Science.gov

Sample records for contaminant metal mobilization

  1. Influence of Microbial Iron and Nitrate Reduction on Subsurface Iron Biogeochemistry and Contaminant Metal Mobilization

    SciTech Connect

    Flynn Picardal

    2002-04-14

    Although toxic metal and radionuclide contaminants can not be destroyed, their toxicity and mobility can be dramatically altered by microbial activity. In addition to toxic metals, many contaminated sites contain both iron-containing minerals and co-contaminants such as nitrate (NO3-). Successful implementation of metal and radionuclide bioremediation strategies in such environments requires an understanding of the complex microbial and geochemical interactions that influence the redox speciation and mobility of toxic metals. Our specific objectives have been to (1) determine the effect of iron oxide mineral reduction on the mobility of sorbed, representative toxic metals (Zn2+), (2) study the biogeochemical interactions that may occur during microbial reduction of NO3- and iron oxide minerals, and (3) evaluate the kinetics of NO3--dependent, microbial oxidation of ferrous iron (Fe2+).

  2. Influence of Microbial Iron and Nitrate Reduction on Subsurface Iron Biogeochemistry and Contaminant Metal Mobilization

    SciTech Connect

    Flynn W. Picardal

    2002-04-10

    Although toxic metal and radionuclide contaminants can not be destroyed, their toxicity and mobility can be dramatically altered by microbial activity. In addition to toxic metals, many contaminated sites contain both iron-containing minerals and co-contaminants such as nitrate NO{sub 3}{sup -}. Successful implementation of metal and radionuclide bioremediation strategies in such environments requires an understanding of the complex microbial and geochemical interactions that influence the redox speciation and mobility of toxic metals. Our specific objectives have been to (1) determine the effect of iron oxide mineral reduction on the mobility of sorbed, representative toxic metals (Zn{sup 2+}), (2) study the biogeochemical interactions that may occur during microbial reduction of NO{sub 3}{sup -} and iron oxide minerals, and (3) evaluate the kinetics of NO{sub 3}{sup -}-dependent, microbial oxidation of ferrous iron (Fe{sup 2+}).

  3. Metal release from contaminated coastal sediments under changing pH conditions: Implications for metal mobilization in acidified oceans.

    PubMed

    Wang, Zaosheng; Wang, Yushao; Zhao, Peihong; Chen, Liuqin; Yan, Changzhou; Yan, Yijun; Chi, Qiaoqiao

    2015-12-30

    To investigate the impacts and processes of CO2-induced acidification on metal mobilization, laboratory-scale experiments were performed, simulating the scenarios where carbon dioxide was injected into sediment-seawater layers inside non-pressurized chambers. Coastal sediments were sampled from two sites with different contamination levels and subjected to pre-determined pH conditions. Sediment samples and overlying water were collected for metal analysis after 10-days. The results indicated that CO2-induced ocean acidification would provoke increased metal mobilization causing adverse side-effects on water quality. The mobility of metals from sediment to the overlying seawater was correlated with the reduction in pH. Results of sequential extractions of sediments illustrated that exchangeable metal forms were the dominant source of mobile metals. Collectively, our data revealed that high metal concentrations in overlying seawater released from contaminated sediments under acidic conditions may strengthen the existing contamination gradients in Maluan Bay and represent a potential risk to ecosystem health in coastal environments. PMID:26481412

  4. Mobility of heavy metals from tailings to stream waters in a mining activity contaminated site.

    PubMed

    Concas, A; Ardau, C; Cristini, A; Zuddas, P; Cao, G

    2006-04-01

    In this paper the results of a recent characterization of Rio Piscinas (SW of Sardinia, Italy) hydrological basin are reported. In such area (about 50 km2), previous mining activities caused a serious heavy metal contamination of surface waters, groundwater, soils and biota. Acid mine drainage phenomena were observed in the area. The main sources of contamination are the tailings stored in mine tunnels and abandoned along fluvial banks. A methodological approach was adopted in order to identify relations between tailings and water contamination. Representative samples of tailings and stream sediments samples were collected. XRD analyses were performed for mineralogical characterization, while acid digestion was carried out for determining metal contents. Batch sequential leaching tests were performed in order to assess metal mobility. Also groundwater and stream water were sampled in specific locations and suitably characterized. All information collected allowed the understanding of the effect of tailings on water contamination, thus contributing to the qualitative prediction of pollution evolution on the basis of metal mobility. Finally, a potential remediation strategy of stream water is proposed. PMID:16216301

  5. Chelant extraction and REDOX manipulation for mobilization of heavy metals from contaminated soils

    SciTech Connect

    Brewster, M.D.; Peters, R.W.; Miller, G.A.; Patton, T.L.; Martino, L.E.

    1994-12-01

    Was the result of open burning and open detonation of chemical agents and munitions in the Toxic Burning Pits area at J-Field, located in the Edgewood Area of Aberdeen Proving Ground in Harford County, Maryland, soils have been contaminated with heavy metals. Simultaneous extraction is complicated because of the multitude of contaminant forms that exist. This paper uses data from a treatability study performed at Argonne National Laboratory to discuss and compare several treatment methods that were evaluated for remediating metals-contaminated soils. J-Field soils were subjected to a series of treatability experiments designed to determine the feasibility of using soil washing/soil flushing, enhancements to soil washing/soil flushing, solidification/stabilization, and electrokinetics for remediating soils contaminated with metals. Chelating and mobilizing agents evaluated included ammonium acetate, ethylenediaminetetraacetic acid, citric acid, Citranox, gluconic acid, phosphoric acid, oxalic acid, and nitrilotriacetic acid, in addition to pH-adjusted water. REDOX manipulation can maximize solubilities, increase desorption, and promote removal of heavy metal contaminants. Reducing agents that were studied included sodium borohydride, sodium metabisulfite, and thiourea dioxide. The oxidants studied included hydrogen peroxide, sodium percarbonate, sodium hypochlorite, and potassium permanganate. This paper summaries the results from the physical/chemical characterization, soil washing/soil flushing, and enhancements to soil washing/soil flushing portions of the study.

  6. Bioremediation of contaminated marine sediments can enhance metal mobility due to changes of bacterial diversity.

    PubMed

    Fonti, Viviana; Beolchini, Francesca; Rocchetti, Laura; Dell'Anno, Antonio

    2015-01-01

    Bioremediation strategies applied to contaminated marine sediments can induce important changes in the mobility and bioavailability of metals with potential detrimental consequences on ecosystem health. In this study we investigated changes of bacterial abundance and diversity (by a combination of molecular fingerprinting and next generation sequencing analyses) during biostimulation experiments carried out on anoxic marine sediments characterized by high metal content. We provide evidence that the addition of organic (lactose and/or acetate) and/or inorganic compounds to contaminated sediments determines a significant increase of bacterial growth coupled with changes in bacterial diversity and assemblage composition. Experimental systems supplied only with organic substrates were characterized by an increase of the relative importance of sulfate reducing bacteria belonging to the families Desulfobacteraceae and Desulfobulbaceae with a concomitant decrease of taxa affiliated with Flavobacteriaceae. An opposite effect was observed in the experimental treatments supplied also with inorganic nutrients. The increase of bacterial metabolism coupled with the increase of bacterial taxa affiliated with Flavobacteriaceae were reflected in a significant decrease of Cd and Zn associated with sedimentary organic matter and Pb and As associated with the residual fraction of the sediment. However, independently from the experimental conditions investigated no dissolution of metals occurred, suggesting a role of bacterial assemblages in controlling metal solubilization processes. Overall results of this study have allowed to identify key biogeochemical interactions influencing the metal behavior and provide new insights for a better understanding of the potential consequences of bio-treatments on the metal fate in contaminated marine sediments. PMID:25462769

  7. An Investigation into Heavy Metal Contamination and Mobilization in the Lower Rouge River, Michigan

    NASA Astrophysics Data System (ADS)

    Shihadeh, M.; Forrester, J.; Napieralski, J. A.

    2010-12-01

    Similar to many densely populated watersheds in the Great Lakes Basin, the Rouge River in Michigan drains a heavily urbanized watershed, which, over time, has accumulated a substantial amount of contamination due to decades of manufacturing and refining industries. Statistically significant levels of heavy metals have been found in the bed sediment of the Rouge; however, little is known about the mobilization of these contaminated bed sediments. The goal of this study was to ascertain the extent to which these potentially contaminated sediments are mobilized and transported downstream. Suspended sediment samples were collected at four sites along the lower Rouge River using composite depth integrated sediment samples three times per week, resulting in a total of twenty samples from each site. Turbidity was measured simultaneously using a YSI datalogger at all sampling locations. Sediment was also extracted from floodplain soil pits and silted vegetation, as well as river bed sediment cores along stream channel cross-sections. Heavy metal concentrations (As, Cd, Cr, Cu, Fe, Pb, Hg, Ni, Se, Zn) were analyzed using ICP-MS and compared against both background characteristics for Michigan soils and EPA Hazardous Criteria Limits. As expected, a positive correlation exists between turbidity and heavy metal concentrations. Even in the sampling sites furthest upstream, heavy metal concentrations exceeded background soil characteristics, with a few also exceeding hazardous criteria limits. The heavy metal concentrations found in the Lower Rouge affirm the elevated pollution classification of the river, depict the overall influence of industrialization on stream health, and verify that contaminated sediments are being deposited in aquatic and floodplain environments during variable flow or high discharge events. Results from this study emphasize the need to remediate bed sediments in the Rouge and suggest that there may be significant bioaccumulation potential for organisms

  8. Simulation of the mobility of metal - EDTA complexes in groundwater: The influence of contaminant metals

    USGS Publications Warehouse

    Friedly, J.C.; Kent, D.B.; Davis, J.A.

    2002-01-01

    Reactive transport simulations were conducted to model chemical reactions between metal - EDTA (ethylenediaminetetraacetic acid) complexes during transport in a mildly acidic quartz - sand aquifer. Simulations were compared with the results of small-scale tracer tests wherein nickel-, zinc-, and calcium - EDTA complexes and free EDTA were injected into three distinct chemical zones of a plume of sewage-contaminated groundwater. One zone had a large mass of adsorbed, sewage-derived zinc; one zone had a large mass of adsorbed manganese resulting from mildly reducing conditions created bythe sewage plume; and one zone had significantly less adsorbed manganese and negligible zinc background. The chemical model assumed that the dissolution of iron(III) from metal - hydroxypolymer coatings on the aquifer sediments by the metal - EDTA complexes was kinetically restricted. All other reactions, including metal - EDTA complexation, zinc and manganese adsorption, and aluminum hydroxide dissolution were assumed to reach equilibrium on the time scale of transport; equilibrium constants were either taken from the literature or determined independently in the laboratory. A single iron(III) dissolution rate constant was used to fit the breakthrough curves observed in the zone with negligible zinc background. Simulation results agreed well with the experimental data in all three zones, which included temporal moments derived from breakthrough curves at different distances downgradient from the injections and spatial moments calculated from synoptic samplings conducted at different times. Results show that the tracer cloud was near equilibrium with respect to Fe in the sediment after 11 m of transport in the Zn-contaminated region but remained far from equilibrium in the other two zones. Sensitivity studies showed that the relative rate of iron(III) dissolution by the different metal - EDTA complexes was less important than the fact that these reactions are rate controlled. Results

  9. Remediation of Heavy Metal(loid)s Contaminated Soils – To Mobilize or To Immobilize?

    EPA Science Inventory

    Unlike organic contaminants, metal(loid)s do not undergo microbial or chemical degradation and persist for a long time after their introduction. Bioavailability of metal(loid)s plays a vital role in the remediation of contaminated soils. In this review, the remediation of heavy ...

  10. Mobility and bio-availability of heavy metals in anthropogenically contaminated alluvial (deluvial) meadow soils (EUTRIC FLUVISOLS)

    NASA Astrophysics Data System (ADS)

    Dinev, Nikolai; Hristova, Mariana; Tzolova, Venera

    2015-04-01

    The total content of heavy metals is not sufficient to assess the pollution and the risk for environment as it does not provide information for the type and solubility of heavy metals' compounds in soils. The purpose was to study and determine the mobility of heavy metals in anthropogenically contaminated alluvial (delluvial) meadow soils spread around the non-ferrous plant near the town of Asenovgrad in view of risk assessment for environment pollution. Soil samples from monitoring network (1x1 km) was used. The sequential extraction procedure described by Zein and Brummer (1989) was applied. Results showed that the easily mobilizable cadmium compounds predominate in both contaminated and not contaminated soils. The stable form of copper (associated with silicate minerals, carbonates or amorphous and crystalline oxide compounds) predominates only in non polluted soils and reviles the risk of the environment contamination. Lead spreads and accumulates as highly soluble (mobile) compounds and between 72.3 and 99.6 percent of the total lead is bioavailable in soils. The procedure is very suitable for studying the mobility of technogenic lead and copper in alluvial soils with neutral medium reaction and in particular at the high levels of cadmium contamination. In soils with alkaline reaction - polluted and unpolluted the error of analysis increases for all studied elements.

  11. Assessing the influence of compost and biochar amendments on the mobility and toxicity of metals and arsenic in a naturally contaminated mine soil.

    PubMed

    Beesley, Luke; Inneh, Onyeka S; Norton, Gareth J; Moreno-Jimenez, Eduardo; Pardo, Tania; Clemente, Rafael; Dawson, Julian J C

    2014-03-01

    Amending contaminated soils with organic wastes can influence trace element mobility and toxicity. Soluble concentrations of metals and arsenic were measured in pore water and aqueous soil extracts following the amendment of a heavily contaminated mine soil with compost and biochar (10% v:v) in a pot experiment. Speciation modelling and toxicity assays (Vibrio fischeri luminescence inhibition and Lolium perenne germination) were performed to discriminate mechanisms controlling metal mobility and assess toxicity risk thereafter. Biochar reduced free metal concentrations furthest but dissolved organic carbon primarily controlled metal mobility after compost amendment. Individually, both amendments induced considerable solubilisation of arsenic to pore water (>2500 μg l(-1)) related to pH and soluble phosphate but combining amendments most effectively reduced toxicity due to simultaneous reductions in extractable metals and increases in soluble nutrients (P). Thus the measure-monitor-model approach taken determined that combining the amendments was most effective at mitigating attendant toxicity risk. PMID:24388869

  12. EXPERIMENTAL DETERMINATION OF CONTAMINANT METAL MOBILITY AS A FUNCTION OF TEMPERATURE, TIME, AND SOLUTION CHEMISTRY

    EPA Science Inventory

    We propose to determine the geochemical processes that control the mobility of Sr in the presence of clays (kaolinite, montmorillonite) and iron hydroxides (goethite) as a function of temperature, pH, and time. The objective of this work is to determine the fundamental data neede...

  13. Experimental determination of contaminant metal mobility as a function of temperature, time and solution chemistry. 1997 annual progress report

    SciTech Connect

    Carroll, S.; Bruton, C.; O'Day, P.; Sahai, N.

    1997-01-01

    'Strontium is significantly more mobile than other hazardous radioactive metals. Its partitioning between aqueous and solid phases is controlled by reactions that occur at the interface between natural waters and minerals. At a groundwater site in Hanford (200-BP-5), the aerial extent of the {sup 90}Sr plume is 100 times larger than the aerial extent of the {sup 137}Cs and the {sup 239}Pu plumes. Similarly, contaminated, perched watertables at INEL have much higher aqueous concentrations of {sup 90}Sr than {sup 137}Cs, presumably because Cs is preferentially sorbed to solids (Duncan 1995). Under high physical flow conditions, such as those in the highly fractured rock at Hanford and INEL, {sup 90}Sr present in plumes may spread off-site and cause contamination of aquifers or other water sources. Geochemical factors that may contribute to the overall mobility of Sr in natural waters are the solubilities of phases such as strontianite (SrCO{sub 3}) and formation of strong complexes with sulfate and nitrate. Although {sup 90}Sr is mobilized in natural waters in these examples, significant concentrations may also be present in solid phases. Sorption experiments using a wide variety of substrates at room temperature have shown that Sr is removed from solution under certain conditions. Additionally, strontianite (SrCO{sub 3}) may precipitate at low Sr concentrations in the pH range of waters in contact with basaltic rocks, which varies between pH 8 and 10. Waters contain variable amounts of carbonate owing to atmospheric interactions; the partial pressure of CO{sub 2} is about 10 x 3.5 atm in air and commonly as high as 10 x 2.5 atm in soils. The objective of this work is to determine the fundamental data needed to predict the behavior of strontium at temperature and time scales appropriate to thermal remediation. The authors approach combines macroscopic sorption/precipitation and desorption/dissolution kinetic experiments, which track changes in solution composition

  14. Contaminant Pathways and Metal Sequestration Patterns in the Lower Coeur d'Alene River Valley, Idaho: Mechanics of Trace Metal Mobility

    NASA Astrophysics Data System (ADS)

    Strumness, L. A.; Hooper, R. L.; Mahoney, J. B.

    2004-05-01

    Remediating fluvial systems impacted by sulfide mining requires characterization of contaminant mobility and the pathways of trace metal transport. Variations in sediment mobility, mineral stability, organic content, redox conditions, microbial activity and other factors between fluvial subenvironments leads to complex metal sequestration patterns. Precise characterization of contaminants requires a detailed assessment of the physical characteristics of mineral species together with an understanding of the chemical stability of these species under various conditions. An integrated analytical methodology including calibrated sequential extraction and electron microscopy (SEM and TEM) provides unprecedented insight into metal speciation and behavior in different fluvial subenvironments. Three transects, including river channel, levee, wetland and lacustrine environments, along the 30km length of the lower Coeur d'Alene (CdA) River valley demonstrate both the lateral consistency within various fluvial subenvironments and the dramatic variations between subenvironments. The lower CdA River valley is a low gradient (<5m/km) meandering stream with a well-developed river channel contained by 1-3m levees. The combination of low gradient and an artificially controlled base level results in a quiescent, stratified water mass and anaerobic river channel sediments. The river channel sediments contain abundant detrital and authigenic sulfide minerals (PbS, FeS2, ZnS) and carbonates (PbCO3, FeCO3) and locally, sulfide encrusted organic matter. The river is the main conduit of contaminated sediment derived from the mining district upstream, but more importantly, remobilized anoxic river bottom sediments are responsible for ongoing trace metal contamination throughout the fluvial system. Sulfide rich channel sediments are remobilized during flood events, and redistributed into adjacent levee, wetland, and lacustrine environments. Detrital and authigenic sulfides are rapidly

  15. Phytoremediation of Metal-Contaminated Soils

    SciTech Connect

    Shtangeeva, I.; Laiho, J.V-P.; Kahelin, H.; Gobran, G.R.

    2004-03-31

    Recent concerns regarding environmental contamination have necessitated the development of appropriate technologies to assess the presence and mobility of metals in soil and estimate possible ways to decrease the level of soil metal contamination. Phytoremediation is an emerging technology that may be used to cleanup contaminated soils. Successful application of phytoremediation, however, depends upon various factors that must be carefully investigated and properly considered for specific site conditions. To efficiently affect the metal removal from contaminated soils we used the ability of plants to accumulate different metals and agricultural practices to improve soil quality and enhance plant biomass. Pot experiments were conducted to study metal transport through bulk soil to the rhizosphere and stimulate transfer of the metals to be more available for plants' form. The aim of the experimental study was also to find fertilizers that could enhance uptake of metals and their removal from contaminated soil.

  16. Mobilization of trace metals and PCBs from contaminated marine sediments of the Mar Piccolo in Taranto during simulated resuspension experiment.

    PubMed

    Di Leo, Antonella; Annicchiarico, Cristina; Cardellicchio, Nicola; Cibic, Tamara; Comici, Cinzia; Giandomenico, Santina; Spada, Lucia

    2016-07-01

    The effects of sediment resuspension on the fate of metals and polychlorinated biphenyls (PCBs) were studied by using a short-term small reactor. Sediments and water were collected nearby the most contaminated site of the Mar Piccolo of Taranto. Contaminant partitioning was calculated between the solid and water phases and, in the latter, between the dissolved and particulate phases and related to physical-chemical variables. Before and after resuspension, metal concentrations in sediments did not vary remarkably. Except for Cd, all the analyzed metals exceeded by many folds both threshold effect level (TEL) and probable effect level (PEL) SQGs. Igeo index values for Hg designated the sediment quality as extremely polluted for Pb, Cu and moderately polluted for Zn. In the dissolved phase, Mn increased of about 70 times, Fe of about 7 times and Hg and Zn of 4 and 3 times, respectively. PCBs in sediments before and after resuspension did not vary for more than 15 %. PCB concentrations exceeded for more than ten times PEL values. After resuspension, PCBs increased from 0.82 to 4.82 ng L(-1) in the dissolved phase and from 0.22 to 202.21 ng L(-1) in the particulate one. The dissolved phase was initially enriched in light- to mid-weight compounds. After resuspension, the particulate phase was enriched in heavier congeners. In particular, hexachlorobiphenyl-153, 149 and 138 together with heptachlorobiphenyl-180 and 187 accounted for 57 % of total PCBs. The dissolved organic carbon (DOC) that increased from 1.31 to 8.55 mg L(-1) likely influenced the fate of metals and PCBs in the dissolved and particulate phases. Despite that the residence time of the contaminated resuspended sediments in the water column is limited, they are still highly toxic for the pelagic trophic web. PMID:26438371

  17. Varying effect of biochar on Cd, Pb and As mobility in a multi-metal contaminated paddy soil.

    PubMed

    Yin, Daixia; Wang, Xin; Chen, Can; Peng, Bo; Tan, Changyin; Li, Hailong

    2016-06-01

    Cd, Pb and As stand as the most prominent contaminants prevailing in Chinese soils. In the present study, biochars derived from water hyacinth (BCW) and rice straw (BCR) were investigated regarding their applicability and durability in soil Cd, Pb, and As immobilization under acid precipitation. Total Cd, Pb, and As in both BCs were below the maximum allowed threshold according to biochar toxicity standard recommended by International Biochar Initiative. To evaluate BCs effect on Cd, Pb, As bioavailability and mobility, CaCl2, KH2PO4 and SPLP extractions were firstly carried out. In neutral extraction with CaCl2 and KH2PO4, significantly reduced Cd/Pb concentrations in CaCl2 extract along with elevated KH2PO4-extractable As were recorded with either BC at 2% or 5%. In SPLP with simulated acid rainwater as extractant, comparable Cd, Pb and As levels were determined in SPLP extract with 2% BCW, while slight to significant increase in SPLP-Cd, Pb or As was recorded with other treatments. Longer-term leaching column test further confirmed the high durability of 2% BCW in Cd immobilization under continuous acid exposure. In parallel, little increase in As concentrations in eluate was determined with 2% BCW compared to no-biochar control, indicating a lowered risk of As mobilization with acid input. However, remarkably higher Pb in leachate from both BCW-only control and 2% BCW-amended soils were noticed at the initial stage of acid leaching, indicating a higher acid-solubility of Pb minerals in BCW (most probably PbO) than in tested soil (PbO2, PbAs2O6). Taken together, BCW exhibited important potential for soil Cd sequestration with little effect on As mobilization under acid precipitation. But it may simultaneously load highly acid-soluble Pb minerals into soils, resulting in elevated Pb mobility upon acid exposure. Therefore, more stringent threshold for Pb content in biochar need to be put forward to secure biochar application in soils subject to anthropogenic

  18. Modeling Facilitated Contaminant Transport by Mobile Bacteria

    NASA Astrophysics Data System (ADS)

    Corapcioglu, M. Yavuz; Kim, Seunghyun

    1995-01-01

    Introduction of exogenous biocolloids such as genetically engineered bacteria in a bioremediation operation can enhance the transport of contaminants in groundwater by reducing the retardation effects. Because of their colloidal size and favorable surface conditions, bacteria are efficient contaminant carriers. In cases where contaminants have a low mobility in porous media because of their high partition with solid matrix, facilitated contaminant transport by mobile bacteria can create high contaminant fluxes. When metabolically active mobile bacteria are present in a subsurface environment, the system can be treated as consisting of three phases: water phase, bacterial phase, and stationary solid matrix phase. In this work a mathematical model based on mass balance equations is developed to describe the facilitated transport and fate of a contaminant and bacteria in a porous medium. Bacterial partition between the bulk solution and the stationary solid matrix and contaminant partition among three phases are represented by expressions in terms of measurable quantities. Solutions were obtained to provide estimates of contaminant and bacterial concentrations. A dimensional analysis of the transport model was utilized to estimate model parameters from the experimental data and to assess the effect of several parameters on model behavior. The model results matched favorably with experimental data of Jenkins and Lion (1993). The presence of mobile bacteria enhances the contaminant transport. However, bacterial consumption of the contaminant, which serves as a bacterial nutrient, can attenuate the contaminant mobility. The work presented in this paper is the first three-phase model to include the effects of substrate metabolism on the fate of groundwater contaminants.

  19. The remediation of heavy metals contaminated sediment.

    PubMed

    Peng, Jian-Feng; Song, Yong-Hui; Yuan, Peng; Cui, Xiao-Yu; Qiu, Guang-Lei

    2009-01-30

    Heavy metal contamination has become a worldwide problem through disturbing the normal functions of rivers and lakes. Sediment, as the largest storage and resources of heavy metal, plays a rather important role in metal transformations. This paper provides a review on the geochemical forms, affecting factors and remediation technologies of heavy metal in sediment. The in situ remediation of sediment aims at increasing the stabilization of some metals such as the mobile and the exchangeable fractions; whereas, the ex situ remediation mainly aims at removing those potentially mobile metals, such as the Mn-oxides and the organic matter (OM) fraction. The pH and OM can directly change metals distribution in sediment; however oxidation-reduction potential (ORP), mainly through changing the pH values, indirectly alters metals distribution. Mainly ascribed to their simple operation mode, low costs and fast remediation effects, in situ remediation technologies, especially being fit for slight pollution sediment, are applied widely. However, for avoiding metal secondary pollution from sediment release, ex situ remediation should be the hot point in future research. PMID:18547718

  20. Dispersal and mobility of metal contamination across a salt marsh from coastal landfill sites using ammonium nitrate extractions as an indicator.

    PubMed

    Hübner, Ralf; Astin, K Brian; Herbert, Roger J H

    2010-03-01

    Landfills have been the primary method of waste disposal within the UK for many years, and are often associated with land reclamation. The landfill in Christchurch Harbour, considered in this study, has a straight artificial channel which runs from the edge of the landfill to the estuary. This channel has increased the levels of metals in the marshland and acts, in effect, as a drainage system. The degree of metal mobility in soils and sediments is typically determined by using sequential extraction schemes (SESs), but the effectiveness and precision of these procedures are disputed. A simpler and more resilient approach is the application of partial/single extraction schemes (PESs). Both schemes, however, can only assess the theoretical readiness of a metal to migrate at a certain time/place and under certain conditions-they do not gauge the actual migration and therefore can only have predictive abilities at best. In this study, the metal distribution in an intertidal area between a landfill and an estuary has been determined using the actual distribution patterns in the ground and comparing them with the theoretical mobility based on the standardised PES procedure DIN 19730. It was found that this procedure can predict the actual migration in the marshland rather well; however, in the vicinity of the channel no correlation between the mobility and dispersion could be detected and the actual movement is much higher than the PES outcomes generally indicated. PMID:20445864

  1. Bioavailability of Fe(III) in natural soils and the impact on mobility of inorganic contaminants

    SciTech Connect

    Kosson, David S.; Cowan, Robert M.; Young, Lily Y.; Hacherl, Eric L.; Scala, David J.

    2002-10-03

    Inorganic contaminants, such as heavy metals and radionuclides, can adhere to insoluble Fe(III) minerals resulting in decreased mobility of these contaminants through subsurface environments. Dissimilatory Fe(III)-reducing bacteria (DIRB), by reducing insoluble Fe(III) to soluble Fe(II), may enhance contaminant mobility. The Savannah River Site, South Carolina (SRS), has been subjected to both heavy metal and radionuclide contamination. The overall objective of this project is to investigate the release of inorganic contaminants such as heavy metals and radionuclides that are bound to solid phase soil Fe complexes and to elucidate the mechanisms for mobilization of these contaminants that can be associated with microbial Fe(III) reduction. This is being accomplished by (i) using uncontaminated and contaminated soils from SRS as prototype systems, (ii) evaluating the diversity of DIRBs within the samples and isolating cultures for further study, (iii) using batch microcosms to evaluate the bioavailability of Fe(III) from pure minerals and SRS soils, (iv) developing kinetic and mass transfer models that reflect the system dynamics, and (v) carrying out soil column studies to elucidate the dynamics and interactions amongst Fe(III) reduction, remineralization and contaminant mobility.

  2. Detecting contamination on a metal surface

    NASA Technical Reports Server (NTRS)

    Harris, J. M.; Marcus, H. L.; Smith, T.

    1977-01-01

    Thin layers of contaminant on metal surface are detected by measuring surface-potential difference between reference electrode and surface of interest. Procedure does not require mechanical contact with surface under examination.

  3. Plant Rhizosphere Effects on Metal Mobilization and Transport

    SciTech Connect

    Fan, Teresa W.-M; Crowley, David; Higashi, Richard M.

    1999-06-01

    A mechanistic understanding of mobilization or immobilization of nutrient and pollutant metal ions by plants is largely lacking. It begins with a lack of knowledge on the chemical nature of rhizosphere components that are reactive with metal ions. This fundamental knowledge is critical to the design and implementation of phytoremediation for metal-contaminated DOE sites. Therefore, the objectives of this project include (1) To obtain a comprehensive composition of major organic components in plant root exudates as a function of different metal ions and plant species; (2) To examine plant metabolic response(s) to these metal ion treatments, with emphasis on production of metal reactive compounds; (3) To investigate the effect(s) of soil microbial (e.g. mycorrhizae) association on (1) and (2).

  4. Coupled effects of hydrodynamics and biogeochemistry on Zn mobility and speciation in highly contaminated sediments.

    PubMed

    Xie, Minwei; Jarrett, Brooke A; Da Silva-Cadoux, Cécile; Fetters, Kyle J; Burton, G Allen; Gaillard, Jean-François; Packman, Aaron I

    2015-05-01

    Porewater transport and diagenetic reactions strongly regulate the mobility of metals in sediments. We executed a series of laboratory experiments in Gust chamber mesocosms to study the effects of hydrodynamics and biogeochemical transformations on the mobility and speciation of Zn in contaminated sediments from Lake DePue, IL. X-ray absorption spectroscopy (XAS) indicated that the oxidation of surficial sediments promoted the formation of more mobile Zn species. Bulk chemical measurements of porewater, overlying water, and sediment also suggested that this process liberated aqueous metals to porewater and facilitated Zn efflux to the overlying water. In addition, sediment resuspension events increased the release of aqueous metals to both surficial porewater and the overlying water column. XAS analysis indicated that resuspension increased dissolution of Zn-sequestering mineral phases. These results show that both steady slow porewater transport and rapid episodic resuspension are important to the release of metal from fine-grained, low-permeability contaminated sediments. Thus, information on metals speciation and mobility under time-varying overlying flow conditions is essential to understanding the long-term behavior of metals in contaminated sediments. PMID:25875468

  5. Catalyst regeneration process including metal contaminants removal

    DOEpatents

    Ganguli, Partha S.

    1984-01-01

    Spent catalysts removed from a catalytic hydrogenation process for hydrocarbon feedstocks, and containing undesired metals contaminants deposits, are regenerated. Following solvent washing to remove process oils, the catalyst is treated either with chemicals which form sulfate or oxysulfate compounds with the metals contaminants, or with acids which remove the metal contaminants, such as 5-50 W % sulfuric acid in aqueous solution and 0-10 W % ammonium ion solutions to substantially remove the metals deposits. The acid treating occurs within the temperature range of 60.degree.-250.degree. F. for 5-120 minutes at substantially atmospheric pressure. Carbon deposits are removed from the treated catalyst by carbon burnoff at 800.degree.-900.degree. F. temperature, using 1-6 V % oxygen in an inert gas mixture, after which the regenerated catalyst can be effectively reused in the catalytic process.

  6. CONTAMINANTS AND REMEDIAL OPTIONS AT SELECTED METAL-CONTAMINATED SITES

    EPA Science Inventory

    This document provides information that facilitates characterization of the site and selection of treatment technologies at metals-contaminated sites that would be capable of meeting site-specific cleanup levels. he document does not facilitate the determination of cleanup levels...

  7. Catalytic extraction processing of contaminated scrap metal

    SciTech Connect

    Griffin, T.P.; Johnston, J.E.

    1994-12-31

    The contract was conceived to establish the commercial capability of Catalytic Extraction Processing (CEP) to treat contaminated scrap metal in the DOE inventory. In so doing, Molten Metal Technology, Inc. (MMT), pursued the following objectives: demonstration of the recycling of ferrous and non-ferrous metals--to establish that radioactively contaminated scrap metal can be converted to high-grade, ferrous and non-ferrous alloys which can be reused by DOE or reintroduced into commerce; immobilize radionuclides--that CEP will concentrate the radionuclides in a dense vitreous phase, minimize secondary waste generation and stabilize and reduce waste volume; destroy hazardous organics--that CEP will convert hazardous organics to valuable industrial gases, which can be used as feed gases for chemical synthesis or as an energy source; recovery volatile heavy metals--that CEP`s off-gas treatment system will capture volatile heavy metals, such as mercury and lead; and establish that CEP is economical for processing contaminated scrap metal in the DOE inventory--that CEP is a more cost-effective and, complete treatment and recycling technology than competing technologies for processing contaminated scrap. The process and its performance are described.

  8. Evaluation of mobile metals in sediments of Burullus Lagoon, Egypt.

    PubMed

    Khalil, Mona; El-Gharabawy, Suzan

    2016-08-15

    The Burullus Lagoon north Nile Delta of Egypt is a UNESCO-protected area. Recently it has become a sediment sink which led to shrinking in its area and depth accompanying with increasing contaminant levels. In this study we attempt to explore the spatial distribution and their mobility of heavy metals (Zn, Cu, Ni, Cr and Pb) based on 21surface sediment samples recovered from Burullus lagoon basin and nine drains. The risk assessment code of the studied heavy metals can be arranged as Zn>Cu>Pb>Cr>Ni for all the samples collected from the lagoon basin and nine different drains. The heavy metals tend to accumulate in fine sediments and human activities promote the accumulation of contaminated sediments in water courses. PMID:27216045

  9. Aromatic plant production on metal contaminated soils.

    PubMed

    Zheljazkov, Valtcho D; Craker, Lyle E; Xing, Baoshan; Nielsen, Niels E; Wilcox, Andrew

    2008-06-01

    Field and container experiments were conducted to assess the feasibility of growing aromatic crops in metal contaminated areas and the effect of metals on herbage and oil productivity. The field experiments were conducted in the vicinities of the Non-Ferrous Metals Combine (Zn-Cu smelter) near Plovdiv, Bulgaria using coriander, sage, dill, basil, hyssop, lemon balm, and chamomile grown at various distances from the smelter. Herbage essential oil yields of basil, chamomile, dill, and sage were reduced when they were grown closer to the smelter. Metal removal from the site with the harvestable plant parts was as high as 180 g ha(-1) for Cd, 660 g ha(-1) for Pb, 180 g ha(-1) for Cu, 350 g ha(-1) for Mn, and 205 g ha(-1) for Zn. Sequential extraction of soil demonstrated that metal fractionation was affected by the distance to the smelter. With decreasing distance to the smelter, the transfer factor (TF) for Cu and Zn decreased but increased for Cd, while the bioavailability factor (BF) for Cd, Pb, Cu, Mn, and Zn decreased. Scanning electron microscopy and X-ray microanalyses of contaminated soil verified that most of the Pb, Cd, Mn, Cu, and Zn were in the form of small (<1 microm) particles, although there were larger particles (1-5 microm) with high concentrations of individual metals. This study demonstrated that high concentrations of heavy metals in soil or growth medium did not result in metal transfer into the essential oil. Of the tested metals, only Cu at high concentrations may reduce oil content. Our results demonstrated that aromatic crops may not have significant phytoremediation potential, but growth of these crops in metal contaminated agricultural soils is a feasible alternative. Aromatic crops can provide economic return and metal-free final product, the essential oil. PMID:18353428

  10. Bioleaching of multiple metals from contaminated sediment by moderate thermophiles.

    PubMed

    Gan, Min; Jie, Shiqi; Li, Mingming; Zhu, Jianyu; Liu, Xinxing

    2015-08-15

    A moderately thermophilic consortium was applied in bioleaching multiple metals from contaminated sediment. The consortium got higher acidification and metals soubilization efficiency than that of the pure strains. The synergistic effect of the thermophilic consortium accelerated substrates utilization. The utilization of substrate started with sulfur in the early stage, and then the pH declined, giving rise to making use of the pyrite. Community dynamic showed that A. caldus was the predominant bacteria during the whole bioleaching process while the abundance of S. thermotolerans increased together with pyrite utilization. Solubilization efficiency of Zn, Cu, Mn and Cd reached 98%, 94%, 95%, and 89% respectively, while As, Hg, Pb was only 45%, 34%, 22%. Logistic model was used to simulate the bioleaching process, whose fitting degree was higher than 90%. Correlation analysis revealed that metal leaching was mainly an acid solubilization process. Fraction analysis revealed that metals decreased in mobility and bioavailability. PMID:26140749

  11. Draft Genome Sequences of 10 Microbacterium spp., with Emphasis on Heavy Metal-Contaminated Environments

    PubMed Central

    Corretto, Erika; Antonielli, Livio; Sessitsch, Angela; Kidd, Petra; Weyens, Nele

    2015-01-01

    Microbacterium spp. isolated from heavy metal (HM)-contaminated environments (soil and plants) can play a role in mobilization processes and in the phytoextraction of HM. Here, we report the whole-genome sequences and annotation of 10 Microbacterium spp. isolated from both HM-contaminated and -noncontaminated compartments. PMID:25977426

  12. Heavy metal contamination from geothermal sources.

    PubMed

    Sabadell, J E; Axtmann, R C

    1975-12-01

    Liquid-dominated hydrothermal reservoirs, which contain saline fluids at high temperatures and pressures, have a significant potential for contamination of the environment by heavy metals. The design of the power conversion cycle in a liquid-dominated geothermal plant is a key factor in determining the impact of the installation. Reinjection of the fluid into the reservoir minimizes heavy metal effluents but is routinely practiced at few installations. Binary power cycles with reinjection would provide even cleaner systems but are not yet ready for commercial application. Vapor-dominated systems, which contain superheated steam, have less potential for contamination but are relatively uncommon. Field data on heavy metal effluents from geothermal plants are sparse and confounded by contributions from "natural" sources such as geysers and hot springs which often exist nearby. Insofar as geothermal power supplies are destined to multiply, much work is required on their environmental effects including those caused by heavy metals. PMID:1227849

  13. Heavy metal contamination from geothermal sources.

    PubMed Central

    Sabadell, J E; Axtmann, R C

    1975-01-01

    Liquid-dominated hydrothermal reservoirs, which contain saline fluids at high temperatures and pressures, have a significant potential for contamination of the environment by heavy metals. The design of the power conversion cycle in a liquid-dominated geothermal plant is a key factor in determining the impact of the installation. Reinjection of the fluid into the reservoir minimizes heavy metal effluents but is routinely practiced at few installations. Binary power cycles with reinjection would provide even cleaner systems but are not yet ready for commercial application. Vapor-dominated systems, which contain superheated steam, have less potential for contamination but are relatively uncommon. Field data on heavy metal effluents from geothermal plants are sparse and confounded by contributions from "natural" sources such as geysers and hot springs which often exist nearby. Insofar as geothermal power supplies are destined to multiply, much work is required on their environmental effects including those caused by heavy metals. PMID:1227849

  14. Hazards of heavy metal contamination.

    PubMed

    Järup, Lars

    2003-01-01

    The main threats to human health from heavy metals are associated with exposure to lead, cadmium, mercury and arsenic. These metals have been extensively studied and their effects on human health regularly reviewed by international bodies such as the WHO. Heavy metals have been used by humans for thousands of years. Although several adverse health effects of heavy metals have been known for a long time, exposure to heavy metals continues, and is even increasing in some parts of the world, in particular in less developed countries, though emissions have declined in most developed countries over the last 100 years. Cadmium compounds are currently mainly used in re-chargeable nickel-cadmium batteries. Cadmium emissions have increased dramatically during the 20th century, one reason being that cadmium-containing products are rarely re-cycled, but often dumped together with household waste. Cigarette smoking is a major source of cadmium exposure. In non-smokers, food is the most important source of cadmium exposure. Recent data indicate that adverse health effects of cadmium exposure may occur at lower exposure levels than previously anticipated, primarily in the form of kidney damage but possibly also bone effects and fractures. Many individuals in Europe already exceed these exposure levels and the margin is very narrow for large groups. Therefore, measures should be taken to reduce cadmium exposure in the general population in order to minimize the risk of adverse health effects. The general population is primarily exposed to mercury via food, fish being a major source of methyl mercury exposure, and dental amalgam. The general population does not face a significant health risk from methyl mercury, although certain groups with high fish consumption may attain blood levels associated with a low risk of neurological damage to adults. Since there is a risk to the fetus in particular, pregnant women should avoid a high intake of certain fish, such as shark, swordfish and

  15. Source Evaluation and Trace Metal Contamination in Benthic Sediments from Equatorial Ecosystems Using Multivariate Statistical Techniques

    PubMed Central

    Benson, Nsikak U.; Asuquo, Francis E.; Williams, Akan B.; Essien, Joseph P.; Ekong, Cyril I.; Akpabio, Otobong; Olajire, Abaas A.

    2016-01-01

    Trace metals (Cd, Cr, Cu, Ni and Pb) concentrations in benthic sediments were analyzed through multi-step fractionation scheme to assess the levels and sources of contamination in estuarine, riverine and freshwater ecosystems in Niger Delta (Nigeria). The degree of contamination was assessed using the individual contamination factors (ICF) and global contamination factor (GCF). Multivariate statistical approaches including principal component analysis (PCA), cluster analysis and correlation test were employed to evaluate the interrelationships and associated sources of contamination. The spatial distribution of metal concentrations followed the pattern Pb>Cu>Cr>Cd>Ni. Ecological risk index by ICF showed significant potential mobility and bioavailability for Cu, Cu and Ni. The ICF contamination trend in the benthic sediments at all studied sites was Cu>Cr>Ni>Cd>Pb. The principal component and agglomerative clustering analyses indicate that trace metals contamination in the ecosystems was influenced by multiple pollution sources. PMID:27257934

  16. Contamination, toxicity and speciation of heavy metals in an industrialized urban river: Implications for the dispersal of heavy metals.

    PubMed

    Wu, Qihang; Zhou, Haichao; Tam, Nora F Y; Tian, Yu; Tan, Yang; Zhou, Song; Li, Qing; Chen, Yongheng; Leung, Jonathan Y S

    2016-03-15

    Urban rivers are often utilized by the local residents as water source, but they can be polluted by heavy metals due to industrialization. Here, the concentrations, toxicity, speciation and vertical profiles of heavy metals in sediment were examined to evaluate their impact, dispersal and temporal variation in Dongbao River. Results showed that the sediment in the industrialized areas was seriously contaminated with Cr, Cu and Ni which posed acute toxicity. Heavy metals, except Cr and Pb, were mainly associated with non-residual fractions, indicating their high mobility and bioavailability. The non-industrialized areas were also seriously contaminated, suggesting the dispersal of heavy metals along the river. The surface sediment could be more contaminated than the deep sediment, indicating the recent pollution events. Overall, when the point sources are not properly regulated, intense industrialization can cause both serious contamination and dispersal of heavy metals, which have far-reaching consequences in public health and environment. PMID:26856647

  17. BIOAVAILABILITY OF METALS IN CONTAMINATED SOIL AND DUST

    EPA Science Inventory

    Due to widespread metal contamination, it is necessary to characterize soils suspected of metal contamination and determine if the metal levels in these soils pose a hazard. Metal toxicity is often not directly related to the total concentration of metals present due to a numb...

  18. Detecting hydrogen-containing contaminants on metal surfaces

    NASA Technical Reports Server (NTRS)

    Grove, E. L.; Losele, W. A.

    1969-01-01

    Spark emission spectroscopy analyzes surface contamination of metals. This technique controls the quality of surface preparations and is useful in fundamental investigations of surface properties of metals.

  19. PLANT RHIZOSPHERE EFFECTS ON METAL MOBILIZATION AND TRANSPORT

    SciTech Connect

    Fan, Teresa W.-M; Higashi, Richard M.; Crowley, David E.

    2000-12-31

    The myriad of human activities including strategic and energy development at various DOE installations have resulted in the contamination of soils and waterways that can seriously threaten human and ecosystem health. Development of efficacious and economical remediation technologies is needed to ameliorate these immensely costly problems. Bioremediation (both plant and microbe-based) has promising potential to meet this demand but still requires advances in fundamental knowledge. For bioremediation of heavy metals, the three-way interaction of plant root, microbial community, and soil organic matter (SOM) in the rhizosphere is critically important for long-term sustainability but often underconsidered. Particularly urgent is the need to understand processes that lead to metal ion stabilization in soils, which is crucial to all of the goals of bioremediation: removal, stabilization, and transformation. We have developed the tools for probing the chemistry of plant rhizosphere and generated information regarding the role of root exudation and metabolism for metal mobilization and sequestration.

  20. Mobilization of PAH and PCB from contaminated soil using a digestive tract model.

    PubMed

    Hack, A; Selenka, F

    1996-11-01

    Environmental contaminants are mainly incorporated by ingestion. In general only those contaminants mobilized by the digestive juices are available for absorption in the digestive tract, while pollutants still fixed to indigestible particles leave the body without any effect. To evaluate the different health risks arising from the ingestion of individual types of polluted soil or other materials, we developed an in vitro test system which simulates the transition of pollutants from contaminated materials into digestive juices by means of a standardized artificial gastro-intestinal model. The test system simulates the influence of the acidic environment of the stomach (gastric model) followed by the neutral or slightly alkaline environment of the small intestine (gastro-intestinal model). Investigations on small amounts of polluted soil, sewage sludge, asphalt, metal scrap and blast sand showed that the mobilization of polycyclic aromatic hydrocarbons (PAH) and polychlorinated biphenyls (PCB) by artificial gastric juice reaches 3% up to 22% of the pollutant concentration introduced into the test system. Elutions of the contaminated materials under gastric and subsequently under intestinal conditions with bile concentrations of 3 g/l resulted in PAH- and PCB-mobilizations in the range of 5% up to 40%. The degree of mobilization depends considerably on supplementary food material added to the test system. Lyophilized milk increased the fraction of mobilized PAH and PCB to 40%-85%. Application of the test system on 22 different contaminated soils showed that the mobilization of PAH under gastro-intestinal conditions with the addition of lyophilized milk ranged from 7% up to 95%, and the mobilization of PCB ranged from 32% up to 83%. This indicates that the test system can be a useful tool for evaluating the individual health risks arising from polluted soil or other materials. PMID:8920737

  1. Heavy metal contaminants in yerberia shop products.

    PubMed

    Levine, Michael; Mihalic, Jason; Ruha, Anne-Michelle; French, Robert N E; Brooks, Daniel E

    2013-03-01

    Complementary and alternative medications, including the use of herbal medications, have become quite popular in the USA. Yerberias are found throughout the southwest and specialize in selling Hispanic herbal products. The products sold in these stores are not regulated by any governmental agency. Previous reports have found Ayurvedic medications contain high levels of lead, mercury, and arsenic. The primary purpose of this study is to examine the prevalence of heavy metal contaminants sold at Yerberia stores in the southwest. Yerberias in the Phoenix, Arizona area were identified via search of an on-line search engine using the words "Yerberia Phoenix." Every second store was selected, and products were purchased using a standard script. The products were subsequently analyzed for mercury, lead, and arsenic. The main outcome is the prevalence of heavy metal content in over-the-counter "cold" medications purchased at a Yerberia. Twenty-two samples were purchased. One product contained pure camphor (2-camphone) and was subsequently not further analyzed. Of the 21 samples analyzed, lead was found in 4/21 (19.4 %). Arsenic and mercury were in 1/21 (4.8 %) each. Because two samples contained two heavy metals, the total prevalence of heavy metals was 4/21 (19.4). Heavy metal contaminants are commonly encountered in over-the-counter herbal "cold" medications purchased at Yerberias in the southwest. PMID:22562238

  2. Earthworm contamination by PCBs and heavy metals

    SciTech Connect

    Diercxsens, P.; de Weck, D.; Borsinger, N.; Rosset, B.; Tarradellas, J.

    1985-01-01

    A comparison is made of soil and earthworm contamination by PCBs and heavy metals between a nature reserve and two sites conditioned by the addition of sewage sludge and compost. The tissues and gut content of the earthworms shows a higher PCB concentration than that of the surrounding soil and also a difference in the fingerprint of some single PCB compounds. Earthworms display a selective accumulation of cadmium and zinc in their tissues and gut content.

  3. Residual metallic contamination of transferred chemical vapor deposited graphene.

    PubMed

    Lupina, Grzegorz; Kitzmann, Julia; Costina, Ioan; Lukosius, Mindaugas; Wenger, Christian; Wolff, Andre; Vaziri, Sam; Östling, Mikael; Pasternak, Iwona; Krajewska, Aleksandra; Strupinski, Wlodek; Kataria, Satender; Gahoi, Amit; Lemme, Max C; Ruhl, Guenther; Zoth, Guenther; Luxenhofer, Oliver; Mehr, Wolfgang

    2015-05-26

    Integration of graphene with Si microelectronics is very appealing by offering a potentially broad range of new functionalities. New materials to be integrated with the Si platform must conform to stringent purity standards. Here, we investigate graphene layers grown on copper foils by chemical vapor deposition and transferred to silicon wafers by wet etching and electrochemical delamination methods with respect to residual submonolayer metallic contaminations. Regardless of the transfer method and associated cleaning scheme, time-of-flight secondary ion mass spectrometry and total reflection X-ray fluorescence measurements indicate that the graphene sheets are contaminated with residual metals (copper, iron) with a concentration exceeding 10(13) atoms/cm(2). These metal impurities appear to be partially mobile upon thermal treatment, as shown by depth profiling and reduction of the minority charge carrier diffusion length in the silicon substrate. As residual metallic impurities can significantly alter electronic and electrochemical properties of graphene and can severely impede the process of integration with silicon microelectronics, these results reveal that further progress in synthesis, handling, and cleaning of graphene is required to advance electronic and optoelectronic applications. PMID:25853630

  4. Establishing the environmental risk of metal contaminated river bank sediments

    NASA Astrophysics Data System (ADS)

    Lynch, Sarah; Batty, Lesley; Byrne, Patrick

    2016-04-01

    Climate change predictions indicate an increase in the frequency and duration of flood events along with longer dry antecedent conditions, which could alter patterns of trace metal release from contaminated river bank sediments. This study took a laboratory mesocosm approach. Chemical analysis of water and sediment samples allowed the patterns of Pb and Zn release and key mechanisms controlling Pb and Zn mobility to be determined. Trace metal contaminants Pb and Zn were released throughout flooded periods. The highest concentrations of dissolved Pb were observed at the end of the longest flood period and high concentrations of dissolved Zn were released at the start of a flood. These concentrations were found to exceed environmental quality standards. Key mechanisms controlling mobility were (i) evaporation, precipitation and dissolution of Zn sulphate salts, (ii) anglesite solubility control of dissolved Pb, (iii) oxidation of galena and sphalerite, (iv) reductive dissolution of Mn/Fe hydroxides and co-precipitation/adsorption with Zn. In light of climate change predictions these results indicate future scenarios may include larger or more frequent transient 'pulses' of dissolved Pb and Zn released to river systems. These short lived pollution episodes could act as a significant barrier to achieving the EU Water Framework Directive objectives.

  5. Changing contaminant mobility in a dredged canal sediment during a three-year phytoremediation trial.

    PubMed

    King, Rosalind F; Royle, Anna; Putwain, Philip D; Dickinson, Nicholas M

    2006-09-01

    Metal mobility and degradation of organic pollutants were investigated in a contaminated canal sediment in NW England. Sediment was dredged and exposed above the water surface, planted with multiple taxa of Salix, Populus and Alnus and monitored over 32 months. Short-term metal fractionation and phytotoxicity during sediment oxidation were also evaluated in separate laboratory studies. Zinc and Pb redistributed into more mobile fractions, which increased toxicity of the sediment to plants in the laboratory. In contrast, at the canal site, mobility of most elements decreased and total concentrations of Zn, Pb, Cu and Cd fell. Petroleum hydrocarbon concentrations decreased, but the tree-planted treatments appeared less effective at reducing PAH concentrations than treatments colonised by invasive plants. Tree survivorship decreased over time, suggesting increasing phytotoxicity of the exposed sediment in the longer term. Trees provided little benefit in terms of sediment remediation. Options for future management of the sediment are evaluated. PMID:16427727

  6. Microbial links between sulfate reduction and metal retention in uranium- and heavy metal-contaminated soil.

    PubMed

    Sitte, Jana; Akob, Denise M; Kaufmann, Christian; Finster, Kai; Banerjee, Dipanjan; Burkhardt, Eva-Maria; Kostka, Joel E; Scheinost, Andreas C; Büchel, Georg; Küsel, Kirsten

    2010-05-01

    Sulfate-reducing bacteria (SRB) can affect metal mobility either directly by reductive transformation of metal ions, e.g., uranium, into their insoluble forms or indirectly by formation of metal sulfides. This study evaluated in situ and biostimulated activity of SRB in groundwater-influenced soils from a creek bank contaminated with heavy metals and radionuclides within the former uranium mining district of Ronneburg, Germany. In situ activity of SRB, measured by the (35)SO(4)(2-) radiotracer method, was restricted to reduced soil horizons with rates of < or =142 +/- 20 nmol cm(-3) day(-1). Concentrations of heavy metals were enriched in the solid phase of the reduced horizons, whereas pore water concentrations were low. X-ray absorption near-edge structure (XANES) measurements demonstrated that approximately 80% of uranium was present as reduced uranium but appeared to occur as a sorbed complex. Soil-based dsrAB clone libraries were dominated by sequences affiliated with members of the Desulfobacterales but also the Desulfovibrionales, Syntrophobacteraceae, and Clostridiales. [(13)C]acetate- and [(13)C]lactate-biostimulated soil microcosms were dominated by sulfate and Fe(III) reduction. These processes were associated with enrichment of SRB and Geobacteraceae; enriched SRB were closely related to organisms detected in soils by using the dsrAB marker. Concentrations of soluble nickel, cobalt, and occasionally zinc declined < or =100% during anoxic soil incubations. In contrast to results in other studies, soluble uranium increased in carbon-amended treatments, reaching < or =1,407 nM in solution. Our results suggest that (i) ongoing sulfate reduction in contaminated soil resulted in in situ metal attenuation and (ii) the fate of uranium mobility is not predictable and may lead to downstream contamination of adjacent ecosystems. PMID:20363796

  7. Microbial Links between Sulfate Reduction and Metal Retention in Uranium- and Heavy Metal-Contaminated Soil▿

    PubMed Central

    Sitte, Jana; Akob, Denise M.; Kaufmann, Christian; Finster, Kai; Banerjee, Dipanjan; Burkhardt, Eva-Maria; Kostka, Joel E.; Scheinost, Andreas C.; Büchel, Georg; Küsel, Kirsten

    2010-01-01

    Sulfate-reducing bacteria (SRB) can affect metal mobility either directly by reductive transformation of metal ions, e.g., uranium, into their insoluble forms or indirectly by formation of metal sulfides. This study evaluated in situ and biostimulated activity of SRB in groundwater-influenced soils from a creek bank contaminated with heavy metals and radionuclides within the former uranium mining district of Ronneburg, Germany. In situ activity of SRB, measured by the 35SO42− radiotracer method, was restricted to reduced soil horizons with rates of ≤142 ± 20 nmol cm−3 day−1. Concentrations of heavy metals were enriched in the solid phase of the reduced horizons, whereas pore water concentrations were low. X-ray absorption near-edge structure (XANES) measurements demonstrated that ∼80% of uranium was present as reduced uranium but appeared to occur as a sorbed complex. Soil-based dsrAB clone libraries were dominated by sequences affiliated with members of the Desulfobacterales but also the Desulfovibrionales, Syntrophobacteraceae, and Clostridiales. [13C]acetate- and [13C]lactate-biostimulated soil microcosms were dominated by sulfate and Fe(III) reduction. These processes were associated with enrichment of SRB and Geobacteraceae; enriched SRB were closely related to organisms detected in soils by using the dsrAB marker. Concentrations of soluble nickel, cobalt, and occasionally zinc declined ≤100% during anoxic soil incubations. In contrast to results in other studies, soluble uranium increased in carbon-amended treatments, reaching ≤1,407 nM in solution. Our results suggest that (i) ongoing sulfate reduction in contaminated soil resulted in in situ metal attenuation and (ii) the fate of uranium mobility is not predictable and may lead to downstream contamination of adjacent ecosystems. PMID:20363796

  8. Catalytic extraction processing of contaminated scrap metal

    SciTech Connect

    Griffin, T.P.; Johnston, J.E.; Payea, B.M.

    1995-10-01

    The U.S. Department of Energy issued a Planned Research and Development Announcement (PRDA) in 1993, with the objective of identifying unique technologies which could be applied to the most hazardous waste streams at DOE sites. The combination of radioactive contamination with additional contamination by hazardous constituents such as those identified by the Resource Conservation and Recovery Act (RCRA) pose an especially challenging problem. Traditional remediation technologies are increasingly becoming less acceptable to stakeholders and regulators because of the risks they pose to public health and safety. Desirable recycling technologies were described by the DOE as: (1) easily installed, operated, and maintained; (2) exhibiting superior environmental performance; (3) protective of worker and public health and safety; (4) readily acceptable to a wide spectrum of evaluators; and (5) economically feasible. Molten Metal Technology, Inc. (MMT) was awarded a contract as a result of the PRDA initiative to demonstrate the applicability of Catalytic Extraction Processing (CEP), MMT`s proprietary elemental recycling technology, to DOE`s inventory of low level mixed waste. This includes DOE`s inventory of radioactively- and RCRA-contaminated scrap metal and other waste forms expected to be generated by the decontamination and decommissioning (D&D) of DOE sites.

  9. Ion Mobility Spectrometry of Heavy Metals.

    PubMed

    Ilbeigi, Vahideh; Valadbeigi, Younes; Tabrizchi, Mahmoud

    2016-07-19

    A simple, fast, and inexpensive method was developed for detecting heavy metals via the ion mobility spectrometry (IMS) in the negative mode. In this method, Cl(-) ion produced by the thermal ionization of NaCl is employed as the dopant or the ionizing reagent to ionize heavy metals. In practice, a solution of mixed heavy metals and NaCl salts was directly deposited on a Nichrome filament and electrically heated to vaporize the salts. This produced the IMS spectra of several heavy-metal salts, including CdCl2, ZnSO4, NiCl2, HgSO4, HgCl2, PbI2, and Pb(Ac)2. For each heavy metal (M), one or two major peaks were observed, which were attributed to M·Cl(-) or [M·NaCl]Cl(-)complexes. The method proved to be useful for the analysis of mixed heavy metals. The absolute detection limits measured for ZnSO4 and HgSO4 were 0.1 and 0.05 μg, respectively. PMID:27321408

  10. Noble metals: a toxicological appraisal of potential new environmental contaminants.

    PubMed Central

    Brubaker, P E; Moran, J P; Bridbord, K; Hueter, F G

    1975-01-01

    The public health benefits expected by reducing known hazardous emissions from mobile sources should not be compromised by increasing levels of other potentially hazardous unregulated emissions. Catalytic converters are going to be used to meet the statutory requirements on carbon monoxide and hydrocarbon emissions from light duty motor vehicles. Platinum and palladium metals are the catalytic materials to be used in these emission control devices. Preliminary experimental evidence and analysis of the impact of these control devices on the future use and demand for platinum indicates that this metal may appear at detectable levels in the environment by the end of this decade. At the present time, platinum and palladium are not present in the public environment and represent potentially new environmental contaminants as a consequence of use of this new abatement control technology. There is relatively little information available to adequately assess the potential health hazards that may be associated with exposure to these metals and their compounds. Analysis of the environmental problems and concerns associated with possible new environmental contaminants are discussed. Limited estimates are made on community exposure by use of a meteorological dispersion model. Biodegradation potential and attention is also given to the limited toxicological information available. PMID:50939

  11. Impact of the earthworm Lumbricus terrestris (L.) on As, Cu, Pb and Zn mobility and speciation in contaminated soils.

    PubMed

    Sizmur, Tom; Palumbo-Roe, Barbara; Watts, Michael J; Hodson, Mark E

    2011-03-01

    To assess the risks that contaminated soils pose to the environment properly a greater understanding of how soil biota influence the mobility of metal(loid)s in soils is required. Lumbricus terrestris L. were incubated in three soils contaminated with As, Cu, Pb and Zn. The concentration and speciation of metal(loid)s in pore waters and the mobility and partitioning in casts were compared with earthworm-free soil. Generally the concentrations of water extractable metal(loid)s in earthworm casts were greater than in earthworm-free soil. The impact of the earthworms on concentration and speciation in pore waters was soil and metal specific and could be explained either by earthworm induced changes in soil pH or soluble organic carbon. The mobilisation of metal(loid)s in the environment by earthworm activity may allow for leaching or uptake into biota. PMID:21185630

  12. Mobilization and micellar solubilization of NAPL contaminants in aquifer rocks

    NASA Astrophysics Data System (ADS)

    Javanbakht, Gina; Goual, Lamia

    2016-02-01

    Surfactant-enhanced aquifer remediation is often performed to overcome the capillary forces that keep residual NAPL phases trapped within contaminated aquifers. The surfactant selection and displacement mechanism usually depend on the nature of NAPL constituents. For example, micellar solubilization is often used to cleanup DNAPLs from aquifers whereas mobilization is desirable in aquifers contaminated by LNAPLs. Although the majority of crude oils are LNAPLs, they often contain heavy organic macromolecules such as asphaltenes that are classified as DNAPLs. Asphaltenes contain surface-active components that tend to adsorb on rocks, altering their wettability. Previous studies revealed that surfactants that formed Winsor type III microemulsions could promote both mobilization and solubilization. However the extent by which these two mechanisms occur is still unclear, particularly in oil-contaminated aquifers. In this study we investigated the remediation of oil-contaminated aquifers using an environmentally friendly surfactant such as n-Dodecyl β-D-maltoside. Focus was given on asphaltenes to better understand the mechanisms of surfactant cleanup. Through phase behavior, spontaneous imbibition, dynamic interfacial tension and contact angle measurements, we showed that microemulsions formed by this surfactant are able to mobilize bulk NAPL (containing 9 wt.% asphaltenes) in the porous rock and solubilize DNAPL (i.e., 4-6 wt.% adsorbed asphaltenes) from the rock surface. Spontaneous imbibition tests, in particular, indicated that the ratio of mobilized to solubilized NAPL is about 6:1. Furthermore, aging the cores in NAPL beyond 3 days allowed for more NAPL to be trapped in the large pores of the rock but did not alter the amount of asphaltenes adsorbed on the mineral surface.

  13. Mobilization and micellar solubilization of NAPL contaminants in aquifer rocks.

    PubMed

    Javanbakht, Gina; Goual, Lamia

    2016-01-01

    Surfactant-enhanced aquifer remediation is often performed to overcome the capillary forces that keep residual NAPL phases trapped within contaminated aquifers. The surfactant selection and displacement mechanism usually depend on the nature of NAPL constituents. For example, micellar solubilization is often used to cleanup DNAPLs from aquifers whereas mobilization is desirable in aquifers contaminated by LNAPLs. Although the majority of crude oils are LNAPLs, they often contain heavy organic macromolecules such as asphaltenes that are classified as DNAPLs. Asphaltenes contain surface-active components that tend to adsorb on rocks, altering their wettability. Previous studies revealed that surfactants that formed Winsor type III microemulsions could promote both mobilization and solubilization. However the extent by which these two mechanisms occur is still unclear, particularly in oil-contaminated aquifers. In this study we investigated the remediation of oil-contaminated aquifers using an environmentally friendly surfactant such as n-Dodecyl β-D-maltoside. Focus was given on asphaltenes to better understand the mechanisms of surfactant cleanup. Through phase behavior, spontaneous imbibition, dynamic interfacial tension and contact angle measurements, we showed that microemulsions formed by this surfactant are able to mobilize bulk NAPL (containing 9wt.% asphaltenes) in the porous rock and solubilize DNAPL (i.e., 4-6wt.% adsorbed asphaltenes) from the rock surface. Spontaneous imbibition tests, in particular, indicated that the ratio of mobilized to solubilized NAPL is about 6:1. Furthermore, aging the cores in NAPL beyond 3days allowed for more NAPL to be trapped in the large pores of the rock but did not alter the amount of asphaltenes adsorbed on the mineral surface. PMID:26826983

  14. Arsenic mobility in soils contaminated with metallurgical wastes as a function of variable chemical conditions

    NASA Astrophysics Data System (ADS)

    Garcia Payne, D. G.; Villalobos, M.; Ceniceros, A.; Lopez, J. L.; Gutierrez, M.

    2008-12-01

    Arsenic is a pervasive contaminant of natural aqueous systems, such as groundwater and soils, its sources being both natural and anthropogenic. The present investigation was performed on soils contaminated with residues from ore processing activities and revealed the presence of arsenate [As(V)] species with a very low mobility, through natural attenuation processes. The stability of this attenuation was investigated by varying two specific equilibrium chemical conditions: pH and presence of bicarbonate ions. One-unit changes in equilibrium pH generally caused small increases in As mobility, whereas the presence of bicarbonate ions considerably increased this mobility. The results were compared to thermodinamic simulations of equilibrium conditions using the total elemental composition of each individual soil, but excluding sorption reactions. Close matches between experimental data and simulations revealed the predominance of solubility-controlled As mobility via heavy-metal arsenate solid formation. Bicarbonate ions were found to be highly unsuitable for extraction of sorbed arsenate fractions due to indirect As release from solid arsenates, via heavy-metal carbonate precipitation processes.

  15. In situ redeposition of trace metals mobilized by CO2-charged brines

    NASA Astrophysics Data System (ADS)

    Wigley, M.; Kampman, N.; Chapman, H. J.; Dubacq, B.; Bickle, M. J.

    2013-05-01

    Mobilization of contaminants by CO2-charged brines is one concern relating to injection of CO2 as part of carbon capture and storage projects. This study monitors the mobility of trace metals in an exhumed CO2-charged aquifer near the town of Green River, Utah (USA), where CO2-charged brines have bleached red sandstones, and concentrated trace metals at the bleaching reaction front. Mass balance calculations on the trace metal enrichments are used to calculate time-integrated fluid fluxes and show that a significant fraction of the metals mobilized by the CO2-rich brines are redeposited locally. A sequential extraction procedure on metal-enriched samples shows that these metals are incorporated into secondary carbonate and oxide phases which have been shown to grow at the CO2-promoted bleaching reaction front. We argue that while CO2-charged brines are capable of mobilizing trace metals, local metal redeposition implies that the potential for contamination of overlying freshwater aquifers is low.

  16. Colloid-facilitated mobilization of metals by freeze-thaw cycles.

    PubMed

    Mohanty, Sanjay K; Saiers, James E; Ryan, Joseph N

    2014-01-21

    The potential of freeze-thaw cycles to release colloids and colloid-associated contaminants into water is unknown. We examined the effect of freeze-thaw cycles on the mobilization of cesium and strontium in association with colloids in intact cores of a fractured soil, where preferential flow paths are prevalent. Two intact cores were contaminated with cesium and strontium. To mobilize colloids and metal cations sequestered in the soil cores, each core was subjected to 10 intermittent wetting events separated by 66 h pauses. During the first five pauses, the cores were dried at room temperature, and during last five pauses, the cores were subjected to 42 h of freezing followed by 24 h of thawing. In comparison to drying, freeze-thaw cycles created additional preferential flow paths through which colloids, cesium, and strontium were mobilized. The wetting events following freeze-thaw intervals mobilized about twice as many colloids as wetting events following drying at room temperature. Successive wetting events following 66 h of drying mobilized similar amounts of colloids; in contrast, successive wetting events after 66 h of freeze-thaw intervals mobilized greater amounts of colloids than the previous one. Drying and freeze-thaw treatments, respectively, increased and decreased the dissolved cesium and strontium, but both treatments increased the colloidal cesium and strontium. Overall, the freeze-thaw cycles increased the mobilization of metal contaminants primarily in association with colloids through preferential flow paths. These findings suggest that the mobilization of colloid and colloid-associated contaminants could increase when temperature variations occur around the freezing point of water. Thus, climate extremes have the potential to mobilize contaminants that have been sequestered in the vadose zone for decades. PMID:24377325

  17. Metal and Metalloid Contaminants in Atmospheric Aerosols from Mining Operations.

    PubMed

    Csavina, Janae; Landázuri, Andrea; Wonaschütz, Anna; Rine, Kyle; Rheinheimer, Paul; Barbaris, Brian; Conant, William; Sáez, A Eduardo; Betterton, Eric A

    2011-10-01

    Mining operations are potential sources of airborne metal and metalloid contaminants through both direct smelter emissions and wind erosion of mine tailings. The warmer, drier conditions predicted for the Southwestern US by climate models may make contaminated atmospheric dust and aerosols increasingly important, with potential deleterious effects on human health and ecology. Fine particulates such as those resulting from smelting operations may disperse more readily into the environment than coarser tailings dust. Fine particles also penetrate more deeply into the human respiratory system, and may become more bioavailable due to their high specific surface area. In this work, we report the size-fractionated chemical characterization of atmospheric aerosols sampled over a period of a year near an active mining and smelting site in Arizona. Aerosols were characterized with a 10-stage (0.054 to 18 μm aerodynamic diameter) multiple orifice uniform deposit impactor (MOUDI), a scanning mobility particle sizer (SMPS), and a total suspended particulate (TSP) collector. The MOUDI results show that arsenic and lead concentrations follow a bimodal distribution, with maxima centered at approximately 0.3 and 7.0 μm diameter. We hypothesize that the sub-micron arsenic and lead are the product of condensation and coagulation of smelting vapors. In the coarse size, contaminants are thought to originate as aeolian dust from mine tailings and other sources. Observation of ultrafine particle number concentration (SMPS) show the highest readings when the wind comes from the general direction of the smelting operations site. PMID:23441050

  18. Metal and Metalloid Contaminants in Atmospheric Aerosols from Mining Operations

    PubMed Central

    Csavina, Janae; Landázuri, Andrea; Wonaschütz, Anna; Rine, Kyle; Rheinheimer, Paul; Barbaris, Brian; Conant, William; Sáez, A. Eduardo; Betterton, Eric A.

    2013-01-01

    Mining operations are potential sources of airborne metal and metalloid contaminants through both direct smelter emissions and wind erosion of mine tailings. The warmer, drier conditions predicted for the Southwestern US by climate models may make contaminated atmospheric dust and aerosols increasingly important, with potential deleterious effects on human health and ecology. Fine particulates such as those resulting from smelting operations may disperse more readily into the environment than coarser tailings dust. Fine particles also penetrate more deeply into the human respiratory system, and may become more bioavailable due to their high specific surface area. In this work, we report the size-fractionated chemical characterization of atmospheric aerosols sampled over a period of a year near an active mining and smelting site in Arizona. Aerosols were characterized with a 10-stage (0.054 to 18 μm aerodynamic diameter) multiple orifice uniform deposit impactor (MOUDI), a scanning mobility particle sizer (SMPS), and a total suspended particulate (TSP) collector. The MOUDI results show that arsenic and lead concentrations follow a bimodal distribution, with maxima centered at approximately 0.3 and 7.0 μm diameter. We hypothesize that the sub-micron arsenic and lead are the product of condensation and coagulation of smelting vapors. In the coarse size, contaminants are thought to originate as aeolian dust from mine tailings and other sources. Observation of ultrafine particle number concentration (SMPS) show the highest readings when the wind comes from the general direction of the smelting operations site. PMID:23441050

  19. Metal and metalloid contaminants in atmospheric aerosols from mining operations

    NASA Astrophysics Data System (ADS)

    Csavina, Janae

    Mining operations, including crushing, grinding, smelting, refining, and tailings management, are a significant source of airborne metal and metalloid contaminants such as As, Pb, Cd and other potentially toxic elements. Dust particles emitted from mining operations can accumulate in surrounding soils, natural waters and vegetation at relatively high concentrations through wind and water transport. Human exposure to the dust can occur through inhalation and, especially in the case of children, incidental dust ingestion, particularly during the early years when children are likely to exhibit pica. Furthermore, smelting operations release metals and metalloids in the form of fumes and ultra-fine particulate matter, which disperses more readily than coarser soil dusts. Of specific concern, these fine particulates can be transported to the lungs, allowing contaminants to be transferred into the blood stream. The main aim of this research is to assess the role of atmospheric aerosol and dust in the transport of metal and metalloid contaminants from mining operations to assess the deleterious impacts of these emissions to ecology and human health. In a field campaign, ambient particulates from five mining sites and four reference sites were examined utilizing micro-orifice deposit impactors (MOUDI), total suspended particulate (TSP) collectors, a scanning mobility particle sizer (SMPS), and Dusttrak optical particle counters for an understanding of the fate and transport of atmospheric aerosols. One of the major findings from size-resolved chemical characterization at three mining sites showed that the majority of the contaminant concentrations were found in the fine size fraction (<1 micrometer). Further, metal and metalloids (e.g. As, Cd, and Pb) around smelting activities are significantly enriched in both the coarse and fine size fraction when compared to reference sites. Additionally, with dust events being a growing concern because of predicted climate change and

  20. Chelant extraction of heavy metals from contaminated soils.

    PubMed

    Peters, R W

    1999-04-23

    The current state of the art regarding the use of chelating agents to extract heavy metal contaminants has been addressed. Results are presented for treatability studies conducted as worst-case and representative soils from Aberdeen Proving Ground's J-Field for extraction of copper (Cu), lead (Pb), and zinc (Zn). The particle size distribution characteristics of the soils determined from hydrometer tests are approximately 60% sand, 30% silt, and 10% clay. Sequential extractions were performed on the 'as-received' soils (worst case and representative) to determine the speciation of the metal forms. The technique speciates the heavy metal distribution into an easily extractable (exchangeable) form, carbonates, reducible oxides, organically-bound, and residual forms. The results indicated that most of the metals are in forms that are amenable to soil washing (i.e. exchangeable+carbonate+reducible oxides). The metals Cu, Pb, Zn, and Cr have greater than 70% of their distribution in forms amenable to soil washing techniques, while Cd, Mn, and Fe are somewhat less amenable to soil washing using chelant extraction. However, the concentrations of Cd and Mn are low in the contaminated soil. From the batch chelant extraction studies, ethylenediaminetetraacetic acid (EDTA), citric acid, and nitrilotriacetic acid (NTA) were all effective in removing copper, lead, and zinc from the J-Field soils. Due to NTA being a Class II carcinogen, it is not recommended for use in remediating contaminated soils. EDTA and citric acid appear to offer the greatest potential as chelating agents to use in soil washing the Aberdeen Proving Ground soils. The other chelating agents studied (gluconate, oxalate, Citranox, ammonium acetate, and phosphoric acid, along with pH-adjusted water) were generally ineffective in mobilizing the heavy metals from the soils. The chelant solution removes the heavy metals (Cd, Cu, Pb, Zn, Fe, Cr, As, and Hg) simultaneously. Using a multiple-stage batch extraction

  1. Uptake and mobility of uranium in black oaks: implications for biomonitoring depleted uranium-contaminated groundwater.

    PubMed

    Edmands, J D; Brabander, D J; Coleman, D S

    2001-08-01

    In a preliminary study, the uptake and the mobility of uranium (U) by black oak trees (Quercus velutina) were assessed by measuring the isotopic composition of tree rings in two mature oak trees in a heavy metal contaminated bog in Concord, MA. The bog is adjacent to a nuclear industrial facility that has been processing depleted uranium (DU) since 1959. Over the past 40 years, DU has been leaking from an onsite holding basin and cooling pond down gradient to the bog where the oaks are located. Because DU has no source outside the nuclear industry, contamination from the industrial facility is readily discernable from uptake of natural U by measuring isotopic compositions. Isotope ratio analysis confirms the occurrence of DU in bark, sapwood and heartwood tree rings dating back to 1937, pre-dating the introduction of DU at the site by at least 20 years. Isotope dilution analysis indicates high concentrations of U (>3 ppb) in sapwood that drop rapidly to relatively constant concentrations (0.3-0.4 ppb) in heartwood. These data indicate that once incorporated into tree cells, U is mobile, possibly by diffusion through the tree wood. Concentrations of U in sapwood are approximately equal to average U concentrations in groundwater onsite over the past 10 years, suggesting that oak trees can be used as present-day bioindicators of U-contaminated groundwater. We suggest that regional sampling of oak bark and sapwood is a reasonable, inexpensive alternative to drilling wells to monitor shallow groundwater U contamination. PMID:11482670

  2. Eco-monitoring of highly contaminated areas: historic heavy metal contamination in tree ring records

    NASA Astrophysics Data System (ADS)

    Baross, Norbert; Jordán, Győző; Albert, Julianna; Abdaal, Ahmed; Anton, Attila

    2014-05-01

    This study examines and compares tree rings of trees grown in a mining area highly contaminated with heavy metals. Tree rings offers an excellent opportunity for eco-monitoring polluted areas. Contamination dispersion from the source to the receptors can be studied in time and space. The sampled area is located in the eastern part of the Matra Mts. of the Inner-Carpathian calc-alkaline Volcanic Arc (Hungary) with abundant historical ore (Pb, Zn, Cu, etc.) mining in the area. Dense forests are composed of the most typical association of the Turkey oak (Quercus cerris). Scots pine (Pinus sylvestris), European black pine (Pinus nigra), oak (Quercus robur), beech (Fagus sylvatica), and hornbeam (Carpinus betulus) also occurs in the landscape. Sampled trees are located within a 1km radius of the abandoned historic ore mines. Sample sites were located above the old mines and waste rock heaps, under the waste rock heaps and on the floodplain of the Ilona Creek. The sampled trees were selected by the following criteria: the tree should be healthy, showing no signs of thunderbolt or diseases and having a minimum diameter of 50 cm. Samples were taken with a tree borer at the height of 150 cm. At the same time, soil samples were also taken near the trees in a 25 cm depth. Prior to laboratory analysis, the samples measured and air dried. Every fifth years tree ring was taken from the samples under microscope, working backwards from the most recent outer ring (2012, the year of the sampling). Samples were digested with a mixture of H2SO4 and H2O2m in Teflon vessels in a microwave unit. The samples were analyzed by ICP-OES instrument. The results were evaluated with statistical method. Results revealed a consistent picture showing distinct locations and years of the contamination history in the former mining area. Some elements are built into the trees more efficiently than other elements depending on mobility in the soil solution that is influenced by soil chemical properties

  3. Speciation of metals in contaminated sediments from Oskarshamn Harbor, Oskarshamn, Sweden.

    PubMed

    Fathollahzadeh, Homayoun; Kaczala, Fabio; Bhatnagar, Amit; Hogland, William

    2014-02-01

    Bottom sediments in coastal regions have been considered the ultimate sink for a number of contaminants, e.g., toxic metals. In this current study, speciation of metals in contaminated sediments of Oskarshamn harbor in the southeast of Sweden was performed in order to evaluate metal contents and their potential mobility and bioavailability. Sediment speciation was carried out by the sequential extraction BCR procedure for As, Cd, Cr, Cu, Hg, Ni, Pb, and Zn and the exchangeable (F1), reducible (F2), oxidizable (F3), and residual (R) fractionswere determined. The results have shown that Zn and Cd were highly associated with the exchangeable fraction (F1) with 42–58 % and 43–46 %, respectively, of their total concentrations in the mobile phase. The assessment of sediment contamination on the basis of quality guidelines established by the Swedish Environmental Protection Agency (SEPA) and the Italian Ministry of Environment (Venice protocol for dredged sediments) has shown that sediments from Oskarshamn harbor are highly contaminated with toxic metals, especially Cu, Cd, Pb, Hg, As, and Zn posing potential ecological risks. Therefore, it is of crucial importance the implementation of adequate strategies to tackle contaminated sediments in coastal regions all over the world. PMID:24078237

  4. Tungsten- and cobalt-dominated heavy metal contamination of mangrove sediments in Shenzhen, China.

    PubMed

    Xu, Songjun; Lin, Chuxia; Qiu, Penghua; Song, Yan; Yang, Wenhuai; Xu, Guanchang; Feng, Xiaodan; Yang, Qian; Yang, Xiu; Niu, Anyi

    2015-11-15

    A baseline investigation into heavy metal status in the mangrove sediments was conducted in Shenzhen, China where rapid urban development has caused severe environmental contamination. It is found that heavy metal contamination in this mangrove wetland is characterized by the dominant presence of tungsten and cobalt, which is markedly different from the neighboring Hong Kong and other parts of the world. The vertical variation pattern of these two metals along the sediment profile differed from other heavy metals, suggesting an increasing influx of tungsten and cobalt into the investigated mangrove habitat, as a result of uncontrolled discharge of industrial wastewater from factories that produce or use chemical compounds or alloys containing these two heavy metals. Laboratory simulation experiment indicated that seawater had a stronger capacity to mobilize sediment-borne tungsten and cobalt, as compared to deionized water, diluted acetic, sulfuric and nitric acids. PMID:26323860

  5. Sediment and porewater geochemistry in a metal contaminated estuary, Dulas Bay, Anglesey.

    PubMed

    Sullivan, Paul; Taylor, Kevin G

    2003-03-01

    Remobilisation of contaminant metals from sediments can occur by chemical, biological or physical changes. This in turn can lead to contaminant fluxes to the porewaters and ultimately the water column. The aim of the research presented here is to document post-depositional controls on metal mobility and fluxes in a heavily metal-contaminated estuary. This will allow for an improved understanding of the impact of contaminated sediments on water quality from both a short-term and long-term perspective. Dulas Bay is situated on the east coast of Anglesey, North Wales, and receives polluted waters from Parys Mountain. Metals within Dulas Bay sediments show surface enrichment and variations in mineralogical form. Diagenesis clearly plays a role in post-depositional behaviour of the metals, forming sulphides and potentially carbonates. The presence of a dominant exchangeable/carbonate fraction, and elevated porewater metals, in this sulphidic system is significant and could indicate the presence of freshwater diagenesis, or, reflect the high levels of metals in the sediment. PMID:12901086

  6. Heavy metal contamination and ecological risk in Spartina alterniflora marsh in intertidal sediments of Bohai Bay, China.

    PubMed

    Chai, Minwei; Shi, Fuchen; Li, Ruili; Shen, Xiaoxue

    2014-07-15

    To investigate the effects of Spartina alterniflora on heavy metals pollution of intertidal sediments, sediment cores of a S. alterniflora salt marsh and a mudflat in Bohai Bay, China were analyzed. The results showed that S. alterniflora caused higher total C and P, but lower bulk density and electrical conductivity. The levels of Cd, Cu and Pb were higher in S. alterniflora sediment. Both Cd and Zn were higher than the probable effect level at both sites, indicating their toxicological importance. The geo-accumulation and potential ecological risk indexes revealed higher metal contamination in S. alterniflora sediment. Multivariate analysis implied that anthropogenic activities altered mobility and bioavailability of heavy metals. The percentage of mobile heavy metals was higher in S. alterniflora sediment, indicating improvement of conversion from the immobilized fraction to the mobilized fraction. These findings indicate that S. alterniflora may facilitate accumulation of heavy metals and increase their bioavailability and mobility. PMID:24930737

  7. History of metal contamination in Lake Illawarra, NSW, Australia.

    PubMed

    Schneider, Larissa; Maher, William; Potts, Jaimie; Batley, Graeme; Taylor, Anne; Krikowa, Frank; Chariton, Anthony; Zawadzki, Atun; Heijnis, Henk; Gruber, Bernd

    2015-01-01

    Lake Illawarra has a long history of sediment contamination, particularly by metals, as a result of past and current industrial operations and land uses within the catchment. In this study, we examined the history of metal contamination in sediments using metal analysis and (210)Pb and (137)Cs dating. The distributions of copper, zinc, arsenic, selenium, cadmium and lead concentrations within sediment cores were in agreement with historical events in the lake, and indicated that metal contamination had been occurring since the start of industrial activities in Port Kembla in the late 1800 s. Most metal contamination, however, has occurred since the 1960s. Sedimentation rates were found to be 0.2 cm year(-1) in Griffins Bay and 0.3 cm year(-1) in the centre of the lake. Inputs from creeks bringing metals from Port Kembla in the northeast of the lake and a copper slag emplacement from a former copper refinery on the Windang Peninsula were the main sources of metal inputs to Lake Illawarra. The metals of highest concern were zinc and copper, which exceeded the Australian and New Zealand sediment quality guideline values at some sites. Results showed that while historical contamination persists, current management practices have resulted in reduced metal concentrations in surface sediments in the depositional zones in the centre of the lake. PMID:25061943

  8. Efficiency of biochar for reducing mobility of inorganic contaminants

    NASA Astrophysics Data System (ADS)

    De Pasquale, Claudio; Cimò, Giulia; Sidoti, Lucio; Conte, Pellegrino; Alonzo, Giuseppe

    2013-04-01

    Anthropogenic activities have produced numerous sites with extensive contamination close to residential areas. Several physicochemical and biological remediation methods exist for remediation of metal contaminated soils and lands, such as soil washing, soil flushing, phytoremediation, and electrokinetics. Biochar (biologically derived charcoal) is produced by pyrolysis of biomasses under low oxygen conditions, and it can be applied for recycling organic waste in soils. The main objectives of the present study were to determine the possible use of biochar from forest ersidues (Populus nigra) in order to achieve a stabilization of inorganic contaminants by adsorption processes. Adsorption of copper by biochar from dilute solutions showed a closer agreement with the Langmuir isotherm in a concentration range 25-500 mM. The decontamination by biochar is very suitable because the treatment is passive and does not require specialized equipment or extensive labor as compared to other remediation methods. Moreover, biochar is also a possible carbon sink due to its long term storage in environment, thereby favouring mitigation of the anthropic impact on environment.

  9. Method of melting metals to reduce contamination from crucibles

    DOEpatents

    Banker, John G.; Wigginton, Hubert L.

    1977-01-01

    Contamination of metals from crucible materials during melting operations is reduced by coating the interior surface of the crucible with a ceramic non-reactive with the metallic charge and disposing a metal liner formed from a portion of the metallic charge within the coated crucible. The liner protects the ceramic coating during loading of the remainder of the charge and expands against the ceramic coating during heat-up to aid in sintering the coating.

  10. USING ZERO-VALENT METAL NANOPARTICLES TO REMEDIATE ORGANIC CONTAMINANTS

    EPA Science Inventory

    The transport of organic contaminants down the soil profile constitutes a serious threat to the quality of ground water. Zero-valent metals are considered innocuous abiotic agents capable of mediating decontamination processes in terrestrial systems. In this investigation, ze...

  11. Trace element mobility in a contaminated soil two years after field-amendment with a greenwaste compost mulch.

    PubMed

    Clemente, Rafael; Hartley, William; Riby, Philip; Dickinson, Nicholas M; Lepp, Nicholas W

    2010-05-01

    Application of greenwaste compost to brownfield land is increasingly common in soil and landscape restoration. Previous studies have demonstrated both beneficial and detrimental effects of this material on trace element mobility. A pot experiment with homogenised soil/compost investigated distribution and mobility of trace elements, two years after application of greenwaste compost mulch to shallow soils overlying a former alkali-works contaminated with Pb, Cu and As (approximately 900, 200 and 500 mg kg(-1), respectively). Compost mulch increased organic carbon and Fe in soil pore water, which in turn increased As and Sb mobilization; this enhanced uptake by lettuce and sunflower. A very small proportion of the total soil trace element pool was in readily-exchangeable form (<0.01% As, <0.001% other trace elements), but the effect of compost on behaviour of metals was variable and ambiguous. It is concluded that greenwaste compost should be applied with caution to multi-element contaminated soils. PMID:20031286

  12. Mercury mobility and bioavailability in soil from contaminated area

    NASA Astrophysics Data System (ADS)

    Boszke, Leonard; Kowalski, Artur; Astel, Aleksander; Barański, Andrzej; Gworek, Barbara; Siepak, Jerzy

    2008-09-01

    The mobility and bioavailability of mercury in the soil from the area near a plant using elemental mercury for manufacturing thermometers, areometers, glass energy switches and other articles made of technical glass has been evaluated. Mercury has been determined by sequential extraction method and with additional thermo desorption stage to determine elemental mercury. The procedure of sequential extraction involves five subsequent stages performed with the solutions of chloroform, deionized water, 0.5 M HCl, 0.2 M NaOH and aqua regia. The mean concentration of total mercury in soil was 147 ± 107 μg g-1 dry mass (range 62-393), and the fractionation revealed that mercury was mainly bound to sulfides 56 ± 8% (range 45-66), one of the most biounavailable and immobile species of mercury in the environment. The fractions that brought lower contribution to the total mercury content were semi-mobile humic matter 22 ± 9% (range 11-34) and elemental mercury 17 ± 5% (range 8-23). The contributions brought by the highly mobile and toxic organomercury compounds were still lower 2.3 ± 2.7% (range 0.01-6.5). The lowest contributions brought the acid-soluble mercury 1.5 ± 1.3% (range 0.1-3.5) and water-soluble mercury 1.0 ± 0.3% (range 0.6-1.7). The surface layer of soil (0-20 cm) was characterized by higher mercury concentrations than that of the subsurface soil (60-80 cm), but the fractional contributions were comparable. The comparison of mercury fractionation results obtained in this study for highly polluted soils with results of fractionation of uncontaminated or moderately contaminated samples of soil and sediments had not shown significant statistical differences; however, in the last samples elemental mercury is usually present at very low concentrations. On the basis of obtained correlation coefficients it seems that elemental mercury soils from “Areometer” plant are contaminated; the main transformation is its vaporization to atmosphere and oxidation to

  13. SOLUBILITY AND MOBILITY OF TOXIC METALS UNDER COMPLEX CONDITIONS

    EPA Science Inventory

    EPA Identifier: F8P11069
    Title: Solubility and Mobility of Toxic Metals Under Complex Conditions
    Fellow (Principal Investigator): Brandi N. Clark
    Institution: University of Missouri - Rolla
    EPA GRANT Representative: Georgette Bod...

  14. Metal-contaminated sediments in a semi-closed basin: Implications for recovery

    NASA Astrophysics Data System (ADS)

    Monterroso, P.; Pato, P.; Pereira, M. E.; Millward, G. E.; Vale, C.; Duarte, A.

    2007-01-01

    Sediment cores, collected from a contaminated zone in the Ria de Aveiro (Portugal), were sectioned, under nitrogen, and centrifuged to remove the pore waters. The sediment characteristics, including acid volatile sulphide (AVS) concentrations, were determined, together with total and available metals (Fe, Mn, Cd, Cu, Pb, Zn) and the total dissolved metals in the pore waters. Peak concentrations in total metals of the sediments were observed at various depths in the core as a result of time-dependent, industrial discharges. The fraction of total metal released by a mixture of hydroxylamine hydrochloride and acetic acid (HAA) ranged from 24% for Cu to 74% for Zn and enzymatic digestion by proteinase K released <10% of total metal. The pore waters had elevated dissolved metal concentrations concomitant with the peaks in total and available metal and with a maximum in AVS concentration. Equilibrium calculations indicated that the major dissolved phase species was MHS 2-, with minor quantities of M(HS) 2. The diffusive fluxes for sediment-water exchange of the metals were insignificant, the mobility of the metals being hindered by sulphide formation. Thus, the metals are likely to remain trapped in these sediments, thereby delaying recovery from contamination.

  15. Estimating children's exposure to toxic elements in contaminated toys and children's jewelry via saliva mobilization.

    PubMed

    Guney, Mert; Nguyen, Alain; Zagury, Gerald J

    2014-09-19

    Children's potential for exposure to potentially toxic elements in contaminated jewelry and toys via mouth contact has not yet been fully evaluated. Various toys and jewelry (metallic toys and jewelry [MJ], plastic toys, toys with paint or coating, and brittle/pliable toys; n = 32) were tested using the saliva extraction (mouthing) compartment of the DIN and RIVM bioaccessibility protocols to assess As, Ba, Cd, Cr, Cu, Mn, Ni, Pb, Sb, and Se mobilization via saliva. Total concentrations of As, Cd, Cu, Ni, Pb, and Sb were found elevated in analyzed samples. Four metals were mobilized to saliva from 16 MJ in significant quantities (>1 μg for highly toxic Cd and Pb, >10 μg for Cu and Ni). Bioaccessible concentrations and hazard index values for Cd exceeded limit values, for young children between 6 mo- and 3 yr-old and according to both protocols. Total and bioaccessible metal concentrations were different and not always correlated, encouraging the use of bioaccessibility for more accurate hazard assessments. Bioaccessibility increased with increasing extraction time. Overall, the risk from exposure to toxic elements via mouthing was high only for Cd and for MJ. Further research on children's exposure to toxic elements following ingestion of toy or jewelry material is recommended. PMID:24967554

  16. Healthcare workers mobile phone usage: A potential risk for viral contamination. Surveillance pilot study.

    PubMed

    Cavari, Yuval; Kaplan, Or; Zander, Aviva; Hazan, Guy; Shemer-Avni, Yonat; Borer, Abraham

    2016-06-01

    Background Mobile phones are commonly used by healthcare workers (HCW) in the working environment, as they allow instant communication and endless resource utilisation. Studies suggest that mobile phones have been implicated as reservoirs of bacterial pathogens, with the potential to cause nosocomial infection. This study aimed to investigate the presence of Respiratory Syncytial Virus, Adenovirus and Influenza Virus on HCWs mobile phones and to identify risk factors implied by HCWs practice of mobile phones in a clinical paediatric environment. Methods Fifty HCWs' mobile phones were swabbed over both sides of the mobile phone, for testing of viral contamination during 8 days in January 2015. During the same period, a questionnaire investigating usage of mobile phones was given to 101 HCWs. Results Ten per cent of sampled phones were contaminated with viral pathogens tested for. A total of 91% of sampled individuals by questionnaire used their mobile phone within the workplace, where 37% used their phone at least every hour. Eighty-nine (88%) responders were aware that mobile phones could be a source of contamination, yet only 13 (13%) disinfect their cell phone regularly. Conclusion Mobile phones in clinical practice may be contaminated with viral pathogenic viruses. HCWs use their mobile phone regularly while working and, although the majority are aware of contamination, they do not disinfect their phones. PMID:27030915

  17. Metal pollution in a contaminated bay: relationship between metal geochemical fractionation in sediments and accumulation in a polychaete.

    PubMed

    Fan, Wenhong; Xu, Zhizhen; Wang, Wen-Xiong

    2014-08-01

    Jinzhou Bay in Northern China has been seriously contaminated with metals due to the impacts of smelting activities. In this study, we investigated the relationship between metal accumulation in a deposit-feeding polychaete Neanthes japonica and metal concentration and geochemical fractionation (Cd, Cu, Pb, Zn and Ni) in sediments of Jinzhou Bay. Compared with the historical data, metals in the more mobile geochemical fraction (exchangeable and carbonate fractions) were gradually partitioned into the more stable fraction (Fe-Mn oxides) over time. Metal concentration and geochemical fractionation in sediment significantly affected metal bioavailability and accumulation in polychaetes, except for Ni. Metal accumulation in polychaetes was significantly influenced by Fe or Mn content, and to a lesser degree by organic matter. Prediction of metal bioaccumulation in polychaetes was greatly improved by normalizing metal concentrations to Mn content in sediment. The geochemical fractionation of metals in sediments including the exchangeable, organic matter and Fe-Mn oxides were important in controlling the sediment metal bioavailability to polychaetes. PMID:24811945

  18. A national level assessment of metal contamination in bats.

    PubMed

    Hernout, Béatrice V; Arnold, Kathryn E; McClean, Colin J; Walls, Michael; Baxter, Malcolm; Boxall, Alistair B A

    2016-07-01

    Many populations of bat species across the globe are declining, with chemical contamination one of many potential stressors implicated in these demographic changes. Metals still contaminate a wide range of habitats, but the risks to bats remain poorly understood. This study is the first to present a national scale assessment of toxic metal (Cd, Pb) and essential trace metal (Cu, Zn) concentrations in bats. Metal concentrations in tissues (kidneys, liver, stomach -stomach content, bones and fur) were measured in 193 Pipistrellus sp. in England and Wales using ICP-MS, and compared to critical toxic concentrations for small mammals. The concentrations of metals determined in bat tissues were generally lower than those reported elsewhere. Strong positive associations were found between concentrations in tissues for a given metal (liver and kidneys for Cd, Cu and Pb; stomach and fur and fur and bones for Pb), suggesting recent as well as long term exposure to these contaminants. In addition, positive correlations between concentrations of different metals in the same tissues (Cd and Zn, Cu and Zn, Cd and Pb, Pb and Zn) suggest a co-exposure of metals to bats. Approximately 21% of the bats sampled contained residues of at least one metal at concentrations high enough to elicit toxic effects (associated with kidney damage), or to be above the upper level measured in other mammal species. Pb was found to pose the greatest risk (with 7-11% of the bats containing concentrations of toxicological concern), followed by Cu (4-9%), Zn (0.5-5.2%) and Cd (0%). Our data suggest that leaching of metals into our storage matrix, formaldehyde, may have occurred, especially for Cu. The overall findings suggest that metal contamination is an environmental stressor affecting bat populations, and that further research is needed into the direct links between metal contamination and bat population declines worldwide. PMID:27155931

  19. Enhanced electrokinetic treatment of marine sediments contaminated by heavy metals and PAHs.

    PubMed

    Colacicco, Antonio; De Gioannis, Giorgia; Muntoni, Aldo; Pettinao, Emmanuela; Polettini, Alessandra; Pomi, Raffaella

    2010-09-01

    Dredged sediments contaminated by heavy metals and PAHs were subjected to both unenhanced and enhanced electrokinetic remediation under different operating conditions, obtained by varying the applied voltage and the type of conditioning agent used at the electrode compartments in individual experiments. While metals were not appreciably mobilized as a result of the unenhanced process, metal removal was found to be significantly improved when both the anodic and cathodic reservoirs were conditioned with the chelating agent EDTA, with removal yields ranging from 28% to 84% depending on the contaminant concerned. As for the effect on organic contaminants, under the conditions tested the electrokinetic treatment displayed a poor removal capacity towards PAHs, even when a surfactant (Tween 80) was used to promote contaminant mobilization, indicating the need for further investigation on this issue. Further research on organics removal from this type of materials through electrokinetic remediation is thus required. Furthermore, a number of technical and environmental issues will also require a careful evaluation with a view to full-scale implementation of electrokinetic sediment remediation. These include controlling side effects during the treatment (such as anodic precipitation, oxidation of the conditioning agent, and evolution of toxic gases), as well as evaluating the potential ecotoxicological effects of the chemical agents used. PMID:20691460

  20. Some Case Studies on Metal-Microbe Interactions to Remediate Heavy Metals- Contaminated Soils in Korea

    NASA Astrophysics Data System (ADS)

    Chon, Hyo-Taek

    2015-04-01

    Conventional physicochemical technologies to remediate heavy metals-contaminated soil have many problems such as low efficiency, high cost and occurrence of byproducts. Recently bioremediation technology is getting more and more attention. Bioremediation is defined as the use of biological methods to remediate and/or restore the contaminated land. The objectives of bioremediation are to degrade hazardous organic contaminants and to convert hazardous inorganic contaminants to less toxic compounds of safe levels. The use of bioremediation in the treatment of heavy metals in soils is a relatively new concept. Bioremediation using microbes has been developed to remove toxic heavy metals from contaminated soils in laboratory scale to the contaminated field sites. Recently the application of cost-effective and environment-friendly bioremediation technology to the heavy metals-contaminated sites has been gradually realized in Korea. The merits of bioremediation include low cost, natural process, minimal exposure to the contaminants, and minimum amount of equipment. The limitations of bioremediation are length of remediation, long monitoring time, and, sometimes, toxicity of byproducts for especially organic contaminants. From now on, it is necessary to prove applicability of the technologies to contaminated sites and to establish highly effective, low-cost and easy bioremediation technology. Four categories of metal-microbe interactions are generally biosorption, bioreduction, biomineralization and bioleaching. In this paper, some case studies of the above metal-microbe interactions in author's lab which were published recently in domestic and international journals will be introduced and summarized.

  1. Method for mobilization of hazardous metal ions in soils

    DOEpatents

    Dugan, Patrick R.; Pfister, Robert M.

    1995-01-01

    A microbial process for removing heavy metals such as bismuth, cadmium, lead, thorium, uranium and other transuranics from soils and sediments, utilizing indigenous, or isolates of indigenous, microorganisms and reducing agents, such as cysteine or sodium thioglycollate, or complexing agents such as the amino acid glycine, to effect the mobilization or release of the metals from the soil particles.

  2. Metal mobilization in soil by two structurally defined polyphenols

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Polyphenols including tannins comprise a large percentage of plant detritus such as leaf litter, and affect soil processes including metal dynamics. We tested the effect of tannins on soil metal mobilization by determining the binding stoichiometries of two model polyphenols to Al(III) and Fe(III) ...

  3. Enrichment and mechanisms of heavy metal mobility in a coastal quaternary groundwater system of the Pearl River Delta, China.

    PubMed

    Wang, Ya; Jiao, Jiu Jimmy; Zhang, Ke; Zhou, Yongzhang

    2016-03-01

    The risks posed by heavy metal mobilization strongly depend on the pathways that the metals follow, with the sediment-water pathway representing a direct risk to groundwater contamination. Monitoring and sequential extraction experiments in the laboratory generally have limitations with respect to understanding the mechanisms of heavy metal mobilization in the field. The Quaternary coastal groundwater system of the Pearl River Delta, China was chosen as the study area to understand heavy metal enrichment and mobility. Heavy metals including V, Cr, Co, Ni, Cu, Zn, Ba, Pb, Mo, Cd, Sr, Ga, Ge, Rb, and Cs in both sediments and groundwater were analyzed. Geochemical parameters including Fe2O3, MnO, sedimentary organic matter, and carbonate content as well as hydrochemical parameters including K(+), Na(+), Ca(2+), Mg(2+), NH4(+), SO4(2-), Cl(-), HCO3(-), pH, TDS, and dissolved organic carbon were also measured. The enrichment of heavy metals in the solid sediment phase as well as the mobilization mechanisms of heavy metals in groundwater are discussed as informed by Pearson's correlation analysis. Hydrochemical analyses demonstrated that the mobility of V, Ba, Cr, Rb, and Cs is closely related to the decomposition of buried sedimentary organic matter; the mobility of Co, Ni, Cu, Zn, Pb, and Cd is closely linked with the reductive dissolution of Fe-Mn oxides; and the mobility of Co, Ni, Cu, Ba, Zn, Pb, Cd, Mn, Sr and Ga is probably controlled by ion exchange processes. This study demonstrates that heavy metal mobility in the field is not entirely consistent with the potential mobility as indicated by sediment analysis, due to the complicated hydrogeochemical conditions in the groundwater system, and suggests that comprehensive geochemical and hydrochemical studies are useful ways to understand the mobility mechanisms of heavy metals in the field. PMID:26760270

  4. Toxicological effects of short-term resuspension of metal-contaminated freshwater and marine sediments.

    PubMed

    Fetters, Kyle J; Costello, David M; Hammerschmidt, Chad R; Burton, G Allen

    2016-03-01

    Sediments in navigation-dominated waterways frequently are contaminated with a variety of particle-associated pollutants and are subject to frequent short-term resuspension events. There is little information documenting whether resuspension of metal-contaminated sediments has adverse ecological effects on resident aquatic organisms. Using a novel laboratory approach, the authors examined the mobilization of Zn, Cu, Cd, Pb, Ni, and Cr during resuspension of 1 freshwater and 2 coastal marine sediments and whether resuspension and redeposition resulted in toxicity to model organisms. Sediment flux exposure chambers were used to resuspend metal-contaminated sediments from 1 site in Lake DePue, Illinois (USA), and 2 sites in Portsmouth Naval Shipyard, Maine (USA). Short-term (4-h) resuspension of sediment at environmentally relevant suspended particulate matter concentrations (<1 g/L) resulted in metal mobilization to water that was sediment and metal specific. Overall, the net release of metals from suspended particles was limited, likely because of scavenging by organic matter and Fe oxides that formed during sediment interaction with oxic water. Minimal toxicity to organisms (survival of Hyalella azteca and Daphnia magna; survival, growth, and tissue metal concentration of Neanthes arenaceodentata; bioluminescence of Pyrocystis lunula) was observed during 4-h exposure to resuspended sediments and during 4-d to 10-d post-exposure recovery periods in uncontaminated water. Redeposited suspended particles exhibited increased metal bioavailability and toxicity to H. azteca, highlighting the potential for adverse ecological impacts because of changes in metal speciation. It is important to consider interactions between organisms' life histories and sediment disturbance regimes when assessing risks to ecosystems. PMID:26313755

  5. Phytoremediation of Metal-Contaminated Soil for Improving Food Safety

    NASA Astrophysics Data System (ADS)

    Shilev, Stefan; Benlloch, Manuel; Dios-Palomares, R.; Sancho, Enrique D.

    The contamination of the environment is a serious problem which provokes great interest in our society and in the whole scientific community. The input of metals into soils has increased during the last few decades as a consequence of different human activities (storage of industrial and municipal wastes, burning of fuels, mining and wastewater treatments, functioning of non-ferrous-metal-producing smelters, etc.). Nowadays, this type of contamination is one of the most serious concerning the chronic toxic effect which it renders on human health and the environment. As a consequence of all these activities, a huge number of toxic metals and metalloids, such as Cu, Zn, Pb, Cd, Hg and As, among many others, have been accumulated in soils, reaching toxic values. Unfortunately, much contaminated land is still in use for crop production, despite the danger that the metal content poses.

  6. Contamination of environment with heavy metals emitted from automotives

    SciTech Connect

    Falahi-Ardakani, A.

    1984-04-01

    Interest has arisen in heavy-metal contamination of the environment, mostly because of potential hazards to the health of animals and human (directly and/or indirectly). High levels of heavy metals in soil, plants, and the atmosphere are often related to industries, highways, chemical dumping, impure chemical fertilizers, and pesticides containing metals. An important source of heavy metals, especially lead, is from the combustion of leaded gasoline used for transportation. Other heavy metals associated with transportation include nickel, which is also added to gasoline and is contained in engine parts, zinc, and cadmium from tires, lubricating oils, and galvanized parts such as fuel tanks.

  7. Process for treating waste water having low concentrations of metallic contaminants

    DOEpatents

    Looney, Brian B; Millings, Margaret R; Nichols, Ralph L; Payne, William L

    2014-12-16

    A process for treating waste water having a low level of metallic contaminants by reducing the toxicity level of metallic contaminants to an acceptable level and subsequently discharging the treated waste water into the environment without removing the treated contaminants.

  8. Accumulation of heavy metals from contaminated soil to plants and evaluation of soil remediation by vermiculite.

    PubMed

    Malandrino, Mery; Abollino, Ornella; Buoso, Sandro; Giacomino, Agnese; La Gioia, Carmela; Mentasti, Edoardo

    2011-01-01

    We evaluated the distribution of 15 metal ions, namely Al, Cd, Cu, Cr, Fe, La, Mn, Ni, Pb, Sc, Ti, V, Y, Zn and Zr, in the soil of a contaminated site in Piedmont (Italy). This area was found to be heavily contaminated with Cu, Cr and Ni. The availability of these metal ions was studied using Tessier's sequential extraction procedure: the fraction of mobile species, which potentially is the most harmful for the environment, was much higher than that normally present in unpolluted soils. This soil was hence used to evaluate the effectiveness of treatment with vermiculite to reduce the availability of the pollutants to two plants, Lactuca sativa and Spinacia oleracea, by pot experiments. The results indicated that the addition of vermiculite significantly reduces the uptake of metal pollutants by plants, confirming the possibility of using this clay in amendment treatments of metal-contaminated soils. The effect of plant growth on metal fractionation in soils was investigated. Finally, the sum of the metal percentages extracted into the first two fractions of Tessier's protocol was found to be suitable in predicting the phytoavailability of most of the pollutants present in the investigated soil. PMID:21055788

  9. Quantifying Heavy Metals Sequestration by Sulfate-Reducing Bacteria in an Acid Mine Drainage-Contaminated Natural Wetland

    PubMed Central

    Moreau, John W.; Fournelle, John H.; Banfield, Jillian F.

    2013-01-01

    Bioremediation strategies that depend on bacterial sulfate reduction for heavy metals remediation harness the reactivity of these metals with biogenic aqueous sulfide. Quantitative knowledge of the degree to which specific toxic metals are partitioned into various sulfide, oxide, or other phases is important for predicting the long-term mobility of these metals under environmental conditions. Here we report the quantitative partitioning into sedimentary biogenic sulfides of a suite of metals and metalloids associated with acid mine drainage contamination of a natural estuarine wetland for over a century. PMID:23487496

  10. Study of canal sediments contaminated with heavy metals: fungal versus bacterial bioleaching techniques.

    PubMed

    Sabra, Nada; Dubourguier, Henri-Charles; Duval, Marie-Nadège; Hamieh, Tayssir

    2011-01-01

    Filamentous fungi and lithotrophic bacteria were used to leach heavy metals from dredged sediments in semi-pilot scale air-lift bioreactors. A preliminary physico-chemical characterization of the sediments comprising a sequential extraction study revealed their high metallic contamination and a predominant association of the metals with sulphides and organic matter. The mobility of heavy metals from sediments was ranked by decreasing order as follows: Mn > Zn > Cd > Cu > Pb. The conditions that favoured the solubilization of heavy metals by filamentous fungi turned out to be also favourable for the activity of the sediment organotrophic bacteria. The latter produced organic acids under temporary hypoxic conditions and resulted in the solubilization of 77% of manganese, 44% of zinc, 12% of copper, and less than 2% of cadmium or lead. In general, the fungal organotrophic treatments were limited to the relatively mobile metals due to the weak nature of the organic acids produced and to their microbial consumption under limited saccharose conditions. The lithotrophic treatments yielded higher solubilization results than the organotrophic experiments. Sulphur resulted in a faster, and for some metals such as copper and cadmium, in better bioleaching results compared with reduced iron or with a combination of reduced iron and sulphur. The bioleaching percentages varied between 72 and 93% for cadmium, copper, manganese and zinc, except for lead because of the poor solubility of lead sulphate. The sediment's lithotrophic bacteria acidified the matrix through sulphur oxidation, and leached both loosely and tightly bound metals. PMID:21970173

  11. Evaluation of metal partitioning and mobility in a sulfidic mine tailing pile under oxic and anoxic conditions.

    PubMed

    Pinto, Patricio X; Al-Abed, Souhail R; Holder, Christopher; Reisman, David J

    2014-07-01

    Mining-influenced water emanating from mine tailings and potentially contaminating surface water and groundwater is one of the most important environmental issues linked to the mining industry. In this study, two subsets of Callahan Mine tailings (mainly comprised of silicates, sulfides, and carbonates) were collected using sealed containers, which allowed keeping the samples under anoxic conditions during transportation and storage. Among the potential contaminants, in spite of high concentrations of Cu, Mn, Pb, and Zn present in the solid mine tailings, only small amounts of Mn and Zn were found in the overlying pore water. The samples were subjected to leaching tests at different reduction-oxidation (redox) conditions to compare metal and S mobilization under oxic and anoxic conditions. It was observed that Cd, Cu, Mn, Pb, S, and Zn were mobilized at higher rates under oxic conditions, while Fe was mobilized at a higher rate under anoxic conditions in comparable constant pH experiments. These results suggest that metal mobilization is significantly impacted by redox conditions. When anoxic metal mobilization assessment is required, it is recommended to always maintain anoxic conditions because oxygen exposure may affect metal mobilization. A sequential extraction performed under oxic conditions revealed that most of the metals in the samples were associated with the sulfidic fraction and that the labile fraction was associated with Mn and moderate amounts of Pb and Zn. PMID:24747936

  12. Reductive mobilization of oxide-bound metals

    SciTech Connect

    Stone, A.T.

    1991-01-01

    We have completed a large number of experiments which examine the release of MnO{sub 2}-bound Co, Ni, and Cu. Our work has focused upon the following areas: (1) competitive adsorption among the three toxic metals and Mn(II); (2) toxic metal release upon addition of low MW organic reductants and complexants; and (3) toxic metal release upon addition of natural organic matter-rich surface waters and IHSS organic matter reference material.

  13. Biochar Amendment for Reducing Leachability of Nitro Explosives and Metals from Contaminated Soils and Mine Tailings.

    PubMed

    Oh, Seok-Young; Yoon, Hyun-Su

    2016-05-01

    The mobility and bioavailability of nitro explosives (2,4-dinitrotoluene [DNT], 2,4,6-trinitrotoluene [TNT], and hexahydro-1,3,5-trinitro-1,3,5-triazine [RDX]) in biochar-amended soils and toxic metals (As, Cd, Cu, Pb, and Zn) in biochar-amended mine tailings were investigated via various types of leaching procedures in laboratory-scale batch experiments. The results from the toxicity characteristic leaching procedure (TCLP) and hydroxypropyl-β-cyclodextrin (HPCD) extraction showed that approximately 55 to 95% of the explosives were released from the contaminated soils and would thus be considered as mobile. With the addition of biochar, the extracted concentrations of explosives were reduced to less than 10% of the initial concentrations after 10 d. According to the results from a Korean waste leaching method, the TCLP method, and diethylenetriaminepentaacetic acid (DTPA) extraction, adding biochar to mine tailings reduced the extractability and bioavailability of metals. The chemical forms of the metals, types of extractants, pH, and curing period strongly affected the extractability of metals from mine tailings. The results suggest that biochar is a promising immobilizer of explosives and metals in contaminated soils and mine tailings under limited conditions. PMID:27136167

  14. Catalytic extraction processing of contaminated scrap metal

    SciTech Connect

    Griffin, T.P.; Johnston, J.E.; Payea, B.M.; Zeitoon, B.M.

    1995-12-01

    Molten Metal Technology was awarded a contract to demonstrate the applicability of the Catalytic Extraction Process, a proprietary process that could be applied to US DOE`s inventory of low level mixed waste. This paper is a description of that technology, and included within this document are discussions of: (1) Program objectives, (2) Overall technology review, (3) Organic feed conversion to synthetic gas, (4) Metal, halogen, and transuranic recovery, (5) Demonstrations, (6) Design of the prototype facility, and (7) Results.

  15. Contamination and galvanic corrosion in metal chemical-mechanical planarization

    NASA Astrophysics Data System (ADS)

    Zhang, Liming

    Chemical mechanical planarization (CMP) of metals is a critical process in the manufacturing of ultra-large scale integrated (ULSI) circuit devices. The overall success of a CMP process requires minimal particulate and metallic contamination of the structures subjected to CMP. The objective of this study was to investigate alumina particle contamination during tungsten CMP, copper contamination in copper CMP, and galvanic corrosion between metal films and adhesion layers during the final stages of tungsten and copper CMP. Particular attention was paid to the use of short chain organic carboxylic acids in reducing the contamination. Both electrokinetic and uptake measurements showed that citric acid and malonic acid interact with alumina particles by electrostatic as well as specific adsorption forces. Systematic immersion contamination and polishing experiments were carried out to demonstrate the effectiveness of the acids in controlling alumina particulate contamination on wafer surfaces. The difference in the surface cleanliness was interpreted using the electrokinetic data and the calculated interaction energy between alumina particles and the wafer surface. Electrochemical tests showed no severe attack on tungsten films by the acids. Copper ions were found to adsorb onto the silicon dioxide surface, leading to copper contamination levels of upto 1013 atoms/cm 2. The extent of copper contamination was found to depend on the solution pH and the presence of additives such as hydrogen peroxide. Both electrokinetic measurements and immersion contamination experiments showed that citric acid can reduce the copper contamination on the silicon dioxide surface. TiN is more noble than tungsten in the solutions containing oxidants used in tungsten CMP slurries. The most significant corrosion of tungsten was found in the presence of hydrogen peroxide. Copper was found to be more noble than tantalum in acidic solutions. However, in alkaline ammonium hydroxide solutions, the

  16. Coupling bioleaching and electrokinetics to remediate heavy metal contaminated soils.

    PubMed

    Huang, Qingyun; Yu, Zhen; Pang, Ya; Wang, Yueqiang; Cai, Zhihong

    2015-04-01

    In this study, bioleaching was coupled with electrokinetics (BE) to remove heavy metals (Cu, Zn, Cr and Pb) from contaminated soil. For comparison, bioleaching (BL), electrokinetics (EK), and the chemical extraction method were also applied alone to remove the metals. The results showed that the BE method removed more heavy metals from the contaminated soil than the BL method or the EK method alone. The BE method was able to achieve metal solubilization rates of more than 70 % for Cu, Zn and Cr and of more than 40 % for Pb. Within the range of low current densities (<1 mA cm(-2)), higher current density led to more metal removal. However, the metal solubilization rates did not increase with increasing current density when the current density was higher than 1 mA cm(-2). Therefore, it is suggested that bioleaching coupled with electrokinetics can effectively remediate heavy metal-contaminated soils and that preliminary tests should be conducted before field operation to detect the lowest current density for the greatest metal removal. PMID:25680933

  17. Biomonitoring heavy metal contaminations by moss visible parameters.

    PubMed

    Chen, Yang-Er; Cui, Jun-Mei; Yang, Jin-Chuan; Zhang, Zhong-Wei; Yuan, Ming; Song, Chun; Yang, Hui; Liu, Han-Mei; Wang, Chang-Quan; Zhang, Huai-Yu; Zeng, Xian-Yin; Yuan, Shu

    2015-10-15

    Traditional sampling for heavy metal monitoring is a time-consuming and inconvenient method, which also does not indicate contaminants non-invasively and instantaneously. Moss is sensitive to heavy metals and is therefore considered a pollution indicator. However, it is unknown what kind physiological parameters can indicate metal contaminations quickly and non-invasively. Here, we systematically examined the effects of six heavy metals on physiological parameters and photosynthetic activities of two moss species grown in aquatic media or moist soil surface. We suggest that a phenotype with anthocyanin accumulation pattern and chlorosis pattern and two chlorophyll fluorescence parameters with their images can roughly reflect metal species groups, concentrations and differences between the two moss species. In other words, metal contaminations could be roughly estimated visually using the naked eye. Enzymatic and non-enzymatic anti-oxidative abilities and photosynthetic protein contents of Eurhynchium eustegium were higher than those of Taxiphyllum taxirameum, indicating their differential metal tolerance. Neither anti-oxidative abilities nor photosynthetic proteins were found to be ideal indicators. This study provides new ideas to monitor heavy metals rapidly and non-invasively in water or on wetland and moist soil surface. PMID:25919648

  18. Heavy Metals Contamination of Table Salt Consumed in Iran

    PubMed Central

    Cheraghali, Abdol Majid; Kobarfard, Farzad; Faeizy, Noroldin

    2010-01-01

    Lead, cadmium, mercury and arsenic are the most important heavy metals which may cause health risks following consumption of contaminated foods. Table salt is one the mostly used food additive with unique place in food consumption. Although purified table salt is expected to have lower level of contamination, some Iranians still prefer to use rock salt. Use of rock salt for food purposes has been banned by Iranian health authorities. In this study, heavy metal contamination of table salt consumed in Iran has been investigated. One hundred samples of rock and refined table salts were analyzed using atomic absorption spectrophotometeric methods for the presence of toxic heavy metals. The mean concentration of tested tracer metals including Cd, Pb, Hg and As was 0.024, 0.438, 0.021 and 0.094 μg/g, respectively. The concentrations of tested heavy metals were well below the maximum levels set by Codex. However, no statistically significant difference was found between contamination of rock salt and refined salt to heavy metals. PMID:24363718

  19. Evaluation of mobility, bioavailability and toxicity of Pb and Cd in contaminated soil using TCLP, BCR and earthworms.

    PubMed

    Kede, Maria Luiza F M; Correia, Fabio V; Conceição, Paulo F; Junior, Sidney F Salles; Marques, Marcia; Moreira, Josino C; Pérez, Daniel V

    2014-11-01

    The objective of the present study was to investigate the reduction of mobility, availability and toxicity found in soil contaminated with lead (Pb) and cadmium (Cd) from Santo Amaro Municipality, Bahia, Brazil using two combined methods, commonly tested separately according to the literature: metal mobilization with phosphates and phytoextraction. The strategy applied was the treatment with two sources of phosphates (separately and mixed) followed by phytoremediation with vetiver grass (Vetiveria zizanioides (L.)). The treatments applied (in triplicates) were: T1-potassium dihydrogen phosphate (KH2PO4); T2-reactive natural phosphate fertilizer (NRP) and; T3-a mixture 1:1 of KH2PO4 and NRP. After this step, untreated and treated soils were planted with vetiver grass. The extraction procedures and assays applied to contaminated soil before and after the treatments included metal mobility test (TCLP); sequential extraction with BCR method; toxicity assays with Eisenia andrei. The soil-to-plant transfer factors (TF) for Pb and Cd were estimated in all cases. All treatments with phosphates followed by phytoremediation reduced the mobility and availability of Pb and Cd, being KH2PO4 (T1) plus phytoremediation the most effective one. Soil toxicity however, remained high after all treatments. PMID:25386955

  20. Evaluation of Mobility, Bioavailability and Toxicity of Pb and Cd in Contaminated Soil Using TCLP, BCR and Earthworms

    PubMed Central

    Kede, Maria Luiza F. M.; Correia, Fabio V.; Conceição, Paulo F.; Salles Junior, Sidney F.; Marques, Marcia; Moreira, Josino C.; Pérez, Daniel V.

    2014-01-01

    The objective of the present study was to investigate the reduction of mobility, availability and toxicity found in soil contaminated with lead (Pb) and cadmium (Cd) from Santo Amaro Municipality, Bahia, Brazil using two combined methods, commonly tested separately according to the literature: metal mobilization with phosphates and phytoextraction. The strategy applied was the treatment with two sources of phosphates (separately and mixed) followed by phytoremediation with vetiver grass (Vetiveria zizanioides (L.)). The treatments applied (in triplicates) were: T1—potassium dihydrogen phosphate (KH2PO4); T2—reactive natural phosphate fertilizer (NRP) and; T3—a mixture 1:1 of KH2PO4 and NRP. After this step, untreated and treated soils were planted with vetiver grass. The extraction procedures and assays applied to contaminated soil before and after the treatments included metal mobility test (TCLP); sequential extraction with BCR method; toxicity assays with Eisenia andrei. The soil-to-plant transfer factors (TF) for Pb and Cd were estimated in all cases. All treatments with phosphates followed by phytoremediation reduced the mobility and availability of Pb and Cd, being KH2PO4 (T1) plus phytoremediation the most effective one. Soil toxicity however, remained high after all treatments. PMID:25386955

  1. SITE demonstration of the Dynaphore/Forager Sponge technology to remove dissolved metals from contaminated groundwater

    SciTech Connect

    Esposito, C.R.; Vaccaro, G.

    1995-10-01

    A Superfund Innovative Technology Evaluation (SITE) demonstration was conducted of the Dynaphore/Forager Sponge technology during the week of April 3, 1994 at the N.L. Industries Superfund Site in Pedricktown, New Jersey. The Forager Sponge is an open-celled cellulose sponge incorporating an amine-containing chelating polymer that selectively absorbs dissolved heavy metals in both cationic and anionic states. This technology is a volume reduction technology in which heavy metal contaminants from an aqueous medium are concentrated into a smaller volume for facilitated disposal. The developer states that the technology can be used to remove heavy metals from a wide variety of aqueous media, such as groundwater, surface waters and process waters. The sponge matrix can be directly disposed, or regenerated with chemical solutions. For this demonstration the sponge was set up as a mobile pump-and-treat system which treated groundwater contaminated with heavy metals. The demonstration focused on the system`s ability to remove lead, cadmium, chromium and copper from the contaminated groundwater over a continuous 72-hour test. The removal of heavy metals proceeded in the presence of significantly higher concentrations of innocuous cations such as calcium, magnesium, sodium, potassium and aluminum.

  2. Spatial analysis of antibiotic resistance along metal contaminated streams.

    PubMed

    Tuckfield, R Cary; McArthur, J Vaun

    2008-05-01

    The spatial pattern of antibiotic resistance in culturable sediment bacteria from four freshwater streams was examined. Previous research suggests that the prevalence of antibiotic resistance may increase in populations via indirect or coselection from heavy metal contamination. Sample bacteria from each stream were grown in media containing one of four antibiotics-tetracycline, chloramphenicol, kanamycin, and streptomycin-at concentrations greater than the minimum inhibitory concentration, plus a control. Bacteria showed high susceptibilities to the former two antibiotics. We summarized the latter two more prevalent (aminoglycoside) resistance responses and ten metals concentrations per sediment sample, by Principal Components Analysis. Respectively, 63 and 58% of the variability was explained in the first principal component of each variable set. We used these multivariate summary metrics [i.e., first principal component (PC) scores] as input measures for exploring the spatial correlation between antibiotic resistance and metal concentration for each stream sampled. Results show a significant and negative correlation between metals PC scores versus aminoglycoside resistance scores and suggest that selection for metal tolerance among sediment bacteria may influence selection for antibiotic resistance differently in sediments than in the water column. Our most important finding comes from geostatistical cross-variogram analysis, which shows that increasing metal concentration scores are spatially associated with decreasing aminoglycoside resistance scores--a negative correlation, but holds for contaminated streams only. We suspect our field results are influenced by metal bioavailability in the sediments and by a contaminant promoted interaction or "cocktail effect" from complex combinations of pollution mediated selection agents. PMID:17899247

  3. RESTORATION OF METAL CONTAMINATED SOILS USING BIOSOLIDS

    EPA Science Inventory

    Biosolids in combination with different types of limestone have been applied to metal mine tailings in Bunker Hill, ID, Leadville, Co, Joplin, MO and Tar Creek, OK. For each of these sites, tailings were unable to support a vegetative cover prior to amendment addition. Elevated...

  4. Are we aware how contaminated our mobile phones with nosocomial pathogens?

    PubMed Central

    Ulger, Fatma; Esen, Saban; Dilek, Ahmet; Yanik, Keramettin; Gunaydin, Murat; Leblebicioglu, Hakan

    2009-01-01

    Background The objective of this study was to determine the contamination rate of the healthcare workers' (HCWs') mobile phones and hands in operating room and ICU. Microorganisms from HCWs' hands could be transferred to the surfaces of the mobile phones during their use. Methods 200 HCWs were screened; samples from the hands of 200 participants and 200 mobile phones were cultured. Results In total, 94.5% of phones demonstrated evidence of bacterial contamination with different types of bacteria. The gram negative strains were isolated from mobile phones of 31.3% and the ceftazidime resistant strains from the hands were 39.5%. S. aureus strains isolated from mobile phones of 52% and those strains isolated from hands of 37.7% were methicillin resistant. Distributions of the isolated microorganisms from mobile phones were similar to hands isolates. Some mobile phones were contaminated with nosocomial important pathogens. Conclusion These results showed that HCWs' hands and their mobile phones were contaminated with various types of microorganisms. Mobile phones used by HCWs in daily practice may be a source of nosocomial infections in hospitals. PMID:19267892

  5. Removal of metals by sorghum plants from contaminated land.

    PubMed

    Zhuang, Ping; Shu, Wensheng; Li, Zhian; Liao, Bin; Li, Jintian; Shao, Jingsong

    2009-01-01

    The growth of high biomass crops facilitated by optimal of agronomic practices has been considered as an alternative to phytoremediation of soils contaminated by heavy metals. A field trial was carried out to evaluate the phytoextraction efficiency of heavy metals by three varieties of sweet sorghum (Sorghum biocolor L.), a high biomass energy plant. Ethylene diamine tetraacetate (EDTA), ammonium nitrate (NH4NO3) and ammonium sulphate ((NH4)2SO4) were tested for their abilities to enhance the removal of heavy metals Pb, Cd, Zn, and Cu by sweet sorghum from a contaminated agricultural soil. Sorghum plants always achieved the greatest removal of Pb by leaves and the greatest removal of Cd, Zn and Cu by stems. There was no significant difference among the Keller, Rio and Mray varieties of sweet sorghums in accumulating heavy metals. EDTA treatment was more efficient than ammonium nitrate and ammonium sulphate in promoting Pb accumulation in sweet sorghum from the contaminated agricultural soil. The application of ammonium nitrate and ammonium sulphate increased the accumulation of both Zn and Cd in roots of sorghum plants. Results from this study suggest that cropping of sorghum plants facilitated by agronomic practices may be a sustainable technique for partial decontamination of heavy metal contaminated soils. PMID:19999999

  6. Prevalence of antibacterial resistant bacterial contaminants from mobile phones of hospital inpatients

    PubMed Central

    Vinod Kumar, B.; Hobani, Yahya Hasan; Abdulhaq, Ahmed; Jerah, Ahmed Ali; Hakami, Othman M.; Eltigani, Magdeldin; Bidwai, Anil K.

    2014-01-01

    Mobile phones contaminated with bacteria may act as fomites. Antibiotic resistant bacterial contamination of mobile phones of inpatients was studied. One hundred and six samples were collected from mobile phones of patients admitted in various hospitals in Jazan province of Saudi Arabia. Eighty-nine (83.9%) out of 106 mobile phones were found to be contaminated with bacteria. Fifty-two (49.0%) coagulase-negative Staphylococcus, 12 (11.3%) Staphylococcus aureus, 7 (6.6%) Enterobacter cloacae, 3 (2.83%) Pseudomonas stutzeri, 3 (2.83%) Sphingomonas paucimobilis, 2 (1.8%) Enterococcus faecalis and 10 (9.4%) aerobic spore bearers were isolated. All the isolated bacteria were found to be resistant to various antibiotics. Hence, regular disinfection of mobile phones of hospital inpatients is advised. PMID:25292217

  7. Prevalence of antibacterial resistant bacterial contaminants from mobile phones of hospital inpatients.

    PubMed

    Vinod Kumar, B; Hobani, Yahya Hasan; Abdulhaq, Ahmed; Jerah, Ahmed Ali; Hakami, Othman M; Eltigani, Magdeldin; Bidwai, Anil K

    2014-01-01

    Mobile phones contaminated with bacteria may act as fomites. Antibiotic resistant bacterial contamination of mobile phones of inpatients was studied. One hundred and six samples were collected from mobile phones of patients admitted in various hospitals in Jazan province of Saudi Arabia. Eighty-nine (83.9%) out of 106 mobile phones were found to be contaminated with bacteria. Fifty-two (49.0%) coagulase-negative Staphylococcus, 12 (11.3%) Staphylococcus aureus, 7 (6.6%) Enterobacter cloacae, 3 (2.83%) Pseudomonas stutzeri, 3 (2.83%) Sphingomonas paucimobilis, 2 (1.8%) Enterococcus faecalis and 10 (9.4%) aerobic spore bearers were isolated. All the isolated bacteria were found to be resistant to various antibiotics. Hence, regular disinfection of mobile phones of hospital inpatients is advised. PMID:25292217

  8. Phytoremediation of heavy metal contaminated soil by Jatropha curcas.

    PubMed

    Chang, Fang-Chih; Ko, Chun-Han; Tsai, Ming-Jer; Wang, Ya-Nang; Chung, Chin-Yi

    2014-12-01

    This study employed Jatropha curcas (bioenergy crop plant) to assist in the removal of heavy metals from contaminated field soils. Analyses were conducted on the concentrations of the individual metals in the soil and in the plants, and their differences over the growth periods of the plants were determined. The calculation of plant biomass after 2 years yielded the total amount of each metal that was removed from the soil. In terms of the absorption of heavy metal contaminants by the roots and their transfer to aerial plant parts, Cd, Ni, and Zn exhibited the greatest ease of absorption, whereas Cu, Cr, and Pb interacted strongly with the root cells and remained in the roots of the plants. J. curcas showed the best absorption capability for Cd, Cr, Ni, and Zn. This study pioneered the concept of combining both bioremediation and afforestation by J. curcas, demonstrated at a field scale. PMID:25236867

  9. Benzene contamination at a metal plating facility

    NASA Astrophysics Data System (ADS)

    Memon, B. A.; Burston, M. R.

    2005-08-01

    A metal plating facility in central Kentucky was required to complete a RCRA Facility Investigation to address a number of Solid Waste Management Units at the site. Twenty monitoring wells were installed at the facility. Ground water from the wells was sampled for total and dissolved metals, polychlorinated biphenyls, acid extractable compounds, base neutral compounds, and volatile organic compounds. Unexpectedly, relatively large concentrations of benzene, up to 120 μg/l, were detected in samples from some of the wells, including wells that should have been hydraulically upgradient from the facility. As a result of the detection of benzene, the facility completed an investigation to identify the source. A nearby facility had completed a gasoline underground storage tank (UST) closure at about the time of the installation of the 20 wells. Reportedly the UST had small holes when removed. Three potential pathways of migration (a ditch, sanitary sewer, and a sink hole) from the nearby facility to the metal-plating facility and residual soils with very large concentrations of benzene, toluene, ethylbenzene, and xylenes have been identified.

  10. Vertical column hydroclassification of metal-contaminated soils.

    PubMed

    Williford, C W; Li, Z; Wang, Z; Bricka, R M

    1999-04-23

    The purpose of this work was to reduce soil volumes requiring aggressive treatment. A second purpose was to determine differences in separation due to distinct forms of the metal contamination and soil texture. The objectives were to apply hydroclassification and find mass and metal-contaminant distribution of four soils contaminated with heavy metals from firing ranges, a small arms incinerator, and an electroplating operation. The soils were slurried in water, sieved, and exposed to upward flowing water to separate the soil particles into four nominal size ranges. The popping furnace soil exhibited substantial lead among all particle size fractions. The firing range soils exhibited bimodal distributions. The electroplating soil exhibited a strong concentration of metals toward the <63 microm fraction. Attrition scrubbing moderately improved the enrichment of metals in several fractions. Extraction revealed the lead and chromium in the electroplating soil to be relatively immobile. These results suggest metal distributions are influenced by the different mechanisms of introduction into the soil. They also help to predict performance of processing options such as sieving hydroclassification and attrition scrubbing. PMID:10379028

  11. Removal of trace metal contaminants from potable water by electrocoagulation.

    PubMed

    Heffron, Joe; Marhefke, Matt; Mayer, Brooke K

    2016-01-01

    This study investigated the effects of four operational and environmental variables on the removal of trace metal contaminants from drinking water by electrocoagulation (EC). Removal efficiencies for five metals (arsenic, cadmium, chromium, lead and nickel) were compared under varying combinations of electrode material, post-treatment, water composition and pH. Iron electrodes out-performed aluminum electrodes in removing chromium and arsenic. At pH 6.5, aluminum electrodes were slightly more effective at removing nickel and cadmium, while at pH 8.5, iron electrodes were more effective for these metals. Regardless of electrode, cadmium and nickel removal efficiencies were higher at pH 8.5 than at pH 6.5. Post-EC treatment using membrane filtration (0.45 μm) enhanced contaminant removal for all metals but nickel. With the exception of lead, all metals exhibited poorer removal efficiencies as the ionic strength of the background electrolyte increased, particularly in the very high-solids synthetic groundwaters. Residual aluminum concentrations were lowest at pH 6.5, while iron residuals were lowest in low ionic strength waters. Both aluminum and iron residuals required post-treatment filtration to meet drinking water standards. EC with post-treatment filtration appears to effectively remove trace metal contaminants to potable water standards, but both reactor and source water parameters critically impact removal efficiency. PMID:27324564

  12. Removal of trace metal contaminants from potable water by electrocoagulation

    NASA Astrophysics Data System (ADS)

    Heffron, Joe; Marhefke, Matt; Mayer, Brooke K.

    2016-06-01

    This study investigated the effects of four operational and environmental variables on the removal of trace metal contaminants from drinking water by electrocoagulation (EC). Removal efficiencies for five metals (arsenic, cadmium, chromium, lead and nickel) were compared under varying combinations of electrode material, post-treatment, water composition and pH. Iron electrodes out-performed aluminum electrodes in removing chromium and arsenic. At pH 6.5, aluminum electrodes were slightly more effective at removing nickel and cadmium, while at pH 8.5, iron electrodes were more effective for these metals. Regardless of electrode, cadmium and nickel removal efficiencies were higher at pH 8.5 than at pH 6.5. Post-EC treatment using membrane filtration (0.45 μm) enhanced contaminant removal for all metals but nickel. With the exception of lead, all metals exhibited poorer removal efficiencies as the ionic strength of the background electrolyte increased, particularly in the very high-solids synthetic groundwaters. Residual aluminum concentrations were lowest at pH 6.5, while iron residuals were lowest in low ionic strength waters. Both aluminum and iron residuals required post-treatment filtration to meet drinking water standards. EC with post-treatment filtration appears to effectively remove trace metal contaminants to potable water standards, but both reactor and source water parameters critically impact removal efficiency.

  13. Removal of trace metal contaminants from potable water by electrocoagulation

    PubMed Central

    Heffron, Joe; Marhefke, Matt; Mayer, Brooke K.

    2016-01-01

    This study investigated the effects of four operational and environmental variables on the removal of trace metal contaminants from drinking water by electrocoagulation (EC). Removal efficiencies for five metals (arsenic, cadmium, chromium, lead and nickel) were compared under varying combinations of electrode material, post-treatment, water composition and pH. Iron electrodes out-performed aluminum electrodes in removing chromium and arsenic. At pH 6.5, aluminum electrodes were slightly more effective at removing nickel and cadmium, while at pH 8.5, iron electrodes were more effective for these metals. Regardless of electrode, cadmium and nickel removal efficiencies were higher at pH 8.5 than at pH 6.5. Post-EC treatment using membrane filtration (0.45 μm) enhanced contaminant removal for all metals but nickel. With the exception of lead, all metals exhibited poorer removal efficiencies as the ionic strength of the background electrolyte increased, particularly in the very high-solids synthetic groundwaters. Residual aluminum concentrations were lowest at pH 6.5, while iron residuals were lowest in low ionic strength waters. Both aluminum and iron residuals required post-treatment filtration to meet drinking water standards. EC with post-treatment filtration appears to effectively remove trace metal contaminants to potable water standards, but both reactor and source water parameters critically impact removal efficiency. PMID:27324564

  14. Assessment of mobility and bioavailability of contaminants in MSW incineration ash with aquatic and terrestrial bioassays.

    PubMed

    Ribé, V; Nehrenheim, E; Odlare, M

    2014-10-01

    Incineration of municipal solid waste (MSW) is a waste treatment method which can be sustainable in terms of waste volume reduction as well as a source of renewable energy. In the process fly and bottom ash is generated as a waste material. The ash residue may vary greatly in composition depending on the type of waste incinerated and it can contain elevated levels of harmful contaminants such as heavy metals. In this study, the ecotoxicity of a weathered, untreated incineration bottom ash was characterized as defined by the H14 criterion of the EU Waste Framework Directive by means of an elemental analysis, leaching tests followed by a chemical analysis and a combination of aquatic and solid-phase bioassays. The experiments were conducted to assess the mobility and bioavailability of ash contaminants. A combination of aquatic and terrestrial bioassays was used to determine potentially adverse acute effects of exposure to the solid ash and aqueous ash leachates. The results from the study showed that the bottom ash from a municipal waste incineration plant in mid-Sweden contained levels of metals such as Cu, Pb and Zn, which exceeded the Swedish EPA limit values for inert wastes. The chemical analysis of the ash leachates showed high concentrations of particularly Cr. The leachate concentration of Cr exceeded the limit value for L/S 10 leaching for inert wastes. Filtration of leachates prior to analysis may have underestimated the leachability of complex-forming metals such as Cu and Pb. The germination test of solid ash and ash leachates using T. repens showed a higher inhibition of seedling emergence of seeds exposed to the solid ash than the seeds exposed to ash leachates. This indicated a relatively low mobility of toxicants from the solid ash into the leachates, although some metals exceeded the L/S 10 leaching limit values for inert wastes. The Microtox® toxicity test showed only a very low toxic response to the ash leachate exposure, while the D. magna

  15. Method for mobilization of hazardous metal ions in soils

    DOEpatents

    Dugan, P.R.; Pfister, R.M.

    1995-06-27

    A microbial process is revealed for removing heavy metals such as bismuth, cadmium, lead, thorium, uranium and other transuranics from soils and sediments. The method utilizes indigenous, or isolates of indigenous, microorganisms and reducing agents, such as cysteine or sodium thioglycollate, or complexing agents such as the amino acid glycine, to effect the mobilization or release of the metals from the soil particles. 5 figs.

  16. Soil contamination of heavy metals in the Katedan Industrial Development Area, Hyderabad, India.

    PubMed

    Govil, P K; Sorlie, J E; Murthy, N N; Sujatha, D; Reddy, G L N; Rudolph-Lund, Kim; Krishna, A K; Rama Mohan, K

    2008-05-01

    Studies on quantitative soil contamination due to heavy metals were carried out in Katedan Industrial Development Area (KIDA), south of Hyderabad, Andhra Pradesh, India under the Indo-Norwegian Institutional Cooperation Programme. The study area falls under a semi-arid type of climate and consists of granites and pegmatite of igneous origin belonging to the Archaean age. There are about 300 industries dealing with dyeing, edible oil production, battery manufacturing, metal plating, chemicals, etc. Most of the industries discharge their untreated effluents either on open land or into ditches. Solid waste from industries is randomly dumped along roads and open grounds. Soil samples were collected throughout the industrial area and from downstream residential areas and were analysed by X-ray Fluorescence Spectrometer for fourteen trace metals and ten major oxides. The analytical data shows very high concentrations of lead, chromium, nickel, zinc, arsenic and cadmium through out the industrial area. The random dumping of hazardous waste in the industrial area could be the main cause of the soil contamination spreading by rainwater and wind. In the residential areas the local dumping is expected to be the main source as it is difficult to foresee that rain and wind can transport the contaminants from the industrial area. If emission to air by the smokestacks is significant, this may contribute to considerable spreading of contaminants like As, Cd and Pb throughout the area. A comparison of the results with the Canadian Soil Quality Guidelines (SQGL) show that most of the industrial area is heavily contaminated by As, Pb and Zn and local areas by Cr, Cu and Ni. The residential area is also contaminated by As and some small areas by Cr, Cu, Pb and Zn. The Cd contamination is detected over large area but it is not exceeding the SQGL value. Natural background values of As and Cr exceed the SQGL values and contribute significantly to the contamination in the residential area

  17. ACID EXTRACTION TREATMENT SYSTEM FOR TREATMENT OF METAL CONTAMINATED SOILS

    EPA Science Inventory

    The Acid Extraction Treatment System (AETS) reduces the concentrations and/or leachability of heavy metals in contaminated soils so the soil can be returned to the site from which it originated. he objective of the project was to determine the effectiveness and commercial viabili...

  18. THE IMPORTANCE OF BIOAVAILABILITY IN REMEDIATION OF METAL CONTAMINATED SOILS

    EPA Science Inventory

    Reduction in exposure to soil metal contamination has typically been accomplished by soil removal and off site disposal, by covering, or by diluting with uncontaminated soil. Cost, logistical concerns, and regulatory requirements associated with excavation and disposal or ex-situ...

  19. HEAVY METAL CONTAMINATION IN THE TAIMYR PENINSULA, SIBERIAN ARCTIC

    EPA Science Inventory

    The Taimyr Peninsula is directly north of the world's largest heavy metal smelting complex (Norilsk, Russia). Despite this proximity, there has been little research to examine the extent of contamination of the Taimyr Peninsula, primarily because of the remoteness of this area. W...

  20. Mobility of trace metals in retention pond sediments.

    PubMed

    Durand, C; Ruban, V; Amblès, A

    2004-08-01

    This paper presents the results of a study on trace metal mobility in the sediments of several road and urban infiltration/decantation ponds in France; the trace metal concentrations are indeed high. The potential mobility of trace metals (cadmium, nickel, chromium, copper, lead and zinc) was evaluated by application of the sequential extraction BCR protocol. Results have been compared with those from the IHSS protocol, which allows for the extraction of various forms of organic matter. Cadmium is the most easily exchangeable element in the case of variations in physical-chemical conditions (50% to 60% of Cd is exchangeable and 70% to 80% of Cd remains within the fulvic acid fraction) and is thus easily releasable within an acidic medium. Zinc is also potentially mobile and stays mainly concentrated in fulvic acids, except in the case of the Ronchin sediment (more than 50% in humin). In contrast, nickel and chromium are primarily present in the residual fraction and do not exhibit high mobility. Copper and lead are concentrated in both the humic acid fraction (IHSS protocol) and the organic phase (BCR scheme); consequently, their mobility is limited. PMID:15366555

  1. Plant productivity and heavy metal contamination

    SciTech Connect

    Guidi, G.V.; Petruzzelli, G.; Vallini, G.; Pera, A.

    1990-06-01

    This article describes the potential for use of composts from green waste and from municipal solid wastes for agricultural use in Italy. The accumulation of heavy metals in compost-amended soils and crops was evaluated and the influence of these composts on plant productivity was studied. Green compost was obtained from vegetable organic residues; municipal solid waste derived compost was obtained from the aerobic biostabilization of a mixture of the organic biodegradable fraction of municipal solid waste and sewage sludge. The two composts had good chemical characteristics and their use caused no pollution to soil and plants. The overall fertilizing effect was higher for green compost even though green compost and municipal solid waste derived compost had similar contents of primary elements of fertility.

  2. Electrokinetic treatment of an agricultural soil contaminated with heavy metals.

    PubMed

    Figueroa, Arylein; Cameselle, Claudio; Gouveia, Susana; Hansen, Henrik K

    2016-07-28

    The high organic matter content in agricultural soils tends to complex and retain contaminants such as heavy metals. Electrokinetic remediation was tested in an agricultural soil contaminated with Co(+2), Zn(+2), Cd(+2), Cu(+2), Cr(VI), Pb(+2) and Hg(+2). The unenhanced electrokinetic treatment was not able to remove heavy metals from the soil due to the formation of precipitates in the alkaline environment in the soil section close to the cathode. Moreover, the interaction between metals and organic matter probably limited metal transportation under the effect of the electric field. Citric acid and ethylenediaminetetraacetic acid (EDTA) were used in the catholyte as complexing agents in order to enhance the extractability and removal of heavy metals from soil. These complexing agents formed negatively charged complexes that migrated towards the anode. The acid front electrogenerated at the anode favored the dissolution of heavy metals that were transported towards the cathode. The combined effect of the soil pH and the complexing agents resulted in the accumulation of heavy metals in the center of the soil specimen. PMID:27127923

  3. Characterizing toxicity of metal-contaminated sediments from mining areas

    USGS Publications Warehouse

    Besser, John M.; Brumbaugh, William G.; Ingersoll, Christopher G.

    2015-01-01

    This paper reviews methods for testing the toxicity of metals associated with freshwater sediments, linking toxic effects with metal exposure and bioavailability, and developing sediment quality guidelines. The most broadly applicable approach for characterizing metal toxicity is whole-sediment toxicity testing, which attempts to simulate natural exposure conditions in the laboratory. Standard methods for whole-sediment testing can be adapted to test a wide variety of taxa. Chronic sediment tests that characterize effects on multiple endpoints (e.g., survival, growth, and reproduction) can be highly sensitive indicators of adverse effects on resident invertebrate taxa. Methods for testing of aqueous phases (pore water, overlying water, or elutriates) are used less frequently. Analysis of sediment toxicity data focuses on statistical comparisons between responses in sediments from the study area and responses in one or more uncontaminated reference sediments. For large or complex study areas, a greater number of reference sediments is recommended to reliably define the normal range of responses in uncontaminated sediments – the ‘reference envelope’. Data on metal concentrations and effects on test organisms across a gradient of contamination may allow development of concentration-response models, which estimate metal concentrations associated with specified levels of toxic effects (e.g. 20% effect concentration or EC20). Comparisons of toxic effects in laboratory tests with measures of impacts on resident benthic invertebrate communities can help document causal relationships between metal contamination and biological effects. Total or total-recoverable metal concentrations in sediments are the most common measure of metal contamination in sediments, but metal concentrations in labile sediment fractions (e.g., determined as part of selective sediment extraction protocols) may better represent metal bioavailability. Metals released by the weak-acid extraction

  4. Environmental remediation through sequestration of airfall-derived metals contamination by selective revegetation strategies

    NASA Astrophysics Data System (ADS)

    Sahagian, D.; Peters, S.; Yasko, G.

    2006-12-01

    Industrial activities in the 20th century left a legacy of contaminated air, water, and soils. The relative environmental enlightenment of the 21st century has already led to reductions in pollution sources, and has improved air and surface water quality in many areas. However, the residence time of contaminants in soils can be lengthy, presenting a challenge to 21st century restoration of impacted ecosystems and communities. The present study is centered on the Borough of Palmerton, PA, and a broad region of adjacent communities that were affected by two zinc smelters that operated continuously for more than 80 years, emitting thousands of tons of heavy metals including zinc, cadmium, lead and arsenic. While the air quality has vastly improved since the closure of the zinc smelters, the community remains adversely affected by the ecological damage caused by the pollution. The north face of the Kittatiny ridge was completely denuded of vegetation from the high metals concentrations. The region suffers further due to the ongoing perception of contaminated soils and water, leaving the town and surrounding areas economically depressed. In this study, we are examining the impact of revegetation strategies, particularly those using warm season grasses to determine which species survive and indeed thrive in the metals-contaminated soils. Because of the large areal extent and locally steep slopes in the broad area of concern, removal of metals from the entire region is impractical. It is considered more effective to sequester the metals in the soil so that they do not leach into the rivers, or enter the food web. Vegetation that absorbs and transports the metals throughout its tissues would mobilize these pollutants into the food web as well as make the metals available to reach the river via leaves and other vegetative structures. In this study, we are monitoring the uptake of metals by test grasses and other plants that are colonizing the contaminated area, as well as

  5. Influences of solution chemical conditions on mobilization of TNT from contaminated soil

    SciTech Connect

    Dante, D.A.; Tiller, C.L.; Pennell, K.D.

    1996-12-31

    2,4,6-trinitrotoluene (TNT) and its byproducts are common contaminants on US military installations. Many potential remediation processes are in part limited by the transfer of TNT from the contaminated soil into the aqueous phase. The purpose of this research is to assess the release of TNT from contaminated soil under varying solution chemical conditions. In particular, influences of pH, aquatic natural organic matter, and addition of two surfactants is investigated. Uncontaminated soil was collected from a near-surface site at the Alabama Army Ammunition Plant and was artificially contaminated with TNT prior to the mobilization experiments. Results for the pH experiments show that more TNT is mobilized at neutral pH conditions than at low pH conditions. The presence of dissolved organic matter enhances the release of TNT from soil, but not by a large amount. Surfactant addition has the most significant effect on TNT mobilization.

  6. Unexpected Consequences: Gold Mining in Peru and Trace Metal Mobilization

    NASA Astrophysics Data System (ADS)

    Wang, R. Z.; Pinedo-Gonzalez, P.; Clark, K. E.; West, A. J.

    2014-12-01

    Artisanal miners in the Peruvian Amazon, especially in the Madre de Dios region, are targeting fluvial deposits along riverbanks as part of a modern-day gold rush. These miners often use mercury, causing Hg pollution and ecological damage. Research on the environmental consequences of these mines has focused primarily on the fate of Hg, and to date little work has considered whether mining river sediments affects the release and cycling of other trace metals. This project measures trace metal concentrations in soil and vegetation samples developed on fluvial sediments at one mine site and two non-mine (control) sites across gradients in natural plant succession and riverbank composition. Some metals, including Pb and Mo, showed leachable metal concentrations (determined using EPA Method 2050B and ICP-MS analysis) that were lower in mine site soils than control site soils, but higher in mine site vegetation than control site vegetation. These results held across all gradients in natural plant succession and soil composition. This suggests that metals may be preferentially mobilized from the soil and taken up by surrounding vegetation as a result of mining activities. Soils were also treated with a sequential leach to separate metals that are exchangeable, bound to carbonates, bound to Fe and Mn oxides, bound to organic matter and in the residual phase. Initial data shows that trace metal concentrations are generally lower in all phases from mine soils vs. control soils, across all gradients in natural plant succession and soil composition. Trace metal mobilization due to mining is facilitated by changing pH or redox conditions - e.g., by exposing buried minerals to water and oxygen. Fluvial sediments at these studied sites were already exposed during their erosion and transport, but anoxic conditions following deposition may allow a build-up of metals that are mobilized once sediments are re-worked by mining. It is also possible that Hg affects the mobility of other

  7. Magnetic mineralogy of heavy metals-contaminated soils

    NASA Astrophysics Data System (ADS)

    Shenggao, L.

    2012-04-01

    Soils around mine and in urban areas are often contaminated by heavy metals derived from industrial and human activities [1, 2]. These contaminated soils are often characterized by a magnetic enhancement on topsoils. Many studies demonstrated that there are significant correlations between heavy metals and various magnetic parameters in contaminated soils, indicating a strong affinity of heavy metals to magnetic minerals. The magnetic particles in contaminated soils were separated by a magnetic separation technique. The rock magnetism, XRD, field emission scanning electron microscopy equiped with an energy-dispersive X-ray analyzer (FESEM/EDX) were used to characterize their magnetic mineralogy. Results of XRD analysis indicated that the magnetic particles separated from heavy metal-contaminated soils are composed of quartz, magnetite, and hematite. Based on the X-ray diffraction peak intensity, the Fe3O4 was identified as the predominant magnetic mineral phase. The high-temperature magnetization (Ms-T) curves of magnetic particles extracted from contaminated soils show a sharp Ms decrease at about 580C (the Curie temperature of magnetite), suggesting that magnetite is the dominant magnetic carrier. The hysteresis loops of contaminated soils are closed at about 100-200 mT which is consistent with the presence of a dominant ferrimagnetic mineral phase. The FESEM analysis showed a great variety of shapes of magnetic particles in contaminated soils. The most common morphology are observed in the form of spherules, with the sizes ranging from 20 to 100 um. The chemical composition of magnetic particles consist mainly of Fe, Si, Al, and Ca with minor heavy metal elements (Cu, Zn, Hg, and Cr). The semi-quantitative Fe content identified by FESEM/EDX ranged from 40 to 90%. Combined studies of rock magnetism, XRD, and FESEM/EDX indicated that magnetic mineral phases responsible for the magnetic enhancement of contaminated soils are anthropogenic origin which are coarse

  8. Bioavailability and mobility of organic contaminants in soil: new three-step ecotoxicological evaluation.

    PubMed

    Prokop, Zbyněk; Nečasová, Anežka; Klánová, Jana; Čupr, Pavel

    2016-03-01

    A novel approach was developed for rapid assessment of bioavailability and potential mobility of contaminants in soil. The response of the same test organism to the organic extract, water extract and solid phase of soil was recorded and compared. This approach was designed to give an initial estimate of the total organic toxicity (response to organic extractable fraction), as well as the mobile (response to water extract) and bioavailable fraction (response to solid phase) of soil samples. Eighteen soil samples with different levels of pollution and content of organic carbon were selected to validate the novel three-step ecotoxicological evaluation approach. All samples were chemically analysed for priority contaminants, including aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs), hexachlorocyclohexane (HCH) and dichlordiphenyltrichloroethane (DDT). The ecotoxicological evaluation involved determination of toxicity of the organic, mobile and bioavailable fractions of soil to the test organism, bacterium Bacillus cereus. We found a good correlation between the chemical analysis and the toxicity of organic extract. The low toxicity of water extracts indicated low water solubility, and thus, low potential mobility of toxic contaminants present in the soil samples. The toxicity of the bioavailable fraction was significantly greater than the toxicity of water-soluble (mobile) fraction of the contaminants as deduced from comparing untreated samples and water extracts. The bioavailability of the contaminants decreased with increasing concentrations of organic carbon in evaluated soil samples. In conclusion, the three-step ecotoxicological evaluation utilised in this study can give a quick insight into soil contamination in context with bioavailability and mobility of the contaminants present. This information can be useful for hazard identification and risk assessment of soil-associated contaminants. Graphical Abstract New three-step ecotoxicological

  9. Electroosmotic flow behaviour of metal contaminated expansive soil.

    PubMed

    Sivapullaiah, P V; Prakash, B S Nagendra

    2007-05-17

    It is important to study the flow behaviour through soil during electrokinetic extraction of contaminants to understand their removal mechanism. The flow through the expansive soil containing montmorillonite is monitored during laboratory electrokinetic extraction of heavy metal contaminants. The permeability of soil, which increases due to the presence of contaminants, is further enhanced during electrokinetic extraction of contaminants due to osmotic permeability. The variations in flow rates through the soil while the extracting fluid is changed to dilute acetic acid (used to control the increase of pH) and EDTA solution (used to desorb the metal ions from soil) are studied. The trends of removal of contaminants vis-a-vis the changes in the flow through the soil during different phases of electrokinetic extraction are established. Chromium ions are removed by flushing of water through the soil and increased osmotic flow is beneficial. Removal of iron ions is enhanced by induced osmotic flow and desorption of ions by electrokinetic processes. PMID:17276001

  10. Induced metal redistribution and bioavailability enhancement in contaminated river sediment during in situ biogeochemical remediation.

    PubMed

    Liu, Tongzhou; Zhang, Zhen; Mao, Yanqing; Yan, Dickson Y S

    2016-04-01

    In situ sediment remediation using Ca(NO3)2 or CaO2 for odor mitigation and acid volatile sulfide (AVS) and organic pollutant (such as TPH and PAHs) removal was reported in many studies and fieldwork. Yet, the associated effects on metal mobilization and potential distortion in bioavailability were not well documented. In this study, contaminated river sediment was treated by Ca(NO3)2 and CaO2 in bench studies. Through the investigation of AVS removal, organic matter removal, the changes in sediment oxidation-reduction potential (ORP), microbial activity, and other indigenous parameters, the effects on metal bioavailability, bioaccessibility, and fraction redistribution in sediment were evaluated. The major mechanisms for sediment treated by Ca(NO3)2 and CaO2 are biostimulation with indigenous denitrifying bacteria and chemical oxidation, respectively. After applying Ca(NO3)2 and CaO2, the decreases of metal concentrations in the treated sediment were insignificant within a 35-day incubation period. However, the [SEMtot-AVS]/f OC increased near to the effective boundary of toxicity (100 μmol g(-1) organic carbon (OC)), indicating that both bioavailability and bioaccessibility of metals (Cu, Zn, and Ni) to benthic organisms are enhanced after remediation. Metals were found redistributed from relatively stable fractions (oxidizable and residual fractions) to weakly bound fractions (exchangeable and reducible fractions), and the results are in line with the enhanced metal bioavailability. Compared with Ca(NO3)2, CaO2 led to higher enhancement in metal bioavailability and bioaccessibility, and more significant metal redistribution, probably due to its stronger chemical reactive capacity to AVS and sediment organic matter. The reactions in CaO2-treated sediment would probably shift from physicochemical to biochemical heterotrophic oxidation for sediment organic matter degradation. Therefore, further investigation on the long-term metal redistribution and associated

  11. Disintegration and size reduction of slags and metals after melt refining of contaminated metallic wastes

    SciTech Connect

    Heshmatpour, B.; Copeland, G.L.; Heestand, R.L.

    1981-04-01

    Melting under an oxidizing slag is an attractive method of decontaminating and reducing the volume of radioactively contaminated metal scrap. The contaminants are concentrated in a relatively small volume of slag, which leaves the metal essentially clean. A potential method of permanently disposing of the resulting slags (and metals if necessary) is emplacing them into deep shale by grout hydrofracture. Suspension in grout mixtures requires that the slag and metal be granular. The feasibility of size-reducing slags and disintegrating metals and subsequently incorporating both into grout mixtures was demonstrated. Various types of slags were crushed with a small jaw crusher into particles smaller than 3 mm. Several metals were also melted and water-blasted into coarse metal powder or shot ranging in size from 0.05 to 3 mm. A simple low-pressure water atomizer having a multiple nozzle with a converging-line jet stream was developed and used for this purpose. No significant slag dust and steam were generated during slag crushing and liquid-metal water-blasting tests, indicating that contamination can be well contained within the system. The crushed slags and the coarse metal powders were suspendable in group fluids, which indicates probable disposability by shale hydrofracture. The granulation of slags and metals facilitates their containment, transport, and storage.

  12. [In situ immobilization remediation of heavy metals-contaminated soils: a review].

    PubMed

    Wang, Li-Qun; Luo, Lei; Ma, Yi-Bing; Wei, Dong-Pu; Hua, Luo

    2009-05-01

    In situ immobilization of heavy metals in contaminated soils by adding extraneous active amendments has been considered as a cost-effective measure for contaminated soil remediation. Application of immobilization amendments can decrease the available fractions of heavy metals or change their redox states, and thus, effectively decrease the mobility, bioavailability, and toxicity of the heavy metals in soils. This paper summarized the present researches about the in situ immobilization of heavy metals in soils, including kinds of immobilization amendments, research methods, immobilization indexes, immobilization mechanisms, and relevant environmental risk assessment. The mostly applied amendments include clay minerals, phosphates, organic composts, and microbes. Due to the complexity of soil matrix and the limitations of current analytical techniques, the exact immobilization mechanisms have not been clarified, which could include precipitation, chemical adsorption and ion exchange, surface precipitation, formation of stable complexes with organic ligands, and redox reaction. The prospects and limitations of in situ immobilization of heavy metals in soils were discussed. Future work should focus on the elucidation of immobilization mechanisms at molecular scale, with specific attention be paid to the potential risks of applying immobilization amendments and its long-term effects on field soils. PMID:19803184

  13. Release of oxide-bound toxic metals by naturally-occurring and contaminant-derived organic compounds: The role of complexant, reductant, and adsorptive characteristics. Final report, July 1, 1994--June 31, 1997

    SciTech Connect

    Stone, A.T.

    1997-12-31

    Natural organic compounds and contaminant-derived organic compounds can substantially alter the speciation and geochemical behavior of contaminant metals in subsurface environments. The goal, as part of the Co-Contaminant Subprogram, was to: (1) develop analytical methods for identifying and quantifying organic compounds affecting toxic metal speciation; (2) evaluate their reductant, complexant, and adsorptive characteristics of organic compounds with regards to important contaminant metals; (3) determine reaction kinetics, mechanisms, and energetics for metal-organic interactions; and (4) provide the basis for predicting toxic metal oxidation state, speciation, and mobility.

  14. The Mobility of Organic Contaminants in Water and Clays

    NASA Astrophysics Data System (ADS)

    Lock, P. A.; Skipper, N. T.; Mirza, Z.; Fernandez-Alonso, F.; Adams, M.; Howells, S.; Swenson, J.

    2005-12-01

    The interlayer pores of swelling clays provide an ideal environment in which to study confined fluids, and are the site of many important hydrological and petrological processes. Swelling clays, such as vermiculites, are layered minerals, widespread in soils and sedimentary rocks and are an important sink/source of many toxic organic chemicals. Knowledge of diffusion of organics through clay-rich materials is therefore highly relevant to environmental issues. Experimental studies of solvation structure in aqueous systems show that charged groups can co-ordinate the surrounding water molecules quite strongly, but their is less certainty about the effect of polar and apolar groups. There is currently interest in bulk water-alcohol systems since these are known to aggregate at the nanometer scale. Our hypothesis is that the property of the interlayer fluids in clays arises from the very subtle balance of forces between the interactions of water, cations, clay and organic species. Quasi Elastic Neutron Scattering (QENS) has been used to probe the dynamics of fluids trapped inside clays and reveal the first detailed picture of confined methanol, phenol and glycol in aqueous solution. The picture that emerges is that these model contaminant molecules are surprisingly mobile. Successive QENS broadening for methanol in Na-Vermiculite over 150-330K was measured. The progressive broadening of the energy signal was accompanied by decrease in amplitude with rise in temperature. This is indicative of an overall increase in rotational and translational freedom. Methanol exhibits a Fickian diffusion mechanism as an unconfined fluid, characterised by a linear dependence of broadening of the energy signal with the scattering vector. Inside Na-Vermiculite clay however, the same fluid produces a signal broadening that becomes non-linear indicating a jump activated motion to be present. Glycol and phenol are also of fundamental interest, the former as a clay-swelling inhibitor of

  15. Humus-assisted cleaning of heavy metal contaminated soils

    NASA Astrophysics Data System (ADS)

    Borggaard, Ole K.; Rasmussen, Signe B.

    2016-04-01

    Contamination of soils with non-degradable heavy metals (HMs) because of human acticities is globally a serious problem threatening human health and ecosystem functioning. To avoid negative effects, HMs must be removed either on-site by plant uptake (phytoremediation) or off-site by extraction (soil washing). In both strategies, HM solubility must be augmented by means of a strong ligand (complexant). Often polycarboxylates such as EDTA and NTA are used but these ligands are toxic, synthetic (non-natural) and may promote HM leaching. Instead naturally occurring soluble humic substances (HS) were tested as means for cleaning HM contaminated soils; HS samples from beech and spruce litter, compost percolate and processed cow slurry were tested. Various long-term HM contaminated soils were extracted with solutions of EDTA, NTA or HS at different pH by single-step and multiple-step extraction mode. The results showed that each of the three complexant types increased HM solubility but the pH-dependent HM extraction efficiency decreased in the order: EDTA ≈ NTA > HS. However, the naturally occurring HS seems suitable for cleaning As, Cd, Cu and Zn contaminated soils both in relation to phytoremediation of moderately contaminated soils and washing of strongly contaminated soils. On the other hand, HS was found unsuited as cleaning agent for Pb polluted calcareous soils. If future field experiments confirm these laboratory results, we have a new cheap and environmentally friendly method for solving a great pollution problem, i.e. cleaning of heavy metal contaminated soils. In addition, humic substances possess additional benefits such as improving soil structure and stimulating microbial activity.

  16. Mathematical modeling of heavy metals contamination from MSW landfill site in Khon Kaen, Thailand.

    PubMed

    Tantemsapya, N; Naksakul, Y; Wirojanagud, W

    2011-01-01

    Kham Bon landfill site is one of many municipality waste disposal sites in Thailand which are in an unsanitary condition. The site has been receiving municipality wastes without separating hazardous waste since 1968. Heavy metals including, Pb, Cr and Cd are found in soil and groundwater around the site, posing a health risk to people living nearby. In this research, contamination transport modelling of Pb, Cr and Cd was simulated using MODFLOW for two periods, at the present (2010) and 20 years prediction (2030). Model results showed that heavy metals, especially Pb and Cr migrated toward the north-eastern and south-eastern direction. The 20 years prediction showed that, heavy metals tend to move from the top soil to the deeper aquifer. The migration would not exceed 500 m radius from the landfill centre in the next 20 years, which is considered to be a slow process. From the simulation model, it is recommended that a mitigation measure should be performed to reduce the risk from landfill contamination. Hazardous waste should be separated for proper management. Groundwater contamination in the aquifer should be closely monitored. Consumption of groundwater in a 500 m radius must be avoided. In addition, rehabilitation of the landfill site should be undertaken to prevent further mobilization of pollutants. PMID:22020476

  17. Microbial contamination of mobile phones in a health care setting in Alexandria, Egypt

    PubMed Central

    Selim, Heba Sayed; Abaza, Amani Farouk

    2015-01-01

    Aim: This study aimed at investigating the microbial contamination of mobile phones in a hospital setting. Methods: Swab samples were collected from 40 mobile phones of patients and health care workers at the Alexandria University Students’ Hospital. They were tested for their bacterial contamination at the microbiology laboratory of the High Institute of Public Health. Quantification of bacteria was performed using both surface spread and pour plate methods. Isolated bacterial agents were identified using standard microbiological methods. Methicillin-resistant Staphylococcus aureus was identified by disk diffusion method described by Bauer and Kirby. Isolated Gram-negative bacilli were tested for being extended spectrum beta lactamase producers using the double disk diffusion method according to the Clinical and Laboratory Standards Institute recommendations. Results: All of the tested mobile phones (100%) were contaminated with either single or mixed bacterial agents. The most prevalent bacterial contaminants were methicillin-resistant S. aureus and coagulase-negative staphylococci representing 53% and 50%, respectively. The mean bacterial count was 357 CFU/ml, while the median was 13 CFU/ml using the pour plate method. The corresponding figures were 2,192 and 1,720 organisms/phone using the surface spread method. Conclusions: Mobile phones usage in hospital settings poses a risk of transmission of a variety of bacterial agents including multidrug-resistant pathogens as methicillin-resistant S. aureus. The surface spread method is an easy and useful tool for detection and estimation of bacterial contamination of mobile phones. PMID:25699226

  18. Wetland plants as indicators of heavy metal contamination.

    PubMed

    Phillips, D P; Human, L R D; Adams, J B

    2015-03-15

    In this study metal accumulating abilities of three emergent macrophytes (Phragmites australis, Typha capensis and Spartina maritima) were investigated in the urbanised Swartkops Estuary. Plants and sediment samples were collected at seven sites along the banks of the main channel and in adjacent canals. Sediments and plant organs were analysed, by means of atomic absorption spectrometry, for four elements (Cd, Cu, Pb, and Zn). Metal concentrations in the sediments of adjacent canals were found to be substantially higher than those at sites along the banks of the estuary. These differences were reflected in the plant organs for Pb and Zn, but not for Cu and Cd. All three species exhibited significantly higher concentrations of metals in their roots. These species are therefore suitable for use as indicators of the presence and level of heavy metal contaminants in estuaries. PMID:25599629

  19. SIMON: A mobile robot for floor contamination surveys

    SciTech Connect

    Dudar, E.; Teese, G.; Wagner, D.

    1991-01-01

    The Robotics Development group at the Savannah River Site is developing an autonomous robot to perform radiological surveys of potentially contaminated floors. The robot scans floors at a speed of one-inch/second and stops, sounds an alarm, and flashes lights when contamination in a certain area is detected. The contamination of interest here is primarily alpha and beta-gamma. The contamination levels are low to moderate. The robot, a Cybermotion K2A, is radio controlled, uses dead reckoning to determine vehicle position, and docks with a charging station to replenish its batteries and calibrate its position. It has an ultrasonic collision avoidance system as well as two safety bumpers that will stop the robot's motion when they are depressed. Paths for the robot are preprogrammed and the robot's motion can be monitored on a remote screen which shows a graphical map of the environment. The radiation instrument being used is an Eberline RM22A monitor. This monitor is microcomputer based with a serial I/O interface for remote operation. Up to 30 detectors may be configured with the RM22A. For our purposes, two downward-facing gas proportional detectors are used to scan floors, and one upward-facing detector is used for radiation background compensation. SIMON is interfaced with the RM22A in such a way that it scans the floor surface at one-inch/second, and if contamination is detected, the vehicle stops, alarms, and activates a voice synthesizer. Future development includes using the contamination data collected to provide a graphical contour map of a contaminated area. 3 refs.

  20. SIMON: A mobile robot for floor contamination surveys

    SciTech Connect

    Dudar, E.; Teese, G.; Wagner, D.

    1991-12-31

    The Robotics Development group at the Savannah River Site is developing an autonomous robot to perform radiological surveys of potentially contaminated floors. The robot scans floors at a speed of one-inch/second and stops, sounds an alarm, and flashes lights when contamination in a certain area is detected. The contamination of interest here is primarily alpha and beta-gamma. The contamination levels are low to moderate. The robot, a Cybermotion K2A, is radio controlled, uses dead reckoning to determine vehicle position, and docks with a charging station to replenish its batteries and calibrate its position. It has an ultrasonic collision avoidance system as well as two safety bumpers that will stop the robot`s motion when they are depressed. Paths for the robot are preprogrammed and the robot`s motion can be monitored on a remote screen which shows a graphical map of the environment. The radiation instrument being used is an Eberline RM22A monitor. This monitor is microcomputer based with a serial I/O interface for remote operation. Up to 30 detectors may be configured with the RM22A. For our purposes, two downward-facing gas proportional detectors are used to scan floors, and one upward-facing detector is used for radiation background compensation. SIMON is interfaced with the RM22A in such a way that it scans the floor surface at one-inch/second, and if contamination is detected, the vehicle stops, alarms, and activates a voice synthesizer. Future development includes using the contamination data collected to provide a graphical contour map of a contaminated area. 3 refs.

  1. Elevated sulfate reduction in metal-contaminated freshwater lake sediments

    SciTech Connect

    Gough, H.L.; Dahl, A.L.; Tribou, E.; Noble, P.A.; Gaillard, J.-F.; Stahl, D.A.

    2009-01-06

    Although sulfate-reducing prokaryotes have long been studied as agents of metals bioremediation, impacts of long-term metals exposure on biologically mediated sulfur cycling in natural systems remains poorly understood. The effects of long-term exposure to metal stress on the freshwater sulfur cycle were studied, with a focus on biologic sulfate reduction using a combination of microbial and chemical methods. To examine the effects after decades of adaptation time, a field-based experiment was conducted using multiple study sites in a natural system historically impacted by a nearby zinc smelter (Lake DePue, Illinois). Rates were highest at the most metals-contaminated sites (-35 {mu}mol/cm{sup 3}/day) and decreased with decreased pore water zinc and arsenic contamination levels, while other environmental characteristics (i.e., pH, nutrient concentrations and physical properties) showed little between-site variation. Correlations were established using an artificial neural network to evaluate potentially non-linear relationships between sulfate reduction rates (SRR) and measured environmental variables. SRR in Lake DePue were up to 50 times higher than rates previously reported for lake sediments and the chemical speciation of Zn was dominated by the presence of ZnS as shown by X-ray Absorption Spectroscopy (XAS). These results suggest that long-term metal stress of natural systems might alter the biogeochemical cycling of sulfur by contributing to higher rates of sulfate reduction.

  2. Feasibility of re-melting NORM-contaminated scrap metal

    SciTech Connect

    Winters, S. J.; Smith, K. P.

    1999-10-26

    Naturally occurring radioactive materials (NORM) sometimes accumulate inside pieces of equipment associated with oil and gas production and processing activities. Typically, the NORM accumulates when radium that is present in solution in produced water precipitates out in scale and sludge deposits. Scrap equipment containing residual quantities of these NORM-bearing scales and sludges can present a waste management problem if the radium concentrations exceed regulatory limits or activate the alarms on radiation screening devices installed at most scrap metal recycling facilities. Although NORM-contaminated scrap metal currently is not disposed of by re-melting, this form of recycling could present a viable disposition option for this waste stream. Studies indicate that re-melting NORM-contaminated scrap metal is a viable recycling option from a risk-based perspective. However, a myriad of economic, regulatory, and policy issues have caused the recyclers to turn away virtually all radioactive scrap metal. Until these issues can be resolved, re-melting of the petroleum industry's NORM-impacted scrap metal is unlikely to be a widespread practice. This paper summarizes the issues associated with re-melting radioactive scrap so that the petroleum industry and its regulators will understand the obstacles. This paper was prepared as part of a report being prepared by the Interstate Oil and Gas Compact Commission's NORM Subcommittee.

  3. Biosorption of metal contaminants using immobilized biomass--Field studies

    SciTech Connect

    Jeffers, T.H.; Bennett, P.G.; Corwin, R.R.

    1993-01-01

    The US Bureau of Mines has developed porous beads containing immobilized biological materials such as sphagnum peat moss for extracting metal contaminants from waste waters. The beads, designated as BIO-FIX beads, have removed toxic metals from over 100 waters in laboratory tests. These waters include acid mine drainage (AMD) water from mining sites, metallurgical and chemical industry waste water, and contaminated ground water. Following the laboratory studies, cooperative field tests were conducted to evaluate the metal adsorption properties of the beads in column and low-maintenance circuits, determine bead stability in varied climatic situations, and demonstrate the beads' potential as a viable waste water treatment technique. Field results indicated that BIO-FIX beads readily adsorbed cadmium, lead, and other toxic metals from dilute waters; effluents frequently met drinking water standards and other discharge criteria. The beads exhibited excellent handling characteristics in both column and low-maintenance circuits, and continued to extract metal ions after repeated loading-elution cycles. Based on laboratory and field data, cost evaluations for using BIO-FIX technology to treat two AMD waters were prepared. Operating costs for BIO-FIX treatment, which ranged from $1.40 to $2.30 per 1,000 gal of water treated, were comparable with chemical precipitation costs.

  4. Bead and Process for Removing Dissolved Metal Contaminants

    SciTech Connect

    Summers, Bobby L., Jr.; Bennett, Karen L.; Foster, Scott A.

    2005-01-18

    A bead is provided which comprises or consists essentially of activated carbon immobilized by crosslinked poly (carboxylic acid) binder, sodium silicate binder, or polyamine binder. The bead is effective to remove metal and other ionic contaminants from dilute aqueous solutions. A method of making metal-ion sorbing beads is provided, comprising combining activated carbon, and binder solution (preferably in a pin mixer where it is whipped), forming wet beads, and heating and drying the beads. The binder solution is preferably poly(acrylic acid) and glycerol dissolved in water and the wet beads formed from such binder solution are preferably heated and crosslinked in a convection oven.

  5. Evaluation of metal and microbial contamination in botanical supplements.

    PubMed

    Raman, Priyadarshini; Patino, Lina C; Nair, Muraleedharan G

    2004-12-29

    The sale of botanical dietary supplements in the United States is on the rise. However, limited studies have been conducted on the safety of these supplements. There are reports on the presence of undesired metals in some of the botanical dietary supplements. In this study, echinacea, garlic, ginkgo, ginseng, grape seed extract, kava kava, saw palmetto, and St. John's wort supplements manufactured by Nature's Way, Meijer, GNC, Nutrilite, Solaray, Sundown and Natrol, have been analyzed for lead, mercury, cadmium, arsenic, uranium, chromium, vanadium, copper, zinc, molybdenum, palladium, tin, antimony, thallium, and tungsten using inductively coupled plasma mass spectrometry. All samples were devoid of mercury contamination. Results indicated that the botanical supplements analyzed did not contain unacceptable concentrations of these metals. These supplements were also evaluated for microbial contamination, and most samples analyzed showed the presence of bacteria or fungi or both. Microbes were not counted nor were microbial counts determined in these samples. PMID:15612762

  6. Remediation of heavy metal contaminated sites in the Venice lagoon and conterminous areas (Northern Italy)

    NASA Astrophysics Data System (ADS)

    Bini, Claudio; Wahsha, Mohammad; Fontana, Silvia; Maleci, Laura

    2013-04-01

    The lagoon of Venice and the conterminous land are affected by heavy contamination of anthropogenic origin, and for this reason the whole area has been classified as site of national interest, and must be restored. Heavy metals (As, Cd, Cr, Cu, Hg, Mn, Pb, Sb, Se, Zn) and organic compounds (IPA, PCB, Dioxine) have been identified as the main contaminants at various sites, owing to agriculture and industrial wastes discharged on soils and convoyed to the lagoon. Five case studies of soil remediation are here reported. S. Giuliano is a former palustrine area reclaimed since the 60's with various human transported materials (HTM). In this area, hot spots overpassing the reference limits for residential and green areas have been recorded for Cd, Cu, Pb, Zn and IPA. Campalto is a site bordering the Venice lagoon and subjected to oscillating water level, that enhances metal mobility; diffuse contamination by heavy metals, particularly Pb, has been recorded at this site, utilized since 30 years for military and sport (skate) activities. Marghera is dramatically famous for its numerous factories and for oil refineries that affected the lagoon sediments since the 50's. Sediments proved heavily contaminated by As (up to 137 mgkg-1), Cd (57 mgkg-1), Hg (30mgkg-1), Ni, Pb (700 mgkg-1), Zn (5818 mgkg-1). Murano is a small island where many glass factories (the most famous all over the world) are running since XIII century. Glass is stained with several metals and, moreover, some substances are used to regulate fusion temperature, purity, etc., and therefore the surrounding environment is heavily contaminated by these substances. Mean concentrations of As (429 mgkg-1), Cd (1452 mgkg-1), Pb (749 mgkg-1), Zn (1624 mgkg-1), Se (341 mgkg-1), Sb (74 mgkg-1) widely overpass the reference values for both residential and industrial areas in national guidelines. Molo Serbatoi is a former oil container currently under restoration in the port of Venice. Soil contamination by As, Hg, Zn and

  7. Barnacles as biomonitors of metal contamination in coastal waters

    NASA Astrophysics Data System (ADS)

    Reis, Pedro A.; Salgado, Maria Antónia; Vasconcelos, Vitor

    2011-07-01

    The use of barnacles as biomonitors of metal contamination in coastal waters worldwide is reviewed as a critique compilation of the reported studies and presents resume-tables of available data for future reference. The barnacle body reflects both short and long-term metal level environmental variations and the metal bioaccumulation occurs mainly in their granules (relatively inactive pools). The barnacle body is considered as good biomonitoring material and different barnacle species could bioaccumulate metal concentration ranges of 40-153,000 μg/g of Zn, 20-22,230 μg/g de Fe, 1.5-21,800 μg/g of Cu, 5.9-4742 μg/g of Mn, 0.1-1000 μg/g of Pb, 0.7-330 μg/g of Cd, 0.4-99 μg/g of Ni and 0.2-49 μg/g of Cr. However, as the plates ('shells') of barnacle exoskeletons can be affected by metal levels in coastal waters, mainly in their composition and morphology, they are not considered good biomonitoring material. Despite this, the use of a specific barnacle species or group of species in a specific region must firstly be carefully validated and the interpretation of the contaminant bioaccumulation levels should involve specific environmental variations of the region, physiological parameters of the barnacle species and the relationship between the potential toxicity of the contaminant for the environment and their significance for the barnacle species. Barnacles, particularly a widespread cosmopolitan species such as Amphibalanus amphitrite, have a great potential as biomonitors of anthropogenic contamination in coastal waters and have been used worldwide, including Europe (United Kingdom, Turkey, Poland, Croatia, Spain and Portugal), Asia (India and China), Oceania (Australia), North America (Florida, Massachusetts and Mexico) and South America (Brazil). The use of barnacle species as biomonitors of metal contamination in coastal waters is considered an important and valuable tool to evaluate and predict the ecological quality of an ecosystem.

  8. Chemical methods and phytoremediation of soil contaminated with heavy metals.

    PubMed

    Chen, H M; Zheng, C R; Tu, C; Shen, Z G

    2000-07-01

    The effects of chemical amendments (calcium carbonate (CC), steel sludge (SS) and furnace slag (FS)) on the growth and uptake of cadmium (Cd) by wetland rice, Chinese cabbage and wheat grown in a red soil contaminated with Cd were investigated using a pot experiment. The phytoremediation of heavy metal contaminated soil with vetiver grass was also studied in a field plot experiment. Results showed that treatments with CC, SS and FS decreased Cd uptake by wetland rice, Chinese cabbage and wheat by 23-95% compared with the unamended control. Among the three amendments, FS was the most efficient at suppressing Cd uptake by the plants, probably due to its higher content of available silicon (Si). The concentrations of zinc (Zn), lead (Pb) and Cd in the shoots of vetiver grass were 42-67%, 500-1200% and 120-260% higher in contaminated plots than in control, respectively. Cadmium accumulation by vetiver shoots was 218 g Cd/ha at a soil Cd concentration of 0.33 mg Cd/kg. It is suggested that heavy metal-contaminated soil could be remediated with a combination of chemical treatments and plants. PMID:10819205

  9. Evaluation of food processing wastewater loading characteristics on metal mobilization within the soil.

    PubMed

    Julien, Ryan; Safferman, Steven

    2015-01-01

    Wastewater generated during food processing is commonly treated using land-application systems which primarily rely on soil microbes to transform nutrients and organic compounds into benign byproducts. Naturally occurring metals in the soil may be chemically reduced via microbially mediated oxidation-reduction reactions as oxygen becomes depleted. Some metals such as manganese and iron become water soluble when chemically reduced, leading to groundwater contamination. Alternatively, metals within the wastewater may not become assimilated into the soil and leach into the groundwater if the environment is not sufficiently oxidizing. A lab-scale column study was conducted to investigate the impacts of wastewater loading values on metal mobilization within the soil. Oxygen content and volumetric water data were collected via soil sensors for the duration of the study. The pH, chemical oxygen demand, manganese, and iron concentrations in the influent and effluent water from each column were measured. Average organic loading and organic loading per dose were shown to have statistically significant impacts using Spearman's Rank Correlation Coefficient on effluent water quality. The Hydraulic resting period qualitatively appeared to have impacts on effluent water quality. This study verifies that excessive organic loading of land application systems causes mobilization of naturally occurring metals and prevents those added in the wastewater from becoming immobilized, resulting in ineffective wastewater treatment. Results also indicate the need to consider the organic dose load and hydraulic resting period in the treatment system design. Findings from this study demonstrate waste application twice daily may encourage soil aeration and allow for increased organic loading while limiting the mobilization of metals already in the soil and those being applied. PMID:26327299

  10. Lateral Gene Transfer in a Heavy Metal-Contaminated-Groundwater Microbial Community

    PubMed Central

    Hemme, Christopher L.; Green, Stefan J.; Rishishwar, Lavanya; Prakash, Om; Pettenato, Angelica; Chakraborty, Romy; Deutschbauer, Adam M.; Van Nostrand, Joy D.; Wu, Liyou; He, Zhili; Jordan, I. King; Arkin, Adam P.; Kostka, Joel E.

    2016-01-01

    ABSTRACT Unraveling the drivers controlling the response and adaptation of biological communities to environmental change, especially anthropogenic activities, is a central but poorly understood issue in ecology and evolution. Comparative genomics studies suggest that lateral gene transfer (LGT) is a major force driving microbial genome evolution, but its role in the evolution of microbial communities remains elusive. To delineate the importance of LGT in mediating the response of a groundwater microbial community to heavy metal contamination, representative Rhodanobacter reference genomes were sequenced and compared to shotgun metagenome sequences. 16S rRNA gene-based amplicon sequence analysis indicated that Rhodanobacter populations were highly abundant in contaminated wells with low pHs and high levels of nitrate and heavy metals but remained rare in the uncontaminated wells. Sequence comparisons revealed that multiple geochemically important genes, including genes encoding Fe2+/Pb2+ permeases, most denitrification enzymes, and cytochrome c553, were native to Rhodanobacter and not subjected to LGT. In contrast, the Rhodanobacter pangenome contained a recombinational hot spot in which numerous metal resistance genes were subjected to LGT and/or duplication. In particular, Co2+/Zn2+/Cd2+ efflux and mercuric resistance operon genes appeared to be highly mobile within Rhodanobacter populations. Evidence of multiple duplications of a mercuric resistance operon common to most Rhodanobacter strains was also observed. Collectively, our analyses indicated the importance of LGT during the evolution of groundwater microbial communities in response to heavy metal contamination, and a conceptual model was developed to display such adaptive evolutionary processes for explaining the extreme dominance of Rhodanobacter populations in the contaminated groundwater microbiome. PMID:27048805

  11. Temperature-dependent formation of metallic copper and metal sulfide nanoparticles during flooding of a contaminated soil

    NASA Astrophysics Data System (ADS)

    Hofacker, Anke F.; Voegelin, Andreas; Kaegi, Ralf; Weber, Frank-Andreas; Kretzschmar, Ruben

    2013-02-01

    Riparian floodplains in temperate regions are affected by pronounced seasonal variations in soil and water temperature. This affects the rates and interplay of microbial and abiotic geochemical processes that control the fate of metals in contaminated floodplain soils, including potential release into surface and groundwater during periodic flooding. Here, we investigated how temperature affects chalcophile trace metal contaminants (Cu, Cd, Pb) upon flooding of a riparian soil contaminated by past mining activities. In soil microcosms incubated at 23, 14, and 5 °C, the reductive dissolution of Mn(III,IV) and Fe(III) (oxyhydr)oxides and the release of dissolved Mn2+ and Fe2+ were significantly slower and less intense at the lower temperatures, which was reflected in a decrease of trace metal mobilization via the dissolution of metal oxide sorbents and cation competition for sorption sites. The onset of sulfate reduction was significantly delayed at lower temperatures and the apparent rate of sulfate reduction was decreased, especially at 5 °C. This resulted in elevated high dissolved Cu, Cd, and Pb concentrations over weeks of flooding at 5 °C, whereas colloidal metal sulfide formation dominated Cu, Cd, and Pb pore water dynamics at higher temperatures of 14 and 23 °C due to fast sulfate reduction. Cu K-edge X-ray absorption fine structure spectroscopy revealed metallic Cu(0) as the main colloidal Cu species prior to sulfate reduction at all three temperatures. Analytical electron microscopy showed that Cu(0) particles were associated with suspended bacteria, suggesting biomineralization of Cu(0). Upon onset of sulfate reduction, metallic Cu particles were transformed into CuxS with incorporation of smaller amounts of Cd and Pb. Concomitantly, freely dispersed mixed Cu-Cd-Pb sulfide nanoparticles precipitated in the pore water. Other metals with higher metal sulfide solubility products did not react with the limited amounts of biogenic sulfide. The median size

  12. CHEMICALLY-ENHANCED DISSOLUTION AND MOBILIZATION OF RESIDUAL CONTAMINANTS

    EPA Science Inventory

    Pore-scale micromodels and a computer-controlled imaging system will be used to examine fluid dynamics and phase behavior during chemically-enhanced NAPL dissolution and mobilization. Mechanistic insights gained at this microscopic level will be used to help explain observations...

  13. Evaluation of monobasic calcium phosphate for the immobilization of heavy metals in contaminated soils from Lavrion.

    PubMed

    Theodoratos, Panagiotis; Papassiopi, Nymphodora; Xenidis, Anthimos

    2002-10-01

    The objective of this work was to evaluate the efficiency of monobasic calcium phosphate for the stabilization of heavy metals in contaminated soils. The treatment was applied on a soil sample from the Lavrion mining area, Greece, heavily contaminated with Pb, Zn, Cd and As and characterized as toxic in respect to Pb according to the US EPA toxicity characteristics leaching procedure (TCLP). The efficiency of stabilization was evaluated based on two criteria: (a) the reduction of metals mobility below the TCLP regulatory limits; (b) the reduction of phytoaccumulation. Phytoaccumulation was evaluated both indirectly by applying leaching tests using EDTA, DTPA and NaHCO(3) solutions and directly by carrying out pot experiments with Phaseolus vulgaris as plant indicator. This treatment was found to immobilize Pb and Cd, whereas As and Zn were slightly mobilized. No effect on phytoaccumulation was observed. Moreover, the treatment had a negative effect on plants growth, which was combined with a strong deficiency of Ca in the tissue of leaves. PMID:12169417

  14. Simulating Mobility of Chemical Contaminants from Unconventional Gas Development for Protection of Water Resources

    NASA Astrophysics Data System (ADS)

    Kanno, C.; Edlin, D.; Borrillo-Hutter, T.; McCray, J. E.

    2014-12-01

    Potential contamination of ground water and surface water supplies from chemical contaminants in hydraulic fracturing fluids or in natural gas is of high public concern. However, quantitative assessments have rarely been conducted at specific energy-producing locations so that the true risk of contamination can be evaluated. The most likely pathways for contamination are surface spills and faulty well bores that leak production fluids directly into an aquifer. This study conducts fate and transport simulations of the most mobile chemical contaminants, based on reactivity to subsurface soils, degradation potential, and source concentration, to better understand which chemicals are most likely to contaminate water resources, and to provide information to planners who wish to be prepared for accidental releases. The simulations are intended to be most relevant to the Niobrara shale formation.

  15. Potential and real ecological threat of heavy metals in contaminated soils

    NASA Astrophysics Data System (ADS)

    Motuzova, Galina; Barsova, Natalia; Makarichev, Ivan; Karpova, Elena

    2013-04-01

    organisms. Within the last 20-40 years a bulk of information has been accumulating to study the impact of technogenic sources on the HM content in soils and the ratio between their compounds. They serve as evidence that in the contaminated soils the total content of HM is several orders (2-3) higher than that in soils of natural landscapes. Based upon a comprehensive analysis of data obtained in field and laboratory it is possible to speak about following differences in soils of natural and technogenic landscapes. (1) The total content of HM in contaminated soils reveals weak connection with their content in soil-forming rocks being depended on technological and landscape-geochemical conditions. (2) A share of mobile forms of HM from their total content increases in comparison to that in natural soils, what is associated with soil contamination and even toxicity, because they can be easily taken up by plants and other living organisms. (3) The surplus of HM in soils leads to degradation of the most important properties so vital for soil fertility (acid base saturation, ion exchange capacity, the humus status, absorbing capacity and others). The enhanced knowledge of soil chemical properties which are subject to contamination by HM, regularities in sorption of heavy metals bond to soil components, the composition of compounds formed by soil with heavy metals allows forecasting the real ecological threat of landscape contamination with HM. The indices of the foregoing soil chemical properties serve as a basis for application of current technologies for soil remediation from HM. Acknowledgments. This work was supported by the Russian Found of Basic Researches (projects no. 06-05-48894, 09-05-00575, 11-05-90351)

  16. EFFECTS OF HUMIC SUBSTANCES ON ATTENUATION OF METALS: BIOAVAILABILITY AND MOBILITY IN SOIL

    EPA Science Inventory

    Humic substances play vastly important roles in metal behavior in a wide variety of environments. They can affect the mobility and bioavailability of metals by binding and sequestration thereby decreasing the mobility of a metal. They can also transport metals into solution or ...

  17. Heavy metal contamination in the Delhi segment of Yamuna basin.

    PubMed

    Sehgal, Meena; Garg, Ankur; Suresh, R; Dagar, Priya

    2012-01-01

    Concentration of heavy metals (Cd, Ni, Zn, Fe, Cu, Mn, Pb, Cr, Hg and As) in the waters of River Yamuna and in the soil of agricultural fields along its course in Delhi are reported from 13 sites, spread through the Delhi stretch of Yamuna, starting from the Wazirabad barrage till the Okhla barrage. Varying concentration of heavy metals was found. Peaks were observed in samples collected downstream of Wazirabad and Okhla barrage, indicating the anthropogenic nature of the contamination. The Wazirabad section of the river receives wastewater from Najafgarh and its supplementary drains, whereas the Shahdara drain releases its pollution load upstream of the Okhla barrage. Average heavy metal concentration at different locations in the river water varied in the order of Fe>Cr>Mn>Zn>Pb>Cu>Ni>Hg>As>Cd. The river basin soil shows higher level of contamination with lesser variation than the water samples among sampling locations, thereby suggesting deposition over long periods of time through the processes of adsorption and absorption. The average heavy metal concentration at different locations in soil varied in the order of Fe>Mn>Zn>Cr>Pb>Ni>Hg>Cu>As>Cd. PMID:21505769

  18. Electrokinetic In Situ Treatment of Metal-Contaminated Soil

    NASA Technical Reports Server (NTRS)

    Quinn, Jacqueline; Clausen, Christian A., III; Geiger, Cherie; Reinhart, Debra

    2004-01-01

    An electrokinetic technique has been developed as a means of in situ remediation of soils, sludges, and sediments that are contaminated with heavy metals. Examples of common metal contaminants that can be removed by this technique include cadmium, chromium, zinc, lead, mercury, and radionuclides. Some organic contaminants can also be removed by this technique. In the electrokinetic technique, a low-intensity direct current is applied between electrodes that have been implanted in the ground on each side of a contaminated soil mass. The electric current causes electro-osmosis and migration of ions, thereby moving aqueous-phase subsurface contaminants from one electrode to the other. The half reaction at the anode yields H+, thereby generating an acid front that travels from the anode toward the cathode. As this acid front passes through a given location, the local increase in acidity increases the solubility of cations that were previously adsorbed on soil particles. Ions are transported towards one electrode or the other which one depending on their respective electric charges. Upon arrival at the electrodes, the ionic contaminants can be allowed to become deposited on the electrodes or can be extracted to a recovery system. Surfactants and other reagents can be introduced at the electrodes to enhance rates of removal of contaminants. Placements of electrodes and concentrations and rates of pumping of reagents can be adjusted to maximize efficiency. The basic concept of electrokinetic treatment of soil is not new. What is new here are some of the details of application and the utilization of this technique as an alternative to other techniques (e.g., flushing or bioremediation) that are not suitable for treating soils of low hydraulic conductivity. Another novel aspect is the use of this technique as a less expensive alternative to excavation: The cost advantage over excavation is especially large in settings in which contaminated soil lies near and/or under

  19. Optimizing phytoremediation of heavy metal-contaminated soil by exploiting plants' stress adaptation.

    PubMed

    Barocsi, Attila; Csintalan, Zsolt; Kocsanyi, Laszlo; Dushenkov, Slavik; Kuperberg, J Michael; Kucharski, Rafal; Richter, Peter I

    2003-01-01

    Soil phytoextraction is based on the ability of plants to extract contaminants from the soil. For less bioavailable metals, such as Pb, a chelator is added to the soil to mobilize the metal. The effect can be significant and in certain species, heavy metal accumulation can rapidly increase 10-fold. Accumulation of high levels of toxic metals may result in irreversible damage to the plant. Monitoring and controlling the phytotoxicity caused by EDTA-induced metal accumulation is crucial to optimize the remedial process, i.e. to achieve maximum uptake. We describe an EDTA-application procedure that minimizes phytotoxicity by increasing plant tolerance and allows phytoextraction of elevated levels of Pb and Cd. Brassica juncea is tested in soil with typical Pb and Cd concentrations of 500 mg kg-1 and 15 mg kg-1, respectively. Instead of a single dose treatment, the chelator is applied in multiple doses, that is, in several small increments, thus providing time for plants to initiate their adaptation mechanisms and raise their damage threshold. In situ monitoring of plant stress conditions by chlorophyll fluorescence recording allows for the identification of the saturating heavy metal accumulation process and of simultaneous plant deterioration. PMID:12710232

  20. Characterization of bacterial communities in heavy metal contaminated soils.

    PubMed

    Roane, T M; Kellogg, S T

    1996-06-01

    Heavy metal pollution is a principle source of environmental contamination. We analyzed heavy metal impacted soil microbial communities and found that, in general, although lead adversely affected biomass, metabolic activity, and diversity, autochthonous lead- and cadmium-resistant isolates were found. In several metal-stressed soils, the microbial community consisted of two populations, either resistant or sensitive to lead. Additionally, a lead-resistant isolate was isolated from a control soil with no known previous exposure to lead, suggesting widespread lead resistance. Lead-resistant genera isolated included Pseudomonas, Bacillus, Corynebacterium, and Enterobacter species. Plasmids, ranging from 5 to 260 kb, were not detected through standard purifications from lead-resistant isolates. Positive correlations existed between antibiotic resistance and isolation habitat for lead-resistant strains, microbial metabolic activity and soil type, soluble lead concentration and microbial diversity, and arsenic concentration and total or viable cell concentrations. PMID:8801006

  1. Mobility of Pb, Cu, and Zn in the phosphorus-amended contaminated soils under simulated landfill and rainfall conditions.

    PubMed

    Cao, Xinde; Liang, Yuan; Zhao, Ling; Le, Huangying

    2013-09-01

    Phosphorus-bearing materials have been widely applied in immobilization of heavy metals in contaminated soils. However, the study on the stability of the initially P-induced immobilized metals in the contaminated soils is far limited. This work was conducted to evaluate the mobility of Pb, Cu, and Zn in two contrasting contaminated soils amended with phosphate rock tailing (PR) and triple superphosphate fertilizer (TSP), and their combination (P + T) under simulated landfill and rainfall conditions. The main objective was to determine the stability of heavy metals in the P-treated contaminated soils in response to the changing environment conditions. The soils were amended with the P-bearing materials at a 2:1 molar ratio of P to metals. After equilibrated for 2 weeks, the soils were evaluated with the leaching procedures. The batch-based toxicity characteristic leaching procedure (TCLP) was conducted to determine the leachability of heavy metals from both untreated and P-treated soils under simulated landfill condition. The column-based synthetic precipitation leaching procedure (SPLP) were undertaken to measure the downward migration of metals from untreated and P-treated soils under simulated rainfall condition. Leachability of Pb, Cu, and Zn in the TCLP extract followed the order of Zn > Cu > Pb in both soils, with the organic-C- and clay-poor soil showing higher metal leachability than the organic-C- and clay-rich soil. All three P treatments reduced leachability of Pb, Cu, and Zn by up to 89.2, 24.4, and 34.3 %, respectively, compared to the untreated soil, and TSP revealed more effectiveness followed by P + T and then PR. The column experiments showed that Zn had the highest downward migration upon 10 pore volumes of SPLP leaching, followed by Pb and then Cu in both soils. However, migration of Pb and Zn to subsoil and leachate were inhibited in the P-treated soil, while Cu in the leachate was enhanced by P treatment in the organic

  2. Remediation of metal-contaminated urban soil using flotation technique.

    PubMed

    Dermont, G; Bergeron, M; Richer-Laflèche, M; Mercier, G

    2010-02-01

    A soil washing process using froth flotation technique was evaluated for the removal of arsenic, cadmium, copper, lead, and zinc from a highly contaminated urban soil (brownfield) after crushing of the particle-size fractions >250microm. The metal contaminants were in particulate forms and distributed in all the particle-size fractions. The particle-by-particle study with SEM-EDS showed that Zn was mainly present as sphalerite (ZnS), whereas Cu and Pb were mainly speciated as various oxide/carbonate compounds. The influence of surfactant collector type (non-ionic and anionic), collector dosage, pulp pH, a chemical activation step (sulfidization), particle size, and process time on metal removal efficiency and flotation selectivity was studied. Satisfactory results in metal recovery (42-52%), flotation selectivity (concentration factor>2.5), and volume reduction (>80%) were obtained with anionic collector (potassium amyl xanthate). The transportation mechanisms involved in the separation process (i.e., the true flotation and the mechanical entrainment) were evaluated by the pulp chemistry, the metal speciation, the metal distribution in the particle-size fractions, and the separation selectivity indices of Zn/Ca and Zn/Fe. The investigations showed that a great proportion of metal-containing particles were recovered in the froth layer by entrainment mechanism rather than by true flotation process. The non-selective entrainment mechanism of the fine particles (<20 microm) caused a flotation selectivity drop, especially with a long flotation time (>5 min) and when a high collector dose is used. The intermediate particle-size fraction (20-125 microm) showed the best flotation selectivity. PMID:19959208

  3. Response of a salt marsh microbial community to metal contamination

    NASA Astrophysics Data System (ADS)

    Mucha, Ana P.; Teixeira, Catarina; Reis, Izabela; Magalhães, Catarina; Bordalo, Adriano A.; Almeida, C. Marisa R.

    2013-09-01

    Salt marshes are important sinks for contaminants, namely metals that tend to accumulate around plant roots and could eventually be taken up in a process known as phytoremediation. On the other hand, microbial communities display important roles in the salt marsh ecosystems, such as recycling of nutrients and/or degradation of organic contaminants. Thus, plants can benefit from the microbial activity in the phytoremediation process. Nevertheless, above certain levels, metals are known to be toxic to microorganisms, fact that can eventually compromise their ecological functions. In this vein, the aim of present study was to investigate, in the laboratory, the effect of selected metals (Cd, Cu and Pb) on the microbial communities associated to the roots of two salt marsh plants. Sediments colonized by Juncus maritimus and Phragmites australis were collected in the River Lima estuary (NW Portugal), and spiked with each of the metals at three different Effects Range-Median (ERM) concentrations (1, 10×, 50×), being ERM the sediment quality guideline that indicates the concentration above which adverse biological effects may frequently occur. Spiked sediments were incubated with a nutritive saline solution, being left in the dark under constant agitation for 7 days. The results showed that, despite the initial sediments colonized by J. maritimus and P. australis displayed significant (p < 0.05) differences in terms of microbial community structure (evaluated by ARISA), they presented similar microbial abundances (estimated by DAPI). Also, in terms of microbial abundance, both sediments showed a similar response to metal addition, with a decrease in number of cells only observed for the higher addition of Cu. Nevertheless, both Cu and Pb, at intermediate metals levels promote a shift in the microbial community structure, with possibly effect on the ecological function of these microbial communities in salt marshes. These changes may affect plants phytoremediation

  4. Comparison of alternative remediation technologies for recycled gravel contaminated with heavy metals.

    PubMed

    Gao, Xiaofeng; Gu, Yilu; Huang, Sheng; Zhen, Guangyin; Deng, Guannan; Xie, Tian; Zhao, Youcai

    2015-11-01

    To evaluate the effects of different remediation methods on heavy metals contaminated recycled gravel, three immobilization agents (monopotassium phosphate, lime, nano-iron) and two mobilization agents (glyphosate, humic acid (HA)) were studied and compared. Results indicated that nano-iron powder was found to be more effective to immobilize Zn, Cu, Pb and Cd. Meanwhile, glyphosate presents a higher mobilization effect than HA with removal rates of about 66.7% for Cd, more than 80% for Cr, Cu and Zn, and the highest removal percentage of 85.9% for Cr. After the mobilization by glyphosate, the leaching rates of Zn, Cu and Cr were about 0.8%, and below 0.2% for Pb and Cd. The leaching rates after nano-iron powder treatment were 1.18% for Zn, 0.96% for Cr, 0.61% for Cu, 0.45% for Pb and Cd not detected. The formation and disappearance of metal (Zn/Cu/Cr/Pb/Cd) compounds were firmly confirmed through X-ray diffraction and scanning electron microscopy analyses on crystalline phases and morphological surface structures. PMID:26416851

  5. Phytoremediation and long-term site management of soil contaminated with pentachlorophenol (PCP) and heavy metals.

    PubMed

    Mills, Tessa; Arnold, Barbara; Sivakumaran, Siva; Northcott, Grant; Vogeler, Iris; Robinson, Brett; Norling, Cara; Leonil, Doris

    2006-05-01

    Pentachlorophenol (PCP) is a persistent organic pollutant (POP) previously used as a timber treatment chemical to prevent sap stain and wood rot. Commonly used in wood treatment industries for the last 50 years, there are now many sites worldwide that are contaminated with PCP. Although persistent, PCP is a mobile contaminant and therefore has a propensity to leach and contaminate surrounding environments. Both willow (Salix sp., 'Tangoio') and poplar (Populus sp. 'Kawa') growing in an open-ended plastic greenhouse were found to tolerate soil PCP concentrations of 250 mg kg(-1) or less and both species stimulated a significant increase in soil microbial activity when compared to unplanted controls. Both poplar and willow could not survive PCP concentrations above 250 mg kg(-1) in soil. Pentachlorophenol degradation occurred in both planted and unplanted pots, but a higher rate of degradation was observed in the planted pots. Soil contaminated by wood-treatment activities often contains co-contaminants such as B, Cr, Cu and As, that are also used as timber preservatives. An additional column leaching experiment, done along side the potted trial, found that PCP, B, Cr, Cu and As were all present in the column leachate. This indicates that although Cu, Cr and As are generally considered immobile in the soil, they were mobilised under our column conditions. If a contaminated site were to be hydraulically 'sealed' using plants, a reticulation irrigation system should be installed to capture any contaminant leachate resulting from heavy rains. This captured leachate can either be independently treated, or reapplied to the site. Our data demonstrate a reduction in soil hydraulic conductivity with repeated application of leachate containing PCP and metal compounds but the soil did not become anaerobic. This would need to be considered in site remediation design. PMID:16202508

  6. Impact of extreme metal contamination at the supra-individual level in a contaminated bay ecosystem.

    PubMed

    Wu, Bin; Li, Xuegang; Song, Jinming; Hu, Limin; Shi, Xuefa

    2016-07-01

    Anthropogenic stressors impact the global environment and adversely affect the health of organisms and humans. This study was designed as an attempt to evaluate the ecological consequences of severe metal contamination at the supra-individual level based on a field investigation in Jinzhou Bay (JZB), North China in 2010. The chemical results showed high concentrations of metals in the sediment of JZB that were ~129 times greater than the local geochemical background. Furthermore, the measured metals exhibited considerably high toxicity potential indicated by sediment quality guidelines (SQGs). The mean SQGs quotients suggested the overall toxicity incidence was >70% in locations neighboring the Wulihe River mouth. Biomonitoring revealed 116 individuals distributed among a mere 6 species, 4 of which were polychaetes, at 33% of the sampling sites. Thus, few benthic organisms were present in the damaged community structures across the region, which was consistent with the extreme metal contamination. Moreover, the sediment quality assessment, in a weight of evidence framework, demonstrated that the sediment throughout the entire JZB was moderately to severely impaired, especially in the vicinity of the Wulihe River mouth. By synthesizing the present and previous chemical-biological monitoring campaigns, a possible cause-effect relationship between chemical stressors and benthic receptors was established. We also found that the hydrodynamics, sediment sources, and geochemical characteristics of the metals (in addition to the sources of the metals) were responsible for the geochemical distribution of metals in JZB. The significance of the overall finding is that the deleterious responses observed at the community level may possibly be linked to the extreme chemical stress in the sediment of JZB. PMID:26994798

  7. Sensitivity of six subantarctic marine invertebrates to common metal contaminants.

    PubMed

    Holan, Jessica R; King, Catherine K; Davis, Andrew R

    2016-09-01

    A long history of anthropogenic activities in the relatively pristine subantarctic has resulted in areas of accumulated waste and contaminants. Sensitivities to metals of subantarctic and Antarctic species may contrast with related species from temperate and tropical areas because of the unique characteristics of polar biota. In addition, response to contaminants may be delayed, and hence longer exposure periods may be required in toxicity tests with polar species. In the present study, the sensitivity of 6 common subantarctic marine invertebrates to copper, zinc, and cadmium contaminants was determined. Large variations in sensitivities, both between species and between metals within species, were found. The bivalve Gaimardia trapesina and the copepod Harpacticus sp. were the most sensitive to copper, with 7-d median lethal concentration (LC50) values for both species ranging between 28 μg/L and 62 μg/L, whereas the copepod Tigriopus angulatus was the most tolerant of copper (7-d Cu LC50 1560 μg/L). Sensitivity to zinc varied by approximately 1 order of magnitude between species (7-d LC50: 329-3057 μg/L). Sensitivity to cadmium also varied considerably between species, with 7-d LC50 values ranging from 1612 μg/L to >4383 μg/L. The present study is the first to report the sensitivity of subantarctic marine invertebrate to metals, and contributes significantly to the understanding of latitudinal gradients in the sensitivity of biota to metals. Although sensitivity is highly variable between species, in a global comparison of copepod data, it appears that species from higher latitudes may be more sensitive to copper. Environ Toxicol Chem 2016;35:2245-2251. © 2016 SETAC. PMID:26800986

  8. Comparison of heavy metal immobilization in contaminated soils amended with peat moss and peat moss-derived biochar.

    PubMed

    Park, Jin Hee; Lee, Seul-Ji; Lee, Myoung-Eun; Chung, Jae Woo

    2016-04-20

    There have been contradictory viewpoints whether soil amendments immobilize or mobilize heavy metals. Therefore, this study evaluated the mobility and bioavailability of Pb, Cu, and Cd in contaminated soil (1218 mg Pb per kg, 63.2 mg Cu per kg, 2.8 mg Cd per kg) amended with peat moss (0.22, 0.43, and 1.29% carbon ratio) and peat moss-derived biochar (0.38, 0.75, and 2.26% carbon ratio) at 0.5, 1, 3% levels. The more peat moss added, the stronger both mobility and bioavailability of Pb, Cu, and Cd would be. In contrast, the addition of peat moss-derived biochar significantly reduced both mobility and bioavailability of heavy metals through the coordination of metal electrons to C[double bond, length as m-dash]C (π-electron) bonds and increased pH. Maximum immobilization was observed in 3% peat moss-derived biochar treatment after 10 days of incubation, which was measured at 97.8%, 100%, and 77.2% for Pb, Cu, and Cd, respectively. Since peat moss and peat moss-derived biochar showed conflicting effectiveness in mobility and bioavailability of heavy metals, soil amendments should be carefully applied to soils for remediation purposes. PMID:27055368

  9. Inhibited Release of Mobile Contaminants from Hanford Tank Residual Waste

    SciTech Connect

    Cantrell, Kirk J.; Heald, Steve M.; Arey, Bruce W.; Lindberg, Michael J.

    2011-03-03

    Investigations of contaminant release from Hanford Site tank residual waste have indicated that in some cases certain contaminants of interest (Tc and Cr) exhibit inhibited release. The percentage of Tc that dissolved from residual waste from tanks 241-C-103, 241-C-106, 241-C-202, and 241-C-203 ranged from approximately 6% to 10%. The percent leachable Cr from residual waste from tanks C-103, C 202, and C-203 ranged from approximately 1.1% to 44%. Solid phase characterization results indicate that the recalcitrant forms of these contaminants are associated with iron oxides. X-ray absorption near edge structure analysis of Tc and Cr in residual waste indicates that these contaminants occur in Fe oxide particles as their lower, less soluble oxidation states [Tc(IV) and Cr(III)]. The form of these contaminants is likely as oxides or hydroxides incorporated within the structure of the Fe oxide. Leaching behavior of U from tank residual waste was studied using deionized water, and CaCO3 and Ca(OH)2 saturated solutions as leachants. The release behavior of U from tank residual waste is complex. Initial U concentrations in water and CaCO3 leachants are high due to residual amounts of the highly soluble U mineral cejkaite. As leaching and dilution occur NaUO2PO4 {center_dot} xH2O, Na2U2O7(am) and schoepite (or a similar phase) become the solubility controlling phases for U. In the case of the Ca(OH)2 leachant, U release from tank residual waste is dramatically reduced. Thermodynamic modeling indicates that the solubility of CaUO4(c) controls release of U from residual waste in the Ca(OH)2 leachants. It is assumed the solubility controlling phase is actually a hydrated version of CaUO4 with a variable water content ranging from CaUO4 to CaUO4 {center_dot} (H2O). The critically reviewed value for CaUO4(c) (log KSP0 = 15.94) produced good agreement with our experimental data for the Ca(OH)2 leachates.

  10. Biological attributes of rehabilitated soils contaminated with heavy metals.

    PubMed

    Valentim Dos Santos, Jessé; Varón-López, Maryeimy; Fonsêca Sousa Soares, Cláudio Roberto; Lopes Leal, Patrícia; Siqueira, José Oswaldo; de Souza Moreira, Fatima Maria

    2016-04-01

    This study aimed to evaluate the effects of two rehabilitation systems in sites contaminated by Zn, Cu, Pb, and Cd on biological soil attributes [microbial biomass carbon (Cmic), basal and induced respiration, enzymatic activities, microorganism plate count, and bacterial and fungal community diversity and structure by denaturing gradient gel electrophoresis (DGGE)]. These systems (S1 and S2) consisted of excavation (trenching) and replacement of contaminated soil by uncontaminated soil in rows with Eucalyptus camaldulensis planting (S1-R and S2-R), free of understory vegetation (S1-BR), or completely covered by Brachiaria decumbens (S2-BR) in between rows. A contaminated, non-rehabilitated (NR) site and two contamination-free sites [Cerrado (C) and pasture (P)] were used as controls. Cmic, densities of bacteria and actinobacteria, and enzymatic activities (β-glucosidase, acid phosphatase, and urease) were significantly higher in the rehabilitated sites of system 2 (S2-R and S2-BR). However, even under high heavy metal contents (S1-R), the rehabilitation with eucalyptus was also effective. DGGE analysis revealed similarity in the diversity and structure of bacteria and fungi communities between rehabilitated sites and C site (uncontaminated). Principal component analysis showed clustering of rehabilitated sites (S2-R and S2-BR) with contamination-free sites, and S1-R was intermediate between the most and least contaminated sites, demonstrating that the soil replacement and revegetation improved the biological condition of the soil. The attributes that most explained these clustering were bacterial density, acid phosphatase, β-glucosidase, fungal and actinobacterial densities, Cmic, and induced respiration. PMID:26662102

  11. Mobilization and attenuation of metals downstream from a base-metal mining site in the Matra Mountains, northeastern Hungary

    USGS Publications Warehouse

    Odor, L.; Wanty, R.B.; Horvath, I.; Fugedi, U.

    1999-01-01

    Regional geochemical baseline values have been established for Hungary by the use of low-density stream-sediment surveys of flood-plain deposits of large drainage basins and of the fine fraction of stream sediments. The baseline values and anomaly thresholds thus produced helped to evaluate the importance of high toxic element concentrations found in soils in a valley downstream of a polymetallic vein-type base-metal mine. Erosion of the mine dumps and flotation dump, losses of metals during filtering, storage and transportation, human neglects, and operational breakdowns, have all contributed to the contamination of a small catchment basin in a procession of releases of solid waste. The sulfide-rich waste material weathers to a yellow color; this layer of 'yellow sand' blankets a narrow strip of the floodplain of Toka Creek in the valley near the town of Gyongyosoroszi. Contamination was spread out in the valley by floods. Metals present in the yellow sand include Pb, As, Cd, Cu, Zn, and Sb. Exposure of the local population to these metals may occur through inhalation of airborne particulates or by ingestion of these metals that are taken up by crops grown in the valley. To evaluate the areal extent and depth of the contamination, active stream sediment, flood-plain deposits, lake or reservoir sediments, soils, and surface water were sampled along the erosion pathways downstream of the mine and dumps. The flood-plain profile was sampled in detail to see the vertical distribution of elements and to relate the metal concentrations to the sedimentation and contamination histories of the flood plain. Downward migration of mobile Zn and Cd from the contaminated upper layers under supergene conditions is observed, while vertical migration of Pb, As, Hg and Sb appears to be insignificant. Soil profiles of 137Cs which originated from above-ground atomic bomb tests and the Chernobyl accident, provide good evidence that the upper 30-40 cm of the flood-plain sections, which

  12. Metal contamination at a wood preservation site: characterisation and experimental studies on remediation.

    PubMed

    Bhattacharya, Prosun; Mukherjee, Arun B; Jacks, Gunnar; Nordqvist, Sune

    2002-05-01

    The aim of this investigation was to determine the occurrence of As, Cu, Cr and Zn in the soil at an abandoned wood preservation unit and to examine some possible extractants for the contaminants in the soil. The mean As content of the contaminated surface soils (0-10 cm) was 186 mg kg(-1), where as the mean concentrations of Cu, Cr and Zn in soils from the contaminated area were 26, 29 and 91 mg kg(-1), respectively. The elevated As content in the mineral soils is related to adsorption of inorganic As phases in the fine grained fractions, which are characterised by large surface area and high positive surface charge under the current acidic conditions. Cu and Cr were found to be rather mobile, which is reflected in their lower abundance in soils and significant accumulation in sediments in the drainage leaving the area. The fine fraction of the soil (<0.125 mm) has an average metal content increased by nearly 34% as compared to the <2-mm fraction conventionally used for the analysis and assessment of soil contamination. The <2-mm fraction constitutes approximately 65% of the total weight while the fine fraction (<0.125 mm) constitutes approximately 10%. These facts, taken together, are essential for the choice of remediation measures. Oxalate solutions have been tested as extractants for soil remediation. Dark acid oxalate extraction dissolves the amorphous Al- and Fe-oxides and hydroxides and mobilises the adsorbed inorganic As species. Oxalate also acts as a ligand for the cationic heavy metals, releasing them from exchangeable sites. With a three-step sequential leaching, up to 98-99% of the metals could be removed. At lower concentrations and higher pH, the leaching decreased to approximately 70%. PMID:12083708

  13. Oxidation and mobilization of metallic antimony in aqueous systems with simulated groundwater

    NASA Astrophysics Data System (ADS)

    Ilgen, A. G.; Majs, F.; Barker, A. J.; Douglas, T. A.; Trainor, T. P.

    2014-05-01

    Antimony (Sb) is a contaminant of concern that can be present in elevated concentrations in shooting range soils due to mobilization from spent lead/antimony bullets. Antimony in shooting range soils has been observed as either metallic Sb(0) or as Sb(V) immobilized by iron (hydr)oxides. The absence of Sb(III) in soils is indicative of rapid Sb(III) oxidation to Sb(V) under surface soil conditions. However, the major controls on antimony oxidation and mobility are poorly understood. To better understand these controls we performed multiple batch experiments under oxic conditions to quantify the oxidation and dissolution of antimony in systems where Sb(0) is oxidized to Sb(III) and further to Sb(V). We also tested how variations in the aqueous matrix composition and the presence of metallic lead (Pb) affect the dissolution, solid phase speciation, and oxidation of antimony. We monitored changes in the aqueous antimony speciation using liquid chromatography inductively coupled plasma mass spectrometry (LC-ICP-MS). To test which solid phases form as a result of Sb(0) oxidation, and therefore potentially limit the mobility of antimony in our studied systems, we characterized the partially oxidized Sb(0) powders by means of extended X-ray absorption fine structure (EXAFS) spectroscopy and powder X-ray diffraction (XRD).

  14. Forest floor leachate fluxes under six different tree species on a metal contaminated site.

    PubMed

    Van Nevel, Lotte; Mertens, Jan; De Schrijver, An; Baeten, Lander; De Neve, Stefaan; Tack, Filip M G; Meers, Erik; Verheyen, Kris

    2013-03-01

    Trees play an important role in the biogeochemical cycling of metals, although the influence of different tree species on the mobilization of metals is not yet clear. This study examined effects of six tree species on fluxes of Cd, Zn, DOC, H(+) and base cations in forest floor leachates on a metal polluted site in Belgium. Forest floor leachates were sampled with zero-tension lysimeters in a 12-year-old post-agricultural forest on a sandy soil. The tree species included were silver birch (Betula pendula), oak (Quercus robur and Q. petraea), black locust (Robinia pseudoacacia), aspen (Populus tremula), Scots pine (Pinus sylvestris) and Douglas fir (Pseudotsuga menziesii). We show that total Cd fluxes in forest floor leachate under aspen were slightly higher than those in the other species' leachates, yet the relative differences between the species were considerably smaller when looking at dissolved Cd fluxes. The latter was probably caused by extremely low H(+) amounts leaching from aspen's forest floor. No tree species effect was found for Zn leachate fluxes. We expected higher metal leachate fluxes under aspen as its leaf litter was significantly contaminated with Cd and Zn. We propose that the low amounts of Cd and Zn leaching under aspen's forest floor were possibly caused by high activity of soil biota, for example burrowing earthworms. Furthermore, our results reveal that Scots pine and oak were characterized by high H(+) and DOC fluxes as well as low base cation fluxes in their forest floor leachates, implying that those species might enhance metal mobilization in the soil profile and thus bear a potential risk for belowground metal dispersion. PMID:23376521

  15. Chelant soil-washing technology for metal-contaminated soil.

    PubMed

    Voglar, David; Lestan, Domen

    2014-01-01

    We demonstrate here, in a pilot-scale experiment, the feasibility of ethylenediaminetetraacetate (EDTA)based washing technology for soils contaminated with potentially toxic metals. Acid precipitation coupled to initial alkaline toxic metal removal and an electrochemical advanced oxidation process were used for average recovery of 76 +/- 2% of EDTA per batch and total recycle of water in a closed process loop. No waste water was generated; solid wastes were efficiently bitumen-stabilized before disposal. The technology embodiment, using conventional process equipment, such as a mixer for soil extraction, screen for soil/gravel separation, filter chamber presses for soil/liquid and recycled EDTA separation and soil rinsing, continuous centrifuge separator for removal of precipitated metals and electrolytic cells for process water cleansing, removed up to 72%, 25% and 66% of Pb, Zn and Cd from garden soil contaminated with up to 6960, 3797 and 32.6 mg kg(-1) of Pb, Zn and Cd, respectively, in nine 60kg soil batches. Concentrations of Pb and Zn remaining in the remediated soil and bioaccessible from the simulated human intestinal phase soil were reduced by 97% and 96% and were brought under the level of determination for Cd. In the most cost-effective operation mode, the material and energy costs of remediation amounted to 50.5 Euros ton(-1) soil and the total cost to 299 Euros ton(-1). PMID:24701937

  16. Heavy Metal Contaminated Soils in Riverside Park, Milwaukee, WI: Character, Bioavailability, and Distribution

    NASA Astrophysics Data System (ADS)

    Dansand, J. J.; Knudsen, A. C.

    2007-12-01

    Prior to being breached in 1990, the North Avenue Dam on the Milwaukee River had created a 2.5-mile impoundment for over 150 years. Upstream urban runoff and industrial pollution resulted in the deposition of heavy metal rich sediments in the slow moving waters of the impoundment. After the dam removal, the river returned to a more natural flowpath and as the river narrowed, newly exposed riverbed was annexed as part of Riverside Park, enabling ecological recovery efforts on the river and riparian zones. However, these newly exposed soils are enriched with heavy metal contaminants, most notably, Pb, Zn, Cd, Cu, and Ni, concentrated by the impoundment. The current study has analyzed the location and concentrations of these trace metals, as well as their mobility and availability. This study is being conducted in conjunction with the Urban Ecology Center, a nonprofit environmental organization located in Riverside Park that is dedicated to serving the local community and urban youth while restoring and protecting the natural areas along the Milwaukee River. Analyses have included determination of general soil parameters such as particle size, organic content, and point of zero charge analyses. Beyond bulk chemical analysis, we have conducted selective sequential extractions to estimate the chemical speciation of these elements, which showed that approximately 30 percent of contaminants are highly available. Additionally, the soils have been analyzed with an Electron Microprobe to directly observe phase relationships of metals in the soils. Microprobe and other analyses have shown that heavy metals are associated with a variety of phases, including Mn and Fe oxy-hydroxides, and vary in concentration and phase relationships with depth and distance from the river. Finally, a field-portable x-ray fluorescence spectrometer (pXRF), coupled with GPS data, is being used to create a geochemical map of heavy metal distributions throughout the park.

  17. [Immobilization impact of different fixatives on heavy metals contaminated soil].

    PubMed

    Wu, Lie-shan; Zeng, Dong-mei; Mo, Xiao-rong; Lu, Hong-hong; Su, Cui-cui; Kong, De-chao

    2015-01-01

    Four kinds of amendments including humus, ammonium sulfate, lime, superphosphate and their complex combination were added to rapid immobilize the heavy metals in contaminated soils. The best material was chosen according to the heavy metals' immobilization efficiency and the Capacity Values of the fixative in stabilizing soil heavy metals. The redistributions of heavy metals were determined by the European Communities Bureau of Referent(BCR) fraction distribution experiment before and after treatment. The results were as follows: (1) In the single material treatment, lime worked best with the dosage of 2% compared to the control group. In the compound amendment treatments, 2% humus combined with 2% lime worked best, and the immobilization efficiency of Pb, Cu, Cd, Zn reached 98.49%, 99.40%, 95.86%, 99.21%, respectively. (2) The order of Capacity Values was lime > humus + lime > ammonium sulfate + lime > superphosphate > ammonium sulfate + superphosphate > humus + superphosphate > humus > superphosphate. (3) BCR sequential extraction procedure results indicated that 2% humus combined with 2% lime treatment were very effective in immobilizing heavy metals, better than 2% lime treatment alone. Besides, Cd was activated firstly by 2% humus treatment then it could be easily changed into the organic fraction and residual fraction after the subsequent addition of 2% lime. PMID:25898680

  18. Functioning of metal contaminated garden soil after remediation.

    PubMed

    Jelusic, Masa; Grcman, Helena; Vodnik, Dominik; Suhadolc, Metka; Lestan, Domen

    2013-03-01

    The effect of remediation using three EDTA doses (10, 30, 60 mmol kg(-1)) on soil functioning was assessed using column experiment and Brassica rapa. Soil washing removed up to 77, 29 and 72% of metals from soil contaminated with 1378, 578 and 8.5 mg kg(-1) of Pb, Zn and Cd, respectively. Sequential extraction indicated removal from the carbonate soil fraction. Metal oral-accessibility from the stomach phase was reduced by up to 75 and from the small intestine by up to 79% (Pb). Part of metals (up to 0.8% Cd) was lost due to leaching from columns. Remediation reduced toxic metal soil-root transfer by up to 61% but did not prevent metal accumulation in leaves. The fitness of plants grown on EDTA washed soils (gas exchange, fluorescence) was not compromised. Remediation initially reduced the soil DNA content (up to 29%, 30 mmol kg(-1) EDTA) and changed the structure of microbial population. PMID:23246748

  19. Microbial mobilization of plutonium and other actinides from contaminated soil.

    PubMed

    Francis, A J; Dodge, C J

    2015-12-01

    We examined the dissolution of Pu, U, and Am in contaminated soil from the Nevada Test Site (NTS) due to indigenous microbial activity. Scanning transmission x-ray microscopy (STXM) analysis of the soil showed that Pu was present in its polymeric form and associated with Fe- and Mn- oxides and aluminosilicates. Uranium analysis by x-ray diffraction (μ-XRD) revealed discrete U-containing mineral phases, viz., schoepite, sharpite, and liebigite; synchrotron x-ray fluorescence (μ-XRF) mapping showed its association with Fe- and Ca-phases; and μ-x-ray absorption near edge structure (μ-XANES) confirmed U(IV) and U(VI) oxidation states. Addition of citric acid or glucose to the soil and incubated under aerobic or anaerobic conditions enhanced indigenous microbial activity and the dissolution of Pu. Detectable amount of Am and no U was observed in solution. In the citric acid-amended sample, Pu concentration increased with time and decreased to below detection levels when the citric acid was completely consumed. In contrast, with glucose amendment, Pu remained in solution. Pu speciation studies suggest that it exists in mixed oxidation states (III/IV) in a polymeric form as colloids. Although Pu(IV) is the most prevalent and generally considered to be more stable chemical form in the environment, our findings suggest that under the appropriate conditions, microbial activity could affect its solubility and long-term stability in contaminated environments. PMID:26406590

  20. METAL FRACTIONATION IN SOILS AND ASSESSMENT OF ENVIROMENTAL CONTAMINATION IN THE VALLECAMONICA, ITALY

    PubMed Central

    Borgese, L.; Federici, S.; Zacco, A.; Gianoncelli, A.; Rizzo, L.; Smith, D. R.; Donna, F.; Lucchini, R.; Depero, L. E.; Bontempi, E.

    2013-01-01

    Metal contamination was investigated in soils of the Vallecamonica, an area in the northern part of the Brescia province (Italy) where ferroalloy industries were active for a century until 2001. The extent in which emissions from ferroalloy plants affected metal concentration in soils is not known in this area. In this study the geogenic and/or anthropogenic origin of metals in soils were estimated. A modified Community Bureau of Reference sequential chemical extraction method followed by inductive coupled plasma optical emission spectroscopy analyses were employed to evaluate the potential bioavailability of Al, Cd, Mn, Fe, Cr, Zn, and Pb in soils. Principal components analysis was used to assess the relationships among metal sources in soil samples from different locations. This approach allowed to distinguish different loadings and mobilities of metals in soils collected in different areas. Results showed high concentrations and readily extractability of Mn in the Vallecamonica soils, which may suggest potential bioavailability for organisms and may create an environmental risk and potential health risk of human exposure. PMID:23338992

  1. Mobility of Source Zone Heavy Metals and Radionuclides: The Mixed Roles of Fermentative Activity on Fate and Transport of U and Cr. Final Report

    SciTech Connect

    Gerlach, Robin; Peyton, Brent M.; Apel, William A.

    2014-01-29

    Various U. S. Department of Energy (DOE) low and medium-level radioactive waste sites contain mixtures of heavy metals, radionuclides and assorted organic materials. In addition, there are numerous sites around the world that are contaminated with a mixture of organic and inorganic contaminants. In most sites, over time, water infiltrates the wastes, and releases metals, radionuclides and other contaminants causing transport into the surrounding environment. We investigated the role of fermentative microorganisms in such sites that may control metal, radionuclide and organics migration from source zones. The project was initiated based on the following overarching hypothesis: Metals, radionuclides and other contaminants can be mobilized by infiltration of water into waste storage sites. Microbial communities of lignocellulose degrading and fermenting microorganisms present in the subsurface of contaminated DOE sites can significantly impact migration by directly reducing and immobilizing metals and radionuclides while degrading complex organic matter to low molecular weight organic compounds. These low molecular weight organic acids and alcohols can increase metal and radionuclide mobility by chelation (i.e., certain organic acids) or decrease mobility by stimulating respiratory metal reducing microorganisms. We demonstrated that fermentative organisms capable of affecting the fate of Cr6+, U6+ and trinitrotoluene can be isolated from organic-rich low level waste sites as well as from less organic rich subsurface environments. The mechanisms, pathways and extent of contaminant transformation depend on a variety of factors related to the type of organisms present, the aqueous chemistry as well as the geochemistry and mineralogy. This work provides observations and quantitative data across multiple scales that identify and predict the coupled effects of fermentative carbon and electron flow on the transport of radionuclides, heavy metals and organic contaminants in

  2. Scaling up a treatment to simultaneously remove persistent organic pollutants and heavy metals from contaminated soils.

    PubMed

    Rivero-Huguet, Mario; Marshall, William D

    2011-04-01

    Soil washing is a treatment process that can be used to remediate both organic and inorganic pollutants from contaminated soils, sludges, and sediments. A soil washing procedure was evaluated utilizing about 100g samples of soil that had been field-contaminated with arsenic, chromium, copper, pentachlorophenol (PCP), polychlorinated dibenzo-p-dioxins (PCDDs) and polychlorinated dibenzofurans (PCDFs). The highest level of mobilization/detoxification was achieved in three soil washes with a mixture of 0.1M [S,S]-ethyelnediaminedisuccinate ([S,S]-EDDS) and 2% Brij 98 at pH 9 with 20 min of ultrasonication treatment at room temperature. This combination mobilized 70% of arsenic, 75% of chromium, 80% of copper, 90% of PCP, and 79% of PCDDs and PCDFs, so that the decontaminated soil met the maximum acceptable concentrations of the generic C-level criteria regulated by the Ministère du Développement Durable, de l'Environnement et des Parcs for the Province of Québec, Canada. The organic pollutants were back-extracted from the aqueous suspension with hexane. Heavy metals were virtually completely precipitated from the aqueous washing suspension with Mg(0) particles at room temperature. The PCP was detoxified by catalytic hydrodechlorination with a stream of 5% (v/v) H(2)-supercritical CO(2) that transported the organosoluble fraction through a reaction chamber containing 2% Pd/γ-Al(2)O(3). In toto, this soil washing procedure demonstrates that persistent organic pollutants and selected heavy metals can be co-extracted efficiently from a field-contaminated soil with three successive washes with the same soil washing solution containing [S,S]-EDDS and a non-ionic surfactant (Brij 98) in admixture. An industrial-scale ex situ soil washing procedure with a combination of a non-ionic surfactant and a complexing reagent seems to be a plausible remediation technique for this former wooden utility pole storage facility. PMID:21354593

  3. Metal mobility during in situ chemical oxidation of TCE by KMnO4.

    PubMed

    Al, Tom A; Banks, Vernon; Loomer, Diana; Parker, Beth L; Ulrich Mayer, K

    2006-11-20

    The potential for trace-metal contamination of aquifers as a side effect of In Situ Chemical Oxidation (ISCO) of chlorinated solvent contamination by KMnO(4) is investigated with column experiments. The experiments investigate metal mobility during in situ chemical oxidation of TCE by KMnO(4) under conditions where pH, flow rate, KMnO(4), TCE, and trace-metal concentrations were controlled. During ISCO, the injection of MnO(4) creates oxidizing conditions, and acidity released by the reactions causes a tendency toward low pH in aquifers. In order to evaluate the role of pH buffering on metal mobility, duplicate columns were constructed, one packed with pure silica sand, and one with a mixture of silica sand and calcite. Aqueous solutions of TCE and KMnO(4) (with 1 mg/L Cu, Pb, Zn, Mo, Ni, and Cr(VI)) were allowed to mix at the inlet to the columns. After the completion of the experiments, samples of Mn oxide were removed from the columns and analyzed by analytical scanning and transmission electron microscopy. In order to relate the results of the laboratory experiments to field settings, the analyses of Mn-oxide samples from the lab experiments were compared to samples of Mn oxide collected from a field-scale chemical-oxidation experiment that were also analyzed by analytical electron microscopy as well as time-of-flight secondary-ion mass spectroscopy. The pH ranged from 2.40 in the silica sand column to 6.25 in the calcite-containing column. The data indicate that aqueous Mo, Pb, Cu and Ni concentrations are attenuated almost completely within the columns. In contrast, Zn concentrations are not significantly attenuated and Cr(VI) is transported conservatively. The results indicate that within the range 2.40 to 6.25, metal mobility is not affected by pH. Comparison of analyses of Mn-oxide from the lab and field demonstrate that a variety of metals are sequestered from solution by Mn oxide. PMID:16876907

  4. The importance of sulphide binding for leaching of heavy metals from contaminated Norwegian marine sediments treated by stabilization/solidification.

    PubMed

    Sparrevik, Magnus; Eek, Espen; Grini, Randi Skirstad

    2009-07-01

    sulphide binding for mobility of heavy metals in stabilized marine sediments. For practical application of S/S technology to contaminated sediments, it is important to assess the leachability of the stabilized material taking sediment conditions such as AVS content into account. It is however important to be aware that the mobility of contaminants from a S/S sediment is dependent on a combination of contaminant concentrations and hydraulic conductivity (permeability). When devising S/S procedures for environmental projects, in addition to physical strength, the binder should be optimized in relation to leaching and permeability in order to achieve the lowest transport of contaminants through the material. PMID:19705667

  5. Metal resistant plants and phytoremediation of environmental contamination

    DOEpatents

    Meagher, Richard B.; Li, Yujing; Dhankher, Om P.

    2010-04-20

    The present disclosure provides a method of producing transgenic plants which are resistant to at least one metal ion by transforming the plant with a recombinant DNA comprising a nucleic acid encoding a bacterial arsenic reductase under the control of a plant expressible promoter, and a nucleic acid encoding a nucleotide sequence encoding a phytochelatin biosynthetic enzyme under the control of a plant expressible promoter. The invention also relates a method of phytoremediation of a contaminated site by growing in the site a transgenic plant expressing a nucleic acid encoding a bacterial arsenate reductase and a nucleic acid encoding a phytochelatin biosynthetic enzyme.

  6. SHEAR BOND STRENGTH OF METALLIC BRACKETS: INFLUENCE OF SALIVA CONTAMINATION

    PubMed Central

    Retamoso, Luciana Borges; Collares, Fabrício Mezzomo; Ferreira, Eduardo Silveira; Samuel, Susana Maria Werner

    2009-01-01

    Objective: To evaluate the influence of saliva contamination on shear bond strength and the bond failure pattern of 3 adhesive systems (Transbond XT, AdheSE and Xeno III) on orthodontic metallic brackets bonded to human enamel. Material and Methods: Seventy-two permanent human molars were cut longitudinally in a mesiodistal direction, producing seventy-two specimens randomly divided into six groups. Each system was tested under 2 different enamel conditions: no contamination and contaminated with saliva. In T, A and X groups, the adhesive systems were applied to the enamel surface in accordance with manufacturer's instructions. In TS, AS and XS groups, saliva was applied to enamel surface followed by adhesive system application. The samples were stored in distilled water at 37°C for 24 h, and then tested for shear bond strength in a universal testing machine (Emic, DL 2000) running at a crosshead speed of 1 mm/min. After bond failure, the enamel surfaces were observed under an optical microscope at 40x magnification. Results: The control and contaminated groups showed no significant difference in shear bond strength for the same adhesive system. However, shear bond strength of T group (17.03±4.91) was significantly higher than that of AS (8.58±1.73) and XS (10.39±4.06) groups (p<0.05). Regarding the bond failure pattern, TS group had significantly higher scores of no adhesive remaining on the tooth in the bonding area than other groups considering the adhesive remnant index (ARI) used to evaluate the amount of adhesive left on the enamel. Conclusion: Saliva contamination showed little influence on the 24-h shear bond strength of orthodontic brackets. PMID:19466249

  7. Simulation of the potential effects of CO2 leakage from carbon capture and storage activities on the mobilization and speciation of metals.

    PubMed

    de Orte, Manoela Romanó; Sarmiento, Aguasanta M; DelValls, T Ángel; Riba, Inmaculada

    2014-09-15

    One of the main risks associated with carbon capture and storage (CCS) activities is the leakage of the stored CO2, which can result in several effects on the ecosystem. Laboratory-scale experiments were performed to provide data on the possible effects of CO2 leakage from CCS on the mobility of metals previously trapped in sediments. Metal-contaminated sediments were collected and submitted to acidification by means of CO2 injection using different pH treatments. The test lasted 10 days, and samples were collected at the beginning and at the end of the experiment for metal analysis. The results revealed increases in the mobility of metals such as Co, Cu, Fe, Pb and Zn due to pH decreases. Geochemical modeling demonstrated that acidification influenced the speciation of the metals, increasing the concentrations of their free forms. These data suggest the possible sediment contamination consequences of accidental CO2 leakage during CCS activities. PMID:25125286

  8. Impacts of epigeic, anecic and endogeic earthworms on metal and metalloid mobility and availability.

    PubMed

    Sizmur, Tom; Tilston, Emma L; Charnock, John; Palumbo-Roe, Barbara; Watts, Michael J; Hodson, Mark E

    2011-02-01

    The introduction of earthworms into soils contaminated with metals and metalloids has been suggested to aid restoration practices. Eisenia veneta (epigeic), Lumbricus terrestris (anecic) and Allolobophora chlorotica (endogeic) earthworms were cultivated in columns containing 900 g soil with 1130, 345, 113 and 131 mg kg(-1) of As, Cu, Pb and Zn, respectively, for up to 112 days, in parallel with earthworm-free columns. Leachate was produced by pouring water on the soil surface to saturate the soil and generate downflow. Ryegrass was grown on the top of columns to assess metal uptake into biota. Different ecological groups affected metals in the same way by increasing concentrations and free ion activities in leachate, but anecic L. terrestris had the greatest effect by increasing leachate concentrations of As by 267%, Cu by 393%, Pb by 190%, and Zn by 429% compared to earthworm-free columns. Ryegrass grown in earthworm-bearing soil accumulated more metal and the soil microbial community exhibited greater stress. Results are consistent with earthworm enhanced degradation of organic matter leading to release of organically bound elements. The degradation of organic matter also releases organic acids which decrease the soil pH. The earthworms do not appear to carry out a unique process, but increase the rate of a process that is already occurring. The impact of earthworms on metal mobility and availability should therefore be considered when inoculating earthworms into contaminated soils as new pathways to receptors may be created or the flow of metals and metalloids to receptors may be elevated. PMID:21161093

  9. Heavy Metals Contamination in Coastal Sediments of Karachi, Pakistan

    NASA Astrophysics Data System (ADS)

    Siddique, A.; Mumtaz, M.; Zaigham, N. A.; Mallick, K. A.; Saied, S.; Khwaja, H. A.

    2008-12-01

    Toxic compounds such as heavy metals exert chronic and lethal effects in animals, plants, and human health. With the rapid industrialization, urbanization, and economic development in Karachi, heavy metals are continuing to be introduced to estuarine and coastal environment through rivers, runoff and land-based point sources. Pollution in the Karachi coastal region (167 km long) is mainly attributed to Lyari and Malir Rivers flowing through the city of Karachi. Both rivers are served by various channels of domestic and industrial wastes carrying more than 300 million gallons per day untreated effluent of 6000 industries and ultimately drain into the beaches of Arabian Sea. Concentrations of selected heavy metals (Cd, Co, Cr, Cu, Fe, Mn, Ni, Pb, and Zn) in surface sediments from eighty-eight sites in Karachi coastal region were studied in order to understand metal contamination due to industrialization, urbanization, and economic development in Karachi. Sediment samples were collected in 2005 and 2006. We have found that heavy metal concentrations in surface sediments varied from 0.006 to 24.3 ug/g for Cd, 5.1 to 95 ug/g for Co, 2.9 to 571 ug/g for Cr, 6.9 to 272 ug/g for Cu, 0.55 to 6.5% for Fe, 1.2 to 318 ug/g for Mn, 7.5 to 75 ug/g for Ni, 6.3 to 121 ug/g for Pb, and 3.3 to 389 ug/g for Zn. Enrichment factors (EFs) were calculated to assess whether the concentrations observed represent background or contaminated levels. The highest levels of metals were found to be at the confluence of the Lyari and Malir River streams at the Arabian Sea, indicating the impact of the effluents of the highly urbanized and industrialized city of Karachi. Furthermore, this study assessed heavy metal toxicity risk with the application of Sediment Quality Guideline (SQG) indices (effect range low/effect range median values, ERL/ERM). Results indicated that the potential toxicity of marine environment can cause adverse biological effects to the biota directly and the human health

  10. Heavy metal release from metal-sulfide contaminated lake sediments exposed to artificial aeration

    SciTech Connect

    Schaumloffel, J.C.; Filby, R.H.; Moore, B.C.

    1995-12-01

    Hypolimnetic aeration (a form of artificial aeration) has gained popularity in recent years as a lake restoration and management tool. The addition of oxygen to eutrophic lakes by hypolimnetic aeration has been shown to increase overall water quality, without disturbing thermal stratification. The effects of increasing dissolved oxygen levels by aeration on the chemistry of heavy metals in lakes where the sediments are contaminated and the possible repercussions, however, have yet to be investigated. In this laboratory study, sediments collected from a lake contaminated with metal-sulfides were exposed to various levels of dissolved oxygen in the overyling water column. concentrations of zinc, cadmium, and lead in the water column were shown to increase concomitantly with increasing concentrations of sulfate in the water as aeration progressed. The effects of varying concentrations of dissolved oxygen, as well as other factors effecting the availability of previously insoluble heavy metals will be discussed.

  11. Transplanted aquatic mosses for monitoring trace metal mobilization in acidified streams of the Vosges Mountains, France

    SciTech Connect

    Mersch, J.; Guerold, F.; Rousselle, P.; Pihan, J.C. )

    1993-08-01

    As a result of acid depositions, trace metals are mobilized from the soils to the aquatic environment. Especially in poorly mineralized waters, elevated metal concentrations may rapidly have adverse effects on aquatic organisms. In particular, it has been shown that aluminium, a key element in the acidification process, is a toxic cofactor for fish and other biota. An accurate assessment of this specific form of water pollution may not be possible when only based on analyses of single water samples. On the one hand, water metal concentrations are often close to the detection limit of usual analytical techniques, and on the other hand, levels in acidified streams undergo strong temporal variations caused by acid pulses following meteorological events such as heavy rainfall and snowmelt. Compared to water analyses, indirect monitoring methods provide undeniable advantages for assessing water contamination. Aquatic bryophytes, in particular, have been regarded as interesting indicator organisms for trace metal pollution. However, their use has mainly been restricted to the lower course of streams for evaluating the impact of industrial discharges. The purpose of this study was to test the suitability of transplanted aquatic mosses for monitoring aluminium and four other trace metals (copper, iron, lead and zinc) in the particular context of acidifed streams draining a forested headwater catchment. 15 refs., 2 figs., 2 tabs.

  12. Chemical Treatments for Mobilizing Arsenic from Contaminated Aquifer Solids to Accelerate Remediation

    PubMed Central

    Wovkulich, Karen; Mailloux, Brian J.; Lacko, Allison; Keimowitz, Alison R.; Stute, Martin; Simpson, H. James; Chillrud, Steven N.

    2010-01-01

    Arsenic is a prevalent contaminant at US Superfund sites where remediation by pump and treat systems is often complicated by slow desorption of As from Fe and Al (hydr)oxides in aquifer solids. Chemical amendments that either compete with As for sorption sites or dissolve Fe and Al (hydr)oxides can increase As mobility and improve pump and treat remediation efficiency. The goal of this work was to determine optimal amendments for improving pump and treat at As contaminated sites such as the Vineland Chemical Co. Superfund site in southern New Jersey. Extraction and column experiments were performed using As contaminated aquifer solids (81 ± 1 mg/kg), site groundwater, and either phosphate (NaH2PO4·H2O) or oxalic acid (C2H2O4·2H2O). In extraction experiments, phosphate mobilized between 11% and 94% of As from the aquifer solids depending on phosphate concentration and extraction time (1 mM-1 M; 1–24 h) and oxalic acid mobilized between 38 and 102% depending on oxalic acid concentration and extraction time (1–400 mM; 1–24 h). In column experiments, phosphate additions induced more As mobilization in the first few pore volumes but oxalic acid was more effective at mobilizing As overall and at lower amendment concentrations. At the end of the laboratory column experiments, 48% of As had been mobilized from the aquifer sediments with 100 mM phosphate and 88% had been mobilized with 10 mM oxalic acid compared with 5% with ambient groundwater alone. Furthermore, simple extrapolations based on pore volumes suggest that chemical treatments could lower the time necessary for clean up at the Vineland site from 600 a with ambient groundwater alone to potentially as little as 4 a with 10 mM oxalic acid. PMID:21076621

  13. Risk of antibiotic resistance from metal contaminated soils

    NASA Astrophysics Data System (ADS)

    Knapp, Charles

    2013-04-01

    It is known that contaminated soils can lead to increased incidence of illness and disease, but it may also prevent our ability to fight disease. Many antibiotic resistant genes (ARG) acquired by bacteria originate from the environment. It is important to understand factors that influence levels of ARG in the environment, which could affect us clinically and agriculturally. The presence of elevated metal content in soils often promotes antibiotic resistance in exposed microorganisms. Using qPCR, the abundances of ARG to compare levels with geochemical conditions in randomly selected soils from several countries. Many ARG positively correlated with soil metal content, especially copper, chromium, nickel, lead, and iron. Results suggest that geochemical metal conditions influence the potential for antibiotic resistance in soil, which might be used to estimate baseline gene presence on various landscape scales and may translate to epidemiological risk of antibiotic-resistance transmission from the environment. This suggests that we may have to reconsider tolerances of metal pollution in the environment.

  14. Assessment of radionuclide and metal contamination in a thorium rich area in Norway.

    PubMed

    Popic, Jelena Mrdakovic; Salbu, Brit; Strand, Terje; Skipperud, Lindis

    2011-06-01

    The Fen Central Complex in southern Norway, a geologically well investigated area of magmatic carbonatite rocks, is assumed to be among the world largest natural reservoirs of thorium ((232)Th). These rocks, also rich in iron (Fe), niobium (Nb), uranium ((238)U) and rare earth elements (REE), were mined in several past centuries. Waste locations, giving rise to enhanced levels of both radionuclides and metals, are now situated in the area. Estimation of radionuclide and metal contamination of the environment and radiological risk assessment were done in this study. The average outdoor gamma dose rate measured in Fen, 2.71 μGy h(-1), was significantly higher than the world average dose rate of 0.059 μGy h(-1). The annual exposure dose from terrestrial gamma radiation, related to outdoor occupancy, was in the range 0.18-9.82 mSv. The total activity concentrations of (232)Th and (238)U in soil ranged from 69 to 6581 and from 49 to 130 Bq kg(-1), respectively. Enhanced concentrations were also identified for metals, arsenic (As), lead (Pb), chromium (Cr) and zinc (Zn), in the vicinity of former mining sites. Both radionuclide and heavy metal concentrations suggested leaching, mobilization and distribution from rocks into the soil. Correlation analysis indicated different origins for (232)Th and (238)U, but same or similar for (232)Th and metals As, Cr, Zn, nickel (Ni) and cadmium (Cd). The results from in situ size fractionation of water demonstrated radionuclides predominately present as colloids and low molecular mass (LMM) species, being potentially mobile and available for uptake in aquatic organisms of Norsjø Lake. Transfer factors, calculated for different plant species, showed the highest radionuclide accumulation in mosses and lichens. Uptake in trees was, as expected, lower. Relationship analysis of (232)Th and (238)U concentrations in moss and soil samples showed a significant positive linear correlation. PMID:21556423

  15. METHODS FOR THE SPECIATION OF METALS IN SOILS: A REVIEW

    EPA Science Inventory

    The inability to determine metal species in soils hampers efforts to understand the mobility, bioavailability, and fate of contaminant metals in environmental systems, to assess health risks posed by them, and to develop methods to remediate metal contaminated sites. Fortunately,...

  16. Melting of uranium-contaminated metal cylinders by electroslag refining

    SciTech Connect

    Uda, T.; Ozawa, Y.; Iba, H.

    1987-12-01

    Melt refining as a means of uranium decontamination of metallic wastes by electroslag refining was examined. Electroslag refining was selected because it is easy to scale up to the necessary industrial levels. Various thicknesses of iron and aluminum cylinders with uranium concentrations close to actual metallic wastes were melted by adding effective fluxes for decontamination. Thin-walled iron and aluminum cylinders with a fill ratio (electrode/mold cross-section ratio) of 0.05 could be melted, and the energy efficiency obtained was 16 to 25%. The ingot uranium concentration of the iron obtained was 0.01 to 0.015 ppm, which was close to the contamination level of the as-received specimen, while for aluminum it was 3 to 5 ppm, which was a few times higher than the as-received specimen contamination level of --0.9 ppm. To melt a thin aluminum cylinder in a steady state, with this fill ratio of 0.05, instantaneous electrode driving response control was desired. Electroslag refining gave better decontamination and energy economization results than by a resistance furnace.

  17. Electrorecycling of Critical and Value Metals from Mobile Electronics

    SciTech Connect

    Lister, Tedd E.; Wang, Peming; Anderko, Andre

    2014-09-01

    Mobile electronic devices such as smart phones and tablets are a significant source of valuable metals that should be recycled. Each year over a billion devices are sold world-wide and the average life is only a couple years. Value metals in phones are gold, palladium, silver, copper, cobalt and nickel. Devices now contain increasing amounts of rare earth elements (REE). In recent years the supply chain for REE has moved almost exclusively to China. They are contained in displays, speakers and vibrators within the devices. By US Department of Energy (DOE) classification, specific REEs (Nd, Dy, Eu, Tb and Y) are considered critical while others (Ce, La and Pr) are deemed near critical. Effective recycling schemes should include the recovery of these critical materials. By including more value materials in a recovery scheme, more value can be obtained by product diversification and less waste metals remains to be disposed of. REEs are mined as a group such that when specific elements become critical significantly more ore must be processed to capture the dilute but valuable critical elements. Targeted recycling of items containing the more of the less available critical materials could address their future criticality. This presentation will describe work in developing aqueous electrochemistry-based schemes for recycling metals from scrap mobile electronics. The electrorecycling process generates oxidizing agents at an anode while reducing dissolved metals at the cathode. E vs pH diagrams and metals dissolution experiments are used to assess effectiveness of various solution chemistries. Although several schemes were envisioned, a two stages process has been the focus of work: 1) initial dissolution of Cu, Sn, Ag and magnet materials using Fe+3 generated in acidic sulfate and 2) final dissolution of Pd and Au using Cl2 generated in an HCl solution. Experiments were performed using simulated metal mixtures. Both Cu and Ag were recovered at ~ 97% using Fe+3 while

  18. Spatial Patterns of Heavy Metal Contamination by Urbanization.

    PubMed

    Delbecque, Nele; Verdoodt, Ann

    2016-01-01

    Spatial analysis of heavy metals (HMs) is an important step toward developing predictive models of urban HM contamination. This study assessed the spatial distribution of the enrichment of eight HMs (As, Cd, Cr, Cu, Hg, Ni, Pb, and Zn) in the city of Ghent, Belgium. A database with soil HM concentrations measured at 2194 point observations was collected from the Public Waste Agency of Flanders. The degree of anthropogenic HM enrichment was quantified using an urban pollution index (PI). Enrichment of HMs showed high variations throughout the study area. Observed concentrations of As, Cd, Cr, and Hg did not exceed expected background values for the majority of the sampling locations (PI ≤ 1 for 76% [As], 64% [Cd], 50% [Cr], and 74% [Hg] of sampling points). Accordingly, predicted PI values of these HMs in Ghent were on average <2. On the other hand, observed median PIs for Cu, Ni, Pb, and Zn surpassed expected background values (PI >1) in 66, 76, 68, and 66% of the cases. The predicted PI means for the entire study area were 3.46 (Cu), 2.06 (Ni), 3.26 (Pb), and 3.28 (Zn). Comparison between various land use types and times since development indicated that HM enrichment was generally highest in urban land uses built up before 1933. Results, however, suggested that spatial patterns of HM contamination are difficult to predict in cities with a long history of industrialization without knowledge on the spatial distribution of (potentially) contaminating historical industrial activities. PMID:26828155

  19. Arsenic mobility and speciation in a contaminated urban soil are affected by different methods of green waste compost application.

    PubMed

    Hartley, William; Dickinson, Nicholas M; Riby, Philip; Leese, Elizabeth; Morton, Jackie; Lepp, Nicholas W

    2010-12-01

    Application of green waste compost (GWC) to brownfield land is now common practice in soil restoration. However, previous studies have demonstrated both beneficial and detrimental effects on arsenic and metal mobility. In this paper, trace element behaviour was investigated following GWC application, either as surface mulch to, or mixed into soil from a previously described brownfield site in the U.K. Significant differences in arsenic mobility were observed between treatments. Mulching caused most disturbance, significantly increasing soil pore water As, together with Fe, P, Cr, Ni and dissolved organic carbon, the latter was a critical factor enhancing As mobilization. Arsenate was the main inorganic As species in soil pore water, increasing in concentration over time. An initial flush of potentially more toxic arsenite decreased 4 weeks after compost application. Biological processes appeared to play an important role in influencing As mobility. The results point to the necessity for careful management of As-contaminated soils. PMID:20864234

  20. Heavy metal contamination of vegetables in Isfahan, Iran

    PubMed Central

    Jafarian-Dehkordi, A.; Alehashem, M.

    2013-01-01

    Vegetables are an inevitable and important part of a healthy and balanced diet. They could be contaminated by heavy metals in many ways including irrigation by sewage water and industrial effluents sewage sludge, vehicular emissions, industrial waste and atmospheric deposition. In this study, we sought to determine if some vegetables (cucumbers, tomatoes, cabbage, lettuce, potatoes, onions, carrots, persian leeks, dill, spinach, coriander, parsley) grown locally in the suburban of Isfahan city and sold in the urban markets are contaminated with cadmium (Cd), chromium (Cr) and lead (Pb). Vegetables were sampled from August to October 2010. After washing, they were oven-dried and digested using three-acid mixture (70% HNO3, 65% HClO4 and 70% H2SO4). Analyzes of the heavy metals was performed using atomic absorption spectrophotometry. To validate the assay method, intra-day and inter-day variation studies were performed. The concentrations (μg/g) of heavy metals in the samples ranged from 0.00 to 3.66 for Cd, 0.00 to 6.00 for Cr and 0.00 to 7.14 for Pb. The highest concentration of heavy metals was for Pb. The results showed that the amount of Cd, Cr and Pb of some samples exceeded the recommended levels. The amount of Cd in cucumber, tomatoes, potatoes with skin, carrots, and spinach was significantly higher in the samples collected from Isfahanak, Dashti and Ilchi farms than those of Dorche farms. Also, the amount of Cr in onion, carrots, and spinach was significantly higher in samples collected from Isfahanak, Dashti and Ilchi farms than those of Dorche farms. However, the amount of Pb in the carrots and leek was significantly higher in the samples collected from Dorche farms than those of Isfahanak, Dashti and Ilchi farms. It can be concluded from the findings of this study that the amounts of Cd, Cr, and Pb were higher than the acceptable levels recommended by WHO/FAO. Also, higher amount of Cd and Cr in some samples collected from Isfahanak, Dashti and Ilchi

  1. Contamination of healthcare workers' mobile phones by epidemic viruses.

    PubMed

    Pillet, S; Berthelot, P; Gagneux-Brunon, A; Mory, O; Gay, C; Viallon, A; Lucht, F; Pozzetto, B; Botelho-Nevers, E

    2016-05-01

    Mobile phones (MPs) are potential reservoirs of nosocomial bacteria, but few data are available concerning viruses. We aimed to evaluate the presence of virus RNA from epidemic viruses including metapneumovirus, respiratory syncytial virus, influenza viruses, rotavirus (RV) and norovirus on the MPs used by healthcare workers (HCWs) and to relate it to hygiene measures. An anonymous behavioural questionnaire about MP use at hospital was administered to the HCWs of four adult and paediatric departments of a university hospital. After sampling personal (PMP) and/or professional MPs (digital enhanced cordless telephone, DECT), virus RNAs were extracted and amplified by one-step real-time reverse transcription-quantitative PCR. The molecular results were analysed in a masked manner in relation to the behavioural survey. Questionnaires from 114 HCWs (35 senior physicians, 30 residents, 32 nurses, 27 nurses' assistants) working either in adult (n = 58) or paediatric (n = 56) departments were analysed. Medical personnel used their PMP more frequently than paramedical HCWs (33/65 vs. 10/59, p <0.001). MPs were used during care more frequently in adult wards than in paediatric ones (46/58 vs. 27/56, p <0.001). Virus RNA was detected on 42/109 (38.5%) collected MPs, with RV found on 39, respiratory syncytial virus on three and metapneumovirus on one. The presence of virus RNA was significantly associated with MPs from the paediatric HCWs (p <0.001). MPs routinely used in hospital, even during care, can host virus RNA, especially RV. Promotion of frequent hand hygiene before and after MP use, along with frequent cleaning of MPs, should be encouraged. PMID:26713553

  2. Interaction of mobile phones with superficial passive metallic implants.

    PubMed

    Virtanen, H; Huttunen, J; Toropainen, A; Lappalainen, R

    2005-06-01

    The dosimetry of exposure to radiofrequency (RF) electromagnetic (EM) fields of mobile phones is generally based on the specific absorption rate (SAR, W kg(-1)), which is the electromagnetic energy absorbed in the tissues per unit mass and time. In this study, numerical methods and modelling were used to estimate the effect of a passive, metallic (conducting) superficial implant on a mobile phone EM field and especially its absorption in tissues in the near field. Two basic implant models were studied: metallic pins and rings in the surface layers of the human body near the mobile phone. The aim was to find out 'the worst case scenario' with respect to energy absorption by varying different parameters such as implant location, orientation, size and adjacent tissues. Modelling and electromagnetic field calculations were carried out using commercial SEMCAD software based on the FDTD (finite difference time domain) method. The mobile phone was a 900 MHz or 1800 MHz generic phone with a quarter wave monopole antenna. A cylindrical tissue phantom models different curved sections of the human body such as limbs or a head. All the parameters studied (implant size, orientation, location, adjacent tissues and signal frequency) had a major effect on the SAR distribution and in certain cases high local EM fields arose near the implant. The SAR values increased most when the implant was on the skin and had a resonance length or diameter, i.e. about a third of the wavelength in tissues. The local peak SAR values increased even by a factor of 400-700 due to a pin or a ring. These highest values were reached in a limited volume close to the implant surface in almost all the studied cases. In contrast, without the implant the highest SAR values were generally reached on the skin surface. Mass averaged SAR(1 g) and SAR(10 g) values increased due to the implant even by a factor of 3 and 2, respectively. However, at typical power levels of mobile phones the enhancement is unlikely to

  3. Interaction of mobile phones with superficial passive metallic implants

    NASA Astrophysics Data System (ADS)

    Virtanen, H.; Huttunen, J.; Toropainen, A.; Lappalainen, R.

    2005-06-01

    The dosimetry of exposure to radiofrequency (RF) electromagnetic (EM) fields of mobile phones is generally based on the specific absorption rate (SAR, W kg-1), which is the electromagnetic energy absorbed in the tissues per unit mass and time. In this study, numerical methods and modelling were used to estimate the effect of a passive, metallic (conducting) superficial implant on a mobile phone EM field and especially its absorption in tissues in the near field. Two basic implant models were studied: metallic pins and rings in the surface layers of the human body near the mobile phone. The aim was to find out 'the worst case scenario' with respect to energy absorption by varying different parameters such as implant location, orientation, size and adjacent tissues. Modelling and electromagnetic field calculations were carried out using commercial SEMCAD software based on the FDTD (finite difference time domain) method. The mobile phone was a 900 MHz or 1800 MHz generic phone with a quarter wave monopole antenna. A cylindrical tissue phantom models different curved sections of the human body such as limbs or a head. All the parameters studied (implant size, orientation, location, adjacent tissues and signal frequency) had a major effect on the SAR distribution and in certain cases high local EM fields arose near the implant. The SAR values increased most when the implant was on the skin and had a resonance length or diameter, i.e. about a third of the wavelength in tissues. The local peak SAR values increased even by a factor of 400-700 due to a pin or a ring. These highest values were reached in a limited volume close to the implant surface in almost all the studied cases. In contrast, without the implant the highest SAR values were generally reached on the skin surface. Mass averaged SAR1 g and SAR10 g values increased due to the implant even by a factor of 3 and 2, respectively. However, at typical power levels of mobile phones the enhancement is unlikely to be

  4. Diuron mobility through vineyard soils contaminated with copper.

    PubMed

    Jacobson, Astrid R; Dousset, Sylvie; Guichard, Nathalie; Baveye, Philippe; Andreux, Francis

    2005-11-01

    The herbicide diuron is frequently applied to vineyard soils in Burgundy, along with repeated treatments with Bordeaux mixture (a blend of copper sulfate and calcium hydroxide) that result in elevated copper concentrations. Cu could in principle affect the fate and transport of diuron or its metabolites in the soil either directly by complexation or indirectly by altering the populations or activity of microbes involved in their degradation. To assess the effect of high Cu concentrations on diuron transport, an experiment was designed with ten undisturbed columns of calcareous and acidic soils contaminated with 17--509 mg kg(-1) total Cu (field-applied). Grass was planted on three columns. Diuron was applied to the soils in early May and in-ground lysimeters were exposed to outdoor conditions until November. Less than 1.2% of the diuron applied was found in the leachates as diuron or its metabolites. Higher concentrations were found in the effluents from the grass-covered columns (0.1--0.45%) than from the bare-soil columns (0.02--0.14%), and they were correlated with increases in dissolved organic carbon. The highest amounts of herbicide were measured in acidic-soil column leachates (0.98--1.14%) due to the low clay and organic matter contents of these soils. Cu also leached more readily through the acidic soils (32.8--1042 microg) than in the calcareous soils (9.5--63.4 microg). Unlike in the leachates, the amount of diuron remaining in the soils at the end of the experiment was weakly related to the Cu concentrations in the soils. PMID:15951080

  5. Human impact on fluvial sediments: distinguishing regional and local sources of heavy metals contamination

    NASA Astrophysics Data System (ADS)

    Novakova, T.; Matys Grygar, T.; Bábek, O.; Faměra, M.; Mihaljevič, M.; Strnad, L.

    2012-04-01

    , or whether more or less qualitative information on local point sources is searched for. The profiles from regulated river reaches are highly prone to local sources and due to the stratigraphic chaos and post-depositional mobilization of heavy metals, which we revealed using 206Pb/207Pb ratio; such profiles were further excluded from an evaluation of regional contamination. Overbank fines in the study area (middle and lower reach of the Morava) are only weakly but whole-regionally contaminated (maximal EFs are 1.3-2 for Pb and Zn, 1.2-1.7 for Cu, 1.1-1.2 for Cr and 2-4 for magnetic susceptibility). Regulated river channel sediments, which reflect the actual contamination from local sources, produced apparent EFs ranging from 0.3 to 15 for heavy metals and 0.4-21 for MS, with the highest values obtained downstream from the most relevant point source in the study area, shoe-making and related chemical industry in Zlín and Otrokovice.

  6. Contaminant transport in dual-porosity media with dissolved organic matter and bacteria present as mobile colloids.

    PubMed

    Kim, Song-Bae; Corapcioglu, M Yavuz

    2002-12-01

    In riverbank filtration, contaminant transport is affected by colloidal particles such as dissolved organic matter (DOM) and bacterial particles. In addition, the subsurface heterogeneity influences the behavior of contaminant transport in riverbank filtration. A mathematical model is developed to describe the contaminant transport in dual-porosity media in the presence of DOM and bacteria as mobile colloids. In the model development, a porous medium is divided into the mobile and immobile regions to consider the presence of ineffective micropores in physically heterogeneous riverbanks. We assume that the contaminant transport in the mobile region is controlled by the advection and dispersion while the contaminant transport in the immobile region occurs due to the molecular diffusion. The contaminant transfer between the mobile and immobile regions takes place by diffusive mass transfer. The mobile region is conceptualized as a four-phase system: two mobile colloidal phases, an aqueous phase, and a solid matrix. The complete set of governing equations is solved numerically with a fully implicit finite difference method. The model results show that in riverbank filtration, the contaminant can migrate further than expected due to the presence of DOM and bacteria. In addition, the contaminant mobility increases further in the presence of the immobile region in aquifers. A sensitivity analysis shows that in dual-porosity media, earlier breakthrough of the contaminant takes place as the volumetric fraction of the mobile region decreases. It is also demonstrated that as the contaminant mass transfer rate coefficient between the mobile and immobile regions increases, the contaminant concentration gradient between the two regions reverses at earlier pore volumes. The contaminant mass transfer coefficient between the mobile and immobile regions mainly controls the tailing effect of the contaminant breakthrough. The contaminant breakthrough curves are sensitive to changes in

  7. Metal contamination in wildlife living near two zinc smelters

    USGS Publications Warehouse

    Beyer, W.N.; Pattee, O.H.; Sileo, L.; Hoffman, D.J.; Mulhern, B.M.

    1985-01-01

    Wildlife in an oak forest on Blue Mountain was studied 10 km upwind (Bake Oven Knob site) and 2 km downwind (Palmerton site) of two zinc smelters in eastern Pennsylvania, USA. Previous studies at sites near these smelters had shown changes in populations of soil microflora, lichens, green plants and litter-inhabiting arthropods. The 02 soil litter horizon at Palmerton was heavily contaminated with Pb (2700 mg kg-1), Zn (24000 mg kg-1), and Cd (710 mg kg-1), and to a lesser extent with Cu (440 mg kg-1). Various kinds of invertebrates (earthworms, slugs and millipedes) that feed on soil litter or soil organic matter were rare at, or absent from, the Palmerton site. Those collected at Bake Oven Knob tended to have much higher concentrations of metals than did other invertebrates. Frogs, toads and salamanders were very rare at, or absent from, the Palmerton site, but were present at Bake Oven Knob and at other sites on Blue Mountain farther from the smelters. Metal concentrations (dry wt) in different organisms from Palmerton were compared. Concentrations of Pb were highest in shrews (110 mg kg-1), followed by songbirds (56 mg kg-1), leaves (21 mg kg-1), mice (17 mg kg-1), carrion insects (14 mg kg-1), berries (4.0 mg kg-1), moths (4,3 mg kg-1) and fungi (3.7 mg kg-1). Concentrations of Cd, in contrast, were highest in carrion insects (25 mg kg-1 ),followed by fungi (9.8 mg kg-1), leaves (8.1 mg kg-1), shrews (7.3 mg kg-I), moths (4.9 mg kg-1), mice (2.6 mg kg -1), songbirds (2.5 mg kg -1) and berries (1.2 mg kg-1). Concentrations of Zn and Cu tended to be highest in the same organisms that had the highest concentrations of Cd. Only a small proportion of the metals in the soil became incorporated into plant foliage, and much of the metal contamination detected in the biota probably came from aerial deposition. The mice from both sites seemed to be healthy. Shrews had higher concentrations of metals than did mice, and one shrew showed evidence of Pb poisoning; its red

  8. Earthworm populations of highly metal-contaminated soils restored by fly ash-aided phytostabilisation.

    PubMed

    Grumiaux, Fabien; Demuynck, Sylvain; Pernin, Céline; Leprêtre, Alain

    2015-03-01

    Highly metal contaminated soils found in the North of France are the result of intense industrial past. These soils are now unfit for the cultivation of agricultural products for human consumption. Solutions have to be found to improve the quality of these soils, and especially to reduce the availability of trace elements (TEs). Phytostabilisation and ash-aided phytostabilisation applied since 2000 to an experimental site located near a former metallurgical site (Metaleurop-Nord) was shown previously as efficacious in reducing TEs mobility in soils. The aim of the study was to check whether this ten years trial had influenced earthworm communities. This experimental site was compared to plots located in the surroundings and differing by the use of soils. Main results are that: (1) whatever the use of soils, earthworm communities are composed of few species with moderate abundance in comparison with communities found in similar habitats outside the TEs-contaminated area, (2) the highest abundance and specific richness (4-5 species) were observed in afforested plots with various tree species, (3) ash amendments in afforested plots did not increase the species richness and modified the communities favoring anecic worms but disfavoring epigeic ones. These findings raised the questions of when and how to perform the addition of ashes firstly, to avoid negative effects on soil fauna and secondly, to keep positive effects on metal immobilization. PMID:25499051

  9. Enrichment and solubility of trace metals associated with magnetic extracts in industrially derived contaminated soils.

    PubMed

    Lu, S G; Wang, H Y; Chen, Y Y

    2012-08-01

    Magnetic fractions (MFs) in industrially derived contaminated soils were extracted with a magnetic separation procedure. Total, soluble, and bioaccessible Cr, Cu, Pb and Zn in the MFs and non-magnetic fractions (NMFs) were analyzed using aqua regia and extraction tests, such as deionized water, toxicity characteristic leaching procedure (TCLP), and gastric juice simulation (GJST) test. Compared with the non-magnetic fractions, soil MFs were enriched with Fe, Mn, Pb, Cd, Cr, Cu, and Ni. Extraction tests indicated that soil MFs contained higher water, TCLP, and GJST-extractable Cr, Cu, Pb, and Zn concentrations than the soil NMFs. The TCLP-extractable Pb concentration in the MFs exceeded the USEPA hazardous waste criteria, suggesting that soil MFs have a potentially environmental pollution risk. Solubility of trace metals was variable in the different extraction tests, which has the order of GJST > TCLP > water. TCLP test showed Cu and Zn were more mobile than Cr and Pb while bioaccessibility of trace metal defined by GJST test showed the order of Cu ≈ Cr ≈ Zn > Pb. These findings suggested that the MFs in the industrially derived contaminated soils had higher possibility of polluting water bodies, and careful environmental impact assessment was necessary. PMID:22212817

  10. Treatment of Alkaline Cr(VI)-Contaminated Leachate with an Alkaliphilic Metal-Reducing Bacterium.

    PubMed

    Watts, Mathew P; Khijniak, Tatiana V; Boothman, Christopher; Lloyd, Jonathan R

    2015-08-15

    Chromium in its toxic Cr(VI) valence state is a common contaminant particularly associated with alkaline environments. A well-publicized case of this occurred in Glasgow, United Kingdom, where poorly controlled disposal of a cementitious industrial by-product, chromite ore processing residue (COPR), has resulted in extensive contamination by Cr(VI)-contaminated alkaline leachates. In the search for viable bioremediation treatments for Cr(VI), a variety of bacteria that are capable of reduction of the toxic and highly soluble Cr(VI) to the relatively nontoxic and less mobile Cr(III) oxidation state, predominantly under circumneutral pH conditions, have been isolated. Recently, however, alkaliphilic bacteria that have the potential to reduce Cr(VI) under alkaline conditions have been identified. This study focuses on the application of a metal-reducing bacterium to the remediation of alkaline Cr(VI)-contaminated leachates from COPR. This bacterium, belonging to the Halomonas genus, was found to exhibit growth concomitant to Cr(VI) reduction under alkaline conditions (pH 10). Bacterial cells were able to rapidly remove high concentrations of aqueous Cr(VI) (2.5 mM) under anaerobic conditions, up to a starting pH of 11. Cr(VI) reduction rates were controlled by pH, with slower removal observed at pH 11, compared to pH 10, while no removal was observed at pH 12. The reduction of aqueous Cr(VI) resulted in the precipitation of Cr(III) biominerals, which were characterized using transmission electron microscopy and energy-dispersive X-ray analysis (TEM-EDX) and X-ray photoelectron spectroscopy (XPS). The effectiveness of this haloalkaliphilic bacterium for Cr(VI) reduction at high pH suggests potential for its use as an in situ treatment of COPR and other alkaline Cr(VI)-contaminated environments. PMID:26048926

  11. Treatment of Alkaline Cr(VI)-Contaminated Leachate with an Alkaliphilic Metal-Reducing Bacterium

    PubMed Central

    Watts, Mathew P.; Khijniak, Tatiana V.; Boothman, Christopher

    2015-01-01

    Chromium in its toxic Cr(VI) valence state is a common contaminant particularly associated with alkaline environments. A well-publicized case of this occurred in Glasgow, United Kingdom, where poorly controlled disposal of a cementitious industrial by-product, chromite ore processing residue (COPR), has resulted in extensive contamination by Cr(VI)-contaminated alkaline leachates. In the search for viable bioremediation treatments for Cr(VI), a variety of bacteria that are capable of reduction of the toxic and highly soluble Cr(VI) to the relatively nontoxic and less mobile Cr(III) oxidation state, predominantly under circumneutral pH conditions, have been isolated. Recently, however, alkaliphilic bacteria that have the potential to reduce Cr(VI) under alkaline conditions have been identified. This study focuses on the application of a metal-reducing bacterium to the remediation of alkaline Cr(VI)-contaminated leachates from COPR. This bacterium, belonging to the Halomonas genus, was found to exhibit growth concomitant to Cr(VI) reduction under alkaline conditions (pH 10). Bacterial cells were able to rapidly remove high concentrations of aqueous Cr(VI) (2.5 mM) under anaerobic conditions, up to a starting pH of 11. Cr(VI) reduction rates were controlled by pH, with slower removal observed at pH 11, compared to pH 10, while no removal was observed at pH 12. The reduction of aqueous Cr(VI) resulted in the precipitation of Cr(III) biominerals, which were characterized using transmission electron microscopy and energy-dispersive X-ray analysis (TEM-EDX) and X-ray photoelectron spectroscopy (XPS). The effectiveness of this haloalkaliphilic bacterium for Cr(VI) reduction at high pH suggests potential for its use as an in situ treatment of COPR and other alkaline Cr(VI)-contaminated environments. PMID:26048926

  12. Heavy Metal Contamination in the Taimyr Peninsula, Siberian Arctic

    SciTech Connect

    Allen-Gil, Susan M.; Ford, Jesse; Lasorsa, Brenda K.; Monetti, Matthew; Vlasova, Tamara; Landers, Dixon H.

    2003-01-01

    The Taimyr Peninsula is directly north of the world's largest heavy metal smelting complex (Norilsk, Russia). Despite this proximity, there has been little research to examine the extent of contamination of the Taimyr Peninsula. We analyzed heavy metal concentrations in lichen (Cetraria cucullata), moss (Hylocomium splendens), soils, lake sediment, freshwater fish (Salvelinus alpinus, Lota lota, and Coregonus spp.) and collared lemming (Dicrostonyx torquatus) from 13 sites between 30 and 300 km from Norilsk. Element concentrations were low in both C. cucullata and H. splendens, although concentrations of Al, Fe, Cu, Ni, and Pb were significantly higher than those in Arctic Alaska, probably due to natural differences in the geochemical environments. Inorganic surface soils had significantly higher concentrations of Cd, Zn, Pb, and Mg than inorganic soils at depth, although a lake sediment core from the eastern Taimyr Peninsula indicated no recent enrichment by atmospherically transported elements. Tissue concentrations of heavy metals in fish and lemming were not elevated relative to other Arctic sites. Our results show that the impact of the Norilsk smelting complex is primarily localized rather than regional, and does not extend northward beyond 100 km.

  13. Arsenic and other heavy metal accumulation in plants and algae growing naturally in contaminated area of West Bengal, India.

    PubMed

    Singh, N K; Raghubanshi, A S; Upadhyay, A K; Rai, U N

    2016-08-01

    The present study was conducted to quantify the arsenic (As) and other heavy metal concentrations in the plants and algae growing naturally in As contaminated blocks of North-24-Pargana and Nandia district, West Bengal, India to assess their bioaccumulation potential. The plant species included five macrophytes and five algae were collected from the nine selected sites for estimation of As and other heavy metals accumulated therein by using Inductively Coupled Plasma Mass Spectrophotometer (ICP-MS). Results revealed that maximum As concentration (117mgkg(-1)) was recorded in the agricultural soil at the Barasat followed by Beliaghat (111mgkg(-1)) sites of North-24-Pargana. Similarly, concentration of selenium (Si, 249mgkg(-1)), lead (Pb, 79.4mgkg(-1)), chromium (Cr, 138mgkg(-1)) was also found maximum in the soil at Barasat and cadmium (Cd, 163mgkg(-1)) nickel (Ni, 36.5mgkg(-1)) at Vijaynagar site. Among the macrophytes, Eichhornia crassipes found more dominating species in As contaminated area and accumulate As (597mgkg(-1)) in the shoot at kanchrapara site. The Lemna minor found to accumulate maximum As (735mgkg(-1)) in the leaves at Sonadanga and Pistia stratiotes accumulated minimum As (24.5mgkg(-1)) in the fronds from Ranaghat site. In case of diatoms, maximum As (760mgkg(-1)) was accumulated at Kanchrapara site followed by Hydrodictiyon reticulatum (403mgkg(-1)) at the Ranaghat site. High concentration of As and other heavy metal in soil indicates long term effects of irrigation with contaminated ground water, however, high concentration of heavy metals in naturally growing plants and algae revealed their mobilization through leaching and possible food chain contamination. Therefore, efficient heavy metal accumulator macrophytes Eichhornia crassipes, Lemna minor, Spirodela polyrhiza may be exploited in removing metals from contaminated water by developing a plant based treatment system. However, As accumulator algal species may be used as a bioresource for

  14. Changes in metal availability, desorption kinetics and speciation in contaminated soils during repeated phytoextraction with the Zn/Cd hyperaccumulator Sedum plumbizincicola.

    PubMed

    Li, Zhu; Jia, Mingyun; Wu, Longhua; Christie, Peter; Luo, Yongming

    2016-02-01

    Phytoextraction is one of the most promising technologies for the remediation of metal contaminated soils. Changes in soil metal availability during phytoremediation have direct effects on removal efficiency and can also illustrate the interactive mechanisms between hyperaccumulators and metal contaminated soils. In the present study the changes in metal availability, desorption kinetics and speciation in four metal-contaminated soils during repeated phytoextraction by the zinc/cadmium hyperaccumulator Sedum plumbizincicola (S. plumbizincicola) over three years were investigated by chemical extraction and the DGT-induced fluxes in soils (DIFS) model. The available metal fractions (i.e. metal in the soil solution extracted by CaCl2 and by EDTA) decreased greatly by >84% after phytoextraction in acid soils and the deceases were dramatic at the initial stages of phytoextraction. However, the decreases in metal extractable by CaCl2 and EDTA in calcareous soils were not significant or quite low. Large decreases in metal desorption rate constants evaluated by DIFS were found in calcareous soils. Sequential extraction indicated that the acid-soluble metal fraction was easily removed by S. plumbizincicola from acid soils but not from calcareous soils. Reducible and oxidisable metal fractions showed discernible decreases in acid and calcareous soils, indicating that S. plumbizincicola can mobilize non-labile metal for uptake but the residual metal cannot be removed. The results indicate that phytoextraction significantly decreases metal availability by reducing metal pool sizes and/or desorption rates and that S. plumbizincicola plays an important role in the mobilization of less active metal fractions during repeated phytoextraction. PMID:26650084

  15. Mobility and storage sinks for chromium and other metals in soils impacted by leather tannery wastes.

    PubMed

    Chen, Hualin; Arocena, Joselito M; Li, Jianbing; Thring, Ronald W; Zhou, Jiangmin

    2012-12-01

    Leather tanneries around the world, including China, introduce chromium (Cr) and other metals into the environment. In China, the population pressure compels the utilization of every piece of available land for food production. In this study, we investigated the content, leachability and possible storage sinks for Cr and other metals in soils around facilities of leather industry in southern China. It was found that Cr in soils impacted by tannery can be as high as 2484 mg Cr kg⁻¹ soil, and the mean contents of other metals such as Zn (214 mg Zn kg⁻¹ soil), Cd (5.4 mg Cd kg⁻¹ soil), As (17 mg As kg⁻¹ soil) exceeded the soil quality standards and guidelines in China and Canada. Simulated leaching studies (i.e., Synthetic Precipitation Leaching Procedure) indicated that these soils could release Cr and other metals in concentrations above the environmental quality guidelines and standards for water in China and Canada. As a result, the mobility of metals from these soils can potentially contaminate both groundwater and surface water. We also found differential leachability of metals with soil properties such as total metal and total carbon contents. Principal component analysis of the total contents of 32 elements showed that the possible major sinks for Cr are organic matter and oxides of Fe/Mn/Al, while sulfates and phosphates are potential storage of Cd, Zn, Cu and Pb. The information obtained from this study can be valuable for the restoration of ecosystem functions (i.e., food production) in the study area. PMID:23149884

  16. Towards metals analysis using corona discharge ionization ion mobility spectrometry.

    PubMed

    Jafari, Mohammad T; Saraji, Mohammad; Sherafatmand, Hossein

    2016-02-25

    For the first time, the capability of corona discharge ionization ion mobility spectrometry (CD-IMS) in the determination of metal complex was evaluated. The extreme simplicity of dispersive liquid-liquid microextraction (DLLME) coupled to the high sensitivity of CD-IMS measurement could make this combination really useful for simple, rapid, and sensitive determination of metals in different samples. In this regard, mercury, as a model metal, was complexed with diethyldithiocarbamate (DEDTC), and then extracted into the carbon tetrachloride using DLLME. Some parameters affecting the extraction efficiency, including the type and volume of the extraction solvent, the type and volume of the disperser solvent, the concentration of the chelating agent, salt addition and, pH were exhaustively investigated. Under the optimized condition, the enrichment factor was obtained to be 142. The linear range of 0.035-10.0 μg mL(-1) with r(2) = 0.997 and the detection limit of 0.010 μg mL(-1) were obtained. The relative standard deviation values were calculated to be lower than 4% and 8% for intra-day and inter-day, respectively. Finally, the developed method was successfully applied for the extraction and determination of mercury in various real samples. The satisfactory results revealed the capability of the proposed method in trace analysis without tedious derivatization or hydride generation. PMID:26851088

  17. Effects on the mobility of metals from acidification caused by possible CO₂ leakage from sub-seabed geological formations.

    PubMed

    de Orte, Manoela Romanó; Sarmiento, Aguasanta M; Basallote, Maria Dolores; Rodríguez-Romero, Araceli; Riba, Inmaculada; Delvalls, Angel

    2014-02-01

    Carbon dioxide capture and storage (CCS) in submarine geological formations has been proposed as a mitigation measure for the prevention of global warming. However, leakage of CO2 to overlying sediments may occur over time, leading to various effects on ecosystems. Laboratory-scale experiments were performed, involving direct release of carbon dioxide into sediment, inside non-pressurized chambers, in order to provide data on the possible effects of CO2 leakage from geological storage sites on the fate of several metals. Marine sediments from three sites with different levels of contamination were sampled and submitted to acidification by means of CO2 injection. The experiment lasted 10 days and sediment samples were collected at the beginning and end of the experiment and pore water was extracted for metal analysis. The results revealed that mobility of metals from sediment to pore water depends on the site, metal and length of time exposed. Mobilization of the metals Al, Fe, Zn, Co, Pb and Cu increases with acidification, and this response generally increases with time of exposure to CO2 injection. The geochemical model applied suggests that acidification also influences the speciation of metals, transforming metals and metalloids, like As, into species much more toxic to biota. The data obtained from this study will be useful for calculating the potential risk of CCS activities to the marine environment. PMID:24144940

  18. Partitioning and mobility behavior of metals in road dusts from national-scale industrial areas in Korea

    NASA Astrophysics Data System (ADS)

    Duong, Trang T. T.; Lee, Byeong-Kyu

    In this study, we investigated the characteristics of heavy metal contamination in road dusts collected from industrial areas in Korea. A total of 12 sampling sites, including nine sites in three different industrial complexes (ICs), two IC vicinity areas and one background area, were selected for this study. The collected road dusts were divided into four categories. The heavy metals (Cd, Cu, Pb, Zn, and Ni) were extracted from the road dust by an aqua regia extraction method and analyzed by atomic absorption spectrometry. The highest concentrations of Cd, Cu, and Pb were identified in road dusts from areas near the non-ferrous metal IC, followed by those from the petrochemical IC. The petrochemical IC and the mechanical/shipbuilding IC showed the highest concentrations of Ni and Zn in their road dusts, respectively. The concentration of heavy metals in the road dusts collected from the IC vicinity areas, even those located in a rural environment, were very high. The concentration of heavy metals increased with decreasing particle size of the road dusts. This study also analyzed the mobility of the heavy metals in the road dusts using partial sequential extraction with the Tessier procedure. The order of mobility identified, based on exchangeable and carbonate fractions of the heavy metals, was Cd > Zn > Pb > Cu > Ni.

  19. Perspectives of humic substances application in remediation of highly heavy metals contaminated soils in Kola Subarctic

    NASA Astrophysics Data System (ADS)

    Tregubova, Polina; Turbaevskaya, Valeria; Zakharenko, Andrey; Kadulin, Maksim; Smirnova, Irina; Stepanov, Andrey; Koptsik, Galina

    2016-04-01

    Northwestern part of Russia, the Kola Peninsula, is one of the most heavy metals (HM) contaminated areas in the northern hemisphere. The main polluters, mining-and-metallurgical integrated works "Pechenganikel" and "Severonikel", are surrounded by heavily damaged barren lands that require remediation. The main contaminating metals are Ni and Cu. Using of exogenous humic substances could be possible effective and cost-efficient solution of HM contamination problem. Rational application of humates (Na-K salts of humic acids) can result in improvement of soil properties, localization of contamination and decreasing bioavailability through binding HM in relatively immobile organic complexes. Our research aim was to evaluate the influence of increasing doses of different origin humates on i) basic properties of contaminated soils; ii) mobility and bioavailability of HMs; iii) vegetation state and chemistry. In summer 2013 a model field experiment was provided in natural conditions of the Kola Peninsula. We investigated the Al-Fe-humus abrazem, soil type that dominates in technogenic barren lands around the "Severonikel" work. These soils are strongly acid: pHH2O was 3.7-4.1; pHKCl was 3.4-4.0. The exchangeable acidity is low (0.8-1.6 cmol(+)/kg) due to the depletion of fine particles and organic matter, being the carriers of exchange positions. The abrazems of barrens had lost organic horizon. 12 sites were created in 1 km from the work. In those sites, except 2 controls, various amendments were added: i) two different by it's origin types of humates: peat-humates and coal-humates, the last were in concentrations 0.5% and 1%; ii) lime; iii) NPK-fertilizer; iv) biomates (organic degradable cover for saving warm and erosion protection). As a test-culture a grass mixture with predominance of Festuca rubra and Festuca ovina was sowed. As a result we concluded that humates of different origin have unequal influence on soil properties and cause decreasing as well as

  20. Mycodiversity in marine sediments contaminated by heavy metals: preliminary results

    NASA Astrophysics Data System (ADS)

    Zotti, Mirca; Carbone, Cristina; Cecchi, Grazia; Consani, Sirio; Cutroneo, Laura; Di Piazza, Simone; Gabutto, Giacomo; Greco, Giuseppe; Vagge, Greta; Capello, Marco

    2016-04-01

    Fungi represent the main decomposers of woody and herbaceous substrates in the marine ecosystems. To date there is a gap in the knowledge about the global diversity and distribution of fungi in marine habitats. On the basis of their biological diversity and their role in ecosystem processes, marine fungi may be considered one of the most attractive groups of organisms in modern biotechnology, e.g. ecotoxic metal bioaccumulation. Here we report the data about the first mycological survey in the metal contaminated coastal sediments of the Gromolo Bay. The latter is located in Ligurian Sea (Eastern Liguria, Italy) and is characterized by an enrichment of heavy metals due to pollution of Gromolo Torrent by acidic processes that interest Fe-Cu sulphide mine. 24 samples of marine sediments were collected along a linear plot in front of the shoreline in July 2015. Each sample was separated into three aliquot for mineralogical, chemical analyses and fungal characterization. The sediment samples are characterised by clay fractions (illite and chlorite), minerals of ophiolitic rocks (mainly serpentine, pyroxene and plagioclase) and quartz and are enriched some chemical elements of environmental importance (such as Cu, Zn, Pb, Cd, As). For fungal characterisation the sediment samples were inoculated in Petri dishes on different culture media (Malt Extract Agar and Rose Bengal) prepared with sea water and added with antibiotics. The inoculated dishes were incubated at 20°C in the dark for 28 days. Every week fungal growth was monitored counting the number of colonies. Later, the colonies were isolated in axenic culture for further molecular analysis. The mycodiversity evaluate on the basis of Colony Forming Units (CFU) and microfungal-morphotype characterised by macro-and micro-morphology. Until now on the 72 Petri dishes inoculated 112 CFU of filamentous fungi were counted, among these about 50 morphotypes were characterized. The quantitative results show a mean value of 4

  1. Metal contamination of vineyard soils in wet subtropics (southern Brazil).

    PubMed

    Mirlean, Nicolai; Roisenberg, Ari; Chies, Jaqueline O

    2007-09-01

    The vine-growing areas in Brazil are the dampest in the world. Copper maximum value registered in this study was as much as 3200 mg kg(-1), which is several times higher than reported for vineyard soils in temperate climates. Other pesticide-derived metals accumulate in the topsoil layer, surpassing in the old vineyards the background value several times for Zn, Pb, Cr and Cd. Copper is transported to deeper soils' horizons and can potentially contaminate groundwater. The soils from basaltic volcanic rocks reveal the highest values of Cu extracted with CaCl(2), demonstrating a high capacity of copper transference into plants. When evaluating the risks of copper's toxic effects in subtropics, the soils from rhyolitic volcanic rocks are more worrisome, as the Cu extracted with ammonium acetate 1M surpasses the toxic threshold as much as 4-6 times. PMID:17321651

  2. Spatial patterns of heavy metal contamination by urbanization

    NASA Astrophysics Data System (ADS)

    Delbecque, Nele; Verdoodt, Ann

    2015-04-01

    Source identification is an important step towards predictive models of urban heavy metal (HM) contamination. This study assesses the spatial distribution of enrichment of eight HMs (As, Cd, Cr, Cu, Hg, Ni, Pb and Zn) in the city of Ghent (156.18 km2; Belgium). A database with HM concentrations measured in the topsoil at 2138 point observations was collected from the Public Waste Agency of Flanders. The degree of anthropogenic HM enrichment was quantified using an urban pollution index (PI). Enrichment of HMs showed high variations throughout the study area due to manifold anthropogenic sources. Topsoil in Ghent was especially enriched with Cu, Ni, Pb and Zn, with median PI's of 1.91, 1.74, 2.12 and 2.02 respectively. Contrastingly, As, Cd, Hg, Cr generally did not exceed expected background concentrations, with median PI values < 1. Stratification of the PI based on land use (agriculture, park and recreation, residential zones, harbor and industry) generally revealed high enrichment of Cu, Ni, Pb and Zn in residential areas linked to housing and traffic, but proved unsatisfactory to capture major trends in urban spatial HM distributions. Moreover, an important control of industrial and traffic emissions is suggested for Ni, Cu, Pb and Zn. Industrial non-airborne point source contaminations were mainly historical, rather than linked to current industrial activities. Results indicated that urban-rural gradients or current land use stratification approaches are inadequate to predict spatial HM distributions in cities with a long history of industrialization.

  3. Humic substances-enhanced electroremediation of heavy metals contaminated soil.

    PubMed

    Bahemmat, Mahdi; Farahbakhsh, Mohsen; Kianirad, Mehran

    2016-07-15

    The effects of catholyte conditioning and the use of humic acids (HAs) and fulvic acids (FAs) as chelating agents to improve electrokinetic (EK) remediation efficiency were investigated using a real and highly contaminated soil. By applying a constant voltage (2.0V/cm) to the soil, pH and current changes and heavy metals (HMs) concentration were investigated through a range of durations and positions. The observations demonstrated that both catholyte conditioning with 0.1N HNO3 and using humic substances (HSs) enhance remediation efficiency. After 20 days of EK treatment, the removal efficiency of HMs in HS-enhanced EK remediation was about 2.0-3.0 times greater than when unenhanced. The quantity of HMs moving toward the cathode exceeded the anode, from which it could be reasonably inferred that most negatively charged HM-HS complexes were moved by electroosmotic forces. Further, free HM cations and positively charged complexed HMs migrated to the catholyte compartment by electromigration. The results obtained in this study, demonstrate the suitability of HS-enhanced EK remediation in HMs contaminated soil. PMID:27058638

  4. Mobility and eco-risk of trace metals in soils at the Hailuogou Glacier foreland in eastern Tibetan Plateau.

    PubMed

    Bing, Haijian; Wu, Yanhong; Zhou, Jun; Liang, Jianhong; Wang, Jipeng; Yang, Zijiang

    2016-03-01

    The concentrations and fractions of cadmium (Cd), copper (Cu), lead (Pb), and zinc (Zn) in soils collected from Hailuogou Glacier foreland in eastern Tibetan Plateau were analyzed to decipher their mobility, and their eco-risk was assessed combined with multiple environmental indices. The concentrations of Cd were more than ten times higher than its local background in the O horizon and nearly three times higher in the A horizon. The concentrations of Pb and Zn were relatively high in the O horizon, whereas that of Cu increased with soil depth. The main fractions of metals in the surface horizons were reducible and acid-soluble for Cd, oxidizable and residual for Cu, reducible and oxidizable for Pb, and reducible and residual for Zn. The metal mobility generally followed the order of Cd > Pb > Zn > Cu in the O horizon and Cd > Pb > Cu > Zn in the A horizon. Sorption and complexation by soil organic matters imparted an important effect on the mobilization and transformation of Cd, Pb, and Zn in the soils. The oxidizable Cu fraction in the soils showed significant correlation with organic matters, and soil pH mainly modulated the acid-soluble and reducible Cu fractions. The concentrations and other environmental indices including contamination factor, enrichment factor, geoaccumulation index, and risk assessment index revealed that Cd reached high contamination and very high eco-risk, Pb had medium contamination but low eco-risk, Zn showed low contamination and low eco-risk, and Cu was not contaminated in the soils. The data indicated that Cd was the priority to concern in the soils of Hailuogou Glacier catchment. PMID:26581692

  5. Modeling discrete gas bubble formation and mobilization during subsurface heating of contaminated zones

    NASA Astrophysics Data System (ADS)

    Krol, Magdalena M.; Mumford, Kevin G.; Johnson, Richard L.; Sleep, Brent E.

    2011-04-01

    During thermal remediation the increase in subsurface temperature can lead to bubble formation and mobilization. In order to investigate the effect of gas formation on resulting aqueous concentrations, a 2D finite difference flow and mass transport model was developed which incorporates a macroscopic invasion percolation (MIP) model to simulate bubble expansion and movement. The model was used to simulate three soil scenarios with different permeabilities and entry pressures at various operating temperatures and groundwater velocities. It was observed that discrete bubble formation occurred in all three soils, upward mobility being limited by lower temperatures and higher entry pressures. Bubble mobilization resulted in a different aqueous mass distribution than if no discrete gas formation was modeled, especially at higher temperatures. This was a result of bubbles moving upwards to cooler areas, then collapsing, and contaminating previously clean zones. The cooling effect also led to possible non-aqueous phase liquid (NAPL) formation which was not predicted using a model without discrete bubble formation.

  6. Risk Assessment of Heavy Metals in Abandoned Mine Lands as Signifcant Contamination Problem in Romania

    NASA Astrophysics Data System (ADS)

    Horvath, E.; Jordan, G.; Fugedi, U.; Bartha, A.; Kuti, L.; Heltai, G.; Kalmar, J.; Waldmann, I.; Napradean, I.; Damian, G.

    2009-04-01

    lower topographic elevations. Several mine adits, waste rock dumps are located along the main stream and a large tailings dump is found next to village Baiut just above the receiving floodplain. Predominant land cover is coniferous and mixed forests with agricultural lands on the downstream floodplain. METHODS Six samples at vaious depths were collected from the two major waste rock dumps in the headwater area, and the large tailings dump was also sampled for heavy metal source characterisation. 11 stream sediment samples were collected along the main surface water contamination transport pathway, and a further 11 soil samples were collected in 2 boreholes in the receptor floodplain in October 2008. Besides background stream sediment samples, samples from the exposed rock formations were also collected in order to capture natural background geochemistry in the studied mineralised area. The collected waste rock, stream sediment, soil and rock samples are analysed for total chemical composition (major elements and heavy metals) by ICP-MS spectroscopy, and XRD is used for the determination of mineralogical composition. Rock sample mineralogy is further investigated in thin-sections by petrological microscopy. According to EU legislation expectations, a special emphasis is taken on the determination of metal mobility from the waste rock dumps and various leaching tests are performed and compared including US EPA, USGS and ISO methods. A simple cathcment-based distributed sediment transport model (Jordan et al, 2005; Jordan et al. 2005, 2008) is used to decribe the pathways and quantities of particle-bound contamination. RESULTS AND CONCLUSIONS Results show that (1) sediments are an efficient means for the preliminary inventory of mine contamination as a preparation for the more detailed hydrological sampling and assessment, and (2) the risk-based contamination assessment of mining sites often located in diverse geological, hydrological and landcover environment requires

  7. A test to illustrate the effects of BioSolve on the mobility of contaminated soils

    SciTech Connect

    Jackson, Lorri M.

    1999-05-27

    Mountain States BioSolve manufactures products for in-situ bioremediation projects. One of their products, BioSolve, desorbs and emulsifies hydrocarbons in a contaminated substrate. BioSolve is a blend of water-based, biodegradable surfactants which were engineered as a clean-up and mitigation agent for hydrocarbon products. Its basic mechanism is to emulsify the hydrocarbon into small encapsulated particles in a water/oxygen-bearing solution, desorbing hydrocarbon molecules from soil particles. This allows bacteria to more effectively metabolize the contaminate. During desorption, Total Petroleum Hydrocarbons (TPH) levels may increase shortly after application due to the removal of contaminate from soil particles which increases the total recoverable hydrocarbon. This allows the hydrocarbon, in the pump and treat process, to become mobile, and thus carried with the water to the recovery wells where it can be removed. This testing does not address pump and treat technology but only the increased surface area for bioremediation enhancement.

  8. Assessment of geochemical mobility of metals in surface sediments of the Santa Rosalia mining region, Western Gulf of California.

    PubMed

    Shumilin, Evgueni; Gordeev, Vyacheslav; Figueroa, Griselda Rodríguez; Demina, Liudmila; Choumiline, Konstantin

    2011-01-01

    To asses the geomobility of cadmium, copper, iron, manganese, nickel, lead, and zinc in marine sediments near the Santa Rosalía copper smelter, which is located on the eastern coast of the Baja California Peninsula, sequential leaching was applied to sediment samples containing different levels of Cu: (1) uncontaminated or slightly contaminated (<55 mg kg⁻¹ Cu); (2) moderately contaminated (55-500 mg kg⁻¹ Cu); and (3) heavily contaminated (>500 mg kg⁻¹ Cu). Concentrations of Cd, Cu, Fe, Mn, Ni, Pb, and Zn in four fractions of the leachate (mobile fraction F1, relatively mobile fraction F2, associated with organic matter/sulphides fraction F3, and residual fraction F4) were measured by atomic absorption spectrophotometry (AAS). The sediments with Cu concentration <500 mg kg⁻¹ displayed prevalence of mobile acid-leachable fraction F1 and reducible fraction F2 for Cd, Cu, Mn, and Pb, whereas the relative contribution of fraction F3 was relatively low for all of the examined metals. Residual fraction F4 was highest (>65%) for Fe and Ni because both metals are associated with the crystalline matrix of natural sediments. The sediments heavily contaminated with Cu (>500 mg kg⁻¹) had dramatically increased percentages of Cu, Mn, Pb, and Zn, ranging on average from 63 to 81%, in the residual fraction. In the case of Cu, for example, the relative abundances of this element in the different fractions of such sediments followed this sequence: residual fraction F4 (76 ± 5%) >absorbed form and carbonates fraction F1 (15 ± 5%) >Fe and Mn oxyhydroxides fraction F2 (5 ± 2%) >fraction associated with organic matter and sulphides F3 (4.5 ± 3.9%). Copper, Pb, and Zn contents in each geochemical fraction of all samples were compared with sediment-quality guideline values ("effects range low" [ERL] and "effects range medium" [ERM]) to assess their possible negative effects on biota. Copper contents in mobile fractions F1 and F2, which were moderately contaminated

  9. METALS IN GROUND WATER: SAMPLING ARTIFACTS AND REPRODUCIBILITY

    EPA Science Inventory

    Field studies evaluated sampling procedures for determination of aqueous inorganic geochemistry and assessment of contaminant transport by colloidal mobility. esearch at three different metal-contaminated sites has shown that 0.45 tm filtration has not removed potentially mobile ...

  10. Techniques for assessing the performance of in situ bioreduction and immobilization of metals and radionuclides in contaminated subsurface environments

    SciTech Connect

    Jardine, P.M.; Watson, D.B.; Blake, D.A.; Beard, L.P.; Brooks, S.C.; Carley, J.M.; Criddle, C.S.; Doll, W.E.; Fields, M.W.; Fendorf, S.E.; Geesey, G.G.; Ginder-Vogel, M.; Hubbard, S.S.; Istok, J.D.; Kelly, S.; Kemner, K.M.; Peacock, A.D.; Spalding, B.P.; White, D.C.; Wolf, A.; Wu, W.; Zhou, J.

    2004-11-14

    Department of Energy (DOE) facilities within the weapons complex face a daunting challenge of remediating huge below inventories of legacy radioactive and toxic metal waste. More often than not, the scope of the problem is massive, particularly in the high recharge, humid regions east of the Mississippi river, where the off-site migration of contaminants continues to plague soil water, groundwater, and surface water sources. As of 2002, contaminated sites are closing rapidly and many remediation strategies have chosen to leave contaminants in-place. In situ barriers, surface caps, and bioremediation are often the remedial strategies of chose. By choosing to leave contaminants in-place, we must accept the fact that the contaminants will continue to interact with subsurface and surface media. Contaminant interactions with the geosphere are complex and investigating long term changes and interactive processes is imperative to verifying risks. We must be able to understand the consequences of our action or inaction. The focus of this manuscript is to describe recent technical developments for assessing the performance of in situ bioremediation and immobilization of subsurface metals and radionuclides. Research within DOE's NABIR and EMSP programs has been investigating the possibility of using subsurface microorganisms to convert redox sensitive toxic metals and radionuclides (e.g. Cr, U, Tc, Co) into a less soluble, less mobile forms. Much of the research is motivated by the likelihood that subsurface metal-reducing bacteria can be stimulated to effectively alter the redox state of metals and radionuclides so that they are immobilized in situ for long time periods. The approach is difficult, however, since subsurface media and waste constituents are complex with competing electron acceptors and hydrogeological conditions making biostimulation a challenge. Performance assessment of in situ biostimulation strategies is also difficult and typically requires detailed

  11. Techniques for Assessing the Performance of In Situ Bioreduction and Immobilization of Metals and Radionuclides in Contaminated Subsurface Environments

    NASA Astrophysics Data System (ADS)

    Watson, D. B.; Jardine, P. M.

    2005-05-01

    Department of Energy (DOE) facilities within the weapons complex face a daunting challenge of remediating huge below inventories of legacy radioactive and toxic metal waste. More often than not, the scope of the problem is massive, particularly in the high recharge, humid regions east of the Mississippi river, where the off-site migration of contaminants continues to plague soil water, groundwater, and surface water sources. As of 2002, contaminated sites are closing rapidly and many remediation strategies have chosen to leave contaminants in-place. In situ barriers, surface caps, and bioremediation are often the remedial strategies of chose. By choosing to leave contaminants in-place, we must accept the fact that the contaminants will continue to interact with subsurface and surface media. Contaminant interactions with the geosphere are complex and investigating long term changes and interactive processes is imperative to verifying risks. We must be able to understand the consequences of our action or inaction. The focus of this presentation is to describe recent technical developments for assessing the performance of in situ bioremediation and immobilization of subsurface metals and radionuclides. Research within DOE's NABIR and EMSP programs has been investigating the possibility of using subsurface microorganisms to convert redox sensitive toxic metals and radionuclides (e.g. Cr, U, Tc, Co) into a less soluble, less mobile forms. Much of the research is motivated by the likelihood that subsurface metal-reducing bacteria can be stimulated to effectively alter the redox state of metals and radionuclides so that they are immobilized in situ for long time periods. The approach is difficult, however, since subsurface media and waste constituents are complex with competing electron acceptors and hydrogeological conditions making biostimulation a challenge. Performance assessment of in situ biostimulation strategies is also difficult and typically requires detailed

  12. Changes in metal contamination levels in estuarine sediments around India--an assessment.

    PubMed

    Chakraborty, Parthasarathi; Ramteke, Darwin; Chakraborty, Sucharita; Nagender Nath, B

    2014-01-15

    This review is the first attempt to comprehend the changes in metal contamination levels in surface estuarine sediments with changing time around India. Contamination factor, geoaccumulation index, pollution load index, effects range low and effects range median analysis were used to evaluate the quality of the estuarine sediments (by using the available literature data). This study suggests that estuarine sediments from the east coast of India were comparatively less contaminated by metals than the west coast. Sediments from those estuaries were found to be more contaminated by metals on which major cities are located. An improvement in estuarine sediment quality (in terms of metal contamination) over time around India was noticed. This study provides managers and decision-makers of environmental protection agency with a better scientific understanding for decision-making in controlling metal pollution in estuarine sediments around India. PMID:24211100

  13. Composition and process for organic and metal contaminant fixation in soil

    SciTech Connect

    Schwitzgebel, K.

    1994-02-08

    A method and compositions using a first ferrous iron containing solution with the iron concentration in excess of theoretical requirements are presented to treat a contaminated site. Hexavalent chromium is reduced to trivalent chromium and trivalent chromium is coprecipitated with other heavy metals. A second solution of silicate containing a destabilizing salt is used to form a relatively impermeable gel in the contaminated site thereby fixing metals and organics to the extent that there should be no detectable ground water contamination.

  14. Composition and process for organic and metal contaminant fixation in soil

    DOEpatents

    Schwitzgebel, Klaus

    1994-02-08

    A method and compositions using a first ferrous iron containing solution with the iron concentration in excess of theoretical requirements to treat a contaminated site to reduce hexavalent chromium to trivalent chromium and coprecipitate trivalent chromium with other heavy metals and using a second solution of silicate containing a destabilizing salt to form a relatively impermeable gel in the contaminated site thereby fixing metals and organics to the extent that there should be no detectable ground water contamination.

  15. Arsenic Mobilization from Historically Contaminated Mining Soils in a Continuously Operated Bioreactor: Implications for Risk Assessment.

    PubMed

    Rajpert, Liwia; Kolvenbach, Boris A; Ammann, Erik M; Hockmann, Kerstin; Nachtegaal, Maarten; Eiche, Elisabeth; Schäffer, Andreas; Corvini, Philippe Francois Xavier; Skłodowska, Aleksandra; Lenz, Markus

    2016-09-01

    Concentrations of soil arsenic (As) in the vicinity of the former Złoty Stok gold mine (Lower Silesia, southwest Poland) exceed 1000 μg g(-1) in the area, posing an inherent threat to neighboring bodies of water. This study investigated continuous As mobilization under reducing conditions for more than 3 months. In particular, the capacity of autochthonic microflora that live on natural organic matter as the sole carbon/electron source for mobilizing As was assessed. A biphasic mobilization of As was observed. In the first two months, As mobilization was mainly conferred by Mn dissolution despite the prevalence of Fe (0.1 wt % vs 5.4 for Mn and Fe, respectively) as indicated by multiple regression analysis. Thereafter, the sudden increase in aqueous As[III] (up to 2400 μg L(-1)) was attributed to an almost quintupling of the autochthonic dissimilatory As-reducing community (quantitative polymerase chain reaction). The aqueous speciation influenced by microbial activity led to a reduction of solid phase As species (X-ray absorption fine structure spectroscopy) and a change in the elemental composition of As hotspots (micro X-ray fluorescence mapping). The depletion of most natural dissolved organic matter and the fact that an extensive mobilization of As[III] occurred after two months raises concerns about the long-term stability of historically As-contaminated sites. PMID:27454004

  16. Pollution status of Pakistan: a retrospective review on heavy metal contamination of water, soil, and vegetables.

    PubMed

    Waseem, Amir; Arshad, Jahanzaib; Iqbal, Farhat; Sajjad, Ashif; Mehmood, Zahid; Murtaza, Ghulam

    2014-01-01

    Trace heavy metals, such as arsenic, cadmium, lead, chromium, nickel, and mercury, are important environmental pollutants, particularly in areas with high anthropogenic pressure. In addition to these metals, copper, manganese, iron, and zinc are also important trace micronutrients. The presence of trace heavy metals in the atmosphere, soil, and water can cause serious problems to all organisms, and the ubiquitous bioavailability of these heavy metal can result in bioaccumulation in the food chain which especially can be highly dangerous to human health. This study reviews the heavy metal contamination in several areas of Pakistan over the past few years, particularly to assess the heavy metal contamination in water (ground water, surface water, and waste water), soil, sediments, particulate matter, and vegetables. The listed contaminations affect the drinking water quality, ecological environment, and food chain. Moreover, the toxicity induced by contaminated water, soil, and vegetables poses serious threat to human health. PMID:25276818

  17. Pollution Status of Pakistan: A Retrospective Review on Heavy Metal Contamination of Water, Soil, and Vegetables

    PubMed Central

    Arshad, Jahanzaib; Iqbal, Farhat; Sajjad, Ashif; Mehmood, Zahid

    2014-01-01

    Trace heavy metals, such as arsenic, cadmium, lead, chromium, nickel, and mercury, are important environmental pollutants, particularly in areas with high anthropogenic pressure. In addition to these metals, copper, manganese, iron, and zinc are also important trace micronutrients. The presence of trace heavy metals in the atmosphere, soil, and water can cause serious problems to all organisms, and the ubiquitous bioavailability of these heavy metal can result in bioaccumulation in the food chain which especially can be highly dangerous to human health. This study reviews the heavy metal contamination in several areas of Pakistan over the past few years, particularly to assess the heavy metal contamination in water (ground water, surface water, and waste water), soil, sediments, particulate matter, and vegetables. The listed contaminations affect the drinking water quality, ecological environment, and food chain. Moreover, the toxicity induced by contaminated water, soil, and vegetables poses serious threat to human health. PMID:25276818

  18. COLLOID MOBILIZATION AND TRANSPORT IN CONTAMINANT PLUMES: FIELD EXPERIMENTS, LABORATORY EXPERIMENTS, AND MODELING (EPA/600/S-99/001)

    EPA Science Inventory

    The major hypothesis driving this research, that the transport of colloids in a contaminant plume is limited by the advance of the chemical agent causing colloid mobilization, was tested by (1) examining the dependence of colloid transport and mobilization on chemical perturbatio...

  19. Effects of organic carbon supply rates on mobility of previously bioreduced uranium in a contaminated sediment

    SciTech Connect

    Wan, J.; Tokunaga, T.K.; Kim, Y.; Brodie, E.; Daly, R.; Hazen, T.C.; Firestone, M.K.

    2008-05-15

    Bioreduction-based strategies for remediating uranium (U)-contaminated sediments face the challenge of maintaining the reduced status of U for long times. Because groundwater influxes continuously bring in oxidizing terminal electron acceptors (O{sub 2}, NO{sub 3}{sup -}), it is necessary to continue supplying organic carbon (OC) to maintain the reducing environment after U bioreduction is achieved. We tested the influence of OC supply rates on mobility of previously microbial reduced uranium U(IV) in contaminated sediments. We found that high degrees of U mobilization occurred when OC supply rates were high, and when the sediment still contained abundant Fe(III). Although 900 days with low levels of OC supply minimized U mobilization, the sediment redox potential increased with time as did extractable U(VI) fractions. Molecular analyses of total microbial activity demonstrated a positive correlation with OC supply and analyses of Geobacteraceae activity (RT-qPCR of 16S rRNA) indicated continued activity even when the effluent Fe(II) became undetectable. These data support our earlier hypothesis on the mechanism responsible for re-oxidation of microbial reduced U(IV) under reducing conditions; that microbial respiration caused increased (bi)carbonate concentrations and formation of stable uranyl carbonate complexes, thereby shifted U(IV)/U(VI) equilibrium to more reducing potentials. The data also suggested that low OC concentrations could not sustain the reducing condition of the sediment for much longer time.

  20. Heavy metal contamination in a vulnerable mangrove swamp in South China.

    PubMed

    Wang, Yutao; Qiu, Qiu; Xin, Guorong; Yang, Zhongyi; Zheng, Jing; Ye, Zhihong; Li, Shaoshan

    2013-07-01

    Concentrations of six heavy metals (Cu, Ni, Zn, Cd, Cr, and Pb) in sediments and fine roots, thick roots, branches, and leaves of six mangrove plant species collected from the Futian mangrove forest, South China were measured. The results show that both the sediments and plants in Futian mangrove ecosystem are moderately contaminated by heavy metals, with the main contaminants being Zn and Cu. All investigated metals showed very similar distribution patterns in the sediments, implying that they had the same anthropogenic source(s). High accumulations of the heavy metals were observed in the root tissues, especially the fine roots, and much lower concentrations in the other organs. This indicates that the roots strongly immobilize the heavy metals and (hence) that mangrove plants possess mechanisms that limit the upward transport of heavy metals and exclude them from sensitive tissues. The growth performance of propagules and 6-month-old seedlings of Bruguiera gymnorhiza in the presence of contaminating Cu and Cd was also examined. The results show that this plant is not sufficiently sensitive to heavy metals after its propagule stage for its regeneration and growth to be significantly affected by heavy metal contamination in the Futian mangrove ecosystem. However, older mangrove seedlings appeared to be more metal-tolerant than the younger seedlings due to their more efficient exclusion mechanism. Thus, the effects of metal contamination on young seedlings should be assessed when evaluating the risks posed by heavy metals in an ecosystem. PMID:23203819

  1. Inoculation with Metal-Mobilizing Plant-Growth-Promoting Rhizobacterium Bacillus sp. SC2b and Its Role in Rhizoremediation.

    PubMed

    Ma, Ying; Oliveira, Rui S; Wu, Longhua; Luo, Yongming; Rajkumar, Mani; Rocha, Inês; Freitas, Helena

    2015-01-01

    A plant growth-promoting bacterial (PGPB) strain SC2b was isolated from the rhizosphere of Sedum plumbizincicola grown in lead (Pb)/zinc (Zn) mine soils and characterized as Bacillus sp. based on (1) morphological and biochemical characteristics and (2) partial 16S ribosomal DNA sequencing analysis. Strain SC2b exhibited high levels of resistance to cadmium (Cd) (300 mg/L), Zn (730 mg/L), and Pb (1400 mg/L). This strain also showed various plant growth-promoting (PGP) features such as utilization of 1-aminocyclopropane-1-carboxylate, solubilization of phosphate, and production of indole-3-acetic acid and siderophore. The strain mobilized high concentration of heavy metals from soils and exhibited different biosorption capacity toward the tested metal ions. Strain SC2b was further assessed for PGP activity by phytagar assay with a model plant Brassica napus. Inoculation of SC2b increased the biomass and vigor index of B. napus. Considering such potential, a pot experiment was conducted to assess the effects of inoculating the metal-resistant PGPB SC2b on growth and uptake of Cd, Zn and Pb by S. plumbizincicola in metal-contaminated agricultural soils. Inoculation with SC2b elevated the shoot and root biomass and leaf chlorophyll content of S. plumbizincicola. Similarly, plants inoculated with SC2b demonstrated markedly higher Cd and Zn accumulation in the root and shoot system, indicating that SC2b enhanced Cd and Zn uptake by S. plumbizincicola through metal mobilization or plant-microbial mediated changes in chemical or biological soil properties. Data demonstrated that the PGPB Bacillus sp. SC2b might serve as a future biofertilizer and an effective metal mobilizing bioinoculant for rhizoremediation of metal polluted soils. PMID:26167758

  2. Heavy metal contamination of river Yamuna, Haryana, India: Assessment by Metal Enrichment Factor of the Sediments.

    PubMed

    Kaushik, A; Kansal, Ankur; Santosh; Meena; Kumari, Shiv; Kaushik, C P

    2009-05-15

    Concentration of Heavy Metals (Cd, Cr, Fe, Ni) in water, plants and sediments of river Yamuna flowing in Haryana through Delhi are reported here selecting 14 stations covering the upstream and downstream sites of major industrial complexes of the State. Some important characteristics of river water and sediments (pH, EC, Cl(-), SO(3)(2-), and PO(4)(3-) in water and sediments, COD of water and organic matter content of sediments) were also analysed and inter-relationships of all these parameters with heavy metal concentration in different compartments were examined. The sediments of the river show significant enrichment with Cd and Ni indicating inputs from industrial sources. Concentrations of Cr are moderate and show high enrichment values only at a few sites. Enrichment factor for Fe is found to be <1, showing insignificant effect of anthropogenic flux. Concentrations of these metals in river water are generally high exceeding the standard maximum permissible limits prescribed for drinking water, particularly in the downstream sites. The aquatic plants show maximum accumulation of Fe. The other heavy metals Cd, Cr and Ni, though less in concentration, show some accumulation in the plants growing in contaminated sites. Interrelationships of metal concentration with important characteristics of water and sediment have been analysed. Analysis of heavy metals in water, sediments and littoral flora in the stretch of river Yamuna is first study of itself and interrelationship of metal concentration and other important characteristics make the study significant and interesting in analysing the pollution load at different points of the river body. PMID:18809251

  3. Contaminated Metal Components in Dismantling by Hot Cutting Processes

    SciTech Connect

    Cesari, Franco G.; Conforti, Gianmario; Rogante, Massimo; Giostri, Angelo

    2006-07-01

    During the preparatory dismantling activities of Caorso's Nuclear Power Plant (NPP), an experimental campaign using plasma and oxyacetylene metal cutting processes has been performed and applied to plates and tubes exposed to the coolant steam of the reactor. The plant (Boiling Water Reactor, 870 MWe) was designed and built in the 70's, and it was fully operating by 1981 to 1986 being shut down after 1987 Italy's poll that abrogated nuclear power based on U235 fission. The campaign concerns no activated materials, even if the analyses have been performed of by use contaminated components under the free release level, not yet taking into account radioactivity. In this paper, the parameters related to inhalable aerosol, solid and volatile residuals production have been, studied during hot processes which applies the same characteristics of the cutting in field for the dismantling programs of Caorso NPP. The technical parameters such as cutting time and cutting rate vs. pipe diameter/thickness/schedule or plate thickness for ferritic alloys and the emissions composition coming from the sectioning are also reported. The results underline the sort of trouble that can emerge in the cutting processes, in particular focusing on the effects comparison between the two cutting processes and the chemical composition of powders captured by filtering the gaseous emission. Some preliminary considerations on methodology to be used during the dismantling have been presented. (authors)

  4. Propolis as an indicator of environmental contamination by metals.

    PubMed

    Finger, Daiane; Filho, Irineo Kelte; Torres, Yohandra Reyes; Quináia, Sueli Pércio

    2014-03-01

    Concentrations of eleven representative metals (Al, Ca, Cd, Cr, Cu, K, Mg, Mn, Na, Pb and Zn) in forty-two propolis samples were measured by electrothermal atomization and flame atomic absorption spectrometry after calcination in a muffle furnace. Samples were collected from different regions from Paraná State - Brazil where apiculture is an important economic activity. Results showed that the average content of Al, Ca, K, Mg, Mn, Na and Zn in propolis was 0.68, 1.66, 7.59, 1.27, 0.08, 0.58 and 0.02 mg g(-1), respectively. Levels of Al, Ca, and Mg were statistically different in some regions of Paraná and could be used to assign the geographical origin of the propolis. The average concentration of the Cd, Cr, and Pb in raw propolis was 0.13, 5.53 and 9.85 μg g(-1), respectively, and allowed for identification of specific areas with environmental contamination. PMID:24414164

  5. Assessment of fly ash-aided phytostabilisation of highly contaminated soils after an 8-year field trial: part 1. Influence on soil parameters and metal extractability.

    PubMed

    Lopareva-Pohu, Alena; Pourrut, Bertrand; Waterlot, Christophe; Garçon, Guillaume; Bidar, Géraldine; Pruvot, Christelle; Shirali, Pirouz; Douay, Francis

    2011-01-01

    Sustainable management of large surface areas contaminated with trace elements is a real challenge, since currently applied remediation techniques are too expensive for these areas. Aided phytostabilisation appears to be a cost efficient technique to reduce metal mobility in contaminated soils and contaminated particle spread. In this context, this study aimed at evaluating the long-term efficiency of aided phytostabilisation on former agricultural soils highly contaminated with trace elements. The influence of afforestation and fly ash amendments to reduce metal mobility was investigated. Before being planted with a tree mix, the study site was divided into three plots: a reference plot with no amendment, the second amended with silico-aluminous fly ash and the third with sulfo-calcic fly ash. After eight years, some soil physico-chemical parameters, including cadmium (Cd), lead (Pb) and zinc (Zn) extractability were modified. In particular, pH decreased on the whole site while organic carbon content increased. The alteration of these parameters influencing trace element mobility is explained by afforestation. Over time, concentrations of CaCl(2)-extractable metals increased and were correlated with the soil pH decrease. In the amended soils, extractable Cd, Pb and Zn concentrations were lower than in the reference soil. The results indicated that the two fly ashes buffered natural soil acidification due to vegetation development and limited trace element mobility and thus could limit their bioavailability. For long-term phytostabilisation, special attention should be focused on the soil pH, metal mobility and phytoavailability analysis. PMID:21106226

  6. A comparative study of the effects of metal contamination on Collembola in the field and in the laboratory.

    PubMed

    Fountain, M T; Hopkin, S P

    2004-08-01

    We examined the species diversity and abundance of Collembola at 32 sampling points along a gradient of metal contamination in a rough grassland site (Wolverhampton, England), formerly used for the disposal of metal-rich smelting waste. Differences in the concentrations of Cd, Cu, Pb and Zn between the least and most contaminated part of the 35 metre transect were more than one order of magnitude. A gradient of Zn concentrations from 597 to 9080 microg g(-1) dry soil was found. A comparison between field concentrations of the four metals and previous studies on their relative toxicities to Collembola, suggested that Zn is likely to be responsible for any ecotoxicological effects on springtails at this site. Euedaphic (soil dwelling) Collembola were extracted by placing soil cores into Tullgren funnels and epedaphic (surface dwelling) species were sampled using pitfall traps. There was no obvious relationship between the total abundance, or a range of commonly used diversity indices, and Zn levels in soils. However, individual species showed considerable differences in abundance. Metal "tolerant" (e.g., Ceratophysella denticulata) and metal "sensitive" (e.g., Cryptopygus thermophilus) species could be identified. Epedaphic species appeared to be influenced less by metal contamination than euedaphic species. This difference is probably due to the higher mobility and lower contact with the soil pore water of epedaphic springtails in comparison to euedaphic Collembola. In an experiment exposing the standard test springtail, Folsomia candida, to soils from all 32 sampling points, adult survival and reproduction showed small but significant negative relationships with total Zn concentrations. Nevertheless, juveniles were still produced from eggs laid by females in the most contaminated soils with 9080 microg g(-1) Zn. Folsomia candida is much more sensitive to equivalent concentrations of Zn in the standard OECD soil. Thus, care should be taken in extrapolating the

  7. Vertical distribution and mobility of arsenic and heavy metals in and around mine tailings of an abandoned mine.

    PubMed

    Kim, Myoung-Jin; Jung, Yejin

    2004-01-01

    In the present study, the vertical distributions (0-220 cm) of arsenic and heavy metals in mine tailings and nearby paddy fields, and their mobility through water-leach experiments were investigated. For the study, the area of Jingok mine located in Bongwha, Korea has been selected. The concentrations of arsenic and heavy metals in the mine tailings were extremely high compared to the paddy fields and control sites, i.e., up to 6675 mg/kg for As, 25 mg/kg for Cd, 22 mg/kg for Cr, 383 mg/kg for Cu, 11,135 mg/kg for Pb, 3600 mg/kg for Zn, 5.73 wt% for Fe, and 3.05 wt% for Mn. The concentrations of As and heavy metals in the paddy fields decreased sharply with increasing distance from the mine tailings, with values still higher than those in the control sites, indicating the contamination of the paddy fields by heavy metals released from the mine tailings. The vertical distributions of Cd, Cu, Pb, Al, Fe, and Mn showed the following common pattern: the highest values in the upper part of mine tailings (0-20 cm), rapid decrease with increasing depth, and then nearly constant values below the depth of 50 cm. Significant correlations were found between total Fe and heavy metals (Cd, Cu, and Pb), and between total Mn and heavy metals (Cd, Cu, Pb, and Zn) in the mine tailings, indicating that minerals containing Fe and Mn play an important role in the mobility of heavy metals such as Cd, Cu, Pb, and Zn. The fraction of As(V) ranged from 63 to 100% of total arsenic in the samples of the mine tailings. The high concentrations of total As, heavy metals, sulfate. hydrogen ion, and As(V) in the leachates of mine tailings suggest that sulfide minerals containing arsenic and heavy metals in the mine tailings were actively oxidized. PMID:15030152

  8. Evaluation of Environmental Risk of Metal Contaminated Soils and Sediments Near Mining Sites in Aguascalientes, Mexico.

    PubMed

    Mitchell, Kerry Nigel; Ramos Gómez, Magdalena Samanta; Guerrero Barrera, Alma Lilian; Yamamoto Flores, Laura; Flores de la Torre, Juan Armando; Avelar González, Francisco Javier

    2016-08-01

    A total of sixteen composite soil and sediment samples were collected during the rainy and dry season in Asientos, Aguascalientes, Mexico, an area recently affected by increased mining operations. Physicochemical characterization showed that substrates were moderately to strongly calcareous with predominantly neutral to slightly alkaline pH, moderate to high cation-exchange capacity and high organic matter content. Due to these conditions, Cd, Pb, Cu and Zn were not water leachable despite high concentrations; up to 105.3, 7052.8, 414.7 and 12,263.2 mg kg(-1) respectively. However, Cd and Pb were considered to be easily mobilizable as they were found predominantly associated with exchangeable and carbonate fractions, whereas Cu and Zn were found associated with Fe/Mn oxide and organic matter fractions. The results highlighted the influence of physicochemical substrate properties on the mobility of metals and its importance during the evaluation of the potential current and future risk metal contamination presents in affected areas. PMID:27178544

  9. Pilot-scale washing of metal contaminated garden soil using EDTA.

    PubMed

    Voglar, David; Lestan, Domen

    2012-05-15

    Ten batches (75kg each) of garden soil with >50% of silt and clay and average 1935mgkg(-1) Pb, 800mgkg(-1) Zn, 10mgkg(-1) Cd and 120mgkg(-1) As were remediated in a pilot-scale chemical extraction plant. Washing with 60mmol ethylenediaminetetraacetic acid (EDTA) per kg of soil on average removed 79, 38, 70, and 80% of Pb, Zn, Cd and As, respectively, and significantly reduced the leachability, phyto-accessibility and oral-availability of residual toxic metals, as assessed using deionised water, toxicity characteristic leaching procedure (TCLP), diethylenetriamine pentaacetic acid extraction (DTPA) and physiologically based extraction test (PBET) tests. The used soil washing solution was treated before discharge using an electrochemical advanced oxidation process with graphite anode: EDTA was removed by degradation and toxic metals were electro-precipitated onto a stainless steel cathode. The novelty of the remediation technique is separation of the soil from the washing solution and soil rinsing (removal of mobilized contaminants) carried out in the same process step. Another novelty is the reuse of the soil rinsing solution from the previous batch for cleansing the soil sand, soil rinsing and for preparation of the washing solution in subsequent batches. The cost of energy and material expenses and disposal of waste products amounted to approximately 75€ton(-1) of soil. PMID:22410723

  10. Characterisation by PIXE RBS of metallic contamination of tissues surrounding a metallic prosthesis on a knee

    NASA Astrophysics Data System (ADS)

    Guibert, G.; Irigaray, J. L.; Moretto, Ph.; Sauvage, T.; Kemeny, J. L.; Cazenave, A.; Jallot, E.

    2006-09-01

    Implants used as biomaterials have to fulfill conditions of functionality, compatibility and sometimes bioactivity. There are four main families of biomaterials: metals and metal alloys, polymers, bioceramics and natural materials. Because of corrosion and friction in the human body, implants generate debris. This debris may develop toxicity, inflammation and prosthetic unsealing by osseous dissolution. Nature, size, morphology and amount of debris are the parameters influencing the tissue responses. In this paper, we characterised metallic contamination produced by knee prosthesis, composed with TiAl 6V 4 or Co-Cr-Mo alloys, into surrounding capsular tissue by depth migration, in vivo behaviour, content, size and nature of debris by PIXE (Particle Induced X-ray Emission) method associated with RBS (Rutherford Backscattering Spectroscopy). Debris distribution in the whole articulation is very heterogeneous. Debris migrates several thousand micrometers in tissues, with a characteristic decrease. Solid metallic particles of about micrometer size are found in the most polluted samples, in both alloys TiAl 6V 4 and Cr-Co-Mo. In the mean volume analysed by PIXE, the concentration mass ratios [Ti]/[V] and [Co]/[Cr] confirm the chemical stability of TiAl 6V 4 debris and show the chemical evolution of Cr-Co-Mo debris. Development of a protocol to prepare thin targets permits us to correlate PIXE and histological analysis in the same zone. The fibrous tissue (collagen fibres, fibroblasts) and macrophage cells are observed with optical microscope in polluted areas. This protocol could locate other pathologies in ppm contamination range, thanks to the great sensitivity of the PIXE method.