Sample records for containment atmosphere conditions-an

  1. Atmospheric Processing and Iron Mobilization of Ilmenite: Iron-Containing Ternary Oxide in Mineral Dust Aerosol.

    PubMed

    Hettiarachchi, Eshani; Hurab, Omar; Rubasinghege, Gayan

    2018-02-08

    Over the last several decades, iron has been identified as a limiting nutrient in about half of the world's oceans. Its most significant source is identified as deposited iron-containing mineral dust that has been processed during atmospheric transportation. The current work focuses on chemical and photochemical processing of iron-containing mineral dust particles in the presence of nitric acid, and an organic pollutant dimethyl sulfide under atmospherically relevant conditions. More importantly, ilmenite (FeTiO 3 ) is evaluated as a proxy for the iron-containing mineral dust. The presence of titanium in its lattice structure provides higher complexity to mimic mineral dust, yet it is simple enough to study reaction pathways and mechanisms. Here, spectroscopic methods are combined with dissolution measurements to investigate atmospheric processing of iron in mineral dust, with specific focus on particle mineralogy, particle size, and their environmental conditions (i.e., pH and solar flux). Our results indicate that the presence of titanium elemental composition enhances iron dissolution from mineral dust, at least by 2-fold comparison with its nontitanium-containing counterparts. The extent of iron dissolution and speciation is further influenced by the above factors. Thus, our work highlights these important, yet unconsidered, factors in the atmospheric processing of iron-containing mineral dust aerosol.

  2. Comparison of Dynamic Characteristics for an Inflatable Solar Concentrator in Atmospheric and Thermal Vacuum Conditions

    NASA Technical Reports Server (NTRS)

    Slade, Kara N.; Tinker, Michael L.; Lassiter, John O.; Engberg, Robert

    2000-01-01

    Dynamic testing of an inflatable solar concentrator structure in a thermal vacuum chamber as well as in ambient laboratory conditions is described in detail. Unique aspects of modal testing for the extremely lightweight inflatable are identified, including the use of a noncontacting laser vibrometer measurement system. For the thermal vacuum environment, mode shapes and frequency response functions are compared for three different test article inflation pressures at room temperature. Modes that persist through all the inflation pressure regimes are identified, as well as modes that are unique for each pressure. In atmospheric pressure and room temperature conditions, dynamic measurements were obtained for the expected operational inflation pressure of 0.5 psig. Experimental mode shapes and frequency response functions for ambient conditions are described and compared to the 0.5 psig results from the thermal vacuum tests. Only a few mode shapes were identified that occurred in both vacuum and atmospheric environments. This somewhat surprising result is discussed in detail, and attributed at least partly to 1.) large differences in modal damping, and 2.) significant differences in the mass of air contained by the structure, in the two environments. Results of this investigation point out the necessity of testing inflatable space structures in vacuum conditions before they can be launched. Ground testing in atmospheric pressure is not sufficient for predicting on-orbit dynamics of non-rigidized inflatable systems.

  3. OCEANET-Atmosphere - The Autonomous Measurement Container

    NASA Astrophysics Data System (ADS)

    Kalisch, John; Macke, Andreas; Althausen, Dietrich; Bumke, Karl; Engelmann, Ronny; Kanitz, Thomas; Kleta, Henry; Zoll, Yann

    2010-05-01

    OCEANET-Atmosphere is a joint venture project of IFM-GEOMAR and IFT to study the mass and energy transfer of ocean and atmosphere by introducing a special measurement container, which is suitable to perform a large spectrum of atmospheric underway measurements on offshore research vessels and cargo ships. The container combines state-of-the-art measurement devices and connect them to its own computer network to realize a comprehensive system for remote sensing. A Raman-lidar measures marine and anthropogenic optical aerosol properities by analyzing the elastic signal and the vibration-rotation Raman signal of nitrogen. Our passive microwave radiometer determines the integrated water vapor and the liquid water path of the atmospheric column, as well as vertical temperature and humidity profiles. Carbon dioxide is measured high-frequent. Turbulence measurements are performed by means of a sonic anemometer. In combination with fast humidity sensors the fluxes of momentum, latent and sensible heat are derived. An automatic full sky imager monitors the state of the cloudy sky. A selection of standard meteorological devices measure air temperature, humidity, wind velocity, wind speed and downward shortwave and longwave radiative fluxes. The GPS sensors register navigational data. For an almost real time monitoring of a data subset our telemetry system is sending short hourly data reports via satellite. OCEANET-Atmosphere is set up to improve the quantity and the quality of atmospheric data sets on intercontinental oceanic transects, where the previous data base is still weak. A first research mission has been performed onboard RV Polarstern at ANT XXVI/1.

  4. Synthetic spectra of simulated terrestrial atmospheres containing possible biomarker gases.

    PubMed

    Schindler, T L; Kasting, J F

    2000-05-01

    NASA's proposed Terrestrial Planet Finder, a space-based interferometer, will eventually allow spectroscopic analyses of the atmospheres of extrasolar planets. Such analyses would provide information about the existence of life on these planets. One strategy in the search for life is to look for evidence of O3 (and hence O2) in a planet's atmosphere; another is to look for gases that might be present in an atmosphere analogous to that of the inhabited early Earth. In order to investigate these possibilities, we have calculated synthetic spectra for several hypothetical terrestrial-type atmospheres. The model atmospheres represent four different scenarios. The first two, representing inhabited terrestrial planets, are an Earth-like atmosphere containing variable amounts of oxygen and an early Earth-type atmosphere containing methane. In addition, two cases representing Mars-like and early Venus-like atmospheres were evaluated, to provide possible "false positive" spectra. The calculated spectra suggest that ozone could be detected by an instrument like Terrestrial Planet Finder if the O2 concentration in the planet's atmosphere is > or = 200 ppm, or 10(-3) times the present atmospheric level. Methane should be observable on an early-Earth type planet if it is present in concentrations of 100 ppm or more. Methane has both biogenic and abiogenic sources, but concentrations exceeding 1000 ppm, or 0.1% by volume, would be difficult to produce from abiogenic sources alone. High methane concentrations in a planet's atmosphere are therefore another potential indicator for extraterrestrial life.

  5. Quality of Golden papaya stored under controlled atmosphere conditions.

    PubMed

    Martins, Derliane Ribeiro; de Resende, Eder Dutra

    2013-10-01

    This work evaluated physicochemical parameters of Golden papaya stored under refrigeration in controlled atmospheres. The fruits were kept at 13  in chambers containing either 3 or 6% O2 combined with 6%, 10% or 15% CO2. Moreover, a normal atmosphere was produced with 20.8% O2 and 0.03% CO2 with ethylene scrubbing, and a control treatment was used with ambient conditions. Evaluations were performed at the following times: before storage, after 30 days of storage in controlled atmosphere, and after removal from controlled atmosphere and storage for 7 days in the cold room. At the lower O2 levels and higher CO2 levels, the ripening rate was decreased. The drop in pulp acidity was avoided after 30 days of storage at 3% O2, but the fruits reached normal acidity after removal from controlled atmosphere and storage for 7 days in the cold room. The reducing sugars remained at a higher concentration after 30 days under 3% O2 and 15% CO2 even 7 days after removal from controlled atmosphere and storage in the cold room. This atmosphere also preserved the content of ascorbic acid at a higher level.

  6. Tracking near-surface atmospheric conditions using an infrasound network.

    PubMed

    Marcillo, O; Johnson, J B

    2010-07-01

    Continuous volcanic infrasound signal was recorded on a three-microphone network at Kilauea in July 2008 and inverted for near-surface horizontal winds. Inter-station phase delays, determined by signal cross-correlation, vary by up to 4% and are attributable to variable atmospheric conditions. The results suggest two predominant weather regimes during the study period: (1) 6-9 m/s easterly trade winds and (2) lower-intensity 2-5 m/s mountain breezes from Mauna Loa. The results demonstrate the potential of using infrasound for tracking local averaged meteorological conditions, which has implications for modeling plume dispersal and quantifying gas flux.

  7. Exoplanetary Atmospheres-Chemistry, Formation Conditions, and Habitability.

    PubMed

    Madhusudhan, Nikku; Agúndez, Marcelino; Moses, Julianne I; Hu, Yongyun

    2016-12-01

    Characterizing the atmospheres of extrasolar planets is the new frontier in exoplanetary science. The last two decades of exoplanet discoveries have revealed that exoplanets are very common and extremely diverse in their orbital and bulk properties. We now enter a new era as we begin to investigate the chemical diversity of exoplanets, their atmospheric and interior processes, and their formation conditions. Recent developments in the field have led to unprecedented advancements in our understanding of atmospheric chemistry of exoplanets and the implications for their formation conditions. We review these developments in the present work. We review in detail the theory of atmospheric chemistry in all classes of exoplanets discovered to date, from highly irradiated gas giants, ice giants, and super-Earths, to directly imaged giant planets at large orbital separations. We then review the observational detections of chemical species in exoplanetary atmospheres of these various types using different methods, including transit spectroscopy, Doppler spectroscopy, and direct imaging. In addition to chemical detections, we discuss the advances in determining chemical abundances in these atmospheres and how such abundances are being used to constrain exoplanetary formation conditions and migration mechanisms. Finally, we review recent theoretical work on the atmospheres of habitable exoplanets, followed by a discussion of future outlook of the field.

  8. Hygroscopic behavior of atmospheric aerosols containing nitrate salts and water-soluble organic acids

    NASA Astrophysics Data System (ADS)

    Jing, Bo; Wang, Zhen; Tan, Fang; Guo, Yucong; Tong, Shengrui; Wang, Weigang; Zhang, Yunhong; Ge, Maofa

    2018-04-01

    While nitrate salts have critical impacts on environmental effects of atmospheric aerosols, the effects of coexisting species on hygroscopicity of nitrate salts remain uncertain. The hygroscopic behaviors of nitrate salt aerosols (NH4NO3, NaNO3, Ca(NO3)2) and their internal mixtures with water-soluble organic acids were determined using a hygroscopicity tandem differential mobility analyzer (HTDMA). The nitrate salt / organic acid mixed aerosols exhibit varying phase behavior and hygroscopic growth depending upon the type of components in the particles. Whereas pure nitrate salt particles show continuous water uptake with increasing relative humidity (RH), the deliquescence transition is still observed for ammonium nitrate particles internally mixed with organic acids such as oxalic acid and succinic acid with a high deliquescence point. The hygroscopicity of submicron aerosols containing sodium nitrate and an organic acid is also characterized by continuous growth, indicating that sodium nitrate tends to exist in a liquid-like state under dry conditions. It is observed that in contrast to the pure components, the water uptake is hindered at low and moderate RH for calcium nitrate particles containing malonic acid or phthalic acid, suggesting the potential effects of mass transfer limitation in highly viscous mixed systems. Our findings improve fundamental understanding of the phase behavior and water uptake of nitrate-salt-containing aerosols in the atmospheric environment.

  9. Colorimetric analysis of outdoor illumination across varieties of atmospheric conditions.

    PubMed

    Peyvandi, Shahram; Hernández-Andrés, Javier; Olmo, F J; Nieves, Juan Luis; Romero, Javier

    2016-06-01

    Solar illumination at ground level is subject to a good deal of change in spectral and colorimetric properties. With an aim of understanding the influence of atmospheric components and phases of daylight on colorimetric specifications of downward radiation, more than 5,600,000 spectral irradiance functions of daylight, sunlight, and skylight were simulated by the radiative transfer code, SBDART [Bull. Am. Meteorol. Soc.79, 2101 (1998)], under the atmospheric conditions of clear sky without aerosol particles, clear sky with aerosol particles, and overcast sky. The interquartile range of the correlated color temperatures (CCT) for daylight indicated values from 5712 to 7757 K among the three atmospheric conditions. A minimum CCT of ∼3600  K was found for daylight when aerosol particles are present in the atmosphere. Our analysis indicated that hemispheric daylight with CCT less than 3600 K may be observed in rare conditions in which the level of aerosol is high in the atmosphere. In an atmosphere with aerosol particles, we also found that the chromaticity of daylight may shift along the green-purple direction of the Planckian locus, with a magnitude depending on the spectral extinction by aerosol particles and the amount of water vapor in the atmosphere. The data analysis showed that an extremely high value of CCT, in an atmosphere without aerosol particles, for daylight and skylight at low sun, is mainly due to the effect of Chappuis absorption band of ozone at ∼600  nm. In this paper, we compare our data with well-known observations from previous research, including the ones used by the CIE to define natural daylight illuminants.

  10. Effect of Mineralogy on Dissolution and Speciation of Iron Containing Mineral Oxides in Atmospheric Aerosol Dust

    NASA Astrophysics Data System (ADS)

    Hettiarachchi, E.; Rubasinghege, G. R. S.; Reynolds, R. L.; Goldstein, H. L.; Moskowitz, B. M.

    2017-12-01

    Iron is one of the important trace elements for the life. Though it is the fourth most abundant element in the terrestrial crust, given higher pH ( 8.5) in the ocean, the direct dissolution of iron from the Earth crust is limited. Despite this limitation, ocean contains about 2 nM of dissolved iron that is 20-fold greater. Therefore, it is hypothesized most iron comes to the ocean via atmosphere, and dissolution occurs in the acidic atmospheric environments. The current work focuses on the effect of minerology on atmospheric processing of Fe-containing mineral dust using four authentic dust samples, collected from different parts of the world, along with three model systems, hematite (α-Fe2O3), magnetite (Fe3O4) and ilmenite (FeTiO3). Here, spectroscopic methods are combined with batch reactor studies to investigate total iron dissolution and speciation, with a specific focus on source material i.e. particle size, mineralogy, and environmental conditions, i.e. pH, temperature and solar flux. Our data suggests that the presence of Ti metal enhances the dissolution of iron regardless the total %Fe in the mineral. The surface area normalized total iron dissolution in ilmenite, under the dark conditions, in the presence of nitric acid (HNO3) is 3-fold higher than that of hematite. In authentic samples, similar effects were observed for samples containing %Ti. Further, 74% of the dissolved iron in ilmenite remained as Fe(II), bioavailable iron, whereas it was only 60% for magnetite and 8% for hematite. In this study, these results were used to interpret similar trends observed for authentic dust samples with high magnetite content. Thus, the findings of the current study highlight important, yet unconsidered, factors in the atmospheric processing of iron-containing mineral dust aerosol.

  11. Processing materials inside an atmospheric-pressure radiofrequency nonthermal plasma discharge

    DOEpatents

    Selwyn, Gary S.; Henins, Ivars; Park, Jaeyoung; Herrmann, Hans W.

    2006-04-11

    Apparatus for the processing of materials involving placing a material either placed between an radio-frequency electrode and a ground electrode, or which is itself one of the electrodes. This is done in atmospheric pressure conditions. The apparatus effectively etches or cleans substrates, such as silicon wafers, or provides cleaning of spools and drums, and uses a gas containing an inert gas and a chemically reactive gas.

  12. Surface layer motion in planetary atmosphere containing fog of condensed gases

    NASA Astrophysics Data System (ADS)

    Datsenko, E. N.; Vasiliev, N. I.; Orlova, I. O.; Avakimyan, N. N.

    2017-11-01

    The article contains a simplified model of a wave motion of the atmospheric surface of planets containing finely dispersed particles of condensed gases, it is assumed that the surface of planets is heated above the saturation temperature of gas condensate, and the surface layers of the foggy atmosphere are strongly cooled. The mechanism of formation and growth of such waves is proposed and justified. It was found that the existence of growing waves on the surface of such an atmosphere is possible, as well as, in the course of time, the formation of a vortex in the atmosphere around the planet. Perturbations of the atmosphere thickness lead to the formation of gravitational waves propagating along its surface. The thickness of the atmosphere at the crest of the wave is greater than that in the trough. While the temperature of the atmosphere under the ridge increases, it decreases under the trough due to shielding of the thermal radiation of the planet. When the crest of a gravitational wave moves, the atmosphere under the trailing edge of the crest has a temperature higher than that under the front edge, since the trailing edge of the crest is heated more intensively by radiation from the surface of the planet. The partial pressure of the vapor of the condensed gases at the rear edge of the ridge is higher than that at the front edge; the work of the pressure difference during the motion of the ridge increases its energy and height. The authors demonstrate the analogy between the mechanisms of wave growth in a foggy atmosphere of planets and the mechanism of wave growth in a thin vapor layer between a strongly heated solid surface or a metal melt and a volatile liquid.

  13. Effect of Atmospheric Conditions on LIBS Spectra

    PubMed Central

    Effenberger, Andrew J.; Scott, Jill R.

    2010-01-01

    Laser-induced breakdown spectroscopy (LIBS) is typically performed at ambient Earth atmospheric conditions. However, interest in LIBS in other atmospheric conditions has increased in recent years, especially for use in space exploration (e.g., Mars and Lunar) or to improve resolution for isotopic signatures. This review focuses on what has been reported about the performance of LIBS in reduced pressure environments as well as in various gases other than air. PMID:22399914

  14. 40 CFR 265.171 - Condition of containers.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 25 2010-07-01 2010-07-01 false Condition of containers. 265.171... DISPOSAL FACILITIES Use and Management of Containers § 265.171 Condition of containers. If a container... transfer the hazardous waste from this container to a container that is in good condition, or manage the...

  15. 40 CFR 264.171 - Condition of containers.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 25 2010-07-01 2010-07-01 false Condition of containers. 264.171... Use and Management of Containers § 264.171 Condition of containers. If a container holding hazardous... leak, the owner or operator must transfer the hazardous waste from this container to a container that...

  16. Assessment Regarding Impact of Atmospheric Conditions on Space Shuttle Launch Delays

    NASA Technical Reports Server (NTRS)

    Johnson D. L.; Pearson, S. D.; Vaughan, W. W.; Batts, G. W.

    1998-01-01

    The atmospheric environment definition has played a key role in the development and operation of the NASA Space Shuttle as it has in other NASA Space Vehicle Programs. The objective of any definition of natural environment design requirements for a space vehicle development is to insure that the vehicle will perform safely and in a timely manner relative to the mission(s) for which the vehicle is being developed. The NASA Space Shuttle has enjoyed the longest tenure of any Space Vehicle from an operational standpoint. As such, it has provided a wealth of information on many engineering aspects of a Space Vehicle plus the influence of the atmosphere on operational endeavors. The atmospheric environment associated with the NASA Space Shuttle launches at the NASA Kennedy Space Center in Florida has been reviewed and studied over the entire NASA Space Shuttle flight history. The results of the analysis of atmospheric environment related launch delays relative to other sources of launch delays has been assessed. This paper will provide a summary of those conditions as well as mission analysis examples focused on atmospheric constraints for launch. Atmospheric conditions associated with NASA Space Shuttle launch delays will be presented to provide a reference as to the type conditions experienced which have mainly caused the delays.

  17. Purging of working atmospheres inside freight containers.

    PubMed

    Braconnier, Robert; Keller, François-Xavier

    2015-06-01

    This article focuses on prevention of possible exposure to chemical agents, when opening, entering, and stripping freight containers. The container purging process is investigated using tracer gas measurements and numerical airflow simulations. Three different container ventilation conditions are studied, namely natural, mixed mode, and forced ventilation. The tests conducted allow purging time variations to be quantified in relation to various factors such as container size, degree of filling, or type of load. Natural ventilation performance characteristics prove to be highly variable, depending on environmental conditions. Use of a mechanically supplied or extracted airflow under mixed mode and forced ventilation conditions enables purging to be significantly accelerated. Under mixed mode ventilation, extracting air from the end of the container furthest from the door ensures quicker purging than supplying fresh air to this area. Under forced ventilation, purging rate is proportional to the applied ventilation flow. Moreover, purging rate depends mainly on the location at which air is introduced: the most favourable position being above the container loading level. Many of the results obtained during this study can be generalized to other cases of purging air in a confined space by general ventilation, e.g. the significance of air inlet positioning or the advantage of generating high air velocities to maximize stirring within the volume. © The Author 2015. Published by Oxford University Press on behalf of the British Occupational Hygiene Society.

  18. Computer Modeling of the Effects of Atmospheric Conditions on Sound Signatures

    DTIC Science & Technology

    2016-02-01

    simulation. 11 5. References 1. Attenborough K. Sound propagation in the atmosphere. In: Rossing TD, editor. Springer handbook of...ARL-TR-7602 ● FEB 2016 US Army Research Laboratory Computer Modeling of the Effects of Atmospheric Conditions on Sound ...Laboratory Computer Modeling of the Effects of Atmospheric Conditions on Sound Signatures by Sarah Wagner Science and Engineering Apprentice

  19. Effects of Atmospheric Conditions and the Land/Atmospheric Interface on Transport of Chemical Vapors from Subsurface Sources

    NASA Astrophysics Data System (ADS)

    Rice, A. K.; Smits, K. M.; Cihan, A.; Howington, S. E.; Illangasekare, T. H.

    2013-12-01

    Understanding the movement of chemical vapors and gas through variably saturated soil subjected to atmospheric thermal and mass flux boundary conditions at the land/atmospheric interface is important to many applications, including landmine detection, methane leakage during natural gas production from shale and CO2 leakage from deep geologic storage. New, advanced technologies exist to sense chemical signatures and gas leakage at the land/atmosphere interface, but interpretation of sensor signals remains a challenge. Chemical vapors are subject to numerous interactions while migrating through the soil environment, masking source conditions. The process governing movement of gases through porous media is often assumed to be Fickian diffusion through the air phase with minimal quantification of other processes, such as convective gas flow and temporal or spatial variation in soil moisture. Vapor migration is affected by atmospheric conditions (e.g. humidity, temperature, wind velocity), soil thermal and hydraulic properties and contaminant properties, all of which are physically and thermodynamically coupled. The complex coupling of two drastically different flow regimes in the subsurface and atmosphere is commonly ignored in modeling efforts, or simplifying assumptions are made to treat the systems as de-coupled. Experimental data under controlled laboratory settings are lacking to refine the theory for proper coupling and complex treatment of vapor migration through porous media in conversation with atmospheric flow and climate variations. Improving fundamental understanding and accurate quantification of these processes is not feasible in field settings due to lack of controlled initial and boundary conditions and inability to fully characterize the subsurface at all relevant scales. The goal of this work is to understand the influence of changes in atmospheric conditions to transport of vapors through variably saturated soil. We have developed a tank apparatus

  20. CCN activity of secondary aerosols from terpene ozonolysis under atmospheric relevant conditions

    NASA Astrophysics Data System (ADS)

    Yuan, Cheng; Ma, Yan; Diao, Yiwei; Yao, Lei; Zhou, Yaoyao; Wang, Xing; Zheng, Jun

    2017-04-01

    Gas-phase ozonolysis of terpenes is an important source of atmospheric secondary organic aerosol. The contribution of terpene-derived aerosols to the atmospheric cloud condensation nucleus (CCN) burden under atmospheric conditions, however, remains highly uncertain. The results obtained in previous studies under simple laboratory conditions may not be applicable to atmospheric relevant conditions. Here we present that CCN activities of aerosols from terpene ozonolysis can be significantly affected by atmospheric relevant species that can act as stabilized Criegee intermediate (SCI) or OH scavengers. Ozonolysis reactions of α-pinene, limonene, α-cedrene, and α-humulene were conducted in a 4.5 m3 collapsible fluoropolymer chamber at near-atmospheric concentrations in the presence of different OH scavengers (cyclohexane, 2-butanol, or CO) and SCI scavengers (CH3COOH, H2O, or SO2). The number size distribution and CCN activity of aerosol particles formed during ozonolysis were simultaneously determined. Additionally, particulate products were chemically analyzed by using a Filter Inlet for Gases and AEROsols High-Resolution Time-of-Flight Chemical-Ionization Mass Spectrometer. Results showed that aerosol CCN activity following monoterpene ozonolysis was more sensitive to the choice of OH scavengers, while that from sesquiterpene ozonolysis was significantly affected by SCI scavengers. Combined with chemical analysis results, it was concluded that the unimolecular decomposition of CIs giving hygroscopic organic products can be largely suppressed by bimolecular reactions during sesquiterpene ozonolysis but was not significantly impacted in monoterpene ozonolysis. Our study underscores the key role of CIs in the CCN activity of terpene ozonolysis-derived aerosols. The effects of atmospheric relevant species (e.g., SO2, H2O, and CO) need to be considered when assessing the contribution of biogenic terpenes to the atmospheric CCN burden under ambient conditions.

  1. Investigating TIME-GCM Atmospheric Tides for Different Lower Boundary Conditions

    NASA Astrophysics Data System (ADS)

    Haeusler, K.; Hagan, M. E.; Lu, G.; Forbes, J. M.; Zhang, X.; Doornbos, E.

    2013-12-01

    It has been recently established that atmospheric tides generated in the lower atmosphere significantly influence the geospace environment. In order to extend our knowledge of the various coupling mechanisms between the different atmospheric layers, we rely on model simulations. Currently there exist two versions of the Global Scale Wave Model (GSWM), i.e. GSWM02 and GSWM09, which are used as a lower boundary (ca. 30 km) condition for the Thermosphere-Ionosphere-Mesosphere-Electrodynamics General Circulation Model (TIME-GCM) and account for the upward propagating atmospheric tides that are generated in the troposphere and lower stratosphere. In this paper we explore the various TIME-GCM upper atmospheric tidal responses for different lower boundary conditions and compare the model diagnostics with tidal results from satellite missions such as TIMED, CHAMP, and GOCE. We also quantify the differences between results associated with GSWM02 and GSWM09 forcing and results of TIMEGCM simulations using Modern-Era Retrospective Analysis for Research and Application (MERRA) data as a lower boundary condition.

  2. Oxidative stability of n-3-enriched chicken patties under different package-atmosphere conditions.

    PubMed

    Penko, Ana; Polak, Tomaž; Lušnic Polak, Mateja; Požrl, Tomaž; Kakovič, Damir; Žlender, Božidar; Demšar, Lea

    2015-02-01

    The oxidation processes were studied in chicken patties, enriched with n-3 fatty acids, after 8days of storage at 4°C, under different aerobic conditions, and following heat treatment. Significant effects were seen on lipid and cholesterol oxidation and the sensory qualities for whole flaxseed addition in the chicken feed (i.e., n-3 fatty acid enrichment), and for the different package-atmosphere conditions. For the raw chicken patties, n-3 enrichment increased the colour L(∗) values while, after the heat treatment, there were higher thiobarbituric acid-reactive substances (TBARs) and cholesterol oxidation products (COPs), and the rancidity was more pronounced. In comparison with the low O2 (<0.5%) package-atmosphere condition, O2 enrichment (80%) increased the instrumentally measured colour values, TBARs, total and individual COPs, and the rancidity became pronounced. The most suitable package-atmosphere condition of these raw n-3-enriched chicken patties is a very low O2 atmosphere, with or without an O2 scavenger. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. Measurements of Atmospheric CO2 Column in Cloudy Weather Conditions using An IM-CW Lidar at 1.57 Micron

    NASA Technical Reports Server (NTRS)

    Lin, Bing; Obland, Michael; Harrison, F. Wallace; Nehrir, Amin; Browell, Edward; Campbell, Joel; Dobler, Jeremy; Meadows, Bryon; Fan, Tai-Fang; Kooi, Susan; hide

    2015-01-01

    This study evaluates the capability of atmospheric CO2 column measurements under cloudy conditions using an airborne intensity-modulated continuous-wave integrated-path-differential-absorption lidar operating in the 1.57-m CO2 absorption band. The atmospheric CO2 column amounts from the aircraft to the tops of optically thick cumulus clouds and to the surface in the presence of optically thin clouds are retrieved from lidar data obtained during the summer 2011 and spring 2013 flight campaigns, respectively.

  4. Experimental Investigation of Soil and Atmospheric Conditions on the Momentum, Mass, and Thermal Boundary Layers Above the Land Atmosphere Interface

    NASA Astrophysics Data System (ADS)

    Trautz, A.; Smits, K. M.; Illangasekare, T. H.; Schulte, P.

    2014-12-01

    The purpose of this study is to investigate the impacts of soil conditions (i.e. soil type, saturation) and atmospheric forcings (i.e. velocity, temperature, relative humidity) on the momentum, mass, and temperature boundary layers. The atmospheric conditions tested represent those typically found in semi-arid and arid climates and the soil conditions simulate the three stages of evaporation. The data generated will help identify the importance of different soil conditions and atmospheric forcings with respect to land-atmospheric interactions which will have direct implications on future numerical studies investigating the effects of turbulent air flow on evaporation. The experimental datasets generated for this study were performed using a unique climate controlled closed-circuit wind tunnel/porous media facility located at the Center for Experimental Study of Subsurface Environmental Processes (CESEP) at the Colorado School of Mines. The test apparatus consisting of a 7.3 m long porous media tank and wind tunnel, were outfitted with a sensor network to carefully measure wind velocity, air and soil temperature, relative humidity, soil moisture, and soil air pressure. Boundary layer measurements were made between the heights of 2 and 500 mm above the soil tank under constant conditions (i.e. wind velocity, temperature, relative humidity). The soil conditions (e.g. soil type, soil moisture) were varied between datasets to analyze their impact on the boundary layers. Experimental results show that the momentum boundary layer is very sensitive to the applied atmospheric conditions and soil conditions to a much less extent. Increases in velocity above porous media leads to momentum boundary layer thinning and closely reflect classical flat plate theory. The mass and thermal boundary layers are directly dependent on both atmospheric and soil conditions. Air pressure within the soil is independent of atmospheric temperature and relative humidity - wind velocity and soil

  5. An active atmospheric methane sink in high Arctic mineral cryosols

    DOE PAGES

    Lau, Maggie C.Y.; Stackhouse, B.; Layton, Alice C.; ...

    2015-01-01

    The transition of Arctic carbon-rich cryosols into methane (CH₄)-emitting wetlands due to global warming is a rising concern. However, the spatially predominant mineral cryosols and their CH₄ emission potential are poorly understood. Fluxes measured in situ and estimated under laboratory conditions coupled with -omics analysis indicate (1) mineral cryosols in the Canadian high Arctic contain atmospheric CH₄-oxidizing bacteria; (2) the atmospheric CH⁺ uptake flux increases with ground temperature; and, as a result, (3) the atmospheric CH₄ sink strength will increase by a factor of 5-30 as the Arctic warms by 5-15 °C over a century. We demonstrated that acidic mineralmore » cryosols have previously unrecognized potential of negative CH₄ feedback.« less

  6. Visible spectroscopy as a tool for the assessment of storage conditions of fresh pork packaged in modified atmosphere.

    PubMed

    Spanos, Dimitrios; Christensen, Mette; Tørngren, Mari Ann; Baron, Caroline P

    2016-03-01

    The storage conditions of fresh meat are known to impact its colour and microbial shelf life. In the present study, visible spectroscopy was evaluated as a method to assess meat storage conditions and its optimisation. Fresh pork steaks (longissimus thoracis et lumborum and semimembranosus) were placed in modified atmosphere packaging using gas mixtures containing 0, 40, 50, and 80% oxygen, and stored with or without light for up to 9days. Principal component analysis of visible reflectance spectra (400-700nm) showed that the colour of the different meat cuts was affected by presence of oxygen, illumination, and storage time. Differences in the oxygen levels did not contribute to the observed variance. Predictive models based on partial least squares regression-discriminant analysis exhibited high potency in the classification of the storage parameters of meat cuts packaged in modified atmosphere. The study demonstrates the applicability of visible spectroscopy as a tool to assess the storage conditions of meat cuts packaged in modified atmosphere. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Launch Condition Deviations of Reusable Launch Vehicle Simulations in Exo-Atmospheric Zoom Climbs

    NASA Technical Reports Server (NTRS)

    Urschel, Peter H.; Cox, Timothy H.

    2003-01-01

    The Defense Advanced Research Projects Agency has proposed a two-stage system to deliver a small payload to orbit. The proposal calls for an airplane to perform an exo-atmospheric zoom climb maneuver, from which a second-stage rocket is launched carrying the payload into orbit. The NASA Dryden Flight Research Center has conducted an in-house generic simulation study to determine how accurately a human-piloted airplane can deliver a second-stage rocket to a desired exo-atmospheric launch condition. A high-performance, fighter-type, fixed-base, real-time, pilot-in-the-loop airplane simulation has been modified to perform exo-atmospheric zoom climb maneuvers. Four research pilots tracked a reference trajectory in the presence of winds, initial offsets, and degraded engine thrust to a second-stage launch condition. These launch conditions have been compared to the reference launch condition to characterize the expected deviation. At each launch condition, a speed change was applied to the second-stage rocket to insert the payload onto a transfer orbit to the desired operational orbit. The most sensitive of the test cases was the degraded thrust case, yielding second-stage launch energies that were too low to achieve the radius of the desired operational orbit. The handling qualities of the airplane, as a first-stage vehicle, have also been investigated.

  8. Atmospheric-radiation boundary conditions for high-frequency waves in time-distance helioseismology

    NASA Astrophysics Data System (ADS)

    Fournier, D.; Leguèbe, M.; Hanson, C. S.; Gizon, L.; Barucq, H.; Chabassier, J.; Duruflé, M.

    2017-12-01

    The temporal covariance between seismic waves measured at two locations on the solar surface is the fundamental observable in time-distance helioseismology. Above the acoustic cut-off frequency ( 5.3 mHz), waves are not trapped in the solar interior and the covariance function can be used to probe the upper atmosphere. We wish to implement appropriate radiative boundary conditions for computing the propagation of high-frequency waves in the solar atmosphere. We consider recently developed and published radiative boundary conditions for atmospheres in which sound-speed is constant and density decreases exponentially with radius. We compute the cross-covariance function using a finite element method in spherical geometry and in the frequency domain. The ratio between first- and second-skip amplitudes in the time-distance diagram is used as a diagnostic to compare boundary conditions and to compare with observations. We find that a boundary condition applied 500 km above the photosphere and derived under the approximation of small angles of incidence accurately reproduces the "infinite atmosphere" solution for high-frequency waves. When the radiative boundary condition is applied 2 Mm above the photosphere, we find that the choice of atmospheric model affects the time-distance diagram. In particular, the time-distance diagram exhibits double-ridge structure when using a Vernazza Avrett Loeser atmospheric model.

  9. Assessment of a surface-layer parameterization scheme in an atmospheric model for varying meteorological conditions

    NASA Astrophysics Data System (ADS)

    Anurose, T. J.; Bala Subrahamanyam, D.

    2014-06-01

    The performance of a surface-layer parameterization scheme in a high-resolution regional model (HRM) is carried out by comparing the model-simulated sensible heat flux (H) with the concurrent in situ measurements recorded at Thiruvananthapuram (8.5° N, 76.9° E), a coastal station in India. With a view to examining the role of atmospheric stability in conjunction with the roughness lengths in the determination of heat exchange coefficient (CH) and H for varying meteorological conditions, the model simulations are repeated by assigning different values to the ratio of momentum and thermal roughness lengths (i.e. z0m/z0h) in three distinct configurations of the surface-layer scheme designed for the present study. These three configurations resulted in differential behaviour for the varying meteorological conditions, which is attributed to the sensitivity of CH to the bulk Richardson number (RiB) under extremely unstable, near-neutral and stable stratification of the atmosphere.

  10. Efficacy of passive sampler collection for atmospheric NO2 isotopes under simulated environmental conditions.

    PubMed

    Coughlin, Justin G; Yu, Zhongjie; Elliott, Emily M

    2017-07-30

    Nitrogen oxides or NO x (NO x = NO + NO 2 ) play an important role in air quality, atmospheric chemistry, and climate. The isotopic compositions of anthropogenic and natural NO 2 sources are wide-ranging, and they can be used to constrain sources of ambient NO 2 and associated atmospheric deposition of nitrogen compounds. While passive sample collection of NO 2 isotopes has been used in field studies to determine NO x source influences on atmospheric deposition, this approach has not been evaluated for accuracy or precision under different environmental conditions. The efficacy of NO 2 passive sampler collection for NO 2 isotopes was evaluated under varied temperature and relative humidity (RH) conditions in a dynamic flux chamber. The precision and accuracy of the filter NO 2 collection as nitrite (NO 2 - ) for isotopic analysis were determined using a reference NO 2 gas tank and through inter-calibration with a modified EPA Method 7. The bacterial denitrifer method was used to convert 20 μM of collected NO 2 - or nitrate (NO 3 - ) into N 2 O and was carried out on an Isoprime continuous flow isotope ratio mass spectrometer. δ 15 N-NO 2 values determined from passive NO 2 collection, in conditions of 11-34 °C, 1-78% RH, have an overall accuracy and precision of ±2.1 ‰, and individual run precision of ±0.6 ‰. δ 18 O-NO 2 values obtained from passive NO 2 sampler collection, under the same conditions, have an overall precision of ± 1.3 ‰. Suitable conditions for passive sampler collection of NO 2 isotopes are in environments ranging from 11 to 34 °C and 1 to 78% RH. The passive NO 2 isotope measurement technique provides an accurate method to determine variations in atmospheric δ 15 N-NO 2 values and a precise method for determining atmospheric δ 18 O-NO 2 values. The ability to measure NO 2 isotopes over spatial gradients at the same temporal resolution provides a unique perspective on the extent and seasonality of fluctuations in atmospheric NO 2

  11. Characterization of the Surface Film Formed on Molten AZ91D Magnesium Alloy in Atmospheres Containing SO2

    NASA Astrophysics Data System (ADS)

    Wang, Xian-Fei; Xiong, Shou-Mei

    2012-11-01

    The surface film formed on molten AZ91D magnesium alloy in an atmosphere containing SO2 was characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), Auger electron spectroscopy (AES), and X-ray photoelectron spectroscopy (XPS). The surface film primarily contained MgO and MgS and had a network structure. MgS increased the Pilling-Bedworth ratio of the film and enhanced its protective capability. The films with a few pores at the surface consisted of two layers with an outer MgO layer and an inner layer of MgO and MgS. The film without pores at the surface also contained MgS and small amounts of MgSO4 in the outer layer. Increasing the SO2 content in the atmosphere promoted film growth and the formation of the protective film was prevented with the increased temperature.

  12. SIPEX 2012: Extreme sea-ice and atmospheric conditions off East Antarctica

    NASA Astrophysics Data System (ADS)

    Heil, P.; Stammerjohn, S.; Reid, P.; Massom, R. A.; Hutchings, J. K.

    2016-09-01

    In 2012, Antarctic sea-ice coverage was marked by weak annual-mean climate anomalies that consisted of opposing anomalies early and late in the year (some setting new records) which were interspersed by near-average conditions for most of the austral autumn and winter. Here, we investigate the ocean-ice-atmosphere system off East Antarctica, prior to and during the Sea Ice Physics and Ecosystems eXperiment [SIPEX] 2012, by exploring relationships between atmospheric and oceanic forcing together with the sea-ice and snow characteristics. During August and September 2012, just prior to SIPEX 2012, atmospheric circulation over the Southern Ocean was near-average, setting up the ocean-ice-atmosphere system for near-average conditions. However, below-average surface pressure and temperature as well as strengthened circumpolar winds prevailed during June and July 2012. This led to a new record (19.48×106 km2) in maximum Antarctic sea-ice extent recorded in late September. In contrast to the weak circum-Antarctic conditions, the East Antarctic sector (including the SIPEX 2012 region) experienced positive sea-ice extent and concentration anomalies during most of 2012, coincident with negative atmospheric pressure and sea-surface temperature anomalies. Heavily deformed sea ice appeared to be associated with intensified wind stress due to increased cyclonicity as well as an increased influx of sea ice from the east. This increased westward ice flux is likely linked to the break-up of nearly 80% of the Mertz Glacier Tongue in 2010, which strongly modified the coastal configuration and hence the width of the westward coastal current. Combined with favourable atmospheric conditions the associated changed coastal configuration allowed more sea ice to remain within the coastal current at the expense of a reduced northward flow in the region around 141°-145°E. In addition a westward propagating positive anomaly of sea-ice extent from the western Ross Sea during austral winter

  13. A cloud model simulation of space shuttle exhaust clouds in different atmospheric conditions

    NASA Technical Reports Server (NTRS)

    Chen, C.; Zak, J. A.

    1989-01-01

    A three-dimensional cloud model was used to characterize the dominant influence of the environment on the Space Shuttle exhaust cloud. The model was modified to accept the actual heat and moisture from rocket exhausts and deluge water as initial conditions. An upper-air sounding determined the ambient atmosphere in which the cloud could grow. The model was validated by comparing simulated clouds with observed clouds from four actual Shuttle launches. The model successfully produced clouds with dimensions, rise, decay, liquid water contents and vertical motion fields very similar to observed clouds whose dimensions were calculated from 16 mm film frames. Once validated, the model was used in a number of different atmospheric conditions ranging from very unstable to very stable. In moist, unstable atmospheres simulated clouds rose to about 3.5 km in the first 4 to 8 minutes then decayed. Liquid water contents ranged from 0.3 to 1.0 g kg-1 mixing ratios and vertical motions were from 2 to 10 ms-1. An inversion served both to reduce entrainment (and erosion) at the top and to prevent continued cloud rise. Even in the most unstable atmospheres, the ground cloud did not rise beyond 4 km and in stable atmospheres with strong low level inversions the cloud could be trapped below 500 m. Wind shear strongly affected the appearance of both the ground cloud and vertical column cloud. The ambient low-level atmospheric moisture governed the amount of cloud water in model clouds. Some dry atmospheres produced little or no cloud water. One case of a simulated TITAN rocket explosion is also discussed.

  14. Transport of Chemical Vapors from Subsurface Sources to Atmosphere as Affected by Shallow Subsurface and Atmospheric Conditions

    NASA Astrophysics Data System (ADS)

    Rice, A. K.; Smits, K. M.; Hosken, K.; Schulte, P.; Illangasekare, T. H.

    2012-12-01

    Understanding the movement and modeling of chemical vapor through unsaturated soil in the shallow subsurface when subjected to natural atmospheric thermal and mass flux boundary conditions at the land surface is of importance to applications such as landmine detection and vapor intrusion into subsurface structures. New, advanced technologies exist to sense chemical signatures at the land/atmosphere interface, but interpretation of these sensor signals to make assessment of source conditions remains a challenge. Chemical signatures are subject to numerous interactions while migrating through the unsaturated soil environment, attenuating signal strength and masking contaminant source conditions. The dominant process governing movement of gases through porous media is often assumed to be Fickian diffusion through the air phase with minimal or no quantification of other processes contributing to vapor migration, such as thermal diffusion, convective gas flow due to the displacement of air, expansion/contraction of air due to temperature changes, temporal and spatial variations of soil moisture and fluctuations in atmospheric pressure. Soil water evaporation and interfacial mass transfer add to the complexity of the system. The goal of this work is to perform controlled experiments under transient conditions of soil moisture, temperature and wind at the land/atmosphere interface and use the resulting dataset to test existing theories on subsurface gas flow and iterate between numerical modeling efforts and experimental data. Ultimately, we aim to update conceptual models of shallow subsurface vapor transport to include conditionally significant transport processes and inform placement of mobile sensors and/or networks. We have developed a two-dimensional tank apparatus equipped with a network of sensors and a flow-through head space for simulation of the atmospheric interface. A detailed matrix of realistic atmospheric boundary conditions was applied in a series of

  15. Understanding the formation and composition of hazes in planetary atmospheres that contain carbon monoxide

    NASA Astrophysics Data System (ADS)

    Hörst, S. M.; Yoon, Y. H.; Hicks, R. K.; Tolbert, M. A.

    2012-09-01

    Measurements from the Cassini Plasma Spectrometer (CAPS) have revealed the presence of molecules in Titan's ionosphere with masses in excess of hundreds of amu. Negative ions with mass/charge (m/z) up to 10,000 amu/q [1] and positive ions with m/z up to 400 amu/q [2] have been detected. CAPS has also observed O+ flowing into Titan's upper atmosphere [3], which appears to originate from Enceladus and is likely the source of oxygen bearing molecules in Titan's atmosphere [4]. The observed O+ is deposited in the region now known to contain large organic molecules. A recent Titan atmosphere simulation experiment has shown that incorporation of oxygen into Titan aerosol analogues results in the formation of all five nucleotide bases and the two smallest amino acids, glycine and alanine [5]. Similar chemical processes may have occurred in the atmosphere of the early Earth, or in the atmospheres of extrasolar planets; atmospheric aerosols may be an important source of the building blocks of life. Atmospheric aerosols play an important role in determining the radiation budget of an atmosphere and can also provide a wealth of organic material to the surface. The presence of atmospheric aerosols has been invoked to explain the relatively featureless spectrum of HD 189773b, including the lack of predicted atmospheric Na and K spectral lines [9]. The majority of the O+ precipitating into Titan's atmosphere forms CO (O(3P)+CH3 -> CO+H2+H) [4]. CO has also been detected in the atmospheres of a number of exoplanets including HD 189733b, HD 209458b, and WASP-12b [6-8]. It is therefore important to understand the role CO plays in the formation and composition of hazes in planetary atmospheres. Using a High-Resolution Time-of-Flight Aerosol Mass Spectrometer (HR-ToF-AMS) (see e.g. [10]) we have obtained in situ composition measurements of aerosol particles (so-called "tholins") produced in N2/CH4/CO gas mixtures subjected to either FUV radiation (deuterium lamp, 115-400 nm) or a

  16. Neutral molecular cluster formation of sulfuric acid–dimethylamine observed in real time under atmospheric conditions

    PubMed Central

    Kürten, Andreas; Jokinen, Tuija; Simon, Mario; Sipilä, Mikko; Sarnela, Nina; Junninen, Heikki; Adamov, Alexey; Almeida, João; Amorim, Antonio; Bianchi, Federico; Breitenlechner, Martin; Dommen, Josef; Donahue, Neil M.; Duplissy, Jonathan; Ehrhart, Sebastian; Flagan, Richard C.; Franchin, Alessandro; Hakala, Jani; Hansel, Armin; Heinritzi, Martin; Hutterli, Manuel; Kangasluoma, Juha; Kirkby, Jasper; Laaksonen, Ari; Lehtipalo, Katrianne; Leiminger, Markus; Makhmutov, Vladimir; Mathot, Serge; Onnela, Antti; Petäjä, Tuukka; Praplan, Arnaud P.; Riccobono, Francesco; Rissanen, Matti P.; Rondo, Linda; Schobesberger, Siegfried; Seinfeld, John H.; Steiner, Gerhard; Tomé, António; Tröstl, Jasmin; Winkler, Paul M.; Williamson, Christina; Wimmer, Daniela; Ye, Penglin; Baltensperger, Urs; Carslaw, Kenneth S.; Kulmala, Markku; Worsnop, Douglas R.; Curtius, Joachim

    2014-01-01

    For atmospheric sulfuric acid (SA) concentrations the presence of dimethylamine (DMA) at mixing ratios of several parts per trillion by volume can explain observed boundary layer new particle formation rates. However, the concentration and molecular composition of the neutral (uncharged) clusters have not been reported so far due to the lack of suitable instrumentation. Here we report on experiments from the Cosmics Leaving Outdoor Droplets chamber at the European Organization for Nuclear Research revealing the formation of neutral particles containing up to 14 SA and 16 DMA molecules, corresponding to a mobility diameter of about 2 nm, under atmospherically relevant conditions. These measurements bridge the gap between the molecular and particle perspectives of nucleation, revealing the fundamental processes involved in particle formation and growth. The neutral clusters are found to form at or close to the kinetic limit where particle formation is limited only by the collision rate of SA molecules. Even though the neutral particles are stable against evaporation from the SA dimer onward, the formation rates of particles at 1.7-nm size, which contain about 10 SA molecules, are up to 4 orders of magnitude smaller compared with those of the dimer due to coagulation and wall loss of particles before they reach 1.7 nm in diameter. This demonstrates that neither the atmospheric particle formation rate nor its dependence on SA can simply be interpreted in terms of cluster evaporation or the molecular composition of a critical nucleus. PMID:25288761

  17. Initial conditions and ENSO prediction using a coupled ocean-atmosphere model

    NASA Astrophysics Data System (ADS)

    Larow, T. E.; Krishnamurti, T. N.

    1998-01-01

    A coupled ocean-atmosphere initialization scheme using Newtonian relaxation has been developed for the Florida State University coupled ocean-atmosphere global general circulation model. The initialization scheme is used to initialize the coupled model for seasonal forecasting the boreal summers of 1987 and 1988. The atmosphere model is a modified version of the Florida State University global spectral model, resolution T-42. The ocean general circulation model consists of a slightly modified version of the Hamburg's climate group model described in Latif (1987) and Latif et al. (1993). The coupling is synchronous with information exchanged every two model hours. Using ECMWF atmospheric daily analysis and observed monthly mean SSTs, two, 1-year, time-dependent, Newtonian relaxation were performed using the coupled model prior to conducting the seasonal forecasts. The coupled initializations were conducted from 1 June 1986 to 1 June 1987 and from 1 June 1987 to 1 June 1988. Newtonian relaxation was applied to the prognostic atmospheric vorticity, divergence, temperature and dew point depression equations. In the ocean model the relaxation was applied to the surface temperature. Two, 10-member ensemble integrations were conducted to examine the impact of the coupled initialization on the seasonal forecasts. The initial conditions used for the ensembles are the ocean's final state after the initialization and the atmospheric initial conditions are ECMWF analysis. Examination of the SST root mean square error and anomaly correlations between observed and forecasted SSTs in the Niño-3 and Niño-4 regions for the 2 seasonal forecasts, show closer agreement between the initialized forecast than two, 10-member non-initialized ensemble forecasts. The main conclusion here is that a single forecast with the coupled initialization outperforms, in SST anomaly prediction, against each of the control forecasts (members of the ensemble) which do not include such an initialization

  18. Laboratory evaluation and application of microwave absorption properties under simulated conditions for planetary atmospheres

    NASA Technical Reports Server (NTRS)

    Steffes, Paul G.

    1987-01-01

    Radio absorptivity data for planetary atmospheres obtained from spacecraft radio occultation experiments and Earth-based radio astronomical observations can be used to infer abundances of microwave absorbing atmospheric constituents in those atmospheres, as long as reliable information regarding the microwave absorping properties of potential constituents is available. The use of theoretically derived microwave absorption properties for such atmospheric constituents, or laboratory measurements of such properties under environmental conditions which are significantly different than those of the planetary atmosphere being studied, often leads to significant misinterpretation of available opacity data. Laboratory measurement of the microwave properties of atmospheric gases under simulated conditions for the outer planets were conducted. Results of these measurements are discussed.

  19. Studying urban land-atmospheric interactions by coupling an urban canopy model with a single column atmospheric models

    NASA Astrophysics Data System (ADS)

    Song, J.; Wang, Z.

    2013-12-01

    Studying urban land-atmospheric interactions by coupling an urban canopy model with a single column atmospheric models Jiyun Song and Zhi-Hua Wang School of Sustainable Engineering and the Built Environment, Arizona State University, PO Box 875306, Tempe, AZ 85287-5306 Landuse landcover changes in urban area will modify surface energy budgets, turbulent fluxes as well as dynamic and thermodynamic structures of the overlying atmospheric boundary layer (ABL). In order to study urban land-atmospheric interactions, we coupled a single column atmospheric model (SCM) to a cutting-edge single layer urban canopy model (SLUCM). Modification of surface parameters such as the fraction of vegetation and engineered pavements, thermal properties of building and pavement materials, and geometrical features of street canyon, etc. in SLUCM dictates the evolution of surface balance of energy, water and momentum. The land surface states then provide lower boundary conditions to the overlying atmosphere, which in turn modulates the modification of ABL structure as well as vertical profiles of temperature, humidity, wind speed and tracer gases. The coupled SLUCM-SCM model is tested against field measurements of surface layer fluxes as well as profiles of temperature and humidity in the mixed layer under convective conditions. After model test, SLUCM-SCM is used to simulate the effect of changing urban land surface conditions on the evolution of ABL structure and dynamics. Simulation results show that despite the prescribed atmospheric forcing, land surface states impose significant impact on the physics of the overlying vertical atmospheric layer. Overall, this numerical framework provides a useful standalone modeling tool to assess the impacts of urban land surface conditions on the local hydrometeorology through land-atmospheric interactions. It also has potentially far-reaching implications to urban ecohydrological services for cities under future expansion and climate challenges.

  20. Improvement in Simulation of Eurasian Winter Climate Variability with a Realistic Arctic Sea Ice Condition in an Atmospheric GCM

    NASA Technical Reports Server (NTRS)

    Lim, Young-Kwon; Ham, Yoo-Geun; Jeong, Jee-Hoon; Kug, Jong-Seong

    2012-01-01

    The present study investigates how much a realistic Arctic sea ice condition can contribute to improve simulation of the winter climate variation over the Eurasia region. Model experiments are set up using different sea ice boundary conditions over the past 24 years (i.e., 1988-2011). One is an atmospheric model inter-comparison (AMIP) type of run forced with observed sea-surface temperature (SST), sea ice, and greenhouse gases (referred to as Exp RSI), and the other is the same as Exp RSI except for the sea ice forcing, which is a repeating climatological annual cycle (referred to as Exp CSI). Results show that Exp RSI produces the observed dominant pattern of Eurasian winter temperatures and their interannual variation better than Exp CSI (correlation difference up to approx. 0.3). Exp RSI captures the observed strong relationship between the sea ice concentration near the Barents and Kara seas and the temperature anomaly across Eurasia, including northeastern Asia, which is not well captured in Exp CSI. Lagged atmospheric responses to sea ice retreat are examined using observations to understand atmospheric processes for the Eurasian cooling response including the Arctic temperature increase, sea-level pressure increase, upper-level jet weakening and cold air outbreak toward the mid-latitude. The reproducibility of these lagged responses by Exp RSI is also evaluated.

  1. Powder containing 2H-type silicon carbide produced by reacting silicon dioxide and carbon powder in nitrogen atmosphere in the presence of aluminum

    NASA Technical Reports Server (NTRS)

    Kuramoto, N.; Takiguchi, H.

    1984-01-01

    The production of powder which contains silicon carbide consisting of 40% of 2H-type silicon carbide, beta type silicon carbide and less than 3% of nitrogen is discussed. The reaction temperature to produce the powder containing 40% of 2H-type silicon carbide is set at above 1550 degrees C in an atmosphere of aluminum or aluminum compounds and nitrogen gas or an antioxidation atmosphere containing nitrogen gas. The mixture ratio of silicon dioxide and carbon powder is 0.55 - 1:2.0 and the contents of aluminum or aluminum compounds within silicon dioxide is less than 3% in weight.

  2. Impact of atmosphere and land surface initial conditions on seasonal forecast of global surface temperature

    NASA Astrophysics Data System (ADS)

    Materia, Stefano; Borrelli, Andrea; Bellucci, Alessio; Alessandri, Andrea; Di Pietro, Pierluigi; Athanasiadis, Panagiotis; Navarra, Antonio; Gualdi, Silvio

    2014-05-01

    The impact of land surface and atmosphere initialization on the forecast skill of a seasonal prediction system is investigated, and an effort to disentangle the role played by the individual components to the global predictability is done, via a hierarchy of seasonal forecast experiments performed under different initialization strategies. A realistic atmospheric initial state allows an improved equilibrium between the ocean and overlying atmosphere, mitigating the coupling shock and possibly increasing the model predictive skill in the ocean. In fact, in a few regions characterized by strong air-sea coupling, the atmosphere initial condition affects the forecast skill for several months. In particular, the ENSO region, the eastern tropical Atlantic and the North Pacific benefit significantly from the atmosphere initialization. On mainland, the impact of atmospheric initial conditions is detected in the early phase of the forecast, while the quality of land surface initialization affects the forecast skill in the following lead seasons. The winter forecast in the high latitude plains of Siberia and Canada benefit from the snow initialization, while the impact of soil moisture initial state is particularly effective in the Mediterranean region, in central Asia and Australia. However, initialization through land surface reanalysis does not systematically guarantee an enhancement of the predictive skill: the quality of the forecast is sometimes higher for the non-constrained model. Overall, the introduction of a realistic initialization of land surface and atmosphere substantially increases skill and accuracy. However, further developments in the operating procedure for land surface initialization are required for more accurate seasonal forecasts.

  3. Stepping towards new parameterizations for non-canonical atmospheric surface-layer conditions

    NASA Astrophysics Data System (ADS)

    Calaf, M.; Margairaz, F.; Pardyjak, E.

    2017-12-01

    Representing land-atmosphere exchange processes as a lower boundary condition remains a challenge. This is partially a result of the fact that land-surface heterogeneity exists at all spatial scales and its variability does not "average" out with decreasing scales. Such variability need not rapidly blend away from the boundary thereby impacting the near-surface region of the atmosphere. Traditionally, momentum and energy fluxes linking the land surface to the flow in NWP models have been parameterized using atmospheric surface layer (ASL) similarity theory. There is ample evidence that such representation is acceptable for stationary and planar-homogeneous flows in the absence of subsidence. However, heterogeneity remains a ubiquitous feature eliciting appreciable deviations when using ASL similarity theory, especially in scalars such moisture and air temperature whose blending is less efficient when compared to momentum. The focus of this project is to quantify the effect of surface thermal heterogeneity with scales Ο(1/10) the height of the atmospheric boundary layer and characterized by uniform roughness. Such near-canonical cases describe inhomogeneous scalar transport in an otherwise planar homogeneous flow when thermal stratification is weak or absent. In this work we present a large-eddy simulation study that characterizes the effect of surface thermal heterogeneities on the atmospheric flow using the concept of dispersive fluxes. Results illustrate a regime in which the flow is mostly driven by the surface thermal heterogeneities, in which the contribution of the dispersive fluxes can account for up to 40% of the total sensible heat flux. Results also illustrate an alternative regime in which the effect of the surface thermal heterogeneities is quickly blended, and the dispersive fluxes provide instead a quantification of the flow spatial heterogeneities produced by coherent turbulent structures result of the surface shear stress. A threshold flow

  4. Laboratory evaluation and application of microwave absorption properties under simulated conditions for planetary atmospheres

    NASA Technical Reports Server (NTRS)

    Steffes, P. G.

    1985-01-01

    Radio absorptivity data for planetary atmospheres obtained from spacecraft radio occultation experiments and Earth-based radio astronomical observations can be used to infer abundances of microwave absorbing atmospheric constituents in those atmospheres, as long as reliable information regarding the microwave absorbing properties of potential constituents is available. The use of theoretically-derived microwave absorption properties for such atmospheric constituents, or laboratory measurements of such properties under environmental conditions which are significantly different than those of the planetary atmosphere being studied, often lead to significant misinterpretation of available opacity data. Steffes and Eshleman showed that under environmental conditions corresponding to the middle atmosphere of Venus, the microwave absorption due to atmospheric SO2 was 50 percent greater than that calculated from Van Vleck-Weiskopff theory. Similarly, the opacity from gaseous H2SO4 was found to be a factor of 7 greater than theoretically predicted for conditions of the Venus middle atmosphere. The recognition of the need to make such measurements over a range of temperatures and pressures which correspond to the periapsis altitudes of radio occultation experiments, and over a range of frequencies which correspond to both radio occultation experiments and radio astronomical observations, has led to the development of a facility at Georgia Tech which is capable of making such measurements.

  5. Atmospheric conditions measured by a wireless sensor network on the local scale

    NASA Astrophysics Data System (ADS)

    Lengfeld, K.; Ament, F.

    2010-09-01

    Atmospheric conditions close to the surface, like temperature, wind speed and humidity, vary on small scales because of surface heterogeneities. Therefore, the traditional measuring approach of using a single, highly accurate station is of limited representativeness for a larger domain, because it is not able to determine these small scale variabilities. However, both the variability and the domain averages are important information for the development and validation of atmospheric models and soil-vegetation-atmosphere-transfer (SVAT) schemes. Due to progress in microelectronics it is possible to construct networks of comparably cheap meteorological stations with moderate accuracy. Such a network provides data in high spatial and temporal resolution. The EPFL Lausanne developed such a network called SensorScope, consisting of low cost autonomous stations. Each station observes air and surface temperature, humidity, wind direction and speed, incoming solar radiation, precipitation, soil moisture and soil temperature and sends the data via radio communication to a base station. This base station forwards the collected data via GSM/GPRS to a central server. The first measuring campaign took place within the FLUXPAT project in August 2009. We deployed 15 stations as a twin transect near Jülich, Germany. To test the quality of the low cost sensors we compared two of them to more accurate reference systems. It turned out, that although the network sensors are not highly accurate, the measurements are consistent. Consequently an analysis of the pattern of atmospheric conditions is feasible. The transect is 2.3 km long and covers different types of vegetation and a small river. Therefore, we analyse the influence of different land surfaces and the distance to the river on meteorological conditions. For example, we found a difference in air temperature of 0.8°C between the station closest to and the station farthest from the river. The decreasing relative humidity with

  6. Contribution of Atmospheric Diffusion Conditions to the Recent Improvement in Air Quality in China

    PubMed Central

    Wang, Xiaoyan; Wang, Kaicun; Su, Liangyuan

    2016-01-01

    This study analyzed hourly mass concentration observations of PM2.5 (particulate matters with diameter less than 2.5 μm) at 512 stations in China from December 2013 to May 2015. We found that the mean concentrations of PM2.5 during the winter and spring of 2015 Dec. 2014 to Feb. 2015 and Mar. 2015 to May 2015) decreased by 20% and 14% compared to the previous year, respectively. Hazardous air-quality days decreased by 11% in 2015 winter, with more frequent good to unhealthy days; and the good and moderate air-quality days in 2015 spring increased by 9% corresponding to the less occurrence of unhealthy conditions. We compared the atmospheric diffusion conditions during these two years and quantified its contribution to the improvement of air quality during the first half of 2015 over China. Our results show that during the 2015 winter and spring, 70% and 57% of the 512 stations experienced more favorable atmospheric diffusion conditions compared to those of previous year. Over central and northern China, approximately 40% of the total decrease in PM2.5 during the 2015 winter can be attributed to the favorable atmospheric diffusion conditions. The atmospheric diffusion conditions during the spring of 2015 were not as favorable as in winter; and the average contributions of the atmospheric conditions were slight. PMID:27805030

  7. Oblique radiation lateral open boundary conditions for a regional climate atmospheric model

    NASA Astrophysics Data System (ADS)

    Cabos Narvaez, William; De Frutos Redondo, Jose Antonio; Perez Sanz, Juan Ignacio; Sein, Dmitry

    2013-04-01

    The prescription of lateral boundary conditions in regional atmospheric models represent a very important issue for limited area models. The ill-posed nature of the open boundary conditions makes it necessary to devise schemes in order to filter spurious wave reflections at boundaries, being desirable to have one boundary condition per variable. On the other side, due to the essentially hyperbolic nature of the equations solved in state of the art atmospheric models, external data is required only for inward boundary fluxes. These circumstances make radiation lateral boundary conditions a good choice for the filtering of spurious wave reflections. Here we apply the adaptive oblique radiation modification proposed by Mikoyada and Roseti to each of the prognostic variables of the REMO regional atmospheric model and compare it to the more common normal radiation condition used in REMO. In the proposed scheme, special attention is paid to the estimation of the radiation phase speed, essential to detecting the direction of boundary fluxes. One of the differences with the classical scheme is that in case of outward propagation, the adaptive nudging imposed in the boundaries allows to minimize under and over specifications problems, adequately incorporating the external information.

  8. Thermodynamics of Silicon-Hydroxide Formation in H2O Containing Atmospheres

    NASA Technical Reports Server (NTRS)

    Copland, Evan; Myers, Dwight; Opila, Elizabeth J.; Jacobson, Nathan S.

    2001-01-01

    The formation of volatile silicon-hydroxide species from SiO2 in water containing atmospheres has been identified as a potentially important mode of degradation of Si-based ceramics. Availability of thermodynamic data for these species is a major problem. This study is part of an ongoing effort to obtain reliable, experimentally determined thermodynamic data for these species. The transpiration method was used to measure the pressure of Si-containing vapor in equilibrium with SiO2 (cristobalite) and Ar + H2O(g) with various mole fractions of water vapor, X(sub H2O), at temperatures ranging from 1000 to 1780 K. Enthalpies and entropies for the reaction, SiO2(s) + 2H2O(g) = Si(OH)4(g), were obtained, at X(sub H2O) = 0.15 and 0.37, from the variation of lnK with 1/T according to the 'second law method'. The following data were obtained: delta(H)deg = 52.9 +/- 3.7 kJ/mole and delta(S)deg = -68.6 +/- 2.5 J/mole K at an average temperature of 1550 K, and delta(H)deg = 52.5+/-2.0 kJ/mole and delta(S)deg= -69.7 +/- 1.5 J/moleK at an average temperature of 1384 K, for X(sub H2O)= 0.15 and 0.37, respectively. These data agree with results from the literature obtained at an average temperature of 1600 K, and strongly suggest Si(OH)4(g) is the dominant vapor species. Contradictory results were obtained with the determination of the dependence of Si-containing vapor pressure on the partial pressure of water vapor at 1187 and 1722 K. These results suggested the Si-containing vapor could be a mixture of Si(OH)4 + SiO(OH)2. Further pressure dependent studies are in progress to resolve these issues.

  9. Model atmospheres for cool stars. [varying chemical composition

    NASA Technical Reports Server (NTRS)

    Johnson, H. R.

    1974-01-01

    This report contains an extensive series of model atmospheres for cool stars having a wide range in chemical composition. Model atmospheres (temperature, pressure, density, etc.) are tabulated, along with emergent energy flux distributions, limb darkening, and information on convection for selected models. The models are calculated under the usual assumptions of hydrostatic equilibrium, constancy of total energy flux (including transport both by radiation and convection) and local thermodynamic equilibrium. Some molecular and atomic line opacity is accounted for as a straight mean. While cool star atmospheres are regimes of complicated physical conditions, and these atmospheres are necessarily approximate, they should be useful for a number of kinds of spectral and atmospheric analysis.

  10. A Narrow-Linewidth Atomic Line Filter for Free Space Quantum Key Distribution under Daytime Atmospheric Conditions

    NASA Astrophysics Data System (ADS)

    Brown, Justin; Woolf, David; Hensley, Joel

    2016-05-01

    Quantum key distribution can provide secure optical data links using the established BB84 protocol, though solar backgrounds severely limit the performance through free space. Several approaches to reduce the solar background include time-gating the photon signal, limiting the field of view through geometrical design of the optical system, and spectral rejection using interference filters. Despite optimization of these parameters, the solar background continues to dominate under daytime atmospheric conditions. We demonstrate an improved spectral filter by replacing the interference filter (Δν ~ 50 GHz) with an atomic line filter (Δν ~ 1 GHz) based on optical rotation of linearly polarized light through a warm Rb vapor. By controlling the magnetic field and the optical depth of the vapor, a spectrally narrow region can be transmitted between crossed polarizers. We find that the transmission is more complex than a single peak and evaluate peak transmission as well as a ratio of peak transmission to average transmission of the local spectrum. We compare filters containing a natural abundance of Rb with those containing isotopically pure 87 Rb and 85 Rb. A filter providing > 95 % transmission and Δν ~ 1.1 GHz is achieved.

  11. Operational implications of a cloud model simulation of space shuttle exhaust clouds in different atmospheric conditions

    NASA Technical Reports Server (NTRS)

    Zak, J. A.

    1989-01-01

    A three-dimensional cloud model was used to characterize the dominant influence of the environment on the Space Shuttle exhaust cloud. The model was modified to accept the actual heat and moisture from rocket exhausts and deluge water as initial conditions. An upper-air sounding determined the ambient atmosphere in which the cloud would grow. The model was validated by comparing simulated clouds with observed clouds from four actual Shuttle launches. Results are discussed with operational weather forecasters in mind. The model successfully produced clouds with dimensions, rise, decay, liquid water contents, and vertical motion fields very similar to observed clouds whose dimensions were calculated from 16 mm film frames. Once validated, the model was used in a number of different atmospheric conditions ranging from very unstable to very stable. Wind shear strongly affected the appearance of both the ground cloud and vertical column cloud. The ambient low-level atmospheric moisture governed the amount of cloud water in model clouds. Some dry atmospheres produced little or no cloud water. An empirical forecast technique for Shuttle cloud rise is presented and differences between natural atmospheric convection and exhaust clouds are discussed.

  12. Is there an Alternative for the Huge Impact-Generated Atmosphere?

    NASA Astrophysics Data System (ADS)

    Gerasimov, M. V.; Dikov, Y. P.; Yakovlev, O. I.; Wlotzka, F.

    1998-01-01

    The Earth's primordial atmosphere is considered to be the result of impact degassing during planetary accretion. Experiments on the decomposition of a serpentine and calcite during a shock wave loading showed that a rather efficient decomposition could be achieved beginning with the impact velocities that corresponded to escape velocities of a relatively small (about Moon-sized) planetary embryo. During further accumulation of planetary mass, the decomposition of serpentine and carbonates with the release of H2O and CO2 (gases considered to be the main product of impact degassing) into the primordial atmosphere was considered to be complete. The sink rate of H2O and CO2 from the primordial atmosphere was evaluated mainly as atmospheric impact erosion, thermal and EW-driven escape from the atmosphere, hydration and carboniza60n of surface minerals, dissolution of gases in magma ocean, loss of water for oxidation of Fe, etc. The growth of the atmosphere was considered to be a result of source and sink processes during each impact event. The rehydration of 100% of degassed material during an impact is considered to be an end effect when no hydrous atmosphere is formed. But even a small efficiency of impact degassing (the ratio of volatiles that remain in the atmosphere after an impact to the amount delivered by a planetesimal) was calculated to produce an abundant H2O-CO2 atmosphere. During a set of impact simulation experiments we have investigated the chemistry of volatiles and their interaction behavior with condensing silicates at conditions similar to impact vaporization. First, the experiments showed that the gas mixture was not limited only by H20 and CO2 during high-temperature vaporization of silicates, a wide variety of gases were formed, including oxides [SO2, CO2, CO (CO/CO2 approximately 1), H20] and reduced gas components (H2, H2S, CS2, COS, and hydrocarbons). Second, experiments on high-temperature vaporization of mafic and ultramafic rocks and minerals

  13. Evidence for the existence of supercooled ethane droplets under conditions prevalent in Titan's atmosphere.

    PubMed

    Sigurbjörnsson, Omar F; Signorell, Ruth

    2008-11-07

    Recent evidence for ethane clouds and condensation in Titan's atmosphere raise the question whether liquid ethane condensation nuclei and supercooled liquid ethane droplets exist under the prevalent conditions. We present laboratory studies on the phase behaviour of pure ethane aerosols and ethane aerosols formed in the presence of other ice nuclei under conditions relevant to Titan's atmosphere. Combining bath gas cooling with infrared spectroscopy, we find evidence for the existence of supercooled liquid ethane aerosol droplets. The observed homogeneous freezing rates imply that supercooled ethane could be a long-lived species in ethane-rich regions of Titan's atmosphere similar to supercooled water in the Earth's atmosphere.

  14. Alteration of municipal and industrial slags under atmospheric conditions

    NASA Astrophysics Data System (ADS)

    Rafał Kowalski, Piotr; Michalik, Marek

    2014-05-01

    The Waste Management System in Poland is being consequently built since 1998. After important changes in legislation, local governments have taken over the duty of waste collection. New points of selective collection of wastes have been opened and new sorting and composting plants were built. The last stage of introducing the Waste Management System is construction of waste incineration power plants. From nine installations which were planned, six are now under construction and they will start operating within the next two years. It is assumed that the consumption of raw wastes for these installations will reach 974 thousand tons per year. These investments will result in increased slags and ashes production. Now in Poland several local waste incinerators are operating and predominant amount of produced incineration residues is landfilled. These materials are exposed to atmospheric conditions in time of short term storage (just after incineration) and afterwards for a longer period of time on the landfill site. During the storage of slags low temperature mineral transformations and chemical changes may occur and also some components can be washed out. These materials are stored wet because of the technological processes. The aim of this study is to investigate the influence of storage in atmospheric conditions on slags from incineration of industrial and municipal wastes. The experiment started in January 2013. During this period slag samples from incineration of industrial and municipal wastes were exposed to atmospheric conditions. Samples were collected after 6 and 12 months. Within this time the pH value was measured monthly, and during the experimental period remained constant on the level of 9.5. After 6 months of exposure only slight changes in mineral compositions were observed in slags. The results of XRD analysis of municipal slags showed increase in content of carbonate minerals in comparison to the raw slag samples. In industrial slags, a decrease in

  15. Pyroconvection Risk in Australia: Climatological Changes in Atmospheric Stability and Surface Fire Weather Conditions

    NASA Astrophysics Data System (ADS)

    Dowdy, Andrew J.; Pepler, Acacia

    2018-02-01

    Extreme wildfires with strong convective processes in their plumes have recently led to disastrous impacts on various regions of the world. The Continuous Haines index (CH) is used in Australia to represent vertical atmospheric stability and humidity measures relating to pyroconvective processes. CH climatology is examined here using reanalysis data from 1979 to 2016, revealing large spatial and seasonal variations throughout Australia. Various measures of severity are investigated, including regionally specific thresholds. CH is combined with near-surface fire weather conditions, as a type of compound event, and is examined in relation to environmental conditions associated with pyroconvection. Significant long-term changes in CH are found for some regions and seasons, with these changes corresponding to changes in near-surface conditions in some cases. In particular, an increased risk of pyroconvection is identified for southeast Australia during spring and summer, due to decreased vertical atmospheric stability and humidity combined with more severe near-surface conditions.

  16. MRS proof-of-concept on atmospheric corrections. Atmospheric corrections using an orbital pointable imaging system

    NASA Technical Reports Server (NTRS)

    Slater, P. N. (Principal Investigator)

    1980-01-01

    The feasibility of using a pointable imager to determine atmospheric parameters was studied. In particular the determination of the atmospheric extinction coefficient and the path radiance, the two quantities that have to be known in order to correct spectral signatures for atmospheric effects, was simulated. The study included the consideration of the geometry of ground irradiance and observation conditions for a pointable imager in a LANDSAT orbit as a function of time of year. A simulation study was conducted on the sensitivity of scene classification accuracy to changes in atmospheric condition. A two wavelength and a nonlinear regression method for determining the required atmospheric parameters were investigated. The results indicate the feasibility of using a pointable imaging system (1) for the determination of the atmospheric parameters required to improve classification accuracies in urban-rural transition zones and to apply in studies of bi-directional reflectance distribution function data and polarization effects; and (2) for the determination of the spectral reflectances of ground features.

  17. A photometric mode identification method, including an improved non-adiabatic treatment of the atmosphere

    NASA Astrophysics Data System (ADS)

    Dupret, M.-A.; De Ridder, J.; De Cat, P.; Aerts, C.; Scuflaire, R.; Noels, A.; Thoul, A.

    2003-02-01

    We present an improved version of the method of photometric mode identification of Heynderickx et al. (\\cite{hey}). Our new version is based on the inclusion of precise non-adiabatic eigenfunctions determined in the outer stellar atmosphere according to the formalism recently proposed by Dupret et al. (\\cite{dup}). Our improved photometric mode identification technique is therefore no longer dependent on ad hoc parameters for the non-adiabatic effects. It contains the complete physical conditions of the outer atmosphere of the star, provided that rotation does not play a key role. We apply our method to the two slowly pulsating B stars HD 74560 and HD 138764 and to the beta Cephei star EN (16) Lac. Besides identifying the degree l of the pulsating stars, our method is also a tool for improving the knowledge of stellar interiors and atmospheres, by imposing constraints on parameters such as the metallicity and the mixing-length parameter alpha (a procedure we label non-adiabatic asteroseismology). The non-adiabatic eigenfunctions needed for the mode identification are available upon request from the authors.

  18. Kinetics of OH + CO reaction under atmospheric conditions

    NASA Technical Reports Server (NTRS)

    Hynes, A. J.; Wine, P. H.; Ravishankara, A. R.

    1986-01-01

    A pulsed laser photolysis-pulsed laser-induced fluorescence technique is used to directly measure the temperature, pressure, and H2O concentration dependence on k1 in air. K1 is found to increase linearly with increasing pressure at pressures of not greater than 1 atm, and the pressure dependence of k1 at 299 K is the same in N2 buffer gas as in O2 buffer gas. The rate constant in the low-pressure limit and the slope of the k1 versus pressure dependence are shown to be the same at 262 K as at 299 K. The present results significantly reduce the current atmospheric model uncertainties in the temperature dependence under atmospheric conditions, in the third body efficiency of O2, and in the effect of water vapor on k1.

  19. [Effects of atmospheric thermally stratified condition on sensible heat within forest canopy].

    PubMed

    Diao, Yi-Wei; Wang, An-Zhi; Guan, De-Xin; Jin, Chang-Jie; Pei, Tie-Fan

    2010-01-01

    By using Eulerian second-order closure model, this paper studied the source-sink distribution and flux characteristics of sensible heat within forest canopy under atmospheric thermally stratified condition. In the daytime, a notable feature for the atmospheric stratification of forest canopy was the unstable stratification above the canopy and the stable stratification under the canopy. The changes of temperature profile indicated there was a 'hot spot' at about 2/3 of canopy height. The counter-gradient fluxes within the canopy were discovered by modeling the heat flux under weak stable atmospheric condition. Simulations of the diurnal variation of sensible heat flux were consistent with the measurements (R2 = 0.9035, P < 0.01). Adding buoyancy in the sensible heat balance equation could increase the simulation accuracy of inversion model, and improve the simulation capability for heat flux balance.

  20. Measurement of forest condition and response along the Pennsylvania atmospheric deposition gradent

    Treesearch

    D.D. David; J.M. Skelly; J.A. Lynch; L.H. McCormick; B.L. Nash; M. Simini; E.A. Cameron; J.R. McClenahen; R.P. Long

    1991-01-01

    Research in the oak-hickory forest of northcentral Pennsylvania is being conducted to detect anomalies in forest condition that may be due to atmospheric deposition, with the intent that such anomalies will be further studied to determine the role, if any, of atmospheric deposition. This paper presents the status of research along a 160-km gradient of sulfate/nitrate...

  1. Predictability of the atmospheric conditions leading to extreme weather events in the Western Mediterranean Region in comparison with the seasonal mean conditions

    NASA Astrophysics Data System (ADS)

    Khodayar, Samiro; Kalthoff, Norbert

    2013-04-01

    Among all severe convective weather situations, fall season heavy rainfall represents the most threatening phenomenon in the western Mediterranean region. Devastating flash floods occur every year somewhere in eastern Spain, southern France, Italy, or North Africa, being responsible for a great proportion of the fatalities, property losses, and destruction of infrastructure caused by natural hazards. Investigations in the area have shown that most of the heavy rainfall events in this region can be attributed to mesoscale convective systems. The main goal of this investigation is to understand and identify the atmospheric conditions that favor the initiation and development of such systems. Insight of the involved processes and conditions will improve their predictability and help preventing some of the fatal consequences related with the occurrence of these weather phenomena. The HyMeX (Hydrological cycle in the Mediterranean eXperiment) provides a unique framework to investigate this issue. Making use of high-resolution seasonal simulations with the COSMO-CLM model the mean atmospheric conditions of the fall season, September, October and November, are investigated in different western Mediterranean regions such as eastern Spain, Southern France, northern Africa and Italy. The precipitation distribution, its daily cycle, and probability distribution function are evaluated to ascertain the similarities and differences between the regions of interest, as well as the spatial distribution of extreme events. Additionally, the regional differences of the boundary layer and mid-tropospheric conditions, atmospheric stability and inhibition, and low-level triggering are presented. Selected high impact weather HyMeX episodes' are analyzed with special focus on the atmospheric pre-conditions leading to the extreme weather situations. These pre-conditions are then compared to the mean seasonal conditions to identify and point out possible anomalies in the atmospheric

  2. Ultraviolet light propagation under low visibility atmospheric conditions and its application to aircraft landing aid.

    PubMed

    Lavigne, Claire; Durand, Gérard; Roblin, Antoine

    2006-12-20

    Light scattering in the atmosphere by particles and molecules gives rise to an aureole surrounding the source image that tends to reduce the contrast of the source with respect to the background. However, UV scattering phase functions of the haze droplets present a very important forward peak. The spreading of a detected signal in the UV is not as important as in the case of a clear atmosphere where Rayleigh scattering predominates. This physical property has to be taken into account to evaluate the potential of UV radiation as an aircraft landing aid under low visibility conditions. Different results characterizing UV runway lights, simulations of UV radiation propagation in the atmosphere, and the use of a simple detection algorithm applied to one particular sensor are presented.

  3. The dusty atmosphere of the brown dwarf Gliese 229B.

    PubMed

    Griffith, C A; Yelle, R V; Marley, M S

    1998-12-11

    The brown dwarf Gliese 229B has an observable atmosphere too warm to contain ice clouds like those on Jupiter and too cool to contain silicate clouds like those on low-mass stars. These unique conditions permit visibility to higher pressures than possible in cool stars or planets. Gliese 229B's 0.85- to 1.0-micrometer spectrum indicates particulates deep in the atmosphere (10 to 50 bars) having optical properties of neither ice nor silicates. Their reddish color suggests an organic composition characteristic of aerosols in planetary stratospheres. The particles' mass fraction (10(-7)) agrees with a photochemical origin caused by incident radiation from the primary star and suggests the occurrence of processes native to planetary stratospheres.

  4. An expert system shell for inferring vegetation characteristics: Atmospheric techniques (Task G)

    NASA Technical Reports Server (NTRS)

    Harrison, P. Ann; Harrison, Patrick R.

    1993-01-01

    The NASA VEGetation Workbench (VEG) is a knowledge based system that infers vegetation characteristics from reflectance data. The VEG Subgoals have been reorganized into categories. A new subgoal category 'Atmospheric Techniques' containing two new subgoals has been implemented. The subgoal Atmospheric Passes allows the scientist to take reflectance data measured at ground level and predict what the reflectance values would be if the data were measured at a different atmospheric height. The subgoal Atmospheric Corrections allows atmospheric corrections to be made to data collected from an aircraft or by a satellite to determine what the equivalent reflectance values would be if the data were measured at ground level. The report describes the implementation and testing of the basic framework and interface for the Atmospheric Techniques Subgoals.

  5. An out of phase coupling between the atmosphere and the ocean over the North Atlantic Ocean

    NASA Astrophysics Data System (ADS)

    Ribera, Pedro; Ordoñez, Paulina; Gallego, David; Peña-Ortiz, Cristina

    2017-04-01

    An oscillation band, with a period ranging between 40 and 60 years, has been identified as the most intense signal over the North Atlantic Ocean using several oceanic and atmospheric reanalyses between 1856 and the present. This signal represents the Atlantic Multidecadal Oscillation, an oscillation between warmer and colder than normal conditions in SST. Simultaneously, those changes in SST are accompanied by changes in atmospheric conditions represented by surface pressure, temperature and circulation. In fact, the evolution of the surface pressure pattern along this oscillation shows a North Atlantic Oscillation-like pattern, suggesting the existence of an out of phase coupling between atmospheric and oceanic conditions. Further analysis shows that the evolution of the oceanic SST distribution modifies atmospheric baroclinic conditions in the mid to high latitudes of the North Atlantic and leads the atmospheric variability by 6-7 years. If AMO represents the oceanic conditons and NAO represents the atmospheric variability then it could be said that AMO of one sign leads NAO of the opposite sign with a lag of 6-7 years. On the other hand, the evolution of atmospheric conditions, represented by pressure distribution patterns, favors atmospheric circulation anomalies and induces a heat advection which tends to change the sign of the existing SST distribution and oceanic conditions with a lag of 16-17 years. In this case, NAO of one sign leads AMO of the same sign with a lag of 16-17 years.

  6. Land-Sea-Atmosphere Interaction and Their Association with Drought Conditions

    NASA Astrophysics Data System (ADS)

    Singh, R. P.; Nath, A.

    2017-12-01

    Detailed analysis of satellite data for the period 2002-2016 provides an understanding of the land-sea interaction and its association with the vegetation conditions over the Indian continent. The Indian Ocean dipole (IOD) phenomenon is also considered to understand the atmospheric dynamics and meteorological parameters. GPS water vapor and meteorological parameters (relative humidity and water vapor) from the Indian Institute of Science (IISC) Bangalore have been considered for meteorological data for the period 2008-2016. Atmospheric parameters (water vapor, precipitation rate, land temperature, total ozone column) have been considered using through NASA Giovanni portal and GPS water vapor through SoumiNet data to study relation between Sea Surface temperature (SST) from Indian Ocean, Bay of Bengal and Arabian Sea. Our detailed analysis shows that SST has strong impact on the NDVI at different locations, the maximum impact of SST is observed at lower latitudes. The NDVI over the central and northern India (Indo-Gangetic plains (IGP) is not affected. The SST and NDVI shows high correlation in the central and northern parts, whereas the correlation is poor in the southern parts i.e. close to the ocean. The detailed analysis of NDVI data provides progression of the drought conditions especially in the southern parts of India and also shows impact of the El Nino during 2015-2016.

  7. Physics of the Atmosphere

    NASA Astrophysics Data System (ADS)

    Caballero, Rodrigo

    2014-11-01

    With the increasing attention paid to climate change, there is ever-growing interest in atmospheric physics and the processes by which the atmosphere affects Earth's energy balance. This self-contained text, written for advanced undergraduate and graduate students in physics or meteorology, assumes no prior knowledge apart from basic mechanics and calculus and contains material for a complete course. Augmented with worked examples, the text considers all aspects of atmospheric physics except dynamics, including moist thermodynamics, cloud microphysics, atmospheric radiation and remote sensing, and will be an invaluable resource for students and researchers.

  8. Assessing the Impacts of Atmospheric Conditions under Climate Change on Air Quality Profile over Hong Kong

    NASA Astrophysics Data System (ADS)

    Hei Tong, Cheuk

    2017-04-01

    Small particulates can cause long term impairment to human health as they can penetrate deep and deposit on the wall of the respiratory system. Under the projected climate change as reported by literature, atmospheric stability, which has strong effects on vertical mixing of air pollutants and thus air quality Hong Kong, is also varying from near to far future. In addition to domestic emission, Hong Kong receives also significant concentration of cross-boundary particulates that their natures and movements are correlated with atmospheric condition. This study aims to study the relation of atmospheric conditions with air quality over Hong Kong. Past meteorological data is based on Modern Era Retrospective Analysis for Research and Applications (MERRA) reanalysis data. Radiosonde data provided from HKO are also adopted in testing and validating the data. Future meteorological data is simulated by the Weather Research and Forecasting Model (WRF), which dynamically downscaled the past and future climate under the A1B scenario simulated by ECHAM5/MPIOM. Air quality data is collected on one hand from the ground station data provided by Environment Protection Department, with selected stations revealing local emission and trans-boundary emission respectively. On the other hand, an Atmospheric Light Detection and Ranging (LiDAR), which operates using the radar principle to detect Rayleigh and Mie scattering from atmospheric gas and aerosols, has also been adopted to measure vertical aerosol profile, which has been observed tightly related to the high level meteorology. Data from scattered signals are collected, averaged or some episode selected for characteristic comparison with the atmospheric stability indices and other meteorological factors. The relation between atmospheric conditions and air quality is observed by statistical analysis, and statistical models are built based on the stability indices to project the changes in sulphur dioxide, ozone and particulate

  9. Modified atmosphere packaging for fresh-cut ‘Kent’ mango under common retail display conditions

    USDA-ARS?s Scientific Manuscript database

    A modified atmosphere package (MAP) was designed to optimize the quality and shelf-life of fresh-cut ‘Kent’ mango during exposure to common retail display conditions. The synergism between the MAP system and an antioxidant treatment (calcium ascorbate and citric acid) was also investigated. Mango sl...

  10. Mechanism and degradation kinetics of zinc complex containing isophthalato and 2,2‧-dipyridylamine ligands under different atmospheres

    NASA Astrophysics Data System (ADS)

    Zdravković, J. D.; Radovanović, L.; Poleti, D.; Rogan, J. R.; Vulić, P. J.; Radovanović, Ž.; Minić, D. M.

    2018-06-01

    The design of mixed-ligand complexes are of increasing interest from fundamental as well as technological and curative aspects. Having that in mind, we studied zinc complex containing 2,2‧-dipyridylamine (dipya) and dianion of isophthalic acid (ipht), [Zn(dipya)(ipht)]n, as promising precursor for synthesis of nanostructured metal oxide. In that sense, the mechanism and degradation kinetics of [Zn(dipya)(ipht)]n was analyzed under non-isothermal conditions in nitrogen and in air atmospheres. Peak deconvolution of the [Zn(dipya)(ipht)]n decomposition profile, in the form of a derivative thermogram (DTG), in nitrogen atmosphere, revealed the presence of three decomposition steps, while in air five single steps were isolated. In both cases ZnO is formed as residue at 530 °C: pure (in air) or in amorphous matrix (nitrogen). In air we obtained well crystalized ZnO nanospheres (∼25 nm), by thermal treatment in temperature range 370-530 °C showing that this complex could be considered as good precursor for production of nanosized ZnO.

  11. Electrochemical Measurement of Atmospheric Corrosion

    NASA Technical Reports Server (NTRS)

    DeArmond, Anna H.; Davis, Dennis D.; Beeson, Harold D.

    1999-01-01

    Corrosion of Shuttle thruster components in atmospheres containing high concentrations of nitrogen tetroxide (NTO) and water is an important issue in ground operations of bipropellant systems in humid locations. Measurements of the corrosivities of NTO-containing atmospheres and the responses of different materials to these atmospheres have been accomplished using an electrochemical sensor. The sensor is composed of alternating aluminum/titanium strips separated by thin insulating layers. Under high humidity conditions a thin film of water covers the surface of the sensor. Added NTO vapor reacts with the water film to form a conductive medium and establishes a galvanic cell. The current from this cell can be integrated with respect to time and related to the corrosion activity. The surface layer formed from humid air/NTO reacts in the same way as an aqueous solution of nitric acid. Nitric acid is generally considered an important agent in NTO corrosion situations. The aluminum/titanium sensor is unresponsive to dry air, responds slightly to humid air (> 75% RH), and responds strongly to the combination of humid air and NTO. The sensor response is a power function (n = 2) of the NTO concentration. The sensor does not respond to NTO in dry air. The response of other materials in this type of sensor is related to position of the material in a galvanic series in aqueous nitric acid. The concept and operation of this electrochemical corrosion measurement is being applied to other corrosive atmospheric contaminants such as hydrogen chloride, hydrogen fluoride, sulfur dioxide, and acidic aerosols.

  12. Atmospheric optical calibration system

    DOEpatents

    Hulstrom, R.L.; Cannon, T.W.

    1988-10-25

    An atmospheric optical calibration system is provided to compare actual atmospheric optical conditions to standard atmospheric optical conditions on the basis of aerosol optical depth, relative air mass, and diffuse horizontal skylight to global horizontal photon flux ratio. An indicator can show the extent to which the actual conditions vary from standard conditions. Aerosol scattering and absorption properties, diffuse horizontal skylight to global horizontal photon flux ratio, and precipitable water vapor determined on a real-time basis for optical and pressure measurements are also used to generate a computer spectral model and for correcting actual performance response of a photovoltaic device to standard atmospheric optical condition response on a real-time basis as the device is being tested in actual outdoor conditions. 7 figs.

  13. Atmospheric optical calibration system

    DOEpatents

    Hulstrom, Roland L.; Cannon, Theodore W.

    1988-01-01

    An atmospheric optical calibration system is provided to compare actual atmospheric optical conditions to standard atmospheric optical conditions on the basis of aerosol optical depth, relative air mass, and diffuse horizontal skylight to global horizontal photon flux ratio. An indicator can show the extent to which the actual conditions vary from standard conditions. Aerosol scattering and absorption properties, diffuse horizontal skylight to global horizontal photon flux ratio, and precipitable water vapor determined on a real-time basis for optical and pressure measurements are also used to generate a computer spectral model and for correcting actual performance response of a photovoltaic device to standard atmospheric optical condition response on a real-time basis as the device is being tested in actual outdoor conditions.

  14. Effect of irradiation, active and modified atmosphere packaging, container oxygen barrier and storage conditions on the physicochemical and sensory properties of raw unpeeled almond kernels (Prunus dulcis).

    PubMed

    Mexis, Stamatios F; Riganakos, Kyriakos A; Kontominas, Michael G

    2011-03-15

    The present study investigated the effect of irradiation, active and modified atmosphere packaging, and storage conditions on quality retention of raw, whole, unpeeled almonds. Almond kernels were packaged in barrier and high-barrier pouches, under N(2) or with an O(2) absorber and stored either under fluorescent lighting or in the dark at 20 °C for 12 months. Quality parameters monitored were peroxide value, hexanal content, colour, fatty acid composition and volatile compounds. Of the sensory attributes colour, texture, odour and taste were evaluated. Peroxide value and hexanal increased with dose of irradiation and storage time. Irradiation resulted in a decrease of polyunsaturated and monounsaturated fatty acids during storage with a parallel increase of saturated fatty acids. Volatile compounds were not affected by irradiation but increased with storage time indicating enhanced lipid oxidation. Colour parameters of samples remained unaffected immediately after irradiation. For samples packaged under a N(2) , atmosphere L and b values decreased during storage with a parallel increase of value a resulting to gradual product darkening especially in irradiated samples. Non-irradiated almonds retained acceptable quality for ca. 12 months stored at 20 °C with the O(2) absorber irrespective of lighting conditions and packaging material oxygen barrier. The respective shelf life for samples irradiated at 1.0 kGy was 12 months packaged in PET-SiOx//LDPE irrespective of lighting conditions and 12 months for samples irradiated at 3 kGy packaged in PET-SiOx//LDPE stored in the dark. Copyright © 2010 Society of Chemical Industry.

  15. Carbon-rich Planets: Atmospheric Spectra, Thermal Inversions, And Formation Conditions

    NASA Astrophysics Data System (ADS)

    Madhusudhan, Nikku; Mousis, O.; Lunine, J.; Johnson, T.

    2011-05-01

    Carbon-rich planets (CRPs) are the exotic new members in the repertoire of extrasolar planets. The first CRP atmosphere was discovered recently, for the extremely irradiated hot Jupiter WASP-12b. In this work, we report several candidate carbon-rich planets amongst the known sample of transiting exoplanets, along with follow-up theoretical and observational efforts that aim at confirming these candidates. We also discuss the atmospheric chemistry and temperature structure of carbon-rich giant planets, their formation via core accretion, and the chemistry and apportionment of ices, rock, and volatiles in their envelopes. Our results show that CRP atmospheres probe a unique region in composition space, especially at high T. For C/O ≥ 1, most of the oxygen is occupied by CO for T > 1400 K and P < 1bar, causing a substantial depletion in water vapor, and an overabundance of methane compared to equilibrium chemistry with solar abundances. Adopting gas phase elemental abundances in the disk similar to those estimated in the star gives a C/O ratio in planetesimals and then in the envelope of WASP-12b similar to or below the solar C/O. Under these conditions, a C/O ratio of 1 in WASP-12b would require that the oxygen abundance in the disk is depleted by a factor of 0.41.

  16. Relative Influence of Initial Surface and Atmospheric Conditions on Seasonal Water and Energy Balances

    NASA Technical Reports Server (NTRS)

    Oglesby, Robert J.; Marshall, Susan; Roads, John O.; Robertson, Franklin R.; Goodman, H. Michael (Technical Monitor)

    2001-01-01

    We constructed and analyzed wet and dry soil moisture composites for the mid-latitude GCIP region of the central US using long climate model simulations made with the NCAR CCM3 and reanalysis products from NCEP. Using the diagnostic composites as a guide, we have completed a series of predictability experiments in which we imposed soil water initial conditions in CCM3 for the GCIP region for June 1 from anomalously wet and dry years, with atmospheric initial conditions taken from June 1 of a year with 'near-normal' soil water, and initial soil water from the near-normal year and atmospheric initial conditions from the wet and dry years. Preliminary results indicate that the initial state of the atmosphere is more important than the initial state of soil water determining the subsequent late spring and summer evolution of sod water over the GCIP region. Surprisingly, neither the composites or the predictability experiments yielded a strong influence of soil moisture on the atmosphere. To explore this further, we have made runs with extreme dry soil moisture initial anomalies imposed over the GCIP region (the soil close to being completely dry). These runs did yield a very strong effect on the atmosphere that persisted for at least three months. We conclude that the magnitude of the initial soil moisture anomaly is crucial, at least in CCM3, and are currently investigating whether a threshold exists, below which little impact is seen. In a complementary study, we compared the impact of the initial condition of snow cover versus the initial atmospheric state over the western US (corresponding to the westward extension of the GAPP program follow-on to GCIP). In this case, the initial prescription of snow cover is far more important than the initial atmospheric state in determining the subsequent evolution of snow cover. We are currently working to understand the very different soil water and snow cover results.

  17. The Atmospheric Infrared Sounder- An Overview

    NASA Technical Reports Server (NTRS)

    Larnbrigtsen, Bjorn; Fetzer, Eric; Lee, Sung-Yung; Irion, Fredrick; Hearty, Thomas; Gaiser, Steve; Pagano, Thomas; Aumann, Hartmut; Chahine, Moustafa

    2004-01-01

    The Atmospheric Infrared Sounder (AIRS) was launched in May 2002. Along with two companion microwave sensors, it forms the AIRS Sounding Suite. This system is the most advanced atmospheric sounding system to date, with measurement accuracies far surpassing those available on current weather satellites. The data products are calibrated radiances from all three sensors and a number of derived geophysical parameters, including vertical temperature and humidity profiles, surface temperature, cloud fraction, cIoud top pressure, and profiles of ozone. These products are generated under cloudy as well as clear conditions. An ongoing calibration validation effort has confirmed that the system is very accurate and stable, and many of the geophysical parameters have been validated. AIRS is in some cases more accurate than any other source and can therefore be difficult to validate, but this offers interesting new research opportunities. The applications for the AIRS products range from numerical weather prediction to atmospheric research - where the AIRS water vapor products near the surface and in the mid to upper troposphere will make it possible to characterize and model phenomena that are key for short-term atmospheric processes, such as weather patterns, to long-term processes, such as interannual cycles (e.g., El Nino) and climate change.

  18. Atmospheric optical calibration system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hulstrom, R.L.; Cannon, T.W.

    1988-10-25

    An atmospheric optical calibration system is provided to compare actual atmospheric optical conditions to standard atmospheric optical conditions on the basis of aerosol optical depth, relative air mass, and diffuse horizontal skylight to global horizontal photon flux ratio. An indicator can show the extent to which the actual conditions vary from standard conditions. Aerosol scattering and absorption properties, diffuse horizontal skylight to global horizontal photon flux ratio, and precipitable water vapor determined on a real-time basis for optical and pressure measurements are also used to generate a computer spectral model and for correcting actual performance response of a photovoltaic devicemore » to standard atmospheric optical condition response on a real-time basis as the device is being tested in actual outdoor conditions. 7 figs.« less

  19. Documentation of Atmospheric Conditions During Observed Rising Aircraft Wakes

    NASA Technical Reports Server (NTRS)

    Zak, J. Allen; Rodgers, William G., Jr.

    1997-01-01

    Flight tests were conducted in the fall of 1995 off the coast of Wallops Island, Virginia in order to determine characteristics of wake vortices at flight altitudes. A NASA Wallops Flight Facility C130 aircraft equipped with smoke generators produced visible wakes at altitudes ranging from 775 to 2225 m in a variety of atmospheric conditions, orientations (head wind, cross wind), and airspeeds. Meteorological and aircraft parameters were collected continuously from a Langley Research Center OV-10A aircraft as it flew alongside and through the wake vortices at varying distances behind the C130. Meteorological data were also obtained from special balloon observations made at Wallops. Differential GPS capabilities were on each aircraft from which accurate altitude profiles were obtained. Vortices were observed to rise at distances beyond a mile behind the C130. The maximum altitude was 150 m above the C130 in a near neutral atmosphere with significant turbulence. This occurred from large vertical oscillations in the wakes. There were several cases when vortices did not descend after a very short initial period and remained near generation altitude in a variety of moderately stable atmospheres and wind shears.

  20. The Solar Spectrum: An Atmospheric Remote Sensing Perspective

    NASA Technical Reports Server (NTRS)

    Toon, Geoff

    2013-01-01

    The solar spectrum not only contains information about the composition and structure of the sun, it also provides a bright and stable continuum source for earth remote sensing (atmosphere and surface). Many types of remote sensors use solar radiation. While high-resolution spaceborne sensors (e.g. ACE) can largely remove the effects of the solar spectrum by exo-atmospheric calibration, this isn't an option for sub-orbital sensors, such as the FTIR spectrometers used in the NDACC and TCCON networks. In this case the solar contribution must be explicitly included in the spectral analysis. In this talk the methods used to derive the solar spectrum are presented, and the underlying solar physics are discussed. Implication for remote sensing are described.

  1. Atmospheric conditions, lunar phases, and childbirth: a multivariate analysis

    NASA Astrophysics Data System (ADS)

    Ochiai, Angela Megumi; Gonçalves, Fabio Luiz Teixeira; Ambrizzi, Tercio; Florentino, Lucia Cristina; Wei, Chang Yi; Soares, Alda Valeria Neves; De Araujo, Natalucia Matos; Gualda, Dulce Maria Rosa

    2012-07-01

    Our objective was to assess extrinsic influences upon childbirth. In a cohort of 1,826 days containing 17,417 childbirths among them 13,252 spontaneous labor admissions, we studied the influence of environment upon the high incidence of labor (defined by 75th percentile or higher), analyzed by logistic regression. The predictors of high labor admission included increases in outdoor temperature (odds ratio: 1.742, P = 0.045, 95%CI: 1.011 to 3.001), and decreases in atmospheric pressure (odds ratio: 1.269, P = 0.029, 95%CI: 1.055 to 1.483). In contrast, increases in tidal range were associated with a lower probability of high admission (odds ratio: 0.762, P = 0.030, 95%CI: 0.515 to 0.999). Lunar phase was not a predictor of high labor admission ( P = 0.339). Using multivariate analysis, increases in temperature and decreases in atmospheric pressure predicted high labor admission, and increases of tidal range, as a measurement of the lunar gravitational force, predicted a lower probability of high admission.

  2. Carbon-rich Giant Planets: Atmospheric Chemistry, Thermal Inversions, Spectra, and Formation Conditions

    NASA Astrophysics Data System (ADS)

    Madhusudhan, Nikku; Mousis, Olivier; Johnson, Torrence V.; Lunine, Jonathan I.

    2011-12-01

    The recent inference of a carbon-rich atmosphere, with C/O >= 1, in the hot Jupiter WASP-12b motivates the exotic new class of carbon-rich planets (CRPs). We report a detailed study of the atmospheric chemistry and spectroscopic signatures of carbon-rich giant (CRG) planets, the possibility of thermal inversions in their atmospheres, the compositions of icy planetesimals required for their formation via core accretion, and the apportionment of ices, rock, and volatiles in their envelopes. Our results show that CRG atmospheres probe a unique region in composition space, especially at high temperature (T). For atmospheres with C/O >= 1, and T >~ 1400 K in the observable atmosphere, most of the oxygen is bound up in CO, while H2O is depleted and CH4 is enhanced by up to two or three orders of magnitude each, compared to equilibrium compositions with solar abundances (C/O = 0.54). These differences in the spectroscopically dominant species for the different C/O ratios cause equally distinct observable signatures in the spectra. As such, highly irradiated transiting giant exoplanets form ideal candidates to estimate atmospheric C/O ratios and to search for CRPs. We also find that the C/O ratio strongly affects the abundances of TiO and VO, which have been suggested to cause thermal inversions in highly irradiated hot Jupiter atmospheres. A C/O = 1 yields TiO and VO abundances of ~100 times lower than those obtained with equilibrium chemistry assuming solar abundances, at P ~ 1 bar. Such a depletion is adequate to rule out thermal inversions due to TiO/VO even in the most highly irradiated hot Jupiters, such as WASP-12b. We estimate the compositions of the protoplanetary disk, the planetesimals, and the envelope of WASP-12b, and the mass of ices dissolved in the envelope, based on the observed atmospheric abundances. Adopting stellar abundances (C/O = 0.44) for the primordial disk composition and low-temperature formation conditions (T <~ 30 K) for WASP-12b lead to a C

  3. PBMC: Pre-conditioned Backward Monte Carlo code for radiative transport in planetary atmospheres

    NASA Astrophysics Data System (ADS)

    García Muñoz, A.; Mills, F. P.

    2017-08-01

    PBMC (Pre-Conditioned Backward Monte Carlo) solves the vector Radiative Transport Equation (vRTE) and can be applied to planetary atmospheres irradiated from above. The code builds the solution by simulating the photon trajectories from the detector towards the radiation source, i.e. in the reverse order of the actual photon displacements. In accounting for the polarization in the sampling of photon propagation directions and pre-conditioning the scattering matrix with information from the scattering matrices of prior (in the BMC integration order) photon collisions, PBMC avoids the unstable and biased solutions of classical BMC algorithms for conservative, optically-thick, strongly-polarizing media such as Rayleigh atmospheres.

  4. An Introduction to Atmospheric Physics

    NASA Astrophysics Data System (ADS)

    Andrews, David G.

    2000-09-01

    This advanced undergraduate textbook clearly details how physics can be used to understand many important aspects of atmospheric behavior. Coverage presents a broad overview of atmospheric physics, including atmospheric thermodynamics, radiative transfer, atmospheric fluid dynamics and elementary atmospheric chemistry. Armed with an understanding of these topics, the interested student will be able to grasp the essential physics behind issues of current concern, such as the enhanced greenhouse effect and associated questions of climate change, the Antarctic ozone hole and global ozone depletion, as well as more familiar processes such as the formation of raindrops and the development of weather systems. This introductory textbook is ideal for advanced undergraduates studying atmospheric physics as part of physics, meteorology or environmental science courses. It will also be useful for graduate students studying atmospheric physics for the first time and for students of applied mathematics, physical chemistry and engineering who have an interest in the atmosphere.

  5. Atmospheric propagation of high power laser radiation at different weather conditions

    NASA Astrophysics Data System (ADS)

    Pargmann, Carsten; Hall, Thomas; Duschek, Frank; Handke, Jürgen

    2016-05-01

    Applications based on the propagation of high power laser radiation through the atmosphere are limited in range and effect, due to weather dependent beam wandering, beam deterioration, and scattering processes. Security and defense related application examples are countermeasures against hostile projectiles and the powering of satellites and aircrafts. For an examination of the correlations between weather condition and laser beam characteristics DLR operates at Lampoldshausen a 130 m long free transmission laser test range. Sensors around this test range continuously monitor turbulence strength, visibility, precipitation, temperature, and wind speed. High power laser radiation is obtained by a TruDisk 6001 disk laser (Trumpf company) yielding a maximum output power of 6 kW at a wavelength of 1030 nm. The laser beam is expanded to 180 mm and focused along the beam path. Power and intensity distribution are measured before and after propagation, providing information about the atmospheric transmission and alterations of diameter and position of the laser beam. Backscattered laser light is acquired by a photo receiver. As a result, measurements performed at different weather conditions show a couple of correlations to the characteristics of the laser beam. The experimental results are compared to a numerical analysis. The calculations are based on the Maxwell wave equation in Fresnel approximation. The turbulence is considered by the introduction of phase screens and the "von Karman" spectrum.

  6. Algal refossilization of atmospheric carbon dioxide. [Contains bibliography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Neushul, M.

    1991-07-01

    The atmospheric concentration of carbon dioxide (CO{sub 2}) is steadily increasing. With our increasing awareness of the economic and environmental impacts of the greenhouse effects'' of CO{sub 2}, methane and other gases, there is interest in finding new methods to reduce the amounts of these gases in the atmosphere. This study evaluates the possibility that large-scale oceanic cultures of macroalgae (macroscopic seaweeds'') could be used to capture atmospheric CO{sub 2}. It is a design for a marine farm system in which a crop'' of calcareous macroalgae grows attached to, and supported by, floating macroalgae that comprise the farm structure.'' Themore » least complicated, yet feasible, macroalgal farm system appears to be one in which laboratory-propagated calcareous algal epiphytes'' and floating algal basiphytes'' are dispersed together in natural ocean upwelling regions. From there, the plants drift with surface currents to the open ocean and then sink to the sea floor, where the buried carbon is refossilized.'' An important caveat regarding the use of calcareous algae is that the process of calcification may release CO{sub 2} to the atmosphere. There is some evidence that CO{sub 2} is not released by calcification in red calcareous algae, but in contrast many geochemists feel that all biologically -- as well as chemically --mediated calcification processes release CO{sub 2}. A substantial amount of research will be necessary to answer basic questions about algal carbon fixation and biomineralization on one hand, while on the other hand to devise strategies for farming the open ocean. 76 refs., 14 figs., 7 tabs.« less

  7. Interaction Between CO2-Rich Sulfate Solutions and Carbonate Reservoir Rocks from Atmospheric to Supercritical CO2 Conditions: Experiments and Modeling

    NASA Astrophysics Data System (ADS)

    Cama, J.; Garcia-Rios, M.; Luquot, L.; Soler Matamala, J. M.

    2014-12-01

    A test site for CO2 geological storage is situated in Hontomín (Spain) with a reservoir rock that is mainly composed of limestone. During and after CO2 injection, the resulting CO2-rich acid brine gives rise to the dissolution of carbonate minerals (calcite and dolomite) and gypsum (or anhydrite at depth) may precipitate since the reservoir brine contains sulfate. Experiments using columns filled with crushed limestone or dolostone were conducted under different P-pCO2 conditions (atmospheric: 1-10-3.5 bar; subcritical: 10-10 bar; and supercritical: 150-34 bar), T (25, 40 and 60 ºC) and input solution compositions (gypsum-undersaturated and gypsum-equilibrated solutions). We evaluated the effect of these parameters on the coupled reactions of calcite/dolomite dissolution and gypsum/anhydrite precipitation. The CrunchFlow and PhreeqC (v.3) numerical codes were used to perform reactive transport simulations of the experiments. Under the P-pCO2-T conditions, the volume of precipitated gypsum was smaller than the volume of dissolved carbonate minerals, yielding an increase in porosity (Δporosity up to ≈ 4%). A decrease in T favored limestone dissolution regardless of pCO2 owing to increasing undersaturation with decreasing temperature. However, gypsum precipitation was favored at high T and under atmospheric pCO2 conditions but not at high T and under 10 bar of pCO2 conditions. The increase in limestone dissolution with pCO2 was directly attributed to pH, which was more acidic at higher pCO2. Increasing pCO2, carbonate dissolution occurred along the column whereas it was localized in the very inlet under atmospheric conditions. This was due to the buffer capacity of the carbonic acid, which maintains pH at around 5 and keeps the solution undersaturated with respect to calcite and dolomite along the column. 1D reactive transport simulations reproduced the experimental data (carbonate dissolution and gypsum precipitation for different P-pCO2-T conditions). Drawing

  8. Fretting Wear Damage Mechanism of Uranium under Various Atmosphere and Vacuum Conditions

    PubMed Central

    Li, Zhengyang; Wu, Yanping; Meng, Xiandong; Zhang, Dongxu

    2018-01-01

    A fretting wear experiment with uranium has been performed on a linear reciprocating tribometer with ball-on-disk contact. This study focused on the fretting behavior of the uranium under different atmospheres (Ar, Air (21% O2 + 78% N2), and O2) and vacuum conditions (1.05 and 1 × 10−4 Pa). Evolution of friction was assessed by coefficient of friction (COF) and friction-dissipated energy. The oxide of the wear surface was evaluated by Raman spectroscopy. The result shows that fretting wear behavior presents strong atmosphere and vacuum condition dependence. With increasing oxygen content, the COF decreases due to abrasive wear and formation of oxide film. The COF in the oxygen condition is at least 0.335, and it has a maximum wear volume of about 1.48 × 107 μm3. However, the COF in a high vacuum condition is maximum about 1.104, and the wear volume is 1.64 × 106 μm3. The COF in the low vacuum condition is very different: it firstly increased and then decreased rapidly to a steady value. It is caused by slight abrasive wear and the formation of tribofilm after thousands of cycles. PMID:29659484

  9. DISRUPTION OF NORMAL IRON HOMEOSTASIS AFTER BRONCHIAL INSTILLATION OF AN IRON-CONTAINING PARTICLE

    EPA Science Inventory


    The atmosphere constitutes a prime vehicle for the movement and redistribution of metals. Metal exposure can be associated with an oxidative stress. We tested the hypothesis that, in response to an iron-containing particle, the human respiratory tract will demonstrate an incr...

  10. Inferring atmospheric weather conditions in volcanic environments using infrasound

    NASA Astrophysics Data System (ADS)

    Ortiz, H. D.; Johnson, J. B.; Ruiz, M. C.

    2015-12-01

    We use infrasound produced by Tungurahua Volcano (Ecuador) to infer local time-varying atmospheric conditions, which can be used to improve gas flux measurements and tephra dispersal modeling. Physical properties of the atmosphere, including wind and temperature (which controls adiabatic sound speed), can be quantified by studying the travel times of acoustic waves produced during volcanic activity. The travel times between Tungurahua's vent and five infrasound stations located in a network configuration over an area of 90 km2 were used in this study. We are able to quantify the arrival time differences of acoustic waves for ten unique station pairs and use this information to model the average speed of sound between source and receiver. To identify what parameters best fit the observed arrival times, we perform a grid search for a homogeneous two-dimensional wind velocity as well as for air temperature. Due to travel time dependence on the specific path taken by waves, we account for topography using a 5 meter resolution digital elevation model of Tungurahua. To investigate the time-varying atmospheric structure we use data recorded at Tungurahua volcano, during a strombolian eruptive phase in August 2012, however the methodology can be applied to continuous network infrasound data collected since July 2006 as part of the Japanese-Ecuadorian Cooperation Project: "Enhancement of the Volcano Monitoring Capacity in Ecuador". We propose that the computation of wind velocities will help to improve gas flux measurements that are based on remote sensing techniques like Differential Optical Absorption Spectroscopy (DOAS), resulting in better estimates of sulfur fluxes that can then be related to magma fluxing into the volcanic system. Further, wind field quantification close to the volcano can improve numerical models that are used to forecast tephra deposits, thereby helping to mitigate their effect on inhabitants, infrastructure, livestock, and crops.

  11. Evaporation from soils subjected to natural boundary conditions at the land-atmospheric interface

    NASA Astrophysics Data System (ADS)

    Smits, K.; Illngasekare, T.; Ngo, V.; Cihan, A.

    2012-04-01

    Bare soil evaporation is a key process for water exchange between the land and the atmosphere and an important component of the water balance in semiarid and arid regions. However, there is no agreement on the best methodology to determine evaporation under different boundary conditions at the land surface. This becomes critical in developing models that couples land to the atmosphere. Because it is difficult to measure evaporation from soil, with the exception of using lysimeters, numerous formulations have been proposed to establish a relationship between the rate of evaporation and soil moisture and/or soil temperature and thermal properties. Different formulations vary in how they partition available energy. A need exists to systematically compare existing methods to experimental data under highly controlled conditions not achievable in the field. The goal of this work is to perform controlled experiments under transient conditions of soil moisture, temperature and wind at the land/atmospheric interface to test different conceptual and mathematical formulations for the soil surface boundary conditions to develop appropriate numerical models to be used in simulations. In this study, to better understand the coupled water-vapor-heat flow processes in the shallow subsurface near the land surface, we modified a previously developed theory by Smits et al. [2011] that allows non-equilibrium liquid/gas phase change with gas phase vapor diffusion to better account for dry soil conditions. The model did not implement fitting parameters such as a vapor enhancement factor that is commonly introduced into the vapor diffusion coefficient as an arbitrary multiplication factor. In order to experimentally test the numerical formulations/code, we performed a two-dimensional physical model experiment under varying boundary conditions using test sand for which the hydraulic and thermal properties were well characterized. Precision data under well-controlled transient heat and

  12. Study and Optimization on graft polymerization under normal pressure and air atmospheric conditions, and its application to metal adsorbent

    NASA Astrophysics Data System (ADS)

    Ueki, Yuji; Chandra Dafader, Nirmal; Hoshina, Hiroyuki; Seko, Noriaki; Tamada, Masao

    2012-07-01

    Radiation-induced graft polymerization of glycidyl methacrylate (GMA) onto non-woven polyethylene (NWPE) fabric was achieved under normal pressure and air atmospheric conditions, without using unique apparatus such as glass ampoules or vacuum lines. To attain graft polymerization under normal pressure and air atmospheric conditions, the effects of the pre-irradiation dose, pre-irradiation atmosphere, pre-irradiation temperature, de-aeration of GMA-emulsion, grafting atmosphere in a reactor, and dissolved oxygen (DO) concentration in GMA-emulsion on the degree of grafting (Dg) were investigated in detail. It was found that the DO concentration had the strongest influence, the pre-irradiation dose, de-aeration of emulsion and grafting atmosphere had a relatively strong impact, and the pre-irradiation atmosphere and pre-irradiation temperature had the least effect on Dg. The optimum DO concentration before grafting was 2.0 mg/L or less. When a polyethylene bottle was used as a reactor instead of a glass ampoule, graft polymerization under normal pressure and air atmospheric conditions could be achieved under the following conditions; the pre-irradiation dose was more than 50 kGy, the volume ratio of GMA-emulsion to air was 50:1 or less, and the DO concentration in GMA-emulsion during grafting was below 2.0 mg/L. Under these grafting conditions, Dg was controlled within a range of up to 362%. The prepared GMA-grafted NWPE (GMA-g-NWPE) fabric was modified with a phosphoric acid to obtain an adsorbent for heavy metal ions. In the column-mode adsorption tests of Pb(II), the adsorption performance of the produced phosphorylated GMA-g-NWPE fabric (fibrous metal adsorbent) was not essentially dependent on the flow rate of the feed. The breakthrough points of 200, 500, and 1000 h-1 in space velocity were 483, 477 and 462 bed volumes, and the breakthrough capacities of the three flow rates were 1.16, 1.15 and 1.16 mmol-Pb(II)/g-adsorbent.

  13. Climate and atmosphere simulator for experiments on ecological systems in changing environments.

    PubMed

    Verdier, Bruno; Jouanneau, Isabelle; Simonnet, Benoit; Rabin, Christian; Van Dooren, Tom J M; Delpierre, Nicolas; Clobert, Jean; Abbadie, Luc; Ferrière, Régis; Le Galliard, Jean-François

    2014-01-01

    Grand challenges in global change research and environmental science raise the need for replicated experiments on ecosystems subjected to controlled changes in multiple environmental factors. We designed and developed the Ecolab as a variable climate and atmosphere simulator for multifactor experimentation on natural or artificial ecosystems. The Ecolab integrates atmosphere conditioning technology optimized for accuracy and reliability. The centerpiece is a highly contained, 13-m(3) chamber to host communities of aquatic and terrestrial species and control climate (temperature, humidity, rainfall, irradiance) and atmosphere conditions (O2 and CO2 concentrations). Temperature in the atmosphere and in the water or soil column can be controlled independently of each other. All climatic and atmospheric variables can be programmed to follow dynamical trajectories and simulate gradual as well as step changes. We demonstrate the Ecolab's capacity to simulate a broad range of atmospheric and climatic conditions, their diurnal and seasonal variations, and to support the growth of a model terrestrial plant in two contrasting climate scenarios. The adaptability of the Ecolab design makes it possible to study interactions between variable climate-atmosphere factors and biotic disturbances. Developed as an open-access, multichamber platform, this equipment is available to the international scientific community for exploring interactions and feedbacks between ecological and climate systems.

  14. Laboratory Evaluation and Application of Microwave Absorption Properties Under Simulated Conditions for Planetary Atmospheres

    NASA Technical Reports Server (NTRS)

    Steffes, Paul G.

    1997-01-01

    Radio absorptivity data for planetary atmospheres obtained from spacecraft radio occultation experiments and earth-based radio astronomical observations can be used to infer abundances of microwave absorbing constituents in those atmospheres, as long as reliable information regarding the microwave absorbing properties of potential constituents is available. The use of theoretically-derived microwave absorption properties for such atmospheric constituents, or using laboratory measurements of such properties under environmental conditions which are significantly different than those of the planetary atmosphere being studied, often leads to significant misinterpretation of available opacity data. Laboratory measurements completed under this grant (NAGW-533), have shown that the opacity from, SO2 under simulated Venus conditions is best described by a different lineshape than was previously used in theoretical predictions. The recognition of the need to make such laboratory measurements of simulated planetary atmospheres over a range of temperatures and pressures which correspond to the altitudes probed by both radio occultation experiments and radio astronomical observations, and over a range of frequencies which correspond to those used in both radio occultation experiments and radio astronomical observations, has led to the development of a facility at Georgia Tech which is capable of making such measurements. It has been the goal of this investigation to conduct such measurements and to apply the results to a wide range of planetary observations, both spacecraft and earth-based, in order to determine the identity and abundance profiles of constituents in those planetary atmospheres.

  15. The ISLSCP initiative I global datasets: Surface boundary conditions and atmospheric forcings for land-atmosphere studies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sellers, P.J.; Collatz, J.; Koster, R.

    1996-09-01

    A comprehensive series of global datasets for land-atmosphere models has been collected, formatted to a common grid, and released on a set of CD-ROMs. This paper describes the motivation for and the contents of the dataset. In June of 1992, an interdisciplinary earth science workshop was convened in Columbia, Maryland, to assess progress in land-atmosphere research, specifically in the areas of models, satellite data algorithms, and field experiments. At the workshop, representatives of the land-atmosphere modeling community defined a need for global datasets to prescribe boundary conditions, initialize state variables, and provide near-surface meteorological and radiative forcings for their models.more » The International Satellite Land Surface Climatology Project (ISLSCP), a part of the Global Energy and Water Cycle Experiment, worked with the Distributed Active Archive Center of the National Aeronautics and Space Administration Goddard Space Flight Center to bring the required datasets together in a usable format. The data have since been released on a collection of CD-ROMs. The datasets on the CD-ROMs are grouped under the following headings: vegetation; hydrology and soils; snow, ice, and oceans; radiation and clouds; and near-surface meteorology. All datasets cover the period 1987-88, and all but a few are spatially continuous over the earth`s land surface. All have been mapped to a common 1{degree} x 1{degree} equal-angle grid. The temporal frequency for most of the datasets is monthly. A few of the near-surface meteorological parameters are available both as six-hourly values and as monthly means. 26 refs., 8 figs., 2 tabs.« less

  16. Solar Wind Interaction with the Martian Upper Atmosphere at Early Mars/Extreme Solar Conditions

    NASA Astrophysics Data System (ADS)

    Dong, C.; Bougher, S. W.; Ma, Y.; Toth, G.; Lee, Y.; Nagy, A. F.; Tenishev, V.; Pawlowski, D. J.; Combi, M. R.

    2014-12-01

    The investigation of ion escape fluxes from Mars, resulting from the solar wind interaction with its upper atmosphere/ionosphere, is important due to its potential impact on the long-term evolution of Mars atmosphere (e.g., loss of water) over its history. In the present work, we adopt the 3-D Mars cold neutral atmosphere profiles (0 ~ 300 km) from the newly developed and validated Mars Global Ionosphere Thermosphere Model (M-GITM) and the 3-D hot oxygen profiles (100 km ~ 5 RM) from the exosphere Monte Carlo model Adaptive Mesh Particle Simulator (AMPS). We apply these 3-D model output fields into the 3-D BATS-R-US Mars multi-fluid MHD (MF-MHD) model (100 km ~ 20 RM) that can simulate the interplay between Mars upper atmosphere and solar wind by considering the dynamics of individual ion species. The multi-fluid MHD model solves separate continuity, momentum and energy equations for each ion species (H+, O+, O2+, CO2+). The M-GITM model together with the AMPS exosphere model take into account the effects of solar cycle and seasonal variations on both cold and hot neutral atmospheres. This feature allows us to investigate the corresponding effects on the Mars upper atmosphere ion escape by using a one-way coupling approach, i.e., both the M-GITM and AMPS model output fields are used as the input for the multi-fluid MHD model and the M-GITM is used as input into the AMPS exosphere model. In this study, we present M-GITM, AMPS, and MF-MHD calculations (1-way coupled) for 2.5 GYA conditions and/or extreme solar conditions for present day Mars (high solar wind velocities, high solar wind dynamic pressure, and high solar irradiance conditions, etc.). Present day extreme conditions may result in MF-MHD outputs that are similar to 2.5 GYA cases. The crustal field orientations are also considered in this study. By comparing estimates of past ion escape rates with the current ion loss rates to be returned by the MAVEN spacecraft (2013-2016), we can better constrain the

  17. Transboundary atmospheric lead pollution.

    PubMed

    Erel, Yigal; Axelrod, Tamar; Veron, Alain; Mahrer, Yitzak; Katsafados, Petros; Dayan, Uri

    2002-08-01

    A high-temporal resolution collection technique was applied to refine aerosol sampling in Jerusalem, Israel. Using stable lead isotopes, lead concentrations, synoptic data, and atmospheric modeling, we demonstrate that lead detected in the atmosphere of Jerusalem is not only anthropogenic lead of local origin but also lead emitted in other countries. Fifty-seven percent of the collected samples contained a nontrivial fraction of foreign atmospheric lead and had 206Pb/207Pb values which deviated from the local petrol-lead value (206Pb/207Pb = 1.113) by more than two standard deviations (0.016). Foreign 206Pb/207Pb values were recorded in Jerusalem on several occasions. The synoptic conditions on these dates and reported values of the isotopic composition of lead emitted in various countries around Israel suggest that the foreign lead was transported to Jerusalem from Egypt, Turkey, and East Europe. The average concentration of foreign atmospheric lead in Jerusalem was 23 +/- 17 ng/m3, similar to the average concentration of local atmospheric lead, 21 +/- 18 ng/ m3. Hence, the load of foreign atmospheric lead is similar to the load of local atmospheric lead in Jerusalem.

  18. Comparative evaluation of thermal decomposition behavior and thermal stability of powdered ammonium nitrate under different atmosphere conditions.

    PubMed

    Yang, Man; Chen, Xianfeng; Wang, Yujie; Yuan, Bihe; Niu, Yi; Zhang, Ying; Liao, Ruoyu; Zhang, Zumin

    2017-09-05

    In order to analyze the thermal decomposition characteristics of ammonium nitrate (AN), its thermal behavior and stability under different conditions are studied, including different atmospheres, heating rates and gas flow rates. The evolved decomposition gases of AN in air and nitrogen are analyzed with a quadrupole mass spectrometer. Thermal stability of AN at different heating rates and gas flow rates are studied by differential scanning calorimetry, thermogravimetric analysis, paired comparison method and safety parameter evaluation. Experimental results show that the major evolved decomposition gases in air are H 2 O, NH 3 , N 2 O, NO, NO 2 and HNO 3 , while in nitrogen, H 2 O, NH 3 , NO and HNO 3 are major components. Compared with nitrogen atmosphere, lower initial and end temperatures, higher heat flux and broader reaction temperature range are obtained in air. Meanwhile, higher air gas flow rate tends to achieve lower reaction temperature and to reduce thermal stability of AN. Self-accelerating decomposition temperature of AN in air is much lower than that in nitrogen. It is considered that thermostability of AN is influenced by atmosphere, heating rate and gas flow rate, thus changes of boundary conditions will influence its thermostability, which is helpful to its safe production, storage, transportation and utilization. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Peptide Fragmentation Induced by Radicals at Atmospheric Pressure

    PubMed Central

    Vilkov, Andrey N.; Laiko, Victor V.; Doroshenko, Vladimir M.

    2009-01-01

    A novel ion dissociation technique, which is capable of providing an efficient fragmentation of peptides at essentially atmospheric pressure conditions, is developed. The fragmentation patterns observed often contain c-type fragments that are specific to ECD/ETD, along with the y-/b- fragments that are specific to CAD. In the presented experimental setup, ion fragmentation takes place within a flow reactor located in the atmospheric pressure region between the ion source and the mass spectrometer. According to a proposed mechanism, the fragmentation results from the interaction of ESI-generated analyte ions with the gas-phase radical species produced by a corona discharge source. PMID:19034885

  20. Influence of different land surfaces on atmospheric conditions measured by a wireless sensor network

    NASA Astrophysics Data System (ADS)

    Lengfeld, Katharina; Ament, Felix

    2010-05-01

    Atmospheric conditions close to the surface, like temperature, wind speed and humidity, vary on small scales because of surface heterogeneities. Therefore, the traditional measuring approach of using a single, highly accurate station is of limited representativeness for a larger domain, because it is not able to determine these small scale variabilities. However, both the variability and the domain averages are important information for the development and validation of atmospheric models and soil-vegetation-atmosphere-transfer (SVAT) schemes. Due to progress in microelectronics it is possible to construct networks of comparably cheap meteorological stations with moderate accuracy. Such a network provides data in high spatial and temporal resolution. The EPFL Lausanne developed such a network called SensorScope, consisting of low cost autonomous stations. Each station observes air and surface temperature, humidity, wind direction and speed, incoming solar radiation, precipitations, soil moisture and soil temperature and sends the data via radio communication to a base station. This base station forwards the collected data via GSM/GPRS to a central server. Within the FLUXPAT project in August 2009 we deployed 15 stations as a twin transect near Jülich, Germany. One aim of this first experiment was to test the quality of the low cost sensors by comparing them to more accurate reference measurements. It turned out, that although the network is not highly accurate, the measurements are consistent. Consequently an analysis of the pattern of atmospheric conditions is feasible. For example, we detect a variability of ± 0.5K in the mean temperature at a distance of only 2.3 km. The transect covers different types of vegetation and a small river. Therefore, we analyzed the influence of different land surfaces and the distance to the river on meteorological conditions. On the one hand, some results meet our expectations, e.g. the relative humidity decreases with increasing

  1. Thermodynamic analysis of chemical stability of ceramic materials in hydrogen-containing atmospheres at high temperatures

    NASA Technical Reports Server (NTRS)

    Misra, Ajay K.

    1990-01-01

    The chemical stability of several ceramic materials in hydrogen-containing environments was analyzed with thermodynamic considerations in mind. Equilibrium calculations were made as a function of temperature, moisture content, and total system pressure. The following ceramic materials were considered in this study: SiC, Si3N4, SiO2, Al2O3, mullite, ZrO2, Y2O3, CaO, MgO, BeO, TiB2, TiC, HfC, and ZrC. On the basis of purely thermodynamic arguments, upper temperature limits are suggested for each material for long-term use in H2-containing atmospheres.

  2. Ozonation of isoproturon adsorbed on silica particles under atmospheric conditions

    NASA Astrophysics Data System (ADS)

    Pflieger, Maryline; Grgić, Irena; Kitanovski, Zoran

    2012-12-01

    The results on heterogeneous ozonation of a phenylurea pesticide, isoproturon, under atmospheric conditions are presented for the first time in the present study. The study was carried out using an experimental device previously adopted and validated for the heterogeneous reactivity of organics toward ozone (Pflieger et al., 2011). Isoproturon was adsorbed on silica particles via a liquid-to-solid equilibrium with a load far below a monolayer (0.02% by weight/surface coverage of 0.5%). The rate constants were estimated by measuring the consumption of the organic (dark, T = 26 °C, RH < 1%). The experimental data were fitted by both the modified Langmuir-Hinshelwood and the Eley-Rideal patterns, resulting in atmospheric lifetimes of heterogeneous ozonation of 4 and 6 days, respectively (for 40 ppb of O3). Parameters, such as the number and the quantity of pesticides adsorbed on the solid support, which can significantly influence the heterogeneous kinetics, were investigated as well. The results obtained suggest that the organic compound is adsorbed in multilayer aggregates on the aerosol even though submonolayer coverage is assumed. The presence of a second herbicide, trifluralin, together with isoproturon on the aerosol surface does not affect the kinetics of ozonation, indicating that both compounds are adsorbed on different surface sites of silica particles.

  3. Atmospheric conditions create freeways, detours and tailbacks for migrating birds.

    PubMed

    Shamoun-Baranes, Judy; Liechti, Felix; Vansteelant, Wouter M G

    2017-07-01

    The extraordinary adaptations of birds to contend with atmospheric conditions during their migratory flights have captivated ecologists for decades. During the 21st century technological advances have sparked a revival of research into the influence of weather on migrating birds. Using biologging technology, flight behaviour is measured across entire flyways, weather radar networks quantify large-scale migratory fluxes, citizen scientists gather observations of migrant birds and mechanistic models are used to simulate migration in dynamic aerial environments. In this review, we first introduce the most relevant microscale, mesoscale and synoptic scale atmospheric phenomena from the point of view of a migrating bird. We then provide an overview of the individual responses of migrant birds (when, where and how to fly) in relation to these phenomena. We explore the cumulative impact of individual responses to weather during migration, and the consequences thereof for populations and migratory systems. In general, individual birds seem to have a much more flexible response to weather than previously thought, but we also note similarities in migratory behaviour across taxa. We propose various avenues for future research through which we expect to derive more fundamental insights into the influence of weather on the evolution of migratory behaviour and the life-history, population dynamics and species distributions of migrant birds.

  4. Corona method and apparatus for altering carbon containing compounds

    DOEpatents

    Sharma, Amit K.; Camaioni, Donald M.; Josephson, Gary B.

    1999-01-01

    The present invention is a method and apparatus for altering a carbon containing compound in an aqueous mixture. According to a first aspect of the present invention, it has been discovered that for an aqueous mixture having a carbon containing compound with an ozone reaction rate less than the ozone reaction rate of pentachlorophenol, use of corona discharge in a low or non-oxidizing atmosphere increases the rate of destruction of the carbon containing compound compared to corona discharge an oxidizing atmosphere. For an aqueous mixture containing pentachlorphenol, there was essentially no difference in destruction between atmospheres. According to a second aspect of the present invention, it has been further discovered that an aqueous mixture having a carbon containing compound in the presence of a catalyst and oxygen resulted in an increased destruction rate of the carbon containing compound compared to no catalyst.

  5. Corona Method And Apparatus For Altering Carbon Containing Compounds

    DOEpatents

    Sharma, Amit K.; Camaioni, Donald M.; Josephson; Gary B.

    2004-05-04

    The present invention is a method and apparatus for altering a carbon-containing compound in an aqueous mixture. According to a first aspect of the present invention, it has been discovered that for an aqueous mixture having a carbon containing compound with an ozone reaction rate less than the ozone reaction rate of pentachlorophenol, use of corona discharge in a low or non-oxidizing atmosphere increases the rate of destruction of the carbon containing compound compared to corona discharge an oxidizing atmosphere. For an aqueous mixture containing pentachlorphenol, there was essentially no difference in destruction between atmospheres. According to a second aspect of the present invention, it has been further discovered that an aqueous mixture having a carbon-containing compound in the presence of a catalyst and oxygen resulted in an increased destruction rate of the carbon containing compound compared to no catalyst.

  6. Trans-boundary air pollution in a city under various atmospheric conditions.

    PubMed

    Luo, Ming; Hou, Xiangting; Gu, Yefu; Lau, Ngar-Cheung; Yim, Steve Hung-Lam

    2018-03-15

    Trans-boundary air pollution (TAP) is a crucial factor affecting air quality, and its contribution may vary over time and differ under various atmospheric conditions. This study firstly applies an integrated statistical scheme to estimate the contributions of TAP and local sources to air pollutants in a city, and then investigate the influences of tropical cyclones (TC) on TAP. Hong Kong is chosen as an example because of its significant and special TAP characteristics. This study focuses on four major air pollutants, namely, respirable and fine suspended particulates (RSP/PM 10 and FSP/PM 2.5 ), sulfur dioxide (SO 2 ), and nitrogen dioxide (NO 2 ), from 2002 to 2013. Our results show that, on average, TAP is the major contributor of the annual RSP, FSP, SO 2 , and NO 2 in Hong Kong. We estimate that when a TC is approaching, the increase in pollutant concentration in Hong Kong is mainly due to the increase in TAP contribution by the strengthened northerly wind at higher level of atmosphere (≥900hPa). These changes are accompanied by decreases in precipitation and increases in northerly/north-easterly wind, which may prolong the lifetime of pollutants, enhancing pollutant transport from mainland China to Hong Kong. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Atmospheric degradation mechanisms of hydrogen containing chlorofluorocarbons (HCFC) and fluorocarbons (HFC)

    NASA Technical Reports Server (NTRS)

    Zellner, Reinhard

    1990-01-01

    The current knowledge of atmospheric degradation of hydrogen containing chlorofluorocarbons (HCFC 22 (CHClF2), HCFC 123 (CHCl2CF3), HCFC 124 (CHClFCF3), HCFC 141b (CFCl2CH3), HCFC 142b (CF2ClCH3)) and fluorocarbons (HFC 125 (CHF2CF3), HFC 134a (CH2FCF3), HFC 152a (CHF2CH3)) is assessed. Except for the initiation reaction by OH radicals, there are virtually no experimental data available concerning the subsequent oxidative breakdown of these molecules. However, from an analogy to the degradation mechanisms of simple alkanes, some useful guidelines as to the expected intermediates and final products can be derived. A noteable exception from this analogy, however, appears for the oxi-radicals. Here, halogen substitution induces new reaction types (C-Cl and C-C bond ruptures) which are unknown to the unsubstituted analogues and which modify the nature of the expected carbonyl products. Based on an evaluation of these processes using estimated bond strength data, the following simplified rules with regards to the chlorine content of the HCFC's may be deduced: (1) HCFC's containing one chlorine atom such as 22 and 142b seem to release their chlorine content essentially instantaneous with the initial attack on the parent by OH radicals, and for HCFC 124, such release is apparently prevented; (2) HCFC's such as 123 and 141b with two chlorine atoms are expected to release only one of these instantaneously; and the second chlorine atom may be stored in potentially long-lived carbonyl compounds such as CF3CClO or CClFO.

  8. AN ANALYTIC RADIATIVE-CONVECTIVE MODEL FOR PLANETARY ATMOSPHERES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Robinson, Tyler D.; Catling, David C., E-mail: robinson@astro.washington.edu

    2012-09-20

    We present an analytic one-dimensional radiative-convective model of the thermal structure of planetary atmospheres. Our model assumes that thermal radiative transfer is gray and can be represented by the two-stream approximation. Model atmospheres are assumed to be in hydrostatic equilibrium, with a power-law scaling between the atmospheric pressure and the gray thermal optical depth. The convective portions of our models are taken to follow adiabats that account for condensation of volatiles through a scaling parameter to the dry adiabat. By combining these assumptions, we produce simple, analytic expressions that allow calculations of the atmospheric-pressure-temperature profile, as well as expressions formore » the profiles of thermal radiative flux and convective flux. We explore the general behaviors of our model. These investigations encompass (1) worlds where atmospheric attenuation of sunlight is weak, which we show tend to have relatively high radiative-convective boundaries; (2) worlds with some attenuation of sunlight throughout the atmosphere, which we show can produce either shallow or deep radiative-convective boundaries, depending on the strength of sunlight attenuation; and (3) strongly irradiated giant planets (including hot Jupiters), where we explore the conditions under which these worlds acquire detached convective regions in their mid-tropospheres. Finally, we validate our model and demonstrate its utility through comparisons to the average observed thermal structure of Venus, Jupiter, and Titan, and by comparing computed flux profiles to more complex models.« less

  9. Large impacts and the evolution of Venus; an atmosphere/mantle coupled model.

    NASA Astrophysics Data System (ADS)

    Gillmann, Cedric; Tackley, Paul; Golabek, Gregor

    2014-05-01

    We investigate the evolution of atmosphere and surface conditions on Venus through a coupled model of mantle/atmosphere evolution by including meteoritic impacts mechanisms. Our main focuses are mechanisms that deplete or replenish the atmosphere: volcanic degassing, atmospheric escape and impacts. The coupling is obtained using feedback of the atmosphere on the mantle evolution. Atmospheric escape modeling involves two different aspects: hydrodynamic escape (dominant during the first few hundred million years) and non-thermal escape mechanisms as observed by the ASPERA instrument. Post 4 Ga escape is low. The atmosphere is replenished by volcanic degassing, using an adapted version of the StagYY mantle dynamics model (Armann and Tackley, 2012) and including episodic lithospheric overturn. Volatile fluxes are estimated for different mantle compositions and partitioning ratios. The evolving surface temperature is calculated from CO2 and water in the atmosphere with a gray radiative-convective atmosphere model. This surface temperature in turn acts as a boundary condition for the mantle dynamics model and has an influence on the convection, volcanism and subsequent degassing. We take into account the effects of meteorites in our simulations by adapting each relevant part of the model. They can bring volatiles as well as erode the atmosphere. Mantle dynamics are modified since the impact itself can also bring large amounts of energy to the mantle. A 2D distribution of the thermal anomaly due to the impact is used and can lead to melting. Volatile evolution due to impacts (especially the large ones) is heavily debated so we test a broad range of impactor parameters (size, velocity, timing) and test different assumptions related to impact erosion going from large eroding power (Ahrens 1993) to recent parameterization (Shuvalov, 2009, 2010). We are able to produce models leading to present-day-like conditions through episodic volcanic activity consistent with Venus

  10. Evaluation of Containment Boxes as a Fire Mitigation Method in Elevated Oxygen Conditions

    NASA Technical Reports Server (NTRS)

    Juarez, Alfredo; Harper, Susana; Perez, Horacio

    2016-01-01

    NASA performed testing to evaluate the efficacy of fire containment boxes without forced ventilation. Configurational flammability testing was performed on a simulation avionics box replicating critical design features and filled with materials possessing representative flammability characteristics. This paper discusses the box's ability, under simulated end-use conditions, to inhibit the propagation of combustion to surrounding materials. Analysis was also performed to evaluate the potential for the fire containment box to serve as an overheat/ignition source to temperature sensitive equipment (such as items with lithium-ion batteries). Unrealistically severe combustion scenarios were used as a means to better understand the fire containment mechanism. These scenarios were achieved by utilizing materials/fuels not typically used in space vehicles due to flammability concerns. Oxygen depletion, during combustion within the fire containment boxes, drove self-extinguishment and proved an effective method of fire containment

  11. Optical aging observation in suspended core tellurite microstructured fibers under atmospheric conditions

    NASA Astrophysics Data System (ADS)

    Strutynski, C.; Mouawad, O.; Picot-Clémente, J.; Froidevaux, P.; Désévédavy, F.; Gadret, G.; Jules, J.-C.; Kibler, B.; Smektala, F.

    2017-11-01

    Tellurite glasses are good candidates for the development of broadband supercontinuum (SC) laser sources in the 1-5 μm range. At the moment, beside very few exceptions, SC generation in TeO2-based microstructured optical fibers (MOFs) is limited to 3 μm in the mid-infrared (MIR). We present here an observation of an optical aging occurring in six-hole suspended-core tellurite MOFs. When exposed to atmospheric conditions, such fibers show an alteration of their transmission between 3 and 4 μm. This aging phenomenon leads to the growth of strong additional losses in this wavelengths range over time. Impact of the transmission degradation on spectral broadening is studied through numerical simulations of SC generation.

  12. Laboratory Evaluation and Application of Microwave Absorption Properties under Simulated Conditions for Planetary Atmospheres

    NASA Technical Reports Server (NTRS)

    Steffes, Paul G.

    2002-01-01

    Radio absorptivity data for planetary atmospheres obtained from spacecraft radio occultation experiments, entry probe radio signal absorption measurements, and earth-based or spacecraft-based radio astronomical (emission) observations can be used to infer abundances of microwave absorbing constituents in those atmospheres, as long as reliable information regarding the microwave absorbing properties of potential constituents is available. The use of theoretically-derived microwave absorption properties for such atmospheric constituents, or the use of laboratory measurements of such properties taken under environmental conditions that are significantly different than those of the planetary atmosphere being studied, often leads to significant misinterpretation of available opacity data. Laboratory measurements have shown that the centimeter-wavelength opacity from gaseous phosphine (PH3) under simulated conditions for the outer planets far exceeds that predicted from theory over a wide range of temperatures and pressures. This fundamentally changed the resulting interpretation of Voyager radio occultation data at Saturn and Neptune. It also directly impacts planning and scientific goals for study of Saturn's atmosphere with the Cassini Radio Science Experiment and the Rossini RADAR instrument. The recognition of the need to make such laboratory measurements of simulated planetary atmospheres over a range of temperatures and pressures which correspond to the altitudes probed by both radio occultation experiments and radio astronomical observations, and over a range of frequencies which correspond to those used in both spacecraft entry probe and orbiter (or flyby) radio occultation experiments and radio astronomical observations, has led to the development of a facility at Georgia Tech which is capable of making such measurements. It has been the goal of this investigation to conduct such measurements and to apply the results to a wide range of planetary observations

  13. Assessing the impacts of seasonal and vertical atmospheric conditions on air quality over the Pearl River Delta region

    NASA Astrophysics Data System (ADS)

    Tong, Cheuk Hei Marcus; Yim, Steve Hung Lam; Rothenberg, Daniel; Wang, Chien; Lin, Chuan-Yao; Chen, Yongqin David; Lau, Ngar Cheung

    2018-05-01

    Air pollution is an increasingly concerning problem in many metropolitan areas due to its adverse public health and environmental impacts. Vertical atmospheric conditions have strong effects on vertical mixing of air pollutants, which directly affects surface air quality. The characteristics and magnitude of how vertical atmospheric conditions affect surface air quality, which are critical to future air quality projections, have not yet been fully understood. This study aims to enhance understanding of the annual and seasonal sensitivities of air pollution to both surface and vertical atmospheric conditions. Based on both surface and vertical meteorological characteristics provided by 1994-2003 monthly dynamic downscaling data from the Weather and Research Forecast Model, we develop generalized linear models (GLMs) to study the relationships between surface air pollutants (ozone, respirable suspended particulates, and sulfur dioxide) and atmospheric conditions in the Pearl River Delta (PRD) region. Applying Principal Component Regression (PCR) to address multi-collinearity, we study the contributions of various meteorological variables to pollutants' concentration levels based on the loading and model coefficient of major principal components. Our results show that relatively high pollutant concentration occurs under relatively low mid-level troposphere temperature gradients, low relative humidity, weak southerly wind (or strong northerly wind) and weak westerly wind (or strong easterly wind). Moreover, the correlations vary among pollutant species, seasons, and meteorological variables at various altitudes. In general, pollutant sensitivity to meteorological variables is found to be greater in winter than in other seasons, and the sensitivity of ozone to meteorology differs from that of the other two pollutants. Applying our GLMs to anomalous air pollution episodes, we find that meteorological variables up to mid troposphere (∼700 mb) play an important role in

  14. Papers Presented to the Workshop on the Evolution of the Martian Atmosphere

    NASA Technical Reports Server (NTRS)

    1992-01-01

    This volume contains papers that have been accepted for the Workshop on the Evolution of the Martian Atmosphere. The abstracts presented in the paper cover such topics as: modeling of the mars atmosphere from early development to present including specific conditions affecting development; studies of various atmospheric gases such as O2, SO2, CO2, NH3, and nitrogen; meteorite impacts and their effects on the atmosphere; and water inventories and cycles.

  15. Use of Atmospheric-Pressure Plasma Jet for Polymer Surface Modification: An Overview

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kuettner, Lindsey A.

    Atmospheric-pressure plasma jets (APPJs) are playing an increasingly important role in materials processing procedures. Plasma treatment is a useful tool to modify surface properties of materials, especially polymers. Plasma reacts with polymer surfaces in numerous ways thus the type of process gas and plasma conditions must be explored for chosen substrates and materials to maximize desired properties. This report discusses plasma treatments and looks further into atmospheric-pressure plasma jets and the effects of gases and plasma conditions. Following the short literature review, a general overview of the future work and research at Los Alamos National Laboratory (LANL) is discussed.

  16. The solar-terrestrial environment. An introduction to geospace - the science of the terrestrial upper atmosphere, ionosphere and magnetosphere.

    NASA Astrophysics Data System (ADS)

    Hargreaves, J. K.

    This textbook is a successor to "The upper atmosphere and solar-terrestrial relations" first published in 1979. It describes physical conditions in the upper atmosphere and magnetosphere of the Earth. This geospace environment begins 70 kilometres above the surface of the Earth and extends in near space to many times the Earth's radius. It is the region of near-Earth environment where the Space Shuttle flies, the aurora is generated, and the outer atmosphere meets particles streaming out of the sun. The account is introductory. The intent is to present basic concepts, and for that reason the mathematical treatment is not complex. There are three introductory chapters that give basic physics and explain the principles of physical investigation. The principal material contained in the main part of the book covers the neutral and ionized upper atmosphere, the magetosphere, and structures, dynamics, disturbances and irregularities. The concluding chapter deals with technological applications.

  17. Meteorite constraints on Martian atmospheric loss and paleoclimate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cassata, William S.

    The evolution of Mars' atmosphere to its currently thin state incapable of supporting liquid water remains poorly understood and has important implications for Martian climate history. Martian meteorites contain trapped atmospheric gases that can be used to constrain both the timing and effectiveness of atmospheric escape processes. Here in this article, measurements of xenon isotopes in two ancient Martian meteorites, ALH 84001 and NWA 7034, are reported. The data indicate an early episode of atmospheric escape that mass fractionated xenon isotopes culminated within a few hundred million years of planetary formation, and little change to the atmospheric xenon isotopic compositionmore » has occurred since this time. In contrast, on Earth atmospheric xenon fractionation continued for at least two billion years (Pujol et al., 2011). Such differences in atmospheric Xe fractionation between the two planets suggest that climate conditions on Mars may have differed significantly from those on Archean Earth. For example, the hydrogen escape flux may not have exceeded the threshold required for xenon escape on Mars after 4.2–4.3 Ga, which indicates that Mars may have been significantly drier than Earth after this time.« less

  18. Meteorite constraints on Martian atmospheric loss and paleoclimate

    DOE PAGES

    Cassata, William S.

    2017-10-06

    The evolution of Mars' atmosphere to its currently thin state incapable of supporting liquid water remains poorly understood and has important implications for Martian climate history. Martian meteorites contain trapped atmospheric gases that can be used to constrain both the timing and effectiveness of atmospheric escape processes. Here in this article, measurements of xenon isotopes in two ancient Martian meteorites, ALH 84001 and NWA 7034, are reported. The data indicate an early episode of atmospheric escape that mass fractionated xenon isotopes culminated within a few hundred million years of planetary formation, and little change to the atmospheric xenon isotopic compositionmore » has occurred since this time. In contrast, on Earth atmospheric xenon fractionation continued for at least two billion years (Pujol et al., 2011). Such differences in atmospheric Xe fractionation between the two planets suggest that climate conditions on Mars may have differed significantly from those on Archean Earth. For example, the hydrogen escape flux may not have exceeded the threshold required for xenon escape on Mars after 4.2–4.3 Ga, which indicates that Mars may have been significantly drier than Earth after this time.« less

  19. Condition of the upper atmosphere of the Earth at the final stage of flight manned orbital facility (MOF) "Mir". The modeling description

    NASA Astrophysics Data System (ADS)

    Boyarchuk, K. A.; Ivanov-Kholodny, G. S.; Kolomiitsev, O. P.; Surotkin, V. A.

    At flooding MOF ``Mir'' the information on forecasting a condition of the upper atmosphere was used. The forecast was carried out on the basis of numerical model of an atmosphere, which was developed in IZMIRAN. This model allows reproducing and predicting a situation in an Earth space, in an atmosphere and an ionosphere, along an orbit of flight of a space vehicle in the various periods of solar-geophysical conditions. Thus preliminary forecasting solar and geomagnetic activity was carried out on the basis of an individual technique. Before the beginning of operation on flooding MOF ``Mir'' it was found out, that solar activity began to accrue catastrophically. The account of the forecast of its development has forced to speed up the moment of flooding to avoid dangerous development of events. It has allowed minimizing a risk factor - ``Mir'' was flooded successful in the commanded area of Pacific Ocean.

  20. Liquid water on Mars - an energy balance climate model for CO2/H2O atmospheres

    NASA Astrophysics Data System (ADS)

    Hoffert, M. I.; Callegari, A. J.; Hsieh, T.; Ziegler, W.

    1981-07-01

    A simple climatic model is developed for a Mars atmosphere containing CO2 and sufficient liquid water to account for the observed hydrologic surface features by the existence of a CO2/H2O greenhouse effect. A latitude-resolved climate model originally devised for terrestrial climate studies is applied to Martian conditions, with the difference between absorbed solar flux and emitted long-wave flux to space per unit area attributed to the divergence of the meridional heat flux and the poleward heat flux assumed to equal the atmospheric eddy heat flux. The global mean energy balance is calculated as a function of atmospheric pressure to assess the CO2/H2O greenhouse liquid water hypothesis, and some latitude-resolved cases are examined in detail in order to clarify the role of atmospheric transport and temperature-albedo feedback. It is shown that the combined CO2/H2O greenhouse at plausible early surface pressures may account for climates hot enough to support a hydrological cycle and running water at present-day insolation and visible albedo levels.

  1. Liquid water on Mars - An energy balance climate model for CO2/H2O atmospheres

    NASA Technical Reports Server (NTRS)

    Hoffert, M. I.; Callegari, A. J.; Hsieh, C. T.; Ziegler, W.

    1981-01-01

    A simple climatic model is developed for a Mars atmosphere containing CO2 and sufficient liquid water to account for the observed hydrologic surface features by the existence of a CO2/H2O greenhouse effect. A latitude-resolved climate model originally devised for terrestrial climate studies is applied to Martian conditions, with the difference between absorbed solar flux and emitted long-wave flux to space per unit area attributed to the divergence of the meridional heat flux and the poleward heat flux assumed to equal the atmospheric eddy heat flux. The global mean energy balance is calculated as a function of atmospheric pressure to assess the CO2/H2O greenhouse liquid water hypothesis, and some latitude-resolved cases are examined in detail in order to clarify the role of atmospheric transport and temperature-albedo feedback. It is shown that the combined CO2/H2O greenhouse at plausible early surface pressures may account for climates hot enough to support a hydrological cycle and running water at present-day insolation and visible albedo levels.

  2. Laboratory Evaluation and Application of Microwave Absorption Properties Under Simulated Conditions for Planetary Atmospheres

    NASA Technical Reports Server (NTRS)

    Steffes, Paul G.

    1998-01-01

    Radio absorptivity data for planetary atmospheres obtained from spacecraft radio occultation experiments, entry probe radio signal absorption measurements, and earth-based radio astronomical observations can be used to infer abundances of microwave absorbing constituents in those atmospheres, as long as reliable information regarding the microwave absorbing properties of potential constituents is available. The use of theoretically-derived microwave absorption properties for such atmospheric constituents, or using laboratory measurements of such properties taken under environmental conditions which are significantly different than those of the planetary atmosphere being studied, often leads to significant misinterpretation of available opacity data. For example, laboratory measurements completed recently by Kolodner and Steffes (ICARUS 132, pp. 151-169, March 1998, attached as Appendix A) under this grant (NAGS-4190), have shown that the opacity from gaseous H2SO4 under simulated Venus conditions is best described by a different formalism than was previously used. The recognition of the need to make such laboratory measurements of simulated planetary atmospheres over a range of temperatures and pressures which correspond to the altitudes probed by both spacecraft entry probe and orbiter radio occultation experiments and by radio astronomical observations, and over a range of frequencies which correspond to those used in such experiments, has led to the development of a facility at Georgia Tech which is capable of making such measurements. It has been the goal of this investigation to conduct such measurements and to apply the results to a wide range of planetary observations, both spacecraft and earth-based, in order to determine the identity and abundance profiles of constituents in those planetary atmospheres.

  3. Equilibrium radiative heating tables for aerobraking in the Martian atmosphere

    NASA Astrophysics Data System (ADS)

    Hartung, Lin C.; Sutton, Kenneth; Brauns, Frank

    1990-05-01

    Studies currently underway for Mars missions often envision the use of aerobraking for orbital capture at Mars. These missions generally involve blunt-nosed vehicles to dissipate the excess energy of the interplanetary transfer. Radiative heating may be of importance in these blunt-body flows because of the highly energetic shock layer around the blunt nose. In addition, the Martian atmosphere contains CO2, whose dissociation products are known to include strong radiators. An inviscid, equilibrium, stagnation point, radiation-coupled flow-field code has been developed for investigating blunt-body atmospheric entry. The method has been compared with ground-based and flight data for air, and reasonable agreement has been found. In the present work, the method was applied to a matrix of conditions in the Martian atmosphere. These conditions encompass most trajectories of interest for Mars exploration spacecraft. The predicted equilibrium radiative heating to the stagnation point of the vehicle is presented.

  4. Equilibrium radiative heating tables for aerobraking in the Martian atmosphere

    NASA Technical Reports Server (NTRS)

    Hartung, Lin C.; Sutton, Kenneth; Brauns, Frank

    1990-01-01

    Studies currently underway for Mars missions often envision the use of aerobraking for orbital capture at Mars. These missions generally involve blunt-nosed vehicles to dissipate the excess energy of the interplanetary transfer. Radiative heating may be of importance in these blunt-body flows because of the highly energetic shock layer around the blunt nose. In addition, the Martian atmosphere contains CO2, whose dissociation products are known to include strong radiators. An inviscid, equilibrium, stagnation point, radiation-coupled flow-field code has been developed for investigating blunt-body atmospheric entry. The method has been compared with ground-based and flight data for air, and reasonable agreement has been found. In the present work, the method was applied to a matrix of conditions in the Martian atmosphere. These conditions encompass most trajectories of interest for Mars exploration spacecraft. The predicted equilibrium radiative heating to the stagnation point of the vehicle is presented.

  5. Prebiotic synthesis in atmospheres containing CH4, CO, and CO2. I - Amino acids

    NASA Technical Reports Server (NTRS)

    Schlesinger, G.; Miller, S. L.

    1983-01-01

    The prebiotic synthesis of amino acids, HCN, H2CO, and NH3 using a spark discharge on various simulated primitive earth atmospheres at 25 C is investigated. Various mixtures of CH4, CO, CO2, N2, NH3, H2O, and H2 were utilized in different experiments. The yields of amino acids (1.2-4.7 percent based on the carbon) are found to be approximately independent of the H2/CH4 ratio and the presence of NH3, and a wide variety of amino acids are obtained. Glycine is found to be almost the only amino acid produced from CO and CO2 model atmospheres, with the maximum yield being about the same for the three carbon sources at high H2/carbon ratios,whereas CH4 is superior at low H2/carbon ratios. In addition, it is found that the directly synthesized NH3 together with the NH3 obtained from the hydrolysis of HCN, nitriles, and urea could have been a major source of ammonia in the atmosphere and oceans of the primitive earth. It is determined that prebiotic syntheses from HCN and H2CO to give products such as purines and sugars and some amino acids could have occurred in primitive atmospheres containing CO and CO2 provided the H2/CO and H2/CO2 ratios were greater than about 1.0.

  6. Lithosphere-Atmosphere coupling: Spectral element modeling of the evolution of acoustic waves in the atmosphere from an underground source.

    NASA Astrophysics Data System (ADS)

    Averbuch, Gil; Price, Colin

    2015-04-01

    Lithosphere-Atmosphere coupling: Spectral element modeling of the evolution of acoustic waves in the atmosphere from an underground source. G. Averbuch, C. Price Department of Geosciences, Tel Aviv University, Israel Infrasound is one of the four Comprehensive Nuclear-Test Ban Treaty technologies for monitoring nuclear explosions. This technology measures the acoustic waves generated by the explosions followed by their propagation through the atmosphere. There are also natural phenomena that can act as an infrasound sources like sprites, volcanic eruptions and earthquakes. The infrasound waves generated from theses phenomena can also be detected by the infrasound arrays. In order to study the behavior of these waves, i.e. the physics of wave propagation in the atmosphere, their evolution and their trajectories, numerical methods are required. This presentation will deal with the evolution of acoustic waves generated by underground sources (earthquakes and underground explosions). A 2D Spectral elements formulation for lithosphere-atmosphere coupling will be presented. The formulation includes the elastic wave equation for the seismic waves and the momentum, mass and state equations for the acoustic waves in a moving stratified atmosphere. The coupling of the two media is made by boundary conditions that ensures the continuity of traction and velocity (displacement) in the normal component to the interface. This work has several objectives. The first is to study the evolution of acoustic waves in the atmosphere from an underground source. The second is to derive transmission coefficients for the energy flux with respect to the seismic magnitude and earth density. The third will be the generation of seismic waves from acoustic waves in the atmosphere. Is it possible?

  7. The vertical structure of convectively-driven cloud microphysics and its dependency on atmospheric conditions: An investigation through observations and modeling

    NASA Astrophysics Data System (ADS)

    van Diedenhoven, B.; Fridlind, A. M.; Sinclair, K.; Ackerman, A. S.

    2016-12-01

    It is generally observed that ice crystal sizes decrease as a function of altitude within clouds. This dependency is often explained as resulting from size sorting owing to the greater fall speeds of larger particles, but may also be related to dependence of ice diffusional growth on available water vapor and temperature, or other factors. Furthermore, the vertical variation of ice sizes is expected to be affected by the glaciation temperature of convectively-driven clouds. Realistic modeling of ice formation, growth and sedimentation is crucial to reliably represent vertical structures of ice clouds and cloud evolution in general. In this presentation we use remote sensing observations of glaciation temperature and ice effective radius obtained with airborne instruments to explore how their vertical dependencies vary with atmospheric conditions, such as humidity and wind profiles. Our focus will be on convectively-driven clouds. Subsequently, we test the ability of a quasi-idealized cloud permitting model to reproduce these dependencies of ice formation and size to atmospheric conditions, applying various ice growth and multiplication assumptions. The goal of this study is to identify variables that determine the vertical structure of cold clouds that can be used to evaluate model simulations.

  8. AEROSE 2004 - An Interdisciplinary Atmosphere-Ocean Saharan Dust Expedition

    NASA Astrophysics Data System (ADS)

    Clemente-Colón, P.

    2004-05-01

    The NOAA Center for Atmospheric Sciences (NCAS) is sponsoring a Trans-Atlantic Saharan Dust AERosol and Ocean Science Expedition (AEROSE) aboard the NOAA Ship Ronald H. Brown in March 2004. The fundamental purpose of this aerosol cruise is to study the impacts and microphysical evolution of Saharan dust aerosol as it is transported across the Atlantic Ocean. The mission encompasses both, atmospheric and oceanographic components. Participating institutions include Howard University, NCAS lead institution, the University of Puerto Rico at Mayagüez, the Canary Institute of Marine Sciences, the Spanish Institute of Oceanography, the Laboratory of Atmospheric Physics Siméon Fongang, the University of Miami Rosenstiel School of Marine and Atmospheric Science, the University of Washington Applied Physics Laboratory, NASA Goddard Space Flight Center, the NOAA Cooperative Institute for Meteorological Satellite Studies at the University of Wisconsin-Madison, NASA Jet Propulsion Laboratory, and the NOAA/NESDIS Office of Research and Applications. This collaboration provides unique atmospheric and oceanic observations across the North Tropical Atlantic during eastward and westward tracks during a period of nearly one month. Characterization of microphysical properties of Saharan dust aerosol is done trough direct observations of mass, size, and particle number distributions, chemical composition, spatial distributions, and air chemistry. Aerosol radiative properties are studied through a suite of sensors that include a Multi-Angle Absorption Photometer (MAAP), the Marine-Atmosphere Emitted Radiance Interferometer (M-AERI), sunphotometers, and an assortment of other radiometers. Characterization of atmospheric conditions is done through a combination of over 250 radiosonde and ozonesonde launches at 3 to 5 hour intervals during the duration of the cruise and in coordination with satellite overpasses. AEROSE is also supporting the collection of bio-optics and oceanographic

  9. An atmospheric vulnerability assessment framework for environment management and protection based on CAMx.

    PubMed

    Zhang, Yang; Shen, Jing; Li, Yu

    2018-02-01

    This paper presents an atmospheric vulnerability assessment framework based on CAMx that should be helpful to assess potential impacts of changes in human, atmospheric environment, and social economic elements of atmospheric vulnerability. It is also a useful and effective tool that can provide policy-guidance for environmental protection and management to reduce the atmospheric vulnerability. The developed framework was applied to evaluate the atmospheric environment vulnerability of 13 cities in the Beijing-Tianjin-Hebei (BTH) region for verification. The results indicated that regional disparity of the atmospheric vulnerability existed in the study site. More specifically, the central and southern regions show more atmospheric environment vulnerability than the northern regions. The impact factors of atmospheric environment vulnerability in the BTH region mainly derived from increasing population press, frequently unfavorable meteorological conditions, extensive economic growth of secondary industry, increased environmental pollution, and accelerating population aging. The framework shown in this paper is an interpretative and heuristic tool for a better understanding of atmospheric vulnerability. This framework can also be replicated at different spatial and temporal scales using context-specific datasets to straightly support environmental managers with decision-making. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Acoustic properties and durability of liner materials at non-standard atmospheric conditions

    NASA Technical Reports Server (NTRS)

    Ahuja, K. K.; Gaeta, R. J., Jr.; Hsu, J. S.

    1994-01-01

    This report documents the results of an experimental study on how acoustic properties of certain absorbing liner materials are affected by nonstandard atmospheric conditions. This study was motivated by the need to assess risks associated with incorporating acoustic testing capability in wind tunnels with semicryogenic high Reynolds number aerodynamic and/or low pressure capabilities. The study consisted of three phases: 1) measurement of acoustic properties of selected liner materials at subatmospheric pressure conditions, 2) periodic cold soak and high pressure exposure of liner materials for 250 cycles, and 3) determination of the effect of periodic cold soak on the acoustic properties of the liner materials at subatmospheric conditions and the effect on mechanical resiliency. The selected liner materials were Pyrell foam, Fiberglass, and Kevlar. A vacuum facility was used to create the subatmospheric environment in which an impedance tube was placed to measure acoustic properties of the test materials. An automated cryogenic cooling system was used to simulate periodic cold soak and high pressure exposure. It was found that lower ambient pressure reduced the absorption effectiveness of the liner materials to varying degrees. Also no significant change in the acoustic properties occurred after the periodic cold soak. Furthermore, mechanical resiliency tests indicated no noticeable change.

  11. Laboratory evaluation and application of microwave absorption properties under simulated conditions for planetary atmospheres

    NASA Technical Reports Server (NTRS)

    Steffes, Paul G.

    1992-01-01

    Radio absorptivity data for planetary atmospheres obtained from spacecraft radio occultation experiments and earth-based radio astronomical observations can be used to infer abundances of microwave absorbing atmospheric constituents in those atmospheres, as long as reliable information regarding the microwave absorbing properties of potential constituents is available. The use of theoretically derived microwave absorption properties for such atmospheric constituents, or using laboratory measurements of such properties under environmental conditions which are significantly different than those of the planetary atmosphere being studied, often leads to significant misinterpretation of available opacity data. The recognition of the need to make such laboratory measurements of simulated planetary atmospheres over a range of temperatures and pressures which correspond to the altitudes probed by both radio occultation experiments and radio astronomical observations, and over a range of frequencies which correspond to those used in both radio occultation experiments and radio astronomical observations, has led to the development of a facility at Georgia Tech which is capable of making such measurements. The goal of this investigation was to conduct such measurements and to apply the results to a wide range of planetary observations, both spacecraft and earth-based, in order to determine the identity and abundance profiles of constituents in those planetary atmospheres.

  12. An Experimental and Modeling Study of Evaporation from Bare Soils Subjected to Natural Boundary Conditions at the Land-Atmospheric Interface

    NASA Astrophysics Data System (ADS)

    Smits, K. M.; Ngo, V. V.; Cihan, A.; Sakaki, T.; Illangasekare, T. H.; kathleen m smits

    2011-12-01

    Bare soil evaporation is a key process for water exchange between the land and the atmosphere and an important component of the water balance in semiarid and arid regions. However, there is no agreement on the best methodology to determine evaporation under different boundary conditions. Because it is difficult to measure evaporation from soil,with the exception of using lysimeters, numerous formulations have been proposed to establish a relationship between the rate of evaporation and soil moisture and/or soil temperature and thermal properties. Different formulations vary in how they partition available energy and include, among others, a classical bulk aerodynamic formulation which requires knowledge of the relative humidity at the soil surface and a more non-traditional heat balance method which requires knowledge of soil temperature and soil thermal properties. A need exists to systematically compare existing methods to experimental data under highly controlled conditions not achievable in the field. The goal of this work is to perform controlled experiments under transient conditions of soil moisture, temperature and wind at the land/atmospheric interface to test different conceptual and mathematical formulations for evaporation rate estimates and to develop appropriate numerical models to be used in simulations. In this study, to better understand the coupled water-vapor-heat flow processes in the shallow subsurface near the land surface, we modified a previously developed theory that allows non-equilibrium liquid/gas phase change with gas phase vapor diffusion to better account for evaporation under dry soil conditions. This theory was used to compare estimates of evaporation based on different formulations of the bulk aerodynamic and heat balance methods. In order to experimentally validate the numerical formulations/code, we performed a series of two-dimensional physical model experiments under varying boundary conditions using test sand for which the

  13. Assessment of capabilities of lidar systems in day-and night-time under different atmospheric and internal-noise conditions

    NASA Astrophysics Data System (ADS)

    Agishev, Ravil; Comerón, Adolfo

    2018-04-01

    As an application of the dimensionless parameterization concept proposed earlier for the characterization of lidar systems, the universal assessment of lidar capabilities in day and night conditions is considered. The dimensionless parameters encapsulate the atmospheric conditions, the lidar optical and optoelectronic characteristics, including the photodetector internal noise, and the sky background radiation. Approaches to ensure immunity of the lidar system to external background radiation are discussed.

  14. Preservation of fresh meat with active and modified atmosphere packaging conditions.

    PubMed

    Skandamis, Panagiotis N; Nychas, George-John E

    2002-11-15

    The sensory, microbiological and physicochemical attributes of fresh meat stored at 5 and 15 degrees C were affected by the combined effect of volatile compounds of oregano essential oil and modified atmosphere packaging conditions (40% CO2/30% N2/30% O2, 100% CO2, 80% CO2/20% air, vacuum pack and air). It was found that the extension of shelf life of meat samples depended on the packaging conditions and augmented in the order: air < vacuum pack < 40% CO2/30% N2/30% O2 < 80% CO2/ 20% air < 100% CO2. Longer shelf life was observed in samples supplemented with the volatile compounds of oregano essential oil and stored under the same packaging conditions mentioned above. The extension of shelf life may be due to the synergistic effect of volatile compounds of oregano essential oil and the modified atmosphere packaging used on the microbiological and physicochemical characteristics of meat. Indeed, both these hurdles can prolong and delay microbial growth or suppress the final counts of the spoilage microorganisms in comparison with the 'control' samples. The effect of essential oil volatile compounds was even more pronounced on the physicochemical changes of meat samples caused by microbial association. Oregano essential oil delayed glucose and lactate consumption, both indicators of meat spoilage aerobically as well as under 40% CO2/30% N2/30% O2, and 100% CO2. Finally, changes in other metabolites such as formic acid were also observed.

  15. Thermophysical Properties Measurement of High-Temperature Liquids Under Microgravity Conditions in Controlled Atmospheric Conditions

    NASA Technical Reports Server (NTRS)

    Watanabe, Masahito; Ozawa, Shumpei; Mizuno, Akotoshi; Hibiya, Taketoshi; Kawauchi, Hiroya; Murai, Kentaro; Takahashi, Suguru

    2012-01-01

    Microgravity conditions have advantages of measurement of surface tension and viscosity of metallic liquids by the oscillating drop method with an electromagnetic levitation (EML) device. Thus, we are preparing the experiments of thermophysical properties measurements using the Materials-Science Laboratories ElectroMagnetic-Levitator (MSL-EML) facilities in the international Space station (ISS). Recently, it has been identified that dependence of surface tension on oxygen partial pressure (Po2) must be considered for industrial application of surface tension values. Effect of Po2 on surface tension would apparently change viscosity from the damping oscillation model. Therefore, surface tension and viscosity must be measured simultaneously in the same atmospheric conditions. Moreover, effect of the electromagnetic force (EMF) on the surface oscillations must be clarified to obtain the ideal surface oscillation because the EMF works as the external force on the oscillating liquid droplets, so extensive EMF makes apparently the viscosity values large. In our group, using the parabolic flight levitation experimental facilities (PFLEX) the effect of Po2 and external EMF on surface oscillation of levitated liquid droplets was systematically investigated for the precise measurements of surface tension and viscosity of high temperature liquids for future ISS experiments. We performed the observation of surface oscillations of levitated liquid alloys using PFLEX on board flight experiments by Gulfstream II (G-II) airplane operated by DAS. These observations were performed under the controlled Po2 and also under the suitable EMF conditions. In these experiments, we obtained the density, the viscosity and the surface tension values of liquid Cu. From these results, we discuss about as same as reported data, and also obtained the difference of surface oscillations with the change of the EMF conditions.

  16. An advanced technique for speciation of organic nitrogen in atmospheric aerosols

    NASA Astrophysics Data System (ADS)

    Samy, S.; Robinson, J.; Hays, M. D.

    2011-12-01

    The chemical composition of organic nitrogen (ON) in the environment is a research topic of broad significance. The topic intersects the branches of atmospheric, aquatic, and ecological science; thus, a variety of instrumentation, analytical methods, and data interpretation tools have evolved for determination of ON. Recent studies that focus on atmospheric particulate nitrogen (N) suggest a significant fraction (20-80%) of total N is bound in organic compounds. The sources, bioavailability and transport mechanisms of these N-containing compounds can differ, producing a variety of environmental consequences. Amino acids (AA) are a key class of atmospheric ON compounds that can contribute to secondary organic aerosol (SOA) formation and potentially influence water cycles, air pollutant scavenging, and the radiation balance. AA are water-soluble organic compounds (WSOC) that can significantly alter the acid-base chemistry of aerosols, and may explain the buffering capacity that impacts heterogeneous atmospheric chemistry. The chemical transformations that N-containing organic compounds (including AA) undergo can increase the light-absorbing capacity of atmospheric carbon via formation of 'brown carbon'. Suggested sources of atmospheric AA include: marine surface layer transport from bursting sea bubbles, the suspension of bacteria, fungi, algae, pollen, spores, or biomass burning. Methodology for detection of native (underivatized) amino acids (AA) in atmospheric aerosols has been developed and validated (Samy et al., 2011). This presentation describes the use of LC-MS (Q-TOF) and microwave-assisted gas phase hydrolysis for detection of free and combined amino acids in aerosols collected in a Southeastern U.S. forest environment. Accurate mass detection and the addition of isotopically labeled surrogates prior to sample preparation allows for sensitive quantitation of target AA in a complex aerosol matrix. A total of 16 native AA were detected above the reporting

  17. Microwave plasma enabled synthesis of free standing carbon nanostructures at atmospheric pressure conditions.

    PubMed

    Bundaleska, N; Tsyganov, D; Dias, A; Felizardo, E; Henriques, J; Dias, F M; Abrashev, M; Kissovski, J; Tatarova, E

    2018-05-23

    An experimental and theoretical study on microwave (2.45 GHz) plasma enabled assembly of carbon nanostructures, such as multilayer graphene sheets and nanoparticles, was performed. The carbon nanostructures were fabricated at different Ar-CH4 gas mixture composition and flows at atmospheric pressure conditions. The synthesis method is based on decomposition of the carbon-containing precursor (CH4) in the "hot" microwave plasma environment into carbon atoms and molecules, which are further converted into solid carbon nuclei in the "colder" plasma zones. By tailoring of the plasma environment, a controlled synthesis of graphene sheets and diamond-like nanoparticles was achieved. Selective synthesis of graphene flakes was achieved at a microwave power of 1 kW, Ar and methane flow rates of 600 sccm and 2 sccm respectively, while the predominant synthesis of diamond-like nanoparticles was obtained at the same power, but with higher flow rates, i.e. 1000 and 7.5 sccm, respectively. Optical emission spectroscopy was applied to detect the plasma emission related to carbon species from the 'hot' plasma zone and to determine the main plasma parameters. Raman spectroscopy and scanning electron microscopy have been applied to characterize the synthesized nanostructures. A previously developed theoretical model was further updated and employed to understand the mechanism of CH4 decomposition and formation of the main building units, i.e. C and C2, of the carbon nanostructures. An insight into the physical chemistry of carbon nanostructure formation in a high energy density microwave plasma environment is presented.

  18. Heat, Mass and Aerosol Transfers in Spray Conditions for Containment Application

    NASA Astrophysics Data System (ADS)

    Porcheron, Emmanuel; Lemaitre, Pascal; Nuboer, Amandine; Vendel, Jacques

    TOSQAN is an experimental program undertaken by the Institut de Radioprotection et de Surété Nucleaire (IRSN) in order to perform thermal hydraulic containment studies. The TOSQAN facility is a large enclosure devoted to simulating typical accidental thermal hydraulic flow conditions in nuclear Pressurized Water Reactor (PWR) containment. The TOSQAN facility, which is highly instrumented with non-intrusive optical diagnostics, is particularly adapted to nuclear safety CFD code validation. The present work is devoted to studying the interaction of a water spray injection used as a mitigation means in order to reduce the gas pressure and temperature in the containment, to produce gases mixing and washout of fission products. In order to have a better understanding of heat and mass transfers between spray droplets and the gas mixture, and to analyze mixing effects due to spray activation, we performed detailed characterization of the two-phase flow.

  19. Flexible ion conduit for use under rarefied atmospheric conditions

    NASA Astrophysics Data System (ADS)

    Hars, Gyorgy; Meuzelaar, Henk LC.

    1997-09-01

    A tubular ion conduit has been constructed, which transports ions by convection by means of a carrier gas. Typical inlet pressures are in the 10-100 Torr range, with outlet pressures as low as 10-3 Torr. The 20-30 cm, 1-2-mm-i.d., capillary tube, made of an electrically insulating material, is surrounded by a specifically configured pair of helical electrodes ("helical dipole"), which are supplied with symmetrical voltages in the tens of volt amplitude and in 1 MHz frequency range. The vibrational average force field generated reduces the tendency of ions to hit the inner wall of the tube. This way ions can be transported with minimal loss. Previously, known ion guides are operated under molecular flow (high vacuum) conditions only, as opposed to the method described here, where the carrier gas enters under viscous flow conditions and exits as molecular flow. In addition, existing ion guides are stiff in contrast to the flexible construction described here, which can be easily and inexpensively manufactured. The ion conduit is expected to have important applications in connecting ambient or near-ambient pressure electrospray ionization or atmospheric pressure ionization type ion sources to mass spectrometers, while reducing pumping requirements, e.g., field portable equipment. Furthermore, the device may provide a means for connecting electron multiplier detectors to near ambient pressure analyzers such as ion mobility spectrometers.

  20. Response of the water level in a well to Earth tides and atmospheric loading under unconfined conditions

    USGS Publications Warehouse

    Rojstaczer, Stuart; Riley, Francis S.

    1990-01-01

    The response of the water level in a well to Earth tides and atmospheric loading under unconfined conditions can be explained if the water level is controlled by the aquifer response averaged over the saturated depth of the well. Because vertical averaging tends to diminish the influence of the water table, the response is qualitatively similar to the response of a well under partially confined conditions. When the influence of well bore storage can be ignored, the response to Earth tides is strongly governed by a dimensionless aquifer frequency Q′u. The response to atmospheric loading is strongly governed by two dimensionless vertical fluid flow parameters: a dimensionless unsaturated zone frequency, R, and a dimensionless aquifer frequency Qu. The differences between Q′u and Qu are generally small for aquifers which are highly sensitive to Earth tides. When Q′u and Qu are large, the response of the well to Earth tides and atmospheric loading approaches the static response of the aquifer under confined conditions. At small values of Q′u and Qu, well response to Earth tides and atmospheric loading is strongly influenced by water table drainage. When R is large relative to Qu, the response to atmospheric loading is strongly influenced by attenuation and phase shift of the pneumatic pressure signal in the unsaturated zone. The presence of partial penetration retards phase advance in well response to Earth tides and atmospheric loading. When the theoretical response of a phreatic well to Earth tides and atmospheric loading is fit to the well response inferred from cross-spectral estimation, it is possible to obtain estimates of the pneumatic diffusivity of the unsaturated zone and the vertical hydraulic conductivity of the aquifer.

  1. Response of the Water Level in a Well to Earth Tides and Atmospheric Loading Under Unconfined Conditions

    NASA Astrophysics Data System (ADS)

    Rojstaczer, Stuart; Riley, Francis S.

    1990-08-01

    The response of the water level in a well to Earth tides and atmospheric loading under unconfined conditions can be explained if the water level is controlled by the aquifer response averaged over the saturated depth of the well. Because vertical averaging tends to diminish the influence of the water table, the response is qualitatively similar to the response of a well under partially confined conditions. When the influence of well bore storage can be ignored, the response to Earth tides is strongly governed by a dimensionless aquifer frequency Q'u. The response to atmospheric loading is strongly governed by two dimensionless vertical fluid flow parameters: a dimensionless unsaturated zone frequency, R, and a dimensionless aquifer frequency Qu. The differences between Q'u and Qu are generally small for aquifers which are highly sensitive to Earth tides. When Q'u and Qu are large, the response of the well to Earth tides and atmospheric loading approaches the static response of the aquifer under confined conditions. At small values of Q'u and Qu, well response to Earth tides and atmospheric loading is strongly influenced by water table drainage. When R is large relative to Qu, the response to atmospheric loading is strongly influenced by attenuation and phase shift of the pneumatic pressure signal in the unsaturated zone. The presence of partial penetration retards phase advance in well response to Earth tides and atmospheric loading. When the theoretical response of a phreatic well to Earth tides and atmospheric loading is fit to the well response inferred from cross-spectral estimation, it is possible to obtain estimates of the pneumatic diffusivity of the unsaturated zone and the vertical hydraulic conductivity of the aquifer.

  2. Estimations of Atmospheric Conditions for Input to the Radar Performance Surface

    DTIC Science & Technology

    2007-12-01

    timely atmospheric and ocean surface descriptions on features that impact radar and electro-optical sensor systems . The first part of this study is an...Navy’s Coupled Ocean Atmosphere Mesoscale Prediction System (COAMPS®) are compared to in-situ data to assess the sensitivities of air-sea...temperature measurements to make direct comparisons to the Coupled Ocean Atmosphere Mesoscale Prediction System (COAMPS®) as a prime source of input to the

  3. Laboratory evaluation and application of microwave absorption properties under simulated conditions for planetary atmospheres

    NASA Technical Reports Server (NTRS)

    Steffes, Paul G.

    1991-01-01

    Laboratory measurements of microwave and millimeter wave properties of the simulated atmosphere of the outer planets and their satellites has continued. One of the focuses is on the development of a radiative transfer model of the Jovian atmosphere at wavelengths from 1 mm to 10 cm. This modeling effort led to laboratory measurements of the millimeter wave opacity of hydrogen sulfide (H2S) under simulated Jovian conditions. Descriptions of the modeling effort, the Laboratory experiment, and the observations are presented. Correlative studies of measurements with Pioneer-Venus radio occultation measurements with longer wavelength emission measurements have provided new ways for characterizing temporal and spatial variations in the abundance of both gases H2SO4 and SO2, and for modeling their roles in the subcloud atmosphere. Laboratory measurements were conducted on 1.35 cm (and 13 cm) opacity of gaseous SO2 and absorptivity of gaseous SO2 at the 3.2 mm wavelength under simulated Venus conditions. Laboratory measurements were completed on millimeter wave dielectric properties of liquid H2SO4, in order to model the effects of the opacity of the clouds of Venus onto millimeter wave emission spectrum.

  4. An aerosol particle containing enriched uranium encountered during routine sampling

    NASA Astrophysics Data System (ADS)

    Murphy, Daniel; Froyd, Karl; Evangeliou, NIkolaos; Stohl, Andreas

    2017-04-01

    The composition of single aerosol particles has been measured using a laser ionization mass spectrometer during the global Atmospheric Tomography mission. The measurements were targeting the background atmosphere, not radiochemical emissions. One sub-micron particle sampled at about 7 km altitude near the Aleutian Islands contained uranium with approximately 3% 235U. It is the only particle with enriched uranium out of millions of particles sampled over several decades of measurements with this instrument. The particle also contained vanadium, alkali metals, and organic material similar to that present in emissions from combustion of heavy oil. No zirconium or other metals that might be characteristic of nuclear reactors were present, probably suggesting a source other than Fukushima or Chernobyl. Back trajectories suggest several areas in Asia that might be sources for the particle.

  5. Mimicking Atmospheric Flow Conditions to Examine Mosquito Orientation Behavior

    NASA Astrophysics Data System (ADS)

    Huang, Yi-Chun; Vickers, Neil; Hultmark, Marcus

    2017-11-01

    Host-seeking female mosquitoes utilize a variety of sensory cues to locate potential hosts. In addition to visual cues, other signals include CO2 , volatile skin emanations, humidity, and thermal cues, each of which can be considered as passive scalars in the environment, primarily distributed by local flow conditions. The behavior of host-seeking female mosquito vectors can be more thoroughly understood by simulating the natural features of the environment through which they navigate, namely the atmospheric boundary layer. Thus, an exploration and understanding of the dynamics of a scalar plume will not only establish the effect of fluid environment on scalar coherence and distribution, but also provide a bioassay platform for approaches directed at disrupting or preventing the cycle of mosquito-vectored disease transmission. In order to bridge between laboratory findings and the natural, ecologically relevant setting, a unique active flow modulation system consisting of a grid of 60 independently operated paddles was developed. Unlike static grids that generate turbulence within a predefined range of scales, an active grid imposes variable and controllable turbulent structures onto the moving air by synchronized rotation of the paddles at specified frequencies.

  6. On the analytic and numeric optimisation of airplane trajectories under real atmospheric conditions

    NASA Astrophysics Data System (ADS)

    Gonzalo, J.; Domínguez, D.; López, D.

    2014-12-01

    From the beginning of aviation era, economic constraints have forced operators to continuously improve the planning of the flights. The revenue is proportional to the cost per flight and the airspace occupancy. Many methods, the first started in the middle of last century, have explore analytical, numerical and artificial intelligence resources to reach the optimal flight planning. In parallel, advances in meteorology and communications allow an almost real-time knowledge of the atmospheric conditions and a reliable, error-bounded forecast for the near future. Thus, apart from weather risks to be avoided, airplanes can dynamically adapt their trajectories to minimise their costs. International regulators are aware about these capabilities, so it is reasonable to envisage some changes to allow this dynamic planning negotiation to soon become operational. Moreover, current unmanned airplanes, very popular and often small, suffer the impact of winds and other weather conditions in form of dramatic changes in their performance. The present paper reviews analytic and numeric solutions for typical trajectory planning problems. Analytic methods are those trying to solve the problem using the Pontryagin principle, where influence parameters are added to state variables to form a split condition differential equation problem. The system can be solved numerically -indirect optimisation- or using parameterised functions -direct optimisation-. On the other hand, numerical methods are based on Bellman's dynamic programming (or Dijkstra algorithms), where the fact that two optimal trajectories can be concatenated to form a new optimal one if the joint point is demonstrated to belong to the final optimal solution. There is no a-priori conditions for the best method. Traditionally, analytic has been more employed for continuous problems whereas numeric for discrete ones. In the current problem, airplane behaviour is defined by continuous equations, while wind fields are given in a

  7. Atmospheric production of glycolaldehyde under hazy prebiotic conditions.

    PubMed

    Harman, Chester E; Kasting, James F; Wolf, Eric T

    2013-04-01

    The early Earth's atmosphere, with extremely low levels of molecular oxygen and an appreciable abiotic flux of methane, could have been a source of organic compounds necessary for prebiotic chemistry. Here, we investigate the formation of a key RNA precursor, glycolaldehyde (2-hydroxyacetaldehyde, or GA) using a 1-dimensional photochemical model. Maximum atmospheric production of GA occurs when the CH4:CO2 ratio is close to 0.02. The total atmospheric production rate of GA remains small, only 1 × 10(7) mol yr(-1). Somewhat greater amounts of GA production, up to 2 × 10(8) mol yr(-1), could have been provided by the formose reaction or by direct delivery from space. Even with these additional production mechanisms, open ocean GA concentrations would have remained at or below ~1 μM, much smaller than the 1-2 M concentrations required for prebiotic synthesis routes like those proposed by Powner et al. (Nature 459:239-242, 2009). Additional production or concentration mechanisms for GA, or alternative formation mechanisms for RNA, are needed, if this was indeed how life originated on the early Earth.

  8. Improving Optical Absorption Models for Harsh Planetary Atmospheres: Laboratory Spectroscopy at Venus Surface Conditions

    NASA Astrophysics Data System (ADS)

    Cole, Ryan Kenneth; Schroeder, Paul James; Diego Draper, Anthony; Rieker, Gregory Brian

    2018-06-01

    Modelling absorption spectra in high pressure, high temperature environments is complicated by the increased relevance of higher order collisional phenomena (e.g. line mixing, collision-induced absorption, finite duration of collisions) that alter the spectral lineshape. Accurate reference spectroscopy in these conditions is of interest for mineralogy and radiative transfer studies of Venus as well as other dense planetary atmospheres. We present a new, high pressure, high temperature absorption spectroscopy facility at the University of Colorado Boulder. This facility employs a dual frequency comb absorption spectrometer to record broadband (500nm), high resolution (~0.002nm) spectra in conditions comparable to the Venus surface (730K, 90bar). Measurements of the near-infrared spectrum of carbon dioxide at high pressure and temperature will be compared to modeled spectra extrapolated from the HITRAN 2016 database as well as other published models that include additional collisional physics. This comparison gives insight into the effectiveness of existing absorption databases for modeling the lower Venus atmosphere as well as the need to expand absorption models to suit these conditions.

  9. Implications of atmospheric conditions for analysis of surface temperature variability derived from landscape-scale thermography.

    PubMed

    Hammerle, Albin; Meier, Fred; Heinl, Michael; Egger, Angelika; Leitinger, Georg

    2017-04-01

    Thermal infrared (TIR) cameras perfectly bridge the gap between (i) on-site measurements of land surface temperature (LST) providing high temporal resolution at the cost of low spatial coverage and (ii) remotely sensed data from satellites that provide high spatial coverage at relatively low spatio-temporal resolution. While LST data from satellite (LST sat ) and airborne platforms are routinely corrected for atmospheric effects, such corrections are barely applied for LST from ground-based TIR imagery (using TIR cameras; LST cam ). We show the consequences of neglecting atmospheric effects on LST cam of different vegetated surfaces at landscape scale. We compare LST measured from different platforms, focusing on the comparison of LST data from on-site radiometry (LST osr ) and LST cam using a commercially available TIR camera in the region of Bozen/Bolzano (Italy). Given a digital elevation model and measured vertical air temperature profiles, we developed a multiple linear regression model to correct LST cam data for atmospheric influences. We could show the distinct effect of atmospheric conditions and related radiative processes along the measurement path on LST cam , proving the necessity to correct LST cam data on landscape scale, despite their relatively low measurement distances compared to remotely sensed data. Corrected LST cam data revealed the dampening effect of the atmosphere, especially at high temperature differences between the atmosphere and the vegetated surface. Not correcting for these effects leads to erroneous LST estimates, in particular to an underestimation of the heterogeneity in LST, both in time and space. In the most pronounced case, we found a temperature range extension of almost 10 K.

  10. Conditional vulnerability of plant diversity to atmospheric nitrogen deposition across the United States

    Treesearch

    Samuel M. Simkin; Edith B. Allen; William D. Bowman; Christopher M. Clark; Jayne Belnap; Matthew L. Brooks; Brian S. Cade; Scott L. Collins; Linda H. Geiser; Frank S. Gilliam; Sarah E. Jovan; Linda H. Pardo; Bethany K. Schulz; Carly J. Stevens; Katharine N. Suding; Heather L. Throop; Donald M. Waller

    2016-01-01

    Atmospheric nitrogen (N) deposition has been shown to decrease plant species richness along regional deposition gradients in Europe and in experimental manipulations. However, the general response of species richness to N deposition across different vegetation types, soil conditions, and climates remains largely unknown even though responses may be contingent on these...

  11. Prebiotic Synthesis of Methionine and Other Sulfur-Containing Organic Compounds on the Primitive Earth: A Contemporary Reassessment Based on an Unpublished 1958 Stanley Miller Experiment

    NASA Technical Reports Server (NTRS)

    Parker, Eric T.; Cleaves, H. James; Callahan, Michael P.; Dworkin, Jason P.; Glavin, Daniel P.; Lazcano, Antonio

    2010-01-01

    Original extracts from an unpublished 1958 experiment conducted by the late Stanley L. Miller were recently found and analyzed using modern state-of-the-art analytical methods. The extracts were produced by the action of an electric discharge on a mixture of methane (CH4), hydrogen sulfide (H2S), ammonia (NH3), and carbon dioxide (CO2). Racemic methionine was farmed in significant yields, together with other sulfur-bearing organic compounds. The formation of methionine and other compounds from a model prebiotic atmosphere that contained H2S suggests that this type of synthesis is robust under reducing conditions, which may have existed either in the global primitive atmosphere or in localized volcanic environments on the early Earth. The presence of a wide array of sulfur-containing organic compounds produced by the decomposition of methionine and cysteine indicates that in addition to abiotic synthetic processes, degradation of organic compounds on the primordial Earth could have been important in diversifying the inventory of molecules of biochemical significance not readily formed from other abiotic reactions, or derived from extraterrestrial delivery.

  12. Investigation of potential interferences in the detection of atmospheric ROx radicals by laser-induced fluorescence under dark conditions

    NASA Astrophysics Data System (ADS)

    Fuchs, H.; Tan, Z.; Hofzumahaus, A.; Broch, S.; Dorn, H.-P.; Holland, F.; Künstler, C.; Gomm, S.; Rohrer, F.; Schrade, S.; Tillmann, R.; Wahner, A.

    2015-11-01

    Direct detection of highly reactive, atmospheric hydroxyl radicals (OH) is widely accomplished by laser-induced fluorescence (LIF) instruments. The technique is also suitable for the indirect measurement of HO2 and RO2 peroxy radicals by chemical conversion to OH. It requires sampling of ambient air into a low pressure cell, where OH fluorescence is detected after excitation by 308 nm laser radiation. Although the residence time of air inside the fluorescence cell is typically only on the order of milliseconds, there is potential that additional OH is internally produced, which would artificially increase the measured OH concentration. Here, we present experimental studies investigating potential interferences in the detection of OH and peroxy radicals for the LIF instruments of Forschungszentrum Jülich for nighttime conditions. For laboratory experiments, the inlet of the instrument was overflown by excess synthetic air containing one or more reactants. In order to distinguish between OH produced by reactions upstream of the inlet and artificial signals produced inside the instrument, a chemical titration for OH was applied. Additional experiments were performed in the simulation chamber SAPHIR where simultaneous measurements by an open-path differential optical absorption spectrometer (DOAS) served as reference for OH to quantify potential artifacts in the LIF instrument. Experiments included the investigation of potential interferences related to the nitrate radical (NO3, N2O5), related to the ozonolysis of alkenes (ethene, propene, 1-butene, 2,3-dimethyl-2-butene, α-pinene, limonene, isoprene), and the laser photolysis of acetone. Experiments studying the laser photolysis of acetone yield OH signals in the fluorescence cell, which are equivalent to 0.05 × 106 cm-3 OH for a mixing ratio of 5 ppbv acetone. Under most atmospheric conditions, this interference is negligible. No significant interferences were found for atmospheric concentrations of reactants

  13. Investigation of potential interferences in the detection of atmospheric ROx radicals by laser-induced fluorescence under dark conditions

    NASA Astrophysics Data System (ADS)

    Fuchs, Hendrik; Tan, Zhaofeng; Hofzumahaus, Andreas; Broch, Sebastian; Dorn, Hans-Peter; Holland, Frank; Künstler, Christopher; Gomm, Sebastian; Rohrer, Franz; Schrade, Stephanie; Tillmann, Ralf; Wahner, Andreas

    2016-04-01

    Direct detection of highly reactive, atmospheric hydroxyl radicals (OH) is widely accomplished by laser-induced fluorescence (LIF) instruments. The technique is also suitable for the indirect measurement of HO2 and RO2 peroxy radicals by chemical conversion to OH. It requires sampling of ambient air into a low-pressure cell, where OH fluorescence is detected after excitation by 308 nm laser radiation. Although the residence time of air inside the fluorescence cell is typically only on the order of milliseconds, there is potential that additional OH is internally produced, which would artificially increase the measured OH concentration. Here, we present experimental studies investigating potential interferences in the detection of OH and peroxy radicals for the LIF instruments of Forschungszentrum Jülich for nighttime conditions. For laboratory experiments, the inlet of the instrument was over flowed by excess synthetic air containing one or more reactants. In order to distinguish between OH produced by reactions upstream of the inlet and artificial signals produced inside the instrument, a chemical titration for OH was applied. Additional experiments were performed in the simulation chamber SAPHIR where simultaneous measurements by an open-path differential optical absorption spectrometer (DOAS) served as reference for OH to quantify potential artifacts in the LIF instrument. Experiments included the investigation of potential interferences related to the nitrate radical (NO3, N2O5), related to the ozonolysis of alkenes (ethene, propene, 1-butene, 2,3-dimethyl-2-butene, α-pinene, limonene, isoprene), and the laser photolysis of acetone. Experiments studying the laser photolysis of acetone yield OH signals in the fluorescence cell, which are equivalent to 0.05 × 106 cm-3 OH for a mixing ratio of 5 ppbv acetone. Under most atmospheric conditions, this interference is negligible. No significant interferences were found for atmospheric concentrations of reactants

  14. Evaluation of Endocrine Disrupting Compounds Migration in Household Food Containers under Domestic Use Conditions.

    PubMed

    Sáiz, Jorge; Gómara, Belén

    2017-08-09

    Plasticizers and plastic monomers are commonly used in packaging. Most of them act as endocrine disrupters and are susceptible to migrate from the packaging to the food. We evaluated the migration of endocrine disrupting compounds from three different household food containers to four food simulants under different domestic treatments and for different periods of time, with the aim of reproducing real domestic conditions. The results showed that the migration to the simulants increased with the storage time, up to more than 50 times in certain cases. The heating power seemed to increase the migration processes (up to more than 30 times), and reusing containers produced an increase or decrease of the concentrations depending on the container type and the simulant. The concentrations found were lower than other concentrations reported (always less than 4000 pg/mL, down to less than 20 pg/mL), which might be a consequence of the domestic conditions used.

  15. An emergency response mobile robot for operations in combustible atmospheres

    NASA Technical Reports Server (NTRS)

    Stone, Henry W. (Inventor); Ohm, Timothy R. (Inventor)

    1993-01-01

    A mobile, self-powered, self-contained, and remote-controlled robot is presented. The robot is capable of safely operating in a combustible atmosphere and providing information about the atmosphere to the operator. The robot includes non-sparking and non-arcing electro-mechanical and electronic components designed to prevent the robot from igniting the combustible atmosphere. The robot also includes positively pressurized enclosures that house the electromechanical and electronic components of the robot and prevent intrusion of the combustible atmosphere into the enclosures. The enclosures are interconnected such that a pressurized gas injected into any one of the enclosures is routed to all the other enclosures through the interconnections. It is preferred that one or more sealed internal channels through structures intervening between the enclosures be employed. Pressure transducers for detecting if the pressure within the enclosures falls below a predetermined level are included. The robot also has a sensing device for determining the types of combustible substances in the surrounding atmosphere, as well as the concentrations of each type of substance relative to a pre-determined lower explosive limit (LEL). In addition, the sensing device can determine the percent level of oxygen present in the surrounding atmosphere.

  16. An emergency response mobile robot for operations in combustible atmospheres

    NASA Astrophysics Data System (ADS)

    Stone, Henry W.; Ohm, Timothy R.

    1993-11-01

    A mobile, self-powered, self-contained, and remote-controlled robot is presented. The robot is capable of safely operating in a combustible atmosphere and providing information about the atmosphere to the operator. The robot includes non-sparking and non-arcing electro-mechanical and electronic components designed to prevent the robot from igniting the combustible atmosphere. The robot also includes positively pressurized enclosures that house the electromechanical and electronic components of the robot and prevent intrusion of the combustible atmosphere into the enclosures. The enclosures are interconnected such that a pressurized gas injected into any one of the enclosures is routed to all the other enclosures through the interconnections. It is preferred that one or more sealed internal channels through structures intervening between the enclosures be employed. Pressure transducers for detecting if the pressure within the enclosures falls below a predetermined level are included. The robot also has a sensing device for determining the types of combustible substances in the surrounding atmosphere, as well as the concentrations of each type of substance relative to a pre-determined lower explosive limit (LEL). In addition, the sensing device can determine the percent level of oxygen present in the surrounding atmosphere.

  17. Description of atmospheric conditions at the Pierre Auger Observatory using the Global Data Assimilation System (GDAS)

    NASA Astrophysics Data System (ADS)

    Pierre Auger Collaboration; Abreu, P.; Aglietta, M.; Ahlers, M.; Ahn, E. J.; Albuquerque, I. F. M.; Allard, D.; Allekotte, I.; Allen, J.; Allison, P.; Almela, A.; Alvarez Castillo, J.; Alvarez-Muñiz, J.; Ambrosio, M.; Aminaei, A.; Anchordoqui, L.; Andringa, S.; Antiči'C, T.; Aramo, C.; Arganda, E.; Arqueros, F.; Asorey, H.; Assis, P.; Aublin, J.; Ave, M.; Avenier, M.; Avila, G.; Bäcker, T.; Badescu, A. M.; Balzer, M.; Barber, K. B.; Barbosa, A. F.; Bardenet, R.; Barroso, S. L. C.; Baughman, B.; Bäuml, J.; Beatty, J. J.; Becker, B. R.; Becker, K. H.; Bellétoile, A.; Bellido, J. A.; Benzvi, S.; Berat, C.; Bertou, X.; Biermann, P. L.; Billoir, P.; Blanco, F.; Blanco, M.; Bleve, C.; Blümer, H.; Boháčová, M.; Boncioli, D.; Bonifazi, C.; Bonino, R.; Borodai, N.; Brack, J.; Brancus, I.; Brogueira, P.; Brown, W. C.; Bruijn, R.; Buchholz, P.; Bueno, A.; Burton, R. E.; Caballero-Mora, K. S.; Caccianiga, B.; Caramete, L.; Caruso, R.; Castellina, A.; Catalano, O.; Cataldi, G.; Cazon, L.; Cester, R.; Chauvin, J.; Cheng, S. H.; Chiavassa, A.; Chinellato, J. A.; Chirinos Diaz, J.; Chudoba, J.; Clay, R. W.; Coluccia, M. R.; Conceição, R.; Contreras, F.; Cook, H.; Cooper, M. J.; Coppens, J.; Cordier, A.; Coutu, S.; Covault, C. E.; Creusot, A.; Criss, A.; Cronin, J.; Curutiu, A.; Dagoret-Campagne, S.; Dallier, R.; Daniel, B.; Dasso, S.; Daumiller, K.; Dawson, B. R.; de Almeida, R. M.; de Domenico, M.; de Donato, C.; de Jong, S. J.; de La Vega, G.; de Mello Junior, W. J. M.; de Mello Neto, J. R. T.; de Mitri, I.; de Souza, V.; de Vries, K. D.; Del Peral, L.; Del Río, M.; Deligny, O.; Dembinski, H.; Dhital, N.; di Giulio, C.; Díaz Castro, M. L.; Diep, P. N.; Diogo, F.; Dobrigkeit, C.; Docters, W.; D'Olivo, J. C.; Dong, P. N.; Dorofeev, A.; Dos Anjos, J. C.; Dova, M. T.; D'Urso, D.; Dutan, I.; Ebr, J.; Engel, R.; Erdmann, M.; Escobar, C. O.; Espadanal, J.; Etchegoyen, A.; Facal San Luis, P.; Fajardo Tapia, I.; Falcke, H.; Farrar, G.; Fauth, A. C.; Fazzini, N.; Ferguson, A. P.; Fick, B.; Filevich, A.; Filipčič, A.; Fliescher, S.; Fracchiolla, C. E.; Fraenkel, E. D.; Fratu, O.; Fröhlich, U.; Fuchs, B.; Gaior, R.; Gamarra, R. F.; Gambetta, S.; García, B.; Garcia Roca, S. T.; Garcia-Gamez, D.; Garcia-Pinto, D.; Gascon, A.; Gemmeke, H.; Ghia, P. L.; Giaccari, U.; Giller, M.; Glass, H.; Gold, M. S.; Golup, G.; Gomez Albarracin, F.; Gómez Berisso, M.; Gómez Vitale, P. F.; Gonçalves, P.; Gonzalez, D.; Gonzalez, J. G.; Gookin, B.; Gorgi, A.; Gouffon, P.; Grashorn, E.; Grebe, S.; Griffith, N.; Grigat, M.; Grillo, A. F.; Guardincerri, Y.; Guarino, F.; Guedes, G. P.; Guzman, A.; Hansen, P.; Harari, D.; Harrison, T. A.; Harton, J. L.; Haungs, A.; Hebbeker, T.; Heck, D.; Herve, A. E.; Hojvat, C.; Hollon, N.; Holmes, V. C.; Homola, P.; Hörandel, J. R.; Horneffer, A.; Horvath, P.; Hrabovský, M.; Huber, D.; Huege, T.; Insolia, A.; Ionita, F.; Italiano, A.; Jarne, C.; Jiraskova, S.; Josebachuili, M.; Kadija, K.; Kampert, K. H.; Karhan, P.; Kasper, P.; Kégl, B.; Keilhauer, B.; Keivani, A.; Kelley, J. L.; Kemp, E.; Kieckhafer, R. M.; Klages, H. O.; Kleifges, M.; Kleinfeller, J.; Knapp, J.; Koang, D.-H.; Kotera, K.; Krohm, N.; Krömer, O.; Kruppke-Hansen, D.; Kuehn, F.; Kuempel, D.; Kulbartz, J. K.; Kunka, N.; La Rosa, G.; Lachaud, C.; Lahurd, D.; Latronico, L.; Lauer, R.; Lautridou, P.; Le Coz, S.; Leão, M. S. A. B.; Lebrun, D.; Lebrun, P.; Leigui de Oliveira, M. A.; Letessier-Selvon, A.; Lhenry-Yvon, I.; Link, K.; López, R.; Lopez Agüera, A.; Louedec, K.; Lozano Bahilo, J.; Lu, L.; Lucero, A.; Ludwig, M.; Lyberis, H.; Maccarone, M. C.; Macolino, C.; Maldera, S.; Mandat, D.; Mantsch, P.; Mariazzi, A. G.; Marin, J.; Marin, V.; Maris, I. C.; Marquez Falcon, H. R.; Marsella, G.; Martello, D.; Martin, L.; Martinez, H.; Martínez Bravo, O.; Mathes, H. J.; Matthews, J.; Matthews, J. A. J.; Matthiae, G.; Maurel, D.; Maurizio, D.; Mazur, P. O.; Medina-Tanco, G.; Melissas, M.; Melo, D.; Menichetti, E.; Menshikov, A.; Mertsch, P.; Meurer, C.; Mi'Canovi'C, S.; Micheletti, M. I.; Minaya, I. A.; Miramonti, L.; Molina-Bueno, L.; Mollerach, S.; Monasor, M.; Monnier Ragaigne, D.; Montanet, F.; Morales, B.; Morello, C.; Moreno, E.; Moreno, J. C.; Mostafá, M.; Moura, C. A.; Muller, M. A.; Müller, G.; Münchmeyer, M.; Mussa, R.; Navarra, G.; Navarro, J. L.; Navas, S.; Necesal, P.; Nellen, L.; Nelles, A.; Neuser, J.; Nhung, P. T.; Niechciol, M.; Niemietz, L.; Nierstenhoefer, N.; Nitz, D.; Nosek, D.; Nožka, L.; Oehlschläger, J.; Olinto, A.; Ortiz, M.; Pacheco, N.; Pakk Selmi-Dei, D.; Palatka, M.; Pallotta, J.; Palmieri, N.; Parente, G.; Parizot, E.; Parra, A.; Pastor, S.; Paul, T.; Pech, M.; Pȩkala, J.; Pelayo, R.; Pepe, I. M.; Perrone, L.; Pesce, R.; Petermann, E.; Petrera, S.; Petrinca, P.; Petrolini, A.; Petrov, Y.; Pfendner, C.; Piegaia, R.; Pierog, T.; Pieroni, P.; Pimenta, M.; Pirronello, V.; Platino, M.; Ponce, V. H.; Pontz, M.; Porcelli, A.; Privitera, P.; Prouza, M.; Quel, E. J.; Querchfeld, S.; Rautenberg, J.; Ravel, O.; Ravignani, D.; Revenu, B.; Ridky, J.; Riggi, S.; Risse, M.; Ristori, P.; Rivera, H.; Rizi, V.; Roberts, J.; Rodrigues de Carvalho, W.; Rodriguez, G.; Rodriguez Martino, J.; Rodriguez Rojo, J.; Rodriguez-Cabo, I.; Rodríguez-Frías, M. D.; Ros, G.; Rosado, J.; Rossler, T.; Roth, M.; Rouillé-D'Orfeuil, B.; Roulet, E.; Rovero, A. C.; Rühle, C.; Saftoiu, A.; Salamida, F.; Salazar, H.; Salesa Greus, F.; Salina, G.; Sánchez, F.; Santo, C. E.; Santos, E.; Santos, E. M.; Sarazin, F.; Sarkar, B.; Sarkar, S.; Sato, R.; Scharf, N.; Scherini, V.; Schieler, H.; Schiffer, P.; Schmidt, A.; Scholten, O.; Schoorlemmer, H.; Schovancova, J.; Schovánek, P.; Schröder, F.; Schulte, S.; Schuster, D.; Sciutto, S. J.; Scuderi, M.; Segreto, A.; Settimo, M.; Shadkam, A.; Shellard, R. C.; Sidelnik, I.; Sigl, G.; Silva Lopez, H. H.; Sima, O.; 'Smiałkowski, A.; Šmída, R.; Snow, G. R.; Sommers, P.; Sorokin, J.; Spinka, H.; Squartini, R.; Srivastava, Y. N.; Stanic, S.; Stapleton, J.; Stasielak, J.; Stephan, M.; Stutz, A.; Suarez, F.; Suomijärvi, T.; Supanitsky, A. D.; Šuša, T.; Sutherland, M. S.; Swain, J.; Szadkowski, Z.; Szuba, M.; Tapia, A.; Tartare, M.; Taşcău, O.; Tavera Ruiz, C. G.; Tcaciuc, R.; Thao, N. T.; Thomas, D.; Tiffenberg, J.; Timmermans, C.; Tkaczyk, W.; Todero Peixoto, C. J.; Toma, G.; Tomankova, L.; Tomé, B.; Tonachini, A.; Travnicek, P.; Tridapalli, D. B.; Tristram, G.; Trovato, E.; Tueros, M.; Ulrich, R.; Unger, M.; Urban, M.; Valdés Galicia, J. F.; Valiño, I.; Valore, L.; van den Berg, A. M.; Varela, E.; Vargascárdenas, B.; Vázquez, J. R.; Vázquez, R. A.; Veberič, D.; Verzi, V.; Vicha, J.; Videla, M.; Villaseñor, L.; Wahlberg, H.; Wahrlich, P.; Wainberg, O.; Walz, D.; Watson, A. A.; Weber, M.; Weidenhaupt, K.; Weindl, A.; Werner, F.; Westerhoff, S.; Whelan, B. J.; Widom, A.; Wieczorek, G.; Wiencke, L.; Wilczyńska, B.; Wilczyński, H.; Will, M.; Williams, C.; Winchen, T.; Wommer, M.; Wundheiler, B.; Yamamoto, T.; Yapici, T.; Younk, P.; Yuan, G.; Yushkov, A.; Zamorano, B.; Zas, E.; Zavrtanik, D.; Zavrtanik, M.; Zaw, I.; Zepeda, A.; Zhu, Y.; Zimbres Silva, M.; Ziolkowski, M.

    2012-04-01

    Atmospheric conditions at the site of a cosmic ray observatory must be known for reconstructing observed extensive air showers. The Global Data Assimilation System (GDAS) is a global atmospheric model predicated on meteorological measurements and numerical weather predictions. GDAS provides altitude-dependent profiles of the main state variables of the atmosphere like temperature, pressure, and humidity. The original data and their application to the air shower reconstruction of the Pierre Auger Observatory are described. By comparisons with radiosonde and weather station measurements obtained on-site in Malargüe and averaged monthly models, the utility of the GDAS data is shown.

  18. Description of Atmospheric Conditions at the Pierre Auger Observatory using the Global Data Assimilation System (GDAS)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abreu, P.; /Lisbon, IST; Aglietta, M.

    2012-01-01

    Atmospheric conditions at the site of a cosmic ray observatory must be known for reconstructing observed extensive air showers. The Global Data Assimilation System (GDAS) is a global atmospheric model predicated on meteorological measurements and numerical weather predictions. GDAS provides altitude-dependent profiles of the main state variables of the atmosphere like temperature, pressure, and humidity. The original data and their application to the air shower reconstruction of the Pierre Auger Observatory are described. By comparisons with radiosonde and weather station measurements obtained on-site in Malargue and averaged monthly models, the utility of the GDAS data is shown.

  19. Evaluation of an Air Quality Health Index for Predicting the Mutagenicity of Simulated Atmospheres

    EPA Science Inventory

    No study has evaluated the mutagenicity of atmospheres with a calculated air quality health index (AQHI). Thus, we generated in a UV-light-containing reaction chamber two simulated atmospheres (SAs) with similar AQHIs but different proportions of criteria pollutants and evaluated...

  20. Some questions concerning safety on emergency landing in dense layers of the atmosphere of radionuclide energy sources based on plutonium-238 for autonomous station ``MARS-94/96''

    NASA Astrophysics Data System (ADS)

    Makhorin, Oleg I.; Pustovalov, Alexey A.; Zhabin, Vladimir N.; Greenberg, Edward I.; Nilolaev, Vadim S.; Sokolov, Nikolay A.

    1996-03-01

    This paper describes results of investigations of questions concerning integrity keeping for an ampula containing radionuclide fuel (Pu-238) under conditions of emergency landing in dense layers of the atmosphere and under conditions of fire on launching pad.

  1. The Outdoor Atmospheric Simulation Chamber of Orleans-France (HELIOS)

    NASA Astrophysics Data System (ADS)

    Mellouki, A.; Véronique, D.; Grosselin, B.; Peyroux, F.; Benoit, R.; Ren, Y.; Idir, M.

    2016-12-01

    Atmospheric simulation chambers are among the most advanced tools for investigating the atmospheric processes to derive physico-chemical parameters which are required for air quality and climate models. Recently, the ICARE-CNRS at Orléans (France) has set up a new large outdoor simulation chamber, HELIOS. HELIOS is one of the most advanced simulation chambers in Europe. It is one of the largest outdoor chambers and is especially suited to processes studies performed under realistic atmospheric conditions. HELIOS is a large hemispherical outdoor simulation chamber (volume of 90 m3) positioned on the top of ICARE-CNRS building at Orléans (47°50'18.39N; 1°56'40.03E). The chamber is made of FEP film ensuring more than 90 % solar light transmission. The chamber is protected against severe meteorological conditions by a moveable "box" which contains a series of Xenon lamps enabling to conduct experiments using artificial light. This special design makes HELIOS a unique platform where experiments can be made using both types of irradiations. HELIOS is dedicated mainly to the investigation of the chemical processes under different conditions (sunlight, artificial light and dark). The platform allows conducting the same type of experiments under both natural and artificial light irradiation. The available large range of complementary and highly sensitive instruments allows investigating the radical chemistry, gas phase processes and aerosol formation under realistic conditions. The characteristics of HELIOS will be presented as well as the first series of experimental results obtained so far.

  2. A high-temperature furnace for in situ synchrotron X-ray spectroscopy under controlled atmospheric conditions.

    PubMed

    Eeckhout, Sigrid Griet; Gorges, Bernard; Barthe, Laurent; Pelosi, Orietta; Safonova, Olga; Giuli, Gabriele

    2008-09-01

    A high-temperature furnace with an induction heater coil has been designed and constructed for in situ X-ray spectroscopic experiments under controlled atmospheric conditions and temperatures up to 3275 K. The multi-purpose chamber design allows working in backscattering and normal fluorescence mode for synchrotron X-ray absorption and emission spectroscopy. The use of the furnace is demonstrated in a study of the in situ formation of Cr oxide between 1823 K and 2023 K at logPO(2) values between -10.0 and -11.3 using X-ray absorption near-edge spectroscopy. The set-up is of particular interest for studying liquid metals, alloys and other electrically conductive materials under extreme conditions.

  3. Corrosion-electrochemical behavior of nickel in an alkali metal carbonate melt under a chlorine-containing atmosphere

    NASA Astrophysics Data System (ADS)

    Nikitina, E. V.; Kudyakov, V. Ya.; Malkov, V. B.; Plaksin, S. V.

    2013-08-01

    The corrosion-electrochemical behavior of a nickel electrode is studied in the melt of lithium, sodium, and potassium (40: 30: 30 mol %) carbonates in the temperature range 500-600°C under an oxidizing atmosphere CO2 + 0.5O2 (2: 1), which is partly replaced by gaseous chlorine (30, 50, 70%) in some experiments. In other experiments, up to 5 wt % chloride of sodium peroxide is introduced in a salt melt. A change in the gas-phase composition is shown to affect the mechanism of nickel corrosion.

  4. The effect of particle acidity on secondary organic aerosol formation from α-pinene photooxidation under atmospherically relevant conditions

    NASA Astrophysics Data System (ADS)

    Han, Yuemei; Stroud, Craig A.; Liggio, John; Li, Shao-Meng

    2016-11-01

    Secondary organic aerosol (SOA) formation from photooxidation of α-pinene has been investigated in a photochemical reaction chamber under varied inorganic seed particle acidity levels at moderate relative humidity. The effect of particle acidity on SOA yield and chemical composition was examined under high- and low-NOx conditions. The SOA yield (4.2-7.6 %) increased nearly linearly with the increase in particle acidity under high-NOx conditions. In contrast, the SOA yield (28.6-36.3 %) was substantially higher under low-NOx conditions, but its dependency on particle acidity was insignificant. A relatively strong increase in SOA yield (up to 220 %) was observed in the first hour of α-pinene photooxidation under high-NOx conditions, suggesting that SOA formation was more effective for early α-pinene oxidation products in the presence of fresh acidic particles. The SOA yield decreased gradually with the increase in organic mass in the initial stage (approximately 0-1 h) under high-NOx conditions, which is likely due to the inaccessibility to the acidity over time with the coating of α-pinene SOA, assuming a slow particle-phase diffusion of organic molecules into the inorganic seeds. The formation of later-generation SOA was enhanced by particle acidity even under low-NOx conditions when introducing acidic seed particles after α-pinene photooxidation, suggesting a different acidity effect exists for α-pinene SOA derived from later oxidation stages. This effect could be important in the atmosphere under conditions where α-pinene oxidation products in the gas-phase originating in forested areas (with low NOx and SOx) are transported to regions abundant in acidic aerosols such as power plant plumes or urban regions. The fraction of oxygen-containing organic fragments (CxHyO1+ 33-35 % and CxHyO2+ 16-17 %) in the total organics and the O / C ratio (0.52-0.56) of α-pinene SOA were lower under high-NOx conditions than those under low-NOx conditions (39-40, 17-19, and

  5. Middle Atmosphere Program. Handbook for MAP, volume 11

    NASA Technical Reports Server (NTRS)

    Sechrist, C. F., Jr. (Editor)

    1984-01-01

    An overview is presented of the research activities and objectives of the middle atmosphere program (MAP). Status reports are presented of projects underway in the area of middle atmosphere climatology and atmospheric chemistry condensed minutes of MAP steering committee meetings are contained in this volume. Research recommendations for increased U.S. participation in the middle atmosphere program are given.

  6. Convective transport in ATM simulations and its relation to the atmospheric stability conditions

    NASA Astrophysics Data System (ADS)

    Kusmierczyk-Michulec, Jolanta

    2017-04-01

    The International Monitoring System (IMS) developed by the Comprehensive Nuclear-Test-Ban Treaty Organization (CTBTO) is a global system of monitoring stations, using four complementary technologies: seismic, hydroacoustic, infrasound and radionuclide. Data from all stations, belonging to IMS, are collected and transmitted to the International Data Centre (IDC) in Vienna, Austria. The radionuclide network comprises 80 stations, of which more than 60 are certified. The aim of radionuclide stations is a global monitoring of radioactive aerosols and radioactive noble gases, in particular xenon isotopes, supported by the atmospheric transport modeling (ATM). One of the important noble gases, monitored on a daily basis, is radioxenon. It can be produced either during a nuclear explosion with a high fission yield, and thus be considered as an important tracer to prove the nuclear character of an explosion, or be emitted from nuclear power plants (NPPs) or from isotope production facilities (IPFs). To investigate the transport of xenon emissions, the Provisional Technical Secretariat (PTS) operates an Atmospheric Transport Modelling (ATM) system based on the Lagrangian Particle Dispersion Model FLEXPART. To address the question whether including the convective transport in ATM simulations will change the results significantly, the differences between the outputs with the convective transport turned off and turned on, were computed and further investigated taking into account the atmospheric stability conditions. For that purpose series of 14 days forward simulations, with convective transport and without it, released daily in the period January 2011 to February 2012, were analysed. The release point was at the ANSTO facility in Australia. The unique opportunity of having access to both daily emission values for ANSTO as well as measured Xe-133 activity concentration (AC) values at the IMS stations, gave a chance to validate the simulations.

  7. Atmospheric conditions during high ragweed pollen concentrations in Zagreb, Croatia.

    PubMed

    Prtenjak, Maja Telišman; Srnec, Lidija; Peternel, Renata; Madžarević, Valentina; Hrga, Ivana; Stjepanović, Barbara

    2012-11-01

    We examined the atmospheric conditions favourable to the occurrence of maximum concentrations of ragweed pollen with an extremely high risk of producing allergy. Over the 2002-2009 period, daily pollen data collected in Zagreb were used to identify two periods of high pollen concentration (> 600 grains/m(3)) for our analysis: period A (3-4 September 2002) and period B (6-7 September 2003). Synoptic conditions in both periods were very similar: Croatia was under the influence of a lower sector high pressure system moving slowly eastward over Eastern Europe. During the 2002-2009 period, this type of weather pattern (on ~ 70% of days), in conjunction with almost non-gradient surface pressure conditions in the area (on ~ 30% of days) characterised days when the daily pollen concentrations were higher than 400 grains/m(3). Numerical experiments using a mesoscale model at fine resolution showed successful multi-day simulations reproducing the local topographic influence on wind flow and in reasonable agreement with available observations. According to the model, the relatively weak synoptic flow (predominantly from the eastern direction) allowed local thermal circulations to develop over Zagreb during both high pollen episodes. Two-hour pollen concentrations and 48-h back-trajectories indicated that regional-range transport of pollen grains from the central Pannonian Plain was the cause of the high pollen concentrations during period A. During period B, the north-westward regional-range transport in Zagreb was supplemented significantly by pronounced horizontal recirculation of pollen grains. This recirculation happened within the diurnal local circulation over the city, causing a late-evening increase in pollen concentration.

  8. Atmospheric conditions during high ragweed pollen concentrations in Zagreb, Croatia

    NASA Astrophysics Data System (ADS)

    Prtenjak, Maja Telišman; Srnec, Lidija; Peternel, Renata; Madžarević, Valentina; Hrga, Ivana; Stjepanović, Barbara

    2012-11-01

    We examined the atmospheric conditions favourable to the occurrence of maximum concentrations of ragweed pollen with an extremely high risk of producing allergy. Over the 2002-2009 period, daily pollen data collected in Zagreb were used to identify two periods of high pollen concentration (> 600 grains/m3) for our analysis: period A (3-4 September 2002) and period B (6-7 September 2003). Synoptic conditions in both periods were very similar: Croatia was under the influence of a lower sector high pressure system moving slowly eastward over Eastern Europe. During the 2002-2009 period, this type of weather pattern (on ~ 70% of days), in conjunction with almost non-gradient surface pressure conditions in the area (on ~ 30% of days) characterised days when the daily pollen concentrations were higher than 400 grains/m3. Numerical experiments using a mesoscale model at fine resolution showed successful multi-day simulations reproducing the local topographic influence on wind flow and in reasonable agreement with available observations. According to the model, the relatively weak synoptic flow (predominantly from the eastern direction) allowed local thermal circulations to develop over Zagreb during both high pollen episodes. Two-hour pollen concentrations and 48-h back-trajectories indicated that regional-range transport of pollen grains from the central Pannonian Plain was the cause of the high pollen concentrations during period A. During period B, the north-westward regional-range transport in Zagreb was supplemented significantly by pronounced horizontal recirculation of pollen grains. This recirculation happened within the diurnal local circulation over the city, causing a late-evening increase in pollen concentration.

  9. The Upper Atmosphere; Threshold of Space.

    ERIC Educational Resources Information Center

    Bird, John

    This booklet contains illustrations of the upper atmosphere, describes some recent discoveries, and suggests future research questions. It contains many color photographs. Sections include: (1) "Where Does Space Begin?"; (2) "Importance of the Upper Atmosphere" (including neutral atmosphere, ionized regions, and balloon and investigations); (3)…

  10. Low-energy-electron interactions with DNA: approaching cellular conditions with atmospheric experiments

    NASA Astrophysics Data System (ADS)

    Alizadeh, Elahe; Sanche, Léon

    2014-04-01

    A novel technique has been developed to investigate low energy electron (LEE)-DNA interactions in the presence of small biomolecules (e.g., N2, O2, H2O) found near DNA in the cell nucleus, in order to simulate cellular conditions. In this technique, LEEs are emitted from a metallic surface exposed by soft X-rays and interact with DNA thin films at standard ambient temperature and pressure (SATP). Whereas atmospheric N2 had little effect on the yields of LEE-induced single and double strand breaks, both O2 and H2O considerably modified and increased such damage. The highest yields were obtained when DNA is embedded in a combined O2 and H2O atmosphere. In this case, the amount of additional double strand breaks was supper-additive. The effect of modifying the chemical and physical stability of DNA by platinum-based chemotherapeutic agents (Pt-drugs) including cisplatin, carboplatin and oxaliplatin was also investigated with this technique. The results obtained provide information on the role played by subexcitation-energy electrons and dissociative electron attachment in the radiosensitization of DNA by Pt-drugs, which is an important step to unravel the mechanisms of radiosensitisation of these agents in chemoradiation cancer therapy.

  11. Remembrance of phases past: An autoregressive method for generating realistic atmospheres in simulations

    NASA Astrophysics Data System (ADS)

    Srinath, Srikar; Poyneer, Lisa A.; Rudy, Alexander R.; Ammons, S. M.

    2014-08-01

    The advent of expensive, large-aperture telescopes and complex adaptive optics (AO) systems has strengthened the need for detailed simulation of such systems from the top of the atmosphere to control algorithms. The credibility of any simulation is underpinned by the quality of the atmosphere model used for introducing phase variations into the incident photons. Hitherto, simulations which incorporate wind layers have relied upon phase screen generation methods that tax the computation and memory capacities of the platforms on which they run. This places limits on parameters of a simulation, such as exposure time or resolution, thus compromising its utility. As aperture sizes and fields of view increase the problem will only get worse. We present an autoregressive method for evolving atmospheric phase that is efficient in its use of computation resources and allows for variability in the power contained in frozen flow or stochastic components of the atmosphere. Users have the flexibility of generating atmosphere datacubes in advance of runs where memory constraints allow to save on computation time or of computing the phase at each time step for long exposure times. Preliminary tests of model atmospheres generated using this method show power spectral density and rms phase in accordance with established metrics for Kolmogorov models.

  12. Co-evolution of atmospheres, life, and climate.

    PubMed

    Grenfell, J Lee; Rauer, Heike; Selsis, Franck; Kaltenegger, Lisa; Beichman, Charles; Danchi, William; Eiroa, Carlos; Fridlund, Malcolm; Henning, Thomas; Herbst, Tom; Lammer, Helmut; Léger, Alain; Liseau, René; Lunine, Jonathan; Paresce, Francesco; Penny, Alan; Quirrenbach, Andreas; Röttgering, Huub; Schneider, Jean; Stam, Daphne; Tinetti, Giovanna; White, Glenn J

    2010-01-01

    After Earth's origin, our host star, the Sun, was shining 20-25% less brightly than today. Without greenhouse-like conditions to warm the atmosphere, our early planet would have been an ice ball, and life may never have evolved. But life did evolve, which indicates that greenhouse gases must have been present on early Earth to warm the planet. Evidence from the geological record indicates an abundance of the greenhouse gas CO(2). CH(4) was probably present as well; and, in this regard, methanogenic bacteria, which belong to a diverse group of anaerobic prokaryotes that ferment CO(2) plus H(2) to CH(4), may have contributed to modification of the early atmosphere. Molecular oxygen was not present, as is indicated by the study of rocks from that era, which contain iron carbonate rather than iron oxide. Multicellular organisms originated as cells within colonies that became increasingly specialized. The development of photosynthesis allowed the Sun's energy to be harvested directly by life-forms. The resultant oxygen accumulated in the atmosphere and formed the ozone layer in the upper atmosphere. Aided by the absorption of harmful UV radiation in the ozone layer, life colonized Earth's surface. Our own planet is a very good example of how life-forms modified the atmosphere over the planets' lifetime. We show that these facts have to be taken into account when we discover and characterize atmospheres of Earth-like exoplanets. If life has originated and evolved on a planet, then it should be expected that a strong co-evolution occurred between life and the atmosphere, the result of which is the planet's climate.

  13. Effect of Nock-Ten Tropical Cyclone on Atmospheric Condition and Distribution of Rainfall in Gorontalo, Ternate, and Sorong Regions

    NASA Astrophysics Data System (ADS)

    Lumbangaol, A.; Serhalawan, Y. R.; Endarwin

    2017-12-01

    Nock-Ten Tropical Cyclone is an atmospheric phenomenon that has claimed many lives in the Philippines. This super-typhoon cyclone grows in the Western Pacific Ocean, North of Papua. With the area directly contiguous to the trajectory of Nock-Ten Tropical Cyclone growth, it is necessary to study about the growth activity of this tropical cyclones in Indonesia, especially in 3 different areas, namely Gorontalo, Ternate, and Sorong. This study was able to determine the impact of Nock-Ten Tropical Cyclone on atmospheric dynamics and rainfall growth distribution based on the stages of tropical cyclone development. The data used in this study include Himawari-8 IR channel satellite data to see the development stage and movement track of Tropical Cyclone Nock-Ten, rainfall data from TRMM 3B42RT satellite product to know the rain distribution in Gorontalo, Ternate, and Sorong, and reanalysis data from ECMWF such as wind direction and speed, vertical velocity, and relative vorticity to determine atmospheric conditions at the time of development of the Nock-Ten Tropical Cyclone. The results of data analysis processed using GrADS application showed the development stage of Nock-Ten Tropical Cyclone has effect of changes in atmospheric dynamics condition and wind direction pattern. In addition, tropical cyclones also contribute to very light to moderate scale intensity during the cycle period of tropical cyclone development in all three regions.

  14. Impact of aerosols and adverse atmospheric conditions on the data quality for spectral analysis of the H.E.S.S. telescopes

    NASA Astrophysics Data System (ADS)

    Hahn, J.; de los Reyes, R.; Bernlöhr, K.; Krüger, P.; Lo, Y. T. E.; Chadwick, P. M.; Daniel, M. K.; Deil, C.; Gast, H.; Kosack, K.; Marandon, V.

    2014-02-01

    The Earth's atmosphere is an integral part of the detector in ground-based imaging atmospheric Cherenkov telescope (IACT) experiments and has to be taken into account in the calibration. Atmospheric and hardware-related deviations from simulated conditions can result in the mis-reconstruction of primary particle energies and therefore of source spectra. During the eight years of observations with the High Energy Stereoscopic System (H.E.S.S.) in Namibia, the overall yield in Cherenkov photons has varied strongly with time due to gradual hardware aging, together with adjustments of the hardware components, and natural, as well as anthropogenic, variations of the atmospheric transparency. Here we present robust data selection criteria that minimize these effects over the full data set of the H.E.S.S. experiment and introduce the Cherenkov transparency coefficient as a new atmospheric monitoring quantity. The influence of atmospheric transparency, as quantified by this coefficient, on energy reconstruction and spectral parameters is examined and its correlation with the aerosol optical depth (AOD) of independent MISR satellite measurements and local measurements of atmospheric clarity is investigated.

  15. Assessment of turkey vehicle container microclimate on transit during summer season conditions

    NASA Astrophysics Data System (ADS)

    Carvalho, Rafael H.; Honorato, Danielle C. B.; Guarnieri, Paulo D.; Soares, Adriana L.; Pedrão, Mayka R.; Oba, Alexandre; Paião, Fernanda G.; Ida, Elza I.; Shimokomaki, Massami

    2018-06-01

    This study evaluated the formed microclimate commercial truck transport practices effects on the turkeys' welfare by measuring Dead on Arrival (DOA) index and pale, soft, and exudative (PSE-like) meat occurrence. The experimental design was entirely randomized in a 6 × 2 factorial arrangements (two truck container compartments × six water shower groups) with birds positioned at superior front (SF), inferior front (IF), superior middle (SM), inferior middle (IM), superior rear (SR), and inferior rear (IR) and two bath treatments: with water shower (WiS) and without water shower (WoS) with eight replications for each treatment. The animals were transported for 95 min' journey from the farm to the slaughterhouse under hot-humidity conditions. The results shown herein indicated the formation of a thermal core at the inferior middle and rear truck container regions, because the heat produced by the birds and the influence of developed microclimate consisting of temperature, relative humidity, and air ventilation. The IM and IR container compartments under the WoS treatment presented the highest ( P < 0.01) numbers of PSE-like meat incidence and DOA index values compared with those located at the front under WiS treatment as the consequence of the altered to birds unbearable conditions within the container microclimate in transit. The formed microclimate during the commercial transport practices under hot-humidity conditions affected the bird's welfare consequently turkey meat qualities.

  16. Assessment of turkey vehicle container microclimate on transit during summer season conditions

    NASA Astrophysics Data System (ADS)

    Carvalho, Rafael H.; Honorato, Danielle C. B.; Guarnieri, Paulo D.; Soares, Adriana L.; Pedrão, Mayka R.; Oba, Alexandre; Paião, Fernanda G.; Ida, Elza I.; Shimokomaki, Massami

    2018-01-01

    This study evaluated the formed microclimate commercial truck transport practices effects on the turkeys' welfare by measuring Dead on Arrival (DOA) index and pale, soft, and exudative (PSE-like) meat occurrence. The experimental design was entirely randomized in a 6 × 2 factorial arrangements (two truck container compartments × six water shower groups) with birds positioned at superior front (SF), inferior front (IF), superior middle (SM), inferior middle (IM), superior rear (SR), and inferior rear (IR) and two bath treatments: with water shower (WiS) and without water shower (WoS) with eight replications for each treatment. The animals were transported for 95 min' journey from the farm to the slaughterhouse under hot-humidity conditions. The results shown herein indicated the formation of a thermal core at the inferior middle and rear truck container regions, because the heat produced by the birds and the influence of developed microclimate consisting of temperature, relative humidity, and air ventilation. The IM and IR container compartments under the WoS treatment presented the highest (P < 0.01) numbers of PSE-like meat incidence and DOA index values compared with those located at the front under WiS treatment as the consequence of the altered to birds unbearable conditions within the container microclimate in transit. The formed microclimate during the commercial transport practices under hot-humidity conditions affected the bird's welfare consequently turkey meat qualities.

  17. Laboratory evaluation and application of microwave absorption properties under simulated conditions for planetary atmospheres

    NASA Technical Reports Server (NTRS)

    Steffes, Paul G.

    1987-01-01

    Laboratory measurements were conducted to evaluate properties of atmospheric gases under simulated conditions for the outer planets. A significant addition to this effort was the capability to make such measurements at millimeter wavelengths. Measurements should soon be completed on the millimeter wave absorption from ammonia under Jovian conditions. Also studied will be the feasibility of measuring the microwave and millimeter wave properties of phosphine (PH3) under simulated Jovian conditions. Further analysis and application of the laboratory results to microwave and millimeter wave absorption data for the outer planet, such as Voyager Radio Occultation experiments, will be pursued.

  18. The role of watershed characteristics in estuarine condition: an empirical approach

    Treesearch

    James Latimer; Melissa Hughes; Michael Charpentier; Christine Tilburg

    2016-01-01

    Estuarine condition is a function of the nature of the estuary, ocean, and atmospheric systems, and the upstream watershed. To fully understand and predict how an estuary will respond to drivers and pressures,...

  19. Emission characteristics of nitrogen- and sulfur-containing odorous compounds during different sewage sludge chemical conditioning processes.

    PubMed

    Liu, Huan; Luo, Guang-Qian; Hu, Hong-Yun; Zhang, Qiang; Yang, Jia-Kuan; Yao, Hong

    2012-10-15

    Chemical conditioners are often used to enhance sewage sludge dewaterability through altering sludge properties and flocs structure, both affect odorous compounds emissions not only during sludge conditioning but also in subsequent sludge disposal. This study was to investigate emission characteristics of ammonia (NH(3)), sulfur dioxide (SO(2)), hydrogen sulfide (H(2)S) and carbonyl sulfide (COS) generated from sewage sludge conditioned by three representative conditioners, i.e., organic polymers, iron salts and skeleton builders, F-S (Fenton's reagent and skeleton builders) composite conditioner. The results demonstrate that polyacrylamide (PAM) has an insignificant effect on emission characteristics of nitrogen- and sulfur-containing odorous compounds, because the properties, sulfur and nitrogen speciations are similar in PAM-conditioned sludge and raw sludge (RS). Significant increases of SO(2) and H(2)S emissions in the H(2)SO(4) conditioning process were observed due to the accelerated decomposition of sulfur-containing amino acids in acidic environment. Fenton peroxidation facilitates the formation of COS. CaO can reduce sulfur-containing gases emission via generation of calcium sulfate. However, under strong alkaline conditions, free ammonia or protonated amine in sludge can be easily converted to volatile ammonia, resulting in a significant release of NH(3). Copyright © 2012 Elsevier B.V. All rights reserved.

  20. Filter Media Tests Under Simulated Martian Atmospheric Conditions

    NASA Technical Reports Server (NTRS)

    Agui, Juan H.

    2016-01-01

    Human exploration of Mars will require the optimal utilization of planetary resources. One of its abundant resources is the Martian atmosphere that can be harvested through filtration and chemical processes that purify and separate it into its gaseous and elemental constituents. Effective filtration needs to be part of the suite of resource utilization technologies. A unique testing platform is being used which provides the relevant operational and instrumental capabilities to test articles under the proper simulated Martian conditions. A series of tests were conducted to assess the performance of filter media. Light sheet imaging of the particle flow provided a means of detecting and quantifying particle concentrations to determine capturing efficiencies. The media's efficiency was also evaluated by gravimetric means through a by-layer filter media configuration. These tests will help to establish techniques and methods for measuring capturing efficiency and arrestance of conventional fibrous filter media. This paper will describe initial test results on different filter media.

  1. The Carbonates in ALH 84001 Record the Evolution of the Martian Atmosphere Through Multiple Formation Events

    NASA Technical Reports Server (NTRS)

    Shaheen, R.; Niles, P. B.; Corrgan, C.

    2012-01-01

    Current Martian conditions restrict the presence of liquid water due to low temperatures (approx 210K), a thin atmosphere (approx 7mb), and intense UV radiation. However, past conditions on Mars may have been different with the possibility that the ancient Martian climate was warm and wet with a dense CO2 atmosphere. The cycling of carbon on Mars through atmospheric CO2 and carbonate minerals is critical for deciphering its climate history. In particular stable isotopes contained in carbonates can provide information of their origin and formation environment as well as possibly hinting at the composition of global reservoirs such as atmospheric CO2. Martian meteorite ALH 84001 contains widely studied carbonate rosettes that have been dated to approx. 3.9 Ga and have been used to interpret climatic conditions present at that time. However, there is mount-ing evidence for multiple episodes of carbonate formation in ALH 84001 with potentially distinct isotopic compositions. This study seeks to tease out these different carbonate assemblages using stepped phosphoric acid dissolution and analysis of carbon and triple oxygen stable isotopes. In addition, we report SIMS analyses of the delta O-18 several petrographically unusual carbonate phases in the meteorite.

  2. Molecular dynamics simulation of the local concentration and structure in multicomponent aerosol nanoparticles under atmospheric conditions.

    PubMed

    Karadima, Katerina S; Mavrantzas, Vlasis G; Pandis, Spyros N

    2017-06-28

    Molecular dynamics (MD) simulations were employed to investigate the local structure and local concentration in atmospheric nanoparticles consisting of an organic compound (cis-pinonic acid or n-C 30 H 62 ), sulfate and ammonium ions, and water. Simulations in the isothermal-isobaric (NPT) statistical ensemble under atmospheric conditions with a prespecified number of molecules of the abovementioned compounds led to the formation of a nanoparticle. Calculations of the density profiles of all the chemical species in the nanoparticle, the corresponding radial pair distribution functions, and their mobility inside the nanoparticle revealed strong interactions developing between sulfate and ammonium ions. However, sulfate and ammonium ions prefer to populate the central part of the nanoparticle under the simulated conditions, whereas organic molecules like to reside at its outer surface. Sulfate and ammonium ions were practically immobile; in contrast, the organic molecules exhibited appreciable mobility at the outer surface of the nanoparticle. When the organic compound was a normal alkane (e.g. n-C 30 H 62 ), a well-organized (crystalline-like) phase was rapidly formed at the free surface of the nanoparticle and remained separate from the rest of the species.

  3. Application of Atmospheric Pressure Photoionization H/D-exchange Mass Spectrometry for Speciation of Sulfur-containing Compounds.

    PubMed

    Acter, Thamina; Kim, Donghwi; Ahmed, Arif; Ha, Ji-Hyoung; Kim, Sunghwan

    2017-08-01

    Herein we report the observation of atmospheric pressure in-source hydrogen-deuterium exchange (HDX) of thiol group for the first time. The HDX for thiol group was optimized for positive atmospheric pressure photoionization (APPI) mass spectrometry (MS). The optimized HDX-MS was applied for 31 model compounds (thiols, thiophenes, and sulfides) to demonstrate that exchanged peaks were observed only for thiols. The optimized method has been successfully applied to the isolated fractions of sulfur-rich oil samples. The exchange of one and two thiol hydrogens with deuterium was observed in the thiol fraction; no HDX was observed in the other fractions. Thus, the results presented in this study demonstrate that the HDX-MS method using APPI ionization source can be effective for speciation of sulfur compounds. This method has the potential to be used to access corrosion problems caused by thiol-containing compounds. Graphical Abstract ᅟ.

  4. An Inequality Constrained Least-Squares Approach as an Alternative Estimation Procedure for Atmospheric Parameters from VLBI Observations

    NASA Astrophysics Data System (ADS)

    Halsig, Sebastian; Artz, Thomas; Iddink, Andreas; Nothnagel, Axel

    2016-12-01

    On its way through the atmosphere, radio signals are delayed and affected by bending and attenuation effects relative to a theoretical path in vacuum. In particular, the neutral part of the atmosphere contributes considerably to the error budget of space-geodetic observations. At the same time, space-geodetic techniques become more and more important in the understanding of the Earth's atmosphere, because atmospheric parameters can be linked to the water vapor content in the atmosphere. The tropospheric delay is usually taken into account by applying an adequate model for the hydrostatic component and by additionally estimating zenith wet delays for the highly variable wet component. Sometimes, the Ordinary Least Squares (OLS) approach leads to negative estimates, which would be equivalent to negative water vapor in the atmosphere and does, of course, not reflect meteorological and physical conditions in a plausible way. To cope with this phenomenon, we introduce an Inequality Constrained Least Squares (ICLS) method from the field of convex optimization and use inequality constraints to force the tropospheric parameters to be non-negative allowing for a more realistic tropospheric parameter estimation in a meteorological sense. Because deficiencies in the a priori hydrostatic modeling are almost fully compensated by the tropospheric estimates, the ICLS approach urgently requires suitable a priori hydrostatic delays. In this paper, we briefly describe the ICLS method and validate its impact with regard to station positions.

  5. Low oxygen and argon in the Neoproterozoic atmosphere at 815 Ma

    NASA Astrophysics Data System (ADS)

    Yeung, Laurence Y.

    2017-12-01

    The evolution of Earth's atmosphere on >106-yr timescales is tied to that of the deep Earth. Volcanic degassing, weathering, and burial of volatile elements regulates their abundance at the surface, setting a boundary condition for the biogeochemical cycles that modulate Earth's atmosphere and climate. The atmosphere expresses this interaction through its composition; however, direct measurements of the ancient atmosphere's composition more than a million years ago are notoriously difficult to obtain. Gases trapped in ancient minerals represent a potential archive of the ancient atmosphere, but their fidelity has not been thoroughly evaluated. Both trapping and preservation artifacts may be relevant. Here, I use a multi-element approach to reanalyze recently collected fluid-inclusion data from halites purportedly containing snapshots of the ancient atmosphere as old as 815 Ma. I argue that those samples were affected by the concomitant trapping of air dissolved in brines and contaminations associated with modern air. These artifacts lead to an apparent excess in O2 and Ar. The samples may also contain signals of mass-dependent fractionation and biogeochemical cycling within the fluid inclusions. After consideration of these artifacts, this new analysis suggests that the Tonian atmosphere was likely low in O2, containing ≤10% present atmospheric levels (PAL), not ∼50% PAL as the data would suggest at face value. Low concentrations of O2 are consistent with other geochemical constraints for this time period and further imply that the majority of Neoproterozoic atmospheric oxygenation occurred after 815 Ma. In addition, the analysis reveals a surprisingly low Tonian Ar inventory-≤60% PAL-which, if accurate, challenges our understanding of the solid Earth's degassing history. When placed in context with other empirical estimates of paleo-atmospheric Ar, the data imply a period of relatively slow atmospheric Ar accumulation in the Paleo- and Meso

  6. Erosion processes in molassic cliffs: the role of the rock surface temperature and atmospheric conditions

    NASA Astrophysics Data System (ADS)

    Carrea, Dario; Abellán, Antonio; Guerin, Antoine; Jaboyedoff, Michel; Voumard, Jérémie

    2014-05-01

    The morphology of the Swiss Plateau is modeled by numerous steep cliffs of Molasse. These cliffs are mainly composed of sub-horizontal alternated layers of sandstone, shale and conglomerates deposed in the Alps foreland basin during the Tertiary period. These Molasse cliffs are affected by erosion processes inducing numerous rockfall events. Thus, it is relevant to understand how different external factors influence Molasse erosion rates. In this study, we focus on analyzing temperature variation during a winter season. As pilot study area we selected a cliff which is formed by a sub-horizontal alternation of outcropping sandstone and shale. The westward facing test site (La Cornalle, Vaud, Switzerland), which is a lateral scarp of a slow moving landslide area, is currently affected by intense erosion. Regarding data acquisition, we monitored both in-situ rock and air temperatures at 15 minutes time-step since October 2013: (1) on the one hand we measured Ground Surface Temperature (GST) at near-surface (0.1 meter depth) using a GST mini-datalogger M-Log5W-Rock model; (2) On the other hand we monitored atmospheric conditions using a weather station (Davis Vantage pro2 plus) collecting numerous parameters (i.e. temperature, irradiation, rain, wind speed, etc.). Furthermore, the area was also seasonally monitored by Ground-Based (GB) LiDAR since 2010 and monthly monitored since September 2013. In order to understand how atmospheric conditions (such as freeze and thaw effect) influence the erosion of the cliff, we modeled the temperature diffusion through the rock mass. To this end, we applied heat diffusion and radiation equation using a 1D temperature profile, obtaining as a result both temperature variations at different depths together with the location of the 0°C isotherm. Our model was calibrated during a given training set using both in-situ rock temperatures and atmospheric conditions. We then carried out a comparison with the rockfall events derived from the

  7. The effect on empirical atmospheric modeling of the mass-flux as an independent parameter. [in sun and Be stars

    NASA Technical Reports Server (NTRS)

    Thomas, R. N.

    1982-01-01

    Observational data on atmospheric structure and mass fluxes from the sun and Be stars are applied to test the adequacy of the original Parker 'hot corona' approach to predicting atmospheric structure and the size of the mass flux from only the radiative and nonradiative energy fluxes, and from gravity, and imposing the condition that thermal and escape points must coincide. Observations do not support this latter condition. It is concluded that the Parker approach is an asymptotic approximation to the very low mass flux limit in a nonvariable stellar atmosphere.

  8. Assessment of turkey vehicle container microclimate on transit during summer season conditions.

    PubMed

    Carvalho, Rafael H; Honorato, Danielle C B; Guarnieri, Paulo D; Soares, Adriana L; Pedrão, Mayka R; Oba, Alexandre; Paião, Fernanda G; Ida, Elza I; Shimokomaki, Massami

    2018-06-01

    This study evaluated the formed microclimate commercial truck transport practices effects on the turkeys' welfare by measuring Dead on Arrival (DOA) index and pale, soft, and exudative (PSE-like) meat occurrence. The experimental design was entirely randomized in a 6 × 2 factorial arrangements (two truck container compartments × six water shower groups) with birds positioned at superior front (SF), inferior front (IF), superior middle (SM), inferior middle (IM), superior rear (SR), and inferior rear (IR) and two bath treatments: with water shower (WiS) and without water shower (WoS) with eight replications for each treatment. The animals were transported for 95 min' journey from the farm to the slaughterhouse under hot-humidity conditions. The results shown herein indicated the formation of a thermal core at the inferior middle and rear truck container regions, because the heat produced by the birds and the influence of developed microclimate consisting of temperature, relative humidity, and air ventilation. The IM and IR container compartments under the WoS treatment presented the highest (P < 0.01) numbers of PSE-like meat incidence and DOA index values compared with those located at the front under WiS treatment as the consequence of the altered to birds unbearable conditions within the container microclimate in transit. The formed microclimate during the commercial transport practices under hot-humidity conditions affected the bird's welfare consequently turkey meat qualities.

  9. Nitrogen-Containing Low Volatile Compounds from Pinonaldehyde-Dimethylamine Reaction in the Atmosphere: A Laboratory and Field Study.

    PubMed

    Duporté, Geoffroy; Parshintsev, Jevgeni; Barreira, Luís M F; Hartonen, Kari; Kulmala, Markku; Riekkola, Marja-Liisa

    2016-05-03

    Pinonaldehyde, which is among the most abundant oxidation products of α-pinene, and dimethylamine were selected to study the formation of N-containing low volatile compounds from aldehyde-amine reactions in the atmosphere. Gas phase reactions took place in a Tedlar bag, which was connected to a mass spectrometer ionization source via a short deactivated fused silica column. In addition to on-line analysis, abundance of gaseous precursors and reaction products were monitored off-line. Condensable products were extracted from the bag's walls with a suitable solvent and analyzed by gas chromatography coupled to chemical ionization high-resolution quadrupole time-of-flight mass spectrometry and by ultra-high-performance liquid chromatography coupled to electrospray ionization Orbitrap mass spectrometry. The reactions carried out resulted in several mid-low vapor pressure nitrogen-containing compounds that are potentially important for the formation of secondary organic aerosols in the atmosphere. Further, the presence of brown carbon, confirmed by liquid chromatography-UV-vis-mass spectrometry, was observed. Some of the compounds identified in the laboratory study were also observed in aerosol samples collected at SMEAR II station (Hyytiälä, Finland) in August 2015 suggesting the importance of aldehyde-amine reactions for the aerosol formation and growth.

  10. Use of Ensemble Numerical Weather Prediction Data for Inversely Determining Atmospheric Refractivity in Surface Ducting Conditions

    NASA Astrophysics Data System (ADS)

    Greenway, D. P.; Hackett, E.

    2017-12-01

    Under certain atmospheric refractivity conditions, propagated electromagnetic waves (EM) can become trapped between the surface and the bottom of the atmosphere's mixed layer, which is referred to as surface duct propagation. Being able to predict the presence of these surface ducts can reap many benefits to users and developers of sensing technologies and communication systems because they significantly influence the performance of these systems. However, the ability to directly measure or model a surface ducting layer is challenging due to the high spatial resolution and large spatial coverage needed to make accurate refractivity estimates for EM propagation; thus, inverse methods have become an increasingly popular way of determining atmospheric refractivity. This study uses data from the Coupled Ocean/Atmosphere Mesoscale Prediction System developed by the Naval Research Laboratory and instrumented helicopter (helo) measurements taken during the Wallops Island Field Experiment to evaluate the use of ensemble forecasts in refractivity inversions. Helo measurements and ensemble forecasts are optimized to a parametric refractivity model, and three experiments are performed to evaluate whether incorporation of ensemble forecast data aids in more timely and accurate inverse solutions using genetic algorithms. The results suggest that using optimized ensemble members as an initial population for the genetic algorithms generally enhances the accuracy and speed of the inverse solution; however, use of the ensemble data to restrict parameter search space yields mixed results. Inaccurate results are related to parameterization of the ensemble members' refractivity profile and the subsequent extraction of the parameter ranges to limit the search space.

  11. Effects of atmospheric pressure conditions on flow rate of an elastomeric infusion pump.

    PubMed

    Wang, Jong; Moeller, Anna; Ding, Yuanpang Samuel

    2012-04-01

    The effects of pressure conditions, both hyperbaric and hypobaric, on the flow rate of an elastomeric infusion pump were investigated. The altered pressure conditions were tested with the restrictor outlet at two different conditions: (1) at the same pressure condition as the Infusor elastomeric balloon and (2) with the outlet exposed to ambient conditions. Five different pressure conditions were tested. These included ambient pressure (98-101 kilopascals [kPa]) and test pressures controlled to be 10 or 20 kPa below or 75 or 150 kPa above the ambient pressure. A theoretical calculation based on the principles of fluid mechanics was also used to predict the pump's flow rate at various ambient conditions. The conditions in which the Infusor elastomeric pump and restrictor outlet were at the same pressure gave rise to average flow rates within the ±10% tolerance of the calculated target flow rate of 11 mL/hr. The flow rate of the Infusor pump decreased when the pressure conditions changed from hypobaric to ambient. The flow rate increased when the pressure conditions changed from hyperbaric to ambient. The flow rate of the Infusor elastomeric pump was not affected when the balloon reservoir and restrictor outlet were at the same pressure. The flow rate varied from 58.54% to 377.04% of the labeled flow rate when the pressure applied to the reservoir varied from 20 kPa below to 150 kPa above the pressure applied to the restrictor outlet, respectively. The maximum difference between observed flow rates and those calculated by applying fluid mechanics was 4.9%.

  12. An artificially generated atmosphere near a lunar base

    NASA Technical Reports Server (NTRS)

    Burns, Jack O.; Fernini, Ilias; Sulkanen, Martin; Duric, Nebojsa; Taylor, G. Jeffrey; Johnson, Stewart W.

    1992-01-01

    We discuss the formation of an artificial atmosphere generated by vigorous lunar base activity in this paper. We developed an analytical, steady-state model for a lunar atmosphere based upon previous investigations of the Moon's atmosphere from Apollo. Constant gas-injection rates, ballistic trajectories, and a Maxwellian particle distribution for an oxygen-like gas are assumed. Even for the extreme case of continuous He-3 mining of the lunar regolith, we find that the lunar atmosphere would not significantly degrade astronomical observations beyond about 10 km from the mining operation.

  13. The New Pelagic Operational Observatory of the Catalan Sea (OOCS) for the Multisensor Coordinated Measurement of Atmospheric and Oceanographic Conditions

    PubMed Central

    Bahamon, Nixon; Aguzzi, Jacopo; Bernardello, Raffaele; Ahumada-Sempoal, Miguel-Angel; Puigdefabregas, Joan; Cateura, Jordi; Muñoz, Eduardo; Velásquez, Zoila; Cruzado, Antonio

    2011-01-01

    The new pelagic Operational Observatory of the Catalan Sea (OOCS) for the coordinated multisensor measurement of atmospheric and oceanographic conditions has been recently installed (2009) in the Catalan Sea (41°39′N, 2°54′E; Western Mediterranean) and continuously operated (with minor maintenance gaps) until today. This multiparametric platform is moored at 192 m depth, 9.3 km off Blanes harbour (Girona, Spain). It is composed of a buoy holding atmospheric sensors and a set of oceanographic sensors measuring the water conditions over the upper 100 m depth. The station is located close to the head of the Blanes submarine canyon where an important multispecies pelagic and demersal fishery gives the station ecological and economic relevance. The OOCS provides important records on atmospheric and oceanographic conditions, the latter through the measurement of hydrological and biogeochemical parameters, at depths with a time resolution never attained before for this area of the Mediterranean. Twenty four moored sensors and probes operating in a coordinated fashion provide important data on Essential Ocean Variables (EOVs; UNESCO) such as temperature, salinity, pressure, dissolved oxygen, chlorophyll fluorescence, and turbidity. In comparison with other pelagic observatories presently operating in other world areas, OOCS also measures photosynthetic available radiation (PAR) from above the sea surface and at different depths in the upper 50 m. Data are recorded each 30 min and transmitted in real-time to a ground station via GPRS. This time series is published and automatically updated at the frequency of data collection on the official OOCS website (http://www.ceab.csic.es/~oceans). Under development are embedded automated routines for the in situ data treatment and assimilation into numerical models, in order to provide a reliable local marine processing forecast. In this work, our goal is to detail the OOCS multisensor architecture in relation to the

  14. Modeling large wind farms in conventionally neutral atmospheric boundary layers under varying initial conditions

    NASA Astrophysics Data System (ADS)

    Allaerts, Dries; Meyers, Johan

    2014-05-01

    Atmospheric boundary layers (ABL) are frequently capped by an inversion layer limiting the entrainment rate and boundary layer growth. Commonly used analytical models state that the entrainment rate is inversely proportional to the inversion strength. The height of the inversion turns out to be a second important parameter. Conventionally neutral atmospheric boundary layers (CNBL) are ABLs with zero surface heat flux developing against a stratified free atmosphere. In this regime the inversion-filling process is merely driven by the downward heat flux at the inversion base. As a result, CNBLs are strongly dependent on the heating history of the boundary layer and strong inversions will fail to erode during the course of the day. In case of large wind farms, the power output of the farm inside a CNBL will depend on the height and strength of the inversion above the boundary layer. On the other hand, increased turbulence levels induced by wind farms may partially undermine the rigid lid effect of the capping inversion, enhance vertical entrainment of air into the farm, and increase boundary layer growth. A suite of large eddy simulations (LES) is performed to investigate the effect of the capping inversion on the conventionally neutral atmospheric boundary layer and on the wind farm performance under varying initial conditions. For these simulations our in-house pseudo-spectral LES code SP-Wind is used. The wind turbines are modelled using a non-rotating actuator disk method. In the absence of wind farms, we find that a decrease in inversion strength corresponds to a decrease in the geostrophic angle and an increase in entrainment rate and geostrophic drag. Placing the initial inversion base at higher altitudes further reduces the effect of the capping inversion on the boundary layer. The inversion can be fully neglected once it is situated above the equilibrium height that a truly neutral boundary layer would attain under the same external conditions such as

  15. Response of northern hemisphere environmental and atmospheric conditions to climate changes using Greenland aerosol records from the Eemian to the Holocene

    NASA Astrophysics Data System (ADS)

    Fischer, H.

    2017-12-01

    The Northern Hemisphere experienced dramatic climate changes over the last glacial cycle, including vast ice sheet expansion and frequent abrupt climate events. Moreover, high northern latitudes during the last interglacial (Eemian) were warmer than today and may provide guidance for future climate change scenarios. However, little evidence exists regarding the environmental alterations connected to these climate changes. Using aerosol concentration records in decadal resolution from the North Greenland Eemian Ice Drilling (NEEM) over the last 128,000 years we extract quantitative information on environmental changes, including the first comparison of northern hemisphere environmental conditions between the warmer than present Eemian and the early Holocene. Separating source changes from transport effects, we find that changes in the ice concentration greatly overestimate the changes in atmospheric concentrations in the aerosol source region, the latter mirroring changes in aerosol emissions. Glacial times were characterized by a strong reduction in terrestrial biogenic emissions (only 10-20% of the early Holocene value) reflecting the net loss of vegetated area in mid to high latitudes, while rapid climate changes during the glacial had essentially no effect on terrestrial biogenic aerosol emissions. An increase in terrestrial dust emissions of approximately a factor of eight during peak glacial and cold stadial intervals indicates higher aridity and dust storm activity in Asian deserts. Glacial sea salt aerosol emissions increased only moderately (by approximately 50%), likely due to sea ice expansion, while marked stadial/interstadial variations in sea salt concentrations in the ice reflect mainly changes in wet deposition en route. Eemian ice contains lower aerosol concentrations than ice from the early Holocene, due to shortened atmospheric residence time during the warmer Eemian, suggesting that generally 2°C warmer climate in high northern latitudes did not

  16. Atmosphere purification of radon and radon daughter elements

    DOEpatents

    Stein, L.

    1973-12-11

    A method for purifying an atmosphere of radon and radon daughter elements which may be contained therein by contacting the atmosphere with a fluorinating solution, whereby the radon and radon daughters are oxidized to their respective fluorides is discussed. The fluorides dissolve in the fluorinating solutlon and are removed from the atmosphere, which may then be recirculated. (Official Gazette)

  17. Risk of impaired condition of watersheds containing National Forest lands

    Treesearch

    Thomas C Brown; Pamela Froemke

    2010-01-01

    We assessed the risk of impaired condition of the nearly 3700 5th-level watersheds in the contiguous 48 states containing the national forests and grasslands that make up the U.S. Forest Service's National Forest System (NFS). The assessment was based on readily available, relatively consistent nationwide data sets for a series of indicators representing watershed...

  18. Local-Rapid Evaluation of Atmospheric Conditions (L-REAC)

    DTIC Science & Technology

    2009-01-15

    installation available 24/7 to all forms of browser-based access such as mobile blackberry browser. In 2006, the ARL presented data at an International...Oceanic and Atmospheric Administration (NOAA)/Environmental Protection Agency (EPA) Wind Tunnel study with tens-of-meter-scaled measurements sampled around...urban flow in wind tunnels , as well as articles from professional urban meteorological journals. The need to maintain a visual sensor for persons who

  19. Atmospheric Electricity

    NASA Astrophysics Data System (ADS)

    Aplin, Karen; Fischer, Georg

    2018-02-01

    Electricity occurs in atmospheres across the Solar System planets and beyond, spanning spectacular lightning displays in clouds of water or dust, to more subtle effects of charge and electric fields. On Earth, lightning is likely to have existed for a long time, based on evidence from fossilized lightning strikes in ancient rocks, but observations of planetary lightning are necessarily much more recent. The generation and observations of lightning and other atmospheric electrical processes, both from within-atmosphere measurements, and spacecraft remote sensing, can be readily studied using a comparative planetology approach, with Earth as a model. All atmospheres contain charged molecules, electrons, and/or molecular clusters created by ionization from cosmic rays and other processes, which may affect an atmosphere's energy balance both through aerosol and cloud formation, and direct absorption of radiation. Several planets are anticipated to host a "global electric circuit" by analogy with the circuit occurring on Earth, where thunderstorms drive current of ions or electrons through weakly conductive parts of the atmosphere. This current flow may further modulate an atmosphere's radiative properties through cloud and aerosol effects. Lightning could potentially have implications for life through its effects on atmospheric chemistry and particle transport. It has been observed on many of the Solar System planets (Earth, Jupiter, Saturn, Uranus, and Neptune) and it may also be present on Venus and Mars. On Earth, Jupiter, and Saturn, lightning is thought to be generated in deep water and ice clouds, but discharges can be generated in dust, as for terrestrial volcanic lightning, and on Mars. Other, less well-understood mechanisms causing discharges in non-water clouds also seem likely. The discovery of thousands of exoplanets has recently led to a range of further exotic possibilities for atmospheric electricity, though lightning detection beyond our Solar System

  20. Code manual for CONTAIN 2.0: A computer code for nuclear reactor containment analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Murata, K.K.; Williams, D.C.; Griffith, R.O.

    1997-12-01

    The CONTAIN 2.0 computer code is an integrated analysis tool used for predicting the physical conditions, chemical compositions, and distributions of radiological materials inside a containment building following the release of material from the primary system in a light-water reactor accident. It can also predict the source term to the environment. CONTAIN 2.0 is intended to replace the earlier CONTAIN 1.12, which was released in 1991. The purpose of this Code Manual is to provide full documentation of the features and models in CONTAIN 2.0. Besides complete descriptions of the models, this Code Manual provides a complete description of themore » input and output from the code. CONTAIN 2.0 is a highly flexible and modular code that can run problems that are either quite simple or highly complex. An important aspect of CONTAIN is that the interactions among thermal-hydraulic phenomena, aerosol behavior, and fission product behavior are taken into account. The code includes atmospheric models for steam/air thermodynamics, intercell flows, condensation/evaporation on structures and aerosols, aerosol behavior, and gas combustion. It also includes models for reactor cavity phenomena such as core-concrete interactions and coolant pool boiling. Heat conduction in structures, fission product decay and transport, radioactive decay heating, and the thermal-hydraulic and fission product decontamination effects of engineered safety features are also modeled. To the extent possible, the best available models for severe accident phenomena have been incorporated into CONTAIN, but it is intrinsic to the nature of accident analysis that significant uncertainty exists regarding numerous phenomena. In those cases, sensitivity studies can be performed with CONTAIN by means of user-specified input parameters. Thus, the code can be viewed as a tool designed to assist the knowledge reactor safety analyst in evaluating the consequences of specific modeling assumptions.« less

  1. Mars Pathfinder meteorological observations on the basis of results of an atmospheric global circulation model

    NASA Technical Reports Server (NTRS)

    Forget, Francois; Hourdin, F.; Talagrand, O.

    1994-01-01

    The Mars Pathfinder Meteorological Package (ASI/MET) will measure the local pressure, temperature, and winds at its future landing site, somewhere between the latitudes 0 deg N and 30 deg N. Comparable measurements have already been obtained at the surface of Mars by the Viking Landers at 22 deg N (VL1) and 48 deg N (VL2), providing much useful information on the martian atmosphere. In particular the pressure measurements contain very instructive information on the global atmospheric circulation. At the Laboratoire de Meteorologie Dynamique (LMD), we have analyzed and simulated these measurements with a martian atmospheric global circulation model (GCM), which was the first to simulate the martian atmospheric circulation over more than 1 year. The model is able to reproduce rather accurately many observed features of the martian atmosphere, including the long- and short-period oscillations of the surface pressure observed by the Viking landers. From a meteorological point of view, we think that a landing site located near or at the equator would be an interesting choice.

  2. Creating Indices Representing the Atmospheric Conditions throughout Japan by Using Frontal Zone Data

    NASA Astrophysics Data System (ADS)

    Takahashi, N.

    2015-12-01

    The climate of Japan exhibits mid-latitude and east coast condition characteristics within the continent, which leads to the large meridional range of the frontal migration and the resultant large annual seasonal change. Therefore, describing the long-term behavior of frontal zones is important for understanding the seasonal, interannual, and long-term variations of the Japanese climate. The purpose of this work is to create indices representing the atmospheric conditions throughout Japan by using frontal zone data created by an objective method at pentad intervals for the period 1948-2013. The indexation was conducted by principal component analyses on the distribution maps of the frontal frequencies near frontal zones, which are defined as the latitude indicating the maximum of the frontal frequencies along each longitude in the climatological mean field. This work focuses on the first four factors, PC1-4, which indicate high contribution rates. The distribution maps of factor loadings were interpreted in the following manner as variations of the frontal zone: PC1, north-south variations in the locations of the frontal zone; PC2, frontal frequencies around the frontal zone; PC3, the running direction of the frontal zone, whether northwest-southeast or southwest-northeast; and PC4, west-east variations of the frontal frequencies. These factors could be regarded as the indices representing the atmospheric conditions throughout Japan. The result of correlation analysis among the indices in this work and those representing global climatic phenomena such as Niño3 sea surface temperature (SST), in addition to Pacific decadal and Arctic oscillations, indicated the comprehensive relationships revealed in previous research. Furthermore, several long-term trend characteristics were exhibited, such as the southward shift of frontal zones in mid- and late spring and the increase of frontal frequencies around frontal zones in mid- and late summer. Thus, the simple indices

  3. Photochemistry of the Martian atmosphere (mean conditions)

    NASA Astrophysics Data System (ADS)

    Krasnopolsky, V. A.

    1993-02-01

    An attempt is made to develop the simplest model of the photochemistry to the Martian atmosphere which fits experimental data without adjustment of the reaction rate coefficients. Based on gas phase models of CO2-H2O chemistry, it is concluded that odd hydrogen reactions are effective enough to provide smaller amounts of CO and O3 than measured. Nitrogen chemistry may be important and should be taken into account. Even the very low sulfur amount of 10 exp -8 can contribute substantially to the Martian photochemistry. Ozone turns out to be the best tracer of the photochemistry.

  4. Periodic variations of atmospheric electric field on fair weather conditions at YBJ, Tibet

    NASA Astrophysics Data System (ADS)

    Xu, Bin; Zou, Dan; Chen, Ben Yuan; Zhang, Jin Ye; Xu, Guo Wang

    2013-05-01

    Observations of atmospheric electric field on fair weather conditions from the plateau station, YBJ, Tibet (90°31‧50″ E, 30°06‧38″ N), over the period from 2006 to 2011, are presented in this work. Its periodic modulations are analyzed in frequency-domain by Lomb-Scargle Periodogram method and in time-domain by folding method. The results show that the fair weather atmospheric electric field intensity is modulated weakly by annual cycle, solar diurnal cycle and its several harmonic components. The modulating amplitude of annual cycle is bigger than that of solar diurnal cycle. The annual minimum/maximum nearly coincides with spring/autumn equinox. The detailed spectrum analysis show that the secondary peaks (i.e. sidereal diurnal cycle and semi-sidereal diurnal cycle) nearly disappear along with their primary peaks when the primary signals are subtracted from electric field data sequence. The average daily variation curve exhibits dual-fluctuations, and has obviously seasonal dependence. The mean value is bigger in summer and autumn, but smaller in spring and winter. The daytime fluctuation is affected by the sunrise and sunset effect, the occurring time of which have a little shift with seasons. However, the nightly one has a great dependence on season conditions.

  5. Self contained, independent, in-vacuum spinner motor

    DOEpatents

    Ayers, Marion J.

    2002-01-01

    An independent, self contained apparatus for operation within a vacuum chamber. A sealed enclosure is located in the chamber. The enclosure contains its own atmosphere independent of the vacuum in the chamber. A motor, power unit, and controls are located entirely within the enclosure. They do not have a direct structural connection outside of the enclosure in any way that would effect the atmosphere within the enclosure. The motor, power unit, and controls drive a spinner plate located outside the enclosure but within the vacuum chamber.

  6. Laboratory evaluation and application of microwave absorption properties under simulated conditions for planetary atmospheres

    NASA Technical Reports Server (NTRS)

    Steffes, P. G.

    1986-01-01

    The recognition of the need to make laboratory measurements of simulated planetary atmospheres over a range of temperatures and pressure which correspond to the altitudes probed by radio occultation experiments, and over a range of frequencies which correspond to both radio occultation experiments and radio astronomical observations, has led to the development of a facility at Georgia Tech which is capable of making such measurements. Construction was completed of the outer planets simulator and measurements were conducted of the microwave absorption and refraction from nitrogen under simulated Titan conditions. The results of these and previous laboratory measurements were applied to a wide range of microwave opacity measurements, in order to derive constituent densities and distributions in planetary atmospheres such as Venus.

  7. Optimization and application of atmospheric pressure chemical and photoionization hydrogen-deuterium exchange mass spectrometry for speciation of oxygen-containing compounds.

    PubMed

    Acter, Thamina; Kim, Donghwi; Ahmed, Arif; Jin, Jang Mi; Yim, Un Hyuk; Shim, Won Joon; Kim, Young Hwan; Kim, Sunghwan

    2016-05-01

    This paper presents a detailed investigation of the feasibility of optimized positive and negative atmospheric pressure chemical ionization (APCI) mass spectrometry (MS) and atmospheric pressure photoionization (APPI) MS coupled to hydrogen-deuterium exchange (HDX) for structural assignment of diverse oxygen-containing compounds. The important parameters for optimization of HDX MS were characterized. The optimized techniques employed in the positive and negative modes showed satisfactory HDX product ions for the model compounds when dichloromethane and toluene were employed as a co-solvent in APCI- and APPI-HDX, respectively. The evaluation of the mass spectra obtained from 38 oxygen-containing compounds demonstrated that the extent of the HDX of the ions was structure-dependent. The combination of information provided by different ionization techniques could be used for better speciation of oxygen-containing compounds. For example, (+) APPI-HDX is sensitive to compounds with alcohol, ketone, or aldehyde substituents, while (-) APPI-HDX is sensitive to compounds with carboxylic functional groups. In addition, the compounds with alcohol can be distinguished from other compounds by the presence of exchanged peaks. The combined information was applied to study chemical compositions of degraded oils. The HDX pattern, double bond equivalent (DBE) distribution, and previously reported oxidation products were combined to predict structures of the compounds produced from oxidation of oil. Overall, this study shows that APCI- and APPI-HDX MS are useful experimental techniques that can be applied for the structural analysis of oxygen-containing compounds.

  8. An attempt at estimating Paris area CO2 emissions from atmospheric concentration measurements

    NASA Astrophysics Data System (ADS)

    Bréon, F. M.; Broquet, G.; Puygrenier, V.; Chevallier, F.; Xueref-Rémy, I.; Ramonet, M.; Dieudonné, E.; Lopez, M.; Schmidt, M.; Perrussel, O.; Ciais, P.

    2014-04-01

    Atmospheric concentration measurements are used to adjust the daily to monthly budget of CO2 emissions from the AirParif inventory of the Paris agglomeration. We use 5 atmospheric monitoring sites including one at the top of the Eiffel tower. The atmospheric inversion is based on a Bayesian approach, and relies on an atmospheric transport model with a spatial resolution of 2 km with boundary conditions from a global coarse grid transport model. The inversion tool adjusts the CO2 fluxes (anthropogenic and biogenic) with a temporal resolution of 6 h, assuming temporal correlation of emissions uncertainties within the daily cycle and from day to day, while keeping the a priori spatial distribution from the emission inventory. The inversion significantly improves the agreement between measured and modelled concentrations. However, the amplitude of the atmospheric transport errors is often large compared to the CO2 gradients between the sites that are used to estimate the fluxes, in particular for the Eiffel tower station. In addition, we sometime observe large model-measurement differences upwind from the Paris agglomeration, which confirms the large and poorly constrained contribution from distant sources and sinks included in the prescribed CO2 boundary conditions These results suggest that (i) the Eiffel measurements at 300 m above ground cannot be used with the current system and (ii) the inversion shall rely on the measured upwind-downwind gradients rather than the raw mole fraction measurements. With such setup, realistic emissions are retrieved for two 30 day periods. Similar inversions over longer periods are necessary for a proper evaluation of the results.

  9. Thermal Band Atmospheric Correction Using Atmospheric Profiles Derived from Global Positioning System Radio Occultation and the Atmospheric Infrared Sounder

    NASA Technical Reports Server (NTRS)

    Pagnutti, Mary; Holekamp, Kara; Stewart, Randy; Vaughan, Ronald D.

    2006-01-01

    This Rapid Prototyping Capability study explores the potential to use atmospheric profiles derived from GPS (Global Positioning System) radio occultation measurements and by AIRS (Atmospheric Infrared Sounder) onboard the Aqua satellite to improve surface temperature retrieval from remotely sensed thermal imagery. This study demonstrates an example of a cross-cutting decision support technology whereby NASA data or models are shown to improve a wide number of observation systems or models. The ability to use one data source to improve others will be critical to the GEOSS (Global Earth Observation System of Systems) where a large number of potentially useful systems will require auxiliary datasets as input for decision support. Atmospheric correction of thermal imagery decouples TOA radiance and separates surface emission from atmospheric emission and absorption. Surface temperature can then be estimated from the surface emission with knowledge of its emissivity. Traditionally, radiosonde sounders or atmospheric models based on radiosonde sounders, such as the NOAA (National Oceanic & Atmospheric Administration) ARL (Air Resources Laboratory) READY (Real-time Environmental Application and Display sYstem), provide the atmospheric profiles required to perform atmospheric correction. Unfortunately, these types of data are too spatially sparse and too infrequently taken. The advent of high accuracy, global coverage, atmospheric data using GPS radio occultation and AIRS may provide a new avenue for filling data input gaps. In this study, AIRS and GPS radio occultation derived atmospheric profiles from the German Aerospace Center CHAMP (CHAllenging Minisatellite Payload), the Argentinean Commission on Space Activities SAC-C (Satellite de Aplicaciones Cientificas-C), and the pair of NASA GRACE (Gravity Recovery and Climate Experiment) satellites are used as input data in atmospheric radiative transport modeling based on the MODTRAN (MODerate resolution atmospheric

  10. Hyperspectral material identification on radiance data using single-atmosphere or multiple-atmosphere modeling

    NASA Astrophysics Data System (ADS)

    Mariano, Adrian V.; Grossmann, John M.

    2010-11-01

    Reflectance-domain methods convert hyperspectral data from radiance to reflectance using an atmospheric compensation model. Material detection and identification are performed by comparing the compensated data to target reflectance spectra. We introduce two radiance-domain approaches, Single atmosphere Adaptive Cosine Estimator (SACE) and Multiple atmosphere ACE (MACE) in which the target reflectance spectra are instead converted into sensor-reaching radiance using physics-based models. For SACE, known illumination and atmospheric conditions are incorporated in a single atmospheric model. For MACE the conditions are unknown so the algorithm uses many atmospheric models to cover the range of environmental variability, and it approximates the result using a subspace model. This approach is sometimes called the invariant method, and requires the choice of a subspace dimension for the model. We compare these two radiance-domain approaches to a Reflectance-domain ACE (RACE) approach on a HYDICE image featuring concealed materials. All three algorithms use the ACE detector, and all three techniques are able to detect most of the hidden materials in the imagery. For MACE we observe a strong dependence on the choice of the material subspace dimension. Increasing this value can lead to a decline in performance.

  11. The Role of Watershed Characteristics in Estuarine Condition: An Empirical Approach

    EPA Science Inventory

    Estuarine condition is a function of the nature of the estuary, ocean, and atmospheric systems, and the upstream watershed. To fully understand and predict how an estuary will respond to drivers and pressures, each compartment must be characterized. For example, eutrophication ef...

  12. Method and apparatus for container leakage testing

    DOEpatents

    Kronberg, James W.

    1995-01-01

    An apparatus for use in one-hundred percent leak testing of food containers used in conjunction with a tracer gas. The apparatus includes a shell with entrance and exit air locks to create a controlled atmosphere through which a series of containers is conveyed by a conveyor belt. The pressure in the shell is kept lower than the pressure in the containers and the atmosphere is made to flow with the containers so that a tracer gas placed in the packages before sealing them will leak more readily, but the leaked tracer gas will remain associated with the leaking package as it moves through the shell. The leaks are detected with a sniffer probe in fluid communication with a gas chromatograph. The gas chromatograph issues a signal when it detects a leak to an ejector that will eject the leaking container from the conveyor. The system is timed so that the series of containers can move continuously into and out of the shell, past the probe and the ejector, without stopping, yet each package is tested for leaks and removed if leaking.

  13. Laboratory evaluation and application of microwave absorption properties under simulated conditions for planetary atmospheres

    NASA Technical Reports Server (NTRS)

    Steffes, Paul G.

    1988-01-01

    In the first half of this grant year, laboratory measurements were conducted on the millimeter-wave properties of atmospheric gases under simulated conditions for the outer planet. Significant improvements in the current system have made it possible to accurately characterize the opacity from gaseous NH3 at longer millimeter wavelengths (7 to 10 mm) under simulated Jovian conditions. In the second half of the grant year, it is hoped to extend such measurements to even shorter millimeter-wavelengths. Further analysis and application of the laboratory results to microwave and millimeter-wave absorption data for the outer planets, such as results from Voyager Radio Occultation experiments and earth-based radio astronomical observations will be continued. The analysis of available multispectral microwave opacity data from Venus, including data from the most recent radio astronomical ovservations in the 1.3 to 3.6 cm wavelength range and newly obtained Pioneer-Venus Radio Occulatation measurements at 13 cm, using the laboratory measurements as an interpretative tool will be pursued.

  14. Laboratory for Atmospheres: 2004 Technical Highlights

    NASA Technical Reports Server (NTRS)

    2005-01-01

    The report describes our role in NASA's mission, gives a broad description of our research, and summarizes our scientists' major accomplishments in 2004. The report also contains useful information on human resources, scientific interactions, outreach activities, and the transformation our laboratory has undergone. This report is published in two versions: 1) an abbreviated print version, and 2) an unabridged electronic version at our Laboratory for Atmospheres Web site: http://atmospheres.gsfc.nasa.gov/.

  15. Plasma polymerization of ethylene in an atmospheric pressure-pulsed discharge

    NASA Technical Reports Server (NTRS)

    Donohoe, K.; Wydeven, T.

    1979-01-01

    The polymerization of ethylene in an atmospheric pressure-pulsed discharge has been studied. Partial pressures of ethylene up to 4 kN/sq m were used with helium as a diluent. Deposition rates (on glass slides) were the same throughout the discharge volume over a wide range of operating conditions. These rates were in the 1-2 A/sec range. The films were clear, soft, and showed good adhesion to the glass substrates. Oligomers large enough to visibly scatter 637.8-nm light were observed in the gas phase under all conditions in which film deposition occurred. The experimental results suggest that Brownian diffusion of these oligomers was the rate-limiting step in the film deposition process.

  16. Scanning imaging absorption spectrometer for atmospheric chartography

    NASA Technical Reports Server (NTRS)

    Burrows, John P.; Chance, Kelly V.

    1991-01-01

    The SCanning Imaging Absorption SpectroMeter for Atmospheric CHartographY is an instrument which measures backscattered, reflected, and transmitted light from the earth's atmosphere and surface. SCIAMACHY has eight spectral channels which observe simultaneously the spectral region between 240 and 1700 nm and selected windows between 1940 and 2400 nm. Each spectral channel contains a grating and linear diode array detector. SCIAMACHY observes the atmosphere in nadir, limb, and solar and lunar occultation viewing geometries.

  17. Test evaluation of potential heat shield contamination of an Outer Planet Probe's atmospheric sampling system

    NASA Technical Reports Server (NTRS)

    Kessler, W. C.; Woeller, F. H.; Wilkins, M. E.

    1975-01-01

    An Outer Planets Probe which retains the charred heatshield during atmospheric descent must deploy a sampling tube through the heatshield to extract atmospheric samples for analysis. Once the sampling tube is deployed, the atmospheric samples ingested must be free of contaminant gases generated by the heatshield. Outgassing products such as methane and water vapor are present in planetary atmospheres and hence, ingestion of such species would result in gas analyzer measurement uncertainties. This paper evaluates the potential for, and design impact of, the extracted atmospheric samples being contaminated by heatshield outgassing products. Flight trajectory data for Jupiter, Saturn and Uranus entries are analyzed to define the conditions resulting in the greatest potential for outgassing products being ingested into the probe's sampling system. An experimental program is defined and described which simulates the key flow field features for a planetary flight in a ground-based test facility. The primary parameters varied in the test include: sampling tube length, injectant mass flow rate and angle of attack. Measured contaminant levels predict the critical sampling tube length for contamination avoidance. Thus, the study demonstrates the compatibility of a retained heatshield concept and high quality atmospheric trace species measurements.

  18. A computational study of particulate emissions from an open pit quarry under neutral atmospheric conditions

    NASA Astrophysics Data System (ADS)

    Silvester, S. A.; Lowndes, I. S.; Hargreaves, D. M.

    2009-12-01

    The extraction of minerals from surface mines and quarries can produce significant fugitive dust emissions as a result of site activities such as blasting, road haulage, loading, crushing and stockpiling. If uncontrolled, these emissions can present serious environmental, health, safety and operational issues impacting both site personnel and the wider community. The dispersion of pollutant emissions within the atmosphere is principally determined by the background wind systems characterized by the atmospheric boundary layer (ABL). This paper presents an overview of the construction and solution of a computational fluid dynamics (CFD) model to replicate the development of the internal ventilation regime within a surface quarry excavation due to the presence of a neutral ABL above this excavation. This model was then used to study the dispersion and deposition of fugitive mineral dust particles generated during rock blasting operations. The paths of the mineral particles were modelled using Lagrangian particle tracking. Particles of four size fractions were released from five blast locations for eight different wind directions. The study concluded that dependent on the location of the bench blast within the quarry and the direction of the wind, a mass fraction of between 0.3 and 0.6 of the emitted mineral particles was retained within the quarry. The retention was largest when the distance from the blast location to the downwind pit boundary was greatest.

  19. An archetype hydrogen atmosphere problem

    NASA Technical Reports Server (NTRS)

    Athay, R. G.; Mihalas, D.; Shine, R. A.

    1975-01-01

    Populations for the first three bound states and the continuum of hydrogen are determined for an isothermal hydrostatic atmosphere at 20,000 K. The atmosphere is treated as optically thin in the Balmer and Paschen continua and illuminated by continuum radiation at these wavelengths with prescribed radiation temperatures. The atmosphere is optically thick in the 2-1, 3-1, 3-2 and c-1 transitions. Three stages of approximation are treated: (1) radiative detailed balance in the 2-1, 3-1 and 3-2 transitions, (2) radiative detailed balance in the 3-1 and 3-2 transitions, and (3) all transitions out of detailed balance. The solution of this problem is nontrivial and presents sufficient difficulty to have caused the failure of at least one rather standard technique. The problem is thus a good archetype against which new methods or new implementations of old methods may be tested.

  20. Remote Raman - laser induced breakdown spectroscopy (LIBS) geochemical investigation under Venus atmospheric conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Clegg, Sanuel M; Barefield, James E; Humphries, Seth D

    2010-12-13

    The extreme Venus surface temperatures ({approx}740 K) and atmospheric pressures ({approx}93 atm) create a challenging environment for surface missions. Scientific investigations capable of Venus geochemical observations must be completed within hours of landing before the lander will be overcome by the harsh atmosphere. A combined remote Raman - LIBS (Laser Induced Breakdown Spectroscopy) instrument is capable of accomplishing the geochemical science goals without the risks associated with collecting samples and bringing them into the lander. Wiens et al. and Sharma et al. demonstrated that both analytical techniques can be integrated into a single instrument capable of planetary missions. The focusmore » of this paper is to explore the capability to probe geologic samples with Raman - LIBS and demonstrate quantitative analysis under Venus surface conditions. Raman and LIBS are highly complementary analytical techniques capable of detecting both the mineralogical and geochemical composition of Venus surface materials. These techniques have the potential to profoundly increase our knowledge of the Venus surface composition, which is currently limited to geochemical data from Soviet Venera and VEGA landers that collectively suggest a surface composition that is primarily tholeiitic basaltic with some potentially more evolved compositions and, in some locations, K-rich trachyandesite. These landers were not equipped to probe the surface mineralogy as can be accomplished with Raman spectroscopy. Based on the observed compositional differences and recognizing the imprecise nature of the existing data, 15 samples were chosen to constitute a Venus-analog suite for this study, including five basalts, two each of andesites, dacites, and sulfates, and single samples of a foidite, trachyandesite, rhyolite, and basaltic trachyandesite under Venus conditions. LIBS data reduction involved generating a partial least squares (PLS) model with a subset of the rock powder

  1. Simulation of atmospheric dispersion of radionuclides using an Eulerian-Lagrangian modelling system.

    PubMed

    Basit, Abdul; Espinosa, Francisco; Avila, Ruben; Raza, S; Irfan, N

    2008-12-01

    In this paper we present an atmospheric dispersion scenario for a proposed nuclear power plant in Pakistan involving the hypothetical accidental release of radionuclides. For this, a concept involving a Lagrangian stochastic particle model (LSPM) coupled with an Eulerian regional atmospheric modelling system (RAMS) is used. The atmospheric turbulent dispersion of radionuclides (represented by non-buoyant particles/neutral traces) in the LSPM is modelled by applying non-homogeneous turbulence conditions. The mean wind velocities governed by the topography of the region and the surface fluxes of momentum and heat are calculated by the RAMS code. A moving least squares (MLS) technique is introduced to calculate the concentration of radionuclides at ground level. The numerically calculated vertical profiles of wind velocity and temperature are compared with observed data. The results obtained demonstrate that in regions of complex terrain it is not sufficient to model the atmospheric dispersion of particles using a straight-line Gaussian plume model, and that by utilising a Lagrangian stochastic particle model and regional atmospheric modelling system a much more realistic estimation of the dispersion in such a hypothetical scenario was ascertained. The particle dispersion results for a 12 h ground release show that a triangular area of about 400 km(2) situated in the north-west quadrant of release is under radiological threat. The particle distribution shows that the use of a Gaussian plume model (GPM) in such situations will yield quite misleading results.

  2. Effect of thermal stability/complex terrain on wind turbine model(s): a wind tunnel study to address complex atmospheric conditions

    NASA Astrophysics Data System (ADS)

    Guala, M.; Hu, S. J.; Chamorro, L. P.

    2011-12-01

    Turbulent boundary layer measurements in both wind tunnel and in the near-neutral atmospheric surface layer revealed in the last decade the significant contribution of the large scales of motions to both turbulent kinetic energy and Reynolds stresses, for a wide range of Reynolds number. These scales are known to grow throughout the logarithmic layer and to extend several boundary layer heights in the streamwise direction. Potentially, they are a source of strong unsteadiness in the power output of wind turbines and in the aerodynamic loads of wind turbine blades. However, the large scales in realistic atmospheric conditions deserves further study, with well controlled boundary conditions. In the atmospheric wind tunnel of the St. Anthony Falls Laboratory, with a 16 m long test section and independently controlled incoming flow and floor temperatures, turbulent boundary layers in a range of stability conditions, from the stratified to the convective case, can be reproduced and monitored. Measurements of fluctuating temperature, streamwise and wall normal velocity components are simultaneously obtained by an ad hoc calibrated and customized triple-wire sensor. A wind turbine model with constant loading DC motor, constant tip speed ratio, and a rotor diameter of 0.128m is used to mimic a large full scale turbine in the atmospheric boundary layer. Measurements of the fluctuating voltage generated by the DC motor are compared with measurements of the blade's angular velocity by laser scanning, and eventually related to velocity measurements from the triple-wire sensor. This study preliminary explores the effect of weak stability and complex terrain (through a set of spanwise aligned topographic perturbations) on the large scales of the flow and on the fluctuations in the wind turbine(s) power output.

  3. Differential responses of certain lichen species to sulfur-containing solutions under acidic conditions as expressed by the production of stress-ethylene

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Garty, J.; Kauppi, M.; Kauppi, A.

    1995-05-01

    To determine whether fluctuations in the concentration of ethylene produced by lichens exposed to sulfur-containing solutions at a low pH correlate with the tolerance/sensitivity of these lichens to air pollution, we measured the amount of ethylene produced by thalli soaked in H{sub 2}SO{sub 4} and NaHSO{sub 3}. The exposure of Hypogymnia physodes, Cladina stellaris, and Bryoria fuscescens to H{sub 2}SO{sub 4} at a pH ranging between 4.0 and 2.0 did not produce changes in the concentration of ethylene in comparison with samples wetted with H{sub 2}O at pH 6.8. The exposure of two pendulous lichens, Usnea hirta and Alectoria sarmentosa,more » to 1.0 and 5.0 mM H{sub 2}SO{sub 4} at pH 2.7 and 2.0, respectively, stimulated only a slight increase of ethylene production, whereas another pendulous lichen, Bryoria fremontii, exposed to H{sub 2}SO{sub 4} at pH 4.0-2.0 decreased its production of ethylene. The soaking of H. physodes, U. hirta, C. stellaris, and A. sarmentosa thalli in NaHSO{sub 3} at pH 4.0 gradually increased the production of ethylene. The exposure of B. fremontii and B. fuscescens to low NaHSO{sub 3} concentrations depressed the production of ethylene in these lichens. The indifference of H. physodes to H{sub 2}SO{sub 4} under strong acidic conditions correlated with its resistance to SO{sub 21} in the air. In accordance with a model by D.M. Reid (In {open_quotes}Effects of Atmospheric Pollutants on Forests, Wetlands and Agricultural Ecosystems. NATO ASI Series, Springer-Verlag, Berlin and Heidelberg, 1987) referring to higher plants, it is suggested that sulfur-containing solutions under acidic conditions increase the solubility of particles containing heavy metals entrapped among the mycobiont hyphae in lichens. This may lead to an increase of the production of endogenous ethylene in lichens as they are exposed to sulfur-containing chemicals, to acidic rain, or to heavy metal-polluted air. 65 refs., 8 tabs.« less

  4. SHIPPING CONTAINER FOR RADIOACTIVE MATERIAL

    DOEpatents

    Nachbar, H.D.; Biggs, B.B.; Tariello, P.J.; George, K.O.

    1963-01-15

    A shipping container is described for transponting a large number of radioactive nuclear fuel element modules which produce a substantial amount of heat. The container comprises a primary pressure vessel and shield, and a rotatable head having an access port that can be indexed with module holders in the container. In order to remove heat generated in the fuel eleme nts, a heat exchanger is arranged within the container and in contact with a heat exchange fluid therein. The heat exchanger communicates with additional external heat exchangers, which dissipate heat to the atmosphere. (AEC)

  5. Exchange of nitrogen dioxide (NO2) between plants and the atmosphere under laboratory and field conditions

    NASA Astrophysics Data System (ADS)

    Breuninger, C.; Meixner, F. X.; Thielmann, A.; Kuhn, U.; Dindorf, T.; Kesselmeier, J.

    2012-04-01

    Nitric oxide (NO), nitrogen dioxide (NO2), often denoted as nitrogen oxides (NOx), and ozone (O3) are considered as most important compounds in atmospheric chemistry. In remote areas NOx concentration is related to biological activities of soils and vegetation. The emitted NOx will not entirely be subject of long range transport through the atmosphere. Aside oxidation of NO2 by the OH radical (forming HNO3), a considerable part of it is removed from the atmosphere through the uptake of NO2 by plants. The exchange depends on stomatal activity and on NO2 concentrations in ambient air. It is known that NO2 uptake by plants represents a large NO2 sink, but the magnitude and the NO2 compensation point concentration are still under discussion. Our dynamic chamber system allows exchange measurements of NO2 under field conditions (uncontrolled) as well as studies under controlled laboratory conditions including fumigation experiments. For NO2 detection we used a highly NO2 specific blue light converter (photolytic converter) with subsequent chemiluminescence analysis of the generated NO. Furthermore, as the exchange of NO2 is a complex interaction of transport, chemistry and plant physiology, in our field experiments we determined fluxes of NO, NO2, O3, CO2 and H2O. For a better knowledge of compensation point values for the bi-directional NO2 exchange we investigated a primary representative of conifers, Picea abies, under field and laboratory conditions, and re-analyzed older field data of the deciduous tree Quercus robur.

  6. Greenhouse effect in the atmosphere

    NASA Astrophysics Data System (ADS)

    Smirnov, B. M.

    2016-04-01

    Average optical atmospheric parameters for the infrared spectrum range are evaluated on the basis of the Earth energetic balance and parameters of the standard atmosphere. The average optical thickness of the atmosphere is u ≈ 2.5 and this atmospheric emission is originated at altitudes below 10 km. Variations of atmospheric radiative fluxes towards the Earth and outward are calculated as a function of the concentration of \\text{CO}2 molecules for the regular model of molecular spectrum. As a result of doubling of the \\text{CO}2 concentration the change of the global Earth temperature is (0.4 +/- 0.2) \\text{K} if other atmospheric parameters are conserved compared to the value (3.0 +/- 1.5) \\text{K} under real atmospheric conditions with the variation of the amount of atmospheric water. An observed variation of the global Earth temperature during the last century (0.8 ^\\circ \\text{C}) follows from an increase of the mass of atmospheric water by 7% or by conversion of 1% of atmospheric water in aerosols.

  7. A massive early atmosphere on Triton

    NASA Technical Reports Server (NTRS)

    Lunine, Jonathan I.; Nolan, Michael C.

    1992-01-01

    The idea of an early greenhouse atmosphere for Triton is presented and the conditions under which it may have been sustained are quantified. The volatile content of primordial Triton is modeled, and tidal heating rates are assessed to set bounds on the available energy. The atmospheric model formalism is presented, and it is shown how a massive atmosphere could have been raised by modest tidal heating fluxes. The implications of the model atmospheres for the atmospheric escape rates, the chemical evolution, and the cratering record are addressed.

  8. Solving for the Surface: An Automated Approach to THEMIS Atmospheric Correction

    NASA Astrophysics Data System (ADS)

    Ryan, A. J.; Salvatore, M. R.; Smith, R.; Edwards, C. S.; Christensen, P. R.

    2013-12-01

    Here we present the initial results of an automated atmospheric correction algorithm for the Thermal Emission Imaging System (THEMIS) instrument, whereby high spectral resolution Thermal Emission Spectrometer (TES) data are queried to generate numerous atmospheric opacity values for each THEMIS infrared image. While the pioneering methods of Bandfield et al. [2004] also used TES spectra to atmospherically correct THEMIS data, the algorithm presented here is a significant improvement because of the reduced dependency on user-defined inputs for individual images. Additionally, this technique is particularly useful for correcting THEMIS images that have captured a range of atmospheric conditions and/or surface elevations, issues that have been difficult to correct for using previous techniques. Thermal infrared observations of the Martian surface can be used to determine the spatial distribution and relative abundance of many common rock-forming minerals. This information is essential to understanding the planet's geologic and climatic history. However, the Martian atmosphere also has absorptions in the thermal infrared which complicate the interpretation of infrared measurements obtained from orbit. TES has sufficient spectral resolution (143 bands at 10 cm-1 sampling) to linearly unmix and remove atmospheric spectral end-members from the acquired spectra. THEMIS has the benefit of higher spatial resolution (~100 m/pixel vs. 3x5 km/TES-pixel) but has lower spectral resolution (8 surface sensitive spectral bands). As such, it is not possible to isolate the surface component by unmixing the atmospheric contribution from the THEMIS spectra, as is done with TES. Bandfield et al. [2004] developed a technique using atmospherically corrected TES spectra as tie-points for constant radiance offset correction and surface emissivity retrieval. This technique is the primary method used to correct THEMIS but is highly susceptible to inconsistent results if great care in the

  9. Growing importance of atmospheric water demands on the hydrologcial condition of East Asia

    NASA Astrophysics Data System (ADS)

    Park, C. E.; Ho, C. H.; Jeong, S. J.; Park, H.

    2015-12-01

    As global temperature increases, enhanced exchange of fresh water between the surface and atmosphere expected to make dry regions drier and wet regions wetter. This concept is well fitted for the ocean, but oversimplified for the land. How the climate change causes the complex patterns of the continental dryness change is one of challenging questions. Here we investigate the observed dryness changes of the land surface by examining the quantitative influence of several climate parameters on the background aridity changes over East Asia, containing various climate regimes from cold-arid to warm-humid regions, using observations of 189 stations covering the period from 1961 to 2010. Overall mean aridity trend is changed from negative to positive around early 1990s. The turning of dryness trend is largely influenced by sharp increase in atmospheric water demands, regardless of the background climate. The warming induced increase in water demands is larger in warm-humid regions than in cold-arid region due to the Clausius-Clapeyron relation between air temperature and saturation vapor pressure. The results show the drying of anthropogenic warming already begins and influences on the patterns of dryness change over the land surface.

  10. Atmospheric Prebiotic Chemistry and Organic Hazes.

    PubMed

    Trainer, Melissa G

    2013-08-01

    Earth's atmospheric composition at the time of the origin of life is not known, but it has often been suggested that chemical transformation of reactive species in the atmosphere was a significant source of prebiotic organic molecules. Experimental and theoretical studies over the past half century have shown that atmospheric synthesis can yield molecules such as amino acids and nucleobases, but these processes are very sensitive to gas composition and energy source. Abiotic synthesis of organic molecules is more productive in reduced atmospheres, yet the primitive Earth may not have been as reducing as earlier workers assumed, and recent research has reflected this shift in thinking. This work provides a survey of the range of chemical products that can be produced given a set of atmospheric conditions, with a particular focus on recent reports. Intertwined with the discussion of atmospheric synthesis is the consideration of an organic haze layer, which has been suggested as a possible ultraviolet shield on the anoxic early Earth. Since such a haze layer - if formed - would serve as a reservoir for organic molecules, the chemical composition of the aerosol should be closely examined. The results highlighted here show that a variety of products can be formed in mildly reducing or even neutral atmospheres, demonstrating that contributions of atmospheric synthesis to the organic inventory on early Earth should not be discounted. This review intends to bridge current knowledge of the range of possible atmospheric conditions in the prebiotic environment and pathways for synthesis under such conditions by examining the possible products of organic chemistry in the early atmosphere.

  11. Atmospheric Prebiotic Chemistry and Organic Hazes

    NASA Technical Reports Server (NTRS)

    Trainer, Melissa G.

    2012-01-01

    Earth's atmospheric composition at the time of the origin of life is not known, but it has often been suggested that chemical transformation of reactive species in the atmosphere was a significant source of pre biotic organic molecules. Experimental and theoretical studies over the past half century have shown that atmospheric synthesis can yield molecules such as amino acids and nucleobases, but these processes are very sensitive to gas composition and energy source. Abiotic synthesis of organic molecules is more productive in reduced atmospheres, yet the primitive Earth may not have been as reducing as earlier workers assumed, and recent research has reflected this shift in thinking. This work provides a survey of the range of chemical products that can be produced given a set of atmospheric conditions, with a particular focus on recent reports. Intertwined with the discussion of atmospheric synthesis is the consideration of an organic haze layer, which has been suggested as a possible ultraviolet shield on the anoxic early Earth. Since such a haze layer - if formed - would serve as a reservoir for organic molecules, the chemical composition of the aerosol should be closely examined. The results highlighted here show that a variety of products can be formed in mildly reducing or even neutral atmospheres, demonstrating that contributions of atmospheric synthesis to the organic inventory on early Earth should not be discounted. This review intends to bridge current knowledge of the range of possible atmospheric conditions in the prebiotic environment and pathways for synthesis under such conditions by examining the possible products of organic chemistry in the early atmosphere.

  12. Characterization of Detonation Soot Produced During Steady and Overdriven Conditions for Three High Explosive Formulations

    NASA Astrophysics Data System (ADS)

    Podlesak, David; Amato, Ronald; Dattelbaum, Dana; Firestone, Millicent; Gustavsen, Richard; Huber, Rachel; Ringstrand, Bryan

    2015-06-01

    The detonation of high explosives (HE) produces a dense fluid of molecular gases and solid carbon. The solid detonation carbon contains various carbon allotropes such as detonation nanodiamonds, ``onion-like'' carbon, graphite and amorphous carbon, with the formation of the different forms dependent upon pressure, temperature and the environmental conditions of the detonation. We have collected solid carbon residues from controlled detonations of three HE formulations (Composition B-3, PBX 9501, and PBX 9502). Soot was collected from experiments designed to produce both steady and overdriven conditions, and from detonations in both an ambient (air) atmosphere and in an inert Ar atmosphere. Structural studies to glean the features of the solid carbon products have been performed using scanning electron microscopy (SEM), transmission electron microscopy (TEM), powder X-ray diffraction (XRD), Raman spectroscopy, small-angle X-ray scattering (SAXS), and X-Ray Pair Distribution Function measurements (PDF). Bulk soot was also analyzed for elemental and isotopic compositions. We will discuss differences in the structure and composition of the detonation carbon as a function of formulation, detonation conditions, and the surrounding atmosphere.

  13. Time-varying Atmospheric Circulation Patterns Caused by N2 Condensation Flows on a Simulated Triton Atmosphere

    NASA Astrophysics Data System (ADS)

    Miller, C.; Chanover, N.; Murphy, J. R.; Zalucha, A. M.

    2011-12-01

    Triton and Pluto are two members of a possible class of bodies with an N2 frost covered surface in vapor-pressure equilibrium with a predominately N2 atmosphere. Modeling the dynamics of such an atmosphere is useful for several reasons. First, winds on Triton were inferred from images of surface streaks and active plumes visible at the time of the Voyager 2 flyby in August 1989. Dynamic atmospheric simulations can reveal the seasonal conditions under which such winds would arise and therefore how long before the Voyager 2 encounter the ground streaks may have been deposited. Second, atmospheric conditions on Pluto at the time of the New Horizons flyby are expected to be similar to those on Triton. Therefore, a dynamical model of a cold, thin N2 atmosphere can be used to predict wind speed and direction on Pluto during the New Horizons encounter with the Pluto/Charon system in July 2015. We used a modified version of the NASA Ames Mars General Circulation Model, version 2.0, to model an N2 atmosphere in contact with N2 surface frosts. We altered the Ames GCM to simulate conditions found on Triton. These alterations included changing the size, rotation rate, orbital inclination, surface gravity, and distance to the Sun of the parent body to model the proper time-varying insolation. We defined the gas properties for an N2 atmosphere, including values for latent heat, specific heat, and the vapor pressure-temperature relationship for N2 frosts. Our simulations assumed an N2 atmosphere with an initial average surface pressure of 18 microbars and we chose N2 frost albedo and emissivity values that resulted in a stable surface pressure over time. We incorporated a 190-meter deep ten-layer water-ice subsurface layer covered with a 20-centimeter global layer of N2 frost. Our simulations did not include atmospheric radiative heat transfer, but did include conduction, convection, and surface-boundary layer heating. We ran simulations of 100 Triton days at 10 points along

  14. A Novel Hybrid Axial-Radial Atmospheric Plasma Spraying Technique for the Fabrication of Solid Oxide Fuel Cell Anodes Containing Cu, Co, Ni, and Samaria-Doped Ceria

    NASA Astrophysics Data System (ADS)

    Cuglietta, Mark; Kuhn, Joel; Kesler, Olivera

    2013-06-01

    Composite coatings containing Cu, Co, Ni, and samaria-doped ceria (SDC) have been fabricated using a novel hybrid atmospheric plasma spraying technique, in which a multi-component aqueous suspension of CuO, Co3O4, and NiO was injected axially simultaneously with SDC injected radially in a dry powder form. Coatings were characterized for their microstructure, permeability, porosity, and composition over a range of plasma spray conditions. Deposition efficiency of the metal oxides and SDC was also estimated. Depending on the conditions, coatings displayed either layering or high levels of mixing between the SDC and metal phases. The deposition efficiencies of both feedstock types were strongly dependent on the nozzle diameter. Plasma-sprayed metal-supported solid oxide fuel cells utilizing anodes fabricated with this technique demonstrated power densities at 0.7 V as high as 366 and 113 mW/cm2 in humidified hydrogen and methane, respectively, at 800 °C.

  15. Adaptation of an Antarctic lichen to Martian niche conditions can occur within 34 days

    NASA Astrophysics Data System (ADS)

    de Vera, Jean-Pierre; Schulze-Makuch, Dirk; Khan, Afshin; Lorek, Andreas; Koncz, Alexander; Möhlmann, Diedrich; Spohn, Tilman

    2014-08-01

    Stresses occurring on the Martian surface were simulated in a Mars Simulation Chamber (MSC) and included high UV fluxes (Zarnecki and Catling, 2002), low temperatures, low water activity, high atmospheric CO2 concentrations, and an atmospheric pressure of about 800 Pa (Kasting, 1991; Head et al., 2003). The lichen Pleopsidium chlorophanum is an extremophile that lives in very cold, dry, high-altitude habitats, which are Earth's best approximation of the Martian surface. Samples with P. chlorophanum were exposed uninterruptedly to simulated conditions of the unprotected Martian surface (i.e. 6344 kJ m-2) and protected niche conditions (269 kJ m-2) for 34 days. Under unprotected Martian surface conditions the fungal symbiont decreases its metabolic activity and it was unclear if the algal symbiont of the lichen was still actively photosynthesizing. However, under "protected site" conditions, the entire lichen not only survived and remained photosynthetically active, it even adapted physiologically by increasing its photosynthetic activity over 34 days.

  16. Development of an engineering model atmosphere for Mars

    NASA Technical Reports Server (NTRS)

    Justus, C. G.

    1988-01-01

    An engineering model atmosphere for Mars is being developed with many of the same features and capabilities for the highly successful Global Reference Atmospheric Model (GRAM) program for Earth's atmosphere. As an initial approach, the model is being built around the Martian atmosphere model computer subroutine (ATMOS) of Culp and Stewart (1984). In a longer-term program of research, additional refinements and modifications will be included. ATMOS includes parameterizations to stimulate the effects of solar activity, seasonal variation, diurnal variation magnitude, dust storm effects, and effects due to the orbital position of Mars. One of the current shortcomings of ATMOS is the neglect of surface variation effects. The longer-term period of research and model building is to address some of these problem areas and provide further improvements in the model (including improved representation of near-surface variations, improved latitude-longitude gradient representation, effects of the large annual variation in surface pressure because of differential condensation/sublimation of the CO2 atmosphere in the polar caps, and effects of Martian atmospheric wave perturbations on the magnitude of the expected density perturbation.

  17. Unstable behaviour of an upper ocean-atmosphere coupled model: role of atmospheric radiative processes and oceanic heat transport

    NASA Astrophysics Data System (ADS)

    Cohen-Solal, E.; Le Treut, H.

    to an unstable state via atmospheric processes which arise wen the tropics are cooling. Even if possibly overestimated by our GCM, this mechanism may be pertinent to the maintenance of present climatic conditions in the tropics. The simplifications inherent in our model's design allow us to investigate the mechanism in some detail.

  18. Atmosphere behavior in gas-closed mouse-algal systems - An experimental and modelling study

    NASA Technical Reports Server (NTRS)

    Averner, M. M.; Moore, B., III; Bartholomew, I.; Wharton, R.

    1984-01-01

    A NASA-sponsored research program initiated using mathematical modelling and laboratory experimentation aimed at examining the gas-exchange characteristics of artificial animal/plant systems closed to the ambient atmosphere is studied. The development of control techniques and management strategies for maintaining the atmospheric levels of carbon dioxide and oxygen at physiological levels is considered. A mathematical model simulating the behavior of a gas-closed mouse-algal system under varying environmental conditions is described. To verify and validate the model simulations, an analytical system with which algal growth and gas exchange characteristics can be manipulated and measured is designed, fabricated, and tested. The preliminary results are presented.

  19. Laboratory evaluation and application of microwave absorption properties under simulated conditions for planetary atmospheres

    NASA Technical Reports Server (NTRS)

    Steffes, P. G.

    1986-01-01

    After long arduous work with the simulator, measurements of the refractivity and absorptivity of nitrogen under conditions similar to those for Titan were completed. The most significant measurements, however, were those of the microwave absorption from gaseous ammonia under simulated conditions for the Jovian atmospheres over wavelengths from 1.3 to 22 cm. The results of these measurements are critical in that they confirm the theoretical calculation of the ammonia opacity using the Ben-Reuven lineshape. The application of both these results, and results obtained previously, to planetary observations at microwave frequencies were especially rewarding. Applications of the results for ammonia to radio astronomical observations of Jupiter in the 1.3 to 20 cm wavelength range and the application of results for gaseous H2SO4 under simulated Venus conditions are discussed.

  20. Atmospheric Longwave Irradiance Uncertainty: Pyrgeometers Compared to an Absolute Sky-Scanning Radiometer, Atmospheric Emitted Radiance Interferometer, and Radiative Transfer Model Calculations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Philipona, J. R.; Dutton, Ellsworth G.; Stoffel, T.

    2001-06-04

    Because atmospheric longwave radiation is one of the most fundamental elements of an expected climate change, there has been a strong interest in improving measurements and model calculations in recent years. Important questions are how reliable and consistent are atmospheric longwave radiation measurements and calculations and what are the uncertainties? The First International Pyrgeometer and Absolute Sky-scanning Radiometer Comparison, which was held at the Atmospheric Radiation Measurement program's Souther Great Plains site in Oklahoma, answers these questions at least for midlatitude summer conditions and reflects the state of the art for atmospheric longwave radiation measurements and calculations. The 15 participatingmore » pyrgeometers were all calibration-traced standard instruments chosen from a broad international community. Two new chopped pyrgeometers also took part in the comparison. And absolute sky-scanning radiometer (ASR), which includes a pyroelectric detector and a reference blackbody source, was used for the first time as a reference standard instrument to field calibrate pyrgeometers during clear-sky nighttime measurements. Owner-provided and uniformly determined blackbody calibration factors were compared. Remarkable improvements and higher pyrgeometer precision were achieved with field calibration factors. Results of nighttime and daytime pyrgeometer precision and absolute uncertainty are presented for eight consecutive days of measurements, during which period downward longwave irradiance varied between 260 and 420 W m-2. Comparisons between pyrgeometers and the absolute ASR, the atmospheric emitted radiance interferometer, and radiative transfer models LBLRTM and MODTRAN show a surprisingly good agreement of <2 W m-2 for nighttime atmospheric longwave irradiance measurements and calculations.« less

  1. Mixing state of particles with secondary species by single particle aerosol mass spectrometer in an atmospheric pollution event

    NASA Astrophysics Data System (ADS)

    Xu, Lingling; Chen, Jinsheng

    2016-04-01

    Single particle aerosol mass spectrometer (SPAMS) was used to characterize size distribution, chemical composition, and mixing state of particles in an atmospheric pollution event during 20 Oct. - 5 Nov., 2015 in Xiamen, Southeast China. A total of 533,012 particle mass spectra were obtained and clustered into six groups, comprising of industry metal (4.5%), dust particles (2.6%), carbonaceous species (70.7%), K-Rich particles (20.7%), seasalt (0.6%) and other particles (0.9%). Carbonaceous species were further divided into EC (70.6%), OC (28.5%), and mixed ECOC (0.9%). There were 61.7%, 58.3%, 4.0%, and 14.6% of particles internally mixed with sulfate, nitrate, ammonium and C2H3O, respectively, indicating that these particles had undergone significant aging processing. Sulfate was preferentially mixed with carbonaceous particles, while nitrate tended to mix with metal-containing and dust particles. Compared to clear days, the fractions of EC-, metal- and dust particles remarkably increased, while the fraction of OC-containing particles decreased in pollution days. The mixing state of particles, excepted for OC-containing particles with secondary species was much stronger in pollution days than that in clear days, which revealed the significant influence of secondary particles in atmospheric pollution. The different activity of OC-containing particles might be related to their much smaller aerodynamic diameter. These results could improve our understanding of aerosol characteristics and could be helpful to further investigate the atmospheric process of particles.

  2. Tight coupling of particle size and composition in atmospheric cloud droplet activation

    NASA Astrophysics Data System (ADS)

    Topping, D.; McFiggans, G.

    2011-09-01

    The substantial uncertainty in the indirect effect on radiative forcing in large part arises from the influences of atmospheric aerosol particles on (i) the brightness of clouds, exerting significant shortwave cooling with no appreciable compensation in the longwave, and on (ii) their ability to precipitate, with implications for cloud cover and lifetime. Predicting the ambient conditions at which aerosol particles may become cloud droplets is largely reliant on an equilibrium relationship derived in 1936. However, the theoretical basis of the relationship restricts its application to particles solely comprising involatile compounds and water, whereas a substantial fraction of particles in the real atmosphere will contain potentially thousands of semi-volatile organic compounds in addition to containing semi-volatile inorganic components such as ammonium nitrate. We show that equilibration of atmospherically reasonable concentrations of organic compounds with a growing particle as the ambient humidity increases has larger implications on cloud droplet formation than any other equilibrium compositional dependence, owing to inextricable linkage between the aerosol composition and a particles size under ambient conditions. Whilst previous attempts to account for co-condensation of gases other than water vapour have been restricted to one inorganic condensate, our method demonstrates that accounting for the co-condensation of any number of organic compounds substantially decreases the saturation ratio of water vapour required for droplet activation. This effect is far greater than any other compositional dependence; moreso even than the unphysical effect of surface tension reduction in aqueous organic mixtures, ignoring differences in bulk and surface surfactant concentrations.

  3. Atmospheric Seasonality as an Exoplanet Biosignature

    NASA Astrophysics Data System (ADS)

    Olson, Stephanie L.; Schwieterman, Edward W.; Reinhard, Christopher T.; Ridgwell, Andy; Kane, Stephen R.; Meadows, Victoria S.; Lyons, Timothy W.

    2018-05-01

    Current investigations of exoplanet biosignatures have focused on static evidence of life, such as the presence of biogenic gases like O2 or CH4. However, the expected diversity of terrestrial planet atmospheres and the likelihood of both “false positives” and “false negatives” for conventional biosignatures motivate exploration of additional life detection strategies, including time-varying signals. Seasonal variation in atmospheric composition is a biologically modulated phenomenon on Earth that may occur elsewhere because it arises naturally from the interplay between the biosphere and time-variable insolation. The search for seasonality as a biosignature would avoid many assumptions about specific metabolisms and provide an opportunity to directly quantify biological fluxes—allowing us to characterize, rather than simply recognize, biospheres on exoplanets. Despite this potential, there have been no comprehensive studies of seasonality as an exoplanet biosignature. Here, we provide a foundation for further studies by reviewing both biological and abiological controls on the magnitude and detectability of seasonality of atmospheric CO2, CH4, O2, and O3 on Earth. We also consider an example of an inhabited world for which atmospheric seasonality may be the most notable expression of its biosphere. We show that life on a low O2 planet like the weakly oxygenated mid-Proterozoic Earth could be fingerprinted by seasonal variation in O3 as revealed in its UV Hartley–Huggins bands. This example highlights the need for UV capabilities in future direct-imaging telescope missions (e.g., LUVOIR/HabEx) and illustrates the diagnostic importance of studying temporal biosignatures for exoplanet life detection/characterization.

  4. Variability in Canopy Transpiration with Atmospheric Drivers and Permafrost Thaw Depth in an Arctic Siberian Larch Forest

    NASA Astrophysics Data System (ADS)

    Loranty, M. M.; Berner, L. T.; Alexander, H. D.; Davydov, S. P.

    2014-12-01

    Arctic ecosystems are experiencing rapid change associated with amplified rates of climate warming. A general increase in vegetation productivity has been among the expected responses for terrestrial ecosystems in the Arctic. However, recent evidence from satellite derived productivity metrics has revealed a high degree of spatial heterogeneity in the magnitude, and even the direction, of productivity trends in recent decades. Declines in productivity may seem counterintuitive in what are traditionally thought to be temperature limited ecosystems. However a warmer and drier atmosphere in conjunction with changing permafrost conditions may impose hydrologic stresses on vegetation as well. Many Siberian ecosystems receive annual precipitation inputs characteristics of arid and semiarid regions. Boreal forests persist because permafrost acts as an aquatard trapping water near the surface and because historically cool growing season temperatures have kept atmospheric evaporative demand relatively low. As climate change simultaneously warms the atmosphere and deepens the active layer it is likely that vegetation will experience a higher degree of hydrologic limitation, perhaps necessitating the reallocation of resources. Here we use sap flux observations of canopy transpiration to understand the influence of atmospheric and permafrost conditions on the function of an arctic boreal forest in northeastern Siberia. We find that individual trees exhibit stronger responses to atmospheric vapor pressure deficit (D) as the growing season progresses. Further, the magnitude of this response appears to be positively correlated with changes in the depth of permafrost thaw. These results imply that arctic boreal forests will need to adapt to increasing hydrologic stress in order to benefit from what are typically thought of as increasingly favorable growing conditions with continued climate change.

  5. Soil-plant-atmosphere conditions regulating convective cloud formation above southeastern US pine plantations.

    PubMed

    Manoli, Gabriele; Domec, Jean-Christophe; Novick, Kimberly; Oishi, Andrew Christopher; Noormets, Asko; Marani, Marco; Katul, Gabriel

    2016-06-01

    Loblolly pine trees (Pinus taeda L.) occupy more than 20% of the forested area in the southern United States, represent more than 50% of the standing pine volume in this region, and remove from the atmosphere about 500 g C m-2 per year through net ecosystem exchange. Hence, their significance as a major regional carbon sink can hardly be disputed. What is disputed is whether the proliferation of young plantations replacing old forest in the southern United States will alter key aspects of the hydrologic cycle, including convective rainfall, which is the focus of the present work. Ecosystem fluxes of sensible (Hs) and latent heat (LE) and large-scale, slowly evolving free atmospheric temperature and water vapor content are known to be first-order controls on the formation of convective clouds in the atmospheric boundary layer. These controlling processes are here described by a zero-order analytical model aimed at assessing how plantations of different ages may regulate the persistence and transition of the atmospheric system between cloudy and cloudless conditions. Using the analytical model together with field observations, the roles of ecosystem Hs and LE on convective cloud formation are explored relative to the entrainment of heat and moisture from the free atmosphere. Our results demonstrate that cloudy-cloudless regimes at the land surface are regulated by a nonlinear relation between the Bowen ratio Bo=Hs/LE and root-zone soil water content, suggesting that young/mature pines ecosystems have the ability to recirculate available water (through rainfall predisposition mechanisms). Such nonlinearity was not detected in a much older pine stand, suggesting a higher tolerance to drought but a limited control on boundary layer dynamics. These results enable the generation of hypotheses about the impacts on convective cloud formation driven by afforestation/deforestation and groundwater depletion projected to increase following increased human population in the

  6. An Empirical Study of Atmospheric Correction Procedures for Regional Infrasound Amplitudes with Ground Truth.

    NASA Astrophysics Data System (ADS)

    Howard, J. E.

    2014-12-01

    This study focusses on improving methods of accounting for atmospheric effects on infrasound amplitudes observed on arrays at regional distances in the southwestern United States. Recordings at ranges of 150 to nearly 300 km from a repeating ground truth source of small HE explosions are used. The explosions range in actual weight from approximately 2000-4000 lbs. and are detonated year-round which provides signals for a wide range of atmospheric conditions. Three methods of correcting the observed amplitudes for atmospheric effects are investigated with the data set. The first corrects amplitudes for upper stratospheric wind as developed by Mutschlecner and Whitaker (1999) and uses the average wind speed between 45-55 km altitudes in the direction of propagation to derive an empirical correction formula. This approach was developed using large chemical and nuclear explosions and is tested with the smaller explosions for which shorter wavelengths cause the energy to be scattered by the smaller scale structure of the atmosphere. The second approach isa semi-empirical method using ray tracing to determine wind speed at ray turning heights where the wind estimates replace the wind values in the existing formula. Finally, parabolic equation (PE) modeling is used to predict the amplitudes at the arrays at 1 Hz. The PE amplitudes are compared to the observed amplitudes with a narrow band filter centered at 1 Hz. An analysis is performed of the conditions under which the empirical and semi-empirical methods fail and full wave methods must be used.

  7. Interaction of electromagnetic and acoustic waves in a stochastic atmosphere

    NASA Technical Reports Server (NTRS)

    Bhatnagar, N.; Peterson, A. M.

    1979-01-01

    In the Stanford radio acoustic sounding system (RASS) an electromagnetic signal is made to scatter from a moving acoustic pulse train. Under a Bragg-scatter condition maximum electromagnetic scattering occurs. The scattered radio signal contains temperature and wind information as a function of the acoustic-pulse position. In this investigation RASS performance is assessed in an atmosphere characterized by the presence of turbulence and mean atmospheric parameters. The only assumption made is that the electromagnetic wave is not affected by stochastic perturbations in the atmosphere. It is concluded that the received radio signal depends strongly on the intensity of turbulence for altitudes of the acoustic pulse greater than the coherence length of propagation. The effect of mean vertical wind and mean temperature on the strength of the received signal is also demonstrated to be insignificant. Mean horizontal winds, however, shift the focus of the reflected electromagnetic energy from its origin, resulting in a decrease in received signal level when a monostatic radio-frequency (RF) system is used. For a bistatic radar configuration with space diversified receiving antennas, the shifting of the acoustic pulse makes possible the remote measurement of the horizontal wind component.

  8. Research on atmospheric volcanic emissions - An overview

    NASA Technical Reports Server (NTRS)

    Friend, J. P.; Bandy, A. R.; Moyers, J. L.; Zoller, W. H.; Stoiber, R. E.; Torres, A. L.; Rose, W. I., Jr.; Mccormick, M. P.; Woods, D. C.

    1982-01-01

    Atmospheric abundances and the geochemical cycle of certain volatile compounds and elements may be largely influenced or entirely controlled by magmatic sources. However, better estimates of the magnitude and variability of volcanic emissions are required if the importance of this natural source of atmospheric constituents and the resulting effect on atmospheric chemistry are to be elucidated. The project 'Research on Atmospheric Volcanic Emissions' (RAVE) is concerned with the improvement of knowledge of both geological and chemical phenomena attending these emissions by means of comprehensive instrumentation on board a research aircraft making simultaneous measurements of plume constituents. A description is presented of the equipment and the procedures used in the RAVE field study of Mt. St. Helens' plume. An overview of the results is also provided.

  9. Venus thermosphere and exosphere - First satellite drag measurements of an extraterrestrial atmosphere

    NASA Technical Reports Server (NTRS)

    Keating, G. M.; Tolson, R. H.; Hinson, E. W.

    1979-01-01

    Atmospheric drag measurements obtained from the study of the orbital decay of Pioneer Venus I indicate that atomic oxygen predominates in the Venus atmosphere above 160 kilometers. Drag measurements give evidence that conditions characteristic of a planetary thermosphere disappear near sundown, with inferred exospheric temperatures sharply dropping from approximately 300 K to less than 150 K. Observed densities are generally lower than given by theoretical models.

  10. Atmosphere purification of radon and radon daughter elements

    DOEpatents

    Stein, L.

    1974-01-01

    A method of removing radon and radon daughter elements from an atmosphere containing these elements by passing the atmosphere through a bed of fluorinating compound whereby the radon and radon daughters are oxidized to their respective fluorides is discussed. These fluorides adhere to the fluorinating compound and are thus removed from the atmosphere which may then be recirculated. A method for recovering radon and separating radon from its daughter elements is also described. (Official Gazette)

  11. High-power laser radiation in atmospheric aerosols: Nonlinear optics of aerodispersed media

    NASA Astrophysics Data System (ADS)

    Zuev, V. E.; Zemlianov, A. A.; Kopytin, Iu. D.; Kuzikovskii, A. V.

    The bulk of this book contains the results of investigations carried out at the Institute of Atmospheric Optics, Siberian Branch, USSR Academy of Science with the participation of the authors. The microphysical and optical characteristics of atmospheric aerosols are considered, taking into account light scattering by a single aerosol particle, light scattering by a system of particles, the scattering phase matrix, light scattering by clouds and fogs, light scattering by hazes, and scattering phase functions of polydispersed aerosols. Other topics studies are related to low-energy (subexplosive) effects of radiation on individual particles, the formation of clear zones in clouds and fogs due to the vaporization of droplets under regular regimes, self-action of a wave beam in a water aerosol under conditions of regular droplet vaporization, laser beam propagation through an explosively evaporating water-droplet aerosol, the propagation of high-power laser radiation through hazes, the ionization and optical breakdown in aerosol media, and laser monitoring of a turbid atmosphere using nonlinear effects.

  12. Impact of Martian atmosphere parameter uncertainties on entry vehicles aerodynamic for hypersonic rarefied conditions

    NASA Astrophysics Data System (ADS)

    Fei, Huang; Xu-hong, Jin; Jun-ming, Lv; Xiao-li, Cheng

    2016-11-01

    An attempt has been made to analyze impact of Martian atmosphere parameter uncertainties on entry vehicle aerodynamics for hypersonic rarefied conditions with a DSMC code. The code has been validated by comparing Viking vehicle flight data with present computational results. Then, by simulating flows around the Mars Science Laboratory, the impact of errors of free stream parameter uncertainties on aerodynamics is investigated. The validation results show that the present numerical approach can show good agreement with the Viking flight data. The physical and chemical properties of CO2 has strong impact on aerodynamics of Mars entry vehicles, so it is necessary to make proper corrections to the data obtained with air model in hypersonic rarefied conditions, which is consistent with the conclusions drawn in continuum regime. Uncertainties of free stream density and velocity weakly influence aerodynamics and pitching moment. However, aerodynamics appears to be little influenced by free stream temperature, the maximum error of what is below 0.5%. Center of pressure position is not sensitive to free stream parameters.

  13. Atmospheric Prebiotic Chemistry and Organic Hazes

    PubMed Central

    Trainer, Melissa G.

    2013-01-01

    Earth’s atmospheric composition at the time of the origin of life is not known, but it has often been suggested that chemical transformation of reactive species in the atmosphere was a significant source of prebiotic organic molecules. Experimental and theoretical studies over the past half century have shown that atmospheric synthesis can yield molecules such as amino acids and nucleobases, but these processes are very sensitive to gas composition and energy source. Abiotic synthesis of organic molecules is more productive in reduced atmospheres, yet the primitive Earth may not have been as reducing as earlier workers assumed, and recent research has reflected this shift in thinking. This work provides a survey of the range of chemical products that can be produced given a set of atmospheric conditions, with a particular focus on recent reports. Intertwined with the discussion of atmospheric synthesis is the consideration of an organic haze layer, which has been suggested as a possible ultraviolet shield on the anoxic early Earth. Since such a haze layer – if formed – would serve as a reservoir for organic molecules, the chemical composition of the aerosol should be closely examined. The results highlighted here show that a variety of products can be formed in mildly reducing or even neutral atmospheres, demonstrating that contributions of atmospheric synthesis to the organic inventory on early Earth should not be discounted. This review intends to bridge current knowledge of the range of possible atmospheric conditions in the prebiotic environment and pathways for synthesis under such conditions by examining the possible products of organic chemistry in the early atmosphere. PMID:24143126

  14. Astronomy and Atmospheric Optics

    NASA Astrophysics Data System (ADS)

    Cowley, Les; Gaina, Alex

    2011-12-01

    The authors discusse the insuccess of the observation of the Total Eclipse of the Moon from 10 december 2011 in Romania and relate them with meteoconditions. Only a very short part of the last penumbral phase was observed, while the inital part and the totality was not observed due to very dense clouds. The change in color and brightness during this phase was signaled. Meanwhile, there is an area of science where clouds are of great use and interest. This area is Atmospheric optics, while the science which study clouds is meteorology. Clouds in combination with Solar and Moon light could give rise to a variety of strange, rare and unobvious phenomena in the atmosphere (sky), sometimes confused with Unidentified Flying Objects (UFO). The importance of meteorology for astronomy and atmospheric optics is underlined and an invitation to astronomers to use unfavourable days for athmospheric observations was sent. The web address of the site by Les Cowley, designed for atmospheric optics phenomena is contained in the text of the entry.

  15. Land surface and atmospheric conditions associated with heat waves in the South Central United States

    NASA Astrophysics Data System (ADS)

    Lee, Eungul; Bieda, Rahama; Shanmugasundaram, Jothiganesh; Richter, Heather

    2017-04-01

    Exposure to extreme heat was reconstructed based on regional land-atmosphere processes from 1979 to 2010 in the South Central U.S. The study region surrounds the Chickasaw Nation (CN), a predominantly Native American population with a highly prevalent burden of climate-sensitive chronic diseases. Land surface and atmospheric conditions for summer heat waves were analyzed during spring (March-April-May, MAM) and summer (June-July-August, JJA) based on the Climate and Ocean: Variability, Predictability, and Change maximum temperature definition for heat wave frequency (HWF). The spatial-temporal pattern of HWF was determined using empirical orthogonal function (EOF) analysis and the corresponding principle component time series of the first EOF of HWF. Statistically significant analyses of observed conditions indicated that sensible heat increased and latent heat fluxes decreased with high HWF in the South Central U.S. The largest positive correlations of sensible heat flux to HWF and the largest negative correlations of latent heat flux to HWF were specifically observed over the CN. This is a significantly different energy transfer regime due to less available soil moisture during the antecedent MAM and JJA. The higher sensible heat from dry soil could cause significant warming from the near surface (> 2.0°C) to the lower troposphere (> 1.5°C), and accumulated boundary layer heat could induce the significant patterns of higher geopotential height and enhance anticyclonic circulations (negative vorticity anomaly) at the midtroposphere. Results suggested a positive land-atmosphere feedback associated with heat waves and called attention to the need for region-specific climate adaptation planning.

  16. Selections from 2017: Atmosphere Around an Earth-Like Planet

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2017-12-01

    Editors note:In these last two weeks of 2017, well be looking at a few selections that we havent yet discussed on AAS Nova from among the most-downloaded paperspublished in AAS journals this year. The usual posting schedule will resume in January.Detection of the Atmosphere of the 1.6 M Exoplanet GJ 1132 bPublished March2017Main takeaway:An atmosphere was detected around the roughly Earth-size exoplanet GJ 1132 b using a telescope at the European Southern Observatory in Chile. A team of scientists led byJohn Southworth (Keele University) found features indicating the presence of an atmosphere in theobservationsof this 1.6-Earth-mass planet as it transits an M-dwarf host star. This is the lowest-mass planet with a detected atmosphere thus far.Why its interesting:M dwarfs are among the most common stars in our galaxy, and weve found manyEarth-sizeexoplanets in or near the habitable zones around M-dwarf hosts. But M dwarfs are also more magnetically active than stars like our Sun, suggesting that the planets in M-dwarfhabitable zones may not be able to support life due to stellar activity eroding their atmospheres. The detection of an atmosphere around GJ 1132 b suggests that some planets orbiting M dwarfsare able to retain their atmospheres which meansthat these planetsmay be an interesting place to search for life after all.How the atmosphere was detected:The measured planetary radius for GJ 1132 b as a function of the wavelength used to observe it. [Southworth et al. 2017]When measuring the radius of GJ 1132 b based on its transits, the authors noticed that the planet appeared to be largerwhen observed in some wavelengths than in others. This can beexplained if the planet has asurface radius of 1.4 Earth radii, overlaid by an atmosphere that extends out another few tenths of an Earth radius. The atmosphere, which may consist of water vapor or methane, is transparent to some wavelengths and absorbs others which is why the apparent size of the planet changes

  17. Volcanism and an Ancient Atmosphere on the Moon

    NASA Astrophysics Data System (ADS)

    Taylor, G. J.

    2017-11-01

    One of the distinguishing features of the Moon is its flimsy atmosphere, which has a pressure 300 trillion times smaller than Earth's pressure at sea level. The density is so low that gas molecules rarely collide and readily escape into space. Micrometeorites hit the surface at their full cosmic velocities and the solar wind implants hydrogen, helium, carbon, and other elements into the dusty lunar surface. This airless body has been like this for billions of years. However, Debra Needham (NASA Marshall Space Flight Center) and David Kring (Center for Lunar Science and Exploration at the Lunar and Planetary Institute, Houston) show that the Moon probably had a significant atmosphere for about 70 million years during the peak production rate of the lunar maria 3.5 billion years ago. The maria (dark regions that decorate the lunar nearside) are composed of overlapping lava flows. Needham and Kring show that the lavas would have transported sufficient volatiles such as carbon monoxide, sulfur gases, and H2O to the surface to create an atmosphere. The volcanism would have released about 20 quadrillion kilograms of gases, creating an atmosphere with a pressure 50% higher than in the current Martian atmosphere. Calculations show that the loss rate to space from this atmosphere would have been 10 kilograms per second, implying that it would take about 70 million years to remove this volcanically produced atmosphere.

  18. NDE to Manage Atmospheric SCC in Canisters for Dry Storage of Spent Fuel: An Assessment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meyer, Ryan M.; Pardini, Allan F.; Cuta, Judith M.

    2013-09-01

    This report documents efforts to assess representative horizontal (Transuclear NUHOMS®) and vertical (Holtec HI-STORM) storage systems for the implementation of non-destructive examination (NDE) methods or techniques to manage atmospheric stress corrosion cracking (SCC) in canisters for dry storage of used nuclear fuel. The assessment is conducted by assessing accessibility and deployment, environmental compatibility, and applicability of NDE methods. A recommendation of this assessment is to focus on bulk ultrasonic and eddy current techniques for direct canister monitoring of atmospheric SCC. This assessment also highlights canister regions that may be most vulnerable to atmospheric SCC to guide the use of bulkmore » ultrasonic and eddy current examinations. An assessment of accessibility also identifies canister regions that are easiest and more difficult to access through the ventilation paths of the concrete shielding modules. A conceivable sampling strategy for canister inspections is to sample only the easiest to access portions of vulnerable regions. There are aspects to performing an NDE inspection of dry canister storage system (DCSS) canisters for atmospheric SCC that have not been addressed in previous performance studies. These aspects provide the basis for recommendations of future efforts to determine the capability and performance of eddy current and bulk ultrasonic examinations for atmospheric SCC in DCSS canisters. Finally, other important areas of investigation are identified including the development of instrumented surveillance specimens to identify when conditions are conducive for atmospheric SCC, characterization of atmospheric SCC morphology, and an assessment of air flow patterns over canister surfaces and their influence on chloride deposition.« less

  19. Charging and coagulation of radioactive and nonradioactive particles in the atmosphere

    DOE PAGES

    Kim, Yong-ha; Yiacoumi, Sotira; Nenes, Athanasios; ...

    2016-01-01

    Charging and coagulation influence one another and impact the particle charge and size distributions in the atmosphere. However, few investigations to date have focused on the coagulation kinetics of atmospheric particles accumulating charge. This study presents three approaches to include mutual effects of charging and coagulation on the microphysical evolution of atmospheric particles such as radioactive particles. The first approach employs ion balance, charge balance, and a bivariate population balance model (PBM) to comprehensively calculate both charge accumulation and coagulation rates of particles. The second approach involves a much simpler description of charging, and uses a monovariate PBM and subsequentmore » effects of charge on particle coagulation. The third approach is further simplified assuming that particles instantaneously reach their steady-state charge distributions. It is found that compared to the other two approaches, the first approach can accurately predict time-dependent changes in the size and charge distributions of particles over a wide size range covering from the free molecule to continuum regimes. The other two approaches can reliably predict both charge accumulation and coagulation rates for particles larger than about 0.04 micrometers and atmospherically relevant conditions. These approaches are applied to investigate coagulation kinetics of particles accumulating charge in a radioactive neutralizer, the urban atmosphere, and an atmospheric system containing radioactive particles. Limitations of the approaches are discussed.« less

  20. Pressure and Humidity Measurements at the MSL Landing Site Supported by Modeling of the Atmospheric Conditions

    NASA Astrophysics Data System (ADS)

    Harri, A.; Savijarvi, H. I.; Schmidt, W.; Genzer, M.; Paton, M.; Kauhanen, J.; Atlaskin, E.; Polkko, J.; Kahanpaa, H.; Kemppinen, O.; Haukka, H.

    2012-12-01

    The Mars Science Laboratory (MSL) called Curiosity Rover landed safely on the Martian surface at the Gale crater on 6th August 2012. Among the MSL scientific objectives are investigations of the Martian environment that will be addressed by the Rover Environmental Monitoring Station (REMS) instrument. It will investigate habitability conditions at the Martian surface by performing a versatile set of environmental measurements including accurate observations of pressure and humidity of the Martian atmosphere. This paper describes the instrumental implementation of the MSL pressure and humidity measurement devices and briefly analyzes the atmospheric conditions at the Gale crater by modeling efforts using an atmospheric modeling tools. MSL humidity and pressure devices are based on proprietary technology of Vaisala, Inc. Humidity observations make use of Vaisala Humicap® relative humidity sensor heads and Vaisala Barocap® sensor heads are used for pressure observations. Vaisala Thermocap® temperature sensors heads are mounted in a close proximity of Humicap® and Barocap® sensor heads to enable accurate temperature measurements needed for interpretation of Humicap® and Barocap® readings. The sensor heads are capacitive. The pressure and humidity devices are lightweight and are based on a low-power transducer controlled by a dedicated ASIC. The transducer is designed to measure small capacitances in order of a few pF with resolution in order of 0.1fF (femtoFarad). The transducer design has a good spaceflight heritage, as it has been used in several previous missions, for example Mars mission Phoenix as well as the Cassini Huygens mission. The humidity device has overall dimensions of 40 x 25 x 55 mm. It weighs18 g, and consumes 15 mW of power. It includes 3 Humicap® sensor heads and 1 Thermocap®. The transducer electronics and the sensor heads are placed on a single multi-layer PCB protected by a metallic Faraday cage. The Humidity device has measurement range

  1. An efficient and accurate technique to compute the absorption, emission, and transmission of radiation by the Martian atmosphere

    NASA Technical Reports Server (NTRS)

    Lindner, Bernhard Lee; Ackerman, Thomas P.; Pollack, James B.

    1990-01-01

    CO2 comprises 95 pct. of the composition of the Martian atmosphere. However, the Martian atmosphere also has a high aerosol content. Dust particles vary from less than 0.2 to greater than 3.0. CO2 is an active absorber and emitter in near IR and IR wavelengths; the near IR absorption bands of CO2 provide significant heating of the atmosphere, and the 15 micron band provides rapid cooling. Including both CO2 and aerosol radiative transfer simultaneously in a model is difficult. Aerosol radiative transfer requires a multiple scattering code, while CO2 radiative transfer must deal with complex wavelength structure. As an alternative to the pure atmosphere treatment in most models which causes inaccuracies, a treatment was developed called the exponential sum or k distribution approximation. The chief advantage of the exponential sum approach is that the integration over k space of f(k) can be computed more quickly than the integration of k sub upsilon over frequency. The exponential sum approach is superior to the photon path distribution and emissivity techniques for dusty conditions. This study was the first application of the exponential sum approach to Martian conditions.

  2. Fluid transport container

    DOEpatents

    DeRoos, Bradley G.; Downing, Jr., John P.; Neal, Michael P.

    1995-01-01

    An improved fluid container for the transport, collection, and dispensing of a sample fluid that maintains the fluid integrity relative to the conditions of the location at which it is taken. More specifically, the invention is a fluid sample transport container that utilizes a fitment for both penetrating and sealing a storage container under controlled conditions. Additionally, the invention allows for the periodic withdrawal of portions of the sample fluid without contamination or intermixing from the environment surrounding the sample container.

  3. Atmosphere self-cleaning under humidity conditions and influence of the snowflakes and artificial light interaction for water dissociation simulated by the means of COMSOL

    NASA Astrophysics Data System (ADS)

    Cocean, A.; Cocean, I.; Cazacu, M. M.; Bulai, G.; Iacomi, F.; Gurlui, S.

    2018-06-01

    The self-cleaning of the atmosphere under humidity conditions is observed due to the change in emission intensity when chemical traces are investigated with DARLIOES - the advanced LIDAR based on space- and time-resolved RAMAN and breakdown spectroscopy in conditions of consistent humidity of atmosphere. The determination was performed during the night, in the wintertime under conditions of high humidity and snowfall, in urban area of Iasi. The change in chemical composition of the atmosphere detected was assumed to different chemical reactions involving presence of the water. Water dissociation that was registered during spectral measurements is explained by a simulation of the interaction between artificial light and snowflakes - virtually designed in a spherical geometry - in a wet air environment, using COMSOL Multiphysics software. The aim of the study is to explain the decrease or elimination of some of the toxic trace chemical compounds in the process of self-cleaning in other conditions than the sun light interaction for further finding application for air cleaning under artificial conditions.

  4. Present state of knowledge of the upper atmosphere 1988: An assessment report

    NASA Astrophysics Data System (ADS)

    Watson, R. T.; Prather, M. J.; Kurylo, M. J.

    1988-06-01

    This document was issued in response to the Clean Air Act Amendments of 1977, Public Law 95-95, mandating that NASA and other key agencies submit biennial reports to Congress and EPA. NASA is to report on the state of our knowledge of the upper atmosphere, particularly the stratosphere. This is the sixth ozone assessment report submitted to Congress and the concerned regulatory agencies. Part 1 contains an outline of the NASA Upper Atmosphere Research Program and summaries of the research efforts supported during the last two years. An assessment is presented of the state of knowledge as of March 15, 1988 when the Ozone Trends Panel, organized by NASA and co-sponsored by the World Meteorological Organization, NOAA, FAA and the United Nations Environment Program released an executive summary of its findings from a critical in-depth study involving over 100 scientists from 12 countries. Chapter summaries of the International Ozone Trends Panel Report form the major part of this report. Two other sections are Model Predictions of Future Ozone Change and Chemical Kinetics and Photochemical Data for Use in Stratospheric Modeling. Each of these sections and the report in its entirety were peer reviewed.

  5. Present state of knowledge of the upper atmosphere 1988: An assessment report

    NASA Technical Reports Server (NTRS)

    Watson, R. T.; Prather, M. J.; Kurylo, M. J.

    1988-01-01

    This document was issued in response to the Clean Air Act Amendments of 1977, Public Law 95-95, mandating that NASA and other key agencies submit biennial reports to Congress and EPA. NASA is to report on the state of our knowledge of the upper atmosphere, particularly the stratosphere. This is the sixth ozone assessment report submitted to Congress and the concerned regulatory agencies. Part 1 contains an outline of the NASA Upper Atmosphere Research Program and summaries of the research efforts supported during the last two years. An assessment is presented of the state of knowledge as of March 15, 1988 when the Ozone Trends Panel, organized by NASA and co-sponsored by the World Meteorological Organization, NOAA, FAA and the United Nations Environment Program released an executive summary of its findings from a critical in-depth study involving over 100 scientists from 12 countries. Chapter summaries of the International Ozone Trends Panel Report form the major part of this report. Two other sections are Model Predictions of Future Ozone Change and Chemical Kinetics and Photochemical Data for Use in Stratospheric Modeling. Each of these sections and the report in its entirety were peer reviewed.

  6. 3D-radiative transfer in terrestrial atmosphere: An efficient parallel numerical procedure

    NASA Astrophysics Data System (ADS)

    Bass, L. P.; Germogenova, T. A.; Nikolaeva, O. V.; Kokhanovsky, A. A.; Kuznetsov, V. S.

    2003-04-01

    Light propagation and scattering in terrestrial atmosphere is usually studied in the framework of the 1D radiative transfer theory [1]. However, in reality particles (e.g., ice crystals, solid and liquid aerosols, cloud droplets) are randomly distributed in 3D space. In particular, their concentrations vary both in vertical and horizontal directions. Therefore, 3D effects influence modern cloud and aerosol retrieval procedures, which are currently based on the 1D radiative transfer theory. It should be pointed out that the standard radiative transfer equation allows to study these more complex situations as well [2]. In recent year the parallel version of the 2D and 3D RADUGA code has been developed. This version is successfully used in gammas and neutrons transport problems [3]. Applications of this code to radiative transfer in atmosphere problems are contained in [4]. Possibilities of code RADUGA are presented in [5]. The RADUGA code system is an universal solver of radiative transfer problems for complicated models, including 2D and 3D aerosol and cloud fields with arbitrary scattering anisotropy, light absorption, inhomogeneous underlying surface and topography. Both delta type and distributed light sources can be accounted for in the framework of the algorithm developed. The accurate numerical procedure is based on the new discrete ordinate SWDD scheme [6]. The algorithm is specifically designed for parallel supercomputers. The version RADUGA 5.1(P) can run on MBC1000M [7] (768 processors with 10 Gb of hard disc memory for each processor). The peak productivity is equal 1 Tfl. Corresponding scalar version RADUGA 5.1 is working on PC. As a first example of application of the algorithm developed, we have studied the shadowing effects of clouds on neighboring cloudless atmosphere, depending on the cloud optical thickness, surface albedo, and illumination conditions. This is of importance for modern satellite aerosol retrieval algorithms development. [1] Sobolev

  7. Detection of an oxygen atmosphere on Jupiter's moon Europa.

    PubMed

    Hall, D T; Strobel, D F; Feldman, P D; McGrath, M A; Weaver, H A

    1995-02-23

    Europa, the second large satellite out from Jupiter, is roughly the size of Earth's Moon, but unlike the Moon, it has water ice on its surface. There have been suggestions that an oxygen atmosphere should accumulate around such a body, through reactions which break up the water molecules and form molecular hydrogen and oxygen. The lighter H2 molecules would escape from Europa relatively easily, leaving behind an atmosphere rich in oxygen. Here we report the detection of atomic oxygen emission from Europa, which we interpret as being produced by the simultaneous dissociation and excitation of atmospheric O2 by electrons from Jupiter's magnetosphere. Europa's molecular oxygen atmosphere is very tenuous, with a surface pressure about 10(-11) that of the Earth's atmosphere at sea level.

  8. Some questions concerning safety on emergency landing in dense layers of the atmosphere of radionuclide energy sources based on plutonium-238 for autonomous station {open_quote}{open_quote}MARS-94/96{close_quote}{close_quote}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Makhorin, O.I.; Pustovalov, A.A.; Zhabin, V.N.

    1996-03-01

    This paper describes results of investigations of questions concerning integrity keeping for an ampula containing radionuclide fuel (Pu-238) under conditions of emergency landing in dense layers of the atmosphere and under conditions of fire on launching pad. {copyright} {ital 1996 American Institute of Physics.}

  9. CANOPY CONDUCTANCE OF PINUS TAEDA, LIQUIDAMBAR STYRACIFLUA AND QUERCUS PHELLOS UNDER VARYING ATMOSPHERIC AND SOIL WATER CONDITION

    EPA Science Inventory

    Sap flow, and atmospheric and soil water data were collected in closed-top chambers under conditions of high soil water potential for saplings of Liquidambar styraciflua L., Quercus phellos L., and Pinus taeda L., three co-occurring species in the southeastern USA. Responses of c...

  10. Atmosphere-Ocean Coupling through Trace Gases

    NASA Astrophysics Data System (ADS)

    Tegtmeier, S.; Atlas, E. L.; Krüger, K.; Lennartz, S. T.; Marandino, C. A.; Patra, P. K.; Quack, B.; Schlundt, C.

    2017-12-01

    Halogen- and sulfur-containing trace gases, as well as other volatile organic compounds (VOCs, such as isoprene) from biogeochemical marine sources are important constituents of the ocean and the atmosphere. These compounds exert wide-ranging influence on atmospheric chemical processes and climate interactions, as well as on human health in coastal regions. In their reactive form, they can affect the oxidizing capacity of the air and lead to the formation of new particles or the growth of existing ones. In this contribution, marine derived halogen-, sulfur-, and oxygen-containing compounds will be discussed. Their net flux into the atmosphere and their impact on atmospheric processes is analyzed based on observations and model simulations.

  11. Characterization of detonation soot produced during steady and overdriven conditions for three high explosive formulations

    NASA Astrophysics Data System (ADS)

    Podlesak, David W.; Huber, Rachel C.; Amato, Ronald S.; Dattelbaum, Dana M.; Firestone, Millicent A.; Gustavsen, Richard L.; Johnson, Carl E.; Mang, Joseph T.; Ringstrand, Bryan S.

    2017-01-01

    The detonation of high explosives (HE) produces a dense fluid of molecular gases and solid carbon. The solid detonation carbon contains various carbon allotropes such as detonation nanodiamonds, onion-like carbon, graphite and amorphous carbon, with the formation of the different forms dependent upon pressure, temperature and the environmental conditions of the detonation. We have collected solid carbon residues from controlled detonations of three HE formulations (Composition B-3, PBX 9501, and PBX 9502). Soot was collected from experiments designed to produce both steady and overdriven conditions, and from detonations in both an ambient (air) atmosphere and in an inert Ar atmosphere. Differences in solid carbon residues were quantified using X-ray photoelectron spectroscopy and carbon isotope measurements. Environmental conditions, HE formulation, and peak pressures influenced the amount of and isotopic composition of the carbon in the soot. Detonations in an Ar atmosphere produced greater amounts of carbon soot with lower δ13C values than those in ambient air. Therefore, solid carbon residues continued to evolve after detonation due to excess oxygen in the ambient air detonations. As well, higher peak pressures in overdriven conditions produced less carbon soot with, in general, higher δ13C values. Consequently, while overdriven conditions only produced peak pressures for a limited duration, it was enough to influence the composition of the solid carbon residues.

  12. Formation of nucleobases in a Miller-Urey reducing atmosphere.

    PubMed

    Ferus, Martin; Pietrucci, Fabio; Saitta, Antonino Marco; Knížek, Antonín; Kubelík, Petr; Ivanek, Ondřej; Shestivska, Violetta; Civiš, Svatopluk

    2017-04-25

    The Miller-Urey experiments pioneered modern research on the molecular origins of life, but their actual relevance in this field was later questioned because the gas mixture used in their research is considered too reducing with respect to the most accepted hypotheses for the conditions on primordial Earth. In particular, the production of only amino acids has been taken as evidence of the limited relevance of the results. Here, we report an experimental work, combined with state-of-the-art computational methods, in which both electric discharge and laser-driven plasma impact simulations were carried out in a reducing atmosphere containing NH 3 + CO. We show that RNA nucleobases are synthesized in these experiments, strongly supporting the possibility of the emergence of biologically relevant molecules in a reducing atmosphere. The reconstructed synthetic pathways indicate that small radicals and formamide play a crucial role, in agreement with a number of recent experimental and theoretical results.

  13. Formation of nucleobases in a Miller–Urey reducing atmosphere

    PubMed Central

    Ferus, Martin; Pietrucci, Fabio; Saitta, Antonino Marco; Knížek, Antonín; Kubelík, Petr; Ivanek, Ondřej; Shestivska, Violetta; Civiš, Svatopluk

    2017-01-01

    The Miller–Urey experiments pioneered modern research on the molecular origins of life, but their actual relevance in this field was later questioned because the gas mixture used in their research is considered too reducing with respect to the most accepted hypotheses for the conditions on primordial Earth. In particular, the production of only amino acids has been taken as evidence of the limited relevance of the results. Here, we report an experimental work, combined with state-of-the-art computational methods, in which both electric discharge and laser-driven plasma impact simulations were carried out in a reducing atmosphere containing NH3 + CO. We show that RNA nucleobases are synthesized in these experiments, strongly supporting the possibility of the emergence of biologically relevant molecules in a reducing atmosphere. The reconstructed synthetic pathways indicate that small radicals and formamide play a crucial role, in agreement with a number of recent experimental and theoretical results. PMID:28396441

  14. Nitration of pollen aeroallergens by nitrate ion in conditions simulating the liquid water phase of atmospheric particles.

    PubMed

    Ghiani, Alessandra; Bruschi, Maurizio; Citterio, Sandra; Bolzacchini, Ezio; Ferrero, Luca; Sangiorgi, Giorgia; Asero, Riccardo; Perrone, Maria Grazia

    2016-12-15

    Pollen aeroallergens are present in atmospheric particulate matter (PM) where they can be found in coarse biological particles such as pollen grains (aerodynamic diameter d ae >10μm), as well as fragments in the finest respirable particles (PM2.5; d ae <2.5μm). Nitration of tyrosine residues in pollen allergenic proteins can occur in polluted air, and inhalation and deposition of these nitrated proteins in the human respiratory tract may lead to adverse health effects by enhancing the allergic response in population. Previous studies investigated protein nitration by atmospheric gaseous pollutants such as nitrogen dioxide and ozone. In this work we report, for the first time, a study on protein nitration by nitrate ion in aqueous solution, at nitrate concentrations and pH conditions simulating those occurring in the atmospheric aerosol liquid water phase. Experiments have been carried out on the Bovine serum albumin (BSA) protein and the recombinant Phleum pratense allergen (Phl p 2) both in the dark and under UV-A irradiation (range 4-90Wm -2 ) to take into account thermal and/or photochemical nitration processes. For the latter protein, modifications in the allergic response after treatment with nitrate solutions have been evaluated by immunoblot analyses using sera from grass-allergic patients. Experimental results in bulk solutions showed that protein nitration in the dark occurs only in dilute nitrate solutions and under very acidic conditions (pH<3 for BSA; pH<2.2 for Phl p 2), while nitration is always observed (at pH0.5-5) under UV-A irradiation, both in dilute and concentrated nitrate solutions, being significantly enhanced at the lowest pH values. In some cases, protein nitration resulted in an increase of the allergic response. Copyright © 2016. Published by Elsevier B.V.

  15. Secondary organic aerosol formation during evaporation of droplets containing atmospheric aldehydes, amines, and ammonium sulfate.

    PubMed

    Galloway, Melissa M; Powelson, Michelle H; Sedehi, Nahzaneen; Wood, Stephanie E; Millage, Katherine D; Kononenko, Julia A; Rynaski, Alec D; De Haan, David O

    2014-12-16

    Reactions of carbonyl compounds in cloudwater produce organic aerosol mass through in-cloud oxidation and during postcloud evaporation. In this work, postcloud evaporation was simulated in laboratory experiments on evaporating droplets that contain mixtures of common atmospheric aldehydes with ammonium sulfate (AS), methylamine, or glycine. Aerosol diameters were measured during monodisperse droplet drying experiments and during polydisperse droplet equilibration experiments at 75% relative humidity, and condensed-phase mass was measured in bulk thermogravimetric experiments. The evaporation of water from a droplet was found to trigger aldehyde reactions that increased residual particle volumes by a similar extent in room-temperature experiments, regardless of whether AS, methylamine, or glycine was present. The production of organic aerosol volume was highest from droplets containing glyoxal, followed by similar production from methylglyoxal or hydroxyacetone. Significant organic aerosol production was observed for glycolaldehyde, acetaldehyde, and formaldehyde only at elevated temperatures in thermogravimetric experiments. In many experiments, the amount of aerosol produced was greater than the sum of all solutes plus nonvolatile solvent impurities, indicating the additional presence of trapped water, likely caused by increasing aerosol-phase viscosity due to oligomer formation.

  16. Titan's atmospheric chemistry: Photolysis of gas mixtures containing hydrogen cyanide and carbon monoxide at 185 and 254 nm

    NASA Astrophysics Data System (ADS)

    Tran, Buu N.; Force, Michael; Briggs, Robert G.; Ferris, James P.; Persans, Peter; Chera, John J.

    2008-01-01

    The formation of organic compounds in the atmosphere of Titan is an ongoing process of the generation of complex organics from the simplest hydrocarbon, methane. Solar radiation and magnetosphere electrons are the main energy sources that drive the reactions in Titan's atmosphere. Since energy from solar radiation is 200 times greater than that from magnetosphere electrons, we have investigated the products formed by the action of UV radiation (185 and 254 nm) on a mixture of gases containing nitrogen, methane, hydrogen, acetylene, ethylene, and cyanoacetylene, the basic gas mixture (BGM) that simulates aspects of Titan's atmosphere using a flow reactor [Tran, B.N., Ferris, J.P., Chera, J.J., 2003a. Icarus 162, 114-124; Tran, B.N., Joseph, J.C., Force, M., Briggs, R.G., Vuitton, V., Ferris, J.P., 2005. Icarus 177, 106-115]. The present research extends these studies by the addition of carbon monoxide and hydrogen cyanide to the BGM. Quantum yields for the loss of reactants and the formation of volatile products were determined and compared with those measured in the absence of the hydrogen cyanide and carbon monoxide. The GCMS analyses of the volatile photolysis products from the BGM, with added hydrogen cyanide, had a composition similar to that of the BGM while the photolysis products of the BGM with added carbon monoxide contained many oxygenated compounds. The infrared spectrum of the corresponding solid product revealed the absorption band of a ketone group, which was probably formed from the reaction of carbon monoxide with the free radicals generated by photolysis of acetylene and ethylene. Of particular interest was the observation that the addition of HCN to the gas mixture only resulted in a very small change in the C/N ratio and in the intensity of the C tbnd N frequency at 2210 cm -1 in the infrared spectrum suggesting that little HCN is incorporated into the haze analog. The C/N ratio of the haze analogs was found to be in the 10-12 range. The UV

  17. An experimental study of oscillatory thermocapillary convection in cylindrical containers

    NASA Technical Reports Server (NTRS)

    Kamotani, Y.; Lee, J. H.; Ostrach, S.; Pline, A.

    1992-01-01

    An experimental study of oscillatory thermocapillary in small cylindrical containers with a heating wire placed along the center axis is performed by investigating the flow structures and temperature distributions under various conditions. To supplement the flow visualization the surface is scanned using an infrared imager. Here, 2 cS viscosity (Pr = 27) silicone oil is used as the test fluid. It is observed that beyond a certain temperature difference between the container wall and the heating wire, a distinctive unsteady flow pattern appears. This unsteady phenomenon is identified as oscillatory thermocapillary. After the onset of oscillations the flow structure becomes nonaxisymmetric and wave motion is observed at the free surface. It is shown that the critical temperature difference is independent of container dimensions if the aspect ratio is fixed.

  18. Bacterial communities of fresh goat meat packaged in modified atmosphere.

    PubMed

    Carrizosa, Elia; Benito, María José; Ruiz-Moyano, Santiago; Hernández, Alejandro; Villalobos, Maria Del Carmen; Martín, Alberto; Córdoba, María de Guía

    2017-08-01

    The objective of this work was to study the growth and development of fortuitous flora and food pathogens in fresh goat meat packaged under modified atmospheres containing two different concentrations of CO 2 . Meat samples were stored at 10 °C under two different modified-atmosphere packing (MAP) conditions: treatment A had 45% CO 2  + 20% O 2  + 35% N 2 and treatment B had 20% CO 2  + 55% O 2  + 25% N 2 . During 14 days of storage, counts of each bacterial group and dominant species identification by 16S rRNA gene sequencing were performed to determine the microbial diversity present. The MAP condition used for treatment A was a more effective gas mixture for increasing the shelf life of fresh goat meat, significantly reducing the total number of viable bacteria and enterobacteria counts. Members of the Enterobacteriaceae family were the most common contaminants, although Hafnia alvei was dominant in treatment A and Serratia proteamaculans in treatment B. Identification studies at the species level showed that different microorganisms develop under different storage conditions, reflecting the importance of gas composition in the modified atmosphere on the bacterial community. This work provides new insights into the microbial changes of goat meat storage under different MAP conditions, which will be beneficial for the meat industry. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Damage induced to DNA by low-energy (0-30 eV) electrons under vacuum and atmospheric conditions.

    PubMed

    Brun, Emilie; Cloutier, Pierre; Sicard-Roselli, Cécile; Fromm, Michel; Sanche, Léon

    2009-07-23

    In this study, we show that it is possible to obtain data on DNA damage induced by low-energy (0-30 eV) electrons under atmospheric conditions. Five monolayer films of plasmid DNA (3197 base pairs) deposited on glass and gold substrates are irradiated with 1.5 keV X-rays in ultrahigh vacuum and under atmospheric conditions. The total damage is analyzed by agarose gel electrophoresis. The damage produced on the glass substrate is attributed to energy absorption from X-rays, whereas that produced on the gold substrate arises from energy absorption from both the X-ray beam and secondary electrons emitted from the gold surface. By analysis of the energy of these secondary electrons, 96% are found to have energies below 30 eV with a distribution peaking at 1.4 eV. The differences in damage yields recorded with the gold and glass substrates is therefore essentially attributed to the interaction of low-energy electrons with DNA under vacuum and hydrated conditions. From these results, the G values for low-energy electrons are determined to be four and six strand breaks per 100 eV, respectively.

  20. On-Orbit Measurements of the ISS Atmosphere by the Vehicle Cabin Atmosphere Monitor

    NASA Technical Reports Server (NTRS)

    Darrach, M. R.; Chutjian, A.; Bornstein, B. J.; Croonquist, A. P.; Garkanian, V.; Haemmerle, V. R.; Hofman, J.; Heinrichs, W. M.; Karmon, D.; Kenny, J.; hide

    2011-01-01

    We report on trace gas and major atmospheric constituents results obtained by the Vehicle Cabin Atmosphere Monitor (VCAM) during operations aboard the International Space Station (ISS). VCAM is an autonomous environmental monitor based on a miniature gas chromatograph/mass spectrometer. It was flown to the ISS on shuttle mission STS-131 and commenced operations on 6/10/10. VCAM provides measurements of ppb-to-ppm levels of volatile trace-gas constituents, and of the atmospheric major constituents (nitrogen, oxygen, argon, and carbon dioxide) in a space vehicle or station. It is designed to operate autonomously and maintenance-free, approximately once per day, with a self-contained gas supply sufficient for a one-year lifetime. VCAM is designed to detect and identify 90% of the target compounds at their 180-day Spacecraft Maximum Allowable Concentration levels.

  1. SWiFT site atmospheric characterization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kelley, Christopher Lee; Ennis, Brandon Lee

    2016-01-01

    Historical meteorological tall tower data are analyzed from the Texas Tech University 200 m tower to characterize the atmospheric trends of the Scaled Wind Farm Technologies (SWiFT) site. In this report the data are analyzed to reveal bulk atmospheric trends, temporal trends and correlations of atmospheric variables. Through this analysis for the SWiFT turbines the site International Electrotechnical Commission (IEC) classification is determined to be class III-C. Averages and distributions of atmospheric variables are shown, revealing large fluctuations and the importance of understanding the actual site trends as opposed to simply using averages. The site is significantly directional with themore » average wind speed from the south, and particularly so in summer and fall. Site temporal trends are analyzed from both seasonal (time of the year) to daily (hour of the day) perspectives. Atmospheric stability is seen to vary most with time of day and less with time of year. Turbulence intensity is highly correlated with stability, and typical daytime unstable conditions see double the level of turbulence intensity versus that experienced during the average stable night. Shear, veer and atmospheric stability correlations are shown, where shear and veer are both highest for stable atmospheric conditions. An analysis of the Texas Tech University tower anemometer measurements is performed which reveals the extent of the tower shadow effects and sonic tilt misalignment.« less

  2. Haze aerosols in the atmosphere of early Earth: manna from heaven.

    PubMed

    Trainer, Melissa G; Pavlov, Alexander A; Curtis, Daniel B; McKay, Christopher P; Worsnop, Douglas R; Delia, Alice E; Toohey, Darin W; Toon, Owen B; Tolbert, Margaret A

    2004-01-01

    An organic haze layer in the upper atmosphere of Titan plays a crucial role in the atmospheric composition and climate of that moon. Such a haze layer may also have existed on the early Earth, providing an ultraviolet shield for greenhouse gases needed to warm the planet enough for life to arise and evolve. Despite the implications of such a haze layer, little is known about the organic material produced under early Earth conditions when both CO(2) and CH(4) may have been abundant in the atmosphere. For the first time, we experimentally demonstrate that organic haze can be generated in different CH(4)/CO(2) ratios. Here, we show that haze aerosols are able to form at CH(4) mixing ratios of 1,000 ppmv, a level likely to be present on early Earth. In addition, we find that organic hazes will form at C/O ratios as low as 0.6, which is lower than the predicted value of unity. We also show that as the C/O ratio decreases, the organic particles produced are more oxidized and contain biologically labile compounds. After life arose, the haze may thus have provided food for biota.

  3. Laboratory measurements of the 3.7-20 cm wavelength opacity of sulfur dioxide and carbon dioxide under simulated conditions for the deep atmosphere of Venus

    NASA Astrophysics Data System (ADS)

    Steffes, Paul G.; Shahan, Patrick; Christopher Barisich, G.; Bellotti, Amadeo

    2015-01-01

    In the past two decades, multiple observations of Venus have been made at X-Band (3.6 cm) using the Jansky Very Large Array (VLA), and maps have been created of the 3.6 cm emission from Venus (see, e.g., Devaraj, K. [2011]. The Centimeter- and Millimeter-Wavelength Ammonia Absorption Spectra under Jovian Conditions. PhD Thesis, Georgia Institute of Technology, Atlanta, GA). Since the emission morphology is related both to surface features and to deep atmospheric absorption from CO2 and SO2 (see, e.g., Butler, B.J., Steffes, P.G., Suleiman, S.H., Kolodner, M.A., Jenkins, J.M. [2001]. Icarus 154, 226-238), knowledge of the microwave absorption properties of sulfur dioxide in a carbon dioxide atmosphere under conditions for the deep atmosphere of Venus is required for proper interpretation. Except for a single measurement campaign conducted at a single wavelength (3.2 cm) over 40 years ago (Ho, W., Kaufman, I.A., Thaddeus, P. [1966]. J. Geophys. Res. 71, 5091-5108), no measurements of the centimeter-wavelength properties of any Venus atmospheric constituent have been conducted under conditions characteristic of the deep atmosphere (pressures from 10 to 92 bars and temperatures from 400 to 700 K). New measurements of the microwave properties of SO2 and CO2 at wavelengths from 3.7 to 20 cm have been conducted under simulated conditions for the deep atmosphere of Venus, using a new high-pressure system. Results from this measurement campaign conducted at temperatures from 430 K to 560 K and at pressures up to 92 bars are presented. Results indicate that the model for the centimeter-wavelength opacity from pure CO2 (Ho, W., Kaufman, I.A., Thaddeus, P. [1966]. J. Geophys. Res. 71, 5091-5108), is valid over the entire centimeter-wavelength range under simulated conditions for the deep atmosphere of Venus. Additionally, the laboratory results indicate that both of the models for the centimeter-wavelength opacity of SO2 in a CO2 atmosphere from Suleiman et al. (Suleiman, S

  4. 7 CFR 42.110 - Sampling plans for tightened condition of container inspection; Tables II and II-A.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing Practices), DEPARTMENT OF AGRICULTURE COMMODITY STANDARDS AND STANDARD CONTAINER REGULATIONS STANDARDS FOR CONDITION OF FOOD CONTAINERS...

  5. 7 CFR 42.109 - Sampling plans for normal condition of container inspection, Tables I and I-A.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing Practices), DEPARTMENT OF AGRICULTURE COMMODITY STANDARDS AND STANDARD CONTAINER REGULATIONS STANDARDS FOR CONDITION OF FOOD CONTAINERS Procedures...

  6. Atmospheric degradation of lindane and 1,3-dichloroacetone in the gas phase. Studies at the EUPHORE simulation chamber.

    PubMed

    Vera, Teresa; Borrás, Esther; Chen, Jianmin; Coscollá, Clara; Daële, Véronique; Mellouki, Abdelwahid; Ródenas, Milagros; Sidebottom, Howard; Sun, Xiaomin; Yusá, Vicent; Zhang, Xue; Muñoz, Amalia

    2015-11-01

    The gas-phase degradation of lindane (γ-isomer of hexachlorocyclohexane) towards OH radical was investigated under atmospheric conditions at the large outdoor European simulation chamber (EUPHORE) in Valencia, Spain. The rate coefficient for the reaction of hydroxyl radicals with lindane was measured using a conventional relative rate technique leading to a value of kOH(lindane)=(6.4±1.6)×10(-13) cm(3) molecule(-1) s(-1) at 300±5 K and atmospheric pressure. The results suggest that the tropospheric lifetime of lindane with respect to OH radicals is approximately 20 days. The product distribution studies on the OH-initiated oxidation of lindane provided evidence that the major initial carbon-containing oxidation product is pentachlorocyclohexanone. 1,3-Dichloroacetone was employed as a model compound for pentachlorocyclohexanone, and an investigation of its photolysis and reaction with OH radicals under atmospheric conditions was carried out. The data indicate that the atmospheric degradation of pentachlorocyclohexanone would be relatively rapid, and would not form persistent organic compounds. Theoretical study was also employed to calculate possible degradation pathways. Mechanism for reaction of lindane with OH radicals is proposed, and C-Cl bond cleavage is discussed. OH abstraction is considered to be a reasonable way for Cl to escape during degradation. The atmospheric implications of the use of lindane as an insecticide are discussed. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Integrated circuit electrometer and sweep circuitry for an atmospheric probe

    NASA Technical Reports Server (NTRS)

    Zimmerman, L. E.

    1971-01-01

    The design of electrometer circuitry using an integrated circuit operational amplifier with a MOSFET input is described. Input protection against static voltages is provided by a dual ultra low leakage diode or a neon lamp. Factors affecting frequency response leakage resistance, and current stability are discussed, and methods are suggested for increasing response speed and for eliminating leakage resistance and current instabilities. Based on the above, two practical circuits, one having a linear response and the other a logarithmic response, were designed and evaluated experimentally. The design of a sweep circuit to implement mobility measurements using atmospheric probes is presented. A triangular voltage waveform is generated and shaped to contain a step in voltage from zero volts in both positive and negative directions.

  8. Chlorine-containing salts as water ice nucleating particles on Mars

    NASA Astrophysics Data System (ADS)

    Santiago-Materese, D. L.; Iraci, L. T.; Clapham, M. E.; Chuang, P. Y.

    2018-03-01

    Water ice cloud formation on Mars largely is expected to occur on the most efficient ice nucleating particle available. Salts have been observed on the Martian surface and have been known to facilitate water cloud formation on Earth. We examined heterogeneous ice nucleation onto sodium chloride and sodium perchlorate substrates under Martian atmospheric conditions, in the range of 150 to 180 K and 10-7 to 10-5 Torr water partial pressure. Sub-155 K data for the critical saturation ratio (Scrit) suggests an exponential model best describes the temperature-dependence of nucleation onset of water ice for all substrates tested. While sodium chloride does not facilitate water ice nucleation more easily than bare silicon, sodium perchlorate does support depositional nucleation at lower saturation levels than other substrates shown and is comparable to smectite-rich clay in its ability to support cloud initiation. Perchlorates could nucleate water ice at partial pressures up to 40% lower than other substrates examined to date under Martian atmospheric conditions. These findings suggest air masses on Mars containing uplifted salts such as perchlorates could form water ice clouds at lower saturation ratios than in air masses absent similar particles.

  9. The role of hydrological initial conditions on Atmospheric River floods in the Russian River basin

    NASA Astrophysics Data System (ADS)

    Cao, Q.; Mehran, A.; Ralph, M.; Cannon, F.; Lettenmaier, D. P.

    2017-12-01

    A body of work over the last decade or so has demonstrated that most major floods along the U.S. West Coast are attributable to Atmospheric Rivers (ARs). Antecedent hydrological conditions play an important part in the natural links between precipitation and floods, and this is especially the case in the Pacific Coastal region where precipitation is strongly winter-dominant, and many potentially flood-inducing events occur relatively early in the wet season. The Russian River Basin has these characteristics, the result of which is mostly dry soils at the onset of the fall precipitation season. There is therefore a tradeoff in terms of flood potential between the strength of AR events, and the time history of previous precipitation that has begun to wet soils and raise local water tables. In order to examine flood responses associated with varying precursor hydrological conditions, we first constructed a data set of AR events that were coincident with Peaks Over Threshold (POT) extreme discharge events at selected USGS stream gauges throughout the Russian River basin. We investigated the role of antecedent soil moisture and water table conditions on historical AR flooding, initially using an exploratory data analysis approach. We then implemented the Distributed Hydrology-Soil-Vegetation Model (DHSVM) over the entire basin and conducted modeling experiments for each of the POT events under climatological and extreme antecedent conditions. We reconstructed climatological soil moisture by assimilating in situ observations into long-term soil moisture simulations from the UCLA Western U.S. Drought Monitoring System. We explore an envelope of frequency distributions of floods given a range of AR-related extreme precipitation and various initial hydrologic conditions, which eventually should have implications for flood management decision-making.

  10. Preconditioning of the YSZ-NiO Fuel Cell Anode in Hydrogenous Atmospheres Containing Water Vapor.

    PubMed

    Vasyliv, Bogdan; Podhurska, Viktoriya; Ostash, Orest

    2017-12-01

    The YSZ-NiO ceramics for solid oxide fuel cells (SOFCs) anode have been investigated. A series of specimens were singly reduced in a hydrogenous atmosphere (Ar-5 vol% H 2 mixture) at 600 °C under the pressure of 0.15 MPa or subjected to 'reduction in the mixture-oxidation in air' (redox) cycling at 600 °C. The YSZ-Ni cermets formed in both treatment conditions were then aged in 'water vapor in Ar-5 vol% H 2 mixture' atmosphere at 600 °C under the pressure of 0.15 MPa. Additionally, the behaviour of the as-received material in this atmosphere was studied. It was revealed that small amount of water vapor in Ar-5 vol% H 2 mixture (water vapor pressure below 0.03 MPa) does not affect the reduction of the nickel phase in the YSZ-NiO ceramics, but causes some changes in the YSZ-Ni cermet structure. In particular, nanopore growth in tiny Ni particles takes place. At higher concentration of water vapor in the mixture (water vapor pressure above 0.03-0.05 MPa), converse changes in the kinetics of reduction occur. The best physical and mechanical properties were revealed for the material treated by redox cycling after holding at 600 °C in water depleted gas mixture. The dual effect of water vapor on nickel-zirconia anode behaviour is discussed basing on scanning electron microscopy analysis data, material electrical conductivity, and strength.

  11. Desizing of Starch Containing Cotton Fabrics Using Near Atmospheric Pressure, Cold DC Plasma Treatment

    NASA Astrophysics Data System (ADS)

    Prasath, A.; Sivaram, S. S.; Vijay Anand, V. D.; Dhandapani, Saravanan

    2013-03-01

    An attempt has been made to desize the starch containing grey cotton fabrics using the DC plasma with oxygen as the gaseous medium. Process conditions of the plasma reactor were optimized in terms of distance between the plates (3.2 cm), applied voltage (600 V) and applied pressure (0.01 bar) to obtain maximum desizing efficiency. No discolouration was observed in the hot water extracts of the desized sample in presence of iodine though relatively higher solvent extractable impurities (4.53 %) were observed in the plasma desized samples compared to acid desized samples (3.38 %). Also, significant weight loss, improvements in plasma desized samples were observed than that of grey fabrics in terms of drop absorbency.

  12. Chemistry and evolution of Titan's atmosphere

    NASA Technical Reports Server (NTRS)

    Strobel, D. F.

    1982-01-01

    The chemistry and evolution of Titan's atmosphere are reviewed, in light of the scientific findings from the Voyager mission. It is argued that the present N2 atmosphere may be Titan's initial atmosphere, rather than one photochemically derived from an original NH3 atmosphere. The escape rate of hydrogen from Titan is controlled by photochemical production from hydrocarbons. CH4 is irreversibly converted to less hydrogen-rich hydrocarbons, which over geologic time accumulate on the surface to a layer thickness of about 0.5 km. Magnetospheric electrons interacting with Titan's exosphere may dissociate enough N2 into hot, escaping N atoms to remove about 0.2 of Titan's present atmosphere over geologic time. The energy dissipation of magnetospheric electrons exceeds solar EUV energy deposition in Titan's atmosphere by an order of magnitude, and is the principal driver of nitrogen photochemistry. The environmental conditions in Titan's upper atmosphere are favorable to building up complex molecules, particularly in the north polar cap region.

  13. Effect of Shadowing on Survival of Bacteria under Conditions Simulating the Martian Atmosphere and UV Radiation▿ †

    PubMed Central

    Osman, Shariff; Peeters, Zan; La Duc, Myron T.; Mancinelli, Rocco; Ehrenfreund, Pascale; Venkateswaran, Kasthuri

    2008-01-01

    Spacecraft-associated spores and four non-spore-forming bacterial isolates were prepared in Atacama Desert soil suspensions and tested both in solution and in a desiccated state to elucidate the shadowing effect of soil particulates on bacterial survival under simulated Martian atmospheric and UV irradiation conditions. All non-spore-forming cells that were prepared in nutrient-depleted, 0.2-μm-filtered desert soil (DSE) microcosms and desiccated for 75 days on aluminum died, whereas cells prepared similarly in 60-μm-filtered desert soil (DS) microcosms survived such conditions. Among the bacterial cells tested, Microbacterium schleiferi and Arthrobacter sp. exhibited elevated resistance to 254-nm UV irradiation (low-pressure Hg lamp), and their survival indices were comparable to those of DS- and DSE-associated Bacillus pumilus spores. Desiccated DSE-associated spores survived exposure to full Martian UV irradiation (200 to 400 nm) for 5 min and were only slightly affected by Martian atmospheric conditions in the absence of UV irradiation. Although prolonged UV irradiation (5 min to 12 h) killed substantial portions of the spores in DSE microcosms (∼5- to 6-log reduction with Martian UV irradiation), dramatic survival of spores was apparent in DS-spore microcosms. The survival of soil-associated wild-type spores under Martian conditions could have repercussions for forward contamination of extraterrestrial environments, especially Mars. PMID:18083857

  14. Evidence of weak land-atmosphere coupling under varying bare soil conditions: Are fully coupled Darcy/Navier-Stokes models necessary for simulating soil moisture dynamics?

    NASA Astrophysics Data System (ADS)

    Illangasekare, T. H.; Trautz, A. C.; Howington, S. E.; Cihan, A.

    2017-12-01

    It is a well-established fact that the land and atmosphere form a continuum in which the individual domains are coupled by heat and mass transfer processes such as bare-soil evaporation. Soil moisture dynamics can be simulated at the representative elementary volume (REV) scale using decoupled and fully coupled Darcy/Navier-Stokes models. Decoupled modeling is an asynchronous approach in which flow and transport in the soil and atmosphere is simulated independently; the two domains are coupled out of time-step via prescribed flux parameterizations. Fully coupled modeling in contrast, solves the governing equations for flow and transport in both domains simultaneously with the use of coupling interface boundary conditions. This latter approach, while being able to provide real-time two-dimensional feedbacks, is considerably more complex and computationally intensive. In this study, we investigate whether fully coupled models are necessary, or if the simpler decoupled models can sufficiently capture soil moisture dynamics under varying land preparations. A series of intermediate-scale physical and numerical experiments were conducted in which soil moisture distributions and evaporation estimates were monitored at high spatiotemporal resolutions for different heterogeneous packing and soil roughness scenarios. All experimentation was conducted at the newly developed Center for Experimental Study of Subsurface Environmental Processes (CESEP) wind tunnel-porous media user test-facility at the Colorado School of. Near-surface atmospheric measurements made during the experiments demonstrate that the land-atmosphere coupling was relatively weak and insensitive to the applied edaphic and surface conditions. Simulations with a decoupled multiphase heat and mass transfer model similarly show little sensitivity to local variations in atmospheric forcing; a single, simple flux parameterization can sufficiently capture the soil moisture dynamics (evaporation and redistribution

  15. An Extended View of Ozone and Chemistry in the Atmosphere of Mars

    NASA Technical Reports Server (NTRS)

    Smith, Ramsey L.; Fast, Kelly E.; Kostiuk, T.; Lefevre, Frank; Hewagama, Tilak; Livengood, Timothy A.

    2011-01-01

    We present an ongoing effort to characterize chemistry in Mars' atmosphere in multiple seasons on timescales longer than spaceflight missions through coordinated efforts by GSFC's HIPWAC spectrometer and Mars Express SPICAM, archival measurements, and tests/application of photochemical models. The trace species ozone (03) is an effective probe of Mars' atmospheric chemistry because it is destroyed by odd-hydrogen species (HOx, from water vapor photolysis). Observed ozone is a critical test for specific predictions by 3-D photochemical models (spatial, diurnal, seasonal). Coordinated measurements by HIPWAC and SPICAM quantitatively linked mission data to the 23-year GSFC ozone data record and also revealed unanticipated inter-decadal variability of same-season ozone abundances, a possible indicator of changing cloud activity (heterogeneous sink for HOx). A detailed study of long-term conditions is critical to characterizing the predictability of Mars' seasonal chemical behavior, particularly in light of the implications of and the lack of explanation for reported methane behavior.

  16. Atmospheric sampling glow discharge ionization source

    DOEpatents

    McLuckey, Scott A.; Glish, Gary L.

    1989-01-01

    An atmospheric sampling glow discharge ionization source that can be used in combination with an analytical instrument which operates at high vacuum, such as a mass spectrometer. The atmospheric sampling glow discharge ionization source comprises a chamber with at least one pair of electrodes disposed therein, an inlet for a gaseous sample to be analyzed and an outlet communicating with an analyzer which operates at subatmospheric pressure. The ionization chamber is maintained at a pressure below atmospheric pressure, and a voltage difference is applied across the electrodes to induce a glow discharge between the electrodes, so that molecules passing through the inlet are ionized by the glow discharge and directed into the analyzer. The ionization source accepts the sample under atmospheric pressure conditions and processes it directly into the high vacuum instrument, bridging the pressure gap and drawing off unwanted atmospheric gases. The invention also includes a method for analyzing a gaseous sample using the glow discharge ionization source described above.

  17. Atmospheric sampling glow discharge ionization source

    DOEpatents

    McLuckey, S.A.; Glish, G.L.

    1989-07-18

    An atmospheric sampling glow discharge ionization source that can be used in combination with an analytical instrument which operates at high vacuum, such as a mass spectrometer. The atmospheric sampling glow discharge ionization source comprises a chamber with at least one pair of electrodes disposed therein, an inlet for a gaseous sample to be analyzed and an outlet communicating with an analyzer which operates at subatmospheric pressure. The ionization chamber is maintained at a pressure below atmospheric pressure, and a voltage difference is applied across the electrodes to induce a glow discharge between the electrodes, so that molecules passing through the inlet are ionized by the glow discharge and directed into the analyzer. The ionization source accepts the sample under atmospheric pressure conditions and processes it directly into the high vacuum instrument, bridging the pressure gap and drawing off unwanted atmospheric gases. The invention also includes a method for analyzing a gaseous sample using the glow discharge ionization source described above. 3 figs.

  18. Simulating super earth atmospheres in the laboratory

    NASA Astrophysics Data System (ADS)

    Claudi, R.; Erculiani, M. S.; Galletta, G.; Billi, D.; Pace, E.; Schierano, D.; Giro, E.; D'Alessandro, M.

    2016-01-01

    Several space missions, such as JWST, TESS and the very recently proposed ARIEL, or ground-based experiments, as SPHERE and GPI, have been proposed to measure the atmospheric transmission, reflection and emission spectra of extrasolar planets. The planet atmosphere characteristics and possible biosignatures will be inferred by studying planetary spectra in order to identify the emission/absorption lines/bands from atmospheric molecules such as water (H2O), carbon monoxide (CO), methane (CH4), ammonia (NH3), etc. In particular, it is important to know in detail the optical characteristics of gases in the typical physical conditions of the planetary atmospheres and how these characteristics could be affected by radiation driven photochemical and biochemical reaction. The main aim of the project `Atmosphere in a Test Tube' is to provide insights on exoplanet atmosphere modification due to biological intervention. This can be achieved simulating planetary atmosphere at different pressure and temperature conditions under the effects of radiation sources, used as proxies of different bands of the stellar emission. We are tackling the characterization of extrasolar planet atmospheres by mean of innovative laboratory experiments described in this paper. The experiments are intended to reproduce the conditions on warm earths and super earths hosted by low-mass M dwarfs primaries with the aim to understand if a cyanobacteria population hosted on a Earth-like planet orbiting an M0 star is able to maintain its photosynthetic activity and produce traceable signatures.

  19. Modelling exoplanet atmospheres

    NASA Astrophysics Data System (ADS)

    Rauer, Heike

    While the number of known extrasolar planets is steadily increasing recent years have shown the beginning of a new phase of our understanding of exoplanets due to the spectroscopic determi-nation of their atmospheric composition. Atmospheres of hot extrasolar giant gas planets have already been investigated by UV, optical and IR spectroscopy today. In future, spectroscopy of large, terrestrial planets ("super-Earth"), in particular planets in the habitable zone of their parent star, will be a major goal of investigation. Planning future space satellite observations of super-Earths requires modelling of atmospheres of terrestrial planets in different environments, such as e.g. central star type, orbital distance, as well as different atmospheric compositions. Whether planets able to support life "as we know it" exist outside our solar system is one of the most profound questions today. It can be addressed by characterizing the atmospheres of ter-restrial extrasolar planets searching for spectroscopic absorption bands of biomarker molecules. An overview of expected planetary conditions in terms of their habitability will be presented for several model scenarios of terrestrial extrasolar planets.

  20. Scenario based optimization of a container vessel with respect to its projected operating conditions

    NASA Astrophysics Data System (ADS)

    Wagner, Jonas; Binkowski, Eva; Bronsart, Robert

    2014-06-01

    In this paper the scenario based optimization of the bulbous bow of the KRISO Container Ship (KCS) is presented. The optimization of the parametrically modeled vessel is based on a statistically developed operational profile generated from noon-to-noon reports of a comparable 3600 TEU container vessel and specific development functions representing the growth of global economy during the vessels service time. In order to consider uncertainties, statistical fluctuations are added. An analysis of these data lead to a number of most probable upcoming operating conditions (OC) the vessel will stay in the future. According to their respective likeliness an objective function for the evaluation of the optimal design variant of the vessel is derived and implemented within the parametrical optimization workbench FRIENDSHIP Framework. In the following this evaluation is done with respect to vessel's calculated effective power based on the usage of potential flow code. The evaluation shows, that the usage of scenarios within the optimization process has a strong influence on the hull form.

  1. Gas chromatographic concepts for the analysis of planetary atmospheres

    NASA Technical Reports Server (NTRS)

    Valentin, J. R.; Cullers, D. K.; Hall, K. W.; Krekorian, R. L.; Phillips, J. B.

    1991-01-01

    Over the last few years, new gas chromatographic (GC) concepts were developed for use on board spacecraft or any other restricted environments for determining the chemical composition of the atmosphere and surface material of various planetary bodies. Future NASA Missions include an entry probe that will be sent to Titan and various spacecraft that will land on Mars. In order to be able to properly respond to the mission science requirements and physical restrictions imposed on the instruments by these missions, GC analytical techniques are being developed. Some of these techniques include hardware and mathematical techniques that will improve GC sensitivity and increase the sampling rate of a GC descending through a planetary atmosphere. The technique of Multiplex Gas Chromatography (MGC) is an example of a technique that was studied in a simulated Titan atmosphere. In such an environment, the atmospheric pressure at instrument deployment is estimated to be a few torr. Thus, at such pressures, the small amount of sample that is acquired might not be enough to satisfy the detection requirements of the gas chromatograph. In MGC, many samples are pseudo-randomly introduced to the chromatograph without regard to elution of preceding components. The resulting data is then reduced using mathematical techniques such as cross-correlation of Fourier Transforms. Advantages realized from this technique include: improvement in detection limits of several orders of magnitude and increase in the number of analyses that can be conducted in a given period of time. Results proving the application of MGC at very low pressures emulating the same atmospheric pressures that a Titan Probe will encounter when the instruments are deployed are presented. The sample used contained hydrocarbons that are expected to be found in Titan's atmosphere. In addition, a new selective modulator was developed to monitor water under Martian atmospheric conditions. Since this modulator is selective only

  2. Regional climatic effects of atmospheric SO2 on Mars

    NASA Technical Reports Server (NTRS)

    Postawko, S. E.; Fanale, F. P.

    1992-01-01

    The conditions under which the valley networks on Mars may have formed remains controversial. The magnitude of an atmospheric greenhouse effect by an early massive CO2 atmosphere has recently been questioned by Kasting. Recent calculations indicate that if solar luminosity were less than about 86 percent of its current value, formation of CO2 clouds in the Martian atmosphere would depress the atmospheric lapse rate and reduce the magnitude of surface warming. In light of recent revisions of magma generation on Mars during each Martian epoch, and the suggestions by Wanke et al. that the role of liquid SO2 should be more carefully explored, we have recalculated the potential greenhouse warming by atmospheric SO2 on Mars, with an emphasis on more localized effects. In the vicinity of an active eruption, the concentration of atmospheric SO2 will be higher than if it is assumed that the erupted SO2 is instantaneously globally distributed. The local steady-state concentration of SO2 is a function of the rate at which it is released, its atmospheric lifetime, and the rate at which local winds act to disperse the SO2. We have made estimates of eruption rates, length of eruption, and dispersion rates of volcanically released SO2, for a variety of atmospheric conditions and atmospheric lifetimes of SO2 to explore the maximum regional climatic effect of SO2.

  3. Field induced disintegration of glycerol solutions under vacuum and atmospheric pressure conditions studied by optical microscopy and mass spectrometry

    NASA Astrophysics Data System (ADS)

    Lüttgens, U.; Dülcks, Th.; Röllgen, F. W.

    1992-04-01

    The ion formation in both electrohydrodynamic (EH) and electrospray (ES) mass spectrometry (MS) is based on the electrohydrodynamic disintegration of sample solutions which are passed through a capillary biased at high potential. Vacuum is applied in EH and atmospheric pressure in ES MS. For glycerol applied as solvent in EH MS optical studies of its disintegration behavior revealed a change from axial spray modes to a rim emission mode in vacuum and a change from axial spray modes to a droplet ejection mode at atmospheric pressure conditions with increasing potential. EH MS investigations of the ion emission from only one or a few emission sites at the rim of the capillary showed a pulsed ion emission whose frequency increased with applied potential. The pulsed ion emission is attributed to an imbalance between the supply and loss of liquid at an emission site. By lowering the surface tension of glycerol with dodecyl sulfate sodium salt an increase of mass spectral ion intensity by more than one order of magnitude could be observed.

  4. Development and evaluation of an instantaneous atmospheric corrosion rate monitor

    NASA Astrophysics Data System (ADS)

    Mansfeld, F.; Jeanjaquet, S. L.; Kendig, M. W.; Roe, D. K.

    1985-06-01

    A research program was carried out in which a new instantaneous atmospheric corrosion rate monitor (ACRM) was developed and evaluated, and equipment was constructed which will allow the use of many sensors in an economical way in outdoor exposures. In the first task, the ACRM was developed and tested in flow chambers in which relative humidity and gaseous and particulate pollutant levels can be controlled. Diurnal cycles and periods of rain were simulated. The effects of aerosols were studied. A computerized system was used for collection, storage, and analysis of the electrochemical data. In the second task, a relatively inexpensive electronics system for control of the ACRM and measurement of atmospheric corrosion rates was designed and built. In the third task, calibration of deterioration rates of various metallic and nonmetallic materials with the response of the ACRMs attached to these materials was carried out under controlled environmental conditions using the system developed in the second task. A Quality Assurance project plan was prepared with inputs from the Rockwell International Environmental Monitoring and Service Center and Quality Assurance System audits were performed.

  5. Study of the chemical composition of atmospheric aerosol particles in Hungary: a review

    NASA Astrophysics Data System (ADS)

    Mészáros, E.

    The methods used in Hungarian laboratories to study the chemical composition of atmospheric aerosol particles over the last 30 years are reviewed. Individual particles were identified by topochemical techniques and morphological identification with an electron microscope. Bulk analyses were also carried out by applying wet chemical methods, and more recently by the PIXE procedure. The results gained are summarized in connection with the general development of atmospheric aerosol science during the last decades. These studies demonstrated that cloud condensation nuclei are water soluble Aitken sized particles which are composed of sulfates. Neutralized and acidic sulfate particles constitute the main class of fine aerosol particles under continental and oceanic background conditions. Coarse particles contain mostly sodium, silicon and aluminium. The formation and origin of particles in different size ranges are also discussed.

  6. Response of near-surface currents in the Indian Ocean to the anomalous atmospheric condition in 2015

    NASA Astrophysics Data System (ADS)

    Utari, P. A.; Nurkhakim, M. Y.; Setiabudidaya, D.; Iskandar, I.

    2018-05-01

    Anomalous ocean-atmosphere conditions were detected in the tropical Indian Ocean during boreal spring to boreal winter 2015. It was suggested that the anomalous conditions were characteristics of the positive Indian Ocean Dipole (pIOD) event. The purpose of this investigation was to investigate the response of near-surface currents in the tropical Indian Ocean to the anomalous atmospheric condition in 2015. Near-surface current from OSCAR (Ocean Surface Current Analyses Real Time) reanalysis data combined with the sea surface temperature (SST) data from OISST – NOAA, sea surface height (SSH) and surface winds from the ECMWF were used in this investigation. The analysis showed that the evolution of 2015 pIOD started in June/July, peaked in the September and terminated in late November 2015. Correlated with the evolution of the pIOD, easterly winds anomalies were detected along the equator. As the oceanic response to these easterly wind anomalies, the surface currents anomalously westward during the peak of the pIOD. It was interesting to note that the evolution of 2015 pIOD event was closely related to the ocean wave dynamics as revealed by the SSH data. Downwelling westward propagating Rossby waves were detected in the southwestern tropical Indian Ocean. Once reached the western boundary of the Indian Ocean, they were redirected back into interior Indian Ocean and propagating eastward as the downwelling Kelvin waves.

  7. Atmospheric and wind modeling for ATC

    NASA Technical Reports Server (NTRS)

    Slater, Gary L.

    1990-01-01

    The section on atmospheric modeling covers the following topics: the standard atmosphere, atmospheric variations, atmosphere requirements for ATC, and implementation of a software model for Center/Tracon Advisory System (CTAS). The section on wind modeling covers the following topics: wind data -- NOAA profiler system; wind profile estimation; incorporation of various data types into filtering scheme; spatial and temporal variation; and software implementation into CTAS. The appendices contain Matlab codes for atmospheric routines and for wind estimation.

  8. Atmospheric Photochemistry

    NASA Technical Reports Server (NTRS)

    Massey, Harrie; Potter, A. E.

    1961-01-01

    The upper atmosphere offers a vast photochemical laboratory free from solid surfaces, so all reactions take place in the gaseous phase. At 30 km altitude the pressure has fallen to about one-hundredth of that at ground level, and we shall, rather arbitrarily, regard the upper atmosphere as beginning at that height. By a little less than 100 km the pressure has fallen to 10(exp -3) mm Hg and is decreasing by a power of ten for every 15 km increase in altitude. Essentially we are concerned then with the photochemistry of a nitrogen-oxygen mixture under low-pressure conditions in which photo-ionization, as well as photodissociation, plays an important part. Account must also be taken of the presence of rare constituents, such as water vapour and its decomposition products, including particularly hydroxyl, oxides of carbon, methane and, strangely enough, sodium, lithium and calcium. Many curious and unfamiliar reactions occur in the upper atmosphere. Some of them are luminescent, causing the atmosphere to emit a dim light called the airglow. Others, between gaseous ions and neutral molecules, are almost a complete mystery at this time. Similar interesting phenomena must occur in other planetary atmospheres, and they might be predicted if sufficient chemical information were available.

  9. Relationship between container ship underwater noise levels and ship design, operational and oceanographic conditions

    PubMed Central

    McKenna, Megan F.; Wiggins, Sean M.; Hildebrand, John A.

    2013-01-01

    Low-frequency ocean ambient noise is dominated by noise from commercial ships, yet understanding how individual ships contribute deserves further investigation. This study develops and evaluates statistical models of container ship noise in relation to design characteristics, operational conditions, and oceanographic settings. Five-hundred ship passages and nineteen covariates were used to build generalized additive models. Opportunistic acoustic measurements of ships transiting offshore California were collected using seafloor acoustic recorders. A 5–10 dB range in broadband source level was found for ships depending on the transit conditions. For a ship recorded multiple times traveling at different speeds, cumulative noise was lowest at 8 knots, 65% reduction in operational speed. Models with highest predictive power, in order of selection, included ship speed, size, and time of year. Uncertainty in source depth and propagation affected model fit. These results provide insight on the conditions that produce higher levels of underwater noise from container ships.

  10. Propagation of an Airy beam through the atmosphere.

    PubMed

    Ji, Xiaoling; Eyyuboğlu, Halil T; Ji, Guangming; Jia, Xinhong

    2013-01-28

    In this paper, the effect of thermal blooming of an Airy beam propagating through the atmosphere is examined, and the effect of atmospheric turbulence is not considered. The changes of the intensity distribution, the centroid position and the mean-squared beam width of an Airy beam propagating through the atmosphere are studied by using the four-dimensional (4D) computer code of the time-dependent propagation of Airy beams through the atmosphere. It is shown that an Airy beam can't retain its shape and the structure when the Airy beam propagates through the atmosphere due to thermal blooming except for the short propagation distance, or the short time, or the low beam power. The thermal blooming results in a central dip of the center lobe, and causes the center lobe to spread and decrease. In contrast with the center lobe, the side lobes are less affected by thermal blooming, such that the intensity maximum of the side lobe may be larger than that of the center lobe. However, the cross wind can reduce the effect of thermal blooming. When there exists the cross wind velocity vx in x direction, the dependence of centroid position in x direction on vx is not monotonic, and there exists a minimum, but the centroid position in y direction is nearly independent of vx.

  11. Mars Global Reference Atmospheric Model 2010 Version: Users Guide

    NASA Technical Reports Server (NTRS)

    Justh, H. L.

    2014-01-01

    This Technical Memorandum (TM) presents the Mars Global Reference Atmospheric Model 2010 (Mars-GRAM 2010) and its new features. Mars-GRAM is an engineering-level atmospheric model widely used for diverse mission applications. Applications include systems design, performance analysis, and operations planning for aerobraking, entry, descent and landing, and aerocapture. Additionally, this TM includes instructions on obtaining the Mars-GRAM source code and data files as well as running Mars-GRAM. It also contains sample Mars-GRAM input and output files and an example of how to incorporate Mars-GRAM as an atmospheric subroutine in a trajectory code.

  12. Comparing Amazon Basin CO2 fluxes from an atmospheric inversion with TRENDY biosphere models

    NASA Astrophysics Data System (ADS)

    Diffenbaugh, N. S.; Alden, C. B.; Harper, A. B.; Ahlström, A.; Touma, D. E.; Miller, J. B.; Gatti, L. V.; Gloor, M.

    2015-12-01

    Net exchange of carbon dioxide (CO2) between the atmosphere and the terrestrial biosphere is sensitive to environmental conditions, including extreme heat and drought. Of particular importance for local and global carbon balance and climate are the expansive tracts of tropical rainforest located in the Amazon Basin. Because of the Basin's size and ecological heterogeneity, net biosphere CO2 exchange with the atmosphere remains largely un-constrained. In particular, the response of net CO2 exchange to changes in environmental conditions such as temperature and precipitation are not yet well known. However, proper representation of these relationships in biosphere models is a necessary constraint for accurately modeling future climate and climate-carbon cycle feedbacks. In an effort to compare biosphere response to climate across different biosphere models, the TRENDY model intercomparison project coordinated the simulation of CO2 fluxes between the biosphere and atmosphere, in response to historical climate forcing, by 9 different Dynamic Global Vegetation Models. We examine the TRENDY model results in the Amazon Basin, and compare this "bottom-up" method with fluxes derived from a "top-down" approach to estimating net CO2 fluxes, obtained through atmospheric inverse modeling using CO2 measurements sampled by aircraft above the basin. We compare the "bottom-up" and "top-down" fluxes in 5 sub-regions of the Amazon basin on a monthly basis for 2010-2012. Our results show important periods of agreement between some models in the TRENDY suite and atmospheric inverse model results, notably the simulation of increased biosphere CO2 loss during wet season heat in the Central Amazon. During the dry season, however, model ability to simulate observed response of net CO2 exchange to drought was varied, with few models able to reproduce the "top-down" inversion flux signals. Our results highlight the value of atmospheric trace gas observations for helping to narrow the

  13. Radiative transfer in an atmosphere-ocean system.

    PubMed

    Plass, G N; Kattawar, G W

    1969-02-01

    The radiation field for an atmosphere-ocean system is calculated by a Monte Carlo method. In the atmosphere, both Rayleigh scattering by the molecules and Mie scattering by the aerosols and water droplets, when present, as well as molecular and aerosol absorption are included in the model. Similarly, in the ocean, both Rayleigh scattering by the water molecules and Mie scattering by the hydrosols as well as absorption by the water molecules and hydrosols are considered. Separate scattering functions are calculated from the Mie theory for the water droplets in clouds, the aerosols, and the hydrosols with an appropriate and different size distribution in each case. The photon path is followed accurately in three dimensions with new scattering angles determined from the appropriate scattering function including the strong forward scattering peak. Both the reflected and refracted rays, as well as the rays that undergo total internal reflection, are followed at the ocean surface, which is assumed smooth. The ocean floor is represented by a Lambert surface. The radiance and flux are given for two wavelengths, three solar angles, shallow and deep oceans, various albedos of ocean floor, various depths in atmosphere and ocean, and with and without clouds in the atmosphere.

  14. Improved Mars Upper Atmosphere Climatology

    NASA Technical Reports Server (NTRS)

    Bougher, S. W.

    2004-01-01

    The detailed characterization of the Mars upper atmosphere is important for future Mars aerobraking activities. Solar cycle, seasonal, and dust trends (climate) as well as planetary wave activity (weather) are crucial to quantify in order to improve our ability to reasonably depict the state of the Mars upper atmosphere over time. To date, our best information is found in the Mars Global Surveyor (MGS) Accelerometer (ACC) database collected during Phase 1 (Ls = 184 - 300; F10.7 = 70 - 90) and Phase 2 (Ls = 30 - 90; F10.7 = 90 - 150) of aerobraking. This database (100 - 170 km) consists of thermospheric densities, temperatures, and scale heights, providing our best constraints for exercising the coupled Mars General Circulation Model (MGCM) and the Mars Thermospheric General Circulation Model (MTGCM). The Planetary Data System (PDS) contains level 0 and 2 MGS Accelerometer data, corresponding to atmospheric densities along the orbit track. Level 3 products (densities, temperatures, and scale heights at constant altitudes) are also available in the PDS. These datasets provide the primary model constraints for the new MGCM-MTGCM simulations summarized in this report. Our strategy for improving the characterization of the Mars upper atmospheres using these models has been three-fold : (a) to conduct data-model comparisons using the latest MGS data covering limited climatic and weather conditions at Mars, (b) to upgrade the 15-micron cooling and near-IR heating rates in the MGCM and MTGCM codes for ad- dressing climatic variations (solar cycle and seasonal) important in linking the lower and upper atmospheres (including migrating tides), and (c) to exercise the detailed coupled MGCM and MTGCM codes to capture and diagnose the planetary wave (migrating plus non-migrating tidal) features throughout the Mars year. Products from this new suite of MGCM-MTGCM coupled simulations are being used to improve our predictions of the structure of the Mars upper atmosphere for the

  15. Development of an Electrostatic Precipitator to Remove Martian Atmospheric Dust from ISRU Gas Intakes During Planetary Exploration Missions

    NASA Technical Reports Server (NTRS)

    Clements, J. Sidney; Thompson, Samuel M.; Cox, Nathan D.; Johansen, Michael R.; Williams, Blakeley S.; Hogue, Michael D.; Lowder, M. Loraine; Calle, Carlos I.

    2011-01-01

    Manned exploration missions to Mars will need dependable in situ resource utilization (ISRU) for the production of oxygen and other commodities. One of these resources is the Martian atmosphere itself, which is composed of carbon dioxide (95.3%), nitrogen (2.7%), argon (1.6%), oxygen (0.13%), carbon monoxide (0.07%), and water vapor (0.03%), as well as other trace gases. However, the Martian atmosphere also contains relatively large amounts of dust, uploaded by frequent dust devils and high Winds. To make this gas usable for oxygen extraction in specialized chambers requires the removal of most of the dust. An electrostatic precipitator (ESP) system is an obvious choice. But with an atmospheric pressure just one-hundredth of Earth's, electrical breakdown at low voltages makes the implementation of the electrostatic precipitator technology very challenging. Ion mobility, drag forces, dust particle charging, and migration velocity are also affected because the low gas pressure results in molecular mean free paths that are approximately one hundred times longer than those at Earth .atmospheric pressure. We report here on our efforts to develop this technology at the Kennedy Space Center, using gases with approximately the same composition as the Martian atmosphere in a vacuum chamber at 9 mbars, the atmospheric pressure on Mars. We also present I-V curves and large particle charging data for various versions of wire-cylinder and rod-cylinder geometry ESPs. Preliminary results suggest that use of an ESP for dust collection on Mars may be feasible, but further testing with Martian dust simulant is required.

  16. Calcium oxalate syntheses in a solution containing glucose by the atmospheric pressure plasma irradiation

    NASA Astrophysics Data System (ADS)

    Kurake, Naoyuki; Tanaka, Hiromasa; Ishikawa, Kenji; Nakamura, Kae; Kajiyama, Hiroaki; Kikkawa, Fumitaka; Mizuno, Masaaki; Yamanishi, Yoko; Hori, Masaru

    2016-09-01

    The non-equilibrium atmospheric pressure plasma (NEAPP) has been attracted attention because of its characteristic high reactivity even in a low temperature so that various phenomena by the NEAPP such as a sterilization, growth promotion and so forth have been reported around the world. Previously, we reported the NEAPP irradiation generated the calcium oxalate crystals in the medium, which contains 31 kinds of organics and inorganics. The Dulbecco's Modified Eagle Medium (DMEM) which was used in previous study is composed of no oxalate. Interestingly, not only crystallization but also synthesis of the oxalate was occurred by the NEAPP irradiation. Also the crystallization details were analyzed with the X-ray diffraction (XRD). In this study, we have clarified the mechanism on the crystallization due that D-glucose, calcium ion and bicarbonate ions are minimum essential components. The oxalate synthesis was proved by the gas chromatography and mass spectrometer (GC-MS). Finally, we conclude that a supersaturation of oxalic acid synthesized in those 3 species by the NEAPP.

  17. An Atmospheric Atomic Oxygen Source for Cleaning Smoke Damaged Art Objects

    NASA Technical Reports Server (NTRS)

    Banks, Bruce A.; Rutledge, Sharon K.; Norris, Mary Jo

    1998-01-01

    Soot and other carbonaceous combustion products deposited on the surfaces of porous ceramic, stone, ivory and paper can be difficult to remove and can have potentially unsatisfactory results using wet chemical and/or abrasive cleaning techniques. An atomic oxygen source which operates in air at atmospheric pressure, using a mixture of oxygen and helium, has been developed to produce an atomic oxygen beam which is highly effective in oxidizing soot deposited on surfaces by burning candles made of paraffin, oil or rendered animal fat. Atomic oxygen source operating conditions and the results of cleaning soot from paper, gesso, ivory, limestone and water color-painted limestone are presented,

  18. Specific interaction between negative atmospheric ions and organic compounds in atmospheric pressure corona discharge ionization mass spectrometry.

    PubMed

    Sekimoto, Kanako; Sakai, Mami; Takayama, Mitsuo

    2012-06-01

    The interaction between negative atmospheric ions and various types of organic compounds were investigated using atmospheric pressure corona discharge ionization (APCDI) mass spectrometry. Atmospheric negative ions such as O(2)(-), HCO(3)(-), COO(-)(COOH), NO(2)(-), NO(3)(-), and NO(3)(-)(HNO(3)) having different proton affinities served as the reactant ions for analyte ionization in APCDI in negative-ion mode. The individual atmospheric ions specifically ionized aliphatic and aromatic compounds with various functional groups as atmospheric ion adducts and deprotonated analytes. The formation of the atmospheric ion adducts under certain discharge conditions is most likely attributable to the affinity between the analyte and atmospheric ion and the concentration of the atmospheric ion produced under these conditions. The deprotonated analytes, in contrast, were generated from the adducts of the atmospheric ions with higher proton affinity attributable to efficient proton abstraction from the analyte by the atmospheric ion.

  19. Comparative analysis of different loading conditions on large container ships from the perspective of the stability requirement

    NASA Astrophysics Data System (ADS)

    Stanca, C.; Acomi, N.; Ancuta, C.; Georgescu, S.

    2015-11-01

    Container ships carry cargoes that are considered light from the weight point of view, compared to their volumetric capacity. This fact makes the still water vertical bending moment to be in hogging condition. Thus, the double bottom structure is permanent subject to compressive load. With the enlargement of container ships to the Post Panamax vessels, the breadth to depth ratio tends to be increased comparative to those of Panamax container ships that present restriction related to maximum breadth of the ship.The current studies on new build models reveal the impossibility for Panamax container ships to comply with the minimum metacentric height value of stability without loading ballast water in the double bottom tanks. In contrast, the Post-Panamax container ships, as resulted from metacentric height calculation, have adequate stability even if the ballast water is not loaded in the double bottom tanks. This analysis was conducted considering two partially loaded port-container vessels. Given the minimization of ballast quantities, the frequency with which the still water vertical bending moment reaches close to the allowable value increases.This study aims to analyse the ships’ behaviour in partially loaded conditions and carrying ballast water in the double bottom tanks. By calculating the metacentric height that influences the stability of the partially loaded port container vessels, this study will emphasize the critical level of loading condition which triggers the uptake of ballast water in the double bottom tanks, due to metacentric height variation.

  20. Advanced Atmospheric Modeling for Emergency Response.

    NASA Astrophysics Data System (ADS)

    Fast, Jerome D.; O'Steen, B. Lance; Addis, Robert P.

    1995-03-01

    Atmospheric transport and diffusion models are an important part of emergency response systems for industrial facilities that have the potential to release significant quantities of toxic or radioactive material into the atmosphere. An advanced atmospheric transport and diffusion modeling system for emergency response and environmental applications, based upon a three-dimensional mesoscale model, has been developed for the U.S. Department of Energy's Savannah River Site so that complex, time-dependent flow fields not explicitly measured can be routinely simulated. To overcome some of the current computational demands of mesoscale models, two operational procedures for the advanced atmospheric transport and diffusion modeling system are described including 1) a semiprognostic calculation to produce high-resolution wind fields for local pollutant transport in the vicinity of the Savannah River Site and 2) a fully prognostic calculation to produce a regional wind field encompassing the southeastern United States for larger-scale pollutant problems. Local and regional observations and large-scale model output are used by the mesoscale model for the initial conditions, lateral boundary conditions, and four-dimensional data assimilation procedure. This paper describes the current status of the modeling system and presents two case studies demonstrating the capabilities of both modes of operation. While the results from the case studies shown in this paper are preliminary and certainly not definitive, they do suggest that the mesoscale model has the potential for improving the prognostic capabilities of atmospheric modeling for emergency response at the Savannah River Site. Long-term model evaluation will be required to determine under what conditions significant forecast errors exist.

  1. An Electrostatic Precipitator System for the Martian Environment

    NASA Technical Reports Server (NTRS)

    Calle, C. I.; Mackey, P. J.; Hogue, M. D.; Johansen, M. R.; Phillips, J. R., III; Clements, J. S.

    2012-01-01

    Human exploration missions to Mars will require the development of technologies for the utilization of the planet's own resources for the production of commodities. However, the Martian atmosphere contains large amounts of dust. The extraction of commodities from this atmosphere requires prior removal of this dust. We report on our development of an electrostatic precipitator able to collect Martian simulated dust particles in atmospheric conditions approaching those of Mars. Extensive experiments with an initial prototype in a simulated Martian atmosphere showed efficiencies of 99%. The design of a second prototype with aerosolized Martian simulated dust in a flow-through is described. Keywords: Space applications, electrostatic precipitator, particle control, particle charging

  2. Precipitation Phase Partitioning during Inland Penetrating Atmospheric River events: Role of Initial Land Surface Conditions

    NASA Astrophysics Data System (ADS)

    Rudisill, W. J.; Flores, A. N.; FitzGerald, K.; Masarik, M. T.

    2017-12-01

    In the Western US, the occurrence (or lack thereof) of a handful of cool-season Atmospheric River (AR) events exerts significant controls on the seasonal water budget in many watersheds. The occurrence of these ARs can serve to alleviate drought and can also lead to significant flooding. In winter seasons, ARs typically bring warmer than average conditions and both rain and snow. To date, there has been little effort to understand how the land surface hydrological states prior to and during the arrival of ARs, acting on the surface water and energy balance, impact the onset, extent, and evolution of precipitation intensity and phase during AR events. While precipitation arriving as snow can contribute to seasonal snowpacks that lead to runoff later in hot/dry seasons, liquid precipitation can contribute to more rapid runoff or deplete existing snowpacks. The latter case, in which latent and advected heat from fallen rain causes snowmelt, is a key mechanism of flood and landslide-producing runoff in the Western United States. Motivated by an extensive, flood producing AR in 2010, we examine the sensitivity of hydrometeor phase to land surface forcings (sensible/latent heating, short/longwave radiation) using the WRF (Weather Research and Forecasting) model in Central Idaho. Specifically, we evaluate whether pre-existing snow covered area extent, snow water equivalent (SWE), and cold-content influence the partitioning of precipitation into solid and liquid phases during inland AR events. Our experimental design leverages a long-term coupled land-atmosphere simulation with WRF over the study domain in order to evaluate how a set of particular AR events evolve when exposed to initial land surface states capturing a broad range of climatological conditions during the past 30 years.

  3. Towards an Understanding of Atmospheric Methanol

    NASA Astrophysics Data System (ADS)

    Millet, D. B.; Jacob, D. J.; de Gouw, J.; Warneke, C.; Holloway, J. S.; Blake, D. R.; Karl, T.; Campos, T.; Singh, H. B.; Diskin, G. S.

    2007-12-01

    Methanol, the most abundant non-methane organic gas in the atmosphere, is an important global source of tropospheric CO and formaldehyde, and plays a significant role in the tropical HOx and ozone budgets. The atmospheric methanol budget is highly uncertain, with estimates of the global source ranging from 75 to 490 Tg/yr. New measurements from recent field experiments (INTEX-B, MILAGRO, TEXAQS-II, INTEX-A, and ICARTT) provide quantitative constraints on methanol sources and sinks. Here we use a 3D model of atmospheric chemistry (GEOS-Chem) to interpret these datasets and their implications for the global methanol budget. We find that emissions from terrestrial plants (thought to be the main source) are overestimated by 40-50%; the discrepancy appears specific to certain plant functional types (broadleaf trees and crops). Recent measurements in the surface ocean imply a large in situ biotic source, so that methanol emissions from the ocean biosphere are comparable in magnitude to those from terrestrial ecosystems. The oceans are also a large gross sink for atmospheric methanol (similar to oxidation by OH). Even with the plant growth source decreased by 40-50% according to these new constraints, we find that methanol emissions from the terrestrial biosphere still dominate over those from urban and industrial sources, in contrast to other recent studies.

  4. Pre-conditioned backward Monte Carlo solutions to radiative transport in planetary atmospheres. Fundamentals: Sampling of propagation directions in polarising media

    NASA Astrophysics Data System (ADS)

    García Muñoz, A.; Mills, F. P.

    2015-01-01

    Context. The interpretation of polarised radiation emerging from a planetary atmosphere must rely on solutions to the vector radiative transport equation (VRTE). Monte Carlo integration of the VRTE is a valuable approach for its flexible treatment of complex viewing and/or illumination geometries, and it can intuitively incorporate elaborate physics. Aims: We present a novel pre-conditioned backward Monte Carlo (PBMC) algorithm for solving the VRTE and apply it to planetary atmospheres irradiated from above. As classical BMC methods, our PBMC algorithm builds the solution by simulating the photon trajectories from the detector towards the radiation source, i.e. in the reverse order of the actual photon displacements. Methods: We show that the neglect of polarisation in the sampling of photon propagation directions in classical BMC algorithms leads to unstable and biased solutions for conservative, optically-thick, strongly polarising media such as Rayleigh atmospheres. The numerical difficulty is avoided by pre-conditioning the scattering matrix with information from the scattering matrices of prior (in the BMC integration order) photon collisions. Pre-conditioning introduces a sense of history in the photon polarisation states through the simulated trajectories. Results: The PBMC algorithm is robust, and its accuracy is extensively demonstrated via comparisons with examples drawn from the literature for scattering in diverse media. Since the convergence rate for MC integration is independent of the integral's dimension, the scheme is a valuable option for estimating the disk-integrated signal of stellar radiation reflected from planets. Such a tool is relevant in the prospective investigation of exoplanetary phase curves. We lay out two frameworks for disk integration and, as an application, explore the impact of atmospheric stratification on planetary phase curves for large star-planet-observer phase angles. By construction, backward integration provides a better

  5. Inactivation of Escherichia coli 0157:H7 and aerobic microorganisms in Romaine lettuce packaged in a commercial polyethylene terephthalate container using atmospheric cold plasma

    USDA-ARS?s Scientific Manuscript database

    The effects of dielectric barrier discharge atmospheric cold plasma (DACP) treatment on the inactivation of Escherichia coli O157:H7 and aerobic microorganisms in Romaine lettuce packaged in a conventional commercial plastic container were evaluated during storage at 4 degrees C for 7 days. Effects ...

  6. Crystallization of calcium oxalate dihydrate in a buffered calcium-containing glucose solution by irradiation with non-equilibrium atmospheric pressure plasma

    NASA Astrophysics Data System (ADS)

    Kurake, Naoyuki; Tanaka, Hiromasa; Ishikawa, Kenji; Nakamura, Kae; Kajiyama, Hiroaki; Kikkawa, Fumitaka; Mizuno, Masaaki; Ikehara, Yuzuru; Hori, Masaru

    2017-10-01

    Oxalate was synthesized in the glucose solution by irradiation with non-equilibrium atmospheric pressure plasma (NEAPP), in which the NEAPP plume contacted the solution surface, via the generation of several intermediate organic products such as gluconic acid. A thermodynamically unstable phase of calcium oxalate dihydrate crystallized rapidly during incubation of a NEAPP-irradiated glucose solution that contained calcium ions and was buffered at neutral pH. Longer irradiation times increased the growth rate and the number of seed crystals.

  7. Upper limits to the fractionation of isotopes due to atmospheric escape: Implications for potential 14N/15N in Pluto's atmosphere

    NASA Astrophysics Data System (ADS)

    Mandt, K.; Mousis, O.

    2014-12-01

    Formation and evolution of the solar system is studied in part using stable isotope ratios that are presumed to be primordial, or representative of conditions in the protosolar Nebula. Comets, meteorites and giant planet atmospheres provide measurements that can reasonably be presumed to represent primordial conditions while the terrestrial planets, Pluto and Saturn's moon Titan have atmospheres that have evolved over the history of the solar system. The stable isotope ratios measured in these atmospheres are, therefore, first a valuable tool for evaluating the history of atmospheric escape and once escape is constrained can provide indications of conditions of formation. D/H ratios in the atmosphere of Venus provide indications of the amount of water lost from Venus over the history of the solar system, while several isotope ratios in the atmosphere of Mars provide evidence for long-term erosion of the atmosphere. We have recently demonstrated that the nitrogen ratios, 14N/15N, in Titan's atmosphere cannot evolve significantly over the history of the solar system and that the primordial ratio for Titan must have been similar to the value recently measured for NH3 in comets. This implies that the building blocks for Titan formed in the protosolar nebula rather than in the warmer subnebula surrounding Saturn at the end of its formation. Our result strongly contrasts with works showing that 14N/15N in the atmosphere of Mars can easily fractionate from the terrestrial value to its current value due to escape processes within the lifetime of the solar system. The difference between how nitrogen fractionates in Mars and Titan's atmospheres presents a puzzle for the fractionation of isotopes in an atmosphere due to atmospheric escape. Here, we present a method aiming at determining an upper limit to the amount of fractionation allowed to occur due to escape, which is a function of the escape flux and the column density of the atmospheric constituent. Through this

  8. An Atmospheric Pressure Plasma Setup to Investigate the Reactive Species Formation.

    PubMed

    Gorbanev, Yury; Soriano, Robert; O'Connell, Deborah; Chechik, Victor

    2016-11-03

    Non-thermal atmospheric pressure ('cold') plasmas have received increased attention in recent years due to their significant biomedical potential. The reactions of cold plasma with the surrounding atmosphere yield a variety of reactive species, which can define its effectiveness. While efficient development of cold plasma therapy requires kinetic models, model benchmarking needs empirical data. Experimental studies of the source of reactive species detected in aqueous solutions exposed to plasma are still scarce. Biomedical plasma is often operated with He or Ar feed gas, and a specific interest lies in investigation of the reactive species generated by plasma with various gas admixtures (O2, N2, air, H2O vapor, etc.) Such investigations are very complex due to difficulties in controlling the ambient atmosphere in contact with the plasma effluent. In this work, we addressed common issues of 'high' voltage kHz frequency driven plasma jet experimental studies. A reactor was developed allowing the exclusion of ambient atmosphere from the plasma-liquid system. The system thus comprised the feed gas with admixtures and the components of the liquid sample. This controlled atmosphere allowed the investigation of the source of the reactive oxygen species induced in aqueous solutions by He-water vapor plasma. The use of isotopically labelled water allowed distinguishing between the species originating in the gas phase and those formed in the liquid. The plasma equipment was contained inside a Faraday cage to eliminate possible influence of any external field. The setup is versatile and can aid in further understanding the cold plasma-liquid interactions chemistry.

  9. An Atmospheric Pressure Plasma Setup to Investigate the Reactive Species Formation

    PubMed Central

    Gorbanev, Yury; Soriano, Robert; O'Connell, Deborah; Chechik, Victor

    2016-01-01

    Non-thermal atmospheric pressure ('cold') plasmas have received increased attention in recent years due to their significant biomedical potential. The reactions of cold plasma with the surrounding atmosphere yield a variety of reactive species, which can define its effectiveness. While efficient development of cold plasma therapy requires kinetic models, model benchmarking needs empirical data. Experimental studies of the source of reactive species detected in aqueous solutions exposed to plasma are still scarce. Biomedical plasma is often operated with He or Ar feed gas, and a specific interest lies in investigation of the reactive species generated by plasma with various gas admixtures (O2, N2, air, H2O vapor, etc.) Such investigations are very complex due to difficulties in controlling the ambient atmosphere in contact with the plasma effluent. In this work, we addressed common issues of 'high' voltage kHz frequency driven plasma jet experimental studies. A reactor was developed allowing the exclusion of ambient atmosphere from the plasma-liquid system. The system thus comprised the feed gas with admixtures and the components of the liquid sample. This controlled atmosphere allowed the investigation of the source of the reactive oxygen species induced in aqueous solutions by He-water vapor plasma. The use of isotopically labelled water allowed distinguishing between the species originating in the gas phase and those formed in the liquid. The plasma equipment was contained inside a Faraday cage to eliminate possible influence of any external field. The setup is versatile and can aid in further understanding the cold plasma-liquid interactions chemistry. PMID:27842375

  10. Noble Gas Surface Flux Simulations And Atmospheric Transport

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carrigan, Charles R.; Sun, Yunwei; Simpson, Matthew D.

    Signatures from underground nuclear explosions or UNEs are strongly influenced by the containment regime surrounding them. The degree of gas leakage from the detonation cavity to the surface obviously affects the magnitude of surface fluxes of radioxenon that might be detected during the course of a Comprehensive Test Ban Treaty On-Site Inspection. In turn, the magnitude of surface fluxes will influence the downwind detectability of the radioxenon atmospheric signature from the event. Less obvious is the influence that leakage rates have on the evolution of radioxenon isotopes in the cavity or the downwind radioisotopic measurements that might be made. Themore » objective of this letter report is to summarize our attempt to better understand how containment conditions affect both the detection and interpretation of radioxenon signatures obtained from sampling at the ground surface near an event as well as at greater distances in the atmosphere. In the discussion that follows, we make no attempt to consider other sources of radioactive noble gases such as natural backgrounds or atmospheric contamination and, for simplicity, only focus on detonation-produced radioxenon gases. Summarizing our simulations, they show that the decay of radioxenon isotopes (e.g., Xe-133, Xe-131m, Xe-133m and Xe-135) and their migration to the surface following a UNE means that the possibility of detecting these gases exists within a window of opportunity. In some cases, seeps or venting of detonation gases may allow significant quantities to reach the surface and be released into the atmosphere immediately following a UNE. In other release scenarios – the ones we consider here – hours to days may be required for gases to reach the surface at detectable levels. These release models are most likely more characteristic of “fully contained” events that lack prompt venting, but which still leak gas slowly across the surface for periods of months.« less

  11. Photochemical processes on Titan: Irradiation of mixtures of gases that simulate Titan's atmosphere

    NASA Astrophysics Data System (ADS)

    Tran, Buu N.; Joseph, Jeffrey C.; Force, Michael; Briggs, Robert G.; Vuitton, Veronique; Ferris, James P.

    2005-09-01

    Photochemical reaction pathways in Titan's atmosphere were investigated by irradiation of the individual components and the mixture containing nitrogen, methane, hydrogen, acetylene, ethylene, and cyanoacetylene. The quantum yields for the loss of the reactants and the formation of products were determined. Photolysis of ethylene yields mainly saturated compounds (ethane, propane, and butane) while photolysis of acetylene yields the same saturated compounds as well as ethylene and diacetylene. Irradiation of cyanoacetylene yields mainly hydrogen cyanide and small amounts of acetonitrile. When an amount of methane corresponding to its mixing ratio on Titan was added to these mixtures the quantum yields for the loss of reactants decreased and the quantum yields for hydrocarbon formation increased indicative of a hydrogen atom abstraction from methane by the photochemically generated radicals. GC/MS analysis of the products formed by irradiation of mixtures of all these gases generated over 120 compounds which were mainly aliphatic hydrocarbons containing double and triple bonds along with much smaller amounts of aromatic compounds like benzene, toluene and phenylacetylene. The reaction pathways were investigated by the use of 13C acetylene in these gas mixtures. No polycyclic aromatic compounds were detected. Vapor pressures of these compounds under conditions present in Titan's atmosphere were calculated. The low molecular weight compounds likely to be present in the atmosphere and aerosols of Titan as a result of photochemical processes are proposed.

  12. [Experimental evaluation of actoprotective activity of nitrogen-containing heterocyclic compounds derivatives in extreme conditions].

    PubMed

    Tsublova, E G; Ivanova, T G; Ivanova, T N; Iasnetsov, V V

    2013-07-01

    In experiments on nonlinear male mice the ability of new derivatives of nitrogen-containing heterocyclic compounds to increase the physical working capacity in conditions of hyperthermia, hypothermia and acute normobaric hypoxia and hypercapnia has been investigated. It is established, that pyridine derivative IBHF-11 has more expressed positive action in the said conditions. It provided increase of the working capacity of animals at all kinds of extreme influence, and the value of positive action was comparable, and in conditions of acute normobaric hypoxia and hypercapnia exceeded those at the reference products bemitil and bromantan.

  13. [Atmospheric Influences Analysis on the Satellite Passive Microwave Remote Sensing].

    PubMed

    Qiu, Yu-bao; Shi, Li-juan; Shi, Jian-cheng; Zhao, Shao-jie

    2016-02-01

    Passive microwave remote sensing offers its all-weather work capabilities, but atmospheric influences on satellite microwave brightness temperature were different under different atmospheric conditions and environments. In order to clarify atmospheric influences on Advanced Microwave Scanning Radiometer-Earth Observing System (AMSR-E), atmospheric radiation were simulated based on AMSR-E configuration under clear sky and cloudy conditions, by using radiative transfer model and atmospheric conditions data. Results showed that atmospheric water vapor was the major factor for atmospheric radiation under clear sky condition. Atmospheric transmittances were almost above 0.98 at AMSR-E's low frequencies (< 18.7 GHz) and the microwave brightness temperature changes caused by atmosphere can be ignored in clear sky condition. Atmospheric transmittances at 36.5 and 89 GHz were 0.896 and 0.756 respectively. The effects of atmospheric water vapor needed to be corrected when using microwave high-frequency channels to inverse land surface parameters in clear sky condition. But under cloud cover or cloudy conditions, cloud liquid water was the key factor to cause atmospheric radiation. When sky was covered by typical stratus cloud, atmospheric transmittances at 10.7, 18.7 and 36.5 GHz were 0.942, 0.828 and 0.605 respectively. Comparing with the clear sky condition, the down-welling atmospheric radiation caused by cloud liquid water increased up to 75.365 K at 36.5 GHz. It showed that the atmospheric correction under different clouds covered condition was the primary work to improve the accuracy of land surface parameters inversion of passive microwave remote sensing. The results also provided the basis for microwave atmospheric correction algorithm development. Finally, the atmospheric sounding data was utilized to calculate the atmospheric transmittance of Hailaer Region, Inner Mongolia province, in July 2013. The results indicated that atmospheric transmittances were close to 1

  14. Extracting atmospheric turbulence and aerosol characteristics from passive imagery

    NASA Astrophysics Data System (ADS)

    Reinhardt, Colin N.; Wayne, D.; McBryde, K.; Cauble, G.

    2013-09-01

    Obtaining accurate, precise and timely information about the local atmospheric turbulence and extinction conditions and aerosol/particulate content remains a difficult problem with incomplete solutions. It has important applications in areas such as optical and IR free-space communications, imaging systems performance, and the propagation of directed energy. The capability to utilize passive imaging data to extract parameters characterizing atmospheric turbulence and aerosol/particulate conditions would represent a valuable addition to the current piecemeal toolset for atmospheric sensing. Our research investigates an application of fundamental results from optical turbulence theory and aerosol extinction theory combined with recent advances in image-quality-metrics (IQM) and image-quality-assessment (IQA) methods. We have developed an algorithm which extracts important parameters used for characterizing atmospheric turbulence and extinction along the propagation channel, such as the refractive-index structure parameter C2n , the Fried atmospheric coherence width r0 , and the atmospheric extinction coefficient βext , from passive image data. We will analyze the algorithm performance using simulations based on modeling with turbulence modulation transfer functions. An experimental field campaign was organized and data were collected from passive imaging through turbulence of Siemens star resolution targets over several short littoral paths in Point Loma, San Diego, under conditions various turbulence intensities. We present initial results of the algorithm's effectiveness using this field data and compare against measurements taken concurrently with other standard atmospheric characterization equipment. We also discuss some of the challenges encountered with the algorithm, tasks currently in progress, and approaches planned for improving the performance in the near future.

  15. Simulation of Containment Atmosphere Mixing and Stratification Experiment in the ThAI Facility with a CFD Code

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Babic, Miroslav; Kljenak, Ivo; Mavko, Borut

    2006-07-01

    The CFD code CFX4.4 was used to simulate an experiment in the ThAI facility, which was designed for investigation of thermal-hydraulic processes during a severe accident inside a Light Water Reactor containment. In the considered experiment, air was initially present in the vessel, and helium and steam were injected during different phases of the experiment at various mass flow rates and at different locations. The main purpose of the proposed work was to assess the capabilities of the CFD code to reproduce the atmosphere structure with a three-dimensional model, coupled with condensation models proposed by the authors. A three-dimensional modelmore » of the ThAI vessel for the CFX4.4 code was developed. The flow in the simulation domain was modeled as single-phase. Steam condensation on vessel walls was modeled as a sink of mass and energy using a correlation that was originally developed for an integral approach. A simple model of bulk phase change was also included. Calculated time-dependent variables together with temperature and volume fraction distributions at the end of different experiment phases are compared to experimental results. (authors)« less

  16. Technique for active measurement of atmospheric transmittance using an imaging system: implementation at 10.6-μm wavelength

    NASA Astrophysics Data System (ADS)

    Sadot, Dan; Zaarur, O.; Zaarur, S.; Kopeika, Norman S.

    1994-10-01

    An active method is presented for measuring atmospheric transmittance with an imaging system. In comparison to other measurement methods, this method has the advantage of immunity to background noise, independence of atmospheric conditions such as solar radiation, and an improved capability to evaluate effects of turbulence on the measurements. Other significant advantages are integration over all particulate size distribution effects including very small and very large particulates whose concentration is hard to measure, and the fact that this method is a path-integrated measurement. In this implementation attenuation deriving from molecular absorption and from small and large particulate scatter and absorption and their weather dependences are separated out. Preliminary results indicate high correlation with direct transmittance calculations via particle size distribution measurement, and that even at 10.6 micrometers wavelength atmospheric transmission depends noticeably on aerosol size distribution and concentration.

  17. Inhibitory effect of high-strength ammonia nitrogen on bio-treatment of landfill leachate using EGSB reactor under mesophilic and atmospheric conditions.

    PubMed

    Liu, Jianyong; Luo, Jinghuan; Zhou, Jizhi; Liu, Qiang; Qian, Guangren; Xu, Zhi Ping

    2012-06-01

    The inhibitory effect of high-strength NH(3)-N on anaerobic biodegradation of landfill leachates in an EGSB bioreactor has been investigated. The research compared start-up performance of the reactor treating the landfill leachate with NH(3)-N in 242-1200 mg/l to that treating the compost leachate with NH(3)-N in 38-410 mg/l. The observations showed that the performance of the reactor treating the landfill leachate was only marginally worse than that treating the compost leachate at the mesophilic temperature when NH(3)-N concentration was under 1500 mg/l. We also noted that NH(3)-N at the concentration of 1500-3000 mg/l inhibited the biodegradation. The comparative biodegradation performance at the mesophilic and atmospheric temperature demonstrated that the maximal OLR of atmospheric digestion was only reduced to 44 kg COD/m(3)d. These findings indicate that landfill leachates with NH(3)-N less than 1500 mg/l could be efficiently treated in the EGSB bioreactor even under the atmospheric condition with methane generated. Copyright © 2011. Published by Elsevier Ltd.

  18. The Titan Sky Simulator ™ - Testing Prototype Balloons in Conditions Approximating those in Titan's Atmosphere

    NASA Astrophysics Data System (ADS)

    Nott, Julian

    This paper will describe practical work flying prototype balloons in the "The Titan Sky Simulator TM " in conditions approximating those found in Titan's atmosphere. Saturn's moon, Titan, is attracting intense scientific interest. This has led to wide interest in exploring it with Aerobots, balloons or airships. Their function would be similar to the Rovers exploring Mars, but instead of moving laboriously across the rough terrain on wheels, they would float freely from location to location. To design any balloon or airship it is essential to know the temperature of the lifting gas as this influences the volume of the gas, which in turn influences the lift. To determine this temperature it is necessary to know how heat is transferred between the craft and its surroundings. Heat transfer for existing balloons is well understood. However, Titan conditions are utterly different from those in which balloons have ever been flown, so heat transfer rates cannot currently be calculated. In particular, thermal radiation accounts for most heat transfer for existing balloons but over Titan heat transfer will be dominated by convection. To be able to make these fundamental calculations, it is necessary to get fundamental experimental data. This is being obtained by flying balloons in a Simulator filled with nitrogen gas at very low temperature, about 95° K / minus 180° C, typical of Titan's temperatures. Because the gas in the Simulator is so cold, operating at atmospheric pressure the density is close to that of Titan's atmosphere. "The Titan Sky Simulator TM " has an open interior approximately 4.5 meter tall and 2.5 meters square. It has already been operated at 95° K/-180° C. By the time of the Conference it is fully expected to have data to present from actual balloons flying at this temperature. Perhaps the most important purpose of this testing is to validate numerical [computational fluid dynamics] models being developed by Tim Colonius of Caltech. These numerical

  19. Using Mesoscale Weather Model Output as Boundary Conditions for Atmospheric Large-Eddy Simulations and Wind-Plant Aerodynamic Simulations (Presentation)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Churchfield, M. J.; Michalakes, J.; Vanderwende, B.

    Wind plant aerodynamics are directly affected by the microscale weather, which is directly influenced by the mesoscale weather. Microscale weather refers to processes that occur within the atmospheric boundary layer with the largest scales being a few hundred meters to a few kilometers depending on the atmospheric stability of the boundary layer. Mesoscale weather refers to large weather patterns, such as weather fronts, with the largest scales being hundreds of kilometers wide. Sometimes microscale simulations that capture mesoscale-driven variations (changes in wind speed and direction over time or across the spatial extent of a wind plant) are important in windmore » plant analysis. In this paper, we present our preliminary work in coupling a mesoscale weather model with a microscale atmospheric large-eddy simulation model. The coupling is one-way beginning with the weather model and ending with a computational fluid dynamics solver using the weather model in coarse large-eddy simulation mode as an intermediary. We simulate one hour of daytime moderately convective microscale development driven by the mesoscale data, which are applied as initial and boundary conditions to the microscale domain, at a site in Iowa. We analyze the time and distance necessary for the smallest resolvable microscales to develop.« less

  20. Atmospheric conditions related to blowup fires

    Treesearch

    George M. Byram

    1954-01-01

    Occasionally a forest fire burns with an intensity that seems far out of proportion to apparent burning conditions. Sometimes it multiplies its rate of energy output many times in a short space of time. Although infrequent, these unusual fires have over a long period of time been responsible for the major loss of life in forest fires and a large part of the losses in...

  1. Global atmospheric carbon budget: results from an ensemble of atmospheric CO2 inversions

    NASA Astrophysics Data System (ADS)

    Peylin, P.; Law, R. M.; Gurney, K. R.; Chevallier, F.; Jacobson, A. R.; Maki, T.; Niwa, Y.; Patra, P. K.; Peters, W.; Rayner, P. J.; Rödenbeck, C.; van der Laan-Luijkx, I. T.; Zhang, X.

    2013-10-01

    Atmospheric CO2 inversions estimate surface carbon fluxes from an optimal fit to atmospheric CO2 measurements, usually including prior constraints on the flux estimates. Eleven sets of carbon flux estimates are compared, generated by different inversions systems that vary in their inversions methods, choice of atmospheric data, transport model and prior information. The inversions were run for at least 5 yr in the period between 1990 and 2010. Mean fluxes for 2001-2004, seasonal cycles, interannual variability and trends are compared for the tropics and northern and southern extra-tropics, and separately for land and ocean. Some continental/basin-scale subdivisions are also considered where the atmospheric network is denser. Four-year mean fluxes are reasonably consistent across inversions at global/latitudinal scale, with a large total (land plus ocean) carbon uptake in the north (-3.4 Pg C yr-1 (±0.5 Pg C yr-1 standard deviation), with slightly more uptake over land than over ocean), a significant although more variable source over the tropics (1.6 ± 0.9 Pg C yr-1) and a compensatory sink of similar magnitude in the south (-1.4 ± 0.5 Pg C yr-1) corresponding mainly to an ocean sink. Largest differences across inversions occur in the balance between tropical land sources and southern land sinks. Interannual variability (IAV) in carbon fluxes is larger for land than ocean regions (standard deviation around 1.06 versus 0.33 Pg C yr-1 for the 1996-2007 period), with much higher consistency among the inversions for the land. While the tropical land explains most of the IAV (standard deviation ~ 0.65 Pg C yr-1), the northern and southern land also contribute (standard deviation ~ 0.39 Pg C yr-1). Most inversions tend to indicate an increase of the northern land carbon uptake from late 1990s to 2008 (around 0.1 Pg C yr-1, predominantly in North Asia. The mean seasonal cycle appears to be well constrained by the atmospheric data over the northern land (at the

  2. Global atmospheric carbon budget: results from an ensemble of atmospheric CO2 inversions

    NASA Astrophysics Data System (ADS)

    Peylin, P.; Law, R. M.; Gurney, K. R.; Chevallier, F.; Jacobson, A. R.; Maki, T.; Niwa, Y.; Patra, P. K.; Peters, W.; Rayner, P. J.; Rödenbeck, C.; Zhang, X.

    2013-03-01

    Atmospheric CO2 inversions estimate surface carbon fluxes from an optimal fit to atmospheric CO2 measurements, usually including prior constraints on the flux estimates. Eleven sets of carbon flux estimates are compared, generated by different inversions systems that vary in their inversions methods, choice of atmospheric data, transport model and prior information. The inversions were run for at least 5 yr in the period between 1990 and 2009. Mean fluxes for 2001-2004, seasonal cycles, interannual variability and trends are compared for the tropics and northern and southern extra-tropics, and separately for land and ocean. Some continental/basin-scale subdivisions are also considered where the atmospheric network is denser. Four-year mean fluxes are reasonably consistent across inversions at global/latitudinal scale, with a large total (land plus ocean) carbon uptake in the north (-3.3 Pg Cy-1 (±0.6 standard deviation)) nearly equally spread between land and ocean, a significant although more variable source over the tropics (1.6 ± 1.0 Pg Cy-1) and a compensatory sink of similar magnitude in the south (-1.4 ± 0.6 Pg Cy-1) corresponding mainly to an ocean sink. Largest differences across inversions occur in the balance between tropical land sources and southern land sinks. Interannual variability (IAV) in carbon fluxes is larger for land than ocean regions (standard deviation around 1.05 versus 0.34 Pg Cy-1 for the 1996-2007 period), with much higher consistency amoung the inversions for the land. While the tropical land explains most of the IAV (stdev ∼ 0.69 Pg Cy-1), the northern and southern land also contribute (stdev ∼ 0.39 Pg Cy-1). Most inversions tend to indicate an increase of the northern land carbon uptake through the 2000s (around 0.11 Pg Cy-1), shared by North America and North Asia. The mean seasonal cycle appears to be well constrained by the atmospheric data over the northern land (at the continental scale), but still highly dependent on

  3. Lifting Entry & Atmospheric Flight (LEAF) System Concept Applications at Solar System Bodies With an Atmosphere

    NASA Astrophysics Data System (ADS)

    Lee, Greg; Polidan, Ronald; Ross, Floyd; Sokol, Daniel; Warwick, Steve

    2015-11-01

    Northrop Grumman and L’Garde have continued the development of a hypersonic entry, semi-buoyant, maneuverable platform capable of performing long-duration (months to a year) in situ and remote measurements at any solar system body that possesses an atmosphere.The Lifting Entry & Atmospheric Flight (LEAF) family of vehicles achieves this capability by using a semi-buoyant, ultra-low ballistic coefficient vehicle whose lifting entry allows it to enter the atmosphere without an aeroshell. The mass savings realized by eliminating the heavy aeroshell allows significantly more payload to be accommodated by the platform for additional science collection and return.In this presentation, we discuss the application of the LEAF system at various solar system bodies: Venus, Titan, Mars, and Earth. We present the key differences in platform design as well as operational differences required by the various target environments. The Venus implementation includes propulsive capability to reach higher altitudes during the day and achieves full buoyancy in the mid-cloud layer of Venus’ atmosphere at night.Titan also offers an attractive operating environment, allowing LEAF designs that can target low or medium altitude operations, also with propulsive capabilities to roam within each altitude regime. The Mars version is a glider that descends gradually, allowing targeted delivery of payloads to the surface or high resolution surface imaging. Finally, an Earth version could remain in orbit in a stowed state until activated, allowing rapid response type deployments to any region of the globe.

  4. Collapsing Containers.

    ERIC Educational Resources Information Center

    Brown, Justina L.; Battino, Rubin

    1994-01-01

    Describes variations on atmospheric pressure demonstrations and some systematic studies. Demonstrations use steam, generated either externally or internally to the container, to sweep out residual air. Preferred vessels collapsed slowly. Demonstrations use plastic milk jugs set in layers of aluminum foil, pop bottles immersed in 4-L beakers…

  5. Atmospheric-pressure plasma activation and surface characterization on polyethylene membrane separator

    NASA Astrophysics Data System (ADS)

    Tseng, Yu-Chien; Li, Hsiao-Ling; Huang, Chun

    2017-01-01

    The surface hydrophilic activation of a polyethylene membrane separator was achieved using an atmospheric-pressure plasma jet. The surface of the atmospheric-pressure-plasma-treated membrane separator was found to be highly hydrophilic realized by adjusting the plasma power input. The variations in membrane separator chemical structure were confirmed by Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy. Chemical analysis showed newly formed carbonyl-containing groups and high surface concentrations of oxygen-containing species on the atmospheric-pressure-plasma-treated polymeric separator surface. It also showed that surface hydrophilicity primarily increased from the polar component after atmospheric-pressure plasma treatment. The surface and pore structures of the polyethylene membrane separator were examined by scanning electron microscopy, revealing a slight alteration in the pore structure. As a result of the incorporation of polar functionalities by atmospheric-pressure plasma activation, the electrolyte uptake and electrochemical impedance of the atmospheric-pressure-plasma-treated membrane separator improved. The investigational results show that the separator surface can be controlled by atmospheric-pressure plasma surface treatment to tailor the hydrophilicity and enhance the electrochemical performance of lithium ion batteries.

  6. Challenges in atmospheric monitoring of areal emission sources - an Open-path Fourier transform infrared (OP-FTIR) spectroscopic experience report

    NASA Astrophysics Data System (ADS)

    Schuetze, C.; Sauer, U.; Dietrich, P.

    2015-12-01

    Reliable detection and assessment of near-surface CO2 emissions from natural or anthropogenic sources require the application of various monitoring tools at different spatial scales. Especially, optical remote sensing tools for atmospheric monitoring have the potential to measure integrally CO2 emissions over larger scales (> 10.000m2). Within the framework of the MONACO project ("Monitoring approach for geological CO2 storage sites using a hierarchical observation concept"), an integrative hierarchical monitoring concept was developed and validated at different field sites with the aim to establish a modular observation strategy including investigations in the shallow subsurface, at ground surface level and the lower atmospheric boundary layer. The main aims of the atmospheric monitoring using optical remote sensing were the observation of the gas dispersion in to the near-surface atmosphere, the determination of maximum concentration values and identification of the main challenges associated with the monitoring of extended emission sources with the proposed methodological set up under typical environmental conditions. The presentation will give an overview about several case studies using the integrative approach of Open-Path Fourier Transform Infrared spectroscopy (OP FTIR) in combination with in situ measurements. As a main result, the method was validated as possible approach for continuous monitoring of the atmospheric composition, in terms of integral determination of GHG concentrations and to identify target areas which are needed to be investigated more in detail. Especially the data interpretation should closely consider the micrometeorological conditions. Technical aspects concerning robust equipment, experimental set up and fast data processing algorithms have to be taken into account for the enhanced automation of atmospheric monitoring.

  7. Present state of knowledge of the upper atmosphere: An assessment report

    NASA Technical Reports Server (NTRS)

    1984-01-01

    A program of research, technology, and monitoring of the phenomena of the upper atmosphere, to provide for an understanding of and to maintain the chemical and physical integrity of the Earth's upper atmosphere was developed. NASA implemented a long-range upper atmospheric science program aimed at developing an organized, solid body of knowledge of upper atmospheric processes while providing, in the near term, assessments of potential effects of human activities on the atmosphere. The effects of chlorofluorocarbon (CFC) releases on stratospheric ozone were reported. Issues relating the current understanding of ozone predictions and trends and highlights recent and future anticipated developments that will improve our understanding of the system are summarized.

  8. Lidar and Electro-Optics for Atmospheric Hazard Sensing and Mitigation

    NASA Technical Reports Server (NTRS)

    Clark, Ivan O.

    2012-01-01

    This paper provides an overview of the research and development efforts of the Lidar and Electro-Optics element of NASA's Aviation Safety Program. This element is seeking to improve the understanding of the atmospheric environments encountered by aviation and to provide enhanced situation awareness for atmospheric hazards. The improved understanding of atmospheric conditions is specifically to develop sensor signatures for atmospheric hazards. The current emphasis is on kinetic air hazards such as turbulence, aircraft wake vortices, mountain rotors, and windshear. Additional efforts are underway to identify and quantify the hazards arising from multi-phase atmospheric conditions including liquid and solid hydrometeors and volcanic ash. When the multi-phase conditions act as obscurants that result in reduced visual awareness, the element seeks to mitigate the hazards associated with these diminished visual environments. The overall purpose of these efforts is to enable safety improvements for air transport class and business jet class aircraft as the transition to the Next Generation Air Transportation System occurs.

  9. Gonadal function and fertility after stem cell transplantation in childhood: comparison of a reduced intensity conditioning regimen containing melphalan with a myeloablative regimen containing busulfan.

    PubMed

    Panasiuk, Anna; Nussey, Stephen; Veys, Paul; Amrolia, Persis; Rao, Kanchan; Krawczuk-Rybak, Maryna; Leiper, Alison

    2015-09-01

    The occurrence of late sequelae after myeloablative conditioning regimens for stem-cell transplantation (SCT) has prompted the introduction of reduced-intensity chemotherapy (RIC) regimens in an attempt to reduce toxicity and spare fertility. We retrospectively evaluated gonadal function in survivors of SCT in childhood by comparing patients conditioned with a myeloablative regimen containing busulfan and cyclophosphamide (BuCy, N = 51, 28 boys) and a RIC regimen containing fludarabine and melphalan (FluMel, N = 40, 19 boys). Spontaneous puberty occurred in 56% of girls and 89% of boys after BuCy, whereas 90% of females and all males in the FluMel group entered puberty spontaneously (P = 0·012). Significantly more females (61%) conditioned with BuCy required hormone replacement compared with the FluMel group (10·5%, P = 0·012). Females in the FluMel group took significantly longer to develop elevation of serum follicle-stimulating hormone (FSH) concentrations (>10 iu/l) from the onset of puberty than females in the BuCy group (median 5·2 years vs. 2·7 years respectively, P = 0·0135). In males no difference was noted between the two conditioning groups in time to FSH elevation (median 4 years in FluMel versus 6 years in BuCy). Whilst the two regimens have similar effects on the testis, ovarian function seems to be better preserved in females undergoing SCT with RIC. © 2015 John Wiley & Sons Ltd.

  10. Why an intrinsic magnetic field does not protect a planet against atmospheric escape

    NASA Astrophysics Data System (ADS)

    Gunell, Herbert; Maggiolo, Romain; Nilsson, Hans; Stenberg Wieser, Gabriella; Slapak, Rikard; Lindkvist, Jesper; Hamrin, Maria; De Keyser, Johan

    2018-06-01

    The presence or absence of a magnetic field determines the nature of how a planet interacts with the solar wind and what paths are available for atmospheric escape. Magnetospheres form both around magnetised planets, such as Earth, and unmagnetised planets, like Mars and Venus, but it has been suggested that magnetised planets are better protected against atmospheric loss. However, the observed mass escape rates from these three planets are similar (in the approximate (0.5-2) kg s-1 range), putting this latter hypothesis into question. Modelling the effects of a planetary magnetic field on the major atmospheric escape processes, we show that the escape rate can be higher for magnetised planets over a wide range of magnetisations due to escape of ions through the polar caps and cusps. Therefore, contrary to what has previously been believed, magnetisation is not a sufficient condition for protecting a planet from atmospheric loss. Estimates of the atmospheric escape rates from exoplanets must therefore address all escape processes and their dependence on the planet's magnetisation.

  11. Analysis and experimental study on formation conditions of large-scale barrier-free diffuse atmospheric pressure air plasmas in repetitive pulse mode

    NASA Astrophysics Data System (ADS)

    Li, Lee; Liu, Lun; Liu, Yun-Long; Bin, Yu; Ge, Ya-Feng; Lin, Fo-Chang

    2014-01-01

    Atmospheric air diffuse plasmas have enormous application potential in various fields of science and technology. Without dielectric barrier, generating large-scale air diffuse plasmas is always a challenging issue. This paper discusses and analyses the formation mechanism of cold homogenous plasma. It is proposed that generating stable diffuse atmospheric plasmas in open air should meet the three conditions: high transient power with low average power, excitation in low average E-field with locally high E-field region, and multiple overlapping electron avalanches. Accordingly, an experimental configuration of generating large-scale barrier-free diffuse air plasmas is designed. Based on runaway electron theory, a low duty-ratio, high voltage repetitive nanosecond pulse generator is chosen as a discharge excitation source. Using the wire-electrodes with small curvature radius, the gaps with highly non-uniform E-field are structured. Experimental results show that the volume-scaleable, barrier-free, homogeneous air non-thermal plasmas have been obtained between the gap spacing with the copper-wire electrodes. The area of air cold plasmas has been up to hundreds of square centimeters. The proposed formation conditions of large-scale barrier-free diffuse air plasmas are proved to be reasonable and feasible.

  12. High Vertically Resolved Atmospheric State Revealed with IASI Single FOV Retrievals under All-weather Conditions

    NASA Technical Reports Server (NTRS)

    Zhou, Daniel K.; Liu, Xu; Larar, Allen M.; Smith, William L.; Taylor, Jonathan P.; Schluessel, L. Peter; Strow, Larrybee; Mango, Stephen A.

    2008-01-01

    The Infrared Atmospheric Sounding Interferometer (IASI) on the MetOp satellite was launched on October 19, 2006. The Joint Airborne IASI Validation Experiment (JAIVEx) was conducted during April 2007 mainly for validation of the IASI on the MetOp satellite. IASI possesses an ultra-spectral resolution of 0.25 cm(exp -1) and a spectral coverage from 645 to 2760 cm(exp -1). Ultra-spectral resolution infrared spectral radiance obtained from near nadir observations provide atmospheric, surface, and cloud property information. An advanced retrieval algorithm with a fast radiative transfer model, including cloud effects, is used for atmospheric profile and cloud parameter retrieval. Preliminary retrievals of atmospheric soundings, surface properties, and cloud optical/microphysical properties with the IASI observations are obtained and presented. These retrievals are further inter-compared with those obtained from airborne FTS system, such as the NPOESS Airborne Sounder Testbed - Interferometer (NAST-I), dedicated dropsondes, radiosondes, and ground based Raman Lidar. The capabilities of satellite ultra-spectral sounder such as the IASI are investigated to benefit future NPOESS operation.

  13. Some environmental considerations relating to the interaction of the solid rocket motor exhaust with the atmosphere: Predicted chemical composition of exhaust species and predicted conditions for the formation of HCl aerosol

    NASA Technical Reports Server (NTRS)

    Rhein, R. A.

    1973-01-01

    The exhaust products of a solid rocket motor using as propellant 14% binder, 16% aluminum, and 70% (wt) ammonium perchlorate consist of hydrogen chloride, water, alumina, and other compounds. The equilibrium and some frozen compositions of the chemical species upon interaction with the atmosphere were computed. The conditions under which hydrogen chloride interacts with the water vapor in humid air to form an aerosol containing hydrochloric acid were computed for various weight ratios of air/exhaust products. These computations were also performed for the case of a combined SRM and hydrogen-oxygen rocket engine. Regimes of temperature and relative humidity where this aerosol is expected were identified. Within these regimes, the concentration of HCL in the aerosol and weight fraction of aerosol to gas phase were plotted. Hydrochloric acid aerosol formation was found to be particularly likely in cool humid weather.

  14. A white dwarf with an oxygen atmosphere.

    PubMed

    Kepler, S O; Koester, Detlev; Ourique, Gustavo

    2016-04-01

    Stars born with masses below around 10 solar masses end their lives as white dwarf stars. Their atmospheres are dominated by the lightest elements because gravitational diffusion brings the lightest element to the surface. We report the discovery of a white dwarf with an atmosphere completely dominated by oxygen, SDSS J124043.01+671034.68. After oxygen, the next most abundant elements in its atmosphere are neon and magnesium, but these are lower by a factor of ≥25 by number. The fact that no hydrogen or helium are observed is surprising. Oxygen, neon, and magnesium are the products of carbon burning, which occurs in stars at the high-mass end of pre-white dwarf formation. This star, a possible oxygen-neon white dwarf, will provide a rare observational test of the evolutionary paths toward white dwarfs. Copyright © 2016, American Association for the Advancement of Science.

  15. Impact of local environmental conditions on atmospheric electrical potential gradient measurements

    NASA Astrophysics Data System (ADS)

    Buzás, Attila; Barta, Veronika; Steinbach, Péter; Bór, József

    2017-04-01

    The atmospheric electrical potential gradient (PG) is a fundamental parameter of the global electric circuit (GEC) which comprises all large scale quasi-static electrical processes occurring in between the surface of the Earth and the lower ionosphere. The observation of PG near the Earth's surface plays a pivotal role in surveying our atmospheric electrical environment. The PG shows high variability in different temporal and spatial scales and it is especially sensitive to local effects. Therefore, obtaining a PG value which represents the general state of the GEC over a larger area rather than various effects due to measuring site-specific local factors is a challenging task. PG measurements are going on in the Széchenyi István Geophysical Observatory (NCK, 47°38' N, 16°43' E) of the Research Centre for Astronomy and Earth Sciences, Hungarian Academy of Sciences near Nagycenk, Hungary since 1961. PG sensors are set up in NCK in an open area surrounded by buildings and trees within 20 m distance. The effect of the changing vegetation on the long-term trend observed in the PG variation at NCK has been subject of debates [1,2,3]. In order to examine the possible bias in the measured PG values due to the relatively close buildings and trees at NCK, two sets of simultaneous PG measurements from two EFM-100 field mills were compared. One field mill was kept at a fixed location while the other was moved to grid points covering the open area around the fixed field mill. The measurement was done in fair weather conditions in summer and was repeated during the winter. The poster demonstrates the performance of this method in surveying the effect of various objects and the state of vegetation on the measured PG values by comparing the measured PG differences to those obtained from electrostatic models calculated by the finite element method using the FEMM 4.2 software package. [1] F. Märcz and R. G. Harrison, 2003, Annales Gephysicae, 21: 2193-2200 [2] F. Märcz and R

  16. Large-scale atmospheric conditions associated with heavy rainfall episodes in Southeast Brazil

    NASA Astrophysics Data System (ADS)

    Lima, Kellen Carla; Satyamurty, Prakki; Fernández, Júlio Pablo Reyes

    2010-07-01

    Heavy rainfall events in austral summer are responsible for almost all the natural disasters in Southeast Brazil. They are mostly associated with two types of atmospheric perturbations: Cold Front (53%) and the South Atlantic Convergence Zone (47%). The important question of what synoptic characteristics distinguish a heavy rainfall event (HRE) from a normal rainfall event (NRE) is addressed in this study. Here, the evolutions of such characteristics are identified through the anomalies with respect to climatology of the composite fields of atmospheric variables. The anomalies associated with HRE are significantly more intense than those associated with NRE in all fundamental atmospheric variables such as outgoing long-wave radiation, sea-level pressure, 500-hPa geopotential, lower and upper tropospheric winds. The moisture flux convergence over Southeast Brazil in the HRE composites is 60% larger than in the NRE composites. The energetics calculations for the HRE that occurred in the beginning of February 1988 strongly suggest that the barotropic instability played an important role in the intensification of the perturbation. These results, especially the intensities of the wind, pressure anomalies, and the moisture convergence are useful for the meteorologists of the Southeast Brazil for forecasting heavy precipitation.

  17. Radiative transfer in CO2-rich atmospheres: 1. Collisional line mixing implies a colder early Mars

    NASA Astrophysics Data System (ADS)

    Ozak, N.; Aharonson, O.; Halevy, I.

    2016-06-01

    Fast and accurate radiative transfer methods are essential for modeling CO2-rich atmospheres, relevant to the climate of early Earth and Mars, present-day Venus, and some exoplanets. Although such models already exist, their accuracy may be improved as better theoretical and experimental constraints become available. Here we develop a unidimensional radiative transfer code for CO2-rich atmospheres, using the correlated k approach and with a focus on modeling early Mars. Our model differs from existing models in that it includes the effects of CO2 collisional line mixing in the calculation of the line-by-line absorption coefficients. Inclusion of these effects results in model atmospheres that are more transparent to infrared radiation and, therefore, in colder surface temperatures at radiative-convective equilibrium, compared with results of previous studies. Inclusion of water vapor in the model atmosphere results in negligible warming due to the low atmospheric temperatures under a weaker early Sun, which translate into climatically unimportant concentrations of water vapor. Overall, the results imply that sustained warmth on early Mars would not have been possible with an atmosphere containing only CO2 and water vapor, suggesting that other components of the early Martian climate system are missing from current models or that warm conditions were not long lived.

  18. AVC Helps Teachers View the Atmosphere and Play in the Sand.

    ERIC Educational Resources Information Center

    Klaus, Christopher; Andrew, Keith; McCollum, Timothy

    2003-01-01

    Describes the Atmospheric Visualization Collection (AVC), part of the National Science Digital Library (NSDL) that contains an archive of weather images as well as a collection of educational material that uses the images to teach atmospheric science concepts. Discusses the potential use of this information for K-12 and undergraduate students.…

  19. Chemistry of sands from the modern Indus River and the Archean Witwatersrand basin: Implications for the composition of the Archean atmosphere

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maynard, J.B.; Ritger, S.D.; Sutton, S.J.

    1991-03-01

    Both the Indus River and the Witwatersrand basin contain sand with grains of detrital uraninite. Because this mineral is easily oxidized, its presence in Archean strata as a detrital particle has been used as evidence for a low-oxygen atmosphere before 2.5 Ga. However, its presence in modern sand from the Indus River system has been used to argue that detrital uraninite does not provide information about the oxygen concentration of Earth's early atmosphere. Petrographic and chemical study of sand from these two sources reveals differences that suggest the modern Indus sand cannot be used as an analog for the Archeanmore » Witwatersrand occurrences. The Witwatersrand quartzites are depleted in Ca, Mg, and Na, indicating that the original sand from which they formed had been subjected to intense weathering. The chemical index of alteration (CIA), a commonly used indicator of degree of weathering, yields an average value of about 0.80 for Witwatersrand quartzites, comparable to modern tropical streams such as the Orinoco that drain deeply weathered terrains under tropical conditions (CIA=0.75). In contrast, the CIA for Indus sand is 0.45, indicating virtually no chemical weathering. The significance of Archean quartz-pebble conglomerates is not just that they contain unstable detrital phases like uraninite and pyrite, but that these particles are associated with rocks whose compositions suggest intense weathering. These conglomerates must have been subjected to intense weathering under tropical conditions, either in their source area or at the site of deposition, and the preservation of minerals like uraninite such conditions is indeed strong evidence for a low-oxygen atmosphere.« less

  20. Synergistic Effects of Turbine Wakes and Atmospheric Stability on Power Production at an Onshore Wind Farm

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wharton, S; Lundquist, J K; Marjanovic, N

    This report examines the complex interactions between atmospheric stability and turbine-induced wakes on downwind turbine wind speed and power production at a West Coast North American multi-MW wind farm. Wakes are generated when the upwind flow field is distorted by the mechanical movement of the wind turbine blades. This has two consequences for downwind turbines: (1) the downwind turbine encounters wind flows with reduced velocity and (2) the downwind turbine encounters increased turbulence across multiple length scales via mechanical turbulence production by the upwind turbine. This increase in turbulence on top of ambient levels may increase aerodynamic fatigue loads onmore » the blades and reduce the lifetime of turbine component parts. Furthermore, ambient atmospheric conditions, including atmospheric stability, i.e., thermal stratification in the lower boundary layer, play an important role in wake dissipation. Higher levels of ambient turbulence (i.e., a convective or unstable boundary layer) lead to higher turbulent mixing in the wake and a faster recovery in the velocity flow field downwind of a turbine. Lower levels of ambient turbulence, as in a stable boundary layer, will lead to more persistent wakes. The wake of a wind turbine can be divided into two regions: the near wake and far wake, as illustrated in Figure 1. The near wake is formed when the turbine structure alters the shape of the flow field and usually persists one rotor diameter (D) downstream. The difference between the air inside and outside of the near wake results in a shear layer. This shear layer thickens as it moves downstream and forms turbulent eddies of multiple length scales. As the wake travels downstream, it expands depending on the level of ambient turbulence and meanders (i.e., travels in non-uniform path). Schepers estimates that the wake is fully expanded at a distance of 2.25 D and the far wake region begins at 2-5 D downstream. The actual distance traveled before the

  1. Earth's earliest atmospheres.

    PubMed

    Zahnle, Kevin; Schaefer, Laura; Fegley, Bruce

    2010-10-01

    Earth is the one known example of an inhabited planet and to current knowledge the likeliest site of the one known origin of life. Here we discuss the origin of Earth's atmosphere and ocean and some of the environmental conditions of the early Earth as they may relate to the origin of life. A key punctuating event in the narrative is the Moon-forming impact, partly because it made Earth for a short time absolutely uninhabitable, and partly because it sets the boundary conditions for Earth's subsequent evolution. If life began on Earth, as opposed to having migrated here, it would have done so after the Moon-forming impact. What took place before the Moon formed determined the bulk properties of the Earth and probably determined the overall compositions and sizes of its atmospheres and oceans. What took place afterward animated these materials. One interesting consequence of the Moon-forming impact is that the mantle is devolatized, so that the volatiles subsequently fell out in a kind of condensation sequence. This ensures that the volatiles were concentrated toward the surface so that, for example, the oceans were likely salty from the start. We also point out that an atmosphere generated by impact degassing would tend to have a composition reflective of the impacting bodies (rather than the mantle), and these are almost without exception strongly reducing and volatile-rich. A consequence is that, although CO- or methane-rich atmospheres are not necessarily stable as steady states, they are quite likely to have existed as long-lived transients, many times. With CO comes abundant chemical energy in a metastable package, and with methane comes hydrogen cyanide and ammonia as important albeit less abundant gases.

  2. Near-Continuous Profiling of Temperature, Moisture, and Atmospheric Stability Using the Atmospheric Emitted Radiance Interferometer (AERI).

    NASA Astrophysics Data System (ADS)

    Feltz, W. F.; Smith, W. L.; Howell, H. B.; Knuteson, R. O.; Woolf, H.; Revercomb, H. E.

    2003-05-01

    The Department of Energy Atmospheric Radiation Measurement Program (ARM) has funded the development and installation of five ground-based atmospheric emitted radiance interferometer (AERI) systems at the Southern Great Plains (SGP) site. The purpose of this paper is to provide an overview of the AERI instrument, improvement of the AERI temperature and moisture retrieval technique, new profiling utility, and validation of high-temporal-resolution AERI-derived stability indices important for convective nowcasting. AERI systems have been built at the University of Wisconsin-Madison, Madison, Wisconsin, and deployed in the Oklahoma-Kansas area collocated with National Oceanic and Atmospheric Administration 404-MHz wind profilers at Lamont, Vici, Purcell, and Morris, Oklahoma, and Hillsboro, Kansas. The AERI systems produce absolutely calibrated atmospheric infrared emitted radiances at one-wavenumber resolution from 3 to 20 m at less than 10-min temporal resolution. The instruments are robust, are automated in the field, and are monitored via the Internet in near-real time. The infrared radiances measured by the AERI systems contain meteorological information about the vertical structure of temperature and water vapor in the planetary boundary layer (PBL; 0-3 km). A mature temperature and water vapor retrieval algorithm has been developed over a 10-yr period that provides vertical profiles at less than 10-min temporal resolution to 3 km in the PBL. A statistical retrieval is combined with the hourly Geostationary Operational Environmental Satellite (GOES) sounder water vapor or Rapid Update Cycle, version 2, numerical weather prediction (NWP) model profiles to provide a nominal hybrid first guess of temperature and moisture to the AERI physical retrieval algorithm. The hourly satellite or NWP data provide a best estimate of the atmospheric state in the upper PBL; the AERI radiances provide the mesoscale temperature and moisture profile correction in the PBL to the

  3. Super Clausius-Clapeyron scaling of extreme hourly precipitation and its relation to large-scale atmospheric conditions

    NASA Astrophysics Data System (ADS)

    Lenderink, Geert; Barbero, Renaud; Loriaux, Jessica; Fowler, Hayley

    2017-04-01

    Present-day precipitation-temperature scaling relations indicate that hourly precipitation extremes may have a response to warming exceeding the Clausius-Clapeyron (CC) relation; for The Netherlands the dependency on surface dew point temperature follows two times the CC relation corresponding to 14 % per degree. Our hypothesis - as supported by a simple physical argument presented here - is that this 2CC behaviour arises from the physics of convective clouds. So, we think that this response is due to local feedbacks related to the convective activity, while other large scale atmospheric forcing conditions remain similar except for the higher temperature (approximately uniform warming with height) and absolute humidity (corresponding to the assumption of unchanged relative humidity). To test this hypothesis, we analysed the large-scale atmospheric conditions accompanying summertime afternoon precipitation events using surface observations combined with a regional re-analysis for the data in The Netherlands. Events are precipitation measurements clustered in time and space derived from approximately 30 automatic weather stations. The hourly peak intensities of these events again reveal a 2CC scaling with the surface dew point temperature. The temperature excess of moist updrafts initialized at the surface and the maximum cloud depth are clear functions of surface dew point temperature, confirming the key role of surface humidity on convective activity. Almost no differences in relative humidity and the dry temperature lapse rate were found across the dew point temperature range, supporting our theory that 2CC scaling is mainly due to the response of convection to increases in near surface humidity, while other atmospheric conditions remain similar. Additionally, hourly precipitation extremes are on average accompanied by substantial large-scale upward motions and therefore large-scale moisture convergence, which appears to accelerate with surface dew point. This

  4. A technique for active measurement of atmospheric transmittance using an imaging system: implementation at 10.6 μm wavelength

    NASA Astrophysics Data System (ADS)

    Sadot, D.; Zaarur, O.; Zaarur, S.

    1995-12-01

    An active method is presented for measuring atmospheric transmittance with an imaging system. In comparison to other measurement methods, this method has the advantage of immunity to background noise, independence of atmospheric conditions such as solar radiation, and an improved capability to evaluate effects of turbulence on the measurements. Other significant advantages are integration over all particulate size distribution effects including very small and very large particulates whose concentration is hard to measure, and the fact that this method is a path-integrated measurement. Attenuation deriving from molecular absorption and from small and large particulate scatter and absorption and their weather dependences are separated out. Preliminary results indicate high correlation with direct transmittance calculations via particle size distribution measurement, and that even at 10.6 μm wavelength atmospheric transmission depends noticeably on aerosol size distribution and concentration.

  5. Active three-way catalysis of rhodium particles with a low oxidation state maintained under an oxidative atmosphere on a La-containing ZrO2 support.

    PubMed

    Kawabata, Hisaya; Koda, Yuki; Sumida, Hirosuke; Shigetsu, Masahiko; Takami, Akihide; Inumaru, Kei

    2013-05-11

    Rhodium on a La-containing ZrO2 support effectively eliminated NOx from a synthetic auto exhaust gas under fluctuating oxygen conditions. Rhodium particles maintained a low oxidation state on the ZrO2-La2O3 mixed oxide even after treatment with 5% O2 at 773 K, highlighting the significant effect of the La addition.

  6. Seasonal Variability of Saturn's Atmosphere

    NASA Technical Reports Server (NTRS)

    Yanamandra-Fisher, Padma A.; Simon, Amy; Delcroix, Marc; Orton, Glenn S.; Trinh, Shirley

    2012-01-01

    The seasonal variability of Saturn's clouds and weather layer, currently displaying a variety of phenomena (convective storms, planetary waves, giant storms and lightning-induced events, etc.) is not yet fully understood. Variations of Saturn's radiance at 5.2 microns, a spectral region dominated by thermal emission in an atmospheric window containing weak gaseous absorption, contain a strong axisymmetric component as well as large discrete features at low and mid-latitudes that are several degrees colder than the planetary average and uncorrelated with features at shorter wavelengths that are dominated by reflected sunlight (Yanamandra-Fisher et al., 2001. Icarus, Vol. 150). The characterization of several fundamental atmospheric properties and processes, however, remains incomplete, namely: How do seasons affect (a) the global distribution of gaseous constituents and aerosols; and (b) temperatures and the stability against convection and large scale-atmospheric transport? Do 5-micron clouds have counterparts at other altitude levels? What changes occur during the emergence of Great White Storms? Data acquired at the NASA/IRTF and NAOJ/Subaru from 1995 - 2011; since 2004, high-resolution multi-spectral and high-spatial imaging data acquired by the NASA/ESA Cassini mission, represents half a Saturnian year or two seasons. With the addition of detailed multi-spectral data sets acquired by amateur observers, we study these dramatic phenomena to better understand the timeline of the evolution of these events. Seasonal (or temporal) trends in the observables such as albedo of the clouds, thermal fields of the atmosphere as function of altitude, development of clouds, hazes and global abundances of various hydrocarbons in the atmosphere can now be modeled. We will present results of our ongoing investigation for the search and characterization of periodicities over half a Saturnian year, based on a non-biased a priori approach and time series techniques (such as

  7. Method of fabricating boron containing coatings

    DOEpatents

    Makowiecki, Daniel M.; Jankowski, Alan F.

    1999-01-01

    Hard coatings are fabricated from boron nitride, cubic boron nitride, and multilayer boron/cubic boron nitride, and the fabrication thereof involves magnetron sputtering in a selected atmosphere. These hard coatings may be applied to tools and engine and other parts, as well to reduce wear on tribological surfaces and electronic devices. These boron coatings contain no morphological growth features. For example, the boron is formed in an inert (e.g. argon) atmosphere, while the cubic boron nitride is formed in a reactive (e.g. nitrogen) atmosphere. The multilayer boron/cubic boron nitride, is produced by depositing alternate layers of boron and cubic boron nitride, with the alternate layers having a thickness of 1 nanometer to 1 micrometer, and at least the interfaces of the layers may be discrete or of a blended or graded composition.

  8. Using weather prediction data for simulation of mesoscale atmospheric processes

    NASA Astrophysics Data System (ADS)

    Bart, Andrey A.; Starchenko, Alexander V.

    2015-11-01

    The paper presents an approach to specify initial and boundary conditions from the output data of global model SLAV for mesoscale modelling of atmospheric processes in areas not covered by meteorological observations. From the data and the model equations for a homogeneous atmospheric boundary layer the meteorological and turbulent characteristics of the atmospheric boundary layer are calculated.

  9. Atmosphere: Change is in the Air

    Science.gov Websites

    Forces of Change Main Arctic Atmosphere El Niño Current Conditions DIG IT! Share | Smithsonian Atmosphere: Change is in the Air Explore Earth's changing atmosphere. Discover how our ever-changing everything that breathes. This web site incorporates images and information from the Atmosphere: Change is in

  10. Atmospheric Dispersion Modeling of 137Cs generated from Nuclear Spent Fuel under Hypothetic Accidental Condition in the BNPP Area

    NASA Astrophysics Data System (ADS)

    Lee, Jongkuk; Lee, Kwan-Hee; Yook, Daesik; Kim, Sung Il; Lee, Byung Soo

    2016-04-01

    of surface conditions were selected, including city area, hedge area, cut grass, and desert area. Four cases of simulations were performed under the same conditions except for surface the roughness factor. The results indicated that relatively high concentrations were found at the high surface roughness near the origin of the source point. The city area contained approximately four times 137Cs concentration than that of desert area. The atmospheric dispersion of 137Cs was affected by the surface condition in the proximal area. Moreover, movement of the radioactive material had a tendency to be dispersed in a relatively wide range in the desert areas compared to in the higher surface roughness areas. The results of these study offer useful information for developing environmental radiation monitoring systems (ERMSs) and evacuation plan under unexpected emergency condition for the BNPP and can be used to assess the environmental effects of new nuclear power plant. This work was supported by the Nuclear Safety Research Program through the Korea Nuclear Safety Foundation(KORSAFe), granted financial resource from the Nuclear Safety and Security Commission(NSSC), Republic of Korea (No. 1503003).

  11. ATMOSPHERIC DRY PARTICLE DEPOSITION OF POPS AND TRACE METALS IN AN URBAN- AND INDUSTRIALLY-IMPACTED MID-ATLANTIC ESTUARY (AEOLOS B MID-ATLANTIC)

    EPA Science Inventory

    Emissions of hazardous air pollutants into the coastal urban-industrial atmosphere increase atmospheric depositional fluxes to proximate water bodies. Dry deposition of large particles containing persistent organic pollutants (POPs) and trace metals were a major contribu...

  12. Images reveal that atmospheric particles can undergo liquid–liquid phase separations

    PubMed Central

    You, Yuan; Renbaum-Wolff, Lindsay; Carreras-Sospedra, Marc; Hanna, Sarah J.; Hiranuma, Naruki; Kamal, Saeid; Smith, Mackenzie L.; Zhang, Xiaolu; Weber, Rodney J.; Shilling, John E.; Dabdub, Donald; Martin, Scot T.; Bertram, Allan K.

    2012-01-01

    A large fraction of submicron atmospheric aerosol particles contains both organic material and inorganic salts. As the relative humidity cycles in the atmosphere and the water content of the particles correspondingly changes, these mixed particles can undergo a range of phase transitions, possibly including liquid–liquid phase separation. If liquid–liquid phase separation occurs, the gas-particle partitioning of atmospheric semivolatile organic compounds, the scattering and absorption of solar radiation, and the reactive uptake of gas species on atmospheric particles may be affected, with important implications for climate predictions. The actual occurrence of liquid–liquid phase separation within individual atmospheric particles has been considered uncertain, in large part because of the absence of observations for real-world samples. Here, using optical and fluorescence microscopy, we present images that show the coexistence of two noncrystalline phases for real-world samples collected on multiple days in Atlanta, GA as well as for laboratory-generated samples under simulated atmospheric conditions. These results reveal that atmospheric particles can undergo liquid–liquid phase separations. To explore the implications of these findings, we carried out simulations of the Atlanta urban environment and found that liquid–liquid phase separation can result in increased concentrations of gas-phase NO3 and N2O5 due to decreased particle uptake of N2O5. PMID:22847443

  13. Images reveal that atmospheric particles can undergo liquid-liquid phase separations.

    PubMed

    You, Yuan; Renbaum-Wolff, Lindsay; Carreras-Sospedra, Marc; Hanna, Sarah J; Hiranuma, Naruki; Kamal, Saeid; Smith, Mackenzie L; Zhang, Xiaolu; Weber, Rodney J; Shilling, John E; Dabdub, Donald; Martin, Scot T; Bertram, Allan K

    2012-08-14

    A large fraction of submicron atmospheric aerosol particles contains both organic material and inorganic salts. As the relative humidity cycles in the atmosphere and the water content of the particles correspondingly changes, these mixed particles can undergo a range of phase transitions, possibly including liquid-liquid phase separation. If liquid-liquid phase separation occurs, the gas-particle partitioning of atmospheric semivolatile organic compounds, the scattering and absorption of solar radiation, and the reactive uptake of gas species on atmospheric particles may be affected, with important implications for climate predictions. The actual occurrence of liquid-liquid phase separation within individual atmospheric particles has been considered uncertain, in large part because of the absence of observations for real-world samples. Here, using optical and fluorescence microscopy, we present images that show the coexistence of two noncrystalline phases for real-world samples collected on multiple days in Atlanta, GA as well as for laboratory-generated samples under simulated atmospheric conditions. These results reveal that atmospheric particles can undergo liquid-liquid phase separations. To explore the implications of these findings, we carried out simulations of the Atlanta urban environment and found that liquid-liquid phase separation can result in increased concentrations of gas-phase NO(3) and N(2)O(5) due to decreased particle uptake of N(2)O(5).

  14. Future changes in atmospheric condition for the baiu under RCP scenarios

    NASA Astrophysics Data System (ADS)

    Okada, Y.; Takemi, T.; Ishikawa, H.

    2015-12-01

    This study focuses on atmospheric circulation fields during the baiu in Japan with global warming projection experimental data conducted using a 20-km mesh global atmospheric model (MRI-AGCM3.2) under Representative Concentration Pathways (RCP) scenarios. This model also used 4 different sea surface temperature (SST) initial conditions. Support of this dataset is provided by the Meteorological Research Institute (MRI). The baiu front indicated by the north-south gradient of moist static energy moves northward in present-day climate, whereas this northward shift in future climate simulations is very slow during May and June. In future late baiu season, the baiu front stays in the northern part of Japan even in August. As a result, the rich water vapor is transported around western Japan and the daily precipitation amount will increase in August. This northward shift of baiu front is associated with the westward expansion of the enhanced the North Pacific subtropical high (NPSH) into Japan region. However, the convective activity around northwest Pacific Ocean is inactive and is unlikely to occur convective jump (CJ). These models show that the weak trough exists in upper troposphere around Japan. Therefore, the cold advection stays in the northern part of Japan during June. In July, the front due to the strengthening of the NPSH moves northward, and then it stays until August. This feature is often found between the clustered SSTs, Cluster 2 and 3. The mean field of future August also show the inflow of rich water vapor content to Japan islands. In this model, the extreme rainfall suggested tends to almost increase over the Japan islands during future summer. This work was conducted under the Program for Risk Information on Climate Change supported by the Ministry of Education, Culture, Sports, Science, and Technology-Japan (MEXT).

  15. U.S. Standard Atmosphere, 1976

    NASA Technical Reports Server (NTRS)

    1976-01-01

    Part 1 gives the basis for computation of the main tables of atmospheric properties, including values of physical constants, conversion factors, and definitions of derived properties, including values of physical constants, conversion factors, and definitions of derived properties. Part 2 describes the model and data used up to 85 km, in the first section; and the model and data used above 85 km in the second section. The theoretical basis of the high altitude model is given in an appendix. Part 3 contains information on minor constituents in the troposphere, stratosphere, and mesosphere. The main tables of atmospheric properties to 1000 km are given in Part 4. The international system of metric units is used.

  16. An abstract model for radiative transfer in an atmosphere with reflection by the planetary surface

    NASA Astrophysics Data System (ADS)

    Greenberg, W.; van der Mee, C. V. M.

    1985-07-01

    A Hilbert-space model is developed that applies to radiative transfer in a homogeneous, plane-parallel planetary atmosphere. Reflection and absorption by the planetary surface are taken into account by imposing a reflective boundary condition. The existence and uniqueness of the solution of this boundary value problem are established by proving the invertibility of a scattering operator using the Fredholm alternative.

  17. Deep desulfurization by amphiphilic lanthanide-containing polyoxometalates in ionic-liquid emulsion systems under mild conditions.

    PubMed

    Xu, Junhua; Zhao, Shen; Ji, Yuanchun; Song, Yu-Fei

    2013-01-07

    Amphiphilic lanthanide-containing polyoxometalates (POMs) were prepared by surfactant encapsulation. Investigation of these lanthanide-containing POMs in oxidative desulfurization (ODS) showed that highly efficient deep desulfurization could be achieved in only 14 min with 100% conversion of dibenzothiophene under mild conditions by using (DDA)(9)LaW(10)/[omim]PF(6) (DDA=dimethyldioctadecylammonium, omim=1-octyl-3-methyl-imidazolium) in the presence of H(2) O(2) . Furthermore, deep desulfurization proceeds smoothly in model oil with an S content as low as 50 ppm. A scaled-up experiment in which the volume of model oil was increased from 5 to 1000 mL with S content of 1000 ppm indicated that about 99% sulfur removal can be achieved in 40 mins in an ionic-liquid emulsion system. To the best of our knowledge, the (DDA)(9)LaW(10)/[omim]PF(6) catalyst system with H(2)O(2) as oxidant is one of the most efficient desulfurization systems reported so far. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Atmospheric Correction of High-Spatial-Resolution Commercial Satellite Imagery Products Using MODIS Atmospheric Products

    NASA Technical Reports Server (NTRS)

    Pagnutti, Mary; Holekamp, Kara; Ryan, Robert E.; Vaughan, Ronand; Russell, Jeff; Prados, Don; Stanley, Thomas

    2005-01-01

    Remotely sensed ground reflectance is the foundation of any interoperability or change detection technique. Satellite intercomparisons and accurate vegetation indices, such as the Normalized Difference Vegetation Index (NDVI), require the generation of accurate reflectance maps (NDVI is used to describe or infer a wide variety of biophysical parameters and is defined in terms of near-infrared (NIR) and red band reflectances). Accurate reflectance-map generation from satellite imagery relies on the removal of solar and satellite geometry and of atmospheric effects and is generally referred to as atmospheric correction. Atmospheric correction of remotely sensed imagery to ground reflectance has been widely applied to a few systems only. The ability to obtain atmospherically corrected imagery and products from various satellites is essential to enable widescale use of remotely sensed, multitemporal imagery for a variety of applications. An atmospheric correction approach derived from the Moderate Resolution Imaging Spectroradiometer (MODIS) that can be applied to high-spatial-resolution satellite imagery under many conditions was evaluated to demonstrate a reliable, effective reflectance map generation method. Additional information is included in the original extended abstract.

  19. Modeling of acetate-type fermentation of sugar-containing wastewater under acidic pH conditions.

    PubMed

    Huang, Liang; Pan, Xin-Rong; Wang, Ya-Zhou; Li, Chen-Xuan; Chen, Chang-Bin; Zhao, Quan-Bao; Mu, Yang; Yu, Han-Qing; Li, Wen-Wei

    2018-01-01

    In this study, a kinetic model was developed based on Anaerobic Digestion Model No. 1 to provide insights into the directed production of acetate and methane from sugar-containing wastewater under low pH conditions. The model sufficiently described the dynamics of liquid-phase and gaseous products in an anaerobic membrane bioreactor by comprehensively considering the syntrophic bioconversion steps of sucrose hydrolysis, acidogenesis, acetogenesis and methanogenesis under acidic pH conditions. The modeling results revealed a significant pH-dependency of hydrogenotrophic methanogenesis and ethanol-producing processes that govern the sucrose fermentative pathway through changing the hydrogen yield. The reaction thermodynamics of such acetate-type fermentation were evaluated, and the implications for process optimization by adjusting the hydraulic retention time were discussed. This work sheds light on the acid-stimulated acetate-type fermentation process and may lay a foundation for optimization of resource-oriented processes for treatment of food wastewater. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Modeling the atmospheric chemistry of TICs

    NASA Astrophysics Data System (ADS)

    Henley, Michael V.; Burns, Douglas S.; Chynwat, Veeradej; Moore, William; Plitz, Angela; Rottmann, Shawn; Hearn, John

    2009-05-01

    An atmospheric chemistry model that describes the behavior and disposition of environmentally hazardous compounds discharged into the atmosphere was coupled with the transport and diffusion model, SCIPUFF. The atmospheric chemistry model was developed by reducing a detailed atmospheric chemistry mechanism to a simple empirical effective degradation rate term (keff) that is a function of important meteorological parameters such as solar flux, temperature, and cloud cover. Empirically derived keff functions that describe the degradation of target toxic industrial chemicals (TICs) were derived by statistically analyzing data generated from the detailed chemistry mechanism run over a wide range of (typical) atmospheric conditions. To assess and identify areas to improve the developed atmospheric chemistry model, sensitivity and uncertainty analyses were performed to (1) quantify the sensitivity of the model output (TIC concentrations) with respect to changes in the input parameters and (2) improve, where necessary, the quality of the input data based on sensitivity results. The model predictions were evaluated against experimental data. Chamber data were used to remove the complexities of dispersion in the atmosphere.

  1. Growth and toxin production by Clostridium botulinum in steamed rice aseptically packed under modified atmosphere.

    PubMed

    Kasai, Yoshiaki; Kimura, Bon; Kawasaki, Susumu; Fukaya, Tetsuya; Sakuma, Kinya; Fujii, Tateo

    2005-05-01

    Sales and consumption of ready-to-eat aseptic steamed rice products have increased manyfold in Japan over the past 10 years. To determine the safety of steamed rice (water content 60%, pH 6.5) aseptically packaged under modified atmosphere, challenge studies were performed using a mixture of Clostridium botulinum proteolytic strains (five strains of type A and five strains of type B). Atmospheric conditions of 0 and 15% oxygen (with 5% CO2 and 5% N2 as the balance) were used. No neurotoxins were detected, and organoleptically acceptable conditions persisted for 24 weeks at 15% oxygen conditions. However, botulinum neurotoxin was found in one of three samples at 12 weeks and in one of two samples at 24 weeks at 0% oxygen and 30 degrees C. When samples were inoculated with C. botulinum with amylase (0% oxygen), neurotoxin and sample spoilage was detected after only 1 week of storage. Challenge studies using proteolytic strains of C. botulinum mixed with Bacillus subtilis (amylase formers) also were performed with atmosphere conditions of oxygen at 0, 5, 10, and 15% (with 5% CO2 and 5% N2 as the balance). Under 10 and 15% oxygen conditions, neurotoxin was not detected after 1 week of storage, but sample spoilage was detected after the same period. Under 0% oxygen conditions, neurotoxin was detected at 1 week, but the sample remained organoleptically acceptable even after 2 weeks of storage. Both neurotoxin and sample spoilage were detected at 1 week of storage under 5% oxygen conditions. Based on these results, cocontamination of amylase-producing Bacillus with C. botulinum would increase the risk of foodborne botulism when aseptic rice samples are packed under low-oxygen conditions (<5%). Therefore, to ensure the safety of these products, packing under atmospheric containing more than 10% oxygen is recommended.

  2. C/O Ratios in Exoplanetary Atmospheres

    NASA Astrophysics Data System (ADS)

    Madhusudhan, N.

    2012-04-01

    Recent observations are allowing unprecedented constraints on the carbon-to-oxygen (C/O) ratios of giant exoplanetary atmospheres. Elemental abundance ratios, such as the C/O ratio, of planetary atmospheres provide important constraints on planetary interior compositions and formation conditions, and on the chemical and dynamical processes in the atmospheres. In addition, for super-Earths, the potential availability of water and oxygen, and hence the notion of `habitability', is contingent on the C/O ratio. Typically, an oxygen-rich composition, motivated by the solar nebula C/O of 0.5, is assumed in models of exoplanetary formation, interiors, and atmospheres. However, recent observations of exoplanetary atmospheres are suggesting the possibility of C/O ratios of 1.0 or higher, motivating the new class of Carbon-rich Planets (CRPs). In this talk, we will present observational constraints on atmospheric C/O ratios for an ensemble of transiting exoplanets and discuss their implications on the various aspects of exoplanetary characterization described above. Motivated by these results, we propose a two-dimensional classification scheme for irradiated giant exoplanets in which the incident irradiation and the atmospheric C/O ratio are the two dimensions. We demonstrate that some of the extreme anomalies reported in the literature for hot Jupiter atmospheres can be explained based on this 2-D scheme. An overview of new theoretical avenues and observational efforts underway for chemical characterization of extrasolar planets, from hot Jupiters to super-Earths, will be presented.

  3. Maxine: A spreadsheet for estimating dose from chronic atmospheric radioactive releases

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jannik, Tim; Bell, Evaleigh; Dixon, Kenneth

    MAXINE is an EXCEL© spreadsheet, which is used to estimate dose to individuals for routine and accidental atmospheric releases of radioactive materials. MAXINE does not contain an atmospheric dispersion model, but rather doses are estimated using air and ground concentrations as input. Minimal input is required to run the program and site specific parameters are used when possible. Complete code description, verification of models, and user’s manual have been included.

  4. Improved Determination of Surface and Atmospheric Temperatures Using Only Shortwave AIRS Channels

    NASA Technical Reports Server (NTRS)

    Susskind,Joel

    2009-01-01

    AIRS was launched on EOS Aqua on May 4, 2002, together with AMSU-A and HSB, to form a next generation polar orbiting infrared and microwave atmospheric sounding system. AIRS is a grating spectrometer with a number of linear arrays of detectors with each detector sensitive to outgoing radiation in a characteristic frequency v(sub i) with a spectral band pass delta v(sub i) of roughly v(sub i) /1200. AIRS contains 2378 spectral channels covering portions of the spectral region 650 cm(exp -1) (15.38 gm) - 2665 cm(exp -1)' (3.752 micrometers). These spectral regions contain significant absorption features from two CO2 absorption bands, the 15 micrometer (longwave) CO2 band, and the 4.3 micrometer (shortwave) CO, absorption band. There are also two atmospheric window regions, the 12 micrometerm - 8 micrometer (longwave) window, and the 4.17 micrometer - 3.75 micrometer (shortwave) window. Historically, determination of surface and atmospheric temperatures from satellite observations was performed using primarily observations in the longwave window and CO2 absorption regions. One reason for this was concerns about the effects, during the day, of reflected sunlight and non-Local Thermodynamic Equilibrium (non-LTE) on the observed radiances in the shortwave portion of the spectrum. According to cloud clearing theory, more accurate soundings of both surface skin and atmospheric temperatures can be obtained under partial cloud cover conditions if one uses the longwave channels to determine cloud cleared radiances R(sub i) for all channels, and uses R(sub i) only from shortwave channels in the determination of surface and atmospheric temperatures. This procedure is now being used by the AIRS Science Team in preparation for the AIRS Version 6 Retrieval Algorithm. This paper describes how the effects on the radiances of solar radiation reflected by clouds and the Earth's surface, and also of non-LTE, are accounted for in the analysis of the data. Results are presented for both

  5. Dynamic malware containment under an epidemic model with alert

    NASA Astrophysics Data System (ADS)

    Zhang, Tianrui; Yang, Lu-Xing; Yang, Xiaofan; Wu, Yingbo; Tang, Yuan Yan

    2017-03-01

    Alerting at the early stage of malware invasion turns out to be an important complement to malware detection and elimination. This paper addresses the issue of how to dynamically contain the prevalence of malware at a lower cost, provided alerting is feasible. A controlled epidemic model with alert is established, and an optimal control problem based on the epidemic model is formulated. The optimality system for the optimal control problem is derived. The structure of an optimal control for the proposed optimal control problem is characterized under some conditions. Numerical examples show that the cost-efficiency of an optimal control strategy can be enhanced by adjusting the upper and lower bounds on admissible controls.

  6. Detection techniques for tenuous planetary atmospheres

    NASA Technical Reports Server (NTRS)

    Hoenig, S. A.; Summerton, J. E.; Kirchner, J. D.; Allred, J. B.

    1974-01-01

    The development of new types of detectors for analysis of planetary atmospheres is discussed. Initially, the interest was in detectors for use under partial vacuum conditions; recently, the program has been extended to include detectors for use at one atmosphere and adsorption systems for control and separation of gases. Results to date have included detector for O2 and H2 under partial vacuum conditions. Experiments on detectors for use at high pressures began in 1966; and systems for CO, H2, and O2 were reported in 1967 and 1968. In 1968 studies began on an electrically controlled adsorbent. It was demonstrated that under proper conditions a thin film of semiconductor material could be electrically cycled to absorb and desorb a specific gas. This work was extended to obtain quantitative data on the use of semiconductors as controllable adsorbents.

  7. Microwave boundary conditions on the atmosphere and clouds of Venus

    NASA Technical Reports Server (NTRS)

    Rossow, W. B.; Sagan, C.

    1975-01-01

    The dielectric properties of H2O/H2SO4 mixtures are deduced from the Debye equations and, for a well-mixed atmosphere, the structure of H2O and H2O/H2SO4 clouds is calculated. Various data on the planet together set an upper limit on the mixing ratio by number for H2O of about 0.001 in the lower Venus atmosphere, and for H2SO4 of about 0.00001. The polarization value of the real part of the refractive index of the clouds, the spectroscopic limits on the abundance of water vapor above the clouds, and the microwave data together set corresponding upper limits on H2O of approximately 0.0002 and on H2SO4 of approximately 0.000009. Upper limits on the surface density of total cloud constituents and of cloud liquid water are, respectively, about 0.1 g/sq cm and about 0.01 g/sq cm. The infrared opacities of 90 bars of CO2, together with the derived upper limits to the amounts of water vapor and liquid H2O/H2SO4, may be sufficient to explain the high surface temperatures through the greenhouse effect.

  8. The slant path atmospheric refraction calibrator - An instrument to measure the microwave propagation delays induced by atmospheric water vapor

    NASA Technical Reports Server (NTRS)

    Walter, Steven J.; Bender, Peter L.

    1992-01-01

    The water vapor-induced propagation delay experienced by a radio signal traversing the atmosphere is characterized by the Slant Path Atmospheric Refraction Calibrator (SPARC), which measures the difference in the travel times between an optical and a microwave signal propagating along the same atmospheric path with an accuracy of 15 picosec or better. Attention is given to the theoretical and experimental issues involved in measuring the delay induced by water vapor; SPARC measurements conducted along a 13.35-km ground-based path are presented, illustrating the instrument's stability, precision, and accuracy.

  9. Is microbiolgy an alternative route to photochemistry in atmospheric chemistry?

    NASA Astrophysics Data System (ADS)

    Vaitilingom, M.; Parazols, M.; Sancelme, M.; Deguillaume, L.; Mailhot, G.; Delort, A.-M.

    2009-04-01

    Until very recently scientists from atmospheric sciences focussed their studies on physical and chemical phenomena taking place in cloud water phase neglecting the presence of active microorganisms in this medium. For instance, considering atmospheric chemistry, solar light is considered as the predominant catalyser for chemical reactions occurring in the atmosphere. However recent studies show that living and active microorganisms, including bacteria, yeasts and fungi, are present in the atmospheric water phase and could play an active role in chemistry of clouds. Indeed living microorganisms are clearly biocatalysts which could transform organic compounds as an alternative route to photochemistry. The objective of our project is to bring answers to this new scientific question by a multidisciplinary approach involving atmospheric physicists, photochemists and microbiologists. Microorganisms have been isolated and identified in cloud water sampled at the puy de Dôme summit which is an atmospheric observatory and a European referenced site. Laboratory experiments were carried out to evaluate the potential of organic species (carboxylic acids) degradation by the photochemical or microbiological ways. The project was centred on few carboxylic acids among them succinic, acetic, formic and oxalic acids (the most important organic acids in cloud water sampled at Puy de Dôme). Degradation rates were measured during biodegradation alone (Pseudomonas syringae), photochemistry alone (hydrogen peroxide + light) and combing both processed using artificial reconstituted cloud water. Our first results show that the obtained degradation rates are in the range of order.

  10. Particulate organic compounds in the atmosphere surrounding an industrialised area of Prato (Italy)

    NASA Astrophysics Data System (ADS)

    Cincinelli, Alessandra; Mandorlo, Stefano; Dickhut, Rebecca M.; Lepri, Luciano

    Atmospheric aerosols were collected during the period from May 2000 through January 2001 at 13 different sites in and around the Baciacavallo sewage treatment plant in Prato (Italy). The urban area surrounding the plant contains significant textile industrial activity and a main arterial road. Aerosol-associated n-alkane, polycyclic aromatic hydrocarbon (PAH), nonylphenol (NP) and nonylphenolethoxylate (NPnEO) ( n=1-3) concentrations were measured in order to evaluate contributions from the sewage treatment plant, naturally produced aerosols, transportation and industrial activities to the air quality in the vicinity of the sewage treatment plant. Aerosol-associated n-alkane concentrations ranged from 36.7 to 205 ng/m 3 and their possible origin was determined by the presence of typical petroleum characteristics such as the unresolved complex mixture and an odd/even carbon ratio (Carbon Preference Index). PAH concentrations ranged from 0.855 to 24.2 ng/m 3, in accordance with those generally found for urban aerosols in Europe. NP and NPnEO ( n=1-3), as well as fine aerosol particulate matter (PM 10) were significantly correlated with relative wind direction with increased levels observed in the ambient atmosphere when the relative wind direction was from the Baciacavallo sewage treatment plant. This study confirms the use of NP and NPnEO ( n=1-3) as markers of sewage treatment emissions and the importance of the contribution of aerosols produced by sewage treatment plant aeration tanks to the local atmospheric composition.

  11. CASOAR - An infrared active wave front sensor for atmospheric turbulence analysis

    NASA Astrophysics Data System (ADS)

    Cariou, Jean-Pierre; Dolfi, Agnes

    1992-12-01

    Knowledge of deformation of every point of a wave front over time allows statistical turbulence parameters to be analyzed, and the definition of real time adaptive optics to be designed. An optical instrumentation was built to meet this need. Integrated in a compact enclosure for experiments on outdoor sites, the CASOAR allows the deformations of a wave front to be measured rapidly (100 Hz) and with accuracy (1 deg). The CASOAR is an active system: it includes its own light source (CW CO2 laser), making it self-contained, self-aligned and insensitive to spurious light rays. After being reflected off a mirror located beyond the atmospheric layer to be analyzed (range of several kilometers), the beam is received and detected by coherent mixing. Electronic phase is converted in optical phase and recorded or displayed in real time on a monitor. Experimental results are shown, pointing out the capabilities of this device.

  12. Remote Geochemical and Mineralogical Analyses under Venus Atmospheric Conditions by Raman - Laser Induced Breakdown Spectroscopy (LIBS)

    NASA Astrophysics Data System (ADS)

    Clegg, S. M.; Wiens, R. C.; Newell, R. T.; DeCroix, D. S.; Sharma, S. K.; Misra, A. K.; Dyar, M. D.; Anderson, R. B.; Angel, S. M.; Martinez, R.; McInroy, R.

    2016-12-01

    The extreme Venus surface temperature ( 740 K) and atmospheric pressure ( 93 atm) create a challenging environment for surface geochemical and mineralogical investigations. Such investigations must be completed within hours of landing before the lander will be overcome by the harsh atmosphere. A combined remote Raman - LIBS spectrometer (RLS) is capable of accomplishing the geochemical science goals without the risks associated with collecting samples and bringing them into the lander. Wiens et al. [1], Sharma et al. [2] and Clegg et al. [3] demonstrated that both analytical techniques can be integrated into a single instrument similar to the SuperCam instrument selected for the Mars 2020 rover. The focus of this paper is to explore the capability to probe geologic samples by Raman and LIBS and demonstrate quantitative analysis under Venus surface conditions. Raman and LIBS are highly complementary analytical techniques capable of determining both the mineralogical and geochemical composition of Venus surface samples. These techniques have the potential to profoundly increase our knowledge of the Venus surface composition, which is currently limited to geochemical data from the Venera and VEGA landers [4]. Based on the observed compositional differences and recognizing the imprecise nature of the existing data, samples were chosen to constitute a Venus-analog suite for this study. LIBS data reduction involved generating a partial least squares (PLS) model with a subset of the rock powder standards to quantitatively determine the major elemental abundance of the remaining samples. The Raman experiments have been conducted under supercritical CO2 involving single-mineral and mixed-mineral samples containing talc, olivine, pyroxenes, feldspars, anhydrite, barite, and siderite. These experiments involve a new RLS prototype similar to the SuperCam instrument as well a new 2 m long pressure chamber capable of simulating the Venus surface temperature and pressure. Results

  13. Ultraviolet-radiation-induced methane emissions from meteorites and the Martian atmosphere.

    PubMed

    Keppler, Frank; Vigano, Ivan; McLeod, Andy; Ott, Ulrich; Früchtl, Marion; Röckmann, Thomas

    2012-05-30

    Almost a decade after methane was first reported in the atmosphere of Mars there is an intensive discussion about both the reliability of the observations--particularly the suggested seasonal and latitudinal variations--and the sources of methane on Mars. Given that the lifetime of methane in the Martian atmosphere is limited, a process on or below the planet's surface would need to be continuously producing methane. A biological source would provide support for the potential existence of life on Mars, whereas a chemical origin would imply that there are unexpected geological processes. Methane release from carbonaceous meteorites associated with ablation during atmospheric entry is considered negligible. Here we show that methane is produced in much larger quantities from the Murchison meteorite (a type CM2 carbonaceous chondrite) when exposed to ultraviolet radiation under conditions similar to those expected at the Martian surface. Meteorites containing several per cent of intact organic matter reach the Martian surface at high rates, and our experiments suggest that a significant fraction of the organic matter accessible to ultraviolet radiation is converted to methane. Ultraviolet-radiation-induced methane formation from meteorites could explain a substantial fraction of the most recently estimated atmospheric methane mixing ratios. Stable hydrogen isotope analysis unambiguously confirms that the methane released from Murchison is of extraterrestrial origin. The stable carbon isotope composition, in contrast, is similar to that of terrestrial microbial origin; hence, measurements of this signature in future Mars missions may not enable an unambiguous identification of biogenic methane.

  14. Hydrometeorology as an Inversion Problem: Can River Discharge Observations Improve the Atmosphere by Ensemble Data Assimilation?

    NASA Astrophysics Data System (ADS)

    Sawada, Yohei; Nakaegawa, Tosiyuki; Miyoshi, Takemasa

    2018-01-01

    We examine the potential of assimilating river discharge observations into the atmosphere by strongly coupled river-atmosphere ensemble data assimilation. The Japan Meteorological Agency's Non-Hydrostatic atmospheric Model (JMA-NHM) is first coupled with a simple rainfall-runoff model. Next, the local ensemble transform Kalman filter is used for this coupled model to assimilate the observations of the rainfall-runoff model variables into the JMA-NHM model variables. This system makes it possible to do hydrometeorology backward, i.e., to inversely estimate atmospheric conditions from the information of river flows or a flood on land surfaces. We perform a proof-of-concept Observing System Simulation Experiment, which reveals that the assimilation of river discharge observations into the atmospheric model variables can improve the skill of the short-term severe rainfall forecast.

  15. Some issues on modeling atmospheric turbulence experienced by helicopter rotor blades

    NASA Technical Reports Server (NTRS)

    Costello, Mark; Gaonkar, G. H.; Prasad, J. V. R.; Schrage, D. P.

    1992-01-01

    The atmospheric turbulence velocities seen by nonrotating aircraft components and rotating blades can be substantially different. The differences are due to the spatial motion of the rotor blades, which move fore and aft through the gust waves. Body-fixed atmospheric turbulence refers to the actual atmospheric turbulence experienced by a point fixed on a nonrotating aircraft component such as the aircraft's center of gravity or the rotor hub, while blade-fixed atmospheric turbulence refers to the atmospheric turbulence experienced by an element of the rotating rotor blade. An example is presented, which, though overly simplified, shows important differences between blade- and body-fixed rotorcraft atmospheric turbulence models. All of the information necessary to develop the dynamic equations describing the atmospheric turbulence velocity field experienced by an aircraft is contained in the atmospheric turbulence velocity correlation matrix. It is for this reason that a generalized formulation of the correlation matrix describing atmospheric turbulence that a rotating blade encounters is developed. From this correlation matrix, earlier treated cases restricted to a rotor flying straight and level directly into the mean wind can be recovered as special cases.

  16. Method of fabricating boron containing coatings

    DOEpatents

    Makowiecki, D.M.; Jankowski, A.F.

    1999-04-27

    Hard coatings are fabricated from boron nitride, cubic boron nitride, and multilayer boron/cubic boron nitride, and the fabrication thereof involves magnetron sputtering in a selected atmosphere. These hard coatings may be applied to tools and engine and other parts, as well to reduce wear on tribological surfaces and electronic devices. These boron coatings contain no morphological growth features. For example, the boron is formed in an inert (e.g. argon) atmosphere, while the cubic boron nitride is formed in a reactive (e.g. nitrogen) atmosphere. The multilayer boron/cubic boron nitride, is produced by depositing alternate layers of boron and cubic boron nitride, with the alternate layers having a thickness of 1 nanometer to 1 micrometer, and at least the interfaces of the layers may be discrete or of a blended or graded composition. 3 figs.

  17. Atmospheric environmental implications of propulsion systems

    NASA Technical Reports Server (NTRS)

    Mcdonald, Allan J.; Bennett, Robert R.

    1995-01-01

    Three independent studies have been conducted for assessing the impact of rocket launches on the earth's environment. These studies have addressed issues of acid rain in the troposphere, ozone depletion in the stratosphere, toxicity of chemical rocket exhaust products, and the potential impact on global warming from carbon dioxide emissions from rocket launches. Local, regional, and global impact assessments were examined and compared with both natural sources and anthropogenic sources of known atmospheric pollutants with the following conclusions: (1) Neither solid nor liquid rocket launches have a significant impact on the earth's global environment, and there is no real significant difference between the two. (2) Regional and local atmospheric impacts are more significant than global impacts, but quickly return to normal background conditions within a few hours after launch. And (3) vastly increased space launch activities equivalent to 50 U.S. Space Shuttles or 50 Russian Energia launches per year would not significantly impact these conclusions. However, these assessments, for the most part, are based upon homogeneous gas phase chemistry analysis; heterogeneous chemistry from exhaust particulates, such as aluminum oxide, ice contrails, soot, etc., and the influence of plume temperature and afterburning of fuel-rich exhaust products, need to be further addressed. It was the consensus of these studies that computer modeling of interactive plume chemistry with the atmosphere needs to be improved and computer models need to be verified with experimental data. Rocket exhaust plume chemistry can be modified with propellant reformulation and changes in operating conditions, but, based upon the current state of knowledge, it does not appear that significant environmental improvements from propellant formulation changes can be made or are warranted. Flight safety, reliability, and cost improvements are paramount for any new rocket system, and these important aspects

  18. Polar symmetric flow of a viscous compressible atmosphere; an application to Mars

    NASA Technical Reports Server (NTRS)

    Pirraglia, J. A.

    1974-01-01

    The atmosphere is assumed to be driven by a polar symmetric temperature field and the equations of motion in pressure ratio coordinates are linearized by considering the zero order in terms of a thermal Rossby number R delta I/(2a omega) sq where delta T is a measure of the latitudinal temperature gradient. When the eddy viscosity is greater than 1 million sq cm/sec, the boundary layer extends far up into the atmosphere, making the geostrophic approximation invalid for the bulk of the atmosphere. A temperature model for Mars was used which was based on Mariner 9 infrared spectral data with a 30% increase in the depth averaged temperature from the winter pole to the subsolar point. The results obtained for the increase in surface pressure from the subsolar point to the winter pole, as a function of eddy viscosity and with no-slip conditions imposed at the surface, are given.

  19. Radiation profiles through the atmosphere measured by an auto controlled glider aircraft

    NASA Astrophysics Data System (ADS)

    Kräuchi, Andreas; Philipona, Rolf

    2014-05-01

    In 2011 radiation measurements through the atmosphere were made with a balloon borne short- and longwave net radiometer. These measurements were very promising and therefore new and improved sensors from Kipp&Zonen were used to equip a glider aircraft together with the standard Swiss radiosonde from Meteolabor AG. The glider serves as returning platform for the expensive and well calibrated radiation sensors. Double balloon technique is used to prevent pendulum motion during the ascent and to keep the radiation instruments as horizontal as possible. The built-in autopilot allows to return the gliderradiosonde to the launch site or to land it on predefined open space, which makes recovery much easier. The new return gliderradiosonde technique as well as new measurement possibilities will be shown. First measurements show radiation profiles through the atmosphere during different cloud conditions. Radiation profiles during different daytimes show the temporal resolution of vertical radiation profiles trough the atmosphere.

  20. Development of an Accelerated Test Method for the Determination of Susceptibility to Atmospheric Corrosion

    NASA Technical Reports Server (NTRS)

    Ambrose, John R.

    1991-01-01

    The theoretical rationale is presented for use of a repetitive cyclic current reversal voltammetric technique for characterization of localized corrosion processes, including atmospheric corrosion. Applicability of this proposed experimental protocol is applied to characterization of susceptibility to crevice and pitting corrosion, atmospheric corrosion and stress corrosion cracking. Criteria upon which relative susceptibility is based were determined and tested using two iron based alloys commonly in use at NASA-Kennedy; A36 (a low carbon steel) and 4130 (a low alloy steel). Practicality of the procedure was demonstrated by measuring changes in anodic polarization behavior during high frequency current reversal cycles of 25 cycles per second with 1 mA/sq cm current density amplitude in solutions containing Cl anions. The results demonstrated that, due to excessive polarization which affects conductivity of barrier corrosion product layers, A36 was less resistant to atmospheric corrosion than its 4130 counterpart; behavior which was also demonstrated during exposure tests.

  1. Photochemical Formation of Sulfur-Containing Aerosols

    NASA Astrophysics Data System (ADS)

    Kroll, Jay A.; Vaida, Veronica

    2017-06-01

    In order to understand planetary climate systems, modeling the properties of atmospheric aerosols is vital. Aerosol formation plays an important role in planetary climates and is tied to feedback loops that can either warm or cool a planet. Sulfur compounds are known to play an important role in new particle aerosol formation and have been observed in a number of planetary atmospheres throughout our solar system. Our current understanding of sulfur chemistry explains much of what we observe in Earth's atmosphere; however, several discrepancies arise when comparing observations of the Venusian atmosphere with model predictions. This suggests that there are still problems in our fundamental understanding of sulfur chemistry. This is concerning given recent renewed interest in sulfate injections in the stratosphere for solar radiation management geo-engineering schemes. We investigate the role of sunlight as a potential driver of the formation of sulfur-containing aerosols. I will present recent work investigating the generation of large quantities of aerosol from the irradiation of mixtures of SO_2 with water and organic species, using a solar simulator that mimics the light that is available in the Earth's troposphere and the Venusian middle atmosphere. I will present on recent work done in our lab suggesting the formation of sulfurous acid, H_2SO_3, and describe experimental work that supports this proposed mechanism. Additionally I will present on new work showing the highly reactive nature of electronically excited SO_2 with saturated alkane species. The implications of this photochemically induced sulfur aerosol formation in the atmosphere of Earth and other planetary atmospheres will be discussed.

  2. Caloris Basin - An enhanced source for potassium in Mercury's atmosphere

    NASA Technical Reports Server (NTRS)

    Sprague, Ann L.; Kozlowski, Richard W. H.; Hunten, Donald M.

    1990-01-01

    Enhanced abundances of neutral K in the atmosphere of Mercury have been found above the longitude range containing Caloris Basin. Results of a large data set including six elongations of the planet between June 1986 and January 1988 show typical K column abundances of about 5.4 x 10 to the 8th K atmos/sq cm. During the observing period in October 1987, when Caloris Basin was in view, the typical K column was about 2.7 x 10 to the 9th K atoms/sq cm. Another large value was seen over the Caloris antipode in January 1988. This enhancement is consistent with an increased source of K from the well-fractured crust and regolith associated with this large impact basin. The phenomenon is localized because at most solar angles, thermal alkali atoms cannot move more than a few hundred kilometers from their source before being lost to ionization by solar ultraviolet radiation.

  3. Formation Of Amino Acids And Nucleotide Bases In A Titan Atmosphere Simulation Experiment

    NASA Astrophysics Data System (ADS)

    Horst, Sarah; Yelle, R. V.; Buch, A.; Carrasco, N.; Cernogora, G.; Dutuit, O.; Quirico, E.; Sciamma-O'Brien, E.; Smith, M. A.; Somogyi, A.; Szopa, C.; Thissen, R.; Vuitton, V.

    2010-10-01

    Titan has been a subject of astrobiological interest since the Voyager spacecraft first revealed the diversity of the organic chemistry occurring in the atmosphere. However, it was not until the arrival of Cassini-Huygens that the chemical complexity of Titan's atmosphere was fully appreciated. The Cassini Plasma Spectrometer (CAPS) observed negative ions with m/z values up to 10,000 u/q at 950 km [1] and positive ions with m/z up to 400 u/q [2]. CAPS has also observed O+ flowing into Titan's atmosphere [3]. While Titan's atmosphere is relatively oxygen poor compared to terrestrial planets, CO is the fourth most abundant molecule in the atmosphere (˜50 ppm). The fact that the observed O+ flux is deposited in the region now known to contain large organic molecules leads to the exciting possibility that oxygen can be incorporated into these molecules resulting in the production of prebiotic molecules. In this work, Titan aerosol analogues (or "tholins") produced in PAMPRE, a Titan atmosphere simulation experiment, have been analyzed in a very high resolution LTQ Orbitrap mass spectrometer. These PAMPRE tholins were produced by capacitively coupled RF discharge in a mixture of N2, CH4 and CO. The tholins were found to contain 18 molecules with molecular formulae corresponding to biological amino acids and nucleotide bases. GC-MS measurements have confirmed the structure of seven: adenine, cytosine, uracil, thymine, guanine, glycine and alanine. The production of prebiotic molecules under atmospheric conditions presents a new source of prebiotic material and may increase the range of planets where life could begin. [1] Coates AJ, et al. (2007). Geophys. Res. Lett. 34:22103- +. [2] Crary FJ, et al. (2009). Planet. Space Sci. 57:1847- 1856. [3] Hartle RE, et al. (2006). Geophys. Res. Lett. 33:8201-+.

  4. On-Sky Demonstration of a Fluid Atmospheric Dispersion Corrector

    NASA Astrophysics Data System (ADS)

    Zheng, J.; Saunders, W.; Lawrence, J. S.; Richards, S.

    2013-02-01

    The first on-sky demonstration of a fluid atmospheric dispersion corrector (FADC) is presented using the Anglo-Australian Telescope at Siding Spring Observatory. The atmospheric dispersion correction was observed with a three-colour CCD camera at the telescope’s Cassegrain focus. The FADC contains a pair of immiscible fluids in a small glass container placed very close to the telescope focal plane. A pair of fluid prisms is formed and the apex of the two prisms varies with telescope zenith angle because of gravity. Three chemicals were identified and tested for this purpose. We experimentally measured the FADC dispersion properties versus zenith angle and it is shown that its dispersion follows the tan(Z) law. We have been able to observe 6 stars at different zenith angles and show that the FADC can correct atmospheric dispersion up to 1‧‧ at a zenith angle of 52° across the visible spectral range of 400-700 nm. It is demonstrated that an FADC can function as a passive atmospheric dispersion corrector without any moving parts. Our on-sky measurement results show excellent agreement with the optical ray-tracing model.

  5. Midlatitude atmosphere-ocean interaction during El Nino. Part II. The northern hemisphere atmosphere

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alexander, M.A.

    The influence of midlatitude air-sea interaction on the atmospheric anomalies associated with El Nino is investigated by coupling the Community Climate Model to a mixed-layer ocean model in the North Pacific. Prescribed El Nino conditions, warm sea surface temperatures (SST) in the tropical Pacific, cause a southward displacement and strengthening of the Aleutian Low. This results in enhanced (reduced) advection of cold Asian air over the west-central (northwest) Pacific and northward advection of warm air over the eastern Pacific. Allowing air-sea feedback in the North Pacific slightly modified the El Nino-induced near-surface wind, air temperature, and precipitation anomalies. The anomalousmore » cyclonic circulation over the North Pacific is more concentric and shifted slightly to the east in the coupled simulations. Air-sea feedback also damped the air temperature anomalies over most of the North Pacific and reduced the precipitation rate above the cold SST anomaly that develops in the central Pacific. The simulated North Pacific SST anomalies and the resulting Northern Hemisphere atmospheric anomalies are roughly one-third as large as those related to the prescribed El Nino conditions in a composite of five cases. The composite geopotential height anomalies associated with changes in the North Pacific SSTs have an equivalent barotropic structure and range from -65 m to 50 m at the 200-mb level. Including air-sea feedback in the North Pacific tended to damp the atmospheric anomalies caused by the prescribed El Nino conditions in the tropical Pacific. As a result, the zonally elongated geopotential height anomalies over the West Pacific are reduced and shifted to the east. However, the atmospheric changes associated with the North Pacific SST anomalies vary widely among the five cases.« less

  6. THEMIS Surface-Atmosphere Separation Strategy and Preliminary Results

    NASA Technical Reports Server (NTRS)

    Bandfield, J. L.; Smith, M. D.; Christensen, P. R.

    2002-01-01

    Methods refined and adapted from the TES investigation are used to develop a surface-atmosphere separation strategy for THEMIS image analysis and atmospheric temperature and opacity retrievals. Additional information is contained in the original extended abstract.

  7. An Atmospheric Variability Model for Venus Aerobraking Missions

    NASA Technical Reports Server (NTRS)

    Tolson, Robert T.; Prince, Jill L. H.; Konopliv, Alexander A.

    2013-01-01

    Aerobraking has proven to be an enabling technology for planetary missions to Mars and has been proposed to enable low cost missions to Venus. Aerobraking saves a significant amount of propulsion fuel mass by exploiting atmospheric drag to reduce the eccentricity of the initial orbit. The solar arrays have been used as the primary drag surface and only minor modifications have been made in the vehicle design to accommodate the relatively modest aerothermal loads. However, if atmospheric density is highly variable from orbit to orbit, the mission must either accept higher aerothermal risk, a slower pace for aerobraking, or a tighter corridor likely with increased propulsive cost. Hence, knowledge of atmospheric variability is of great interest for the design of aerobraking missions. The first planetary aerobraking was at Venus during the Magellan mission. After the primary Magellan science mission was completed, aerobraking was used to provide a more circular orbit to enhance gravity field recovery. Magellan aerobraking took place between local solar times of 1100 and 1800 hrs, and it was found that the Venusian atmospheric density during the aerobraking phase had less than 10% 1 sigma orbit to orbit variability. On the other hand, at some latitudes and seasons, Martian variability can be as high as 40% 1 sigmaFrom both the MGN and PVO mission it was known that the atmosphere, above aerobraking altitudes, showed greater variability at night, but this variability was never quantified in a systematic manner. This paper proposes a model for atmospheric variability that can be used for aerobraking mission design until more complete data sets become available.

  8. Oxidation of pyrite in an anoxic atmosphere

    USGS Publications Warehouse

    Thorpe, A.N.; Senftle, F.E.; Alexander, Corrine; Dulong, F.T.; LaCount, R.B.; Friedman, S.

    1987-01-01

    Pyrite (FeS2) inclusions in coal, when heated in an oxygen deficient atmosphere (approximately 1% oxygen), become coated with magnetic Fe3O4 due to oxidation. Most of the FeS2 can thus be removed from the coal by magnetic separation to reduce the sulphur concentration. The oxidation products have been studied in greater detail by measuring the SO2 and O2 in the effluent gas during the heating process and by performing further magnetic measurements. At 582 K, the pyrite surface was oxidized to FeSO4. Significant oxidation of FeSO4 and FeS2 to Fe3O4 was observed starting at 677 K. At about 681 K, the Fe3O4 is further oxidized to ??-Fe2O3. At 681 K, under isothermal conditions, the oxidation is impeded by the ??-Fe2O3 formed on the surfaces of the grains. If the temperature is rapidly increased, the oxygen penetrates the ??-Fe2O3 veneer to the FeS2 core of the pyrite grains and oxidizes essentially the whole pyrite mass to Fe3O4 before ??-Fe2O3 can be formed. ?? 1987.

  9. Development of an experimental approach to study coupled soil-plant-atmosphere processes using plant analogs

    NASA Astrophysics Data System (ADS)

    Trautz, Andrew C.; Illangasekare, Tissa H.; Rodriguez-Iturbe, Ignacio; Heck, Katharina; Helmig, Rainer

    2017-04-01

    The atmosphere, soils, and vegetation near the land-atmosphere interface are in a state of continuous dynamic interaction via a myriad of complex interrelated feedback processes which collectively, remain poorly understood. Studying the fundamental nature and dynamics of such processes in atmospheric, ecological, and/or hydrological contexts in the field setting presents many challenges; current experimental approaches are an important factor given a general lack of control and high measurement uncertainty. In an effort to address these issues and reduce overall complexity, new experimental design considerations (two-dimensional intermediate-scale coupled wind tunnel-synthetic aquifer testing using synthetic plants) for studying soil-plant-atmosphere continuum soil moisture dynamics are introduced and tested in this study. Validation of these experimental considerations, particularly the adoption of synthetic plants, is required prior to their application in future research. A comparison of three experiments with bare soil surfaces or transplanted with a Stargazer lily/limestone block was used to evaluate the feasibility of the proposed approaches. Results demonstrate that coupled wind tunnel-porous media experimentation, used to simulate field conditions, reduces complexity, and enhances control while allowing fine spatial-temporal resolution measurements to be made using state-of-the-art technologies. Synthetic plants further help reduce system complexity (e.g., airflow) while preserving the basic hydrodynamic functions of plants (e.g., water uptake and transpiration). The trends and distributions of key measured atmospheric and subsurface spatial and temporal variables (e.g., soil moisture, relative humidity, temperature, air velocity) were comparable, showing that synthetic plants can be used as simple, idealized, nonbiological analogs for living vegetation in fundamental hydrodynamic studies.

  10. Meteoric Material: An Important Component of Planetary Atmospheres

    NASA Technical Reports Server (NTRS)

    Grebowsky, Joseph M.; Moses, Julianne I.; Pesnell, W. Dean; Vondrak, Richard R. (Technical Monitor)

    2001-01-01

    Interplanetary dust particles (IDPs) interact with all planetary atmospheres and leave their imprint as perturbations of the background atmospheric chemistry and structure. They lead to layers of metal ions that can become the dominant positively charged species in lower ionospheric regions. Theoretical models and radio occultation measurements provide compelling evidence that such layers exist in all planetary atmospheres. In addition IDP ablation products can affect neutral atmospheric chemistry, particularly at the outer planets where the IDPs supply oxygen compounds like water and carbon dioxide to the upper atmospheres. Aerosol or smoke particles from incomplete ablation or recondensation of ablated IDP vapors may also have a significant impact on atmospheric properties.

  11. A whiff of nebular gas in Titan's atmosphere - Potential implications for the conditions and timing of Titan's formation

    NASA Astrophysics Data System (ADS)

    Glein, Christopher R.

    2017-09-01

    In situ data from the GCMS instrument on the Huygens probe indicate that Titan's atmosphere contains small amounts of the primordial noble gases 36Ar and 22Ne (tentative detection), but it is unknown how they were obtained by the satellite. Based on the apparent similarity in the 22Ne/36Ar (atom) ratio between Titan's atmosphere and the solar composition, a previously neglected hypothesis for the origin of primordial noble gases in Titan's atmosphere is suggested - these species may have been acquired near the end of Titan's formation, when the moon could have gravitationally captured some nebular gas that would have been present in its formation environment (the Saturnian subnebula). These noble gases may be remnants of a primary atmosphere. This could be considered the simplest hypothesis to explain the 22Ne/36Ar ratio observed at Titan. However, the 22Ne/36Ar ratio may not be exactly solar if these species can be fractionated by external photoevaporation in the solar nebula, atmospheric escape from Titan, or sequestration on the surface of Titan. While the GCMS data are consistent with a 22Ne/36Ar ratio of 0.05 to 2.5 times solar (1σ range), simple estimates that attempt to account for some of the effects of these evolutionary processes suggest a sub-solar ratio, which may be depleted by approximately one order of magnitude. Models based on capture of nebular gas can explain why the GCMS did not detect any other primordial noble gas isotopes, as their predicted abundances are below the detection limits (especially for 84Kr and 132Xe). It is also predicted that atmospheric Xe on Titan should be dominated by radiogenic 129Xe if the source of primordial Xe is nebular gas. Of order 10-2-10-1 bar of primordial H2 may have been captured along with the noble gases from a gas-starved disk, but this H2 would have quickly escaped from the initial atmosphere. To have the opportunity to capture nebular gas, Titan should have formed within ∼10 Myr of the formation of the

  12. Atmospheric refraction: a history.

    PubMed

    Lehn, Waldemar H; van der Werf, Siebren

    2005-09-20

    We trace the history of atmospheric refraction from the ancient Greeks up to the time of Kepler. The concept that the atmosphere could refract light entered Western science in the second century B.C. Ptolemy, 300 years later, produced the first clearly defined atmospheric model, containing air of uniform density up to a sharp upper transition to the ether, at which the refraction occurred. Alhazen and Witelo transmitted his knowledge to medieval Europe. The first accurate measurements were made by Tycho Brahe in the 16th century. Finally, Kepler, who was aware of unusually strong refractions, used the Ptolemaic model to explain the first documented and recognized mirage (the Novaya Zemlya effect).

  13. Isotope effects accompanying evaporation of water from leaky containers.

    PubMed

    Rozanski, Kazimierz; Chmura, Lukasz

    2008-03-01

    Laboratory experiments aimed at quantifying isotope effects associated with partial evaporation of water from leaky containers have been performed under three different settings: (i) evaporation into dry atmosphere, performed in a dynamic mode, (ii) evaporation into dry atmosphere, performed in a static mode, and (iii) evaporation into free laboratory atmosphere. The results demonstrate that evaporative enrichment of water stored in leaky containers can be properly described in the framework of the Craig-Gordon evaporation model. The key parameter controlling the degree of isotope enrichment is the remaining fraction of water in the leaking containers. Other factors such as temperature, relative humidity, or extent of kinetic fractionation play only minor roles. Satisfactory agreement between observed and predicted isotope enrichments for both (18)O and (2)H in experiments for the case of evaporation into dry atmosphere could be obtained only when molecular diffusivity ratios of isotope water molecules as suggested recently by Cappa et al. [J. Geophys. Res., 108, 4525-4535, (2003).] were adopted. However, the observed and modelled isotope enrichments for (2)H and (18)O could be reconciled also for the ratios of molecular diffusivities obtained by Merlivat [J. Chem. Phys., 69, 2864-2871 (1978).], if non-negligible transport resistance in the viscous liquid sub-layer adjacent to the evaporating surface is considered. The evaporation experiments revealed that the loss of mass of water stored in leaky containers in the order of 1%, will lead to an increase of the heavy isotope content in this water by ca. 0.35 and 1.1 per thousand, for delta (18)O and delta (2)H, respectively.

  14. An engineered bacterium auxotrophic for an unnatural amino acid: a novel biological containment system

    PubMed Central

    2015-01-01

    Biological containment is a genetic technique that programs dangerous organisms to grow only in the laboratory and to die in the natural environment. Auxotrophy for a substance not found in the natural environment is an ideal biological containment. Here, we constructed an Escherichia coli strain that cannot survive in the absence of the unnatural amino acid 3-iodo-L-tyrosine. This synthetic auxotrophy was achieved by conditional production of the antidote protein against the highly toxic enzyme colicin E3. An amber stop codon was inserted in the antidote gene. The translation of the antidote mRNA was controlled by a translational switch using amber-specific 3-iodo-L-tyrosine incorporation. The antidote is synthesized only when 3-iodo-L-tyrosine is present in the culture medium. The viability of this strain rapidly decreased with less than a 1 h half-life after removal of 3-iodo-L-tyrosine, suggesting that the decay of the antidote causes the host killing by activated colicin E3 in the absence of this unnatural amino acid. The contained strain grew 1.5 times more slowly than the parent strains. The escaper frequency was estimated to be 1.4 mutations (95% highest posterior density 1.1–1.8) per 105 cell divisions. This containment system can be constructed by only plasmid introduction without genome editing, suggesting that this system may be applicable to other microbes carrying toxin-antidote systems similar to that of colicin E3. PMID:26401457

  15. A Numerical Study of Nonlinear Nonhydrostatic Conditional Symmetric Instability in a Convectively Unstable Atmosphere.

    NASA Astrophysics Data System (ADS)

    Seman, Charles J.

    1994-06-01

    Nonlinear nonhydrostatic conditional symmetric instability (CSI) is studied as an initial value problem using a two-dimensional (y, z)nonlinear, nonhydrostatic numerical mesoscale/cloud model. The initial atmosphere for the rotating, baroclinic (BCF) simulation contains large convective available potential energy (CAPE). Analytical theory, various model output diagnostics, and a companion nonrotating barotropic (BTNF) simulation are used to interpret the results from the BCF simulation. A single warm moist thermal initiates convection for the two 8-h simulations.The BCF simulation exhibited a very intricate life cycle. Following the initial convection, a series of discrete convective cells developed within a growing mesoscale circulation. Between hours 4 and 8, the circulation grew upscale into a structure resembling that of a squall-line mesoscale convective system (MCS). The mesoscale updrafts were nearly vertical and the circulation was strongest on the baroclinically cool side of the initial convection, as predicted by a two-dimensional Lagrangian parcel model of CSI with CAPE. The cool-side mesoscale circulation grew nearly exponentially over the last 5 h as it slowly propagated toward the warm air. Significant vertical transport of zonal momentum occurred in the (multicellular) convection that developed, resulting in local subgeostrophic zonal wind anomalies aloft. Over time, geostrophic adjustment acted to balance these anomalies. The system became warm core, with mesohigh pressure aloft and mesolow pressure at the surface. A positive zonal wind anomaly also formed downstream from the mesohigh.Analysis of the BCF simulation showed that convective momentum transport played a key role in the evolution of the simulated MCS, in that it fostered the development of the nonlinear CSI on mesoscale time scales. The vertical momentum transport in the initial deep convection generated a subgeostrophic zonal momentum anomaly aloft; the resulting imbalance in pressure

  16. Martian Atmospheric Pressure Static Charge Elimination Tool

    NASA Technical Reports Server (NTRS)

    Johansen, Michael R.

    2014-01-01

    A Martian pressure static charge elimination tool is currently in development in the Electrostatics and Surface Physics Laboratory (ESPL) at NASA's Kennedy Space Center. In standard Earth atmosphere conditions, static charge can be neutralized from an insulating surface using air ionizers. These air ionizers generate ions through corona breakdown. The Martian atmosphere is 7 Torr of mostly carbon dioxide, which makes it inherently difficult to use similar methods as those used for standard atmosphere static elimination tools. An initial prototype has been developed to show feasibility of static charge elimination at low pressure, using corona discharge. A needle point and thin wire loop are used as the corona generating electrodes. A photo of the test apparatus is shown below. Positive and negative high voltage pulses are sent to the needle point. This creates positive and negative ions that can be used for static charge neutralization. In a preliminary test, a floating metal plate was charged to approximately 600 volts under Martian atmospheric conditions. The static elimination tool was enabled and the voltage on the metal plate dropped rapidly to -100 volts. This test data is displayed below. Optimization is necessary to improve the electrostatic balance of the static elimination tool.

  17. Pyrite Stability Under Venus Surface Conditions

    NASA Astrophysics Data System (ADS)

    Kohler, E.; Craig, P.; Port, S.; Chevrier, V.; Johnson, N.

    2015-12-01

    Radar mapping of the surface of Venus shows areas of high reflectivity in the Venusian highlands, increasing to 0.35 ± 0.04 to 0.43 ± 0.05 in the highlands from the planetary average of 0.14 ± 0.03. Iron sulfides, specifically pyrite (FeS2), can explain the observed high reflectivity. However, several studies suggest that pyrite is not stable under Venusian conditions and is destroyed on geologic timescales. To test the stability of pyrite on the Venusian surface, pyrite was heated in the Venus simulation chamber at NASA Goddard Space Flight Center to average Venusian surface conditions, and separately to highland conditions under an atmosphere of pure CO2 and separately under an atmosphere of 96.5% CO2, 3.5% N2 and 150 ppm SO2. After each run, the samples were weighed and analyzed using X-Ray Diffraction (XRD) to identify possible phase changes and determine the stability of pyrite under Venusian surface conditions. Under a pure CO2 atmosphere, the Fe in pyrite oxidizes to form hematite which is more stable at higher temperatures corresponding to the Venusian lowlands. Magnetite is the primary iron oxide that forms at lower temperatures corresponding to the radar-bright highlands. Our experiments also showed that the presence of atmospheric SO2 inhibits the oxidation of pyrite, increasing its stability under Venusian conditions, especially those corresponding to the highlands. This indicates that the relatively high level of SO2 in the Venusian atmosphere is key to the stability of pyrite, making it a possible candidate for the bright radar signal in the Venusian highlands.

  18. Radioisotope Stirling Engine Powered Airship for Atmospheric and Surface Exploration of Titan

    NASA Technical Reports Server (NTRS)

    Colozza, Anthony J.; Cataldo, Robert L.

    2014-01-01

    The feasibility of an advanced Stirling radioisotope generator (ASRG) powered airship for the near surface exploration of Titan was evaluated. The analysis did not consider the complete mission only the operation of the airship within the atmosphere of Titan. The baseline airship utilized two ASRG systems with a total of four general-purpose heat source (GPHS) blocks. Hydrogen gas was used to provide lift. The ASRG systems, airship electronics and controls and the science payload were contained in a payload enclosure. This enclosure was separated into two sections, one for the ASRG systems and the other for the electronics and payload. Each section operated at atmospheric pressure but at different temperatures. The propulsion system consisted of an electric motor driving a propeller. An analysis was set up to size the airship that could operate near the surface of Titan based on the available power from the ASRGs. The atmospheric conditions on Titan were modeled and used in the analysis. The analysis was an iterative process between sizing the airship to carry a specified payload and the power required to operate the electronics, payload and cooling system as well as provide power to the propulsion system to overcome the drag on the airship. A baseline configuration was determined that could meet the power requirements and operate near the Titan surface. From this baseline design additional trades were made to see how other factors affected the design such as the flight altitude and payload mass and volume.

  19. An Atmospheric Pressure Ping-Pong "Ballometer"

    ERIC Educational Resources Information Center

    Kazachkov, Alexander; Kryuchkov, Dmitriy; Willis, Courtney; Moore, John C.

    2006-01-01

    Classroom experiments on atmospheric pressure focus largely on demonstrating its existence, often in a most impressive way. A series of amusing physics demonstrations is widely known and practiced by educators teaching the topic. However, measuring the value of atmospheric pressure(P[subscript atm]) is generally done in a rather mundane way,…

  20. Atmospheric environment for Space Shuttle (STS-51D)

    NASA Technical Reports Server (NTRS)

    Jasper, G. L.; Johnson, D. L.; Hill, C. K.; Batts, G. W.

    1985-01-01

    A summary of selected atmospheric conditions observed near the space shuttle STS-51D launch time on April 12, 1985, at Kennedy Space Center Florida is presented. Values of ambient pressure, temperature, moisture, ground winds, visual observations (cloud), and winds aloft are included. The sequence of prelaunch Jimsphere measured vertical wind profiles is given in this report. The final atmospheric tape, which consists of wind and thermodynamic parameters versus altitude, for STS-51D vehicle ascent is constructed. The STS-51D ascent atmospheric data tape is compiled by Marshall Space Flight Center's Atmospheric Sciences Division to provide an internally consistent data set for use in post-flight performance assessments.

  1. The Skylab concentrated atmospheric radiation project

    NASA Technical Reports Server (NTRS)

    Kuhn, P. M.; Marlatt, W. E.; Whitehead, V. S. (Principal Investigator)

    1975-01-01

    The author has identified the following significant results. Comparison of several existing infrared radiative transfer models under somewhat controlled conditions and with atmospheric observations of Skylab's S191 and S192 radiometers illustrated that the models tend to over-compute atmospheric attenuation in the window region of the atmospheric infrared spectra.

  2. Numerical Modelling of Fire-Atmosphere Interactions and the 2003 Canberra Bushfires

    NASA Astrophysics Data System (ADS)

    Simpson, C.; Sturman, A.; Zawar-Reza, P.

    2010-12-01

    It is well known that the behaviour of a wildland fire is strongly associated with the conditions of its surrounding atmosphere. However, the two-way interactions between fire behaviour and the atmospheric conditions are not well understood. A numerical model is used to simulate wildland fires so that the nature of these fire-atmosphere interactions, and how they might affect fire behaviour, can be further investigated. The 2003 Canberra bushfires are used as a case study due to their highly destructive and unusual behaviour. On the 18th January 2003, these fires spread to the urban suburbs of Canberra, resulting in the loss of four lives and the destruction of over 500 homes. Fire-atmosphere interactions are believed to have played an important role in making these fires so destructive. WRF-Fire is used to perform real data simulations of the 2003 Canberra bushfires. WRF-Fire is a coupled fire-atmosphere model, which combines a semi-empirical fire spread model with an atmospheric model, allowing it to directly simulate the two-way interactions between a fire and its surrounding atmosphere. These simulations show the impact of the presence of a fire on conditions within the atmospheric boundary layer. This modification of the atmosphere, resulting from the injection of heat and moisture released by the fire, appears to have a direct feedback onto the overall fire behaviour. The bushfire simulations presented in this paper provide important scientific insights into the nature of fire-atmosphere interactions for a real situation. It is expected that they will also help fire managers in Australia to better understand why the 2003 Canberra bushfires were so destructive, as well as to gain improved insight into bushfire behaviour in general.

  3. Instrumentation for surveying the lower part of the atmosphere in extremes conditions

    NASA Astrophysics Data System (ADS)

    Gobinddass, Marie-Line; Molinie, Jack; Richard, Sandrine; Jean-Louis, Sabrina

    To observe atmospheric phenomena such as clouds, precipitation and wind in order to understand how they form and evolve meteorologists use few instruments which allows to measure parameters as temperature, pressure and humidity. In the specific case of Kourou region where the French Space Agency is located the environment and safeguard group works on protecting biodiversity in and around the center. By considering a few scientific challenges in atmospheric science one of the main topics of this work consists on the understanding of the fluctuation of the atmosphere due to natural or industrials perturbations. We have considered a few experiences with many instruments in a large space of more than 1200 km per square. To differentiate and try to quantify industrial cloud from natural cloud or from natural atmosphere, the idea of using a drone has been experimented. The ratio of the cost of such experimentation with the relevance of the results which can be obtained will be discussed here. It is necessary to take into account the turbulence in the atmosphere due to industrial acid cloud or hot cloud. Finally, instead of taking the risk of having airbone measurements with a pilot we have thought of the tetherball due to it lower cost and for security reason. The technical experiment and few type of results will be presented here.

  4. An Aerobraking Strategy for Determining Mars Upper Atmospheric Structure

    NASA Astrophysics Data System (ADS)

    Bougher, S. W.; Murphy, J. R.; Haberle, R. M.

    1997-07-01

    The Mars Global Surveyor (MGS) spacecraft will enter Mars orbit on Sept. 12, 1997, and thereafter undergo aerobraking for roughly 4-months. The final data-taking orbit to be achieved is sun-synchronous (2PM/2AM). An aerobraking strategy has been developed that not only will provide the walk-in capability needed to safely achieve the required Mars orbit, but also will provide a careful monitoring of the atmospheric structure. In particular, the linkage between the lower (0-100 km) and upper (100- 150 km) Mars atmospheres will be investigated. A suite of complementary measurements is planned that will probe the atmosphere over 0-150 km, including : (1) MGS Accelerometer density and inferred temperatures (100-150 km), (2) MGS Thermal Emission Spectrometer (TES) nadir (25-30 km) and limb (up to about 55 km) temperatures, (3) MGS Electron Reflectometer (ER) F1-peak heights (near 130 km), (4) ground-based microwave disk-averaged temperatures (0-70 km), and (5) Mars Pathfinder (MPF) surface meteorological data at 20 N latitude. These datasets acquired during the aerobraking phase will enable the current state of the atmosphere to be examined. Potential dust storm activity and its manifestations throughout the atmosphere can be monitored over Ls = 184 to 250. A corresponding library of coupled 3-D model simulations, based upon the NASA Ames Mars GCM and the NCAR Mars Thermospheric GCM (MTGCM), will be used to : (1) validate the current state of the Mars atmosphere, (2) investigate the various orbital, seasonal, LAT-LT-LON, and potential dust storm trends, and (3) predict the structure of the Mars atmosphere in the aerobraking corridor that is approaching in future MGS orbits. The in-situ accelerometer and ER data will eventually be used to construct a Mars empirical model covering 100-150 km. We will present a few selected GCM simulations to illustrate the expected atmospheric response to a dust storm event. In addition, we will discuss why these upper atmosphere datasets

  5. BWR zero pressure containment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dillmann, C.W.; Townsend, H.E.; Nesbitt, L.B.

    1992-02-25

    This patent describes the operation of a nuclear reactor system, the system including a containment defining a drywall space wherein a nuclear reactor is disposed, there being a suppression pool in the containment with the suppression pool having a wetwell space above a level of the pool to which an non-condensable gases entering the suppression pool can vent. It comprises: continuously exhausting the wetwell space to remove gas mixture therefrom while admitting inflow of air from an atmospheric source thereof to the wetwell during normal operation by blocking off the inflow during a loss-of-coolant-accident whenever a pressure in the wetwellmore » space is above a predetermined value, and subjecting the gas subsequent to its removal from the wetwell to a treatment operation to separate any particulate material entrained therein from the gas mixture.« less

  6. A Numerical Study of Wind-Turbine Wakes for Three Atmospheric Stability Conditions

    NASA Astrophysics Data System (ADS)

    Xie, Shengbai; Archer, Cristina L.

    2017-10-01

    The effects of atmospheric stability on wind-turbine wakes are studied via large-eddy simulations. Three stability conditions are considered: stable, neutral, and unstable, with the same geostrophic wind speed aloft and the same Coriolis frequency. Both a single 5-MW turbine and a wind farm of five turbines are studied. The single-turbine wake is strongly correlated with stability, in terms of velocity deficit, turbulence kinetic energy (TKE) and temperature distribution. Because of the Coriolis effect, the wake shape deviates from a Gaussian distribution. For the wind-farm simulations, the separation of the core region and outer region is clear for the stable and neutral cases, but less distinct for the unstable case. The unstable case exhibits strong horizontal variations in wind speed. Local accelerations such as related to aisle jets are also observed, whose features depend on stability. The added TKE in the wind farm increases with stability. The highest power extraction and lowest power deficit are observed for the unstable case.

  7. 7 CFR 42.111 - Sampling plans for reduced condition of container inspection, Tables III and III-A; and limit...

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing Practices), DEPARTMENT OF AGRICULTURE COMMODITY STANDARDS AND STANDARD CONTAINER REGULATIONS STANDARDS FOR CONDITION OF FOOD CONTAINERS Procedures for Stationary Lot Sampling and Inspection...

  8. H20 and CH4 abundances under non-LTE conditions from MIPAS upper atmosphere measurements.

    NASA Astrophysics Data System (ADS)

    Koukouli, M. E.; Imk-Iaa Mipas/Envisat Team

    Vertical profiles of water vapour and methane have been retrieved from measurements of the Earth's Upper Atmosphere made by the Michelson Interferometer for Passive Atmospheric Sounding (MIPAS) on board the polar orbiting ENVISAT satellite. The spectral range targeted is 685-2410 cm-1 (4.1-14.6 μm) and the retrieval altitude range is ˜25-80 km. The Generic RAdiative traNsfer AnD non-LTE population Algorithm (GRANADA), jointly developed by IAA and IMK, has been used to analyse two days' worth of upper atmosphere orbits, from July 2002 and June 2003. The vertical profiles retrieved are compared and calibrated against other known water vapour experiments (e.g. HALOE) in the corresponding vertical and spacial co-locations. Global three-dimensional maps are also presented and validated against modelling results (e.g. Garcia and Solomon). The total hydrogen content of the Earth's middle atmosphere will also be investigated as means of identifying possible sinks or sources in the water vapour and methane day-night variability. A comprehensive systematic error analysis will complement the presentation of the results.

  9. Deposition of carbon-free silicon dioxide from pure hexamethyldisiloxane using an atmospheric microplasma jet

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Raballand, V.; Benedikt, J.; Keudell, A. von

    2008-03-03

    Carbon-free silicon dioxide has been deposited at room temperature by injection of pure hexamethyldisiloxane (HMDSO) into an atmospheric pressure microplasma jet from argon. At low HMDSO flow rates [<0.1 SCCM (SCCM denotes cubic centimeter per minute at STP)], the SiO{sub x}H{sub z} films contain no carbon and exhibit an oxygen to silicon ratio close to 2 according to x-ray photoelectron spectroscopy. At high HMDSO flow rates (>0.1 SCCM), SiO{sub x}C{sub y}H{sub z} films with a carbon content of up to 21% are obtained. The transition between organic to inorganic film is confirmed by Fourier transformed infrared spectroscopy. The deposition ofmore » inorganic films without oxygen admixture is explained by an ion-induced polymerization scheme of HMDSO.« less

  10. Medicanes in an ocean-atmosphere coupled regional climate model

    NASA Astrophysics Data System (ADS)

    Akhtar, N.; Brauch, J.; Dobler, A.; Béranger, K.; Ahrens, B.

    2014-03-01

    So-called medicanes (Mediterranean hurricanes) are meso-scale, marine, and warm-core Mediterranean cyclones that exhibit some similarities to tropical cyclones. The strong cyclonic winds associated with medicanes threaten the highly populated coastal areas around the Mediterranean basin. To reduce the risk of casualties and overall negative impacts, it is important to improve the understanding of medicanes with the use of numerical models. In this study, we employ an atmospheric limited-area model (COSMO-CLM) coupled with a one-dimensional ocean model (1-D NEMO-MED12) to simulate medicanes. The aim of this study is to assess the robustness of the coupled model in simulating these extreme events. For this purpose, 11 historical medicane events are simulated using the atmosphere-only model, COSMO-CLM, and coupled model, with different setups (horizontal atmospheric grid-spacings of 0.44°, 0.22°, and 0.08°; with/without spectral nudging, and an ocean grid-spacing of 1/12°). The results show that at high-resolution, the coupled model is able to not only simulate most of medicane events but also improve the track length, core temperature, and wind speed of simulated medicanes compared to the atmosphere-only simulations. The results suggest that the coupled model is more proficient for systemic and detailed studies of historical medicane events, and that this model can be an effective tool for future projections.

  11. Medicanes in an ocean-atmosphere coupled regional climate model

    NASA Astrophysics Data System (ADS)

    Akhtar, N.; Brauch, J.; Dobler, A.; Béranger, K.; Ahrens, B.

    2014-08-01

    So-called medicanes (Mediterranean hurricanes) are meso-scale, marine, and warm-core Mediterranean cyclones that exhibit some similarities to tropical cyclones. The strong cyclonic winds associated with medicanes threaten the highly populated coastal areas around the Mediterranean basin. To reduce the risk of casualties and overall negative impacts, it is important to improve the understanding of medicanes with the use of numerical models. In this study, we employ an atmospheric limited-area model (COSMO-CLM) coupled with a one-dimensional ocean model (1-D NEMO-MED12) to simulate medicanes. The aim of this study is to assess the robustness of the coupled model in simulating these extreme events. For this purpose, 11 historical medicane events are simulated using the atmosphere-only model, COSMO-CLM, and coupled model, with different setups (horizontal atmospheric grid spacings of 0.44, 0.22, and 0.08°; with/without spectral nudging, and an ocean grid spacing of 1/12°). The results show that at high resolution, the coupled model is able to not only simulate most of medicane events but also improve the track length, core temperature, and wind speed of simulated medicanes compared to the atmosphere-only simulations. The results suggest that the coupled model is more proficient for systemic and detailed studies of historical medicane events, and that this model can be an effective tool for future projections.

  12. The evolution of an impact-generated atmosphere

    NASA Technical Reports Server (NTRS)

    Lange, M. A.; Ahrens, T. J.

    1982-01-01

    The minimum impact velocities and pressures required to form a primary H2O atmosphere during planetary accretion from chondritelike planetessimals are determined by means of shock wave and thermodynamic data for rock-forming and volatile-bearing minerals. Attenuation of impact-induced shock pressure is modelled to the extent that the amount of released water can be estimated as a function of projectile radius, impact velocity, weight fraction of target water, target porosity, and dehydration efficiency. The two primary processes considered are the impact release of water bound in such hydrous minerals as serpentine, and the subsequent reincorporation of free water by hydration of forsterite and enstatite. These processes are described in terms of model calculations for the accretion of the earth. It is concluded that the concept of dehydration efficiency is of dominant importance in determining the degree to which an accreting planet acquires an atmosphere during its formation.

  13. Haze heats Pluto's atmosphere yet explains its cold temperature.

    PubMed

    Zhang, Xi; Strobel, Darrell F; Imanaka, Hiroshi

    2017-11-15

    Pluto's atmosphere is cold and hazy. Recent observations have shown it to be much colder than predicted theoretically, suggesting an unknown cooling mechanism. Atmospheric gas molecules, particularly water vapour, have been proposed as a coolant; however, because Pluto's thermal structure is expected to be in radiative-conductive equilibrium, the required water vapour would need to be supersaturated by many orders of magnitude under thermodynamic equilibrium conditions. Here we report that atmospheric hazes, rather than gases, can explain Pluto's temperature profile. We find that haze particles have substantially larger solar heating and thermal cooling rates than gas molecules, dominating the atmospheric radiative balance from the ground to an altitude of 700 kilometres, above which heat conduction maintains an isothermal atmosphere. We conclude that Pluto's atmosphere is unique among Solar System planetary atmospheres, as its radiative energy equilibrium is controlled primarily by haze particles instead of gas molecules. We predict that Pluto is therefore several orders of magnitude brighter at mid-infrared wavelengths than previously thought-a brightness that could be detected by future telescopes.

  14. Carbon Dioxide Clouds at High Altitude in the Tropics and in an Early Dense Martian Atmosphere

    NASA Technical Reports Server (NTRS)

    Colaprete, Anthony; Toon, Owen B.

    2001-01-01

    We use a time dependent, microphysical cloud model to study the formation of carbon dioxide clouds in the Martian atmosphere. Laboratory studies by Glandor et al. show that high critical supersaturations are required for cloud particle nucleation and that surface kinetic growth is not limited. These conditions, which are similar to those for cirrus clouds on Earth, lead to the formation of carbon dioxide ice particles with radii greater than 500 micrometers and concentrations of less than 0.1 cm(exp -3) for typical atmospheric conditions. Within the current Martian atmosphere, CO2 cloud formation is possible at the poles during winter and at high altitudes in the tropics during periods of increased atmospheric dust loading. In both cases, temperature perturbations of several degrees below the CO2 saturation temperature are required to nucleate new cloud particles suggesting that dynamical processes are the most common initiators of carbon dioxide clouds rather than diabatic cooling. The microphysical cloud model, coupled to a two-stream radiative transfer model, is used to reexamine the impact of CO2 clouds on the surface temperature within a dense CO2 atmosphere. The formation of carbon dioxide clouds leads to a warmer surface than what would be expected for clear sky conditions. The amount of warming is sensitive to the presence of dust and water vapor in the atmosphere, both of which act to dampen cloud effects. The radiative warming associated with cloud formation, as well as latent heating, work to dissipate the clouds when present. Thus, clouds never last for periods much longer than several days, limiting their overall effectiveness for warming the surface. The time average cloud optical depth is approximately unity leading to a 5-10 K warming, depending on the surface pressure. However, the surface temperature does not rise about the freezing point of liquid water even for pressures as high as 5 bars, at a solar luminosity of 75% the current value.

  15. The Impact of Ensemble Kalman Filter Assimilation of Near-Surface Observations on the Predictability of Atmospheric Conditions over Complex Terrain: Results from Recent MATERHORN Field Program

    NASA Astrophysics Data System (ADS)

    Pu, Z.; Zhang, H.

    2013-12-01

    . With the near-surface observations and sounding data obtained during the MATERHORN fall 2012 field experiment, a month-long cycled EnKF analysis and forecast was produced with the WRF model and an advanced EnKF data assimilation system. Results are compared with the WRF near real-time forecasting during the same month and a set of analysis with 3DVAR data assimilation. Overall evaluation suggests some useful insights on the impacts of different data assimilation methods, surface and soil states, terrain representation on the predictability of atmospheric conditions over mountainous terrain. Details will be presented. References [1] Pu, Z., H. Zhang, and J. A. Anderson,. 'Ensemble Kalman filter assimilation of near-surface observations over complex terrain: Comparison with 3DVAR for short-range forecasts.' Tellus A, vol. 65,19620. 2013. http://dx.doi.org/10.3402/tellusa.v65i0. 19620.

  16. Reliability of Undergraduate Student in a Research on the Relations between Behavior and Days of the Week or Atmospheric Conditions.

    ERIC Educational Resources Information Center

    Vachon, Jean

    The influence of atmospheric conditions and the day of the week on school children's behavior was investigated by undergraduates. The college students were told either that their participation in the research was compulsory and would be graded, or that their participation was voluntary and ungraded. Fifty teachers observed their pupils' behavior…

  17. Earth’s Earliest Atmospheres

    PubMed Central

    Zahnle, Kevin; Schaefer, Laura; Fegley, Bruce

    2010-01-01

    Earth is the one known example of an inhabited planet and to current knowledge the likeliest site of the one known origin of life. Here we discuss the origin of Earth’s atmosphere and ocean and some of the environmental conditions of the early Earth as they may relate to the origin of life. A key punctuating event in the narrative is the Moon-forming impact, partly because it made Earth for a short time absolutely uninhabitable, and partly because it sets the boundary conditions for Earth’s subsequent evolution. If life began on Earth, as opposed to having migrated here, it would have done so after the Moon-forming impact. What took place before the Moon formed determined the bulk properties of the Earth and probably determined the overall compositions and sizes of its atmospheres and oceans. What took place afterward animated these materials. One interesting consequence of the Moon-forming impact is that the mantle is devolatized, so that the volatiles subsequently fell out in a kind of condensation sequence. This ensures that the volatiles were concentrated toward the surface so that, for example, the oceans were likely salty from the start. We also point out that an atmosphere generated by impact degassing would tend to have a composition reflective of the impacting bodies (rather than the mantle), and these are almost without exception strongly reducing and volatile-rich. A consequence is that, although CO- or methane-rich atmospheres are not necessarily stable as steady states, they are quite likely to have existed as long-lived transients, many times. With CO comes abundant chemical energy in a metastable package, and with methane comes hydrogen cyanide and ammonia as important albeit less abundant gases. PMID:20573713

  18. Local Infrasound Variability Related to In Situ Atmospheric Observation

    NASA Astrophysics Data System (ADS)

    Kim, Keehoon; Rodgers, Arthur; Seastrand, Douglas

    2018-04-01

    Local infrasound is widely used to constrain source parameters of near-surface events (e.g., chemical explosions and volcanic eruptions). While atmospheric conditions are critical to infrasound propagation and source parameter inversion, local atmospheric variability is often ignored by assuming homogeneous atmospheres, and their impact on the source inversion uncertainty has never been accounted for due to the lack of quantitative understanding of infrasound variability. We investigate atmospheric impacts on local infrasound propagation by repeated explosion experiments with a dense acoustic network and in situ atmospheric measurement. We perform full 3-D waveform simulations with local atmospheric data and numerical weather forecast model to quantify atmosphere-dependent infrasound variability and address the advantage and restriction of local weather data/numerical weather model for sound propagation simulation. Numerical simulations with stochastic atmosphere models also showed nonnegligible influence of atmospheric heterogeneity on infrasound amplitude, suggesting an important role of local turbulence.

  19. An Analytic Approach to Modeling Land-Atmosphere Interaction: 1. Construct and Equilibrium Behavior

    NASA Astrophysics Data System (ADS)

    Brubaker, Kaye L.; Entekhabi, Dara

    1995-03-01

    A four-variable land-atmosphere model is developed to investigate the coupled exchanges of water and energy between the land surface and atmosphere and the role of these exchanges in the statistical behavior of continental climates. The land-atmosphere system is substantially simplified and formulated as a set of ordinary differential equations that, with the addition of random noise, are suitable for analysis in the form of the multivariate Îto equation. The model treats the soil layer and the near-surface atmosphere as reservoirs with storage capacities for heat and water. The transfers between these reservoirs are regulated by four states: soil saturation, soil temperature, air specific humidity, and air potential temperature. The atmospheric reservoir is treated as a turbulently mixed boundary layer of fixed depth. Heat and moisture advection, precipitation, and layer-top air entrainment are parameterized. The system is forced externally by solar radiation and the lateral advection of air and water mass. The remaining energy and water mass exchanges are expressed in terms of the state variables. The model development and equilibrium solutions are presented. Although comparisons between observed data and steady state model results re inexact, the model appears to do a reasonable job of partitioning net radiation into sensible and latent heat flux in appropriate proportions for bare-soil midlatitude summer conditions. Subsequent work will introduce randomness into the forcing terms to investigate the effect of water-energy coupling and land-atmosphere interaction on variability and persistence in the climatic system.

  20. Development of a six-man, self-contained carbon dioxide collection subsystem for spacecraft application

    NASA Technical Reports Server (NTRS)

    Schubert, F. H.; Quattrone, P. D.

    1974-01-01

    Life Systems, working with NASA, has developed an electrochemical, six-man, self-contained carbon dioxide concentrator subsystem (CX-6) designed to normally remove 13.2 lb/day of CO2 while maintaining the CO2 partial pressure (pCO2) of the cabin atmosphere at 3 mm Hg or less. The CX-6 was subjected to extensive parametric and endurance testing. The effects of operating conditions on CO2 removal and electrical efficiencies were determined, including effects of hydrogen (H2) flow rate, process airflow rate, pCO2, operating temperature and current density. A total of 209 days of operation was accumulated. The subsystem was designed with self-contained electronic control and monitoring instrumentation. The CX-6 was redesigned and repackaged into the CO2 collection subsystem for the air revitalization group of the space station prototype.

  1. Release of ethanol to the atmosphere during use of consumer cleaning products

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wooley, J.; Nazaroff, W.W.; Hodgson, A.T.

    1990-08-01

    Liquid laundry and hand dish washing detergents contain volatile organic compounds, including ethanol, that may be liberated during use and contribute to photochemical air pollution. In this study, the release of ethanol to the atmosphere during simulated household use of liquid detergents was measured. Three replicate experiments, plus a blank, were conducted in a 20-m{sup 3} environmental chamber for each of four conditions: typical dish washing (DT), high-release dish washing (DH), typical laundry (LT), and high-release laundry (LH). Average amounts of ethanol transferred to the atmosphere per use (and the fraction of ethanol used so liberated) were 32 mg (0.038)more » for DT, 100 mg (0.049) for DH, 18 mg (0.002) for LT, and 110 mg (0.011) for LH. Thus, a large fraction of the ethanol added to wash solutions with liquid detergents is discharged to the sewer rather than transferred to the atmosphere during use.« less

  2. Assessing the impact of atmospheric chemistry on the fate, transport, and transformation of adulticides in an urban atmosphere

    NASA Astrophysics Data System (ADS)

    Guberman, S.; Yoon, S.; Guagenti, M. C.; Sheesley, R. J.; Usenko, S.

    2017-12-01

    Urban areas are literal hot spots of mosquito-borne disease transmission and air pollution during the summer months. Public health authorities release aerosolized adulticides to target adult mosquitoes directly in to the atmosphere to control mosquito populations and reduce the threat of diseases (e.g. Zika). Permethrin and malathion are the primary adulticides for controlling adult mosquito populations in Houston, TX and are typically sprayed at night. After being released into the atmosphere adulticides are subject to atmospheric oxidation initiated by atmospheric oxidants (e.g. O3 and NO3) which are driven by anthropogenic air pollutants (e.g. NOx; NO and NO2). Particulate matter (PM) samples were measured at both application and downwind locations. Sampling sites were determined using the combination of atmospheric plume transport models and adulticide application data provided by Harris County Public Health Mosquito Division. Atmospheric PM samples were taken using a Mobile Laboratory, equipped with total suspended PM and PM2.5 (PM with diameter <2.5 um) samplers, as well as real-time instruments that made congruent measurements of O3, NOx, and wind speed and direction. Nighttime atmospheric half-lives of malathion were calculated to be 40-90% lower than malathion half-lives measured in previous studies; these half-lives were determined using diurnal atmospheric concentrations of malathion and its oxidation product, malaoxon. Interestingly, during malathion-use periods, atmospheric malaoxon concentrations measured in the PM2.5 samples were similar to corresponding TSP samples. This suggests that the majority of the malathion (and malaoxon) was associated with fine PM. During permethrin-use periods, atmospheric permethrin concentrations measured in the PM2.5 samples were an order and half lower in magnitude. This suggests that permethrin may be undergoing less volatilization into the gas phase after application as compared to malathion (and or malaoxon). Unlike

  3. Atmospheric environment for Space Shuttle (STS-41D) launch

    NASA Technical Reports Server (NTRS)

    Johnson, D. L.; Hill, C. K.; Jasper, G.; Batts, G. W.

    1984-01-01

    Selected atmospheric conditions observed near Space Shuttle STS-41D launch time on August 30, 1984, at Kennedy Space Center, Florida are summarized. Values of ambient pressure, temperature, moisture, ground winds, visual observations (cloud), and winds aloft are included. The sequence of prelaunch Jimsphere measured vertical wind profiles is given as well as wind and thermodynamic parameters representative of surface and aloft conditions in the SRB descent/impact ocean area. Final atmospheric tapes, which consist of wind and thermodynamic parameters versus altitude, for STS-41D vehicle ascent and SRB descent/impact were constructed. The STS-41D ascent meteorological data tape was constructed by Marshall Space Flight Center's Atmospheric Science Division to provide an internally consistent data set for use in post flight performance assessments.

  4. Atmosphere Impact Losses

    NASA Astrophysics Data System (ADS)

    Schlichting, Hilke E.; Mukhopadhyay, Sujoy

    2018-02-01

    } ρ0 (π h R)^{3/2}, r_{cap}˜25 km for the current Earth), that are able to eject all the atmosphere above the tangent plane of the impact site, where h, R and ρ0 are the atmospheric scale height, radius of the target, and its atmospheric density at the ground. 3) Small impactors (m_{min}>4 πρ0 h3, r_{min}˜ 1 km for the current Earth), that are only able to eject a fraction of the atmospheric mass above the tangent plane. We demonstrate that per unit impactor mass, small impactors with r_{min} < r < r_{cap} are the most efficient impactors in eroding the atmosphere. In fact for the current atmospheric mass of the Earth, they are more than five orders of magnitude more efficient (per unit impactor mass) than giant impacts, implying that atmospheric mass loss must have been common. The enormous atmospheric mass loss efficiency of small impactors is due to the fact that most of their impact energy and momentum is directly available for local mass loss, where as in the giant impact regime a lot of energy and momentum is 'wasted' by having to create a strong shock that can transverse the entirety of the planet such that global atmospheric loss can be achieved. In the absence of any volatile delivery and outgassing, we show that the population of late impactors inferred from the lunar cratering record containing 0.1% M_{\\oplus } is able to erode the entire current Earth's atmosphere implying that an interplay of erosion, outgassing and volatile delivery is likely responsible for determining the atmospheric mass and composition of the early Earth. Combining geochemical observations with impact models suggest an interesting synergy between small and big impacts, where giant impacts create large magma oceans and small and larger impacts drive the atmospheric loss.

  5. Constraining the atmosphere of GJ 1214b using an optimal estimation technique

    NASA Astrophysics Data System (ADS)

    Barstow, J. K.; Aigrain, S.; Irwin, P. G. J.; Fletcher, L. N.; Lee, J.-M.

    2013-09-01

    We explore cloudy, extended H2-He atmosphere scenarios for the warm super-Earth GJ 1214b using an optimal estimation retrieval technique. This planet, orbiting an M4.5 star only 13 pc from the Earth, is of particular interest because it lies between the Earth and Neptune in size and may be a member of a new class of planet that is neither terrestrial nor gas giant. Its relatively flat transmission spectrum has so far made atmospheric characterization difficult. The Non-linear optimal Estimator for MultivariateE spectral analySIS (NEMESIS) algorithm is used to explore the degenerate model parameter space for a cloudy, H2-He-dominated atmosphere scenario. Optimal estimation is a data-led approach that allows solutions beyond the range permitted by ab initio equilibrium model atmosphere calculations, and as such prevents restriction from prior expectations. We show that optimal estimation retrieval is a powerful tool for this kind of study, and present an exploration of the degenerate atmospheric scenarios for GJ 1214b. Whilst we find a family of solutions that provide a very good fit to the data, the quality and coverage of these data are insufficient for us to more precisely determine the abundances of cloud and trace gases given an H2-He atmosphere, and we also cannot rule out the possibility of a high molecular weight atmosphere. Future ground- and space-based observations will provide the opportunity to confirm or rule out an extended H2-He atmosphere, but more precise constraints will be limited by intrinsic degeneracies in the retrieval problem, such as variations in cloud top pressure and temperature.

  6. Atmospheric reentry flight test of winged space vehicle

    NASA Astrophysics Data System (ADS)

    Inatani, Yoshifumi; Akiba, Ryojiro; Hinada, Motoki; Nagatomo, Makoto

    A summary of the atmospheric reentry flight experiment of winged space vehicle is presented. The test was conducted and carried out by the Institute of Space and Astronautical Science (ISAS) in Feb. 1992 in Kagoshima Space Center. It is the first Japanese atmospheric reentry flight of the controlled lifting vehicle. A prime objective of the flight is to demonstrate a high speed atmospheric entry flight capability and high-angle-of-attack flight capability in terms of aerodynamics, flight dynamics and flight control of these kind of vehicles. The launch of the winged vehicle was made by balloon and solid propellant rocket booster which was also the first trial in Japan. The vehicle accomplishes the lfight from space-equivalent condition to the atmospheric flight condition where reaction control system (RCS) attitude stabilization and aerodynamic control was used, respectively. In the flight, the vehicle's attitude was measured by both an inertial measurement unit (IMU) and an air data sensor (ADS) which were employed into an auto-pilot flight control loop. After completion of the entry transient flight, the vehicle experienced unexpected instability during the atmospheric decelerating flight; however, it recovered the attitude orientation and completed the transonic flight after that. The latest analysis shows that it is due to the ADS measurement error and the flight control gain scheduling; what happened was all understood. Some details of the test and the brief summary of the current status of the post flight analysis are presented.

  7. XUV-exposed, non-hydrostatic hydrogen-rich upper atmospheres of terrestrial planets. Part I: atmospheric expansion and thermal escape.

    PubMed

    Erkaev, Nikolai V; Lammer, Helmut; Odert, Petra; Kulikov, Yuri N; Kislyakova, Kristina G; Khodachenko, Maxim L; Güdel, Manuel; Hanslmeier, Arnold; Biernat, Helfried

    2013-11-01

    The recently discovered low-density "super-Earths" Kepler-11b, Kepler-11f, Kepler-11d, Kepler-11e, and planets such as GJ 1214b represent the most likely known planets that are surrounded by dense H/He envelopes or contain deep H₂O oceans also surrounded by dense hydrogen envelopes. Although these super-Earths are orbiting relatively close to their host stars, they have not lost their captured nebula-based hydrogen-rich or degassed volatile-rich steam protoatmospheres. Thus, it is interesting to estimate the maximum possible amount of atmospheric hydrogen loss from a terrestrial planet orbiting within the habitable zone of late main sequence host stars. For studying the thermosphere structure and escape, we apply a 1-D hydrodynamic upper atmosphere model that solves the equations of mass, momentum, and energy conservation for a planet with the mass and size of Earth and for a super-Earth with a size of 2 R(Earth) and a mass of 10 M(Earth). We calculate volume heating rates by the stellar soft X-ray and extreme ultraviolet radiation (XUV) and expansion of the upper atmosphere, its temperature, density, and velocity structure and related thermal escape rates during the planet's lifetime. Moreover, we investigate under which conditions both planets enter the blow-off escape regime and may therefore experience loss rates that are close to the energy-limited escape. Finally, we discuss the results in the context of atmospheric evolution and implications for habitability of terrestrial planets in general.

  8. Global tropospheric methane: An indication of atmosphere-biosphere-climate interactions?

    NASA Technical Reports Server (NTRS)

    Harriss, Robert C.; Sebacher, Daniel I.; Bartlett, Karen B.

    1985-01-01

    Methane is an important atmospheric gas with potentially critical roles in both photochemical and radiation transfer processes. A major natural source of atmospheric methane involves anaerobic fermentation of organic materials in wetland soils and sediments. A data base of field measurements of atmospheric methane was used in the development of a global methane emissions inventory. Calculations support the following hypotheses: (1) Human activities currently produce methane at a rate approximately equal to natural resources (these rapidly increasing anthropogenic sources can explain most of the recent increase observed in tropospheric methane); and (2) Prior to 200 B.P. (before the present), the influence of climate on wetland extent and distribution was probably a dominant factor controlling global biogenic methane emissions to the atmosphere.

  9. An upper limit on Early Mars atmospheric pressure from small ancient craters

    NASA Astrophysics Data System (ADS)

    Kite, E. S.; Williams, J.; Lucas, A.; Aharonson, O.

    2012-12-01

    Planetary atmospheres brake, ablate, and disrupt small asteroids and comets, filtering out small hypervelocity surface impacts and causing fireballs, airblasts, meteors, and meteorites. Hypervelocity craters <1 km diameter on Earth are typically caused by irons (because stones are more likely to break up), and the smallest hypervelocity craters near sea-level on Earth are ~20 m in diameter. 'Zap pits' as small as 30 microns are known from the airless moon, but the other airy worlds show the effects of progressively thicker atmospheres:- the modern Mars atmosphere is marginally capable of removing >90% of the kinetic energy of >240 kg iron impactors; Titan's paucity of small craters is consistent with a model predicting atmospheric filtering of craters smaller than 6-8km; and on Venus, craters below ~20 km diameter are substantially depleted. Changes in atmospheric CO2 concentration are believed to be the single most important control on Mars climate evolution and habitability. Existing data requires an early epoch of massive atmospheric loss to space; suggests that the present-day rate of escape to space is small; and offers only limited evidence for carbonate formation. Existing evidence has not led to convergence of atmosphere-evolution models, which must balance poorly understood fluxes from volcanic degassing, surface weathering, and escape to space. More direct measurements are required in order to determine the history of CO2 concentrations. Wind erosion and tectonics exposes ancient surfaces on Mars, and the size-frequency distribution of impacts on these surfaces has been previously suggested as a proxy time series of Mars atmospheric thickness. We will present a new upper limit on Early Mars atmospheric pressure using the size-frequency distribution of 20-100m diameter ancient craters in Aeolis Dorsa, validated using HiRISE DTMs, in combination with Monte Carlo simulations of the effect of paleo-atmospheres of varying thickness on the crater flux. These

  10. Influence of preonset land atmospheric conditions on the Indian summer monsoon rainfall variability

    NASA Astrophysics Data System (ADS)

    Rai, Archana; Saha, Subodh K.; Pokhrel, Samir; Sujith, K.; Halder, Subhadeep

    2015-05-01

    A possible link between preonset land atmospheric conditions and the Indian summer monsoon rainfall (ISMR) is explored. It is shown that, the preonset positive (negative) rainfall anomaly over northwest India, Pakistan, Afghanistan, and Iran is associated with decrease (increase) in ISMR, primarily in the months of June and July, which in turn affects the seasonal mean. ISMR in the months of June and July is also strongly linked with the preonset 2 m air temperature over the same regions. The preonset rainfall/2 m air temperature variability is linked with stationary Rossby wave response, which is clearly evident in the wave activity flux diagnostics. As the predictability of Indian summer monsoon relies mainly on the El Niño-Southern Oscillation (ENSO), the found link may further enhance our ability to predict the monsoon, particularly during a non-ENSO year.

  11. Horizontal atmospheric turbulence, beam propagation, and modeling

    NASA Astrophysics Data System (ADS)

    Wilcox, Christopher C.; Santiago, Freddie; Martinez, Ty; Judd, K. Peter; Restaino, Sergio R.

    2017-05-01

    The turbulent effect from the Earth's atmosphere degrades the performance of an optical imaging system. Many studies have been conducted in the study of beam propagation in a turbulent medium. Horizontal beam propagation and correction presents many challenges when compared to vertical due to the far harsher turbulent conditions and increased complexity it induces. We investigate the collection of beam propagation data, analysis, and use for building a mathematical model of the horizontal turbulent path and the plans for an adaptive optical system to use this information to correct for horizontal path atmospheric turbulence.

  12. Atmospheric effects on laser eye safety and damage to instrumentation

    NASA Astrophysics Data System (ADS)

    Zilberman, Arkadi; Kopeika, Natan S.

    2017-10-01

    Electro-optical sensors as well as unprotected human eyes are extremely sensitive to laser radiation and can be permanently damaged from direct or reflected beams. Laser detector/eye hazard depends on the interaction between the laser beam and the media in which it traverses. The environmental conditions including terrain features, atmospheric particulate and water content, and turbulence, may alter the laser's effect on the detector/eye. It is possible to estimate the performance of an electro-optical system as long as the atmospheric propagation of the laser beam can be adequately modeled. More recent experiments and modeling of atmospheric optics phenomena such as inner scale effect, aperture averaging, atmospheric attenuation in NIR-SWIR, and Cn2 modeling justify an update of previous eye/detector safety modeling. In the present work, the influence of the atmospheric channel on laser safety for personnel and instrumentation is shown on the basis of theoretical and experimental data of laser irradiance statistics for different atmospheric conditions. A method for evaluating the probability of damage and hazard distances associated with the use of laser systems in a turbulent atmosphere operating in the visible and NIR-SWIR portions of the electromagnetic spectrum is presented. It can be used as a performance prediction model for directed energy engagement of ground-based or air-based systems.

  13. Is atmospheric pressure change an Independent risk factor for hemoptysis?

    PubMed

    Araz, Omer; Ucar, Elif Yilmazel; Akgun, Metin; Aydin, Yener; Meral, Mehmet; Saglam, Leyla; Kaynar, Hasan; Gorguner, Ali Metin

    2014-05-01

    Hemoptysis is one of the most important and challenging symptoms in pulmonary medicine. Because of the increased number of patients with hemoptysis in certain periods of the year, we aimed to investigate whether atmospheric changes have an effect on the development of hemoptysis with or without a secondary cause. The data of patients presenting with hemoptysis between January 2006 and December 2011 were analyzed. Data on the daily atmospheric pressure (hectopascal, hPa), relative humidity (%), and temperature ((o) C) during that time were obtained. A total of 232 patients with hemoptysis, 145 male (62.5%) and 87 female (37.5%) with an average age of 48.1(±17.6), were admitted to our hospital between 2006 and 2011. The highest admission rates were in the spring season, the highest in May (n=37, 15.9%), and the lowest admission rates were in December (n=10, 4.3%). A statistically significant negative correlation was found between the number of hemoptysis cases and mean atmospheric pressure but no relative humidity or outdoor temperature. Hemoptysis is very much influenced by weather factors; in particular, low atmospheric pressures significantly affect the development of hemoptysis. Fluctuations in atmospheric pressure may also play a role in hemoptysis.

  14. Land surface and atmospheric conditions associated with heat waves over the Chickasaw Nation in the South Central United States

    NASA Astrophysics Data System (ADS)

    Lee, Eungul; Bieda, Rahama; Shanmugasundaram, Jothiganesh; Basara Richter, Heather

    2016-06-01

    Exposure to extreme heat was reconstructed based on regional land-atmosphere processes from 1979 to 2010 in the South Central U.S. The study region surrounds the Chickasaw Nation (CN), a predominantly Native American population with a highly prevalent burden of climate-sensitive chronic diseases. Land surface and atmospheric conditions for summer heat waves were analyzed during spring (March-April-May, MAM) and summer (June-July-August, JJA) based on the Climate and Ocean: Variability, Predictability, and Change maximum temperature definition for heat wave frequency (HWF). The spatial-temporal pattern of HWF was determined using empirical orthogonal function (EOF) analysis and the corresponding principle component time series of the first EOF of HWF. Statistically significant analyses of observed conditions indicated that sensible heat increased and latent heat fluxes decreased with high HWF in the South Central U.S. The largest positive correlations of sensible heat flux to HWF and the largest negative correlations of latent heat flux to HWF were specifically observed over the CN. This is a significantly different energy transfer regime due to less available soil moisture during the antecedent MAM and JJA. The higher sensible heat from dry soil could cause significant warming from the near surface (>2.0°C) to the lower troposphere (>1.5°C), and accumulated boundary layer heat could induce the significant patterns of higher geopotential height and enhance anticyclonic circulations (negative vorticity anomaly) at the midtroposphere. Results suggested a positive land-atmosphere feedback associated with heat waves and called attention to the need for region-specific climate adaptation planning.

  15. A UV multifunctional Raman lidar system for the observation and analysis of atmospheric temperature, humidity, aerosols and their conveying characteristics over Xi'an

    NASA Astrophysics Data System (ADS)

    Yufeng, Wang; Qiang, Fu; Meina, Zhao; Fei, Gao; Huige, Di; Yuehui, Song; Dengxin, Hua

    2018-01-01

    To monitor the variability and the correlation of multiple atmospheric parameters in the whole troposphere and the lower stratosphere, a ground-based ultraviolet multifunctional Raman lidar system was established to simultaneously measure the atmospheric parameters in Xi'an (34.233°N, 108.911°E). A set of dichroic mirrors (DMs) and narrow-band interference filters (IFs) with narrow angles of incidence were utilized to construct a high-efficiency 5-channel polychromator. A series of high-quality data obtained from October 2013 to December 2015 under different weather conditions were used to investigate the functionality of the Raman lidar system and to study the variability of multiple atmospheric parameters in the whole stratosphere. Their conveying characteristics are also investigated using back trajectories with a hybrid single-particle Lagrangian integrated trajectory model (HYSPLIT). The lidar system can be operated efficiently under weather conditions with a cloud backscattering ratio of less than 18 and an atmospheric visibility of 3 km. We observed an obvious temperature inversion phenomenon at the tropopause height of 17-18 km and occasional temperature inversion layers below the boundary layer. The rapidly changing atmospheric water vapor is mostly concentrated at the lower troposphere, below ∼4-5 km, accounting for ∼90% of the total water vapor content at 0.5-10 km. The back trajectory analysis shows that the air flow from the northwest and the west mainly contributes to the transport of aerosols and water vapor over Xi'an. The simultaneous continuous observational results demonstrate the variability and correlation among the multiple atmospheric parameters, and the accumulated water vapor density in the bottom layer causes an increase in the aerosol extinction coefficient and enhances the relative humidity in the early morning. The long-term observations provide a large amount of reliable atmospheric data below the lower stratosphere, and can be

  16. Low-temperature and low atmospheric pressure infrared reflectance spectroscopy of Mars soil analog materials

    NASA Technical Reports Server (NTRS)

    Bishop, Janice L.; Pieters, Carle M.

    1995-01-01

    Infrared reflectance spectra of carefully selected Mars soil analog materials have been measured under low atmospheric pressures and temperatures. Chemically altered montmorillonites containing ferrihydrite and hydrated ferric sulfate complexes are examined, as well as synthetic ferrihydrate and a palagonitic soil from Haleakala, Maui. Reflectance spectra of these analog materials exhibit subtle visible to near-infrared features, which are indicative of nanophase ferric oxides or oxyhydroxides and are similar to features observed in the spectra of the bright regions of Mars. Infrared reflectance spectra of these analogs include hydration features due to structural OH, bound H2O and adsorbed H2O. The spectal character of these hydration features is highly dependent on the sample environment and on the nature of the H2O/OH in the analogs. The behavior of the hydration features near 1.9 micrometers, 2.2 micrometers, 2.7 micrometers, 3 micrometers, and 6 micrometers are reported here in spetra measured under Marslike atmospheric environment. In spectra of these analogs measured under dry Earth atmospheric conditions the 1.9-micrometer band depth is 8-17%; this band is much stonger under moist conditions. Under Marslike atmospheric conditions the 1.9-micrometer feature is broad and barely discernible (1-3% band depth) in spectra of the ferrihydrite and palagonitic soil samples. In comparable spectra of the ferric sulfate-bearing montmorillonite the 1.9-micrometer feature is also broad, but stronger (6% band depth). In the low atmospheric pressure and temperature spectra of the ferrihydrite-bearing montmorillonite this feature is sharper than the other analogs and relatively stronger (6% band depth). Although the intensity of the 3- micrometer band is weaker in spectra of each of the analogs when measured under Marslike conditions, the 3-micromter band remains a dominant feature and is especially broad in spectra of the ferrihydrite and palagonitic soil. The structural

  17. Low-temperature and low atmospheric pressure infrared reflectance spectroscopy of Mars soil analog materials

    NASA Technical Reports Server (NTRS)

    Bishop, Janice L.; Pieters, Carle M.

    1995-01-01

    Infrared reflectance spectra of carefully selected Mars soil analog materials have been measured under low atmospheric pressures and temperatures. Chemically altered montmorillonites containing ferrihydrite and hydrated ferric sulfate complexes are examined, as well as synthetic ferrihydrite and a palagonitic soil from Haleakala, Maui. Reflectance spectra of these analog materials exhibit subtle visible to near-infrared features, which are indicative of nanophase ferric oxides or oxyhydroxides and are similar to features observed in the spectra of the bright regions of Mars. Infrared reflectance spectra of these analogs include hydration features due to structural OH, bound H2O, and adsorbed H2O. The spectral character of these hydration features is highly dependent on the sample environment and on the nature of the H2O/OH in the analogs. The behavior of the hydration features near 1.9 micron, 2.2 micron, 2.7 micron, 3 micron, and 6 microns are reported here in spectra measured under a Marslike atmospheric environment. In spectra of these analogs measured under dry Earth atmospheric conditions the 1.9-micron band depth is 8-17%; this band is much stronger under moist conditions. Under Marslike atmospheric conditions the 1.9-micron feature is broad and barely discernible (1-3% band depth) in spectra of the ferrihydrite and palagonitic soil samples. In comparable spectra of the ferric sulfate-bearing montmorillonite the 1.9-micron feature is also broad, but stronger (6% band depth). In the low atmospheric pressure and temperature spectra of the ferrihydrite-bearing montmorillonite this feature is sharper than the other analogs and relatively stronger (6% band depth). Although the intensity of the 3-micron band is weaker in spectra of each of the analogs when measured under Marslike conditions, the 3-micron band remains a dominant feature and is especially broad in spectra of the ferrihydrite and palagonitic soil. The structural OH features observed in these materials

  18. Evolution of the atmospheric boundary layer in southern West Africa - an overview from the DACCIWA field campaign

    NASA Astrophysics Data System (ADS)

    Kalthoff, Norbert; Lohou, Fabienne; Brooks, Barbara; Jegede, Gbenga; Adler, Bianca; Ajao, Adewale; Ayoola, Muritala; Babić, Karmen; Bessardon, Geoffrey; Delon, Claire; Dione, Cheikh; Handwerker, Jan; Jambert, Corinne; Kohler, Martin; Lothon, Marie; Pedruzo-Bagazgoitia, Xabier; Smith, Victoria; Sunmonu, Lukman; Wieser, Andreas

    2017-04-01

    In southern West Africa, extended low-level stratus clouds form very frequently during night-time and persist long into the following day influencing the diurnal cycle of the atmospheric boundary layer (ABL). During the course of the day, a transition from nocturnal low-level stratus to stratocumulus, cumulus, and sometimes congestus and possibly cumulonimbus clouds is observed. In June and July 2016, a ground-based field campaign took place in southern West Africa within the framework of the Dynamics-aerosol-chemistry-cloud interactions in West Africa (DACCIWA) project with the aim to identify the meteorological controls on the stratus and the evolution of the ABL. During the measurement period, extensive remote sensing and in-situ measurements were performed at three supersites in Kumasi (Ghana), Savè (Benin) and Ile-Ife (Nigeria). We give an overview of the atmospheric conditions during the whole measurement period focusing on the vertical and temporal distribution of the stratus and relevant related atmospheric features.

  19. Atmospheric-pressure plasma jet

    DOEpatents

    Selwyn, Gary S.

    1999-01-01

    Atmospheric-pressure plasma jet. A .gamma.-mode, resonant-cavity plasma discharge that can be operated at atmospheric pressure and near room temperature using 13.56 MHz rf power is described. Unlike plasma torches, the discharge produces a gas-phase effluent no hotter than 250.degree. C. at an applied power of about 300 W, and shows distinct non-thermal characteristics. In the simplest design, two concentric cylindrical electrodes are employed to generate a plasma in the annular region therebetween. A "jet" of long-lived metastable and reactive species that are capable of rapidly cleaning or etching metals and other materials is generated which extends up to 8 in. beyond the open end of the electrodes. Films and coatings may also be removed by these species. Arcing is prevented in the apparatus by using gas mixtures containing He, which limits ionization, by using high flow velocities, and by properly shaping the rf-powered electrode. Because of the atmospheric pressure operation, no ions survive for a sufficiently long distance beyond the active plasma discharge to bombard a workpiece, unlike low-pressure plasma sources and conventional plasma processing methods.

  20. Effectiveness of rhizobacteria containing ACC deaminase for growth promotion of peas (Pisum sativum) under drought conditions.

    PubMed

    Zahir, Z A; Munir, A; Asghar, H N; Shaharoona, B; Arshad, M

    2008-05-01

    A series of experiments were conducted to assess the effectiveness of rhizobacteria containing 1-aminocyclopropane- 1-carboxylate (ACC) deaminase for growth promotion of peas under drought conditions. Ten rhizobacteria isolated from the rhizosphere of different crops (peas, wheat, and maize) were screened for their growth promoting ability in peas under axenic condition. Three rhizobacterial isolates, Pseudomonas fluorescens biotype G (ACC-5), P. fluorescens (ACC-14), and P. putida biotype A (Q-7), were selected for pot trial on the basis of their source, ACC deaminase activity, root colonization, and growth promoting activity under axenic conditions. Inoculated and uninoculated (control) seeds of pea cultivar 2000 were sown in pots (4 seeds/pot) at different soil moisture levels (25, 50, 75, and 100% of field capacity). Results revealed that decreasing the soil moisture levels from 100 to 25% of field capacity significantly decreased the growth of peas. However, inoculation of peas with rhizobacteria containing ACC deaminase significantly decreased the "drought stress imposed effects" on growth of peas, although with variable efficacy at different moisture levels. At the lowest soil moisture level (25% field capacity), rhizobacterial isolate Pseudomonas fluorescens biotype G (ACC-5) was found to be more promising compared with the other isolates, as it caused maximum increases in fresh weight, dry weight, root length, shoot length, number of leaves per plant, and water use efficiency on fresh and dry weight basis (45, 150, 92, 45, 140, 46, and 147%, respectively) compared with respective uninoculated controls. It is highly likely that rhizobacteria containing ACC deaminase might have decreased the drought-stress induced ethylene in inoculated plants, which resulted in better growth of plants even at low moisture levels. Therefore, inoculation with rhizobacteria containing ACC deaminase could be helpful in eliminating the inhibitory effects of drought stress on the

  1. Aircraft Configured for Flight in an Atmosphere Having Low Density

    NASA Technical Reports Server (NTRS)

    Teter, Jr., John E. (Inventor); Croom, Mark A. (Inventor); Smith, Stephen C. (Inventor); Gelhausen, Paul A. (Inventor); Hunter, Craig A. (Inventor); Riddick, Steven E. (Inventor); Guynn, Mark D. (Inventor); Paddock, David A. (Inventor)

    2012-01-01

    An aircraft is configured for flight in an atmosphere having a low density. The aircraft includes a fuselage, a pair of wings, and a rear stabilizer. The pair of wings extends from the fuselage in opposition to one another. The rear stabilizer extends from the fuselage in spaced relationship to the pair of wings. The fuselage, the wings, and the rear stabilizer each present an upper surface opposing a lower surface. The upper and lower surfaces have X, Y, and Z coordinates that are configured for flight in an atmosphere having low density.

  2. ANALYTICAL MODELS OF EXOPLANETARY ATMOSPHERES. I. ATMOSPHERIC DYNAMICS VIA THE SHALLOW WATER SYSTEM

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heng, Kevin; Workman, Jared, E-mail: kevin.heng@csh.unibe.ch, E-mail: jworkman@coloradomesa.edu

    2014-08-01

    Within the context of exoplanetary atmospheres, we present a comprehensive linear analysis of forced, damped, magnetized shallow water systems, exploring the effects of dimensionality, geometry (Cartesian, pseudo-spherical, and spherical), rotation, magnetic tension, and hydrodynamic and magnetic sources of friction. Across a broad range of conditions, we find that the key governing equation for atmospheres and quantum harmonic oscillators are identical, even when forcing (stellar irradiation), sources of friction (molecular viscosity, Rayleigh drag, and magnetic drag), and magnetic tension are included. The global atmospheric structure is largely controlled by a single key parameter that involves the Rossby and Prandtl numbers. Thismore » near-universality breaks down when either molecular viscosity or magnetic drag acts non-uniformly across latitude or a poloidal magnetic field is present, suggesting that these effects will introduce qualitative changes to the familiar chevron-shaped feature witnessed in simulations of atmospheric circulation. We also find that hydrodynamic and magnetic sources of friction have dissimilar phase signatures and affect the flow in fundamentally different ways, implying that using Rayleigh drag to mimic magnetic drag is inaccurate. We exhaustively lay down the theoretical formalism (dispersion relations, governing equations, and time-dependent wave solutions) for a broad suite of models. In all situations, we derive the steady state of an atmosphere, which is relevant to interpreting infrared phase and eclipse maps of exoplanetary atmospheres. We elucidate a pinching effect that confines the atmospheric structure to be near the equator. Our suite of analytical models may be used to develop decisively physical intuition and as a reference point for three-dimensional magnetohydrodynamic simulations of atmospheric circulation.« less

  3. Oceanic and atmospheric conditions associated with the pentad rainfall over the southeastern peninsular India during the North-East Indian Monsoon season

    NASA Astrophysics Data System (ADS)

    Shanmugasundaram, Jothiganesh; Lee, Eungul

    2018-03-01

    The association of North-East Indian Monsoon rainfall (NEIMR) over the southeastern peninsular India with the oceanic and atmospheric conditions over the adjacent ocean regions at pentad time step (five days period) was investigated during the months of October to December for the period 1985-2014. The non-parametric correlation and composite analyses were carried out for the simultaneous and lagged time steps (up to four lags) of oceanic and atmospheric variables with pentad NEIMR. The results indicated that NEIMR was significantly correlated: 1) positively with both sea surface temperature (SST) led by 1-4 pentads (lag 1-4 time steps) and latent heat flux (LHF) during the simultaneous, lag 1 and 2 time steps over the equatorial western Indian Ocean, 2) positively with SST but negatively with LHF (less heat flux from ocean to atmosphere) during the same and all the lagged time steps over the Bay of Bengal. Consistently, during the wet NEIMR pentads over the southeastern peninsular India, SST significantly increased over the Bay of Bengal during all the time steps and the equatorial western Indian Ocean during the lag 2-4 time steps, while the LHF decreased over the Bay of Bengal (all time steps) and increased over the Indian Ocean (same, lag 1 and 2). The investigation on ocean-atmospheric interaction revealed that the enhanced LHF over the equatorial western Indian Ocean was related to increased atmospheric moisture demand and increased wind speed, whereas the reduced LHF over the Bay of Bengal was associated with decreased atmospheric moisture demand and decreased wind speed. The vertically integrated moisture flux and moisture transport vectors from 1000 to 850 hPa exhibited that the moisture was carried away from the equatorial western Indian Ocean to the strong moisture convergence regions of the Bay of Bengal during the same and lag 1 time steps of wet NEIMR pentads. Further, the moisture over the Bay of Bengal was transported to the southeastern peninsular

  4. Numerical study of the influence of surface reaction probabilities on reactive species in an rf atmospheric pressure plasma containing humidity

    NASA Astrophysics Data System (ADS)

    Schröter, Sandra; Gibson, Andrew R.; Kushner, Mark J.; Gans, Timo; O'Connell, Deborah

    2018-01-01

    The quantification and control of reactive species (RS) in atmospheric pressure plasmas (APPs) is of great interest for their technological applications, in particular in biomedicine. Of key importance in simulating the densities of these species are fundamental data on their production and destruction. In particular, data concerning particle-surface reaction probabilities in APPs are scarce, with most of these probabilities measured in low-pressure systems. In this work, the role of surface reaction probabilities, γ, of reactive neutral species (H, O and OH) on neutral particle densities in a He-H2O radio-frequency micro APP jet (COST-μ APPJ) are investigated using a global model. It is found that the choice of γ, particularly for low-mass species having large diffusivities, such as H, can change computed species densities significantly. The importance of γ even at elevated pressures offers potential for tailoring the RS composition of atmospheric pressure microplasmas by choosing different wall materials or plasma geometries.

  5. Performance analysis of an adaptive optics system for free-space optics communication through atmospheric turbulence.

    PubMed

    Wang, Yukun; Xu, Huanyu; Li, Dayu; Wang, Rui; Jin, Chengbin; Yin, Xianghui; Gao, Shijie; Mu, Quanquan; Xuan, Li; Cao, Zhaoliang

    2018-01-18

    The performance of free-space optics communication (FSOC) is greatly degraded by atmospheric turbulence. Adaptive optics (AO) is an effective method for attenuating the influence. In this paper, the influence of the spatial and temporal characteristics of turbulence on the performance of AO in a FSOC system is investigated. Based on the Greenwood frequency (GF) and the ratio of receiver aperture diameter to atmospheric coherent length (D/r 0 ), the relationship between FSOC performance (CE) and AO parameters (corrected Zernike modes number and bandwidth) is derived for the first time. Then, simulations and experiments are conducted to analyze the influence of AO parameters on FSOC performance under different GF and D/r 0 . The simulation and experimental results show that, for common turbulence conditions, the number of corrected Zernike modes can be fixed at 35 and the bandwidth of the AO system should be larger than the GF. Measurements of the bit error rate (BER) for moderate turbulence conditions (D/r 0  = 10, f G  = 60 Hz) show that when the bandwidth is two times that of GF, the average BER is decreased by two orders of magnitude compared with f G /f 3dB  = 1. These results and conclusions can provide important guidance in the design of an AO system for FSOC.

  6. Venus - Atmospheric rotation.

    NASA Technical Reports Server (NTRS)

    Scott, A. H.; Reese, E. J.

    1972-01-01

    Photographs of Venus taken in ultraviolet light from Sept. 29, 1963, to May 29, 1971, indicate a general planet-wide circulation in the upper atmosphere of that planet having velocities which varied with time from -87 to -127m/sec at the equator. Positional measurements on 67 pairs of photographs which show the recurrence of similar patterns after intervals of one to three rotations suggest an asymmetric bimodal distribution of these velocities. The ultraviolet markings appear to be randomly distributed and quite ephemeral in nature, rarely enduring in a recognizable pattern for more than 20 days and usually much less. Attention is directed to an apparent but fictitious mean sidereal rotation period of approximately 4.06 days derived from observations which are made at a single station and span many months or years. Under such conditions this fictitious value for the rotation period is produced by the commensurability of the one-day period of earth and the assumed four-day period of the atmosphere of Venus.

  7. Assessment of Gaseous Oxidized Mercury Measurement Accuracy at an Atmospheric Mercury Network (AMNet) Site

    NASA Astrophysics Data System (ADS)

    Luke, W. T.

    2016-12-01

    Recent laboratory and field research has documented and explored the biases and inaccuracies of the measurement of gaseous oxidized mercury (GOM) compounds using KCl-coated denuders. We report on the development of a simple, automated GOM calibration source and its deployment at NOAA/Air Resources Laboratory's Atmospheric Mercury Network (AMNet) site at the Mauna Loa Observatory (MLO) on the island of Hawaii. NOAA/ARL has developed a permeation-tube based calibration source with an extremely simple flow path that minimizes surface adsorptive effects and losses. The source was used to inject HgBr2 into one of two side-by-side Tekran® mercury speciation systems at MLO to characterize GOM measurement accuracy under a variety of atmospheric conditions. Due to its unique topography and meteorology, MLO experiences katabatic (upslope/downslope) mesoscale flow superimposed on the synoptic trade wind circulation of the tropics. Water vapor, ozone, and other trace atmospheric constituents often display pronounced diurnal variations at the site, which frequently encounters air characteristic of the middle free troposphere at night, and of the tropical marine boundary layer during the day. Results presented here will assist in the better understanding of the biases underlying GOM measurements in global mercury monitoring networks and may allow the development of correction factors for ambient data.

  8. EVALUATING THE POTENTIAL EFFICACY OF AN ANTIMICROBIAL-CONTAINING SEALANT ON DUCT LINER AND GALVANIZED STEEL

    EPA Science Inventory

    The article gives results of an evaluation of the potential efficacy of an antimicrobial-containing sealant on fibrous-glass duct liner (FGDL) and galvanized steel (GS) as used in heating, ventilating, and air-conditioning (HVAC) systems. HVAC systems become dirty to various degr...

  9. Sea-ice, clouds and atmospheric conditions in the arctic and their interactions as derived from a merged C3M data product

    NASA Astrophysics Data System (ADS)

    Nag, Bappaditya

    The polar regions of the world constitute an important sector in the global energy balance. Among other effects responsible for the change in the sea-ice cover like ocean circulation and ice-albedo feedback, the cloud-radiation feedback also plays a vital role in modulation of the Arctic environment. However the annual cycle of the clouds is very poorly represented in current global circulation models. This study aimed to explore the atmospheric conditions in the Arctic on an unprecedented spatial coverage spanning 70°N to 80°N through the use of a merged data product, C3MData (derived from NASA's A-Train Series). The following three topics provide outline on how this dataset can be used to accomplish a detailed analysis of the Arctic environment and provide the modelling community with first information to update their models aimed at better forecasts. (1)The three properties of the Arctic climate system to be studied using the C3MData are sea-ice, clouds, and the atmospheric conditions. The first topic is to document the present states of the three properties and also their time evolutions or their seasonal cycles. (2)The second topic is aimed at the interactions or the feedbacks processes among the three properties. For example, the immediate alteration in the fluxes and the feedbacks arising from the change in the sea-ice cover is investigated. Seasonal and regional variations are also studied. (3)The third topics is aimed at the processes in native spatial resolution that drive or accompany with sea ice melting and sea ice growth. Using a composite approach based on a classification due to surface type, it is found that limitation of the water vapour influx from the surface due to change in phase at the surface featuring open oceans or marginal sea-ice cover to complete sea-ice cover is a major determinant in the modulation of the atmospheric moisture. The impact of the cloud-radiative effects in the Arctic is found to vary with sea-ice cover and seasonally

  10. Role of Automobile Exhaust on the Photoreductive Solubilization of Atmospheric Iron

    NASA Astrophysics Data System (ADS)

    Haynes, J.; Majestic, B. J.; Cutler, E.

    2016-12-01

    Atmospheric iron (Fe) plays an essential role in the carbon cycle, affecting the Earth's energy balance and human health. Fe catalyzes oxidations of organic carbon species and serves as a limiting nutrient for phytoplankton in about half of the world's oceans. Wind-blown dust is the major source of atmospheric insoluble Fe while urban areas are correlated with relatively high percentages of soluble Fe. The occurrence of elevated levels of soluble Fe near urban and industrial regions suggests a correlation between Fe solubilization and organic combustion products, including polycyclic aromatic hydrocarbons (PAH). Fossil fuel consumption for internal combustion engines produce atmospheric PAH as a major component of automobile exhaust. Under light, PAH transform into oxidized components such as ketones and carboxylic acids. For example, phthalic acid (formed from naphthalene) inhibits Fe oxidation reactions and therefore may contribute to Fe reduction and increased solubility. The wind-blown dust and PAH-containing combustion products undergo long-range atmospheric transport leading to mixing and metal-organic interactions. The current study focuses on how a saturated PAH suspension affects the production of soluble Fe. Reactions of soil-based Fe and saturated solutions of PAH are performed under controlled conditions simulating natural sunlight. Samples are analyzed by ICPMS for soluble Fe before and after solar exposure reactions; soluble Fe is separated from total Fe by filtration and total Fe by acid-assisted microwave digestion. Data indicate an increase in Fe solubility (1.2% to 4.2%) in the presence of PAH, as compared to soil in water alone, and an even greater increase in Fe solubility (4.2% to 8.4%) when exposed to solar radiation. Research is ongoing to determine the dependence of oxidized PAH on kinetic and overall Fe solubility.

  11. GCM simulations of cold dry Snowball Earth atmospheres

    NASA Astrophysics Data System (ADS)

    Voigt, A.; Held, I.; Marotzke, J.

    2009-12-01

    We use the full-physics atmospheric general circulation model ECHAM5 to investigate cold and virtually dry Snowball Earth atmospheres. These result from specifying sea ice as the surface boundary condition everywhere, corresponding to a frozen aquaplanet, while keeping total solar irradiance at its present-day value of 1365 Wm-2 and setting atmospheric carbon dioxide to 300 ppmv. Here, we present four simulations corresponding to the four possible combinations of enabled or disabled diurnal and seasonal cycles. The aim of this study is twofold. First, we focus on the zonal-mean circulation of Snowball Earth atmospheres, which, due to missing moisture, might constitute an ideal though yet unexplored testbed for theories of atmospheric dynamics. Second, we investigate tropical surface temperatures with an emphasis on the impact of the diurnal and seasonal cycles. This will indicate whether the presence of the diurnal or seasonal cycle would facilitate or anticipate the escape from Snowball Earth conditions when total solar irradiance or atmospheric CO2 levels were increased. The dynamics of the tropical circulation in Snowball Earth atmospheres differs substantially from that in the modern atmosphere. The analysis of the mean zonal momentum budget reveals that the mean flow meridional advection of absolute vorticity is primarily balanced by vertical diffusion of zonal momentum. The contribution of eddies is found to be even smaller than the contribution of mean flow vertical advection of zonal momentum, the latter being usually neglected in theories for the Hadley circulation, at least in its upper tropospheric branch. Suppressing vertical diffusion of horizontal momentum above 850 hPa leads to a stronger Hadley circulation. This behaviour cannot be understood from axisymmetric models of the atmosphere, nor idealized atmospheric general circulation models, which both predict a weakening of the Hadley circulation when the vertical viscosity is decreased globally. We

  12. An attempt at estimating Paris area CO2 emissions from atmospheric concentration measurements

    NASA Astrophysics Data System (ADS)

    Bréon, F. M.; Broquet, G.; Puygrenier, V.; Chevallier, F.; Xueref-Remy, I.; Ramonet, M.; Dieudonné, E.; Lopez, M.; Schmidt, M.; Perrussel, O.; Ciais, P.

    2015-02-01

    Atmospheric concentration measurements are used to adjust the daily to monthly budget of fossil fuel CO2 emissions of the Paris urban area from the prior estimates established by the Airparif local air quality agency. Five atmospheric monitoring sites are available, including one at the top of the Eiffel Tower. The atmospheric inversion is based on a Bayesian approach, and relies on an atmospheric transport model with a spatial resolution of 2 km with boundary conditions from a global coarse grid transport model. The inversion adjusts prior knowledge about the anthropogenic and biogenic CO2 fluxes from the Airparif inventory and an ecosystem model, respectively, with corrections at a temporal resolution of 6 h, while keeping the spatial distribution from the emission inventory. These corrections are based on assumptions regarding the temporal autocorrelation of prior emissions uncertainties within the daily cycle, and from day to day. The comparison of the measurements against the atmospheric transport simulation driven by the a priori CO2 surface fluxes shows significant differences upwind of the Paris urban area, which suggests a large and uncertain contribution from distant sources and sinks to the CO2 concentration variability. This contribution advocates that the inversion should aim at minimising model-data misfits in upwind-downwind gradients rather than misfits in mole fractions at individual sites. Another conclusion of the direct model-measurement comparison is that the CO2 variability at the top of the Eiffel Tower is large and poorly represented by the model for most wind speeds and directions. The model's inability to reproduce the CO2 variability at the heart of the city makes such measurements ill-suited for the inversion. This and the need to constrain the budgets for the whole city suggests the assimilation of upwind-downwind mole fraction gradients between sites at the edge of the urban area only. The inversion significantly improves the agreement

  13. The calculated influence of atmospheric conditions on solar cell ISC under direct and global solar irradiances

    NASA Technical Reports Server (NTRS)

    Mueller, Robert L.

    1987-01-01

    Calculations of the influence of atmospheric conditions on solar cell short-circuit current (Isc) are made using a recently developed computer model for solar spectral irradiance distribution. The results isolate the dependence of Isc on changes in the spectral irradiance distribution without the direct influence of the total irradiance level. The calculated direct normal irradiance and percent diffuse irradiance are given as a reference to indicate the expected irradiance levels. This method can be applied to the calibration of photovoltaic reference cells. Graphic examples are provided for amorphous silicon and monocrystalline silicon solar cells under direct normal and global normal solar irradiances.

  14. A Case for an Atmosphere on Super-Earth 55 Cancri e

    NASA Astrophysics Data System (ADS)

    Angelo, Isabel; Hu, Renyu

    2017-12-01

    One of the primary questions when characterizing Earth-sized and super-Earth-sized exoplanets is whether they have a substantial atmosphere like Earth and Venus or a bare-rock surface like Mercury. Phase curves of the planets in thermal emission provide clues to this question, because a substantial atmosphere would transport heat more efficiently than a bare-rock surface. Analyzing phase-curve photometric data around secondary eclipses has previously been used to study energy transport in the atmospheres of hot Jupiters. Here we use phase curve, Spitzer time-series photometry to study the thermal emission properties of the super-Earth exoplanet 55 Cancri e. We utilize a semianalytical framework to fit a physical model to the infrared photometric data at 4.5 μm. The model uses parameters of planetary properties including Bond albedo, heat redistribution efficiency (I.e., ratio between radiative timescale and advective timescale of the atmosphere), and the atmospheric greenhouse factor. The phase curve of 55 Cancri e is dominated by thermal emission with an eastward-shifted hotspot. We determine the heat redistribution efficiency to be {1.47}-0.25+0.30, which implies that the advective timescale is on the same order as the radiative timescale. This requirement cannot be met by the bare-rock planet scenario because heat transport by currents of molten lava would be too slow. The phase curve thus favors the scenario with a substantial atmosphere. Our constraints on the heat redistribution efficiency translate to an atmospheric pressure of ˜1.4 bar. The Spitzer 4.5 μm band is thus a window into the deep atmosphere of the planet 55 Cancri e.

  15. Biofilm inhibition by an experimental dental resin composite containing octenidine dihydrochloride.

    PubMed

    Rupf, Stefan; Balkenhol, Markus; Sahrhage, Tim O; Baum, Alexandra; Chromik, Julia N; Ruppert, Klaus; Wissenbach, Dirk K; Maurer, Hans H; Hannig, Matthias

    2012-09-01

    The aim of the present study was to investigate an antimicrobial additive containing experimental resin composite with regards to its impact on biofilm formation under oral conditions. Biofilms were established in situ on composite specimens (n=192) which contained octenidine dihydrochloride (ODH, 3 wt.% or 6 wt.%). Samples without antimicrobial additive served as control (n=96). Composite specimens were fixed on custom made splints and exposed to the oral cavity of six healthy volunteers for three or seven days. Biofilm formation was assessed by scanning electron microscopy (SEM) and fluorescence microscopy (FM). The biofilm formation was significantly reduced on ODH containing samples compared to controls after three as well as after seven days in situ. FM evaluation additionally showed a lower viability of the reduced biofilms for both ODH concentrations. During this short term investigation, incorporation of ODH into resin based composite materials caused biofilm inhibiting effects in situ. Copyright © 2012 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  16. Putting aquifers into atmospheric simulation models: An example from the Mill Creek Watershed, Northeastern Kansas

    USGS Publications Warehouse

    York, J.P.; Person, M.; Gutowski, W.J.; Winter, T.C.

    2002-01-01

    Aquifer-atmosphere interactions can be important in regions where the water table is shallow (<2 m). A shallow water table provides moisture for the soil and vegetation and thus acts as a source term for evapotranspiration to the atmosphere. A coupled aquifer-land surface-atmosphere model has been developed to study aquifer-atmosphere interactions in watersheds, on decadal timescales. A single column vertically discretized atmospheric model is linked to a distributed soil-vegetation-aquifer model. This physically based model was able to reproduce monthly and yearly trends in precipitation, stream discharge, and evapotranspiration, for a catchment in northeastern Kansas. However, the calculated soil moisture tended to drop to levels lower than were observed in drier years. The evapotranspiration varies spatially and seasonally and was highest in cells situated in topographic depressions where the water table is in the root zone. Annually, simulation results indicate that from 5-20% of groundwater supported evapotranspiration is drawn from the aquifer. The groundwater supported fraction of evapotranspiration is higher in drier years, when evapotranspiration exceeds precipitation. A long-term (40 year) simulation of extended drought conditions indicated that water table position is a function of groundwater hydrodynamics and cannot be predicted solely on the basis of topography. The response time of the aquifer to drought conditions was on the order of 200 years indicating that feedbacks between these two water reservoirs act on disparate time scales. With recent advances in the computational power of massively parallel supercomputers, it may soon become possible to incorporate physically based representations of aquifer hydrodynamics into general circulation models (GCM) land surface parameterization schemes. ?? 2002 Elsevier Science Ltd. All rights reserved.

  17. Stability evaluation of 7 % chloral hydrate syrup contained in mono and multi-dose bottles under room and refrigeration conditions.

    PubMed

    Bustos-Fierro, C; Olivera, M E; Manzo, P G; Jiménez-Kairuz, Álvaro F

    2013-01-01

    To evaluate the stability of an extemporaneously prepared 7% chloral hydrate syrup under different conditions of storage and dispensing. Three batches of 7% chloral hydrate syrup were prepared. Each batch was stored in 50 light-resistant glass containers of 60 mL with child-resistant caps and in two bottles of 1000 mL to simulate two forms of dispensing, mono and multi-dose, respectively. Twenty five mono-dose bottles and a multi-dose bottle of each batch were stored under room conditions (20 ± 1 °C) and the rest of the samples were stored in the fridge (5 ± 2 °C). The physical, chemical and microbiological stability was evaluated for 180 days. Stability was defined as retention of at least 95% of the initial concentration of chloral hydrate, the absence of both visible particulate matter, or color and/or odor changes and the compliance with microbiological attributes of non-sterile pharmaceutical products. At least 98% of the initial chloral hydrate concentration remained throughout the 180-day study period. There were no detectable changes in color, odor, specific gravity and pH and no visible microbial growth. These results were not affected by storage, room or refrigeration conditions or by the frequent opening or closing of the multi-dose containers. Extemporaneously compounded 7% chloral hydrate syrup was stable for at least 180 days when stored in mono or multi-dose light-resistant glass containers at room temperature and under refrigeration. Copyright © 2013 SEFH. Published by AULA MEDICA. All rights reserved.

  18. How Well Can Infrared Sounders Observe the Atmosphere and Surface Through Clouds?

    NASA Technical Reports Server (NTRS)

    Zhou, Daniel K.; Larar, Allen M.; Liu, Xu; Smith, William L.; Strow, L. Larrabee; Yang, Ping

    2010-01-01

    Infrared sounders, such as the Atmospheric Infrared Sounder (AIRS), the Infrared Atmospheric Sounding Interferometer (IASI), and the Cross-track Infrared sounder (CrIS), have a cloud-impenetrable disadvantage in observing the atmosphere and surface under opaque cloudy conditions. However, recent studies indicate that hyperspectral, infrared sounders have the ability to detect cloud effective-optical and microphysical properties and to penetrate optically thin clouds in observing the atmosphere and surface to a certain degree. We have developed a retrieval scheme dealing with atmospheric conditions with cloud presence. This scheme can be used to analyze the retrieval accuracy of atmospheric and surface parameters under clear and cloudy conditions. In this paper, we present the surface emissivity results derived from IASI global measurements under both clear and cloudy conditions. The accuracy of surface emissivity derived under cloudy conditions is statistically estimated in comparison with those derived under clear sky conditions. The retrieval error caused by the clouds is shown as a function of cloud optical depth, which helps us to understand how well infrared sounders can observe the atmosphere and surface through clouds.

  19. Ash Dispersal in Planetary Atmospheres: Continuum vs. Non-continuum Effects

    NASA Astrophysics Data System (ADS)

    Fagents, S. A.; Baloga, S. M.; Glaze, L. S.

    2013-12-01

    The dispersal of ash from a volcanic vent on any given planet is dictated by particle properties (density, shape, and size distribution), the intensity of the eruptive source, and the characteristics of the planetary environment (atmospheric structure, wind field, and gravity) into which the ash is erupted. Relating observations of potential pyroclastic deposits to source locations and eruption conditions requires a detailed quantitative understanding of the settling rates of individual particles under changing ambient conditions. For atmospheres that are well described by continuum mechanics, the conventional Newtonian description of particle motion allows particle settling velocities to be related to particle characteristics via a drag coefficient. However, under rarefied atmospheric conditions (i.e., on Mars and at high altitude on Earth), non-continuum effects become important for ash-sized particles, and an equation of motion based on statistical mechanics is required for calculating particle motion. We have developed a rigorous new treatment of particle settling under variable atmospheric conditions and applied it to Earth and Mars. When non-continuum effects are important (as dictated by the mean free path of atmospheric gas relative to the particle size), fall velocities are greater than those calculated by continuum mechanics. When continuum conditions (i.e., higher atmospheric densities) are reached during descent, our model switches to a conventional formulation that determines the appropriate drag coefficient as the particle transits varying atmospheric properties. The variation of settling velocity with altitude allows computation of particle trajectories, fall durations and downwind dispersal. Our theoretical and numerical analyses show that several key, competing factors strongly influence the downwind trajectories of ash particles and the extents of the resulting deposits. These factors include: the shape of the particles (non-spherical particles

  20. Lipid oxidation and color changes of goose meat stored under vacuum and modified atmosphere conditions.

    PubMed

    Orkusz, A; Haraf, G; Okruszek, A; Werenska-Sudnik, M

    2017-03-01

    The objective of the work was to investigate the color and lipid oxidation changes of goose breast meat packaged in vacuum and modified atmosphere (MA) conditions consisting of 80% O2, 20% CO2, and stored in refrigerated conditions at 4°C. Color stability was monitored by determining total heme pigments concentration; relative concentration of myoglobin, oxymyoglobin, and metmyoglobin; parameters of color L*, a*, b*, and sensory evaluation of the surface color. Lipid stability was measured by determining thiobarbituric acid reactive substances (TBARS). The samples were examined in 24 h after slaughter (unpacked muscles) and on d 4, 7, 9, 11 of storage (muscles packed in vacuum and in MA). Through the time of storage, samples packed in MA had higher TBARS values in comparison to the meat packed in vacuum. For samples packed in two types of atmospheres, the total pigments concentration decreased gradually within 11 d of storage. It was observed that relative metmyoglobin concentration increased whereas relative oxymyoglobin concentration decreased in total heme pigments in the MA stored muscle. The relative concentration of all three myoglobin forms sample packed in vacuum remained unchanged. The color parameters (L*, a*, b*) did not change for 11 d of storage for the vacuum packed meat. The value of the color parameter a* decreased and the value of the color parameters L* and b* increased in the samples packaged in MA. The data prove that if you store goose meat in MA (consisting of 80% O2, 20% CO2) or vacuum, the unchanged surface color is preserved for 9 and 11 day, respectively.Vacuum appears to be a better method as regards the maintaining of lipid stability in goose meat. © 2016 Poultry Science Association Inc.

  1. Evaluated kinetic and photochemical data for atmospheric chemistry

    NASA Technical Reports Server (NTRS)

    Baulch, D. L.; Cox, R. A.; Hampson, R. F., Jr.; Kerr, J. A.; Troe, J.; Watson, R. T.

    1980-01-01

    This paper contains a critical evaluation of the kinetics and photochemistry of gas phase chemical reactions of neutral species involved in middle atmosphere chemistry (10-55 km altitude). Data sheets have been prepared for 148 thermal and photochemical reactions, containing summaries of the available experimental data with notes giving details of the experimental procedures. For each reaction a preferred value of the rate coefficient at 298 K is given together with a temperature dependency where possible. The selection of the preferred value is discussed, and estimates of the accuracies of the rate coefficients and temperature coefficients have been made for each reaction. The data sheets are intended to provide the basic physical chemical data needed as input for calculations which model atmospheric chemistry. A table summarizing the preferred rate data is provided, together with an appendix listing the available data on enthalpies of formation of the reactant and product species.

  2. Microbiology and atmospheric processes: an upcoming era of research on bio-meteorology

    NASA Astrophysics Data System (ADS)

    Morris, C. E.; Sands, D. C.; Bardin, M.; Jaenicke, R.; Vogel, B.; Leyronas, C.; Ariya, P. A.; Psenner, R.

    2008-01-01

    For the past 200 years, the field of aerobiology has explored the abundance, diversity, survival and transport of micro-organisms in the atmosphere. Micro-organisms have been explored as passive and severely stressed riders of atmospheric transport systems. Recently, an interest in the active roles of these micro-organisms has emerged along with proposals that the atmosphere is a global biome for microbial metabolic activity and perhaps even multiplication. As part of a series of papers on the sources, distribution and roles in atmospheric processes of biological particles in the atmosphere, here we describe the pertinence of questions relating to the potential roles that air-borne micro-organisms might play in meteorological phenomena. For the upcoming era of research on the role of air-borne micro-organisms in meteorological phenomena, one important challenge is to go beyond descriptions of abundance of micro-organisms in the atmosphere toward an understanding of their dynamics in terms of both biological and physico-chemical properties and of the relevant transport processes at different scales. Another challenge is to develop this understanding under contexts pertinent to their potential role in processes related to atmospheric chemistry, the formation of clouds, precipitation and radiative forcing. This will require truly interdisciplinary approaches involving collaborators from the biological and physical sciences, from disciplines as disparate as agronomy, microbial genetics and atmosphere physics, for example.

  3. Exoplanet atmosphere highlights

    NASA Astrophysics Data System (ADS)

    García Muñoz, A.

    2017-03-01

    In only two decades since the first identification of a planet outside the Solar System,and about one since the pioneering detection of an atmosphere, exoplanet science has established itself as a mature field of astrophysics. As the search of as-of-yet undiscovered planets goes on, the field is steadily expanding its focus from detection only to detection and characterization. The information to be grasped from exoplanet atmospheres provides valuable insight into the formation and evolution of the planets and, in turn, into how unique our Solar System is. Ultimately, a dedicated search for life in these distant worlds will have to deal with the information encoded in their atmospheres. In recent years there has been rapid progress on both the theoretical and observational fronts in the investigation of exoplanet atmospheres. Theorists are predicting the prevailing conditions (temperature, chemical composition, cloud occurrence, energy transport) in these objects' envelopes, and are building the frameworks with which to approach the interpretation of observables. In parallel, observers have consolidated the remote sensing techniques that were utilized during the early years, and are now venturing into techniques that hold great promise for the future. With a number of space missions soon to fly and ground-based telescopes and instruments to be commissioned, all of them conceived during the exoplanet era, the field is set to experience unprecedented progress.

  4. Helium in the eroding atmosphere of an exoplanet.

    PubMed

    Spake, J J; Sing, D K; Evans, T M; Oklopčić, A; Bourrier, V; Kreidberg, L; Rackham, B V; Irwin, J; Ehrenreich, D; Wyttenbach, A; Wakeford, H R; Zhou, Y; Chubb, K L; Nikolov, N; Goyal, J M; Henry, G W; Williamson, M H; Blumenthal, S; Anderson, D R; Hellier, C; Charbonneau, D; Udry, S; Madhusudhan, N

    2018-05-01

    Helium is the second-most abundant element in the Universe after hydrogen and is one of the main constituents of gas-giant planets in our Solar System. Early theoretical models predicted helium to be among the most readily detectable species in the atmospheres of exoplanets, especially in extended and escaping atmospheres 1 . Searches for helium, however, have hitherto been unsuccessful 2 . Here we report observations of helium on an exoplanet, at a confidence level of 4.5 standard deviations. We measured the near-infrared transmission spectrum of the warm gas giant 3 WASP-107b and identified the narrow absorption feature of excited metastable helium at 10,833 angstroms. The amplitude of the feature, in transit depth, is 0.049 ± 0.011 per cent in a bandpass of 98 angstroms, which is more than five times greater than what could be caused by nominal stellar chromospheric activity. This large absorption signal suggests that WASP-107b has an extended atmosphere that is eroding at a total rate of 10 10 to 3 × 10 11 grams per second (0.1-4 per cent of its total mass per billion years), and may have a comet-like tail of gas shaped by radiation pressure.

  5. Helium in the eroding atmosphere of an exoplanet

    NASA Astrophysics Data System (ADS)

    Spake, J. J.; Sing, D. K.; Evans, T. M.; Oklopčić, A.; Bourrier, V.; Kreidberg, L.; Rackham, B. V.; Irwin, J.; Ehrenreich, D.; Wyttenbach, A.; Wakeford, H. R.; Zhou, Y.; Chubb, K. L.; Nikolov, N.; Goyal, J. M.; Henry, G. W.; Williamson, M. H.; Blumenthal, S.; Anderson, D. R.; Hellier, C.; Charbonneau, D.; Udry, S.; Madhusudhan, N.

    2018-05-01

    Helium is the second-most abundant element in the Universe after hydrogen and is one of the main constituents of gas-giant planets in our Solar System. Early theoretical models predicted helium to be among the most readily detectable species in the atmospheres of exoplanets, especially in extended and escaping atmospheres1. Searches for helium, however, have hitherto been unsuccessful2. Here we report observations of helium on an exoplanet, at a confidence level of 4.5 standard deviations. We measured the near-infrared transmission spectrum of the warm gas giant3 WASP-107b and identified the narrow absorption feature of excited metastable helium at 10,833 angstroms. The amplitude of the feature, in transit depth, is 0.049 ± 0.011 per cent in a bandpass of 98 angstroms, which is more than five times greater than what could be caused by nominal stellar chromospheric activity. This large absorption signal suggests that WASP-107b has an extended atmosphere that is eroding at a total rate of 1010 to 3 × 1011 grams per second (0.1-4 per cent of its total mass per billion years), and may have a comet-like tail of gas shaped by radiation pressure.

  6. Synoptic-scale atmospheric conditions associated with flash flooding in watersheds of the Catskill Mountains, New York, USA

    NASA Astrophysics Data System (ADS)

    Teale, N. G.; Quiring, S. M.

    2015-12-01

    Understanding flash flooding is important in unfiltered watersheds, such as portions of the New York City water supply system (NYCWSS), as water quality is degraded by turbidity associated with flooding. To further understand flash flooding in watersheds of the NYCWSS, synoptic-scale atmospheric conditions most frequently associated with flash flooding between 1987 and 2013 were examined. Flash floods were identified during this time period using USGS 15-minute discharge data at the Esopus Creek near Allaben, NY and Neversink River at Claryville, NY gauges. Overall, 25 flash floods were detected, occurring over 17 separate flash flood days. These flash flood days were compared to the days on which flash flood warnings encompassing the study area was issued by the National Weather Service. The success rate for which the flash flood warnings for Ulster County coincided with flash flood in the study watershed was 0.09, demonstrating the highly localized nature of flash flooding in the Catskill Mountain region. The synoptic-scale atmospheric patterns influencing the study area were characterized by a principal component analysis and k-means clustering of NCEP/NCAR 500 mb geopotential height reanalysis data. This procedure was executed in Spatial Synoptic Typer Tools 4.0. While 17 unique synoptic patterns were identified, only 3 types were strongly associated with flash flooding events. A strong southwesterly flow suggesting advection of moisture from the Atlantic Ocean and Gulf of Mexico is shown in composites of these 3 types. This multiscalar study thereby links flash flooding in the NYCWSS with synoptic-scale atmospheric circulation.Understanding flash flooding is important in unfiltered watersheds, such as portions of the New York City water supply system (NYCWSS), as water quality is degraded by turbidity associated with flooding. To further understand flash flooding in watersheds of the NYCWSS, synoptic-scale atmospheric conditions most frequently associated with

  7. Relationship between Air Pollution and Weather Conditions under Complicated Geographical conditions

    NASA Astrophysics Data System (ADS)

    Cheng, Q.; Jiang, P.; Li, M.

    2017-12-01

    Air pollution is one of the most serious issues all over the world, especially in megacities with constrained geographical conditions for air pollution diffusion. However, the dynamic mechanism of air pollution diffusion under complicated geographical conditions is still be confused. Researches to explore relationship between air pollution and weather conditions from the perspective of local atmospheric circulations can contribute more to solve such problem. We selected three megacities (Beijing, Shanghai and Guangzhou) under different geographical condition (mountain-plain transition region, coastal alluvial plain and coastal hilly terrain) to explore the relationship between air pollution and weather conditions. RDA (Redundancy analysis) model was used to analyze how the local atmospheric circulation acts on the air pollutant diffusion. The results show that there was a positive correlation between the concentration of air pollutants and air pressure, while temperature, precipitation and wind speed have negative correlations with the concentration of air pollutants. Furthermore, geographical conditions, such as topographic relief, have significant effects on the direction, path and intensity of local atmospheric circulation. As a consequence, air pollutants diffusion modes in different cities under various geographical conditions are diverse from each other.

  8. An atlas of objectively analyzed atmospheric cross sections, 1973-1980

    NASA Technical Reports Server (NTRS)

    Goodman, J.; Gaines, S. E.; Hipskind, R. S.

    1985-01-01

    Atmospheric variability over time scales greater than one month is conceptually simplified and readily recognized from vertical cross-sections of zonal-monthly mean data. The reduction to two dimensions, latitude and height, explicitly eliminates all zonal waves but implicity retains their effects on the thermal-pressure fields and the dynamically related zonal wind fields. This atlas contains 96 examples, spanning all latitudes in both the northern and southern hemispheres and two decades in pressure, from 1000 to 10 mb. Four analyses, representing each month from January 1973 through December 1980, depicts the potential virtual temperature, the observed zonal wind velocity, the virtual temperature and the geostrophic zonal wind velocity. Each variable is contoured at a close interval to facilitate visual estimates of stability and vorticity via their gradients. The analyses are generated and contoured by objective computer methods from just one data source: in situ measurements from the conventional rawin-radiosonde system. Although the analyses are independently made at constant pressure levels (the mandatory levels) the cross-sections are drawn with geopotential height as the ordinate. With this ordinate one can observe the seasonal expansion and contraction of the earth's atmosphere, especially that of the polar stratosphere. Also, the quasi-biannual cycle can be identified and studied directly from successive cross-sections.

  9. The equilibrium of atmospheric sodium. [in atmospheres of Earth, Io, Mercury and Moon

    NASA Technical Reports Server (NTRS)

    Hunten, Donald M.

    1992-01-01

    We now have four examples of planetary objects with detectable sodium (and potassium) in their atmospheres: Earth, Io, Mercury and the moon. After a summary of the observational data, this survey discusses proposed sources and sinks. It appears that Io's surface material is rich in frozen SO2, but with around 1 percent of some sodium compound. The Io plasma torus contains ions of S, O and Na, also with at least one molecular ion containing Na. In turn, impact by these ions probably sustains the torus, as well as an extended neutral corona. A primary source for the Earth, Mercury and the moon is meteoroidal bombardment; at Mercury and perhaps the moon it may be supplemented by degassing of atoms from the regolith. Photoionization is important everywhere, although hot electrons are dominant at Io.

  10. A comparison between atmospheric/humidity and vacuum cyanoacrylate fuming of latent fingermarks.

    PubMed

    Farrugia, Kevin J; Fraser, Joanna; Friel, Lauren; Adams, Duncan; Attard-Montalto, Nicola; Deacon, Paul

    2015-12-01

    A number of pseudo-operational trials were set up to compare the atmospheric/humidity and vacuum cyanoacrylate fuming processes on plastic carrier bags. The fuming processes were compared using two-step cyanoacrylate fuming with basic yellow 40 (BY40) staining and a one-step fluorescent cyanoacrylate fuming, Lumicyano 4%. Preliminary work using planted fingermarks and split depletions were performed to identify the optimum vacuum fuming conditions. The first pseudo-operational trial compared the different fuming conditions (atmospheric/humidity vs. vacuum) for the two-step process where an additional 50% more marks were detected with the atmospheric/humidity process. None of the marks by the vacuum process could be observed visually; however, a significant number of marks were detected by fluorescence after BY40 staining. The second trial repeated the same work in trial 1 using the one-step cyanoacrylate process, Lumicyano at a concentration of 4%. Trial 2 provided comparable results to trial 1 and all the items were then re-treated with Lumicyano 4% at atmospheric/humidity conditions before dyeing with BY40 to provide the sequences of process A (Lumicyano 4% atmospheric-Lumicyano 4% atmospheric-BY40) and process B (Lumicyano 4% vacuum-Lumicyano 4% atmospheric-BY40). The number of marks (visual and fluorescent) was counted after each treatment with a substantial increase in the number of detected marks in the second and third treatments of the process. The increased detection rate after the double Lumicyano process was unexpected and may have important implications. Trial 3 was performed to investigate whether the amount of cyanoacrylate and/or fuming time had an impact on the results observed in trial 2 whereas trial 4 assessed if the double process using conventional cyanoacrylate, rather than Lumicyano 4%, provided an increased detection rate. Trials 3 and 4 confirmed that doubling the amount of Lumicyano 4% cyanoacrylate and fuming time produced a lower

  11. MELCOR/CONTAIN LMR Implementation Report - FY16 Progress.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Louie, David; Humphries, Larry L.

    2016-11-01

    This report describes the progress of the CONTAIN - LMR sodium physics and chemistry models to be implemented in MELCOR 2.1. In the past three years , the implementation included the addition of sodium equations of state and sodium properties from two different sources. The first source is based on the previous work done by Idaho National Laboratory by modifying MELCOR to include liquid lithium equation of state as a working fluid to model the nuclear fusion safety research. The second source uses properties generated for the SIMMER code. The implemented modeling has been tested and results are reported inmore » this document. In addition, the CONTAIN - LMR code was derived from an early version of the CONTAIN code, and many physical models that were developed since this early version of CONTAIN are not available in this early code version. Therefore, CONTAIN 2 has been updated with the sodium models in CONTAIN - LMR as CONTAIN2 - LMR, which may be used to provide code-to-code comparison with CONTAIN - LMR and MELCOR when the sodium chemistry models from CONTAIN - LMR have been completed. Both the spray fire and pool fire chemistry routines from CONTAIN - LMR have been integrated into MELCOR 2.1, and debugging and testing are in progress. Because MELCOR only models the equation of state for liquid and gas phases of the coolant, a modeling gap still exists when dealing with experiments or accident conditions that take place when the ambient temperature is below the freezing point of sodium. An alternative method is under investigation to overcome this gap . We are no longer working on the separate branch from the main branch of MELCOR 2.1 since the major modeling of MELCOR 2.1 has been completed. At the current stage, the newly implemented sodium chemistry models will be a part of the main MELCOR release version (MELCOR 2.2). This report will discuss the accomplishments and issues relating to the implementation. Also, we will report on the planned completion of

  12. Atmospheric CO2 Concentration Measurements with Clouds from an Airborne Lidar

    NASA Astrophysics Data System (ADS)

    Mao, J.; Abshire, J. B.; Kawa, S. R.; Riris, H.; Allan, G. R.; Hasselbrack, W. E.; Numata, K.; Chen, J. R.; Sun, X.; DiGangi, J. P.; Choi, Y.

    2017-12-01

    Globally distributed atmospheric CO2 concentration measurements with high precision, low bias and full seasonal sampling are crucial to advance carbon cycle sciences. However, two thirds of the Earth's surface is typically covered by clouds, and passive remote sensing approaches from space are limited to cloud-free scenes. NASA Goddard is developing a pulsed, integrated-path differential absorption (IPDA) lidar approach to measure atmospheric column CO2 concentrations, XCO2, from space as a candidate for NASA's ASCENDS mission. Measurements of time-resolved laser backscatter profiles from the atmosphere also allow this technique to estimate XCO2 and range to cloud tops in addition to those to the ground with precise knowledge of the photon path-length. We demonstrate this measurement capability using airborne lidar measurements from summer 2017 ASCENDS airborne science campaign in Alaska. We show retrievals of XCO2 to ground and to a variety of cloud tops. We will also demonstrate how the partial column XCO2 to cloud tops and cloud slicing approach help resolving vertical and horizontal gradient of CO2 in cloudy conditions. The XCO2 retrievals from the lidar are validated against in situ measurements and compared to the Goddard Parameterized Chemistry Transport Model (PCTM) simulations. Adding this measurement capability to the future lidar mission for XCO2 will provide full global and seasonal data coverage and some information about vertical structure of CO2. This unique facility is expected to benefit atmospheric transport process studies, carbon data assimilation in models, and global and regional carbon flux estimation.

  13. Do atmospheric conditions influence the first episode of primary spontaneous pneumothorax?

    PubMed

    Heyndrickx, Maxime; Le Rochais, Jean-Philippe; Icard, Philippe; Cantat, Olivier; Zalcman, Gérard

    2015-09-01

    Several studies suggest that changes in airway pressure may influence the onset of primary spontaneous pneumothorax (PSP). The aim of this study was to investigate the influence of atmospheric changes on the onset of the first episode of PSP. We retrospectively analysed cases of pneumothorax admitted to our department between 1 January 2009 and 31 October 2013. Patients with recurrent pneumothorax, traumatic pneumothorax, older than 35 years or presenting history of underlying pulmonary disease were excluded. Meteorological data were collected from the Météo-France archives. Variation (Δ) of mean atmospheric pressure, and relative humidity, were calculated for each day between the day at which symptoms began (D-day), the day before first symptoms (D-1), 2 days before the first symptoms (D-2) and 3 days before the first symptoms (D-3). Six hundred and thirty-eight cases of pneumothorax were observed during the period of this study; 106 of them (16.6%) were a first episode of PSP. We did not observe any significant differences between days with or without PSP admission for any of the weather parameters that we tested. We could not find any thresholds in the variation of atmospheric pressure that could be used to determine the probability of PSP occurrence. Variation of atmospheric pressure, relative humidity, rainfall, wind speed and temperature were not significantly related to the onset of the first episode of PSP in healthy patients. These results suggest that the scientific community should focus on other possible aetiological factors than airway pressure modifications. © The Author 2015. Published by Oxford University Press on behalf of the European Association for Cardio-Thoracic Surgery. All rights reserved.

  14. Clustering of amines and hydrazines in atmospheric nucleation

    NASA Astrophysics Data System (ADS)

    Li, Siyang; Qu, Kun; Zhao, Hailiang; Ding, Lei; Du, Lin

    2016-06-01

    It has been proved that the presence of amines in the atmosphere can enhance aerosol formation. Hydrazine (HD) and its substituted derivatives, monomethylhydrazine (MMH) and unsymmetrical dimethylhydrazine (UDMH), which are organic derivatives of amine and ammonia, are common trace atmospheric species that may contribute to the growth of nucleation clusters. The structures of the hydrazine and amine clusters containing one or two common nucleation molecules (ammonia, water, methanol and sulfuric acid) have been optimized using density functional theory (DFT) methods. The clusters growth mechanism has been explored from the thermochemistry by calculating the Gibbs free energies of adding an ammonia, water, methanol or sulfuric acid molecule step by step at room temperature, respectively. The results show that hydrazine and its derivatives could enhance heteromolecular homogeneous nucleation in the earth's atmosphere.

  15. Variation in isotopologues of atmospheric nitric acid in passively collected samples along an air pollution gradient in southern California

    Treesearch

    Michael D. Bell; James O. Sickman; Andrzej Bytnerowicz; Pamela E. Padgett; Edith B. Allen

    2014-01-01

    The sources and oxidation pathways of atmospheric nitric acid (HNO3) can be evaluated using the isotopic signatures of oxygen (O) and nitrogen (N). This study evaluated the ability of Nylasorb nylon filters to passively collect unbiased isotopologues of atmospheric HNO3 under controlled and field conditions. Filters...

  16. NASA's Upper Atmosphere Research Program (UARP) and Atmospheric Chemistry Modeling and Analysis Program (ACMAP): Research Summaries 1997-1999

    NASA Technical Reports Server (NTRS)

    Kurylo, M. J.; DeCola, P. L.; Kaye, J. A.

    2000-01-01

    Under the mandate contained in the FY 1976 NASA Authorization Act, the National Aeronautics and Space Administration (NASA) has developed and is implementing a comprehensive program of research, technology development, and monitoring of the Earth's upper atmosphere, with emphasis on the upper troposphere and stratosphere. This program aims at expanding our chemical and physical understanding to permit both the quantitative analysis of current perturbations as well as the assessment of possible future changes in this important region of our environment. It is carried out jointly by the Upper Atmosphere Research Program (UARP) and the Atmospheric Chemistry Modeling and Analysis Program (ACMAP), both managed within the Research Division in the Office of Earth Science at NASA. Significant contributions to this effort have also been provided by the Atmospheric Effects of Aviation Project (AEAP) of NASA's Office of Aero-Space Technology. The long-term objectives of the present program are to perform research to: understand the physics, chemistry, and transport processes of the upper troposphere and the stratosphere and their control on the distribution of atmospheric chemical species such as ozone; assess possible perturbations to the composition of the atmosphere caused by human activities and natural phenomena (with a specific emphasis on trace gas geographical distributions, sources, and sinks and the role of trace gases in defining the chemical composition of the upper atmosphere); understand the processes affecting the distributions of radiatively active species in the atmosphere, and the importance of chemical-radiative-dynamical feedbacks on the meteorology and climatology of the stratosphere and troposphere; and understand ozone production, loss, and recovery in an atmosphere with increasing abundances of greenhouse gases. The current report is composed of two parts. Part 1 summarizes the objectives, status, and accomplishments of the research tasks supported

  17. Concorde sonic booms as an atmospheric probe.

    PubMed

    Balachandran, N K; Donn, W L; Rind, D H

    1977-07-01

    Infrasound generated by the sonic boom from the inbound Concorde supersonic transport is recorded at Palisades, New York (Lamont-Doherty Geological Observatory), as a series of impulses from distances varying from 165 to about 1000 kilometers. Refraction effects determined by temperature and wind conditions return the signal to the surface from both stratospheric (40 to 50 kilometers) and thermospheric (100 to 130 kilometers) levels. The frequency of the recorded signal is a function of the level of reflection; the frequency decreases from impulse stretching as the atmosphere becomes more rarified relative to the sound pressure. The horizontal trace velocity of the signal across the array of instruments is equal to the acoustic velocity at the reflection level. The sonic boom can thus be used to provide temperature-wind parameters at reflection levels estimated from the signal frequency. Daily observed signal variations have indicated significant variations in these parameters.

  18. Maximum Evaporation Rates of Water Droplets Approaching Obstacles in the Atmosphere Under Icing Conditions

    NASA Technical Reports Server (NTRS)

    Lowell, H. H.

    1953-01-01

    When a closed body or a duct envelope moves through the atmosphere, air pressure and temperature rises occur ahead of the body or, under ram conditions, within the duct. If cloud water droplets are encountered, droplet evaporation will result because of the air-temperature rise and the relative velocity between the droplet and stagnating air. It is shown that the solution of the steady-state psychrometric equation provides evaporation rates which are the maximum possible when droplets are entrained in air moving along stagnation lines under such conditions. Calculations are made for a wide variety of water droplet diameters, ambient conditions, and flight Mach numbers. Droplet diameter, body size, and Mach number effects are found to predominate, whereas wide variation in ambient conditions are of relatively small significance in the determination of evaporation rates. The results are essentially exact for the case of movement of droplets having diameters smaller than about 30 microns along relatively long ducts (length at least several feet) or toward large obstacles (wings), since disequilibrium effects are then of little significance. Mass losses in the case of movement within ducts will often be significant fractions (one-fifth to one-half) of original droplet masses, while very small droplets within ducts will often disappear even though the entraining air is not fully stagnated. Wing-approach evaporation losses will usually be of the order of several percent of original droplet masses. Two numerical examples are given of the determination of local evaporation rates and total mass losses in cases involving cloud droplets approaching circular cylinders along stagnation lines. The cylinders chosen were of 3.95-inch (10.0+ cm) diameter and 39.5-inch 100+ cm) diameter. The smaller is representative of icing-rate measurement cylinders, while with the larger will be associated an air-flow field similar to that ahead of an airfoil having a leading-edge radius

  19. Studying Titan's surface photometry in the 5 microns atmospheric window with the Cassini/VIMS instrument

    NASA Astrophysics Data System (ADS)

    Cornet, T.; Altobelli, N.; Sotin, C.; Le Mouelic, S.; Rodriguez, S.; Philippe, S.; Brown, R. H.; Barnes, J. W.; Buratti, B. J.; Baines, K. H.; Clark, R. N.; Nicholson, P. D.

    2014-12-01

    Due to the influence of methane gas and a thick aerosols haze in the atmosphere, Titan's surface is only visible in 7 spectral atmospheric windows centered at 0.93, 1.08, 1.27, 1.59, 2.01, 2.7-2.8 and 5 microns with the Cassini Visual and Infrared Mapping Spectrometer (VIMS). The 5 microns atmospheric window constitutes the only one being almost insensitive to the haze scattering and which presents only a reduced atmospheric absorption contribution to the signal recorded by the instrument. Despite these advantages leading to the almost direct view of the surface, the 5 microns window is also the noisiest spectral window of the entire VIMS spectrum (an effect highly dependent on the time exposure used for the observations), and it is not totally free from atmospheric contributions, enough to keep "artefacts" in mosaics of several thousands of cubes due to atmospheric and surface photometric effects amplified by the very heterogeneous viewing conditions between each Titan flyby. At first order, a lambertian surface photometry at 5 microns has been used as an initial parameter in order to estimate atmospheric opacity and surface photometry in all VIMS atmospheric windows and to determine the albedo of the surface, yet unknown, both using radiative transfer codes on single cubes or empirical techniques on global hyperspectral mosaics. Other studies suggested that Titan's surface photometry would not be uniquely lambertian but would also contain anisotropic lunar-like contributions. In the present work, we aim at constraining accurately the surface photometry of Titan and residual atmospheric absorption effects in this 5 microns window using a comprehensive study of relevant sites located at various latitudes. Those include bright and dark (dunes) terrains, 5-microns bright terrains (Hotei Regio and Tui Regio), the Huygens Landing Site and high latitudes polar lakes and seas. The VIMS 2004 to 2014 database, composed of more than 40,000 hyperspectral cubes acquired on

  20. Resource loading system and method for use in atmosphere-containment scenarios

    DOEpatents

    Dilday, Jr., Daniel R.; Reyes, Roberto; Weidmeyer, Stanley

    2017-09-12

    The invention provides a system for preventing fluid exchange between the interior and exterior of containment enclosures such as process-, hazard-, and research-enclosure systems generally, gloveboxes, containment systems, isolation systems, confinement systems, cleanrooms, negative air systems, and positive air system areas while simultaneously providing material transfer into and out of the enclosures. The invention also provides a method for transporting material into or out of a containment structure.