilities including wetlands in the context of sustainable development and Agenda 21. Subsequently published reports by the UK Construction Industry Research and Information Association (CIRIA) have promoted the potential benefits to both developer and the community of adopting constructed wetlands and other vegetated systems as a sustainable drainage approach. In addition, the UK Environment Agency and Highways Agency (HA) have recently published their own design criteria and requirements for vegetative control and treatment of road runoff. A case study of the design and performance of a constructed wetland system for the treatment of road runoff is discussed. The performance of these systems will be assessed in terms of their design criteria, runoff loadings as well as vegetation and structure maintenance procedures. The differing design approaches in guidance documents published in the UK by the Environment Agency, CIRIA and HA will also be evaluated. PMID:16042240

  13. Effects of influent C/N ratios on CO2 and CH4 emissions from vertical subsurface flow constructed wetlands treating synthetic municipal wastewater.

    PubMed

    Yan, Cheng; Zhang, Hui; Li, Bo; Wang, Dong; Zhao, Yongjun; Zheng, Zheng

    2012-02-15

    Greenhouse gases (GHG) emissions from constructed wetlands (CWs) can mitigate the environmental benefits of nutrient removal because reduced water pollution could be replaced by emission of GHG. Therefore, the GHG (CO(2) and CH(4)) fluxes of vertical subsurface flow constructed wetlands (VSSF CWs) under different influent C/N ratios of synthetic municipal wastewater were analyzed directly by GHG flux measurements, and estimated by carbon mass balance (CMB) over a 12 month period. The VSSF CWs system achieved the highest biological nutrient removal (BNR) efficiency between C/N ratios of 5:1 and 10:1 across all kinds of pollutants. Variation in influent C/N ratios dramatically influenced GHG fluxes from the VSSF CWs system. The GHG flux measured in situ agreed with those predicted by the CMB model and represented relatively low GHG fluxes when C/N ratios were between 2.5:1 and 5:1. It was determined that the optimum C/N ratio is 5:1, at which VSSF CWs can achieve a relatively high BNR efficiency and a low level of GHG flux. PMID:22192587

  14. MANUAL - CONSTRUCTED WETLANDS TREATMENT OF MUNICIPAL WASTEWATERS

    EPA Science Inventory

    Constructed wetlands are man-made wastewater treatment systems. They usually have one or more cells less than 1 meter deep and are planted with aquatic greenery. Water outlet structures control the flow of wastewater through the system to keep detention times and water levels at ...

  15. Constructed wetland design: The first generation

    SciTech Connect

    Reed, S.C.; Brown, D.S.

    1992-01-01

    A recent inventory, sponsored by the U.S. EPA Risk Reduction Engineering Laboratory in Cincinnati, OH documented the presence of over 150 constructed wetlands systems in the U.S., for the treatment of municipal and industrial wastewaters. The total flow received by these systems is about 400,000 cu m/d (100 mgd). This paper summarizes some of the results from the inventory, including: location, type, vegetation, design flow, loading rates, and costs for wetland systems where this information was available. The paper also discusses some 'lessons learned' from site visits to several of the systems.

  16. Monitoring manganese diagenesis in a constructed wetland using continuous gradient gels

    SciTech Connect

    Edenborn, H.M.; Brickett, L.A.; Dvorak, D.H. . Pittsburgh Research Center); Edenborn, S.L. . Dept. of Biology)

    1992-01-01

    Constructed wetlands are used by coal mining companies to lower concentrations of dissolved Fe and Mn and reduce the cost of treating mine drainage chemically. Biological activity in wetlands assists in the removal of these metals by mediating their oxidation and reduction, and the intensity of these reactions is influenced strongly by seasonal fluctuations in wetlands have been developed empirically based on field observations, but few details are known about the spatial and temporal variation in Mn diagenesis within these wetlands. Biological activity within wetland sediments is known to be very heterogeneous, due in part to the complex composition of the composted organic materials used in wetland construction. This heterogeneity makes it difficult to assess the importance of specific diagenetic processes without taking large numbers of samples at great expense. In this study, continuous gradient gels (CGGs) were used to evaluate metal diagenesis spatially and seasonally within the sediments of a constructed wetland in northwestern PA receiving coal mine drainage. The CGGs were inexpensive to construct and were easy to deploy in the field. CGGs provided rapid and detailed information in the regions of stability of Mn oxides within the wetland sediment. The resulting data were mapped and used to assess the overall efficiency of constructed wetland design and the impact of Mn diagenesis in wetlands used to treat coal mine drainage.

  17. Hydraulic characteristics of a constructed wetland: Implications for pollutant removal

    NASA Astrophysics Data System (ADS)

    Wachniew, P.; Czuprynski, P.; Maloszewski, P.; Ozimek, T.

    2003-04-01

    Constructed wetlands are built in order to treat wastewaters of various origin with some degree of control over purification processes. Treatment wetlands improve water quality through removal of suspended solids, organics, nitrogen, phosphorus, pathogens (bacteria, parasites, viruses) and metals. Transformation and removal of pollutants from wastewaters occur via numerous interrelated physical, chemical and biological processes. The efficiency of soluble pollutants removal is related to the degree of contact between wastewaters and the reactive surfaces. Therefore knowledge of hydraulic phenomena is crucial in studies of wetland functioning. A subsurface flow wetland in Nowa Slupia, Poland was studied in order to find out relationships between hydraulic phenomena and wetland performance. The wetland consists of three parallel gravel beds overgrown by common reed with a total surface area of 6400 sq m, total active volume of around 900 cubic m and the average loading of around 4 l/s. Three tracer tests with bromide and tritium accompanied by observations of water quality, plant distribution and biomass were performed in summer and winter conditions. Tracer breakthrough curves obtained from tracer tests were used to identify sub-systems within the wetland and to infer their hydraulic properties (water residence times, active volumes, dispersive characteristics). Three reed beds receive different wastewater loadings and show different water residence times and dispersive characteristics. Wastewater flow occurs partly via surface overflow with apparent stagnant zones and preferential flow pathways. These flow patterns are reflected in complex structure of breakthrough curves. Inhomogenous wastewater distribution within the wetland is due to operation practices and clogging of the gravel beds with refractory organic matter. Observations of effluent water quality, plant distribution and biomass reflect these apparent inhomogenities in wastewater flow patterns. This work

  18. Forested wetlands constructed for mitigation of destroyed natural wetlands

    USGS Publications Warehouse

    Perry, M.C.; Pugh, S.B.; Deller, A.S.

    1995-01-01

    Forested wetlands constructed for mitigation were evaluated at six sites in Maryland to determine the success of these areas for providing suitable wildlife habitat. Natural forested wetlands were used as reference sites. Initial mortality of planted woody shrubs and trees was high (avg. 55%) and mostly attributed to excessive moisture. The number of woody seedlings from natural regeneration was inversely proportional to the amount of grass cover on the site, which was planted for erosion control. The number of volunteer woody seedlings was also inversely proportional to the distance from adjacent natural forests. Preliminary data indicate that cost does not support use of transplants and that enhancement of soil with organic supplements, followed by widespread and heavy seeding of woody plants would be more efficient and effective. Wildlife use of areas measured by avian surveys and trapping of mammals, reptiles, and amphibians showed that in general wildlife species were more representative of open grassland areas than forested habitats. Natural succession of the sites probably will take at least 20-30 years before typical values and functions of forested wetlands are obtained.

  19. Removal processes for arsenic in constructed wetlands.

    PubMed

    Lizama A, Katherine; Fletcher, Tim D; Sun, Guangzhi

    2011-08-01

    Arsenic pollution in aquatic environments is a worldwide concern due to its toxicity and chronic effects on human health. This concern has generated increasing interest in the use of different treatment technologies to remove arsenic from contaminated water. Constructed wetlands are a cost-effective natural system successfully used for removing various pollutants, and they have shown capability for removing arsenic. This paper reviews current understanding of the removal processes for arsenic, discusses implications for treatment wetlands, and identifies critical knowledge gaps and areas worthy of future research. The reactivity of arsenic means that different arsenic species may be found in wetlands, influenced by vegetation, supporting medium and microorganisms. Despite the fact that sorption, precipitation and coprecipitation are the principal processes responsible for the removal of arsenic, bacteria can mediate these processes and can play a significant role under favourable environmental conditions. The most important factors affecting the speciation of arsenic are pH, alkalinity, temperature, dissolved oxygen, the presence of other chemical species--iron, sulphur, phosphate--,a source of carbon, and the wetland substrate. Studies of the microbial communities and the speciation of arsenic in the solid phase using advanced techniques could provide further insights on the removal of arsenic. Limited data and understanding of the interaction of the different processes involved in the removal of arsenic explain the rudimentary guidelines available for the design of wetlands systems. PMID:21549410

  20. Estimating evapotranspiration in natural and constructed wetlands

    USGS Publications Warehouse

    Lott, R. Brandon; Hunt, Randall J.

    2001-01-01

    Difficulties in accurately calculating evapotranspiration (ET) in wetlands can lead to inaccurate water balances—information important for many compensatory mitigation projects. Simple meteorological methods or off-site ET data often are used to estimate ET, but these approaches do not include potentially important site-specific factors such as plant community, root-zone water levels, and soil properties. The objective of this study was to compare a commonly used meterological estimate of potential evapotranspiration (PET) with direct measurements of ET (lysimeters and water-table fluctuations) and small-scale root-zone geochemistry in a natural and constructed wetland system. Unlike what has been commonly noted, the results of the study demonstrated that the commonly used Penman combination method of estimating PET underestimated the ET that was measured directly in the natural wetland over most of the growing season. This result is likely due to surface heterogeneity and related roughness efffects not included in the simple PET estimate. The meterological method more closely approximated season-long measured ET rates in the constructed wetland but may overestimate the ET rate late in the growing season. ET rates also were temporally variable in wetlands over a range of time scales because they can be influenced by the relation of the water table to the root zone and the timing of plant senescence. Small-scale geochemical sampling of the shallow root zone was able to provide an independent evaluation of ET rates, supporting the identification of higher ET rates in the natural wetlands and differences in temporal ET rates due to the timing of senescence. These discrepancies illustrate potential problems with extrapolating off-site estimates of ET or single measurements of ET from a site over space or time.

  1. HANDBOOK FOR CONSTRUCTED WETLANDS RECEIVING ACID MINE DRAINAGE

    EPA Science Inventory

    In the summer of 1987, a pilot constructed wetland was built at the Big Five Tunnel in Idaho Springs, Colorado. his report details the theory, design and construction of wetlands receiving acid mine drainages, based on the second and third year of operation of this wetland, which...

  2. HANDBOOK FOR CONSTRUCTED WETLANDS RECEIVING ACID MINE DRAINAGE

    EPA Science Inventory

    In the summer of 1987, a pilot constructed wetland was built at the Big Five Tunnel in Idaho Springs, Colorado. This report details the theory, design and construction of wetlands receiving acid mine drainages, based on the second and third year of operation of this wetland, whic...

  3. Hydrology and hydraulics of treatment wetlands constructed on drained peatlands

    NASA Astrophysics Data System (ADS)

    Postila, Heini; Ronkanen, Anna-Kaisa; Kløve, Bjørn

    2013-04-01

    Treatment wetlands are globally used for wastewater purification purposes. In Finland, these wetlands are commonly peatland-based and are used to treat runoff from peat extraction sites and peatland forestry. Wetlands are also used for polishing municipal wastewaters and mining waters. In peat extraction the structures are usually called overland flow areas (OFAs), which are traditionally established on pristine peatlands. However, nowadays establishing of new peat extraction sites is guided to drained peatland areas due to the Finnish Peat Use Strategy, which leads difficulties to find undisturbed peatland area for OFA. Therefore treatment wetlands have had to construct also on drained peatland areas. In drained areas peat physical properties have changed due to oxidation and subsidence and the water flow pathways differs from OFAs flow patterns, which maybe have effect on purification results. Thus in the present study we aim to clarify the hydrology and hydraulic properties of treatment wetlands constructed on drained peatland areas. For this purposes, 20 treatment wetlands on drained peatland areas across Finland were detailed measured for peat hydraulic conductivity. In selected areas, runoff was continuously monitored, flow distribution at treatment areas was studied and water residence times measured with tracer tests using potassium iodide (KI). Generally, in the study areas, the ditches had been completely blocked, partly blocked e.g with peat dams or not blocked at all. The ditches were located partly parallel to the flow direction and partly perpendicular to it. The distribution of water to the wetlands has been implemented in many different ways e.g. by distribution ditch or by perforated pipes. Based on the results, in majority of the wetlands, the peat drainage has clearly affected the hydraulic properties of wetlands, but not on all sites. In more than half of the wetlands (12), the median hydraulic conductivity of peat drastically decreased at the

  4. CONSTRUCTED WETLANDS FOR TREATMENT OF HEAVY METALS IN URBAN STORMWATER RUNOFF: CHEMICAL SPECIATION OF WETLAND SEDIMENTS

    EPA Science Inventory

    Heavy metals in urban stormwater runoff are primarily removed by sedimentation in stormwater best management practices (BMPs) such as constructed wetlands. Heavy metals accumulated in wetland sediments may be potentially toxic to benthic invertebrates and aquatic microorganisms, ...

  5. IMPACT OF PLANT DENSITY AND MICROBIAL COMPOSITION ON WATER QUALITY FROM A FREE WATER SURFACE CONSTRUCTED WETLAND

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Prado Wetlands in Chino, CA is a free water surface (FWS) constructed wetland consisting of 50 shallow ponds that treats approximately 50% of Santa Ana River water prior to its passage to Orange County, CA where it is used for groundwater recharge. The main function of Prado Wetlands has been t...

  6. Constructed wetland treatment system for upper blackfoot mining complex

    SciTech Connect

    Sanders, F.S.

    1996-12-31

    A combined passive oxidation/sedimentation (pre-treatment) and constructed wetland (polishing) system has been designed and installed to treat mine drainage at the inactive Upper Blackfoot River Mining Complex northeast of Lincoln, MT. The system is designed to treat up to 100 gpm flow with moderate heavy metal concentrations (25 to 95 mg/L Zn; lower concentrations of Pb, Cu, and As), moderate Fe concentrations (< 100 mg/L), and periodic high acidity (pH 2.6 to 3.5). The treatment scheme is flexible to accommodate a wide range of flows, metal concentrations, and acidity in order to gain cost-efficiencies and to meet restrictive discharge standards for the environmentally-sensitive Blackfoot River watershed. The wetland treatment system presently is undergoing start-up testing and initial tuning and will be operational during summer, 1996. Conceptual and engineering designs are presented along with preliminary data.

  7. Emergy evaluations for constructed wetland and conventional wastewater treatments

    NASA Astrophysics Data System (ADS)

    Zhou, J. B.; Jiang, M. M.; Chen, B.; Chen, G. Q.

    2009-04-01

    Based on emergy synthesis, this study presents a comparative study on constructed wetland (CW) and conventional wastewater treatments with three representative cases in Beijing. Accounting the environmental and economic inputs and treated wastewater output based on emergy, different characteristics of two kinds of wastewater treatments are revealed. The results show that CWs are environment-benign, less energy-intensive despite the relatively low ecological waste removal efficiency (EWRE), and less cost in construction, operation and maintenance compared with the conventional wastewater treatment plants. In addition, manifested by the emergy analysis, the cyclic activated sludge system (CASS) has the merit of higher ecological waste elimination efficiency.

  8. Constructed wetlands for the treatment of landfill leachate

    SciTech Connect

    Mulamoottil, G.; McBean, E.; Rovers, F.

    1998-12-31

    The book addresses leachate characteristics and the potential for treatability by constructed wetlands, the assessment of tolerance of wetland plants to the toxicity of leachates in differing climates, the role of plants in treatment of leachates, cost comparisons using wetland technology vs. traditional treatment and more.

  9. Removal of Selected Metals from Wastewater Using a Constructed Wetland.

    PubMed

    Šíma, Jan; Svoboda, Lubomír; Pomijová, Zuzana

    2016-05-01

    Removal of selected metals from municipal wastewater using a constructed wetland with a horizontal subsurface flow was studied. The objective of the work was to determine the efficiency of Cu, Zn, Ni, Co, Sr, Li, and Rb removal, and to describe the main removal mechanisms. The highest removal efficiencies were attained for zinc and copper (89.8 and 81.5%, respectively). It is apparently due to the precipitation of insoluble sulfides (ZnS, CuS) in the vegetation bed where the sulfate reduction takes place. Significantly lower removal efficiencies (43.9, 27.7, and 21.5%) were observed for Li, Sr, and Rb, respectively. Rather, low removal efficiencies were also attained for Ni and Co (39.8 and 20.9%). However, the concentrations of these metals in treated water were significantly lower compared to Cu and Zn (e.g., 2.8 ± 0.5 and 1.7 ± 0.3 μg/l for Ni at the inflow and outflow from the wetland compared to 27.6 ± 12.0 and 5.1 ± 4.7 μg/l obtained for Cu, respectively). The main perspective of the constructed wetland is the removal of toxic heavy metals forming insoluble compounds depositing in the wetland bed. Metal uptake occurs preferentially in wetland sediments and is closely associated with the chemism of sulfur and iron. PMID:27119624

  10. Wastewater treatment performance efficiency of constructed wetlands in African countries: a review.

    PubMed

    Mekonnen, Andualem; Leta, Seyoum; Njau, Karoli Nicholas

    2015-01-01

    In Africa, different studies have been conducted at different scales to evaluate wastewater treatment efficiency of constructed wetland. This paper aims to review the treatment performance efficiency of constructed wetland used in African countries. In the reviewed papers, the operational parameters, size and type of wetland used and the treatment efficiency are assessed. The results are organized and presented in six tables based on the type of wetland and wastewater used in the study. The results of the review papers indicated that most of the studies were conducted in Tanzania, Egypt and Kenya. In Kenya and Tanzania, different full-scale wetlands are widely used in treating wastewater. Among wetland type, horizontal subsurface flow wetlands were widely studied followed by surface flow and hybrid wetlands. Most of the reported hybrid wetlands were in Kenya. The results of the review papers indicated that wetlands are efficient in removing organic matter (biochemical oxygen demand and chemical oxygen demand) and suspended solids. On the other hand, nutrient removal efficiency appeared to be low. PMID:25607662

  11. Constructed wetlands for water pollution management of aquaculture farms conducting earthen pond culture.

    PubMed

    Lin, Ying-Feng; Jing, Shuh-Ren; Lee, Der-Yuan; Chang, Yih-Feng; Sui, Hsuan-Yu

    2010-08-01

    This study established farm-scale constructed wetlands integrated to shrimp ponds, using existing earthern pond areas, with a wetland-to-pond ratio of only 0.086 for shrimp culture. The constructed wetlands were used as practice for aquaculture water and wastewater treatment, to regulate the water quality of shrimp ponds and manage pollution from pond effluents. The results of water quality monitoring for influent and effluent showed that constructed wetlands significantly reduced total suspended solids (59 to 72%), turbidity (55 to 65%), chlorophyll a (58 to 72%), 5-day biochemical oxygen demand (29 to 40%), and chemical oxygen demand (13 to 24%) from pond water. The wetland treatment sufficiently regulated water quality of the recirculating shrimp pond, which was significantly (p < 0.05) better than that in a control shrimp pond, without the connection of constructed wetlands. Furthermore, the wetland-treated effluent satisfied the national effluent standards for aquaculture farms (R.O.C. Environmental Protection Administration, 2007). Accordingly, wetland treatment applications were proposed to implement the best management practices to reduce pollution from aquaculture farms in Taiwan. PMID:20853755

  12. Experimental results on constructed wetland pilot system.

    PubMed

    González, J M; Ansola, G; Luis, E

    2001-01-01

    Research into a constructed wetland for wastewater treatment using M.H.E.A. (Hierarchical Mosaic of Artificial Ecosystems) pilot system was carried out over a vegetative period in 8 different flow and vegetable composition series. The system consisted of a free water pond as a first step working as primary treatment followed by a zone with Typha sp. and surface flow and finally a woody zone with a subsurface flow and planted with ligneous species (Salixsp., Populus sp., Fraxinus sp. and Alnus sp.). Removal efficiency in the study reflects an optimal result: 80-99% total suspended matter removal, 82-98% organic matter removal, 70-98% nutrients removal and up to 99.9% faecal bacterial disinfecting. Effluent characteristics were in accordance with European Union legislation criteria for wastewater treatment systems. PMID:11804123

  13. Treatments of oil-refinery and steel-mill wastewaters by mesocosm constructed wetland systems.

    PubMed

    Yang, L; Hu, C C

    2005-01-01

    In this study, two types of industrial wastewater, oil-refining and steel-milling, were selected for investigating their feasibility of treatment by mesocosm constructed wetland systems. The secondly treated effluents from the wastewater treatment plants were directly discharged into the systems controlled at different flow rates. Three wetland mesocosms were installed in the two industries: mesocosms A and B were in the oil refinery, and mesocosm C was in the steel mill. The substratum media used in wetland systems were sand (mesocosm A) and gravel (mesocosms B and C), while the vegetation types selected were reeds (mesocosms A and B) and mixed species of reeds and cattails (mesocosm C). The flow regimes were controlled as free water surface (FWS) and subsurface flow (SSF) for the sand- and gravel-beds, respectively. According to the experimental results, we found that the system treating oil-refining wastewater performed better than that treating steel-milling wastewater learned by comparing the removal efficiencies of COD, total N and total P. In addition, it was found that for oil-refining wastewater treatments, the SSF wetland system (mesocosm B) performed better than FWS (mesocosm A) wetland system when comparing both of their removal of pollutants and growth of vegetation. Besides, the effluents from these two industrial wetland treatment systems might be reclaimed and reused for boiler water, cooling, cleaning and miscellaneous purposes in industries. Further treatments are required if the constructed wetland effluents are thought about being reused for processing in industries. PMID:16042254

  14. Bacterial carbon utilization in vertical subsurface flow constructed wetlands.

    PubMed

    Tietz, Alexandra; Langergraber, Günter; Watzinger, Andrea; Haberl, Raimund; Kirschner, Alexander K T

    2008-03-01

    Subsurface vertical flow constructed wetlands with intermittent loading are considered as state of the art and can comply with stringent effluent requirements. It is usually assumed that microbial activity in the filter body of constructed wetlands, responsible for the removal of carbon and nitrogen, relies mainly on bacterially mediated transformations. However, little quantitative information is available on the distribution of bacterial biomass and production in the "black-box" constructed wetland. The spatial distribution of bacterial carbon utilization, based on bacterial (14)C-leucine incorporation measurements, was investigated for the filter body of planted and unplanted indoor pilot-scale constructed wetlands, as well as for a planted outdoor constructed wetland. A simple mass-balance approach was applied to explain the bacterially catalysed organic matter degradation in this system by comparing estimated bacterial carbon utilization rates with simultaneously measured carbon reduction values. The pilot-scale constructed wetlands proved to be a suitable model system for investigating microbial carbon utilization in constructed wetlands. Under an ideal operating mode, the bulk of bacterial productivity occurred within the first 10cm of the filter body. Plants seemed to have no significant influence on productivity and biomass of bacteria, as well as on wastewater total organic carbon removal. PMID:17991505

  15. VEGETATION DEVELOPMENT OF THREE CONSTRUCTED WETLANDS RECEIVING AGRICULTURAL RUN-OFF AND SUBSURFACE DRAINAGE

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Case studies of terrestrial and aquatic vegetation development in three constructed wetlands receiving agricultural drainage were conducted. Surveys were completed on three Wetland Reservoir Subirrigation System (WRSIS) constructed wetlands located in Defiance, Fulton, and Van Wert counties in north...

  16. Swine lagoon wastewater treatment in marsh-pond/floating wetland-marsh constructed wetland

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Constructed wetlands have been used effectively to reduce the mass loads of organic and nutrient components from swine anaerobic lagoons. Continuous marsh wetlands with gentle slope and intermittent flows seem to be the best for promoting oxidation and minimizing ammonia volatilization. However, the...

  17. A vertical subsurface-flow constructed wetland in Beijing

    NASA Astrophysics Data System (ADS)

    Chen, Z. M.; Chen, B.; Zhou, J. B.; Li, Z.; Zhou, Y.; Xi, X. R.; Lin, C.; Chen, G. Q.

    2008-11-01

    Presented in this paper is an integrated cost and efficiency analysis of a pilot vertical subsurface-flow constructed wetland (CW) built up in 2004 near the Longdao River in Beijing, China. The CW has been monitored over one year and proved to be a good solution to treat the polluted water and restored the ecosystem health of the Longdao River. The modified CW system in accordance with local conditions costs less in construction, operation and maintenance than traditional wastewater treatment system and occupies less land than conventional CW. Also, derived from the efficiency analysis, the Longdao River CW provides better elimination effects for nutrient substances in the polluted river water and has stable performances in cold seasons.

  18. Phytoremediation of explosive contaminated groundwater in constructed wetlands: I - batch study

    SciTech Connect

    Sikora, F.J.; Berends, L.L.; Phillips, W.D.; Kelly, D.A.; Coonrod, H.S.

    1995-06-01

    The study evaluates the utility of constructed wetlands for remediating constructed wetlands using bench scale wetlands (batch type). Specifically the study examines: the degradation of TNT and RDX in contaminated waters in a variety of wetland types; the impact of wetland type on chemical oxygen demand; and tracks the level of degradation products in various wetland types. The study also provides design recommendations for the wetlands demonstration project to be located at the Milan Army Ammunition Plant (MAAP), in Tennessee.

  19. In situ biodegradation of perchloroethylene in constructed wetland mesocosms

    SciTech Connect

    Hoylman, A.M.; Rosensteel, B.A.; Trettin, C.C.

    1994-12-31

    Anaerobic reductive dehalogenation initiates degradation of highly chlorinated organic compounds. Subsequent intermediate chlorinated compounds are in turn more readily degraded in aerobic environments. Thus, complete degradation of chlorinated compounds to nontoxic end products requires both anaerobic and aerobic environments. These environments are provided by constructed wetland bioremediation systems, which through the interaction of vegetation, microbial, chemical, and physical processes, result in waste water renovation. The authors integrated the ecological engineering technology of constructed wetland systems with developments in plant-rhizosphere degradation of organic contaminants to examine the effectiveness of constructed wetland systems for in situ bioremediation of waste water contaminated with a chlorinated hydrocarbon, perchloroethylene (PCE) and an aromatic hydrocarbon, toluene. A mesocosm was designed to provide sequential anaerobic and vegetated-aerobic cells with complete control of water and gas flux and to emulate wetland properties such as hydric soil composition, physicochemical parameters, and the presence of wetland vegetation (Eleocharis acicularis). Treatments included contaminated and non-contaminated wetland cells and sterile controls. The fate and transport of PCE, toluene, and metabolic by-products were determined in effluent and chamber headspace, and extracts of soil and plant tissue. These analyses provide the basis for evaluating contaminant fate in wetland systems. Manipulation of aeration and hydrologic regimes in the wetland cells will facilitate testing conditions that affect degradation processes. The experimental apparatus is a innovative design for experimentation on the degradation of volatile organic compounds in plant-soil systems.

  20. CONSTRUCTED WETLAND TREATMENT SYSTEMS FOR WATER QUALITY IMPROVEMENT

    SciTech Connect

    Nelson, E.

    2010-07-19

    The Savannah River National Laboratory implemented a constructed wetland treatment system (CWTS) in 2000 to treat industrial discharge and stormwater from the Laboratory area. The industrial discharge volume is 3,030 m{sup 3} per day with elevated toxicity and metals (copper, zinc and mercury). The CWTS was identified as the best treatment option based on performance, capital and continuing cost, and schedule. A key factor for this natural system approach was the long-term binding capacity of heavy metals (especially copper, lead, and zinc) in the organic matter and sediments. The design required that the wetland treat the average daily discharge volume and be able to handle 83,280 m{sup 3} of stormwater runoff in a 24 hour period. The design allowed all water flow within the system to be driven entirely by gravity. The CWTS for A-01 outfall is composed of eight one-acre wetland cells connected in pairs and planted with giant bulrush to provide continuous organic matter input to the system. The retention basin was designed to hold stormwater flow and to allow controlled discharge to the wetland. The system became operational in October of 2000 and is the first wetland treatment system permitted by South Carolina DHEC for removal of metals. Because of the exceptional performance of the A-01 CWTS, the same strategy was used to improve water quality of the H-02 outfall that receives discharge and stormwater from the Tritium Area of SRS. The primary contaminants in this outfall were also copper and zinc. The design for this second system required that the wetland treat the average discharge volume of 415 m{sup 3} per day, and be able to handle 9,690 m{sup 3} of stormwater runoff in a 24 hour period. This allowed the building of a system much smaller than the A-01 CWTS. The system became operational in July 2007. Metal removal has been excellent since water flow through the treatment systems began, and performance improved with the maturation of the vegetation during

  1. Assessing hydrogeochemical heterogeneity in natural and constructed wetlands

    USGS Publications Warehouse

    Hunt, R.J.; Krabbenhoft, D.P.; Anderson, M.P.

    1997-01-01

    While 'water quality function' is cited as an important wetland function to design for and preserve, we demonstrate that the scale at which hydrochemical samples are collected can significantly influence interpretations of biogeochemical processes in wetlands. Subsurface, chemical profiles for both nutrients and major ions were determined at a site in southwestern Wisconsin that contained areas of both natural and constructed wetlands. Sampling was conducted on three different scales: (1) a large scale (3 m between sampling points), (2) an intermediate scale (0.15 m between sampling points), and (3) a small scale (1.5 cm between sampling points). In most cases, significant vertical heterogeneity was observed at the 0.15 m scale, which was much larger than previously reported for freshwater wetlands and not detected by sampling water table wells screened over the same interval. However, profiles of ammonia and total phosphorus showed tenfold changes in the upper 0.2 meters of the saturated zone when sampled at the small (1.5 cm) scale, that was not depicted by sampling at the intermediate scale. At the intermediate scale of observation, one constructed wetland site differed geochemically from the natural wetlands and the other constructed wetland site due to application of off-site salvaged marsh surface and downward infiltration of rain. While important differences in dissolved inorganic phosphorus and dissolved inorganic carbon concentrations existed between the constructed wetland and the natural wetlands, we also observed substantial differences between the natural wetland sites for these constituents. A median-polishing analysis of our data showed that temporal variations in constituent concentrations within profiles, although extensively recognized in the literature, were not as important as spatial variability.

  2. Nitrogen transformations and balance in constructed wetlands for slightly polluted river water treatment using different macrophytes.

    PubMed

    Wu, Haiming; Zhang, Jian; Wei, Rong; Liang, Shuang; Li, Cong; Xie, Huijun

    2013-01-01

    Nitrogen removal processing in different constructed wetlands treating different kinds of wastewater often varies, and the contribution to nitrogen removal by various pathways remains unclear. In this study, the seasonal nitrogen removal and transformations as well as nitrogen balance in wetland microcosms treating slightly polluted river water was investigated. The results showed that the average total nitrogen removal rates varied in different seasons. According to the mass balance approach, plant uptake removed 8.4-34.3 % of the total nitrogen input, while sediment storage and N(2)O emission contributed 20.5-34.4 % and 0.6-1.9 % of nitrogen removal, respectively. However, the percentage of other nitrogen loss such as N(2) emission due to nitrification and denitrification was estimated to be 2.0-23.5 %. The results indicated that plant uptake and sediment storage were the key factors limiting nitrogen removal besides microbial processes in surface constructed wetland for treating slightly polluted river water. PMID:22707115

  3. Handbook for constructed wetlands receiving acid mine drainage

    SciTech Connect

    Wildeman, T.; Dietz, J.; Gusek, J.; Morea, S.

    1993-09-01

    In the summer of 1987, a pilot constructed wetland was built at the Big Five Tunnel in Idaho Springs, Colorado. The report details the theory, design and construction of wetlands receiving acid mine drainages, based on the second and third year of operation of this wetland, which was funded by the U.S. Environmental Protection Agency under the SITE Emerging Technologies Program. The text is divided into two broad sections: Part A - Theoretical Development, and Part B - Design Consideration. In the latter sections of Part A and through all of Part B the focus is on removal of metals by precipitation of sulfides through the activity of sulfate reducing bacteria.

  4. 'Halophyte filters': the potential of constructed wetlands for application in saline aquaculture.

    PubMed

    De Lange, H J; Paulissen, M P C P; Slim, P A

    2013-01-01

    World consumption of seafood continues to rise, but the seas and oceans are already over-exploited. Land-based (saline) aquaculture may offer a sustainable way to meet the growing demand for fish and shellfish. A major problem of aquaculture is nutrient waste, as most of the nutrients added through feed are released into the environment in dissolved form. Wetlands are nature's water purifiers. Constructed wetlands are commonly used to treat contaminated freshwater effluent. Experience with saline systems is more limited. This paper explores the potential of constructed saline wetlands for treating the nutrient-rich discharge from land-based saline aquaculture systems. The primary function of constructed wetlands is water purification, but other ancillary benefits can also be incorporated into treatment wetland designs. Marsh vegetation enhances landscape beauty and plant diversity, and wetlands may offer habitat for fauna and recreational areas. Various approaches can be taken in utilizing plants (halophytes, macro-algae, micro-algae) in the treatment of saline aquaculture effluent. Their strengths and weaknesses are reviewed here, and a conceptual framework is presented that takes into account economic and ecological benefits as well as spatial constraints. Use of the framework is demonstrated for assessing various saline aquaculture systems in the southwestern delta region of the Netherlands. PMID:23488001

  5. [Treatment of oilfield produced water by biological methods-constructed wetland process and degradation characteristics of organic substances].

    PubMed

    Huang, Xiang-feng; Shen, Jie; Wen, Yue; Liu, Jia; Lu, Li-jun; Zhou, Qi

    2010-02-01

    Hydrolysis acidification-aerobic-constructed wetland process and hydrolysis acidification-constructed wetland were used to treat oilfield produced water after the pretreatment of oil separation-coagulation. Gas chromatography-mass spectrometry was used to study the degradation characteristics of organic substances during the treatment process. The results showed that COD and ammonia nitrogen of both the two process effluents were below 80 mg/L and 15 mg/L, respectively, when HRT was 20 h for hydrolysis acidification, 10 h for aeration and 2 d for constructed wetlands or when HRT was 20 h for hydrolysis acidification and 4 d for constructed wetland. The results of GC-MS analysis showed that biodegradability of the oil produced water was significantly improved in hydrolysis acidification. Substantial removal of benzene compounds was achieved in aerobic and constructed wetland. PMID:20391699

  6. [Phosphorus removal efficiency of Yaonigou constructed wetland on Fuxian lakeshore].

    PubMed

    Chen, Yuangao; Wu, Xianhua; Li, Wenchao; Kong, Zhiming

    2005-10-01

    To mitigate and control the eutrophication of the waters in Fuxian Lake bay, 1 hm2 Yaonigou constructed wetland was built on the north Fuxian lakeshore, and the P removal of the wastewater from Yaonigou River was investigated by the techniques of precipitation pond, oxidation pond, and subsurface-and surface flow constructed wetland. The results demonstrated that this constructed wetland had a very strong capacity (7.8% - 81.1%) of total phosphorus (TP) removal. The average removal rate of TP was 54.9%, and the TP retention in the constructed wetland was 265mg x m(-2) x d(-1), of which, plant assimilation was 26.1 mg x m(-2) x d(-1), about 10% of the total. The TP removal was mainly through adsorption and sedimentation, but the seasonal growth dynamics of main plant Oenanthe javanica could have a definite effect on the efficiency of TP removal. During the examination, the TP retention capacity was in order of subsurface flow constructed wetland > oxidation pond > precipitation pond > surface flow constructed wetland. PMID:16422514

  7. Enzyme and root activities in surface-flow constructed wetlands.

    PubMed

    Kong, Ling; Wang, Yu-Bin; Zhao, Li-Na; Chen, Zhang-He

    2009-07-01

    Sixteen small-scale wetlands planted with four plant species were constructed for domestic wastewater purification. The objective of this study was to determine the correlations between contaminant removal and soil enzyme activity, root activity, and growth in the constructed wetlands. The results indicated that correlations between contaminant removal efficiency and enzyme activity varied depending on the contaminants. The removal efficiency of NH4+ was significantly correlated with both urease and protease activity in all wetlands, and the removal of total phosphorus and soluble reactive phosphorus was significantly correlated with phosphatase activity in most wetlands, while the removal of total nitrogen, NO3(-) , and chemical oxygen demand (COD) was significantly correlated with enzyme activity only in a few instances. Correlations between soil enzyme activity and root activity varied among species. Activities of all enzymes were significantly correlated with root activity in Vetiveria zizanioides and Phragmites australis wetlands, but not in Hymenocallis littoralis wetlands. Significant correlations between enzyme activity and root biomass and between enzyme activity and root growth were found mainly in Cyperus flabelliformis wetlands. Root activity was significantly correlated with removal efficiencies of all contaminants except NO3(-) and COD in V. zizanioides wetlands. Enzyme activities and root activity showed single-peak seasonal patterns. Activities of phosphatase, urease, and cellulase were significantly higher in the top layer of the substrate than in the deeper layers, and there were generally no significant differences between the deeper layers (deeper than 15 cm). PMID:19497608

  8. Paracetamol removal in subsurface flow constructed wetlands

    NASA Astrophysics Data System (ADS)

    Ranieri, Ezio; Verlicchi, Paola; Young, Thomas M.

    2011-07-01

    SummaryIn this study two pilot scale Horizontal Subsurface Flow Constructed Wetlands (HSFCWs) near Lecce, Italy, planted with different macrophytes ( Phragmites australis and Typha latifolia) and an unplanted control were assessed for their effectiveness in removing paracetamol. Residence time distributions (RTDs) for the two beds indicated that the Typha bed was characterized by a void volume fraction (porosity) of 0.16 and exhibited more ideal plug flow behavior (Pe = 29.7) than the Phragmites bed (Pe = 26.7), which had similar porosity. The measured hydraulic residence times in the planted beds were 35.8 and 36.7 h when the flow was equal to 1 m 3/d. The Phragmites bed exhibited a range of paracetamol removals from 51.7% for a Hydraulic Loading Rate (HLR) of 240 mm/d to 87% with 120 mm/d HLR and 99.9% with 30 mm/d. The Typha bed showed a similar behavior with percentages of removal slightly lower, ranging from 46.7% (HLR of 240 mm/d) to >99.9% (hydraulic loading rate of 30 mm/d). At the same HLR values the unplanted bed removed between 51.3% and 97.6% of the paracetamol. In all three treatments the paracetamol removal was higher with flow of 1 m 3/d and an area of approx. 7.5 m 2 (half bed) than in the case of flow equal to 0.5 m 3/d with a surface treatment of approx. 3.75 m 2. A first order model for paracetamol removal was evaluated and half lives of 5.16 to 10.2 h were obtained.

  9. Long-term performance of vertical-flow and horizontal-flow constructed wetlands as affected by season, N load, and operating stage for treating nitrogen from domestic sewage.

    PubMed

    Kim, Seong-Heon; Cho, Ju-Sik; Park, Jong-Hwan; Heo, Jong-Soo; Ok, Yong-Sik; Delaune, Ronald D; Seo, Dong-Cheol

    2016-01-01

    To investigate the long-term nitrogen treatment efficiency in vertical-flow (VF)-horizontal-flow (HF) hybrid constructed wetlands (CWs), the nitrogen removal efficiency under different seasons, N loads, and three operating stages (representing age of the wetland) were evaluated over a 12-year period. The average total nitrogen (TN) removal efficiencies in the effluent during the operation period were in the following order: summer (75.2%) > spring (73.4%) ≒ autumn (72.6%) > winter (66.4%). The removal efficiencies of TN in summer, autumn, and spring were generally higher than those in winter. At different stages of operation (years), the average TN removal rates in the effluent were in the following order: middle stage (73.4%; years 2006-2009) > last stage (72.0%; years 2010-2013) > beginning stage (70.1%; years 2002-2005). In VF-HF CWs, the amount of average TN removal (mg N m(-2) day(-1)) over the 12-year period was in the order of summer (5.5) ≒ autumn (5.1) > spring (4.3) ≒ winter (4.2) for the VF bed and in the order of summer (3.5) ≒ spring (3.5) ≒ autumn (3.3) > winter (2.7) for the HF bed, showing that the amount of TN removal per unit area (m(2)) in summer was slightly greater than that in other seasons. The amount of TN removal in the VF bed was slightly greater than that in the HF bed. Using three-dimensional simulation graphs, the maximum TN removal rate was at inflow N loads below 2.7 g m(-2) day(-1) in the summer season, whereas the minimum TN removal rate was at inflow N loads below 1.4 g m(-2) day(-1) in the winter season. Consequently, the TN removal efficiency was very stable over the 12 years of operation in VF-HF hybrid CWs. Results demonstrate that the VF-HF hybrid CWs possess good buffer capacity for treating TN from domestic sewage for extended periods of time. PMID:26298340

  10. Seafood wastewater treatment in constructed wetland: tropical case.

    PubMed

    Sohsalam, Prapa; Englande, Andrew Joseph; Sirianuntapiboon, Suntud

    2008-03-01

    A series of investigations were conducted to evaluate the feasibility of using constructed wetlands to remove pollutants from seafood processing wastewater. Six emergent plant species; Cyperus involucratus, Canna siamensis, Heliconia spp., Hymenocallis littoralis, Typha augustifolia and Thalia deabata J. Fraser were planted in surface flow wetland. They were fed with seafood wastewater that was 50% diluted with treated seafood wastewater from an aerated lagoon. All macrophytes were found to meet satisfying treatment efficiency (standard criteria for discharged wastewater) at 5 days hydraulic retention time (HRT). While C. involucratus, T. deabata and T. augustifolia met acceptable treatment efficacy at 3 days HRT. Nutrient uptake rate of these species was observed in the range of 1.43-2.30 g Nitrogen/m(2)day and 0.17-0.29 g Phosphorus/m(2)day, respectively at 3 days HRT. The highest treatment performances were found at 5 days HRT. Average removal efficiencies were 91-99% for BOD(5), 52-90% for SS, 72-92% for TN and 72-77% for TP. Plant growth and nitrogen assimilation were experienced to be most satisfactory for C. involucratus, T. deabata and T. augustifolia. Lower HRTs affected contaminant removal efficiency for all species. C. involucratus, T. deabata and T. augustifolia can remove all contaminants efficiently even at the lowest hydraulic retention time (1 day). PMID:17383179

  11. The Springdale project: Applying constructed wetland treatment to coal combustion by-product leachate. Final report

    SciTech Connect

    Rightnour, T.A.; Hoover, K.L.

    1998-11-01

    The Springdale constructed wetland treatment system was completed in 1995 under an Electric Power Research Institute tailored collaboration agreement with Allegheny Power to test the operational and economic feasibility of using constructed wetland technologies to treat coal combustion by-product leachate. The system design incorporates an oxidation/precipitation basin, vegetated wetlands, manganese-oxidizing rock drains, an organic upflow cell, an algal uptake basin, and a greenhoused phytoremediation research facility. Influent and effluent chemical loadings to the individual system components have been monitored for a period of two years. Results show the system to be highly effectively in treating aqueous metals, with concentration reductions for the primary parameters being 98% for iron, 92% for manganese, and 71% for aluminum, along with significant reductions in other trace metals and concurrent improvements in pH and alkalinity. NPDES compliance has been achieved for all aqueous metals parameters except boron, which does not appear to be treatable by any means on this site. A cost comparison to four conventional chemical treatment alternatives indicates that capital investment would be comparable between constructed wetlands and chemical treatment, while significant long-term savings are predicted for the constructed wetland system due to lower operational and maintenance costs. The estimated 50 year present value savings for the constructed wetland system is approximately $1.271 million over the least expensive chemical treatment alternative, and $3.731 million over the most expensive. Operational and maintenance cost savings are primarily the result of lower on-site labor and lower waste disposal costs due to denser sludge formation in the wetland system.

  12. ASSESSMENT OF AN INFILTRATION BASIN AND CONSTRUCTED WETLAND FOR REMOVAL OF PATHOGENS FROM FEEDLOT RUNOFF

    EPA Science Inventory

    The use of an infiltration basin and constructed wetland to treat process wastewater from a cattle feedlot prior to discharge to an adjacent waterway was explored in regards to fecal pathogens. Weekly sampling of typical operating conditions and rainfall-generated runoff during 2...

  13. Treatment of greenhouse wastewater using constructed wetlands.

    PubMed

    Prystay, W; Lo, K V

    2001-05-01

    Five wetland designs, based on conventional surface flow (SF) and subsurface flow (SSF) approaches, were assessed for nitrogen and phosphorus removal from greenhouse wastewater. Results indicated none of the individual designs assessed was capable of providing the highest treatment effect for all nutrients of concern; however, the SF wetland emerged as the most appropriate design for the treatment of greenhouse wastewater. The highest mean phosphorus reduction of 65% was observed in the unplanted SF wetlands. Peak nitrate reductions of 54% were observed in the 15-cm deep SF wetlands and ammonia removal of 74% was achieved in the unplanted SF wetlands. Nitrate concentration in the greenhouse effluent can be reduced to acceptable levels for the protection of freshwater aquatic life (i.e., less then 40 ppm) using a loading rate of 1.65 g NO3-N/m2/day and a design water depth of 30 cm or greater. Based on available literature and the results of this research project, a multistage design, consisting of an unplanted pre-treatment basin followed by a 25 to 35 cm deep surface flow marsh with open water components, is recommended. PMID:11411856

  14. Danish guidelines for small-scale constructed wetland systems for onsite treatment of domestic sewage.

    PubMed

    Brix, H; Arias, C A

    2005-01-01

    The Danish Ministry of Environment and Energy has passed new legislation that requires the wastewater from single houses and dwellings in rural areas to be treated adequately before discharge into the aquatic environment. Therefore official guidelines for a number of onsite treatment solutions have been produced. These include guidelines for soakaways, biological sand filters, technical systems as well as different types of constructed wetland systems. This paper summarises briefly the guidelines for horizontal flow constructed wetlands, vertical flow constructed wetlands, and willow systems with no outflow and with soil infiltration. There is still a lack of a compact onsite solution that will fulfil the treatment classes demanding 90% removal of phosphorus. Therefore work is presently being carried out to identify simpler and robust P-removal solutions. PMID:16042237

  15. Iron and manganese removal by using manganese ore constructed wetlands in the reclamation of steel wastewater.

    PubMed

    Xu, Jing-Cheng; Chen, Gu; Huang, Xiang-Feng; Li, Guang-Ming; Liu, Jia; Yang, Na; Gao, Sai-Nan

    2009-09-30

    To reclaim treated steel wastewater as cooling water, manganese ore constructed wetland was proposed in this study for the removal of iron and manganese. In lab-scale wetlands, the performance of manganese ore wetland was found to be more stable and excellent than that of conventional gravel constructed wetland. The iron and manganese concentration in the former was below 0.05 mg/L at hydraulic retention time of 2-5 days when their influent concentrations were in the range of 0.16-2.24 mg/L and 0.11-2.23 mg/L, respectively. Moreover, its removals for COD, turbidity, ammonia nitrogen and total phosphorus were 55%, 90%, 67% and 93%, respectively, superior to the corresponding removals in the gravel wetland (31%, 86%, 58% and 78%, respectively). The good performance of manganese ore was ascribed to the enhanced biological manganese removal with the aid of manganese oxide surface and the smaller size of the medium. The presence of biological manganese oxidation was proven by the facts of good manganese removal in wetlands at chemical unfavorable conditions (such as ORP and pH) and the isolation of manganese oxidizing strains from the wetlands. Similar iron and manganese removal was later observed in a pilot-scale gravel-manganese-ore constructed wetland, even though the manganese ore portion in total volume was reduced from 100% (in the lab-scale) to only 4% (in the pilot-scale) for the sake of cost-saving. The quality of the polished wastewater not only satisfied the requirement for cooling water but also suitable as make-up water for other purposes. PMID:19443107

  16. Wastewater treatment in tsunami affected areas of Thailand by constructed wetlands.

    PubMed

    Brix, H; Koottatep, T; Laugesen, C H

    2007-01-01

    The tsunami of December 2004 destroyed infrastructure in many coastal areas in South-East Asia. In January 2005, the Danish Government gave a tsunami relief grant to Thailand to re-establish the wastewater management services in some of the areas affected by the tsunami. This paper describes the systems which have been built at three locations: (a) Baan Pru Teau: A newly-built township for tsunami victims which was constructed with the contribution of the Thai Red Cross. Conventional septic tanks were installed for the treatment of blackwater from each household and its effluent and grey water (40 m3/day) are collected and treated at a 220 m2 subsurface flow constructed wetland. (b) Koh Phi Phi Don island: A wastewater collection system for the main business and hotel area of the island, a pumping station and a pressure pipe to the treatment facility, a multi-stage constructed wetland system and a system for reuse of treated wastewater. The constructed wetland system (capacity 400 m3/day) consists of vertical flow, horizontal subsurface flow, free water surface flow and pond units. Because the treatment plant is surrounded by resorts, restaurants and shops, the constructed wetland systems are designed with terrains as scenic landscaping. (c) Patong: A 5,000 m2 constructed wetland system has been established to treat polluted water from drainage canals which collect overflow from septic tanks and grey water from residential areas. It is envisaged that these three systems will serve as prototype demonstration systems for appropriate wastewater management in Thailand and other tropical countries. PMID:17802840

  17. Removal of nutrients in various types of constructed wetlands.

    PubMed

    Vymazal, Jan

    2007-07-15

    The processes that affect removal and retention of nitrogen during wastewater treatment in constructed wetlands (CWs) are manifold and include NH(3) volatilization, nitrification, denitrification, nitrogen fixation, plant and microbial uptake, mineralization (ammonification), nitrate reduction to ammonium (nitrate-ammonification), anaerobic ammonia oxidation (ANAMMOX), fragmentation, sorption, desorption, burial, and leaching. However, only few processes ultimately remove total nitrogen from the wastewater while most processes just convert nitrogen to its various forms. Removal of total nitrogen in studied types of constructed wetlands varied between 40 and 55% with removed load ranging between 250 and 630 g N m(-2) yr(-1) depending on CWs type and inflow loading. However, the processes responsible for the removal differ in magnitude among systems. Single-stage constructed wetlands cannot achieve high removal of total nitrogen due to their inability to provide both aerobic and anaerobic conditions at the same time. Vertical flow constructed wetlands remove successfully ammonia-N but very limited denitrification takes place in these systems. On the other hand, horizontal-flow constructed wetlands provide good conditions for denitrification but the ability of these system to nitrify ammonia is very limited. Therefore, various types of constructed wetlands may be combined with each other in order to exploit the specific advantages of the individual systems. The soil phosphorus cycle is fundamentally different from the N cycle. There are no valency changes during biotic assimilation of inorganic P or during decomposition of organic P by microorganisms. Phosphorus transformations during wastewater treatment in CWs include adsorption, desorption, precipitation, dissolution, plant and microbial uptake, fragmentation, leaching, mineralization, sedimentation (peat accretion) and burial. The major phosphorus removal processes are sorption, precipitation, plant uptake (with

  18. Accumulation of Cd, Pb and Zn by 19 wetland plant species in constructed wetland.

    PubMed

    Liu, Jianguo; Dong, Yuan; Xu, Hai; Wang, Deke; Xu, Jiakuan

    2007-08-25

    Uptake and distribution of Cd, Pb and Zn by 19 wetland plant species were investigated with experiments in small-scale plot constructed wetlands, into which artificial wastewater dosed with Cd, Pb and Zn at concentrations of 0.5, 2.0 and 5.0mgl(-1) was irrigated. The results showed that the removal efficiency of Cd, Pb and Zn from the wastewater were more than 90%. Generally, there were tens differences among the 19 plant species in the concentrations and quantity accumulations of the heavy metals in aboveground part, underground part and whole plants. The distribution ratios into aboveground parts for the metals absorbed by plants varied also largely from about 30% to about 90%. All the plants accumulated, in one harvest, 19.85% of Cd, 22.55% of Pb and 23.75% of Zn that were added into the wastewater. Four plant species, e.g. Alternanthera philoxeroides, Zizania latifolia, Echinochloa crus-galli and Polygonum hydropiper, accumulated high amounts of Cd, Pb and Zn. Monochoria vaginalis was capable for accumulating Cd and Pb, Isachne globosa for Cd and Zn, and Digitaria sanguinalis and Fimbristylis miliacea for Zn. The results indicated that the plants, in constructed wetland for the treatment of wastewater polluted by heavy metals, can play important roles for removal of heavy metals through phytoextraction. Selection of plant species for use in constructed wetland will influence considerably removal efficiency and the function duration of the wetland. PMID:17353090

  19. Reuse of constructed wetland effluents for irrigation of energy crops.

    PubMed

    Barbagallo, S; Barbera, A C; Cirelli, G L; Milani, M; Toscano, A

    2014-01-01

    The aim of this study was to evaluate biomass production of promising 'no-food' energy crops, Vetiveria zizanoides (L.) Nash, Miscanthus × giganteus Greef et Deu. and Arundo donax (L.), irrigated with low quality water at different evapotranspiration restitutions. Two horizontal subsurface flow (H-SSF) constructed wetland (CW) beds, with different operation life (12 and 6 years), were used to treat secondary municipal wastewaters for crop irrigation. Water chemical, physical and microbiological parameters as well as plant bio-agronomic characters were evaluated. The results confirm the high reliability of CWs for tertiary wastewater treatment given that the H-SSF1 treatment capacity remained largely unchanged after 12 years of operation. Average total suspended solids, chemical oxygen demand and total nitrogen removal for CWs were about 68, 58 and 71%, respectively. The Escherichia coli removal was satisfactory, about 3.3 log unit for both CW beds on average, but caution should be taken as this parameter did not achieve the restrictive Italian law limits for wastewater reuse. The average above-ground dry matter productions were 7 t ha⁻¹ for Vetiveria zizanoides, 24 t ha⁻¹ for Miscanthus × giganteus and 50 t ha⁻¹ for Arundo donax. These results highlight attractive biomass yield by using treated wastewater for irrigation with a complete restitution of evapotranspiration losses. PMID:25401309

  20. Simplified hydraulic model of French vertical-flow constructed wetlands.

    PubMed

    Arias, Luis; Bertrand-Krajewski, Jean-Luc; Molle, Pascal

    2014-01-01

    Designing vertical-flow constructed wetlands (VFCWs) to treat both rain events and dry weather flow is a complex task due to the stochastic nature of rain events. Dynamic models can help to improve design, but they usually prove difficult to handle for designers. This study focuses on the development of a simplified hydraulic model of French VFCWs using an empirical infiltration coefficient--infiltration capacity parameter (ICP). The model was fitted using 60-second-step data collected on two experimental French VFCW systems and compared with Hydrus 1D software. The model revealed a season-by-season evolution of the ICP that could be explained by the mechanical role of reeds. This simplified model makes it possible to define time-course shifts in ponding time and outlet flows. As ponding time hinders oxygen renewal, thus impacting nitrification and organic matter degradation, ponding time limits can be used to fix a reliable design when treating both dry and rain events. PMID:25225940

  1. Performance of an innovative FWS constructed wetland in Crete, Greece.

    PubMed

    Dialynas, G; Kefalakis, N; Dialynas, M; Angelakis, A

    2002-01-01

    Pompia is an ancient name of a small community in Messara valley, which is the main agricultural area, in central Crete. The constructed wetland in Pompia is a free water surface (FWS) system, for treating the wastewater of the local community of 1,200 p.e. That wastewater treatment plant (WWTP) is a pilot plant but it is simple, safe, innovative, and environmentally friendly. The WWTP was funded by the Region of Crete. The Eastern Crete Development Organization was responsible for the design, supervision, management, and initial operation. The project was completed in August 1999, and has been under operation since then. The effluent is considered to be equivalent to tertiary treated municipal wastewater, and it will be used to irrigate olive orchards. The general sense for a visitor is that the FWS system operates like a natural marsh and a habitat of birds and wild animals. In addition, very high removal rates for BOD5, COD, TSS, TKN, TP, TC, and FC have been obtained. PMID:12361033

  2. Constructed wetlands as green tools for management of boron mine wastewater.

    PubMed

    Türker, Onur Can; Türe, Cengiz; Böcük, Harun; Yakar, Anil

    2014-01-01

    Constructed wetlands are of increasing interest worldwide given that they represent an eco-technological solution to many environmental problems such as wastewater treatment. Turkey possesses approximately 70% of the world's total boron (B) reserves, and B contamination occurs in both natural and cultivated sites throughout Turkey, particularly in the north-west of the country. This study analyzes B removal and plant uptake of B in pilot plots of subsurface horizontal-flow constructed wetlands. Constructed wetlands were vegetated with Typha latifolia (referred to as CW1) and Phragmites australis (referred to as CW2) to treat wastewater from a borax reserve in Turkey--the largest of its type in the world and were assessed under field conditions. The B concentrations of water inflows to the systems were determined to be 10.2, 28.2, 84.6, 232.3, 716.4, and 2019.1 mg l(-1). The T. latifolia in the CW1 treatment group absorbed a total of 1300 mg kg(-1) B, whereas P. australis absorbed 839 mg kg(-1). As a result, CW1 had an average removal efficiency of 40.7%, while that of CW2 was 27.2%. Our results suggest that constructed wetlands are an effective, economic and eco-friendly solution to treating B mine wastewater and controlling the adverse environmental effects of B mining. PMID:24912241

  3. Changes and characteristics of dissolved organic matter in a constructed wetland system using fluorescence spectroscopy.

    PubMed

    Yao, Yuan; Li, Yun-Zhen; Guo, Xu-Jing; Huang, Tao; Gao, Ping-Ping; Zhang, Ying-Pei; Yuan, Feng

    2016-06-01

    Domestic wastewater was treated by five constructed wetland beds in series. Dissolved organic matter (DOM) collected from influent and effluent samples from the constructed wetland was investigated using fluorescence spectroscopy combined with fluorescence regional integration (FRI), parallel factor (PARAFAC) analysis, and two-dimensional correlation spectroscopy (2D-COS). This study evaluates the capability of these methods in detecting the spectral characteristics of fluorescent DOM fractions and their changes in constructed wetlands. Fluorescence excitation-emission matrix (EEM) combined with FRI analysis showed that protein-like materials displayed a higher removal ratio compared to humic-like substances. The PARAFAC analysis of wastewater DOM indicated that six fluorescent components, i.e., two protein-like substances (C1 and C6), three humic-like substances (C2, C3 and C5), and one non-humic component (C4), could be identified. Tryptophan-like C1 was the dominant component in the influent DOM. The removal ratios of six fluorescent components (C1-C6) were 56.21, 32.05, 49.19, 39.90, 29.60, and 45.87 %, respectively, after the constructed wetland treatment. Furthermore, 2D-COS demonstrated that the sequencing of spectral changes for fluorescent DOM followed the order 298 nm → 403 nm → 283 nm (310-360 nm) in the constructed wetland, suggesting that the peak at 298 nm is associated with preferential tryptophan fluorescence removal. Variation of the fluorescence index (FI) and the ratio of fluorescence components indicated that the constructed wetland treatment resulted in the decrease of fluorescent organic pollutant with increasing the humification and chemical stability of the DOM. PMID:26976008

  4. Effect of N:P ratio of influent on biomass, nutrient allocation, and recovery of Typha latifolia and Canna 'Bengal Tiger' in a laboratory-scale constructed wetland

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Constructed wetlands (CWs) are an effective low-technology approach for treating agricultural, industrial, and municipal wastewater. Recovery of phosphorous by constructed wetland plants may be affected by wastewater nitrogen to phosphorous (N:P) ratios. Varying N:P ratios were supplied to Canna '...

  5. Conservative and reactive solute transport in constructed wetlands

    USGS Publications Warehouse

    Keefe, S.H.; Barber, L.B.; Runkel, R.L.; Ryan, J.N.; McKnight, Diane M.; Wass, R.D.

    2004-01-01

    The transport of bromide, a conservative tracer, and rhodamine WT (RWT), a photodegrading tracer, was evaluated in three wastewater-dependent wetlands near Phoenix, Arizona, using a solute transport model with transient storage. Coupled sodium bromide and RWT tracer tests were performed to establish conservative transport and reactive parameters in constructed wetlands with water losses ranging from (1) relatively impermeable (15%), (2) moderately leaky (45%), and (3) significantly leaky (76%). RWT first-order photolysis rates and sorption coefficients were determined from independent field and laboratory experiments. Individual wetland hydraulic profiles influenced the extent of transient storage interaction in stagnant water areas and consequently RWT removal. Solute mixing and transient storage interaction occurred in the impermeable wetland, resulting in 21% RWT mass loss from main channel and storage zone photolysis (10%) and sorption (11%) reactions. Advection and dispersion governed solute transport in the leaky wetland, limiting RWT photolysis removal (1.2%) and favoring main channel sorption (3.6%). The moderately leaky wetland contained islands parallel to flow, producing channel flow and minimizing RWT losses (1.6%).

  6. Metals Retention in Constructed Wetland Sediments

    SciTech Connect

    KNOX, ANNA

    2004-10-27

    The A-01 wetland treatment system (WTS) was designed to remove metals from the effluent at the A-01 NPDES outfall at the Savannah River Site, Aiken, SC. Sequential extraction data was used to evaluate remobilization and retention of Cu, Pb, Zn, Mn, and Fe in the wetland sediment. Remobilization of metals was determined by the Potentially Mobile Fraction (PMF) and metal retention by the Recalcitrant Factor (RF). The PMF, which includes water soluble, exchangeable, and oxides fractions, is the contaminant fraction that has the potential to enter into the mobile aqueous phase under changeable environmental conditions. PMF values were low for Cu, Zn and Pb (about 20 percent) and high for Fe and Mn (about 60 to 70 percent). The RF, which includes crystalline oxides, sulfides or silicates and aluminosilicates, is the ratio of strongly bound fractions to the total concentration of elements in sediment. RF values were about 80 percent for Cu, Zn and Pb, indicating high retention in the sediment and 30 percent to above 40 percent for Fe and Mn indication low retention.

  7. Effectiveness of mitigation measures with constructed forested wetlands in Maryland

    USGS Publications Warehouse

    Perry, M.C.

    1997-01-01

    Intensive research on six constructed forested wetlands in Central Maryland was conducted in 1993-1996 to determine success of these habitats as functional forested wetlands for wildlife. Areas studied ranged in size from 2 to 35 acres and were constructed by private companies under contract with three mitigation agencies. Adjacent natural forested wetlands were used as reference sites where similar data were collected. Based on data from the first four years of this study it appears that it will take 35-50 years before these areas have forested wetland vegetation and wildlife similar to that found on mature forested wetlands. This long-time period is based on the high mortality and slow growth of nursery-stock trees and shrubs transplanted on the areas. Mortality and slow growth resulted mostly from excessive surface water on the sites. The level of ground water did not appear to be a factor in regard to transplant mortality. Green ash was the woody transplant species that had the least mortality. Sampling of vegetative ground cover with one-meter square quadrats showed the predominance of grasses and herbs. [abridged abstract

  8. High pollutant removal efficacy of a large constructed wetland leads to receiving stream improvements.

    PubMed

    Mallin, Michael A; McAuliffe, Janie A; McIver, Matthew R; Mayes, David; Hanson, Michael A

    2012-01-01

    Hewletts Creek, in Wilmington, North Carolina, drains a large suburban watershed and as such is affected by high fecal bacteria loads and periodic algal blooms from nutrient loading. During 2007, a 3.1-ha wetland was constructed to treat stormwater runoff from a 238-ha watershed within the Hewletts Creek drainage. A rain event sampling program was performed in 2009-2010 to evaluate the efficacy of the wetland in reducing pollutant loads from the stormwater runoff passing through the wetland. During the eight storms sampled, the wetland greatly moderated the hydrograph and retained and/or removed 50 to 75% of the inflowing stormwater volume. High removal rates of fecal coliform bacteria were achieved, with an average load reduction of 99% and overall concentration reduction of >90%. Particularly high (>90%) reductions of ammonium and orthophosphate loads also occurred, and lesser but still substantial reductions of total phosphorus (89%) and total suspended solids loads (88%) were achieved. Removal of nitrate was seasonally dependent, with lower removal occurring in cold weather and a high percentage (90%+) of nitrate load removal occurring in the growing season when water temperature exceeded 15°C. Long-term before-and-after sampling in downstream Hewletts Creek proper showed that, after wetland construction, statistically significant average decreases of 43% for nitrate, 72% for ammonium, and 59% for fecal coliform bacteria were realized. Wetland features contributing to the high pollutant control efficacy included available space for a large wetland, construction of deep forebays, and a dense and diverse aquatic and shoreline plant assemblage. PMID:23128761

  9. Diazinon mitigation in constructed wetlands: influence of vegetation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In intensively cultivated areas, agriculture is a significant source of pesticides associated with storm runoff. When these pollutants enter aquatic receiving waters, they have potential to damage nearby aquatic ecosystems. Constructed wetlands are a best management practice (BMP) designed to help...

  10. INVENTORY OF CONSTRUCTED WETLANDS IN THE UNITED STATES

    EPA Science Inventory

    During 1990 and 1991 the U.S. Environmental Production Agency (EPA) sponsored an effort to identify existing and planned constructed wetlands in the U.S. and to collect readily available information from operating systems. In addition to inquiries by telephone and mail, the effor...

  11. INVENTORY OF CONSTRUCTED WETLANDS IN THE UNITED STATES

    EPA Science Inventory

    During 1990 and 1991 the U.S. Environmental Protection Agency EPA) sponsored al effort to identify existing and planned constructed wetlands in the U.S., and to collect readily available information from operating systems. n addition to inquiries by telephone and mail, the effort...

  12. ANAEROBIC COMPOST CONSTRUCTED WETLANDS SYSTEM TECHNOLOGY - SITE ITER

    EPA Science Inventory

    In Fall 1994, anaerobic compost wetlands in both upflow and downflow configurations were constructed adjacent to and received drainage from the Burleigh Tunnel, which forms part of the Clear Creek/Central City Superfund site. The systems were operated over a 3 year period. The e...

  13. ANAEROBIC COMPOST CONSTRUCTED WETLANDS SYSTEM TECHNOLOGY - SITE TECHNOLOGY CAPSULE

    EPA Science Inventory

    In fall 1994, anaerobic compost wetlands in both upflow and down flow configurations were constructed adjacent to and received drainage from the Burleigh tunnel, which forms part of the Clear Creek/Central City Superfund site. The systems were operated over a 3 year period. The ...

  14. Evaluation of constructed wetland treatment performance for winery wastewater.

    PubMed

    Grismer, Mark E; Carr, Melanie A; Shepherd, Heather L

    2003-01-01

    Rapid expansion of wineries in rural California during the past three decades has created contamination problems related to winery wastewater treatment and disposal; however, little information is available about performance of on-site treatment systems. Here, the project objective was to determine full-scale, subsurface-flow constructed wetland retention times and treatment performance through assessment of water quality by daily sampling of total dissolved solids, pH, total suspended solids, chemical oxygen demand (COD), tannins, nitrate, ammonium, total Kjeldahl nitrogen, phosphate, sulfate, and sulfide across operating systems for winery wastewater treatment. Measurements were conducted during both the fall crush season of heavy loading and the spring following bottling and racking operations at the winery. Simple decay model coefficients for these constituents as well as COD and tannin removal efficiencies from winery wastewater in bench-scale reactors are also determined. The bench-scale study used upward-flow, inoculated attached-growth (pea-gravel substrate) reactors fed synthetic winery wastewater. Inlet and outlet tracer studies for determination of actual retention times were essential to analyses of treatment performance from an operational subsurface-flow constructed wetland that had been overloaded due to failure to install a pretreatment system for suspended solids removal. Less intensive sampling conducted at a smaller operational winery wastewater constructed wetland that had used pretreatment suspended solids removal and aeration indicated that the constructed wetlands were capable of complete organic load removal from the winery wastewater. PMID:14587952

  15. MITIGATION OF PYRETHROID INSECTICIDES IN A MISSISSIPPI DELTA CONSTRUCTED WETLAND

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Pyrethroid insecticides are commonly used in intensively cultivated agricultural areas for crop pest control. During storm runoff events, these insecticides may be transported into aquatic receiving systems where they have the potential to damage fish and invertebrates. Constructed wetlands are on...

  16. Tolerance to hydraulic and organic load fluctuations in constructed wetlands.

    PubMed

    Masi, F; Martinuzzi, N; Bresciani, R; Giovannelli, L; Conte, G

    2007-01-01

    This paper describes a two-year performance evaluation of four different constructed wetland (CW) treatment systems designed by IRIDRA Srl, located in central Italy. All four CW systems were established to treat wastewater effluent from different tourist activities: (1) one single-stage CW for secondary treatment of domestic wastewater (30 p.e.) at a holiday farm site; (2) a hybrid compact system consisting of two stages, a horizontal flow (HF) system followed by a vertical flow (VF) system for the secondary treatment of effluent from a 140 p.e. tourist resort; (3) a single-stage vertical flow (VF) CW for a 100 p.e. mountain shelter; and (4) a pair of single-stage, HF CWs for the secondary treatment of segregated grey and black water produced by an 80 p.e. camping site. These tourism facilities are located in remote areas and share some common characteristics concerning their water management: they have high variability of water consumption and wastewater flow, depending on the season, weather and weekly regularities; they have no connection to a public sewer and most sites are located in a sensitive environment. Total suspended solids (TSS), chemical oxygen demand (COD), biochemical oxygen demand (BOD5), ammonium (N-NH4+), nitrate (N-NOx), total nitrogen (Ntot), total phosphorus (Ptot), total coliform (TC), faecal coliform (FC), E. coli removal efficiencies for all four CW systems are presented. The results from this study demonstrate the potential of CWs as a suitable technology for treating wastewater from tourism facilities in remote areas. A very efficient COD reduction (83-95%) and pathogen elimination (3-5 logs) have been achieved. Furthermore, the CWs are easily maintained, robust (not sensitive to peak flows), constructed with local materials, and operate with relatively low cost. PMID:17802836

  17. Performance of constructed wetland system for public water supply.

    PubMed

    Elias, J M; Salati Filho, E; Salati, E

    2001-01-01

    The project is being conducted in the town of Analândia, São Paulo, Brazil. The constructed wetlands system for water supply consists of a channel with floating aquatic macrophytes, HDS system (Water Decontamination with Soil-Patent PI 850.3030), chlorinating system, filtering system and distribution. The project objectives include investigating the process variables to further optimize design and operation factors, evaluating the relation of nutrients and plants development, biomass production, shoot development, nutrient cycling and total and fecal coliforms removal, comparing the treatment efficiency among the seasons of the year; and moreover to compare the average values obtained between February and June 1998 (Salati et al., 1998) with the average obtained for the same parameters between March and June 2000. Studies have been developed in order to verify during one year the drinking quality of the water for the following parameters: turbidity, color, pH, dissolved oxygen, total of dissolved solids, COD, chloride, among others, according to the Ministry of Health's Regulation 36. This system of water supply projected to treat 15 L s(-1) has been in continuous operation for 2 years, it was implemented with support of the National Environment Fund (FNMA), administered by the Center of Environmental Studies (CEA-UNESP), while the technical supervision and design were performed by the Institute of Applied Ecology. The actual research project is being supported by FAPESP. PMID:11804153

  18. compartment transfer rates in horizontal flow constructed wetlands

    NASA Astrophysics Data System (ADS)

    Maier, Uli; Oswald, Sascha; Thullner, Martin; Grathwohl, Peter

    2010-05-01

    A conceptual computer model has been constructed to simulate the compartment transfer rates in horizontal flow constructed wetlands. The model accounts for flow and transport in the variably saturated porous medium as well as biogeochemical change reactions. The most concentrated contaminants such as BTEX, MTBE and gasoline hydrocarbons and dissolved as well as mineral phase electron acceptors are considered. Also of major interest are reduced species with high oxygen demand such as ammonium. The influence of marsh plants on microbial activity, gas transport, water balance and contaminant fate in general is matter of current investigation. The constructed wetlands consist of a coarse sand or fine gravel porous medium. Marsh plants were introduced after installation, however, a number of control basins are operated unplanted. Water levels and through flow rates are adjusted to optimize the remediation efficiency. The system is likely to be neither reaction nor mixing limited, thus both, values of dispersivity and degradation kinetics may be crucial for remediation efficiency. Biogeochemical modelling is able to delineate in detail (i) the zonation of processes, (ii) temporal variation (breakthrough curves) and (iii) mass balance information. The contributions of biodegradation and volatilisation and the influence of plants (compartment transfer) can generally best be evaluated by the component's mass balance. More efficient mixing is expected in the wetlands with open water body which leads to both, more biodegradation and volatilisation. An important task is to quantify the role of plants and root systems for contaminant attenuation in constructed wetlands. The long term goal of investigation is to allow for predictions for the design of large scale compartment transfer wetlands that may be applied to remediate the site as a whole.

  19. On-site wastewater treatment using subsurface flow constructed wetlands in Ireland.

    PubMed

    Gill, Laurence W; O'Luanaigh, Niall; Johnston, Paul M

    2011-01-01

    The results from an Irish EPA-funded project on the effectiveness of using constructed wetlands for treating wastewater from single households is presented, which has contributed to the design guidelines included in the new EPA Code of Practice. Three subsurface flow gravel-filled wetlands were constructed on separate sites--one to provide secondary treatment and the other two to provide tertiary treatment stages for the domestic effluent. A comprehensive analysis over three years was then conducted to provide a robust characterization of the internal dynamics of the systems, particularly with respect to N and P removal as well as evaluating the temporal water balance across the different seasons. The removal of Total N was only 29% and 30% in the secondary and tertiary treatment wetlands, respectively; particularly disappointing for the tertiary treatment process, which was receiving nitrified effluent. Studies on the (15)N stable isotope confirmed that 35% of the ammonium from the septic tank was passing straight through the process without taking part in any biogeochemical processes. However, influent N in the wetlands was shown to be biologically assimilated into organic nitrogen and then released again as soluble ammonium--so-called nitrogen "spiraling." Removal of Total P in the wetlands averaged from 28% to 45% with higher P removals measured during summer periods, although the effluent concentrations were still found to be high (> 5 mg/l on average). The phosphorus in the plant material was also analysed revealing that the annual above-ground stem matter only accounted for 1.3% to 8.4% of the annual total P-load in the wetlands. Finally, the water balance analyses showed that the mean flow discharging from both the secondary and tertiary treatment wetlands was slightly greater than the mean flow to the reed bed over the trial period, with rainfall acting to increase flows by 13% and 5%, respectively, on average in winter while just about balancing

  20. Innovative approach for restoring coastal wetlands using treated drill cuttings

    SciTech Connect

    Veil, J. A.; Hocking, E. K.

    1999-11-02

    The leading environmental problem facing coastal Louisiana regions is the loss of wetlands. Oil and gas exploration and production activities have contributed to wetland damage through erosion at numerous sites where canals have been cut through the marsh to access drilling sites. An independent oil and gas producer, working with Southeastern Louisiana University and two oil field service companies, developed a process to stabilize drill cuttings so that they could be used as a substrate to grow wetlands vegetation. The U.S. Department of Energy (DOE) funded a project under which the process would be validated through laboratory studies and field demonstrations. The laboratory studies demonstrated that treated drill cuttings support the growth of wetlands vegetation. However, neither the Army Corps of Engineers (COE) nor the U.S. Environmental Protection Agency (EPA) would grant regulatory approval for afield trial of the process. Argonne National Laboratory was asked to join the project team to try to find alternative mechanisms for gaining regulatory approval. Argonne worked with EPA's Office of Reinvention and learned that EPA's Project XL would be the only regulatory program under which the proposed field trial could be done. One of the main criteria for an acceptable Project XL proposal is to have a formal project sponsor assume the responsibility and liability for the project. Because the proposed project involved access to private land areas, the team felt that an oil and gas company with coastal Louisiana land holdings would need to serve as sponsor. Despite extensive communication with oil and gas companies and industry associations, the project team was unable to find any organization willing to serve as sponsor. In September 1999, the Project XL proposal was withdrawn and the project was canceled.

  1. Changes in the planktonic microbial community during residence in a surface flow constructed wetland used for tertiary wastewater treatment.

    PubMed

    Mulling, Bram T M; Soeter, A Marieke; van der Geest, Harm G; Admiraal, Wim

    2014-01-01

    Suspended particles are a major constituent of municipal wastewater and generally contain high levels of bacteria, including human pathogens. Discharge of these particles of anthropogenic nature can have profound effects on receiving aquatic ecosystems and mitigation of these effects requires additional polishing of treated municipal wastewater. Previously it was shown that surface flow constructed wetlands are effective in improving water quality by reducing the numbers of fecal indicator organisms. However, fecal indicator organisms represent only a minor fraction of the total planktonic bacterial community and knowledge on the effects of these constructed wetlands on the composition and functioning of the entire planktonic bacterial community is limited. The aim of this descriptive study was therefore to identify changes in the planktonic bacterial community during residence of secondary treated municipal wastewater in a full-scale surface flow constructed wetland. To this purpose water samples were taken in which the bacterial community composition and functioning were analyzed using FISH, DGGE and BIOLOG. Surprisingly, the bacterial abundance at the inflow of the constructed wetland was relatively low compared with more natural surface waters. However, the inflowing bacterial community showed high metabolic activity and functional diversity. During residence in the surface flow constructed wetland the bacterial abundance doubled, but decreased in metabolic activity and functional diversity. Shifts in the community composition indicate that these changes are related to turn-over of the bacterial community. The planktonic bacterial community in the effluent of the constructed wetland closely resembled natural bacterial communities in urban and agricultural ditches. Based on these observations we conclude that constructed wetlands are capable to mitigate possible impacts of the particle load in treated wastewaters by transforming the anthropological bacterial

  2. The potential use of constructed wetlands in a recirculating aquaculture system for shrimp culture.

    PubMed

    Lin, Ying-Feng; Jing, Shuh-Ren; Lee, Der-Yuan

    2003-01-01

    A pilot-scale constructed wetland unit, consisting of free water surface (FWS) and subsurface flow (SF) constructed wetlands arranged in series, was integrated into an outdoor recirculating aquaculture system (RAS) for culturing Pacific white shrimp (Litopenaeus vannamei). This study evaluated the performance of the wetland unit in treating the recirculating wastewater and examined the effect of improvement in water quality of the culture tank on the growth and survival of shrimp postlarvae. During an 80-day culture period, the wetland unit operated at a mean hydraulic loading rate of 0.3 m/day and effectively reduced the influent concentrations of 5-day biochemical oxygen demand (BOD5, 24%), suspended solids (SS, 71%), chlorophyll a (chl-a, 88%), total ammonium (TAN, 57%), nitrite nitrogen (NO2-N, 90%) and nitrate nitrogen (NO3-N, 68%). Phosphate (PO4-P) reduction was the least efficient (5.4%). The concentrations of SS, Chl-a, turbidity and NO3-N in the culture tank water in RAS were significantly (Pwetland treatment. However, no significant difference (Pconstructed wetlands can improve the water quality and provide a good culture environment, consequently increasing the shrimp growth and survival without water exchange, in a recirculating system. PMID:12663210

  3. Invertebrates associated with a horizontal-flow, subsurface constructed wetland in a northern climate.

    PubMed

    Giordano, Rosanna; Weber, Everett; Darby, Brian J; Soto-Adames, Felipe N; Murray, Robert E; Drizo, Aleksandra

    2014-04-01

    Wetlands function as buffers between terrestrial and aquatic ecosystems, filtering pollutants generated by human activity. Constructed wetlands were developed to mimic the physical and biological filtering functions of natural systems for the treatment of human and animal waste under controlled conditions. Previous studies on the effect of constructed wetlands on native invertebrate populations have concentrated almost exclusively on mosquitoes. Here, we present the first study investigating the relationship between vegetation cover and aeration regime, and the diversity and abundance of nematodes and springtails (Collembola) in a constructed wetland designed to treat dairy farm wastewater in northwestern Vermont. We investigated four treatment cells differing in aeration regime and vegetation cover, but equally overlaid by a layer of compost to provide insulation. Analysis showed that nematodes were most abundant in the nonplanted and nonaerated cells, and that bacterivorous nematodes dominated the community in all cells. Springtails were found to be most numerous in the planted and nonaerated cells. We hypothesize that the vegetation provided differing environmental niches that supported a more diverse system of bacteria and fungi, as well as offering protection from predators and inclement weather. Nematodes were likely imported with the original compost material, while springtails migrated into the cells either via air, water, or direct locomotion. PMID:24534015

  4. Performance and cost evaluation of constructed wetland for domestic waste water treatment.

    PubMed

    Deeptha, V T; Sudarsan, J S; Baskar, G

    2015-09-01

    Root zone treatment through constructed wetlands is an engineered method of purifying wastewater. The aim of the present research was to study the potential of wetland plants Phragmites and Typha in treatment of wastewater and to compare the cost of constructed wetlands with that of conventional treatment systems. A pilot wetland unit of size 2x1x0.9 m was constructed in the campus. 3x3 rows of plants were transplanted into the pilot unit and subjected to wastewater from the hostels and other campus buildings. The raw wastewater and treated wastewater were collected periodically and tested for Total nitrogen (TN),Total Phosphorous (TP), Biological Oxygen Demand (BOD), Chemical Oxygen Demand (COD). It was observed that this pilot unit reduced the concentrations of TN, TP, BOD and COD by 76, 73, 83 and 86%, respectively, on an average. Root zone system achieved standards for tertiary treatment with low operating costs, low maintenance costs, enhance the landscape, provide a natural habitat for birds, and did not emit any odour. PMID:26521546

  5. Application of a constructed wetland system for polluted stream remediation

    NASA Astrophysics Data System (ADS)

    Tu, Y. T.; Chiang, P. C.; Yang, J.; Chen, S. H.; Kao, C. M.

    2014-03-01

    In 2010, the multi-function Kaoping River Rail Bridge Constructed Wetland (KRRBW) was constructed to improve the stream water quality and rehabilitate the ecosystem of the surrounding environment of Dashu Region, Kaohsiung, Taiwan. The KRRBW consists of five wetland basins with a total water surface area of 15 ha, a total hydraulic retention time (HRT) of 10.1 days at a averaged flow rate of 14 740 m3/day, and an averaged water depth of 1.1 m. The influent of KRRBW coming from the local drainage systems containing untreated domestic, agricultural, and industrial wastewaters. Based on the quarterly investigation results of water samples taken in 2011-2012, the overall removal efficiencies were 91% for biochemical oxygen demand (BOD), 75% for total nitrogen (TN), 96% for total phosphorus (TP), and 99% for total coliforms (TC). The calculated first-order decay rates for BOD, TN, TP, NH3-N, and TC ranged from 0.14 (TN) to 0.42 (TC) 1/day. This indicates that the KRRBW was able to remove organics, TC, and nutrients effectively. The high ammonia/nitrate removal efficiency indicates that nitrification and denitrification processes occurred simultaneously in the wetland system, and the detected nitrite concentration confirmed the occurrence of denitrification/nitrification. Results from sediment analyses reveal that the sediment contained high concentrations of organics (sediment oxygen demand = 1.9-5.2 g O2/m2 day), nutrients (up to 15.8 g total nitrogen/kg of sediment and 1.48 g total phosphorus/kg of sediment), and metals (up to 547 mg/kg of Zn and 97 mg/kg of Cu). Appropriate wetland management strategies need to be developed to prevent the release of contaminants into the wetland system. The wetland system caused the variations in the microbial diversities and dominant microbial bacteria. Results show the dominant nitrogen utilization bacteria including Denitratisoma oestradiolicum, Nitrosospira sp., Nitrosovibrio sp., D. oestradiolicum, Alcaligenes sp

  6. Pollutant swapping: greenhouse gas emissions from wetland systems constructed to mitigate agricultural pollution

    NASA Astrophysics Data System (ADS)

    Freer, Adam; Quinton, John; Surridge, Ben; McNamara, Niall

    2014-05-01

    Diffuse (non-point) water pollution from agricultural land continues to challenge water quality management, requiring the adoption of new land management practices. The use of constructed agricultural wetlands is one such practice, designed to trap multiple pollutants mobilised by rainfall prior to them reaching receiving water. Through capturing and storing pollutants in bottom sediments, it could be hypothesised that the abundance of nutrients stored in the anoxic conditions commonly found in these zones may lead to pollutant swapping. Under these circumstances, trapped material may undergo biogeochemical cycling to change chemical or physical form and thereby become more problematic or mobile within the environment. Thus, constructed agricultural wetlands designed to mitigate against one form of pollution may in fact offset the created benefits by 'swapping' this pollution into other forms and pathways, such as through release to the atmosphere. Pollutant swapping to the atmosphere has been noted in analogous wetland systems designed to treat municipal and industrial wastewaters, with significant fluxes of CO2, CH4 and N2O being recorded in some cases. However the small size, low level of engineering and variable nutrient/sediment inputs which are features of constructed agricultural wetlands, means that this knowledge is not directly transferable. Therefore, more information is required when assessing whether a wetland's potential to act as hotspot for pollution swapping outweighs its potential to act as a mitigation tool for surface water pollution. Here we present results from an on-going monitoring study at a trial agricultural wetland located in small a mixed-use catchment in Cumbria, UK. Estimates were made of CH4, CO2 and N2O flux from the wetland surface using adapted floating static chambers, which were then directly compared with fluxes from an undisturbed riparian zone. Results indicate that while greenhouse gas flux from the wetland may be

  7. Microbial and vegetative changes associated with development of a constructed wetland

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Wetlands may be constructed to provide several ecosystem functions. A constructed wetland receiving agricultural runoff water was observed prior to, and for more than two years after, establishment. The excavated portion of this wetland was compared to an undisturbed, upland area and to an adjacent...

  8. Treatment of domestic wastewater by subsurface flow constructed wetlands filled with gravel and tire chip media.

    PubMed

    Richter, A Y; Weaver, R W

    2003-12-01

    Subsurface flow constructed wetlands (SFCWs) are becoming increasingly common in on-site treatment of wastewater. Gravel is the most popular form of wetland fill medium, but tire chips provide more porosity, are less dense, and less expensive. This study determines the treatment efficiency of SFCWs filled with gravel or tire chip media to treat domestic wastewater. The influent and effluent of six SFCWs filled with tire chip medium and six SFCWs filled with gravel were monitored for 5 to 16 consecutive months. Parameters measured included pH, biochemical oxygen demand (BOD5), total and volatile suspended solids, NH4, P, and fecal and total coliforms. The only clear difference between medium types in wetland performance was for P. Soluble P in the effluent averaged 1.6 +/- 1.0 mg l(-1) in the tire chip-filled wetlands and 4.8 +/- 3.2 mg l(-1) in the gravel-filled wetlands. Most likely, Fe from exposed wires in shredded steel-belted tires complexed with P to create an insoluble compound. Tire chips may be a better fill medium for SFCWs than gravel because of higher porosity, lower cost, and greater reduction of P in effluent. PMID:14977152

  9. A LOW-COST THREE-DIMENSIONAL SAMPLE COLLECTION ARRAY TO EVALUATE AND MONITOR CONSTRUCTED WETLANDS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Artificially constructed wetlands are gaining acceptance as a low cost treatment alternative to remove a number of undesirable constituents from water. Wetlands can be used to physically remove compounds such as suspended solids through sedimentation. Dissolved nutrients, biochemical oxygen demand, ...

  10. Spatial Distribution of the Human Drug Carbamazepine in a Constructed Wetland Receiving Municipal Sewage Eflluent

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Artificially constructed wetlands offer a low cost treatment alternative to remove a number of pollutants found in effluent water from industry, mining, agriculture, and urban areas. Wetlands can be used to mechanically remove suspended solids through sedimentation. Dissolved nutrients, biochemica...

  11. The role of free water surface constructed wetlands as polishing step in municipal wastewater reclamation and reuse.

    PubMed

    Ghermandi, A; Bixio, D; Thoeye, C

    2007-07-15

    In Europe, the last two decades witnessed growing water stress, both in terms of water scarcity and quality deterioration, which prompted many municipalities for a more efficient use of the water resources, including a more widespread acceptance of water reuse practices. Treatment technology encompasses a vast variety of options. Constructed wetlands are regarded as key elements in polishing conventionally treated wastewater for recreational and environmental applications. A survey was conducted to assess the performance of tertiary free water surface constructed wetlands in treating both key and emerging contaminant categories in the perspective of water reuse. A database was created with information concerning systems with emerging and free-floating macrophytes. The database includes results from both full- and pilot-scale systems, and considers a broad variety of operating conditions. This paper provides an overview of the treatment performances of the constructed wetlands in the database and discusses their significance in the optic of water reclamation and reuse practices. PMID:17289115

  12. Biological mechanisms associated with triazophos (TAP) removal by horizontal subsurface flow constructed wetlands (HSFCW).

    PubMed

    Wu, Juan; Feng, Yuqin; Dai, Yanran; Cui, Naxin; Anderson, Bruce; Cheng, Shuiping

    2016-05-15

    Triazophos (TAP) is a widely used pesticide that is easily accumulated in the environment due to its relatively high stability: this accumulation from agricultural runoff results in potential hazards to aquatic ecosystems. Constructed wetlands are generally considered to be an effective technology for treating TAP polluted surface water. However, knowledge about the biological mechanisms of TAP removal is still lacking. This study investigates the responses of a wetland plant (Canna indica), substrate enzymes and microbial communities in bench-scale horizontal subsurface-flow constructed wetlands (HSCWs) loaded with different TAP concentrations (0, 0.1, 0.5 and 5 mg · L(-1)). The results indicate that TAP stimulated the activities of superoxide dismutase (SOD) and peroxidase (POD) in the roots of C. indica. The highest TAP concentrations significantly inhibited photosynthetic activities, as shown by a reduced effective quantum yield of PS II (ΦPS II) and lower electron transport rates (ETR). However, interestingly, the lower TAP loadings exhibited some favorable effects on these two variables, suggesting that C. indica is a suitable species for use in wetlands designed for treatment of low TAP concentrations. Urease and alkaline phosphatase (ALP) in the wetland substrate were activated by TAP. Two-way ANOVA demonstrated that urease activity was influenced by both the TAP concentrations and season, while acidphosphatase (ACP) only responded to seasonal variations. Analysis of high throughput sequencing of 16S rRNA revealed seasonal variations in the microbial community structure of the wetland substrate at the phylum and family levels. In addition, urease activity had a greater correlation with the relative abundance of some functional microbial groups, such as the Bacillaceae family, and the ALP and ACP may be influenced by the plant more than substrate microbial communities. PMID:26897579

  13. Characterisation of the soil bacterial community structure and composition of natural and constructed wetlands.

    PubMed

    Ansola, Gemma; Arroyo, Paula; Sáenz de Miera, Luis E

    2014-03-01

    In the present study, the pyrosequencing of 16S ribosomal DNA was used to characterise the soil bacterial community composition of a constructed wetland receiving municipal wastewater and a nearby natural wetland. Soil samples were taken from different locations in each wetland (lagoon, zone with T. latifolia, zone with S. atrocinerea). Moreover, the water quality parameters were evaluated (pH, Tª, conductivity, dissolved oxygen, redox potential, nutrients and suspended solids), revealing that the organic matter and nutrient contents were significantly higher in the constructed wetland than in the natural one. In general, the bacterial communities of the natural wetland were more diverse than those of the constructed wetland. The major phylogenic groups of all soils included Proteobacteria, Verrucomicrobia and Chloroflexi, with Proteobacteria being the majority of the community composition. The Verrucomicrobia and Chloroflexi phyla were more abundant in the natural wetland than the constructed wetland; in contrast, the Proteobacteria phylum was more abundant in the constructed wetland than the natural wetland. Beta diversity analyses reveal that the soil bacterial communities in the natural wetland were less dissimilar to each other than to those of the constructed wetland. PMID:24361449

  14. Biodegradation of anthracene and fluoranthene by fungi isolated from an experimental constructed wetland for wastewater treatment.

    PubMed

    Giraud, F; Guiraud, P; Kadri, M; Blake, G; Steiman, R

    2001-12-01

    Pilot-scale constructed wetlands were used to treat water contaminated by polycyclic aromatic hydrocarbons (PAHs), particularly fluoranthene, and the possible role of fungi present in these ecosystems was investigated. A total of 40 fungal species (24 genera) were isolated and identified from samples (gravel and sediments) from a contaminated wetland and a control wetland. All of them were assayed for their ability to remove anthracene (AC) and fluoranthene (FA) from liquid medium. FA was degraded efficiently by 33 species while only 2 species were able to remove AC over 70%. A selection of 10 strains of micromycetes belonging to various taxonomic groups was further investigated for FA and AC degradation, toxicity assays and phenoloxidases (POx) detection. Interesting and not previously reported species were revealed (Absidia cylindrospora, Cladosporium sphaerospermum, and Ulocladium chartarum). They were all able to highly degrade the PAH-model compounds chosen. An interesting inducibility was noted for Ulocladium chartarum. Degradative ability of fungi was not related to their extracellular POx activity. This study may contribute to the improvement of constructed wetlands for water treatment, which may be enriched in efficient fungi. PMID:11791842

  15. Contaminant removal in septage treatment with vertical flow constructed wetlands operated under batch flow conditions.

    PubMed

    Jong, Valerie Siaw Wee; Tang, Fu Ee

    2016-01-01

    Individual septic tanks are the most common means of on-site sanitation in Malaysia, but they result in a significant volume of septage. A two-staged vertical flow constructed wetlands (VFCWs) system for the treatment of septage was constructed and studied in Sarawak, Malaysia. Raw septage was treated in the first stage wetlands, and the resulting percolate was fed onto the second stage wetlands for further treatment. Here, the effects of a batch loading regime on the contaminant removal efficiency at the second stage wetlands, which included palm kernel shell within their filter substrate, are presented. The batch loading regime with pond:rest (P:R) period of 1:1, 2:2 and 3:3 (day:day) was studied. The improvement of the effluent redox condition was evident with P:R = 3:3, resulting in excellent organic matters (chemical oxygen demand and biochemical oxygen demand) and nitrogen reduction. The bed operated with P:R = 1:1 experienced constant clogging, with a water layer observed on the bed surface. For the P:R = 3:3 regime, the dissolved oxygen profile was not found to decay drastically after 24 hours of ponding, suggesting that the biodegradation mainly occurred during the first day. The study results indicate that a suitable application regime with an adequate rest period is important in VFCWs to ensure efficient operation. PMID:26901735

  16. Environmental assessment for the A-01 outfall constructed wetlands project at the Savannah River Site

    SciTech Connect

    1998-10-01

    The Department of Energy (DOE) prepared this environmental assessment (EA) to analyze the potential environmental impacts associated with the proposed A-01 outfall constructed wetlands project at the Savannah River site (SRS), located near aiken, South Carolina. The proposed action would include the construction and operation of an artificial wetland to treat effluent from the A-01 outfall located in A Area at SRS. The proposed action would reduce the outfall effluent concentrations in order to meet future outfall limits before these go into effect on October 1, 1999. This document was prepared in compliance with the National Environmental Policy Act (NEPA) of 1969, as amended; the requirements of the Council on Environmental Quality Regulations for Implementing NEPA (40 CFR Parts 1500--1508); and the DOE Regulations for Implementing NEPA (10 CFR Part 1021).

  17. Assessment of the microbial community in a constructed wetland that receives acid coal mine drainage

    SciTech Connect

    Nicomrat, D.; Dick, W.A.; Tuovinen, O.H.

    2006-01-15

    Constructed wetlands are used to treat acid drainage from surface or underground coal mines. However, little is known about the microbial communities in the receiving wetland cells. The purpose of this work was to characterize the microbial population present in a wetland that was receiving acid coal mine drainage (AMD). Samples were collected from the oxic sediment zone of a constructed wetland cell in southeastern Ohio that was treating acid drainage from an underground coal mine seep. Samples comprised Fe(Ill) precipitates and were pretreated with ammonium oxalate to remove interfering iron, and the DNA was extracted and purified by agarose gel electrophoresis prior to amplification of portions of the 16S rRNA gene. Amplified products were separated by denaturing gradient gel electrophoresis and DNA from seven distinct bands was excised from the gel and sequenced. The sequences were matched to sequences in the GenBank bacterial 16S rDNA database. The DNA in two of the bands yielded matches with Acidithiobacillus ferrooxidans and the DNA in each of the remaining five bands was consistent with one of the following microorganisms: Acidithiobacillus thiooxidans, strain TRA3-20 (a eubacterium), strain BEN-4 (an arsenite-oxidizing bacterium), an Alcaligenes sp., and a Bordetella sp. Low bacterial diversity in these samples reflects the highly inorganic nature of the oxic sediment layer where high abundance of iron- and sulfur-oxidizing bacteria would be expected. The results we obtained by molecular methods supported our findings, obtained using culture methods, that the dominant microbial species in an acid receiving, oxic wetland are A. thiooxidans and A. ferrooxidans.

  18. Nitrogen management in reservoir catchments through constructed wetland systems.

    PubMed

    Tunçiper, B; Ayaz, S C; Akça, L; Samsunlu, A

    2005-01-01

    In this study, nitrogen removal was investigated in pilot-scale subsurface flow (SSF) and in free water surface flow (FWS) constructed wetlands installed in the campus of TUBITAK-Marmara Research Center, Gebze, near Istanbul, Turkey. The main purposes of this study are to apply constructed wetlands for the protection of water reservoirs and to reuse wastewater. Experiments were carried out at continuous flow reactors. The effects of the type of plants on the removal were investigated by using emergent (Canna, Cyperus, Typhia spp., Phragmites spp., Juncus, Poaceae, Paspalum and Iris.), submerged (Elodea, Egeria) and floating (Pistia, Salvina and Lemna) marsh plants at different conditions. During the study period HLRs were 30, 50, 70, 80 and 120 L m(2)d(-1) respectively. The average annual NH4-N, NO(3)-N, organic N and TN treatment efficiencies in SSF and FWS wetlands are 81% and 68%, 37% and 49%, 75% and 68%, 47% and 53%, respectively. Nitrification, denitrification and ammonification rate constant (k20) values in SSF and FNS systems have been found as 0.898 d(-1) and 0.541 d(-1), 0.488 d(-1) and 0.502 d(-1), 0.986 d(-1) and 0.908 respectively. Two types of the models (first-order plug flow and multiple regression) were tried to estimate the system performances. PMID:16114631

  19. Fate of Volatile Organic Compounds in Constructed Wastewater Treatment Wetlands

    USGS Publications Warehouse

    Keefe, S.H.; Barber, L.B.; Runkel, R.L.; Ryan, J.N.

    2004-01-01

    The fate of volatile organic compounds was evaluated in a wastewater-dependent constructed wetland near Phoenix, AZ, using field measurements and solute transport modeling. Numerically based volatilization rates were determined using inverse modeling techniques and hydraulic parameters established by sodium bromide tracer experiments. Theoretical volatilization rates were calculated from the two-film method incorporating physicochemical properties and environmental conditions. Additional analyses were conducted using graphically determined volatilization rates based on field measurements. Transport (with first-order removal) simulations were performed using a range of volatilization rates and were evaluated with respect to field concentrations. The inverse and two-film reactive transport simulations demonstrated excellent agreement with measured concentrations for 1,4-dichlorobenzene, tetrachloroethene, dichloromethane, and trichloromethane and fair agreement for dibromochloromethane, bromo-dichloromethane, and toluene. Wetland removal efficiencies from inlet to outlet ranged from 63% to 87% for target compounds.

  20. Phosphorus retention in lab and field-scale subsurface-flow wetlands treating plant nursery runoff

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Constructed wetland systems built to handle nutrient contaminants are often efficient at removing nitrogen, but ineffective at reducing phosphorous (P) loads. Incorporating clay-based substrate can enhance P removal in subsurface-flow constructed wetland systems. We evaluated the potential of crus...

  1. Evaluation of Subsurface Flow and Free-water Surface Wetlands Treating NPR-3 Produced Water - Year No. 1

    SciTech Connect

    Myers, J. E.; Jackson, L. M.

    2001-10-13

    This paper is a summary of some of the activities conducted during the first year of a three-year cooperative research and development agreement (CRADA) between the Department of Energy (DOE) Rocky Mountain Oilfield Testing Center (RMOTC) and Texaco relating to the treatment of produced water by constructed wetlands. The first year of the CRADA is for design, construction and acclimation of the wetland pilot units. The second and third years of the CRADA are for tracking performance of pilot wetlands as the plant and microbial communities mature. A treatment wetland is a proven technology for the secondary and tertiary treatment of produced water, storm water and other wastewaters. Treatment wetlands are typically classified as either free-water surface (FWS) or subsurface flow (SSF). Both FWS and SSF wetlands work well when properly designed and operated. This paper presents a collection of kinetic data gathered from pilot units fed a slipstream of Wyoming (NPR-3) produced water. The pilot units are set up outdoors to test climatic influences on treatment. Monitoring parameters include evapotranspiration, plant growth, temperature, and NPDES discharge limits. The pilot wetlands (FWS and SSF) consist of a series of 100-gal plastic tubs filled with local soils, gravel, sharp sand and native wetland plants (cattail (Typha spp.), bulrush (Scirpus spp.), dwarf spikerush (Eleocharis)). Feed pumps control hydraulic retention time (HRT) and simple water control structures control the depth of water. The treated water is returned to the existing produced water treatment system. All NPDES discharge limits are met. Observations are included on training RMOTC summer students to do environmental work.

  2. Modeling Escherichia coli removal in constructed wetlands under pulse loading.

    PubMed

    Hamaamin, Yaseen A; Adhikari, Umesh; Nejadhashemi, A Pouyan; Harrigan, Timothy; Reinhold, Dawn M

    2014-03-01

    Manure-borne pathogens are a threat to water quality and have resulted in disease outbreaks globally. Land application of livestock manure to croplands may result in pathogen transport through surface runoff and tile drains, eventually entering water bodies such as rivers and wetlands. The goal of this study was to develop a robust model for estimating the pathogen removal in surface flow wetlands under pulse loading conditions. A new modeling approach was used to describe Escherichia coli removal in pulse-loaded constructed wetlands using adaptive neuro-fuzzy inference systems (ANFIS). Several ANFIS models were developed and validated using experimental data under pulse loading over two seasons (winter and summer). In addition to ANFIS, a mechanistic fecal coliform removal model was validated using the same sets of experimental data. The results showed that the ANFIS model significantly improved the ability to describe the dynamics of E. coli removal under pulse loading. The mechanistic model performed poorly as demonstrated by lower coefficient of determination and higher root mean squared error compared to the ANFIS models. The E. coli concentrations corresponding to the inflection points on the tracer study were keys to improving the predictability of the E. coli removal model. PMID:24231031

  3. Performance of pilot-scale constructed wetlands for secondary treatment of chromium-bearing tannery wastewaters.

    PubMed

    Dotro, Gabriela; Castro, Silvana; Tujchneider, Ofelia; Piovano, Nancy; Paris, Marta; Faggi, Ana; Palazolo, Paul; Larsen, Daniel; Fitch, Mark

    2012-11-15

    Tannery operations consist of converting raw animal skins into leather through a series of complex water- and chemically-intensive batch processes. Even when conventional primary treatment is supplemented with chemicals, the wastewater requires some form of biological treatment to enable the safe disposal to the natural environment. Thus, there is a need for the adoption of low cost, reliable, and easy-to-operate alternative secondary treatment processes. This paper reports the findings of two pilot-scale wetlands for the secondary treatment of primary effluents from a full tannery operation in terms of resilience (i.e., ability to produce consistent effluent quality in spite of variable influent loads) and reliability (i.e., ability to cope with sporadic shock loads) when treating this hazardous effluent. Areal mass removal rates of 77.1 g COD/m2/d, 11 g TSS/m2/d, and 53 mg Cr/m2/d were achieved with a simple gravity-flow horizontal subsurface flow unit operating at hydraulic loading rates of as much as 10 cm/d. Based on the findings, a full-scale wetland was sized to treat all the effluent from the tannery requiring 68% more land than would have been assumed based on literature values. Constructed wetlands can offer treatment plant resilience for minimum operational input and reliable effluent quality when biologically treating primary effluents from tannery operations. PMID:22999657

  4. Removal of N, P, BOD5, and coliform in pilot-scale constructed wetland systems.

    PubMed

    Jin, Guang; Kelley, Tim; Freeman, Mike; Callahan, Mike

    2002-01-01

    Pilot-scale surface-flow (SF), subsurface-flow (SSF), and floating aquatic plant (FAP) constructed wetland system designs were installed and evaluated to determine the effectiveness of constructed wetlands to treat tertiary effluent wastewater in a Midwestern U.S. climate (central Illinois). Average ammonia-nitrogen (N) concentrations decreased approximately 50% in the SSF system design, suggesting that this design had the highest nitrification rate. Nitrate-N concentrations decreased by over 60% in the FAP system design, possibly due to dissimilatory reduction or plant uptake. Total phosphorus (P) concentration reductions of 25 to 40% were observed in all three system designs. Five-day biochemical oxygen demand (BOD5) and dissolved oxygen (DO) results suggested that biodegradation was highest in the SSF system design and lowest in the FAP system design. Greater than 90% concentration reductions of total coliform and E. coli recovered were also observed following treatment in all three system designs. The FAP system design appeared to yield the highest concentration reduction efficiency for E. coli, possibly due to increased sunlight and related bacteriocidal ultraviolet light exposure. Ongoing experiments will test regularly for a variety of vegetative, water quality, and biological conditions for longer time periods in order to gain a better understanding of the pilot constructed wetland system design kinetics. PMID:12655806

  5. Water Purification Characteristic of the Actual Constructed Wetland with Carex dispalata in a Cold Area

    NASA Astrophysics Data System (ADS)

    Tsuji, Morio; Yamada, Kazuhiro; Hiratsuka, Akira; Tsukada, Hiroko

    Carex dispalata, a native plant species applied in cold districts for water purification in constructed wetlands, has useful characteristics for landscape creation and maintenance. In this study, seasonal differences in purification ability were verified, along with comparison of frozen and non-frozen periods' performance. A wetland area was constructed using a “hydroponics method” and a “coir fiber based method”. Results show that the removal rates of BOD, SS, and Chl-a were high. On this constructed wetland reduces organic pollution, mainly phytoplankton, but the removal of nitrogen and phosphorus was insufficient. The respective mean values of influent and treated water during three years were 26.6 mg/L and 12.2 mg/L for BOD, and 27.9 mg/L and 7.5 mg/L for SS. The mean value of the BOD removal rate for the non-frozen period was 2.99 g/m2/d that for the frozen period was 1.86 g/m2/d. The removal rate followed the rise of the BOD load rate. The removal rate limits were about 4 g/m2/d during the frozen period and 15 g/m2/d during the non-frozen period. For operations, energy was unnecessary. The required working hours were about 20 h annually for all maintenance and management during operations.

  6. Driving forces behind the construction of an eco-compensation mechanism for wetlands in China

    NASA Astrophysics Data System (ADS)

    Wang, Changhai

    2016-09-01

    This research revealed important driving forces behind the construction of an eco-compensation mechanism for wetlands (DFEMW) in China. Using China's provincial panel data from 1978 to 2008, a fixed-effects model was used to analyze the impacts of agricultural production systems on wetlands. We identified three DFEMW as follows: the change of wetland resources and protection measures in China; declaration and implementation of the provincial Wetland Protection Ordinance; and wetland degradation by agricultural production systems, which necessitated the establishment of a wetland eco-compensation mechanism. In addition to the DFEMW, a significant positive correlation between wetland area and both rural population and gross agricultural production was identified, in addition to a negative correlation with chemical fertilizer usage, reservoir storage capacity, and irrigation area. The underlying reasons for the serious degradation and inadequate protection of wetlands were market failure and government failure; these were the driving forces behind the need to establish a wetland eco-compensation mechanism. From a governmental perspective, it has been difficult to rectify market failures in resource distribution and thus to prevent wetland degradation. Factors include conflicts of interest, lack of investment, effective special laws, a simple means to protect wetlands, and a multidisciplinary management system. Therefore, the key factor is the coordination of interest relationships between those who utilize wetlands and those who seek to minimize wetland degradation and effectively protect wetlands.

  7. Driving forces behind the construction of an eco-compensation mechanism for wetlands in China

    NASA Astrophysics Data System (ADS)

    Wang, Changhai

    2016-03-01

    This research revealed important driving forces behind the construction of an eco-compensation mechanism for wetlands (DFEMW) in China. Using China's provincial panel data from 1978 to 2008, a fixed-effects model was used to analyze the impacts of agricultural production systems on wetlands. We identified three DFEMW as follows: the change of wetland resources and protection measures in China; declaration and implementation of the provincial Wetland Protection Ordinance; and wetland degradation by agricultural production systems, which necessitated the establishment of a wetland eco-compensation mechanism. In addition to the DFEMW, a significant positive correlation between wetland area and both rural population and gross agricultural production was identified, in addition to a negative correlation with chemical fertilizer usage, reservoir storage capacity, and irrigation area. The underlying reasons for the serious degradation and inadequate protection of wetlands were market failure and government failure; these were the driving forces behind the need to establish a wetland eco-compensation mechanism. From a governmental perspective, it has been difficult to rectify market failures in resource distribution and thus to prevent wetland degradation. Factors include conflicts of interest, lack of investment, effective special laws, a simple means to protect wetlands, and a multidisciplinary management system. Therefore, the key factor is the coordination of interest relationships between those who utilize wetlands and those who seek to minimize wetland degradation and effectively protect wetlands.

  8. Using cerium anomaly as an indicator of redox reactions in constructed wetland

    NASA Astrophysics Data System (ADS)

    Liang, R.

    2013-12-01

    The study area, Chiayi County located in southern Taiwan, has highly developed livestock. The surface water has very low dissolved oxygen and high NH4. Under the situation, constructed wetland becomes the most effective and economic choice to treat the wastewater in the natural waterways. Hebao Island free surface constructed wetland started to operate in late 2006. It covers an area of 0.28 km2 and is subdivided into 3 major cells, which are sedimentation cell, 1st aeration cell with rooted plants and 2nd aeration cell with float plants. The water depth of cells ranges from 0.6 m to 1.2 m. The total hydraulic retention time is about a half day. In this study, the water samples were sequentially collected along the flow path. The results of hydrochemical analysis show that the untreated inflow water can be characterized with enriched NH4 (11 ppm), sulfate (6 ppm) and arsenic (50 ppb). The removal efficiency of NH4 in the first two cells is <15%. However, the efficiency dramatically increases in the 2nd aeration cell, which is over 90%. Simultaneously, almost all of the hydrochemical properties, including EC, Ca, Mg, As Fe, Mn and other heavy metals, decrease while dissolve oxygen increases close to saturated level and aluminum is almost doubled in the exit of constructed wetland. However, the removal of sulfate and phosphate is very weak. It is worth to note that arsenic is still higher than the permissible limits recommended by WHO (10 ppb). The wetland operation should be tuned to take more arsenic away in the future. As demonstrated in the above, oxidation reaction is the most dominant mechanism to remove pollutants from the wastewater; therefore, dissolved oxygen is traditionally considered as an important indicator to evaluate the operation efficiency of wetland. However, it would need longer time to achieve equilibrium state of redox reaction involving dissolved oxygen due to the slower reaction rate. For example, the input water in this study has fairly high

  9. Performance Evaluation of Integrated Constructed Wetland for Domestic Wastewater Treatment.

    PubMed

    Sehar, Shama; Naz, Iffat; Khan, Sumera; Naeem, Sana; Perveen, Irum; Ali, Naeem; Ahmed, Safia

    2016-03-01

    Simple, budget friendly, laboratory-scale integrated constructed wetland (ICW) was designed to assess domestic wastewater treatment performance at a loading rate of 75 mm/d, planted with native plant species: Veronica-angallis aquatica and compared with non-vegetative control system at various residence times of 4, 8, 12, 16, 20, 24, and 28 days. Results revealed that the vegetated ICW demonstrated superior performance over non-vegetated control: 69.12 vs 17.12%, 67.77 vs 16.04%, 68 vs 16.48%, 71.19 vs 6.56%, 71.54 vs 14.80%, and 72.04 vs 11.41% for total dissolved solids, total suspended solids, phosphates (PO4(-)), sulfate (SO4(-)), nitrate (NO3(-)), and nitrite (NO2(-)), respectively, at 20 days residence times. Reduction in bacterial counts (2.79 × 10(4) CFU/mL) and fecal pathogens (345.5 MPN index/100 mL) was observed in V. aquatica at 20 days residence time. Therefore, the present study highlights not only the presence of vegetation but also appropriate residence time in constructed wetlands for better performances. PMID:26931539

  10. Integrated Cr(VI) removal using constructed wetlands and composting.

    PubMed

    Sultana, Mar-Yam; Chowdhury, Abu Khayer Md Muktadirul Bari; Michailides, Michail K; Akratos, Christos S; Tekerlekopoulou, Athanasia G; Vayenas, Dimitrios V

    2015-01-01

    The present work was conducted to study integrated chromium removal from aqueous solutions in horizontal subsurface (HSF) constructed wetlands. Two pilot-scale HSF constructed wetlands (CWs) units were built and operated. One unit was planted with common reeds (Phragmites australis) and one was kept unplanted. Influent concentrations of Cr(VI) ranged from 0.5 to 10mg/L. The effect of temperature and hydraulic residence time (8-0.5 days) on Cr(VI) removal were studied. Temperature was proved to affect Cr(VI) removal in both units. In the planted unit maximum Cr(VI) removal efficiencies of 100% were recorded at HRT's of 1 day with Cr(VI) concentrations of 5, 2.5 and 1mg/L, while a significantly lower removal rate was recorded in the unplanted unit. Harvested reed biomass from the CWs was co-composted with olive mill wastes. The final product had excellent physicochemical characteristics (C/N: 14.1-14.7, germination index (GI): 145-157%, Cr: 8-10mg/kg dry mass), fulfills EU requirements and can be used as a fertilizer in organic farming. PMID:25199438

  11. Application of the gas tracer method for measuring oxygen transfer rates in subsurface flow constructed wetlands.

    PubMed

    Tyroller, Lina; Rousseau, Diederik P L; Santa, Santa; García, Joan

    2010-07-01

    The oxygen transfer rate (OTR) has a significant impact on the design, optimal operation and modelling of constructed wetlands treating wastewater. Oxygen consumption is very fast in wetlands and the OTR cannot be determined using an oxygen mass balance. This problem is circumvented in this study by applying the gas tracer method. Experiments were conducted in an unplanted gravel bed (dimensions L x W x d 125 x 50 x 35 cm filled with a 30-cm layer of 10-11-mm gravel) and a planted horizontal subsurface flow constructed wetland (HSSFCW) (L x W x d 110 x 70 x 38 cm filled with a 30-cm layer of 3.5-mm gravel with Phragmites australis). Tap water saturated with propane as gas tracer (pure or commercial cooking gas, depending on the test) was used. The mass transfer ratio between oxygen and commercial propane gas was quite constant and averaged R = 1.03, which is slightly lower than the value of R = 1.39 that is usually reported for pure propane. The OTR ranged from 0.31 to 5.04 g O(2) m(-2) d(-1) in the unplanted gravel bed and from 0.3 to 3.2 g O(2) m(-2) d(-1) in the HSSFCW, depending on the hydraulic retention time (HRT). The results of this study suggest that the OTR in HSSFCW is very low for the oxygen demand of standard wastewater and the OTR calculations based on mass balances and theoretical stoichiometric considerations overestimate OTR values by a factor that ranges from 10 to 100. The gas tracer method is a promising tool for determining OTR in constructed wetlands, with commercial gas proving to be a viable low-cost alternative for determining OTR. PMID:20542312

  12. Application of constructed wetlands for wastewater treatment in tropical and subtropical regions (2000-2013).

    PubMed

    Zhang, Dong-Qing; Jinadasa, K B S N; Gersberg, Richard M; Liu, Yu; Tan, Soon Keat; Ng, Wun Jern

    2015-04-01

    Constructed wetlands (CWs) have been successfully used for treating various wastewaters for decades and have been identified as a sustainable wastewater management option for developing countries. With the goal of promoting sustainable engineered systems that support human well-being but are also compatible with sustaining natural (environmental) systems, the application of CWs has become more relevant. Such application is especially significant for developing countries with tropical climates, which are very conducive to higher biological activity and productivity, resulting in higher treatment efficiencies compared to those in temperate climates. This paper therefore highlights the practice, applications, and research of treatment wetlands under tropical and subtropical conditions since 2000. In the present review, removal of biochemical oxygen demand (BOD) and total suspended solid (TSS) was shown to be very efficient and consistent across all types of treatment wetlands. Hybrid systems appeared more efficient in the removal of total suspended solid (TSS) (91.3%), chemical oxygen demand (COD) (84.3%), and nitrogen (i.e., 80.7% for ammonium (NH)4-N, 80.8% for nitrate (NO)3-N, and 75.4% for total nitrogen (TN)) as compared to other wetland systems. Vertical subsurface flow (VSSF) CWs removed TSS (84.9%), BOD (87.6%), and nitrogen (i.e., 66.2% for NH4-N, 73.3% for NO3-N, and 53.3% for TN) more efficiently than horizontal subsurface flow (HSSF) CWs, while HSSF CWs (69.8%) showed better total phosphorus (TP) removal compared to VSSF CWs (60.1%). Floating treatment wetlands (FTWs) showed comparable removal efficiencies for BOD (70.7%), NH4-N (63.6%), and TP (44.8%) to free water surface (FWS) CW systems. PMID:25872707

  13. Sulphur transformation and deposition in the rhizosphere of Juncus effusus in a laboratory-scale constructed wetland.

    PubMed

    Wiessner, A; Kuschk, P; Jechorek, M; Seidel, H; Kästner, M

    2008-09-01

    Sulphur cycling and its correlation to removal processes under dynamic redox conditions in the rhizosphere of helophytes in treatment wetlands are poorly understood. Therefore, long-term experiments were performed in laboratory-scale constructed wetlands treating artificial domestic wastewater in order to investigate the dynamics of sulphur compounds, the responses of plants and nitrifying microorganisms under carbon surplus conditions, and the generation of methane. For carbon surplus conditions (carbon:sulphate of 2.8:1) sulphate reduction happened but was repressed, in contrast to unplanted filters mentioned in literature. Doubling the carbon load caused stable and efficient sulphate reduction, rising of pH, increasing enrichment of S(2-) and S(0) in pore water, and finally plant death and inhibition of nitrification by sulphide toxicity. The data show a clear correlation of the occurrence of reduced S-species with decreasing C and N removal performance and plant viability in the experimental constructed wetlands. PMID:18061323

  14. Mitigation of two pyrethroid insecticides in a Mississippi Delta constructed wetland

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Constructed wetlands are a suggested best management practice to help mitigate agricultural runoff before entering receiving aquatic ecosystems. A constructed wetland system (180 m x 30 m) comprised of a sediment retention basin and two treatment cells was used to determine fate and transport of sim...

  15. Assimilation of agrichemicals and sediments in runoff within drainage ditches and constructed wetlands

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Atrazine was amended into an agricultural drainage ditch and constructed wetlands for the purpose of monitoring transport and fate of the pesticide. Aqueous half lives of 6 and 16 to 48 days in drainage ditch and constructed wetlands, respectively, were found. Flow paths of 50 m and 103 to 281 m we...

  16. Influence of substrate heterogeneity on the hydraulic residence time and removal efficiency of horizontal subsurface flow constructed wetlands

    NASA Astrophysics Data System (ADS)

    Carranza-Diaz, O.; Brovelli, A.; Rossi, L.; Barry, D. A.

    2009-04-01

    Horizontal, subsurface flow constructed wetlands are wastewater treatment devices. The influent polluted water flows through a porous substrate where the contaminants are removed, for example by microbial oxidation, surface adsorption and mineral precipitation. These systems are widely used with varying degrees of success to treat municipal and agricultural contaminated waters and remove the organic carbon and nutrient load. Constructed wetlands are an appealing and promising technology, because they (i) are potentially very efficient in removing the pollutants, (ii) require only a small external energy input and (iii) require low maintenance. However, practical experience has shown that the observed purification rate is highly variable and is often much smaller than expected. One of the numerous reasons proposed to explain the variable efficiency of constructed wetlands is the existence of highly conductive zones within the porous substrate, which produce a dramatic reduction of the hydraulic residence time and therefore directly decreases the overall water purification rate. This work aims to understand quantitatively the relationship between the spatial variability in the hydraulic properties of the substrate and the effective residence time in constructed wetlands. We conducted two suites of stochastic numerical simulations, modelling the transport of a conservative tracer in a three-dimensional simulated constructed wetland in one case, and the microbial oxidation of a carbon source in the other. Within each group of simulations, different hydraulic conductivity fields were tested. These were based on a log-normal, spatially correlated random field (with exponential spatial correlation). The amount of heterogeneity was varied by changing the variance correlation length in the three directions. For each set of parameters, different realizations are considered to deduce both the expected residence time for a certain amount of heterogeneity, and its range of

  17. [Optimization of aerobic/anaerobic subsurface flow constructed wetlands].

    PubMed

    Li, Feng-Min; Shan, Shi; Li, Yuan-Yuan; Li, Yang; Wang, Zheng-Yu

    2012-02-01

    Previous studies showed that setting aerobic and anaerobic paragraph segments in the subsurface constructed wetlands (SFCWs) can improve the COD, NH4(+)-N, and TN removal rate, whereas the oxygen enrichment environment which produced by the artificial aeration could restrain the NO3(-)-N and NO2(-)-N removal process, and to a certain extent, inhibit the denitrification in SFCWs Therefore, in this research the structure and technology of SFCW with aerobic and anaerobic paragraph segments were optimized, by using the multi-point water inflow and setting the corresponding section for the extra pollutant removal. Results showed that with the hydraulic load of 0.06 m3 x (m2 x d)(-1), the COD, NH4(+)-N and TN removal efficiencies in the optimized SFCW achieved 91.6%, 100% and 87.7% respectively. COD/N increased to 10 speedily after the inflow supplement. The multi-point water inflow could add carbon sources, and simultaneously maximum utilization of wetland to remove pollutants. The optimized SFCW could achieve the purposes of purification process optimization, and provide theoretical basis and application foundation for improving the total nitrogen removal efficiency. PMID:22509578

  18. Constructed wetlands as sustainable ecotechnologies in decentralization practices: a review.

    PubMed

    Valipour, Alireza; Ahn, Young-Ho

    2016-01-01

    Recently, a range of novel and cost-effective engineered wetland technologies for decentralization practices of domestic wastewater treatment have been developed with ecological process modification, the use of functionalized plants, and advanced biofilm formation. However, selecting the one that can be more appreciated for on-site sanitation is still uncertain. This paper reviews the role of plants, media materials, microorganisms, and oxygen transfer in domestic wastewater purification through constructed wetlands (CWs). The effectiveness of traditional and recently developed CWs and the necessity of an induced biofilm attachment surface (BAS) in these systems for the treatment of domestic sewage are presented. This review also elucidates the idea of CWs for domestic wastewater characteristics highly stressed by total dissolved solids and the adaptive strategies in mitigating the cold climate impacts on their efficiencies. Further research needed to enhance the stability and sustainability of CWs is highlighted. By a more advanced investigation, BAS CWs can be specified as an ideal treatment process in decentralization. PMID:26527342

  19. Constructed Wetlands for Treatment of Organic and Engineered Nanomaterial Contaminants of Emerging Concerns (WaterRF Report 4334)

    EPA Science Inventory

    The goal of this project was to determine hydraulic and carbon loading rates for constructed wetlands required for achieving different levels of organic and nanomaterial contaminants of emerging concern (CECs) removal in constructed wetlands. Specific research objectives included...

  20. Application of a constructed wetland for industrial wastewater treatment: a pilot-scale study.

    PubMed

    Chen, T Y; Kao, C M; Yeh, T Y; Chien, H Y; Chao, A C

    2006-06-01

    The main objective of this study was to examine the efficacy and capacity of using constructed wetlands on industrial pollutant removal. Four parallel pilot-scale modified free water surface (FWS) constructed wetland systems [dimension for each system: 4-m (L)x1-m (W)x1-m (D)] were installed inside an industrial park for conducting the proposed treatability study. The averaged influent contains approximately 170 mg l(-1) chemical oxygen demand (COD), 80 mg l(-1) biochemical oxygen demand (BOD), 90 mg l(-1) suspend solid (SS), and 32 mg l(-1) NH(3)-N. In the plant-selection study, four different wetland plant species including floating plants [Pistia stratiotes L. (P. stratiotes) and Ipomoea aquatica (I. aquatica)] and emergent plants [Phragmites communis L. (P. communis) and Typha orientalis Presl. (T. orientalis)] were evaluated. Results show that only the emergent plant (P. communis) could survive and reproduce with a continuous feed of 0.4m(3)d(-1) of the raw wastewater. Thus, P. communis was used in the subsequent treatment study. Two different control parameters including hydraulic retention time (HRT) (3, 5, and 7d) and media [vesicles ceramic bioballs and small gravels, 1cm in diameter] were examined in the treatment study. Results indicate that the system with a 5-d HRT (feed rate of 0.4m(3)d(-1)) and vesicles ceramic bioballs as the media had the acceptable and optimal pollutant removal efficiency. If operated under conditions of the above parameters, the pilot-plant wetland system can achieve removal of 61% COD, 89% BOD, 81% SS, 35% TP, and 56% NH(3)-N. The treated wastewater meets the current industrial wastewater discharge standards in Taiwan. PMID:16413595

  1. Specifically Designed Constructed Wetlands: A Novel Treatment Approach for Scrubber Wastewater

    SciTech Connect

    John H. Rodgers Jr; James W. Castle; Chris Arrington: Derek Eggert; Meg Iannacone

    2005-09-01

    A pilot-scale wetland treatment system was specifically designed and constructed at Clemson University to evaluate removal of mercury, selenium, and other constituents from flue gas desulfurization (FGD) wastewater. Specific objectives of this research were: (1) to measure performance of a pilot-scale constructed wetland treatment system in terms of decreases in targeted constituents (Hg, Se and As) in the FGD wastewater from inflow to outflow; (2) to determine how the observed performance is achieved (both reactions and rates); and (3) to measure performance in terms of decreased bioavailability of these elements (i.e. toxicity of sediments in constructed wetlands and toxicity of outflow waters from the treatment system). Performance of the pilot-scale constructed wetland treatment systems was assessed using two criteria: anticipated NPDES permit levels and toxicity evaluations using two sentinel toxicity-testing organisms (Ceriodaphnia dubia and Pimephales promelas). These systems performed efficiently with varied inflow simulations of FGD wastewaters removing As, Hg, and Se concentrations below NPDES permit levels and reducing the toxicity of simulated FGD wastewater after treatment with the constructed wetland treatment systems. Sequential extraction procedures indicated that these elements (As, Hg, and Se) were bound to residual phases within sediments of these systems, which should limit their bioavailability to aquatic biota. Sediments collected from constructed wetland treatment systems were tested to observe toxicity to Hyalella azteca or Chironomus tetans. Complete survival (100%) was observed for H. azteca in all cells of the constructed wetland treatment system and C. tentans had an average of 91% survival over the three treatment cells containing sediments. Survival and growth of H. azteca and C. tentans did not differ significantly between sediments from the constructed wetland treatment system and controls. Since the sediments of the constructed

  2. [Water treatment efficiency of constructed wetland plant-bed/ditch systems].

    PubMed

    Wang, Zhong-Qiong; Zhang, Rong-Bin; Chen, Qing-Hua; Wei, Hong-Bin; Wang, Wei-Dong

    2012-11-01

    proposed to maintain the tradeoff balance between the potential release and maximization of wetland treatment efficiency and the treated water amount, such as constructing or modifying the hydraulic structures to regulate flow amount through large ditch, redistributing water flow and increasing the water head difference between the two sides of alternate small ditches. PMID:23323409

  3. Mosquito production from four constructed treatment wetlands in peninsular Florida.

    PubMed

    Rey, Jorge R; O'Meara, George F; O'Connell, Sheila M; Cutwa-Francis, Michele M

    2006-06-01

    Several techniques were used to sample adult and immature mosquitoes in 4 constructed treatment wetlands in Florida. Adults of 19 species (7 genera) of mosquitoes were collected, and immatures of the most abundant species and of 60% of all species also were collected. Few significant differences between sites and stations in the numbers of mosquitoes collected were discovered. Culex nigripalpus Theobald was the most abundant mosquito found in adult (carbon dioxide-baited suction traps) and ovitrap collections, whereas Mansonia spp. and Uranotaenia spp. were most common in pump-dip-grab samples. The roles of rooted and floating vegetation and of water quality in determining mosquito production from these areas are discussed. PMID:17019764

  4. Atrazine degradation by bioaugmented sediment from constructed wetlands.

    PubMed

    Runes, H B; Jenkins, J J; Bottomley, P J

    2001-10-01

    The potential to establish pesticide biodegradation in constructed wetland sediment was investigated. Under microcosm conditions, bioaugmentation of sediment with small quantities of an atrazine spill-site soil (1:100 w/w) resulted in the mineralization of 25-30% of 14C ethyl atrazine (1-10 microg g(-1) sediment) as 14CO2 under both unsaturated and water-saturated conditions; atrazine and its common metabolites were almost undetectable after 30 days incubation. By comparison, unbioaugmented sediment supplemented with organic amendments (cellulose or cattail leaves) mineralized only 2-3% of 14C ethyl atrazine, and extractable atrazine and its common metabolites comprised approximately 70% of the original application. The population density of atrazine-degrading microorganisms in unbioaugmented sediment was increased from approximately 10(2)/g to 10(4)/g by bioaugmentation (1:100 w/w), and increased by another 60-fold (6.0x10(5) g(-1)) after incubation with 10 microg g(-1) of atrazine. A high population of atrazine degraders (approximately 10(6) g(-1)) and enhanced rates of atrazine mineralization also developed in bioaugmented sediment after incubation in flooded mesocosms planted with cattails (Typha latifolia) and supplemented with atrazine (3.2 mg l(-1), 1 microg g(-1) sediment). In the absence of atrazine, neither the population of atrazine degraders, nor the atrazine mineralizing potential of bioaugmented sediment increased, regardless of the presence or absence of cattails. Bioaugmentation might be a simple method to promote pesticide degradation in nursery run-off channeled through constructed wetlands, if persistence of degraders in the absence of pesticide is not a serious constraint. PMID:11759697

  5. Use of vetiver grass constructed wetland for treatment of leachate.

    PubMed

    Bwire, K M; Njau, K N; Minja, R J A

    2011-01-01

    Performance of Constructed Wetland planted with vetiver grasses for the treatment of leachate was investigated in controlled experiments involving horizontal subsurface flow constructed wetland (HSSFCW). The HSSFCW experimental unit had two cells, one planted with vetiver grasses and another bare. Both units were packed with limestone gravel as substrate and were operated with equal hydraulic loading and hydraulic retention time. Collected samples of influents and effluents were analysed for COD, Cr, Pb, Fe and pH. The results showed that vetiver grasses tolerated leachate with high loading of COD up to 14,000 mg L(-1). The planted cell outperformed the unplanted cell in terms of COD, Cr, Pb and Fe removal. The systems showed optimum points for COD and Pb removal as a function of feed concentrations. The optimum COD removal values of 210 mgm(-2) day(-1) at feed COD concentration of 11,200 mg COD L(-1) and 89 mgm(-2) day(-1) at feed concentration of 7,200 mg COD L(-1) were obtained for planted and unplanted cells respectively. Similarly Pb removal values of 0.0132 mgm(-2) day(-1) at 1.0 mg Pb L(-1) and 0.0052 mgm(-2) day(-1) at 1.04 mgPb L(-1) were obtained for planted and unplanted units respectively. Removal of Fe as a function of feed Fe concentration showed a parabolic behaviour but Cr removal showed linear behaviour with feed Cr concentrations in both units. The system showed very good removal efficiencies with Cr and Fe but poor efficiencies were recorded for Pb. PMID:21411942

  6. Treatment of laboratory wastewater in a tropical constructed wetland comparing surface and subsurface flow.

    PubMed

    Meutia, A A

    2001-01-01

    Wastewater treatment by constructed wetland is an appropriate technology for tropical developing countries like Indonesia because it is inexpensive, easily maintained, and has environmentally friendly and sustainable characteristics. The aim of the research is to examine the capability of constructed wetlands for treating laboratory wastewater at our Center, to investigate the suitable flow for treatment, namely vertical subsurface or horizontal surface flow, and to study the effect of the seasons. The constructed wetland is composed of three chambered unplanted sedimentation tanks followed by the first and second beds, containing gravel and sand, planted with Typha sp.; the third bed planted with floating plant Lemna sp.; and a clarifier with two chambers. The results showed that the subsurface flow in the dry season removed 95% organic carbon (COD) and total phosphorus (T-P) respectively, and 82% total nitrogen (T-N). In the transition period from the dry season to the rainy season, COD removal efficiency decreased to 73%, T-N increased to 89%, and T-P was almost the same as that in the dry season. In the rainy season COD and T-N removal efficiencies increased again to 95% respectively, while T-P remained unchanged. In the dry season, COD and T-P concentrations in the surface flow showed that the removal efficiencies were a bit lower than those in the subsurface flow. Moreover, T-N removal efficiency was only half as much as that in the subsurface flow. However, in the transition period, COD removal efficiency decreased to 29%, while T-N increased to 74% and T-P was still constant, around 93%. In the rainy season, COD and T-N removal efficiencies increased again to almost 95%. On the other hand, T-P decreased to 76%. The results show that the constructed wetland is capable of treating the laboratory wastewater. The subsurface flow is more suitable for treatment than the surface flow, and the seasonal changes have effects on the removal efficiency. PMID:11804141

  7. Phytoremediation of explosives contaminated groundwater in constructed wetlands: 2. Flow through study. Draft report

    SciTech Connect

    DBehrends, L.L.; Sikora, F.J.; Phillips, W.D.; Baily, E.; McDonald, C.

    1996-02-01

    This study evaluates the utility of constructed wetlands for remediating explosives contaminated groundwaters using bench scale flow-through type reactors. Specifially the study examines: the degradation of TNT, TNB, RDX, and HMX in contaminated waters in plant lagoons and gravel-based wetlands. The study also provides design recommendations for the wetland demonstration project to be located at the Milan Army Ammunition Plant (MAAP), in Tennessee.

  8. Enhancement of azo dye Acid Orange 7 removal in newly developed horizontal subsurface-flow constructed wetland.

    PubMed

    Tee, Heng-Chong; Lim, Poh-Eng; Seng, Chye-Eng; Mohd Nawi, Mohd Asri; Adnan, Rohana

    2015-01-01

    Horizontal subsurface-flow (HSF) constructed wetland incorporating baffles was developed to facilitate upflow and downflow conditions so that the treatment of pollutants could be achieved under multiple aerobic, anoxic and anaerobic conditions sequentially in the same wetland bed. The performances of the baffled and conventional HSF constructed wetlands, planted and unplanted, in the removal of azo dye Acid Orange 7 (AO7) were compared at the hydraulic retention times (HRT) of 5, 3 and 2 days when treating domestic wastewater spiked with AO7 concentration of 300 mg/L. The planted baffled unit was found to achieve 100%, 83% and 69% AO7 removal against 73%, 46% and 30% for the conventional unit at HRT of 5, 3 and 2 days, respectively. Longer flow path provided by baffled wetland units allowed more contact of the wastewater with the rhizomes, microbes and micro-aerobic zones resulting in relatively higher oxidation reduction potential (ORP) and enhanced performance as kinetic studies revealed faster AO7 biodegradation rate under aerobic condition. In addition, complete mineralization of AO7 was achieved in planted baffled wetland unit due to the availability of a combination of aerobic, anoxic and anaerobic conditions. PMID:25284799

  9. The role of plant uptake on the removal of organic matter and nutrients in subsurface flow constructed wetlands: a simulation study.

    PubMed

    Langergraber, G

    2005-01-01

    Plants in constructed wetlands have several functions related to the treatment processes. It is generally agreed that nutrient uptake is a minor factor in constructed wetlands treating wastewater compared to the loadings applied. For low loaded systems plant uptake can contribute a significant amount to nutrient removal. The contribution of plant uptake is simulated for different qualities of water to be treated using the multi-component reactive transport module CW2D. CW2D is able to describe the biochemical elimination and transformation processes for organic matter, nitrogen and phosphorus in subsurface flow constructed wetlands. The model for plant uptake implemented describes nutrient uptake coupled to water uptake. Literature values are used to calculate potential water and nutrient uptake rates. For a constructed wetland treating municipal wastewater a potential nutrient uptake of about 1.9% of the influent nitrogen and phosphorus load can be expected. For lower loaded systems the potential uptake is significantly higher, e.g. 46% of the nitrogen load for treatment of greywater. The potential uptake rates could only be simulated for high loaded systems i.e. constructed wetlands treating wastewater. For low loaded systems the nutrient concentrations in the liquid phase were too low to simulate the potential uptake rates using the implemented model for plant uptake. PMID:16042261

  10. Wineries wastewater treatment by constructed wetlands: a review.

    PubMed

    Masi, F; Rochereau, J; Troesch, S; Ruiz, I; Soto, M

    2015-01-01

    The application of wetland systems for the treatment of wineries wastewater started in the early 1990s in the USA followed a few years later by France, Italy, Germany and Spain. Various studies demonstrated the efficiency of constructed wetlands (CWs) as a low cost, low maintenance and energy-saving technology for the treatment of wineries wastewater. Several of these experiences have also shown lessons to be learnt, such as some limits in the tolerance of the horizontal subsurface flow and vertical subsurface flow classic CWs to the strength of the wineries wastewater, especially in the first stage for the multistage systems. This paper is presenting an overview of all the reported experiences at worldwide level during the last 15 years, giving particular attention and provision of details to those systems that have proven to get reliable and constant performances in the long-term period and that have been designed and realized as optimized solutions for the application of CW technology to this particular kind of wastewater. The organic loading rates (OLRs) applied to the examined 13 CW systems ranged from about 30 up to about 5,000 gCOD/m² d (COD: chemical oxygen demand), with the 80th percentile of the reported values being below 297 gCOD/m² d and the median at 164 gCOD/m² d; the highest OLR values have in all cases been measured during the peak season (vintage) and often have been linked to lower surface removal rates (SRRs) in comparison to the other periods of the year. With such OLRs the SRRs have ranged from a minimum of 15 up to 4,700 gCOD/m² d, with the 80th percentile of the reported values being below 308 gCOD/m² d and the median at 112 gCOD/m² d. PMID:25909720

  11. Evaluation of hydraulic characteristics in a pilot-scale constructed wetland using a multi-tracer experiment

    NASA Astrophysics Data System (ADS)

    Birkigt, Jan; Stumpp, Christine; Małoszewski, Piotr; Richnow, Hans H.; Nijenhuis, Ivonne

    2013-04-01

    In recent years, constructed wetland systems have become into focus as means for organic contaminant removal. The use of constructed wetlands as part of water treatment offers great opportunities to realize significant savings in future wastewater treatment costs for small communities and the adaptation of large wastewater treatment plants. Wetland systems provide a highly reactive environment in which several elimination pathways of organic chemicals may be present at the same time; however, these elimination processes and hydraulic conditions are usually poorly understood. Previously, in our study site monochlorobenzene removal was observed in a pilot-scale wetland system which treats contaminated groundwater from the regional aquifer in Bitterfeld. The degradation was linked to either aerobic or anaerobic, iron- or sulfate- reduction or multiple processes, in parallel. However, it was unclear how the groundwater flows through this system, precluding a more founded understanding of the flow and transport processes. Therefore, we investigated the flow system in this three dimensional pilot-scale constructed wetland applying a multi tracer test combined with a mathematical model to evaluate the hydraulic characteristics. The pilot system consisted of a 6 m length x 1 m wide x 0.5 m depth gravel filter with a triple inflow distributed evenly approx. 5 cm from the bottom at the inflow. Three conservative tracers (uranine, bromide and deuterium) were injected as a pulse at the inflow and analyzed at 4 meters distance from the inflow at three different depths to obtain residence time distributions of groundwater flow in the gravel bed of the wetland. A mathematical multi-flow dispersion model was used to model the tracer breakthrough curves of the different sampling levels, which assumes parallel combinations of the one-dimensional advection-dispersion equation. The model was successfully applied to fit the experimental tracer breakthrough curves by assuming three flow

  12. Changes in the Vegetation Cover in a Constructed Wetland at Argonne National Laboratory, Illinois

    SciTech Connect

    Bergman, C.L.; LaGory, K.

    2004-01-01

    Wetlands are valuable resources that are disappearing at an alarming rate. Land development has resulted in the destruction of wetlands for approximately 200 years. To combat this destruction, the federal government passed legislation that requires no net loss of wetlands. The United States Army Corps of Engineers (USACE) is responsible for regulating wetland disturbances. In 1991, the USACE determined that the construction of the Advanced Photon Source at Argonne National Laboratory would damage three wetlands that had a total area of one acre. Argonne was required to create a wetland of equal acreage to replace the damaged wetlands. For the first five years after this wetland was created (1992-1996), the frequency of plant species, relative cover, and water depth was closely monitored. The wetland was not monitored again until 2002. In 2003, the vegetation cover data were again collected with a similar methodology to previous years. The plant species were sampled using quadrats at randomly selected locations along transects throughout the wetland. The fifty sampling locations were monitored once in June and percent cover of each of the plant species was determined for each plot. Furthermore, the extent of standing water in the wetland was measured. In 2003, 21 species of plants were found and identified. Eleven species dominated the wetland, among which were reed canary grass (Phalaris arundinacea), crown vetch (Coronilla varia), and Canada thistle (Cirsium arvense). These species are all non-native, invasive species. In the previous year, 30 species were found in the same wetland. The common species varied from the 2002 study but still had these non-native species in common. Reed canary grass and Canada thistle both increased by more than 100% from 2002. Unfortunately, the non-native species may be contributing to the loss of biodiversity in the wetland. In the future, control measures should be taken to ensure the establishment of more desired native species.

  13. Using stable isotopes of water and strontium to investigate the hydrology of a natural and a constructed wetland

    USGS Publications Warehouse

    Hunt, R.J.; Bullen, T.D.; Krabbenhoft, D.P.; Kendall, C.

    1998-01-01

    Wetlands cannot exist without water, but wetland hydrology is difficult to characterize. As a result, compensatory wetland mitigation often only assumes the proper hydrology has been created. In this study, water sources and mass transfer processes in a natural and constructed wetland complex were investigated using isotopes of water and strontium. Water isotope profiles in the saturated zone revealed that the natural wetland and one site in the constructed wetland were primarily fed by ground water; profiles in another constructed wetland site showed recent rain was the predominant source of water in the root zone. Water isotopes in the capillary fringe indicated that the residence time for rain is less in the natural wetland than in the constructed wetland, thus transpiration (an important water sink) was greater in the natural wetland. Strontium isotopes showed a systematic difference between the natural and constructed wetlands that we attribute to the presence or absence of peat. In the peat-rich natural wetland, ??87Sr in the pore water increased along the flowline due to preferential weathering of minerals containing radiogenic Sr in response to elevated Fe concentrations in the water. In the constructed wetland, where peat thickness was thin and Fe concentrations in water were negligible, ??87Sr did not increase along the flowline. The source of the peat (on-site or off-site derived) applied in the constructed wetland controlled the ??87Sr at the top of the profile, but the effects were restricted by strong cation exchange in the underlying fluvial sediments. Based on the results of this study, neither constructed wetland site duplicated the water source and weathering environment of the adjoining natural wetland. Moreover, stable isotopes were shown to be effective tools for investigating wetlands and gaining insight not easily obtained using non-isotopic techniques. These tools have potential widespread application to wetlands that have distinct isotopic

  14. PREDICTING SUSTAINABLE GROUND WATER TO CONSTRUCTED RIPARIAN WETLANDS: SHAKER TRACE, OHIO, USA

    EPA Science Inventory

    Water isotopy is introduced as a best management practice for the prediction of sustained ground water inflows to prospective constructed wetlands. A primer and application of the stable isotopes, 18O and 2H, are discussed for riparian wetland restoration ar...

  15. Carbon sequestration in surface flow constructed wetland after 12 years of swine wastewater treatment

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Constructed wetlands used for the treatment of swine wastewater may potentially sequester significant amounts of carbon. In past studies, we evaluated the treatment efficiency of wastewater in marsh-pond-marsh design wetland system. The functionality of this system was highly dependent on soil carbo...

  16. Using stable isotopes of water and strontium to investigate the hydrology of a natural and a constructed wetland

    SciTech Connect

    Hunt, R.J.; Krabbenhoft, D.P.; Bullen, T.D.; Kendall, C.

    1998-05-01

    Wetlands cannot exist without water, but wetland hydrology is difficult to characterize. In this study, water sources and mass transfer processes in a natural and constructed wetland complex were investigated using isotopes of water and strontium. Water isotope profiles in the saturated zone revealed that the natural wetland and one site in the constructed wetland were primarily fed by ground water; profiles in another constructed wetland site showed recent rain was the predominant source of water in the root zone. Water isotopes in the capillary fringe indicated that the residence time for rain is less in the natural wetland than in the constructed wetland, thus transpiration (an important water sink) was greater in the natural wetland. Strontium isotopes showed a systematic difference between the natural and constructed wetlands that the authors attribute to the presence or absence of peat. In the peat-rich natural wetland, {delta}{sup 87}Sr in the pore water increased along the flowline due to preferential weathering of minerals containing radiogenic Sr in response to elevated Fe concentrations in the water. In the constructed wetland, where peak thickness was thin and Fe concentrations in water were negligible, {delta}{sup 87}Sr did not increase along the flowline. The source of the pea (on-site or off-site derived) applied in the constructed wetland controlled the {delta}{sup 87}Sr at the top of the profile, but the effects were restricted by strong cation exchange in the underlying fluvial sediments. Based on the results of this study, neither constructed wetland site duplicated the water source and weathering environment of the adjoining natural wetland. Moreover, stable isotopes were shown to be effective tools for investigating wetlands and gaining insight not easily obtained using non-isotopic techniques. These tools have potential widespread application to wetlands that have distinct isotopic endmember sources.

  17. Field test results for nitrogen removal by the constructed wetland component of an agricultural water recycling system

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Wetland Reservoir Subirrigation Systems (WRSIS) are innovative agricultural water recycling systems that can provide economic and environmental benefits. A constructed wetland is a main component of WRSIS, and an important function of this constructed wetland is drainage water treatment of nitrog...

  18. Emission of N2O and CH4 from a constructed wetland in southeastern Norway.

    PubMed

    Søvik, A K; Kløve, B

    2007-07-15

    The Skjønhaug constructed wetland (CW) is a free surface water (FSW) wetland polishing chemically treated municipal wastewater in southeastern Norway and consists of three ponds as well as trickling, unsaturated filters with light weight aggregates (LWA). Fluxes of nitrous oxide (N(2)O) and methane (CH(4)) have been measured during the autumn, winter and summer from all three ponds as well as from the unsaturated filters. Physicochemical parameters of the water have been measured at the same localities. The large temporal and spatial variation of N(2)O fluxes was found to cover a range of -0.49 to 110 mg N(2)O-N m(-2) day(-1), while the fluxes of CH(4) was found to cover a range of -1.2 to 1900 mg m(-2) day(-1). Thus, both emission and consumption occurred. Regarding fluxes of N(2)O there was a significant difference between the summer, winter and autumn, with the highest emissions occurring during the autumn. The fluxes of CH(4) were, on the other hand, not significantly different with regard to seasons. Both the emissions of N(2)O and CH(4) were positively influenced by the amount of total organic carbon (TOC). The measured fluxes of N(2)O and CH(4) are in the same range as those reported from other CWs treating wastewater. There was an approximately equal contribution to the global warming potential from N(2)O and CH(4). PMID:17204306

  19. Treatment of swine wastewater in marsh-pond-marsh constructed wetlands.

    PubMed

    Reddy, G B; Hunt, P G; Phillips, R; Stone, K; Grubbs, A

    2001-01-01

    Swine waste is commonly treated in the USA by flushing into an anaerobic lagoon and subsequently applying to land. This natural system type of application has been part of agricultural practice for many years. However, it is currently under scrutiny by regulators. An alternate natural system technology to treat swine wastewater may be constructed wetland. For this study we used four wetland cells (11 m width x 40 m length) with a marsh-pond-marsh design. The marsh sections were planted to cattail (Typha latifolia, L.) and bulrushes (Scirpus americanus). Two cells were loaded with 16 kg N ha(-1) day(-1) with a detention of 21 days. They removed 51% of the added N. Two additional cells were loaded with 32 kg ha(-1) day(-1) with 10.5 days detention. These cells removed only 37% of the added N. However, treatment operations included cold months in which treatment was much less efficient. Removal of N was moderately correlated with the temperature. During the warmer periods removal efficiencies were more consistent with the high removal rates reported for continuous marsh systems--often > than 70%. Phosphorus removal ranged from 30 to 45%. Aquatic macrophytes (plants and floating) assimilated about 320 and 35 kg ha(-1), respectively of N and P. PMID:11804147

  20. STORMWATER TREATMENT: WET/DRY PONDS VS. CONSTRUCTED WETLANDS

    EPA Science Inventory

    Extant data were used to assess the relative effectiveness of ponds vs. wetland-type BMPs. Compared to wet ponds, wetlands tended toward higher constituent concentrations in effluent, were inefficient at nitrogen removal, and appeared to preferentially retain phosphorous. These d...

  1. Effects of Road De-icing Salts in Constructed Wetlands

    NASA Astrophysics Data System (ADS)

    Silver, P.

    2005-05-01

    In November 2003, a 4-lane highway and 6 mitigation wetlands were opened across the Penn State campus, Erie, Pennsylvania. Road runoff overflows into 1 wetland (T3), and another (R3) receives salt spray and plowed snow. I have logged conductivity and temperature hourly at the sediment-water interface in R3 and T3 since January 2004, and I measure conductivity, temperature, and chironomid density biweekly in all 6 wetlands. Salinity in the wetlands that receive no salt is 0 psu. Biweekly checks of conductivity grossly underestimated winter salinities in T3 and R3. Between January and March 2004, salinity was >5 psu 5 times in R3, and >10 psu 6 times and >30 psu twice in T3. Flushing rates were similar in both wetlands, but time constants were significantly greater in T3 than R3. Salinities returned to 0 psu in both wetlands in May. Chironomid density was significantly lower in T3 than in all other wetlands in summer and autumn, long after salinities at the sediment-water interface returned to 0. Thus, chironomid densities indicated persistent biological effects of de-icers even when measurable salinities were 0 psu. Winter 2005 data show decreasing chironomid density in T3, whereas densities are increasing in the other wetlands.

  2. Application of a constructed wetland for non-point source pollution control.

    PubMed

    Kao, C M; Wang, J Y; Lee, H Y; Wen, C K

    2001-01-01

    In Taiwan, non-point source (NPS) pollution is one of the major causes of impairment of surface waters. The main objective of this study was to evaluate the efficacy of using constructed wetlands on NPS pollutant removal and water quality improvements. A field-scale constructed wetland system was built inside the campus of National Sun Yat-Sen University (located in southern Taiwan) to remove (1) NPS pollutants due to the stormwater runoff, and (2) part of the untreated wastewater from school drains. The constructed wetland was 40 m (L) x 30 m (W) x 1 m (D), which received approximately 85 m3 per day of untreated wastewater from school drainage pipes. The plants grown on the wetland included floating (Pistia stratiotes L.) and emergent (Phragmites communis L.) species. One major storm event and baseline water quality samples were analyzed during the monitoring period. Analytical results indicate that the constructed wetland removed a significant amount of NPS pollutants and wastewater constituents. More than 88% of nitrogen, 81% of chemical oxygen demand (COD), 85% of heavy metals, and 60% of the total suspended solids (TSS) caused by the storm runoff were removed by the wetland system before discharging. Results from this study may be applied to the design of constructed wetlands for NPS pollution control and water quality improvement. PMID:11804154

  3. Comparison of horizontal and vertical constructed wetland systems for landfill leachate treatment.

    PubMed

    Yalcuk, Arda; Ugurlu, Aysenur

    2009-05-01

    The main purpose of this study was to treat organic pollution, ammonia and heavy metals present in landfill leachate by the use of constructed wetland systems and to quantify the effect of feeding mode. The effect of different bedding material (gravel and zeolite surface) was also investigated. A pilot-scale study was conducted on subsurface flow constructed wetland systems operated in vertical and horizontal mode. Two vertical systems differed from each other with their bedding material. The systems were planted with cattail (Typha latifolia) and operated identically at a flow rate of 10 l/day and hydraulic retention times of 11.8 and 12.5 day in vertical 1, vertical 2 and horizontal systems, respectively. Concentration based average removal efficiencies for VF1, VF2 and HF were NH(4)-N, 62.3%, 48.9% and 38.3%; COD, 27.3%, 30.6% and 35.7%; PO(4)-P, 52.6%, 51.9% and 46.7%; Fe(III), 21%, 40% and 17%, respectively. Better NH(4)-N removal performance was observed in the vertical system with zeolite layer than that of the vertical 2 and horizontal system. In contrast, horizontal system was more effective in COD removal. PMID:19157867

  4. Alternative organic substrates in constructed wetlands: Preliminary results of batch examination

    SciTech Connect

    Mercer, M.N.; Nairn, R.W.

    1999-07-01

    Bacterial sulfate reduction (BSR) can be a major contributor to the generation of alkalinity in some acid mine drainage (AMD) passive treatment systems. BSR requires anaerobic conditions, adequate sulfate concentrations, pH >4, and sufficient labile organic carbon. Hundreds of compost wetlands containing organic substrates have been constructed to treat AMD over the past two decades. Spent mushroom substrate (SMS) has been the most common substrate utilized, in part because of its ready availability in the Northern Appalachian coalfields. In areas where SMS is not readily accessible, such as the southeastern Oklahoma coal mining regions, alternative organic substrates are needed for the construction of effective passive treatment systems. This study examines the possibility of using several alternative organic substrates in AMD treatment wetlands for the generation of alkalinity. Alternative substrates were chosen due to their local availability and abundance. Water quality changes were monitored in microcosms containing six organic substrates (SMS, 100% horse manure, 100% cow manure, a horse manure/sawdust/straw mixture, an 80% cow manure/20% sawdust mixture by mass, and broiler house chicken litter) in bench-scale, batch experiments over a period of two months.

  5. Treatment performance of a constructed wetland during storm and non-storm events in Korea.

    PubMed

    Maniquiz, M C; Lee, S Y; Choi, J Y; Jeong, S M; Kim, L H

    2012-01-01

    The efficiency of a free water surface flow constructed wetland (CW) in treating agricultural discharges from stream was investigated during storm and non-storm events between April and December, 2009. Physico-chemical and water quality constituents were monitored at five sampling locations along the flow path of the CW. The greatest reduction in pollutant concentration was observed after passing the sedimentation zone at approximately 4% fractional distance from the inflow. The inflow hydraulic loading, flow rates and pollutant concentrations were significantly higher and variable during storm events than non-storm (baseflow) condition (p <0.001) that resulted to an increase in the average pollutant removal efficiencies by 10 to 35%. The highest removal percentages were attained for phosphate (51 ± 22%), ammonium (44 ± 21%) and phosphorus (38 ± 19%) while nitrate was least effectively retained by the system with only 25 ± 17% removal during non-storm events. The efficiency of the system was most favorable when the temperature was above 15 °C (i.e., almost year-round except the winter months) and during storm events. Overall, the outflow water quality was better than the inflow water quality signifying the potential of the constructed wetland as a treatment system and capability of improving the stream water quality. PMID:22173415

  6. [Treatment characteristics of saline domestic wastewater by constructed wetland].

    PubMed

    Gao, Feng; Yang, Zhao-Hui; Li, Chen; Jin, Wei-Hong; Deng, Yi-Bing

    2012-11-01

    A series of experiments were conducted to evaluate the feasibility of using constructed wetland (CW) to remove pollutants from saline domestic sewage. The experimental results indicated that the effects of salinity on the contaminant removal were insignificant when the influent salinities of the CWs were less than or equal to 1.5%. For the influent salinity of 0%, 0.5%, 1.0% and 1.5%, the average removal rates of the CWs were found to be above 68.3% for COD and above 66.1% for NH4(+) -N. When the influent salinity was increased to 2.0%, the individual numbers of microorganisms in the CW reduced obviously. It was similar to the change of the soil enzyme activity in the CW. Then the removal efficiency of the CW also dropped significantly. The average removal rate of COD and NH4(+) -N dropped to 52.9% and 50.3%, respectively. The effects of HRT on the treatment performance of CW under the saline condition of 1.5% were also investigated in this study. And the results showed that nitrogen removal was more greatly affected by HRT than organic matter removal. The NH4(+) -N removal efficiency in CW decreased from 65.1% -78.2% to 47.1% when the HRT of the CW varied from 3-5 d to 2 d. PMID:23323411

  7. EVALUATION OF CONSTRUCTED WETLAND AND RETENTION POND BMPS FOR ATTENUATING MICROBIAL CONTAMINANTS IN URBAN STORMWATER RUNOFF

    EPA Science Inventory

    This project investigated the use of constructed wetlands and retention ponds for decreasing microbial concentrations from urban stormwater runoff. Increased urbanization has resulted in a larger percentage of impervious areas which cause large quantities of stormwater runoff an...

  8. Sequential nitrification/identification in subsurface flow constructed wetlands. A literature review. Master's thesis

    SciTech Connect

    Titus, F.W.

    1992-12-01

    Even though there is currently no consensus on the design of subsurface flow constructed wetlands, the ability of constructed wetlands to meet municipal wastewater requirements is well documented. Nitrogen removal appears from the existing performance data to be one of the primary problems with these systems. The negative effects of excessive levels of nitrogen on the aquatic environment include eutrophication of receiving waters and the increased risk of methemoglobinemia in human infants where elevated levels of nitrate (NO3-) or nitrite (NO2-) nitrogen are present in drinking water supplies. The performance of constructed wetlands for nitrogen removal, at best, can be rated poor to fair. As a result of the negative effects of excessive nitrogen on the environment and the problems with constructed wetlands in consistently removing nitrogen to within acceptable levels, this report will be directed towards the sequential nitrification/denitrification process.

  9. EVALUATION OF STRESSOR ATTENUATION THROUGH A CONSTRUCTED WETLAND HALFWAY CREEK WATERSHED LA CROSSE, WISCONSIN

    EPA Science Inventory

    Human activities in watersheds can cause flooding and the release of nonpoint source pollutants that can threaten life, damage property and degrade the ecological health of source pollution. The effectiveness of constructed wetlands for attenuating flooding and pollutants is sign...

  10. Evaluation of recharge to the Skunk Creek Aquifer from a constructed wetland near Lyons, South Dakota

    USGS Publications Warehouse

    Thompson, Ryan F.

    2002-01-01

    A wetland was constructed in the Skunk Creek flood plain near Lyons in southeast South Dakota to mitigate for wetland areas that were filled during construction of a municipal golf course for the city of Sioux Falls. A water-rights permit was obtained to allow the city to pump water from Skunk Creek into the wetland during times when the wetland would be dry. The amount of water seeping through the wetland and recharging the underlying Skunk Creek aquifer was not known. The U.S. Geological Survey, in cooperation with the city of Sioux Falls, conducted a study during 1997-2000 to evaluate recharge to the Skunk Creek aquifer from the constructed wetland. Three methods were used to estimate recharge from the wetland to the aquifer: (1) analysis of the rate of water-level decline during periods of no inflow; (2) flow-net analysis; and (3) analysis of the hydrologic budget. The hydrologic budget also was used to evaluate the efficiency of recharge from the wetland to the aquifer. Recharge rates estimated by analysis of shut-off events ranged from 0.21 to 0.82 foot per day, but these estimates may be influenced by possible errors in volume calculations. Recharge rates determined by flow-net analysis were calculated using selected values of hydraulic conductivity and ranged from 566,000 gallons per day using a hydraulic conductivity of 0.5 foot per day to 1,684,000 gallons per day using a hydraulic conductivity of 1.0 foot per day. Recharge rates from the hydrologic budget varied from 0.74 to 0.85 foot per day, and averaged 0.79 foot per day. The amount of water lost to evapotranspiration at the study wetland is very small compared to the amount of water seeping from the wetland into the aquifer. Based on the hydrologic budget, the average recharge efficiency was estimated as 97.9 percent, which indicates that recharging the Skunk Creek aquifer by pumping water into the study wetland is highly efficient. Because the Skunk Creek aquifer is composed of sand and gravel, the

  11. Examination of oxygen release from plants in constructed wetlands in different stages of wetland plant life cycle.

    PubMed

    Zhang, Jian; Wu, Haiming; Hu, Zhen; Liang, Shuang; Fan, Jinlin

    2014-01-01

    The quantification of oxygen release by plants in different stages of wetland plant life cycle was made in this study. Results obtained from 1 year measurement in subsurface wetland microcosms demonstrated that oxygen release from Phragmites australis varied from 108.89 to 404.44 mg O₂/m(2)/d during the different periods from budding to dormancy. Plant species, substrate types, and culture solutions had a significant effect on the capacity of oxygen release of wetland plants. Oxygen supply by wetland plants was estimated to potentially support a removal of 300.37 mg COD/m(2)/d or 55.87 mg NH₄-N/m(2)/d. According to oxygen balance analysis, oxygen release by plants could provide 0.43-1.12% of biochemical oxygen demand in typical subsurface-flow constructed wetlands (CWs). This demonstrates that oxygen release of plants may be a potential source for pollutants removal especially in low-loaded CWs. The results make it possible to quantify the role of plants in wastewater purification. PMID:24777322

  12. Potential mining of lithium, beryllium and strontium from oilfield wastewater after enrichment in constructed wetlands and ponds.

    PubMed

    Schaller, Jörg; Headley, Tom; Prigent, Stephane; Breuer, Roman

    2014-09-15

    Shortages of resources (chemical elements) used by growing industrial activities require new techniques for their acquisition. A suitable technique could be the use of wetlands for the enrichment of elements from produced water of the oil industry. Oil industries produce very high amounts of water in the course of oil mining. These waters may contain high amounts of rare elements. To our best knowledge nothing is known about the economic potential regarding rare element mining from produced water. Therefore, we estimated the amount of harvestable rare elements remaining in the effluent of a constructed wetland-pond system which is being used to treat and evaporate vast quantities of produced waters. The examined wetland system is located in the desert of the south-eastern Arabian Peninsula. This system manages 95,000 m(3) per day within 350 ha of surface flow wetlands and 350 ha of evaporation ponds and is designed to be used for at least 20 years. We found a strong enrichment of some chemical elements in the water pathway of the system (e.g. lithium up to 896 μg L(-1) and beryllium up to 139 μg L(-1)). For this wetland, lithium and beryllium are the elements with the highest economic potential resulting from a high price and load. It is calculated that after 20 years retention period 131 t of lithium and 57 t of beryllium could be harvested. This technique may also be useful for acquisition of rare earth elements. Other elements (e.g. strontium) with a high calculated load of 4500 tons in 20 years are not efficiently harvestable due to a relatively low market value. In conclusion, wetland treated waters from the oil industry offer a promising new acquisition technique for elements like lithium and beryllium. PMID:25010942

  13. The influence of urbanisation on macroinvertebrate biodiversity in constructed stormwater wetlands.

    PubMed

    Mackintosh, Teresa J; Davis, Jenny A; Thompson, Ross M

    2015-12-01

    The construction of wetlands in urban environments is primarily carried out to assist in the removal of contaminants from wastewaters; however, these wetlands have the added benefit of providing habitat for aquatic invertebrates, fish and waterbirds. Stormwater quantity and quality is directly related to impervious area (roads, sealed areas, roofs) in the catchment. As a consequence, it would be expected that impervious area would be related to contaminant load and biodiversity in receiving waters such as urban wetlands. This study aimed to establish whether the degree of urbanisation and its associated changes to stormwater runoff affected macroinvertebrate richness and abundance within constructed wetlands. Urban wetlands in Melbourne's west and south east were sampled along a gradient of urbanisation. There was a significant negative relationship between total imperviousness (TI) and the abundance of aquatic invertebrates detected for sites in the west, but not in the south east. However macroinvertebrate communities were relatively homogenous both within and between all study wetlands. Chironomidae (non-biting midges) was the most abundant family recorded at the majority of sites. Chironomids are able to tolerate a wide array of environmental conditions, including eutrophic and anoxic conditions. Their prevalence suggests that water quality is impaired in these systems, regardless of degree of urbanisation, although the causal mechanism is unclear. These results show some dependency between receiving wetland condition and the degree of urbanisation of the catchment, but suggest that other factors may be as important in determining the value of urban wetlands as habitat for wildlife. PMID:26245534

  14. Indicator pathogens, organic matter and LAS detergent removal from wastewater by constructed subsurface wetlands

    PubMed Central

    2014-01-01

    Background Constructed wetland is one of the natural methods of municipal and industrial wastewater treatments with low initial costs for construction and operation as well as easy maintenance. The main objective of this study is to determine the values of indicator bacteria removal, organic matter, TSS, ammonia and nitrate affecting the wetland removal efficiency. Results The average concentration of E. coli and total coliform in the input is 1.127 × 1014 and 4.41 × 1014 MPN/100 mL that reached 5.03 × 1012 and 1.13 × 1014 MPN/100 mL by reducing 95.5% and 74.4% in wetland 2. Fecal streptococcus reached from the average 5.88 × 1014 in raw wastewater to 9.69 × 1012 in the output of wetland 2. Wetland 2 could reduce 1.5 logarithmic units of E. coli. The removal efficiency of TSS for the wetlands is 68.87%, 71.4%, 57.3%, and 66% respectively. Conclusions The overall results show that wetlands in which herbs were planted had a high removal efficiency about the indicator pathogens, organic matter, LAS detergent in comparison to a control wetland (without canes) and could improve physicochemical parameters (DO, ammonia, nitrate, electrical conductivity, and pH) of wastewater. PMID:24581277

  15. Can Artificial Ecosystems Enhance Local Biodiversity? The Case of a Constructed Wetland in a Mediterranean Urban Context.

    PubMed

    De Martis, Gabriele; Mulas, Bonaria; Malavasi, Veronica; Marignani, Michela

    2016-05-01

    Constructed wetlands (CW) are considered a successful tool to treat wastewater in many countries: their success is mainly assessed observing the rate of pollution reduction, but CW can also contribute to the conservation of ecosystem services. Among the many ecosystem services provided, the biodiversity of CW has received less attention. The EcoSistema Filtro (ESF) of the Molentargius-Saline Regional Natural Park is a constructed wetland situated in Sardinia (Italy), built to filter treated wastewater, increase habitat diversity, and enhance local biodiversity. A floristic survey has been carried out yearly 1 year after the construction of the artificial ecosystem in 2004, observing the modification of the vascular flora composition in time. The flora of the ESF accounted for 54% of the whole Regional Park's flora; alien species amount to 12%; taxa of conservation concern are 6%. Comparing the data in the years, except for the biennium 2006/2007, we observed a continuous increase of species richness, together with an increase of endemics, species of conservation concern, and alien species too. Once the endemics appeared, they remained part of the flora, showing a good persistence in the artificial wetland. Included in a natural park, but trapped in a sprawling and fast growing urban context, this artificial ecosystem provides multiple uses, by preserving and enhancing biodiversity. This is particularly relevant considering that biodiversity can act as a driver of sustainable development in urban areas where most of the world's population lives and comes into direct contact with nature. PMID:26894617

  16. Can Artificial Ecosystems Enhance Local Biodiversity? The Case of a Constructed Wetland in a Mediterranean Urban Context

    NASA Astrophysics Data System (ADS)

    De Martis, Gabriele; Mulas, Bonaria; Malavasi, Veronica; Marignani, Michela

    2016-05-01

    Constructed wetlands (CW) are considered a successful tool to treat wastewater in many countries: their success is mainly assessed observing the rate of pollution reduction, but CW can also contribute to the conservation of ecosystem services. Among the many ecosystem services provided, the biodiversity of CW has received less attention. The EcoSistema Filtro (ESF) of the Molentargius-Saline Regional Natural Park is a constructed wetland situated in Sardinia (Italy), built to filter treated wastewater, increase habitat diversity, and enhance local biodiversity. A floristic survey has been carried out yearly 1 year after the construction of the artificial ecosystem in 2004, observing the modification of the vascular flora composition in time. The flora of the ESF accounted for 54 % of the whole Regional Park's flora; alien species amount to 12 %; taxa of conservation concern are 6 %. Comparing the data in the years, except for the biennium 2006/2007, we observed a continuous increase of species richness, together with an increase of endemics, species of conservation concern, and alien species too. Once the endemics appeared, they remained part of the flora, showing a good persistence in the artificial wetland. Included in a natural park, but trapped in a sprawling and fast growing urban context, this artificial ecosystem provides multiple uses, by preserving and enhancing biodiversity. This is particularly relevant considering that biodiversity can act as a driver of sustainable development in urban areas where most of the world's population lives and comes into direct contact with nature.

  17. Temperature effects on wastewater nitrate removal in laboratory-scale constructed wetlands

    SciTech Connect

    Wood, S.L.; Wheeler, E.F.; Berghage, R.D.; Graves, R.E.

    1999-02-01

    Constructed wetlands may be used for removal of high nutrient loads in greenhouse wastewater prior to discharge into the environment. Temperature affects both the physical and biological activities in wetland systems. Since nitrification and denitrification are temperature-dependent processes, effluent nitrate concentrations will fluctuate due to changes in air and wetland temperature. In a cold climate, constructed wetlands can function in a temperature-controlled, greenhouse environment year-round. This work evaluates four temperature treatments on nitrate removal rates in five planted and five unplanted laboratory-scale wetlands. Wetlands were supplied with a nutrient solution similar to the fertigation runoff solution (100 PPM nitrate-N) used in greenhouse crop production. A first-order kinetic model was used to describe experimental nitrate depletion data and to predict nitrate removal rate constants (k) in the wetlands planted with Iris pseudocoras. The negligible removal in unplanted wetlands was thought to be due to lack of carbon source in the fertigation solution. Between 19 and 23 C is planted systems, k increased from 0.062 to 0.077 h{sup {minus}1}, appeared to peak around 30 C (k = 0.184 h{sup {minus}1}), but decreased at 38 C (k = 0.099h{sup {minus}1}). Based on the Arrhenius equation, k was a first-order exponential function of temperature between 18 and 30 C in planted systems. Quantification of temperature effects on planted and unplanted laboratory-scale constructed wetlands can be sued to enhance the design and management of wastewater treatment wetlands.

  18. Biogeochemical Processes Related to Metal Removal and Toxicity Reduction in the H-02 Constructed Wetland, Savannah River Site

    NASA Astrophysics Data System (ADS)

    Burgess, E. A.; Mills, G. L.; Harmon, M.; Samarkin, V.

    2011-12-01

    The H-02 wetland system was designed to treat building process water and storm water runoff from multiple sources associated with the Tritium Facility at the DOE-Savannah River Site, Aiken, SC. The wetland construction included the addition of gypsum (calcium sulfate) to foster a sulfate-reducing bacterial population. Conceptually, the wetland functions as follows: ? Cu and Zn initially bind to both dissolved and particulate organic detritus within the wetland. ? A portion of this organic matter is subsequently deposited into the surface sediments within the wetland. ? The fraction of Cu and Zn that is discharged in the wetland effluent is organically complexed, less bioavailable, and consequently, less toxic. ? The Cu and Zn deposited in the surface sediments are eventually sequestered into insoluble sulfide minerals in the wetland. Development of the H-02 system has been closely monitored; sampling began in August 2007, shortly after its construction. This monitoring has included the measurement of water quality parameters, Cu and Zn concentrations in surface water and sediments, as well as, characterization of the prokaryotic (e.g., bacterial) component of wetland biogeochemical processes. Since the beginning of the study, the mean influent Cu concentration was 31.5±12.1 ppb and the mean effluent concentration was 11.9±7.3 ppb, corresponding to an average Cu removal of 64%. Zn concentrations were more variable, averaging 39.2±13.8 ppb in the influent and 25.7±21.3 ppb in the effluent. Average Zn removal was 52%. The wetland also ameliorated high pH values associated with influent water to values similar to those measured at reference sites. Seasonal variations in DOC concentration corresponded to seasonal variations in Cu and Zn removal efficiency. The concentration of Cu and Zn in the surface layer of the sediments has increased over the lifetime of the wetland and, like removal efficiency, demonstrated seasonal variation. Within its first year, the H-02

  19. Performance of Free Water Surface Constructed Wetland Using Typhalatifolia and Canna Lilies for the Treatment of Domestic Wastewater.

    PubMed

    Shrikhande, Avinash N; Nema, P; Mhaisalkar, Vasant A

    2014-01-01

    Discharge of untreated wastewater or partially treated wastewater into surface water bodies or on to land is a major cause of surface and ground water pollution thereby posing health hazards. Conventional wastewater treatment is generally not preferred for small communities due to higher capital and maintenance costs and lack of skilled supervision required for operation and maintenance. A constructed wetland treatment appears to be an appropriate alternative that can be employed both in developed and developing countries. A constructed wetland system is simple to construct and operate with low cost, and hence worth considering for the treatment of municipal wastewaters, especially from small communities. In this context, the site for carrying out the studies related to wastewater treatment was chosen at Kavikulguru Institute of Technology and Science (KITS), Ramtek, Dist. Nagpur. A Free Water Surface Constructed Wetland (FWSCW) of size 22.00m x 6.50 m x 0.60m was constructed at KITS, Ramtek. The performance of FWS CW system was studied for domestic wastewater treatment with theoretical hydraulic retention times of 10 days, 7 days and 5 days. Important parameters, such as BOD5, COD, TSS, NH4-N, PO4-P, DO, pH and faecal coliforms in both raw and treated wastewaters were monitored during a macrophytes life cycle. Based on the studies, it is concluded that minimum 5 days HRT is necessary for the treatment of wastewater in FWSCW using Typhalatifolia or Canna Lilies. Typhalatifolia is better in removal of pollutants from the wastewater in comparison to Canna Lilies and hence, is recommended for use in constructed wetland. The nutrient uptake capacity of Typhalatifolia is also quite encouraging and hence has great potential for application in treating wastewater from fertilizer industry. During the application of kinetic model, the observed and predicted values in respect of BOD, TSS and NH4-N in case of Typhalatifolia and BOD, COD and TSS in case of Canna Lilies were

  20. Operational, design and microbial aspects related to power production with microbial fuel cells implemented in constructed wetlands.

    PubMed

    Corbella, Clara; Guivernau, Miriam; Viñas, Marc; Puigagut, Jaume

    2015-11-01

    This work aimed at determining the amount of energy that can be harvested by implementing microbial fuel cells (MFC) in horizontal subsurface constructed wetlands (HSSF CWs) during the treatment of real domestic wastewater. To this aim, MFC were implemented in a pilot plant based on two HSSF CW, one fed with primary settled wastewater (Settler line) and the other fed with the effluent of a hydrolytic up-flow sludge blanket reactor (HUSB line). The eubacterial and archaeal community was profiled on wetland gravel, MFC electrodes and primary treated wastewater by means of 16S rRNA gene-based 454-pyrosequencing and qPCR of 16S rRNA and mcrA genes. Maximum current (219 mA/m(2)) and power (36 mW/m(2)) densities were obtained for the HUSB line. Power production pattern correlated well with water level fluctuations within the wetlands, whereas the type of primary treatment implemented had a significant impact on the diversity and relative abundance of eubacteria communities colonizing MFC. It is worth noticing the high predominance (13-16% of relative abundance) of one OTU belonging to Geobacter on active MFC of the HUSB line that was absent for the settler line MFC. Hence, MFC show promise for power production in constructed wetlands receiving the effluent of a HUSB reactor. PMID:26253894

  1. Application of vertical flow constructed wetland in treatment of heavy metals from pulp and paper industry wastewater.

    PubMed

    Arivoli, A; Mohanraj, R; Seenivasan, R

    2015-09-01

    The paper production is material intensive and generates enormous quantity of wastewater containing organic pollutants and heavy metals. Present study demonstrates the feasibility of constructed wetlands (CWs) to treat the heavy metals from pulp and paper industry effluent by using vertical flow constructed wetlands planted with commonly available macrophytes such as Typha angustifolia, Erianthus arundinaceus, and Phragmites australis. Results indicate that the removal efficiencies of the planted CWs for iron, copper, manganese, zinc, nickel, and cadmium were 74, 80, 60, 70, 71, and 70 %, respectively. On the other hand, the removal efficiency of the unplanted system was significantly lower ranging between 31 and 55 %. Among the macrophytes, T. angustifolia and E. arundinaceus exhibited comparatively higher bioconcentration factor (10(2) to 10(3)) than P. australis. PMID:25940487

  2. Influence of environmental variables on the structure and composition of soil bacterial communities in natural and constructed wetlands.

    PubMed

    Arroyo, Paula; Sáenz de Miera, Luis E; Ansola, Gemma

    2015-02-15

    Bacteria are key players in wetland ecosystems, however many essential aspects regarding the ecology of wetland bacterial communities remain unknown. The present study characterizes soil bacterial communities from natural and constructed wetlands through the pyrosequencing of 16S rDNA genes in order to evaluate the influence of wetland variables on bacterial community composition and structure. The results show that the composition of soil bacterial communities was significantly associated with the wetland type (natural or constructed wetland), the type of environment (lagoon, Typha or Salix) and three continuous parameters (SOM, COD and TKN). However, no clear associations were observed with soil pH. Bacterial diversity values were significantly lower in the constructed wetland with the highest inlet nutrient concentrations. The abundances of particular metabolic groups were also related to wetland characteristics. PMID:25460973

  3. Effluent blending in constructed wetlands: Pollution prevention applications at a coal yard treatment facility

    SciTech Connect

    Carder, J.P.; Hoylman, A.M.; Sparks, B.J.

    1995-12-31

    Effluent blending, in combination with constructed wetland biotechnology, is a promising method for reducing the loading rates of pollution to receiving streams. At Oak Ridge National Laboratory, a project is underway to demonstrate this principle. An 8:2 ratio of sewage treatment plant to coal yard runoff treatment facility (CYRTF) effluent will be polished by 2 constructed wetland cells containing emergent wetland plants in saturated pea gravel at a rate of 3600 gallons per day. The relatively high concentration of nutrients in the STP effluent should stimulate biological processes leading to the reduction of chemical oxygen demand and the conversion of excess sulfate (in the CYRTF effluent) to alkalinity. Chlorine, which is added to the STP effluent to control bacteria, should also be eliminated. Measurements of wastewater toxicity, before and after the effluent blend has passed through the constructed wetlands, will be used to assess the technology`s effectiveness at reducing pollution.

  4. Landowners' incentives for constructing wetlands in an agricultural area in south Sweden.

    PubMed

    Hansson, Anna; Pedersen, Eja; Weisner, Stefan E B

    2012-12-30

    Eutrophication of the Baltic Sea has in Sweden led to the initiation of government schemes aiming to increase wetland areas in agricultural regions and thereby reduce nutrient transport to the sea. Landowners play a significant role as providers of this ecosystem service and are currently offered subsidies to cover their costs for constructing and maintaining wetlands. We undertook a grounded theory study, in which landowners were interviewed, aiming at identifying landowners' incentives for constructing wetlands on their land. The study showed that adequate subsidies, additional services that the wetland could provide to the landowner, local environmental benefits, sufficient knowledge, and peers' good experiences could encourage landowners to construct wetlands. Perceived hindrances were burdensome management, deficient knowledge, time-consuming application procedures and unclear effectiveness of nutrient reduction. The main reason for not creating a wetland, however, was that the land was classified as productive by the landowner, i.e., suitable for food production. Current schemes are directed toward landowners as individuals and based on subsidies to cover costs. We propose that landowners instead are approached as ecosystem service entrepreneurs and contracted after a tendering process based on nutrient reduction effects. This would lead to new definitions of production and may stimulate improved design and placement of wetlands. PMID:23064246

  5. Remediation of abandoned mine sites using constructed wetlands: A Colorado perspective

    SciTech Connect

    Ganse, M.A.; Herron, J.T.

    1995-09-01

    In recent years, constructed wetlands have been used to remediate acid mine drainage which has resulted from both coal and metal mining activities. These wetlands are use din conjunction with other engineered components to create a passive mine drainage treatment system (PMDT). Passive systems are designed to remediate mine drainage using minimum capital expenditures and little to no operational and maintenance costs. The Colorado Division of Minerals and Geology (DMG) is responsible for the design, construction, and operation of constructed wetlands in Colorado. Only 5 systems are in existence at this time, located in terrain varying from gentle foothills to remote, sub-alpine mountains. The design of a wetland system is based on a multitude of factors such as site terrain and access, mine drainage composition, and in the Rocky Mountain region, altitude. The impact of altitude, climate, terrain, and other physical site constraints on each wetland design will be discussed. In addition, chemical issues critical to the design of each wetland such as pH and alkalinity will be presented. Finally, the performance of each wetland system will be examined.

  6. Constructed wetland as an ecotechnological tool for pollution treatment for conservation of Ganga river.

    PubMed

    Rai, U N; Tripathi, R D; Singh, N K; Upadhyay, A K; Dwivedi, S; Shukla, M K; Mallick, S; Singh, S N; Nautiyal, C S

    2013-11-01

    With aim to develop an efficient and ecofriendly approach for on-site treatment of sewage, a sub-surface flow constructed wetland (CW) has been developed by raising potential aquatic macrophytes; Typha latifolia, Phragmites australis, Colocasia esculenta, Polygonum hydropiper, Alternanthera sessilis and Pistia stratoites in gravel as medium. Sewage treatment potential of CW was evaluated by varying retention time at three different stages of plant growth and stabilization. After 6 months, monitoring of fully established CW indicated reduction of 90%, 65%, 78%, 84%, 76% and 86% of BOD, TSS, TDS, NO3-N, PO4-P and NH4-N, respectively in comparison to inlet after 36 h of retention time. Sewage treatment through CW also resulted in reduction of heavy metal contents. Thus, CW proved an effective method for treatment of wastewater and may be developed along river Ganga stretch as an alternative technology. Treated water may be drained into river to check further deterioration of Ganga water quality. PMID:24080292

  7. A review on the sustainability of constructed wetlands for wastewater treatment: Design and operation.

    PubMed

    Wu, Haiming; Zhang, Jian; Ngo, Huu Hao; Guo, Wenshan; Hu, Zhen; Liang, Shuang; Fan, Jinlin; Liu, Hai

    2015-01-01

    Constructed wetlands (CWs) have been used as a green technology to treat various wastewaters for several decades. CWs offer a land-intensive, low-energy, and less-operational-requirements alternative to conventional treatment systems, especially for small communities and remote locations. However, the sustainable operation and successful application of these systems remains a challenge. Hence, this paper aims to provide and inspire sustainable solutions for the performance and application of CWs by giving a comprehensive review of CWs' application and the recent development on their sustainable design and operation for wastewater treatment. Firstly, a brief summary on the definition, classification and application of current CWs was presented. The design parameters and operational conditions of CWs including plant species, substrate types, water depth, hydraulic load, hydraulic retention time and feeding mode related to the sustainable operation for wastewater treatments were then discussed. Lastly, future research on improving the stability and sustainability of CWs were highlighted. PMID:25453440

  8. Removal of antibiotics from urban wastewater by constructed wetland optimization.

    PubMed

    Hijosa-Valsero, María; Fink, Guido; Schlüsener, Michael P; Sidrach-Cardona, Ricardo; Martín-Villacorta, Javier; Ternes, Thomas; Bécares, Eloy

    2011-04-01

    Seven mesocosm-scale constructed wetlands (CWs), differing in their design characteristics, were set up in the open air to assess their efficiency to remove antibiotics from urban raw wastewater. A conventional wastewater treatment plant (WWTP) was simultaneously monitored. The experiment took place in autumn. An analytical methodology including HPLC-MS/MS was developed to measure antibiotic concentrations in the soluble water fraction, in the suspended solids fraction and in the WWTP sludge. Considering the soluble water fraction, the only easily eliminated antibiotics in the WWTP were doxycycline (61±38%) and sulfamethoxazole (60±26%). All the studied types of CWs were efficient for the removal of sulfamethoxazole (59±30-87±41%), as found in the WWTP, and, in addition, they removed trimethoprim (65±21-96±29%). The elimination of other antibiotics in CWs was limited by the specific system-configuration: amoxicillin (45±15%) was only eliminated by a free-water (FW) subsurface flow (SSF) CW planted with Typha angustifolia; doxycycline was removed in FW systems planted with T. angustifolia (65±34-75±40%), in a Phragmites australis-floating macrophytes system (62±31%) and in conventional horizontal SSF-systems (71±39%); clarithromycin was partially eliminated by an unplanted FW-SSF system (50±18%); erythromycin could only be removed by a P. australis-horizontal SSF system (64±30%); and ampicillin was eliminated by a T. angustifolia-floating macrophytes system (29±4%). Lincomycin was not removed by any of the systems (WWTP or CWs). The presence or absence of plants, the vegetal species (T. angustifolia or P. australis), the flow type and the CW design characteristics regulated the specific removal mechanisms. Therefore, CWs are not an overall solution to remove antibiotics from urban wastewater during cold seasons. However, more studies are needed to assess their ability in warmer periods and to determine the behaviour of full-scale systems. PMID:21356542

  9. Adaptive neuro-fuzzy inference system for real-time monitoring of integrated-constructed wetlands.

    PubMed

    Dzakpasu, Mawuli; Scholz, Miklas; McCarthy, Valerie; Jordan, Siobhán; Sani, Abdulkadir

    2015-01-01

    Monitoring large-scale treatment wetlands is costly and time-consuming, but required by regulators. Some analytical results are available only after 5 days or even longer. Thus, adaptive neuro-fuzzy inference system (ANFIS) models were developed to predict the effluent concentrations of 5-day biochemical oxygen demand (BOD5) and NH4-N from a full-scale integrated constructed wetland (ICW) treating domestic wastewater. The ANFIS models were developed and validated with a 4-year data set from the ICW system. Cost-effective, quicker and easier to measure variables were selected as the possible predictors based on their goodness of correlation with the outputs. A self-organizing neural network was applied to extract the most relevant input variables from all the possible input variables. Fuzzy subtractive clustering was used to identify the architecture of the ANFIS models and to optimize fuzzy rules, overall, improving the network performance. According to the findings, ANFIS could predict the effluent quality variation quite strongly. Effluent BOD5 and NH4-N concentrations were predicted relatively accurately by other effluent water quality parameters, which can be measured within a few hours. The simulated effluent BOD5 and NH4-N concentrations well fitted the measured concentrations, which was also supported by relatively low mean squared error. Thus, ANFIS can be useful for real-time monitoring and control of ICW systems. PMID:25607665

  10. Performance of subsurface flow constructed wetland taking pretreated swine effluent under heavy loads.

    PubMed

    Lee, Chi-Yuan; Lee, Chun-Chih; Lee, Fang-Yin; Tseng, Szu-Kung; Liao, Chiu-Jung

    2004-04-01

    Subsurface flow constructed wetlands (SSFCW) subjected to changing of loading rates are poorly understood, especially when used to treat swine waste under heavy loads. This study employed a SSFCW system to take pretreated swine effluent at three hydraulic retention times (HRT): 8.5-day HRT (Phase I), 4.3-day HRT (Phase II), and 14.7-day HRT (Phase III). Results showed that the system responded well to the changing hydraulic loads in removing suspended solids (SS) and carbonaceous oxygen demands. The averaged reduction efficiencies for four major constituents in the three phases were: SS 96-99%, chemical oxygen demand (COD) 77-84%, total phosphorus 47-59%, and total nitrogen (TN) 10-24%. While physical mechanisms were dominant in removing pollutants, the contributions of microbial mechanisms increased with the duration of wetland use, achieving 48% of COD removed and 16% of TN removed in the last phase. Water hyacinth made only a minimal contribution to the removal of nutrients. This study suggested that the effluent from SSFCW was appropriate for further treatment in land applications for nutrient assimilation. PMID:14693450