Science.gov

Sample records for contaminated process equipment

  1. Long-length contaminated equipment burial containers fabrication process procedures

    SciTech Connect

    McCormick, W.A., Fluor Daniel Hanford

    1997-03-11

    These special process procedures cover the detailed step-by-step procedures required by the supplier who will manufacture the Long-Length Contaminated Equipment (LLCE) Burial Container design. Also included are detailed step-by-step procedures required by the disposal process for completion of the LLCE Burial Containers at Hanford.

  2. Long-length contaminated equipment disposal process path document

    SciTech Connect

    McCormick, W.A.

    1998-09-30

    The first objective of the LLCE Process Path Document is to guide future users of this system on how to accomplish the cradle-to-grave process for the disposal of long-length equipment. Information will be provided describing the function and approach to each step in the process. Pertinent documentation, prerequisites, drawings, procedures, hardware, software, and key interfacing organizations will be identified. The second objective is related to the decision to lay up the program until funding is made available to complete it or until a need arises due to failure of an important component in a waste tank. To this end, the document will identify work remaining to be completed for each step of the process and open items or issues that remain to be resolved.

  3. Cleaning and sanitation of Salmonella-contaminated peanut butter processing equipment.

    PubMed

    Grasso, Elizabeth M; Grove, Stephen F; Halik, Lindsay A; Arritt, Fletcher; Keller, Susanne E

    2015-04-01

    Microbial contamination of peanut butter by Salmonella poses a significant health risk as Salmonella may remain viable throughout the product shelf life. Effective cleaning and sanitation of processing lines are essential for preventing cross-contamination. The objective of this study was to evaluate the efficacy of a cleaning and sanitation procedure involving hot oil and 60% isopropanol, ± quaternary ammonium compounds, to decontaminate pilot-scale processing equipment harboring Salmonella. Peanut butter inoculated with a cocktail of four Salmonella serovars (∼ 7 log CFU/g) was used to contaminate the equipment (∼ 75 L). The system was then emptied of peanut butter and treated with hot oil (90 °C) for 2 h followed by sanitizer for 1 h. Microbial analysis of food-contact surfaces (7 locations), peanut butter, and oil were conducted. Oil contained ∼ 3.2 log CFU/mL on both trypticase soy agar with yeast extract (TSAYE) and xylose lysine deoxycholate (XLD), indicating hot oil alone was not sufficient to inactivate Salmonella. Environmental sampling found 0.25-1.12 log CFU/cm(2) remaining on processing equipment. After the isopropanol sanitation (± quaternary ammonium compounds), no Salmonella was detected in environmental samples on XLD (<0.16 log CFU/cm(2)). These data suggest that a two-step hot oil clean and isopropanol sanitization treatment may eliminate pathogenic Salmonella from contaminated equipment. PMID:25475272

  4. Automated processing of forensic casework samples using robotic workstations equipped with nondisposable tips: contamination prevention.

    PubMed

    Frégeau, Chantal J; Lett, C Marc; Elliott, Jim; Yensen, Craig; Fourney, Ron M

    2008-05-01

    An automated process has been developed for the analysis of forensic casework samples using TECAN Genesis RSP 150/8 or Freedom EVO liquid handling workstations equipped exclusively with nondisposable tips. Robot tip cleaning routines have been incorporated strategically within the DNA extraction process as well as at the end of each session. Alternative options were examined for cleaning the tips and different strategies were employed to verify cross-contamination. A 2% sodium hypochlorite wash (1/5th dilution of the 10.8% commercial bleach stock) proved to be the best overall approach for preventing cross-contamination of samples processed using our automated protocol. The bleach wash steps do not adversely impact the short tandem repeat (STR) profiles developed from DNA extracted robotically and allow for major cost savings through the implementation of fixed tips. We have demonstrated that robotic workstations equipped with fixed pipette tips can be used with confidence with properly designed tip washing routines to process casework samples using an adapted magnetic bead extraction protocol. PMID:18471209

  5. CONTAMINATED PROCESS EQUIPMENT REMOVAL FOR THE D&D OF THE 232-Z CONTAMINATED WASTE RECOVERY PROCESS FACILITY AT THE PLUTONIUM FINISHING PLANT (PFP)

    SciTech Connect

    HOPKINS, A.M.; MINETTE, M.J.; KLOS, D.B.

    2007-01-25

    This paper describes the unique challenges encountered and subsequent resolutions to accomplish the deactivation and decontamination of a plutonium ash contaminated building. The 232-Z Contaminated Waste Recovery Process Facility at the Plutonium Finishing Plant was used to recover plutonium from process wastes such as rags, gloves, containers and other items by incinerating the items and dissolving the resulting ash. The incineration process resulted in a light-weight plutonium ash residue that was highly mobile in air. This light-weight ash coated the incinerator's process equipment, which included gloveboxes, blowers, filters, furnaces, ducts, and filter boxes. Significant airborne contamination (over 1 million derived air concentration hours [DAC]) was found in the scrubber cell of the facility. Over 1300 grams of plutonium held up in the process equipment and attached to the walls had to be removed, packaged and disposed. This ash had to be removed before demolition of the building could take place.

  6. DETECTION OF FECAL/INGESTA CONTAMINANTS ON POULTRY PROCESSING EQUIPMENT SURFACES BY VISIBLE AND NEAR-INFRARED REFLECTANCE SPECTROSCOPY

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Visible and near-infrared (NIR) spectra and samples for laboratory microbial analysis were acquired of fecal contaminants, ingesta contaminants, and bare processing equipment surfaces (rubber and stainless steel) in a commercial poultry processing plant. Spectra were analyzed in the visible region ...

  7. Investigation of gas-phase decontamination of internally radioactively contaminated gaseous diffusion process equipment and piping

    SciTech Connect

    Bundy, R.D.; Munday, E.B.

    1991-01-01

    Construction of the gaseous diffusion plants (GDPs) was begun during World War 2 to produce enriched uranium for defense purposes. These plants, which utilized UF{sub 6} gas, were used primarily for this purpose through 1964. From 1959 through 1968, production shifted primarily to uranium enrichment to supply the nuclear power industry. Additional UF{sub 6}-handling facilities were built in feed and fuel-processing plants associated with the uranium enrichment process. Two of the five process buildings at Oak ridge were shut down in 1964. Uranium enrichment activities at Oak Ridge were discontinued altogether in 1985. In 1987, the Department of Energy (DOE) decided to proceed with a permanent shutdown of the Oak Ridge Gaseous Diffusion Plant (ORGDP). DOE intends to begin decommissioning and decontamination (D D) of ORGDP early in the next century. The remaining two GDPs are expected to be shut down during the next 10 to 40 years and will also require D D, as will the other UF{sub 6}-handling facilities. This paper presents an investigation of gas- phase decontamination of internally radioactively contaminated gaseous diffusion process equipment and piping using powerful fluorinating reagents that convert nonvolatile uranium compounds to volatile UF{sub 6}. These reagents include ClF{sub 3}, F{sub 2}, and other compounds. The scope of D D at the GDPs, previous work of gas-phase decontamination, four concepts for using gas-phase decontamination, plans for further study of gas-phase decontamination, and the current status of this work are discussed. 13 refs., 15 figs.

  8. RADIOLOGICAL CONTROLS FOR PLUTONIUM CONTAMINATED PROCESS EQUIPMENT REMOVAL FROM 232-Z CONTAMINATED WASTE RECOVERY PROCESS FACILITY AT THE PLUTONIUM FINSHING PLANT (PFP)

    SciTech Connect

    MINETTE, M.J.

    2007-05-30

    The 232-Z facility at Hanford's Plutonium Finishing Plant operated as a plutonium scrap incinerator for 11 years. Its mission was to recover residual plutonium through incinerating and/or leaching contaminated wastes and scrap material. Equipment failures, as well as spills, resulted in the release of radionuclides and other contamination to the building, along with small amounts to external soil. Based on the potential threat posed by the residual plutonium, the U.S. Department of Energy (DOE) issued an Action Memorandum to demolish Building 232-2, Comprehensive Environmental Response Compensation, and Liability Act (CERC1.A) Non-Time Critical Removal Action Memorandum for Removal of the 232-2 Waste Recovery Process Facility at the Plutonium Finishing Plant (04-AMCP-0486).

  9. Process and equipment for the utilization of thermal energy of waste having been subjected to oil contamination

    SciTech Connect

    Vajdovich, G.; Csorba, I.

    1984-02-07

    A process and apparatus is discussed for recovering the heat content of oil-contaminated waste water wherein the waste water is collected and is conducted through a plurality of waste water carrying ducts with shut-off valves, from an oil manipulating system into a single duct with a shut-off valve. A duct with two branches is attached to and leads from the shut-off valve. Each branch of the branched duct has a magnet valve which operates contrarily to the magnet valve in the other branch. Each of the magnet valves are connected by means of a cable to an instrument which senses the oil content of the waste water. If the instrument does not sense oil, one magnet valve is open and the other is closed, and if the instrument senses oil, the other magnet valve is open and the one magnet valve is closed. A pressurized sample collector is connected via a duct to one of the magnet valves, and the sensing instrument. A pressurized collector having a sampling place on a float is connected by a duct to a sampling vessel and the sensing instrument. A duct for carrying the waste water from the collector is connected to a shut-off means and a pump which is connected to and controlled by a sensing instrument. This waste water duct transports the uncontaminated waste water through a check valve for further utilization and carries the contaminated waste water through a duct leading from the other magnet valve to an external repository.

  10. EPA/NSF ETV Equipment Verification Testing Plan for the Removal of Volatile Organic Chemical Contaminants by Adsorptive Media Processes

    EPA Science Inventory

    This document is the Environmental Technology Verification (ETV) Technology Specific Test Plan (TSTP) for evaluation of drinking water treatment equipment utilizing adsorptive media for synthetic organic chemical (SOC) removal. This TSTP is to be used within the structure provid...

  11. Trends in powder processing equipment

    SciTech Connect

    Sheppard, L.M.

    1993-05-01

    Spray drying is the most widely used process for producing particles. It is used in industries other than ceramics including food, chemicals, and pharmaceutical. The process involves the atomization of a liquid feed stock into a spray of droplets and contacting the droplets with hot air in a drying chamber. The sprays are produced by either rotary or nozzle atomizers. Evaporation of moisture from the droplets and formation of dry particles proceed under controlled temperature and airflow conditions. Powder is then discharged continuously from the drying chamber. Spray drying equipment is being improved to handle an ever-increasing number of applications. Several developments in particle-size reduction equipment are also described.

  12. Contaminated nickel scrap processing

    SciTech Connect

    Compere, A.L.; Griffith, W.L.; Hayden, H.W.; Johnson, J.S. Jr.; Wilson, D.F.

    1994-12-01

    The DOE will soon choose between treating contaminated nickel scrap as a legacy waste and developing high-volume nickel decontamination processes. In addition to reducing the volume of legacy wastes, a decontamination process could make 200,000 tons of this strategic metal available for domestic use. Contaminants in DOE nickel scrap include {sup 234}Th, {sup 234}Pa, {sup 137}Cs, {sup 239}Pu (trace), {sup 60}Co, U, {sup 99}Tc, and {sup 237}Np (trace). This report reviews several industrial-scale processes -- electrorefining, electrowinning, vapormetallurgy, and leaching -- used for the purification of nickel. Conventional nickel electrolysis processes are particularly attractive because they use side-stream purification of process solutions to improve the purity of nickel metal. Additionally, nickel purification by electrolysis is effective in a variety of electrolyte systems, including sulfate, chloride, and nitrate. Conventional electrorefining processes typically use a mixed electrolyte which includes sulfate, chloride, and borate. The use of an electrorefining or electrowinning system for scrap nickel recovery could be combined effectively with a variety of processes, including cementation, solvent extraction, ion exchange, complex-formation, and surface sorption, developed for uranium and transuranic purification. Selected processes were reviewed and evaluated for use in nickel side-stream purification. 80 refs.

  13. Treatment options for tank farms long-length contaminated equipment

    SciTech Connect

    Josephson, W.S.

    1995-10-16

    This study evaluated a variety of treatment and disposal technologies for mixed waste (MW) meeting the following criteria: 1. Single-Shell and Double-Shell Tank System (tank farms) equipment and other debris; 2. length greater than 12 feet; and contaminated with listed MW from the tank farms. This waste stream, commonly referred to as tank farms long-length contaminated equipment (LLCE), poses a unique and costly set of challenges during all phases of the waste management lifecycle.

  14. Purex: process and equipment performance

    SciTech Connect

    Orth, D.A.

    1986-01-01

    The Purex process is the solvent extraction system that uses tributyl phosphate as the extractant for separating uranium and plutonium from irradiated reactor fuels. Since the first flowsheet was proposed at Oak Ridge National Laboratory in 1950, the process has endured for over 30 years with only minor modifications. The spread of the technology was rapid, and worldwide use or research on Purex-type processes was reported by the time of the 1955 Geneva Conference. The overall performance of the process has been so good that there are no serious contenders for replacing it soon. This paper presents: process description; equipment performance (mixer-settlers, pulse columns, rapid contactors); fission product decontamination; solvent effects (solvent degradation products); and partitioning of uranium and plutonium.

  15. GLOVEBOX DISMANTLEMENT AND EQUIPMENT PROTECTION IN CONTAMINATED ENVIRONMENTS

    SciTech Connect

    Kitamura, Akihiro; Stallings, Ellen; Wilburn, Dianne W.

    2003-02-27

    It has been revealed from the experiences of Decontamination and Decommissioning (D&D) activities that even a small improvement in performance can result in significant risk reduction and cost savings. For example, Race Scan Ear Mic System, which was originally developed for communications between racecar drivers and crews in loud environments, has been successfully applied to D&D work and proved to enhance worker safety and communications. Glovebox dismantlement is an important and costly process in D&D activities of nuclear facilities. Adequate decontamination and size reduction of the gloveboxes are especially important in this activity because they have the potential to reduce risks and costs significantly. This paper presents some simple approaches to support D&D tasks and discusses their potential advantages. Examples discussed include: Repeated shear wiping of large pipes and ducts; Application of thin layers on radiological counters for uninterrupted use; and Partial use of robotics for glovebox dismantling. The paper also discusses schematics for protecting equipment interiors and/or glovebox inner surfaces from contamination, which may result in significant savings and waste minimization upon future dismantlement. Examples discussed include: Smart coating for contamination prevention; and Protecting equipment by geometrically simple cover.

  16. An assessment and evaluation for recycle/reuse of contaminated process and metallurgical equipment at the DOE Rocky Flats Plant Site -- Building 865. Final report

    SciTech Connect

    Not Available

    1993-08-01

    An economic analysis of the potential advantages of alternatives for recycling and reusing equipment now stored in Building 865 at the Rocky Flats Plant (RFP) in Colorado has been conducted. The inventory considered in this analysis consists primarily of metallurgical and process equipment used before January 1992, during development and production of nuclear weapons components at the site. The economic analysis consists of a thorough building inventory and cost comparisons for four equipment dispositions alternatives. The first is a baseline option of disposal at a Low Level Waste (LLW) landfill. The three alternatives investigated are metal recycling, reuse with the government sector, and release for unrestricted use. This report provides item-by-item estimates of value, disposal cost, and decontamination cost. The economic evaluation methods documented here, the simple cost comparisons presented, and the data provided as a supplement, should provide a foundation for D&D decisions for Building 865, as well as for similar D&D tasks at RFP and at other sites.

  17. Process Equipment Cost Estimation, Final Report

    SciTech Connect

    H.P. Loh; Jennifer Lyons; Charles W. White, III

    2002-01-01

    This report presents generic cost curves for several equipment types generated using ICARUS Process Evaluator. The curves give Purchased Equipment Cost as a function of a capacity variable. This work was performed to assist NETL engineers and scientists in performing rapid, order of magnitude level cost estimates or as an aid in evaluating the reasonableness of cost estimates submitted with proposed systems studies or proposals for new processes. The specific equipment types contained in this report were selected to represent a relatively comprehensive set of conventional chemical process equipment types.

  18. PROCESS OF DECONTAMINATING MATERIAL CONTAMINATED WITH RADIOACTIVITY

    DOEpatents

    Overholt, D.C.; Peterson, M.D.; Acken, M.F.

    1958-09-16

    A process is described for decontaminating metallic objects, such as stainless steel equipment, which consists in contacting such objects with nltric acid in a concentration of 35 to 60% to remove the major portion of the contamination; and thereafter contacting the partially decontaminated object with a second solution containing up to 20% of alkali metal hydroxide and up to 20% sodium tartrate to remove the remaining radioactive contaminats.

  19. Air contaminants in a submarine equipped with air independent propulsion.

    PubMed

    Persson, Ola; Ostberg, Christina; Pagels, Joakim; Sebastian, Aleksandra

    2006-11-01

    The Swedish Navy has operated submarines equipped with air independent propulsion for two decades. This type of submarine can stay submerged for periods far longer than other non-nuclear submarines are capable of. The air quality during longer periods of submersion has so far not been thoroughly investigated. This study presents results for a number of air quality parameters obtained during more than one week of continuous submerged operation. The measured parameters are pressure, temperature, relative humidity, oxygen, carbon dioxide, hydrogen, formaldehyde and other volatile organic compounds, ozone, nitrogen dioxide, particulate matter and microbiological contaminants. The measurements of airborne particles demonstrate that air pollutants typically occur at a low baseline level due to high air exchange rates and efficient air-cleaning devices. However, short-lived peaks with comparatively high concentrations occur, several of the sources for these have been identified. The concentrations of the pollutants measured in this study do not indicate a build-up of hazardous compounds during eight days of submersion. It is reasonable to assume that a substantial build-up of the investigated contaminants is not likely if the submersion period is prolonged several times, which is the case for modern submarines equipped with air independent propulsion. PMID:17075617

  20. 76 FR 72902 - Materials Processing Equipment Technical Advisory Committee;

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-28

    ... Bureau of Industry and Security Materials Processing Equipment Technical Advisory Committee; Notice of Partially Closed Meeting The Materials Processing Equipment Technical Advisory Committee (MPETAC) will meet... controls applicable to materials processing equipment and related technology. Agenda Open Session...

  1. 40 CFR 267.116 - What must I do with contaminated equipment, structure, and soils?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... that waste following all applicable requirements of 40 CFR part 262. ... equipment, structure, and soils? 267.116 Section 267.116 Protection of Environment ENVIRONMENTAL PROTECTION..., structure, and soils? You must properly dispose of or decontaminate all contaminated equipment,...

  2. 40 CFR 267.116 - What must I do with contaminated equipment, structure, and soils?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... that waste following all applicable requirements of 40 CFR part 262. ... equipment, structure, and soils? 267.116 Section 267.116 Protection of Environment ENVIRONMENTAL PROTECTION..., structure, and soils? You must properly dispose of or decontaminate all contaminated equipment,...

  3. 40 CFR 267.116 - What must I do with contaminated equipment, structure, and soils?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... that waste following all applicable requirements of 40 CFR part 262. ... equipment, structure, and soils? 267.116 Section 267.116 Protection of Environment ENVIRONMENTAL PROTECTION..., structure, and soils? You must properly dispose of or decontaminate all contaminated equipment,...

  4. 40 CFR 267.116 - What must I do with contaminated equipment, structure, and soils?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... that waste following all applicable requirements of 40 CFR part 262. ... equipment, structure, and soils? 267.116 Section 267.116 Protection of Environment ENVIRONMENTAL PROTECTION..., structure, and soils? You must properly dispose of or decontaminate all contaminated equipment,...

  5. The Federal Conference on Intelligent Processing Equipment

    NASA Technical Reports Server (NTRS)

    1992-01-01

    Research and development projects involving intelligent processing equipment within the following U.S. agencies are addressed: Department of Agriculture, Department of Commerce, Department of Energy, Department of Defense, Environmental Protection Agency, Federal Emergency Management Agency, NASA, National Institutes of Health, and the National Science Foundation.

  6. Intelligent processing equipment projects at DLA

    NASA Astrophysics Data System (ADS)

    Obrien, Donald F.

    1992-04-01

    The Defense Logistics Agency is successfully incorporating Intelligent Processing Equipment (IPE) into each of its Manufacturing Technology thrust areas. Several IPE applications are addressed in the manufacturing of two 'soldier support' items: combat rations and military apparel. In combat rations, in-line sensors for food processing are being developed or modified from other industries. In addition, many process controls are being automated to achieve better quality and to gain higher use (soldier) acceptance. IPE applications in military apparel include: in-process quality controls for identification of sewing defects, use of robots in the manufacture of shirt collars, and automated handling of garments for pressing.

  7. Intelligent Processing Equipment Projects at DLA

    NASA Technical Reports Server (NTRS)

    Obrien, Donald F.

    1992-01-01

    The Defense Logistics Agency is successfully incorporating Intelligent Processing Equipment (IPE) into each of its Manufacturing Technology thrust areas. Several IPE applications are addressed in the manufacturing of two 'soldier support' items: combat rations and military apparel. In combat rations, in-line sensors for food processing are being developed or modified from other industries. In addition, many process controls are being automated to achieve better quality and to gain higher use (soldier) acceptance. IPE applications in military apparel include: in-process quality controls for identification of sewing defects, use of robots in the manufacture of shirt collars, and automated handling of garments for pressing.

  8. Gas phase decontamination of gaseous diffusion process equipment

    SciTech Connect

    Bundy, R.D.; Munday, E.B.; Simmons, D.W.; Neiswander, D.W.

    1994-03-01

    D&D of the process facilities at the gaseous diffusion plants (GDPs) will be an enormous task. The EBASCO estimate places the cost of D&D of the GDP at the K-25 Site at approximately $7.5 billion. Of this sum, nearly $4 billion is associated with the construction and operation of decontamination facilities and the dismantlement and transport of contaminated process equipment to these facilities. In situ long-term low-temperature (LTLT) gas phase decontamination is being developed and demonstrated at the K-25 site as a technology that has the potential to substantially lower these costs while reducing criticality and safeguards concerns and worker exposure to hazardous and radioactive materials. The objective of gas phase decontamination is to employ a gaseous reagent to fluorinate nonvolatile uranium deposits to form volatile LJF6, which can be recovered by chemical trapping or freezing. The LTLT process permits the decontamination of the inside of gas-tight GDP process equipment at room temperature by substituting a long exposure to subatmospheric C1F for higher reaction rates at higher temperatures. This paper outlines the concept for applying LTLT gas phase decontamination, reports encouraging laboratory experiments, and presents the status of the design of a prototype mobile system. Plans for demonstrating the LTLT process on full-size gaseous diffusion equipment are also outlined briefly.

  9. Bacterial adherence and contamination during radiographic processing.

    PubMed

    Bachman, C E; White, J M; Goodis, H E; Rosenquist, J W

    1990-11-01

    Oral fluids are potential contaminants of radiographic processors. This investigation measured bacterial contamination in a radiographic processing room during times of high and low clinical activity and processing effects on five types of microorganisms. Cultures in the clinical setting, during high and low activity, were taken by brain-heart infusion agar plates placed near automatic processors. Site samples were taken of entrance, developer, fixer, water, and exit surfaces. Measurements of processing effects were accomplished by intentional contamination of films run in series through an automatic processor. Site samples were again taken of the processor. In the clinical setting colony-forming units increased with activity. Radiographic processing after intentional contamination decreased colony-forming units on films, but they increased for all processing solutions. Bacteria on radiographic film survived processing. Although processing procedures significantly reduce the number of bacteria on films, the potential for contamination and cross-contamination remains. PMID:2122350

  10. Modeling and simulation of plasma processing equipment

    NASA Astrophysics Data System (ADS)

    Kim, Heon Chang

    Currently plasma processing technology is utilized in a wide range of applications including advanced Integrated Circuit (IC) fabrication. Traditionally, plasma processing equipments have been empirically designed and optimized at great expense of development time and cost. This research proposes the development of a first principle based, multidimensional plasma process simulator with the aim of enhancing the equipment design procedure. The proposed simulator accounts for nonlinear interactions among various plasma chemistry and physics, neutral chemistry and transport, and dust transport phenomena. A three moment modeling approach is employed that shows good predictive capabilities at reasonable computational expense. For numerical efficiency, various versions of explicit and implicit Essentially Non- Oscillatory (ENO) algorithms are employed. For the rapid evaluation of time-periodic steady-state solutions, a feedback control approach is employed. Two dimensional simulation results of capacitively coupled rf plasmas show that ion bombardment uniformity can be improved through simulation based design of the plasma process. Through self-consistent simulations of an rf triode, it is also shown that effects of secondary rf voltage and frequency on ion bombardment energy can be accurately captured. These results prove that scaling relations among important process variables can be identified through the three moment modeling and simulation approach. Through coupling of the plasma model with a neutral chemistry and transport model, spatiotemporal distributions of both charged and uncharged species, including metastables, are predicted for an oxygen plasma. Furthermore, simulation results also verify the existence of a double layer in this electronegative plasma. Through Lagrangian simulation of dust in a plasma reactor, it is shown that small particles are accumulate near the center and the radial sheath boundary depending on their initial positions while large

  11. Configuration Management Plan for Long Length Contaminated Equipment Receiver and Transport Trailers

    SciTech Connect

    DALE, R.N.

    2000-05-01

    Long Length Contaminated Equipment Removal System Receiver Trailer and Transport Trailer require a configuration management plan for design, requirements and operations baseline documents. This report serves as the plan for the Trailers.

  12. Configuration Management Plan for Long Length Contaminated Equipment Receiver and Transport Trailers

    SciTech Connect

    DALE, R.N.

    2000-12-18

    Long Length Contaminated Equipment Removal System Receiver Trailers and Transport Trailers require identification and control for the design, requirements and operations baseline documents. This plan serves as those controls for the subject trailers.

  13. Selection of equipment for coke processing

    SciTech Connect

    Pokhodenko, N.T.; Kuznetsov, V.A.; Nurlygayanova, V.M.; Petrunina, O.A.

    1984-07-01

    This article shows how the design and selection of equipment for the crushing, transportation, and storage of petroleum coke is dependent on the physicomechanical properties of the coke. The mechanical properties of petroleum coke depend on its total porosity, which is determined from true and apparent densities. Topics considered include screen composition, bulk density, the degree of compaction, coefficients of internal and external friction, segregation, and the angle of repose. A vibrating platform operating at 350 cycles per minute was used to investigate the dynamics of compaction of coke fractions during rail transport. It is emphasized that the physical properties of coke as a free-flowing material are of paramount importance in designing the processing and transportation systems and storage facilities for coking and calcining units.

  14. Space processing applications payload equipment study. Volume 2E: Commercial equipment utility

    NASA Technical Reports Server (NTRS)

    Smith, A. G. (Editor)

    1974-01-01

    Examination of commercial equipment technologies revealed that the functional performance requirements of space processing equipment could generally be met by state-of-the-art design practices. Thus, an apparatus could be evolved from a standard item or derived by custom design using present technologies. About 15 percent of the equipment needed has no analogous commercial base of derivation and requires special development. This equipment is involved primarily with contactless heating and position control. The derivation of payloads using commercial equipment sources provides a broad and potentially cost-effective base upon which to draw. The derivation of payload equipment from commercial technologies poses other issues beyond that of the identifiable functional performance, but preliminary results on testing of selected equipment testing appear quite favorable. During this phase of the SPA study, several aspects of commercial equipment utility were assessed and considered. These included safety, packaging and structural, power conditioning (electrical/electronic), thermal and materials of construction.

  15. Contamination detection NDE for cleaning process inspection

    NASA Technical Reports Server (NTRS)

    Marinelli, W. J.; Dicristina, V.; Sonnenfroh, D.; Blair, D.

    1995-01-01

    In the joining of multilayer materials, and in welding, the cleanliness of the joining surface may play a large role in the quality of the resulting bond. No non-intrusive techniques are currently available for the rapid measurement of contamination on large or irregularly shaped structures prior to the joining process. An innovative technique for the measurement of contaminant levels in these structures using laser based imaging is presented. The approach uses an ultraviolet excimer laser to illuminate large and/or irregular surface areas. The UV light induces fluorescence and is scattered from the contaminants. The illuminated area is viewed by an image-intensified CCD (charge coupled device) camera interfaced to a PC-based computer. The camera measures the fluorescence and/or scattering from the contaminants for comparison with established standards. Single shot measurements of contamination levels are possible. Hence, the technique may be used for on-line NDE testing during manufacturing processes.

  16. Process equipment waste and process waste liquid collection systems

    SciTech Connect

    Not Available

    1990-06-01

    The US DOE has prepared an environmental assessment for construction related to the Process Equipment Waste (PEW) and Process Waste Liquid (PWL) Collection System Tasks at the Idaho Chemical Processing Plant. This report describes and evaluates the environmental impacts of the proposed action (and alternatives). The purpose of the proposed action would be to ensure that the PEW and PWL collection systems, a series of enclosed process hazardous waste, and radioactive waste lines and associated equipment, would be brought into compliance with applicable State and Federal hazardous waste regulations. This would be accomplished primarily by rerouting the lines to stay within the buildings where the lined floors of the cells and corridors would provide secondary containment. Leak detection would be provided via instrumented collection sumps locate din the cells and corridors. Hazardous waste transfer lines that are routed outside buildings will be constructed using pipe-in-pipe techniques with leak detection instrumentation in the interstitial area. The need for the proposed action was identified when a DOE-sponsored Resource Conservation and Recovery Act (RCRA) compliance assessment of the ICPP facilities found that singly-contained waste lines ran buried in the soil under some of the original facilities. These lines carried wastes with a pH of less than 2.0, which were hazardous waste according to the RCRA standards. 20 refs., 7 figs., 1 tab.

  17. Detection of organic residues on poultry processing equipment surfaces by LED-induced fluorescence imaging

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Organic residues on equipment surfaces in poultry processing plants can generate cross- contamination and increase the risk of unsafe food for consumers. This research was aimed to investigate the potential of LED-induced fluorescence imaging technique for rapid inspection of stainless steel proces...

  18. Detection of organic residues on food processing equipment surfaces by spectral imaging method

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Organic residues remaining attached to equipment surfaces during poultry processing operations can potentially generate cross-contamination and thus increase the risk of unsafe food for consumers. Current pre-operational sanitation monitoring mainly relies on human visual inspection, which is subje...

  19. The role of engineering in the flight equipment purchasing process

    NASA Technical Reports Server (NTRS)

    1977-01-01

    The role of the airline engineering department in the flight equipment acquisition process is examined. The data for the study was collected from six airlines. The principal findings of the study include: (1) engineering activities permeate, but do not dominate the airline flight equipment decision process. (2) The principal criterion for the flight equipment acquisition decision is return on investment. (3) The principal sources of information for the airline engineering departments in the monitoring process are the manufacturers of equipment. Subsidiary information sources include NASA publications and conferences, among others and (4) The engineering department is the principal communication channel for technical information.

  20. Removal of contaminants from equipment and debris and waste minimization using TechXtract{reg_sign} technology

    SciTech Connect

    Bonem, M.W.

    1997-10-01

    Under this Program Research and Development Agreement (PRDA), EET, Inc., is extending its proprietary TechXtract{reg_sign} chemical decontamination technology into an effective, economical, integrated contaminant removal system. This integrated system will consist of a series of decontamination baths using the TechXtract{reg_sign} chemical formulas, followed by a waste treatment process that will remove the contaminants from the spent chemicals. Sufficient decontamination will result so that materials can be released without restriction after they have been treated, even those materials that have traditionally been considered to be {open_quotes}undecontaminable.{close_quotes} The secondary liquid waste will then be treated to separate any hazardous and radioactive contaminants, so that the spent chemicals and wastewater can be discharged through conventional, permitted outlets. The TechXtract{reg_sign} technology is a unique process that chemically extracts hazardous contaminants from the surface and substrate of concrete, steel, and other solid materials. This technology has been used successfully to remove contaminants as varied as PCBs, radionuclides, heavy metals, and hazardous organics. The process` advantage over other alternatives is its effectiveness in safe and consistent extraction of subsurface contamination. TechXtract{reg_sign} is a proprietary process developed, owned, and provided by EET, Inc. The objective of the PRDA is to demonstrate on a full-scale basis an economical system for decontaminating equipment and debris, with further treatment of secondary waste streams to minimize waste volumes. Contaminants will be removed from the contaminated items to levels where they can be released for unrestricted use. The entire system will be designed with maximum flexibility and automation in mind.

  1. New Remote Method for Estimation of Contamination Levels of Reactor Equipment - 13175

    SciTech Connect

    Danilovich, Alexey; Ivanov, Oleg; Potapov, Victor; Semenov, Sergey; Semin, Ilya; Smirnov, Sergey; Stepanov, Vyacheslav; Volkovich, Anatoly

    2013-07-01

    Projects for decommissioning of shutdown reactors and reactor facilities carried out in several countries, including Russia. In the National Research Centre 'Kurchatov Institute' decontamination and decommissioning of the research reactor MR (Material Testing Reactor) has been initiated. The research reactor MR has a long history and consists of nine loop facilities for experiments with different kinds of fuel. During the operation of main and auxiliary equipment of reactors it was subjected to strong radioactive contamination. The character of this contamination requires individual strategies for the decontamination work. This requires information about the character of the distribution of radioactive contamination of equipment in the premises. A detailed radiation survey of these premises using standard dosimetric equipment is almost impossible because of high levels of radiation and high-density of the equipment that does not allow identifying the most active fragments using standard tools of measurement. The problem can be solved using the method of remote measurements of distribution of radioactivity with help of the collimated gamma-ray detectors. For radiation surveys of the premises of loop installations remotely operated spectrometric collimated system was used [1, 2, 3]. As a result of the work, maps of the distribution of activity and dose rate for surveyed premises were plotted and superimposed on its photo. The new results of measurements in different areas of the reactor and at its loop installations, with emphasis on the radioactive survey of highly-contaminated samples, are presented. (authors)

  2. Contamination of equipment in emergency settings: An exploratory study with a targeted automated intervention

    PubMed Central

    Obasi, Chidi; Agwu, Allison; Akinpelu, Wale; Hammons, Roger; Clark, Clyde; Etienne-cummings, Ralph; Hill, Peter; Rothman, Richard; Babalola, Stella; Ross, Tracy; Carroll, Karen; Asiyanbola, Bolanle

    2009-01-01

    Background Despite standard manual decontamination, hospital equipment remains contaminated with microorganisms, contributing to nosocomial transmission and hospital acquired infections. This has the potential to negate the effects of healthcare workers' hand-washing protocols. In order to decrease the likihood of equipment contamination, there has been a rise in the use of disposable pieces of equipment, especially non-critical disposables. However, these carry a significant cost, both a direct financial cost (running into billions of dollars), as well as a cost to the environment. This is important because we hope to contain the cost of healthcare, one way to do that, is to look to the hospitals themselves, for innovative solutions that maintain the standard of care. Objective To develop and evaluate the effectiveness of an simple decontamination device for use with portable hospital equipment, by comparing rates of residual contamination after use of the novel device versus those seen with standard manual decontamination methods. Methods The Self-cleaning Unit for the Decontamination of Small instruments (SUDS) is a user-friendly, automated instrument developed via multi-disciplinary collaboration for decontamination in the clinical area. Pre- and post- utilization of portable medical equipment in an emergency department (ED) setting were cultured. To evaluate durability of the decrease in antimicrobial contamination, objects were re-cultured 48 hours after SUDS cleaning and following re-introduction into the clinical setting. Results After manual decontamination, 25% (23/91) of the tested objects in the ED were found to be culture positive with clinically significant microorganisms(CSO). Fifteen percent (ED) of non-critical equipment tested had multiple organisms. Following the use of SUDS, the colonization rate decreased to 0%. Following SUDS treatment and re-introduction into the clinical settings, after 48 hours the contamination rates as reflected by the

  3. Catalyst regeneration process including metal contaminants removal

    DOEpatents

    Ganguli, Partha S.

    1984-01-01

    Spent catalysts removed from a catalytic hydrogenation process for hydrocarbon feedstocks, and containing undesired metals contaminants deposits, are regenerated. Following solvent washing to remove process oils, the catalyst is treated either with chemicals which form sulfate or oxysulfate compounds with the metals contaminants, or with acids which remove the metal contaminants, such as 5-50 W % sulfuric acid in aqueous solution and 0-10 W % ammonium ion solutions to substantially remove the metals deposits. The acid treating occurs within the temperature range of 60.degree.-250.degree. F. for 5-120 minutes at substantially atmospheric pressure. Carbon deposits are removed from the treated catalyst by carbon burnoff at 800.degree.-900.degree. F. temperature, using 1-6 V % oxygen in an inert gas mixture, after which the regenerated catalyst can be effectively reused in the catalytic process.

  4. Cleaning process for contaminated superalloy powders

    NASA Technical Reports Server (NTRS)

    Anglin, A. E.

    1978-01-01

    A cleaning process for removing interstitial contaminants from superalloy powders after wet grinding is described. Typical analyses of oxygen, carbon, nitrogen, and hydrogen in ball-milled WAZ-20 superalloy samples after hydrogen plus vacuum cleaning are presented. The hydrogen cleaning step involves heating retorts containing superalloy powder twice under flowing hydrogen with a 24-hour hold at each temperature. The vacuum step involves heating cold-pressed billets two hours at an elevated temperature at a pressure of 10 microPa. It is suggested that the hydrogen plus vacuum cleaning procedure can be applied to superalloys contaminated by other substances in other industrial processes.

  5. Reducing the potential for processing contaminant formation in cereal products

    PubMed Central

    Curtis, Tanya Y.; Postles, Jennifer; Halford, Nigel G.

    2014-01-01

    Processing contaminants may be defined as substances that are produced in a food when it is cooked or processed, are not present or are present at much lower concentrations in the raw, unprocessed food, and are undesirable either because they have an adverse effect on product quality or because they are potentially harmful. The presence of very low levels of processing contaminants in common foods is becoming an increasingly important issue for the food industry, as developments in analytical techniques and equipment bring foods under closer and closer scrutiny. This review considers the formation of lipid oxidation products, hydrogenation of polyunsaturated fatty acids to prevent lipid oxidation and the associated risk of trans fatty acid formation. The formation of acrylamide in the Maillard reaction is described, as well as the genetic and agronomic approaches being taken to reduce the acrylamide-forming potential of cereal grain. The multiple routes for the formation of furan and associated chemicals, including hydroxymethylfurfuryl, are also described. The evolving regulatory and public perception situations for these processing contaminants and their implications for the cereal supply chain are discussed, emphasising the need for cereal breeders to engage with the contaminants issue. PMID:24882936

  6. Hyperspectral imaging technique for detection of poultry fecal residues on food processing equipments

    NASA Astrophysics Data System (ADS)

    Cho, Byoung-Kwan; Kim, Moon S.; Chen, Yud-Ren

    2005-11-01

    Emerging concerns about safety and security in current mass production of food products necessitate rapid and reliable inspection for contaminant-free products. Diluted fecal residues on poultry processing plant equipment surface, not easily discernable from water by human eye, are contamination sources for poultry carcasses. Development of sensitive detection methods for fecal residues is essential to ensure safe production of poultry carcasses. Hyperspectral imaging techniques have shown good potential for detecting of the presence of fecal and other biological substances on food and processing equipment surfaces. In this study, use of high spatial resolution hyperspectral reflectance and fluorescence imaging (with UV-A excitation) is presented as a tool for selecting a few multispectral bands to detect diluted fecal and ingesta residues on materials used for manufacturing processing equipment. Reflectance and fluorescence imaging methods were compared for potential detection of a range of diluted fecal residues on the surfaces of processing plant equipment. Results showed that low concentrations of poultry feces and ingesta, diluted up to 1:100 by weight with double distilled water, could be detected using hyperspectral fluorescence images with an accuracy of 97.2%. Spectral bands determined in this study could be used for developing a real-time multispectral inspection device for detection of harmful organic residues on processing plant equipment.

  7. Catalytic extraction processing of contaminated scrap metal

    SciTech Connect

    Griffin, T.P.; Johnston, J.E.

    1994-12-31

    The contract was conceived to establish the commercial capability of Catalytic Extraction Processing (CEP) to treat contaminated scrap metal in the DOE inventory. In so doing, Molten Metal Technology, Inc. (MMT), pursued the following objectives: demonstration of the recycling of ferrous and non-ferrous metals--to establish that radioactively contaminated scrap metal can be converted to high-grade, ferrous and non-ferrous alloys which can be reused by DOE or reintroduced into commerce; immobilize radionuclides--that CEP will concentrate the radionuclides in a dense vitreous phase, minimize secondary waste generation and stabilize and reduce waste volume; destroy hazardous organics--that CEP will convert hazardous organics to valuable industrial gases, which can be used as feed gases for chemical synthesis or as an energy source; recovery volatile heavy metals--that CEP`s off-gas treatment system will capture volatile heavy metals, such as mercury and lead; and establish that CEP is economical for processing contaminated scrap metal in the DOE inventory--that CEP is a more cost-effective and, complete treatment and recycling technology than competing technologies for processing contaminated scrap. The process and its performance are described.

  8. Particle contamination formation in magnetron sputtering processes

    SciTech Connect

    Selwyn, G.S.; Sequeda, F.; Huang, C.

    1997-07-01

    Defects caused by particulate contamination are an important concern in the fabrication of thin film products. Often, magnetron sputtering processes are used for this purpose. Particle contamination generated during thin film processing can be detected using laser light scattering, a powerful diagnostic technique which provides real-time, {ital in situ} imaging of particles {gt}0.3 {mu}m on the target, substrate, or in the plasma. Using this technique, we demonstrate that the mechanisms for particle generation, transport, and trapping during magnetron sputter deposition are different from the mechanisms reported in previously studied plasma etch processes, due to the inherent spatial nonuniformity of magnetically enhanced plasmas. During magnetron sputter deposition, one source of particle contamination is linked to portions of the sputtering target surface exposed to weaker plasma density. There, film redeposition induces filament or nodule growth. Sputter removal of these features is inhibited by the dependence of sputter yield on angle of incidence. These features enhance trapping of plasma particles, which then increases filament growth. Eventually the growths effectively {open_quotes}short-circuit{close_quotes} the sheath, causing high currents to flow through these features. This, in turn, causes mechanical failure of the growth resulting in fracture and ejection of the target contaminants into the plasma and onto the substrate. Evidence of this effect has been observed in semiconductor fabrication and storage disk manufacturing. Discovery of this mechanism in both technologies suggests it may be universal to many sputter processes. {copyright} {ital 1997 American Vacuum Society.}

  9. EMERGING TECHNOLOGY BULLETIN: PROCESS FOR THE TREATMENT OF VOLATILE ORGANIC CARBON AND HEAVY-METAL- CONTAMINATED SOIL - INTERNATIONAL TECHNOLOGY CORPORATION

    EPA Science Inventory

    The batch steam distillation and metal extraction treatment process is a two-stage system that treats soils contaminated with organics and inorganics. This system uses conventional, readily available process equipment, and does not produce hazardous combustion products. Hazar...

  10. Physical therapy clinic therapeutic ultrasound equipment as a source for bacterial contamination.

    PubMed

    Spratt, Henry G; Levine, David; Tillman, Larry

    2014-10-01

    A procedure commonly used in physical therapy (PT) clinics is therapeutic ultrasound (US). This equipment and associated gel comes in contact with patient skin, potentially serving as a reservoir for bacteria. In this study, we sampled US heads, gel bottle tips and gel from nine outpatient PT clinics in Southeastern Tennessee. Samples were collected using sterile swabs. At the microbiology laboratory, these swabs were used to inoculate mannitol salt agar and CHROM-MRSA agar (for Staphylococcal species) and tryptic soy broth to determine non-specific bacterial contamination. US heads, gel bottle tips and gel had variable levels of contamination. Tips of gel bottles had the highest contamination, with 52.7% positive for non-specific bacterial contamination and 3.6% positive for methicillin-resistant Staphylococcus aureus (MRSA). Contamination of gel by non-specific bacteria was found in 14.5% of bottles sampled. US heads (35.5% of those sampled) had non-specific bacterial contamination, with no MRSA detected. Disinfecting US heads after initial swabbing resulted in removal of 90.9% of non-specific contamination. Gel storage at temperatures below 40 °C was found to encourage the growth of mesophilic bacteria. This study demonstrates the need for better cleaning and storage protocols for US heads and gel bottles in PT clinics. PMID:24678757

  11. Roller presses -- Versatile equipment for mineral processing

    SciTech Connect

    Pietsch, W.

    1995-12-31

    Roller presses were first invented in the middle of the 19th century for the economical size enlargement of coal fines as fuels. In addition to contemporary coal briquetting, in fields such as smokeless fuel and form-coke, it was found that redesigned and modernized roller presses, which are now capable of exerting high forces, are versatile machines for many tasks in mineral processing. Today they are used for: the classic pressure agglomeration and the new high pressure comminution. In pressure agglomeration, the characteristics of fine minerals are improved by forming briquettes or granulated products from compacts. During size enlargement with roller presses briquettes are directly obtained while granular materials are produced by crushing and sizing of compacted sheets. A relatively new application of roller presses in mineral processing is the utilization of the crushing effect when brittle materials pass the nip area between the rollers. It was found that this crushing mechanism is very efficient thus saving energy, particularly in grinding circuits handling large capacities. The paper introduces the fundamentals of the process and describes the design as well as applications of modern roller presses in mineral processing.

  12. Roadmap for Process Equipment Materials Technology

    SciTech Connect

    none,

    2003-10-01

    This Technology Roadmap addresses the ever-changing material needs of the chemical and allied process industries, and the energy, economic and environmental burdens associated with corrosion and other materials performance and lifetime issues. This Technology Roadmap outlines the most critical of these R&D needs, and how they can impact the challenges facing today’s materials of construction.

  13. INTELLIGENT PROCESSING EQUIPMENT WITHIN THE ENVIRONMENTAL PROTECTION AGENCY

    EPA Science Inventory

    Protection of the environment and environmental remediation requires the cooperation -at all levels- of government and industry. ntelligent processing equipment, in addition to other artificial intelligence based tools, has been used by the Environmental Protection Agency to prov...

  14. Self-Tuning SPRT for Continuous Surveillance of Processes & Equipment

    Energy Science and Technology Software Center (ESTSC)

    1996-12-18

    SABLE is an Al-based expert system for process and equipment operability surveillance in industrial applications that require high reliability, high sensitivity annunciation of degraded sensors, discrepant signals, or the incipience of system disturbances.

  15. Word Processing without Equipment--It Can Be Done!

    ERIC Educational Resources Information Center

    Moody, Patricia G.; Matthews, Anne L.

    1980-01-01

    Discusses ways to teach word processing without equipment expenditures. These include development of basic secretarial skills, machine transcription skills, and supervisory skills; and use of model office simulations. (SK)

  16. Safety analysis report for packaging, onsite, long-length contaminated equipment transport system

    SciTech Connect

    McCormick, W.A.

    1997-05-09

    This safety analysis report for packaging describes the components of the long-length contaminated equipment (LLCE) transport system (TS) and provides the analyses, evaluations, and associated operational controls necessary for the safe use of the LLCE TS on the Hanford Site. The LLCE TS will provide a standardized, comprehensive approach for the disposal of approximately 98% of LLCE scheduled to be removed from the 200 Area waste tanks.

  17. Long Length Contaminated Equipment Retrieval System Receiver Trailer and Transport Trailer Operations and Maintenance Manual

    SciTech Connect

    DALE, R.N.

    2000-05-01

    A system to accommodate the removal of long-length contaminated equipment (LLCE) from Hanford underground radioactive waste storage tanks was designed, procured, and demonstrated, via a project activity during the 1990s. The system is the Long Length Contaminated Equipment Removal System (LLCERS). LLCERS will be maintained and operated by Tank Farms Engineering and Operations organizations and other varied projects having a need for the system. The responsibility for the operation and maintenance of the LLCERS Receiver Trailer (RT) and Transport Trailer (TT) resides with the RPP Characterization Project Operations organization. The purpose of this document is to provide vendor supplied operating and maintenance (O & M) information for the RT and TT in a readily retrievable form. This information is provided this way instead of in a vendor information (VI) file to maintain configuration control of the operations baseline as described in RPP-6085, ''Configuration Management Plan for Long Length Contaminated Equipment Receiver and Transport Trailers''. Additional Operations Baseline documents are identified in RPP-6085.

  18. Process centrifuge operating problems and equipment failures in canyon reprocessing facilities at the Savannah River Site

    SciTech Connect

    Durant, W.S.; Baughman, D.F.

    1990-03-01

    The Savannah River Laboratory (SRL) maintains a compilation of operating problems and equipment failures that have occurred in the fuel reprocessing areas of the Savannah River Site (SRS). At present, the data bank contains more than 230,000 entries ranging from minor equipment malfunctions to incidents with the potential for injury or contamination of personnel, or for economic loss. The data bank has been used extensively for a wide variety of purposes, such as failure analyses, trend analyses, and preparation of safety analyses. Typical of the data are problems associated with the canyon process centrifuges. This report contains a compilation of the centrifuge operating problems and equipment failures primarily as an aid to organizations with related equipment. Publication of these data was prompted by a number of requests for this information by other Department of Energy (DOE) sites. 11 refs., 2 figs., 4 tabs.

  19. Laboratory investigation into the contribution of contaminants to ground water from equipment materials used in sampling

    SciTech Connect

    Gilmore, Tyler J.; Mitroshkov, Alexandre V.; Dresel, P. Evan; Sklarew, Deborah S.

    2004-07-31

    Benzene contamination was detected in water samples from the Ogallala aquifer beneath and adjacent to the Department of Energy's (DOE) Pantex Plant near Amarillo, Texas. DOE assembled a Technical Assistance Team to evaluate the source of benzene. One of the team's recommendations was to assess whether the sampling equipment material could be a source of benzene and other volatile organic compounds. As part of this investigation, laboratory testing of the sample equipment material was conducted. Results from the laboratory tests indicated that the equipment material did, in fact, contribute volatile and semi-volatile organic compounds to the groundwater samples. Specifically, three materials were identified as contributing contaminants to water samples. The nylon-11 tubing used contributed benzene and the plasticizer N-butylbenzenesulfonamide (NBSA), the urethane-coated nylon well liner contributed toluene and trace amounts of NBSA, while the sampling port "spacer" material made of nylon/polypropylene/polyester-composite contributed trace amounts of toluene and NBSA. While the concentrations of benzene and toluene measured in the laboratory tests are below the concentrations measured in actual groundwater samples, the equipment material was found to contribute organics to the test water rendering the results reported for the groundwater samples highly suspect.

  20. Ebola virus disease: The use of fluorescents as markers of contamination for personal protective equipment

    PubMed Central

    Bell, Todd; Smoot, John; Patterson, Justin; Smalligan, Roger; Jordan, Richard

    2014-01-01

    The recent Ebola virus disease (EVD) outbreak has created interest in personal protective equipment (PPE) content and usage. PPE testing has historically been done by individual component, rather than as a bundle for contact isolation. Fluorescent agents are commonly used in training for infection control techniques. The purpose of our study was to compare 2 PPE bundles and to evaluate the feasibility of fluorescent markers as an assessment tool for PPE effectiveness. Eight healthcare providers volunteered for this preliminary study. Participants were randomized to 1 of 2 PPE bundles that meet current (October 20, 2014) CDC recommendations. One PPE bundle utilized commercial EVD-recommended components. The other PPE bundle used components already available at local hospitals or retail stores. Participants were also randomized to standard or high volume exposures (HVE) to simulate fluid splash. Each participant was assisted in PPE donning and doffing by an experienced trainer. A training mannequin was contaminated with fluorescent agents to simulate bodily fluids. Participants were then given clinical tasks to care for the EVD “patient.” De-gowned participants were examined under “black light” for fluorescence indicative of contamination. One participant in each PPE arm had evidence of contamination. One of the contamination events was suspected during the patient care exercise. The other contamination event was not suspected until black light examination. In spite of a large difference in cost of PPE, the two bundle arms performed similarly. Bundle testing using fluorescent markers could help identify optimal PPE systems. PMID:26793445

  1. Laboratory Investigation into the Contribution of Contaminants to Ground Water from Equipment Materials Used in Sampling

    SciTech Connect

    Gilmore, Tyler J.; Mitroshkov, Alexandre V.; Dresel, P Evan; Sklarew, Debbie S.

    2004-08-30

    Benzene contamination was detected in well water samples from the Ogallala Aquifer beneath and adjacent to the Department of Energy's Pantex Plant near Amarillo, Texas. This study assessed whether or not the materials used in multilevel sampling equipment at this site could have contributed to the contaminants found in well water samples. As part of this investigation, laboratory testing of the sample equipment material was conducted. Results from the laboratory test indicated three different materials from two types of multilevel samplers did, in fact, contribute volatile and semivolatile organic compounds to the ground water samples from static leach tests that were conducted during an eight week period. The nylon-11 tubing contributed trace concentrations of benzene (1.37 ?g/L) and relatively high concentrations of the plasticizer N-butylbenzenesulfonamide (NBSA) (764 mg/L) to the water; a urethane-coated nylon well liner contributed relatively high concentrations of toluene (278 ?g/L) and trace amounts of NBSA; and a sampling port spacer material made of nylon/polypropylene/polyester-composite contributed trace amounts of toluene and NBSA. While the concentrations of benzene and toluene measured in the laboratory tests were below the concentrations measured in actual ground water samples, the concentrations of organics from these equipment materials were sufficient to render the results reported for the ground water samples suspect.

  2. Catalytic extraction processing of contaminated scrap metal

    SciTech Connect

    Griffin, T.P.; Johnston, J.E.; Payea, B.M.

    1995-10-01

    The U.S. Department of Energy issued a Planned Research and Development Announcement (PRDA) in 1993, with the objective of identifying unique technologies which could be applied to the most hazardous waste streams at DOE sites. The combination of radioactive contamination with additional contamination by hazardous constituents such as those identified by the Resource Conservation and Recovery Act (RCRA) pose an especially challenging problem. Traditional remediation technologies are increasingly becoming less acceptable to stakeholders and regulators because of the risks they pose to public health and safety. Desirable recycling technologies were described by the DOE as: (1) easily installed, operated, and maintained; (2) exhibiting superior environmental performance; (3) protective of worker and public health and safety; (4) readily acceptable to a wide spectrum of evaluators; and (5) economically feasible. Molten Metal Technology, Inc. (MMT) was awarded a contract as a result of the PRDA initiative to demonstrate the applicability of Catalytic Extraction Processing (CEP), MMT`s proprietary elemental recycling technology, to DOE`s inventory of low level mixed waste. This includes DOE`s inventory of radioactively- and RCRA-contaminated scrap metal and other waste forms expected to be generated by the decontamination and decommissioning (D&D) of DOE sites.

  3. Intelligent Processing Equipment Within the Environmental Protection Agency

    NASA Technical Reports Server (NTRS)

    Greathouse, Daniel G.; Nalesnik, Richard P.

    1992-01-01

    Protection of the environment and environmental remediation requires the cooperation, at all levels, of government and industry. Intelligent processing equipment, in addition to other artificial intelligence based tools, was used by the Environmental Protection Agency to provide personnel safety and improve the efficiency of those responsible for protection and remediation of the environment. These exploratory efforts demonstrate the feasibility and utility of expanding development and widespread use of these tools. A survey of current intelligent processing equipment applications in the Agency is presented and is followed by a brief discussion of possible uses in the future.

  4. 78 FR 13625 - Materials Processing Equipment Technical Advisory Committee; Notice of Partially Closed Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-28

    ... Bureau of Industry and Security Materials Processing Equipment Technical Advisory Committee; Notice of Partially Closed Meeting The Materials Processing Equipment Technical Advisory Committee (MPETAC) will meet... controls applicable to materials processing equipment and related technology. Agenda Open Session...

  5. 76 FR 20949 - Materials Processing Equipment Technical Advisory Committee; Notice of Partially Closed Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-14

    ... Bureau of Industry and Security Materials Processing Equipment Technical Advisory Committee; Notice of Partially Closed Meeting The Materials Processing Equipment Technical Advisory Committee (MPETAC) will meet... controls applicable to materials processing equipment and related technology. Agenda Open Session...

  6. PROCESS AND EQUIPMENT CHANGES FOR CLEANER PRODUCTION IN FEDERAL FACILITIES

    EPA Science Inventory

    The paper discusses process and equipment changes for cleaner production in federal facilities. During the 1990s, DoD and EPA conducted joint research and development, aimed at reducing the discharge of hazardous and toxic pollutants from military production and maintenance faci...

  7. 21 CFR 864.3010 - Tissue processing equipment.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Tissue processing equipment. 864.3010 Section 864.3010 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES HEMATOLOGY AND PATHOLOGY DEVICES Pathology Instrumentation and Accessories §...

  8. 21 CFR 864.3010 - Tissue processing equipment.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Tissue processing equipment. 864.3010 Section 864.3010 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES HEMATOLOGY AND PATHOLOGY DEVICES Pathology Instrumentation and Accessories §...

  9. 21 CFR 864.3010 - Tissue processing equipment.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Tissue processing equipment. 864.3010 Section 864.3010 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES HEMATOLOGY AND PATHOLOGY DEVICES Pathology Instrumentation and Accessories §...

  10. 21 CFR 864.3010 - Tissue processing equipment.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Tissue processing equipment. 864.3010 Section 864.3010 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES HEMATOLOGY AND PATHOLOGY DEVICES Pathology Instrumentation and Accessories §...

  11. 21 CFR 864.3010 - Tissue processing equipment.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Tissue processing equipment. 864.3010 Section 864.3010 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES HEMATOLOGY AND PATHOLOGY DEVICES Pathology Instrumentation and Accessories §...

  12. Contamination control in hybrid microelectronic modules. Identification of critical process and contaminants, part 1

    NASA Technical Reports Server (NTRS)

    Himmel, R. P.

    1975-01-01

    Hybrid processes, handling procedures, and materials were examined to identify the critical process steps in which contamination is most likely to occur, to identify the particular contaminants associated with these critical steps, and to propose method for the control of these contaminants.

  13. HYNOL PROCESS ENGINEERING: PROCESS CONFIGURATION, SITE PLAN, AND EQUIPMENT DESIGN

    EPA Science Inventory

    The report describes the design of the hydropyrolysis reactor system of the Hynol process. (NOTE: A bench scale methanol production facility is being constructed to demonstrate the technical feasibility of producing methanol from biomass using the Hynol process. The plant is bein...

  14. Space processing applications payload equipment study. Volume 3: Programmatics

    NASA Technical Reports Server (NTRS)

    Hammel, R. L.

    1974-01-01

    The programmatic aspects of the space processing applications program and the methods of accommodating SPA payloads aboard the Shuttle/Spacelab host vehicle are discussed. An examination of the NASA traffic model shows that there exists a potential for 178 SPA payloads from the overall total of 727 flights specified. This could represent up to one quarter of the total shuttle flights during the 12-year-long period covered by the traffic model. The SPA payload will range from austere for shared flight opportunities to dedicated where space processing will encompass the total flight payload allocations. The major modes of use to SPA will include dedicated Spacelab missions, shared Spacelab missions and shared automated payloads attached to the pallet with the necessary control and display equipment in the host vehicle. Several layout drawings and artist's renderings have been completed to illustrate the various potential configurations available to accommodate the SPA payload equipment.

  15. Process and equipment development for hot isostatic pressing treatability study

    SciTech Connect

    Bateman, Ken; Wahlquist, Dennis; Malewitz, Tim

    2015-03-01

    Battelle Energy Alliance (BEA), LLC, has developed processes and equipment for a pilot-scale hot isostatic pressing (HIP) treatability study to stabilize and volume reduce radioactive calcine stored at Idaho National Laboratory (INL). In 2009, the U. S. Department of Energy signed a Record of Decision with the state of Idaho selecting HIP technology as the method to treat 5,800 yd^3 (4,400 m^3) of granular zirconia and alumina calcine produced between 1953 and 1992 as a waste byproduct of spent nuclear fuel reprocessing. Since the 1990s, a variety of radioactive and hazardous waste forms have been remotely treated using HIP within INL hot cells. To execute the remote process at INL, waste is loaded into a stainless-steel or aluminum can, which is evacuated, sealed, and placed into a HIP furnace. The HIP simultaneously heats and pressurizes the waste, reducing its volume and increasing its durability. Two 1 gal cans of calcine waste currently stored in a shielded cask were identified as candidate materials for a treatability study involving the HIP process. Equipment and materials for cask-handling and calcine transfer into INL hot cells, as well as remotely operated equipment for waste can opening, particle sizing, material blending, and HIP can loading have been designed and successfully tested. These results demonstrate BEA’s readiness for treatment of INL calcine.

  16. Statistical process control testing of electronic security equipment

    SciTech Connect

    Murray, D.W.; Spencer, D.D.

    1994-06-01

    Statistical Process Control testing of manufacturing processes began back in the 1940`s with the development of Process Control Charts by Dr. Walter A. Shewart. Sandia National Laboratories has developed an application of the SPC method for performance testing of electronic security equipment. This paper documents the evaluation of this testing methodology applied to electronic security equipment and an associated laptop computer-based system for obtaining and analyzing the test data. Sandia developed this SPC sensor performance testing method primarily for use on portal metal detectors, but, has evaluated it for testing of an exterior intrusion detection sensor and other electronic security devices. This method is an alternative to the traditional binomial (alarm or no-alarm) performance testing. The limited amount of information in binomial data drives the number of tests necessary to meet regulatory requirements to unnecessarily high levels. For example, a requirement of a 0.85 probability of detection with a 90% confidence requires a minimum of 19 alarms out of 19 trials. By extracting and analyzing measurement (variables) data whenever possible instead of the more typical binomial data, the user becomes more informed about equipment health with fewer tests (as low as five per periodic evaluation).

  17. Process Upsets Involving Trace Contaminant Control Systems

    NASA Technical Reports Server (NTRS)

    Graf, John C.; Perry, Jay; Wright, John; Bahr, Jim

    2000-01-01

    Paradoxically, trace contaminant control systems that suffer unexpected upsets and malfunctions can release hazardous gaseous contaminants into a spacecraft cabin atmosphere causing potentially serious toxicological problems. Trace contaminant control systems designed for spaceflight typically employ a combination of adsorption beds and catalytic oxidation reactors to remove organic and inorganic trace contaminants from the cabin atmosphere. Interestingly, the same design features and attributes which make these systems so effective for purifying a spacecraft's atmosphere can also make them susceptible to system upsets. Cabin conditions can be contributing causes of phenomena such as adsorbent "rollover" and catalyst poisoning can alter a systems performance and in some in stances release contamination into the cabin. Evidence of these phenomena has been observed both in flight and during ground-based tests. The following discussion describes specific instances of system upsets found in trace contaminant control systems, groups these specific upsets into general hazard classifications, and recommends ways to minimize these hazards.

  18. Optimizing process and equipment efficiency using integrated methods

    NASA Astrophysics Data System (ADS)

    D'Elia, Michael J.; Alfonso, Ted F.

    1996-09-01

    The semiconductor manufacturing industry is continually riding the edge of technology as it tries to push toward higher design limits. Mature fabs must cut operating costs while increasing productivity to remain profitable and cannot justify large capital expenditures to improve productivity. Thus, they must push current tool production capabilities to cut manufacturing costs and remain viable. Working to continuously improve mature production methods requires innovation. Furthermore, testing and successful implementation of these ideas into modern production environments require both supporting technical data and commitment from those working with the process daily. At AMD, natural work groups (NWGs) composed of operators, technicians, engineers, and supervisors collaborate to foster innovative thinking and secure commitment. Recently, an AMD NWG improved equipment cycle time on the Genus tungsten silicide (WSi) deposition system. The team used total productive manufacturing (TPM) to identify areas for process improvement. Improved in-line equipment monitoring was achieved by constructing a real time overall equipment effectiveness (OEE) calculator which tracked equipment down, idle, qualification, and production times. In-line monitoring results indicated that qualification time associated with slow Inspex turn-around time and machine downtime associated with manual cleans contributed greatly to reduced availability. Qualification time was reduced by 75% by implementing a new Inspex monitor pre-staging technique. Downtime associated with manual cleans was reduced by implementing an in-situ plasma etch back to extend the time between manual cleans. A designed experiment was used to optimize the process. Time between 18 hour manual cleans has been improved from every 250 to every 1500 cycles. Moreover defect density realized a 3X improvement. Overall, the team achieved a 35% increase in tool availability. This paper details the above strategies and accomplishments.

  19. Predictive maintenance of critical equipment in industrial processes

    NASA Astrophysics Data System (ADS)

    Hashemian, Hashem M.

    This dissertation is an account of present and past research and development (R&D) efforts conducted by the author to develop and implement new technology for predictive maintenance and equipment condition monitoring in industrial processes. In particular, this dissertation presents the design of an integrated condition-monitoring system that incorporates the results of three current R&D projects with a combined funding of $2.8 million awarded to the author by the U.S. Department of Energy (DOE). This system will improve the state of the art in equipment condition monitoring and has applications in numerous industries including chemical and petrochemical plants, aviation and aerospace, electric power production and distribution, and a variety of manufacturing processes. The work that is presented in this dissertation is unique in that it introduces a new class of condition-monitoring methods that depend predominantly on the normal output of existing process sensors. It also describes current R&D efforts to develop data acquisition systems and data analysis algorithms and software packages that use the output of these sensors to determine the condition and health of industrial processes and their equipment. For example, the output of a pressure sensor in an operating plant can be used not only to indicate the pressure, but also to verify the calibration and response time of the sensor itself and identify anomalies in the process such as blockages, voids, and leaks that can interfere with accurate measurement of process parameters or disturb the plant's operation, safety, or reliability. Today, process data are typically collected at a rate of one sample per second (1 Hz) or slower. If this sampling rate is increased to 100 samples per second or higher, much more information can be extracted from the normal output of a process sensor and then used for condition monitoring, equipment performance measurements, and predictive maintenance. A fast analog-to-digital (A

  20. Contamination Control in Hybrid Microelectronic Modules. Part 1: Identification of Critical Process and Contaminants

    NASA Technical Reports Server (NTRS)

    Himmel, R. P.

    1975-01-01

    Various hybrid processing steps, handling procedures, and materials are examined in an attempt to identify sources of contamination and to propose methods for the control of these contaminants. It is found that package sealing, assembly, and rework are especially susceptible to contamination. Moisture and loose particles are identified as the worst contaminants. The points at which contaminants are most likely to enter the hybrid package are also identified, and both general and specific methods for their detection and control are developed. In general, the most effective controls for contaminants are: clean working areas, visual inspection at each step of the process, and effective cleaning at critical process steps. Specific methods suggested include the detection of loose particles by a precap visual inspection, by preseal and post-seal electrical testing, and by a particle impact noise test. Moisture is best controlled by sealing all packages in a clean, dry, inert atmosphere after a thorough bake-out of all parts.

  1. Risk assessment of manufacturing equipment surfaces contaminated with DDTs and dicofol.

    PubMed

    Luo, Fei; Song, Jing; Chen, Meng-Fang; Wei, Jing; Pan, Yun-Yu; Yu, Hai-Bo

    2014-01-15

    Decommissioning of manufacturing plant in the chemical industry includes inspection of the surfaces of production equipment for potential contamination and associated health risks. In the present study wipe-samples were taken from the surfaces of dicofol manufacturing equipment at a chemical factory in north China and analyzed for chemicals of concern (COCs). Occupational hygiene assessment was conducted to assess the risks to demolition workers and health risk assessment was performed to evaluate the risks to demolition and general industrial workers. The concentrations of COCs on the equipment surfaces were found to be 0.54-3.75 × 10(4)mg DDTs m(-2) and 0.15-4.38 × 10(3)mg dicofolm(-2). The average concentration of p,p'-DDT does not represent an unacceptable risk to the demolition workers using occupational hygiene assessment. Under the industrial scenario the carcinogenic risks of COCs ranged from 2.28 × 10(-7) to 1.79 × 10(-2) for p,p'-DDT, 6.18 × 10(-7) to 3.04 × 10(-3) for p,p'-DDD and 1.89 × 10(-6) to 0.16 for p,p'-DDE. The non-carcinogenic hazard indices ranged from 3.86 × 10(-3) to 3.03 × 10(2) for p,p'-DDT and 1.16 × 10(-3) to 33.94 for dicofol. Both carcinogenic risk and hazard index of COCs under the industrial scenario were higher than under the demolition scenario. Oral ingestion and dermal contact were the major pathways and accounted for >88% of the total exposure of COCs. Parameter sensitivity analysis shows that equipment surface concentration (Cs), frequency of contact with surface (EV), fraction of dust transferred from surface to skin (FTss) and exposure frequency (EF) were the most sensitive parameters and these should be acquired on a site-specific basis. The accuracy of the risk assessment was controlled largely by the variation in the sensitive parameters and the uncertainty of the exposure model for the inhalation pathway. PMID:24029690

  2. {open_quote}Lasagna{close_quote} process treats contaminants

    SciTech Connect

    Drennan, D.

    1994-09-01

    This paper describes an integrated in-situ remedial technology for organic or inorganic contaminants in dense soils termed the Lasagna Process. The process, so named for its layers, forces contaminants out of microscopic pores in clay and silt soil regions so they do not leach into groundwater. It introduces in-situ treatment zones in the contaminated area so the waste will not have to be brought to the surface and treats the material within the newly created zones.

  3. New hospital disinfection processes for both conventional and prion infectious agents compatible with thermosensitive medical equipment.

    PubMed

    Lehmann, S; Pastore, M; Rogez-Kreuz, C; Richard, M; Belondrade, M; Rauwel, G; Durand, F; Yousfi, R; Criquelion, J; Clayette, P; Perret-Liaudet, A

    2009-08-01

    With the detection of prions in specific tissues in variant and sporadic Creutzfeldt-Jakob diseases, efficient decontamination for human transmissible spongiform encephalopathy (TSE) agents, that is compatible with medical equipment, has become a major issue. We previously described the cleavage of prions on exposure to copper (Cu) and hydrogen peroxide (H(2)O(2)) and have used this property to develop efficient prion decontamination processes. To validate this approach, in-vitro assays on genuine human and animal prions using both brain homogenates and steel wires to mimic contamination of medical equipment were conducted. In-vivo experiments using steel wire in the hamster 263 K model were then used to evaluate the effect on prion infectivity. Assays on classical pathogens following international norms completed these prion experiments. In-vitro data confirmed the full decontamination efficacy of H(2)O(2)/Cu on different TSE strains. Combination of Cu with peracetic acid, used for endoscope disinfection, also revealed improved prion decontamination. Animal assay demonstrated efficacy on TSE infectivity of H(2)O(2)/Cu alone or in combination with detergents (reduction factor > or =5.25 log(10)). Assays on classical pathogens confirmed the disinfection properties of the different processes. Taken together, these new disinfection processes are efficient for both conventional and prion infectious agents and are, compatible with thermosensitive medical equipment. They can be adapted to hospitals' and practitioners' routine use, and they present reduced risks for the environment and for healthcare professionals. PMID:19541387

  4. Removal of Contaminants from Equipment and Debris and Waste Minimization Using the TECHXTRACT(TM) Technology

    SciTech Connect

    Jorg Schwitzgebel; Klaus Schwitzgebel; Michael W. Bonem; Ronald E. Borah

    1998-12-09

    From September, 1996 through July, 1997, EET, Inc. conducted a series of experiments under a U.S. Department of Energy (DOE) Program Research and Development Agreement (PRDA). This project, entitled "Removal of Contaminants from Equipment and Debris and Waste Minimization Using the TECHXTRACT â Technology" was conducted under DOE Contract DE-AC21- 96MC33138, administered by the Federal Energy Technology Center. The contract is divided into two phases - a base phase during which bench scale testing was conducted; and an optional phase for a field demonstration of a full-scale system. This report documents the results from the base phase of the contract. The base phase included the following major elements: - Evaluation of the effectiveness of various decontamination options, using both surrogate and radioactively contaminated samples. - Evaluation of various methods for the treatment of the secondary waste streams from the preferred decontamination system(s). - Evaluation of decontamination effectiveness for concrete rubble. - Preliminary engineering design and cost estimation for a full-scale system. - Preliminary economic analysis of the proposed system versus other currently available options for disposition of the materials. Results from the base phase, which are described in the following report, are very positive. Testing has shown that free release requirements and extremely high decontamination factors can be achieved for a variety of materials and radionuclides. Results for concrete rubble decontamination were less conclusive. The bench scale testing has led to the design of two different systems, both based on the TECHXTRACT â chemistry, for potential full-scale demonstration. Based on the preliminary economic analysis, this system compares favorably with currently available commercial options, including disposal.

  5. Biofilm in milking equipment on a dairy farm as a potential source of bulk tank milk contamination with Listeria monocytogenes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The quality and safety of raw milk are important attributes for consumers of milk and dairy products. The objective of this study was to assess the presence of a L. monocytogenes biofilm in milking equipment as a potential source of bulk tank milk contamination on a dairy farm. Weekly tests to monit...

  6. The pharmaceutical vial capping process: Container closure systems, capping equipment, regulatory framework, and seal quality tests.

    PubMed

    Mathaes, Roman; Mahler, Hanns-Christian; Buettiker, Jean-Pierre; Roehl, Holger; Lam, Philippe; Brown, Helen; Luemkemann, Joerg; Adler, Michael; Huwyler, Joerg; Streubel, Alexander; Mohl, Silke

    2016-02-01

    Parenteral drug products are protected by appropriate primary packaging to protect against environmental factors, including potential microbial contamination during shelf life duration. The most commonly used CCS configuration for parenteral drug products is the glass vial, sealed with a rubber stopper and an aluminum crimp cap. In combination with an adequately designed and controlled aseptic fill/finish processes, a well-designed and characterized capping process is indispensable to ensure product quality and integrity and to minimize rejections during the manufacturing process. In this review, the health authority requirements and expectations related to container closure system quality and container closure integrity are summarized. The pharmaceutical vial, the rubber stopper, and the crimp cap are described. Different capping techniques are critically compared: The most common capping equipment with a rotating capping plate produces the lowest amount of particle. The strength and challenges of methods to control the capping process are discussed. The residual seal force method can characterize the capping process independent of the used capping equipment or CCS. We analyze the root causes of several cosmetic defects associated with the vial capping process. PMID:26654992

  7. Equipment

    NASA Astrophysics Data System (ADS)

    Szumski, Michał

    This chapter describes the most important features of capillary electrophoretic equipment. A presentation of the important developments in high voltage power supplies for chip CE is followed by preparation of fused silica capillaries for use in CE. Detection systems that are used in capillary electrophoresis are widely described. Here, UV-Vis absorbance measurements are discussed including different types of detection cells—also those less popular (u-shaped, Z-shaped, mirror-coated). Fluorescence detection and laser-induced fluorescence detection are the most sensitive detection systems. Several LIF setups, such as collinear, orthogonal, confocal, and sheath-flow cuvette, are presented from the point of view of the sensitivity they can provide. Several electrochemical detectors for CE, such as conductivity, amperometric, and potentiometric, are also shown and their constructions discussed. CE-MS and much less known CE (CEC)-NMR systems are also described. The examples of automation and robotized CE systems together with their potential fields of application are also presented.

  8. Contamination measurements during IUS thermal vacuum tests in a large space chamber. [IUS equipment support system

    NASA Technical Reports Server (NTRS)

    Mullen, C. R.; Shaw, C. G.

    1984-01-01

    The levels of contamination that originate from inside the IUS equipment support section (ESS) due to outgassing from electronics components and wiring operating at elevated temperatures (80-160 F) were investigated. Pressure was measured inside and outside the ESS. Mass deposition measurements were made with quartz crystal microbalances (QCM) facing into and away from ESS vents. The OCM's were operated at -50 C and -180 C using thermoelectrically and cryogenically cooled QCM's. Gaseous nitrogen flow inside the ESS was used to obtain the effective molecular flow vent area of the ESS, which was evaluated to be 359 sq cm (56 sq in) compared to the 978 sq cm (150 sq in) estimated by an earlier atmosphere pressure billowing test. The total outgassing rate of the ESS materials at a temperature of 60 C (140 F) decays with a time constant of 11.5 hours based on pressure measurements during the hot cycle. A time constant of 22 hours was estimated for the fraction of the outgassing which will condense on a -50 C surface. In contrast, the time constant is only 10.1 hours for the outgassing material which condenses on a surface at -180 C. A surface at -180 C collects approximately one half of the material vented from the ESS which impinges on it. Pressure measurements show very good correlation with the mass deposition measurements.

  9. Process and equipment capabilities materials joining laboratory, 1987

    SciTech Connect

    Reed, R.W. Jr.

    1987-08-01

    The Materials Joining Laboratory of the Metals and Ceramics Division has the capabilities and expertise to perform various types of joining emphasizing welding and brazing. Capabilities range from joining of heavy-section steels using a wide variety of welding technology to joining of small parts by brazing or welding. Expertise and facilities also exist for joining ceramic-to-ceramic or ceramic-to-metallic parts using brazing technology. In addition, a newly acquired plasma-spray system is available for coating research. With other laboratories and facilities within the Metals and Ceramics Division, a situation exists for extensive characterization of microstructure and properties of weldments. The Laboratory is fully equipped for the standard welding processes including gas tungsten arc, submerged arc, gas metal arc, and electroslag (ES). Specialized equipment includes pulsed and high-power continuous wave CO/sub 2/ laser systems, high-power electron beam welding machines, internal bore tube-to-tubesheet welding system, narrow gap SA welding system, Gleeble thermomechanical simulator, and sessile drop apparatus for braze alloy wetting studies.

  10. Radiological Monitoring Equipment For Real-Time Quantification Of Area Contamination In Soils And Facility Decommissioning

    SciTech Connect

    M. V. Carpenter; Jay A. Roach; John R Giles; Lyle G. Roybal

    2005-09-01

    The environmental restoration industry offers several sys¬tems that perform scan-type characterization of radiologically contaminated areas. The Idaho National Laboratory (INL) has developed and deployed a suite of field systems that rapidly scan, characterize, and analyse radiological contamination in surface soils. The base system consists of a detector, such as sodium iodide (NaI) spectrometers, a global positioning system (GPS), and an integrated user-friendly computer interface. This mobile concept was initially developed to provide precertifica¬tion analyses of soils contaminated with uranium, thorium, and radium at the Fernald Closure Project, near Cincinnati, Ohio. INL has expanded the functionality of this basic system to create a suite of integrated field-deployable analytical systems. Using its engineering and radiation measurement expertise, aided by computer hardware and software support, INL has streamlined the data acquisition and analysis process to provide real-time information presented on wireless screens and in the form of coverage maps immediately available to field technicians. In addition, custom software offers a user-friendly interface with user-selectable alarm levels and automated data quality monitoring functions that validate the data. This system is deployed from various platforms, depending on the nature of the survey. The deployment platforms include a small all-terrain vehicle used to survey large, relatively flat areas, a hand-pushed unit for areas where manoeuvrability is important, an excavator-mounted system used to scan pits and trenches where personnel access is restricted, and backpack- mounted systems to survey rocky shoreline features and other physical settings that preclude vehicle-based deployment. Variants of the base system include sealed proportional counters for measuring actinides (i.e., plutonium-238 and americium-241) in building demolitions, soil areas, roadbeds, and process line routes at the Miamisburg

  11. Process capability determination of new and existing equipment

    NASA Technical Reports Server (NTRS)

    Mcclelland, H. T.; Su, Penwen

    1994-01-01

    The objective of this paper is to illustrate a method of determining the process capability of new or existing equipment. The method may also be modified to apply to testing laboratories. Long term changes in the system may be determined by periodically making new test parts or submitting samples from the original set to the testing laboratory. The technique described has been developed through a series of projects in special topics manufacturing courses and graduate student projects. It will be implemented as a standard experiment in an advanced manufacturing course in a new Manufacturing Engineering program at the University of Wisconsin-Stout campus. Before starting a project of this nature, it is important to decide on the exact question to be answered. In this case, it is desired to know what variation can be reasonably expected in the next part, feature, or test result produced. Generally, this question is answered by providing the process capability or the average value of a measured characteristic of the part or process plus or minus three standard deviations. There are two general cases to be considered: the part or test is made in large quantities with little change, or the process is flexible and makes a large variety of parts. Both cases can be accommodated; however, the emphasis in this report is on short run situations.

  12. US Department of Energy's Efforts in Intelligent Processing Equipment

    NASA Technical Reports Server (NTRS)

    Peavy, Richard D.; Mcfarland, Janet C.

    1992-01-01

    The Department of Energy (DOE) uses intelligent processing equipment (IPE) technologies to conduct research and development and manufacturing for energy and nuclear weapons programs. This paper highlights several significant IPE efforts underway in DOE. IPE technologies are essential to the accomplishment of DOE's missions, because of the need for small lot production, precision, and accuracy in manufacturing, hazardous waste management, and protection of the environment and the safety and health of the workforce and public. Applications of IPE technologies include environmental remediation and waste handling, advanced manufacturing, and automation of tasks carried out in hazardous areas. DOE laboratories have several key programs that integrate robotics, sensor, and control technologies. These programs embody a considerable technical capability that also may be used to enhance U.S. industrial competitiveness. DOE encourages closer cooperation with U.S. industrial partners based on mutual benefits. This paper briefly describes technology transfer mechanisms available for industrial involvement.

  13. ELECTROCHEMICAL PROCESSES FOR IN-SITU TREATMENT OF CONTAMINATED SOILS

    EPA Science Inventory

    This project will study electrochemical processes for the in situ treatment of soils contaminated by mixed wastes, i.e., organic and inorganic. Soil samples collected from selected DOE waste sites will be characterized for specific organic and metal contaminants and hydraulic per...

  14. Innovative technology for contamination control in plasma processing

    SciTech Connect

    Selwyn, G.S.

    1994-10-01

    The causes and contributing factors to wafer contamination during plasma processing are discussed in the context of future technologies for controlling particle contamination by tool and process design and by the development of wafer dry cleaning technology. The importance of these developments is linked with the history of technological innovation and with the continuing evolution of the cleanroom from a highly developed facility for reducing ambient particle levels to an integrated, synergistic approach involving facilities and tooling for impeding the formation and transport of particles while also actively removing particles from sensitive surfaces. The methods, strategy and requirements for innovation in contamination control for plasma processing is discussed from a diachronic viewpoint.

  15. Parallel Processing of a Groundwater Contaminant Code

    SciTech Connect

    Arnett, Ronald Chester; Greenwade, Lance Eric

    2000-05-01

    The U. S. Department of Energy’s Idaho National Engineering and Environmental Laboratory (INEEL) is conducting a field test of experimental enhanced bioremediation of trichoroethylene (TCE) contaminated groundwater. TCE is a chlorinated organic substance that was used as a solvent in the early years of the INEEL and disposed in some cases to the aquifer. There is an effort underway to enhance the natural bioremediation of TCE by adding a non-toxic substance that serves as a feed material for the bacteria that can biologically degrade the TCE.

  16. WATER-SOFTENING AND CONDITIONING EQUIPMENT: A POTENTIAL SOURCE OF WATER CONTAMINATION

    EPA Science Inventory

    Chloroform, trichloroethene, and tetrachloroethene as well as two unidentified compounds were adsorbed from contaminated ground water onto anion-cation exchange resins during their regeneration and cleaning at the distributing plant. Contaminants leached into water passed through...

  17. 9. VIEW OF CLOSED CARRIER LINES FOR MOVING CONTAMINATED PROCESS ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    9. VIEW OF CLOSED CARRIER LINES FOR MOVING CONTAMINATED PROCESS FILTERS AND TRANSPORTING SOLID AND LIQUID MATERIAL SAMPLES. (9/10/96) - Rocky Flats Plant, Plutonium Recovery Facility, Northwest portion of Rocky Flats Plant, Golden, Jefferson County, CO

  18. Utility of a Novel Reflective Marker Visualized by Flash Photography for Assessment of Personnel Contamination During Removal of Personal Protective Equipment.

    PubMed

    Tomas, Myreen E; Cadnum, Jennifer L; Mana, Thriveen S C; Jencson, Annette L; Koganti, Sreelatha; Alhmidi, Heba; Kundrapu, Sirisha; Sunkesula, Venkata C K; Donskey, Curtis J

    2016-06-01

    In an experimental study, the frequency of contamination of healthcare personnel during removal of contaminated personal protective equipment (PPE) was similar for bacteriophage MS2 and a novel reflective marker visualized using flash photography. The reflective marker could be a useful tool to visualize and document personnel contamination during PPE removal. Infect Control Hosp Epidemiol 2016;37:711-713. PMID:26976219

  19. Distribution of Escherichia coli passaged through processing equipment during ground beef production using inoculated trimmings.

    PubMed

    Koohmaraie, Mohammad; Bosilevac, Joseph M; De La Zerda, Michael; Motlagh, Ali Mohseni; Samadpour, Mansour

    2015-02-01

    The contamination of raw ground beef by Escherichia coli O157:H7 is not only a public health issue but also an economic concern to meat processors. When E. coli O157:H7 is detected in a ground beef sample, the product lots made immediately before and after the lot represented by the positive sample are discarded or diverted to lethality treatment. However, there is little data to base decisions on how much product must be diverted. Therefore, five 2,000-lb (907-kg) combo bins of beef trimmings were processed into 10-lb (4.54-kg) chubs of raw ground beef, wherein the second combo of meat was contaminated with a green fluorescent protein (GFP)-expressing strain of E. coli. This was performed at two different commercial ground beef processing facilities, and at a third establishment where ground beef chubs from the second grinding establishment were mechanically split and repackaged into 3-lb (1.36-kg) loaves in trays. The GFP E. coli was tracked through the production of 10-lb (4.54-kg) chubs and the strain could not be detected after 26.5% more material (500 lb or 227 kg) and 87.8% more material (1,840 lb or 835 kg) followed the contaminated combo at each establishment, respectively. Three-pound (1.36-kg) loaves were no longer positive after just 8.6% more initially noncontaminated material (72 lb or 33 kg) was processed. The GFP strain could not be detected postprocessing in any residual meat or fat collected from the equipment used in the three trials. These results indicate that diversion to a safe end point (lethality or rendering) of the positive lot of ground beef, plus the lot before and lot after should remove contaminated ground beef, and as such provides support for the current industry practice. Further, the distribution and flow of E. coli on beef trimmings through various commercial equipment was different; thus, each establishment needs to consider this data when segregating lots of ground beef and establishing sampling protocols to monitor production

  20. Processes of contaminant accumulation in an Arctic beluga whale population

    SciTech Connect

    Hickie, B.E.; Muir, D.; Kingsley, M.

    1995-12-31

    As long-lived top predators in marine food chains, marine mammals accumulate high levels of persistent organic contaminants. While arctic marine mammal contaminant concentrations are lower than those from temperate regions, levels are sufficiently high to be a health concern to people who rely on marine mammals as food. Monitoring programs developed to address this problem and to define spatial and temporal trends often are difficult to interpret since tissue contaminant concentrations vary with species, age, sex, reproductive effort, and condition (ie blubber thickness). It can be difficult to relate contaminant concentrations in other environmental compartments to those in marine mammals since their residues reflect exposure over their entire life, often 20 to 30 years. Contaminant accumulation models for marine mammals enable us to better understand the importance of, and interaction between, factors affecting contaminant accumulation, and can provide a dynamic framework for interpreting contaminant monitoring data. The authors developed two models for the beluga whale (Delphinapterus leucas): one provides a detailed view of processes at the individual level, the other examines population-based processes. The models quantify uptake, release and disposition of organic contaminants over their entire lifespan by incorporating all aspects of life-history. These models are used together to examine impact of a variety of factors on patterns and variability of PCBs found in the West Greenland beluga population (sample size: 696, 729). Factors examined include: energetics, growth, birth rate, lactation, contaminant assimilation and clearance rates, and dietary contaminant concentrations. Results are discussed in relation to the use of marine mammals for monitoring contaminant trends.

  1. Controlling Beryllium Contaminated Material And Equipment For The Building 9201-5 Legacy Material Disposition Project

    SciTech Connect

    Reynolds, T. D.; Easterling, S. D.

    2010-10-01

    This position paper addresses the management of beryllium contamination on legacy waste. The goal of the beryllium management program is to protect human health and the environment by preventing the release of beryllium through controlling surface contamination. Studies have shown by controlling beryllium surface contamination, potential airborne contamination is reduced or eliminated. Although there are areas in Building 9201-5 that are contaminated with radioactive materials and mercury, only beryllium contamination is addressed in this management plan. The overall goal of this initiative is the compliant packaging and disposal of beryllium waste from the 9201-5 Legacy Material Removal (LMR) Project to ensure that beryllium surface contamination and any potential airborne release of beryllium is controlled to levels as low as practicable in accordance with 10 CFR 850.25.

  2. 49 CFR 1242.46 - Computers and data processing equipment (account XX-27-46).

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 9 2011-10-01 2011-10-01 false Computers and data processing equipment (account XX-27-46). 1242.46 Section 1242.46 Transportation Other Regulations Relating to Transportation... RAILROADS 1 Operating Expenses-Equipment § 1242.46 Computers and data processing equipment (account...

  3. 49 CFR 1242.46 - Computers and data processing equipment (account XX-27-46).

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 9 2014-10-01 2014-10-01 false Computers and data processing equipment (account XX-27-46). 1242.46 Section 1242.46 Transportation Other Regulations Relating to Transportation... RAILROADS 1 Operating Expenses-Equipment § 1242.46 Computers and data processing equipment (account...

  4. 49 CFR 1242.46 - Computers and data processing equipment (account XX-27-46).

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 9 2013-10-01 2013-10-01 false Computers and data processing equipment (account XX-27-46). 1242.46 Section 1242.46 Transportation Other Regulations Relating to Transportation... RAILROADS 1 Operating Expenses-Equipment § 1242.46 Computers and data processing equipment (account...

  5. 49 CFR 1242.46 - Computers and data processing equipment (account XX-27-46).

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 9 2012-10-01 2012-10-01 false Computers and data processing equipment (account XX-27-46). 1242.46 Section 1242.46 Transportation Other Regulations Relating to Transportation... RAILROADS 1 Operating Expenses-Equipment § 1242.46 Computers and data processing equipment (account...

  6. 49 CFR 1242.46 - Computers and data processing equipment (account XX-27-46).

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 9 2010-10-01 2010-10-01 false Computers and data processing equipment (account XX-27-46). 1242.46 Section 1242.46 Transportation Other Regulations Relating to Transportation... RAILROADS 1 Operating Expenses-Equipment § 1242.46 Computers and data processing equipment (account...

  7. Evaluation of six decontamination processes on actinide and fission product contamination

    SciTech Connect

    Conner, C.; Chamberlain, D.B.; Chen, L.

    1995-12-31

    In-situ decontamination technologies were evaluated for their ability to: (1) reduce equipment contamination levels to allow either free release of the equipment or land disposal, (2) minimize residues generated by decontamination, and (3) generate residues that are compatible with existing disposal technologies. Six decontamination processes were selected. tested and compared to 4M nitric acid, a traditional decontamination agent: fluoroboric acid (HBF{sub 4}), nitric plus hydrofluoric acid, alkaline persulfate followed by citric acid plus oxalic acid, silver(II) plus sodium persulfate plus nitric acid, oxalic acid plus hydrogen peroxide plus hydrofluoric acid, and electropolishing using nitric acid electrolyte. The effectiveness of these solutions was tested using prepared 304 stainless steel couponds contaminated with uranium, plutonium, americium, or fission products. The decontamination factor for each of the solutions and tests conditions were determined; the results of these experiments are presented.

  8. Establishment of theoretical model and experimental equipment for researching on carbon contamination of EUV multi-layer mirror

    NASA Astrophysics Data System (ADS)

    Gong, Xuepeng; Lu, Qipeng; Lu, Guoqing

    2015-02-01

    Carbon contamination on extreme ultraviolet (EUV) multi-layer mirror is a seriously restrictive factor for lithography quality, chip output and life of lithography machine. In order to estimate the carbon contamination of EUV multi-layer and study the mechanism of carbon contamination deeply, an effective theoretical model of the carbon deposition on the multi-layer surface and experimental equipment for studying the carbon contamination are established. The theoretical model describes the transport of residual hydrocarbons to the irradiated area and the subsequent dissociation of the hydrocarbon by direct EUV radiation and secondary electron excitation, and indicates that the direct EUV radiation is the primary reason to dissociate the hydrocarbon, and makes the carbon deposited on the surface of multi-layer. Various carbon deposition states are simulated by the theoretical model, and some effective simulated results are obtained. Optical design scheme and structure design scheme of the experimental equipment are presented. The optical system includes two spherical multi-layer mirrors and a plane mirror multi-layer mirror. Ray trace and EUV intensity on sample are calculated, the light spot on sample is about Φ10mm and the EUV intensity is about 0.126mW/mm2. Structure of the experimental equipment includes adjusting mechanism of two spherical mirrors, rotary mechanism of plane mirror, alignment mechanism of EUV source, adjusting mechanism of sample, and so on. After testing, linear resolution and angle resolution of two spherical mirrors adjusting mechanism are 1μm and 5μrad respectively; linear displacement and linear resolution of sample adjusting mechanism are 50mm and 1μm respectively. The structure design scheme meets the requirement of the carbon contamination experiment.

  9. Detection of organic residues on food processing equipment surfaces by spectral imaging method

    NASA Astrophysics Data System (ADS)

    Qin, Jianwei; Jun, Won; Kim, Moon S.; Chao, Kaunglin

    2010-04-01

    Organic residues on equipment surfaces in poultry processing plants can generate cross contamination and increase the risk of unsafe food for consumers. This research was aimed to investigate the potential of LED-induced fluorescence imaging technique for rapid inspection of organic residues on poultry processing equipment surfaces. High-power blue LEDs with a spectral output at 410 nm were used as the excitation source for a line-scanning hyperspectral imaging system. Common chicken residue samples including fat, blood, and feces from ceca, colon, duodenum, and small intestine were prepared on stainless steel sheets. Fluorescence emission images were acquired from 120 samples (20 for each type of residue) in the wavelength range of 500-700 nm. LED-induced fluorescence characteristics of the tested samples were determined. PCA (principal component analysis) was performed to analyze fluorescence spectral data. Two SIMCA (soft independent modeling of class analogy) models were developed to differentiate organic residues and stainless steel samples. Classification accuracies using 2-class ('stainless steel' and 'organic residue') and 4-class ('stainless steel', 'fat', 'blood', and 'feces') SIMCA models were 100% and 97.5%, respectively. An optimal single-band and a band-pair that are promising for rapid residue detection were identified by correlation analysis. The single-band approach using the selected wavelength of 666 nm could generate false negative errors for chicken blood inspection. Two-band ratio images using 503 and 666 nm (F503/F666) have great potential for detecting various chicken residues on stainless steel surfaces. This wavelength pair can be adopted for developing a LED-based hand-held fluorescence imaging device for inspecting poultry processing equipment surfaces.

  10. Using a temperature-controlled quartz crystal microbalance in a space equipment cleanroom to monitor molecular contamination

    NASA Technical Reports Server (NTRS)

    Mitchell, William J.

    1994-01-01

    There is a need for continuous monitoring for molecular contamination in clean rooms where spaceflight equipment is assembled, integrated, and tested to insure that contamination budgets are met. The TQCM (temperature-controlled quartz crystal microbalance) can be used to provide both a real time warning and a cumulative measurement of molecular contamination. It has advantages over the other measurement methods such as witness mirrors, NVR (non-volatile residue) plates, and gas analyzers. A comparison of the TQCM sensitivity and ease of operations is made with the other methods. The surface acoustic wave microbalance (SAW), a newly developed instrument similar to TQCM, is considered in the comparison. An example is provided of TQCM use at Goddard Space Flight Center when the Wide Field Planetary Camera 2(WFPC-2) and the Corrective Optics Space Telescope Axial Replacement (COSTAR) were undergoing integrated testing prior to their installation in the Hubble Space Telescope on its first servicing mission. Areas for further investigation are presented.

  11. Application of SMIF isolation to lithography processes for contamination control

    NASA Astrophysics Data System (ADS)

    Zhu, Sheng-Bai

    2001-08-01

    Contamination control is particularly important in lithography processes because pattern defects are converted to wafers after each exposure. Contamination, by definition, is undesired matter or energy, which causes product defects or process instabilities, and, consequently, reduces yield and reliability. In lithography processes, particles, condensable hydrocarbosn, base molecules, moisture, and static electricity are examples of contaminants. Particles are inert minute objects, which interfere with the proper formation of circuit features. Condensable hydrocarbosn may cause optics hazing which reduces image homogeneity and energy transmission. Some Chemically Amplified Resists (CAR) are susceptible to molecular base contamination, resulting in image degradation such as T-topping. Moisture can affect the characteristics of photoresist, destabilizing photo-exposure and development processes. In combination with water, amine containing photoresist strippers can form hydroxyl ions that can attack aluminum and aluminum-copper alloys. Charged surfaces can tract and hold contaminants of opposite polarity. In case the electrical field exceeds the dielectric strength, ESD event occurs, often accompanied with damage of reticles, masks, or wafer circuits. With SMIF isolation technologies, yield loss due to defects and/or instabilities is minimized. Reticles, masks, and wafers are isolated form contamination sources through hermetic seal, in conjunction with particle/chemical filtration, and static shielding. Pressurization, inert gas purge, chemical absorbents, and electric grounding or air ionization are techniques of removing contaminants from the critical areas. For best performance, adequate selection of construction materials is critical. This paper discusses impacts of contamination on lithography processes and the possibility of solving such problems using SMIF isolation techniques. Theoretical models are developed and experimental data are presented.

  12. Catalytic extraction processing of contaminated scrap metal

    SciTech Connect

    Griffin, T.P.; Johnston, J.E.; Payea, B.M.; Zeitoon, B.M.

    1995-12-01

    Molten Metal Technology was awarded a contract to demonstrate the applicability of the Catalytic Extraction Process, a proprietary process that could be applied to US DOE`s inventory of low level mixed waste. This paper is a description of that technology, and included within this document are discussions of: (1) Program objectives, (2) Overall technology review, (3) Organic feed conversion to synthetic gas, (4) Metal, halogen, and transuranic recovery, (5) Demonstrations, (6) Design of the prototype facility, and (7) Results.

  13. 40 CFR 267.116 - What must I do with contaminated equipment, structure, and soils?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... that waste following all applicable requirements of 40 CFR part 262. ... 40 Protection of Environment 26 2010-07-01 2010-07-01 false What must I do with contaminated... FACILITIES OPERATING UNDER A STANDARDIZED PERMIT Closure § 267.116 What must I do with contaminated...

  14. Contaminant Attenuation Processes at Mining Sites

    EPA Science Inventory

    Monitored natural attenuation is sometimes used in combination with active treatment technologies to achieve site-specific remediation objectives. The global imprint of acid drainage problems at mining sites, however, is a clear reminder that in most cases natural processes are ...

  15. Method of treating contaminated HEPA filter media in pulp process

    DOEpatents

    Hu, Jian S.; Argyle, Mark D.; Demmer, Ricky L.; Mondok, Emilio P.

    2003-07-29

    A method for reducing contamination of HEPA filters with radioactive and/or hazardous materials is described. The method includes pre-processing of the filter for removing loose particles. Next, the filter medium is removed from the housing, and the housing is decontaminated. Finally, the filter medium is processed as pulp for removing contaminated particles by physical and/or chemical methods, including gravity, flotation, and dissolution of the particles. The decontaminated filter medium is then disposed of as non-RCRA waste; the particles are collected, stabilized, and disposed of according to well known methods of handling such materials; and the liquid medium in which the pulp was processed is recycled.

  16. Feasibility Process for Remediation of the Crude Oil Contaminated Soil

    NASA Astrophysics Data System (ADS)

    Keum, H.; Choi, H.; Heo, H.; Lee, S.; Kang, G.

    2015-12-01

    More than 600 oil wells were destroyed in Kuwait by Iraqi in 1991. During the war, over 300 oil lakes with depth of up to 2m at more than 500 different locations which has been over 49km2. Therefore, approximately 22 million m3was crude oil contaminated. As exposure of more than 20 years under atmospheric conditions of Kuwait, the crude oil has volatile hydrocarbons and covered heavy oily sludge under the crude oil lake. One of crude oil contaminated soil which located Burgan Oilfield area was collected by Kuwait Oil Company and got by H-plus Company. This contaminated soil has about 42% crude oil and could not biodegraded itself due to the extremely high toxicity. This contaminated soil was separated by 2mm sieve for removal oil sludge ball. Total petroleum hydrocarbons (TPH) was analysis by GC FID and initial TPH concentration was average 48,783 mg/kg. Ten grams of the contaminated soil replaced in two micro reactors with 20mL of bio surfactant produce microorganism. Reactor 1 was added 0.1g powder hemoglobin and other reactor was not added hemoglobin at time 0 day. Those reactors shake 120 rpm on the shaker for 7 days and CO2 produced about 150mg/L per day. After 7 days under the slurry systems, the rest days operated by hemoglobin as primary carbon source for enhanced biodegradation. The crude oil contaminated soil was degraded from 48,783mg/kg to 20,234mg/kg by slurry process and final TPH concentration degraded 11,324mg/kg for 21days. Therefore, highly contaminated soil by crude oil will be combined bio slurry process and biodegradation process with hemoglobin as bio catalytic source. Keywords: crude-oil contaminated soil, bio slurry, biodegradation, hemoglobin ACKOWLEDGEMENTS This project was supported by the Korea Ministry of Environment (MOE) GAIA Program

  17. Molecular methods to assess Listeria monocytogenes route of contamination in a dairy processing plant.

    PubMed

    Alessandria, Valentina; Rantsiou, Kalliopi; Dolci, Paola; Cocolin, Luca

    2010-07-31

    In this study we investigated the occurrence of Listeria monocytogenes in a dairy processing plant during two sampling campaigns in 2007 and 2008. Samples represented by semifinished and finished cheeses, swabs from the equipment and brines from the salting step, were subjected to analysis by using traditional and molecular methods, represented mainly by quantitative PCR. Comparing the results obtained by the application of the two approaches used, it became evident how traditional microbiological analysis underestimated the presence of L. monocytogenes in the dairy plant. Especially samples of the brines and the equipment swabs were positive only with qPCR. For some equipment swabs it was possible to detect a load of 10(4)-10(5) cfu/cm(2), while the modified ISO method employed gave negative results both before and after the enrichment step. The evidences collected during the first sampling year, highlighting a heavy contamination of the brines and of the equipment, lead to the implementation of specific actions that decreased the contamination in these samples during the 2008 campaign. However, no reduction in the number of L. monocytogenes positive final products was observed, suggesting that a more strict control is necessary to avoid the presence of the pathogen. All the isolates of L. monocytogenes were able to attach to abiotic surfaces, and, interestingly, considering the results obtained from their molecular characterization it became evident how strains present in the brines, were genetically connected with isolates from the equipment and from the final product, suggesting a clear route of contamination of the pathogen in the dairy plant. This study underlines the necessity to use appropriate analytical tools, such as molecular methods, to fully understand the spread and persistence of L. monocytogenes in food producing companies. PMID:20193970

  18. High level radioactive waste vitrification process equipment component testing

    SciTech Connect

    Siemens, D.H.; Heath, W.O.; Larson, D.E.; Craig, S.N.; Berger, D.N.; Goles, R.W.

    1985-04-01

    Remote operability and maintainability of vitrification equipment were assessed under shielded-cell conditions. The equipment tested will be applied to immobilize high-level and transuranic liquid waste slurries that resulted from plutonium production for defense weapons. Equipment tested included: a turntable for handling waste canisters under the melter; a removable discharge cone in the melter overflow section; a thermocouple jumper that extends into a shielded cell; remote instrument and electrical connectors; remote, mechanical, and heat transfer aspects of the melter glass overflow section; a reamer to clean out plugged nozzles in the melter top; a closed circuit camera to view the melter interior; and a device to retrieve samples of the glass product. A test was also conducted to evaluate liquid metals for use in a liquid metal sealing system.

  19. Heavy metal contamination characteristic of soil in WEEE (waste electrical and electronic equipment) dismantling community: a case study of Bangkok, Thailand.

    PubMed

    Damrongsiri, Seelawut; Vassanadumrongdee, Sujitra; Tanwattana, Puntita

    2016-09-01

    Sue Yai Utit is an old community located in Bangkok, Thailand which dismantles waste electrical and electronic equipment (WEEE). The surface soil samples at the dismantling site were contaminated with copper (Cu), lead (Pb), zinc (Zn), and nickel (Ni) higher than Dutch Standards, especially around the WEEE dumps. Residual fractions of Cu, Pb, Zn, and Ni in coarse soil particles were greater than in finer soil. However, those metals bonded to Fe-Mn oxides were considerably greater in fine soil particles. The distribution of Zn in the mobile fraction and a higher concentration in finer soil particles indicated its readily leachable character. The concentration of Cu, Pb, and Ni in both fine and coarse soil particles was mostly not significantly different. The fractionation of heavy metals at this dismantling site was comparable to the background. The contamination characteristics differed from pollution by other sources, which generally demonstrated the magnification of the non-residual fraction. A distribution pathway was proposed whereby contamination began by the deposition of WEEE scrap directly onto the soil surface as a source of heavy metal. This then accumulated, corroded, and was released via natural processes, becoming redistributed among the soil material. Therefore, the concentrations of both the residual and non-residual fractions of heavy metals in WEEE-contaminated soil increased. PMID:27206753

  20. 7 CFR 1717.613 - RUS approval of data processing and system control equipment.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 11 2012-01-01 2012-01-01 false RUS approval of data processing and system control... AND GUARANTEED ELECTRIC LOANS Operational Controls § 1717.613 RUS approval of data processing and... approval from RUS before purchasing data processing equipment or system control equipment, such approval...

  1. 7 CFR 1717.613 - RUS approval of data processing and system control equipment.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 11 2011-01-01 2011-01-01 false RUS approval of data processing and system control... AND GUARANTEED ELECTRIC LOANS Operational Controls § 1717.613 RUS approval of data processing and... approval from RUS before purchasing data processing equipment or system control equipment, such approval...

  2. 7 CFR 1717.613 - RUS approval of data processing and system control equipment.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 11 2014-01-01 2014-01-01 false RUS approval of data processing and system control... AND GUARANTEED ELECTRIC LOANS Operational Controls § 1717.613 RUS approval of data processing and... approval from RUS before purchasing data processing equipment or system control equipment, such approval...

  3. 7 CFR 1717.613 - RUS approval of data processing and system control equipment.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 11 2013-01-01 2013-01-01 false RUS approval of data processing and system control... AND GUARANTEED ELECTRIC LOANS Operational Controls § 1717.613 RUS approval of data processing and... approval from RUS before purchasing data processing equipment or system control equipment, such approval...

  4. Treating contaminated organics using the DETOX process

    SciTech Connect

    Elsberry, K.D.; Dhooge, P.M.

    1993-05-01

    Waste matrices containing organics, radionuclides, and metals pose difficult problems in waste treatment and disposal when the organic compounds and/or metals are considered to be hazardous. This paper describes the results of bench-scale studies of DETOX applied to the components of liquid mixed wastes, with the goal of establishing parameters for designing a prototype waste treatment unit. Apparent organic reaction rate orders and the dependence of apparent reaction rate on solution composition and the contact area were measured for vacuum pump oil scintillation fluids, and trichloroethylene. Reaction rate was superior in chloride-based solutions and was proportional to the contact area above about 2% w/w loading of organic. Oxidations in a 4-liter volume, mixed bench-top reactor have given destruction efficiencies of 99.9999 + % for common organics. Reaction rates achieved in the mixed bench-top reactor were one to two orders of magnitude greater than had been achieved in unmixed reactions; a thoroughly mixed reactor should be capable of oxidizing 10 to 100 + grams of organic per liter-hour. Results are also presented on the solvation efficiency of DETOX for mercury, cerium, and neodymium, and for removal/destruction of organics sorbed on vermiculite. The next stage of development will be converting the bench-top unit to continuous processing.

  5. Evaluation of Contaminant-Promoted Ignition in Scuba Equipment and Breathing Gas Delivery Systems

    NASA Technical Reports Server (NTRS)

    Forsyth, Elliott T.; Durkin, Robert; Beeson, Harold D.

    2000-01-01

    As the underwater diving industry continues to use greater concentrations of oxygen in their scuba systems, ignition of contaminants in these systems becomes a greater concern. Breathing gas makeup and distribution systems typically combine pure oxygen with various diluents to supply high-pressure cylinders for scuba applications. The hazards associated with these applications of oxygen and NITROX (oxygen and nitrogen mixture) gases require an evaluation of inherent contaminant levels and their associated promoted-ignition thresholds in these environments. In this study, several scuba component assemblies were tested after one year of use at the NASA Johnson Space Center Neutral Buoyancy Lab. The components were rapidly impacted with 50% NITROX gas to demonstrate their ignition resistance, then disassembled to evaluate their cleanliness. A follow-up study was then performed on the ignition thresholds of hydrocarbon-bascd oil films in oxygen and NITROX environments in an attempt to define the cleaning requirements for these systems. Stainless steel tubes were contaminated and verified to known levels and placed in a pneumatic impact test system where they were rapidly pressurized with the test gas. Ignitions were determined using a photodiode connected to the end of the contaminated tube. The results of the scuba component tests, cleanliness evaluation, and contaminant ignition study are discussed and compared for 50% NITROX and 100% oxygen environments.

  6. Decontamination of process equipment using recyclable chelating solvent

    SciTech Connect

    Jevec, J.; Lenore, C.; Ulbricht, S.

    1995-10-01

    The Department of Energy (DOE) is now faced with the task of meeting decontamination and decommissioning obligations at numerous facilities by the year 2019. Due to the tremendous volume of material involved, innovative decontamination technologies are being sought that can reduce the volumes of contaminated waste materials and secondary wastes requiring disposal. This report describes the results of the performance testing of chelates and solvents for the dissolution of uranium.

  7. Use of a marker organism in poultry processing to identify sites of cross-contamination and evaluate possible control measures.

    PubMed

    Mead, G C; Hudson, W R; Hinton, M H

    1994-07-01

    1. Nine different sites at a poultry processing plant were selected in the course of a hazard analysis to investigate the degree of microbial cross-contamination that could occur during processing and the effectiveness of possible control measures. 2. At each site, carcases, equipment or working surfaces were inoculated with a non-pathogenic strain of nalidixic acid-resistant Escherichia coli K12; transmission of the organism among carcases being processed was followed qualitatively and, where appropriate, quantitatively. 3. The degree of cross-contamination and the extent to which it could be controlled by the proposed measures varied from one site to another. PMID:7953779

  8. A complete set of the special process equipment for the defect-free production of reticles

    NASA Astrophysics Data System (ADS)

    Avakaw, Syarhei; Iouditski, Valerian; Pushkin, Leanid; Tsitko, Alena

    2007-02-01

    The paper presents an integrated solution of a problem to develop a set of the equipment for the defect-free production of reticles and photomasks. The integrated approach to the equipment design allows to obtain certain advantages disclosed below. Accordingly, the paper highlights the following main issues: *Practical realization of these advantages in the special process equipment developed by the KBTEM-OMO enterprise of the PLANAR. *Advantages in the development of a complete set of the special process equipment; Without taking into account technical and chemical processes, this complete set includes three component parts: *Multi-beam laser pattern generator; *Die-to-Database reticle inspection system; *Laser reticle repair system.

  9. Attached Bacterial Cell Contamination of Shell Egg Processing Facilities

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Sanitation is vital to providing safe, healthy food to consumers. Understanding the degree to which microorganisms persist on specific equipment or locations contributes to developing effective sanitation programs. Certain microbial populations may be used to determine areas within a processing pl...

  10. AIR CONTAMINANT EXPOSURE DURING THE OPERATION OF LAWN AND GARDEN EQUIPMENT

    EPA Science Inventory

    The U.S. Environmental Protection Agency (EPA) initiated the Small Engine Exposure Study (SEES) to evaluate potential exposures among users of small, gasoline-powered, non-road spark-ignition (SI) lawn and garden engines. Equipment tested included riding tractors, walk-behind la...

  11. Advances in sanitizing fruit, equipment and surfaces to prevent contamination with human pathogens

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Contamination of fresh and fresh-cut fruits and vegetables by foodborne pathogens is an ongoing problem. While conventional sanitation methods have yielded positive results, their limitations have prompted research into novel interventions. Of particular interest are technologies which use little or...

  12. 75 FR 47546 - Materials Processing Equipment; Technical Advisory Committee; Notice of Partially Closed Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-06

    ... From the Federal Register Online via the Government Publishing Office ] DEPARTMENT OF COMMERCE Bureau of Industry and Security Materials Processing Equipment; Technical Advisory Committee; Notice of Partially Closed Meeting The Materials Processing Equipment Technical Advisory Committee (MPETAC) will meet on August 25, 2010, 9 a.m., Room 3884,...

  13. 78 FR 42754 - Materials Processing Equipment Technical Advisory Committee; Notice of Partially Closed Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-17

    ... From the Federal Register Online via the Government Publishing Office ] DEPARTMENT OF COMMERCE Bureau of Industry and Security Materials Processing Equipment Technical Advisory Committee; Notice of Partially Closed Meeting The Materials Processing Equipment Technical Advisory Committee (MPETAC) will meet on August 20, 2013, 9:00 a.m., Room...

  14. 76 FR 42678 - Materials Processing Equipment; Technical Advisory Committee; Notice of Partially Closed Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-19

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF COMMERCE Bureau of Industry and Security Materials Processing Equipment; Technical Advisory Committee; Notice of Partially Closed Meeting The Materials Processing Equipment Technical Advisory Committee (MPETAC) will meet on August 3, 2011, 9 a.m., Room 3884,...

  15. 41 CFR 109-45.309-54 - Automatic Data Processing Equipment (ADPE).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Personal Property § 109-45.309-54 Automatic Data Processing Equipment (ADPE). ADPE shall be made available... 41 Public Contracts and Property Management 3 2010-07-01 2010-07-01 false Automatic Data Processing Equipment (ADPE). 109-45.309-54 Section 109-45.309-54 Public Contracts and Property...

  16. 41 CFR 109-45.309-54 - Automatic Data Processing Equipment (ADPE).

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... Personal Property § 109-45.309-54 Automatic Data Processing Equipment (ADPE). ADPE shall be made available... 41 Public Contracts and Property Management 3 2014-01-01 2014-01-01 false Automatic Data Processing Equipment (ADPE). 109-45.309-54 Section 109-45.309-54 Public Contracts and Property...

  17. 41 CFR 109-45.309-54 - Automatic Data Processing Equipment (ADPE).

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... Personal Property § 109-45.309-54 Automatic Data Processing Equipment (ADPE). ADPE shall be made available... 41 Public Contracts and Property Management 3 2012-01-01 2012-01-01 false Automatic Data Processing Equipment (ADPE). 109-45.309-54 Section 109-45.309-54 Public Contracts and Property...

  18. 41 CFR 109-45.309-54 - Automatic Data Processing Equipment (ADPE).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Personal Property § 109-45.309-54 Automatic Data Processing Equipment (ADPE). ADPE shall be made available... 41 Public Contracts and Property Management 3 2013-07-01 2013-07-01 false Automatic Data Processing Equipment (ADPE). 109-45.309-54 Section 109-45.309-54 Public Contracts and Property...

  19. 41 CFR 109-43.307-53 - Automatic data processing equipment (ADPE).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ....307-53 Automatic data processing equipment (ADPE). All ADPE shall be sanitized before being... 41 Public Contracts and Property Management 3 2010-07-01 2010-07-01 false Automatic data processing equipment (ADPE). 109-43.307-53 Section 109-43.307-53 Public Contracts and Property...

  20. 41 CFR 109-45.309-54 - Automatic Data Processing Equipment (ADPE).

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... Personal Property § 109-45.309-54 Automatic Data Processing Equipment (ADPE). ADPE shall be made available... 41 Public Contracts and Property Management 3 2011-01-01 2011-01-01 false Automatic Data Processing Equipment (ADPE). 109-45.309-54 Section 109-45.309-54 Public Contracts and Property...

  1. Analysis of Zinc 65 Contamination after Vacuum Thermal Process

    SciTech Connect

    Korinko, Paul S.; Tosten, Michael H.

    2013-01-01

    Radioactive contamination with a gamma energy emission consistent with {sup 65}Zn was detected in a glovebox following a vacuum thermal process. The contaminated components were removed from the glovebox and subjected to examination. Selected analytical techniques were used to determine the nature of the precursor material, i.e., oxide or metallic, the relative transferability of the deposit and its nature. The deposit was determined to be borne from natural zinc and was further determined to be deposited as a metallic material from vapor.

  2. Preliminary Results of Cleaning Process for Lubricant Contamination

    NASA Astrophysics Data System (ADS)

    Eisenmann, D.; Brasche, L.; Lopez, R.

    2006-03-01

    Fluorescent penetrant inspection (FPI) is widely used for aviation and other components for surface-breaking crack detection. As with all inspection methods, adherence to the process parameters is critical to the successful detection of defects. Prior to FPI, components are cleaned using a variety of cleaning methods which are selected based on the alloy and the soil types which must be removed. It is also important that the cleaning process not adversely affect the FPI process. There are a variety of lubricants and surface coatings used in the aviation industry which must be removed prior to FPI. To assess the effectiveness of typical cleaning processes on removal of these contaminants, a study was initiated at an airline overhaul facility. Initial results of the cleaning study for lubricant contamination in nickel, titanium and aluminum alloys will be presented.

  3. Particle contamination formation and detection in magnetron sputtering processes

    SciTech Connect

    Selwyn, G.S.; Weiss, C.A.; Sequeda, F.; Huang, C.

    1996-10-01

    Defects caused by particulate contamination are an important concern in the fabrication of thin film products. Often, magnetron sputtering processes are used for this purpose. Particle contamination can cause electrical shorting, pin holes, problems with photolithography, adhesion failure, as well as visual and cosmetic defects. Particle contamination generated during thin film processing can be detected using laser light scattering, a powerful diagnostic technique that provides real-time, {ital in-situ} imaging of particles > 0.3 {mu}m in diameter. Using this technique, the causes, sources and influences on particles in plasma and non-plasma and non-plasma processes may be independently evaluated and corrected. Several studies employing laser light scattering have demonstrated both homogeneous and heterogeneous causes of particle contamination. In this paper, we demonstrate that the mechanisms for particle generation, transport and trapping during magnetron sputter deposition are different from the mechanisms reported in previously studied plasma etch processes. During magnetron sputter deposition, one source of particle contamination is linked to portions of the sputtering target surface exposed to weaker plasma density. In this region, film redeposition is followed by filament or nodule growth and enhanced trapping which increases filament growth. Eventually the filaments effectively ``short circuit`` the sheath, causing high currents to flow through these features. This, in turn, causes heating failure of the filament fracturing and ejecting the filaments into the plasma and onto the substrate. Evidence of this effect has been observed in semiconductor (IC) fabrication and storage disk manufacturing. Discovery of this mechanism in both technologies suggests that this mechanism may be universal to many sputtering processes.

  4. Chemical contamination of animal feeding systems: evaluation of two caging systems and standard cage-washing equipment.

    PubMed

    Fox, J G; Helfrich-Smith, M E

    1980-12-01

    Sodium fluorescein was added as a tracer to an ager gel diet which was fed for 5 day to 90 of 180 rats housed in two different polycarbonate caging systems, shoe-box cages and suspension solid-bottom cages. Cage racks, supplementary equipment, and case washer surfaces were analysed for fluorescein both before and after a complete wash and rinse cycle. Efficacy of washing was greater than 99% for both the inside and outside of the suspended cages and greater than 99% for the inside, but only 93% for the outside, of the shoe-box cages. The shoe-box cages, which were larger than the suspended cages, were spaced closer together on the washer rack, which may account for this variation in cleaning effectiveness. The cage washer surfaces and the water, which was recirculated during each cycle, also became contaminated with fluorescein. Strict adherence to proper cage-washing procedures and careful selection of cage design are important factors in controlling the potential for residual contamination of caging and cage-washing equipment. PMID:7464031

  5. Electrowinning process with electrode compartment to avoid contamination of electrolyte

    SciTech Connect

    Poa, D.S.; Pierce, R.D.; Mulcahey, T.P.; Johnson, G.K.

    1993-07-06

    A process is described of electrolytically recovering a metal from an oxide of the metal comprising the steps of: (a) providing an electrolytic cell including a molten salt electrolyte containing the metal oxide and one or more halide salts of the metal, a pair of spaced apart electrodes in the electrolyte, and a source of electrical voltage to the electrodes, one of the electrodes being an anode and a source of particulate carbon contamination of the electrolyte during operation of the cell, (b) operating the cell to recover the metal as an element at the other electrode while confining the contaminant to a zone in the electrolyte about the one electrode, and (c) periodically removing the contaminant from the electrolyte zone while interrupting operation of the cell.

  6. Industrial-Scale Processes For Stabilizing Radioactively Contaminated Mercury Wastes

    SciTech Connect

    Broderick, T. E.; Grondin, R.

    2003-02-24

    This paper describes two industrial-scaled processes now being used to treat two problematic mercury waste categories: elemental mercury contaminated with radionuclides and radioactive solid wastes containing greater than 260-ppm mercury. The stabilization processes were developed by ADA Technologies, Inc., an environmental control and process development company in Littleton, Colorado. Perma-Fix Environmental Services has licensed the liquid elemental mercury stabilization process to treat radioactive mercury from Los Alamos National Laboratory and other DOE sites. ADA and Perma-Fix also cooperated to apply the >260-ppm mercury treatment technology to a storm sewer sediment waste collected from the Y-12 complex in Oak Ridge, TN.

  7. Factors influencing equipment selection in electron beam processing

    NASA Astrophysics Data System (ADS)

    Barnard, J. W.

    2003-08-01

    During the eighties and nineties accelerator manufacturers dramatically increased the beam power available for high-energy equipment. This effort was directed primarily at meeting the demands of the sterilization industry. During this era, the perception that bigger (higher power, higher energy) was always better prevailed since the operating and capital costs of accelerators did not increase with power and energy as fast as the throughput. High power was needed to maintain per unit costs low for treatment. This philosophy runs counter to certain present-day realities of the sterilization business as well as conditions influencing accelerator selection in other electron beam applications. Recent experience in machine selection is described and factors affecting choice are presented.

  8. Process for treating waste water having low concentrations of metallic contaminants

    DOEpatents

    Looney, Brian B; Millings, Margaret R; Nichols, Ralph L; Payne, William L

    2014-12-16

    A process for treating waste water having a low level of metallic contaminants by reducing the toxicity level of metallic contaminants to an acceptable level and subsequently discharging the treated waste water into the environment without removing the treated contaminants.

  9. [Status and problem analysis of drying process and equipment for traditional Chinese medicinal materials and preparations].

    PubMed

    Zhan, Juan-juan; Wu, Zhen-feng; Wang, Ya-qi; Wu, Si-qi; Wang, Xue-cheng; Yue, Peng-fei; Yang, Ming

    2015-12-01

    Drying is the critical link during pharmaceutical process of traditional Chinese medicine (TCM), which is directly related to the quality of drugs. The key to technology upgrading of pharmaceutical equipment in Chinese materia medica enterprise is the development of new drying techniques, which concerns the modernization of TCM. The study provides new ideas for the drying technology and equipment by means of reviewing the research status of drying process for the traditional Chinese medicinal materials and preparations, and analyzing the traditional and modern drying methods and equipment, as well as their existing problems and corresponding measures for the drying processes and equipment. In addition, this paper expounds the development trend of traditional Chinese medicinal materials and preparations of drying process and equipment. PMID:27141689

  10. An Assessment of the International Space Station's Trace Contaminant Control Subassembly Process Economics

    NASA Technical Reports Server (NTRS)

    Perry J. L.; Cole, H. E.; El-Lessy, H. N.

    2005-01-01

    The International Space Station (ISS) Environmental Control and Life Support System includes equipment speci.cally designed to actively remove trace chemical contamination from the cabin atmosphere. In the U.S. on-orbit segment, this function is provided by the trace contaminant control subassembly (TCCS) located in the atmosphere revitalization subsystem rack housed in the laboratory module, Destiny. The TCCS employs expendable adsorbent beds to accomplish its function leading to a potentially signi.cant life cycle cost over the life of the ISS. Because maintaining the TCCSs proper can be logistically intensive, its performance in .ight has been studied in detail to determine where savings may be achieved. Details of these studies and recommendations for improving the TCCS s process economics without compromising its performance or crew health and safety are presented and discussed.

  11. ELECTRONIC BUSINESS DATA PROCESSING PERIPHERAL EQUIPMENT OCCUPATIONS, SUGGESTED CURRICULA.

    ERIC Educational Resources Information Center

    Office of Education (DHEW), Washington, DC.

    VOCATIONAL CURRICULUMS ARE SUGGESTED FOR EIGHT ELECTRONIC BUSINESS DATA PROCESSING OCCUPATIONS AS A GUIDE TO TRAINING UNEMPLOYED AND UNDEREMPLOYED PERSONS. THE COURSE OUTLINES AND OTHER MATERIAL WERE PREPARED BY STAFF MEMBERS OF THE INFORMATION AND TRAINING SERVICES DIVISION OF MCGRAW-HILL, INC. CONSULTANTS INCLUDED DATA PROCESSING TRAINING…

  12. Effect of processing rate on seed cotton cleaning equipment performance

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The processing rate per unit width of seed cotton cleaning equipment– cylinder cleaners and stick machines– recommended by manufacturers is 4.8-8.2 bales hr-1 m-1 (1.5-2.5 bales hr-1 ft-1). Survey data has indicated that many gins exceed this processing rate. Previous research with picker-harvested ...

  13. Roll compaction process modeling: transfer between equipment and impact of process parameters.

    PubMed

    Souihi, Nabil; Reynolds, Gavin; Tajarobi, Pirjo; Wikström, Håkan; Haeffler, Gunnar; Josefson, Mats; Trygg, Johan

    2015-04-30

    In this study, the roll compaction of an intermediate drug load formulation was performed using horizontally and vertically force fed roll compactors. The horizontally fed roll compactor was equipped with an instrumented roll technology allowing the direct measurement of normal stress at the roll surface, while the vertically fed roll compactor was equipped with a force gauge between the roll axes. Furthermore, characterization of ribbons, granules and tablets was also performed. Ribbon porosity was primarily found to be a function of normal stress, exhibiting a quadratic relationship thereof. A similar quadratic relationship was also observed between roll force and ribbon porosity of the vertically fed roll compactor. The predicted peak pressure (Pmax) using the Johanson model was found to be higher than the measured normal stress, however, the predicted Pmax correlated well with the ribbon relative density/porosity and the majority of downstream properties of granules and tablets, demonstrating its use as a scale-independent parameter. A latent variable model was developed for both the horizontal and vertical fed roll compactors to express ribbon porosity as a function of geometric and process parameters. The model validation, performed with new data, resulted in overall good predictions. This study successfully demonstrated the scale up/transfer between two different roll compactors and revealed that the combined use of design of experiments, latent variable models and in silico predictions result in better understanding of the critical process parameters in roll compaction. PMID:25701630

  14. 40 CFR 63.1324 - Batch process vents-monitoring equipment.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    .... (B) If the scrubber is subject to regulations in 40 CFR parts 264 through 266 that have required a... equipment. 63.1324 Section 63.1324 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Batch process vents—monitoring equipment. (a) General requirements. Each owner or operator of a...

  15. 40 CFR 63.489 - Batch front-end process vents-monitoring equipment.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... pressure drop. (B) If the scrubber is subject to regulations in 40 CFR parts 264 through 266 that have...-monitoring equipment. 63.489 Section 63.489 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... § 63.489 Batch front-end process vents—monitoring equipment. (a) General requirements. Each owner...

  16. 7 CFR 58.915 - Batch or continuous in-container thermal processing equipment.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... hermetically sealed containers (21 CFR part 113). The equipment shall be maintained in such a manner as to... 7 Agriculture 3 2010-01-01 2010-01-01 false Batch or continuous in-container thermal processing... and Grading Service 1 Equipment and Utensils § 58.915 Batch or continuous in-container...

  17. 9 CFR 381.305 - Equipment and procedures for heat processing systems.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 9 Animals and Animal Products 2 2013-01-01 2013-01-01 false Equipment and procedures for heat... Products § 381.305 Equipment and procedures for heat processing systems. (a) Instruments and controls... length of the retort unless the adequacy of another arrangement is documented by heat distribution...

  18. 9 CFR 381.305 - Equipment and procedures for heat processing systems.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 9 Animals and Animal Products 2 2014-01-01 2014-01-01 false Equipment and procedures for heat... Products § 381.305 Equipment and procedures for heat processing systems. (a) Instruments and controls... length of the retort unless the adequacy of another arrangement is documented by heat distribution...

  19. 9 CFR 381.305 - Equipment and procedures for heat processing systems.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 9 Animals and Animal Products 2 2012-01-01 2012-01-01 false Equipment and procedures for heat... Products § 381.305 Equipment and procedures for heat processing systems. (a) Instruments and controls... length of the retort unless the adequacy of another arrangement is documented by heat distribution...

  20. 9 CFR 318.305 - Equipment and procedures for heat processing systems.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 9 Animals and Animal Products 2 2013-01-01 2013-01-01 false Equipment and procedures for heat... PREPARATION OF PRODUCTS Canning and Canned Products § 318.305 Equipment and procedures for heat processing... another arrangement is documented by heat distribution data or other documentation from a...

  1. 9 CFR 318.305 - Equipment and procedures for heat processing systems.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 9 Animals and Animal Products 2 2012-01-01 2012-01-01 false Equipment and procedures for heat... PREPARATION OF PRODUCTS Canning and Canned Products § 318.305 Equipment and procedures for heat processing... another arrangement is documented by heat distribution data or other documentation from a...

  2. 9 CFR 318.305 - Equipment and procedures for heat processing systems.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 9 Animals and Animal Products 2 2014-01-01 2014-01-01 false Equipment and procedures for heat... PREPARATION OF PRODUCTS Canning and Canned Products § 318.305 Equipment and procedures for heat processing... another arrangement is documented by heat distribution data or other documentation from a...

  3. Processes affecting the remediation of chromium-contaminated sites.

    PubMed Central

    Palmer, C D; Wittbrodt, P R

    1991-01-01

    The remediation of chromium-contaminated sites requires knowledge of the processes that control the migration and transformation of chromium. Advection, dispersion, and diffusion are physical processes affecting the rate at which contaminants can migrate in the subsurface. Heterogeneity is an important factor that affects the contribution of each of these mechanisms to the migration of chromium-laden waters. Redox reactions, chemical speciation, adsorption/desorption phenomena, and precipitation/dissolution reactions control the transformation and mobility of chromium. The reduction of CrVI to CrIII can occur in the presence of ferrous iron in solution or in mineral phases, reduced sulfur compounds, or soil organic matter. At neutral to alkaline pH, the CrIII precipitates as amorphous hydroxides or forms complexes with organic matter. CrIII is oxidized by manganese dioxide, a common mineral found in many soils. Solid-phase precipitates of hexavalent chromium such as barium chromate can serve either as sources or sinks for CrVI. Adsorption of CrVI in soils increases with decreasing chromium concentration, making it more difficult to remove the chromium as the concentration decreases during pump-and-treat remediation. Knowledge of these chemical and physical processes is important in developing and selecting effective, cost-efficient remediation designs for chromium-contaminated sites. PMID:1935849

  4. REPORT ON TWO PROCESS EQUIPMENT CHANGES FOR FEDERAL PAINTING FACILITIES

    EPA Science Inventory

    EPA's National Risk Management Research Laboratory (NRMRL) has actively participated in the Strategic Environmental Research and Development Program (SERDP) to develop innovative technologies and processes for the reduction of environmental pollution. Technology developments fro...

  5. Space processing applications payload equipment study. Volume 1: Executive summary

    NASA Technical Reports Server (NTRS)

    Hammel, R. L.

    1974-01-01

    A study was conducted to derive and collect payload information on the anticipated space processing payload requirements for the Spacelab and space shuttle orbiter planning activities. The six objectives generated by the study are defined. Concepts and requirements for space processing payloads to accommodate the performance of the shuttle-supported research phase are analyzed. Diagrams and tables of data are developed to show the experiments involved, the power requirements, and the payloads for shared missions.

  6. Hanford spent nuclear fuel cold vacuum drying process equipment skid modification work plan

    SciTech Connect

    Graves, D.B.

    1998-05-04

    This document provides the work plan for modifications to be made to the first article Process Equipment Skid for the Cold Vacuum Drying (CVD) process. The primary objective is to provide engineering configuration control for any modifications made to the Process Equipment Skid during proof of performance testing at the 306E Facility. Development Control procedures will be used to complete the design drawings and Procurement Specification W-441-Pl-FA. The Process Equipment Skid is a system for removing water and drying Spent Nuclear Fuel contained in Multi-Canister Overpacks. The skid contains the Vacuum Purge System and the Tempered Water System (VPS/TWS). The first article Process Equipment Skid, and subsequent production skids, will later be installed in the Cold Vacuum Drying Facility.

  7. Characterization of Organic Contamination in Semiconductor Manufacturing Processes

    NASA Astrophysics Data System (ADS)

    Nutsch, A.; Beckhoff, B.; Bedana, G.; Borionetti, G.; Codegoni, D.; Grasso, S.; Guerinoni, G.; Leibold, A.; Müller, M.; Otto, M.; Pfitzner, L.; Polignano, M.-L.; De Simone, D.; Frey, L.

    2009-09-01

    The impact of organic contamination on wafer surfaces on the functionality of nanostructures and advanced microelectronics becomes crucial as the continuously shrinking feature sizes become similar to the dimensions of molecules and clusters of molecules. Especially, manufacturing of highly integrated circuits requires clean surfaces as processes might cause defects involving for example carbon and sulfur. The approach to study organic contamination on wafer samples using different analytical tools enables the detection of the whole range of organic compounds including non-volatile and volatile ones. For the studies the methods used were synchrotron radiation based Near Edge X-ray Absorption Fine Structure (NEXAFS) in the soft X-Ray range at the absorption edges of light elements (e.g. C, N, O, F) combined with reference-free Total-reflection X-Ray Fluorescence (TXRF) analysis, Thermal Desorption Gas Chromatography Mass Spectrometry (TD-GCMS), and Time of Flight Secondary Ion Mass Spectrometry (TOF-SIMS). TOF-SIMS analysis of the surfaces of wafers from the lithography process after ashing showed sulfur compounds related to resist residues not identified by TD-GCMS. The source of the sulfur is assumed to be a photo acid generator of the resist. It was proven by TD-GCMS and TXRF-NEXAFS that final clean and packaging were the process steps during which detectable organic contamination was transferred to the wafer surface during wafer manufacturing. Multi-criteria evaluation of the TXRF NEXAFS spectra was used to compare the results with TD-GCMS. The TXRF-NEXAFS results are in good agreement with the TD-GCMS results. The advantage of TXRF-NEXAFS and TOF-SIMS are the sensitivity for organic contaminants that are not detectable by TD-GCMS, due to their high boiling point and low vapor pressures.

  8. Intelligent Processing Equipment Research Supported by the National Science Foundation

    NASA Technical Reports Server (NTRS)

    Rao, Suren B.

    1992-01-01

    The research in progress on processes, workstations, and systems has the goal of developing a high level of understanding of the issues involved. This will enable the incorporation of a level of intelligence that will allow the creation of autonomous manufacturing systems that operate in an optimum manner, under a wide range of conditions. The emphasis of the research has been on the development of highly productive and flexible techniques to address current and future problems in manufacturing and processing. Several of these projects have resulted in well-defined and established models that can now be implemented in the application arena in the next few years.

  9. Intelligent processing equipment research supported by the National Science Foundation

    NASA Astrophysics Data System (ADS)

    Rao, Suren B.

    1992-04-01

    The research in progress on processes, workstations, and systems has the goal of developing a high level of understanding of the issues involved. This will enable the incorporation of a level of intelligence that will allow the creation of autonomous manufacturing systems that operate in an optimum manner, under a wide range of conditions. The emphasis of the research has been on the development of highly productive and flexible techniques to address current and future problems in manufacturing and processing. Several of these projects have resulted in well-defined and established models that can now be implemented in the application arena in the next few years.

  10. Ceramic process equipment for the immobilization of plutonium

    SciTech Connect

    Armantrout, G; Brummond, W; Maddux. P

    1998-07-24

    Lawrence Livermore National Laboratory is developing a ceramic form for immobilizing excess US plutonium. The process used to produce the ceramic form is similar to the fabrication process used in the production of MOX fuel. In producing the ceramic form, the uranium and plutonium oxides are first milled to less than 20 microns. The milled actinide powder then goes through a mixing-blending step where the ceramic precursors, made from a mixture of calcined TiO2, Ca(OH)2, HfO2 and Gd03, are blended with the milled actinides. A subsequent granulation step ensures that the powder will flow freely into the press and die set. The pressed ceramic material is then sintered. The process parameters for the ceramic fabrication steps to make the ceramic form are less demanding than equivalent processing steps for MOX fuel fabrication. As an example, the pressing pressure for MOX is in excess of 137.0 MPa, whereas the pressing pressure for the ceramic form is only 13.8 MPa. This translates into less die wear for the ceramic material pressing. Similarly, the sintering temperatures and times are also different. MOX is sintered at 1,700°C in 4% H2 for a 24 hour cycle. The ceramic form is sintered at 1350°C in argon or air for a 15 hour cycle. Lawrence Livermore National Laboratory is demonstrating this ceramic fabrication process with a series of processing validation steps: first, using cerium as a surrogate for the plutonium and uranium, second, using uranium with thorium as the plutonium surrogate, and third, with plutonium. to this particle size is necessary to ensure essentially complete reaction of the plutonium with the ceramic precursors in subsequent sintering operations. Larger particles will only partially react, leaving islands of plutonium-rich minerals or unreacted plutonium oxide encased in the mineral structure. While this may be acceptable for the desired repository performance, it complicates the form

  11. THE SITE DEMONSTRATION OF CHEMFIX SOLIDIFICATION/ STABILIZATION PROCESS AT THE PORTABLE EQUIPMENT SALVAGE COMPANY SITE

    EPA Science Inventory

    A demonstration of the GHEMFIX solidification/stabilization process was conducted under the United States Environmental Protection Agency`s (EPA) Superfund Innovative Technology Evaluation (SITE) program. The demonstration was conducted in March 1989, at the Portable Equipment Sa...

  12. POC-scale testing of oil agglomeration techniques and equipment for fine coal processing

    SciTech Connect

    W. Pawlak; K. Szymocha

    1999-07-01

    The information presented in this manual is solely for the purpose of operating the POC-scale equipment for fine coal processing as described herein. This manual provides a general description of the process technology and guidelines for plant operating procedures. It is intended for use by the operators and maintenance personnel who will be responsible for the operations of the plant. No attempt should be made to operate the plant until the principles of the process and operating instructions contained in this manual are fully understood. Operating personnel should thoroughly familiarize themselves with all processing equipment prior to commencing plant operation. All equipment is skid mounted to provide a self-contained unit. The dimensions of the unit are comply with standard guidelines. A minimum distance of 2 feet is provided between equipment for walkway and maintenance.

  13. The effect of high concentration potassium permanganate on protein contamination from metallic and synthetic rubber airway equipment.

    PubMed

    Laupu, W; Brimacombe, J

    2007-08-01

    We tested the hypothesis that supplementary cleaning using potassium permanganate 8 mg.l(-1) eliminates protein deposits from the reusable metallic and synthetic rubber airway equipment. Twenty Macintosh laryngoscope blades (surgical steel), 20 pairs of Magill's forceps (surgical steel) and 20 Guedel airways (synthetic rubber) were allocated to two groups for supplementary cleaning. In group A, the device was immersed in potassium permanganate 8 mg.l(-1). In group B (controls), the device was immersed in sterile water. The devices were then immersed in a protein staining solution, rinsed and the severity of staining was scored. In addition, the devices were inspected for tissue and then tested for occult blood. Protein contamination was lower in the potassium permanganate group for all devices (each device: p < 0.0001). There was no staining detected in the permanganate group. In the permanganate group, dried tissue was detected in the teeth of one pair of forceps, which was not detected following supplementary cleaning. Additionally, occult blood was detected on two pairs of forceps and a laryngoscope blade, which was not detected following supplementary cleaning. In the control group, no tissue was detected but one pair of forceps and two laryngoscope blades tested positive for occult blood before and after supplementary cleaning. We conclude that supplementary cleaning using potassium permanganate 8 mg.l(-1) eliminates protein deposits from re-usable metallic and synthetic rubber airway equipment. PMID:17635432

  14. Thermal dechlorination of heavily PCB-contaminated soils from a sealed site of PCB-containing electrical equipment.

    PubMed

    Gao, Xingbao; Ji, Bingjing; Huang, Qifei

    2016-08-01

    A large amount of soils are contaminated by leakage of polychlorinated biphenyls (PCBs) from sealed-up PCB-containing electrical equipment in China. Thermal dechlorination of soils contaminated with PCBs at a level of 108 mg g(-1) and PCB77 (3,3',4,4'-tetrachlorobiphenyl) as a model isomer in conjunction with calcium oxide was investigated in this study. The PCB dechlorination rate improved with increased temperature and time. The highest dechlorination rate was 85.3 %, and temperature was the main influencing factor. Pentachlorobiphenyl and tetrachlorobiphenyl in soils decreased or disappeared in response to treatment at 350 and 400 °C for 4 h, while monochlorinated biphenyl and biphenyl were detected after the reaction, indicating the presence of a dechlorination/hydrogenation pathway. Discrepancy in chlorine balance was observed after low-temperature thermal dechlorination. The species of dechlorination products were identified as amorphous carbon containing a crystalline graphite plane structure and a carbonyl group-containing polymerized product, demonstrating the existence of a dechlorination/polymerization pathway. The yield of amorphous carbon and high-molecular-weight intermediates increased with heating time. The results showed that the discrepancy in chlorine balance was because of the generation of polymerized products and undetected intermediates. PMID:27126866

  15. Development and Performance Assessment of Soil Washing Equipment for Soil Contaminated with Radionuclide

    SciTech Connect

    Gye-Nam Kim; Jei-Kwon Moon; Chong-Hun Jung

    2007-07-01

    The purpose of this study is to develop a soil washing system and to define the most suitable experimental conditions for the individual elemental equipment in a soil washing system for decontaminating the radioactive soil from around a TRIGA (Training, Research, Isotope, General Atomic) reactor in Korea. Analysis results have shown that the main radionuclides were Cs{sup 137} and Co{sup 60}, the soil particle size ranges from 0.063 mm to 1.0 mm and the radioactive concentration was the strongest in a soil particle smaller than 0.063 mm as predicted. Meanwhile, an oxalic acid was found to be the most efficient chemical agent for washing, especially of cobalt. The scrubbing time of four hours was an optimum time to obtain a removal efficiency of more than 75% for {sup 137}Cs and {sup 60}Co. A mixing ratio of the soil weight to the volume of the oxalic acid solution, 1:10, was observed to be the best for a washing and it was estimated to be reasonable for 2 cycles of a scrubbing with 1.0 M of oxalic acid to avoid a generation of an excessive waste-solution. (authors)

  16. Recommendations for composite manufacturing pultrusion process and equipment

    NASA Astrophysics Data System (ADS)

    Steiner, R. L.; Cole, J. D.; Strong, A. B.; Todd, R. H.

    1992-10-01

    Pultrusion is an important composite manufacturing process that holds great potential for reducing the cost of composite parts. However, pultrusion machine manufacturers and those using this continuous process have generally worked in relative isolation from each other and have, therefore, repeated many of the same errors. This paper reports the findings of a research program involving input from 15 pultruder manufacturers who have contributed non-proprietary information for the "best" design for the pultrusion machine. Key areas of design difficulty have been identified and some suggested remedies given. The results of this program will be used to construct a "state-of-the-art" pultrusion machine in the authors' laboratory. The initial findings provided input for a Quality Function Deployment (QFD) study which is basis for the functional specification for the pultrusion machine. By using QFD, capabilities of existing machines were determined and design requirements for an improved state-of-the-art machine were established. The QFD exercise provided an in-depth look at the relationship between desired machine capabilities and machine design requirements.

  17. Space processing applications payload equipment study. Volume 2A: Experiment requirements

    NASA Technical Reports Server (NTRS)

    Smith, A. G.; Anderson, W. T., Jr.

    1974-01-01

    An analysis of the space processing applications payload equipment was conducted. The primary objective was to perform a review and an update of the space processing activity research equipment requirements and specifications that were derived in the first study. The analysis is based on the six major experimental classes of: (1) biological applications, (2) chemical processes in fluids, (3) crystal growth, (4) glass technology, (5) metallurgical processes, and (6) physical processes in fluids. Tables of data are prepared to show the functional requirements for the areas of investigation.

  18. Process and Equipment for Nitrogen Oxide Waste Conversion to Fertilizer

    NASA Technical Reports Server (NTRS)

    Lueck, Dale E. (Inventor); Parrish, Clyde F. (Inventor)

    2000-01-01

    The present invention describes a process for converting vapor streams from sources containing at least one nitrogen-containing oxidizing agent therein to a liquid fertilizer composition comprising the steps of: (1) directing a vapor stream containing at least nitrogen-containing oxidizing agent to a first contact zone; (2) contacting said vapor stream with water to form nitrogen oxide(s) from said at least one nitrogen- containing oxidizing agent; (3) directing said acid(s) as a second stream to a second contact zone; (4) exposing said second stream to hydrogen peroxide which is present within said second contact zone in a relative amount of at least 0.1% by weight of said second stream within said second contact zone to convert at least some of any nitrogen oxide species or ions other than in the nitrite form present within said second stream to nitrate ion; (5) sampling said stream within said second contact zone to determine the relative amount of hydrogen peroxide within said second contact zone; (6) adding hydrogen peroxide to said second contact zone when a level on hydrogen peroxide less than 0.1% by weight in said second stream is determined by said sampling; (7) adding a solution comprising potassium hydroxide to said second stream to maintain a pH between 6.0 and 11.0 within said second stream within said second contact zone to form a solution of potassium nitrate; and (8) removing sais solution of potassium nitrate from said second contact zone.

  19. Model of nanodegradation processes in electronic equipment of NPP Kozloduy

    NASA Astrophysics Data System (ADS)

    Popov, A.

    2014-12-01

    From the complex studies it was proof that the main degradation processes in the three groups of elements for the extended period of time are slow; do not lead to a hopping change in basic parameters and to catastrophic failures. This gives grounds to suggest a common diffusion model, which is limited to the following: -in electronic components containing a p-n junction, is performed diffusion of residual cooper atoms, that are accumulated in the area of a spatial charge under the influence of the electric field and the local temperature, creating micro-shunt regions; -in the contactor systems whose contact surfaces are made of metal alloys under the influence of increased temperature starts decomposition of a homogeneous alloy. Conditions are created for diffusion of individual atoms to the surface, micro-phases of homogeneous atoms are formed and modify the contact resistances; -in the course of time in the insulating materials are changed the mechanisms of polarization, double bonds and dipoles are disrupting, leading to the release of carbon atoms. The latter diffuse at elevated temperatures and form conductive cords, which amend the dielectric losses and the specific resistance of the materials.

  20. Development of high temperature containerless processing equipment and the design and evaluation of associated systems required for microgravity materials processing and property measurements

    NASA Technical Reports Server (NTRS)

    Rey, Charles A.

    1991-01-01

    The development of high temperature containerless processing equipment and the design and evaluation of associated systems required for microgravity materials processing and property measurements are discussed. Efforts were directed towards the following task areas: design and development of a High Temperature Acoustic Levitator (HAL) for containerless processing and property measurements at high temperatures; testing of the HAL module to establish this technology for use as a positioning device for microgravity uses; construction and evaluation of a brassboard hot wall Acoustic Levitation Furnace; construction and evaluation of a noncontact temperature measurement (NCTM) system based on AGEMA thermal imaging camera; construction of a prototype Division of Amplitude Polarimetric Pyrometer for NCTM of levitated specimens; evaluation of and recommendations for techniques to control contamination in containerless materials processing chambers; and evaluation of techniques for heating specimens to high temperatures for containerless materials experimentation.

  1. Electrowinning process with electrode compartment to avoid contamination of electrolyte

    SciTech Connect

    Poa, D.S.; Pierce, R.D.; Mulcahey, T.P.; Johnson, G.K.

    1991-12-31

    An electrolytic process and apparatus for reducing calcium oxide in a molten electrolyte of CaCl{sub 2}-CaF{sub 2} with a graphite anode in which particles or other contamination from the anode is restricted by the use of a porous barrier in the form of a basket surrounding the anode which may be removed from the electrolyte to burn the graphite particles, and wherein the calcium oxide feed is introduced to the anode compartment to increase the oxygen ion concentration at the anode.

  2. Process for minimizing solids contamination of liquids from coal pyrolysis

    DOEpatents

    Wickstrom, Gary H.; Knell, Everett W.; Shaw, Benjamin W.; Wang, Yue G.

    1981-04-21

    In a continuous process for recovery of liquid hydrocarbons from a solid carbonaceous material by pyrolysis of the carbonaceous material in the presence of a particulate source of heat, particulate contamination of the liquid hydrocarbons is minimized. This is accomplished by removing fines from the solid carbonaceous material feed stream before pyrolysis, removing fines from the particulate source of heat before combining it with the carbonaceous material to effect pyrolysis of the carbonaceous material, and providing a coarse fraction of reduced fines content of the carbon containing solid residue resulting from the pyrolysis of the carbonaceous material before oxidizing carbon in the carbon containing solid residue to form the particulate source of heat.

  3. Electrowinning process with electrode compartment to avoid contamination of electrolyte

    DOEpatents

    Poa, Davis S.; Pierce, R. Dean; Mulcahey, Thomas P.; Johnson, Gerald K.

    1993-01-01

    An electrolytic process and apparatus for reducing calcium oxide in a molten electrolyte of CaCl.sub.2 -CaF.sub.2 with a graphite anode in which particles or other contamination from the anode is restricted by the use of a porous barrier in the form of a basket surrounding the anode which may be removed from the electrolyte to burn the graphite particles, and wherein the calcium oxide feed is introduced to the anode compartment to increase the oxygen ion concentration at the anode.

  4. Selection of a Non-ODC Solvent for Rubber Processing Equipment Cleaning

    NASA Technical Reports Server (NTRS)

    Morgan, R. E.; Thornton, T. N.; Semmel, L.; Selvidge, S. A.

    2003-01-01

    NASA/MSFC has recently acquired new equipment for the manufacture and processing of rubber and rubber containing items that are used in the Redesigned Solid Rocket Motor (RSRM) system. Work with a previous generation of rubber equipment at MSFC in the 1970's had involved the use of Oxygen Deficient Center (ODC's) such as 1,1,1-Trichloroethane or VOC's such as Toluene as the solvents of choice in cleaning the equipment. Neither of these options is practical today. This paper addresses the selection and screening of candidate cleaning solvents that are not only effective, but also meet the new environmental standards.

  5. Selection of a Non-ODC Solvent for Rubber Processing Equipment Cleaning

    NASA Technical Reports Server (NTRS)

    Morgan, R. E.; Thornton, T. N.; Semmel, L.; Selvidge, S. A.; Cash, Steve (Technical Monitor)

    2002-01-01

    NASA/MSFC has recently acquired new equipment for the manufacture and processing of rubber and rubber containing items that are used in the RSRM (Reusable Solid Rocket Motor) system. Work with a previous generation of rubber equipment at MSFC (Marshall Space Flight Center) in the 1970's had involved the use of ODC's such as 1,1,1-Trichloroethane or VOC's such as Toluene as the solvents of choice in cleaning the equipment. Neither of these options is practical today. This paper addresses the selection and screening of candidate cleaning solvents that are not only effective, but also meet the new environmental standards.

  6. Elucidation of Listeria monocytogenes Contamination Routes in Cold-Smoked Salmon Processing Plants Detected by DNA-Based Typing Methods

    PubMed Central

    Fonnesbech Vogel, Birte; Huss, Hans Henrik; Ojeniyi, Bente; Ahrens, Peter; Gram, Lone

    2001-01-01

    The contamination routes of Listeria monocytogenes in cold-smoked salmon processing plants were investigated by analyzing 3,585 samples from products (produced in 1995, 1996, 1998, and 1999) and processing environments (samples obtained in 1998 and 1999) of two Danish smokehouses. The level of product contamination in plant I varied from 31 to 85%, and no L. monocytogenes was found on raw fish (30 fish were sampled). In plant II, the levels of both raw fish and product contamination varied from 0 to 25% (16 of 185 raw fish samples and 59 of 1,000 product samples were positive for L. monocytogenes). A total of 429 strains of L. monocytogenes were subsequently compared by random amplified polymorphic DNA (RAPD) profiling, and 55 different RAPD types were found. The RAPD types detected on the products were identical to types found on the processing equipment and in the processing environment, suggesting that contamination of the final product (cold-smoked salmon) in both plants (but primarily in plant I) was due to contamination during processing rather than to contamination from raw fish. However, the possibility that raw fish was an important source of contamination of the processing equipment and environment could not be excluded. Contamination of the product occurred in specific areas (the brining and slicing areas). In plant I, the same RAPD type (RAPD type 12) was found over a 4-year period, indicating that an established in-house flora persisted and was not eliminated by routine hygienic procedures. In plant II, where the prevalence of L. monocytogenes was much lower, no RAPD type persisted over long periods of time, and several different L. monocytogenes RAPD types were isolated. This indicates that persistent strains may be avoided by rigorous cleaning and sanitation; however, due to the ubiquitous nature of the organism, sporadic contamination occurred. A subset of strains was also typed by using pulsed-field gel electrophoresis and amplified fragment length

  7. Elucidation of Listeria monocytogenes contamination routes in cold-smoked salmon processing plants detected by DNA-based typing methods.

    PubMed

    Fonnesbech Vogel, B; Huss, H H; Ojeniyi, B; Ahrens, P; Gram, L

    2001-06-01

    The contamination routes of Listeria monocytogenes in cold-smoked salmon processing plants were investigated by analyzing 3,585 samples from products (produced in 1995, 1996, 1998, and 1999) and processing environments (samples obtained in 1998 and 1999) of two Danish smokehouses. The level of product contamination in plant I varied from 31 to 85%, and no L. monocytogenes was found on raw fish (30 fish were sampled). In plant II, the levels of both raw fish and product contamination varied from 0 to 25% (16 of 185 raw fish samples and 59 of 1,000 product samples were positive for L. monocytogenes). A total of 429 strains of L. monocytogenes were subsequently compared by random amplified polymorphic DNA (RAPD) profiling, and 55 different RAPD types were found. The RAPD types detected on the products were identical to types found on the processing equipment and in the processing environment, suggesting that contamination of the final product (cold-smoked salmon) in both plants (but primarily in plant I) was due to contamination during processing rather than to contamination from raw fish. However, the possibility that raw fish was an important source of contamination of the processing equipment and environment could not be excluded. Contamination of the product occurred in specific areas (the brining and slicing areas). In plant I, the same RAPD type (RAPD type 12) was found over a 4-year period, indicating that an established in-house flora persisted and was not eliminated by routine hygienic procedures. In plant II, where the prevalence of L. monocytogenes was much lower, no RAPD type persisted over long periods of time, and several different L. monocytogenes RAPD types were isolated. This indicates that persistent strains may be avoided by rigorous cleaning and sanitation; however, due to the ubiquitous nature of the organism, sporadic contamination occurred. A subset of strains was also typed by using pulsed-field gel electrophoresis and amplified fragment length

  8. An analysis of the composition and metal contamination of plastics from waste electrical and electronic equipment (WEEE).

    PubMed

    Stenvall, Erik; Tostar, Sandra; Boldizar, Antal; Foreman, Mark R StJ; Möller, Kenneth

    2013-04-01

    The compositions of three WEEE plastic batches of different origin were investigated using infrared spectroscopy, and the metal content was determined with inductively coupled plasma. The composition analysis of the plastics was based mainly on 14 samples collected from a real waste stream, and showed that the major constituents were high impact polystyrene (42 wt%), acrylonitrile-butadiene-styrene copolymer (38 wt%) and polypropylene (10 wt%). Their respective standard deviations were 21.4%, 16.5% and 60.7%, indicating a considerable variation even within a single batch. The level of metal particle contamination was found to be low in all samples, whereas wood contamination and rubber contamination were found to be about 1 wt% each in most samples. In the metal content analysis, iron was detected at levels up to 700 ppm in the recyclable waste plastics fraction, which is of concern due to its potential to catalyse redox reactions during melt processing and thus accelerate the degradation of plastics during recycling. Toxic metals were found only at very low concentrations, with the exception of lead and cadmium which could be detected at 200 ppm and 70 ppm levels, respectively, but these values are below the current threshold limits of 1000 ppm and 100 ppm set by the Restriction of Hazardous Substances directive. PMID:23360773

  9. An analysis of the composition and metal contamination of plastics from waste electrical and electronic equipment (WEEE)

    SciTech Connect

    Stenvall, Erik; Tostar, Sandra; Boldizar, Antal; Foreman, Mark R.StJ.; Möller, Kenneth

    2013-04-15

    The compositions of three WEEE plastic batches of different origin were investigated using infrared spectroscopy, and the metal content was determined with inductively coupled plasma. The composition analysis of the plastics was based mainly on 14 samples collected from a real waste stream, and showed that the major constituents were high impact polystyrene (42 wt%), acrylonitrile–butadiene–styrene copolymer (38 wt%) and polypropylene (10 wt%). Their respective standard deviations were 21.4%, 16.5% and 60.7%, indicating a considerable variation even within a single batch. The level of metal particle contamination was found to be low in all samples, whereas wood contamination and rubber contamination were found to be about 1 wt% each in most samples. In the metal content analysis, iron was detected at levels up to 700 ppm in the recyclable waste plastics fraction, which is of concern due to its potential to catalyse redox reactions during melt processing and thus accelerate the degradation of plastics during recycling. Toxic metals were found only at very low concentrations, with the exception of lead and cadmium which could be detected at 200 ppm and 70 ppm levels, respectively, but these values are below the current threshold limits of 1000 ppm and 100 ppm set by the Restriction of Hazardous Substances directive.

  10. Salmonella Contamination of the Product and Environment of Selected Canadian Chicken Processing Plants

    PubMed Central

    Magwood, S. E.; Rigby, Charlotte; Fung, P. H. J.

    1967-01-01

    Of 345 market chicken carcasses received directly from selected processing plants across Canada, six yielded salmonellae. One of the plants submitted 122 carcasses none of which yielded these organisms. A second plant had one Salmonella-contaminated carcass among 20 which were examined. Each of these two plants was subected to detailed bacteriological examinations on four occasions. In these detailed examinations a total of 175 samples or specimens for culture were taken from a variety of surfaces including vent areas of carcasses, operators' hands, equipment surfaces and from water in tanks of iced birds. Twenty-five (14 per cent) of the cultures yielded salmonellae and all but one of these were either S. oranienburg or S. infantis. Isolations were made during five of the eight series of examinations. The evidence indicated that Salmonella-infected flocks were frequently slaughtered and that Salmonella contamination could become widespread in the plant during processing. The organisms are apparently eliminated from all but a small percentage of the carcasses during processing but opportunities exist for recontamination during subsequent handling. PMID:4227070

  11. Plasma-based determination of inorganic contaminants in waste of electric and electronic equipment after microwave-induced combustion

    NASA Astrophysics Data System (ADS)

    Mello, Paola A.; Diehl, Lisarb O.; Oliveira, Jussiane S. S.; Muller, Edson I.; Mesko, Marcia F.; Flores, Erico M. M.

    2015-03-01

    A systematic study was performed for the determination of inorganic contaminants in polymeric waste from electrical and electronic equipment (EEE) for achieving an efficient digestion to minimize interferences in determination using plasma-based techniques. The determination of As, Br, Cd, Co, Cr, Cu, Ni, Pb, Sb, and Zn by inductively coupled plasma mass spectrometry (ICP-MS) and also by inductively coupled plasma optical emission spectrometry (ICP OES) was carried out after digestion using microwave-induced combustion (MIC). Arsenic and Hg were determined by flow-injection chemical vapor generation inductively coupled plasma mass spectrometry (FI-CVG-ICP-MS). Dynamic reaction cell inductively coupled plasma mass spectrometry (DRC-ICP-MS) with ammonia was also used for Cr determination. The suitability of MIC for digestion of sample masses up to 400 mg was demonstrated using microcrystalline cellulose as aid for combustion of polymers from waste of EEEs that usually contain flame retardants that impair the combustion. The composition and concentration of acid solutions (HNO3 or HNO3 plus HCl) were evaluated for metals and metalloids and NH4OH solutions were investigated for Br absorption. Accuracy was evaluated by comparison of results with those obtained using high pressure microwave-assisted wet digestion (HP-MAWD) and also by the analysis of certified reference material (CRM) of polymer (EC680k-low-density polyethylene). Bromine determination was only feasible using digestion by MIC once losses were observed when HP-MAWD was used. Lower limits of detection were obtained for all analytes using MIC (from 0.005 μg g- 1 for Co by ICP-MS up to 3.120 μg g-1 for Sb by ICP OES) in comparison to HP-MAWD due to the higher sample mass that can be digested (400 mg) and the use of diluted absorbing solutions. The combination of HNO3 and HCl for digestion showed to be crucial for quantitative recovery of some elements, as Cr and Sb. In addition, suitable agreement of Cr to

  12. Development of an equipment management model to improve effectiveness of processes

    SciTech Connect

    Chang, H. S.; Ju, T. Y.; Song, T. Y.

    2012-07-01

    The nuclear industries have developed and are trying to create a performance model to improve effectiveness of the processes implemented at nuclear plants in order to enhance performance. Most high performing nuclear stations seek to continually improve the quality of their operations by identifying and closing important performance gaps. Thus, many utilities have implemented performance models adjusted to their plant's configuration and have instituted policies for such models. KHNP is developing a standard performance model to integrate the engineering processes and to improve the inter-relation among processes. The model, called the Standard Equipment Management Model (SEMM), is under development first by focusing on engineering processes and performance improvement processes related to plant equipment used at the site. This model includes performance indicators for each process that can allow evaluating and comparing the process performance among 21 operating units. The model will later be expanded to incorporate cost and management processes. (authors)

  13. ST. LOUIS DEMONSTRATION: REFUSE PROCESSING PLANT EQUIPMENT, FACILITIES, AND ENVIRONMENTAL EVALUATIONS

    EPA Science Inventory

    This report presents the results of processing plant evaluations of the St. Louis-Union Electric Refuse Fuel Project, including equipment and facilities as well as assessment of environmental emissions at both the processing and power plants. Data on plant material flows and oper...

  14. Characterization of microbial growth on processing equipment by electrochemical impedance spectroscopy

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Microbial activity that leads to the formation of biofilms on process equipment can accelerate corrosion, reduce heat transfer rates, and generally decrease process efficiencies. Additional concerns arise in the food and pharma industries where product quality and safety are a high priority. Followi...

  15. EQUIPMENT LAYOUT OF MAIN PROCESSING BUILDING (CPP601) LCELL PLAN AND ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    EQUIPMENT LAYOUT OF MAIN PROCESSING BUILDING (CPP-601) L-CELL PLAN AND SECTION SHOWS COMPLEXITY OF CELLS. INL DRAWING NUMBER 200-0601-00-098-105687. ALTERNATE ID NUMBER 4289-20-301. - Idaho National Engineering Laboratory, Idaho Chemical Processing Plant, Fuel Reprocessing Complex, Scoville, Butte County, ID

  16. 9 CFR 381.94 - Contamination with Microorganisms; process control verification criteria and testing; pathogen...

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 9 Animals and Animal Products 2 2010-01-01 2010-01-01 false Contamination with Microorganisms... § 381.94 Contamination with Microorganisms; process control verification criteria and testing; pathogen... maintaining process controls sufficient to prevent fecal contamination. FSIS shall take further action...

  17. Contamination Revealed by Indicator Microorganism Levels during Veal Processing.

    PubMed

    Bosilevac, Joseph M; Wang, Rong; Luedtke, Brandon E; Wheeler, Tommy L; Koohmaraie, Mohammad

    2016-08-01

    During site visits of veal processors, the U.S. Department of Agriculture, Food Safety Inspection Service (FSIS) has reported processing deficiencies that likely contribute to increased levels of veal contamination. Here, we report the results of measuring aerobic plate count bacteria (APC), Enterobacteriaceae, coliforms (CF), and Escherichia coli during eight sample collections at five veal processors to assess contamination during the harvest of bob veal and formula-fed veal before (n = 5 plants) and after (n = 3 plants) changes to interventions and processing practices. Hides of veal calves at each plant had mean log CFU/100 cm(2) APC, Enterobacteriaceae, CF, and E. coli of 6.02 to 8.07, 2.95 to 5.24, 3.28 to 5.83, and 3.08 to 5.59, respectively. Preintervention carcasses had mean log CFU/100 cm(2) APC, Enterobacteriaceae, CF, and E. coli of 3.08 to 5.22, 1.16 to 3.47, 0.21 to 3.06, and -0.07 to 3.10, respectively, before and 2.72 to 4.50, 0.99 to 2.76, 0.69 to 2.26, and 0.33 to 2.12, respectively, after changes were made to improve sanitary dressing procedures. Final veal carcasses had mean log CFU/100 cm(2) APC, Enterobacteriaceae, CF, and E. coli of 0.36 to 2.84, -0.21 to 1.59, -0.23 to 1.59, and -0.38 to 1.45 before and 0.44 to 2.64, -0.16 to 1.33, -0.42 to 1.20, and 0.48 to 1.09 after changes were made to improve carcass-directed interventions. Whereas the improved dressing procedures resulted in improved carcass cleanliness, the changes to carcass-directed interventions were less successful, and veal processors are urged to use techniques that ensure uniform and consistent delivery of antimicrobials to carcasses. Analysis of results comparing bob veal to formula-fed veal found bob veal hides, preintervention carcasses, and final carcasses to have increased (P < 0.05) APC, Enterobacteriaceae, CF, and E. coli (with the exception of hide Enterobacteriaceae; P > 0.05) relative to formula fed veal. When both veal categories were harvested at the same plant on

  18. Contamination and changes of food factors during processing with modeling applications-safety related issues

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Chemical and microbiological contamination of food during processing and preservation can result in foodborne illness outbreaks and food poisoning. Chemical contaminations can occur through exposure of foods to illegal additives, pesticides and fertilizer residues, toxic compounds formed by microbes...

  19. Contaminated Metal Components in Dismantling by Hot Cutting Processes

    SciTech Connect

    Cesari, Franco G.; Conforti, Gianmario; Rogante, Massimo; Giostri, Angelo

    2006-07-01

    During the preparatory dismantling activities of Caorso's Nuclear Power Plant (NPP), an experimental campaign using plasma and oxyacetylene metal cutting processes has been performed and applied to plates and tubes exposed to the coolant steam of the reactor. The plant (Boiling Water Reactor, 870 MWe) was designed and built in the 70's, and it was fully operating by 1981 to 1986 being shut down after 1987 Italy's poll that abrogated nuclear power based on U235 fission. The campaign concerns no activated materials, even if the analyses have been performed of by use contaminated components under the free release level, not yet taking into account radioactivity. In this paper, the parameters related to inhalable aerosol, solid and volatile residuals production have been, studied during hot processes which applies the same characteristics of the cutting in field for the dismantling programs of Caorso NPP. The technical parameters such as cutting time and cutting rate vs. pipe diameter/thickness/schedule or plate thickness for ferritic alloys and the emissions composition coming from the sectioning are also reported. The results underline the sort of trouble that can emerge in the cutting processes, in particular focusing on the effects comparison between the two cutting processes and the chemical composition of powders captured by filtering the gaseous emission. Some preliminary considerations on methodology to be used during the dismantling have been presented. (authors)

  20. Intelligent processing equipment developments within the Navy's Manufacturing Technology Centers of Excellence

    NASA Astrophysics Data System (ADS)

    Nanzetta, Philip

    1992-04-01

    The U.S. Navy has had an active Manufacturing Technology (MANTECH) Program aimed at developing advanced production processes and equipment since the late-1960's. During the past decade, however, the resources of the MANTECH program were concentrated in Centers of Excellence. Today, the Navy sponsors four manufacturing technology Centers of Excellence: the Automated Manufacturing Research Facility (AMRF); the Electronics Manufacturing Productivity Facility (EMPF); the National Center for Excellence in Metalworking Technology (NCEMT); and the Center of Excellence for Composites Manufacturing Technology (CECMT). This paper briefly describes each of the centers and summarizes typical Intelligent Equipment Processing (IEP) projects that were undertaken.

  1. Intelligent Processing Equipment Developments Within the Navy's Manufacturing Technology Centers of Excellence

    NASA Technical Reports Server (NTRS)

    Nanzetta, Philip

    1992-01-01

    The U.S. Navy has had an active Manufacturing Technology (MANTECH) Program aimed at developing advanced production processes and equipment since the late-1960's. During the past decade, however, the resources of the MANTECH program were concentrated in Centers of Excellence. Today, the Navy sponsors four manufacturing technology Centers of Excellence: the Automated Manufacturing Research Facility (AMRF); the Electronics Manufacturing Productivity Facility (EMPF); the National Center for Excellence in Metalworking Technology (NCEMT); and the Center of Excellence for Composites Manufacturing Technology (CECMT). This paper briefly describes each of the centers and summarizes typical Intelligent Equipment Processing (IEP) projects that were undertaken.

  2. The impact of contaminated biomass for the formation of emission in the combustion process of producer gas in the cogeneration unit

    NASA Astrophysics Data System (ADS)

    Kočanová, Slávka; Lukáč, Ladislav; Széplaky, Dávid; Lazić, Ladislav

    2014-08-01

    The paper presents the measurement result to the equipment designed for utilization contaminated biomass with segregated waste. Presented technology gasification of segregated waste together with biomass shows the optimization process of converting solid fuel to gas and its energy utilization in the cogeneration unit.

  3. Contamination Control Techniques

    SciTech Connect

    EBY, J.L.

    2000-05-16

    Welcome to a workshop on contamination Control techniques. This work shop is designed for about two hours. Attendee participation is encouraged during the workshop. We will address different topics within contamination control techniques; present processes, products and equipment used here at Hanford and then open the floor to you, the attendees for your input on the topics.

  4. Development of an Improved Process for Installation Projects of High Technology Manufacturing Equipment

    SciTech Connect

    Quintana, Sarah V.

    2014-04-30

    High technology manufacturing equipment is utilized at Los Alamos National Laboratory (LANL) to support nuclear missions. This is undertaken from concept initiation where equipment is designed and then taken through several review phases, working closely with system engineers (SEs) responsible for each of the affected systems or involved disciplines (from gasses to HVAC to structural, etc.). After the design is finalized it moves to procurement and custom fabrication of the equipment and equipment installation, including all of the paperwork involved. Not only are the engineering and manufacturing aspects important, but also the scheduling, financial forecasting, and planning portions that take place initially and are sometimes modified as the project progresses should requirements, changes or additions become necessary. The process required to complete a project of this type, including equipment installation, is unique and involves numerous steps to complete. These processes can be improved and recent work on the Direct Current Arc (DC Arc) Glovebox Design, Fabrication and Installation Project provides an opportunity to identify some important lessons learned (LL) that can be implemented in the future for continued project improvement and success.

  5. The microbial ecology of processing equipment in different fish industries-analysis of the microflora during processing and following cleaning and disinfection.

    PubMed

    Bagge-Ravn, Dorthe; Ng, Yin; Hjelm, Mette; Christiansen, Jesper N; Johansen, Charlotte; Gram, Lone

    2003-11-01

    The microflora adhering to the processing equipment during production and after cleaning and disinfecting procedures was identified in four different processing plants. A total of 1009 microorganisms was isolated from various-agar plates and identified. A stepwise procedure using simple phenotypic tests was used to identify the isolates and proved a fast way to group a large collection of microorganisms. Pseudomonas, Neisseriaceae, Enterobactericeae, Coryneform, Acinetobacter and lactic acid bacteria dominated the microflora of cold-smoked salmon plants, whereas the microflora in a plant processing semi-preserved herring consisted of Pseudomonas, Alcaligenes and Enterobactericeae. Psychrobacter, Staphylococcus and yeasts were found in a caviar processing plant. Overall, many microorganisms that are often isolated from fish were also isolated from the fish processing plants. However, some selection depending on processing parameters occurred, since halo- and osmo-tolerant organisms dominated in the caviar processing. After cleaning and disinfection, yeasts, Pseudomonas, Neisseriaceae and Alcaligenes remained in smokehouses, yeasts and Pseudomonas in the herring plant and Pseudomonas, Staphylococcus and yeasts in the caviar plant. The dominant adhering organisms after cleaning and disinfection were pseudomonads and yeasts independently of the microflora during processing. Knowledge of the adhering microflora is essential in the Good Hygienic Practises programme of food processing plants, as the development and design of improved cleaning and disinfecting procedures should target the microorganisms persisting and potentially contaminating the product. PMID:14527796

  6. Enhanced bioremediation of PAH contaminated soils from coal processing sites

    SciTech Connect

    Joshi, M.M.; Lee, S.

    1995-12-31

    The polycyclic aromatic hydrocarbons (PAH) are a potential hazard to health due to their carcinogenic, mutagenic nature and acute toxicity and there is an imminent need for remediation of PAH contaminated soils abounding the several coke oven and town gas sites. Aerobic biological degradation of PAHs is an innovative technology and has shown high decontamination efficiencies, complete mineralization of contaminants, and is environmentally safe. The present study investigates the remediation of PAH contaminated soils achieved using Acinetobacter species and fungal strain Phanerochaete Chrysosporium. The soil used for the experiments was an industrially contaminated soil obtained from Alberta Research Council (ARC) primary cleanup facility, Alberta, Canada. Soil characterization was done using High Performance Liquid Chromatography (HPLC) to qualitatively and quantitatively determine the contaminants in the soil. Artificially contaminated soil was also used for some experiments. All the experiments were conducted under completely mixed conditions with suitable oxygen and nutrient amendments. The removal efficiency obtained for various PAHs using the two microorganisms was compared.

  7. 40 CFR 63.489 - Batch front-end process vents-monitoring equipment.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 10 2012-07-01 2012-07-01 false Batch front-end process vents-monitoring equipment. 63.489 Section 63.489 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS FOR SOURCE CATEGORIES National Emission Standards...

  8. 40 CFR 63.1324 - Batch process vents-monitoring equipment.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 12 2014-07-01 2014-07-01 false Batch process vents-monitoring equipment. 63.1324 Section 63.1324 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS FOR SOURCE CATEGORIES (CONTINUED) National Emission Standards...

  9. 7 CFR 1717.613 - RUS approval of data processing and system control equipment.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 11 2010-01-01 2010-01-01 false RUS approval of data processing and system control equipment. 1717.613 Section 1717.613 Agriculture Regulations of the Department of Agriculture (Continued) RURAL UTILITIES SERVICE, DEPARTMENT OF AGRICULTURE POST-LOAN POLICIES AND PROCEDURES COMMON TO INSURED AND GUARANTEED ELECTRIC LOANS...

  10. 41 CFR 109-43.307-53 - Automatic data processing equipment (ADPE).

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 41 Public Contracts and Property Management 3 2014-01-01 2014-01-01 false Automatic data processing equipment (ADPE). 109-43.307-53 Section 109-43.307-53 Public Contracts and Property Management Federal Property Management Regulations System (Continued) DEPARTMENT OF ENERGY PROPERTY MANAGEMENT REGULATIONS UTILIZATION AND DISPOSAL...

  11. PROCESS WATER BUILDING, TRA605, INTERIOR. FIRST FLOOR. ELECTRICAL EQUIPMENT IN ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    PROCESS WATER BUILDING, TRA-605, INTERIOR. FIRST FLOOR. ELECTRICAL EQUIPMENT IN LEFT HALF OF VIEW. CAMERA IS IN NORTHWEST CORNER FACING SOUTHEAST. INL NEGATIVE NO. HD46-27-1. Mike Crane, Photographer, 2/2005 - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID

  12. Furnace and support equipment for space processing. [space manufacturing - Czochralski method

    NASA Technical Reports Server (NTRS)

    Mazelsky, R.; Duncan, C. S.; Seidensticker, R. G.; Johnson, R. A.; Hopkins, R. H.; Roland, G. W.

    1975-01-01

    A core facility capable of performing a majority of materials processing experiments is discussed. Experiment classes are described, the needs peculiar to each experiment type are outlined, and projected facility requirements to perform the experiments are treated. Control equipment (automatic control) and variations of the Czochralski method for use in space are discussed.

  13. 9 CFR 310.25 - Contamination with microorganisms; process control verification criteria and testing; pathogen...

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 9 Animals and Animal Products 2 2010-01-01 2010-01-01 false Contamination with microorganisms... CERTIFICATION POST-MORTEM INSPECTION § 310.25 Contamination with microorganisms; process control verification... controls sufficient to prevent fecal contamination. FSIS shall take further action as appropriate to...

  14. Contamination by slow diffusers in ion implantation processes: The examples of molybdenum and tungsten

    NASA Astrophysics Data System (ADS)

    Polignano, M. L.; Mica, I.; Barbarossa, F.; Galbiati, A.; Grasso, S.; Soncini, V.

    2015-08-01

    A procedure to measure molybdenum and tungsten contamination in implantation processes by DLTS (Deep Level Transient Spectroscopy) is defined and calibrated for the evaluation of molybdenum and tungsten contaminant dose. The obtained calibrations are used to study molybdenum contamination in BF2 implantations and tungsten contamination by sputtering from a previously contaminated wafer holder. In molybdenum-implanted samples, the molybdenum level located 0.3 eV above valence band is revealed only. In tungsten-implanted samples, two levels are revealed. One of these levels is the tungsten-related hole trap located 0.4 eV above valence band. The other level does not correspond to any tungsten-related level, however it is related to the presence of tungsten and to the sample preparation process. The SPV (Surface Photovoltage) measurement sensitivity to tungsten contamination was also tested, and it was found much lower than the DLTS sensitivity, due to the low tungsten diffusivity. This procedure was used to evaluate contamination in implantation processes. In BF2 implantations, in addition to molybdenum, tungsten contamination is found. Molybdenum and tungsten contamination is found in boron implantation too. The tungsten contamination induced by implantation in a previously contaminated implanter was quantified, and the efficiency of arsenic implantation as a decontamination process was tested. Finally, it was shown that TXRF (Total reflection X-ray Fluorescence) is much less sensitive than DLTS for monitoring tungsten contamination.

  15. Development of a CNC 5-kW CO2 laser processing equipment

    NASA Astrophysics Data System (ADS)

    Zhang, Shuren; Lu, Boliang; Zhang, Hongtao; Shao, Wushan

    1996-09-01

    This paper introduces the fundamental compositions and functions of a newly developed 5KW CO2 laser processing equipment CGJ-93 controlled by microcomputer in Changchun Institute of Optics and Fine Mechanics. The laser processing equipment consists of a 5KW CO2 laser, multifunction beam guidance systems, modular processing machine, water cooling system and CNC systems. The equipment has the ability to heat-treat not only the internal holes and outer circular surfaces but also space holes and three dimensional curved surfaces. The equipment can heat-treat workpieces up to 3000mm length, 1500mm diameter and 3000kg weight. The longitudinal table allows moving speed of 0.8-12000mm per minute with 3600mm effective moving range and 0.069mm position accuracy. The transverse table allows moving speed of 5-12000mm per minute with 1000mm effective moving range and 0.028mm position accuracy. The laser head allows longitudinal moving speed of 0.1-12000mm per minute. Its effective moving range and position accuracy are 540mm and 0.03mm respectively.

  16. Development of a CNC 5KW CO{sub 2} laser processing equipment

    SciTech Connect

    Zhang Shuren; Lu Boliang; Zhang Hong; Shao Wushan

    1996-12-31

    This paper introduces the fundamental compositions and functions of a newly developed 5KW CO{sub 2} laser processing equipment CGJ-93 controlled by microcomputer in CIOM (Changchun Institute of Optics and Fine Mechanics). The laser processing equipment consists of a 5KW CO{sub 2} laser, multifunction beam guidance system, modular processing machine, water cooling system and CNC system. The equipment has ability to heat-treat not only the internal holes and outer circular surfaces but also space holes and three dimensional curved surfaces. The equipment can heat-treat workpieces up to 3,000 mm length, 1,500mm diameter and 3,000kg weight. The longitudinal table allows moving speed of 0.8--12,000mm per minute with 3,600mm effective moving range and 0.069mm position accuracy. The transverse table allows moving speed of 5--1,2000mm per minute with 1,000mm effective moving range and 0.028 mm position accuracy. The laser head allows longitudinal moving speed of 0.1--1,2000mm per minute, its effective moving range and position accuracy are 540mm and 0.03mm respectively.

  17. INNOVATIVE PROCESS FOR RECLAMATION OF CONTAMINATED SUBSURFACE ENVIRONMENTS

    EPA Science Inventory

    Research to better assess the capabilities and limitations of fixed-film bioreactors for removing selected organic contaminants from ground water or from contaminated vapor streams produced by air stripping of polluted ground water and by soil venting operations is described. ork...

  18. INNOVATIVE PROCESSES FOR RECLAMATION OF CONTAMINATED SUBSURFACE ENVIRONMENTS

    EPA Science Inventory

    Research to better assess the capabilities and limitations of fixed-film bioreactors for removing selected organic contaminants from ground water or from contaminated vapor streams produced by air stripping of polluted ground water and by soil venting operations is described. ...

  19. Assessment of Intelligent Processing Equipment in the National Aeronautics and Space Administration, 1991

    NASA Technical Reports Server (NTRS)

    Jones, C. S.

    1992-01-01

    Summarized here is an assessment of intelligent processing equipment (IPE) within NASA. An attempt is made to determine the state of IPE development and research in specific areas where NASA might contribute to the national capability. Mechanisms to transfer NASA technology to the U.S. private sector in this critical area are discussed. It was concluded that intelligent processing equipment is finding extensive use in the manufacture of space hardware, especially in the propulsion components of the shuttle. The major benefits are found in improved process consistency, which lowers cost as it reduces rework. Advanced feedback controls are under development and being implemented gradually into shuttle manufacturing. Implementation is much more extensive in new programs, such as in the advanced solid rocket motor and the Space Station Freedom.

  20. Assessment of intelligent processing equipment in the National Aeronautics and Space Administration, 1991

    NASA Astrophysics Data System (ADS)

    Jones, C. S.

    1992-04-01

    Summarized here is an assessment of intelligent processing equipment (IPE) within NASA. An attempt is made to determine the state of IPE development and research in specific areas where NASA might contribute to the national capability. Mechanisms to transfer NASA technology to the U.S. private sector in this critical area are discussed. It was concluded that intelligent processing equipment is finding extensive use in the manufacture of space hardware, especially in the propulsion components of the shuttle. The major benefits are found in improved process consistency, which lowers cost as it reduces rework. Advanced feedback controls are under development and being implemented gradually into shuttle manufacturing. Implementation is much more extensive in new programs, such as in the advanced solid rocket motor and the Space Station Freedom.

  1. Characterization of Contaminants from a Sanitized Milk Processing Plant

    PubMed Central

    Cleto, Sara; Matos, Sónia; Kluskens, Leon; Vieira, Maria João

    2012-01-01

    Milk processing lines offer a wide variety of microenvironments where a diversity of microorganisms can proliferate. We sampled crevices and junctions where, due to deficient reach by typical sanitizing procedures, bacteria can survive and establish biofilms. The sampling sites were the holding cell, cold storage tank, pasteurizer and storage tank - transfer pump junction. The culturable bacteria that were isolated after the sanitation procedure were predominantly Pseudomonas spp., Serratia spp, Staphylococcus sciuri and Stenotrophomonas maltophilia. We assayed several phenotypic characteristics such as the ability to secrete enzymes and siderophores, as well as the capacity of the strains to form biofilms that might contribute to their survival in a mixed species environment. The Pseudomonas spp. isolates were found to either produce proteases or lecithinases at high levels. Interestingly, protease production showed an inverse correlation with siderophore production. Furthermore, all of the Serratia spp. isolates were strong biofilm formers and spoilage enzymes producers. The organisms identified were not mere contaminants, but also producers of proteins with the potential to lower the quality and shelf-life of milk. In addition, we found that a considerable number of the Serratia and Pseudomonas spp. isolated from the pasteurizer were capable of secreting compounds with antimicrobial properties. PMID:22761957

  2. Developing a Logistics Data Process for Support Equipment for NASA Ground Operations

    NASA Technical Reports Server (NTRS)

    Chakrabarti, Suman

    2010-01-01

    The United States NASA Space Shuttle has long been considered an extremely capable yet relatively expensive rocket. A great part of the roughly US $500 million per launch expense was the support footprint: refurbishment and maintenance of the space shuttle system, together with the long list of resources required to support it, including personnel, tools, facilities, transport and support equipment. NASA determined to make its next rocket system with a smaller logistics footprint, and thereby more cost-effective and quicker turnaround. The logical solution was to adopt a standard Logistics Support Analysis (LSA) process based on GEIA-STD-0007 http://www.logisticsengineers.org/may09pres/GEIASTD0007DEXShortIntro.pdf which is the successor of MIL-STD-1388-2B widely used by U.S., NATO, and other world military services and industries. This approach is unprecedented at NASA: it is the first time a major program of programs, Project Constellation, is factoring logistics and supportability into design at many levels. This paper will focus on one of those levels NASA ground support equipment for the next generation of NASA rockets and on building a Logistics Support Analysis Record (LSAR) for developing and documenting a support solution and inventory of resources for. This LSAR is actually a standards-based database, containing analyses of the time and tools, personnel, facilities and support equipment required to assemble and integrate the stages and umbilicals of a rocket. This paper will cover building this database from scratch: including creating and importing a hierarchical bill of materials (BOM) from legacy data; identifying line-replaceable units (LRUs) of a given piece of equipment; analyzing reliability and maintainability of said LRUs; and therefore making an assessment back to design whether the support solution for a piece of equipment is too much work, i.e., too resource-intensive. If one must replace or inspect an LRU too much, perhaps a modification of

  3. Surface photovoltage analysis of iron contamination in silicon processing and the relation to gate oxide integrity

    NASA Astrophysics Data System (ADS)

    Henley, Worth B.

    1995-09-01

    Surface photovoltage (SPV), a contactless optical technique for measuring minority carrier lifetime, is used to quantify the relationship between silicon iron contamination level and thin gate oxide integrity. Iron concentration levels in the range of 1 X 1010 cm-3 to 5 X 1013 cm-3 are evaluated for oxide thicknesses of 8 to 20 nm. Ramp voltage electrical breakdown and time dependant dielectric breakdown measurement on the iron contaminated gate oxide capacitors are reported. Distinct iron contamination threshold limits based on defect density and gate oxide integrity evaluate cleaning efficiencies and metallic cross contamination effects during thermal processing contamination. Iron-silicide precipitation kinetics are investigated by the lifetime analysis procedure.

  4. Novel reactor design configuration for contamination control and improved performance in the polysilicon doping process using POCl3

    NASA Astrophysics Data System (ADS)

    Roy, Sudipto R.; Glynn, Phil; Hogan, Rod; Reynolds, Jeff

    1994-08-01

    Conventional POCl3 reactors have process limitations because of the hazardous nature of process by-products. Experiments were conducted using a novel design quartz flange and stainless steel clamp exhaust configuration, along with a scavenger insulation block, which eliminated process by-product buildup inside the reactor tube in the scavenger area. Experiments included variations in doping temperature, process time, POCl3 flow rate, and carrier and exhaust gas flow rates. This novel(sup e) hardware design practically eliminates by-product condensation and dripping outside the reactor, which reduces cross-contamination and stainless steel corrosion problems and prevents potential minority carrier lifetime degradation. Equipment downtime is significantly reduced by eliminating autodoping and the need for frequent process tube steam cleans. Run capability is extended because of the new design, which also provides superior exhaust control and safer operation. The design also allows doubling of the number of wafers processed with improved sheet resistance uniformity. Regression equations were obtained for calculating sheet resistance, which can be a viable tool for process engineers. The new reactor configuration provides significant advantages in reduced equipment downtime, increased savings in material, and improved process performance.

  5. Los Alamos Controlled Air Incinerator for radioactive waste. Volume I. Rationale, process, equipment, performance, and recommendations

    SciTech Connect

    Neuls, A.S.; Draper, W.E.; Koenig, R.A.; Newmyer, J.M.; Warner, C.L.

    1982-08-01

    This two-volume report is a detailed design and operating documentation of the Los Alamos National Laboratory Controlled Air Incinerator (CAI) and is an aid to technology transfer to other Department of Energy contractor sites and the commercial sector. Volume I describes the CAI process, equipment, and performance, and it recommends modifications based on Los Alamos experience. It provides the necessary information for conceptual design and feasibility studies. Volume II provides descriptive engineering information such as drawing, specifications, calculations, and costs. It aids duplication of the process at other facilities.

  6. Development of a Pulp Process Treating Contaminated HEPA Filters (III)

    SciTech Connect

    Hu, J. S.; Ramer, J.; Argyle, M. D.; Demmer, R. L.

    2002-02-28

    The Pulp Process (PP) Treatment option was conceived as a replacement for the current Filter Leaching System (FLS). The FLS has operated at the Idaho Nuclear Technology and Engineering Center of the Idaho National Engineering and Environmental Laboratory since 1995 to treat radioactive, mixed waste HEPA filters. In recent years, the FLS has exhibited difficulty in removing mercury from the HEPA filters as the concentration of mercury in the spent HEPA filters has increased. The FLS leaches and washes the whole filter without any preparation or modification. The filter media and the trapped calcine particles are confined in a heavy filter housing that contributes to poor mixing zones around the edges of the filter, low media permeability, channeling of the liquid through cracks and tears in the filter media, and liquid retention between leach and rinse cycles. In the PP, the filter media and the trapped calcine particles are separated from the filter housing and treated as a pulp, taking advantage of improved contact with the leach solution that cannot be achieved when the media is still in the HEPA filter housing. In addition to removing the mercury more effectively, the PP generates less volume of liquid waste, requires a shorter leach cycle time, and possesses the versatility for treating filters of different sizes. A series of tests have been performed in the laboratory to demonstrate the advantages of the PP concept. These tests compare the PP with the FLS under controlled conditions that simulate the current operating parameters. A prior study using blended feed, a mixture of shredded clean HEPA filter media and non-radioactive calcine particles, indicated that the PP would significantly increases the calcine dissolution percentages. In this study, hazardous-metal contaminated HEPA filter media was studied. The results of side-by-side tests indicated that the PP increased the mercury removal percentage by 80% and might be a solution to the mercury removal

  7. 4-rotor Desiccant Cooling Process Equipped with a Double Stage Dehumidification

    NASA Astrophysics Data System (ADS)

    Ando, Kosuke; Kodama, Akio; Okano, Hiroshi; Asada, Toshinobu

    2-rotor desiccant cooling process consisting of a honeycomb rotor dehumidifier and a sensible heat exchanger is a mainstream of the desiccant cooling process which are practically applied to supermarket, hospital and so on. However, this process cannot produce a sufficient dehumidifying performance in high humidity region. In this study, 4-rotor desiccant cooling process equipped with a double stage dehumidification was proposed and investigated experimentally. In this process, regeneration temperature around 60°C could produce a sufficient dehumidifying performance even at high ambient humidity. “Serial heat supply” mode was considered to improve the heat efficiency by the cascade use of regeneration heat inside the cooling cycle. The dehumidifying performance of the “serial heat supply” mode was only slightly lower than that of a “parallel heat supply” mode at which the same temperature hot air was supplied to the both heaters. However, dehumidifying performance of this “serial heat supply” mode was much higher than that of conventional 2-rotor desiccant cooling process. Furthermore, the desiccant rotors of 0.1m in thickness were mounted to 4-rotor desiccant cooling process in place of the 0.2m desiccant rotors. It was found that the drop of dehumidifying performance of the process equipped with 0.1m desiccant rotors was only by 10 percents comparing with the 0.2m rotor process. Moreover, it was found that optimization of rotation speed of the desiccant rotor was needed to improve the energy efficiency. Regarding the supply point of return air, it was also found that return air should be supplied to the regeneration inlet of the second stage for higher dehumidifying performance.

  8. Equipment characterization to mitigate risks during transfers of cell culture manufacturing processes.

    PubMed

    Sieblist, Christian; Jenzsch, Marco; Pohlscheidt, Michael

    2016-08-01

    The production of monoclonal antibodies by mammalian cell culture in bioreactors up to 25,000 L is state of the art technology in the biotech industry. During the lifecycle of a product, several scale up activities and technology transfers are typically executed to enable the supply chain strategy of a global pharmaceutical company. Given the sensitivity of mammalian cells to physicochemical culture conditions, process and equipment knowledge are critical to avoid impacts on timelines, product quantity and quality. Especially, the fluid dynamics of large scale bioreactors versus small scale models need to be described, and similarity demonstrated, in light of the Quality by Design approach promoted by the FDA. This approach comprises an associated design space which is established during process characterization and validation in bench scale bioreactors. Therefore the establishment of predictive models and simulation tools for major operating conditions of stirred vessels (mixing, mass transfer, and shear force.), based on fundamental engineering principles, have experienced a renaissance in the recent years. This work illustrates the systematic characterization of a large variety of bioreactor designs deployed in a global manufacturing network ranging from small bench scale equipment to large scale production equipment (25,000 L). Several traditional methods to determine power input, mixing, mass transfer and shear force have been used to create a data base and identify differences for various impeller types and configurations in operating ranges typically applied in cell culture processes at manufacturing scale. In addition, extrapolation of different empirical models, e.g. Cooke et al. (Paper presented at the proceedings of the 2nd international conference of bioreactor fluid dynamics, Cranfield, UK, 1988), have been assessed for their validity in these operational ranges. Results for selected designs are shown and serve as examples of structured

  9. Materials selection for process equipment in the Hanford waste vitrification plant

    SciTech Connect

    Elmore, M R; Jensen, G A

    1991-07-01

    The Hanford Waste Vitrification Plant (HWVP) is being designed to vitrify defense liquid high-level wastes and transuranic wastes stored at Hanford. The HWVP Functional Design Criteria (FDC) requires that materials used for fabrication of remote process equipment and piping in the facility be compatible with the expected waste stream compositions and process conditions. To satisfy FDC requirements, corrosion-resistant materials have been evaluated under simulated HWVP-specific conditions and recommendations have been made for HWVP applications. The materials recommendations provide to the project architect/engineer the best available corrosion rate information for the materials under the expected HWVP process conditions. Existing data and sound engineering judgement must be used and a solid technical basis must be developed to define an approach to selecting suitable construction materials for the HWVP. This report contains the strategy, approach, criteria, and technical basis developed for selecting materials of construction. Based on materials testing specific to HWVP and on related outside testing, this report recommends for constructing specific process equipment and identifies future testing needs to complete verification of the performance of the selected materials. 30 refs., 7 figs., 11 tabs.

  10. POC-SCALE TESTING OF OIL AGGLOMERATION TECHNIQUES AND EQUIPMENT FOR FINE COAL PROCESSING

    SciTech Connect

    1998-01-01

    This report covers the technical progress achieved from October 1, 1997 to December 31, 1997 on the POC-Scale Testing of Oil Agglomeration Techniques and Equipment for Fine Coal Processing project. Experimental test procedures and the results related to the processing of coal fines originating from process streams generated at the Shoal Creek Mine preparation plant, owned and operated by the Drummond Company Inc. of Alabama, are described. Two samples of coal fines, namely Cyclone Overflow and Pond Fines were investigated. The batch test results showed that by applying the Aglofloat technology a significant ash removal might be achieved at a very high combustible matter recovery: · for the Cyclone Overflow sample the ash reduction was in the range 50 to 55% at combustible matter recovery about 98% · for the Pond Fines sample the ash reduction was up to 48% at combustible matter recovery up to 85%. Additional tests were carried out with the Alberta origin Luscar Mine coal, which will be used for the parametric studies of agglomeration equipment at the 250 kg/h pilot plant. The Luscar coal is very similar to the Mary Lee Coal Group (processed at Shoal Creek Mine preparation plant) in terms of rank and chemical composition.

  11. Critical sources of bacterial contamination and adoption of standard sanitary protocol during semen collection and processing in Semen Station

    PubMed Central

    Sannat, Chandrahas; Nair, Ajit; Sahu, S. B.; Sahasrabudhe, S. A.; Kumar, Ashish; Gupta, Amit Kumar; Shende, R. K.

    2015-01-01

    Aim: The present investigation was conducted to locate the critical sources of bacterial contamination and to evaluate the standard sanitation protocol so as to improve the hygienic conditions during collection, evaluation, and processing of bull semen in the Semen Station. Materials and Methods: The study compared two different hygienic procedures during the collection, evaluation and processing of semen in Central Semen Station, Anjora, Durg. Routinely used materials including artificial vagina (AV) inner liner, cone, semen collection tube, buffer, extender/diluter, straws; and the laboratory environment like processing lab, pass box and laminar air flow (LAF) cabinet of extender preparation lab, processing lab, sealing filling machine, and bacteriological lab were subjected to bacteriological examination in two phases of study using two different sanitary protocols. Bacterial load in above items/environment was measured using standard plate count method and expressed as colony forming unit (CFU). Results: Bacterial load in a laboratory environment and AV equipments during two different sanitary protocol in present investigation differed highly significantly (p<0.001). Potential sources of bacterial contamination during semen collection and processing included laboratory environment like processing lab, pass box, and LAF cabinets; AV equipments, including AV Liner and cone. Bacterial load was reduced highly significantly (p<0.001) in AV liner (from 2.33±0.67 to 0.50±0.52), cone (from 4.16±1.20 to 1.91±0.55), and extender (from 1.33±0.38 to 0) after application of improved practices of packaging, handling, and sterilization in Phase II of study. Glasswares, buffers, and straws showed nil bacterial contamination in both the phases of study. With slight modification in fumigation protocol (formalin @600 ml/1000 ft3), bacterial load was significantly decreased (p<0.001) up to 0-6 CFU in processing lab (from 6.43±1.34 to 2.86±0.59), pass box (from 12.13±2

  12. Development of guidance on applications of regulatory requirements for regulating large, contaminated equipment and large decommissioning and decontamination (D and D) components

    SciTech Connect

    Pope, R.B.; Easton, E.P.; Cook, J.R.; Boyle, R.W.

    1997-10-01

    In 1985, the International Atomic Energy Agency issued revised regulations for the safe transport of radioactive material. Significant were major changes to requirements for Low Specific Activity material and Surface Contaminated Objects. As these requirements were adopted into regulations in the US, it was recognized that guidance on how to apply these requirements to large, contaminated/activated pieces of equipment and decommissioning and decontamination objects would be needed both by the regulators and those regulated to clarify technical uncertainties and ensure implementation. Thus, the US Department of Transportation and the US Nuclear Regulatory Commission, with assistance of staff from Oak Ridge National Laboratory, are preparing regulatory guidance which will present examples of acceptable methods for demonstrating compliance with the revised rules for large items. Concepts being investigated for inclusion in the pending guidance are discussed in this paper. Under current plans, the guidance will be issued for public comment before final issuance in 1997.

  13. Space processing applications payload equipment study. Volume 2C: Data acquisition and process control

    NASA Technical Reports Server (NTRS)

    Kayton, M.; Smith, A. G.

    1974-01-01

    The services provided by the Spacelab Information Management System are discussed. The majority of the services are provided by the common-support subsystems in the Support Module furnished by the Spacelab manufacturer. The information processing requirements for the space processing applications (SPA) are identified. The requirements and capabilities for electric power, display and control panels, recording and telemetry, intercom, and closed circuit television are analyzed.

  14. Process/Equipment Co-Simulation on Syngas Chemical Looping Process

    SciTech Connect

    Zeng, Liang; Zhou, Qiang; Fan, Liang-Shih

    2012-09-30

    The chemical looping strategy for fossil energy applications promises to achieve an efficient energy conversion system for electricity, liquid fuels, hydrogen and/or chemicals generation, while economically separate CO{sub 2} by looping reaction design in the process. Chemical looping particle performance, looping reactor engineering, and process design and applications are the key drivers to the success of chemical looping process development. In order to better understand and further scale up the chemical looping process, issues such as cost, time, measurement, safety, and other uncertainties need to be examined. To address these uncertainties, advanced reaction/reactor modeling and process simulation are highly desired and the modeling efforts can accelerate the chemical looping technology development, reduce the pilot-scale facility design time and operating campaigns, as well as reduce the cost and technical risks. The purpose of this work is thus to conduct multiscale modeling and simulations on the key aspects of chemical looping technology, including particle reaction kinetics, reactor design and operation, and process synthesis and optimization.

  15. A new highly automated sputter equipment for in situ investigation of deposition processes with synchrotron radiation.

    PubMed

    Döhrmann, Ralph; Botta, Stephan; Buffet, Adeline; Santoro, Gonzalo; Schlage, Kai; Schwartzkopf, Matthias; Bommel, Sebastian; Risch, Johannes F H; Mannweiler, Roman; Brunner, Simon; Metwalli, Ezzeldin; Müller-Buschbaum, Peter; Roth, Stephan V

    2013-04-01

    HASE (Highly Automated Sputter Equipment) is a new mobile setup developed to investigate deposition processes with synchrotron radiation. HASE is based on an ultra-high vacuum sputter deposition chamber equipped with an in-vacuum sample pick-and-place robot. This enables a fast and reliable sample change without breaking the vacuum conditions and helps to save valuable measurement time, which is required for experiments at synchrotron sources like PETRA III at DESY. An advantageous arrangement of several sputter guns, mounted on a rotative flange, gives the possibility to sputter under different deposition angles or to sputter different materials on the same substrate. The chamber is also equipped with a modular sample stage, which allows for the integration of different sample environments, such as a sample heating and cooling device. The design of HASE is unique in the flexibility. The combination of several different sputtering methods like standard deposition, glancing angle deposition, and high pressure sputter deposition combined with heating and cooling possibilities of the sample, the large exit windows, and the degree of automation facilitate many different grazing incidence X-ray scattering experiments, such as grazing incidence small and wide angle X-ray scattering, in one setup. In this paper we describe in detail the design and the performance of the new equipment and present the installation of the HASE apparatus at the Micro and Nano focus X-ray Scattering beamline (MiNaXS) at PETRA III. Furthermore, we describe the measurement options and present some selected results. The HASE setup has been successfully commissioned and is now available for users. PMID:23635203

  16. A new highly automated sputter equipment for in situ investigation of deposition processes with synchrotron radiation

    SciTech Connect

    Doehrmann, Ralph; Botta, Stephan; Buffet, Adeline; Santoro, Gonzalo; Schlage, Kai; Schwartzkopf, Matthias; Risch, Johannes F. H.; Mannweiler, Roman; Roth, Stephan V.; Bommel, Sebastian; Brunner, Simon; Metwalli, Ezzeldin; Mueller-Buschbaum, Peter

    2013-04-15

    HASE (Highly Automated Sputter Equipment) is a new mobile setup developed to investigate deposition processes with synchrotron radiation. HASE is based on an ultra-high vacuum sputter deposition chamber equipped with an in-vacuum sample pick-and-place robot. This enables a fast and reliable sample change without breaking the vacuum conditions and helps to save valuable measurement time, which is required for experiments at synchrotron sources like PETRA III at DESY. An advantageous arrangement of several sputter guns, mounted on a rotative flange, gives the possibility to sputter under different deposition angles or to sputter different materials on the same substrate. The chamber is also equipped with a modular sample stage, which allows for the integration of different sample environments, such as a sample heating and cooling device. The design of HASE is unique in the flexibility. The combination of several different sputtering methods like standard deposition, glancing angle deposition, and high pressure sputter deposition combined with heating and cooling possibil-ities of the sample, the large exit windows, and the degree of automation facilitate many different grazing incidence X-ray scattering experiments, such as grazing incidence small and wide angle X-ray scattering, in one setup. In this paper we describe in detail the design and the performance of the new equipment and present the installation of the HASE apparatus at the Micro and Nano focus X-ray Scattering beamline (MiNaXS) at PETRA III. Furthermore, we describe the measurement options and present some selected results. The HASE setup has been successfully commissioned and is now available for users.

  17. Scald tank water and foam as sources of carcass contamination during early poultry processing

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Salmonella remains a leading cause of bacterial foodborne illness in the United States, with poultry consumption associated with forty percent of outbreaks for which vehicles are identified. Identifying sources of Salmonella contamination and cross-contamination within poultry processing is imperat...

  18. Optimal Medical Equipment Maintenance Service Proposal Decision Support System combining Activity Based Costing (ABC) and the Analytic Hierarchy Process (AHP).

    PubMed

    da Rocha, Leticia; Sloane, Elliot; M Bassani, Jose

    2005-01-01

    This study describes a framework to support the choice of the maintenance service (in-house or third party contract) for each category of medical equipment based on: a) the real medical equipment maintenance management system currently used by the biomedical engineering group of the public health system of the Universidade Estadual de Campinas located in Brazil to control the medical equipment maintenance service, b) the Activity Based Costing (ABC) method, and c) the Analytic Hierarchy Process (AHP) method. Results show the cost and performance related to each type of maintenance service. Decision-makers can use these results to evaluate possible strategies for the categories of equipment. PMID:17281912

  19. A top specified boundary layer (TSBL) approximation approach for the simulation of groundwater contamination processes

    USGS Publications Warehouse

    Rubin, H.; Buddemeier, R.W.

    1996-01-01

    This paper presents improvements in the 'classical boundary layer' (CBL) approximation method to obtain simple but robust initial characterization of aquifer contamination processes. Contaminants are considered to penetrate into the groundwater through the free surface of the aquifer. The improved method developed in this study is termed the 'top specified boundary layer' (TSBL) approach. It involves the specification of the contaminant concentration at the top of the contaminated 'region of interest' (ROI), which is simulated as a boundary layer. the TSBL modification significantly improves the ability of the boundary layer method to predict the development of concentration profiles over both space and time. The TSBL method can be useful for the simulation of cases in which the contaminant concentration is prescribed at the aquifer's free surface as well as for cases in which the contaminant mass flux is prescribed at the surface.

  20. Outbreak of Pseudomonas Oryzihabitans Pseudobacteremia Related to Contaminated Equipment in an Emergency Room of a Tertiary Hospital in Korea

    PubMed Central

    Woo, Kwang-Sook; Choi, Jae-Lim; Kim, Bo-Ram; Kim, Ji-Eun; Kim, Kyeong-Hee; Kim, Jeong-Man

    2014-01-01

    Pseudomonas oryzihabitans is frequently found in various sites within hospital settings, including sink drains and respiratory therapy equipment. Although it rarely causes human infections, P. oryzihabitans has recently been considered a potential nosocomial pathogen, especially in immunocompromised hosts. We report our experience of an outbreak of P. oryzihabitans pseudobacteremia, presumably due to faulty aseptic preparation of a saline gauze canister. PMID:24693469

  1. Outbreak of pseudomonas oryzihabitans pseudobacteremia related to contaminated equipment in an emergency room of a tertiary hospital in Korea.

    PubMed

    Woo, Kwang-Sook; Choi, Jae-Lim; Kim, Bo-Ram; Kim, Ji-Eun; Kim, Kyeong-Hee; Kim, Jeong-Man; Han, Jin-Yeong

    2014-03-01

    Pseudomonas oryzihabitans is frequently found in various sites within hospital settings, including sink drains and respiratory therapy equipment. Although it rarely causes human infections, P. oryzihabitans has recently been considered a potential nosocomial pathogen, especially in immunocompromised hosts. We report our experience of an outbreak of P. oryzihabitans pseudobacteremia, presumably due to faulty aseptic preparation of a saline gauze canister. PMID:24693469

  2. Bead and Process for Removing Dissolved Metal Contaminants

    SciTech Connect

    Summers, Bobby L., Jr.; Bennett, Karen L.; Foster, Scott A.

    2005-01-18

    A bead is provided which comprises or consists essentially of activated carbon immobilized by crosslinked poly (carboxylic acid) binder, sodium silicate binder, or polyamine binder. The bead is effective to remove metal and other ionic contaminants from dilute aqueous solutions. A method of making metal-ion sorbing beads is provided, comprising combining activated carbon, and binder solution (preferably in a pin mixer where it is whipped), forming wet beads, and heating and drying the beads. The binder solution is preferably poly(acrylic acid) and glycerol dissolved in water and the wet beads formed from such binder solution are preferably heated and crosslinked in a convection oven.

  3. Low cost solar array project production process and equipment task: A Module Experimental Process System Development Unit (MEPSDU)

    NASA Technical Reports Server (NTRS)

    1981-01-01

    Several major modifications were made to the design presented at the PDR. The frame was deleted in favor of a "frameless" design which will provide a substantially improved cell packing factor. Potential shaded cell damage resulting from operation into a short circuit can be eliminated by a change in the cell series/parallel electrical interconnect configuration. The baseline process sequence defined for the MEPSON was refined and equipment design and specification work was completed. SAMICS cost analysis work accelerated, format A's were prepared and computer simulations completed. Design work on the automated cell interconnect station was focused on bond technique selection experiments.

  4. Processing-Dependent and Clonal Contamination Patterns of Listeria monocytogenes in the Cured Ham Food Chain Revealed by Genetic Analysis

    PubMed Central

    Morganti, Marina; Scaltriti, Erika; Cozzolino, Paolo; Bolzoni, Luca; Casadei, Gabriele; Pierantoni, Marco; Foni, Emanuela

    2015-01-01

    The quantitative and qualitative patterns of environmental contamination by Listeria monocytogenes were investigated in the production chain of dry-cured Parma ham. Standard arrays of surfaces were sampled in processing facilities during a single visit per plant in the three compartments of the food chain, i.e., ham production (19 plants) and postproduction, which was divided into deboning (43 plants) and slicing (25 plants) steps. The numbers of sampled surfaces were 384 in ham production, with 25 positive for L. monocytogenes, and 1,084 in postproduction, with 83 positives. Statistical analysis of the prevalence of contaminated surfaces showed that in ham production, contamination was higher at the beginning of processing and declined significantly toward the end, while in postproduction, prevalence rose toward the end of processing. Prevalence was higher in the deboning facilities than in slicing facilities and was dependent on the type of surface (floor/drainage > clothing > equipment). The qualitative pattern of contamination was investigated through an analysis of the survey isolates and a set of isolates derived from routine monitoring, including longitudinal isolations. Pulsed-field gel electrophoresis (PFGE) and whole-genome single-nucleotide polymorphism (SNP) analysis revealed a remarkable clonality of L. monocytogenes within plants, with the detection of 16 plant-specific clones out of 17 establishments with multiple isolates. Repeated detections of clonal isolates >6 months apart were also observed. Six was the maximum number of between-isolate differences in core SNPs observed within these clones. Based on the same six-SNP threshold, three clusters of clonal isolates, shared by six establishments, were also identified. The spread of L. monocytogenes within and between plants, as indicated by its clonal behavior, is a matter of concern for the hygienic management of establishments. PMID:26590278

  5. Processing-Dependent and Clonal Contamination Patterns of Listeria monocytogenes in the Cured Ham Food Chain Revealed by Genetic Analysis.

    PubMed

    Morganti, Marina; Scaltriti, Erika; Cozzolino, Paolo; Bolzoni, Luca; Casadei, Gabriele; Pierantoni, Marco; Foni, Emanuela; Pongolini, Stefano

    2016-02-01

    The quantitative and qualitative patterns of environmental contamination by Listeria monocytogenes were investigated in the production chain of dry-cured Parma ham. Standard arrays of surfaces were sampled in processing facilities during a single visit per plant in the three compartments of the food chain, i.e., ham production (19 plants) and postproduction, which was divided into deboning (43 plants) and slicing (25 plants) steps. The numbers of sampled surfaces were 384 in ham production, with 25 positive for L. monocytogenes, and 1,084 in postproduction, with 83 positives. Statistical analysis of the prevalence of contaminated surfaces showed that in ham production, contamination was higher at the beginning of processing and declined significantly toward the end, while in postproduction, prevalence rose toward the end of processing. Prevalence was higher in the deboning facilities than in slicing facilities and was dependent on the type of surface (floor/drainage > clothing > equipment). The qualitative pattern of contamination was investigated through an analysis of the survey isolates and a set of isolates derived from routine monitoring, including longitudinal isolations. Pulsed-field gel electrophoresis (PFGE) and whole-genome single-nucleotide polymorphism (SNP) analysis revealed a remarkable clonality of L. monocytogenes within plants, with the detection of 16 plant-specific clones out of 17 establishments with multiple isolates. Repeated detections of clonal isolates >6 months apart were also observed. Six was the maximum number of between-isolate differences in core SNPs observed within these clones. Based on the same six-SNP threshold, three clusters of clonal isolates, shared by six establishments, were also identified. The spread of L. monocytogenes within and between plants, as indicated by its clonal behavior, is a matter of concern for the hygienic management of establishments. PMID:26590278

  6. Health care facilities' "war on terrorism": a deliberate process for recommending personal protective equipment.

    PubMed

    Koenig, Kristi L; Boatright, Connie J; Hancock, John A; Denny, Frank J; Teeter, David S; Kahn, Christopher A; Schultz, Carl H

    2007-02-01

    The protection of health care facility (HCF) staff from the effects of weapons of mass destruction has gained heightened attention since the 9-11 terrorist attacks. One critical component of protection is personal protective equipment (PPE). No universal standard exists for an "essential" level of PPE for HCF staff. The absence of such a standard raises the need for development of national policy for PPE levels, particularly in HCFs. We describe a process used by the Veterans Health Administration for recommending policy for "essential" PPE levels. Although the recommendations are specific for Veterans Health Administration, the process, findings, and applications may be useful to other institutions as they attempt to resolve this critical issue. This descriptive account will serve to generate practical scientific debate in the academic community and lead to definitive public policy recommendations for the Nation's HCFs in executing their roles in the event of a terrorist attack. PMID:17276809

  7. Overview of processes affecting contaminant release from confined disposal facilities. Final report

    SciTech Connect

    Martin, J.L.; McCutcheon, S.C.

    1992-01-01

    Confined disposal facilities (CDFs) are widely used for the disposal of dredged material from Corps of Engineers maintenance dredging projects along the Atlantic and Gulf coasts and waterways and harbors in the Great Lakes. CDFs are a less common disposal alternative along the Pacific coast and inland river systems. When contaminated dredged material is placed in the CDF, there is a potential for contaminant mobilization and release from the CDF by a variety of physical, chemical, and biological processes. This report provides an overview of the processes affecting mobilization and release of contaminants from CDFs and the potential applicability of multimedia models for prediction of contaminant release. Processes affecting release from in-water CDFs are emphasized, although many of the processes discussed are applicable to nearshore and upland CDFs. Processes affecting contaminant release are complex, involving a variety of chemicals and operational and design considerations. Many of the important processes are reasonably well known. Laboratory column settling and elutriate techniques have been developed to estimate solids and contaminant concentration in water directly released during hydraulic disposal operations. Predictive techniques for other processes are not as available.

  8. In Situ Vitrification: Recent test results for a contaminated soil melting process

    SciTech Connect

    Buelt, J.L.; Timmerman, C.L.; Westsik, J.H. Jr.

    1988-06-01

    In Situ Vitrification (ISV) is being developed at Pacific Northwest Laboratory for the Department of Energy and other clients for the stabilization of soils and sludges contaminated with radioactive and hazardous chemical wastes. ISV is a process that immobilizes contaminated soil in place by converting it to a durable glass and crystalline product that is similar to obsidian. In June 1987, a large-scale test of the process was completed at a transuranic- contaminated soil site. This constituted the first full-scale demonstration of the ISV process at an actual site. This paper summarizes the preliminary results of this test and describes the processes' potential adaptation to radioactive and hazardous chemical waste contaminated soils. 10 refs., 10 figs.

  9. SU-E-J-189: Credentialing of IGRT Equipment and Processes for Clinical Trials

    SciTech Connect

    Court, L; Aristophanous, M; Followill, D; Kirsner, S; Kisling, K; Pidikiti, R; Wong, P; Balter, P; Bellezza, D; Massingill, B; Papanikolaou, N; Parker, B; Zhen, H

    2014-06-01

    Purpose: Current dosimetry phantoms used for clinical trial credentialing do not directly assess IGRT processes. This work evaluates a custom-built IGRT phantom for credentialing of multiple IGRT modalities and processes. Methods: An IGRT phantom was built out of a low-density body with two inserts. Insert A is used for the CT simulation. Insert B is used for the actual treatment. The inserts contain identical targets in different locations. Relative positions are unknown to the user. The user simulates the phantom (with insert A) as they would a patient, including marking the phantom. A treatment plan is created and sent to the treatment unit. The phantom (with insert B) is then positioned using local IGRT practice. Shifts (planned isocenter, if applicable, and final isocenter) are marked on the phantom using room lasers. The mechanical reproducibility of re-inserting the inserts within the phantom body was tested using repeat high-resolution CT scans. The phantom was tested at 7 centers, selected to include a wide variety of imaging equipment. Results: Mechanical reproducibility was measured as 0.5-0.9mm, depending on the direction. Approaches tested to mark (and transfer) simulation isocenter included lasers, fiducials and reflective markers. IGRT approaches included kV imaging (Varian Trilogy, Brainlab ExacTrac), kV CT (CT-on-rails), kV CBCT (Varian Trilogy, Varian Truebeam, Elekta Agility) and MV CT (Tomotherapy). Users were able to successfully use this phantom for all combinations of equipment and processes. IGRT-based shifts agreed with the truth within 0.8mm, 0.8mm and 1.9mm in the LR, AP, and SI directions, respectively. Conclusion: Based on these preliminary results, the IGRT phantom can be used for credentialing of clinical trials with an action level of 1mm in AP and LR directions, and 2mm in the SI direction, consistent with TG142. We are currently testing with additional institutions with different equipment and processes, including Cyberknife. This

  10. Contamination control in hybrid microelectronic modules. Part 3: Specifications for coating material and process controls

    NASA Technical Reports Server (NTRS)

    Himmel, R. P.

    1975-01-01

    Resin systems for coating hybrids prior to hermetic sealing are described. The resin systems are a flexible silicone junction resin system and a flexible cycloaliphatic epoxy resin system. The coatings are intended for application to the hybrid after all the chips have been assembled and wire bonded, but prior to hermetic sealing of the package. The purpose of the coating is to control particulate contamination by immobilizing particles and by passivating the hybrid. Recommended process controls for the purpose of minimizing contamination in hybrid microcircuit packages are given. Emphasis is placed on those critical hybrid processing steps in which contamination is most likely to occur.