Science.gov

Sample records for contaminated dredged material

  1. Towards the assessment and management of contaminated dredged materials.

    PubMed

    Agius, Suzanne J; Porebski, Linda

    2008-04-01

    Environment Canada's Disposal at Sea Programme hosted the Contaminated Dredged Material Management Decisions Workshop in Montreal, Quebec, Canada, on 28-30 November 2006. The workshop brought together over 50 sediment assessment and management experts from academic, industrial, and regulatory backgrounds and charged them with drafting a potential framework to assess contaminated dredged materials and compare the risks of various disposal alternatives. This article summarizes the recommendations made during the workshop concerning the development of sediment assessment tools, the interpretation of these tools, and the essential attributes of a comparative risk assessment process. The major outcomes of the workshop include a strong recommendation to develop a national dredging or sediment management strategy, a potential decision-making framework for the assessment of dredged materials and comparative risk assessment of disposal options, and the expansion of minimum sediment characterization requirements for nonroutine disposal permit applications. PMID:17994915

  2. Contaminant leaching model for dredged material disposal facilities

    SciTech Connect

    Schroeder, P.R.; Aziz, N.M.

    1999-09-01

    This paper describes the hydrologic evaluation of leachate production and quality model, a screening-level tool to simulate contaminant leaching from a confined disposal facility (CDF) for dredged material. The model combines hydraulics, hydrology, and equilibrium partitioning, using site-specific design specifications, weather data, and equilibrium partitioning coefficients from the literature or from sequential batch or column leach tests of dredged material. The hydraulics and hydrology are modeled using Version 3 of the hydrologic evaluation of landfill performance model. The equilibrium partitioning model includes provisions for estuarine sediments that have variable distribution coefficients resulting from saltwater washout. Model output includes contaminant concentrations in the CDF profile, contaminant concentration and mass releases through the bottom of the CDF, and contaminant concentrations and masses captured by leachate collection systems. The purpose of the model is to provide sound information for evaluating the potential leachate impacts on ground water at dredged material CDFs and the effectiveness of leachate control measures.

  3. Air emission flux from contaminated dredged materials stored in a pilot-scale confined disposal facility.

    PubMed

    Ravikrishna, R; Valsaraj, K T; Reible, D D; Thibodeaux, L J; Price, C B; Brannon, J M; Meyers, T E; Yost, S

    2001-03-01

    A pilot-scale field simulation was conducted to estimate the air emissions from contaminated dredged material stored in a confined disposal facility (CDF). Contaminated dredged material with a variety of organic chemicals, obtained from Indiana Harbor Canal, was used in the study. It was placed in an outdoor CDF simulator (i.e., a lysimeter of dimensions 4 ft x 4 ft x 2 ft). A portable, dynamic flux chamber was used to periodically measure emissions of various polynuclear aromatic hydrocarbons (PAHs). A weather station was set up to monitor and record the meteorological conditions during the experiment. The fluxes of several PAHs were monitored over time for 6 1/2 months. Initial 6-hr average fluxes varied from 2 to 20 ng/cm2/hr for six different PAHs. The flux values declined rapidly for all compounds soon after placement of the dredged material in the CDE Chemical concentrations derived from flux values were generally of low magnitude compared with ambient standards. Data obtained from the experiment were compared against those predicted using models for air emissions. Model simulations showed that initially the flux was largely from exposed pore water from saturated (wet) sediment, whereas the long-term flux was controlled by diffusion through the pore air of the unsaturated sediment. Model predictions generally overestimated the measured emissions. A rainfall event was simulated, and the dredged material was reworked to simulate that typical of a CDF operation. Increased flux was observed upon reworking the dredged material. PMID:11266100

  4. Air emissions from exposed contaminated sediments and dredged material

    SciTech Connect

    Valsaraj, K.T.; Ravikrishna, R.; Reible, D.D.; Thibodeaux, L.J.; Choy, B.; Price, C.B.; Brannon, J.M.; Myers, T.E.; Yost, S.

    1999-01-01

    The sediment-to-air fluxes of two polycyclic aromatic hydrocarbons (phenanthrene and pyrene) and a heterocyclic aromatic hydrocarbon (dibenzofuran) from a laboratory-contaminated sediment and those of three polycyclic aromatic hydrocarbons (naphthalene, phenanthrene, and pyrene) from three field sediments were investigated in experimental microcosms. The flux was dependent on the sediment moisture content, air-filled porosity, and the relative humidity of the air flowing over the sediment surface. The mathematical model predictions of flux from the laboratory-spiked sediment agreed with observed values. The fluxes of compounds with higher hydrophobicity were more air-side resistance controlled. Conspicuous differences were observed between the fluxes from the laboratory-spiked and two of the three field sediments. Two field sediments showed dramatic increases in mass-transfer resistances with increasing exposure time and had significant fractions of oil and grease. The proposed mathematical model was inadequate for predicting the flux from the latter field sediments. Sediment reworking enhanced the fluxes from the field sediments due to exposure of fresh solids to the air. Variations in flux from the lab-spiked sediment as a result of change in air relative humidity were due to differences in retardation of chemicals on a dry or wet surface sediment. High moisture in the air over the dry sediment increased the competition for sorption sites between water and contaminant and increased the contaminant flux.

  5. Model and assessment of the contribution of dredged material disposal to sea-surface contamination in Puget Sound

    SciTech Connect

    Hardy, J.T.; Cowan, C.E.

    1986-02-01

    Hydrophobic or floatable materials released to the water column during dredge disposal operations may accumulate in high concentrations on the water surface. If such surface accumulations occur, they could impact the reproduction of fish and shellfish with neustonic (floating) eggs or larvae. Also, floatable surface contaminants could deposit on nearby beaches. In order to examine the potential impacts of such processes, an interactive computer (IBM PC) model was developed. The FORTRAN model allows input of contaminant concentrations on the dredge material, the surface area of the disposal site, the floatable fraction of the contaminated material, and the baseline concentrations of contaminants present in the sea-surface microlayer. The model then computes the resultant concentrations of each contaminant in the microlayer and the potential impact on floating fish eggs. The utility of the model would be greatly improved by empirical data, not yeat available, on the vertical upward and lateral movement of contaminants during dredge material disposal.

  6. Effects of contaminants in dredge material from the Lower Savannah River

    USGS Publications Warehouse

    Winger, P.V.; Lasier, P.J.; White, D.H.; Seginak, J.T.

    2000-01-01

    Contaminants entering aquatic systems from agricultural, industrial, and municipal activities are generally sequestered in bottom sediments. The environmental significance of contaminants associated with sediments dredged from Savannah Harbor, Georgia, USA, are unknown. To evaluate potential effects of contaminants in river sediments and sediments dredged and stored in upland disposal areas on fish and wildlife species, solid-phase sediment and sediment pore water from Front River, Back River, an unnamed Tidal Creek on Back River, and Middle River of the distributary system of the lower Savannah River were tested for toxicity using the freshwater amphipod Hyalella azteca. In addition, bioaccumulation of metals from sediments collected from two dredge-disposal areas was determined using the freshwater oligochaete Lumbriculus variegatus. Livers from green-winged teals (Anas crecca) and lesser yellowlegs (Tringa flavipes) foraging in the dredge-spoil areas and raccoons (Procyon lotor) from the dredge-disposal/river area and an upland site were collected for metal analyses. Survival of H. azteca was not reduced in solid-phase sediment exposures, but was reduced in pore water from several locations receiving drainage from dredge-disposal areas. Basic water chemistry (ammonia, alkalinity, salinity) was responsible for the reduced survival at several sites, but PAHs, metals, and other unidentified factors were responsible at other sites. Metal residues in sediments from the Tidal Creek and Middle River reflected drainage or seepage from adjacent dredge-disposal areas, which could potentially reduce habitat quality in these areas. Trace metals increased in L. variegatus exposed in the laboratory to dredge-disposal sediments; As, Cu, Hg, Se, and Zn bioaccumulated to concentrations higher than those in the sediments. Certain metals (Cd, Hg, Mo, Se) were higher in livers of birds and raccoons than those in dredge-spoil sediments suggesting bioavailability. Cadmium, Ct, Hg, Pb

  7. Contaminant Area Aquaculture Program. Determination of the chemical suitability of a dredged material containment area for aquaculture. Final technical report

    SciTech Connect

    Tatem, H.E.

    1990-12-01

    This concerns use of dredged material containment areas (DMCA) for aquaculture, specifically for production of a crop intended for human consumption. New DMCA's used only periodically for dredged material disposal could be managed to produce valuable crops. Previous studies conducted by the Corps of Engineers, including one where shrimp was raised at a DMCA, and others relating to the effects of sediment contaminants on aquatic organisms, are reviewed. The literature indicated that most dredged material is uncontaminated and that many sediment constituents such as metal are relatively unavailable to aquatic animals; DMCAs containing parts-per-million levels of organic contaminants such as pesticides, polychlorinated biphenyls, or petroleum hydrocarbons should not be used for aquaculture without extensive testing.

  8. Use of hydrocyclone and flotation column for reducing the volume of contaminated dredged material.

    PubMed

    Park, K H; Lee, J H; Bae, B H; Kim, Y H; Choung, Y K

    2006-01-01

    As sediment contamination problems have recently been raised in Korea, the need for technologies to clean contaminants in sediments has increased. Although the recalcitrant organic matters and heavy metals in the contaminated sediments are of primary concern, large amounts of sediment makes the removal of the contaminants in them more difficult. In this study, the performance of hydrocyclone and flotation column was tested to reduce the volume of contaminated dredged materials (CDMs) prior to treating recalcitrant matters, such as various organic chemicals and heavy metals, in an integrated treatment system. When hydrocyclone was operated with 10% (w/v) solids concentration of the feed slurry, the total solids of upflow products were 4 to 7% (w/v) when the inlet pressure was changed from 1.0 to 2.0 kg/cm2. The volume reduction ratio of CDMs by hydrocyclone was approximately 90% (v/v). When the upflow products in hydrocyclone was then spiked with automobile transmission oil and fed to the flotation colum to see the performance of the column flotation on the volume reduction and the TPH removal, 44% of the TPHs in feed were removed at the tails and the volume reduction ratio of CDMs by column flotation was 18% at 200 L/min of wash water. The flotation column could be proposed as a potential preliminary treatment process of CDMs prior to subsequent biological treatments. PMID:16752776

  9. 40 CFR 227.13 - Dredged materials.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... municipal or industrial wastes or by runoff from terrestrial sources such as agricultural lands. (b) Dredged... existing and historical sources of pollution so as to provide reasonable assurance that such material has not been contaminated by such pollution. (c) When dredged material proposed for ocean dumping does...

  10. 40 CFR 227.13 - Dredged materials.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... municipal or industrial wastes or by runoff from terrestrial sources such as agricultural lands. (b) Dredged... existing and historical sources of pollution so as to provide reasonable assurance that such material has not been contaminated by such pollution. (c) When dredged material proposed for ocean dumping does...

  11. 40 CFR 227.13 - Dredged materials.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... municipal or industrial wastes or by runoff from terrestrial sources such as agricultural lands. (b) Dredged... existing and historical sources of pollution so as to provide reasonable assurance that such material has not been contaminated by such pollution. (c) When dredged material proposed for ocean dumping does...

  12. HUMAN HEALTH RISK SCREEN FOR THE PROPOSED OPEN WATER DISPOSAL OF CONTAMINATED DREDGED MATERIALS

    EPA Science Inventory

    The laboratory bioaccumulation test has been a standard testing requirement to evaluate the open water disposal dredged materials since the late 1970's. Heretofore, the interpretation of these test results, using the clam, Macoma nasuta, and worm, Nereis virens, has been an ass...

  13. Comprehensive analysis of migration pathways (CAMP): Contaminant migration pathways at confined dredged material-disposal facilities. Final report

    SciTech Connect

    Brannon, J.M.; Pennington, J.C.; Gunnison, D.; Myers, T.E.

    1990-09-01

    A confined disposal facility (CDF) is a diked enclosure having either permeable or low-permeable walls that are used to retain dredged material solids. There are two types of CDFs are located within the influence of normal tidal or other water fluctuations. This report identifies and documents key contaminant mobility processes and pathways operative in CDFs under varying operational and environmental conditions. It also summarizes what is known about contaminant migration, cycling, and mobilization pathways, provides information on models and assessment techniques, and identifies areas for which insufficient information is available. The present information does not permit evaluations of the relative significance of contaminant migration pathways from a CDF. Pathways involving movement of large masses of water, such as CDF effluent, leaching through permeable dikes, or leaching through the dredged material, have the greatest potential for moving significant quantities of contaminants out of the CDF. Pathways such as volatilization may also result in movement of substantial amounts of volatile organic contaminants from CDFs. The relative importance of contaminant cycling and mobilization pathways to net mass balance has not been determined, but available information on each of the contaminant migration, cycling, and mobilization pathways is summarized in the report. Where possible, methods have been provided for making rough estimates of contaminant mass movement via pathways.

  14. Heavy metal uptake, translocation, and bioaccumulation studies of Triticum aestivum cultivated in contaminated dredged materials.

    PubMed

    Shumaker, Ketia L; Begonia, Gregorio

    2005-08-01

    Phytoremediation is a technology that uses vegetation to remediate contaminants from water, soil, and sediments. Unlike traditional remediation techniques such as soil washing or vitrification, phytoremediation offers a technology that is solar-driven, aesthetically pleasing, and cost effective. Recent studies indicate that winter wheat (Triticum aestivum L.) is a potential accumulator for heavy metals such as lead (Pb) and cadmium (Cd) in hydroponic systems. Based on these findings, a laboratory study was conducted with the primary objective of determining the phytoaccumulation capability of this plant species for heavy metals from contaminated dredged materials (DMs) originating from two confined disposal facilities (CDF). The United States Army Corps of Engineers (USACE) manages several hundred million cubic meters of DMs each year, and 5 to 10 % of these DMs require special handling because they are contaminated with hazardous substances that can move from the substrates into food webs causing unacceptable risk outside CDFs. Phytoremediation may offer an alternative to decrease this risk. Chemical analyses by USACE personnel identified 17 metals in various DMs, but in this present study, only zinc (Zn) and Cd were investigated. Pre-germinated seeds of the test plants were planted under laboratory conditions in pots containing the various DMs and reference soil. Four weeks after planting, plants were harvested and separated into roots and shoots for biomass production and tissue metal concentrations analyses. Results showed that T. aestivum plants have the capacity to tolerate and grow in multiple-metal contaminated DMs with the potential of accumulating various amounts of Zn and Cd. Root and shoot biomass of T. aestivum were not significantly affected by the DMs on which the plants were grown suggesting that this plant species can grow just as well on DMs contaminated by various metals as in the reference soil. No significant differences in the Zn tissue

  15. Heavy Metal Uptake, Translocation, and Bioaccumulation Studies of Triticum aestivum Cultivated in Contaminated Dredged Materials

    PubMed Central

    Shumaker, Ketia L.; Begonia, Gregorio

    2005-01-01

    Phytoremediation is a technology that uses vegetation to remediate contaminants from water, soil, and sediments. Unlike traditional remediation techniques such as soil washing or vitrification, phytoremediation offers a technology that is solar-driven, aesthetically pleasing, and cost effective. Recent studies indicate that winter wheat (Triticum aestivum L.) is a potential accumulator for heavy metals such as lead (Pb) and cadmium (Cd) in hydroponic systems. Based on these findings, a laboratory study was conducted with the primary objective of determining the phytoaccumulation capability of this plant species for heavy metals from contaminated dredged materials (DMs) originating from two confined disposal facilities (CDF). The United States Army Corps of Engineers (USACE) manages several hundred million cubic meters of DMs each year, and 5 to 10 % of these DMs require special handling because they are contaminated with hazardous substances that can move from the substrates into food webs causing unacceptable risk outside CDFs. Phytoremediation may offer an alternative to decrease this risk. Chemical analyses by USACE personnel identified 17 metals in various DMs, but in this present study, only zinc (Zn) and Cd were investigated. Pre-germinated seeds of the test plants were planted under laboratory conditions in pots containing the various DMs and reference soil. Four weeks after planting, plants were harvested and separated into roots and shoots for biomass production and tissue metal concentrations analyses. Results showed that T. aestivum plants have the capacity to tolerate and grow in multiple-metal contaminated DMs with the potential of accumulating various amounts of Zn and Cd. Root and shoot biomass of T. aestivum were not significantly affected by the DMs on which the plants were grown suggesting that this plant species can grow just as well on DMs contaminated by various metals as in the reference soil. No significant differences in the Zn tissue

  16. DREDGED MATERIAL DISPOSAL MANAGEMENT MODELS

    EPA Science Inventory

    US Army Corps of Engineers public web site with computer models, available for download, used in evaluating various aspects of dredging and dredged material disposal. (landfill and water Quality models are also available at this site.) The site includes the following dredged mate...

  17. Environmental effects of dredging. Long-term evaluation of plants and animals colonizing contaminated esturaine dredged material placed in an upland environment. Technical notes

    SciTech Connect

    Lee, C.R.; Brandon, D.L.

    1991-09-01

    Contaminated sediment was dredged from Black Rock Harbor, Connecticut, in October 1983 and placed in aquatic, upland, and wetland environments as part of the US Army Corps of Engineers/Environmental Protection Agency Field Verification Program (FVP), 1981-1986 (Peddicord 1988). Upland tests (plant and earthworm bioassays) were conducted on the sediment before dredging to evaluate potential contaminant mobility under the upland disposal alternative. Laboratory test results were subsequently field verified at the field test site at `Tongue Point,` Bridgeport, Connecticut. The results of the upland disposal portion of the FVP and the changes occurring since the completion of the FVP for the upland disposal environment are summarized herein. This technical note emphasizes the contaminant mobility of heavy metals. Contaminant mobility and the progressive development of the upland ecosystem at this site will be evaluated until September 1995.

  18. Methods To Characterize Contaminant Residuals After Environmental Dredging

    EPA Science Inventory

    Environmental dredging is a common remedial action for managing contaminated sediments. However, post dredging contaminant concentrations in surface sediment are difficult to predict prior to initiating dredging actions. In some cases, post surface concentrations have been high...

  19. Dredging and dewatering sediment containing hazardous and toxic materials

    SciTech Connect

    Askin, R.C.

    1996-12-31

    Dredging is a common method of remediating ponds containing contaminated wastes. However, dewatering of the dredged solids is usually not well integrated with the dredging phase. As a result, overall project efficiency can be poor. Specifically, since dredges deliver material in a widely varying slurry form and since dewatering presses require the delivered material to be uniform, union of the two systems often results in inconsistent operation of the overall process. In an effort to enhance overall dredging and dewatering process production rates as well as minimize the return of suspended solids in the decant water, a new process was developed to provide a consistent dredged sludge for delivery to the press. This paper discusses modifications made to a conventional dredging and dewatering process to improve production rates and dewatering capabilities. These modifications are applicable to any project where efficient solids dewatering is required and where returning decant water must be visually free of suspended solids. 4 figs.

  20. 40 CFR 227.13 - Dredged materials.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 25 2011-07-01 2011-07-01 false Dredged materials. 227.13 Section 227.13 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) OCEAN DUMPING CRITERIA FOR THE EVALUATION OF PERMIT APPLICATIONS FOR OCEAN DUMPING OF MATERIALS Environmental Impact § 227.13 Dredged materials. (a) Dredged materials are...

  1. 40 CFR 227.13 - Dredged materials.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 24 2010-07-01 2010-07-01 false Dredged materials. 227.13 Section 227.13 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) OCEAN DUMPING CRITERIA FOR THE EVALUATION OF PERMIT APPLICATIONS FOR OCEAN DUMPING OF MATERIALS Environmental Impact § 227.13 Dredged materials. (a) Dredged materials are...

  2. DREDGED MATERIAL RECLAMATION AT THE JONES ISLAND CONFINED DISPOSAL FACILITY - ITER

    EPA Science Inventory

    In this SITE demonstration, phytoremediation technology was applied to contaminated dredged materials from the Jones Island Confined Disposal Facility (CDF) located in Milwaukee Harbor, Wisconsin. The Jones Island CDF receives dredged materials from normal maintenance of Milwauke...

  3. DREDGED MATERIAL RECLAMATION AT THE JONES ISLAND CONFINED DISPOSAL FACILITY SITE CAPSULE

    EPA Science Inventory

    In this SITE demonstration, phytoremediation technology was applied to contaminated dredged materials from the Jones Island Confined Disposal Facility (CDF) located in Milwaukee Harbor, Wisconsin. The Jones Island CDF receives dredged materials from normal maintenance of Milwauke...

  4. Accumulation by fish of contaminants released from dredged sediments

    USGS Publications Warehouse

    Seelye, James G.; Hesselberg, Robert J.; Mac, Michael J.

    1982-01-01

    Inasmuch as the process of dredging and disposing of dredged materials causes a resuspension of these materials and an increase in bioavailability of associated contaminants, we conducted a series of experiments to examine the potential accumulation by fish of contaminants from suspended sediments. In the first experiment we compared accumulation of contaminants by yellow perch of hatchery and lake origin and found that after 10 days of exposure to nonaerated sediments, fish of hatchery origin accumulated PCBs and Fe, while fish of lake origin accumulated As, Cr, Fe, and Na. Two additional exposures were conducted to evaluate the effects of aerating the sediments prior to measuring bioavailability of associated contaminants. Fish of hatchery origin exposed to nonaerated sediments for 10 days accumulated PCBs and Hg, while fish of hatchery origin exposed to aerated sediments for 10 days accumulated PCBs, DDE, Zn, Fe, Cs, and Se. These results demonstrated not only the potential for uptake of contaminants by fish as a result of dredging but also the potential utility of fish bioassays in evaluating proposed dredging operations.

  5. Mercury-contaminated sludge treatment by dredging in Minamata Bay

    SciTech Connect

    Yoshinaga, Kiyoto

    1995-12-31

    To eradicate Minamata Disease, caused by the discharge of sewage containing methyl mercury and its accumulation in fish and shellfish through the food cycle, a large-scale sediment disposal project was conducted with special care taken to prevent new pollution resulting from the project itself. The basic approach to sediment disposal was to construct a highly watertight revetment to reclaim the inner area of the bay and then confine sediment dredged from the remaining contaminated area in the reclamation area through surface treatment. Before sediment disposal, boundary nets were installed to enclose the work area to prevent the mixing of contaminated and noncontaminated fish. Dredging work was successfully carried out by using four cutterless suction dredgers, newly developed in advance for minimizing resuspension of sediments. Dredged material was discharged into the reclamation area, filled up to sea level, and covered with a sandproof membrane, lightweight volcanic ash earth, and mountain soil.

  6. Field-verification program (aquatic disposal): comparison of field and laboratory bioaccumulation of organic and inorganic contaminants from Black Rock Harbor dredged material. Final report

    SciTech Connect

    Lake, J.L.; Galloway, W.; Hoffman, G.; Nelson, W.; Scott, K.J.

    1988-05-01

    The utility of laboratory tests for predicting bioaccumulation of contaminants in the field was evaluated by comparing the identities, relative abundances, and quantities of organic and inorganic contaminants accumulated by organisms exposed to dredged material in both laboratory and field studies. The organisms used were Mytilus edulis (a filter-feeding bivalve) and Nephtys incisa (a benthic polychaete). These organisms were exposed in the laboratory and in the field to a contaminated dredged material from Black Rock Harbor (BRH), Connecticut. Both organisms had positive and negative attributes for these exposure studies. Mytilus edulis appeared to reach steady-state in laboratory-exposure studies. However, the determination of field-exposure concentrations was precluded due to limitations on obtaining an integrated water sample during the exposure period in the field. Nephtys incisa did not appear to reach steady-state in laboratory studies and, although field-exposure data (sediment concentrations) were obtained, the exposure zone for these organisms could not be determined. Estimates of field exposures were made using laboratory-derived exposure-residue relationships and residues from field-exposed organisms. These field-exposure estimates were compared with those estimated using exposure data from the field. A comparison of these estimates showed the same general trends in the exposure-residue relationships from the laboratory and the field and further supports the laboratory predictive approach.

  7. Comparison of the ames assay and mutatox in assessing the mutagenic potential of contaminated dredged material. Final technical report

    SciTech Connect

    Jarvis, A.S.

    1995-04-01

    The Ames assay and Mutatox were evaluated to compare their ability to identify the genotoxic potential of dredged sediments. The Ames assay has been used extensively in the testing of environmental contaminants. Mutatox, a bacterial bioluminescence test, was developed as a genotoxicity bioassay. Ten sediments with varying degrees of contamination were soxhlet extracted. These extracts were divided into crude and clean samples. Cleaned samples were prepared using silica-gel chromatography resulting in 20 extract samples. Both the Ames test (TA98 and TAl00) and Mutatox were conducted with and without S9 metabolic activation. TA98+S9 and TA1OO+S9 indicated a positive mutagenic response in 80 and 50 percent, respectively, of the sediment extracts. Half of the extracts indicated a positive mutagenic response with TA98-S9, while only 10 percent did so with TAlOO-S9. Mutatox indicated a positive mutagenic response with S9 activation in 75 percent of the extracts and no mutagenic response in any of the sediment extracts without metabolic activation. In a side-by-side comparison of the Ames assay (TA98+S9) and Mutatox, 80 percent of the sediment extracts had similar responses, both positive and negative. Fifty percent of the sediment extracts had similar responses when tested with TAlOO+S9 and Mutatox. Mutatox compared favorably with the Ames assay and shows promise as a screening tool to assess sediment genotoxicity when used with Ames assay as a confirmation.

  8. Recolonization of benthic infauna subsequent to capping of contaminated dredged material in East Sha Chau, Hong Kong

    NASA Astrophysics Data System (ADS)

    Qian, Pei-Yuan; Qiu, Jian-Wen; Kennish, Robin; Reid, Craig A.

    2003-03-01

    This paper presents the findings of a 3-year study upon the recolonization of infaunal macrobenthos following the cessation of disposal of contaminated sediment into dredged pits and capping of the pits with uncontaminated sediment. At reference sites, amphipods or polychaetes numerically dominated, while crabs dominated the biomass. There were significant temporal changes in abundance, which were attributable to either change in amphipod or polychaete abundance. The biomass, however, fluctuated only slightly over time. Three capped pits (CPA, CPB, CPC) all started with low biomass and abundance, and showed increase in both parameters over time. The increase in abundance ranged only from 1.0 to 2.3 times, whereas the increase in biomass ranged from 5.2 to 50.0 times. The final abundance and biomass at CPB were comparable to those at the reference sites. CPA and CPC had lower abundance than the reference sites, but the biomass was >15 times higher than the biomass at the reference sites. Small polychaetes numerically dominated all the three capped pits (58-79%), but the relative contribution of taxa to total biomass varied with the pits: molluscs dominated CPA (98%) and CPC (83%), whereas polychaetes (30%), crustaceans (27%), and molluscs (21%) dominated CPB. Our results indicate that benthos appear to have recolonized the capped pits; and there seem to be two recolonization patterns on the basis of biomass, one characterized by the dominance by molluscs and the other by the dominance by crustaceans and molluscs.

  9. Survey and evaluation of contaminants in earthworms and in soils derived from dredged material at confined disposal facilities in the Great Lakes Region.

    PubMed

    Beyer, W N; Stafford, C

    1993-01-01

    Soils derived from dredged material were collected, together with earthworms from nine confined disposal facilities located in the Great Lakes Region. These samples were analyzed for 18 elements, 11 organochlorine pesticides, PCBs, and 24 polycyclic aromatic hydrocarbons. The concentrations detected in earthworms were evaluated in terms of their potential hazard to wildlife, which for the sake of the evaluation were assumed to prey entirely either on earthworms or on other soil invertebrates having similar concentrations. The soil concentrations (dry wt.) of the contaminants of greatest concern were <1.9 to 32 ppm Cd, <0.053 to 0.94 ppm Hg, 4.6 to 550 ppm Pb, and <0.1 to 1.0 ppm PCBs. The concentrations in earthworms (dry wt., ingested soil included) were as high as 91 ppm Cd, 1.6 ppm Hg, 200 ppm Pb, and 1.8 ppm PCBs. Based on laboratory toxicity studies of relatively sensitive species, and on concentration factors calculated from the earthworm and soil data, we estimated that lethal or serious sublethal effects on wildlife might be expected at concentrations of 10 ppm Cd, 3 ppm Hg, 670 ppm Pb, and 1.7 ppm PCBs in alkaline surface soils derived from dredged material. Concentrations of polycyclic aromatic hydrocarbons in earthworms were well below those in soil. PMID:24227260

  10. Survey and evaluation of contaminants in earthworms and in soils derived from dredged material at confined disposal facilities in the Great Lakes region

    USGS Publications Warehouse

    Beyer, W.N.; Stafford, C.

    1993-01-01

    Soils derived from dredged material were collected, together with earthworms from nine confined disposal facilities located in the Great Lakes Region. These samples were analyzed for 18 elements, 11 organochlorine pesticides, PCBs, and 24 polycyclic aromatic hydrocarbons. The concentrations detected in earthworms were evaluated in terms of their potential hazard to wildlife, which for the sake of the evaluation were assumed to prey entirely either on earthworms or on other soil invertebrates having similar concentrations. The soil concentrations (dry wt.) of the contaminants of greatest concern were < 1.9 to 32 ppm Cd, < 0.053 to 0.94 ppm Hg, 4.6 to 550 ppm Pb, and < 0.1 to 1.0 ppm PCBs. The concentrations in earthworms (dry wt., ingested soil included) were as high as 91 ppm Cd, 1.6 ppm Hg, 200 ppm Pb, and 1.8 ppm PCBs. Based on laboratory toxicity studies of relatively sensitive species, and on concentration factors calculated from the earthworm and soil data, we estimated that lethal or serious sublethal effects on wildlife might be expected at concentrations of 10 ppm Cd, 3 ppm Hg, 670 ppm Pb, and 1.7 ppm PCBs in alkaline surface soils derived from dredged material. Concentrations of polycyclic aromatic hydrocarbons in earthworms were well below those in soil.

  11. Beneficial Use of Dredge Materials for Soil Reconstruction and Development of Dredge Screening Protocols.

    PubMed

    Koropchak, Sara C; Daniels, W Lee; Wick, Abbey; Whittecar, G Richard; Haus, Nick

    2016-01-01

    Upland placement of dredge sediments has the potential to provide beneficial reuse of suitable sediments for agricultural uses or urban soil reconstruction. However, the use of many dredge materials is limited by contaminants, and most established screening protocols focus on limiting major contaminants such as heavy metals and polycyclic aromatic hydrocarbons and generally ignore fundamental agronomic parameters. Since 2001, we have placed over 450,000 m of Potomac River fresh water dredge materials and 250,000 m of saline materials from various locations into monitored confined upland facilities in Charles City, VA, and documented their conversion to agricultural uses. Groundwater and soil quality monitoring has indicated no adverse effects from material placement and outstanding agricultural productivity for the freshwater materials. Once placed, saline materials rapidly leach and ripen with quick declines in pH, electrical conductivity, and sodicity, but potentials for local groundwater impacts must be considered. Our experience to date indicates that the most important primary screening parameter is acid-base accounting (potential acidity or lime demand), which should become a mandatory analytical requirement. Our second level of acceptance screening is based on a combination of federal and state residual waste and soil screening standards and basic agronomic principles. High silt+clay and total organic C may also limit rapid use of many dredge materials due to extended dewatering times and physical limitations. This dredge material screening system separates potential upland placement candidates into three soil quality management categories (unsuitable, suitable, and clean fill) with differing monitoring requirements. Similar use of these sediments in urban soil reconstruction is also recommended. PMID:26828161

  12. Long-term effects of dredging operations program. long-term evaluation of plants and animals colonizing contaminated estuarine dredged material placed in both upland and wetland environments. Final report

    SciTech Connect

    Brandon, D.L.; Lee, C.R.; Simmers, J.W.; Skogerboe, J.G.; Wilhelm, G.S.

    1991-09-01

    Contaminated sediment was dredged from Black Rock Harbor, Connecticut, in October 1983 and placed in aquatic, upland, and wetland environments as part of the Field Verification Program (FVP), conducted during the period 1981-1986. Laboratory tests were conducted on the sediment prior to dredging to evaluate potential contaminant mobility under each of the disposal alternatives. Prior to dredging for upland disposal and wetland creation at the FVP field site, upland tests (i.e., plant and earthworm bioassays) and wetland tests (i.e., plant, sandworm, snail, and mussel bioassays) were conducted. Laboratory test results were sub-subsequently field verified at the field test site at Tongue Point, Bridgeport, CT. The results of the upland disposal and wetland creation portions of the FVP, and the changes occurring since completion of the FVP for each disposal environment, are summarized herein. The emphasis of this report is on the contaminant mobility of heavy metals. This interim report includes data collected through 1989. Contaminant mobility and the progressive development of the upland and wetland ecosystems at this site will be evaluated until September 1985.

  13. Dredging and contaminant exposure to tree swallows nesting on the upper Mississippi River

    USGS Publications Warehouse

    Custer, Thomas W.; Dummer, Paul; Custer, Christine M.; Warburton, David

    2013-01-01

    n 2008 and 2009, dredge material from the Mississippi River in Pool 8 south of Brownsville, Minnesota was used to construct nearby islands. Chemical analysis of sediment in 2001 and 2002 in the area to be dredged indicated detectable concentrations of organic and inorganic contaminants. Tree swallows (Tachycineta bicolor), whose diet is mainly aquatic invertebrates, were used to evaluate contaminant exposure in both the dredged and newly created habitat. Organic and inorganic contaminant data were collected from tree swallows in 2007 through 2010 at one study site near the dredging operation, a reference study site upriver from the dredging activity, one study site down river from the dredging activity, and one study site on a newly created island (2009 and 2010 only). Organic and element concentrations were at background levels in all samples. Polychlorinated biphenyl and p,p′-dichlorodiphenyldichloroethylene concentrations in tree swallow nestlings decreased at all study sites over the period 2007 to 2010 including the island study site between 2009 and 2010. Element concentrations in tree swallow livers for the non-island study sites did not show a trend among years in relation to the dredging. Selenium concentrations at the newly created island were higher and cadmium concentrations were lower in 2010 than 2009. Hatching success of eggs in successful nests was not associated with dredging activities.

  14. Dredging and contaminant exposure to tree swallows nesting on the upper Mississippi River.

    PubMed

    Custer, Thomas W; Dummer, Paul M; Custer, Christine M; Warburton, David

    2013-11-01

    In 2008 and 2009, dredge material from the Mississippi River in Pool 8 south of Brownsville, Minnesota was used to construct nearby islands. Chemical analysis of sediment in 2001 and 2002 in the area to be dredged indicated detectable concentrations of organic and inorganic contaminants. Tree swallows (Tachycineta bicolor), whose diet is mainly aquatic invertebrates, were used to evaluate contaminant exposure in both the dredged and newly created habitat. Organic and inorganic contaminant data were collected from tree swallows in 2007 through 2010 at one study site near the dredging operation, a reference study site upriver from the dredging activity, one study site down river from the dredging activity, and one study site on a newly created island (2009 and 2010 only). Organic and element concentrations were at background levels in all samples. Polychlorinated biphenyl and p,p'-dichlorodiphenyldichloroethylene concentrations in tree swallow nestlings decreased at all study sites over the period 2007 to 2010 including the island study site between 2009 and 2010. Element concentrations in tree swallow livers for the non-island study sites did not show a trend among years in relation to the dredging. Selenium concentrations at the newly created island were higher and cadmium concentrations were lower in 2010 than 2009. Hatching success of eggs in successful nests was not associated with dredging activities. PMID:23666121

  15. Management of dredge material in the Republic of Ireland - A review.

    PubMed

    Sheehan, C; Harrington, J

    2012-05-01

    As an island nation the Republic of Ireland's ports and harbours are key to the economic wellbeing of the country as they are the primary transport link to the United Kingdom, mainland Europe and beyond. This paper examines the main aspects of the Irish dredging industry with comparison to international practice and standards, including the source of the dredge material and volumes generated annually, the dredging plant employed and the management processes currently practised. Relevant European and Irish legislation governing dredging, disposal at sea and waste licensing are presented. The potential impacts of disposal at sea are discussed with the implications for the Irish dredging industry of recently introduced European Directives assessed. Beneficial use rates for dredge material and the techniques implemented in Ireland are examined and compared with international practice. Recent notable beneficial use projects for dredge material and proposed innovative dredge material management techniques for specific dredging projects in Ireland are presented. Proposals to encourage greater beneficial use of dredge material and minimise disposal at sea for Ireland are presented including the introduction of environmental credits, tax breaks and a grant system for pilot schemes. An alternative disposal at sea charge fee structure is also recommended to encourage alternative dredge material management practices. Ireland's management of contaminated sediment is also presented with recent projects described highlighting the current practice of primarily exporting contaminated sediment to mainland Europe. Alternative methods of treatment of contaminated sediment are assessed in an Irish context. Future issues and challenges facing the Irish dredging industry are assessed and a critical analysis of the current approaches to dredge material management is presented. PMID:22240209

  16. New Bedford Harbor Superfund Project, Acushnet River estuary engineering feasibility study of dredging and dredged-material disposal alternatives. Report 11. Evaluation of conceptual dredging and disposal alternatives. Technical report, August 1985-July 1988

    SciTech Connect

    Averett, D.E.; Palermo, M.R.; Otis, M.J.; Rubinoff, P.B.

    1989-07-01

    This report evaluates conceptual dredging and disposal alternatives for the Acushnet River Estuary, a part of the New Bedford Harbor Superfund Site. Dredging for removal of the highly contaminated sediment and subsequent disposal in upland or nearshore confined disposal facilities or disposal in contaminated aquatic disposal facilities are alternative considered in the Engineering Feasibility Study of Dredging and Dredged Material Disposal Alternatives. Sediment testing and sediment-transport modeling performed as earlier tasks of the study form the basis for evaluation of the alternatives. The technical feasibility of conceptual design options is based on site availability, capacity, and characteristics and on sediment physical characteristics and dredged-material settling behavior as defined by laboratory testing. Contamination releases during dredging and disposal operations are estimated for each disposal option. A preliminary cost estimate for implementation of each option evaluated is alo presented.

  17. Dredged material disposal in the ocean

    SciTech Connect

    Kester, D.R.; Ketchum, B.H.; Duedall, I.W.; Park, P.K.

    1983-01-01

    This book presents papers on the marine disposal of wastes. Topics considered include sediment-copper reservoir formation by the burrowing polychaete Nephtys incisa, factors affecting the uptake of cadmium and other trace metals from marine sediments by bottom-dwelling marine invertebrates, and changes in the levels of PCBs in Mytilus edulis associated with dredged-material disposal.

  18. 40 CFR 225.2 - Review of Dredged Material Permits.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 25 2014-07-01 2014-07-01 false Review of Dredged Material Permits... DUMPING CORPS OF ENGINEERS DREDGED MATERIAL PERMITS § 225.2 Review of Dredged Material Permits. (a) The... its physical boundaries; (2) A statement as to whether the site has been designated for use by...

  19. 40 CFR 225.2 - Review of Dredged Material Permits.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 26 2013-07-01 2013-07-01 false Review of Dredged Material Permits... DUMPING CORPS OF ENGINEERS DREDGED MATERIAL PERMITS § 225.2 Review of Dredged Material Permits. (a) The... its physical boundaries; (2) A statement as to whether the site has been designated for use by...

  20. 40 CFR 225.2 - Review of Dredged Material Permits.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 26 2012-07-01 2011-07-01 true Review of Dredged Material Permits. 225... CORPS OF ENGINEERS DREDGED MATERIAL PERMITS § 225.2 Review of Dredged Material Permits. (a) The District... writing all of the following information: (1) The location of the proposed disposal site and its...

  1. Management of dredged material at Toledo, Ohio

    SciTech Connect

    Adams, J.R.

    1992-04-01

    Toledo Harbor, at the mouth of the Maumee River in northwest Ohio, is the second most active port and largest single dredging project on the Great Lakes. Over 770,000 cub. m is dredged each year. material has been confined since 1955. Most of this half of the harbor was declared suitable In 1983, over water disposal. Monitoring of the open-water disposal has not shown any adverse impact on water quality. Studies of the release or bioavailability of phosphorus (P) bound to the sediments indicate that P is released from the sediments at a rate of from 10 to 30 percent per day. On an annual basis, dredging and disposal account for 0.4 to 0.6 percent of the total external loading of P to Lake Erie. High-resolution visible data from the French satellite SPOT were used to demonstrate the total extent of the dredging plume. Efforts will be made in the future to use the satellite for routine monitoring.

  2. Environmental effects of dredging: Upland animal bioassays of dredged materials. Technical note

    SciTech Connect

    Simmers, J.W.; Rhett, R.G.; Lee, C.R.

    1986-01-01

    The Clean Water Act in the United States requires that the environmental evaluation of dredged material prior to discharge or impacting the waters of the United States include the effects of disposal on concentrations of contaminants through biological processes. This results in a need for Corps of Engineers districts to be able to predict the contamination of animals that may be associated with potential disposal alternatives: open-water disposal, upland disposal, and wetland creation. The following is a summary of the results of bioassay procedures using the earthworm Eisenia foetida to evaluate the potential contaminant mobility into soil-dwelling animals. These tests were derived from proposed Organization for European Common Development (OECD) and European Economics Commission (EEC) test procedures (evaluating the effects of new chemicals) and modified to consider accumulation and sublethal effects rather than toxicity.

  3. Environmental management of solid waste: Dredged material and mine tailings

    SciTech Connect

    Salomons, W.; Forstner, U.

    1988-01-01

    The problems and questions mine tailings and dredged materials pose with regard to safe environmental deposition are similar: aquatic versus terrestrial disposal, revegetation, leaching of contaminants. Larger projects in the fields of both mine tailings reclamation and dredged material disposal are increasingly requiring a multidisciplinary team approach. A major part of mineral reserves are in less-developed countries with limited environmental controls. Such experience implies far-going demands from the host countries: (1) reclamation should be carried out, as far as possible, during the life of the mine; (2) technology to ameliorate long-term effects should be as self-supporting as possible; (3) simple, reliable, low-energy techniques for minimizing deleterious effects of mining should be developed. Separate abstracts are processed for 14 chapters in this book for inclusion in the appropriate data bases.

  4. Environmental effects of dredging: Upland animal bioassays of dredged material. Technical notes

    SciTech Connect

    Stafford, E.A.; Edwards, C.A.

    1988-02-01

    Earthworms have great potential for use as bioassay/biomonitor organisms in studies of contaminant uptake and possess many characteristics that make them ideally suited for this purpose (Ma 1982). Studies have demonstrated that native species of earthworms, collected at contaminated sites, can be used to indicate biologically available levels of these contaminants (Helmke et al. 1979, Ireland 1983, Pietz et al. 1984). However, it is the species Eisenia foetida (which does not naturally colonize these sites) which has been recommended for use in the laboratory for the ecotoxicological testing of agricultural and industrial chemicals (European Economic Community (EEC) 1984), proposed as a bioassay species for assessing contaminant availability in waste materials, and used to determine the bioavallability of contaminants in dredged material (Marquenie and Simmers 1984). Correlations between total and OTPA-extractable metal concentrations in contaminated substrates and the concentrations in the tissues of earthworms exposed to these substrates over a 28-day period may be used to establish their potential as biomonitor organisms.

  5. 40 CFR 225.2 - Review of Dredged Material Permits.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... DUMPING CORPS OF ENGINEERS DREDGED MATERIAL PERMITS § 225.2 Review of Dredged Material Permits. (a) The... proposed disposal site; (5) Existence and documented effects of other authorized dumpings that have been made in the dumping area (e.g., heavy metal background reading and organic carbon content); (6)...

  6. Behavior of subaqueous sediment mounds: Effect on dredged material disposal site capacity

    SciTech Connect

    Poindexter, M.E.

    1988-01-01

    Dredging of contaminated sediments and subsequent disposal at legally designated disposal sites is an internationally accepted disposal alternative when adherence to strict disposal practices is maintained. As more highly contaminated sediments in the heavily industrialized harbors of the world must be dredged to maintain navigation and economic viability, use of subaqueous dredged material disposal sites is expected to increase. Use of these subaqueous sites has necessitated development of procedures to analyze disposal site capacity based upon physical, chemical, and biological considerations. A methodology of analysis was developed in this study to investigate the behavior of the crated subaqueous sediment mounds. Emphasis was placed upon the geotechnical engineering aspects of mound behavior although the methodology also includes chemical and biological aspects. This methodology was applied to four field sites at which dredged material mounds have been created. The procedure successfully predicted the geotechnical engineering behavior of the constructed dredged material mounds. This methodology of analysis provides a useful tool for evaluation of subaqueous disposal sites and the dredged materials mounds created within these sites.

  7. Environmental effects of dredging. Current district dredged material dewatering practices. Technical notes

    SciTech Connect

    1988-04-01

    This technical note summarizes the current US Army Corps of Engineers state of practice in dewatering dredged material. State-of-practice dewatering methods are currently in full-scale use by one or more Corps of Engineers District Offices as contrasted with state-of-the-art methods, which may not have been demonstrated in full-scale applications. The Corps of Engineers conducted research to investigate state-of-the-art dredged material dewatering techniques under the Dredged Material Research Program (DMRP). Based on DMRP research, a number of dewatering methods have been recommended for implementation. The purpose of this note is to describe which of the dewatering practices recommended by DMRP research have been implemented and to determine whether these practices work as well in full-scale applications as was envisioned based on research studies. Also, innovative dewatering techniques developed or applied by the Districts is documented to encourage further investigation and possible use.

  8. Long-term effects of dredging operations program: Assessing bioaccumulation in aquatic organisms exposed to contaminated sediments. Final report

    SciTech Connect

    Clarke, J.U.; McFarland, V.A.

    1991-07-01

    This paper synthesizes previous work on bioaccumulation to provide a working document for the environmental impact on the aquatic environment due to bioaccumulation of sediment contaminants resulting from dredging operations and dredged material placement. Emphasis is placed on explanation of basic concepts concerning, and factors influencing, sediment contaminant bioaccumulation and bioavailability. The paper presents several numerical methods for assessing bioaccumulation, including a simple method for estimating theoretical bioaccumulation potential (TBP) from sediment chemistry for neutral organic chemicals. Methods are also given for projecting contaminant concentrations in organism tissues when steady state is achieved, based on laboratory or field exposures to contaminated sediments. These assessments are presented in the context of the US Environmental Protection Agency's tiered testing approach for dredged material evaluation. The various numerical methods for bioaccumulation assessment are illustrated and compared using step-by-step example calculations with hypothetical and actual data.

  9. Ecological evaluation of proposed dredged material from the Point Frazer Bend Reach, Winyah Bay, South Carolina

    SciTech Connect

    Gardiner, W.W.; Ward, J.A.; Word, J.Q.

    1995-02-01

    The port of Georgetown, South Carolina, is served by navigational channels within Winyah Bay and the lower Sampit River. Dredging is required to maintain these waterways and to facilitate normal shipping traffic. Prior to dredging, ecological evaluations must be conducted to determine the suitability of the proposed dredged material for open-ocean disposal. These evaluations are to be performed under Section 103 of the Marine Protection, Research, and, Sanctuaries Act of 1972 (MPRSA), following the testing protocols presented in Evaluation of Dredged Material Proposed for Ocean Disposal Testing Manual, hereafter referred to as the 1991 Implementation Manual. The Charleston Intensive Project is a reevaluation of sediments collected from two stations (IH-2 and IH-3) in the Frazier Point Bend reach of the Winyah Bay channel. Reference sediment was also collected from site IH-R2, just south of Hare Island. The results of physical/chemical analyses indicated that some contaminants of concern were present in test treatments representing dredged material when compared with the reference treatment IH-R2. The results of this study indicate that, based on the acute toxicity and chemical analyses, dredged material represented by these test treatments is suitable for open-ocean disposal.

  10. Ecological evaluation of proposed dredged material from St. Andrew Bay, Florida

    SciTech Connect

    Mayhew, H.L.; Word, J.Q.; Kohn, N.P.; Pinza, M.R.; Karle, L.M.; Ward, J.A.

    1993-10-01

    The US Army Corps of Engineers (USACE), Mobile District, requested that the Battelle/Marine Sciences Laboratory (MSL) conduct field sampling and chemical and biological testing to determine the suitability of potential dredged material for open ocean disposal. Sediment from St. Andrew Bay was chemically characterized and evaluated for biological toxicity and bioaccumulation of contaminants. The Tier III guidance for ocean disposal testing requires tests of water column effects (following dredged material disposal), deposited sediment toxicity, and bioaccumulation of contaminants from deposited sediment (dredged material). To meet these requirements, the MSL conducted suspended-particulate-phase (SPP) toxicity tests, solid-phase toxicity tests, and bioaccumulation testing on sediment representing potential dredged material from Panama City Harbor. Physical and chemical characterization of sediment to support toxicity and bioaccumulation results was also conducted on both the test and reference sediments. The MSL collected sediment samples from five sites in St. Andrew Bay and one reference site near Lands End Peninsula. The five test sediments and the reference sediment were analyzed for physical and chemical sediment characteristics, SPP chemical contaminants, solid-phase toxicity, SPP toxicity, and bioaccumulation of contaminants.

  11. Sampling and analysis of sediments in dredged material from Wilma Uplands Disposal Site

    SciTech Connect

    Pinza, M.R.; Karle, L.M.; Mayhew, H.L.; Word, J.Q. )

    1992-09-01

    The Lower Granite Reservoir provides slack-water navigation for the Lewiston, Idaho, and Clarkston, Washington area. The levee system associated with the reservoir protects industrial, commercial, and residential areas from inundation of waters impounded behind the dam. Sediment deposition at the confluence of the Snake and Clearwater rivers has required frequent dredging events In past years, Including two recent events in 1986 and 1987. Dredged material from the 1986 and 1987 events was placed in three containment ponds located on the north bank of the Snake River, near River Mile 134.7. The ponds were used to hold approximately 400,000 cubic yards of dredged material removed from the port areas at the confluence of the Snake and Clearwater rivers. Prior to dredging, the river sediments were tested and found to be typical of non-contaminated sediment. Since that testing, dioxins and furans have been found in the effluent from a Kraft pulp mill in Lewiston that discharges directly into the confluence of the Snake and Clearwater rivers. The US Army Corps of Engineers (USACE) believed that dredged material placed in the containment ponds may contain contaminated levels of dioxins and furans. At their request, Battelle/Marine Sciences Laboratory (MSL) sampled sediments from these ponds and performed a chemical analysis.

  12. Planning dredging services in contaminated sediments for balanced environmental and investment costs.

    PubMed

    Wasserman, Julio Cesar; Barros, Sérgio Ricardo; Lima, Gilson Brito Alves

    2013-05-30

    Dredging of contaminated sediments has shown to be a harmful activity for the environment, because a number of contaminants can be resuspended and become available to the organisms. Furthermore, dredged contaminated sediments may cause significant damages in the dumping site. In order to avoid the drawbacks of this activity, better techniques have to be developed and the present article presents a new procedure for the planning of dredging that reduces the environmental impacts by reducing the amount of dredged sediments and, at the same time, reduces costs. The new technique uses screening of contaminant concentrations in the sediments that are normally part of the environmental impact assessment for dredging activity. A detailed mapping of the contamination, layer by layer is carried out and the areas where the action levels are reached are outlined with polygons, establishing limits within which sediments have to be dredged with safe procedures. In the case presented, construction of a harbor in Sepetiba Bay, Rio de Janeiro, Brazil, the safe procedure is cutter/suction dredging and pumping into a sub-aquatic confined disposal facility (CDF). A detailed evaluation of costs showed that if the whole layers of sediment were to be dumped into the CDF, the cost of the activity would be at least 63.82% more expensive than the proposed procedure, constituting an attractive advantage. Furthermore, as the size of the CDF is significantly smaller, less dredging is necessary, causing smaller environmental impact. PMID:23524396

  13. Effects of contaminated dredge spoils on wetland plant communities: A literature review

    USGS Publications Warehouse

    Stewart, Paul M.; Garza, Eric L.; Butcher, Jason T.

    2003-01-01

    Contaminated dredge spoil is a national concern due to its scope and effects on biota, water quality, and the physical environment. This literature review discusses the effects of contaminated dredge spoils on wetland plant communities. Plant communities naturally shift over time with changing environmental conditions. Addition of toxins and nutrients and changes in hydrology may influence plant community structure. The storage and disposal of nutrient and metal contaminated dredge spoils may cause shifts in nearby plant communities. Shifts in species composition and diversity may not be observed for decades after nutrient enrichment, causing any disturbance to remain undetected. Plant community shifts often have great amounts of inertia and are difficult to reverse.

  14. Lake-dredged material for beef cattle pasture establishment

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Carbonatic lake-dredged materials can be used as soil amendments (lime and fertilizer) for early establishment of bahiagrass in beef cattle pastures in Florida. Some of the indirect benefits of the liming effects of this material for pastures include enhancing nutrient availability, nitrification, n...

  15. Tier 1 ecological evaluation of proposed discharge of dredged material from Oakland Harbor into ocean waters

    SciTech Connect

    Shreffler, D.K.; Thorn, R.M.; Walls, B.E.; Word, J.Q.

    1994-01-01

    The Water Resources Development Act of 1986 (Public Law 99--662) authorized the U.S. Army Corps of Engineers (USACE) -- San Francisco District, to accommodate larger, deeper draft vessels in Oakland inner and Outer Harbors by deepening and widening the existing navigation channel, and providing turning basins and maneuvering areas in Oakland inner Harbor. The suitability of the resulting dredged material for disposal into ocean waters was subject to the procedures of the 1991 Testing Manual, Evaluation of Dredged Material Proposed for Ocean Disposal, known as the ``Green Book``. The Green Book provides a tiered approach for testing the suitability of dredged materials through chemical, physical, and biological evaluations. The first level of investigation, or Tier 1 evaluation, is used to determine whether a decision on LPC compliance can be made on the basis of readily available information. The Tier 1 report primarily summarizes existing information on sediment contamination and toxicity potential, identifies contaminants of concern, and determines the need for further testing. To assist the USACE in determining the suitability of dredged material from Oakland inner and Outer Harbors for ocean disposal, Battelle/Marine Sciences Laboratory prepared this Tier 1 report based upon information and data provided by USACE. Because this Tier 1 report originated well after an LPC determination was made to require testing of project sediments in Tier 3, the primary purpose of this report was to identify contaminants of concern (if any) in that particular dredged material. In addition, this Tier 1 report summarizes available information on chemical, physical, and biological characterization of the sediments in Oakland inner and Outer Harbors.

  16. DECONTAMINATING AND PROCESSING DREDGED MATERIAL FOR BENEFICIAL USE

    SciTech Connect

    CLESCERI,N.L.; STERN,E.A.; FENG,H.; JONES,K.W.

    2000-07-01

    Management of contaminated dredged material is a major problem in the Port of New York and New Jersey. One component of an overall management plan can be the application of a decontamination technology followed by creation of a product suitable for beneficial use. This concept is the focus of a project now being carried out by the US Environmental Protection Agency-Region 2, the US Army Corps of Engineers-New York District, the US Department of Energy-Brookhaven National Laboratory, and regional university groups that have included Rensselaer Polytechnic Institute, Rutgers University, New Jersey Institute of Technology, and Stevens Institute of Technology. The project has gone through phased testing of commercial technologies at the bench scale (15 liters) and pilot scale (1.5--500 m{sup 3}) levels. Several technologies are now going forward to large-scale demonstrations that are intended to treat from 23,000 to 60,000 m{sup 3}. Selections of the technologies were made based on the effectiveness of the treatment process, evaluation of the possible beneficial use of the treated materials, and other factors. Major elements of the project are summarized here.

  17. New Federal Regulations for Dredged and Fill Material

    ERIC Educational Resources Information Center

    Smith, David D.

    1976-01-01

    Aided by Environmental Protection Agency (EPA) guidelines, the United States Army Corps of Engineers regulates the discharge of dredged and fill material, through a permit program, to all waters of the United States. This feature summarizes the key points of the Corps regulations and the EPA guidelines. (BT)

  18. DREDGED MATERIAL TRANSPORT AT DEEP-OCEAN DISPOSAL SITES

    EPA Science Inventory

    Assessment of environmental impact of dredged material disposal in deep ocean water calls for predictions of water column concentration, exposure time as well as the impacted area of the bottom (footprint). redictions based on vertical willing and horizontal advection of single p...

  19. DREDGED MATERIAL PLUME DISPERSAL IN CENTRAL LONG ISLAND SOUND

    EPA Science Inventory

    A simulation model based upon in situ current velocity data and records of disposal events was developed to predict the chemical exposure field resulting from dredged material disposal plumes in central Long island Sound (CLIS) during the spring of 1983. n the model, plumes are a...

  20. CALIBRATION OF A PREDICTIVE MODEL FOR INSTANTANEOUSLY DISCHARGED DREDGED MATERIAL

    EPA Science Inventory

    This report describes modifications to a computer model originally developed by R.C.Y. Koh and Y.C. Chang for predicting the physical fate of dredged material instantaneously released into a water column. Changes to the simulation include the calibration and verification of the p...

  1. New Bedford Harbor Superfund Project, Acushnet River Estuary engineering feasibility study of dredging and dredged-material disposal alternatives. Report 3. Characterization and elutriate testing of Acushnet River Estuary sediment. Technical report, August 1985-March 1988

    SciTech Connect

    Averett, D.E.

    1989-03-01

    Several of the alternatives being considered for the New Bedford Harbor Superfund Project involve dredging of contaminated sediment from the Acushnet River Estuary and placement of the contaminated dredged material in confined disposal areas. Evaluation of these alternatives requires testing sediment from the site to determine chemical and physical characteristics, settling properties, contaminant releases for various migration pathways, and treatment requirements for disposal area effluent. The purpose of this report is to describe the estuary composite sediment sample and the hot-spot-sediment sample tested at the US Army Engineer Waterways Experiment Station as part of the US Army Corps of Engineers' Acushnet River Estuary Engineering Feasibility Study of Dredging and Dredged Material Disposal Alternatives. Bulk sediment chemistry, physical characteristics, and elutriate testing for the sediments are included.

  2. 78 FR 38672 - Ocean Dumping; Sabine-Neches Waterway (SNWW) Ocean Dredged Material Disposal Site Designation

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-27

    ...The EPA is proposing to designate four new Ocean Dredged Material Disposal Site(s) (ODMDS) located offshore of Texas for the disposal of dredged material from the Sabine-Neches Waterway (SNWW), pursuant to the Marine Protection, Research and Sanctuaries Act, as amended (MPRSA). The new sites are needed for the disposal of additional dredged material associated with the SNWW Channel Improvement......

  3. Lake-dredged materials for beef cattle pasture establishment in subtropics

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The ability to reuse dredge materials for agricultural purposes is important because it reduces offshore disposal and provides an alternative to disposal of the materials in landfills that are already overtaxed. Beneficial uses of dredging or dredged materials are both economical and environmental. ...

  4. Dredged material characterization and management frameworks: A case study at the port Vilagarcia (NW, Spain).

    PubMed

    Rodríguez-Romero, Araceli; Khosrovyan, Alla; DelValls, T Angel; Riba, Inmaculada

    2016-01-25

    The potential impact of dredged sediment has been assessed at sixteen areas of the high-traffic port of Vilagarcia (Northwest Spanish Atlantic coast). The assessment has been done by three weight-of-evidence tools, which integrated data on sediment characteristics and toxicity responses of Ampelisca brevicornis, Vibrio fischeri and eggs and embryos of Paracentrotus lividus. Two of the tools also represented management options regarding the disposal of dredged material. The comparison of the logic in these tools revealed essential differences in the type and the necessity of bioassays and threshold values for chemical concentrations. However, despite this difference, assessment results and the derived management options coincided in most of the sediments. The potential toxicity of sediments was relatively low especially for eggs and embryos possibly due to different contaminant availability in solid and liquid phases. The importance of a battery of toxicity tests in the dredged material quality assessment has been emphasized to avoid an underestimation of sediment toxicity for solid phase organisms, if only liquid phase responses are considered. The potential false implications, which may result from the application of the third tool, were highlighted. The strengths and weaknesses of the tools were discussed from the dredged material management perspective. PMID:26453824

  5. Evaluation of dredged material disposal alternatives for US Navy homeport at Everett, Washington. Final report

    SciTech Connect

    Palermo, M.R.; Shafer, R.A.; Brannon, J.M.; Myers, T.E.; Truitt, C.L.

    1989-01-01

    The US Navy has proposed to homeport a carrier battle group at Everett, Wash. Development of the homeport will involve dredging and disposal of approximately 1 million cu yd of contaminated native material. The US Army Engineer District, Seattle, is providing technical assistance in developing a dredging and disposal plan for these sediments from the East Waterway. In addition, the Seattle District is a permitting agency under Section 10 of the River and Harbor Act of 1899 and Section 404 of the Clean Water Act. The purpose of the WES studies was to evaluate the feasibility of alternatives from an environmental and related engineering standpoint. Three major disposal alternatives were evaluated for disposal of the contaminated sediment: confined upland, confined nearshore, and contained aquatic disposal (CAD). The Navy identified CAD as a preferred alternative during the course of the WES study, and also as the selected alternative in all applications for a Section 404 permit.

  6. An evaluation of the success of dredging as remediation at a DDT-contaminated site in San Francisco Bay, California, USA.

    PubMed

    Weston, Donald P; Jarman, Walter M; Cabana, Gilbert; Bacon, Corinne E; Jacobson, Lisa A

    2002-10-01

    Lauritzen Canal, a portion of San Francisco Bay near Richmond, California, USA, was heavily contaminated with dichlorodiphenyltrichloroethane (DDT) and dieldrin as a result of releases from a pesticide-formulating firm. In 1996 and 1997, 82,000 m3 of contaminated sediment was removed from the canal by dredging. This study evaluated the success of the dredging based largely on body burdens of DDT and its metabolites (sigmaDDT) in resident biota, with some data on sediment- and water-contaminant levels and sediment toxicity testing. Sediment disturbance during dredging introduced a pulse of sigmaDDT into the Lauritzen Canal ecosystem, and body burdens of fish and invertebrates increased 2- to 76-fold, depending on the species. Approximately 1 1/2 years after remediation, 11 of 14 indicators showed contamination comparable with or worse than the contamination that existed prior to dredging. Monitoring of mussels up to four years postdredging suggests some modest improvement, although the sigmaDDT body burden of canal mussels remained far above the norm for San Francisco Bay. The elevated sigmaDDT body burdens in biota that persisted for years after remediation reflect recent exposure and are not merely a result of slow metabolic elimination of the sigmaDDT pulse associated with dredging. Sediment sigmaDDT concentrations were low immediately after dredging, but within months, the canal bottom became covered with a veneer of fine sediment as contaminated as that that had been removed. The source of this material has not been conclusively established, but we suspect it came from slumping and erosion from the flanks of the canal beneath docks and around pilings where dredging was not done. In retrospect, either capping in place or more thorough dredging may have been more successful in reducing pesticide exposure of the biota, although there were difficulties associated with both alternatives. PMID:12371501

  7. Dredging as remediation for white phosphorus contamination at Eagle River Flats, Alaska

    SciTech Connect

    Walsh, M.R.; Collins, C.M.

    1998-08-01

    The Eagle River Flats impact area is a Ft. Richardson Superfund site. It is a salt marsh that is contaminated with white phosphorus (WP), and remediation of sediments in permanently ponded areas may require dredging. A remotely piloted dredging system was designed, constructed, and deployed at the Flats as part of the overall site remediation feasibility study. Experience gained over two years of engineering study and contract operation indicates that, although feasible and effective, this alternative is slow, difficult, and very expensive.

  8. Environmental effects of dredging, technical notes. Technical notes

    SciTech Connect

    1996-08-01

    Biomagnification of Contaminants in Aquatic Food Webs as a Result of Open-Water Disposal of Dredged Material ; Fate of Dredged Material During Open-Water Disposal; Engineering Considerations for Capping Subaqueous Dredged Material Deposits-Background and Preliminary Planning; Engineering Considerations for Capping Subaqueous Dredged Material Deposits-Design Concepts and Placement Techniques; Monitoring Dredged Material Consolidation and Settlement at Aquatic Disposal Sites; Computerized Database for Interpretation of the Relationship Between Contaminant Tissue Residues and Biological Effects in Aquatic Organisms; Use of Daphnia Magna to Predict Consequences of Bioaccumulation; Simplified Approach for Evaluating Bioavailability of Neutral Organic Chemicals in Sediment; A Procedure for Determining Cap Thickness for Capping Subaqueous Dredged Material Deposits; Acoustic Tools and Techniques for Physical Monitoring of Aquatic Dredged Material Disposal Sites; Contaminant Modeling; Use of Seabed Drifters for Locating and Monitoring Dredged Material Placement Sites.

  9. DECONTAMINATION OF DREDGED MATERIAL FROM THE PORT OF NEW YORK AND NEW JERSEY

    SciTech Connect

    JONES,K.W.; STERN,E.A.; DONATO,K.R.; CLESCERI,N.L.

    1999-06-01

    The Port of New York and New Jersey ranks first in the US in volume of petroleum products handled each year. In addition, many refineries are in operation on the New Jersey side of the Port. These activities have led to the discharge of significant amounts of petroleum hydrocarbons into the waters of the New York/New Jersey region. Intense industrial and commercial activities have also brought about major inputs of other organic and inorganic contaminants as would be expected in an industrialized, heavily populated urban port. Sediments that then are contaminated are a major problem for the region since they can no longer be disposed of by the traditional method of ocean disposal following the dredging operations required for the efficient operation of the Port. Decontamination and beneficial reuse of the dredged materials is one component of a comprehensive dredged material management plan being developed by the US Army Corps of Engineers. A demonstration decontamination project extending from bench- to field-scale operations is now in progress in the Port, and its current status and relevance for other regions is summarized.

  10. DECONTAMINATION OF DREDGED MATERIAL FROM THE PORT OF NEW YORK AND NEW JERSEY.

    SciTech Connect

    JONES,K.W.; STERN,E.A.; DONATO,K.R.; CLESCERI,N.L.

    1999-06-01

    The Port of New York and New Jersey ranks first in the United States in volume of petroleum products handled each year. In addition, many refineries are in operation on the New Jersey side of the Port. These activities have led to the discharge of significant amounts of petroleum hydrocarbons into the waters of the New York/New Jersey region. Intense industrial and commercial activities have also brought about major inputs of other organic and inorganic contaminants as would be expected in an industrialized, heavily populated urban port. Sediments that then are contaminated are a major problem for the region since they can no longer be disposed of by the traditional method of ocean disposal following the dredging operations required for the efficient operation of the Port. Decontamination and beneficial reuse of the dredged materials is one component of a comprehensive dredged material management plan being developed by the US Army Corps of Engineers. A demonstration decontamination project extending from bench- to field-scale operations is now in progress in the Port, and its current status and relevance for other regions is summarized.

  11. 75 FR 19311 - Ocean Dumping; Guam Ocean Dredged Material Disposal Site Designation

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-14

    ...The EPA is proposing to designate the Guam Deep Ocean Disposal Site (G-DODS) as a permanent ocean dredged material disposal site (ODMDS) located offshore of Guam. Dredging is essential for maintaining safe navigation at port and naval facilities in Apra Harbor and other locations around Guam. Not all dredged materials are suitable for beneficial re-use (e.g., construction materials, landfill......

  12. Evaluation of dredged material proposed for ocean disposal from MOTBY

    SciTech Connect

    Barrows, E.S.; Mayhew, H.L.; Word, J.Q.

    1996-09-01

    The National Park Service, US Department of the Interior requested U.S. Army Corps of Engineers/New York District (USACE-NYD) to evaluate sediments around the Military Ocean Terminal (MOTBY) in Bayonne, New Jersey for unconfined ocean disposal at the Mud Dump Site. Sediment samples were collected from MOTBY. Tests and analyses were conducted on MOTBY sediment core samples. The evaluation of proposed dredged material from MOTBY included grain size and total organic carbon (TOC) analyses and one acute toxicity test with the amphipod Ampelisca abdita. In addition to this benthic toxicity test, a bioaccumulation test (28-day exposure) was conducted.

  13. Establishing bahiagrass in subtropical beef cattle pastures with lake-dredged materials

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Dredged materials (DM) are often viewed by society and regulators as pollutants, but many have used these materials in coastal nourishment, land or wetland creation, construction materials, and for soil improvement as a soil amendment. The objective of this study was to assess lake-dredged materials...

  14. New Bedford Harbor Superfund Project, Acushnet River estuary engineering feasibility study of dredging and dredged-material disposal alternatives. Report 1. Study overview. Technical report, August 1985-March 1988

    SciTech Connect

    Francingues, N.R.; Averett, D.E.; Otis, M.J.

    1988-10-01

    Sediments in the New Bedford Harbor and Acushnet River Estuary have been contaminated with polychlorinated biphenyl compounds and heavy metals. The high levels of contamination have resulted in the New Bedford Harbor being placed on the National Priorities List of the Nation's worst hazardous waste sites. Efforts are under way to develop and implement remedial actions for protection of the environment under the Federal Superfund Program. This report is an introduction to and an overview of a series of reports describing the results of the EFS. It presents the overall study objectives and scope of work, describes the objectives and scope of the 10 EFS tasks, and presents a brief synopsis of the other 11 reports in the series. The EFS technical approach used field data-collection activities, literature reviews, laboratory (bench-scale) studies, and analytical and numerical modeling techniques to assess engineering feasibility and develop conceptual alternatives for dredging and dredged-material disposal. Technical and engineering issues addressed by the EFS included baseline mapping, geotechnical investigations, hydrodynamics, sediment resuspension and transport, contaminant releases to surface and ground water, dredged material settling properties, dredging equipment and controls, effluent treatment, solidification/stabilization of dredged material, confined-disposal-facility design, contained aquatic-disposal-facility design, and cost estimates for the alternatives evaluated.

  15. Assessing the efficacy of dredged materials: Pasture establishment and forage productivity

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Currently, dredged material disposal alternatives have several limitations. Options for dealing with dredged materials include leaving them alone, capping them with clean sediments, placing them in confined facilities, disposing of them at upland sites, treating them chemically, or using them for we...

  16. 78 FR 37759 - Ocean Dumping; Atchafalaya-West Ocean Dredged Material Disposal Site Designation

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-24

    ...: Comments. The comment period for the proposed rule and draft EIS published May 21, 2013 (78 FR 29687), is... AGENCY 40 CFR Part 228 Ocean Dumping; Atchafalaya-West Ocean Dredged Material Disposal Site Designation... designate the Atchafalaya-West Ocean Dredged Material Disposal Site pursuant to the draft EIS,...

  17. 40 CFR 230.60 - General evaluation of dredged or fill material.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 24 2010-07-01 2010-07-01 false General evaluation of dredged or fill material. 230.60 Section 230.60 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) OCEAN DUMPING SECTION 404(b)(1) GUIDELINES FOR SPECIFICATION OF DISPOSAL SITES FOR DREDGED OR FILL MATERIAL Evaluation and Testing § 230.60...

  18. 40 CFR 230.60 - General evaluation of dredged or fill material.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 25 2011-07-01 2011-07-01 false General evaluation of dredged or fill material. 230.60 Section 230.60 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) OCEAN DUMPING SECTION 404(b)(1) GUIDELINES FOR SPECIFICATION OF DISPOSAL SITES FOR DREDGED OR FILL MATERIAL Evaluation and Testing § 230.60...

  19. Synchrotron x-ray and electron micro-probe study of contaminated dredged sediments.

    NASA Astrophysics Data System (ADS)

    Poitevin, A.; Lerouge, C.; Wille, G.; Bataillard, P.; Hennet, L.

    2012-04-01

    Sediments originating from periodic dredging of waterways were traditionally disposed of in storage sites without any precautions or treatments. There may be some environmental concerns especially when the dredged material comes from historically contaminated areas such as the North French coal basin. This study aims to characterize the metal mobility (mainly Zn and Pb) in deposited dredged sediments by combining chemical and spectroscopic techniques. The sediments consist of a silty fraction (~ 40 %: dominant quartz, minor feldspar), carbonates and a clay fraction (illite dominant, illite-smectite mixed layer, kaolinite). This mineralogical heterogeneity and the observed grain-size distribution (70 to 80 % wt of the total sediment is <50µm) lead to a need to use microbeam techniques to identify Zn and Pb carriers. Electron probe micro-analyse (EPMA) combined with microbeam x-ray fluorescence (µXRF) at Synchrotron sources were used to identify Zn and Pb carriers. In particular Zn and Pb distributions in thin-section samples were determined by µ-XRF elemental mappings. EPMA was used to determine the distribution of light elements for which the energy of the emission lines is below 4 keV (Si, S, P…). The presence of reduced (sulphides) and oxidized (sulphates, oxihydroxides) phases strongly suggests that the redox state is one of the major parameters controlling the metal mobility. Therefore x-ray absorption spectroscopy experiments were also performed to study the oxidation state in both bulk samples and on selected regions of interest in thin section samples. Preliminary chemical analyses In this work, the potential effects of the sample preparation on phase's structure and redox state were also studied and will be presented. In particular measurements using x-ray absorption spectroscopy were carried out on air dried or lyophilised powders and on samples stored in a cryogenic environment after sampling. For the latter, we studied the evolution of the iron

  20. BIOASSESSMENT METHODS FOR DETERMINING THE HAZARDS OF DREDGED MATERIAL DISPOSAL IN THE MARINE ENVIRONMENT

    EPA Science Inventory

    Approximately 325 million m3 of sediment are dredged annually for navigation purposes in the United States. f this, 46 million m3 are disposed of annually in the ocean (Peddicord, 1987). ecisions regarding the ocean disposal of dredged material result, in large part, from bioasse...

  1. Ecological evaluation of proposed dredged material from the John F. Baldwin Ship Channel: Phase 3 -- biological testing

    SciTech Connect

    Kohn, N.P.; Karle, L.M.; Pinza, M.R.; Mayhew, H.L.; White, P.J.; Gruendell, B.D.; Word, J.Q.

    1993-10-01

    The John F. Baldwin Ship Channel is a 28-mile-long portion of the San Francisco Bay to Stockton Ship Channel, the primary shipping lane through San Francisco Bay and Delta. The San Francisco District of the US Army Corps of Engineers (USACE) is responsible for construction of the John F. Baldwin Ship Channel, which is authorized to be deepened to a project depth of {minus}45 ft relative to mean lower low water (MLLW). Approximately 8.5 million cubic yards (mcy) of sediment will be removed from the channel to reach this project depth. The USACE requested Battelle/Marine Sciences Laboratory (MSL) to conduct testing for ocean disposal under the guidelines in Evaluation of Dredged Material Proposed for Ocean Disposal-Testing Manual (EPA/USACE 1991). This testing manual contains a tiered evaluation approach developed specifically for ocean disposal of dredged material at a selected site. In this study, John F. Baldwin Ship Channel sediments were evaluated under the Tier III (biological) testing guidance, which is considered to be highly stringent and protective of the environment. The Tier III guidance for ocean disposal testing requires tests of water column effects, (following dredged material disposal), deposited sediment toxicity, and bioaccumulation of contaminants from deposited sediment (dredged material).

  2. Effects of riverine suspended particulate matter on post-dredging metal re-contamination across the sediment-water interface.

    PubMed

    Liu, Cheng; Fan, Chengxin; Shen, Qiushi; Shao, Shiguang; Zhang, Lei; Zhou, Qilin

    2016-02-01

    Environmental dredging is often used in river mouth areas to remove heavy metals. However, following dredging, high levels of metal-adsorbed suspended particulate matter (SPM) originating from polluted inflowing rivers might adversely affect the sediment-water interface (SWI). Here, we conducted a 360-day-long experiment investigating whether the riverine SPM adversely affects dredging outcome in a bay area of Lake Chaohu, China. We found that the heavy metal concentrations in the post-dredging surface sediment increased to pre-dredging levels for all metals studied (As, Cd, Cr, Cu, Ni, Pb, and Zn) after the addition of SPM. In addition, the increased concentrations were mostly detected in the relatively bioavailable non-residual fractions. Of the metals studied, the rate of increase was the greatest for Zn and Cd (482.98% and 261.07%, respectively), mostly in the weak acid extractable fraction. These results were probably due to certain characteristics of SPM (fine grain size, and high concentrations of organic matter and heavy metals) and the good oxic conditions of the SWI. Furthermore, As was the only metal for which we observed an increasing trend of diffusive flux across the SWI. However, the flux was still significantly lower than that measured before dredging. In conclusion, the quantity and character of riverine metal-adsorbed SPM affect metal re-contamination across the post-dredging SWI, and this information should be incorporated into the management schemes of dredging projects dedicated to reducing metal contamination in similar areas. PMID:26606187

  3. Environmental impact and recovery at two dumping sites for dredged material in the North Sea.

    PubMed

    Stronkhorst, J; Ariese, F; van Hattum, B; Postma, J F; de Kluijver, M; Den Besten, P J; Bergman, M J N; Daan, R; Murk, A J; Vethaak, A D

    2003-01-01

    The environmental impact and recovery associated with the long and uninterrupted disposal of large volumes of moderately contaminated dredged material from the port of Rotterdam was studied at nearby dumping sites in the North Sea. Observations were made on sediment contamination, ecotoxicity, biomarker responses and benthic community changes shortly after dumping at the 'North' site had ceased and at the start of disposal at the new dumping site 'Northwest'. During the period of dumping, very few benthic invertebrates were found at the North site. Concentrations of cadmium, mercury, polychlorinated biphenyls (PCBs), polyaromatic hydrocarbons (PAHs) and tributyltin (TBT) in the fine sediment fraction (<63 microm) from this site were 2-3 times higher than at the reference site. In four different bioassays with marine invertebrates the sediments showed no acute toxic effects. In tissue (pyloric caeca) of resident starfish Asterias rubens, residual levels of mercury, zinc, PCBs and dioxin-like activity were never more than twice those at the reference site. Four different biomarkers (DNA integrity, cytochrome P450 content, benzo[a]pyrene hydroxylase activity and acetylcholinesterase inhibition) were used on the starfish tissues, but no significant differences were found between North and the reference site. Minor pathological effects were observed in resident dab Limanda limanda. One year after dumping had ceased at the North site, a significant increase in the species richness and abundance of benthic invertebrates and a concomitant decrease in the fine sediment fraction of the seabed were observed. After 8.2 million m3 of moderately contaminated dredged material had been dumped at the new dumping site Northwest, the species richness and abundance of benthic invertebrates declined over an area extending about 1-2 km eastwards. This correlated with a shift in sediment texture from sand to silt. The contamination of the fine sediment fraction at the Northwest location

  4. Mercury emissions from cement-stabilized dredged material.

    PubMed

    Goodrow, Sandra M; Miskewitz, Robert; Hires, Richard I; Eisenreich, Steven J; Douglas, W Scott; Reinfelder, John R

    2005-11-01

    Upland placement of dredged materials from navigation channels in the New York/New Jersey Harbor is currently being used to manage sediments deemed inappropriate for open water disposal. Although upland placement sites are equipped with engineering controls (leachate collection and/or barrier walls), little is known of the potential impacts of this approach to air quality. The aim of this study was to estimate the flux of mercury to the atmosphere from New York/New Jersey Harbor stabilized dredged material (SDM) that was used for land reclamation at a site in northeastern New Jersey. Total gaseous mercury (TGM) was measured at a site receiving SDM in August and October 2001 and May and November 2002. TGM was also monitored at an urban reference site 3.5 km west of the SDM site in September 2001 and from February 2002 to July 2002 and from October 2002 to February 2003. The concentration of TGM at the urban reference site averaged 2.2 +/- 1.1 ng m(-3), indicating some local contribution to the Northern Hemisphere background. TGM concentrations exhibited seasonality with the highest values in summer (3.3 +/- 2.1 ng m(-3) in June 2002) and the lowest in winter (1.7 +/- 0.6 ng m(-3) in January 2003). TGM concentrations at the SDM placement site ranged from 2 to 7 ng m(-3) and were significantly higher (p < 0.001) than those at the urban reference site. Sediment-air fluxes of Hg at the SDM placement site estimated by the micrometeorological technique ranged from -13 to 1040 ng m(-2) h(-1) (sediment to air fluxes being positive) and were significantly correlated to solar radiation (r2 = 0.81). The estimated contribution of Hg emissions from land-applied SDM to local TGM concentrations was found to be negligible (<4%). However, the estimated annual volatilization rate of TGM atthe SDM site (130 kg y(-1))was comparable to those of other industrial sources in New Jersey (140-450 kg y(-1)). PMID:16294853

  5. EVALUATION OF THREE FISH SPECIES AS BIOASSAY ORGANISMS FOR DREDGED MATERIAL TESTING

    EPA Science Inventory

    Three fish species, Cyprinodon variegatus, Fundulus similis, and Menidia menidia, were evaluated to determine which is most suitable as a bioassay organism for solid phase testing of dredged material. Acute toxicity and bioaccumulation of polychlorinated biphenyls (PCBs) were mon...

  6. Bioassays on Illinois waterway dredged material. Final report

    SciTech Connect

    Moore, D.W.; Gibson, A.B.; Dillon, T.M.

    1992-12-01

    Sediment from the Illinois Waterway navigation channel is hydraulically dredged by the US Army Engineer District, Rock Island, and placed in the nearshore environment via pipeline. Water returning to the river can have a high-suspended solids load approaching fluid mud consistency. There is a concern that this return water may exceed the State of Illinois water quality standards for ammonia and have adverse effects on aquatic life. To address these concerns, composite sediment samples and site water collected from selected sites in the Illinois Waterway were evaluated in toxicity tests. Acute (48-hr) toxicity tests were conducted with two species, Pimephales promelas (the fathead minnow) and Daphnia magna (a freshwater cladoceran). A chronic (21-day) toxicity test was also conducted using Daphnia magna. Animals were exposed separately to different concentrations of filtered and unfiltered elutriates prepared from Acute, Cadmium, Daphnia magna, Pimephales promela, Ammonia, Chronic, Elutriate, Sediment, Bioassay, Cladoceran, Fathead minnow. Illinois Waterway edged material. Total ammonia concentrations were measured in all tests and the un-ionized fraction was calculated by adjusting for temperature and pH. Tests were conducted at the US Army Engineer Waterways Experiment Station, Vicksburg, MS. In addition, as part of an interlaboratory effort, a 48-hr acute toxicity test with Pimephales pomelas fry was conducted concurrently by the Hygienic Laboratory of the University of Iowa, Des Moines, IA.

  7. Environmental effects of dredging. Environmental effects of dredging technical notes. Plant bioassay of dredged material. Technical notes

    SciTech Connect

    Folsom, B.L.; Lee, C.R.

    1985-06-01

    Recently, a solid-phase plant bioassay was developed to test sediment for contaminants that are potentially phytotoxic and may be bioaccumulated by plants (Folsom and Lee 1981a; Folsom, Lee, and Bates 1981). The solid-phase plant bioassay was shown to be an excellent tool for predicting whether or not contaminants (e.g., zinc and cadmium) were potentially bioaccumulated by the saltwater plant S. alterniflora. Folsom and Lee (1981a) pointed out, however, that the DTPA extraction data indicated that plant uptake from air-dried oxidized saltwater sediment would be substantially greater than from the same saltwater sediment under flooded reduced conditions. In addition, they suspected greater plant uptake once the excess salts were leached out and the sediments were dried. This technical note reports results of modifications to the original solid-phase plant bioassay to pursue this assumption.

  8. An innovative coupling between column leaching and oxygen consumption tests to assess behavior of contaminated marine dredged sediments.

    PubMed

    Couvidat, Julien; Benzaazoua, Mostafa; Chatain, Vincent; Zhang, Fan; Bouzahzah, Hassan

    2015-07-01

    Contaminated dredged sediments are often considered hazardous wastes, so they have to be adequately managed to avoid leaching of pollutants. The mobility of inorganic contaminants is a major concern. Metal sulfides (mainly framboïdal pyrite, copper, and zinc sulfides) have been investigated in this study as an important reactive metal-bearing phase sensitive to atmospheric oxygen action. An oxygen consumption test (OC-Test) has been adapted to assess the reactivity of dredged sediments when exposed to atmospheric oxygen. An experimental column set-up has been developed allowing the coupling between leaching and oxygen consumption test to investigate the reactivity of the sediment. This reactivity, which consisted of sulfide oxidation, was found to occur for saturation degree between 60 and 90 % and until the 20th testing week, through significant sulfates releases. These latter were assumed to come from sulfide oxidation in the first step of the test, then probably from gypsum dissolution. Confrontation results of OC-Test and leachate quality shows that Cu was well correlated to sulfates releases, which in turn, leads to Ca and Mg dissolution (buffer effect). Cu, and mostly Zn, was associated to organic matter, phyllosilicates, and other minerals through organo-clay complexes. This research confirmed that the OC-Test, originally developed for mine tailings, could be a useful tool in the dredged sediment field which can allow for intrinsic characterization of reactivity of a material suspected to readily reacting with oxygen and for better understanding of geochemical processes that affect pollutants behavior, conversion, and transfer in the environment. PMID:25779112

  9. Dredged-material-effects assessment: Single-species toxicity/bioaccumulation and macrobenthos colonization tests

    SciTech Connect

    Parrish, P.R.; Moore, J.C.; Clark, J.R.

    1989-01-01

    Toxicity tests and bioaccumulation tests conducted according to methods established by the U.S. Environmental Protection Agency/Corps of Engineers in 1977 were used to evaluate potential environmental impacts of ocean disposal of dredged materials. Assessments of potential impacts based on results of currently recommended single-species tests were compared with results from macrobenthos colonization tests of dredged material from three harbors in the Gulf of Mexico and two in the Atlantic Ocean.

  10. UTILIZING A CHIRP SONAR TO ACCURATELY CHARACTERIZE NEWLY DEPOSITED MATERIAL AT THE CALCASIEU OCEAN DREDGED MATERIAL DISPOSAL SITE, LOUISIANA

    EPA Science Inventory

    The distribution of dredged sediments is measured at the Calcasieu Ocean Dredged Material Disposal Site (ODMDS) using a chirp sonar immediately after disposal and two months later. ubbottom reflection data, generated by a chirp sonar transmitting a 4 to 20 kHz FM sweep, is proces...

  11. Evaluation of dredged material proposed for ocean disposal from Buttermilk Channel, New York

    SciTech Connect

    Gardiner, W.W.; Barrows, E.S.; Antrim, L.D; Gruendell, B.D.; Word, J.Q.; Tokos, J.J.S.

    1996-08-01

    Buttermilk Channel was one of seven waterways that was sampled and evaluated for dredging and sediment disposal. Sediment samples were collected and analyses were conducted on sediment core samples. The evaluation of proposed dredged material from the channel included bulk sediment chemical analyses, chemical analyses of site water and elutriate, water column and benthic acute toxicity tests, and bioaccumulation studies. Individual sediment core samples were analyzed for grain size, moisture content, and total organic carbon. A composite sediment samples, representing the entire area proposed for dredging, was analyzed for bulk density, polynuclear aromatic hydrocarbons, and 1,4-dichlorobenzene. Site water and elutriate were analyzed for metals, pesticides, and PCBs.

  12. Potential contaminants at a dredged spoil placement site, Charles City County, Virginia, as revealed by sequential extraction

    PubMed Central

    Tang, Jianwu; Whittecar, G Richard; Johannesson, Karen H; Daniels, W Lee

    2004-01-01

    Backfills of dredged sediments onto a former sand and gravel mine site in Charles City County, VA may have the potential to contaminate local groundwater. To evaluate the mobility of trace elements and to identify the potential contaminants from the dredged sediments, a sequential extraction scheme was used to partition trace elements associated with the sediments from the local aquifer and the dredged sediments into five fractions: exchangeable, acidic, reducible, oxidizable, and residual phases. Sequential extractions indicate that, for most of the trace elements examined, the residual phases account for the largest proportion of the total concentrations, and their total extractable fractions are mainly from reducible and oxidizable phases. Only Cd, Pb, and Zn have an appreciable extractable proportion from the acidic phase in the filled dredged sediments. Our groundwater monitoring data suggest that the dredged sediments are mainly subject to a decrease in pH and a series of oxidation reactions, when exposed to the atmosphere. Because the trace elements released by carbonate dissolution and the oxidation (e.g., organic matter degradation, iron sulfide and, ammonia oxidation) are subsequently immobilized by sorption to iron, manganese, and aluminum oxides, no potential contaminants to local groundwater are expected by addition of the dredged sediments to this site.

  13. Evaluation of dredged material proposed for ocean disposal from Shark River Project area

    SciTech Connect

    Antrim, L.D.; Gardiner, W.W.; Barrows, E.S.; Borde, A.B.

    1996-09-01

    The objective of the Shark River Project was to evaluate proposed dredged material to determine its suitability for unconfined ocean disposal at the Mud Dump Site. Tests and analyses were conducted on the Shark River sediments. The evaluation of proposed dredged material consisted of bulk sediment chemical and physical analysis, chemical analyses of dredging site water and elutriate, water-column and benthic acute toxicity tests, and bioaccumulation tests. Individual sediment core samples collected from the Shark River were analyzed for grain size, moisture content, and total organic carbon (TOC). One sediment composite was analyzed for bulk density, specific gravity, metals, chlorinated pesticides, polychlorinated biphenyl (PCB) congeners, polynuclear aromatic hydrocarbons (PAHs), and 1,4- dichlorobenzene. Dredging site water and elutriate, prepared from suspended-particulate phase (SPP) of the Shark River sediment composite, were analyzed for metals, pesticides, and PCBs. Benthic acute toxicity tests and bioaccumulation tests were performed.

  14. Bivalve embryo bioassay to assess the potential toxicity of dredged material before dumping

    SciTech Connect

    Quiniou, F.

    1995-12-31

    Dredged harbor sediments frequently contain a wide spectrum of contaminants in addition to a significant percentage of organic matter. Also, dredging and dumping activities into sea water, of these highly contaminated soil may induce a harmful effect on the environment. In France, in accordance with Oslo convention guidelines, a working group on dredging activities and environment (GEODE) created since 1991 decided to set up a pilot research program to assess the intrinsic toxicity of four harbor sludges. Intrinsic toxicity of harbor muds were tested by solid phase (whole sediment) and aqueous extract bioassays (sea water elutriates) using the sublethal toxicity test bivalve embryo bioassay (Crassostrea gigas). Elutriates enable them to detect the toxicity of contaminants which may be released in the soluble form into the water column during dredging operations. While, whole sediment integrate the synergistic effects of all the contaminants (hydrophilic and hydrophobic) including pore water. Bioassays results, correlated to chemical analysis, are compared to contaminant levels determined by French working group GEODE and Canadian sediment quality criteria.

  15. Evaluation of dredged material proposed for ocean disposal from Westchester Creek project area, New York

    SciTech Connect

    Pinza, M.R.; Gardiner, W.W.; Barrows, E.S.; Borde, A.B.

    1996-11-01

    The objective of the Westchester Creek project was to evaluate proposed dredged material from this area to determine its suitability for unconfined ocean disposal at the Mud Dump Site. Westchester Creek was one of five waterways that the US Army Corps of Engineers- New York District (USACE-NYD) requested the Battelle/Marine Sciences Laboratory (MSL) to sample and evaluate for dredging and disposal in May 1995. The evaluation of proposed dredged material from the Westchester Creek project area consisted of bulk sediment chemical analyses, chemical analyses of dredging site water and elutriate, benthic acute and water-column toxicity tests, and bioaccumulation studies. Thirteen individual sediment core samples were collected from this area and analyzed for grain size, moisture content, and total organic carbon (TOC). One composite sediment sample representing the Westchester Creek area to be dredged, was analyzed for bulk density, specific gravity, metals, chlorinated pesticides, polychlorinated biphenyl (PCB) congeners, polynuclear aromatic hydrocarbons (PAHs), and 1,4-dichlorobenzene. Dredging site water and elutriate water, which is prepared from the suspended- particulate phase (SPP) of the Westchester Creek sediment composite, was analyzed for metals, pesticides, and PCBS.

  16. Polycyclic aromatic hydrocarbons in sediments at dredged material disposal sites around England: concentrations in 2013 and time trend information at selected sites 2008-2013.

    PubMed

    Rumney, Heather S; Bolam, Stefan G; Law, Robin J

    2015-03-15

    The maintenance of navigation channels to ports and the development of their facilities present a need to conduct dredging operations, and the subsequent disposal of dredged material at sea. Contaminant concentrations in candidate dredged material are determined and their possible impacts considered during the licensing process, which can result in the exclusion of some material from sea disposal. Monitoring of disposal sites is conducted in order to ensure that no undesirable impacts are occurring. In this study we consider the levels of polycyclic aromatic hydrocarbons (PAHs) in sediments at a number of disposal sites monitored in 2013 and variations in concentrations over time at three sites during the period 2008-2013. These were assessed using established sediment quality guidelines. Elevated PAH concentrations were generally observed only within the boundaries of the disposal sites studied. PMID:25618523

  17. Trace elements in soil and biota in confined disposal facilities for dredged material.

    PubMed

    Beyer, W N; Miller, G; Simmers, J W

    1990-01-01

    We studied the relation of trace element concentrations in soil to those in house mice (Mus musculus), common reed (Phragmites australis) and ladybugs (Coccinella septempunctata at five disposal facilities for dredged material. The sites had a wide range of soil trace element concentrations, acid soils and a depauperate fauna. They were very poor wildlife habitat because they were dominated by the common reed. Bioassay earthworms exposed to surface soils from three of the five sites died, whereas those exposed to four of five soils collected a meter deep survived, presumably because the deeper, unoxidized soil, was not as acid. Concentrations of Ni and Cr in the biota from each of the sites did not seem to be related to the concentrations of the same elements in soil. Although Pb, Zn and Cu concentrations in biota were correlated with those in soil, the range of concentrations in the biota was quite small compared to that in soil. The concentrations of Pb detected in mice were about as high as the concentrations previously reported in control mice from other studies. Mice from the most contaminated site (530 ppm Pb in soil) contained only slightly more Pb (8 ppm dry wt) than did mice (2-6 ppm dry wt) from sites containing much less Pb (22-92 ppm in soil). Despite the acid soil conditions, very little Cd was incorporated into food chains. Rather, Cd was leaching from the surface soil. We concluded that even the relatively high concentrations of trace elements in the acid dredged material studied did not cause high concentrations of trace elements in the biota. PMID:15092276

  18. A multi-criteria approach for the dumping of dredged material in the Thermaikos Gulf, Northern Greece.

    PubMed

    Kapsimalis, Vasilios; Panagiotopoulos, Ioannis; Kanellopoulos, Theodore; Hatzianestis, Ioannis; Antoniou, Panayota; Anagnostou, Christos

    2010-12-01

    A multi-criteria approach was applied for the disposal into the sea of ∼1,100,000 m(3) of sediment, dredged from a coastal area in the northeastern part of the Thermaikos Gulf. This sediment (classified as muddy) is distributed vertically into two distinct Layers (A and B) with the thickness of the surficial sedimentary unit ranging from 7 to 54 cm. Its geochemistry reveals increased Cr and Ni concentrations, which may be attributed to natural enrichment through the erosion of the adjacent igneous and metamorphic rocks. In addition, a low to moderate contamination from urban-originated heavy metals, like Cu, Pb and Zn as well as from aliphatic and polycyclic hydrocarbons was identified for the upper Layer A. However, the limited proportion (5.5%) of the polluted Layer A in the total volume of the dredged material could not affect the good quality (assessed by the Sediment Quality Guidelines) of the bulk sediment. The identification of the optimum marine dumping site was based on (a) the physicochemical similarity (detected by the application of a cluster analysis) of the dredged material with the surficial deposits of potential dumping sites in the Outer Thermaikos Gulf, and (b) the consideration, based on previous studies, of various criteria related to the disposal area such as deep-water circulation, influence on living resources, impact on economical (aquaculture, fishing, navigation), recreational (fishing) and military activities. PMID:20674146

  19. Summary of a workshop on interpreting bioaccumulation data collected during regulatory evaluations of dredged material. Final report

    SciTech Connect

    Bridges, T.S.; Moore, D.W.; Landrum, P.; Neff, J.; Cura, J.

    1996-07-01

    Evaluating the environmental consequences of contaminant bioaccumulation resulting from dredged material disposal is a complex technical and regulatory problem. This problem is exacerbated by the high cost of bioaccumulation testing and the lack of explicit guidance on how bioaccumulation data should be interpreted and used within a regulatory program. Bioaccumulation is a measurable phenomenon, rather than an effect. Without specific information about biological effects (e.g., reduced survival, growth, reproduction in animals, cancer risk in humans) resulting from bioaccumulation, it is difficult if not impossible from a regulatory standpoint to objectively determine what level of bioaccumulation constitutes an `unacceptable adverse effect.` Existing regulatory guidance attempts to overcome this with two approaches, both of which use low aquatic trophic level organisms and a reference-based comparison. In the first approach, the level of bioaccumulation of a specific contaminant is compared with a numerical effect limit, such as a Food and Drug Administration action level or a fish advisory. If the level of the contaminant in the organism exceeds the numerical limit, it is equated to an unacceptable adverse effect. If it does not, or there is no numerical limit, the second approach involves a comparison with animals exposed to a reference sediment. If bioaccumulation in the animals exposed to the dredged material exceeds that of animals exposed to the reference, a number of subjective factors are then evaluated to determine whether or not dredged material disposal will result in an `unacceptable adverse effect` (U.S. Environmental Protection Agency (USEPA)/U.S. Army Corps of Engineers (USACE) 1991, 1994).

  20. Biosolids and dredged materials: alternative sources of nutrients for crop productivity and sustainability of pasture-based agroecosystem

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Domestic sewage sludge or “biosolids” and lake-dredged materials are examples of materials that can be used to cut fertilizer costs in pasture-based animal agriculture. Sustainable biosolids and lake-dredged materials management is based upon controlling and influencing the quantity, quality and cha...

  1. Evaluation of dredged material proposed for ocean Disposal from Shoal Harbor/Compton Creek Project Area

    SciTech Connect

    Gardiner, W.W.; Borde, A.B.; Nieukirk, S.L.; Barrows, E.S.; Gruendell, B.D.; Word, J.Q.

    1996-10-01

    The objective of the Shoal Harbor/Compton Creek Project was to evaluate proposed dredged material from the Shoal harbor/Compton Creek Project Area in Belford and Monmouth, New Jersey to determine its suitability for unconfined ocean disposal at the Mud Dump Site. This was one of five waterways that the US Army Corps of Engineers- New York District requested the Battelle Marine Sciences Laboratory (MSL) to sample and evaluate for dredging and disposal in May 1995. The evaluation of proposed dredged material from the Shoal Harbor/Compton Creek Project area consisted of bulk chemical analyses, chemical analyses of dredging site water and elutriate, benthic and water-column acute toxicity tests and bioaccumulation studies. Eleven core samples were analyzed or grain size, moisture content, and total organic carbon. Other sediments were evaluated for bulk density, specific gravity, metals, chlorinated pesticides, polychlorinated biphenyl (PCB) congers, polynuclear aromatic hydrocarbons, and 1,4- dichlorobenzene. Dredging site water and elutriate water were analyzed for metals, pesticides, and PCBs.

  2. Evaluation of Dredged Material Proposed for Ocean Disposal from Port Chester, New York

    SciTech Connect

    Barrows, E.S.; Mayhew, H.L.; Word, J.Q.; Tokos, J.J.S.

    1996-08-01

    Port Chester was one of seven waterways that the US Army Corps of Engineers-New York District requested the Battelle Marine Sciences Laboratory to sample and evaluate for dredging and disposal in March 1994. Tests and analyses were conducted on Port Chester sediment core samples. Because the Port Chester area is located on the border between New York and southeast Connecticut, its dredged material may also be considered for disposal at the Central Long Island Sound Disposal Site. The sediment evaluation consisted of bulk sediment chemical analyses, chemical analyses of site water and dredged material elutriate preparations, water-column and benthic acute toxicity tests, and bioaccumulation studies. Individual sediment core samples collected from Port Chester were analyzed for grain size, moisture content, and total organic carbon. In addition, sediment was analyzed for bulk density, specific gravity, metals, chlorinated pesticides, polychlorinated biphenyl congers, polynuclear aromatic hydrocarbons and 1,4-dichlorobenzene.

  3. Evaluation of dredged material proposed for ocean disposal from Hackensack River Project Area, New York

    SciTech Connect

    Gruendell, B.D.; Barrows, E.S.; Borde, A.B.

    1997-01-01

    The objective of the bioassay reevaluation of the Hackensack River Federal Project was to reperform toxicity testing on proposed dredged material with current ammonia reduction protocols. Hackensack River was one of four waterways sampled and evaluated for dredging and disposal in April 1993. Sediment samples were re-collected from the Hackensack River Project area in August 1995. Tests and analyses were conducted according to the manual developed by the USACE and the U.S. Environmental Protection Agency (EPA), Evaluation of Dredged Material Proposed for Ocean Disposal (Testing Manual), commonly referred to as the {open_quotes}Green Book,{close_quotes} and the regional manual developed by the USACE-NYD and EPA Region II, Guidance for Performing Tests on Dredged Material to be Disposed of in Ocean Waters. The reevaluation of proposed dredged material from the Hackensack River project area consisted of benthic acute toxicity tests. Thirty-three individual sediment core samples were collected from the Hackensack River project area. Three composite sediments, representing each reach of the area proposed for dredging, were used in benthic acute toxicity testing. Benthic acute toxicity tests were performed with the amphipod Ampelisca abdita and the mysid Mysidopsis bahia. The amphipod and mysid benthic toxicity test procedures followed EPA guidance for reduction of total ammonia concentrations in test systems prior to test initiation. Statistically significant acute toxicity was found in all three Hackensack River composites in the static renewal tests with A. abdita, but not in the static tests with M. bahia. Statistically significant acute toxicity and a greater than 20% increase in mortality over the reference sediment was found in the static renewal tests with A. abdita. Statistically significant mortality 10% over reference sediment was observed in the M. bahia static tests. 5 refs., 2 figs., 2 tabs.

  4. Evaluation of dredged material proposed for ocean disposal from Arthur Kill Project Area, New York

    SciTech Connect

    Gruendell, B.D.; Barrows, E.S.; Borde, A.B.

    1997-01-01

    The objective of the bioassay reevaluation of Arthur Kill Federal Project was to reperform toxicity testing on proposed dredged material following current ammonia reduction protocols. Arthur Kill was one of four waterways sampled and evaluated for dredging and disposal in April 1993. Sediment samples were recollected from the Arthur Kill Project areas in August 1995. Tests and analyses were conducted according to the manual developed by the USACE and the U.S. Environmental Protection Agency (EPA), Evaluation of Dredged Material Proposed for Ocean Disposal (Testing Manual), commonly referred to as the {open_quotes}Green Book,{close_quotes} and the regional manual developed by the USACE-NYD and EPA Region II, Guidance for Performing Tests on Dredged Material to be Disposed of in Ocean Waters. The reevaluation of proposed dredged material from the Arthur Kill project areas consisted of benthic acute toxicity tests. Thirty-three individual sediment core samples were collected from the Arthur Kill project area. Three composite sediments, representing each reach of the area proposed for dredging, was used in benthic acute toxicity testing. Benthic acute toxicity tests were performed with the amphipod Ampelisca abdita and the mysid Mysidopsis bahia. The amphipod and mysid benthic toxicity test procedures followed EPA guidance for reduction of total ammonia concentrations in test systems prior to test initiation. Statistically significant acute toxicity was found in all Arthur Kill composites in the static renewal tests with A. abdita, but not in the static tests with M. bahia. Statistically significant acute toxicity and a greater than 20% increase in mortality over the reference sediment was found in the static renewal tests with A. abdita. M. bahia did not show statistically significant acute toxicity or a greater than 10% increase in mortality over reference sediment in static tests. 5 refs., 2 figs., 2 tabs.

  5. 78 FR 939 - Notice of Public Meeting: Designation of an Ocean Dredged Material Disposal Sites (ODMDS) in...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-07

    ... From the Federal Register Online via the Government Publishing Office ENVIRONMENTAL PROTECTION AGENCY Notice of Public Meeting: Designation of an Ocean Dredged Material Disposal Sites (ODMDS) in... Potential Designation of One or More Ocean Dredged Material Disposal Sites (ODMDS) to Serve the Eastern...

  6. 15 CFR Appendix D to Subpart M of... - Dredged Material Disposal Sites Adjacent to the Monterey Bay National Marine Sanctuary

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... disposal site adjacent to the Sanctuary off of the Golden Gate: Point ID No. Latitude Longitude 1 37.76458... 15 Commerce and Foreign Trade 3 2010-01-01 2010-01-01 false Dredged Material Disposal Sites... Subpart M of Part 922—Dredged Material Disposal Sites Adjacent to the Monterey Bay National...

  7. 15 CFR Appendix D to Subpart M of... - Dredged Material Disposal Sites Adjacent to the Monterey Bay National Marine Sanctuary

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... disposal site adjacent to the Sanctuary off of the Golden Gate: Point ID No. Latitude Longitude 1 37.76458... 15 Commerce and Foreign Trade 3 2011-01-01 2011-01-01 false Dredged Material Disposal Sites... Subpart M of Part 922—Dredged Material Disposal Sites Adjacent to the Monterey Bay National...

  8. Changing contaminant mobility in a dredged canal sediment during a three-year phytoremediation trial.

    PubMed

    King, Rosalind F; Royle, Anna; Putwain, Philip D; Dickinson, Nicholas M

    2006-09-01

    Metal mobility and degradation of organic pollutants were investigated in a contaminated canal sediment in NW England. Sediment was dredged and exposed above the water surface, planted with multiple taxa of Salix, Populus and Alnus and monitored over 32 months. Short-term metal fractionation and phytotoxicity during sediment oxidation were also evaluated in separate laboratory studies. Zinc and Pb redistributed into more mobile fractions, which increased toxicity of the sediment to plants in the laboratory. In contrast, at the canal site, mobility of most elements decreased and total concentrations of Zn, Pb, Cu and Cd fell. Petroleum hydrocarbon concentrations decreased, but the tree-planted treatments appeared less effective at reducing PAH concentrations than treatments colonised by invasive plants. Tree survivorship decreased over time, suggesting increasing phytotoxicity of the exposed sediment in the longer term. Trees provided little benefit in terms of sediment remediation. Options for future management of the sediment are evaluated. PMID:16427727

  9. Evaluation of dredged material proposed for ocean disposal from Bronx River Project Area, New York

    SciTech Connect

    Gruendell, B.D.; Gardiner, W.W.; Antrim, L.D.; Pinza, M.R.; Barrows, E.S.; Borde, A.B.

    1996-12-01

    The objective of the Bronx River project was to evaluate proposed dredged material from the Bronx River project area in Bronx, New York, to determine its suitability for unconfined ocean disposal at the Mud Dump Site. Bronx River was one of five waterways that the US Army Corps of Engineers-New York District (USAGE-NYD) requested the Battelle Marine Sciences Laboratory (MSL) to sample and to evaluate for dredging and disposal. Sediment samples were submitted for physical and chemical analyses, chemical analyses of dredging site water and elutriate, benthic and water-column acute toxicity tests, and bioaccumulation studies. Fifteen individual sediment core samples collected from the Bronx River project area were analyzed for grain size, moisture content, and total organic carbon (TOC). One composite sediment sample, representing the entire reach of the area proposed for dredging, was analyzed for bulk density, specific gravity, metals, chlorinated pesticides, polychlorinated biphenyl (PCB) congeners, polynuclear aromatic hydrocarbons (PAH), and 1,4- dichlorobenzene. Dredging site water and elutriate water, which was prepared from the suspended-particulate phase (SPP) of the Bronx River sediment composite, were analyzed for metals, pesticides, and PCBS.

  10. Fate of cadmium in the rhizosphere of Arabidopsis halleri grown in a contaminated dredged sediment.

    PubMed

    Huguet, Séphanie; Isaure, Marie-Pierre; Bert, Valérie; Laboudigue, Agnès; Proux, Olivier; Flank, Anne-Marie; Vantelon, Delphine; Sarret, Géraldine

    2015-12-01

    In regions impacted by mining and smelting activities, dredged sediments are often contaminated with metals. Phytotechnologies could be used for their management, but more knowledge on the speciation of metals in the sediment and on their fate after colonization by plant roots is needed. This work was focused on a dredged sediment from the Scarpe river (North of France), contaminated with Zn and Cd. Zn, Cd hyperaccumulating plants Arabidopsis halleri from metallicolous and non-metallicolous origin were grown on the sediment for five months in a pot experiment. The nature and extent of the modifications in Cd speciation with or without plant were determined by electron microscopy, micro X-ray fluorescence and bulk and micro X-ray absorption spectroscopy. In addition, changes in Cd exchangeable and bioavailable pools were evaluated, and Cd content in leachates was measured. Finally, Cd plant uptake and plant growth parameters were monitored. In the original sediment, Cd was present as a mixed Zn, Cd, Fe sulfide. After five months, although pots still contained reduced sulfur, Cd-bearing sulfides were totally oxidized in vegetated pots, whereas a minor fraction (8%) was still present in non-vegetated ones. Secondary species included Cd bound to O-containing groups of organic matter and Cd phosphates. Cd exchangeability and bioavailability were relatively low and did not increase during changes in Cd speciation, suggesting that Cd released by sulfide oxidation was readily taken up with strong interactions with organic matter and phosphate ligands. Thus, the composition of the sediment, the oxic conditions and the rhizospheric activity (regardless of the plant origin) created favorable conditions for Cd stabilization. However, it should be kept in mind that returning to anoxic conditions may change Cd speciation, so the species formed cannot be considered as stable on the long term. PMID:26233782

  11. Volatilization of contaminants from suspended sediment in a water column during dredging.

    PubMed

    Ravikrishna, Raghunathan; Valsaraj, Kalliat T; Thibodeaux, Louis J; Price, Cynthia B; Brannon, James M; Yost, Sally

    2002-10-01

    Remedial dredging of contaminated bed sediments in rivers and lakes results in the suspension of sediment solids in the water column, which can potentially be a source for evaporation of hydrophobic organic compounds (HOCs) associated with the sediment solids. Laboratory experiments were conducted in an oscillating grid chamber to simulate the suspension of contaminated sediments and flux to air from the surface of the water column. A contaminated field sediment from Indiana Harbor Canal (IHC) and a laboratory-inoculated University Lake (UL) sediment, Baton Rouge, LA, were used in the experiments, where water and solids concentration and particle size distribution were measured in addition to contaminant fluxes to air. A transient model that takes into account contaminant desorption from sediment to water and evaporation from the water column was used to simulate water and sediment concentrations and air fluxes from the solids suspension. In experiments with both sediments, the total suspended solids (TSS) concentration and the average particle diameter of the suspended solids decreased with time. As expected, the evaporative losses were higher for compounds with higher vapor pressure and lower hydrophobicity. For the laboratory-inoculated sediment (UL), the water concentrations and air fluxes were high initially and decreased steadily implying that contaminant release to the water column from the suspended solids was rapid, followed by evaporative decay. For the field sediments (IHC), the fluxes and water concentrations increased initially and subsequently decreased steadily. This implied that the initial desorption to water was slow and that perhaps the presence of oil and grease and aging influenced the contaminant release. Comparison of the model and experimental data suggested that a realistic determination of the TSS concentration that can be input into the model was the most critical parameter for predicting air emission rates. PMID:12418732

  12. Ecological evaluation of proposed dredged material from Richmond Harbor

    SciTech Connect

    Pinza, M R; Ward, J A; Mayhew, H L; Word, J Q; Niyogi, D K; Kohn, N P

    1992-10-01

    During the summer of 1991, Battelle/Marine Sciences Laboratory (MSL) was contracted to conduct sampling and testing of sediments proposed for dredging of Richmond Harbor, California. The MSL collected sediment cores to a depth of [minus]40 ft MLLW ([minus]38 ft + 2 ft overdepth) from 28 (12-in. core) and 30 (4-in. core) stations. The sediment cores were allocated to six composite samples referred to as sediment treatments, which were then subjected to physical, chemical, toxicological, and bioaccumulation testing. Physical and chemical parameters included grain size, total organic carbon (TOC), total volatile solids (TVS), oil and grease, total petroleum hydrocarbons (TPH), polynuclear aromatic hydrocarbons (PAH), chlorinated pesticides, polychlorinated biphenyis (PCBs), priority pollutant metals, and butyltins. The results from the test treatments were compared to results from five reference treatments representative of potential in-bay and offshore disposal sites.

  13. Evaluation of dredged material proposed for ocean disposal from Eastchester Project Area, New York

    SciTech Connect

    Antrim, L.D.; Pinza, M.R.; Barrows, E.S.; Gardiner, W.W.; Tokos, J.J.S.; Gruendell, B.D.; Word, J.Q.

    1996-07-01

    The objective of the Eastchester project (Federal Project [FP] No. 6) was to evaluate proposed dredged material from the Eastchester project area in the Hutchinson River to determine its suitability for unconfined ocean disposal at the Mud Dump Site. Eastchester was one of seven waterways that the U. S. Army Corps of Engineers-New York District (USACE-NYD) requested the Battelle/Marine Sciences Laboratory (MSL) to sample and evaluate for dredging and disposal in March 1994. The evaluation of proposed dredged material from the Eastchester project area consisted of bulk sediment chemical analyses, chemical analyses of dredging site water and elutriate, water- column and benthic acute toxicity tests, and bioaccumulation studies. Eighteen individual sediment core samples collected from the Eastchester project area were analyzed for grain size, moisture content, and total organic carbon (TOC). Two composite sediment samples, representing the upstream and lower reaches of the area proposed for dredging, were analyzed for bulk density, specific gravity, metals, chlorinated pesticides, polychlorinated biphenyl (PCB) congeners, polynuclear aromatic hydrocarbons (PAHs), and 1,4- dichlorobenzene. Dredging site water and elutriate water, which is prepared from the suspended-particulate phase (SPP) of the two Eastchester sediment composites, were analyzed for metals, pesticides, and PCBS. An additional 1 1 composite samples were created for the USACE-New England Division (USACE-NED) using the same 18 Eastchester core samples but combined into different composites. These composites were analyzed for metals, chlorinated pesticides, PCB congeners, PAHS, and 1,4-dichlorobenzene. Water-column or SPP toxicity tests were performed along with bioaccumulation tests.

  14. 75 FR 54497 - Ocean Dumping; Guam Ocean Dredged Material Disposal Site Designation

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-08

    ... Register (FR). Historically, dredged material generated around Guam by the Navy and the Port Authority of... will, wherever feasible, designate ocean dumping sites beyond the edge of the continental shelf and... continental land mass and does not have a continental shelf. In the ] absence of a shelf break,...

  15. FERNANDINA BEACH OCEAN DREDGED MATERIAL DISPOSAL SITE STATUS AND TRENDS, AUGUST 2005.

    EPA Science Inventory

    This EPA Region 4 study documents the current status (2005) of the Fernandina Ocean Dredged Material Disposal Site. It includes an assessment of the benthic sediment quality, water quality and benthic bilogical communities. The report is located at the following web site: http...

  16. A COMPUTER STUDY OF THE KOH-CHANG MODEL FOR DREDGED MATERIAL DISPOSAL

    EPA Science Inventory

    This report is on a computer study of the Koh-Chang model for physical fate prediction in dredge material disposal. This computer model can simulate three discharge methods: instantaneous bottom release, jet discharge, and discharge into a wake. Convective descent, dynamic collap...

  17. Theoretical models for evaluation of volatile emissions to air during dredged-material disposal with applications to New Bedford Harbor, Massachusetts. Final report, July 1987-June 1988

    SciTech Connect

    Thibodeaux, L.J.

    1989-05-01

    Some bottom sediments in both fresh and marine waters are contaminated with hazardous organic chemicals that are classified as volatile and semivolatile. An example is the New Bedford Harbor and Acushnet River Estuary sediment, which contains quantities of the polychlorinated biphenyls Aroclors 1242, 1248, and 1254. Dredged material contaminated with these and other volatile organic chemicals (VOCs) can release these contaminants to the atmosphere during and after disposal by volatilization. Methods to predict these volatilization losses are needed to develop design, operation, and management guidelines for controlling VOC emissions. Volatilization rates for hydrophobic organic compounds from a confined disposal facility (CDF) containing contaminated dredged material are presently unknown. The primary purpose of this study was to assess the availability of theoretical models for the evaluation of volatile emissions to air during the process of dredged-material disposal in a CDF. The first objective was to identify the primary vapor phase transport mechanism for various CDF designs and stages of filling. This provided the theoretical basis for assessing relative volatilization rates. The second objective was to review available laboratory and field procedures for obtaining the information needed to measure volatile losses. The report also contains preliminary calculations of the emission rates of Aroclors 1242 and 1254 from a hypothetical CDF operation in the Upper Acushnet River Estuary (Appendix A). Appendix B presents a detailed derivation of the rivulet and ponded VOC emission model.

  18. New Bedford Harbor Superfund Project, Acushnet River estuary engineering feasibility study of dredging and dredged material disposal alternatives. Report 4. Surface runoff quality evaluation for confined disposal. Technical report, June-February 1987

    SciTech Connect

    Skogerboe, J.G.; Price, R.A.; Brandon, D.L.

    1988-10-01

    The thickness of capping material needed to chemically sequests the polychlorinated biphenyl (PCB)-contaminated New Bedford Harbor sediment from the overlying water column and aquatic biota was assessed in a small-scale predictive test. Changes in the overlying water concentrations of dissolved oxygen, ammonium-nitrogen, and orthophosphate-phosphorus were monitored following isolation of the water column from the atmosphere by placing a 4-cm layer of mineral oil on the water surface. The chemical tracers (ammonium-nitrogen and orthophosphate-phosphorus) were selected for their mobility under anaerobic conditions, ease of measurement, and generally high concentrations in contaminated dredged material compared with clean sediments. The chemical tracers were used to evaluate the efficiency of the capping material in preventing transfer of contaminants from New Bedford Harbor sediment into the overlying water column.

  19. 33 CFR 336.1 - Discharges of dredged or fill material into waters of the U.S.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 3 2014-07-01 2014-07-01 false Discharges of dredged or fill material into waters of the U.S. 336.1 Section 336.1 Navigation and Navigable Waters CORPS OF ENGINEERS, DEPARTMENT OF THE ARMY, DEPARTMENT OF DEFENSE FACTORS TO BE CONSIDERED IN THE EVALUATION OF ARMY CORPS OF ENGINEERS DREDGING PROJECTS INVOLVING...

  20. Reclamation of abandoned mined lands along th Upper Illinois Waterway using dredged material

    SciTech Connect

    Van Luik, A; Harrison, W

    1982-01-01

    Sediments were sampled and characterized from 28 actual or proposed maintenance-dredging locations in the Upper Illinois Waterway, that is, the Calumet-Sag Channel, the Des Plaines River downstream of its confluence with the Calumet-Sag Channel, and the Illinois River from the confluence of the Kankakee and Des Plaines rivers to Havana, Illinois. Sufficient data on chemical constituents and physical sediments were obtained to allow the classification of these sediments by currently applicable criteria of the Illinois Environmental Protection Agency for the identification of hazardous, persistent, and potentially hazardous wastes. By these criteria, the potential dredged materials studied were not hazardous, persistent, or potentially hazardous; they are a suitable topsoil/ reclamation medium. A study of problem abandoned surface-mined land sites (problem lands are defined as being acidic and/or sparsely vegetated) along the Illinois River showed that three sites were particularly well suited to the needs of the Corps of Engineers (COE) for a dredged material disposal/reclamation site. Thes sites were a pair of municipally owned sites in Morris, Illinois, and a small corporately owned site east of Ottawa, Illinois, and adjacent to the Illinois River. Other sites were also ranked as to suitability for COE involvement in their reclamation. Reclamation disposal was found to be an economically competitive alternative to near-source confined disposal for Upper Illinois Waterway dredged material.

  1. USE OF DREDGINGS FOR LANDFILL. TECHNICAL REPORT NO. 3. MATHEMATICAL MODEL FOR ONE-DIMENSIONAL DESICCATION AND CONSOLIDATION OF DREDGED MATERIALS

    EPA Science Inventory

    A mathematical model has been developed to represent the physical phenomena that occur during the desiccation and one-dimensional consolidation of successive layers of dredged material as they are periodically deposited in a diked containment area. The governing boundary value pr...

  2. Chemical gradients in sediment cores from an EPA reference site off the Farallon Islands - Assessing chemical indicators of dredged material disposal in the deep sea

    USGS Publications Warehouse

    Bothner, Michael H.; Gill, P.W.; Boothman, W.S.; Taylor, B.B.; Karl, Herman A.

    1998-01-01

    Heavy metal and organic contaminants have been determined in undisturbed sediment cores from the US Environmental Protection Agency reference site for dredged material on the continental slope off San Francisco. As expected, the concentrations are significantly lower than toxic effects guidelines, but concentrations of PCBs, PAHs, Hg, Pb, and Clostridium perfringens (a bacterium spore found in sewage) were nearly two or more times greater in the surface sediments than in intervals deeper in the cores. These observations indicate the usefulness of measuring concentration gradients in sediments at the San Francisco deep ocean disposal site (SF-DODS) where a thin (0.5 cm thick) layer of dredged material has been observed beyond the boundary. This thin layer has not been chemically characterized by the common practice of homogenizing over the top 10 cm. An estimated 300 million cubic yards of dredged material from San Francisco Bay are expected to be discharged at the SF-DODS site during the next 50 years. Detailed depth analysis of sediment cores would add significant new information about the fate and effects of dredged material in the deep sea.

  3. Use of multi-objective dredging for remediation of contaminated sediments: a case study of a typical heavily polluted confluence area in China.

    PubMed

    Liu, Cheng; Shao, Shiguang; Shen, Qiushi; Fan, Chengxin; Zhou, Qilin; Yin, Hongbin; Xu, Fuliu

    2015-11-01

    Sediments in confluence areas are typically contaminated by various pollutants that have been transported there by inflowing rivers. In this study, we evaluated the pollution status of a confluence area in Lake Chaohu (China). Both the nutrients and hazardous pollutants were analysed. Most sediment cores showed large variations in nutrient concentrations at depths of 10 to 18 cm. Positive release rates of NH4(+)-N and PO4(3-)-P were detected in sediment cores. Hg and Cd were the most typical problematic metal contaminants encountered, and their contamination levels extended to depths of 20 and 25 cm, respectively. Polycyclic aromatic hydrocarbons (mostly acenaphthene and fluorine) were the primary persistent organic pollutants (POPs) present in sediments, and contamination levels frequently could be detected up to a depth of 16 cm. Simulated dredging operations were implemented in the laboratory, with a dredging depth of 15 cm found to be suitable for nutrient suppression. With the goal of suppressing nutrients release and removing high-risk metals and POPs, a multi-objective dredging plan was developed. This plan subdivides the confluence area into five parts that were treated with different dredging depths. A demonstration area was dredged in the most heavily polluted part, and the observed dredging effects were consistent with those expected on the basis of the plan. Such an approach to dredging might also be useful in other areas in the future. PMID:26162442

  4. Recovery of floral and faunal communities after placement of dredged material on seagrasses in Laguna Madre, Texas

    NASA Astrophysics Data System (ADS)

    Sheridan, P.

    2004-03-01

    The objectives of this project were to determine how long alterations in habitat characteristics and use by fishery and forage organisms were detectable at dredged material placement sites in Laguna Madre, Texas. Water, sediment, seagrass, benthos, and nekton characteristics were measured and compared among newly deposited sediments and nearby and distant seagrasses each fall and spring over three years. Over this period, 75% of the estimated total surface area of the original deposits was either re-vegetated by seagrass or dispersed by winds and currents. Differences in water and sediment characteristics among habitat types were mostly detected early in the study. There were signs of steady seagrass re-colonization in the latter half of the study period, and mean seagrass coverage of deposits had reached 48% approximately three years after dredging. Clovergrass Halophila engelmannii was the initial colonist, but shoalgrass Halodule wrightii predominated after about one year. Densities of annelids and non-decapod crustaceans were generally significantly greater in close and distant seagrass habitats than in dredged material habitat, whereas densities of molluscs were not significantly related to habitat type. Nekton (fish and decapod) densities were almost always significantly greater in the two seagrass habitats than in dredged material deposits. Benthos and nekton communities in dredged material deposits were distinct from those in seagrass habitats. Recovery from dredged material placement was nearly complete for water column and sediment components after 1.5 to 3 years, but recovery of seagrasses, benthos, and nekton was predicted to take 4 to 8 years. The current 2 to 5 years dredging cycle virtually insures no time for ecosystem recovery before being disturbed again. The only way to ensure permanent protection of the high primary and secondary productivity of seagrass beds in Laguna Madre from acute and chronic effects of maintenance dredging, while ensuring

  5. Understanding the physical and environmental consequences of dredged material disposal: history in New England and current perspectives.

    PubMed

    Fredette, T J; French, G T

    2004-07-01

    Thirty-five years of research in New England indicates that ocean disposal of dredged material has minimal environmental impacts when carefully managed. This paper summarizes research efforts and resulting conclusions by the US Army Corps of Engineers, New England District, beginning with the Scientific Report Series and continuing with the Disposal Area Monitoring System (DAMOS). Using a tiered approach to monitoring and a wide range of tools, the DAMOS program has monitored short- and long-term physical and biological effects of disposal at designated disposal sites throughout New England waters. The DAMOS program has also helped develop new techniques for safe ocean disposal of contaminated sediments, including capping and confined aquatic disposal (CAD) cells. Monitoring conducted at many sites in New England and around the world has shown that impacts are typically near-field and short-term. Findings such as these need to be disseminated to the general public, whose perception of dredged material disposal is generally negative and is not strongly rooted in current science. PMID:15234878

  6. Environmental effects of dredging. Factors influencing bioaccumulation of sediment-associated contaminants by aquatic organisms. Glossary and bibliography. Technical notes

    SciTech Connect

    McFarland, V.A.; Lutz, C.H.; Reilly, F.J.

    1989-08-01

    This is the fourth technical note in a series of four which outlines and describes the principal factors that determine uptake and retention of chemicals by aquatic organisms. The first three notes in the series describe factors relating to contaminants, sediment and water, and biota. This note contains a glossary of terms and a bibliography of key and recent publications in the scientific literature containing supporting data and discussion on each topic. The information contained herein is intended to assist Corps of Engineers environmental personnel in activities requiring a working knowledge of concepts and terminology in the subject of chemical uptake, retention, and elimination by aquatic organisms exposed to contaminated sediments. Bioaccumulation is the general term used to refer to the uptake and storage of chemicals by organisms from their environment through all routes of entry. Bioaccumulation includes bioconcentration, which is the direct uptake of chemicals from water alone, and is distinguished from biomagnification, which is the increase in chemical residues taken up through two or more levels of a food chain. Assessments of the potential for bioaccumulation of toxic substances associated with dredged sediments are often required in evaluations of permit requests. Thus, familiarity with the fundamental physical, biological, and chemical factors affecting bioaccumulation is necessary for performing evaluations of the ecological impacts of dredging operations. Additionally, a basic understanding of the concepts and terminology of bioaccumulation is increasingly required of environmental personnel who are involved in dredging and disposal operations which may involve contaminated sediments and legal personnel involved with regulation and litigation.

  7. DETERMINING THE EFFECTIVENESS OF DREDGING: FIELD STUDY FOR EVALUATING DREDGING RESIDUALS

    EPA Science Inventory

    Dredging is a commonly selected remedy for the risk management of contaminated sediments. Even so, there are questions regarding both the short-term and long-term effectiveness of dredging. A significant aspect in the performance of dredging is dredging residuals. Post-dredging ...

  8. A field study on phytoremediation of dredged sediment contaminated by heavy metals and nutrients: the impacts of sediment aeration.

    PubMed

    Wu, Juan; Yang, Lihua; Zhong, Fei; Cheng, Shuiping

    2014-12-01

    Compared to traditional chemical or physical treatments, phytoremediation has proved to be a cost-effective and environmentally sound alternative for remediation of contaminated dredged sediment. A field study was conducted in a sediment disposal site predominantly colonized by Typha angustifolia under different sediment moisture conditions to estimate the phytoremediation effects of dredged sediment. The moisture content was 37.30 % and 48.27 % in aerated and waterlogged sediment, respectively. Total nitrogen (TN) content was higher in the waterlogged sediment than in the aerated sediment. The total Cd contents were lower in aerated sediment, which was mainly resulted from the lower exchangeable fraction of Cd. The bioaccumulation of P, Cu and Pb in T. angustifolia was promoted by waterlogging, and the belowground tissue concentrations and accumulation factors (AFs) of Cu were higher than that of other metals, which can be explained by that Cu is an essential micronutrient for plants. Consistent with many previous studies, T. angustifolia showed higher metal levels in roots than in above-ground tissues at both the sediment conditions. Due to the improved biomass produced in the aerated sediment, the removals of nutrients and the metals by plant harvest were higher from aerated sediment than from waterlogged sediment. It was indicated that maintaining the dredged sediment aerated can avoid release risk and plant uptake of metals, while the opposite management option can promote phytoextraction of these contaminants. PMID:25012206

  9. Evaluation of dredged material proposed for ocean disposal from South Brother Island Channel, New York

    SciTech Connect

    Barrows, E.S.; Gardiner, W.W.; Antrim, L.D.; Gruendell, B.D.; Word, J.Q.; Tokos, J.J.S.

    1996-09-01

    South Brother Island Channel was one of seven waterways that the US Army Crops of Engineers-New York District requested the Battelle/Marine Sciences Laboratory to sample and evaluate for dredging and disposal. Tests and analyses were conducted on South Brother Island Channel sediment core samples and evaluations were performed. The evaluation of proposed dredged material from South Brother Island Channel included bulk sediment chemical analyses, chemical analyses of site water and elutriate, water-column and benthic acute toxicity tests, and bioaccumulation studies. Individual sediment core samples collected from Souther Brother Island Channel were analyzed for grain size, moisture content, and total organic carbon. a composite sediment sample, representing the entire area proposed for dredging, was analyzed for bulk density, specific gravity, metals, chlorinated pesticides, polychlorinated biphenyl congers, polynuclear aromatic hydrocarbons, and 1,4- dichlorobenzene. Site water and elutriate water, prepared from the suspended-particle phase of South Brother Island Channel sediment, were analyzed for metals, pesticides, and PCBs.

  10. Evaluation of dredged material proposed for ocean disposal from Hudson River, New York

    SciTech Connect

    Gardiner, W.W.; Barrows, E.S.; Antrim, L.D.; Gruendell, B.D.; Word, J.Q.; Tokos, J.J.S.

    1996-09-01

    The Hudson River (Federal Project No. 41) was one of seven waterways that the U.S. Army Corps of Engineers-New York District (USACE-NYD) requested the Battelle Marine Sciences Laboratory (MSL) to sample and evaluate for dredging and disposal in March 1994. Sediment samples were collected from the Hudson River. Tests and analyses were conducted on Hudson River sediment core samples. The evaluation of proposed dredged material from the Hudson River included bulk sediment chemical analyses, chemical analyses of site water and elutriate, water-column and benthic acute toxicity tests, and bioaccumulation studies. Individual sediment core samples collected from Hudson River were analyzed for grain size, moisture content, and total organic carbon (TOC). A composite sediment sample, representing the entire area proposed for dredging, was analyzed for bulk density, specific gravity, metals, chlorinated pesticides, polychlorinated biphenyl (PCB) congeners, polynuclear aromatic hydrocarbons (PAH), and 1,4-dichlorobenzene. Site water and elutriate water, prepared from the suspended-particulate phase (SPP) of Hudson River sediment, were analyzed for metals, pesticides, and PCBS. Water-column or SPP toxicity tests were performed with three species. Benthic acute toxicity tests were performed. Bioaccumulation tests were also conducted.

  11. Buffalo river dredging demonstration. Final report

    SciTech Connect

    Averett, D.E.; Zappi, P.A.; Tatem, H.E.; Gibson, A.C.; Tominey, E.A.

    1996-02-01

    The Corps of Engineers Buffalo District conducted a demonstration of equipment for dredging contaminated sediments. Several thousand cubic yards of sediment were removed from outside the Buffalo River Federal navigation channel limits using three dredge types: (1) open bucket, (2) enclosed bucket, and (3) submersible pump. The effectiveness of a silt screen deployed downstream of the dredge to reduce suspended sediment transport was also evaluated. Extensive sediment and water column monitoring and sampling were conducted during the 2-week demonstration as part of the effort to determine sediment resuspension rates and contaminant releases associated with the dredging operations. Water column samples were analyzed for total suspended solids, total organic carbon, PCBs, PAHs, metals, ammonia, and pH. A water column bioassay test using Daphnia magna was also performed to assess toxicity effects of the dredging operation. Results of this study were used to assess and refine techniques and laboratory tests that have been previously developed by the Corps of Engineers to predict sediment resuspension rates and contaminant releases. In another phase of the study, the Bureau of Mines demonstrated the use of polyelectrolytes for rapid removal of suspended solids from a dilute dredged material slurry.

  12. Environmental effects of dredging: Trophic transfer and biomagnification potential of contaminants in aquatic ecosystems. Technical notes

    SciTech Connect

    Dillon, T.M.; Suedel, B.C.; Peddicord, R.K.; Clifford, P.A.; Boraczek, J.A.

    1995-01-01

    The terms bioconcentration, bioaccumulation, biomagnification, trophic transfer, and trophic transfer coefficient are defined to avoid confusion, as they have been used inconsistently throughout the literature (Dallinger and others 1987). Bioconcentration is the uptake of a contaminant by aquatic organisms where water is the sole containment source. Bioaccumulation is the uptake of a contaminent from both water and dietary sources. Biomagnification refers to the processes of both bioconcentration and bioaccumulation that result in increased tissue concentrations of a contaminant as it passes through two or more trophic levels (Macek, Petrocelli, and Sleight 1979). Trophic transfer is defined as the transport of contaminants between two trophic levels (that is, prey to predator) (Swartz and Lee 1980). Trophic transfer coefficient (FTC) is the concentration of contaminant in consumer tissue divided by the concentration of contaminant in food sources (that is, preceding trophic level). A TTC is an approximate measure of the potential for a contaminant to biomagnify. Biomagnification occurs when concentrations of a material increase between two or more trophic levels (that is, TTC>1) and is a sub- set of trophic transfer, which refers to any movement of a material between trophic levels (that is, TTC can be greater than or less than 1). If trophic transfer is determined to be substantially >1, biomagnification is said to occur. If a TTC value is <1%, biomagnification is judged not to take place.

  13. Laboratory Assessment of Potential Impacts to Dungeness Crabs from Disposal of Dredged Material from the Columbia River

    SciTech Connect

    Vavrinec, John; Pearson, Walter H.; Kohn, Nancy P.; Skalski, J. R.; Lee, Cheegwan; Hall, Kathleen D.; Romano, Brett A.; Miller, Martin C.; Khangaonkar, Tarang P.

    2007-05-07

    Dredging of the Columbia River navigation channel has raised concerns about dredging-related impacts on Dungeness crabs (Cancer magister) in the estuary, mouth of the estuary, and nearshore ocean areas adjacent to the Columbia River. The Portland District, U.S. Army Corps of Engineers engaged the Marine Sciences Laboratory (MSL) of the U.S. Department of Energy’s Pacific Northwest National Laboratory to review the state of knowledge and conduct studies concerning impacts on Dungeness crabs resulting from disposal during the Columbia River Channel Improvement Project and annual maintenance dredging in the mouth of the Columbia River. The present study concerns potential effects on Dungeness crabs from dredged material disposal specific to the mouth of the Columbia River.

  14. Evaluation of Dredged Material Proposed for Ocean Disposal from Federal Projects in New York and New Jersey and the Military Ocean Terminal (MOTBY)

    SciTech Connect

    Barrows, E.S.; Antrim, L.D.; Pinza, M.R.; Gardiner, W.W.; Kohn, N.P.; Gruendell, B.D.; Mayhew, H.L.; Word, J.Q.; Rosman, L.B.

    1996-08-01

    The U.S. Army Corps of Engineers (USACE) is authorized by Section 103 of the Marine Protection, Research, and Sanctuaries Act of 1972 (MPRSA), Public Law 92-532, and by the Clean Water Act of 1972 (CWA) and Amendments of 1977 to permit, evaluate, and regulate the disposal of dredged material in ocean waters to minimize adverse environmental effects. Compliance with the regulations of the MPRSA calls for physical and biological testing of sediment proposed for dredging prior to its disposal in ocean waters. The testing required by the MPRSA criteria is conducted under a testing manual developed by the USACE and the U.S. Environmental Protection Agency (EPA), Evaluation of Dredged Material Proposed for Ocean Disposal (Testing Manual), commonly referred to as the `Green Book.` Testing protocols in the Green Book include bulk sediment analysis, grain size analysis, elutriate testing, and biological testing. The biological testing includes bioassays for acute toxicity as well as analysis to determine bioaccumulation of certain contaminants by marine organisms. The objective of the USACE-NYD Federal Projects Program was to evaluate sediment proposed for dredging and unconfined ocean disposal at the Mud Dump Site. The results of analytical measurements and bioassays performed on the test sediments were compared with analyses of sediment from the Mud Dump Reference Site to determine whether the test sediments were acutely toxic to marine organisms or resulted in statistically significantly greater bioaccumulation of contaminants in marine organisms, relative to the reference sediment. Testing for the federal project areas was performed according to the requirements.

  15. Surgical dredging controls turbidity

    SciTech Connect

    Seagren, E.H.

    1994-06-01

    The need to remove contaminated and uncontaminated sediments located under a column of water is increasing. Small hydraulic dredges offer flexibility in the removal of sediments in industrial lagoons, wetlands, drinking water ponds, and environmentally sensitive areas.

  16. Metal solubility as a function of pH in a contaminated, dredged sediment affected by oxidation.

    PubMed

    Tack, F M; Callewaert, O W; Verloo, M G

    1996-01-01

    The solubility as a function of pH for metals in a reduced dredged sediment, subjected to different redox conditions, was studied in a laboratory experiment. The redox conditions imposed simulated (i) the undisturbed sediment (flooded), (ii) a dredged material stored in a confined pond (aerated once and then flooded), (iii) an upland stored dredged material (drained and dried), and (iv) an upland stored sediment subjected to tillage (drained, dried and mixed). Minor differences in the solubility as a function of pH were observed between the treatments after two weeks. After three months, the solubility of Cd, Cu, Pb and Zn increased strongly in the oxidized sediments. Leachability of Fe decreased, while Mn, Ni and Co were mostly unaffected. Both short- and long-term mobility of metals (except Fe) is expected to be lowest when a reduced sediment remains in reduced conditions. Studying the solubility as a function of pH may provide additional information on the chemical association of metals in sediments. PMID:15091441

  17. Recycling biosolids and lake-dredged materials to pasture-based animal agriculture: Alternative nutrient sources for forage productivity and sustainability

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Domestic sewage sludge or biosolids and lake-dredged materials are examples of materials that can be used to cut fertilizer costs in pasture-based animal agriculture. Sustainable biosolids and lake-dredged materials management is based upon controlling and influencing the quantity, quality and chara...

  18. Possible production of ceramic tiles from marine dredging spoils alone and mixed with other waste materials.

    PubMed

    Baruzzo, Daniela; Minichelli, Dino; Bruckner, Sergio; Fedrizzi, Lorenzo; Bachiorrini, Alessandro; Maschio, Stefano

    2006-06-30

    Dredging spoils, due to their composition could be considered a new potential source for the production of monolithic ceramics. Nevertheless, abundance of coloured oxides in these materials preclude the possibility of obtaining white products, but not that of producing ceramics with a good mechanical behaviour. As goal of the present research we have produced and studied samples using not only dredging spoils alone, but also mixtures with other waste materials such as bottom ashes from an incinerator of municipal solid waste, incinerated seawage sludge from a municipal seawage treatment plant and steelworks slag. Blending of different components was done by attrition milling. Powders were pressed into specimens which were air sintered in a muffle furnace and their shrinkage on firing was determined. Water absorption, density, strength, hardness, fracture toughness, thermal expansion coefficient of the fired bodies were measured; XRD and SEM images were also examined. The fired samples were finally tested in acidic environment in order to evaluate their elution behaviour and consequently their environmental compatibility. It is observed that, although the shrinkage on firing is too high for the production of tiles, in all the compositions studied the sintering procedure leads to fine microstructures, good mechanical properties and to a limitation of the release of many of the most hazardous metals contained in the starting powders. PMID:16343751

  19. Evaluation of dredged material proposed for ocean disposal from Red Hook/Bay Ridge project areas, New York

    SciTech Connect

    Pinza, M.R.; Barrows, E.S.; Borde, A.B.

    1996-09-01

    The objective of the Red HookIBay Ridge project was to evaluate proposed dredged material from these two areas to determine its suitability for unconfined ocean disposal at the Mud Dump Site. Sediment samples were collected from the Red Hook/Bay Ridge project areas. Tests and analyses were conducted. The evaluation of proposed dredged material from the Red Hook/Bay Ridge project areas consisted of bulk sediment chemical analyses, chemical analyses of dredging site water and elutriate, water-column and benthic acute toxicity tests. Twenty-four individual sediment core samples were collected from these two areas and analyzed for grain size, moisture content, and total organic carbon (TOC). Three composite sediment samples, representing Red Hook Channel and the two Bay Ridge Reaches to be dredged, were analyzed for bulk density, specific gravity, metals, chlorinated pesticides, polychlorinated biphenyl (PCB) congeners, polynuclear aromatic hydrocarbons (PAH), and 1,4-dichlorobenzene. Dredging site water and elutriate water, which is prepared from the suspended-particulate phase (SPP) of the three Red Hook Bay Ridge sediment composites, were analyzed for metals, pesticides, and PCBS. Benthic acute toxicity tests were performed. Water-column or SPP toxicity tests were performed. Bioaccumulation tests were also conducted.

  20. LDEF Materials/Contamination

    NASA Technical Reports Server (NTRS)

    Pippin, Gary

    1997-01-01

    This pictorial presentation reviews the post-flight analysis results from two type of hardware (tray clamp bolt heads and uhcre flight experiment tray walls) from the Long Duration Exposure Facility (LDEF). It will also discuss flight hardware for one upcoming (Effects of the Space Environment on Materials (ESEM) flight experiment), and two current flight experiments evaluating the performance of materials in space (Passive Optical Sample Assembly (POSA) 1&2 flight experiments. These flight experiments also are concerned with contamination effects which will also be discussed.

  1. PROPOSED BIOACCUMULATION TESTING EVALUATION FRAMEWORK FOR ASSESSING THE SUITABILITY OF DREDGED MATERIAL TO BE PLACED AT THE HISTORIC AREA REMEDIATION SITE (HARS) - PHASE 1 HUMAN HEALTH.

    EPA Science Inventory

    The August 29, 1997 Final Rule, Simultaneous De-designation and Termination of the Mud Dump Site and Designation of the HARS, specifies that the HARS will be remediated by covering it with uncontaminated dredged material (i.e., dredged material that meets current Category I stand...

  2. Impact of the Charleston Ocean Dredged Material Disposal Site on nearby hard bottom reef habitats.

    PubMed

    Crowe, Stacie E; Gayes, Paul T; Viso, Richard F; Bergquist, Derk C; Jutte, Pamela C; Van Dolah, Robert F

    2010-05-01

    The deepening of shipping and entrance channels in Charleston Harbor (South Carolina, USA) was completed in April 2002 and placed an estimated 22 million cubic yards (mcy) of material in the offshore Charleston Ocean Dredged Material Disposal Site (ODMDS). To determine if sediments dispersed from the ODMDS were negatively affecting invertebrate and/or finfish communities at hard bottom reef areas around the disposal area, six study sites were established: three close to and downdrift of the ODMDS and three upcurrent and farther from the ODMDS. These sites were monitored biannually from 2000 to 2005 using diver surveys and annually using simultaneous underwater video tows and detailed sidescan-sonar. In general, the sediment characteristics of downdrift sites and reference sites changed similarly over time. Overall, the hard bottom reef areas and their associated communities showed little evidence of degradation resulting from the movement of sediments from the Charleston ODMDS during the study period. PMID:20089285

  3. Short- and longer-term effects of the willow root system on metal extractability in contaminated dredged sediment.

    PubMed

    Vervaeke, P; Tack, F M G; Lust, N; Verloo, M

    2004-01-01

    Willow (Salix spp.) stands are often proposed as vegetation covers for the restoration and stabilization of contaminated and derelict land. Planting willows on dredged sediment disposal sites for biomass production can be an alternative to traditional capping techniques. However, with the introduction of willow stands on dredged sediment disposal sites, the possibility of increased contaminant availability in the root zone must be acknowledged as it can increase the risk of leaching. Two trials investigated the availability of Cd, Zn, Cu, and Pb in the root zones of willows grown on contaminated sediment. To assess the effects of willow root growth on metal extractability and mobility, bulk and rhizosphere sediment samples were extracted with deionized water, ammonium acetate at pH 7, and ammonium acetate-EDTA at pH 4.65. A rhizobox experiment was used to investigate the short-term effect of willow roots on metal availability in oxic and anoxic sediment. Longer-term effects were assessed in a field trial. The rhizobox trial showed that Cd, Zn, and Cu extractability in the rhizosphere increased while the opposite was observed for Pb. This was attributed to the increased willow-induced oxidation rate in the root zone as a result of aeration and evapotranspiration, which masked the direct chemical and biological influences of the willow roots. The field trial showed that Cu and Pb, but not Cd, were more available in the root zone after water and ammonium acetate (pH 7) extraction compared with the bulk sediment. Sediment in the root zone was better structured and aggregated and thus more permeable for downward water flows, causing leaching of a fraction of the metals and significantly lower total contents of Cd, Cu, and Pb. These findings indicate that a vegetation cover strategy to stabilize sediments can increase metal availability in the root zone and that potential metal losses to the environment should be considered. PMID:15224934

  4. Restoring marsh elevation in a rapidly subsiding salt marsh by thin-layer deposition of dredged material

    USGS Publications Warehouse

    Ford, M.A.; Cahoon, D.R.; Lynch, J.C.

    1999-01-01

    Thin-layer deposition of dredged material on coastal marsh by means of high-pressure spray dredging (Jet-Spray??2) technology has been proposed as a mechanism to minimize wetland impacts associated with traditional bucket dredging technologies and to restore soil elevations in deteriorated marshes of the Mississippi River delta. The impact of spray dredging on vegetated marsh and adjacent shallow-water habitat (formerly vegetated marsh that deteriorated to open water) was evaluated in a 0.5-ha Spartina alterniflora-dominated salt marsh in coastal Louisiana. The thickness of dredged sediment deposits was determined from artificial soil marker horizons and soil elevation change was determined from sedimentation-erosion tables (SET) established prior to spraying in both sprayed and reference marshes. The vertical accretion and elevation change measurements were made simultaneously to allow for calculation of shallow (~5 m depth) subsidence (accretion minus elevation change). Measurements made immediately following spraying in July 1996 revealed that stems of S. alterniflora were knocked down by the force of the spray and covered with 23 mm of dredged material. Stems of S. alterniflora soon recovered, and by July 1997 the percent cover of S. alterniflora had increased three-fold over pre-project conditions. Thus, the layer of dredged material was thin enough to allow for survival of the S. alterniflora plants, with no subsequent colonization by plant species typical of higher marsh zones. By February 1998, 62 mm of vertical accretion accumulated at this site, and little indication of disturbance was noted. Although not statistically significant, soil elevation change was greater than accretion on average at both the spray and reference marshes, suggesting that subsurface expansion caused by increased root biomass production and/or pore water storage influence elevation in this marsh region. In the adjacent shallow water pond, 129 mm of sediment was deposited in July

  5. 75 FR 39523 - Notice of Intent: Designation of an Ocean Dredged Material Disposal Site (ODMDS) Off the Mouth of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-09

    ... policy to prepare a voluntary National Environmental Policy document for all ODMDS designations (63 FR... AGENCY Notice of Intent: Designation of an Ocean Dredged Material Disposal Site (ODMDS) Off the Mouth of... Intent to prepare an Environmental Impact Statement (EIS) for the designation of an ODMDS off the...

  6. 75 FR 22524 - Ocean Dumping; Designation of Ocean Dredged Material Disposal Sites Offshore of the Siuslaw River...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-29

    ... the Federal Register in 1977 (42 FR 2461), a status superseded by later statutory changes to the MPRSA. Mounding at Site A and concern over the potential for ocean currents to move sediments from Site A back..., EPA published a proposed rule at 75 FR 5708 to designate two new ocean dredged material disposal...

  7. 77 FR 23668 - Intent To Prepare a Draft Environmental Impact Statement for a 20-Year Dredged Material...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-20

    ...-Year Dredged Material Management Plan for the Atlantic Intracoastal Waterway from Port Royal Sound... Port Royal Sound, South Carolina, southward to the Georgia-Florida state line. The Corps' Savannah... Harbor Act of 1937 provided for a 7- foot protected route around St. Andrew Sound, Georgia, and for a...

  8. 15 CFR Appendix D to Subpart M of... - Dredged Material Disposal Sites Adjacent to the Monterey Bay National Marine Sanctuary

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 15 Commerce and Foreign Trade 3 2014-01-01 2014-01-01 false Dredged Material Disposal Sites Adjacent to the Monterey Bay National Marine Sanctuary D Appendix D to Subpart M of Part 922 Commerce and... SANCTUARY PROGRAM REGULATIONS Monterey Bay National Marine Sanctuary Pt. 922, Subpt. M, App. D Appendix D...

  9. 76 FR 43685 - Designation of an Ocean Dredged Material Disposal Site (ODMDS) in the Gulf of Mexico Off the...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-21

    ... for Voluntary Preparation of National Environmental Policy Act (NEPA) Documents (63 FR 58045), and in... AGENCY Designation of an Ocean Dredged Material Disposal Site (ODMDS) in the Gulf of Mexico Off the Mouth... Act of 1972 (MPRSA), and 40 CFR Part 228 (Criteria for the Management of Disposal Sites for...

  10. Ecological evaluation of proposed dredged material from Oakland Harbor intensive study, IC-1 and OC4-B

    SciTech Connect

    Pinza, M.R.; Mayhew, H.L.; Karle, L.M.; Word, J.Q.

    1993-11-01

    Oakland Harbor is located on the eastern shoreline of central San Francisco Bay in Alameda County, between the cities of Oakland and Alameda, California. Oakland Harbor and its access channels are no longer wide or deep enough to accommodate modern deeper-draft vessels. The Water Resources Development Act of 1986 (Public Law 99-662) authorized the US Army Corps of Engineers (USACE), San Francisco District to deepen and widen the navigation channels to {minus}44 ft mean lower low water (MLLW) ({minus}42 ft MLLW plus 2 ft of overdraft) in Oakland Harbor. Several options for disposal of the material from this dredging project are under consideration by USACE. Those options include disposal within San Francisco Bay, at open-ocean sites, or at upland disposal sites. Section 103 of the Marine Protection, Research, and Sanctuaries Act of 1972 (MPRSA), Public Law 92-532, specifies that all proposed disposal of dredged material into open water be evaluated to determine the potential environmental impacts to those activities. To comply with those requirements, the potential environmental impacts of the dredged material must be evaluated by chemical characterization, toxicity testing, and bioaccumulation testing prior to dredging and disposal. Test results are described.

  11. Changes in speciation and leaching behaviors of heavy metals in dredged sediment solidified/stabilized with various materials.

    PubMed

    Bao, Jianping; Wang, Liang; Xiao, Man

    2016-05-01

    Solidification/stabilization (S/S) of sediments is frequently used to treat contaminants in dredged sediments. In this study, sediment collected from the Pearl River Delta (China) was solidified/stabilized with three different kinds of functional materials: cement, lime and bentonite. Lime primarily acted via induced increases in pH, while cements stabilization occurred through their silicate-based systems and the main function of bentonite was adsorption. The speciation and leaching behaviors of specific heavy metals before and after S/S were analyzed and the results showed that the residual speciation of Cd, Cr, Ni, Pb and Zn increased in all treatments except for Cu, as the exchangeable speciation, carbonate-bound speciation and Fe-Mn-oxide-bound speciation of Cu (all of which could be stabilized) were less than 2 % of the total amount. Pb leaching only decreased when pH increased, while the mobility of Cr and Ni only decreased in response to the silicate-based systems. The leached portion of the Fe-Mn-oxide-bound speciation followed the order Zn > Cu > Ni/Cd > Pb > Cr. The leached portion of organic-matter-bound species was less than 4 % for Cd, Cr, Ni and Pb, but 35.1 % and 20.6 % for Cu and Zn, respectively. PMID:26846241

  12. Impacts of dredged-material disposal on the coastal soft-bottom macrofauna, Saronikos Gulf, Greece.

    PubMed

    Katsiaras, N; Simboura, N; Tsangaris, C; Hatzianestis, I; Pavlidou, A; Kapsimalis, V

    2015-03-01

    Dredged sediments derived by the low course and estuary of the metropolitan river of Athens (Kifissos River) were dumped every day for 21 months to an open-sea site in the Saronikos Gulf. The spoil-ground and surrounding area was monitored prior, during and post to dumping for 24 months, over 6-month intervals. Dumping significantly changed the granulometry of the pre-existing superficial sediments to finer-grained only in the spoil ground and increased the sediment contamination load (aliphatic, polycyclic aromatic hydrocarbons and heavy metals) throughout the study area. Microtox® SPT showed that sediment toxicity levels were high at almost all sampling stations. During dumping, burial of natural soft-bottom habitats degraded severely the communities of the spoil-ground resulting in an almost azoic state, as well as significantly declined the species number and abundance of benthic communities in locations up to 3.2 km away from the spoil-ground, due to dispersion of the spoil and smothering. Benthic indices on the surrounding sites were significantly correlated with hydrocarbon concentrations and sediment toxicity levels. Post to dumping, the macrofauna communities of the spoil-ground were still significantly degraded, but the surrounding areas showed patterns of recovery. However, the high concentrations of aliphatic, polycyclic aromatic hydrocarbons and levels of toxicity persisted in the sediments after the ceasing of dumping operations in the study area, implying the ecological hazard imposed on the area. PMID:25497354

  13. Ecological evaluation of proposed dredged material from Winyah Bay, South Carolina

    SciTech Connect

    Ward, J.A.; Gardiner, W.W.; Pinza, M.R.; Word, J.Q.

    1993-10-01

    The navigational channels of Winyah Bay, Georgetown Harbor, South Carolina require dredging to enable normal shipping traffic to use these areas. Before dredging, environmental assessments must be conducted to determine the suitability of this dredged sediment for unconfined, open-water disposal. The Charleston, South Carolina District Office of the US Army Corps of Engineers (USACE) requested that the Battelle/Marine Science Laboratory (MSL) collect sediment samples and conduct the required physical/chemical, toxicological, and bioaccumulation evaluations as required in the 1991 Implementation Manual. This report is intended to provide information required to address potential ecological effects of the Entrance Channel and Inner Harbor sediments proposed disposal in the ocean.

  14. Analyses of native water and dredged material from southern Louisiana waterways, 1975-76

    USGS Publications Warehouse

    Demas, Charles R.; Higgins, Patricia C.

    1977-01-01

    From June 1975 to July 1976 the U.S. Geological Survey conducted nine dredging and seven postdredging studies related to water quality in selected reaches of major navigable waterways of southern Louisiana. Samples were collected from the Mississippi River-Gulf Outlet, Mississippi River at Southwest Pass, Mississippi River at New Orleans, Bayou Rigaud near Grand Isle, Barataria Bay and Waterway, Bayou La Carpe near Houma, Atchafalaya Bay (Ship Channel), Lower Atchafalaya River area, Intracoastal Waterway near Calumet, Intracoastal Waterway (Port Allen to Morgan City), Petite Anse area, and Calcasieu River and Ship Channel. These studies were conductd to determine potential environmental effects of dredging activities in the waterways. The Geological survey collected, treated, and analyzed 383 water and water-sediment mixture samples from 85 dredging sites and 142 postdredging samples (72 sites). Water samples were collected 100 yards upstream and downstream from the dredge effluent, from the disposal area, and from the effluent outfall during the dredge phase of the study; samples were collected at former dredge sites during the postdredging phase. Samples were analyzed for selected metals, pesticides, nutrients, and organic constituents. The analytical data are presented in tables. Sampling sites are shown on maps. (Woodard-USGS)

  15. A quantitative analysis of naiad mollusks from the Prairie du Chien, Wisconsin dredge material site on the Mississippi River

    USGS Publications Warehouse

    Havlik, M.E.; Marking, L.L.

    1980-01-01

    The Prairie du Chien dredge material site contains about 100,000 cubic meters of material dredged from the East Channel of the Mississippi Riverin1976. Previous studies in that area suggested a rich molluscan fauna, but most studies were only qualitative or simply observations. Our study of this material was designed to determine the density and diversity of molluscan fauna, to assess changes in the fauna, to identify endemic species previously unreported, and to evaluate the status of the endangered Lampsilis higginsi. Ten cubic meters of dredge material were sieved to recover shells. Molluscan fauna at the site contained38 species of naiades and up to 1,737 identifiable valves per cubic meter. The endangered L. higginsi ranked18th In occurrence, accounted for only 0.52% of the identifiable shells, and averaged about three valves per cubic meter. From a total of 813 kg of naiades and gastropods, 6,339 naiad valves were identified. Five naiad species were collected at the site for the first time, and Eploblasma triquetra had not been reported previously in the Prairie du Chien area. Although the molluscan fauna has changed, the East Channel at Prairie du Chien is obviously suitable for L. higginsi.

  16. Long-term benthic infaunal monitoring at a deep-ocean dredged material disposal site off Northern California

    NASA Astrophysics Data System (ADS)

    Blake, James A.; Maciolek, Nancy J.; Ota, Allan Y.; Williams, Isabelle P.

    2009-09-01

    One hundred and thirty-five benthic infaunal samples were collected from the San Francisco Deep-Ocean Disposal Site (SF-DODS) over a 10-year period from January 1996 to September 2004. Each sample was 0.1 m 2, cut to a depth of 10 cm, and sieved through a 300-μm mesh. A total of 810 species of benthic invertebrates were identified; the majority of taxa (65.4%) new to science. The fauna represents a rich lower slope infaunal assemblage that rivals similarly studied locations in the western North Atlantic. No regional impact or degradation of benthic infauna due to dredged material disposal was detected. All reference stations and stations on the site boundary maintained high species richness and diversity during the monitoring period. Exceptions included an occasional sample with anomalously high numbers of one or two species that reduced the diversity and/or equitability. Within SF-DODS species richness and diversity were often reduced. Stations within the disposal site were recolonized by the same taxa that normally occurred in adjacent reference areas. Initial colonizers of fresh dredged material included spionid and paraonid polychaetes that were typical dominants at the site. At least one polychaete species, Ophelina sp. 1, sometimes colonized dredged materials containing coarse sand. One sample at Station 13, located in the middle of SF-DODS (September 2002), contained 57 species of benthic invertebrates, suggesting that colonization of fresh dredged material is rapid. It seems unlikely that larval dispersal and settlement account for this rapid recolonization; therefore it is postulated that adult organisms from adjacent areas move to the disturbed sites via boundary layer currents. The steep continental slope adjacent to SF-DODS is subject to turbidity flows and the resident fauna are likely pre-adapted to rapidly colonize disturbed sediments. Larval dispersal, especially by spionid polychaetes such as Prionospio delta, may also be important in colonizing

  17. Zn speciation in a soil contaminated by the deposition of a dredged sediment by synchrotron X-ray techniques

    SciTech Connect

    Isaure, Marie-Pierre; Manceau, Alain; Laboudigue, Agnes; Tamura, Nobumichi; Marcus, Matthew A.

    2003-09-01

    The nature and proportion of Zn species present in an agricultural soil overlaid by a dredged contaminated sediment have been untangled by the novel combination of three non-invasive synchrotron-based x-ray techniques: x-ray microfluorescence ({mu}SXRF), microdiffraction ({mu}XRD), and absorption spectroscopy (EXAFS). One primary (franklinite) and two secondary (phyllomanganate and phyllosilicate) Zn-containing minerals were identified in the initial soil, and another primary (ZnS) and a new secondary (Fe-(oxyhydr)oxide) Zn species in the covered soil. The quantitative analysis of EXAFS spectra recorded on bulk samples indicated that ZnS and Zn-Fe (oxyhydr)oxides amounted to 71+-10 percent and 27+-10 percent, respectively, and the other Zn species to less than 10 percent. The two new Zn species found in the covered soil result from the gravitational migration of ZnS particles initially present in the sediment, and from their further oxidative dissolution and fixation of leached Zn on F e (oxyhydr) oxides.

  18. Environmental effects of dredging: Methods for the assessment of the genotoxic effects of environmental contaminants. Glossary and references. Technical notes

    SciTech Connect

    Honeycutt, M.E.; Jarvis, A.S.; McFarland, V.A.

    1995-07-01

    This technical note is the third in a series of three that outline and describe the principal methods that have been developed to test the potential of environmental contaminants to cause mutagenic, carcinogenic, and teratogenic effects. The first in this series (EEDP-04-24) describes methods used to discern genotoxic effects at the sub cellular level, while the second (EEDP-04-25) describes methods used to discern genotoxic effects at the cellular and organ/organism level. Recent literature citations for each topic referenced in this series of technical notes are provided in this technical note, in addition to a glossary of terms. The information in these technical notes is intended to provide Corps of Engineers personnel with a working knowledge of the terminology and conceptual basis of genotoxicity testing. To develop an improved understanding of the concepts of genotoxicity, readers are encouraged to review A Primer in Genotoxicity (Jarvis, Reilly, and Lutz 1993), presented in Volume D-93-3 of the Environmental Effects of Dredging information exchange bulletin.

  19. Ecological evaluation of proposed dredged material from Richmond Harbor Deepening Project and the intensive study of the Turning Basin

    SciTech Connect

    Pinza, M.R.; Mayhew, H.L.; Karle, L.M.; Kohn, N.P.; White, P.J.; Word, J.Q.; Michaels, L.L.

    1995-06-01

    Richmond Harbor is on the eastern shoreline of central San Francisco Bay and its access channels and several of the shipping berths are no longer wide or deep enough to accommodate modem deeper-draft vessels. The Water Resources Development Act of 1986 (PL99-662) authorized the US Army Corps of Engineers (USACE), San Francisco District to deepen and widen the navigation channels in Richmond Harbor. Several options for disposal of the material from this dredging project are under consideration by USACE: disposal within San Francisco Bay, at open-ocean disposal sites, or at uplands disposal sites. Purpose of this study was to conduct comprehensive evaluations, including chemical, biological, and bioaccumulation testing of sediments in selected areas of Richmond Harbor. This information was required by the Environmental Protection Agency (EPA) and USACE. Battelle/Marine Sciences Laboratory collected 20 core samples, both 4-in. and 12-in., to a project depth of -40 ft mean lower low water (MLLW) (-38 ft MLLW plus 2 ft of overdepth) using a vibratory-hammer core. These 20 field samples were combined to form five test composites plus an older bay mud (OBM) composite that were analyzed for physical/chemical parameters, biological toxicity, and tissue chemistry. Solid-phase tests were conducted with the amphipod, Rhepoxynius abronius; the clam, Macoma nasuta; and the polychaete worm, Nephtys caecoides. Suspended-particulate-phase (SPP) tests were conducted with the sanddab, Citharichthys stigmaeus; the mysid, Holmesimysis costata; and the bivalve, Mytilus galloprovincialis. Bioaccumulation of contaminants was measured in tissues of Macoma nasuta and Nereis virens. Sediments from one ocean reference sediment, and two in-bay reference sediments, were tested concurrently. Results from analysis of the five test treatments were statistically compared with the reference sediment R-OS in the first five sections of this report.

  20. Copper and cadmium in bottom sediments dredged from Wyścigi Pond, Warsaw, Poland--contamination and bioaccumulation study.

    PubMed

    Wojtkowska, Małgorzata; Karwowska, Ewa; Chmielewska, Iwona; Bekenova, Kundyz; Wanot, Ewa

    2015-12-01

    This research covered an evaluation of the copper and cadmium concentrations in bottom sediments dredged from one of the ponds in Warsaw. The samples of sediments, soil, and plants were analyzed in terms of Cu and Cd content. The research concerned the heap of dredged bottom sediments from Wyścigi Pond, Warsaw, Poland. Two boreholes were made to obtain sediment cores with depths of A 162.5 cm and B 190.0 cm. The cores were divided into 10 sub-samples with a thickness of about 15-20 cm. A control sample of soil was taken from the horse racecourse several hundred meters away from the heap. The vegetation was sampled directly from the heap. The predominating plants were tested: Urtica dioica, Glechoma hederacea, Euonymus verrucosus, and Drepanocladus aduncus. A control sample of U. dioica taken outside of the heap was also tested. The commercial PHYTOTOXKIT microbiotest was applied to evaluate the influence of heavy metal-contaminated sediments (used as soil) on germination and growth of the chosen test plants. The analyses of cadmium and copper concentrations revealed that the metal concentration in sediments was diverse at different depths of sampling, probably reflecting their concentration in stored layers of sediments. Moreover, the metal content in core A was four to five times lower than that in core B, which reveals heterogeneity of the sediments in the tested heap. In core A, the copper concentration ranged from 4.7 to 13.4 mg/kg d.w. (average 8.06 ± 0.71 mg/kg d.w.), while in core B, it ranged from 9.2 to 82.1 mg/kg d.w. (average 38.56 ± 2.6 mg/kg d.w.). One of the results of the heavy metal presence in soils is their bioaccumulation in plants. Comparing plant growth, more intensive growth of roots was observed in the case of plants growing on the control (reference) soil than those growing on sediments. The intensive development of both primary and lateral roots was noticed. During this early growth, metal accumulation in plants occurred

  1. Effects of burial by the disposal of dredged materials from the Columbia River on Pacific razor clams (Siliqua patula)

    SciTech Connect

    Vavrinec, John; Kohn, Nancy P.; Hall, Kathleen D.; Romano, Brett A.

    2007-05-07

    Annual maintenance of the Columbia River navigation channel requires the U.S. Army Corps of Engineers (Corps) to dredge sediment from the river and dispose of the sediment in coastal areas at the mouth of the Columbia River. Some of these disposal areas can be as shallow as 12 m deep in waters off the coastal beaches, and dredged material disposal activities have therefore raised concerns of impacts to local razor clam (Siliqua patula) populations that are prevalent in the area. The Corps’ Portland District requested that the Marine Sciences Laboratory of the U.S. Department of Energy’s Pacific Northwest National Laboratory conduct laboratory experiments to evaluate the potential impacts of burial by dredged material to razor clams during disposal. Prior modeling of disposal events indicates three stresses that could have an impact on benthic invertebrates: convective descent and bottom encounter (compression forces due to bottom impact), dynamic collapse and spreading (surge as material washes over the bottom), and mounding (burial by material). Because the razor clam is infaunal, the effects of the first two components should be minimal, because the clams should be protected by substrate that is not eroded in the event and by the clams’ rapid digging capabilities. The mound resulting from the disposal, however, would bury any clams remaining in the footprint under as much as 12 cm of new sediment according to modeling, and the clams’ reaction to such an event and to burial is not known. Although the literature suggests that razor clams may be negatively affected by siltation and therefore perhaps by dredging and disposal activity, as well, impacts of this type have not been demonstrated. The primary purpose of this study was to evaluate the potential impacts of dredge material disposal on adult subtidal razor clam populations at the mouth of the Columbia River. Using the parameters defined in a previous model, a laboratory study was created in which a

  2. 15 CFR Appendix C to Subpart M of... - Dredged Material Disposal Sites Within the Sanctuary

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... Disposal Site 1 36.9625 −122.00056 2 36.9625 −121.99861 3 36.96139 −121.99833 4 36.96139 −122.00083 SF-12 Dredge Disposal Site 1 36.80207 −121.79207 2 36.80157 −121.79218 3 36.80172 −121.79325 4 36.80243 −121.79295 SF-14 Dredge Disposal Site (circle with 500 yard radius) 1 36.79799 −121.81907 Monterey...

  3. 15 CFR Appendix C to Subpart M of... - Dredged Material Disposal Sites Within the Sanctuary

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... Disposal Site 1 36.9625 −122.00056 2 36.9625 −121.99861 3 36.96139 −121.99833 4 36.96139 −122.00083 SF-12 Dredge Disposal Site 1 36.80207 −121.79207 2 36.80157 −121.79218 3 36.80172 −121.79325 4 36.80243 −121.79295 SF-14 Dredge Disposal Site (circle with 500 yard radius) 1 36.79799 −121.81907 Monterey...

  4. A screening procedure for selecting the most suitable dredged material placement site at the sea. The case of the South Euboean Gulf, Greece.

    PubMed

    Kapsimalis, V; Panagiotopoulos, I P; Hatzianestis, I; Kanellopoulos, T D; Tsangaris, C; Kaberi, E; Kontoyiannis, H; Rousakis, G; Kyriakidou, C; Hatiris, G A

    2013-12-01

    The selection of the best site for the placement of dredged sedimentary material (∼7,000 m(3)) from the Aliveri coastal area in the adjacent South Euboean Gulf (Greece) was accomplished through a screening procedure. The initial stage comprised the determination of physical, chemical, and biological characteristics of the dredged sediment before the commencement of any dredging operation. Grain size measurements, geochemical analyses together with the use of pollution/toxicity indices and empirical sediment quality guidelines, and the conduct of an acute toxicity test showed that the dredged material consisted of "unpolluted to slightly polluted" silty sands and sandy silts. However, the local authorities planned to place this sediment in the neighboring open sea area, i.e., the South Euboean Gulf, due to the absence of any beneficial use or alternative dumping option (i.e., dumping on public lands). Therefore, the next stage of the screening procedure, based on criteria such as the national legislation, seabed and seawater column characteristics, influence of the water mass circulation pattern on the post-placement migration of dredged sediment, impact on living resources and human activities (i.e., aquaculture and fishing), effect on significant marine sites (i.e., sites of scientific, ecological, and historical importance, navigation routes, military zones), and seafloor engineering uses, led to the evaluation of the suitability of the South Euboean Gulf as a potential dumping area. Then, the identification of the appropriate dredged material placement sites in the South Euboean Gulf was based on a cluster analysis, which tested the physicochemical resemblance of the dredged material and the surface sediments of 19 potential placement locations in the gulf. After the statistical process, only four sites situated near the north shoreline of the South Euboean Gulf were qualified as the best dredged material placement locations. PMID:23813126

  5. Application of neutral red retention assay to caged clams (Ruditapes decussatus) and crabs (Carcinus maenas) in the assessment of dredged material.

    PubMed

    Buratti, Sara; Ramos-Gómez, Julia; Fabbri, Elena; DelValls, T Angel; Martín-Díaz, M Laura

    2012-01-01

    Dredged material management is a key issue for the protection of aquatic environments. The in situ approach using caged bioindicator species has been chosen lately as a new methodology for the assessment of dredged material. In a tier testing approach, neutral red retention (NRR) assay has been applied as a screening tool to detect adverse changes in health status associated with contamination. Nevertheless, to authors' knowledge, little is known about the application and validation of this technique in sediment bioindicator species and under field conditions. Caged Ruditapes decussatus and Carcinus maenas were exposed during 28 days to potentially contaminated sediments at three sites in Algeciras Bay (SW Spain) and one site in Cádiz Bay (SW Spain). Lysosomal membrane stability was measured over time in haemolymph samples of exposed clams and crabs using the NRR assay. Sediment characterization of the study sites was performed in parallel. NRR time did not vary significantly (p > 0.05) over time in organisms from Cádiz Bay. Conversely, significant differences (p < 0.05) in NRR time were found in clams and crabs exposed to sediments from Algeciras Bay, which exhibited a 30-70% decrease in haemocyte lysosome membrane stability compared to day 0. Statistical analysis showed a strong correlation between the drop of haemocyte lysosome membrane stability, in both crabs and clams, and the presence of metals (p < 0.05) and PAHs (p < 0.01) in the studied sediments. The results obtained confirmed the use of NRR assay as a suitable and sensitive method to be used in the assessment of sediment quality using as bioindicator species the clam R. philippinarum and the crab C. maenas. PMID:21870173

  6. Impact of dredged urban river sediment on a Saronikos Gulf dumping site (Eastern Mediterranean): sediment toxicity, contaminant levels, and biomarkers in caged mussels.

    PubMed

    Tsangaris, Catherine; Strogyloudi, Evangelia; Hatzianestis, Ioannis; Catsiki, Vassiliki-Angelique; Panagiotopoulos, Ioannis; Kapsimalis, Vasilios

    2014-05-01

    Impacts of chemical contaminants associated with dumping of dredged urban river sediments at a coastal disposal area in Saronikos Gulf (Eastern Mediterranean) were investigated through a combined approach of sediment toxicity testing and active biomonitoring with caged mussels. Chemical analyses of aliphatic hydrocarbons (AHs), polycyclic aromatic hydrocarbons (PAHs), Cu, and Zn in combination with the solid phase Microtox® test were performed on sediments. Concentrations of PAHs, AHs, Cu, and Zn as well as multiple biomarkers of contaminant exposure and/or effects were measured in caged mussels. Sediments in the disposal and neighboring area showed elevated PAHs and AHs concentrations and were characterized as toxic by the solid-phase Microtox® test during and after dumping operations. Biomarker results in the caged mussels indicated sublethal effects mainly during dumping operations, concomitantly with high concentrations of PAHs and AHs in the caged mussel tissues. Cu and Zn concentrations in sediments and caged mussels were generally not elevated except for sediments at the site in the disposal area that received the major amount of dredges. High PAHs and AHs levels as well as sublethal effects in the caged mussels were not persistent after termination of operations. The combined bioassay-biomarker approach proved useful for detecting toxicological impacts of dredged river sediment disposal in sediments and the water column. Nevertheless, further research is needed to evaluate whether sediment toxicity will have long-term effects on benthic communities of the disposal area. PMID:24474563

  7. Materials surface contamination analysis

    NASA Technical Reports Server (NTRS)

    Workman, Gary L.; Arendale, William F.

    1992-01-01

    The original research objective was to demonstrate the ability of optical fiber spectrometry to determine contamination levels on solid rocket motor cases in order to identify surface conditions which may result in poor bonds during production. The capability of using the spectral features to identify contaminants with other sensors which might only indicate a potential contamination level provides a real enhancement to current inspection systems such as Optical Stimulated Electron Emission (OSEE). The optical fiber probe can easily fit into the same scanning fixtures as the OSEE. The initial data obtained using the Guided Wave Model 260 spectrophotometer was primarily focused on determining spectra of potential contaminants such as HD2 grease, silicones, etc. However, once we began taking data and applying multivariate analysis techniques, using a program that can handle very large data sets, i.e., Unscrambler 2, it became apparent that the techniques also might provide a nice scientific tool for determining oxidation and chemisorption rates under controlled conditions. As the ultimate power of the technique became recognized, considering that the chemical system which was most frequently studied in this work is water + D6AC steel, we became very interested in trying the spectroscopic techniques to solve a broad range of problems. The complexity of the observed spectra for the D6AC + water system is due to overlaps between the water peaks, the resulting chemisorbed species, and products of reaction which also contain OH stretching bands. Unscrambling these spectral features, without knowledge of the specific species involved, has proven to be a formidable task.

  8. The Short Term Effects of Ditch Dredging to Nutrient Saturation onto Ditch Bed Materials

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In the Midwestern United States, drainage ditches are an essential part of our landscape to ensure agriculture productivity. Sediment buildup reduces the flow rate of ditches and thus field tile lines, it then becomes necessary to dredge drainage ditches occasionally to optimize removal of water fr...

  9. AGRICULTURAL EFFICANCY OF CARBONATIC LAKE-DREDGED MATERIALS IN ENHANCING PASTURE ESTABLISHMENT

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Disposal and environmental quality of dredged sediments from navigational channels, lakes and rivers have been judged as beneficial by combinations of physical, chemical, and biological analyses for over 30 years. However, many people in the scientific community find this approach objectionable sinc...

  10. Dredging up old wastes

    SciTech Connect

    Phipps, L. )

    1992-01-01

    In 1986, Portland General Electric (PGE) donated a parcel of prime riverfront land to the Oregon Museum of Science and Industry (OMSI) in Portland, OR, for OMSI's new facility. The site had PCB-Contaminated sediments, which had to be removed before construction could begin. In the face of tight deadlines and public concerns, the remediation project was completed in record time while using a unique combination of treatment methods, including low-volume dredging and capping. Conventional dredging would have resuspended the fine sediments containing PCBs and sent them downriver. Low-volume dredging used a diver-operated suction hose to remove sediment with minimal disturbance. Similar to equipment used for underwater archaeological excavations, the diver vacuums from the river bottom fine sediments, which are then discharged to a treatment facility. The water and sediment mixture was initially discharged to Bakr tanks for primary settling. The water was then pumped through a multimedia filter-system, a bag filter system, and a granular activated carbon system before discharge back into the river. The remaining contaminated sediments were air-dried in a lined containment area, stabilized, and transported to a hazardous waste landfill. PCB Concentrations were reduced to less than 6 mg/L. Although elements of this remedial action have been used before, it is believed that this is the first combined use of low-dredging and this particular water-treatment system in the US.

  11. The stability of butyltin compounds in a dredged heavily-contaminated sediment.

    PubMed

    Saeki, Kazutoshi; Nabeshima, Akiko; Kunito, Takashi; Oshima, Yuji

    2007-06-01

    A treatment process for marine sediment heavily contaminated with tributyltin (TBT) was designed that included dehydrating, sunlight drying and dumping processes. The time course in butyltin (BTs) compounds, TBT, dibutyltin (DBT) and monobutyltin concentrations were investigated in the sediment treated under various conditions (light (UV, sunlight and light exclusion), moisture (air-drying and water saturation) and wetting and drying cycles). Significant changes in all the BT compound concentrations with time were not found regardless of the sediment conditions for light and moisture. The results indicated the high stabilities of TBT and DBT in the sediments versus light and moisture condition changes, probably taking place in the treatment process. It is also estimated that the BTs in the sediment are resistant to photo-degradation and biochemical degradation and their half lives are relatively long. In contrast, the decreases in the TBT and DBT were observed during the wetting and drying cycle treatment for the water saturated sediment both during exposure to sunlight and under a dark condition. This result suggested the hypothesis that the TBT degradation could be accelerated by the high microbial activity induced by the moisture changing treatments. PMID:17368724

  12. The effect of operating variables on chelant-assisted remediation of contaminated dredged sediment.

    PubMed

    Polettini, A; Pomi, R; Rolle, E

    2007-01-01

    The paper shows the results from a number of lab-scale washing treatments using the four chelating agents EDTA, NTA, citric acid and [S,S]-EDDS aiming at the remediation of a real heavy metal-contaminated sediment. Investigation of the influence of chelant type and concentration as well as solution pH was the major focus of the work. The analysis of speciation of metals and chelating agents in solution was carried out through geochemical speciation modelling in order to identify the optimal conditions for the washing process as well as to evaluate the competition phenomena of metal-chelant complexes in solution. The major competing cations were found to be Ca above all and Mg under specific conditions. Among the investigated chelating agents, EDDS appeared to be less affected by competition by major cations while ensuring adequate heavy metal extraction efficiencies. For a 1:1 chelant/metal ratio, the following ranking was observed: EDDS>Cit>NTA>EDTA for As, EDDS>NTA congruent withEDTA>Cit for Cu, EDDS congruent withEDTA congruent withNTA>Cit for Zn, EDTA>NTA>EDDS>Cit for Pb at pH 5 and EDTA congruent withEDDS congruent withNTA>Cit for Pb at pH 8. For a 10:1 chelant/metal ratio geochemical modelling indicated that at the equilibrium the extracting solutions were dominated by the free form of the chelating agents, indicating the inability of such species to complex trace metals due the strong interactions existing between heavy metal ions and sediment constituents. PMID:16860848

  13. Physical oceanographic processes at candidate dredged-material disposal sites B1B and 1M offshore San Francisco

    SciTech Connect

    Sherwood, C.R.; Denbo, D.W.; Downing, J.P. ); Coats, D.A. )

    1990-10-01

    The US Army Corps of Engineers (USACE), San Francisco District, has identified two candidate sites for ocean disposal of material from several dredging projects in San Francisco Bay. The disposal site is to be designated under Section 103 of the Ocean Dumping Act. One of the specific criteria in the Ocean Dumping Act is that the physical environments of the candidate sites be considered. Toward this goal, the USACE requested that the Pacific Northwest Laboratory conduct a study of physical oceanographic and sediment transport processes at the candidate sites, B1B and 1M. The results of that study are presented in this report. 40 refs., 27 figs., 10 tabs.

  14. Impacts of maintenance channel dredging in a northern Adriatic coastal lagoon. I: Effects on sediment properties, contamination and toxicity

    NASA Astrophysics Data System (ADS)

    Guerra, Roberta; Pasteris, Andrea; Ponti, Massimo

    2009-10-01

    Conservation and management of coastal lagoons envisage direct human intervention. To prevent siltation and to preserve the hydrodynamics features of the lagoon system, the inner channels undergo regular maintenance dredging. Sediment properties (RDP, organic matter, grain size), trace metals (Cd, Cu, Cr, Hg, Ni, and Pb), and toxicity vs. the amphipod Corophium insidiosum and the luminescent bacterium Vibrio fischeri, were analysed before and after dredging operations in a coastal lagoon (Pialassa Baiona, Italy). To detect the actual impacts, disturbed sites were contrasted with multiple controls in two distinct times, i.e. before and after disturbance, according to a sampling design based on Beyond BACI principles. The integrated methodology here adopted suggests that dredging operations carried out are not likely to pose dramatic effects on environmental quality of the lagoon.

  15. Dredged sediments as a resource for brick production: Possibilities and barriers from a consumers’ perspective

    SciTech Connect

    Cappuyns, Valérie Deweirt, Valentine; Rousseau, Sandra

    2015-04-15

    Highlights: • Consumers are suspicious towards bricks produced from dredged sediments. • Technical quality, safety and environmental impacts are considered key characteristics. • Public has insufficient knowledge on bricks produced from dredged sediments. • Sensitization and provision of information to customers are of primary importance. - Abstract: A possible solution for the oversupply of dredged sediments is their use as a raw material in brick production. Despite the fact that several examples (e.g., Agostini et al., 2007; Hamer and Karius, 2002; Xu et al., 2014) show that this application is feasible, some economic, technical and social limitations interfere with the development of a market of dredged materials in brick production in Flanders. While we describe the main characteristics of the supply side, we focus on the limitations and barriers from the demand side in the present study. Based on a consumers survey we analyze consumers’ risk perceptions and attitudes towards bricks produced from dredged sediments. Consumers in Flanders are rather suspicious with respect to bricks produced from dredged sediments and their risk perception is mainly determined by the possibility of a bad bargain (brick of inferior quality) and the connotation with chemical contamination. The willingness to pay for bricks made from dredged sediments is mainly influenced by the age of the respondents, as well environmental awareness, and the respondents’ belief in their ability to influence environmental problems. Sensitization and information of customers seems to be of primary importance to make dredged-sediment-derived bricks a successful product.

  16. Modeling the transport of PCDD/F compounds in a contaminated river and the possible influence of restoration dredging on calculated fluxes.

    PubMed

    Malve, Olli; Salo, Simo; Verta, Matti; Forsius, John

    2003-08-01

    River Kymijoki, the fourth largest river in Finland, has been heavily polluted by pulp mill effluents as well as by chemical industry. Loading has been reduced considerably, although remains of past emissions still exist in river sediments. The sediments are highly contaminated with polychlorinated dibenzo-p-dioxins (PCDDs), polychlorinated dibenzofurans (PCDFs), polychlorinated diphenyl ethers (PCDEs), and mercury originating from production of the chlorophenolic wood preservative (Ky-5) and other sources. The objective of this study was to simulate the transport of these PCDD/F compounds with a one-dimensional flow and transport model and to assess the impact of restoration dredging. Using the estimated trend in PCDD/F loading, downstream concentrations were calculated until 2020. If contaminated sediments are removed by dredging, the temporary increase of PCDD/F concentrations in downstream water and surface sediments will be within acceptable limits. Long-term predictions indicated only a minor decrease in surface sediment concentrations but a major decrease if the most contaminated sediments close to the emission source were removed. A more detailed assessment of the effects is suggested. PMID:12966989

  17. Preliminary Assessment of Potential Impacts to Dungeness Crabs from Disposal of Dredged Materials from the Columbia River

    SciTech Connect

    Pearson, Walter H.; Miller, Martin C.; Williams, Greg D.; Kohn, Nancy P.; Skalski, John R.

    2006-02-01

    Dredging of the Columbia River navigation channel has raised concerns about dredging-related impacts on Dungeness crabs (Cancer magister). The overall objectives of this effort are to synthesize what is known about disposal effects on Dungeness crabs (Phase 1) and to offer approaches to quantify the effects, including approaches to gain a population-level perspective on any effects found in subsequent studies (Phase 2). This report documents Phase 1, which included (1) development of a conceptual model to integrate knowledge about crab biology and the physical processes occurring during disposal, (2) application of physics-based numerical modeling of the disposal event to understand the physical forces and processes to which a crab might be exposed during disposal, (3) conduct of a vulnerability analysis to identify the potential mechanisms by which crabs may be injured, and (4) recommendations of topics and approaches for future studies to assess the potential population-level effects of disposal on Dungeness crabs. The conceptual model first recognizes that disposal of dredged materials is a physically dynamic process with three aspects: (1) convective descent and bottom encounter, (2) dynamic collapse and spreading, and (3) mounding. Numerical modeling was used to assess the magnitude of the potentially relevant forces and extent of mounding in single disposal events. The modeling outcomes show that predicted impact pressure, shear stress, and mound depth are greatly reduced by discharge in deep water, and somewhat reduced at longer discharge duration. The analysis of numerical modeling results and vulnerabilities indicate that the vulnerability of crabs to compression forces under any of the disposal scenarios is low. For the deep-water disposal scenarios, the maximum forces and mounding do not appear to be sufficiently high enough to warrant concern for surge currents or burial at the depths involved (over 230 ft). For the shallow-water (45 to 65 ft), short

  18. Analyses of native water, bottom material, elutriate samples, and dredged material from selected southern Louisiana waterways and selected areas in the Gulf of Mexico, 1979-81

    USGS Publications Warehouse

    Lurry, Dee L.

    1983-01-01

    The U.S. Geological Survey was requested by the U.S. Army Corps of Engineers, New Orleans District, to provide water-quality data to evaluate environmental effects of dredging activities in selected reaches of the Calcasieu River in southwestern Louisiana. Samples were collected from the upper and lower Calcasieu River between January 1980 and March 1981. Thirty-three samples (22 native-water and 11 effluent) were collected from eleven dredging sites. In addition, a series of elutriate studies were conducted between July 1979 and July 1981 to determine water quality as a basis for assessing possible environmental effects of proposed dredging activities in the following areas: Grand Bayou and Martins Canal near Happy Jack, unnamed bayou near Port Sulphur, Grand Bayou and Pipeline Canal near Port Sulphur and Bayou des Plantins near Empire; Mississippi River Gulf Outlet and Inner Harbor Navigation Canal; Southwest Pass; Barataria Bay; Atchafalaya Bay at Eugene Island; Calcasieu Ship Channel. Samples of native water and samples of bottom material were collected from 22 different sites and elutriate (mixtures of native water and bottom material) samples were prepared and analyzed. Four proposed ocean-disposal sites were sampled for bottom material only. Samples were analyzed for selected chemical and biological constituents and physical properties. (USGS)

  19. Satellite material contaminant optical properties

    NASA Technical Reports Server (NTRS)

    Wood, B. E.; Bertrand, W. T.; Seiber, B. L.; Kiech, E. L.; Falco, P. M.; Holt, J. D.

    1990-01-01

    The Air Force Wright Research and Development Center and the Arnold Engineering Development Center are continuing a program for measuring optical effects of satellite material outgassing products on cryo-optic surfaces. Presented here are infrared (4000 to 700 cm(-1)) transmittance data for contaminant films condensed on a 77 K geranium window. From the transmittance data, the contaminant film refractive and absorptive indices (n, k) were derived using an analytical thin-film interference model with a nonlinear least-squares algorithm. To date 19 materials have been studied with the optical contents determined for 13 of those. The materials include adhesives, paints, composites, films, and lubricants. This program is continuing and properties for other materials will be available in the future.

  20. Ecological evaluation of proposed discharge of dredged material from Oakland Harbor into ocean waters (Phase 3 of 38-Foot Project)

    SciTech Connect

    Ward, J.A.; Word, J.Q.; Pinza, M.R.; Mayhew, H.L.; Barrows, E.S.; Kohn, N.P.; Lefkovitz, L.F. )

    1992-01-01

    At the request of the US Army Corps of Engineering (USACE), environmental studies were conducted by Battelle/Marine Sciences Laboratory (MSL) to evaluate the suitability of sediments from Oakland Inner Harbor for dredging and ocean disposal. During the Phase 3 38-Foot Project, sediment cores were collected from mudline to {minus}39 ft mean lower low water at various locations in Oakland Inner Harbor channel and allocated to six composite samples. These composites were evaluated through physical/chemical analyses, acute toxicity to sensitive marine organisms, and bioaccumulation potential. Sediment samples from individual locations were tested for physical/chemical parameters only. The results of toxicological and bioaccumulation testing may be used by USACE to determine the amount of potential dredged material from Oakland Inner Harbor channel acceptable for open-water disposal as defined by the Draft Implementation Manual (EPA/USACE 1990) and consistent with the Water Resources Development Act of 1986 (Public Law 99-662). This is Volume 1 of a two-volume data report that presents the data gathered during the Oakland Harbor Phase 3 38-Foot Project, conducted in the Fall of 1990. This data report does not include interpretation or statistical analysis of the 38-Foot data. Volume 1 includes the project background as well as a full presentation of data and results in Appendixes A through H. Volume 2 contains the remaining data in Appendixes I through L.

  1. Ecological evaluation of proposed discharge of dredged material from Oakland Harbor into ocean waters (Phase 3 of 38-Foot Project)

    SciTech Connect

    Ward, J.A.; Word, J.Q.; Pinza, M.R.; Mayhew, H.L.; Barrows, E.S.; Kohn, N.P.; Lefkovitz, L.F. )

    1992-01-01

    At the request of the US Army Corps of Engineers (USACE), environmental studies were conducted by Battelle/Marine Science Laboratory (MSL) to evaluate the suitability of sediments from Oakland Inner Harbor for dredging and ocean disposal. During the Phase 3 38-Foot Project, sediment cores were collected from mudline to {minus}39 ft mean lower low water at various locations in Oakland Inner Harbor channel and allocated to six composite samples. These composites were evaluated through physical/chemical analyses, acute toxicity to sensitive marine organisms, and bioaccumulation potential. Sediment samples from individual locations were tested for physical/chemical parameters only. The results of toxicological and bioaccumulation testing may be used by USACE to determine the amount of potential dredged material from Oakland Inner Harbor channel acceptable for open-water disposal as defined by the Draft Implementation Manual (EPA/USACE 1990) and consistent with the Water Resources Development Act of 1986 (Public Law 99-662). This is Volume 2 of a two-volume data report that represents the data gathered during the Oakland Harbor Phase 3 38-Foot Project, conducted in the Fall of 1990. This data report does not include interpretation or statistical analysis of the 38-Foot data. Volume 1 includes the project background as well as data and results presented in Appendixes A through H. Volume 2 includes the remaining data presented in Appendixes I through L.

  2. Ecological evaluation of proposed dredged material from Wilmington Harbor and Military Ocean Terminal, Sunny Point, North Carolina

    SciTech Connect

    Ward, J.A.; Pinza, M.R.; Barrows, M.E.; Word, J.Q.

    1993-07-01

    This report is intended to provide information required to address potential ecological effects of the proposed disposal of Wilmington Harbor and Military Ocean Terminal, Sunny Point (MOTSU), North Carolina, sediments in the ocean. The report is divided into five sections. Section 1.0 is the introduction containing a brief overview of the study and the study objectives. Section 2.0 describes the methods and materials used for sample collection, processing, toxicological and bioaccumulation testing, physical/chemical analysis of sediments and tissues, data analysis, and quality assurance procedures. Section 3.0 presents the results of field collections, sediment chemistry, toxicological testing, and tissue chemistry resulting from bioaccumulation exposures. Section 4.0 presents a discussion of the results and summary conclusions concerning the acceptability of the Wilmington Harbor and MOTSU dredged material for ocean disposal. Section 5.0 lists the literature cited in support of this document. A series of appendixes contain detailed data listings.

  3. Changes in the geochemistry and ecotoxicity of a Zn and Cd contaminated dredged sediment over time after land disposal.

    PubMed

    Piou, Stéphanie; Bataillard, Philippe; Laboudigue, Agnès; Férard, Jean-François; Masfaraud, Jean-François

    2009-08-01

    The management of dredged sediments is of environmental concern worldwide since they may be overloaded with myriads of pollutants. For inland waters' sediments, disposal on land is a common practice. For the long-term risks assessment of such a management, a better understanding of the fate of pollutants over time and an assessment of possible associated biological consequences are needed. Here, we studied the geochemical distribution of Fe, Mn, Zn and Cd in sediment dredged from the Scarpe canal (Nord-Pas-de-Calais Region, France). Analyses were carried out immediately after dredging and 12, 18 and 24 months after disposal in field conditions. In parallel, ecotoxicity of sediment leachates was assessed using standardized bioassays. The results reflected an initial oxidation of sulphides (first year) followed by changes explained by a reversible binding of metals to organic matter in winter and to Fe oxihydroxides in summer. The water-leachable fraction represented less than 2% of the total metal and its ecotoxicity was higher for deposited sediments than for the fresh one. After first year of disposal, sediment ecotoxicity remained stable. A long-term natural attenuation of metals within disposed sediment seemed unlikely since their speciation seemed to fluctuate seasonally without any time trend over years. PMID:19464680

  4. Declining metal levels at Foundry Cove (Hudson River, New York): response to localized dredging of contaminated sediments.

    PubMed

    Mackie, Joshua A; Natali, Susan M; Levinton, Jeffrey S; Sañudo-Wilhelmy, Sergio A

    2007-09-01

    This study examines the effectiveness of remediating a well-recognized case of heavy metal pollution at Foundry Cove (FC), Hudson River, New York. This tidal freshwater marsh was polluted with battery-factory wastes (1953-1979) and dredged in 1994-1995. Eight years after remediation, dissolved and particulate metals (Cd, Co, Cu, Pb, Ni, and Ag) were found to be lower than levels in the lower Hudson near New York City. Levels of metals (Co, Ni, Cd) on suspended particles were comparatively high. Concentrations of surface sediment Cd throughout the marsh system remain high, but have decreased both in the dredged and undredged areas: Cd was 2.4-230mg/kg dw of sediment in 2005 vs. 109-1500mg/kg in the same area in 1983. The rate of tidal export of Cd from FC has decreased by >300-fold, suggesting that dredging successfully stemmed a major source of Cd to the Hudson River. PMID:17382440

  5. Evaluation of dredged material proposed for ocean disposal from Gravesend Bay Anchorage, New York

    SciTech Connect

    Barrows, E.S.; Gruendell, B.D.

    1996-09-01

    The Gravesend Bay Anchorage was one of seven waterways that the US Army Corps of Engineers-New York District (USACE-NYD) requested the Battelle Marine Sciences Laboratory (MSL) to sample and evaluate for dredging and disposal in February 1994. Sediment samples were submitted for physical and chemical analyses to provide baseline sediment chemistry data on the Gravesend Bay Anchorage. Individual sediment core samples collected at the Gravesend Bay Anchorage were analyzed for grain size, moisture content, and total organic carbon (TOC). Two samples, one of composited sediment cores representing the southeast corner of the anchorage (COMP GR), and one sediment core representing the northeast corner of the anchorage (Station GR-1 0), were analyzed for bulk density, specific gravity, metals, chlorinated pesticides, polychlorinated biphenyl (PCB) congeners, polynuclear aromatic hydrocarbons (PAH), and 1,4-dichlorobenzene.

  6. Ecological evaluation of proposed discharge of dredged material from Oakland Harbor into ocean waters (Phase 2 of -42-foot project)

    SciTech Connect

    Word, J.Q.; Ward, J.A.; Strand, J.A.; Kohn, N.P.; Squires, A.L. )

    1990-09-01

    The US Army Corps of Engineers (USACE), San Francisco District, was authorized by the Water Resources Development Act of 1986 to deepen and widen the navigation channels of Inner and Outer Oakland Harbor, California, to accommodate modern deep-draft vessels. The recommended plan consists of deepening the harbor channels from the presently authorized water depth of {minus}35 ft mean lower low water (MLLW) to {minus}42 ft MLLW and supplying the harbor with adequate turning basins and berthing areas. Offshore ocean disposal of the dredged sediment is being considered, provided there is no evident of harmful ecological effects. It harmful ecological effects are not evident then the appropriate certifications from state environmental quality agencies and concurrence from the Environmental Protection Agency can be obtained to allow disposal of sediment. To help provide the scientific basis for determining whether Oakland Harbor sediments are suitable for offshore disposal, the Battelle/Marine Sciences Laboratory (MSL) collected sediment cores from 23 stations in Inner and Outer Oakland Harbor, evaluated these sediment cores geologically, performed chemical analyses for selected contaminants in sediments, conducted a series of solid phase toxicity tests with four sensitive marine invertebrates and assessed the bioaccumulation potential of sediment-associated contaminants in the tissues of Macoma Nasuta. 43 refs., 26 figs., 61 tabs.

  7. Recycling biosolids and lake-dredged materials to pasture-based animal agriculture: Alternative nutrient sources for forage productivity and sustainability.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The prohibition of dumping dredged and domestic sewage sludge (DSS) materials in streams and oceans, diminishing land fill space, skyrocketing landfill costs, and concerns over air pollution from incineration of wastes have contributed to a strong public interest in finding alternative, environmenta...

  8. Application of biological traits to further our understanding of the impacts of dredged material disposal on benthic assemblages.

    PubMed

    Bolam, S G; McIlwaine, P S O; Garcia, C

    2016-04-15

    While the effects of coastal disposal of dredged material on benthic assemblage structure have been well studied, our understanding of the mechanism of such responses, and their potential ecological implications, remain relatively unknown. Data from a licenced disposal site off the northeast coast of England are analysed to address this and improve our ability to make informed licencing decisions for this activity. Assemblages within the disposal site displayed reduced number of species and total invertebrate density, an altered assemblage taxonomic structure, and a shift towards a greater numerical dominance of less-productive individuals. Following separate analyses of biological response and effect traits, a novel approach for marine benthic trait analysis, we identify the traits responsible (i.e. response traits) for the observed structural alterations. Furthermore, analysis of the effect traits revealed that the assemblages characterising the disposal site possess a greater bioturbative capability compared to those not directly impacted by disposal. PMID:26899157

  9. Sediment quality assessment and dredged material management in Spain: Part I, application of sediment quality guidelines in the Bay of Santander.

    PubMed

    Alvarez-Guerra, Manuel; Viguri, Javier R; Casado-Martínez, M Carmen; DelValls, T Angel

    2007-10-01

    Sediments are an essential component of aquatic ecosystems that must be assessed and managed properly. The use of quantitative environmental quality standards derived from consideration of sediment quality guidelines (SQGs) can be effective as part of a tiered risk assessment approach. In Part I of this 2-part paper addressing sediment quality assessment and dredged material management in Spain, different SQG methods are used to evaluate sediment quality in the Bay of Santander, located in the Cantabric Sea along the northern coast of Spain, and to guide development of empirically derived SQGs for marine sediments. The results of the study indicate a great heterogeneity of SQGs, both with regard to the numeric values for a particular chemical and the number of substances for which SQGs have been derived. The analysis highlights the scarce development of empirical SQGs for priority substances identified in current European Union water policy. Nonetheless, the application of SQGs makes it possible to classify different zones of sediment quality in the Bay of Santander. Part II of this 2-part paper considers the environmental impacts of dredged material disposal. Legislation and criteria used to regulate dredged material disposal at sea in different European countries are reviewed, and action levels derived by different countries were used to evaluate management of dredged sediments from Cádiz Bay, located on the South Atlantic coast of Spain. PMID:18046802

  10. Ecological evaluation of proposed dredged material from Bulls Head Channel (lower Suisun Bay)

    SciTech Connect

    Kohn, N.P.; White, P.J.; Gardiner, W.W.; Word, J.Q.

    1994-07-01

    This report describes the sampling and testing program conducted for USACE by Battelle/Marine Sciences Laboratory (MSL) to address (1) exclusion from further testing for ocean disposal, (2) suitability of open-water disposal within San Francisco Bay, and (3) beneficial uses, based on open-water and upland (leaching) disposal criteria, for the estimated 1.86 million cubic yards of sediment to be dredged from Bulls Head Channel and turning basin. To meet these objectives, core samples were collected from 28 locations to a depth of -47 ft mean lower low water (MLLW), which is -45 ft MLLW plus 2 ft overdepth. One to three samples per coring location were characterized physically and chemically; sediment from groups of locations and from various depth strata were combined into composite samples for biological toxicity characterization in addition to physical and chemical characterization. The chemical and biological tests were conducted following the guidance of USACE, the US Environmental Protection Agency (EPA), and state regulatory agencies.

  11. Environmental impacts and regulatory policy implications of spray disposal of dredged material in Louisiana wetlands

    USGS Publications Warehouse

    Cahoon, D.R.; Cowan, J.H., Jr.

    1988-01-01

    The capabilities of a new wetland dredging technology were assessed along with associated newly developed state and federal regulatory policies to determine if policy expectations realistically match the technological achievement. Current regulatory practices require amelioration of spoil bank impacts upon abandonment of an oil/gas well, but this may not occur for many years or decades, if at all. Recently, a dreding method (high-pressure spray spoil disposal) was developed that does not create a spoil bank in the traditional sense. Its potential for reducing environmental impacts was recognized immediately by regulatory agencies for whom minimizing spoil bank impacts is a major concern. The use of high-pressure spray disposal as a suitable alternative to traditional dreding technology has been adopted as policy even though its value as a management tool has never been tested or verified. A qualitative evaluation at two spoil disposal sites in saline marsh indicates that high-pressure spray disposal may indeed have great potential to minimize impacts, but most of this potential remains unverified. Also, some aspects of current regulatory policy may be based on unrealistic expectations as to the ability of this new technology to minimize or eliminate spoil bank impacts.

  12. PHYTOREMEDIATION OF DREDGED SEDIMENTS: A CASE STUDY AT THE JONES ISLAND CDF

    EPA Science Inventory

    The Jones Island Confined Disposal Facility (CDF) is a 44 acre in-lake area that receives dredged material from Milwaukee Harbor and the surrounding waterways. Some of those materials are contaminated with industrial waste and urban run-off. The CDF is nearing the end of its desi...

  13. Probe for contamination detection in recyclable materials

    DOEpatents

    Taleyarkhan, Rusi

    2003-08-05

    A neutron detection system for detection of contaminants contained within a bulk material during recycling includes at least one neutron generator for neutron bombardment of the bulk material, and at least one gamma ray detector for detection of gamma rays emitted by contaminants within the bulk material. A structure for analyzing gamma ray data is communicably connected to the gamma ray detector, the structure for analyzing gamma ray data adapted. The identity and concentration of contaminants in a bulk material can also be determined. By scanning the neutron beam, discrete locations within the bulk material having contaminants can be identified. A method for recycling bulk material having unknown levels of contaminants includes the steps of providing at least one neutron generator, at least one gamma ray detector, and structure for analyzing gamma ray data, irradiating the bulk material with neutrons, and then determining the presence of at least one contaminant in the bulk material from gamma rays emitted from the bulk material.

  14. Environmental effects of dredging. Use of daphnia magna to predict consequences of bioaccumulation

    SciTech Connect

    1987-03-01

    Results reported herein represent a portion of the laboratory research evaluating the relationship between mercury and cadmium tissue residues and biological effects in the freshwater crustacean, Daphnia magna (commonly known as the water flea). Procedures presented here for a 28-day Daphnia magna toxicity test could be used in screening for water-column toxicity resulting from open-water disposal of a specific dredged material. As a part of its regulatory and dredging programs, the U. S. Army Corps of Engineers often conducts, or requires to be conducted, an assessment of the potential for bioaccumulation of environmental contaminants from sediment scheduled for dredging and open-water disposal. There is, at present, no generally accepted guidance available to aid in the interpretation of the biological consequences of bioaccumulation. To provide an initial basis for such guidance, the Environmental Laboratory is conducting both literature database analyses and experimental laboratory studies as part of the Long-Term Effects of Dredging Operations (LEDO) Program.

  15. Physical oceanographic processes at candidate dredged-material disposal sites B1B and 1M offshore San Francisco

    SciTech Connect

    Sherwood, C.R.; Denbo, D.W.; Downing, J.P. ); Coats, D.A. )

    1990-10-01

    The US Army Corps of Engineers (USACE), San Francisco District, has identified two candidate sites for ocean disposal of material from several dredging projects in San Francisco Bay. The disposal site is to be designated under Section 103 of the Ocean Dumping Act. One of the specific criteria in the Ocean Dumping Act is that the physical environments of the candidate sites be considered. Toward this goal, the USACE requested that the Pacific Northwest Laboratory conduct studies of physical oceanographic and sediment transport processes at the candidate sites. Details of the methods and complete listing or graphical representation of the results are contained in this second volume of the two-volume report. Appendix A describes the methods and results of a pre-disposal bathymetric survey of Site B1B, and provides an analysis of the accuracy and precision of the survey. Appendix B describes the moorings and instruments used to obtain physical oceanographic data at the candidate sites, and also discussed other sources of data used in the analyses. Techniques used to analyze the formation, processed data, and complete results of various analyses are provided in tabular and graphical form. Appendix C provides details of the sediment transport calculations. Appendix D describes the format of the archived current meter data, which is available through the National Oceanographic Data Center. 43 refs., 54 figs., 58 tabs.

  16. Effect of EDTA, EDDS, NTA and citric acid on electrokinetic remediation of As, Cd, Cr, Cu, Ni, Pb and Zn contaminated dredged marine sediment.

    PubMed

    Song, Yue; Ammami, Mohamed-Tahar; Benamar, Ahmed; Mezazigh, Salim; Wang, Huaqing

    2016-06-01

    In recent years, electrokinetic (EK) remediation method has been widely considered to remove metal pollutants from contaminated dredged sediments. Chelating agents are used as electrolyte solutions to increase metal mobility. This study aims to investigate heavy metal (HM) (As, Cd, Cr, Cu, Ni, Pb and Zn) mobility by assessing the effect of different chelating agents (ethylenediaminetetraacetic acid (EDTA), ethylenediaminedisuccinic acid (EDDS), nitrilotriacetic acid (NTA) or citric acid (CA)) in enhancing EK remediation efficiency. The results show that, for the same concentration (0.1 mol L(-1)), EDTA is more suitable to enhance removal of Ni (52.8 %), Pb (60.1 %) and Zn (34.9 %). EDDS provides effectiveness to increase Cu removal efficiency (52 %), while EDTA and EDDS have a similar enhancement removal effect on As EK remediation (30.5∼31.3 %). CA is more suitable to enhance Cd removal (40.2 %). Similar Cr removal efficiency was provided by EK remediation tests (35.6∼43.5 %). In the migration of metal-chelate complexes being directed towards the anode, metals are accumulated in the middle sections of the sediment matrix for the tests performed with EDTA, NTA and CA. But, low accumulation of metal contamination in the sediment was observed in the test using EDDS. PMID:26782321

  17. Ecological evaluation of proposed discharge of dredged material from Oakland Harbor into ocean waters (Phase 3 B of -42-foot project)

    SciTech Connect

    Kohn, N.P.; Ward, J.A.; Mayhew, H.L.; Word, J.Q.; Barrows, E.S.; Goodwin, S.M.; Lefkovitz, L.F. )

    1992-06-01

    The Water Resources Development Act of 1986 (Public Law 99-662) authorized the US Army Corps of Engineers (USACE) San Francisco District, to deepen and widen the navigational channels of the Oakland Inner and Outer Harbors to accomodate deeper-draft vessels. The USACE is considering several disposal options for the dredged material removed during these channel improvements including open-water disposal. Dredged material proposed for open-water disposal must be evaluated to determine the potential impacts of the disposal activity on the water column and disposal site enviromments. The USACE requested that Battelle/Marine Sciences Laboratory (MSL) conduct studies to evaluate open-water disposal options for Oakland Harbor sediments. This request developed into the Oakland Harbor Phase III Program. This is Volume 1 of a two-volume report that presents information gathered to determine the suitability of ocean disposal of sediments dredged from Oakland Harbor. This volume contains project background, materials and methods, results, discussion, and conclusions.

  18. Ecological evaluation of proposed discharge of dredged material from Oakland Harbor into ocean waters (Phase 3 B of -42-foot project). Volume 1, Analyses and discussion

    SciTech Connect

    Kohn, N.P.; Ward, J.A.; Mayhew, H.L.; Word, J.Q.; Barrows, E.S.; Goodwin, S.M.; Lefkovitz, L.F.

    1992-06-01

    The Water Resources Development Act of 1986 (Public Law 99-662) authorized the US Army Corps of Engineers (USACE) San Francisco District, to deepen and widen the navigational channels of the Oakland Inner and Outer Harbors to accomodate deeper-draft vessels. The USACE is considering several disposal options for the dredged material removed during these channel improvements including open-water disposal. Dredged material proposed for open-water disposal must be evaluated to determine the potential impacts of the disposal activity on the water column and disposal site enviromments. The USACE requested that Battelle/Marine Sciences Laboratory (MSL) conduct studies to evaluate open-water disposal options for Oakland Harbor sediments. This request developed into the Oakland Harbor Phase III Program. This is Volume 1 of a two-volume report that presents information gathered to determine the suitability of ocean disposal of sediments dredged from Oakland Harbor. This volume contains project background, materials and methods, results, discussion, and conclusions.

  19. Dredged sediments as a resource for brick production: possibilities and barriers from a consumers' perspective.

    PubMed

    Cappuyns, Valérie; Deweirt, Valentine; Rousseau, Sandra

    2015-04-01

    A possible solution for the oversupply of dredged sediments is their use as a raw material in brick production. Despite the fact that several examples (e.g., Agostini et al., 2007; Hamer and Karius, 2002; Xu et al., 2014) show that this application is feasible, some economic, technical and social limitations interfere with the development of a market of dredged materials in brick production in Flanders. While we describe the main characteristics of the supply side, we focus on the limitations and barriers from the demand side in the present study. Based on a consumers survey we analyze consumers' risk perceptions and attitudes towards bricks produced from dredged sediments. Consumers in Flanders are rather suspicious with respect to bricks produced from dredged sediments and their risk perception is mainly determined by the possibility of a bad bargain (brick of inferior quality) and the connotation with chemical contamination. The willingness to pay for bricks made from dredged sediments is mainly influenced by the age of the respondents, as well environmental awareness, and the respondents' belief in their ability to influence environmental problems. Sensitization and information of customers seems to be of primary importance to make dredged-sediment-derived bricks a successful product. PMID:25618756

  20. Analyses of water and dredged material from selected southern Louisiana waterways and selected areas in the Gulf of Mexico, 1976-78

    USGS Publications Warehouse

    Stallworth, Geraldine R.; Jordan, Helen F.

    1980-01-01

    The U.S. Geological Survey was requested by the U.S. Army Corps of Engineers to provide water-quality data to evaluate the potential environmental effects of (1) dredging activities in selected navigable waterways of southern Louisiana and (2) the disposal of dredged material at selected areas in the Gulf of Mexico. Areas studied from September 1976 to May 1978 included five ocean disposal sites in the Gulf of Mexico, in addition to the following waterways: Baptiste, Collette Bayou, Mississippi River at Head of Passes and Southwest Pass, Mississippi River at Tiger Pass, Bayou Black, Intracoastal Waterway (Port Allen to Morgan City), and Calcasieu River and Ship Channel. Samples were analyzed for selected chemical, physical, and biological constituents. (USGS)

  1. Ecological evaluation of proposed discharge of dredged material from Oakland Harbor into ocean waters (Phase 3 B of -42-foot project)

    SciTech Connect

    Kohn, N.P.; Ward, J.A.; Mayhew, H.L.; Word, J.Q.; Barrows, E.S.; Goodwin, S.M.; Lefkovitz, L.F. )

    1992-06-01

    The Water Resources Development Act of 1986 (Public Law 99-662) authorized the US Army Corps of Engineers (USACE) San Francisco District, to deepen and widen the navigational channels of the Oakland Inner and Outer Harbors to accommodate deeper-draft vessels. The USACE is considering several disposal options for the dredged material removed during these channel improvements including open-water disposal. Dredged material proposed for open-water disposal must be evaluated to determine the potential impacts of the disposal activity on the water column and disposal site environments. The USACE requested that Battelle/Marine Sciences Laboratory (MSL) conduct studies to evaluate open-water disposal options for Oakland Harbor sediments. This request developed into the Oakland Harbor Phase III Program. This is Volume 2 of a two-volume report that presents information gathered to determine the suitability of ocean disposal of sediments dredged from Oakland Harbor. This volume contains the Appendixes (A through N), which provide details of the data analyses and full presentation of the data and results.

  2. Ecological evaluation of proposed discharge of dredged material from Oakland Harbor into ocean waters (Phase 3 B of -42-foot project). Volume 2, Appendixes

    SciTech Connect

    Kohn, N.P.; Ward, J.A.; Mayhew, H.L.; Word, J.Q.; Barrows, E.S.; Goodwin, S.M.; Lefkovitz, L.F.

    1992-06-01

    The Water Resources Development Act of 1986 (Public Law 99-662) authorized the US Army Corps of Engineers (USACE) San Francisco District, to deepen and widen the navigational channels of the Oakland Inner and Outer Harbors to accommodate deeper-draft vessels. The USACE is considering several disposal options for the dredged material removed during these channel improvements including open-water disposal. Dredged material proposed for open-water disposal must be evaluated to determine the potential impacts of the disposal activity on the water column and disposal site environments. The USACE requested that Battelle/Marine Sciences Laboratory (MSL) conduct studies to evaluate open-water disposal options for Oakland Harbor sediments. This request developed into the Oakland Harbor Phase III Program. This is Volume 2 of a two-volume report that presents information gathered to determine the suitability of ocean disposal of sediments dredged from Oakland Harbor. This volume contains the Appendixes (A through N), which provide details of the data analyses and full presentation of the data and results.

  3. Three-year summary report of biological monitoring at the Southwest Ocean dredged-material disposal site and additional locations off Grays Harbor, Washington, 1990--1992

    SciTech Connect

    Antrim, L.D.; Shreffler, D.K.; Pearson, W.H.; Cullinan, V.I. )

    1992-12-01

    The Grays Harbor Navigation Improvement Project was initiated to improve navigation by widening and deepening the federal channel at Grays Harbor. Dredged-material disposal sites were selected after an extensive review process that included inter-agency agreements, biological surveys, other laboratory and field studies, and preparation of environmental impact statements The Southwest Site, was designated to receive materials dredged during annual maintenance dredging as well as the initial construction phase of the project. The Southwest Site was located, and the disposal operations designed, primarily to avoid impacts to Dungeness crab. The Final Environmental Impact Statement Supplement for the project incorporated a Site Monitoring Plan in which a tiered approach to disposal site monitoring was recommended. Under Tier I of the Site Monitoring Plan, Dungeness crab densities are monitored to confirm that large aggregations of newly settled Dungeness crab have not moved onto the Southwest Site. Tier 2 entails an increased sampling effort to determine whether a change in disposal operations is needed. Four epibenthic surveys using beam trawls were conducted in 1990, 1991, and 1992 at the Southwest Site and North Reference area, where high crab concentrations were found in the spring of 1985. Survey results during these three years prompted no Tier 2 activities. Epibenthic surveys were also conducted at two nearshore sites where construction of sediment berms has been proposed. This work is summarized in an appendix to this report.

  4. Contamination analysis of SSF candidate materials

    NASA Technical Reports Server (NTRS)

    Johnson, R. Barry

    1991-01-01

    NASA's In Situ Contamination Effects Facility, Marshall Space Flight Center, has been used to test several candidate materials for use upon Space Station Freedom. Optical measurements were made in the vacuum ultraviolet (VUV) as test mirrors were contaminated by materials in a space-like environment. This was done to determine the effects of the contamination and subsequent exposure to VUV radiation upon optical components that will be used upon the space station.

  5. Zinc mobility and speciation in soil covered by contaminated dredged sediment using micrometer-scale and bulk-averaging X-ray fluorescence, absorption and diffraction techniques

    NASA Astrophysics Data System (ADS)

    Isaure, Marie-Pierre; Manceau, Alain; Geoffroy, Nicolas; Laboudigue, Agnès; Tamura, Nobumichi; Marcus, Matthew A.

    2005-03-01

    The mobility and solid-state speciation of zinc in a pseudogley soil (pH = 8.2-8.3) before and after contamination by land-disposition of a dredged sediment ([Zn] = 6600 mg kg -1) affected by smelter operations were studied in a 50 m 2 pilot-scale test site and the laboratory using state-of-the-art synchrotron-based techniques. Sediment disposition on land caused the migration of micrometer-sized, smelter-related, sphalerite (ZnS) and franklinite (ZnFe 2O 4) grains and dissolved Zn from the sediment downwards to a soil depth of 20 cm over a period of 18 months. Gravitational movement of fine-grained metal contaminants probably occurred continuously, while peaks of Zn leaching were observed in the summer when the oxidative dissolution of ZnS was favored by non-flooding conditions. The Zn concentration in the <50 μm soil fraction increased from ˜61 ppm to ˜94 ppm in the first 12 months at 0-10 cm depth, and to ˜269 ppm in the first 15 months following the sediment deposition. Higher Zn concentrations and enrichments were observed in the fine (<2 μm) and very fine (<0.2 μm) fractions after 15 months (480 mg kg -1 and 1000 mg kg -1, respectively), compared to 200 mg kg -1 in the <2 μm fraction of the initial soil. In total, 1.2% of the Zn initially present in the sediment was released to the environment after 15 months, representing an integrated quantity of ˜4 kg Zn over an area of 50 m 2. Microfocused X-ray fluorescence (XRF), diffraction (XRD) and extended X-ray absorption fine structure (EXAFS) spectroscopy techniques were used to image chemical associations of Zn with Fe and Mn, and to identify mineral and Zn species in selected points-of-interest in the uncontaminated and contaminated soil. Bulk average powder EXAFS spectroscopy was used to quantify the proportion of each Zn species in the soil. In the uncontaminated soil, Zn is largely speciated as Zn-containing phyllosilicate, and to a minor extent as zincochromite (ZnCr 2O 4), IVZn-sorbed turbostratic

  6. 40 CFR 230.60 - General evaluation of dredged or fill material.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... substances designated as hazardous under section 311 of the Clean Water Act (See 40 CFR part 116); (5... material. 230.60 Section 230.60 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) OCEAN... generally found in areas of high current or wave energy such as streams with large bed loads or...

  7. Chemical characterisation of dredged sediments in relation to their potential use in civil engineering.

    PubMed

    Zuliani, Tea; Mladenovič, Ana; Ščančar, Janez; Milačič, Radmila

    2016-04-01

    During capital and/or maintenance dredging operations, large amounts of material are produced. Instead of their discharge, dredged sediments may be a valuable natural resource if not contaminated. One of the possible areas of application is civil engineering. In the present work, the environmental status of seaport dredged sediment was evaluated in order to investigate its potential applicability as a secondary raw material. Sediments were analysed for element concentrations in digested samples, aqueous extracts and fractions from sequential extraction; for fluoride, chloride and sulphate concentrations in aqueous extracts; and for tributyltin (TBT). Granulometric and mineralogical compositions were also analysed. The elemental impact was evaluated by calculation of the enrichment factors. The total element concentrations determined showed moderate contamination of the dredged sediments as was confirmed also by their moderate enrichment factors, presumably as a result of industrial and port activities. Elemental concentrations in the aqueous extract were very low and therefore do not represent any hazard for the environment. The water-soluble element concentrations were under the threshold levels set by the EU Directive on the landfill of waste, on the basis of which the applicability of dredged sediments in civil engineering is evaluated, while the content of chloride and sulphate were above the threshold levels. It was found out that due to the large amounts of sediment available, civil engineering applications such as the construction of embankments and backfilling is the most beneficial recycling solution at present. PMID:27000319

  8. Dredging: Technology and environmental aspects. (Latest citations from the Life Sciences collection database). Published Search

    SciTech Connect

    1996-03-01

    The bibliography contains citations concerning the technology and environmental impacts of dredging. Equipment, including semi-submersible cutter platforms, is described. Other topics include sediment movement, factors affecting sediment movement, the disposal of dredged material, and computer models predicting the fate of the dredged materials. The environmental impacts of the dredged areas and the effects of ocean dumping of dredged material are also discussed. (Contains 50-250 citations and includes a subject term index and title list.) (Copyright NERAC, Inc. 1995)

  9. Dredging: Technology and environmental aspects. (Latest citations from the Life Sciences Collection data base). Published Search

    SciTech Connect

    Not Available

    1992-10-01

    The bibliography contains citations concerning the technology and environmental impacts of dredging. Equipment, including semi-submersible cutter platforms, is described. Other topics include sediment movement, factors affecting sediment movement, the disposal of dredged material, and computer models predicting the fate of the dredged materials. The environmental impacts of the dredged areas and the effects of ocean dumping of dredged material are also discussed. (Contains 250 citations and includes a subject term index and title list.)

  10. Quantitative Zn speciation in a contaminated dredged sediment by μ-PIXE, μ-SXRF, EXAFS spectroscopy and principal component analysis

    NASA Astrophysics Data System (ADS)

    Isaure, Marie-Pierre; Laboudigue, Agnès; Manceau, Alain; Sarret, Géraldine; Tiffreau, Christophe; Trocellier, Patrick; Lamble, Géraldine; Hazemann, Jean-Louis; Chateigner, Daniel

    2002-05-01

    Dredging and disposal of sediments onto agricultural soils is a common practice in industrial and urban areas that can be hazardous to the environment when the sediments contain heavy metals. This chemical hazard can be assessed by evaluating the mobility and speciation of metals after sediment deposition. In this study, the speciation of Zn in the coarse (500 to 2000 μm) and fine (<2 μm) fractions of a contaminated sediment dredged from a ship canal in northern France and deposited on an agricultural soil was determined by physical analytical techniques on raw and chemically treated samples. Zn partitioning between coexisting mineral phases and its chemical associations were first determined by micro-particle-induced X-ray emission and micro-synchrotron-based X-ray radiation fluorescence. Zn-containing mineral species were then identified by X-ray diffraction and powder and polarized extended X-ray absorption fine structure spectroscopy (EXAFS). The number, nature, and proportion of Zn species were obtained by a coupled principal component analysis (PCA) and least squares fitting (LSF) procedure, applied herein for the first time to qualitatively (number and nature of species) and quantitatively (relative proportion of species) speciate a metal in a natural system. The coarse fraction consists of slag grains originating from nearby Zn smelters. In this fraction, Zn is primarily present as sphalerite (ZnS) and to a lesser extent as willemite (Zn 2SiO 4), Zn-containing ferric (oxyhydr)oxides, and zincite (ZnO). In the fine fraction, ZnS and Zn-containing Fe (oxyhydr)oxides are the major forms, and Zn-containing phyllosilicate is the minor species. Weathering of ZnS, Zn 2SiO 4, and ZnO under oxidizing conditions after the sediment disposal accounts for the uptake of Zn by Fe (oxyhydr)oxides and phyllosilicates. Two geochemical processes can explain the retention of Zn by secondary minerals: uptake on preexisting minerals and precipitation with dissolved Fe and Si

  11. STUDY OF ABYSSAL SEAFLOOR ISOLATION OF CONTAMINATED SEDIMENTS CONCLUDED

    EPA Science Inventory

    Recognizing the rapidly decreasing availability of disposal sites on land, in 1993 Congress directed the Department of Defense to assess the technical and scientific feasibility of isolating contaminated dredged material on the abyssal seafloor. The Naval Research Laboratory (NRL...

  12. Ecological evaluation of proposed discharge of dredged material from Oakland Harbor into ocean waters (Phase 3 A of -42-foot project)

    SciTech Connect

    Ward, J A; Word, J Q; Pinza, M R; Mayhew, H L; Barrows, E S; Lefkovitz, L F

    1992-09-01

    The Battelle/Marine Sciences Laboratory (MSL) conducted a study to determine whether dredged sediments from Oakland Inner and Outer Harbors were suitable for ocean disposal. Nineteen test treatments, six reference treatments, and three control treatments were tested for physical/chemical parameters, water column effects, dredged- sediment toxicity, and bioaccumulation potential. Physical/chemical parameters were analyzed at each site and each composite sediment to a depth of -44 ft MLLW. These parameters included analysis for geological characteristics, conventional sediment measurements (grain size, total volatile solids, total organic carbon, oil and grease, and total petroleum hydrocarbons), metals,, polynuclear aromatic hydrocarbons (PAHs), pesticides, butyltins, and polychlorinated biphenyls (PCBs). Physical/chemical data were used in support of the toxicological and bioaccumulation testing, but were not used in the decision-making criteria described in the Draft Implementation manual under Tier III testing. To evaluate water column effects, MSL conducted suspended-particulate-phase (SPP) test using the mysid shrimp Holmesimysis sculpta, speckled sanddab citharichtys stigmaeus, and larvae of the pacific oyster Crassostrea gigas. Both a 48-h and a 96-h test were performed. The MSL evaluated dredged-sediment toxicity by conducting a total of eight solid-phase toxicity tests using the following organisms: the bivalve clam Macoma nasuta, the polychaete worm Nepthys caecoides, the speckled sanddab C. stigmaeus, and the amphipod Rhepoxynius abronius. Test duration ranged from 10 to 28 days. Bioaccumulation potential was evaluated in the 28-day M. Nasuta and N. caecoides solid-phase exposures by measuring the contaminants of concern present in their tissues after exposure to test, reference, and control sediments. This report contains the data and test results.

  13. Computer Model Buildings Contaminated with Radioactive Material

    Energy Science and Technology Software Center (ESTSC)

    1998-05-19

    The RESRAD-BUILD computer code is a pathway analysis model designed to evaluate the potential radiological dose incurred by an individual who works or lives in a building contaminated with radioactive material.

  14. Three-dimensional visualization maps of suspended-sediment concentrations during placement of dredged material in 21st Avenue West Channel Embayment, Duluth-Superior Harbor, Duluth, Minnesota, 2015

    USGS Publications Warehouse

    Groten, Joel T.; Ellison, Christopher A.; Mahoney, Mollie H.

    2016-01-01

    Excess sediment in rivers and estuaries poses serious environmental and economic challenges. The U.S. Army Corps of Engineers (USACE) routinely dredges sediment in Federal navigation channels to maintain commercial shipping operations. The USACE initiated a 3-year pilot project in 2013 to use navigation channel dredged material to aid in restoration of shoreline habitat in the 21st Avenue West Channel Embayment of the Duluth-Superior Harbor. Placing dredged material in the 21st Avenue West Channel Embayment supports the restoration of shallow bay aquatic habitat aiding in the delisting of the St. Louis River Estuary Area of Concern.The U.S. Geological Survey, in cooperation with the USACE, collected turbidity and suspended-sediment concentrations (SSCs) in 2014 and 2015 to measure the horizontal and vertical distribution of SSCs during placement operations of dredged materials. These data were collected to help the USACE evaluate the use of several best management practices, including various dredge material placement techniques and a silt curtain, to mitigate the dispersion of suspended sediment.Three-dimensional visualization maps are a valuable tool for assessing the spatial displacement of SSCs. Data collection was designed to coincide with four dredged placement configurations that included periods with and without a silt curtain as well as before and after placement of dredged materials. Approximately 230 SSC samples and corresponding turbidity values collected in 2014 and 2015 were used to develop a simple linear regression model between SSC and turbidity. Using the simple linear regression model, SSCs were estimated for approximately 3,000 turbidity values at approximately 100 sampling sites in the 21st Avenue West Channel Embayment of the Duluth-Superior Harbor. The estimated SSCs served as input for development of 12 three-dimensional visualization maps.

  15. Field verification program (aquatic disposal). A field and laboratory study using adenylate energy charge as an indicator of stress in Mytilus edulis and Nephtys incisa treated with dredged material. Final report

    SciTech Connect

    Zaroogian, G.E.; Rogerson, P.F.; Hoffman, G.; Johnson, M.; Johns, D.M.

    1988-06-01

    A study was conducted to test the applicability of adenylate energy charge (AEC) and adenine nucleotide pool concentrations as measures of biological response in the blue mussel, Mytilus edulis, and the marine polychaete, Nephtys incisa, after exposure in the laboratory an field to contaminated dredged material from Black Rock Harbor (BRH), Bridgeport, Conn. A second objective was to include field verification of laboratory results, and a third objective was to investigate residue-effect relationships between tissue concentrations of BRH contaminants and AEC and adenine nucleotide pool concentrations. Tissue residue concentrations, particularly of persistent compounds such as polychlorinated biphenyls, were found to be closely related to exposure concentration. The biological responses evaluated in this report included the adenine nucleotide measures of adenosine triphosphate, adenosine diphosphate, adenosine monophosphate, adenylate pool, and AEC. Adenine nucleotides and AEC are important in energy transformation and in regulation of metabolic processes. Responses in adenine nucleotide pools correlate with tissue concentrations of BRH contaminants in exposed organisms. Measurement of the adenine nucleotide concentrations may help to characterize the energy costs incurred by organisms under stressful conditions.

  16. Creation Of Constructed Tidal Flats Using Ocean Dredged Sediment

    NASA Astrophysics Data System (ADS)

    Park, S.; Yi, B.; Lee, I.; Sung, K.

    2007-12-01

    The enforcement of London dumping convention (1972) and protocols (1996) which are comprehensive assessment system for ocean dumping wastes needs environmentally sound treatment and/or reuse of dredged sediment. Creation of constructed tidal flats using dredged sediments could be one of the useful alternatives among other dredged sediment treatments. In this study, the pilot-scale constructed tidal flats with 4 different mixing ratio of ocean dredged sediment were constructed in Nakdong river estuary, Korea. The reed was transplanted from the adjacent reed community after construction, and then the survival and growth rate of the planted reed was measured. Also the changes of Chemical Oxygen Demand (COD), Ignition loss (IL), and the heterotrophic microbial numbers were monitored. The survival rate of the planted reed decreased as the mixing ratio of dredged sediment increased. The survival rate of reed in the constructed tidal flat with 100% dredged sediment was 54% while that in the tidal flat with 0% dredged sediment (original soil of Nakdong river estuary) was 90%. There was little difference of length and diameter of the reed shoot among the 4 different constructed tidal flats. 30% of COD and 9% of IL in the tidal flat with 100% dredged sediment decreased after 202 day, however, the consistent tendency in the change of COD and IL in the other tidal flats was not found possibly due to the open system. It was suggested that the construction of tidal flats using ocean dredged sediment can be possible considering the growth rate of transplanted reeds and the contaminated ocean dredged sediment might be biologically remediated considering the results of decrease of organic matter and increased heterotrophic microbial number in the tidal flat with 100% dredged sediment. However, the continuous monitoring on the vegetation and various environmental factors in the constructed tidal flats should be necessary to evaluate the success of creation of constructed flats using

  17. Surface contamination on LDEF exposed materials

    NASA Technical Reports Server (NTRS)

    Hemminger, Carol S.

    1992-01-01

    X-ray photoelectron spectroscopy (XPS) has been used to study the surface composition and chemistry of Long Duration Exposure Facility (LDEF) exposed materials including silvered Teflon (Ag/FEP), Kapton, S13GLO paint, quartz crystal monitors (QCM's), carbon fiber/organic matrix composites, and carbon fiber/Al Alloy composites. In each set of samples, silicones were the major contributors to the molecular film accumulated on the LDEF exposed surfaces. All surfaces analyzed have been contaminated with Si, O, and C; most have low levels (less than 1 atom percent) of N, S, and F. Occasionally observed contaminants included Cl, Na, K, P, and various metals. Orange/brown discoloration observed near vent slots in some Ag/FEP blankets were higher in carbon, sulfur, and nitrogen relative to other contamination types. The source of contamination has not been identified, but amine/amide functionalities were detected. It is probable that this same source of contamination account for the low levels of sulfur and nitrogen observed on most LDEF exposed surfaces. XPS, which probes 50 to 100 A in depth, detected the major sample components underneath the contaminant film in every analysis. This probably indicates that the contaminant overlayer is patchy, with significant areas covered by less that 100 A of molecular film. Energy dispersive x-ray spectroscopy (EDS) of LDEF exposed surfaces during secondary electron microscopy (SEM) of the samples confirmed contamination of the surfaces with Si and O. In general, particulates were not observed to develop from the contaminant overlayer on the exposed LDEF material surfaces. However, many SiO2 submicron particles were seen on a masked edge of an Ag/FEP blanket. In some cases such as the carbon fiber/organic matrix composites, interpretation of the contamination data was hindered by the lack of good laboratory controls. Examination of laboratory controls for the carbon fiber/Al alloy composites showed that preflight contamination was

  18. AIR EMISSIONS FROM EXPOSED SEDIMENTS AND CONTAMINATED DREDGED MATERIAL. (R825513C017)

    EPA Science Inventory

    The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...

  19. The effect of phytostabilization on Zn speciation in a dredged contaminated sediment using scanning electron microscopy, X-ray fluorescence, EXAFS spectroscopy, and principal components analysis

    NASA Astrophysics Data System (ADS)

    Panfili, Frédéric; Manceau, Alain; Sarret, Géraldine; Spadini, Lorenzo; Kirpichtchikova, Tatiana; Bert, Valérie; Laboudigue, Agnès; Marcus, Matthew A.; Ahamdach, Noureddine; Libert, Marie-Françoise

    2005-05-01

    The maintenance of waterways generates large amounts of dredged sediments, which are deposited on adjacent land surfaces. These sediments are often rich in metal contaminants and present a risk to the local environment. Understanding how the metals are immobilized at the molecular level is critical for formulating effective metal containment strategies such as phytoremediation. In the present work, the mineralogical transformations of Zn-containing phases induced by two graminaceous plants (A grostis tenuis and Festuca rubra) in a contaminated sediment ([Zn] = 4700 mg kg -1, [P 2O 5] = 7000 mg kg -1, pH = 7.8), untreated or amended with hydroxylapatite (AP) or Thomas basic slag (TS), were investigated after two yr of pot experiment by scanning electron microscopy coupled with energy-dispersive spectrometry (SEM-EDS), synchrotron-based X-ray microfluorescence (μ-SXRF), and powder and laterally resolved extended X-ray absorption fine structure (μ-EXAFS) spectroscopy. The number and nature of Zn species were evaluated by principal component (PCA) and least-squares fitting (LSF) analysis of the entire set of μ-EXAFS spectra, which included up to 32 individual spectra from regions of interest varying in chemical composition. Seven Zn species were identified at the micrometer scale: sphalerite, gahnite, franklinite, Zn-containing ferrihydrite and phosphate, (Zn-Al)-hydrotalcite, and Zn-substituted kerolite-like trioctahedral phyllosilicate. Bulk fractions of each species were quantified by LSF of the powder EXAFS spectra to linear combinations of the identified Zn species spectra. In the untreated and unvegetated sediment, Zn was distributed as ˜50% (mole ratio of total Zn) sphalerite, ˜40% Zn-ferrihydrite, and ˜10 to 20% (Zn-Al)-hydrotalcite plus Zn-phyllosilicate. In unvegetated but amended sediments (AP and TS), ZnS and Zn-ferrihydrite each decreased by 10 to 20% and were replaced by Zn-phosphate (˜30˜40%). In the presence of plants, ZnS was almost completely

  20. Long-term effects of dredging operations program. Effects of sediment organic-matter composition on bioaccumulation of sediment organic contaminants: Interim results. Final report

    SciTech Connect

    Brannon, J.M.; Price, C.B.; Reilly, F.J.; Pennington, J.C.; McFarland, V.A.

    1991-06-01

    The relationship of sediment-bound polychlorinated biphenyl (PCB) 153 and fluoranthene to bioaccumulation by worms and clams and the relationship of sediment-bound PCB 153 and fluoranthene to concentrations in the interstitial water were examined. Bioaccumulation by both worms and clams was observed in all sediments. Apparent preference factor (APF) values showed that steady state was reached between sediment-bound contaminants and organism lipid pools. The APF values of organisms were close to the theoretical value for both contaminants in all sediments. These results showed that sediment total organic carbon (TOC) in conjunction with octanol water partition coefficients of nonpolar organic contaminants is a viable approach for predicting bioaccumulation of such compounds by infaunal organisms. Actual concentrations of contaminants in interstitial water were either overestimated or underestimated by the relationship between TOC and humic + fulvic acid organic matter fractions and sediment contaminant concentrations. Prediction of interstitial water concentrations was not as successful as use of APFs. The lack of agreement between predicted and actual interstitial water results was due to factors such as the presence of interstitial water contaminants bounds to microparticulates and dissolved organic material and the kind of organic material in the sediment.

  1. Ecological evaluation of proposed discharge of dredged material from Oakland Harbor into ocean waters (Phase 3 of 38-Foot Project). Volume 2, Appendixes I through L

    SciTech Connect

    Ward, J.A.; Word, J.Q.; Pinza, M.R.; Mayhew, H.L.; Barrows, E.S.; Kohn, N.P.; Lefkovitz, L.F.

    1992-01-01

    At the request of the US Army Corps of Engineers (USACE), environmental studies were conducted by Battelle/Marine Science Laboratory (MSL) to evaluate the suitability of sediments from Oakland Inner Harbor for dredging and ocean disposal. During the Phase 3 38-Foot Project, sediment cores were collected from mudline to {minus}39 ft mean lower low water at various locations in Oakland Inner Harbor channel and allocated to six composite samples. These composites were evaluated through physical/chemical analyses, acute toxicity to sensitive marine organisms, and bioaccumulation potential. Sediment samples from individual locations were tested for physical/chemical parameters only. The results of toxicological and bioaccumulation testing may be used by USACE to determine the amount of potential dredged material from Oakland Inner Harbor channel acceptable for open-water disposal as defined by the Draft Implementation Manual (EPA/USACE 1990) and consistent with the Water Resources Development Act of 1986 (Public Law 99-662). This is Volume 2 of a two-volume data report that represents the data gathered during the Oakland Harbor Phase 3 38-Foot Project, conducted in the Fall of 1990. This data report does not include interpretation or statistical analysis of the 38-Foot data. Volume 1 includes the project background as well as data and results presented in Appendixes A through H. Volume 2 includes the remaining data presented in Appendixes I through L.

  2. Ecological evaluation of proposed discharge of dredged material from Oakland Harbor into ocean waters (Phase 3 of 38-Foot Project). Volume 1, Background and appendixes A through H

    SciTech Connect

    Ward, J.A.; Word, J.Q.; Pinza, M.R.; Mayhew, H.L.; Barrows, E.S.; Kohn, N.P.; Lefkovitz, L.F.

    1992-01-01

    At the request of the US Army Corps of Engineering (USACE), environmental studies were conducted by Battelle/Marine Sciences Laboratory (MSL) to evaluate the suitability of sediments from Oakland Inner Harbor for dredging and ocean disposal. During the Phase 3 38-Foot Project, sediment cores were collected from mudline to {minus}39 ft mean lower low water at various locations in Oakland Inner Harbor channel and allocated to six composite samples. These composites were evaluated through physical/chemical analyses, acute toxicity to sensitive marine organisms, and bioaccumulation potential. Sediment samples from individual locations were tested for physical/chemical parameters only. The results of toxicological and bioaccumulation testing may be used by USACE to determine the amount of potential dredged material from Oakland Inner Harbor channel acceptable for open-water disposal as defined by the Draft Implementation Manual (EPA/USACE 1990) and consistent with the Water Resources Development Act of 1986 (Public Law 99-662). This is Volume 1 of a two-volume data report that presents the data gathered during the Oakland Harbor Phase 3 38-Foot Project, conducted in the Fall of 1990. This data report does not include interpretation or statistical analysis of the 38-Foot data. Volume 1 includes the project background as well as a full presentation of data and results in Appendixes A through H. Volume 2 contains the remaining data in Appendixes I through L.

  3. Satellite Contamination and Materials Outgassing Knowledge base

    NASA Technical Reports Server (NTRS)

    Minor, Jody L.; Kauffman, William J. (Technical Monitor)

    2001-01-01

    Satellite contamination continues to be a design problem that engineers must take into account when developing new satellites. To help with this issue, NASA's Space Environments and Effects (SEE) Program funded the development of the Satellite Contamination and Materials Outgassing Knowledge base. This engineering tool brings together in one location information about the outgassing properties of aerospace materials based upon ground-testing data, the effects of outgassing that has been observed during flight and measurements of the contamination environment by on-orbit instruments. The knowledge base contains information using the ASTM Standard E- 1559 and also consolidates data from missions using quartz-crystal microbalances (QCM's). The data contained in the knowledge base was shared with NASA by government agencies and industry in the US and international space agencies as well. The term 'knowledgebase' was used because so much information and capability was brought together in one comprehensive engineering design tool. It is the SEE Program's intent to continually add additional material contamination data as it becomes available - creating a dynamic tool whose value to the user is ever increasing. The SEE Program firmly believes that NASA, and ultimately the entire contamination user community, will greatly benefit from this new engineering tool and highly encourages the community to not only use the tool but add data to it as well.

  4. Ecological evaluation of proposed discharge of dredged material from Oakland Harbor into ocean waters (Phase 3 A of -42-foot project). Volume 1, Analyses and discussion

    SciTech Connect

    Ward, J.A.; Word, J.Q.; Pinza, M.R.; Mayhew, H.L.; Barrows, E.S.; Lefkovitz, L.F.

    1992-09-01

    The Battelle/Marine Sciences Laboratory (MSL) conducted a study to detemine whether dredged sediments from Oakland Inner and Outer Harbors were, suitable for ocean disposal. Nineteen test treatments, six reference treatments, and control treatments were tested for physical/chemical parameters, water column effects, dredged sediment-toxicity, and bioaccumulation potential. Physical/chemical parameters were analyzed at each site and each composite sediment to a depth of -44 ft MLLW. These parameters included analysis for geological characteristics, conventional sediment measurements (grain size, total volatile solids, total organic carbon, oil and grease, and total petroleum hydrocarbons), metals, polynuclear aromatic hydrocarbons (PAHs), pesticides, butyltins, and polychlorinated biphenyls (PCBs). Physical/chemical data were used in support of the toxicological and bioaccumulation testing, but were not used in the decision-making criteria described iti the Draft Implementation Manual under Tier III testing. To evaluate water column effects, MSL conducted suspended-particulate-phase (SPP) tests using the mysid shrimp Holmesimysis sculpta, speckled sanddab Citharichtys stigmaeus, and larvae of the pacific oyster Crassostrea gigas- Both a 48-h and a 96-h test were performed. The MSL evaluated dredgedsediment toxicity by conducting a total of eight solid-phase toxicity tests using the following organisms: the bivalve clam Macoma nasuta, the polychaste worm Nepthys caecoides, the speckled sanddab C. stigmaeus, and the arnphipod Rhepoxynius abronius. Test duration ranged From 10 to 28 days. Bioaccumulation potential was evaluated in the 28-day M. nasuta and N. caecoides solid-phase exposures by measuring the Contaminants of concern present in their tissues after exposure to test, reference, and control sediments.

  5. Ecological evaluation of proposed discharge of dredged material from Oakland Harbor into ocean waters (Phase 3 A of -42-foot project)

    SciTech Connect

    Ward, J.A.; Word, J.Q.; Pinza, M.R.; Mayhew, H.L.; Barrows, E.S.; Lefkovitz, L.F. )

    1992-09-01

    The Battelle/Marine Sciences Laboratory (MSL) conducted a study to detemine whether dredged sediments from Oakland Inner and Outer Harbors were, suitable for ocean disposal. Nineteen test treatments, six reference treatments, and control treatments were tested for physical/chemical parameters, water column effects, dredged sediment-toxicity, and bioaccumulation potential. Physical/chemical parameters were analyzed at each site and each composite sediment to a depth of -44 ft MLLW. These parameters included analysis for geological characteristics, conventional sediment measurements (grain size, total volatile solids, total organic carbon, oil and grease, and total petroleum hydrocarbons), metals, polynuclear aromatic hydrocarbons (PAHs), pesticides, butyltins, and polychlorinated biphenyls (PCBs). Physical/chemical data were used in support of the toxicological and bioaccumulation testing, but were not used in the decision-making criteria described iti the Draft Implementation Manual under Tier III testing. To evaluate water column effects, MSL conducted suspended-particulate-phase (SPP) tests using the mysid shrimp Holmesimysis sculpta, speckled sanddab Citharichtys stigmaeus, and larvae of the pacific oyster Crassostrea gigas- Both a 48-h and a 96-h test were performed. The MSL evaluated dredgedsediment toxicity by conducting a total of eight solid-phase toxicity tests using the following organisms: the bivalve clam Macoma nasuta, the polychaste worm Nepthys caecoides, the speckled sanddab C. stigmaeus, and the arnphipod Rhepoxynius abronius. Test duration ranged From 10 to 28 days. Bioaccumulation potential was evaluated in the 28-day M. nasuta and N. caecoides solid-phase exposures by measuring the Contaminants of concern present in their tissues after exposure to test, reference, and control sediments.

  6. Nonmetallic materials contamination studies. [space telescope

    NASA Technical Reports Server (NTRS)

    Muscari, J. A.; Beverlin, G.

    1980-01-01

    In order to impose adequate contamination control requirements in the selection of Wide Field Planetary Camera (WFPC) materials and to develop a data base of potential optical degradation of the WFPC charge-couple device window, the outgassing properties of WFPC materials and the collected volatile condensed material (CVCM) effects on MgF2 transmittance were measured. Changes in the transmittance were monitored in the wavelength region from 115 nm to 300 nm for selected CVCM thicknesses up to 150 nm. The outgassing properties of reemitted CVCM were also studied.

  7. ECOLOGICAL EVALUATION OF PROPOSED DISCHARGE OF DREDGED MATERIAL INTO OCEAN WATERS; IMPLEMENTATION MANUAL FOR SECTION 103 OF PUBLIC LAW 92-532 (MARINE PROTECTION, RESEARCH, AND SANCTUARIES ACT OF 1972)

    EPA Science Inventory

    According to Section 103 of Public Law 92-532 (Marine Protection ,Research, and Sanctuaries Act of 1972), any proposed dumping of dredged material into ocean waters must be evaluated through the use of criteria published by the Environmental Protection Agency (EPA) i n the Federa...

  8. Contamination surveys for release of material

    SciTech Connect

    Durham, J.S.; Johnson, M.L.; Gardner, D.L.

    1994-05-01

    This report describes, and presents the technical basis for, a methodology for performing instrument surveys to release material from radiological control, including release to controlled areas and release from radiological control. The methodology is based on a fast scan survey, a large-area wipe survey, and a series of statistical, fixed measurements. The methodology meets the requirements of the US Department of Energy Radiological Control Manual (RadCon Manual) (DOE 1994) and DOE Order 5400.5 (DOE 1990) for release of material in less time than is required by a conventional scan survey. Implementation of the proposed methodology with a confidence interval of 67% will meet the material release requirements. The material evaluation process will allow material that has not been exposed to contamination to be released from radiological control without a survey. For potential radioactive contaminants that are not reserved in DOE Order 5400.5, the methodology will allow material to be released from radiological control. For other radionuclides, with the exception of some difficult-to-detect radionuclides, material may be released for controlled use. Compared with current techniques, the proposed methodology will reduce the amount of time required to perform surveys.

  9. Removal of organic contaminants from lithographic materials

    NASA Astrophysics Data System (ADS)

    Lytle, Wayne M.

    One of the critical issues still facing the implementation of extreme ultraviolet lithography (EUVL) into mainstream manufacturing for integrated circuit (IC) production is cleanliness. EUV photons at 13.5 nm are easily absorbed by many species, including dust, thin-film layers, and other debris present in the path of the photons. Carrying out EUVL inside a vacuum helps reduce the amount of photon loss for illumination, however contamination in the sys- tem is unavoidable, especially due to carbon growth on the multilayer mirror collectors and to soft defects in the form of organic contamination on the mask. Traditional cleaning methods employ the use of wet chemicals to etch contamination off of a surface, however this is limited in the sub-micron range of contaminant particles due to lack of transport of sufficient liquid chemical to the surface in order to achieve satisfactory particle removal. According to the International Technology Roadmap for Semiconductors (ITRS), the photomask must be particle free at inspection below 30 nm. However, when analyzing the ability of traditional methods to meet the cleaning needs set forth by the ITRS, these methods fall short and often add more contamination to the surface targeted for cleaning. With that in mind, a new cleaning method is being developed to supplant these traditional methods. Preliminary research into a plasma-based method to clean organic contaminants from lithographic materials constructed an experimental device that demonstrated the removal of both polystyrene latex nanoparticles (representing hydrocarbon contamination) in the range of 30 nm to 500 nm, as well as the removal of 30 nm carbon film layers on silicon wafers. This research, called the Plasma-Assisted Cleaning by Metastable Atomic Neutralization (PACMAN) process is being developed with semiconductor manufacturing cleaning in mind. A model of the helium metastable density within the processing chamber has been developed in addition to

  10. Environmental management for dredging sediments - the requirement of developing nations.

    PubMed

    Manap, Norpadzlihatun; Voulvoulis, Nikolaos

    2015-01-01

    Scientific research has characterized the effects of dredging, an underwater excavation process for navigational purposes or material extraction, and has shown its association with a number of chemical, physical and biological impacts. Due to this, much environmental management has been applied in the dredging industry in order to manage its detrimental effects. However, developing nations may have different approaches towards their dredging environmental management to compare to their companions with higher economic strength. Moreover, scientific evidence to make an informed decision is often lacking, hence affecting the number of research executed at these nations, limiting their efforts to preserve the environment. This paper reviews the dredging environmental impacts and its two important factors, dredging technology and sediment characteristic, that determine the magnitude of impacts through literature review, and discusses the need for a more integrated dredging environmental management to be developed for developing nations. PMID:25304520

  11. The Influence of Organic Material and Temperature on the Burial Tolerance of the Blue Mussel, Mytilus edulis: Considerations for the Management of Marine Aggregate Dredging

    PubMed Central

    Cottrell, Richard S.; Black, Kenny D.; Hutchison, Zoë L.; Last, Kim S.

    2016-01-01

    consideration for the role of organic matter and temperature during sedimentation events may lead to an overestimation of the tolerance of benthic species to smothering from dredged material. PMID:26809153

  12. Effects of Black Rock Harbor dredged material on the scope for growth of the blue mussel, Mytilus edulis, after laboratory and field exposures

    SciTech Connect

    Nelson, W.G.; Phelps, D.K.; Galloway, W.B.; Rogerson, P.F.; Pruell, R.J.

    1987-01-01

    A study was conducted to investigate residue-effect relationships between tissue residue concentrations and the scope for growth of the blue mussel, Mytilus edulis, after exposure in the laboratory and the field to dredged material from Black Rock Harbor (BRH), Bridgeport, Connecticut. A second objective included field verification of the laboratory results. Residue concentrations in mussels, particularly stable compounds such as polychlorinated biphenyls, were found to be closely related to exposure concentration. Scope for growth, clearance rates, and shell growth measurements were inversely related to BRH exposure and subsequent tissue residues, with concentration as low as 1.5 mg/L of BRH material causing negative biological effects. In the field, mussels were placed along a transect from the center of the disposal mound to a clean area distant from the disposal mound. Exposure estimates indicated that the maximum concentration BRH material occurred during the disposal operation, after which both exposure and tissue residue concentrations decreased dramatically. Of the measurements made at the four field stations during the course of the study, a reduction in the scope for growth of mussels, attributable to BRH material, was observed only once. The estimated concentration of BRH suspended material during that collection was very close to the lowest concentration affecting the scope for growth in the laboratory experiments. 33 refs., 30 figs., 17 tabs.

  13. Study of the plume created by the spillage of dredged material in the area overlooking the Port of Fiumicino (Rome, Italy)

    NASA Astrophysics Data System (ADS)

    Scanu, S.; Bonamano, S.; Peviani, M. A.; Marcelli, M.

    2009-04-01

    The present paper describes the analysis of the evolution of the plume of material according to the hydrodynamic field in different weather conditions for two possible zones for the spillage of dredging material in the area overlooking the Port of Fiumicino. The study was conducted through the use of the coastal circulation model ADCIRC and the transport model PTM, both included in the hydrodynamic suite models SMS 9.2. For the numerical modelling was identified a physiographic unit comprising Cape Linaro to the North and Cape Anzio to the South. The physiographic representation of this area was obtained from bathymetric campaigns conducted by DECOS in the years 2002 and 2003. In addition, a detailed bathymetric measurements of the spillage zone, and a campaign of currentometric measures in order to calibrate the hydrodynamic model, carried out both in 2007. To study the movement of sediment from the spillage zone towards the surrounded area, was used a numerical Lagrangian model (Particle Tracking Module - PTM) that allows to simulate the movement of a group of particles in relation with the hydrodynamic field. There were selected two classes of particles sizes that describe the typology of the dredged material from the Port of Fiumicino. Dominant wind pattern of the region is Tramontana (in autumn and winter) and Ponente (in spring and summer) although intense events concerned Libeccio and Scirocco directions. In the case of Tramontana the velocity field is slightly reduced and creates zones of reverse current near the coast. In case of Libeccio, the velocity field slightly moves towards the coast direction and in case of Scirocco there can be noticed an increase of the current intensity in the spillage area. From the simulation studies conducted through the PTM model, it can be noticed that the coarse material (Dm = 0.8 mm) is quickly deposited in the neighbour area, while the finer material (Dm = 0.03 mm) is carried by the current creating a plume of sediment

  14. USE OF DREDGINGS FOR LANDFILL: SUMMARY TECHNICAL REPORT

    EPA Science Inventory

    This research program was initiated with the overall objective of evaluating the usefulness of dredged sediments as landfill material. The study is limited to the deposition of polluted fresh water dredgings from the Great Lakes area, and the major effort was centered around four...

  15. Predicting pollutant concentrations in the water column during dredging operations: Implications for sediment quality criteria.

    PubMed

    Wasserman, Julio Cesar; Wasserman, Maria Angélica V; Barrocas, Paulo Rubens G; Almeida, Aline Mansur

    2016-07-15

    The development of new dredging techniques that can reduce, or at least predict, the environmental impacts, is in high demand by governments in developing countries. In the present work, a new methodology was developed, to evaluate the level of metals contamination (i.e. cadmium, lead and zinc) of the water column, during a dredging operation. This methodology was used to evaluate the impacts of the construction of a new maritime terminal in Sepetiba Bay, Brazil. The methodology quantifies the amount of resuspended sediments and calculates the expected contaminants concentrations in the water column. The results indicated that sediment quality criteria were not compatible with water quality criteria, because the dredging of contaminated sediments does not necessarily yield contaminated water. It is suggested that the use of sediment quality criteria for dredging operations might be abandoned, and the methodology presented in this study applied to assess dredging's environmental impacts, predicting water contamination levels. PMID:27216043

  16. Hydrogeologic framework, hydrology, and water quality in the Pearce Creek Dredge Material Containment Area and vicinity, Cecil County, Maryland, 2010-11

    USGS Publications Warehouse

    Dieter, Cheryl A.; Koterba, Michael T.; Zapecza, Otto S.; Walker, Charles W.; Rice, Donald E.

    2013-01-01

    In 2009, to support an evaluation of the feasibility of reopening the Pearce Creek Dredge Material Containment Area (DMCA) in Cecil County, Maryland, for dredge-spoil disposal, the U.S. Geological Survey (USGS) began to implement a comprehensive study designed to improve the understanding of the hydrogeologic framework, hydrology, and water quality of shallow aquifers underlying the DMCA and adjacent communities, to determine whether or not the DMCA affected groundwater quality, and to assess whether or not groundwater samples contained chemical constituents at levels greater than maximum allowable or recommended levels established by the U.S. Environmental Protection Agency Safe Drinking Water Act. The study, conducted in 2010-11 by USGS in cooperation with the U.S. Army Corps of Engineers, included installation of observation wells in areas where data gaps led earlier studies to be inconclusive. The data from new wells and existing monitoring locations were interpreted and show the DMCA influences the groundwater flow and quality. Groundwater flow in the two primary aquifers used for local supplies-the Magothy aquifer and upper Patapsco aquifer (shallow water-bearing zone)-is radially outward from the DMCA toward discharge areas, including West View Shores, the Elk River, and Pearce Creek Lake. In addition to horizontal flow outward from the DMCA, vertical gradients primarily are downward in most of the study area, and upward near the Elk River on the north side of the DMCA property, and the western part of West View Shores. Integrating groundwater geochemistry data in the analysis, the influence of the DMCA is not only a source of elevated concentrations of dissolved solids but also a geochemical driver of redox processes that enhances the mobilization and transport of redox-sensitive metals and nutrients. Groundwater affected by the DMCA is in the Magothy aquifer and upper Patapsco aquifer (shallow water-bearing zone). Based on minimal data, the water quality

  17. PHYTOREMEDIATING DREDGED SEDIMENTS: A BENEFICIAL REUSE PROTOCOL

    EPA Science Inventory

    The Jones Island Confined Disposal Facility (CDF) located in Milwaukee Harbor Wisconsin, receives dredged materials from normal maintenance of Milwaukee's waterways. Like many CDFs they face the dilemma of steady inputs and no feasible alternative for expansion. The Army Corps of...

  18. Contamination Barrier For Contour-Molding Material

    NASA Technical Reports Server (NTRS)

    Adams, James F.

    1988-01-01

    Release agent prevents molding compound from adhering to or contaminating surface. Cleaning agent, Turco 4215 NCLT, forms barrier preventing silicone molding compound from sticking to surface and leaving contaminating residue. Also see MFS-29243.

  19. Methods for removing contaminant matter from a porous material

    DOEpatents

    Fox, Robert V [Idaho Falls, ID; Avci, Recep [Bozeman, MT; Groenewold, Gary S [Idaho Falls, ID

    2010-11-16

    Methods of removing contaminant matter from porous materials include applying a polymer material to a contaminated surface, irradiating the contaminated surface to cause redistribution of contaminant matter, and removing at least a portion of the polymer material from the surface. Systems for decontaminating a contaminated structure comprising porous material include a radiation device configured to emit electromagnetic radiation toward a surface of a structure, and at least one spray device configured to apply a capture material onto the surface of the structure. Polymer materials that can be used in such methods and systems include polyphosphazine-based polymer materials having polyphosphazine backbone segments and side chain groups that include selected functional groups. The selected functional groups may include iminos, oximes, carboxylates, sulfonates, .beta.-diketones, phosphine sulfides, phosphates, phosphites, phosphonates, phosphinates, phosphine oxides, monothio phosphinic acids, and dithio phosphinic acids.

  20. Evaluation of the boundary condition influence on PAH concentrations in the water column during the sediment dredging of a port.

    PubMed

    Cutroneo, L; Castellano, M; Carbone, C; Consani, S; Gaino, F; Tucci, S; Magrì, S; Povero, P; Bertolotto, R M; Canepa, G; Capello, M

    2015-12-30

    The mobilisation of sediments and related contaminants connected to dredging activities is one of the most critical issues to the environmental risk and exposure assessment of a dredging project. The aim of this paper was an investigation of the mobilisation of polycyclic aromatic hydrocarbons (PAHs) due to the dredging of the Port of Genoa (Italy) to identify the temporal and spatial extent of the contaminant transport, and the influence of the dredging and the boundary conditions on it. The results showed relatively low background PAH concentrations in the water column and confirmed the dredging as the primary rising factor of concentrations in the water column, but also showed a complex scenario in which the different environmental and dredging factors forced the concentrations at different levels and moments. The post dredging phase showed PAH values close to the background conditions and the concentrations remained relatively high only for a few PAHs. PMID:26517941

  1. Scrubbing of contaminants from contaminated air streams with aerogel materials with optional photocatalytic destruction

    DOEpatents

    Attia, Yosry A.

    2000-01-01

    Disclosed is a method for separating a vaporous or gaseous contaminant from an air stream contaminated therewith. This method includes the steps of: (a) passing said contaminated air into a contact zone in which is disposed an aerogel material capable of selecting adsorbing said contaminant from air and therein contacting said contaminated air with an aerogel material; and (b) withdrawing from said zone, air depleted of said contaminant. For present purposes, "contaminant" means a material not naturally occurring in ambient air and/or a material naturally occurring in air but present at a concentration above that found in ambient air. Thus, the present invention scrubs (or treats) air for the purpose of returning it to its ambient composition. Also disclosed herein is a process for the photocatalytic destruction of contaminants from an air stream wherein the contaminated air stream is passed into a control cell or contact zone in which is disposed a photocatalytic aerogel and exposing said aerogel to ultraviolet (UV) radiation for photocatalytically destroying the adsorbed contaminant, and withdrawing from said cell an exhaust air stream depleted in said contaminant.

  2. Long-term effects of dredging operations program. Collation and interpretation of data for Times Beach confined disposal facility, Buffalo, New York. Final report

    SciTech Connect

    Stafford, E.A.; Simmers, J.W.; Rhett, R.G.; Brown, C.P.

    1991-06-01

    This interim report, collates all data gathered for the Times Beach confined disposal facility (CDF), Buffalo, New York. This purpose of the studies at the CDF was to determine the mobility and potential hazard of contaminants known to be in the dredged material placed at Times Beach by sampling and analyzing various components of the developing ecosystems. Upland, wetland, and aquatic areas are represented within the CDF and, for each area, inventories of colonizing biota were made and samples collected for measurement of heavy metals and organic compound contaminants. Samples of dredged material, vegetation, and soil-dwelling invertebrates, and vertebrates have been collected and heavy metal concentrations measured. Results suggest that the persistent contaminants, particularly cadmium, are concentrating in the leaf litter zone and moving into the detritivorous invertebrates. Highest concentrations of heavy metals were noted in earthworms. Earth worms, millipedes, woodlice, and spiders appeared to be target organisms for accumulation of heavy metals, and these groups contained higher concentrations of copper and cadmium than the other groups. Polychlorinated biphenyl (PCB) and polynuclear aromatic hydrocarbon contaminants in the dredged material were below machine detection limits in the vertebrate top-predators. Contaminant concentrations in water from ground water wells were below guidance limits.

  3. Acoustic mapping of the regional seafloor geology in and around Hawaiian ocean dredged-material disposal sites

    USGS Publications Warehouse

    Torresan, Michael E.; Gardner, James V.

    2000-01-01

    During January and February 1998 the U.S. Geological Survey Coastal and Marine Geology Team (USGS) conducted regional high-resolution multibeam mapping surveys of the area surrounding EPA-designated ocean disposal sites located offshore of the Hawaiian Islands of Oahu, Kauai, Maui, and Hawaii. The sites are all located within 5 nautical miles of shore on insular shelves or slopes. Regional maps were required of areas much larger than the disposal sites themselves to assess both the regional seafloor geology and the immediate vicinity of the disposal sites. The purpose of the disposal site surveys was to delimit the extent of disposal material by producing detailed bathymetric and backscatter maps of the seafloor with a ± 1 m spatial accuracy and <1% depth error. The advantage of using multibeam over conventional towed, single-beam sidescan sonar is that the multibeam data are accurately georeferenced for precise location of all imaged features. The multibeam produces a coregistered acoustic-backscatter map that is often required to locate individual disposal deposits. These data were collected by the USGS as part of its regional seafloor mapping and in support of ocean disposal site monitoring studies conducted in cooperation with the US Environmental Protection Agency (EPA) and the US Army Corps of Engineers (COE).

  4. Multicriteria decision analysis to assess options for managing contaminated sediments: Application to Southern Busan Harbor, South Korea.

    PubMed

    Kim, Jongbum; Kim, Suk Hyun; Hong, Gi Hoon; Suedel, Burton C; Clarke, Joan

    2010-01-01

    Many years of untreated effluent discharge from residential areas, a shipyard, a marina, and a large fish market resulted in substantial contamination of bottom sediment in Southern Busan Harbor, South Korea. Contaminants in these sediments include heavy metals and organic compounds. Newly introduced regulations for ocean disposal of dredged material in South Korea pose significant challenges, because the previous practice of offshore disposal of contaminated dredged material was no longer possible after August 2008. The South Korean government has mandated that such sediments be assessed in a way that identifies the most appropriate dredged material management alternative, addressing environmental, social, and cost objectives. An approach using multicriteria decision analysis (MCDA) in combination with comparative risk assessment was used as a systematic and transparent framework for prioritizing several dredged sediment management alternatives. We illustrate how MCDA can recognize the multiple goals of contaminated sediment management. Values used in weighting decision criteria were derived from surveys of stakeholders who were sediment management professionals, business owners, or government decision makers. The results of the analysis showed that land reclamation was the preferred alternative among cement-lock, sediment washing, 3 contained aquatic disposal alternatives (one in combination with a hopper dredge), geotextile tubes, solidification, and land reclamation after solidification treatment. Land reclamation was the preferred alternative, which performed well across all MCDA objectives, because of the availability of a near-shore confined disposal facility within a reasonable distance from the dredging area. PMID:20821674

  5. Determination of contamination character of materials in space technology testing

    NASA Technical Reports Server (NTRS)

    Haynes, D. L.; Coulson, D. M.

    1972-01-01

    The contamination character of selected materials used in space technology testing is presented. Many of these materials contain components that become volatile in a space environment. Most previous data were limited to weight loss or vapor pressure. However, these parameters are not necessarily a direct measure of the contamination character of these materials. Selected materials were exposed to a thermal-vacuum environment, and the degree of contamination was measured by collecting the outgases from these materials on a cold test mirror surface. The degradation of reflectivity of the mirror was measured over a spectral range from 1100 A to 2.5 microns. Half the mirror's surface was also exposed to UV irradiation to determine its effects on the contaminative character of the depositing outgases. The amount of deposit per unit area was measured by microbalances mounted near the mirror; the sensor of one microbalance was UV irradiated. A quadrupole mass spectrometer was used to determine the composition of the outgases.

  6. AIR EMISSION FLUX FROM CONTAMINATED DREDGED MATERIALS STORED IN A PILOT-SCALE CONFINED DISPOSAL FACILITY. (R825513C017)

    EPA Science Inventory

    The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...

  7. THE EFFICIENCY OF CAPPING TO CONTROL AIR EMISSIONS FROM EXPOSED CONTAMINATED SEDIMENTS AND DREDGED MATERIAL. (R825513C017)

    EPA Science Inventory

    The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...

  8. Polyethylene passive samplers to determine sediment-pore water distribution coefficients of persistent organic pollutants in five heavily contaminated dredged sediments.

    PubMed

    Charrasse, Benoit; Tixier, Céline; Hennebert, Pierre; Doumenq, Pierre

    2014-02-15

    Pore concentration and partition coefficients of polycyclic aromatic hydrocarbons (PAHs) and polychlorinated biphenyls (PCBs) were determined in sediments from five distinct contaminated sites in France (marine harbour, rivers canals and highway sedimentation tank). The assessment of the risk caused by such micropollutants requires, in most cases, the measurement of their availability. To assess this availability, low density polyethylene (LDPE) membrane samplers were exposed to these sediments under constant and low-level agitation over a period of 46 days. Freely dissolved pore water contaminant concentrations were estimated from the concentration at equilibrium in the LDPE membrane. The depletion of contaminants in the sediments was monitored by the use of performance reference compounds (PRCs). Marked differences in freely dissolved PAH and PCB concentrations and resulting sediment-pore water partition coefficients between these five sediments were observed. Data set was tested onto different empirical and mechanistic models. As final findings, triple domain sorption (a total organic carbon, black carbon and oil phase model) could model PCB data successfully whereas the best fitting for PAH partitioning was obtained by Raoult's Law model. PMID:24360917

  9. PROCESS OF DECONTAMINATING MATERIAL CONTAMINATED WITH RADIOACTIVITY

    DOEpatents

    Overholt, D.C.; Peterson, M.D.; Acken, M.F.

    1958-09-16

    A process is described for decontaminating metallic objects, such as stainless steel equipment, which consists in contacting such objects with nltric acid in a concentration of 35 to 60% to remove the major portion of the contamination; and thereafter contacting the partially decontaminated object with a second solution containing up to 20% of alkali metal hydroxide and up to 20% sodium tartrate to remove the remaining radioactive contaminats.

  10. ENVIRONMENTAL MONITORING OF REMEDIAL DREDGING AT THE NEW BEDFORD HARBOR, MA, SUPERFUND SITE

    EPA Science Inventory

    New Bedford Harbor (NBH), MA, is a Superfund site due to high sediment polychlorinated biphenyl (PCB) concentrations. An initial remedial dredging operation removed the most contaminated sediments from the upper harbor ("Hot Spot"). During remediation, a monitoring program assess...