Science.gov

Sample records for continuous cathodic protection

  1. Photovoltaic power without batteries for continuous cathodic protection

    NASA Astrophysics Data System (ADS)

    Muehl, W. W., Sr.

    1994-02-01

    The COASTSYSTA designed, installed, and started up on 20 Jan. 1990, a state-of-the-art stand alone photovoltaic powered impressed current cathodic protection system (PVCPSYS) not requiring any auxiliary/battery backup power for steel and iron submerged structures. The PVCPSYS installed on 775' of steel sheet piling of a Navy bulkhead is continuing to provide complete, continuous corrosion protection. This has been well documented by COASTSYSTA and verified on-site by the U.S. Army Civil Engineering Research Laboratory, Champaign, Illinois and the Navy Energy Program Office-Photovoltaic Programs, China Lake, California. The Department of Defense (DoD) Photovoltaic Review Committee and Sandia National Laboratories consider this successful and cost effective system a major advance in the application of photovoltaic power. The PVCPSYS uses only renewable energy and is environmentally clean. A patent is pending on the new technology. Other possible PVCPSYS applications are mothballed ships, docks, dams, locks, bridges, marinas, offshore structures, and pipelines. The initial cost savings by installing a PVCPSYS vs. a conventional CP system was in excess of $46,000.00.

  2. Photovoltaic Power Without Batteries for Continuous Cathodic Protection

    NASA Technical Reports Server (NTRS)

    Muehl, W. W., Sr.

    1993-01-01

    The objective of this project was to successfully demonstrate that renewable energy can efficiently and economically replace dedicated non-renewable power sources. The COASTSYSTA designed, installed, and started up on 20 Jan. 1990, a state-of-the-art photovoltaic powered impressed current cathodic protection system (PVCPSYS) for steel and iron submerged structures. This system does not require any auxiliary/battery backup power. The PVCPSYS installed on 775 ft. of steel sheet piling of a Navy bulkhead is continuing to provide complete, continuous corrosion protection. This installation is well documented by COASTSYSTA and was verified on-site by the U.S. Army Corps of Engineers. The PVCPSYS uses only renewable energy and is environmentally clean. A patent is pending on the new technology. Other possible PVCPSYS applications are mothballed ships, docks, dams, locks, bridges, marinas, and pipelines. The Department of Defense Photovoltaic Review Committee and Sandia National Laboratories consider this successful and cost effective system a major advance in the application of photovoltaics.

  3. Photovoltaic power without batteries for continuous cathodic protection

    NASA Technical Reports Server (NTRS)

    Muehl, W. W., Sr.

    1994-01-01

    The COASTSYSTA designed, installed, and started up on 20 Jan. 1990, a state-of-the-art stand alone photovoltaic powered impressed current cathodic protection system (PVCPSYS) not requiring any auxiliary/battery backup power for steel and iron submerged structures. The PVCPSYS installed on 775' of steel sheet piling of a Navy bulkhead is continuing to provide complete, continuous corrosion protection. This has been well documented by COASTSYSTA and verified on-site by the U.S. Army Civil Engineering Research Laboratory, Champaign, Illinois and the Navy Energy Program Office-Photovoltaic Programs, China Lake, California. The Department of Defense (DoD) Photovoltaic Review Committee and Sandia National Laboratories consider this successful and cost effective system a major advance in the application of photovoltaic power. The PVCPSYS uses only renewable energy and is environmentally clean. A patent is pending on the new technology. Other possible PVCPSYS applications are mothballed ships, docks, dams, locks, bridges, marinas, offshore structures, and pipelines. The initial cost savings by installing a PVCPSYS vs. a conventional CP system was in excess of $46,000.00.

  4. Cathodic protection of underground storage tanks using continuous polymeric cable anode systems

    SciTech Connect

    Werner, D.P.; Mussall, E.J.

    1995-12-31

    The US Environmental Protection Agency (EPA) has mandated several compliance deadlines for owners of underground storage tanks. These regulations include installation of vapor recovery systems, inventory control systems, tank tightness testing, overfill and overspill protection, and installation of cathodic protection systems, et al. This paper will focus on the installation of cathodic protection systems, the installation of which the EPA has mandated be complete prior to the end of 1998 for underground storage tanks.

  5. Photovoltaic power without batteries for continuous cathodic protection and an alternate photovoltaic/ultracapacitor combined power source

    SciTech Connect

    Muehl, W.W.

    1994-12-31

    The Coastal Systems Station (COASTSYSTA) designed, installed, and started up on 20 January 1990, a state-of-the-art stand-alone photovoltaic powered impressed current cathodic protection system (PVCPSYS) not requiring any backup power for steel and iron submerged structures. The PVCPSYS, installed on a 775-foot steel sheet piling of a Navy dock bulkhead, provides complete, continuous corrosion protection. The PVCPSYS has been in operation for more than five years, has not required any repair or maintenance, ad is environmentally clean. Initial cost savings of the PVCPSYS versus conventional cathodic protection system was $46,000. A second PVCPSYS was installed on another 800-foot bulkhead on 21 May 1993. It is also providing complete corrosion protection without backup power. Performance is well documented. Other potential applications are moth-balled ships, locks, dams, bridges, pipelines, and similar structures. These systems are considered a major advance by Sandia and the Department of Defense (DOD) Photovoltaic Review Committee. An ultra-capacitor, a recent hi-tech development that is environmentally clean, will be incorporated in the PVCPSYS when required to enhance the system`s capability. A photovoltaic/ultracapacitor (or equivalent) combined power source operating under adverse conditions, and/or to satisfy or meet regulations will assure cathodic protection, including pipelines carrying combustibles or other products that could otherwise create environmental problems.

  6. Photovoltaic power without batteries for continuous cathodic protection and an alternate photovoltaic/ultracapacitor combined power source

    SciTech Connect

    Muehl, W.W. Sr.

    1995-12-31

    The Coastal Systems Station (COASTSYSTA) designed, installed, and started up on 20 January 1990, a state-of-the-art stand-alone photovoltaic powered impressed current cathodic protection system (PVCPSYS) not requiring any backup power for steel and iron submerged structures. The PVCPSYS, installed on a 775-foot steel sheet piling of a Navy dock bulkhead, provides complete, continuous corrosion protection. The PVCPSYS has been in operation for more than five years, has not required any repair or maintenance, and is environmentally clean. Initial cost savings of the PVCPSYS versus conventional cathodic protection system was $46,000. A second PVCPSYS was installed on another 800-foot bulkhead on 21 May 1993. It is also providing complete corrosion protection without backup power. Performance is well documented. Other potential applications are moth-balled ships, locks, dams, bridges, pipelines, and similar structures. These systems are considered a major advance by Sandia and the Department of Defense (DOD) Photovoltaic Review Committee. An ultracapacitor, a recent hi-tech development that is environmentally clean, will be incorporated in the PVCPSYS when required to enhance the system`s capability. A photovoltaic/ultracapacitor (or equivalent) combined power source operating under adverse conditions, and/or to satisfy or meet regulations will assure cathodic protection, including pipelines carrying combustibles or other products that could otherwise create environmental problems. Patents are pending on this PVCPSYS and the photovoltaic/ ultracapacitor powered systems.

  7. Cathodic protection: Theory and practice

    SciTech Connect

    Ashworth, V.; Booker, C.J.L.

    1986-01-01

    This book presents an account of cathodic protection. It covers the advances made over the past decade, both in terms of understanding the complexity of the systems to which cathodic protection has been applied and assuring the reliability of the designs which have evolved. It shows how computer-validated design is superseding empirical design. The use of field gradient measurements for current output, acoustic transmission of potential data, and monitoring and surveying of cathodic protection systems are included.

  8. The TLWP cathodic protection system

    SciTech Connect

    Evans, S. )

    1992-08-01

    This paper details the subsea corrosion protection system of the tension leg well platform (TLWP), which comprises coatings and cathodic protection (CP). Postinstallation surveys reveal potentials of at least 150 mV more protective than the minimum potential required for protection. The TLWP protection system weighs 434,000 lbm less than the conventional CP design, with 286,000 lbm less on the floating portion of the TLWP.

  9. Cathodic protection diagnostic expert system

    SciTech Connect

    Van Blaricum, V.L.; Kumar, A. ); Park, Y.T. . Dept. of Computer Science)

    1994-12-01

    A knowledge-based diagnostic system has been developed for troubleshooting cathodic protection systems. The expert system is designed to work in conjunction with a database that stores inventory and field measurement information and flags problem areas. The system is described, and examples of troubleshooting using the system are presented.

  10. 49 CFR 192.463 - External corrosion control: Cathodic protection.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 3 2013-10-01 2013-10-01 false External corrosion control: Cathodic protection. 192.463 Section 192.463 Transportation Other Regulations Relating to Transportation (Continued... for Corrosion Control § 192.463 External corrosion control: Cathodic protection. (a) Each...

  11. 49 CFR 192.463 - External corrosion control: Cathodic protection.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 3 2014-10-01 2014-10-01 false External corrosion control: Cathodic protection. 192.463 Section 192.463 Transportation Other Regulations Relating to Transportation (Continued... for Corrosion Control § 192.463 External corrosion control: Cathodic protection. (a) Each...

  12. 49 CFR 192.463 - External corrosion control: Cathodic protection.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 3 2011-10-01 2011-10-01 false External corrosion control: Cathodic protection. 192.463 Section 192.463 Transportation Other Regulations Relating to Transportation (Continued... for Corrosion Control § 192.463 External corrosion control: Cathodic protection. (a) Each...

  13. 49 CFR 192.463 - External corrosion control: Cathodic protection.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 3 2010-10-01 2010-10-01 false External corrosion control: Cathodic protection. 192.463 Section 192.463 Transportation Other Regulations Relating to Transportation (Continued... for Corrosion Control § 192.463 External corrosion control: Cathodic protection. (a) Each...

  14. 49 CFR 192.463 - External corrosion control: Cathodic protection.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 3 2012-10-01 2012-10-01 false External corrosion control: Cathodic protection. 192.463 Section 192.463 Transportation Other Regulations Relating to Transportation (Continued... for Corrosion Control § 192.463 External corrosion control: Cathodic protection. (a) Each...

  15. Intermittent cathodic protection using solar power

    SciTech Connect

    Kessler, R.J.; Powers, R.G.; Lasa, I.R.

    1998-12-31

    An intermittent impressed current cathodic protection technique using photovoltaic energy was evaluated to determine it`s ability to protect bridge concrete piles in marine environments against corrosion. The technique uses commercially available anode systems to deliver the cathodic protection current to the concrete and onto the reinforcing steel. Cathodic protection current is only applied during the daytime hours. The magnitude of the applied current was based on sunlight availability. An evaluation was conducted on laboratory specimens as well as in the field. The laboratory work was performed on steel reinforced concrete specimens placed in simulated salt water tanks. For the field evaluation, ten prestressed concrete piles of a bridge structure with an existing rectifier powered cathodic protection system were used. In both cases, intermittent cathodic protection was provided. Polarization and depolarization of the steel reinforcement as well as the protection current delivered were monitored to evaluate the cathodic protection performance as well as the behavior of periodic polarization-depolarization.

  16. Cathodic protection diagnostic expert system

    SciTech Connect

    Van Blaricum, V.L.; Kumar, A.; Park, Y.T.

    1994-12-31

    A knowledge-based diagnostic system called CP Diagnostic has been developed for troubleshooting sacrificial and impressed current cathodic protection systems. The expert system is designed to work in conjunction with the CP Diagnostic database system, which stores inventory and field measurement information for CP systems and flags problem areas. When a malfunction is detected, the expert system queries the user and the companion inventory and field measurement databases to determine its symptoms. The system will be described and examples of troubleshooting using the system will be presented.

  17. Measuring cathodic protection under unbonded coatings

    SciTech Connect

    Orton, M.D.

    1986-03-01

    Corrosion protection of pipe lines by cathodic protection where unbonded coatings exist has concerned engineers for decades. Without more than theoretical considerations available, it is nearly impossible for a pipe line operator to make relevant economic decisions whether to apply additional cathodic protection or to recondition existing pipe lines. The savings realized from additional protective current versus reconditioning large diameter pipe can be significant provided adequate potentials can be achieved beneath unbonded coatings. Arabian American Oil Co. has developed a test procedure to make field measurements to determine the effectiveness of cathodic protection under unbonded coatings. The test site is in the northern part of the Eastern Province of Saudi Arabia.

  18. Pulsed current cathodic protection of well casings

    SciTech Connect

    Bich, N.N.; Bauman, J.

    1995-04-01

    Electric pulses of several hundred volts, applied for very brief periods of time, several thousand times per second, are more effective and economical than conventional steady-state DC currents in protecting deep and/or close-spaced well casings against external corrosion. More uniform current distribution, greater depth of protection, reduced stray current interference, and small anode bed requirements are the main benefits of pulsed technology. Operating principles, equivalent electrical circuits, design considerations, and field cathodic protection logging experience is reviewed.

  19. Cathodic protection requirements for deepwater systems

    SciTech Connect

    Menendez, C.M.; Hanson, H.R.; Kane, R.D.; Farquhar, G.B.

    1999-07-01

    Field and laboratory experience related to requirements for cathodic protection (CP) in deep water are reviewed with emphasis on identification of the major variables that need to be specified for successful deepwater CP designs for offshore structures. The subject is addressed based on the historical development of cathodic protection design methodologies for offshore structures focusing on sacrificial anode systems and trends that have resulted in specific changes in design requirements. Three main subjects are discussed: (1) application of existing industry standards such as NACE RP0176; (2) environmental factors--dissolved oxygen, temperature, salinity, pH, water velocity and fouling; and (3) calcareous deposits--difference between shallow and deep waters. Current practice of design criteria and systems for deepwater applications is assessed, including initial polarization, use of coatings and anode materials. The results from laboratory tests are compared with available documented service experiences and field tests results.

  20. System for storing cathodic protection measurement data

    SciTech Connect

    Bowman, T.J., Westinghouse Hanford

    1996-12-02

    This paper describes a custom cathodic protection (CP) database, and discusses how this combination of data structure and software improves the ability to analyze cathodic protection. This may be a unique solution to the task of managing CP data, and may have value to others. This paper is primarily about the database design, and not about cathodic protection, per se. Every database project is a balancing act. A developer can create custom software that performs complex opcrafions requiring modest operator skills. On the other hand, custom software is expensive to both create and maintain. The Hanford CP data system will be used primarily by one person, the CP Engineer. It was concluded that this position could be trained to use off-the-shelf, general purpose database to store data, and spreadsheet software to perform analyses. The database product allows flexibility in data reporting, and enforces referential integrity. The spreadsheet allows many display options. Especially useful are the graphics. This solution entailed minimal computer coding and may lend itself to adoption by others. The data structure was designed by a database application developer, with close guidance from the CP engineer. The system will require modest amounts of attention from computer support staff, primarily for new query development. The data structures are provided in this report, and are available electronically.

  1. Auger tension leg platform cathodic protection system

    SciTech Connect

    Goolsby, A.D.; Smith, J.D.

    1995-11-01

    In 1986, Shell began investigating corrosion control systems for a generic 3,000 ft. water depth Tension Leg Platform (TLP) type structure to be located in the north-central Gulf of Mexico. In 1987, the 2,850 ft. deep Garden Banks block 426 ``Auger`` location was chosen for the first TLP, and the detailed design process began in earnest. During late 1993 and early 1994, the Auger hull was mated with the other components at its permanent site, and first oil and gas production began April 15, 1994. This paper describes the corrosion control design for the exterior submerged and buried steel surfaces of the 2,850 ft. (869 m) water depth Auger Tension Leg Platform structure. Each major type of component (hull, subsea marine wellhead/guidebase, tendon foundation template, tendon, and production riser) has its own combination of coating system and cathodic protection system designed for a thirty five year lifetime. Cathodic protection (CP) is achieved using a variety of sacrificial anode alloys and geometries (e.g. bracelet, flush-mount, and standoff anodes). Anode and cathode CP design parameters for each component depend upon water depth, and were developed using field test data, laboratory studies, field measurements on existing structures, and available literature information. CP design was performed using design spreadsheets constructed for each component, which optimized anode geometries. Extensive quality assurance efforts were part of the anode procurement process, to ensure performance for the intended life of the corrosion-control systems. Results of early in-service CP surveys of the tendons and guidebases are presented, showing the successful achievement of cathodic protection against seawater corrosion. Corrosion control of one additional system, the eight point lateral mooring system, is not addressed here.

  2. Anodes for cathodic protection of reinforced concrete

    SciTech Connect

    S.J. Bullard; B.S. Covino, Jr.; S.D. Cramer; G.R. Holcomb; J.H. Russell

    2000-03-01

    Consumable anodes were evaluated in the laboratory for use in cathodic protection systems for steel reinforced concrete bridges in coastal environments and in areas where de-icing salts are employed. The anode materials include Zn-hydrogel and thermal-sprayed Zn, Zn-15Al, and Al-12Zn-0.2In. These anodes were evaluated for service in both galvanic (GCP) and impressed current (ICCP) cathodic protection systems. ICCP anodes were electrochemically aged at a factor of 15 times greater than used by the Oregon Department of Transportation in typical coastal ICCP systems (2.2 mA/m{sup 2} based on anode area). Increasing moisture at the anode-concrete interface reduced the operating voltage of all the anodes. The pH at the anode-concrete interface fell to 7 to 8.5 with electrochemical age. Bond strength between the anodes and concrete decreased with electrochemical aging. Interfacial chemistry was the critical link between long-term anode performance and electrochemical age. Zn-hydrogel and the rmal-sprayed Zn and Al-12Zn-0.2In GCP anodes appear to supply adequate protection current to rebar in the Cape Perpetua Viaduct.

  3. 1998 Annual Cathodic Protection Survey Report for the 242-A Evaporator Area

    SciTech Connect

    BOWMAN, T.J.

    1999-12-07

    This report is the second annual cathodic protection report for the 242-A evaporator. The report documents and trends annual polarization survey data, rectifier inspection data, and continuity data from 1994 through mid-1999.

  4. Performance of newly developed sprayed anode cathodic protection system

    SciTech Connect

    Funahashi, M.; Young, W.T.; Daily, S.F.

    1997-12-01

    To improve sprayed sacrificial zinc anode cathodic protection system, the Federal Highway Administration has sponsored a comprehensive program to develop a new sacrificial alloy for use as an anode to cathodically protect reinforced prestressed concrete structures. Under this program, a new sacrificial aluminum alloy has been developed. This paper presents the results of laboratory and field studies using this alloy.

  5. Cathodic protection design using the regression and correlation method

    SciTech Connect

    Niembro, A.M.; Ortiz, E.L.G.

    1997-09-01

    A computerized statistical method which calculates the current demand requirement based on potential measurements for cathodic protection systems is introduced. The method uses the regression and correlation analysis of statistical measurements of current and potentials of the piping network. This approach involves four steps: field potential measurements, statistical determination of the current required to achieve full protection, installation of more cathodic protection capacity with distributed anodes around the plant and examination of the protection potentials. The procedure is described and recommendations for the improvement of the existing and new cathodic protection systems are given.

  6. Cathodic Protection of the Yaquina Bay Bridge

    SciTech Connect

    Bullard, Sophie J.; Cramer, Stephen D.; Covino, Bernard S., Jr.; Holcomb, Gordon R.; Russell, James H.; Laylor, H.M.; Cryer, C.B.

    2001-02-01

    The Yaquina Bay Bridge in Newport, Oregon, was designed by Conde B. McCullough and built in 1936. The 3,223-foot (982 m) structure is a combination of concrete arch approach spans and a steel through arch over the shipping channel. Cathodic protection is used to prevent corrosion damage to the concrete arches. The Oregon Department of Transportation (Oregon DOT) installed a carbon anode coating (DAC-85) on two of the north approach spans in 1985. This anode was operated at a current density of 6.6 mA/m2(0.6 mA/ft2). No failure of the conductive anode was observed in 1990, five years after application, or in 2000, 15 years after application. Thermal-sprayed zinc anodes 20 mils (0.5 mm) thick were applied to half the south approach spans beginning in 1990. Thermal-sprayed zinc anodes 15 mils (0.4 mm) thick were applied to the remaining spans in 1996. These anodes were operated at a current density of 2.2 mA/m2(0.2 mA/ft2). In 1999, four zones on the approach spans were included in a two-year field trial of humectants to improve zinc anode performance. The humectants LiNO3 and LiBr were applied to two zones; the two adjacent zones were left untreated as controls. The humectants substantially reduced circuit resistance compared to the controls.

  7. Intermittent cathodic protection for steel reinforced concrete bridges

    SciTech Connect

    Bullard, Sophie J.; Ziomek-Moroz, Margaret; Cramer, Stephen D.; Covino, Bernard S., Jr.; Holcomb, Gordon R.; Russell, James H.; Soltesz, S.M.

    2002-01-01

    Thermal-sprayed zinc anodes are used for impressed current cathodic protection (ICCP) systems on Oregon's reinforced concrete coastal bridges to prevent chloride-induced corrosion damage. Thermal-sprayed zinc performs well as an ICCP anode but the service life of the zinc anode is directly related to the average current density used to operate the systems. After a ICCP system is turned off, the rebar in the concrete remains passive and protected for a period of time. Intermittent operation of CP systems is possible when continuous corrosion rate monitoring is used to identify conditions when the CP system needs to be turned on to reestablish protection conditions for the rebar. This approach applies CP protection only when needed and reflects the fact that external protection may not be needed for a range of environmental conditions. In doing so, intermittent CP would lower the average current necessary to protect rebar, increase the anode service life, and reduce the lifetime costs for protecting reinforced concrete bridges.

  8. Effects of cathodic disbonding and blistering on current demand for cathodic protection of coated steel

    SciTech Connect

    Knudsen, O.O.; Steinsmo, U.

    2000-03-01

    Cathodic disbonding, blistering, and current demand for cathodic protection were measured for nine commercial coatings for submerged steel structures. The ASTM-G8 standard test and a long-term test (2 years), simulating North Sea conditions, were used. The relevance of the ASTM-G8 test as a prequalification test was evaluated by comparing cathodic disbonding in the two tests. After 800 days in the long-term test, the correlation to ASTM-G8 was good. The correlation coefficient was 0.98. The current demand for cathodic protection increased when the coatings blistered. Examination of the blisters showed that they had cracked. After 2 years of testing, the current demand only had increased for the thin coatings (< 150 {micro}m). The current demand for the thicker coatings (> 450 {micro}m) had not increased, in spite of significant cathodic disbonding for some coatings. Coating breakdown factors, defined as the ratio between current demand for cathodic protection for the coated samples and samples of bare steel, were calculated. These factors were compared with the design values for cathodic protection in Det Norske Veritas (DNV) RP B401 and NORSOK M-CR-503. For all coatings, the coating breakdown rate was lower than the design values.

  9. Exploring the complexity of the mechanism of cathodic protection

    SciTech Connect

    Thompson, N.G.; Lawson, K.M.; Beavers, J.A.

    1994-12-31

    The present understanding of the mechanism of cathodic protection is too simplistic to explain when, why, and under what conditions corrosion is mitigated for a buried pipeline. This paper presents a general framework which attempts to explain why cathodic protection is achieved and what factors are critical in determining the ability of cathodic protection to mitigate corrosion. It is speculated that the changes in the ``near-surface`` environment due to the reduction processes on the cathodically protected steel surface play a significant role in mitigating corrosion and in defining the level of polarization achieved. This is accomplished by contributing a concentration polarization term to the overall level of polarization. Furthermore, the concentration polarization term explains many field related observations not easily explained by activation polarization and mixed potential theory. 32 refs.

  10. Cathodic protection using sacrificial magnesium anodes in prestressed concrete pipelines

    SciTech Connect

    Peris, M.G.; Guillen, M.A.

    1994-12-31

    Two cases of corrosion caused failures in prestressed concrete cylinder pipelines are presented. After determining the nature of the corrosion and its causes, cathodic protection was taken as the only tool that could be applied to try to save the pipeline. This paper describes the methods used to apply cathodic protection using sacrificial magnesium anodes to a pipeline of 800 pipe sections. Also presented are the results of the first year of application.

  11. Platform cathodic protection design in the South China Sea

    SciTech Connect

    Rippon, I.

    1997-09-01

    The 1993 revision of one of the industry recommended practices on cathodic protection design offers the operator the opportunity to use his own experience and data to justify more or less conservative designs. Examples of the use of this option to achieve an economic South China Sea design are presented. The design approach on how to subdivide the object being cathodically protected can be applied in any operating area where there is good environmental data. An example of the cost savings achievable by using this approach is presented. The optimized design is 55% of the cost of the design following the 1993 code.

  12. Cathodic protection of well casings by pulsed current

    SciTech Connect

    Bich, N.N.; Bauman, J.

    1994-12-31

    Electric pulses of several hundred volts, applied for very brief periods of time, several thousand times per second, are more effective and economical than conventional DC currents in protecting deep and/or close spaced well casings against external corrosion. More uniform current distribution, greater depth of protection, reduced stray current interference, and smaller anode bed requirements are the main benefits of pulsed technology. Operating principles, equivalent electrical circuits, design considerations and field cathodic protection logging experience will be reviewed.

  13. Computerized cathodic protection technology reduces pipeline reconditioning costs

    SciTech Connect

    Rizzo, M.E.; Wildman, T.A.

    1997-10-01

    New data collection technology and improved interpretation methods reducing excessive costs to recondition poorly coated pipelines without compromising safety. Application of alternative cathodic protection criteria will reward operators with additional resources for competitiveness. These technologies and the application of sound engineering principles ensure safe pipeline operation, and exceed the letter and the spirit of NACE and US Department of Transportation requirements.

  14. Cathodic protection of prestressed concrete cylinder pipe utilizing zinc anodes

    SciTech Connect

    Benedict, R.L.; Ott, J.G. II; Marshall, D.H.; White, D.

    1997-05-01

    Prestressed concrete cylinder pipe in two pipelines experienced corrosion failure within the first 10 years of service. Mechanical damages developed a migration path for chlorides in the soil to reach the prestress wire. A safe, reliable cathodic protection (CP) system was required to keep the lines viable for their design life. A sacrificial zinc anode CP system was developed.

  15. Cost of Impressed Current Cathodic Protection for Coastal Oregon Bridges

    SciTech Connect

    Holcomb, Gordon R.; Cryer, Curtis B.

    1998-07-01

    The State of Oregon is using arc-sprayed zinc coatings for anodes in impressed current cathodic protection (ICCP) systems on reinforced concrete coastal bridges. The two lowest bids for four ICCP projects were averaged and converted to 1997 dollars. The total average cost for the ICCP projects was $51.63/ft2 ($555.51/m2) of protected concrete. The cathodic protection part of the ICCP projects average $14.08/ft2 ($151.47/m2), while zinc anode installation cost an average of $7.13/ft2 ($76.67/m2). Oregon's rugged and beautiful coastline is graced with a series of historical arched bridges designed by Conde B. McCullough. McCullough is the internationally recognized architect who designed many of the Oregon Coast Highway (U.S. 101) bridges in the 1920s and 1930s. Many are listed on the National Historic Register. After the expense ($45m) and public outcry associated with the replacement of the historic Alsea Bay Bridge in Waldport, Oregon, the Oregon Department of Transportation began using impressed current cathodic protection (ICCP) to extend the service life of reinforced concrete bridges. Figure 1 visually illustrates the need for such remediation. It shows exposed rebar from underneath the Brush Creek Bridge, which is very representative of the conditions found underneath many coastal Oregon bridges. Four ICCP projects have been funded, put out for bid, and completed. The four projects, their bid closing dates, and their completion dates are the Cape Creek Bridge (1990- 1992), the Yaquina Bay Bridge south arches (1991-1995), the Depoe Bay Bridge (1993-1997), and the Yaquina Bay Bridge south approach (1995-1997). The Cape Creek, Yaquina Bay, and Depoe Bay Bridges are shown in Figs. 2-4. Other ICCP projects are underway on the Oregon coast. In the ICCP systems, arc-sprayed zinc coatings on the concrete surface are anodes that protect the steel rebar. Accelerated laboratory studies at the Albany Research Center have predicted zinc anode service lives of

  16. Impacts of cathodic protection on waste package performance

    SciTech Connect

    Atkins, J.E.; Lee, J.H.; Andrews, R.W.

    1996-06-01

    The current design concept for a multi-barrier waste container for the potential repository at Yucca Mountain, Nevada, calls for an outer barrier of 100 mm thick corrosion-allowance material (CAM) (carbon steel) and an inner barrier of 20 mm thick corrosion-resistant material (CRM) (Alloy 825). Fulfillment of the NRC subsystem requirements (10 CFR 60.113) of substantially complete containment and controlled release of radionuclides from the engineered barrier system (EBS) will rely mostly upon the robust waste container design, among other EBS components. In the current waste container design, some degree of cathodic protection of CRM will be provided by CAM. This paper discusses a sensitivity case study for the impacts of cathodic protection of the inner barrier by the outer barrier on the performance of waste package.

  17. Three year performance of aluminum alloy galvanic cathodic protection system

    SciTech Connect

    Funahashi, M.; Young, W.T.

    1999-07-01

    A newly developed aluminum alloy galvanic cathodic protection system was installed on selected prestressed concrete piles. The piles were instrumented to measure the aluminum alloy anode performance. To evaluate the new anode, the pure zinc anode was used for the comparison purpose. The anode performance was monitored for the three years since the system was installed in June, 1996. This paper discusses the results of the performance of the new aluminum alloy anode.

  18. Humectant use in the cathodic protection of reinforced concrete

    SciTech Connect

    Holcomb, Gordon R.; Covino, Bernard S., Jr.; Russell, James H.; Bullard, Sophie J.; Cramer, Stephen D.; Collins, W.K.; Bennett, J.E.; Laylor, H.M.

    2000-11-01

    Use of humectants to improve the thermal-sprayed zinc anode performance during the cathodic protection (CP) of reinforced concrete was examined. A humectant is a hygroscopic material. It is applied onto the surface of the zinc anode to keep the concrete-anode interface moist and a good conductor. The thermodynamics of humectants are discussed. Laboratory results are presented on the effects of using lithium bromide (LiBr) and lithium nitrate (LiNO{sub 3}) as humectants in galvanic cathodic protection (GCP) and impressed current cathodic protection (ICCP) systems, in high and low relative humidities, and on new and previously electrochemically aged CP systems. LiNO{sub 3} and LiBr promoted more effective CP performance. Both improved the performance of aged slabs, suggesting that application of humectants onto existing CP systems would be of benefit. Microscopy showed that humectant-treated slabs develop the same cement-reaction zone, zinc anode structures as untreated slabs. Microscopy of LiBr-treated slabs revealed that the highest concentration of bromide was in the reaction zone. In GCP tests, LiBr was more effective than LiNO{sub 3}. In accelerated ICCP tests, LiNO{sub 3} was more effective than LiBr. It was surmised that bromide could be oxidized in the high-voltage accelerated ICCP tests. At the lower impressed currents of most installed ICCP systems, LiBr may perform as well as or better than LiNO{sub 3}.

  19. Localized cathodic protection of simulated prestressed concrete pilings in seawater

    SciTech Connect

    Chaix, O.; Hartt, W.H.; Kessler, R.; Powers, R.

    1995-05-01

    Corrosion-induced deterioration of prestressed concrete pilings in seawater has been established as the predominant failure mode. A technology involving localized impressed-current cathodic protection (CP) of the splash-zone region in association with conductive rubber anodes was developed to mitigate this deterioration. A series of experiments involving cathodic polarization of simulated prestressed concrete piling specimens partially immersed in seawater was performed. Variables included the concrete mix design, specimen cross section, anode dimensions, and water level. An interactive aspect of CP-operating parameters in association with water level was identified as important if excessively negative potentials and possible tendon embrittlement were to be avoided. The data were evaluated with regard to the interdependence between depolarization magnitude, potential, and concrete relative humidity. Results were reviewed within the context of CP utility for prestressed concrete bridge piling.

  20. Cathodic protection deployment on space shuttle solid rocket boosters

    SciTech Connect

    Zook, L.M.

    1999-07-01

    Corrosion protection of the space shuttle solid rocket boosters incorporates the use of cathodic protection (anodes) in concert with several coatings systems. The SRB design has large carbon/carbon composite (motor nozzle) electrically connected to an aluminum alloy structure. Early in the STS program, the aluminum structures incurred tremendous corrosive attack at coating damage locations due primarily to galvanic coupling with the carbon/carbon nozzle. Also contributing to the galvanic corrosion problem were stainless steel and titanium alloy components housed within the aluminum structures and electrically connected to the aluminum structures. This paper highlights the evolution in the protection of the aluminum structures, providing historical information and summary data from the operation of the corrosion protection systems. Also, data and information are included regarding the evaluation and application of inorganic zinc rich primers to provide anode area on the aluminum structures.

  1. Cathodic Protection Deployment on Space Shuttle Solid Rocket Boosters

    NASA Technical Reports Server (NTRS)

    Zook, Lee M.

    1998-01-01

    Corrosion protection of the space shuttle solid rocket boosters incorporates the use of cathodic protection(anodes) in concert with several coatings systems. The SRB design has large carbon/carbon composites(motor nozzle) electrically connected to an aluminum alloy structure. Early in the STS program, the aluminum structures incurred tremendous corrosive attack due primarily to the galvanic couple to the carbon/carbon nozzle at coating damage locations. Also contributing to the galvanic corrosion problem were stainless steel and titanium alloy components housed within the aluminum structures and electrically connected to the aluminum structures. This paper will highlight the evolution in the protection of the aluminum structures, providing historical information and summary data from the operation of the corrosion protection systems. Also, data and information will be included regarding the evaluation and deployment of inorganic zinc rich primers as anode area on the aluminum structures.

  2. Cathodic protection criteria for prestressed concrete pipe -- an update

    SciTech Connect

    Hall, S.C.

    1998-12-31

    Prestressed concrete cylinder pipe (PCCP) is used in water and waste water systems that serve virtually every major city in North America. Under certain conditions, such as high chloride environments, the steel can depassivate, leading to corrosion. Under these conditions, cathodic protection (CP) can be used to protect the encased steel elements. This paper provides the theoretical consideration and the results of laboratory and field investigations performed during the past decade to determine the effects of CP on the performance of passivated, corroded, and split prestressing wire immersed in an environment to simulate sound mortar and mortar surrounding severely corroded wire. The current densities required to achieve a 100 mV polarization or depolarization shift and the maximum potential criterion to prevent hydrogen embrittlement were determined. The effect of low pH due to corroding wire, the susceptibility of prestressing wire to hydrogen embrittlement, and the approximate length of time and potentials to produce hydrogen embrittlement and eventual wire failure were determined. The effect of discontinuing high levels of CP on the diffusion of hydrogen from wire and the recovery of ductility was evaluated. The amount of current flowing to the prestressing wire and steel cylinder at various current densities were also determined. Case histories of five cathodically protected pipelines are given. The data and results are presented and the minimum and maximum potential levels are recommended. The use of potential monitoring of PCCP to locate corrosion and possible causes of corrosion requiring CP is also presented.

  3. Alternate anode materials for cathodic protection of steel reinforced concrete

    SciTech Connect

    Russell, James H.; Bullard, Sophie J.; Covino, Bernard S., Jr.; Cramer, Stephen D.; Holcomb, Gordon R.; Cryer, Curtis B.

    2001-01-01

    Consumable and non-consumable anodes were evaluated in the laboratory for use in cathodic protection (CP) systems for steel reinforced concrete bridges in coastal environments and in areas where deicing salts are employed. The anode materials included Zn-hydrogel and thermal-sprayed Zn, Zn-15Al, Al-12Zn-0.2In, and cobalt-sprayed Ti. These anodes were evaluated for service in both galvanic (GCP) and impressed current (ICCP) cathodic protection systems. Impressed current CP anodes were electrochemically aged at a current density 15 times as great as that used by the Oregon Department of Transportation in typical coastal ICCP systems (2.2 mA/m2 based on anode area). Increasing moisture at the anode-concrete interface reduced the operating voltage of all the anodes. Bond strength between the anodes and concrete decreased with electrochemical aging. The Zn-15Al and Al-12Zn-0.2In anodes provided adequate protection in GCP but their life was too short in the accelerated ICCP tests. Zinc had an adequate life in ICCP tests but was inadequate as a galvanic anode. Zinc-hydrogel performed well in both tests when the hydrogel was kept moist. Titanium was an excellent anode for ICCP, but is not suitable for GCP.

  4. 49 CFR 195.563 - Which pipelines must have cathodic protection?

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... protection as a result of electrical inspections. See previous editions of this part in 49 CFR, parts 186 to... 49 Transportation 3 2012-10-01 2012-10-01 false Which pipelines must have cathodic protection? 195... have cathodic protection? (a) Each buried or submerged pipeline that is constructed,...

  5. 49 CFR 195.563 - Which pipelines must have cathodic protection?

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... protection as a result of electrical inspections. See previous editions of this part in 49 CFR, parts 186 to... 49 Transportation 3 2013-10-01 2013-10-01 false Which pipelines must have cathodic protection? 195... have cathodic protection? (a) Each buried or submerged pipeline that is constructed,...

  6. 49 CFR 195.563 - Which pipelines must have cathodic protection?

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... protection as a result of electrical inspections. See previous editions of this part in 49 CFR, parts 186 to... 49 Transportation 3 2014-10-01 2014-10-01 false Which pipelines must have cathodic protection? 195... have cathodic protection? (a) Each buried or submerged pipeline that is constructed,...

  7. 49 CFR 195.563 - Which pipelines must have cathodic protection?

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... protection as a result of electrical inspections. See previous editions of this part in 49 CFR, parts 186 to... 49 Transportation 3 2011-10-01 2011-10-01 false Which pipelines must have cathodic protection? 195... have cathodic protection? (a) Each buried or submerged pipeline that is constructed,...

  8. Alternative consumable anodes for cathodic protection of reinforced concrete bridges

    SciTech Connect

    Bullard, Sophie J.; Covino, Bernard S., Jr.; Cramer, Stephen D.; Holcomb, Gordon R.; Russell, James H.; Cryer, C.B.; Laylor, H.M.

    1999-01-01

    Alternative consumable anodes were evaluated in the laboratory for use in cathodic protection systems for steel reinforced concrete bridges in coastal environments and in areas where deicing salts are employed. The anode materials included zinc hydrogel foil and thermal-sprayed Zn, Zn-15Al, and Al-12Zn-0.2In alloys. They were evaluated for service in both impressed current (ICCP) and galvanic (GCP) cathodic protection systems. ICCP anodes were electrochemically aged at current densities of five to fifteen times that used by the Oregon Department of Transportation (Oregon DOT) in typical coastal CP systems (2.2 mA/m2 based on anode area). GCP anodes were electrochemically aged at a rate defined by the steel-anode couple. Both types of anodes were exposed to 80°F, a relative humidity of 85 pct, and were periodically wetted with deionized water. The Zn anode gave the best performance in ICCP systems. The four anodes all produced sufficient current density suitable for use in GCP systems. The anodes materials, ranked in increasing order of GCP current output, were: thermal-sprayed Al-12Zn-0.2In, Zn hydrogel, thermal-sprayed Zn-15Al, and thermal-sprayed Zn.

  9. Update on sacrificial anode cathodic protection on steel reinforced concrete structures in seawater

    SciTech Connect

    Kessler, R.J.; Powers, R.G.; Lasa, I.R.

    1995-12-01

    Various configurations of sacrificial zinc anodes have been successfully used to provide cathodic protection in the tidal zone of steel reinforced concrete structures. Studies conducted by the Florida Department of Transportation have shown that zinc anodes configured in simple fashion can provide long term cathodic protection. These simple systems represent an attractive alternative to conventional cathodic protection where rectifiers are used. This paper discusses a cathodic protection system comprised of zinc sheet anodes used in conjunction with a submerged bulk zinc anode. An overview of long term performance is presented along with estimated service life and costs.

  10. Study of Discharging Characteristics of Hollow Cathode Surge Protective Gap

    NASA Astrophysics Data System (ADS)

    Yao, Xueling; Chen, Jingliang; Xu, Xiaowei; Liu, Yong; Zhao, Yong

    2010-02-01

    A hollow cathode surge protective gap (HCSPG) was designed, and the discharge characteristics was investigated in an air and nitrogen gas environment. For both the gap spacing D and the hole diameter varphi of HCSPG of 3 mm, the voltage protective value Up of HCSPG is about 3.5 kV and its converting time tc exceeds 100 ns at an air pressure from 10 Pa to 100 Pa. The maximum converting time tc from glow to arc discharging reaches 1600 ns at an air pressure of 100 Pa, while the minimum converting time tc is 120 ns at 10 Pa. For a triggered HCSPG, Up is reduced to about 1.6 kV while the converting time is 120 ns with a semiconductor trigger device and 50 ns with a dielectric porcelain trigger device under an air pressure of 100 Pa.

  11. North Sea platform cathodic protection -- A performance vs design review

    SciTech Connect

    Ridd, B.R.; Queen, D.M.E.; Osvoll, H.; Bjornaas, F.

    1999-07-01

    Modern day cathodic protection (CP) design codes are typically highly conservative when compared with early CP system designs. Review of historical survey data from platforms in service for approximately 25 to 30 years illustrates the conservatism now employed when constructing new structures for installation in the North Sea. This paper illustrates this level of conservatism by reviewing the CP system performance of a gas gathering platform complex in the Southern North Sea and comparing the results of that review with present day design codes. The paper details the findings of a CP design review and ROV validation inspection to determine the present system status. The effect of combined impressed current and sacrificial anode systems is also illustrated. Finally a discussion on the definition and optimization of additional CP system requirements and future survey strategy to ensure protection is maintained to the anticipated end of field life is provided highlighting the cost benefits of basing retrofit designs on system performance rather than design theory.

  12. Cathodic polarization and protection of simulated prestressed concrete pilings in seawater

    SciTech Connect

    Pangrazzi, R. ); Hartt, W.H. . Center for Marine Materials); Kessler, R. . Florida Dept. of Transportation)

    1994-03-01

    Experiments were conducted to determine the effectiveness of localized cathodic polarization for reducing corrosion of simulated prestressed concrete piles containing continuous and segmented tendons exposed to seawater. Conductive rubber was used as the anode material. Corrosion of the steel was enhanced for most specimens by admixing calcium chloride (CaCl[sub 2]) during concrete pouring. Specimens were polarized cathodically at constant potentials (current on) ranging from [minus]0.72 V[sub SCE] to [minus]1.10 V[sub SCE]. The magnitude of impressed current and its distribution along the embedded steel were monitored as a function of exposure time and level of polarization. Potential distributions for the continuous and segmented tendons were measured also. The level of cathodic polarization was assessed as a function of position along the specimens by the depolarization method and by post-test visual inspection. Protection was achieved where instant-off potentials were more negative than [minus]0.75 V[sub SCE]. Polarization was negligible at heights > [approximately]1 dm above the anode. Results were presented within the context of protecting marine pilings from corrosion.

  13. The effectiveness of cathodic protection under unbonded coatings on pipelines

    SciTech Connect

    Orton, M.D.

    1985-06-01

    Three joints of 1.22 m (48 in.) API X-42 line pipe 8 m (26 ft) long were instrumented, wrapped with an unbonded tape coating, and buried in a saline silty-sand soil in Eastern Saudi Arabia. Various levels of cathodic protection current were applied to the buried pipe. Potential measurements were made using reference electrodes imbedded in the pipe wall and in the usual monitoring manner with the reference electrode placed over the pipe. Data is presented on the relationship of surface pipe-to-soil potentials versus potentials under an unbonded coating with reference to Ag/AgCI electrodes installed up to 20 in. from a manufactured coating holiday.

  14. Humectant use in the cathodic protection of reinforced concrete

    SciTech Connect

    Holcomb, G.R.; Covino, B.S. Jr.; Russell, J.H.; Bullard, S.J.; Cramer, S.D.; Collins, W.K.; Bennett, J.E.; H.M. Laylor

    2000-03-01

    The use of humectants to improve the thermal-sprayed zinc anode performance during the cathodic protection (CP) of reinforced concrete is examined. A humectant is a hygroscopic material. It is applied onto the surface of the zinc anode to keep the concrete-anode interface moist and a good conductor. The thermodynamics of humectants are discussed. Laboratory results are presented on the effects of using LiBr and LiNO{sub 3} as humectants in galvanic (GCP) and impressed current (ICCP) systems, in high and low relative humidities, and on new and previously electrochemically aged CP systems. LiNO{sub 3} and LiBr promoted more effective CP performance. Both improved the performance of aged slabs, suggesting that application of humectants onto existing CP systems would be of benefit. Microscopy showed that humectant-treated slabs develop the same cement-reaction zone-zinc anode structures as untreated slabs. Microscopy of LiBr-treated slabs revealed that the highest concentration of bromide was in the reaction zone. In GCP tests, LiBr was more effective than LiNO{sub 3}. In accelerated ICCP tests, LiNO{sub 3} was more effective than LiBr. It was surmised that bromide could be oxidized in the high-voltage accelerated ICCP tests. At the lower impressed currents of most installed ICCP systems, LiBr may perform as well as or better than LiNO{sub 3}.

  15. 49 CFR Appendix D to Part 192 - Criteria for Cathodic Protection and Determination of Measurements

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... of Measurements D Appendix D to Part 192 Transportation Other Regulations Relating to Transportation.... 192, App. D Appendix D to Part 192—Criteria for Cathodic Protection and Determination of Measurements... appendix. D. Metals of different anodic potentials. A negative (cathodic) voltage, measured in...

  16. 49 CFR Appendix D to Part 192 - Criteria for Cathodic Protection and Determination of Measurements

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... of Measurements D Appendix D to Part 192 Transportation Other Regulations Relating to Transportation.... 192, App. D Appendix D to Part 192—Criteria for Cathodic Protection and Determination of Measurements... appendix. D. Metals of different anodic potentials. A negative (cathodic) voltage, measured in...

  17. 49 CFR Appendix D to Part 192 - Criteria for Cathodic Protection and Determination of Measurements

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... of Measurements D Appendix D to Part 192 Transportation Other Regulations Relating to Transportation.... 192, App. D Appendix D to Part 192—Criteria for Cathodic Protection and Determination of Measurements... appendix. D. Metals of different anodic potentials. A negative (cathodic) voltage, measured in...

  18. Designing cathodic protection systems for marine structures and vehicles. ASTM special technical publication 1370

    SciTech Connect

    Hack, H.P.

    1999-07-01

    Cathodic protection is an important method of protecting structures and ships from the corrosive effects of seawater. Poor designs can be far more costly to implement than optimal designs, Improper design can cause overprotection, with resulting paint blistering and accelerated corrosion of some alloys, underprotection, with resultant structure corrosion, or stray current corrosion of nearby structures. The first ASTM symposium specifically aimed at cathodic protection in seawater was intended to compile all the criteria and philosophy for designing both sacrificial and impressed current cathodic protection systems for structures and vehicles in seawater. The papers which are included in this STP are significant in that they summarize the major seawater cathodic protection system design philosophies. Papers have been processed separately for inclusion on the database.

  19. DEMONSTRATION AND EVALUATION OF TECHNOLOGIES FOR DETERMINING THE SUITABILITY OF USTS FOR UPGRADING WITH CATHODIC PROTECTION

    EPA Science Inventory

    Field applications of three alternate technologies for assessing the suitability of underground storage tanks for upgrading by the addition of cathodic protection were observed and documented. The technologies were applied to five existing underground storage tanks that were slat...

  20. Cathodic protection criteria for controlling microbially influenced corrosion in power plants

    SciTech Connect

    Nekoksa, G. ); Gutherman, B. )

    1991-05-01

    The main objective of this project was to evaluate galvanic corrosion on coupled samples and to determine cathodic protection criteria and effectiveness on four materials in an untreated seawater cooling system with microbially influenced corrosion. Hydrogen embrittlement of two cathodically protected high performance condenser tube materials was also evaluated. The long-term field testing was conducted at the intake structure of Florida Power Corporation's Crystal River Unit 3 Nuclear Power Plant. The test results indicate that Type 304L stainless steel can be galvanically corroded when coupled to Cu/Ni and fully cathodically protected when coupled to a carbon steel anode. Cathodic protection did protect carbon steel, but less than expected from the literature. The cathodic protection effectiveness on carbon steel was approximately 82% at {minus}1.01 V (SCE). To prevent hydrogen embrittlement, the tested titanium or ferritic stainless steel should not be polarized to more negative potentials than {minus}0.75 V (SCE). This report consists of a literature search, preliminary laboratory polarization testing, laboratory testing to determine microbial effects caused by an interruption of cathodic current, development of exposure racks for long-term electrochemical testing and analyses of corrosion, metallurgical, microbial and chemical data. 44 refs., 26 figs., 9 tabs.

  1. Application and guidelines for use of cathodic protection in titanium-tubed condensers

    SciTech Connect

    Peroni, B.M.; Billemeyer, G.W.; Mountford, J.A. Jr.

    1995-12-31

    The use of dissimilar metals in power plant condensers often dictates the need for cathodic protection (C.P.) of the more electrochemically active metal(s). Coatings are also used to control corrosion on some tube sheets and water boxes. In these cases, the intent of the C.P. is to protect the metal substrate at the coating voids or holidays. Proper design and application is necessary not only to mitigate corrosion of the active metals, but also to prevent to metals such as titanium and ferritic stainless steels. Improper application of cathodic protection potentials can lead to severe corrosion or unwanted hydrogen absorption by these materials. Proper design and control of C.P. systems implies a balance between obtaining a potential sufficient for corrosion protection while at the same time achieving minimal hydrogen production. This paper will update the history of cathodic protection used at a large utility, as well as present relevant and practical guidelines for trouble-free use of cathodic protection. In addition, the impact of new technology, such as tube sheet reference electrodes, will be addressed. The main focus will be on titanium tubing because of its ever-increasing, large scale use, and because the majority of condenser systems using titanium also require a cathodic protection system.

  2. Cathodic protection system design for steel pilings of a wharf structure

    SciTech Connect

    Nikolakakos, S.

    1999-07-01

    Corrosion of steel pilings in sea and brackish water is mostly due to the establishment of localized corrosion cells and the effects of the tidal changes. The most frequently used corrosion protection systems are coatings and/or cathodic protection. These protective systems when properly designed, installed and operated are very effective in preventing corrosion problems. The design of a cathodic protection system, in order to be effective and reliable, must take into consideration all technical design criteria, the type of materials used, the geometric shape of the structure, environmental conditions, site restrictions, and any outside interferences. These design considerations, as well as the use of design data and an overall design methodology for a cathodic protection system for pipe and sheet piling used in a wharf structure, are discussed in this paper.

  3. Embedded reference electrodes for corrosion potential monitoring, electrochemical characterization, and controlled-potential cathodic protection

    NASA Astrophysics Data System (ADS)

    Merten, Bobbi Jo Elizabeth

    aluminum could be designed through continued mixture optimization. The Ag wire ERE has been utilized for the characterization and ranking of experimental coatings on metal substrates. Structural health monitoring and corrosion potential feedback of cathodic protection systems are additional uses. There is some indication that CPCP may be applied by ERE to control the substrate polarization for an organic coating system.

  4. Cathodic protection upgrade of the 1,050 ft water depth Cognac platform

    SciTech Connect

    Goolsby, A.D.; McGuire, D.P.

    1997-09-01

    This paper reports the steps of a cathodic protection upgrade of a three year old deep water platform (the Cognac structure, Mississippi Canyon 194A) installed in 1977/78. These steps include obtaining results from an ROV survey, using the survey data to calculate added currents needed to upgrade cathodic protection of the platform, achieving retrofit anode installation using then novel methods, and following-up with CP surveys showing the success of the upgrade. The authors calculated that 3,100 amperes of additional current applied at depths from 250 to 1,050 feet would be needed to achieve full cathodic protection of the well conductors and jacket of Cognac. Approximately 1,100 additional aluminum anodes were installed during the early 1980`s, using two novel installation methods. Installed cost was estimated at $5.4MM. Potentials since the time of the upgrade have been very satisfactory.

  5. Protected Sulfur Cathode with Mixed Conductive Coating Layer for Lithium Sulfur Battery

    NASA Astrophysics Data System (ADS)

    Jin, Jun; Wen, Zhaoyin; Wang, Qingsong; Gu, Sui; Huang, Xiao; Chen, Chunhua

    2016-08-01

    A mixed conductive coating layer composed of lithium ion conductive ceramic powder, carbon and binder was introduced on the surface of a sulfur electrode. This coating layer is designed to suppress the migration of lithium polysulfides from the sulfur electrode, and improve the cycling capacity of a lithium sulfur battery. The protected sulfur cathode with a mixed conductive coating layer delivered an initial specific capacity of 1236 mAh g-1 at 0.5C and maintained a capacity of 842 mAh g-1 after 100 cycles. In particular, a soft package battery with protected cathode exhibits improved cycling capacity and excellent rate performance.

  6. Localized cathodic protection of simulated prestressed concrete pilings in sea water

    SciTech Connect

    Hartt, W.H.; Chaix, O.; Kessler, R.J.; Powers, R.

    1994-12-31

    Corrosion induced deterioration of prestressed concrete pilings in sea water has been established as the predominant failure mode for structures in coastal Florida waters, and a technology involving localized impressed current cathodic protection of the splash zone region in association with conductive rubber anodes has been developed to mitigate this. In the present research a series of experiments involving simulated prestressed concrete piling specimens partially immersed in sea water while cathodically protected has been performed. Variables included (1) concrete mix design, (2) specimen cross section, (3) anode dimensions and (4) water level relative to the anode. An interactive aspect of cathodic protection operating parameters in association with water level was identified as important to avoid excessively negative potentials which might cause tendon embrittlement. An evaluation of the data was incitive with regard to the interrelationship between depolarization magnitude, potential and level of protection; and this was determined to be a function of moisture content within the concrete. The results are discussed within the context of prestressed concrete bridge piling cathodic protection.

  7. Continuous phase transition in the region of the vacuum arc cathode spot

    SciTech Connect

    Askari, S.; Minoo, H.; Moussakhani, K.

    2008-09-15

    A model for the near-cathode region of electric arcs is presented to investigate the liquid-plasma phase transition in the cathode spot region. Due to the high values of pressure and temperature after spot ignition, a 'continuous phase transition' occurs in the liquid-vapor interface. A set of fluid equations with suitable boundary conditions have been solved to obtain diagrams of the spot plasma in the temperature-density plane during the spot evolution for a typical spot. To evaluate the model, the magnitude of some essential quantities such as the mean ion charge state of plasma and current density have been calculated, which are in accordance with experimental results.

  8. As-built design criteria: B-234 cathodic protection, C.P. wire to pipe connections

    SciTech Connect

    Brezler, T.A.

    1994-11-14

    This document presents the as-built conditions (cathodic protection wire connections to miscellaneous underground piping) that do not otherwise exist on the current {open_quotes}Released for Construction{close_quotes} design drawings. A note will be added to each applicable drawing, referencing this support document.

  9. Impressed current cathodic protection of steel reinforced concrete pilings: Protection criteria and the threshold for hydrogen embrittlement

    SciTech Connect

    Enos, D.G.; Williams, A.J. Jr.; Scully, J.R.; Clemena, G.G.

    1997-12-01

    This paper addresses both safe cathodic protection limits for pre-stressing steel in concrete given the concern of hydrogen embrittlement (HE) and the adequacy of cathodic protection using established criteria. Impressed current cathodic protection was applied to laboratory scale pilings at current densities ranging from 0.1 to 2.5 {micro}A/cm{sup 2} via a skirt anode located at the waterline. Adequate cathodic protection was achieved at positions ranging from 25 cm above to 50 cm below the waterline, according to the 100 mV depolarization criterion, at an apparent applied current density of 0.33 {micro}A/cm{sup 2}. However, the {minus}780 mV{sub SCE} criterion was not met for currents as high as 1.33 {micro}A/cm{sup 2} for these positions. Hydrogen production, absorption, and permeation in steel was first observed via embedded hydrogen sensors, located 50 cm and 25 cm above the waterline, at an applied current density of 0.33 {micro}A/cm{sup 2}. The observation of hydrogen production verifies the concerns that the local oxygen concentration may be readily depleted at modest cathodic protection levels and that local pH levels may be below 12.5. Experimentation presented here, as well as within the literature, has demonstrated that steel crevice corrosion is readily initiated within chloride contaminated concrete prior to the application of cathodic protection, and that this corrosion is accompanied by an acidification of the local environment to a pH of 6 or below due to ferrous ion hydrolysis. The mobile subsurface hydrogen concentration present within the steel reinforcement was determined for each applied cathodic current density. Although hydrogen production and uptake occurred at current densities as low as 0.33 {micro}A/cm{sup 2}, the critical hydrogen concentration for embrittlement (2 {times} 10{sup {minus}7} mol H/cm{sup 3}) was not exceeded at area averaged current densities as high as 1.33 {micro}A/cm{sup 2}.

  10. Hydrogen Induced Stress Cracking of Materials Under Cathodic Protection

    NASA Astrophysics Data System (ADS)

    LaCoursiere, Marissa P.

    Hydrogen embrittlement of AISI 4340, InconelRTM 718, Alloy 686 and Alloy 59 was studied using slow strain rate tests of both smooth and notched cylindrical specimens. Two heat treatments of the AISI 4340 material were used as a standard for two levels of yield strength: 1479 MPa, and 1140 MPa. A subset of the 1140 MPa AISI 4340 material also underwent plasma nitriding. The InconelRTM 718 material was hardened following AMS 5663M to obtain a yield strength of 1091 MPa. The Alloy 686 material was obtained in the Grade 3 condition with a minimum yield strength of 1034 MPa. The Alloy 59 material was obtained with a cold worked condition similar to the Alloy 686 and with a minimum yield strength of 1034 MPa. Ninety-nine specimens were tested, including smooth cylindrical tensile test specimens and smooth and notched cylindrical slow strain rate tensile tests specimens. Testing included specimens that had been precharged with hydrogen in 3.5% NaCl at 50°C for 2 weeks (AISI 4340), 4 weeks (InconelRTM 718, Alloy 686, Alloy 59) and 16 weeks (InconelRTM 718, Alloy 686, Alloy 59) using a potentiostat to deliver a cathodic potential of -1100 mV vs. SCE. The strain rate over the gauge section for the smooth specimens and in the notch root for the notched specimens was 1 x 10-6 /s. It was found that the AISI 4340 was highly embrittled in simulated ocean water when compared to the nickel based superalloys. The higher strength AISI 4340 showed much more embrittlement, as expected. Testing of the AISI 4340 at both 20°C and 4°C showed that the temperature had no effect on the hydrogen embrittlement response. The InconelRTM 718 was highly embrittled when precharged, although it only showed low levels of embrittlement when unprecharged. Both the Alloy 686 and Alloy 59 showed minimal embrittlement in all conditions. Therefore, for the materials examined, the use of Alloy 686 and Alloy 59 for components in salt water environments when under a cathodic potential of -1100 mV vs. SCE is

  11. The sacrificial cathodic protection of UNS C71500 heat exchanger tubes in Arabian Gulf sea water

    SciTech Connect

    Al-Hashem, A.; Carew, J.A.; Al-Sayegh, A.

    1997-12-01

    A laboratory investigation using a specially designed circulating test rig was carried out to study the effectiveness of achieving complete cathodic protection of UNS C71500 heat exchanger tubes in seawater applications. Results indicated that the galvanic current distribution covered the entire 6m length of the tube. The presence of sulfide ions as pollutants in seawater shifted the galvanic potentials of the tubes to more active potentials and prevented the formation of protective films that normally form.

  12. New cathodic protection system design for dubai platforms

    SciTech Connect

    Evans, S.

    1985-03-01

    New sacrificial anode protection criteria that were developed and tested by the Dubai Petroleum Company (DPC) have resulted in a 40 percent decrease in anode weight as compared to that required by conventionally accepted design. Derivation of the criteria are based on an analyses of extensive field results of potential surveys of seven DPC platforms that had conventional sacrificial anode protection systems. It was found that an initial platform current density of 310 + or - 20 milliampers per square meter of area exposed to seawater, resulted in polarization of the platform to -1 volt with respect to the silversilver chloride reference electrode. As a consequence of this high initial polarization, the electric current requirement for protection is significantly reduced. The new criteria were used in the design of Platform ''JJ'' which was installed in September 1982. Field results that include periodic potential surveys of Platform ''JJ'' will be presented and discussed.

  13. Development and testing of new offshore cathodic protection criteria

    SciTech Connect

    Evans, S.

    1986-05-01

    New sacrificial anode protection criteria developed and tested by Dubai Petroleum Co. (DPC) resulted in a 40% decrease in anode weight as compared to that required by conventionally accepted design. Derivation of the criteria is based on an analysis of extensive field results of potential surveys of seven DPC platforms that had conventional sacrificial anode protection systems. It was found that an initial platform current density of 29+.2 x 10/sup -3/A/sq ft (310+.20mA/m/sup 2/) of area exposed to seawater resulted in polarization of the platform to -1 V with respect to the silver/silver-chloride reference electrode. As a consequence of this initial polarization, the electric current requirement for protection is reduced significantly. The new criteria were used in the design of Platform JJ, which was installed in September 1982. Field results that include periodic potential surveys of Platform JJ are presented and discussed.

  14. Research to develop guidelines for cathodic protection of concentric neutral cables, volume 1

    NASA Astrophysics Data System (ADS)

    Hanck, J. A.; Nekoksa, G.

    1981-08-01

    Data associated with corrosion of concentric neutrals (CN) of direct buried cables from field tests conducted at 36 bellholes excavated in California, Oklahoma, and North Carolina are presented. The electrochemical, chemical, bacteriological, and sieve analyses of native soil and imported backfill samples are included. Up to 129 values were determined for each bellhole and stored on cards as a data bank. All values were statistically analyzed and correlated with corrosion found. The severity of corrosion correlated best with CN corrosion potentials, CN resistance measurements, coarseness of backfill, and soil resistivity. The guidelines for installation of cathodic protection on CN cables are to be based upon the evaluation of over 100 experimental cathodic protection systems and upon laboratory testing for protection criteria with and without ac effects.

  15. Corrosion behavior of rebar for intermittent cathodic protection of coastal bridges

    SciTech Connect

    Ziomek-Moroz, M. | Cramer, S.D. | Covino, B.S., Jr. | Bullard, S.J. | Holcomb, G.R. | Russell, J.H. | Windisch, Jr., C.F.

    2001-02-01

    A number of reinforced concrete bridges on the Oregon coast are protected against chloride-induced corrosion damage by means of impressed current cathodic protection (ICCP). Thermal-sprayed Zn serves as the anode in these systems. Rebar in the concrete can remain passive and protected for some period of time after the CP system is turned off. The active-passive corrosion behavior of rebar in simulated pore solution (SPS) was investigated as a function of pH and Cl- concentration as part of a study of intermittent ICCP operation. Rebar corrosion rates in SPS were determined from polarization curves by fitting the Butler-Volmer equation and the linear polarization equation. Analysis of the passive film in SPS by x-ray diffraction and surface enhanced Raman spectroscopy showed it to be largely Fe3O4. However, the Fe(OH)2 content increased with cathodic polarization time.

  16. The past and future of cathodic protection for underground storage tanks

    SciTech Connect

    Lehmann, J.A. )

    1994-05-01

    Corrosion protection for underground storage tanks (USTs) has become a vital national consideration since the establishment of new US Environmental Protection Agency (EPA) rules. Compliance with these rules is required by the end of 1998. Approximately 700,000 buried steel tanks in the United States are likely candidates for cathodic protection (CP) to meet regulatory compliance. This review of CP and other corrosion control measures used on USTs will help tank owners and corrosion control professionals make plans to meet the EPA deadline before the last-minute rush begins.

  17. Cathodic protection of pre-tensioned concrete. Part 2: Experiments upon prestressed beams

    SciTech Connect

    Poeydomenge, A.; Hartt, W.H.

    1998-12-31

    Experiments were performed upon a series of pre-tensioned concrete beams whereby these were subjected sequentially to accelerated tendon corrosion via anodic polarization and then to cathodic over-protection. Lastly, the beams were autopsied, and the tendons were analyzed with regard to the extent of corrosion and occurrence of any fractures. A model was formulated which characterizes the stress state of a corroding tendon in concrete, and the data from the beams were evaluated within the context of this and of Constant Extension Rate Testing (CERT) results that were developed in companion research. Implications of the results with regard to criteria for qualification of precorroded pre-tensioned concrete members for cathodic protection are discussed.

  18. Protective sheath for a continuous measurement thermocouple

    DOEpatents

    Phillippi, R.M.

    1991-12-03

    Disclosed is a protective thermocouple sheath of a magnesia graphite refractory material for use in continuous temperature measurements of molten metal in a metallurgical ladle and having a basic slag layer thereon. The sheath includes an elongated torpedo-shaped sheath body formed of a refractory composition and having an interior borehole extending axially therethrough and adapted to receive a thermocouple. The sheath body includes a lower end which is closed about the borehole and forms a narrow, tapered tip. The sheath body also includes a first body portion integral with the tapered tip and having a relatively constant cross section and providing a thin wall around the borehole. The sheath body also includes a second body portion having a relatively constant cross section larger than the cross section of the first body portion and providing a thicker wall around the borehole. The borehole terminates in an open end at the second body portion. The tapered tip is adapted to penetrate the slag layer and the thicker second body portion and its magnesia constituent material are adapted to withstand chemical attack thereon from the slag layer. The graphite constituent improves thermal conductivity of the refractory material and, thus, enhances the thermal responsiveness of the device. 4 figures.

  19. Protective sheath for a continuous measurement thermocouple

    DOEpatents

    Phillippi, R. Michael

    1991-01-01

    Disclosed is a protective thermocouple sheath of a magnesia graphite refractory material for use in continuous temperature measurements of molten metal in a metallurgical ladle and having a basic slag layer thereon. The sheath includes an elongated torpedo-shaped sheath body formed of a refractory composition and having an interior borehole extending axially therethrough and adapted to receive a thermocouple. The sheath body includes a lower end which is closed about the borehole and forms a narrow, tapered tip. The sheath body also includes a first body portion integral with the tapered tip and having a relatively constant cross section and providing a thin wall around the borehole. The sheath body also includes a second body portion having a relatively constant cross section larger than the cross section of the first body portion and providing a thicker wall around the borehole. The borehole terminates in an open end at the second body portion. The tapered tip is adapted to penetrate the slag layer and the thicker second body portion and its magnesia constituent material are adapted to withstand chemical attack thereon from the slag layer. The graphite constituent improves thermal conductivity of the refractory material and, thus, enhances the thermal responsiveness of the device.

  20. Continuing life test of a xenon hollow cathode for a space plasma contactor

    NASA Technical Reports Server (NTRS)

    Sarver-Verhey, Timothy R.

    1994-01-01

    Implementation of a hollow cathode plasma contactor for charge control on the Space Station has required validation of long-life hollow cathodes. A test series of hollow cathodes and hollow cathode plasma contactors was initiated as part of the plasma contactor development program. An on-going wear-test of a hollow cathode has demonstrated cathode operation in excess of 10,000 hours with small changes in operating parameters. The discharge has experienced 10 shutdowns during the test, all of which were due to test facility failures or expellant replenishment. In all cases, the cathode was re-ignited at approximately 42 volts and resumed typical operation. This test represents the longest demonstrated stable operation of a high current (greater than 1 A) xenon hollow cathode reported to date.

  1. Cathodic protection against crevice corrosion of high-alloy steel in seawater

    SciTech Connect

    Baptista, W.; Pimenta, G.

    1995-10-01

    Localized corrosion of high-alloy steel in seawater, mainly under crevices, limits the alloys` use in such environments. An in-situ test program was conducted to study this corrosive process and possible protective measures. Attention focused on the resistance of several types of high-alloy steels under corrosive conditions and on the response of type 316 stainless steel to cathodic protection (CP) by carbon steel and zinc anodes. It was found that CP could effectively mitigate crevice corrosion in these subsea conditions.

  2. Continuing Education: The University's "Buyer Protection Plan"

    ERIC Educational Resources Information Center

    Sork, Thomas J.; Pankowski, Mary L.

    1975-01-01

    Students in institutions of higher education are, in effect, consumer of a high priced product. University continuing education is in a unique position to operationalize a warranty system with the Continuing Education Unit, which gives the student some assurance that his alma mater will continue to be concerned about him. (Author)

  3. Thermal-sprayed zinc anodes for cathodic protection of steel-reinforced concrete bridges

    SciTech Connect

    Bullard, Sophie J.; Covino, Bernard S., Jr.; Cramer, Stephen D.; McGill, Galen E.

    1996-01-01

    Thermal-sprayed zinc anodes are being used in Oregon in impressed current cathodic protection (ICCP) systems for reinforced concrete bridges. The U.S. Department of Energy, Albany Research Center, is collaborating with the Oregon Department of Transportation (ODOT) to evaluate the long-term performance and service life of these anodes. Laboratory studies were conducted on concrete slabs coated with 0.5 mm (20 mil) thick, thermal-sprayed zinc anodes. The slabs were electrochemically aged at an accelerated rate using an anode current density of 0.032 A/m2 (3mA/ft2). Half the slabs were preheated before thermal-spraying with zinc; the other half were unheated. Electrochemical aging resulted in the formation at the zinc-concrete interface of a thin, low pH zone (relative to cement paste) consisting primarily of ZnO and Zn(OH)2, and in a second zone of calcium and zinc aluminates and silicates formed by secondary mineralization. Both zones contained elevated concentrations of sulfate and chloride ions. The original bond strength of the zinc coating decreased due to the loss of mechanical bond to the concrete with the initial passage of electrical charge (aging). Additional charge led to an increase in bond strength to a maximum as the result of secondary mineralization of zinc dissolution products with the cement paste. Further charge led to a decrease in bond strength and ultimately coating disbondment as the interfacial reaction zones continued to thicken. This occurred at an effective service life of 27 years at the 0.0022 A/m2 (0.2 mA/ft2) current density typically used by ODOT in ICCP systems for coastal bridges. Zinc coating failure under tensile stress was primarily cohesive within the thickening reaction zones at the zinc-concrete interface. There was no difference between the bond strength of zinc coatings on preheated and unheated concrete surfaces after long service times.

  4. Comparison of cathodic protection currents on 70/30 copper-nickel and alloy 625 piping systems

    SciTech Connect

    Hack, H.P.; Wheatfall, W.L.

    1995-12-01

    The question answered in this study is whether the demand on a cathodic protection system will change when the protected pipe material is changed from copper-nickel to alloy 625. Two piping mockups were designed to simulate a probable geometry for a cathodically-protected piping system. Each mockup consisted of a 20-foot (610-cm) length of nominal 2-inch (5-cm) diameter piping with a zinc anode for cathodic protection inserted in the discharge end of each. one mockup was made with 70-30 copper-nickel pipe and the other with alloy 625 pipe. Protection currents and potential profiles inside the pipes were measured over a six-month exposure period in natural seawater flowing at 7-ft/s (210-cm/s). The total protection current and sacrificial anode consumption for alloy 625 pipe was half that for copper-nickel pipe. This means that replacing copper-nickel pipe with alloy 625 pipe in areas close to cathodically-protected heat exchangers or hulls will result in a more conservative design for the cathodic protection system than was the case for the original copper-nickel piping.

  5. A zinc/hydrogel system for cathodic protection of reinforced concrete structures

    SciTech Connect

    Bennett, J.; Firlotte, C.

    1996-11-01

    A zinc/hydrogel system has been developed for the cathodic protection of steel in reinforced concrete. This system consists of a thin foil of zinc which is attached to the concrete surface by an ionically conductive hydrogel adhesive. A direct electrical connection between the zinc and the reinforcing steel allows the zinc to function galvanically, polarizing the steel and protecting it from corrosion. Zinc, aluminum, and several aluminum alloys were tested as anodes in contact with hydrogel adhesives, and zinc was found to offer the best combination of working potential, resistance to passivation, cost and availability. Several hydrogels used for medical applications were found to be inadequate for this use, but a hydrogel adhesive was developed specifically to bond sacrificial anodes to concrete. This hydrogel achieved a total charge in accelerated testing equal to 12 years of life at current densities normally used for cathodic protection. Zinc/hydrogel was installed on about 1000 ft{sup 2} (100 m{sup 2}) of a fishing pier in Ft. Pierce, Florida on members including prestressed pilings, conventionally reinforced pile caps, and prestressed beams. Installation of this system was relatively easy, and initial performance is encouraging. After 5 months of service, adhesion is good and current densities remain high.

  6. Humectants To Augment Current From Metallized Zinc Cathodic Protection Systems on Concrete

    SciTech Connect

    Holcomb, Gordon R.; Covino Jr., Bernard S.; Cramer, Stephen D.; Russell, James H. Russell; Bullard, Sophie J.; Collins, W. Keith; Bennett, Jack E.; Soltesz, Steven M.; Laylor, H. Martin

    2002-12-01

    Cathodic protection (CP) systems using thermal-sprayed zinc anodes are employed to mitigate the corrosion process in reinforced concrete structures. However, the performance of the anodes is improved by moisture at the anode-concrete interface. Research was conducted to investigate the effect of hydrophilic chemical additives, humectants, on the electrical performance and service life of zinc anodes. Lithium bromide and lithium nitrate were identified as feasible humectants with lithium bromide performing better under galvanic CP and lithium nitrate performing better under impressed current CP. Both humectants improved the electrical operating characteristics of the anode and increased the service life by up to three years.

  7. The stopping of cracks inside a reinforced concrete pipe as a result of using cathodic protection

    SciTech Connect

    Peris, M.G.; Guillen, M.A.

    1997-12-01

    Many pipes including reinforced and prestressed concrete, steel and cast iron, have an interior lined with a covering of mortar serving to isolate the steel from the aggressive environment surrounding it. Should this covering crack, and the fissure extend to the metal, a small anodic zone quickly forms which can lead to a process of pitting corrosion. This paper shows how a certain secondary reaction resulting from cathodic protection, such as that caused by the reduction of oxygen leading to alkalinization, can be fundamental in the filling of fissures appearing in concrete. At first, several small trial tests were performed. Later, the results are applied on an industrial scale, with satisfactory results.

  8. Cathodic protection of prestressed concrete bridge pilings in a marine environment

    SciTech Connect

    Scannell, W.T.; Sohanghpurwala, A.A.; Powers, R.G.; Hartt, W.H.

    1994-12-31

    Cathodic protection (CP) is the only recognized technique for arresting ongoing corrosion of conventional mild reinforcing steel in concrete. This paper discusses the present state of knowledge regarding the applicability of this technology to prestressing steel. Practical and technical issues to consider in selecting a CP system for prestressed concrete bridge pilings in a marine environment are discussed. The design parameters for the first full scale installation of CP on over 170 prestressed concrete bridge pilings in a marine environment are presented. Performance data obtained on the selected CP system from other small scale installations are also presented.

  9. Cathodic protection survey of deep-water structures and subsea installations

    SciTech Connect

    Leask, L.J. )

    1989-11-01

    The successful and efficient cathodic protection (CP) survey of a deep water structure using a remotely operated vehicle (ROV) has remained an enigma to many corrosion engineers in oil companies. The location of the corrosion group within the company structure often plays a major role in the success of the project. Operators locate their corrosion departments in different groups, some in the offshore/onshore operations and others in the design group. This location often has a bearing on the financial and operational approach to the project. The author discusses how a successful CP survey is both an achievable and exciting project with experienced preplanning and selection of the correct equipment.

  10. Extended cathodic protection monitoring of one of the world`s deepest fixed offshore platforms -- Bullwinkle

    SciTech Connect

    Goolsby, A.D.; Wolfson, S.L.

    1998-12-31

    This paper reports the design, construction and operation of a hardwired Cathodic Protection (CP) monitoring system for the 1,350ft (411 m) water depth Gulf of Mexico (GOM) Bullwinkle Platform. Results from this system are reported along with analyses of the data showing performance relative to the CP design assumptions, and the importance of increasing CP current density design values in deeper water. The data have also been useful in: examining seasonal and storm effects on CP, developing anode life predictions, observing polarization processes, planning ROV surveys, verifying ROV data, and confirming the company`s laboratory anode testing relevance to in-service performance.

  11. Long life VA testing of welded steel specimens in air and in seawater with cathodic protection

    SciTech Connect

    Slind, T.

    1994-12-31

    Small scale welded T-joints made of 30 mm thick plate have been tested in air and in seawater with cathodic protection using a wide band offshore load spectrum (WASH). The seawater tests were carried out with a mean loading frequency of 0.25 Hz and a water temperature of 7 C. Identical SN curves are obtained for the two environments for fatigue lives up to 5 million cycles. The variable amplitude tests give average Palmgren-Miner sums below 1.0. A comparison of results obtained with a narrow band load spectrum shows no clear effect of the band width.

  12. 39 CFR 3007.61 - Continued effectiveness of protective conditions.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 39 Postal Service 1 2011-07-01 2011-07-01 false Continued effectiveness of protective conditions. 3007.61 Section 3007.61 Postal Service POSTAL REGULATORY COMMISSION PERSONNEL TREATMENT OF NON-PUBLIC MATERIALS PROVIDED BY THE POSTAL SERVICE § 3007.61 Continued effectiveness of protective conditions. (a)...

  13. 40 CFR 261.41 - Notification and Recordkeeping for Used, Intact Cathode Ray Tubes (CRTs) Exported for Reuse.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) IDENTIFICATION AND LISTING OF HAZARDOUS WASTE Exclusions/Exemptions § 261.41 Notification and Recordkeeping for Used, Intact Cathode...

  14. Corrosion control acceptance criteria for sacrificial anode type, cathodic protection systems (user guide)

    NASA Astrophysics Data System (ADS)

    Hock, Vincent F.; Noble, Michael; McLeod, Malcolm E.

    1994-07-01

    The Army currently operates and maintains more than 20,000 underground storage tanks and over 3000 miles of underground gas pipelines, all of which require some form of corrosion control. Cathodic protection is one method of corrosion control used to prevent corrosion-induced leaks when a steel structure is exposed to an aggressive soil. The corrosion control acceptance criteria for sacrificial anode type CP systems provides guidelines for the DEH/DPW cathodic protection installation inspectors whose responsibilities are to ensure that the materials and equipment specified are delivered to the job site and subsequently installed in accordance with the engineering drawings and specifications. The sacrificial anode CP acceptance criteria includes all components for the sacrificial anode system such as insulated conductors, anodes, anode backfills, and auxiliary equipment. The sacrificial anode CP acceptance criteria is composed of a checklist that lists each component and that contains a space for the inspector to either check 'yes' or 'no' to indicate whether the component complies with the job specifications. In some cases, the inspector must measure and record physical dimensions or electrical output and compare the measurements to standards shown in attached tables.

  15. Hydrogen Assisted Crack in Dissimilar Metal Welds for Subsea Service under Cathodic Protection

    NASA Astrophysics Data System (ADS)

    Bourgeois, Desmond

    Dissimilar metal welds (DMWs) are routinely used in the oil and gas industries for structural joining of high strength steels in order to eliminate the need for post weld heat treatment (PWHT) after field welding. There have been reported catastrophic failures in these DMWs, particularly the AISI 8630 steel - Alloy 625 DMW combination, during subsea service while under cathodic protection (CP). This is due to local embrittlement that occurs in susceptible microstructures that are present at the weld fusion boundary region. This type of cracking is known as hydrogen assisted cracking (HAC) and it is influenced by base/filler metal combination, and welding and PWHT procedures. DMWs of two material combinations (8630 steel -- Alloy 625 and F22 steel -- Alloy 625), produced with two welding procedures (BS1 and BS3) in as welded and PWHT conditions were investigated in this study. The main objectives included: 1) evaluation of the effect of materials composition, welding and PWHT procedures on the gradients of composition, microstructure, and properties in the dissimilar transition region and on the susceptibility to HAC; 2) investigation of the influence of microstructure on the HAC failure mechanism and identification of microstructural constituents acting as crack nucleation and propagation sites; 3) assessment of the applicability of two-step PWHT to improve the resistance to HAC in DMWs; 4) establishment of non-failure criterion for the delayed hydrogen cracking test (DHCT) that is applicable for qualification of DMWs for subsea service under cathodic protection (CP).

  16. Location of coating defects and assessment of level of cathodic protection on underground pipelines using AC impedance, deterministic and non-deterministic models

    NASA Astrophysics Data System (ADS)

    Castaneda-Lopez, Homero

    A methodology for detecting and locating defects or discontinuities on the outside covering of coated metal underground pipelines subjected to cathodic protection has been addressed. On the basis of wide range AC impedance signals for various frequencies applied to a steel-coated pipeline system and by measuring its corresponding transfer function under several laboratory simulation scenarios, a physical laboratory setup of an underground cathodic-protected, coated pipeline was built. This model included different variables and elements that exist under real conditions, such as soil resistivity, soil chemical composition, defect (holiday) location in the pipeline covering, defect area and geometry, and level of cathodic protection. The AC impedance data obtained under different working conditions were used to fit an electrical transmission line model. This model was then used as a tool to fit the impedance signal for different experimental conditions and to establish trends in the impedance behavior without the necessity of further experimental work. However, due to the chaotic nature of the transfer function response of this system under several conditions, it is believed that non-deterministic models based on pattern recognition algorithms are suitable for field condition analysis. A non-deterministic approach was used for experimental analysis by applying an artificial neural network (ANN) algorithm based on classification analysis capable of studying the pipeline system and differentiating the variables that can change impedance conditions. These variables include level of cathodic protection, location of discontinuities (holidays), and severity of corrosion. This work demonstrated a proof-of-concept for a well-known technique and a novel algorithm capable of classifying impedance data for experimental results to predict the exact location of the active holidays and defects on the buried pipelines. Laboratory findings from this procedure are promising, and

  17. Evaluating Hydrogen Stress Cracking of Line Pipe Steels under Cathodic Protection Using Crack Tip Opening Displacement Tests

    NASA Astrophysics Data System (ADS)

    Hagiwara, Naoto; Meyer, Michel

    Crack tip opening displacement (CTOD, δ) tests were carried out for line pipe steels in buffer solutions, sand, and clay to evaluate initiation of hydrogen stress cracking (HSC) at surface defects in buried pipelines under cathodic protection. Four series of line pipe steels and two series of seam welds showed a similar tendency in cathodic current density (i) versus the critical CTOD (δc) curves, irrespective of types, pH and water content of the soils; δc showed a minimum (δHSC) when i>ith (ith=1mA/cm2) in all the testing conditions. δHSC increased with the increasing fracture toughness of the steel. Fluctuation of cathodic current density influenced δc when the maximum value of cathodic current density (imax) was larger than ith. HSC could be initiated at surface defects in pipelines only when imax>ith and δ≥δHSC.

  18. Long-term effects of cathodic protection on prestressed concrete structures: Hydrogen embrittlement of prestressing steel

    SciTech Connect

    Enos, D.G.; Williams, A.J. Jr.; Scully, J.R.

    1997-11-01

    The issue of safe cathodic protection (CP) limits for prestressing steel in concrete was addressed in regard to concerns over hydrogen embrittlement (HE). The local environment at the steel-concrete interface was found to vary as a function of vertical position within a laboratory-scale marine bridge piling. Embedded pH electrodes indicated the pH within a steel crevice embedded within a concrete piling decreased from 11.5 to 6.5 in the atmospheric zone 30.5 cm (12 in.) above the water line. Hydrogen permeation was detected using embedded sensors at applied potentials (E{sub app}) more positive than the reversible potential for hydrogen production calculated for alkaline pore solutions (pH > 12.6). A safe limit based on the reversible electrode potential (REP) would require knowledge of pH and E{sub app} as a function of vertical position, as well as an understanding of their influence on HE. Constant extension rate tensile testing (CERT) was performed on notched prestressing steel tensile specimens at various cathodic polarization levels in: (1) saturated calcium hydroxide (Ca[OH]{sub 2}), (2) ASTM artificial ocean water, (3) under a mortar cover in artificial ocean water, and (4) in pH 4 and pH 6 Ca{sup 2+}-containing environments simulating ferrous ion hydrolysis on corroding prestressing steel. CERT results were combined with permeation measurements to determine the relationship between steel mobile hydrogen concentration (C{sub H}) and fracture initiation stress ({sigma}{sub i}) in each environment over a series of cathodic potentials.

  19. Relative contribution of set cathode potential and external mass transport on TCE dechlorination in a continuous-flow bioelectrochemical reactor.

    PubMed

    Verdini, Roberta; Aulenta, Federico; de Tora, Francesca; Lai, Agnese; Majone, Mauro

    2015-10-01

    Microbial bioelectrochemical systems, which use solid-state cathodes to drive the reductive degradation of contaminants such as the chlorinated hydrocarbons, are recently attracting considerable attention for bioremediation applications. So far, most of the published research has focused on analyzing the influence of key (bio)electrochemical factors influencing contaminant degradation, such as the cathode potential, whereas only few studies have examined the potential impact of mass transport phenomena on process performance. Here we analyzed the performance of a flow-through bioelectrochemical reactor, continuously fed with a synthetic groundwater containing trichloroethene at three different linear fluid velocities (from 0.3 m d(-1) to 1.7 m d(-1)) and three different set cathode potentials (from -250 mV to -450 mV vs. the standard hydrogen electrode). The obtained results demonstrated that, in the range of fluid velocities which are characteristics for natural groundwater systems, mass transport phenomena may strongly influence the rate and extent of reductive dechlorination. Nonetheless, the relative importance of mass transport largely depends on the applied cathode potential which, in turn, controls the intrinsic kinetics of biological reactions and the underlying electron transfer mechanisms. PMID:25950501

  20. The slope parameter approach to marine cathodic protection design and its application to impressed current systems

    SciTech Connect

    Hartt, W.H.

    1999-07-01

    The recently developed slope parameter approach to design of galvanic anode cathodic protection (cp) systems for marine structures constitutes an advancement in this technology compared to current practice, primarily because the former is first principles based and the latter is an empirical algorithm. In this paper, the slope parameter approach is reviewed; and related applications for which it can be utilized, including (1) design of new and retrofit cp systems, (2) evaluation of potential survey data, and (3) cp system design for complex geometries, are mentioned. The design current density is identified as the single remaining parameter for which values must be projected solely by experience or experimentation. In addition, the slope parameter approach is applied to the results of impressed current cp experiments, and it is shown how parameters for this can be interrelated with those of galvanic anode cp. Advantages of this capability are identified and discussed.

  1. Laboratory study on new cathodic protection criterion proposed for prestressed concrete

    SciTech Connect

    Wagner, J. Jr.; Funahashi, M.

    1994-12-31

    Bazzoni and Lazzari have proposed a new criterion for the cathodic protection of prestressed concrete. The criterion is based on the use of mixed metal-oxide-activated anodes which exhibit a stable polarized potential over a wide range of current densities when embedded in concrete. The criterion proposes that a ``safe`` anode/structure feeding voltage can be calculated that will both provide corrosion control in the area covered by the anode system and will prevent the steel reinforcement potential reaching values where hydrogen ions can be reduced to hydrogen and the consequent possibility of embrittlement of high strength prestressing members. This paper describes a laboratory study made to examine the validity of the proposed criterion. The results of the study appear to support criterion as both safe and effective for new prestressed concrete structures and possibly for existing structures as well.

  2. Performance of thermal-sprayed zinc anodes treated with humectants in cathodic protection systems

    SciTech Connect

    Bullard, Sophie J.; Covino, Bernard S., Jr.; Cramer, Stephen D.; Holcomb, Gordon R.; Russell, James H.; Bennett, John E.; Milius, John K.; Cryer, Curtis B.; Soltesz, Steven M.

    2001-01-01

    Thermal-sprayed Zn anodes are used for impressed current cathodic protection (ICCP) systems in Oregon's reinforced concrete coastal bridges to minimize corrosion damage. Thermal-sprayed Zn performs well as an ICCP anode but the voltage requirement can increase with increasing electrochemical age. It also performs well as a galvanic (GCP) anode but current output can decrease with increasing electrochemical age. Past research has shown that increasing moisture at the Zn anode-concrete interface improves the operation of the thermal-sprayed Zn anode. Humectants, hygroscopic materials that are applied to the surface of the Zn-anode, can increase the moisture at the zinc-concrete interface, thereby improving the performance and extending the anode service life. Results are given for humectant-treated (LiBr and LiNO3) thermal-sprayed Zn anodes used in the laboratory electrochemical aging studies and in field studies on the Yaquina Bay Bridge, Oregon, USA.

  3. Mathematical models for cathodic protection of an underground pipeline with coating holidays. Part 1: Theoretical development

    SciTech Connect

    Orazem, M.E.; Esteban, J.M.; Kennelley, K.J.; Degerstedt, R.M.

    1997-04-01

    Mathematical models were developed to predict cathodic protection (CP) requirements for coated pipelines protected by parallel anodes. This work was motivated by the need to estimate current and potential distribution on a pipe when anodes are placed nearby or when discrete coating holidays expose bare steel. The mathematical model solves Laplace`s equation for potential with boundary conditions appropriate for the pipe being protected, the anode, and any region through which current does not pass. The current density on bare steel was assumed to be composed of contributions from corrosion, reduction of dissolved oxygen, and evolution of hydrogen. Kinetic parameters were obtained from independent experiments. The anode was assumed to have a constant potential, and current was allowed to flow through the coating under the assumption that the coating is a high-resistance ionic conductor. A boundary element technique coupled with Newton-Raphson iteration was sued to solve the governing equations for two-dimensional (2-D) and three-dimensional (3-D) configurations. Results showed good agreement with experimental values and can be used to assess viability of CP designs.

  4. Influence of fouling on the efficiency of sacrificial anodes in providing cathodic protection in Southeast Asian tropical seawater.

    PubMed

    Blackwood, D J; Lim, C S; Teo, S L M

    2010-10-01

    Aluminum and zinc based sacrificial anodes are routinely used to provide corrosion protection to metals (typically steel) exposed to seawater, for example in steel pipelines and storage tanks. However, the high fouling rates experienced in South East Asia means that both the anodes and the metals to be protected rapidly become coated with macrofoulers, which could potentially prevent the anodes from being effective. The present study, involving exposure tests of up to 18 months, indicates that both aluminum and zinc sacrificial anodes remain effective even after being completely coated with biofouling. Furthermore, it was easier to remove the biofouling on the cathodically protected samples than on their unprotected counterparts, possibly due to the higher local pH produced by cathodic protection at the metal and seawater interface. PMID:20818571

  5. Survivability analysis for continuous data protection system based on SMP

    NASA Astrophysics Data System (ADS)

    Xiong, Qi; Liu, Hui; Liu, Lin; Wu, Shizhong

    2011-10-01

    As a Novel Disaster surviving technology, Continuous Data Protection(CDP) can restore the protected system to the state of any time point in the past. Until now, no efficient survivability evaluation method for CDP system is developed. Regarding this problem, a semi-markov process(SMP) is applied to survivability of CDP, SMP model for CDP survivability analysis is established, quantitative survivability metric is calculated and some survivability enhancing strategies are proposed accordingly.

  6. Impressed-current cathodic protection of steel-reinforced concrete pilings: Protection criteria and the threshold for hydrogen embrittlement

    SciTech Connect

    Enos, D.G.; Williams, A.J. Jr.; Scully, J.R.; Clemena, G.G.

    1998-05-01

    Safe cathodic protection (CP) limits for prestressing steel in concrete and the adequacy of CP using established criteria were evaluated in regard to hydrogen embrittlement (HE). Impressed-current CP was applied to laboratory scale pilings at current densities from 0.1 {micro}A/cm{sup 2} to 3.0 {micro}A/cm{sup 2} via a skirt anode located at the waterline. Adequate CP was achieved at positions 25 cm (9.8 in.) above to 50 cm (19.7 in.) below the waterline, according to the 100-mV depolarization criterion, at an apparent applied current density of 0.33 {micro}A/cm{sup 2}. However, the {minus}780 mV{sub SCE} criterion was not met for currents as high as 1.33 {micro}A/cm{sup 2} for these positions. Hydrogen production, absorption, and permeation in steel first was observed via embedded hydrogen sensors 50 cm and 25 cm above the water line at an applied current density of 0.33 {micro}A/cm{sup 2}. Observation of hydrogen production verified concerns that the local oxygen concentration might be depleted readily at modest CP levels and that local pH levels may be below 12.5. Experimentation demonstrated that steel crevice corrosion was initiated readily within chloride (Cl{sup {minus}})-contaminated concrete prior to CP application and that this corrosion was accompanied by acidification of the local environment to pH {le} 6 as a result of ferrous ion (Fe{sup 2+}) hydrolysis. The mobile subsurface hydrogen concentration present within the steel reinforcement was determined for each applied cathodic current density. Although hydrogen production and uptake occurred at current densities as low as 0.33 {micro}A/cm{sup 2}, the critical hydrogen concentration for embrittlement (i.e., 2 {times} 10{sup {minus}7} mol H/cm{sup 3}, as determined in prior research for bluntly notched prestressing steel) was not exceeded at area averaged current densities <1.33 {micro}A/cm{sup 2}.

  7. 49 CFR Appendix D to Part 192 - Criteria for Cathodic Protection and Determination of Measurements

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ...) polarization voltage shift of 100 millivolts. This polarization voltage shift must be determined in accordance... minimum negative (cathodic) polarization voltage shift of 100 millivolts. This polarization voltage shift... excess of 8. C. Copper structures. A minimum negative (cathodic) polarization voltage shift of...

  8. Application of Direct Assessment Approaches and Methodologies to Cathodically Protected Nuclear Waste Transfer Lines

    SciTech Connect

    Dahl, Megan M.; Pikas, Joseph; Edgemon, Glenn L.; Philo, Sarah

    2013-01-22

    The U.S. Department of Energy's (DOE) Hanford Site is responsible for the safe storage, retrieval, treatment, and disposal of approximately 54 million gallons (204 million liters) of radioactive waste generated since the site's inception in 1943. Today, the major structures involved in waste management at Hanford include 149 carbon steel single-shell tanks, 28 carbon-steel double-shell tanks, plus a network of buried metallic transfer lines and ancillary systems (pits, vaults, catch tanks, etc.) required to store, retrieve, and transfer waste within the tank farm system. Many of the waste management systems at Hanford are still in use today. In response to uncertainties regarding the structural integrity of these systems,' an independent, comprehensive integrity assessment of the Hanford Site piping system was performed. It was found that regulators do not require the cathodically protected pipelines located within the Hanford Site to be assessed by External Corrosion Direct Assessment (ECDA) or any other method used to ensure integrity. However, a case study is presented discussing the application of the direct assessment process on pipelines in such a nuclear environment. Assessment methodology and assessment results are contained herein. An approach is described for the monitoring, integration of outside data, and analysis of this information in order to identify whether coating deterioration accompanied by external corrosion is a threat for these waste transfer lines.

  9. A galvanic zinc-hydrogel system for cathodic protection of reinforced concrete structures

    SciTech Connect

    Wehling, J.E.

    1999-07-01

    Installations of galvanic cathodic protection anodes have been completed on bridge structures in Illinois, Virginia, Florida, Wisconsin, and Oregon, on parking garages in Illinois and Wisconsin, on high voltage transmission tower footings in California, and on condominium balconies in Florida. Some of these installations involve prestressed concrete. The installation of these systems will be described in detail and monitoring data will be presented for at least six months of active service. The system consists of a 10 mil zinc foil bonded to an ionically conductive hydrogel adhesive, which is applied directly to the surface of the steel-reinforced concrete. A copper wire connects the zinc anode to multiple steel rebars and/or strands. The performance is monitored by measuring the current flow in the wire, by measuring the amount of zinc consumed or, more generally, by taking depolarization readings at regular intervals. All of these measurements are an indication of the performance of the galvanic system and the corrosion of the steel rebars that is being prevented.

  10. Offshore cathodic protection design, inspection, and computer modeling: Innovations from the 1980s

    SciTech Connect

    Gartland, P.O.; Strommen, R.D.; Osvoll, H.; Johnsen, R. )

    1993-12-01

    Throughout the 1980s, equipment was used increasingly to monitor electric fields (EF) strength/current density in CP surveys of North Sea structures. Probes for remote-operated vehicle (ROV) and diver operations are used to measure simultaneously the potential and the EF strength at exposed steel, at typical stand-off anodes, at sacrificial bracelet anodes on pipelines, and so on. A sensitive system for such purposes is based on a pair of electrodes at the tips of a T-shaped spindle rotating at a known frequency. The 1980s saw several innovations in the field of offshore cathodic protection (CP). The increasing use of organic coatings on offshore structures is more or less a result of the need to reduce the number of anodes. In a design incorporating coatings, coating breakdown plays a key role. In later years, aluminum-coated structures have been introduced for submerged conditions. It seems that in the future, aluminum coatings will be used merely as barrier coatings. The bare aluminum coating has a very low current demand on the order or 10 mA/m[sup 2] or less. Emphasis is now on CP design by computer modeling and on data retrieved during inspections using sophisticated equipment and procedures. The effect of the innovations on traditional design, on design verification, and on retrofitting is discussed in relation to relevant cases and field work. Future applications that may give better insight into CP system performance at reduced cost are also suggested.

  11. Hydrothermal synthesis and photoelectrochemical performance enhancement of TiO2/graphene composite in photo-generated cathodic protection

    NASA Astrophysics Data System (ADS)

    Zhang, Weiwei; Guo, Hanlin; Sun, Haiqing; Zeng, Rong-Chang

    2016-09-01

    TiO2/graphene composites were synthesized through one-step hydrothermal method. The composites show an enhancement in photo-generated cathodic protection as the time-dependent profiles of photocurrent responses has confirmed. XRD data show that a bicrystalline framework of anatase and brookite formed as graphene provided donor groups in the hydrothermal process. The transfer of photoinduced electrons in the biphasic TiO2 results in effective electron-hole separation. Moreover, graphene lead to a negative shift of the Fermi level as evidenced by Mott-Schottky analysis, which decreases the Schottky barrier formed in the TiO2 and 304 stainless steel interface and results in the enhancement of photo-generated cathodic protection.

  12. Apollo/Saturn C00.00.19.3 operations and maintenance. Cathodic protection of communication cables

    NASA Technical Reports Server (NTRS)

    1972-01-01

    Operating and maintenance instructions for cathodic protection of communication cables at the Cape Kennedy Launch Complex are presented. The system is designed to prevent or arrest corrosion of communication cables buried in soil or submerged in water by impressing sufficient direct current from the rectifier through the anodes to the cable. This process neutralizes or counteracts current flowing from the cable into the soil or water, thus preventing or arresting corrosion of the cable sheath material.

  13. DEMONSTRATION AND EVALUATION OF TECHNOLOGIES FOR DETERMINING THE SUITABILITY OF USTS FOR UPGRADING WITH CATHODIC PROTECTION (EPA/600/R-99/037)

    EPA Science Inventory

    Field applications of three alternate technologies for assessing the suitability of undergraound storage tanks for upgrading by the addition of cathodic protection were observed and documented. The technologies were applied to give existing underground storage tanks that were sla...

  14. Research to develop guidelines for cathodic protection of concentric neutral cables, volume 2

    NASA Astrophysics Data System (ADS)

    Hanck, J. A.; Nekoksa, G.

    1981-08-01

    Data from field tests and sieve analyses presented in support of an effort to develop guidelines for the installation of underground transmission primary cables. Anodic and cathodic polarization curves and the surface and cable potential gradients from 38 bellholes.

  15. A facile approach to derive binder protective film on high voltage spinel cathode materials against high temperature degradation

    NASA Astrophysics Data System (ADS)

    Chou, Wei-Yu; Jin, Yi-Chun; Duh, Jenq-Gong; Lu, Cheng-Zhang; Liao, Shih-Chieh

    2015-11-01

    The electrochemical performance of spinel LiNi0.5Mn1.5O4 cathode combined with different binders at elevated temperature is firstly investigated. The water soluble binder, such as sodium carboxymethyl cellulose (CMC) and sodium alginate (SA), is compared with the polyvinylidene difluoride (PVdF) binder used in non-aqueous process. The aqueous process can meet the need of Li-ion battery industry due to environmental-friendly and cost effectiveness by replacing toxic organic solvent, such as N-methyl-pyrrolidone (NMP). In this study, a significantly improved high temperature cycling performance is successfully obtained as compared to the traditional PVdF binder. The aqueous binder can serve as a protective film which inhibits the serious Ni and Mn dissolution especially at elevated temperature. Our result demonstrates a facile approach to solve the problem of capacity fading for high voltage spinel cathodes.

  16. Effects of selected water treatments and cathodic protection on corrosion and embrittlement of condenser tubes: Final report

    SciTech Connect

    Not Available

    1988-01-01

    This report summarizes the results of a three-year laboratory study investigating: (1) the interaction and effect of sulfide, dissolved oxygen, and temperature on the corrosion of copper alloy condenser tubes; (2) the effectiveness of selected cooling water treatments in mitigating sulfide-accelerated corrosion; (3) the effects of various parameters on the hydriding susceptibility of titanium tubing under cathodic protection conditions; and (4) the hydrogen embrittlement susceptibility of ferritic stainless steels under cathodic protection conditions. The selected cooling water treatments included ferrous sulfate, benzotriazole, sodium dimethyl dithiocarbamate, high molecular weight polyacrylamide, and Calgon CL-5. Much of the work was carried out utilizing seawater test loops designed to simulate condenser tube flow. The results of the study demonstrated that: (1) sulfide contamination of a copper alloy condenser tube can trigger rapid perforation of the tube; (2) ferrous sulfate treatement may be effective in mitigating sulfide-accelerated attack if initiated prior to and during any sulfide exposure; and (3) cathodic protection at high electronegative potentials will embrittle titanium and ferritic stainless steel condenser tubes. The report recommends further research directed at: (1) the long-term effectiveness of ferrous sulfate treatement in retarding sulfide-promoted pitting; (2) corrosion-accelerating mechanisms associated with chlorination and silt build-up; (3) an appropriate method for cleaning condenser tubes contaminated with a corrosion accelerant; (4) a more effective method of on-line monitoring of condenser tube corrosion; and (5) an update of recent electric utility experience concerning corrosion of copper alloy condenser tubes. 32 refs., 39 figs., 10 tabs.

  17. Design and installation of a cathodic protection system for a large reinforced concrete intake structure in the Arabian Gulf

    SciTech Connect

    Ali, M.; Al-Ghannam, H.

    1997-09-01

    The paper describes the condition survey methodology, design and installation of a cathodic protection (C.P.) system for a large reinforced concrete reservoir and sea water intake structure. The structure is critical for the supply of cooling water for a 2.4 million metric ton steel plant. The C.P. System consisting of mixed metal oxide coating on titanium mesh type anodes and automatic voltage/current controlled rectifiers was successfully installed and has been operating within design guidelines for the past 15 months.

  18. Experience of cathodic protection, fabrication and installation of anodes for deep water pipelines in the North Sea and the Norwegian Sea

    SciTech Connect

    Eliassen, S.; Pettersen, N.H.

    1996-08-01

    Statoil is the major operator of the oil and gas pipelines in the North Sea and the Norwegian Sea. Different coating systems have been used for external corrosion protection of the pipelines. The paper presents the company`s experience regarding cathodic protection design and fabrication and installation of anodes for deep water pipelines.

  19. Performance of Zinc Anodes for Cathodic Protection of Reinforced Concrete Bridges

    SciTech Connect

    Covino, Bernard S. Jr.; Cramer, Stephen D.; Bullard, Sophie J.; Holcomb, Gordon R.; Russell, James H.; Collins, W. Keith; Laylor, Martin H.; Cryer, Curtis B.

    2002-03-01

    Operation of thermal spray zinc (Zn) anodes for cathodic protection (CP) of reinforced concrete structures was investigated in laboratory and field studies conducted by the Albany Research Center (ARC) in collaboration with the Oregon Department of Transportation. The purposes of the research presented in this report were: evaluate the need for preheating concrete to improve the adhesion of the anode; estimate the service life of thermal spray Zn CP anodes; determine the optimum thickness for Zn CP anodes; characterize the anode-concrete interfacial chemistry; and correlate field and laboratory results. Laboratory studies involved accelerated electrochemical aging of thermal sprayed Zn anodes on concrete slabs, some of which were periodically wetted while others were unwetted. Concrete used in the slabs contained either 1.2 or 3 kg NaCl /m3 (2 or 5 lbs NaCl /yd3) as part of the concrete mix design. The Zn anodes were applied to the slabs using the twin wire arc-spray technique. Half of the slabs were preheated to 120-160 C (250-320 F) to improve the initial Zn anode bond strength and the other half were not. Accelerated aging was done at a current density of 0.032 A/m2 (3 mA/ft2), 15 times that used on Oregon DOT Coastal bridges, i.e, . 0.0022 A/m2 (0.2 mA/ft2) Cores from the Cape Creek Bridge (OR), the Richmond San Rafael Bridge (CA), and the East Camino Underpass (CA) were used to study the anode-concrete interfacial chemistry, to relate the chemistry to electrochemical age at the time of sampling, and to compare the chemistry of the field anodes to the chemistry of anodes from the laboratory studies. Cores from a CALTRANS study of a silane sealant used prior to the application of the Zn anodes and cores with galvanized rebar from the Longbird Bridge (Bermuda) were also studied. Aged laboratory and field anodes were characterized by measuring some or all of the following parameters: thickness, bond strength, anode-concrete interfacial chemistry, bulk chemistry

  20. Bifurcation perspective on topologically protected and non-protected states in continuous systems

    NASA Astrophysics Data System (ADS)

    Lee-Thorp, James P.

    We study Schrodinger operators perturbed by non-compact (spatially extended) defects. We consider two models: a one-dimensional (1D) dimer structure with a global phase shift, and a two-dimensional (2D) honeycomb structure with a line-defect or "edge''. In both the 1D and 2D settings, the non-compact defects are modeled by adiabatic, domain wall modulations of the respective dimer and honeycomb structures. Our main results relate to the rigorous construction of states via bifurcations from continuous spectra. These bifurcations are controlled by asymptotic effective (homogenized) equations that underlie the protected or non-protected character of the states. In 1D, the states we construct are localized solutions. In 2D, they are "edge states'' - time-harmonic solutions which are propagating (plane-wave-like) parallel to a line-defect or "edge'' and are localized transverse to it. The states are described as protected if they persist in the presence of spatially localized (even strong) deformations of the global phase defect (in 1D) or edge (in 2D). The protected states bifurcate from "Dirac points'' (linear/conical spectral band-crossings) in the continuous spectra and are seeded by an effective Dirac equation. The (more conventional) non-protected states bifurcate from spectral band edges are seeded by an effective Schrodinger equation. Our 2D model captures many aspects of the phenomenon of topologically protected edge states observed in honeycomb structures such as graphene and "artificial graphene''. The protected states we construct in our 1D dimer model can be realized as highly robust TM- electromagnetic modes for a class of photonic waveguides with a phase-defect. We present a detailed computational study of an experimentally realizable photonic waveguide array structure.

  1. Simultaneously Harvesting Thermal and Mechanical Energies based on Flexible Hybrid Nanogenerator for Self-Powered Cathodic Protection.

    PubMed

    Zhang, Hulin; Zhang, Shangjie; Yao, Guang; Huang, Zhenlong; Xie, Yuhang; Su, Yuanjie; Yang, Weiqing; Zheng, Chunhua; Lin, Yuan

    2015-12-30

    Metal corrosion occurs anytime and anywhere in nature and the corrosion prevention has a great significance everywhere in national economic development and daily life. Here, we demonstrate a flexible hybrid nanogenerator (NG) that is capable of simultaneously or individually harvesting ambient thermal and mechanical energies and used for a self-powered cathodic protection (CP) system without using an external power source. Because of its double peculiarities of both pyroelectric and piezoelectric properties, a polarized poly(vinylidene fluoride) (PVDF) film-based NG was constructed to scavenge both thermal and mechanical energies. As a supplementary, a triboelectric NG was constructed below the pyro/piezoelectric NG to grab ambient mechanical energy. The output power of the fabricated hybrid NG can be directly used to protect the metal surface from the chemical corrosion. Our results not only verify the feasibility of self-powered CP-based NGs, but also expand potential self-powered applications. PMID:26669205

  2. Efficient salt removal in a continuously operated upflow microbial desalination cell with an air cathode.

    PubMed

    Jacobson, Kyle S; Drew, David M; He, Zhen

    2011-01-01

    Microbial desalination cells (MDCs) hold great promise for drinking water production because of potential energy savings during the desalination process. In this study, we developed a continuously operated MDC--upflow microbial desalination cell (UMDC) for the purpose of salt removal. During the 4-month operation, the UMDC constantly removed salts and generated bio-electricity. At a hydraulic retention time (HRT) of 4 days (salt solution) and current production of ∼62 mA, the UMDC was able to remove more than 99% of NaCl from the salt solution that had an initial salt concentration of 30 g total dissolved solids (TDS)/L. In addition, the TDS removal rate was 7.50 g TDSL(-1)d(-1) (salt solution volume) or 5.25 g TDSL(-1)d(-1) (wastewater volume), and the desalinated water met the drinking water standard, in terms of TDS concentration. A high charge transfer efficiency of 98.6% or 81% was achieved at HRT 1 or 4d. The UMDC produced a maximum power density of 30.8 W/m(3). The phenomena of bipolar electrodialysis and proton transport in the UMDC were discussed. These results demonstrated the potential of the UMDC as either a sole desalination process or a pre-desalination reactor for downstream desalination processes. PMID:20584603

  3. A Study on Effects of Mechanical Stress and Cathodic Protection on Marine Coatings on Mild Steel in Artificial Seawater

    NASA Astrophysics Data System (ADS)

    Yang, Hong-Qi; Zhang, Qi; Tu, San-Shan; Li, Yi-Min; Wang, You; Huang, Yi

    2016-07-01

    In this work, the separate and combined effects of elastic stress and cathodic protection (CP) potential on barrier properties of two marine coating systems applied on Q235 steel plates in artificial seawater were investigated through measurements of electrochemical impedance spectra. The obtained results indicated that elastic stress could have a significant influence on coating barrier property, and the extent of this influence depends on both the magnitude and direction of elastic stress. Meanwhile, it was shown that the separate application of CP could also promote coating degradation, and for both coating systems, the more negative the applied CP potential, the more quickly and more seriously the coatings deteriorated. Furthermore, compared with the sample with only stress or CP, the results showed that the interaction between mechanical stress and CP could reduce their respective impact on coating barrier property, and the combined effect depends on the predominant factor.

  4. Cathodic protection of pre-tensioned concrete. Part 1: Brittle fracture propensity of corrosion damaged prestressing tendon wire

    SciTech Connect

    Stauder, A.L.; Hartt, W.H.

    1998-12-31

    Constant extension rate tests were performed upon prestressing wire specimens in air and in saturated Ca(OH), solution at {minus}0.90 and {minus}1.30 v (SCE) in order to investigate the influence of various levels of precorrosion upon mechanical properties and fracture behavior. It was determined that ultimate tensile strength (UTS) was reduced to a greater extent in the case of specimens which exhibited layer corrosion compared to those with simulated pits. The UTS of layer corroded specimens was not significantly influenced by corrosion morphology acuity but, instead, correlated with the magnitude of cross sectional area reduction. The results are discussed within the context of the previously proposed negative potential limit of {minus}0.90 v (SCE) for cathodic protection of prestressing steel, and a modified qualification criterion is introduced based upon a relationship between fracture load (alternatively, prestress level) and the magnitude of cross section reduction by corrosion.

  5. 42 CFR 3.208 - Continued protection of patient safety work product.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 42 Public Health 1 2010-10-01 2010-10-01 false Continued protection of patient safety work product... GENERAL PROVISIONS PATIENT SAFETY ORGANIZATIONS AND PATIENT SAFETY WORK PRODUCT Confidentiality and Privilege Protections of Patient Safety Work Product § 3.208 Continued protection of patient safety...

  6. 42 CFR 3.208 - Continued protection of patient safety work product.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 42 Public Health 1 2011-10-01 2011-10-01 false Continued protection of patient safety work product... GENERAL PROVISIONS PATIENT SAFETY ORGANIZATIONS AND PATIENT SAFETY WORK PRODUCT Confidentiality and Privilege Protections of Patient Safety Work Product § 3.208 Continued protection of patient safety...

  7. Corrosion protection of Arctic offshore structures: Final report. [Effects of temperature and salinity on required cathodic protection current

    SciTech Connect

    Sackinger, W.M.; Rogers, J.C.; Feyk, C.; Theuveny, B.

    1985-10-01

    Results are presented for a research program on corrosion prevention for Arctic offshore structures which are in contact with sea ice for a significant portion of the year. The electrical method most adaptable for structure protection involves the injection of impressed current from several remote anodes buried just beneath the sea floor. The electrical resistivity of annual sea ice as a function of temperature and salinity is presented. Details of the interface layers formed between sea ice and steel in the presence of current injection are shown. A computer program was developed to enable the calculation of protective current density into the structure, in the presence of ice rubble and ridges around the structure. The program and the results of an example calculation are given for a caisson- retained island structure. 81 refs., 103 figs., 3 tabs.

  8. Core-Protected Platinum Monolayer Shell High-Stability Electrocatalysts for Fuel-Cell Cathodes

    SciTech Connect

    K Sasaki; H Naohara; Y Cai; Y Choi; P Liu; M Vukmirovic; J Wang; R Adzic

    2011-12-31

    Platinum monolayers can act as shells for palladium nanoparticles to lead to electrocatalysts with high activities and an ultralow platinum content, but high platinum utilization. The stability derives from the core protecting the shell from dissolution. In fuel-cell tests, no loss of platinum was observed in 200,000 potential cycles, whereas loss of palladium was significant.

  9. Core-Protected Platinum Monolayer Shell High-Stability Electrocatalysts for Fuel-Cell Cathodes

    SciTech Connect

    Adzic, R.R.; Sasaki, K.; Naohara, H.; Cai, Y.; Choi, Y.M.; Liu, P.; Vukmirovic, M.B.; Wang, J.X.

    2010-11-08

    More than skin deep: Platinum monolayers can act as shells for palladium nanoparticles to lead to electrocatalysts with high activities and an ultralow platinum content, but high platinum utilization. The stability derives from the core protecting the shell from dissolution. In fuel-cell tests, no loss of platinum was observed in 200?000 potential cycles, whereas loss of palladium was significant.

  10. 49 CFR 195.563 - Which pipelines must have cathodic protection?

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... protection as a result of electrical inspections. See previous editions of this part in 49 CFR, parts 186 to... pumping stations until December 29, 2003. 1 A pipeline does not have an effective external coating... pipeline were bare. (d) Bare pipelines, breakout tank areas, and buried pumping station piping must...

  11. 39 CFR 3007.61 - Continued effectiveness of protective conditions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... a court or other administrative agency issues a subpoena or orders production of non-public... the subpoena or order shall, within 2 days of receipt of the subpoena or order for production, notify... to the production or to seek a protective order or seek such other relief as it deems appropriate....

  12. Cathodic protection for nuclear waste packaging under gamma ray irradiation by using TiO{sub 2} coating combined with glass scintillators

    SciTech Connect

    Fujisawa, Ryutaro; Tsujikawa, Shigeo

    1995-12-31

    The photoelectrochemical behaviors of a TiO{sub 2} single crystal and TiO{sub 2} coating were studied, for the purposes of cathodic protection of stainless steels and Cu via the TiO{sub 2} coating combined with glass scintillators under gamma ray irradiation. It was confirmed that a TiO{sub 2} coating could protect 304 stainless steel cathodically from crevice corrosion under illumination. A logarithmic relationship between the photopotential of single crystal TiO{sub 2} (rutile) and light intensity was found, moreover, the photopotential was found to be least noble when wavelength equals 375 nm. Under illumination by gamma rays combined with the glass scintillators, the electrode potential of single crystal TiO{sub 2} was found to shift in the less noble direction by about 200 mV. Therefore, the technique of cathodic protection by TiO{sub 2} coating is considered to be applicable to protect the packaging metal from corrosion for a long time.

  13. A new approach to the determination of the cathodic protection period in zinc-rich paints

    SciTech Connect

    Abreu, C.M.; Izquierdo, M.; Merino, P.; Novoa, X.R.; Perez, C.

    1999-12-01

    The present study examined the behavior of zinc-rich paints (ZRP) based on an epoxy binder in 3% sodium chloride (NaCl) solution. The study focused on the effect of some design parameters often considered in paint formulation. The paint thickness, the zinc particle grain size, and the zinc particle distribution in the paint were studied. The study was based mainly on electrochemical impedance spectroscopy (EIS). EIS results were interpreted using a model involving the contact impedance between zinc particles. The contact impedance and electrolyte resistance throughout the coating defined the protective action of ZRP. Based on these two concepts, a practical approach to evaluate ZRP performance was given. This approach, called total film resistance (TFR), can be used for optimization criteria in paint formulation.

  14. Protecting and enhancing spin squeezing via continuous dynamical decoupling

    NASA Astrophysics Data System (ADS)

    Chaudhry, Adam Zaman; Gong, Jiangbin

    2012-07-01

    Realizing useful quantum operations with high fidelity is a two-task quantum control problem wherein decoherence is to be suppressed and desired unitary evolution is to be executed. The dynamical decoupling (DD) approach to decoherence suppression has been fruitful but synthesizing DD fields with certain quantum control fields may be experimentally demanding. In the context of spin squeezing, here we explore an unforeseen possibility that continuous DD fields may serve dual purposes at once. In particular, it is shown that a rather simple configuration of DD fields can suppress collective decoherence and yield a 1/N scaling of the squeezing performance (N is the number of spins), thus making spin squeezing more robust to noise and much closer to the so-called Heisenberg limit. The theoretical predictions should be within the reach of current spin squeezing experiments.

  15. The Continuing Child Protection Emergency: A Challenge to the Nation. Third Report.

    ERIC Educational Resources Information Center

    United States Advisory Board on Child Abuse and Neglect, Washington, DC.

    Three years after the release of its original report (1990), the U.S. Advisory Board on Child Abuse and Neglect reports that the child protection emergency has clearly deepened in all parts of the nation. Reports of child abuse and neglect have continued to climb; an inordinate number of children continue to die at the hands of caretakers; and…

  16. MOF derived composites for cathode protection: coatings of LiCoO2 from UiO-66 and MIL-53 as ultra-stable cathodes.

    PubMed

    Qi, Pengfei; Han, Yuzhen; Zhou, Junwen; Fu, Xiaotao; Li, Siwu; Zhao, Jingshu; Wang, Lu; Fan, Xinxin; Feng, Xiao; Wang, Bo

    2015-08-11

    A mechanochemical synthetic method of preparing LiCoO2 coated by MOF-derived metal oxide composites is introduced. Mono-dispersed ZrO2 and Al2O3 are applied as protection layers. These composites show 148 mA h g(-1) at a current density of 2325 mA g(-1) and excellent thermal stability (55 °C). PMID:26140444

  17. Hierarchical Porous Nickel Cobaltate Nanoneedle Arrays as Flexible Carbon-Protected Cathodes for High-Performance Lithium-Oxygen Batteries.

    PubMed

    Xue, Hairong; Wu, Shichao; Tang, Jing; Gong, Hao; He, Ping; He, Jianping; Zhou, Haoshen

    2016-04-01

    Rechargeable lithium-oxygen (Li-O2) batteries are consequently considered to be an attractive energy storage technology because of the high theoretical energy densities. Here, an effective binder-free cathode with high capacity for Li-O2 batteries, needle-like mesoporous NiCo2O4 nanowire arrays uniformly coated on the flexible carbon textile have been in situ fabricated via a facile hydrothermal process followed by low temperature calcination. Because of the material and structural features, the needle-like NiCo2O4 nanowire arrays (NCONWAs) served as a binder-free cathode exhibits high specific capacity (4221 mAh g(-1)), excellent rate capability, and outstanding cycling stability (200 cycles). This cathode based on nonprecious mesoporous metal oxides nanowire arrays has large open spaces and high surface area, providing numerous catalytically active sites and effective transmission pathways for lithium ion and oxygen, and promises the abundant Li2O2 storage. The fast electron transport by directly anchoring on the substrate ensures fast electrochemical reaction process involved with the every nanowire. Furthermore, a bendable Li-O2 battery assembled by using the flexible NCONWAs as the cathode, can be able to light an LED and shows good rate capability and cyclic stability. PMID:26967936

  18. Mechanisms of LiCoO2 Cathode Degradation by Reaction with HF and Protection by Thin Oxide Coatings.

    PubMed

    Tebbe, Jonathon L; Holder, Aaron M; Musgrave, Charles B

    2015-11-01

    Reactions of HF with uncoated and Al and Zn oxide-coated surfaces of LiCoO2 cathodes were studied using density functional theory. Cathode degradation caused by reaction of HF with the hydroxylated (101̅4) LiCoO2 surface is dominated by formation of H2O and a LiF precipitate via a barrierless reaction that is exothermic by 1.53 eV. We present a detailed mechanism where HF reacts at the alumina coating to create a partially fluorinated alumina surface rather than forming AlF3 and H2O and thus alumina films reduce cathode degradation by scavenging HF and avoiding H2O formation. In contrast, we find that HF etches monolayer zinc oxide coatings, which thus fail to prevent capacity fading. However, thicker zinc oxide films mitigate capacity loss by reacting with HF to form a partially fluorinated zinc oxide surface. Metal oxide coatings that react with HF to form hydroxyl groups over H2O, like the alumina monolayer, will significantly reduce cathode degradation. PMID:26455367

  19. Hydrogen hollow cathode ion source

    NASA Technical Reports Server (NTRS)

    Mirtich, M. J., Jr.; Sovey, J. S.; Roman, R. F. (Inventor)

    1980-01-01

    A source of hydrogen ions is disclosed and includes a chamber having at one end a cathode which provides electrons and through which hydrogen gas flows into the chamber. Screen and accelerator grids are provided at the other end of the chamber. A baffle plate is disposed between the cathode and the grids and a cylindrical baffle is disposed coaxially with the cathode at the one end of the chamber. The cylindrical baffle is of greater diameter than the baffle plate to provide discharge impedance and also to protect the cathode from ion flux. An anode electrode draws the electrons away from the cathode. The hollow cathode includes a tubular insert of tungsten impregnated with a low work function material to provide ample electrons. A heater is provided around the hollow cathode to initiate electron emission from the low work function material.

  20. Graphene-modified Pd/C cathode and Pd/GAC particles for enhanced electrocatalytic removal of bromate in a continuous three-dimensional electrochemical reactor.

    PubMed

    Mao, Ran; Zhao, Xu; Lan, Huachun; Liu, Huijuan; Qu, Jiuhui

    2015-06-15

    Bromate (BrO3(-)) is a carcinogenic and genotoxic contaminant commonly generated during ozonation of bromide-containing water. In this work, the reductive removal of BrO3(-) in a continuous three-dimensional electrochemical reactor with palladium-reduced graphene oxide modified carbon paper (Pd-rGO/C) cathode and Pd-rGO modified granular activated carbon (Pd-rGO/GAC) particles was investigated. The results indicated that the rGO sheets significantly promoted the electrochemical reduction of BrO3(-). With the enhanced electron transfer by rGO sheets, the electroreduction of H2O to atomic H* on the polarized Pd particles could be significantly accelerated, leading to a faster reaction rate of BrO3(-) with atomic H*. The synergistic effect of the Pd-rGO/C cathode and Pd-rGO/GAC particles were also exhibited. The atomic H* involved in various electroreduction processes was detected by electron spin resonance spectroscopy and its role for BrO3(-) reduction was determined. The performance of the reactor was evaluated in terms of the removal of BrO3(-) and the yield of Br(-) as a function of the GO concentration, Pd loading amount, current density, hydraulic residence time (HRT), and initial BrO3(-) concentration. Under the current density of 0.9 mA/cm(2), BrO3(-) with the initial concentration of 20 μg/L was reduced to be less than 6.6 μg/L at the HRT of 20 min. The BrO3(-) reduction was inhibited in the presence of dissolved organic matter. Although the precipitates generated from Ca(2+) and Mg(2+) in the tap water would cover the Pd catalysts, a long-lasting electrocatalytic activity could be maintained for the 30 d treatment. SEM and XPS analysis demonstrated that the precipitates were predominantly deposited onto the Pd-rGO/C cathode rather than the Pd-rGO/GAC particles. PMID:25834955

  1. Mixed ion/electron-conductive protective soft nanomatter-based conformal surface modification of lithium-ion battery cathode materials

    NASA Astrophysics Data System (ADS)

    Park, Jang-Hoon; Kim, Ju-Myung; Lee, Chang Kee; Lee, Sang-Young

    2014-10-01

    Understanding and control of interfacial phenomena between electrode material and liquid electrolytes are of major scientific importance for boosting development of high-performance lithium ion batteries with reliable electrochemical/safety attributes. Here, as an innovative surface engineering approach to address the interfacial issues, a new concept of mixed ion/electron-conductive soft nanomatter-based conformal surface modification of the cathode material is presented. The soft nanomatter is comprised of an electron conductive carbonaceous (C) substance embedded in an ion conductive polyimide (PI) nanothin compliant film. In addition to its structural uniqueness, the newly proposed surface modification benefits from a simple fabrication process. The PI/carbon soft nanomatter is directly synthesized on LiCoO2 surface via one-pot thermal treatment of polyamic acid (=PI precursor) and sucrose (=carbon source) mixture, where the LiCoO2 powders are chosen as a model system to explore the feasibility of this surface engineering strategy. The resulting PI/carbon coating layer facilitates electronic conduction and also suppresses unwanted side reactions arising from the cathode material-liquid electrolyte interface. These synergistic coating effects of the multifunctional PI/carbon soft nanomatter significantly improve high-voltage cell performance and also mitigate interfacial exothermic reaction between cathode material and liquid electrolyte.

  2. Vacuum ultra-violet emission of plasma discharges with high Xe partial pressure using a cathode protective layer with high secondary electron emission

    SciTech Connect

    Zhu, Di; Song, Le; Zhang, Xiong; Kajiyama, Hiroshi

    2014-02-14

    In this work, the mechanism of the vacuum ultra-violet (VUV) emission of plasma discharges, with high Xe partial pressure and high ion-induced secondary electrons emission protective layer, is studied by measuring the VUV light emission directly and comparing it with two-dimensional simulations. From the panel measurement, we find that the high intensity of excimer VUV mainly contributes to the high luminous efficacy of SrCaO-plasma display panels (PDP) at a low sustain voltage. The unchanged Xe excitation efficiency indicates that the electron temperature is not decreased by the high secondary electrons emission protective layer, even though the sustain voltage is much lower. From the two-dimensional simulations, we can find that the ratio of excimer VUV to resonant VUV, which is determined by the collision rate in the discharge, is only significantly affected by the Xe partial pressure, while it is independent of the sustain voltage and the secondary-electrons-emission capability of protective layer. The unchanged average electron energy at the moment when the electric field becomes maximum confirms that the improvement of the VUV production efficiency mainly is attributed to the increase in electron heating efficiency of a PDP with high ion-induced secondary electrons emission protective layer. Combining the experimental and the simulation results, we conclude about the mechanism by which the VUV production is improved for the plasma display panel with a high Xe partial pressure and a cold cathode with high ion-induced secondary electrons emission.

  3. Arcjet Cathode Phenomena

    NASA Technical Reports Server (NTRS)

    Curran, Francis M.; Haag, Thomas W.; Raquet, John F.

    1989-01-01

    Cathode tips made from a number of different materials were tested in a modular arcjet thruster in order to examine cathode phenomena. Periodic disassembly and examination, along with the data collected during testing, indicated that all of the tungsten-based materials behaved similarly despite the fact that in one of these samples the percentage of thorium oxide was doubled and another was 25 percent rhenium. The mass loss rate from a 2 percent thoriated rhenium cathode was found to be an order of magnitude greater than that observed using 2 percent thoriated tungsten. Detailed analysis of one of these cathode tips showed that the molten crater contained pure tungsten to a depth of about 150 microns. Problems with thermal stress cracking were encountered in the testing of a hafnium carbide tip. Post test analysis showed that the active area of the tip had chemically reacted with the propellant. A 100 hour continuous test was run at about 1 kW. Post test analysis revealed no dendrite formation, such as observed in a 30 kW arcjet lifetest, near the cathode crater. The cathodes from both this test and a previously run 1000 hour cycled test displayed nearly identical arc craters. Data and calculations indicate that the mass losses observed in testing can be explained by evaporation.

  4. Arcjet cathode phenomena

    NASA Technical Reports Server (NTRS)

    Curran, Francis M.; Haag, Thomas W.; Raquet, John F.

    1989-01-01

    Cathode tips made from a number of different materials were tested in a modular arcjet thruster in order to examine cathode phenomena. Periodic disassembly and examination, along with the data collected during testing, indicated that all of the tungsten-based materials behaved similarly despite the fact that in one of these samples the percentage of thorium oxide was doubled and another was 25 percent rhenium. The mass loss rate from a 2 percent thoriated rhenium cathode was found to be an order of magnitude greater than that observed using 2 percent thoriated tungsten. Detailed analysis of one of these cathode tips showed that the molten crater contained pure tungsten to a depth of about 150 microns. Problems with thermal stress cracking were encountered in the testing of a hafnium carbide tip. Post test analysis showed that the active area of the tip had chemically reacted with the propellant. A 100 hour continuous test was run at about 1 kW. Post test analysis revealed no dendrite formation, such as observed in a 30 kW arcjet lifetest, near the cathode crater. The cathodes from both this test and a previously run 1000 hour cycled test displayed nearly identical arc craters. Data and calculations indicate that the mass losses observed in testing can be explained by evaporation.

  5. A method of improving the performance of continuous data protection system

    NASA Astrophysics Data System (ADS)

    Huo, Daoan; Cao, Qiang; Xie, Changsheng; Yang, Jing

    2009-08-01

    Data is the core resource of the information system, so that data corruption is one of the key problems which are on top of the radar screen of most information system administrators. Continuous Data Protection (CDP) technologies help them deal with data corruption by providing timely recovery to any point-in-time. But in this CDP process, the CDP system needs record every data changes, and then the extra system I/O operations increase greatly, the performance of information systems will be lower and the system cannot provide the best service. This paper discusses a method based buffer chains that can reduce the extra I/O operations from the disk. We have presented an implementation in the Linux kernel which provides continuous data protection service with higher performance under some buffer chains strategy.

  6. Mechanistic Insight in the Function of Phosphite Additives for Protection of LiNi0.5Co0.2Mn0.3O2 Cathode in High Voltage Li-Ion Cells.

    PubMed

    He, Meinan; Su, Chi-Cheung; Peebles, Cameron; Feng, Zhenxing; Connell, Justin G; Liao, Chen; Wang, Yan; Shkrob, Ilya A; Zhang, Zhengcheng

    2016-05-11

    Triethlylphosphite (TEP) and tris(2,2,2-trifluoroethyl) phosphite (TTFP) have been evaluated as electrolyte additives for high-voltage Li-ion battery cells using a Ni-rich layered cathode material LiNi0.5Co0.2Mn0.3O2 (NCM523) and the conventional carbonate electrolyte. The repeated charge/discharge cycling for cells containing 1 wt % of these additives was performed using an NCM523/graphite full cell operated at the voltage window from 3.0-4.6 V. During the initial charge process, these additives decompose on the cathode surface at a lower oxidation potential than the baseline electrolyte. Impedance spectroscopy and post-test analyses indicate the formation of protective coatings by both additives on the cathode surface that prevent oxidative breakdown of the electrolyte. However, only TTFP containing cells demonstrate the improved capacity retention and Coulombic efficiency. For TEP, the protective coating is also formed, but low Li(+) ion mobility through the interphase layer results in inferior performance. These observations are rationalized through the inhibition of electrocatalytic centers present on the cathode surface and the formation of organophosphate deposits isolating the cathode surface from the electrolyte. The difference between the two phosphites clearly originates in the different properties of the resulting phosphate coatings, which may be in Li(+) ion conductivity through such materials. PMID:27090502

  7. Cathodic arcs

    SciTech Connect

    Anders, Andre

    2003-10-29

    Cathodic arc plasma deposition has become the technology of choice for hard, wear and corrosion resistant coatings for a variety of applications. The history, basic physics of cathodic arc operation, the infamous macroparticle problem and common filter solutions, and emerging high-tech applications are briefly reviewed. Cathodic arc plasmas standout due to their high degree of ionization, with important consequences for film nucleation, growth, and efficient utilization of substrate bias. Industrial processes often use cathodic arc plasma in reactive mode. In contrast, the science of arcs has focused on the case of vacuum arcs. Future research directions include closing the knowledge gap for reactive mode, large area coating, linear sources and filters, metal plasma immersion process, with application in high-tech and biomedical fields.

  8. Understanding the long term effects of cathodic protection on pre-stressed concrete structures: Hydrogen embrittlement of pre-stressing steel

    SciTech Connect

    Enos, D.G.; Williams, A.J. Jr.; Scully, J.R.

    1996-11-01

    This paper addresses the issue of safe cathodic protection limits for pre-stressing steel in concrete given the concern of hydrogen embrittlement (HE). The local environment at the steel/concrete interface was found to vary as a function of vertical position within a laboratory scale marine bridge piling. Embedded pH electrodes indicated that the pH within a steel crevice embedded within a concrete piling decreased from 12.5--7.7 in the atmospheric zone 30.5 cm above the waterline. Hydrogen permeation was detected using embedded sensors at applied potentials (E(app)) as positive as {minus}694 mV{sub SCE} which also confirmed a local pH drop to below 8. In light of this information, a reversible electrode potential (REP)-based safe limit would require knowledge of pH and E(app) as a function of vertical position, as well as an understanding of their influence on HE. To address the latter issue, notched pre-stressing steel tensile specimens were CERT tested at various cathodic polarization levels in (1) saturated Ca(OH){sub 2}, (2) ASTM artificial oceanwater, (3) under a mortar cover in ASTM artificial oceanwater, and (4) a pH 4 environment simulating ferrous ion hydrolysis on corroding pre-stressing steel. CERT results were combined with permeation measurements to determine the relationship between mobile hydrogen concentration (C{sub H}) and fracture initiation stress, {sigma}{sub i}, in each environment over a series of cathodic potentials. A relationship of the form {sigma}{sub i} = {sigma}{sub 0}-{alpha}Log(C{sub H}/C{sub 0}) was observed independent of the environment and pH. The previously reported fixed cracking threshold of {minus}900 mV{sub SCE} in Ca(OH){sub 2} solutions pH adjusted with HCl, irrespective of pH (pH from 7 to 12.5), was explained. Decreasing pH can produce a roughly constant C{sub H} at fixed E(app) due to the opposing influences on hydrogen uptake of increasing overpotential but decreasing availability of a Ca(OH){sub 2} poison.

  9. Filtered cathodic arc source

    DOEpatents

    Falabella, Steven; Sanders, David M.

    1994-01-01

    A continuous, cathodic arc ion source coupled to a macro-particle filter capable of separation or elimination of macro-particles from the ion flux produced by cathodic arc discharge. The ion source employs an axial magnetic field on a cathode (target) having tapered sides to confine the arc, thereby providing high target material utilization. A bent magnetic field is used to guide the metal ions from the target to the part to be coated. The macro-particle filter consists of two straight solenoids, end to end, but placed at 45.degree. to one another, which prevents line-of-sight from the arc spot on the target to the parts to be coated, yet provides a path for ions and electrons to flow, and includes a series of baffles for trapping the macro-particles.

  10. Filtered cathodic arc source

    DOEpatents

    Falabella, S.; Sanders, D.M.

    1994-01-18

    A continuous, cathodic arc ion source coupled to a macro-particle filter capable of separation or elimination of macro-particles from the ion flux produced by cathodic arc discharge is described. The ion source employs an axial magnetic field on a cathode (target) having tapered sides to confine the arc, thereby providing high target material utilization. A bent magnetic field is used to guide the metal ions from the target to the part to be coated. The macro-particle filter consists of two straight solenoids, end to end, but placed at 45[degree] to one another, which prevents line-of-sight from the arc spot on the target to the parts to be coated, yet provides a path for ions and electrons to flow, and includes a series of baffles for trapping the macro-particles. 3 figures.

  11. Filtered cathodic arc source

    SciTech Connect

    Falabella, S.; Sanders, D.M.

    1992-12-31

    Disclosed is a continuous, cathodic arc ion source coupled to a macro-particle filter capable of separation or elimination of macro-particles from the ion flux produced by cathodic arc discharge. The ion source employs an axial magnetic field on a cathode (target) having tapered sides to confine the arc, thereby providing high target material utilization. A bent magnetic field is used to guide the metal ions from the target to the part to be coated. The macro-particle filter consists of two straight solenoids, end to end, but placed at 45{degrees} to one another, which prevents line-of-sight from the arc spot on the target to the parts to be coated, yet provides a path for ions and electrons to flow, and includes a series of baffles for trapping the macro-particles.

  12. Miniature Reservoir Cathode: An Update

    NASA Technical Reports Server (NTRS)

    Vancil, Bernard K.; Wintucky, Edwin G.

    2002-01-01

    We report on recent work to produce a small low power, low cost reservoir cathode capable of long life (more than 100,000 hours) at high loading (> 5 A/sq cm). Our objective is a highly manufacturable, commercial device costing less than $30. Small highly loaded cathodes are needed, especially for millimeter wave tubes, where focusing becomes difficult when area convergence ratios are too high. We currently have 3 models ranging from .060-inch diameter to. 125-inch diameter. Reservoir type barium dispenser cathodes have a demonstrated capability for simultaneous high emission density and long life. Seven reservoir cathodes continue to operate on the cathode life test facility at NSWC, Crane, Indiana at 2 and 4 amps/sq cm. They have accumulated nearly 100,000 hours with practically no change in emission levels or knee temperature.

  13. Continuous endotracheal tube cuff pressure control system protects against ventilator-associated pneumonia

    PubMed Central

    2014-01-01

    Introduction The use of a system for continuous control of endotracheal tube cuff pressure reduced the incidence of ventilator-associated pneumonia (VAP) in one randomized controlled trial (RCT) with 112 patients but not in another RCT with 142 patients. In several guidelines on the prevention of VAP, the use of a system for continuous or intermittent control of endotracheal cuff pressure is not reviewed. The objective of this study was to compare the incidence of VAP in a large sample of patients (n = 284) treated with either continuous or intermittent control of endotracheal tube cuff pressure. Methods We performed a prospective observational study of patients undergoing mechanical ventilation during more than 48 hours in an intensive care unit (ICU) using either continuous or intermittent endotracheal tube cuff pressure control. Multivariate logistic regression analysis (MLRA) and Cox proportional hazard regression analysis were used to predict VAP. The magnitude of the effect was expressed as odds ratio (OR) or hazard ratio (HR), respectively, and 95% confidence interval (CI). Results We found a lower incidence of VAP with the continuous (n = 150) than with the intermittent (n = 134) pressure control system (22.0% versus 11.2%; p = 0.02). MLRA showed that the continuous pressure control system (OR = 0.45; 95% CI = 0.22-0.89; p = 0.02) and the use of an endotracheal tube incorporating a lumen for subglottic secretion drainage (SSD) (OR = 0.39; 95% CI = 0.19-0.84; p = 0.02) were protective factors against VAP. Cox regression analysis showed that the continuous pressure control system (HR = 0.45; 95% CI = 0.24-0.84; p = 0.01) and the use of an endotracheal tube incorporating a lumen for SSD (HR = 0.29; 95% CI = 0.15-0.56; p < 0.001) were protective factors against VAP. However, the interaction between type of endotracheal cuff pressure control system (continuous or intermittent) and endotracheal tube

  14. High current density cathode for electrorefining in molten electrolyte

    DOEpatents

    Li, Shelly X.

    2010-06-29

    A high current density cathode for electrorefining in a molten electrolyte for the continuous production and collection of loose dendritic or powdery deposits. The high current density cathode eliminates the requirement for mechanical scraping and electrochemical stripping of the deposits from the cathode in an anode/cathode module. The high current density cathode comprises a perforated electrical insulated material coating such that the current density is up to 3 A/cm.sup.2.

  15. Emerging tools for continuous nutrient monitoring networks: Sensors advancing science and water resources protection

    USGS Publications Warehouse

    Pellerin, Brian; Stauffer, Beth A; Young, Dwane A; Sullivan, Daniel J.; Bricker, Suzanne B.; Walbridge, Mark R; Clyde, Gerard A; Shaw, Denice M

    2016-01-01

    Sensors and enabling technologies are becoming increasingly important tools for water quality monitoring and associated water resource management decisions. In particular, nutrient sensors are of interest because of the well-known adverse effects of nutrient enrichment on coastal hypoxia, harmful algal blooms, and impacts to human health. Accurate and timely information on nutrient concentrations and loads is integral to strategies designed to minimize risk to humans and manage the underlying drivers of water quality impairment. Using nitrate sensors as an example, we highlight the types of applications in freshwater and coastal environments that are likely to benefit from continuous, real-time nutrient data. The concurrent emergence of new tools to integrate, manage and share large data sets is critical to the successful use of nutrient sensors and has made it possible for the field of continuous nutrient monitoring to rapidly move forward. We highlight several near-term opportunities for Federal agencies, as well as the broader scientific and management community, that will help accelerate sensor development, build and leverage sites within a national network, and develop open data standards and data management protocols that are key to realizing the benefits of a large-scale, integrated monitoring network. Investing in these opportunities will provide new information to guide management and policies designed to protect and restore our nation’s water resources.

  16. Multiple Hollow Cathode Wear Testing

    NASA Technical Reports Server (NTRS)

    Soulas, George C.

    1994-01-01

    A hollow cathode-based plasma contactor has been baselined for use on the Space Station to reduce station charging. The plasma contactor provides a low impedance connection to space plasma via a plasma produced by an arc discharge. The hollow cathode of the plasma contactor is a refractory metal tube, through which xenon gas flows, which has a disk-shaped plate with a centered orifice at the downstream end of the tube. Within the cathode, arc attachment occurs primarily on a Type S low work function insert that is next to the orifice plate. This low work function insert is used to reduce cathode operating temperatures and energy requirements and, therefore, achieve increased efficiency and longevity. The operating characteristics and lifetime capabilities of this hollow cathode, however, are greatly reduced by oxygen bearing contaminants in the xenon gas. Furthermore, an optimized activation process, where the cathode is heated prior to ignition by an external heater to drive contaminants such as oxygen and moisture from the insert absorbed during exposure to ambient air, is necessary both for cathode longevity and a simplified power processor. In order to achieve the two year (approximately 17,500 hours) continuous operating lifetime requirement for the plasma contactor, a test program was initiated at NASA Lewis Research Center to demonstrate the extended lifetime capabilities of the hollow cathode. To date, xenon hollow cathodes have demonstrated extended lifetimes with one test having operated in excess of 8000 hours in an ongoing test utilizing contamination control protocols developed by Sarver-Verhey. The objectives of this study were to verify the transportability of the contamination control protocols developed by Sarver-Verhey and to evaluate cathode contamination control procedures, activation processes, and cathode-to-cathode dispersions in operating characteristics with time. These were accomplished by conducting a 2000 hour wear test of four hollow

  17. Thermionic cathode life-test studies

    NASA Technical Reports Server (NTRS)

    Forman, R.; Smith, D. H.

    1979-01-01

    A NASA-Lewis Research Center program for life testing commercial, high-current-density thermionic cathodes has been in progress since 1971. The purpose of the program is to develop long-life power microwave tubes for space communications. Four commercial-type cathodes are being evaluated in this investigation. They are the 'Tungstate', 'S' type, 'B' type, and 'M' type cathodes, all of which are capable of delivering 1 A/ sq cm or more of emission current at an operating temperature in the range of 1000-1100 C. The life test vehicles used in these studies are similar in construction to that of a high-power microwave tube and employ a high-convergence electron-gun structure; in contrast to earlier studies that used close-space diodes. These guns were designed for operation at 2 A/sq cm of cathode loading. The 'Tungstate' cathodes failed at 700 h or less and the 'S' cathode exhibited a lifetime of about 20,000 h. One 'B' cathode has failed after 27,000 h, the remaining units continuing to operate after up to 30,000 h. Only limited data are now available for the 'M' cathode, because only one has been operated for as long as 19,000 h. However, the preliminary results indicate the emission current from the 'M' cathode is more stable than the 'B' cathode and that it can be operated at a true temperature approximately 100 C lower than for the 'B' cathode.

  18. Measurement and mitigation of corrosion on self-contained fluid filled (SCFF) submarine circuits for New York Power Authority: Volume 2 -- Stray electrical current measurements and preliminary design of the cathodic protection system. Final report

    SciTech Connect

    1998-10-01

    In 1987, the New York Power Authority (NYPA) installed a 345-kV submarine cable circuit across Long Island Sound between substations at Davenport Neck and Hempstead Harbor. During design and installation of the cable circuit, utility and cable manufacturers engineers identified corrosion as a possible problem for the cable system. They considered such effects in the cable design and discussed preliminary requirements for a cathodic protection system on Long Island Sound circuit. EPRI cosponsored this review of the corrosion effects with NYPA and Empire State Electric Energy Research Corp. (ESEERCO). Volume 1 of this report discusses the results from an in-depth evaluation of the self-contained fluid-filled (SCFF) cable construction materials and their susceptibility to corrosion. Volume 2 provides extended stray current field measurements and a preliminary design for a cathodic protection system to ensure cable service reliability. This study provides a blueprint for East or West Coast utilities evaluating site-specific corrosion processes and cable circuit protection methods suitable for underwater environments.

  19. PROTECTING CHILDREN FROM ENVIRONMENTAL THREATS - A CONTINUING EDUCATION PROGRAM FOR NURSES OF THE AMERICAN NURSES FOUNDATION/ASSOCIATION

    EPA Science Inventory

    The American Nurses Association/Foundation will develop online, in print and pre conference continuing education (CE) children's environmental health protection programs to meet the objective of the program. The first CE program is on school environments, the second on home and ...

  20. Hollow cathode apparatus

    NASA Technical Reports Server (NTRS)

    Aston, G. (Inventor)

    1984-01-01

    A hollow cathode apparatus is described, which can be rapidly and reliably started. An ignitor positioned upstream from the hollow cathode, generates a puff of plasma that flows with the primary gas to be ionized through the cathode. The plasma puff creates a high voltage breakdown between the downstream end of the cathode and a keeper electrode, to heat the cathode to an electron-emitting temperature.

  1. Nanotube cathodes.

    SciTech Connect

    Overmyer, Donald L.; Lockner, Thomas Ramsbeck; Siegal, Michael P.; Miller, Paul Albert

    2006-11-01

    Carbon nanotubes have shown promise for applications in many diverse areas of technology. In this report we describe our efforts to develop high-current cathodes from a variety of nanotubes deposited under a variety of conditions. Our goal was to develop a one-inch-diameter cathode capable of emitting 10 amperes of electron current for one second with an applied potential of 50 kV. This combination of current and pulse duration significantly exceeds previously reported nanotube-cathode performance. This project was planned for two years duration. In the first year, we tested the electron-emission characteristics of nanotube arrays fabricated under a variety of conditions. In the second year, we planned to select the best processing conditions, to fabricate larger cathode samples, and to test them on a high-power relativistic electron beam generator. In the first year, much effort was made to control nanotube arrays in terms of nanotube diameter and average spacing apart. When the project began, we believed that nanotubes approximately 10 nm in diameter would yield sufficient electron emission properties, based on the work of others in the field. Therefore, much of our focus was placed on measured field emission from such nanotubes grown on a variety of metallized surfaces and with varying average spacing between individual nanotubes. We easily reproduced the field emission properties typically measured by others from multi-wall carbon nanotube arrays. Interestingly, we did this without having the helpful vertical alignment to enhance emission; our nanotubes were randomly oriented. The good emission was most likely possible due to the improved crystallinity, and therefore, electrical conductivity, of our nanotubes compared to those in the literature. However, toward the end of the project, we learned that while these 10-nm-diameter CNTs had superior crystalline structure to the work of others studying field emission from multi-wall CNT arrays, these nanotubes still

  2. U.S. ENVIRONMENTAL PROTECTION AGENCY (EPA) ENVIRONMENTAL TECHNOLOGY VERIFICATION (ETV) PROGRAM: MERCURY CONTINUOUS EMISSION MONITORS

    EPA Science Inventory

    The U.S. Environmental Protection Agency (EPA) Environmental Technology Verification (ETV) program evaluates the performance of innovative air, water, pollution prevention and monitoring technologies that have the potential to improve human health and the environment. This techn...

  3. Stranger danger? Women's self-protection intent and the continuing stigma of online dating.

    PubMed

    Cali, Billie E; Coleman, Jill M; Campbell, Catherine

    2013-12-01

    The present study examines the stigma associated with online relationship initiation and its relation to women's self-protective behavior. Self-protective behaviors are those an individual engages in to avoid becoming a victim of dating violence. Female participants from a Midwestern university (N=82) were asked to read scenarios describing a hypothetical date. In one scenario, the prospective date was only previously known through an online social networking site, while in the other scenario, the date was previously known through brief face-to-face interaction. After reading the scenario, participants rated the importance of engaging in self-protection behaviors if they were in the date situation being described. As we predicted, participants assigned greater importance to self-protective behavior after reading the online meeting scenario than the face-to-face scenario. This tendency was especially strong among participants who had never been on a date with someone they had met online. PMID:23849001

  4. Bifurcations of edge states—topologically protected and non-protected—in continuous 2D honeycomb structures

    NASA Astrophysics Data System (ADS)

    Fefferman, C. L.; Lee-Thorp, J. P.; Weinstein, M. I.

    2016-03-01

    Edge states are time-harmonic solutions to energy-conserving wave equations, which are propagating parallel to a line-defect or ‘edge’ and are localized transverse to it. This paper summarizes and extends the authors’ work on the bifurcation of topologically protected edge states in continuous two-dimensional (2D) honeycomb structures. We consider a family of Schrödinger Hamiltonians consisting of a bulk honeycomb potential and a perturbing edge potential. The edge potential interpolates between two different periodic structures via a domain wall. We begin by reviewing our recent bifurcation theory of edge states for continuous 2D honeycomb structures (http://arxiv.org/abs/1506.06111). The topologically protected edge state bifurcation is seeded by the zero-energy eigenstate of a one-dimensional Dirac operator. We contrast these protected bifurcations with (more common) non-protected bifurcations from spectral band edges, which are induced by bound states of an effective Schrödinger operator. Numerical simulations for honeycomb structures of varying contrasts and ‘rational edges’ (zigzag, armchair and others), support the following scenario: (a) for low contrast, under a sign condition on a distinguished Fourier coefficient of the bulk honeycomb potential, there exist topologically protected edge states localized transverse to zigzag edges. Otherwise, and for general edges, we expect long lived edge quasi-modes which slowly leak energy into the bulk. (b) For an arbitrary rational edge, there is a threshold in the medium-contrast (depending on the choice of edge) above which there exist topologically protected edge states. In the special case of the armchair edge, there are two families of protected edge states; for each parallel quasimomentum (the quantum number associated with translation invariance) there are edge states which propagate in opposite directions along the armchair edge.

  5. Topologically protected states in one-dimensional continuous systems and Dirac points.

    PubMed

    Fefferman, Charles L; Lee-Thorp, James P; Weinstein, Michael I

    2014-06-17

    We study a class of periodic Schrödinger operators on ℝ that have Dirac points. The introduction of an "edge" via adiabatic modulation of a periodic potential by a domain wall results in the bifurcation of spatially localized "edge states," associated with the topologically protected zero-energy mode of an asymptotic one-dimensional Dirac operator. The bound states we construct can be realized as highly robust transverse-magnetic electromagnetic modes for a class of photonic waveguides with a phase defect. Our model captures many aspects of the phenomenon of topologically protected edge states for 2D bulk structures such as the honeycomb structure of graphene. PMID:24927571

  6. Development of Lanthanum Ferrite SOFC Cathodes

    SciTech Connect

    Simner, Steve P.; Bonnett, Jeff F.; Canfield, Nathan L.; Meinhardt, Kerry D.; Shelton, Jayne P.; Sprenkle, Vince L.; Stevenson, Jeffry W.

    2003-01-01

    A number of studies have been conducted concerning compositional/microstructural modifications of a Sr-doped lanthanum ferrite (LSF) cathode and protective Sm-doped ceria (SDC) layer in an anode supported solid oxide fuel cell (SOFC). Emphasis was placed on achieving enhanced low temperature (700-800 degrees C) performance, and long-term cell stability. Investigations involved manipulation of the lanthanum ferrite chemistry, addition of noble metal oxygen reduction catalysts, incorporation of active cathode layer compositions containing Co, Fe and higher Sr contents, and attempts to optimize the ceria barrier layer between the LSF cathode and YSZ electrolyte.

  7. Pilot-scale continuous synthesis of a vanadium-doped LiFePO4/C nanocomposite high-rate cathodes for lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Johnson, Ian D.; Lübke, Mechthild; Wu, On Ying; Makwana, Neel M.; Smales, Glen J.; Islam, Husn U.; Dedigama, Rashmi Y.; Gruar, Robert I.; Tighe, Christopher J.; Scanlon, David O.; Corà, Furio; Brett, Dan J. L.; Shearing, Paul R.; Darr, Jawwad A.

    2016-01-01

    A high performance vanadium-doped LiFePO4 (LFP) electrode is synthesized using a continuous hydrothermal method at a production rate of 6 kg per day. The supercritical water reagent rapidly generates core/shell nanoparticles with a thin, continuous carbon coating on the surface of LFP, which aids electron transport dynamics across the particle surface. Vanadium dopant concentration has a profound effect on the performance of LFP, where the composition LiFe0.95V0.05PO4, achieves a specific discharge capacity which is among the highest in the comparable literature (119 mA h g-1 at a discharge rate of 1500 mA g-1). Additionally, a combination of X-ray absorption spectroscopy analysis and hybrid-exchange density functional theory, suggest that vanadium ions replace both phosphorous and iron in the structure, thereby facilitating Li+ diffusion due to Li+ vacancy generation and changes in the crystal structure.

  8. Sintered wire cathode

    DOEpatents

    Falce, Louis R.; Ives, R. Lawrence

    2009-06-09

    A porous cathode structure is fabricated from a plurality of wires which are placed in proximity to each other in elevated temperature and pressure for a sintering time. The sintering process produces the porous cathode structure which may be divided into a plurality of individual porous cathodes, one of which may be placed into a dispenser cathode support which includes a cavity for containing a work function reduction material such as BaO, CaO, and Al.sub.2O.sub.3. The work function reduction material migrates through the pores of the porous cathode from a work replenishment surface adjacent to the cavity of the dispenser cathode support to an emitting cathode surface, thereby providing a dispenser cathode which has a uniform work function and therefore a uniform electron emission.

  9. Pressed boride cathodes

    NASA Technical Reports Server (NTRS)

    Wolski, W.

    1985-01-01

    Results of experimental studies of emission cathodes made from lanthanum, yttrium, and gadolinium hexaborides are presented. Maximum thermal emission was obtained from lanthanum hexaboride electrodes. The hexaboride cathodes operated stably under conditions of large current density power draw, at high voltages and poor vacuum. A microtron electron gun with a lanthanum hexaboride cathode is described.

  10. Protection against Amorimia septentrionalis poisoning in goats by the continuous administration of sodium monofluoroacetate-degrading bacteria.

    PubMed

    da Silva, Layze C A; Pessoa, Danielle A N; Lopes, Jose R G; de Albuquerque, Laio G; da Silva, Leomyr S A; Garino Junior, Felicio; Riet-Correa, Franklin

    2016-03-01

    The intraruminal inoculation of sodium monofluoroacetate (MFA)-degrading bacteria has been proposed as a method to prevent poisoning by MFA-containing plants. In previous experiments, MFA-degrading bacteria were inoculated intraruminally before or concurrent with plant challenge, with both strategies conferring partial protection to poisoning. To evaluate the protection to Amorimia septentrionalis poisoning provided by the continuous inoculation of MFA-degrading bacteria isolated from plants and soils, 18 goats were divided into three experimental groups of six animals each: Group 1 goats received daily doses of a mixture of Paenibacillus sp. and Cupriavidus sp., and Group 2 goats received a mixture of Ralstonia sp. and Burkholderia sp., for 40 days, while Group 3 goats were not inoculated. Ten days after initiation of bacterial inoculation in Groups 1 and 2, all goats were challenged daily with 5 g/kg body weight of green leaves from A. septentrionalis. Four goats from Group 1 consumed the leaves throughout the 30-day consumption period and showed clinical signs such as transient tachycardia and engorgement of the jugular. The two remaining animals from Group 1 showed obvious signs of intoxication, and plant administration was suspended on days 17 and 19. The goats in Group 2 consumed the leaves throughout the 30-day study without showing signs of poisoning. The goats from Group 3 (control) manifested severe clinical signs of poisoning between the 3rd and 10th days following the start of the A. septentrionalis challenge. Under the conditions of this experiment continuous intraruminal administration of Ralstonia sp. and Burkholderia sp. provided complete protection to poisoning by A. septentrionalis in goats, while continuous intraruminal administration of Paenibacillus sp. and Cupriavidus sp. provided partial protection. PMID:26747472

  11. Business continuity, emergency planning and special needs: How to protect the vulnerable.

    PubMed

    Reilly, Daniel

    2015-01-01

    Emergencies and disasters affect all segments of the population. Some segments are more at risk during the emergency response and recovery efforts owing to vulnerabilities that increase the risk of harm. These vulnerabilities are due to individuals' disabilities, which must be incorporated into emergency and business continuity planning. Some disabilities are obvious, such as impaired vision, hearing or mobility, while other are less evident, but equally disabling, such as cognitive disorders, geographical or language isolation, and numerous age-related factors. Taken together when creating emergency or business continuity plans, the issues identified as disabilities can be grouped by functionality and termed as special needs. This paper will detail the identification of special needs populations, explain how these persons are vulnerable during the emergency or disaster response and recovery process, and provide examples of how to partner with individuals within identified special needs populations to improve the planning process. PMID:26420394

  12. 95 GHz gyrotron with ferroelectric cathode.

    PubMed

    Einat, M; Pilossof, M; Ben-Moshe, R; Hirshbein, H; Borodin, D

    2012-11-01

    Ferroelectric cathodes were reported as a feasible electron source for microwave tubes. However, due to the surface plasma emission characterizing this cathode, operation of millimeter wave tubes based on it remains questionable. Nevertheless, the interest in compact high power sources of millimeter waves and specifically 95 GHz is continually growing. In this experiment, a ferroelectric cathode is used as an electron source for a gyrotron with the output frequency extended up to 95 GHz. Power above a 5 kW peak and ~0.5 μs pulses are reported; a duty cycle of 10% is estimated to be achievable. PMID:23215293

  13. Neobenedenia melleni-Specific Antibodies Are Associated with Protection after Continuous Exposure in Mozambique Tilapia

    PubMed Central

    Kishimori, Jennifer M.; Takemura, Akihiro; Leong, Jo-Ann C.

    2015-01-01

    Neobenedenia melleni is a significant monogenean pathogen of fish in aquaculture facilities and public aquaria. Immunity after exposure to live N. melleni is well established, but the mechanisms of immunity remain unclear. In this study, tilapia (Oreochromis mossambicus) were continuously exposed to N. melleni over a four-month period and assessed for immunity as determined by a reduction in the number of parasites dislodged from the experimental animals during freshwater immersion. Specific mucosal and systemic antibody levels were by determined via enzyme-linked immunosorbent assay. At 45 days postexposure (DPE), fish displayed high parasite loads and baseline levels of mucosal antibodies. At 102 and 120 DPE parasite loads were significantly decreased, and antibody levels were significantly increased for mucus and plasma samples. The correlation between immunity (reduction in parasite load) and an increased humoral antibody response suggests a key role of antibody in the immune response. This is the first report of immunity against N. melleni that is associated with specific mucosal or systemic antibodies. PMID:25756055

  14. Erosion of thermionic cathodes

    NASA Astrophysics Data System (ADS)

    Nemchinsky, Valerian

    2013-09-01

    Two types of the thermionic cathodes are used in industry: a) Tungsten (doped with thoria or pure) cathodes burning in a unreactive gas, and b) Thermo-chemical cathodes, such as a Hafnium cathode burning in oxygen plasma gas (mostly used plasma cutting). Both types of the cathodes experience cycle (arc on/off) erosion and constant current erosion. Available experimental data for both types of cathodes and both types of erosions (constant current and cycling) are presented and discussed. Based on the model the constant current erosion rate is calculated. Comparison of the results of the calculations with the experimental data show reasonable agreement. Existing hypotheses on cycling erosion are also discussed. For the Tungsten cathode, it is suggested that the start erosion is mainly due to the cold cathode mode (vacuum arc mode) of the arc operation that takes place just after the arc ignition. The presented estimation doesn't contradict this hypothesis. For the Hafnium cathode, the model of the ``open can'' erosion is supported by recently published observations.

  15. Improved Dispenser Cathodes

    NASA Astrophysics Data System (ADS)

    Ives, R. Lawrence; Falce, Lou

    2006-01-01

    Variations in emission current from dispenser cathodes can be caused by variations in temperature and work function over the surface. This paper described research to reduce these variations using improved mechanical designs and controlled porosity cathodes made from sintered tungsten wires. The program goal is to reduce current emission variations to less than 5% over the surface of magnetron injection guns operating temperature limited.

  16. Planar-focusing cathodes.

    SciTech Connect

    Lewellen, J. W.; Noonan, J.; Accelerator Systems Division

    2005-01-01

    Conventional {pi}-mode rf photoinjectors typically use magnetic solenoids for emittance compensation. This provides independent focusing strength but can complicate rf power feed placement, introduce asymmetries (due to coil crossovers), and greatly increase the cost of the photoinjector. Cathode-region focusing can also provide for a form of emittance compensation. Typically this method strongly couples focusing strength to the field gradient on the cathode, however, and usually requires altering the longitudinal position of the cathode to change the focusing. We propose a new method for achieving cathode-region variable-strength focusing for emittance compensation. The new method reduces the coupling to the gradient on the cathode and does not require a change in the longitudinal position of the cathode. Expected performance for an S-band system is similar to conventional solenoid-based designs. This paper presents the results of rf cavity and beam dynamics simulations of the new design. We have proposed a method for performing emittance compensation using a cathode-region focusing scheme. This technique allows the focusing strength to be adjusted somewhat independently of the on-axis field strength. Beam dynamics calculations indicate performance should be comparable to presently in-use emittance compensation schemes, with a simpler configuration and fewer possibilities for emittance degradation due to the focusing optics. There are several potential difficulties with this approach, including cathode material selection, cathode heating, and peak fields in the gun. We hope to begin experimenting with a cathode of this type in the near future, and several possibilities exist for reducing the peak gradients to more acceptable levels.

  17. LOW TEMPERATURE CATHODE SUPPORTED ELECTROLYTES

    SciTech Connect

    Harlan U. Anderson; Fatih Dogan; Vladimir Petrovsky

    2002-03-31

    This project has three main goals: Thin Films Studies, Preparation of Graded Porous Substrates and Basic Electrical Characterization and testing of Planar Single Cells. This period has continued to address the problem of making dense 1/2 to 5 {micro}m thick dense layers on porous substrates (the cathode LSM). Our current status is that we are making structures of 2-5 cm{sup 2} in area, which consist of either dense YSZ or CGO infiltrated into a 2-5 {micro}m thick 50% porous layer made of either nanoncrystalline CGO or YSZ powder. This composite structure coats a macroporous cathode or anode; which serves as the structural element of the bi-layer structure. These structures are being tested as SOFC elements. A number of structures have been evaluated both as symmetrical and as button cell configuration. Results of this testing indicates that the cathodes contribute the most to cell losses for temperatures below 750 C. In this investigation different cathode materials were studied using impedance spectroscopy of symmetric cells and IV characteristics of anode supported fuel cells. Cathode materials studied included La{sub 0.8}Sr{sub 0.2}Co{sub 0.2}Fe{sub 0.8}O{sub 3} (LSCF), La{sub 0.7}Sr{sub 0.2}MnO{sub 3} (LSM), Pr{sub 0.8}Sr{sub 0.2}Fe{sub 0.8}O{sub 3} (PSCF), Sm{sub 0.8}Sr{sub 0.2}Co{sub 0.2}Fe{sub 0.8}O{sub 3} (SSCF), and Yb{sub .8}Sr{sub 0.2}Co{sub 0.2}Fe{sub 0.8}O{sub 3} (SSCF). A new technique for filtering the Fourier transform of impedance data was used to increase the sensitivity of impedance analysis. By creating a filter specifically for impedance spectroscopy the resolution was increased. The filter was tailored to look for specific circuit elements like R//C, Warburg, or constant phase elements. As many as four peaks can be resolved using the filtering technique on symmetric cells. It may be possible to relate the different peaks to material parameters, like the oxygen exchange coefficient. The cathode grouped in order from lowest to highest ASR is

  18. The dependence of vircator oscillation mode on cathode material

    NASA Astrophysics Data System (ADS)

    Li, Limin; Liu, Lie; Cheng, Guoxin; Xu, Qifu; Wan, Hong; Chang, Lei; Wen, Jianchun

    2009-06-01

    This paper presents the effects of cathode materials on the oscillation mode of a virtual cathode oscillator (vircator). In the case of the stainless steel cathode, an oscillation mode hopping appeared with two separate frequencies. Interestingly, the vircator using the carbon fiber cathode exhibited an almost unchanged microwave frequency throughout the microwave pulse. To understand this phenomenon, several parameters are compared, including the diode voltage, accelerating gap, emitting area, and beam uniformity. It was found that a flat-top voltage and a relatively stable gap will provide a possibility of generating a constant microwave frequency. Further, the cathode operated in a regime where the beam current was between the space-charge limited current determined by Child-Langmuir law and the bipolar flow. On the cathode surface, the electron emission is initiated from discrete plasma spots and next from a continuing area, while there is a liberation process of multilayer gases on the anode surface. The changes in the emitting area of carbon fiber cathode showed a self-quenching process, which is not observed in the case of stainless steel cathode. The two-dimensional effect of microwave frequency is introduced, and the obtained results supported the experimental observations on the oscillation mode. By examining the cross section of electron beam, the electron beam for carbon fiber cathode was significantly centralized, while the discrete beam spots appeared for stainless steel cathode. These results show that the slowed diode closure, high emission uniformity, and stable microwave frequency tend to be closely tied.

  19. Nanofiber Scaffold for Cathode of Solid Oxide Fuel Cell

    SciTech Connect

    Zhi, Mingjia; Mariani, Nicholas; Gemmen, Randall; Gerdes, Kirk; Wu, Nianqiang

    2010-10-01

    A high performance solid oxide fuel cell cathode using the yttria-stabilized zirconia (YSZ) nanofibers scaffold with the infiltrated La1-xSrxMnO3 (LSM) shows an enhanced catalytic activity toward oxygen reduction. Such a cathode offers a continuous path for charge transport and an increased number of triple-phase boundary sites.

  20. Lightweight Cathodes For Nickel Batteries

    NASA Technical Reports Server (NTRS)

    Britton, Doris L.

    1996-01-01

    Lightweight cathodes for rechargeable nickel-based electrochemical cells undergoing development. In cathodes, mats of nickel fibers are substrates providing structural support of, and electrical contact with, active cathode material. Offers specific energies greater than sintered nickel plaque cathodes. Electrodes used in rechargeable batteries for applications in which weight major concern, including laptop computers, cellular phones, flashlights, soldiers' backpacks, and electric vehicles.

  1. Nanostructured sulfur cathodes.

    PubMed

    Yang, Yuan; Zheng, Guangyuan; Cui, Yi

    2013-04-01

    Rechargeable Li/S batteries have attracted significant attention lately due to their high specific energy and low cost. They are promising candidates for applications, including portable electronics, electric vehicles and grid-level energy storage. However, poor cycle life and low power capability are major technical obstacles. Various nanostructured sulfur cathodes have been developed to address these issues, as they provide greater resistance to pulverization, faster reaction kinetics and better trapping of soluble polysulfides. In this review, recent developments on nanostructured sulfur cathodes and mechanisms behind their operation are presented and discussed. Moreover, progress on novel characterization of sulfur cathodes is also summarized, as it has deepened the understanding of sulfur cathodes and will guide further rational design of sulfur electrodes. PMID:23325336

  2. Cathodes - Technological review

    NASA Astrophysics Data System (ADS)

    Cherkouk, Charaf; Nestler, Tina

    2014-06-01

    Lithium cobalt oxide (LiCoO2) was already used in the first commercialized Li-ion battery by SONY in 1990. Still, it is the most frequently used cathode material nowadays. However, LiCoO2 is intrinsically unstable in the charged state, especially at elevated temperatures and in the overcharged state causing volume changes and transport limitation for high power batteries. In this paper, some technological aspects with large impact on cell performance from the cathode material point of view will be reviewed. At first it will be focused on the degradation processes and life-time mechanisms of the cathode material LiCoO2. Electrochemical and structural results on commercial Li-ion batteries recorded during the cycling will be discussed. Thereafter, advanced nanomaterials for new cathode materials will be presented.

  3. Extended-testing of xenon ion thruster hollow cathodes

    NASA Technical Reports Server (NTRS)

    Sarver-Verhey, Timothy R.

    1992-01-01

    A hollow cathode wear-test of 508 hours was successfully completed at an emission current of 23.0 A and a xenon flow rate of 10 Pa-L/s. This test was the continuation of a hollow cathode contamination investigation. Discharge voltage was stable at 16.7 V. The cathode temperature averaged 1050 C with a 7 percent drop during the wear-test. Discharge ignition voltage was found to be approximately 20 V and was repeatable over four starts. Post-test analyses of the hollow cathode found a much improved internal cathode condition with respect to earlier wear-test cathodes. Negligible tungsten movement occurred and no formation of mono-barium tungsten was observed. These results correlated with an order-of-magnitude reduction in propellant feed-system leakage rate. Ba2CaWO6 and extensive calcium crystal formation occurred on the upstream end of the insert. Ba-Ca compound depositions were found on the Mo insert collar, on the Re electrical leads, and in the gap between the insert and cathode wall. This wear-test cathode was found to be in the best internal condition and had the most stable operating performance of any hollow cathode tested during this contamination investigation.

  4. Cathode materials review

    SciTech Connect

    Daniel, Claus Mohanty, Debasish Li, Jianlin Wood, David L.

    2014-06-16

    The electrochemical potential of cathode materials defines the positive side of the terminal voltage of a battery. Traditionally, cathode materials are the energy-limiting or voltage-limiting electrode. One of the first electrochemical batteries, the voltaic pile invented by Alessandro Volta in 1800 (Phil. Trans. Roy. Soc. 90, 403-431) had a copper-zinc galvanic element with a terminal voltage of 0.76 V. Since then, the research community has increased capacity and voltage for primary (nonrechargeable) batteries and round-trip efficiency for secondary (rechargeable) batteries. Successful secondary batteries have been the lead-acid with a lead oxide cathode and a terminal voltage of 2.1 V and later the NiCd with a nickel(III) oxide-hydroxide cathode and a 1.2 V terminal voltage. The relatively low voltage of those aqueous systems and the low round-trip efficiency due to activation energies in the conversion reactions limited their use. In 1976, Wittingham (J. Electrochem. Soc., 123, 315) and Besenhard (J. Power Sources 1(3), 267) finally enabled highly reversible redox reactions by intercalation of lithium ions instead of by chemical conversion. In 1980, Goodenough and Mizushima (Mater. Res. Bull. 15, 783-789) demonstrated a high-energy and high-power LiCoO{sub 2} cathode, allowing for an increase of terminal voltage far beyond 3 V. Over the past four decades, the international research community has further developed cathode materials of many varieties. Current state-of-the-art cathodes demonstrate voltages beyond any known electrolyte stability window, bringing electrolyte research once again to the forefront of battery research.

  5. Cathode materials review

    NASA Astrophysics Data System (ADS)

    Daniel, Claus; Mohanty, Debasish; Li, Jianlin; Wood, David L.

    2014-06-01

    The electrochemical potential of cathode materials defines the positive side of the terminal voltage of a battery. Traditionally, cathode materials are the energy-limiting or voltage-limiting electrode. One of the first electrochemical batteries, the voltaic pile invented by Alessandro Volta in 1800 (Phil. Trans. Roy. Soc. 90, 403-431) had a copper-zinc galvanic element with a terminal voltage of 0.76 V. Since then, the research community has increased capacity and voltage for primary (nonrechargeable) batteries and round-trip efficiency for secondary (rechargeable) batteries. Successful secondary batteries have been the lead-acid with a lead oxide cathode and a terminal voltage of 2.1 V and later the NiCd with a nickel(III) oxide-hydroxide cathode and a 1.2 V terminal voltage. The relatively low voltage of those aqueous systems and the low round-trip efficiency due to activation energies in the conversion reactions limited their use. In 1976, Wittingham (J. Electrochem. Soc., 123, 315) and Besenhard (J. Power Sources 1(3), 267) finally enabled highly reversible redox reactions by intercalation of lithium ions instead of by chemical conversion. In 1980, Goodenough and Mizushima (Mater. Res. Bull. 15, 783-789) demonstrated a high-energy and high-power LiCoO2 cathode, allowing for an increase of terminal voltage far beyond 3 V. Over the past four decades, the international research community has further developed cathode materials of many varieties. Current state-of-the-art cathodes demonstrate voltages beyond any known electrolyte stability window, bringing electrolyte research once again to the forefront of battery research.

  6. Thermionic cathode life test studies

    NASA Technical Reports Server (NTRS)

    Forman, R.; Elmer, P.

    1980-01-01

    An update on the life testing of commerical, high current density impregnated tungsten cathodes is presented. The B-type cathodes, operated at a current density of 2 A/cm2 and a cathode temperature of 1100 C have now been run satisfactorily for more than four years. The M-cathode, at the same current density but at an operating temperature of only 1010 C, have been tested for more than three years. The M-cathodes show no degradation in current over their present operating life whereas the current from the B-cathodes degrade about 6 percent after four years of operation.

  7. Protective Factors Interrupting the Continuity from School Bullying to Later Internalizing and Externalizing Problems: A Systematic Review of Prospective Longitudinal Studies

    ERIC Educational Resources Information Center

    Ttofi, Maria M.; Bowes, Lucy; Farrington, David P.; Lösel, Friedrich

    2014-01-01

    A systematic review is presented, based on prospective longitudinal studies, on protective factors that interrupt the continuity from bullying perpetration at school to externalizing problem behaviors later in life; and from bullying victimization to later internalizing problems. Some common factors were established, which seem to interrupt the…

  8. Focused cathode design to reduce anode heating during vircator operation

    NASA Astrophysics Data System (ADS)

    Lynn, Curtis F.; Dickens, James C.; Neuber, Andreas A.

    2013-10-01

    Virtual cathode oscillators, or vircators, are a type of high power microwave device which operates based on the instability of a virtual cathode, or cloud of electrons, which forms when electron current injected into the drift tube exceeds the space charge limited current within the drift tube. Anode heating by the electron beam during vircator operation ultimately limits achievable pulse lengths, repetition rates, and the duration of burst mode operation. This article discusses a novel cathode design that focuses electrons through holes in the anode, thus significantly reducing anode heating by the electrons emitted from the cathode during the first transit through the A-K gap. Reflexing electrons continue to deposit energy on the anode; however, the discussed minimization of anode heating by main beam electrons has the potential to enable higher repetition rates as well as efficiency and longer diode lifetime. A simulation study of this type of cathode design illustrates possible advantages.

  9. Microscale Gradients of Oxygen, Hydrogen Peroxide, and pH in Freshwater Cathodic Biofilms

    PubMed Central

    Babauta, Jerome T.; Nguyen, Hung Duc; Istanbullu, Ozlem

    2014-01-01

    Cathodic reactions in biofilms employed in sediment microbial fuel cells is generally studied in the bulk phase. However, the cathodic biofilms affected by these reactions exist in microscale conditions in the biofilm and near the electrode surface that differ from the bulk phase. Understanding these microscale conditions and relating them to cathodic biofilm performance is critical for better-performing cathodes. The goal of this research was to quantify the variation in oxygen, hydrogen peroxide, and the pH value near polarized surfaces in river water to simulate cathodic biofilms. We used laboratory river-water biofilms and pure culture biofilms of Leptothrix discophora SP-6 as two types of cathodic biofilms. Microelectrodes were used to quantify oxygen concentration, hydrogen peroxide concentration, and the pH value near the cathodes. We observed the correlation between cathodic current generation, oxygen consumption, and hydrogen peroxide accumulation. We found that the 2e− pathway for oxygen reduction is the dominant pathway as opposed to the previously accepted 4e− pathway quantified from bulk-phase data. Biofouling of initially non-polarized cathodes by oxygen scavengers reduced cathode performance. Continuously polarized cathodes could sustain a higher cathodic current longer despite contamination. The surface pH reached a value of 8.8 when a current of only −30 μA was passed through a polarized cathode, demonstrating that the pH value could also contribute to preventing biofouling. Over time, oxygen-producing cathodic biofilms (Leptothrix discophora SP-6) colonized on polarized cathodes, which decreased the overpotential for oxygen reduction and resulted in a large cathodic current attributed to manganese reduction. However, the cathodic current was not sustainable. PMID:23766295

  10. Microscale gradients of oxygen, hydrogen peroxide, and pH in freshwater cathodic biofilms.

    PubMed

    Babauta, Jerome T; Nguyen, Hung Duc; Istanbullu, Ozlem; Beyenal, Haluk

    2013-07-01

    Cathodic reactions in biofilms employed in sediment microbial fuel cells is generally studied in the bulk phase. However, the cathodic biofilms affected by these reactions exist in microscale conditions in the biofilm and near the electrode surface that differ from the bulk phase. Understanding these microscale conditions and relating them to cathodic biofilm performance is critical for better-performing cathodes. The goal of this research was to quantify the variation in oxygen, hydrogen peroxide, and the pH value near polarized surfaces in river water to simulate cathodic biofilms. We used laboratory river-water biofilms and pure culture biofilms of Leptothrix discophora SP-6 as two types of cathodic biofilms. Microelectrodes were used to quantify oxygen concentration, hydrogen peroxide concentration, and the pH value near the cathodes. We observed the correlation between cathodic current generation, oxygen consumption, and hydrogen peroxide accumulation. We found that the 2 e(-) pathway for oxygen reduction is the dominant pathway as opposed to the previously accepted 4 e(-) pathway quantified from bulk-phase data. Biofouling of initially non-polarized cathodes by oxygen scavengers reduced cathode performance. Continuously polarized cathodes could sustain a higher cathodic current longer despite contamination. The surface pH reached a value of 8.8 when a current of only -30 μA was passed through a polarized cathode, demonstrating that the pH value could also contribute to preventing biofouling. Over time, oxygen-producing cathodic biofilms (Leptothrix discophora SP-6) colonized on polarized cathodes, which decreased the overpotential for oxygen reduction and resulted in a large cathodic current attributed to manganese reduction. However, the cathodic current was not sustainable. PMID:23766295

  11. Miniaturized cathodic arc plasma source

    DOEpatents

    Anders, Andre; MacGill, Robert A.

    2003-04-15

    A cathodic arc plasma source has an anode formed of a plurality of spaced baffles which extend beyond the active cathode surface of the cathode. With the open baffle structure of the anode, most macroparticles pass through the gaps between the baffles and reflect off the baffles out of the plasma stream that enters a filter. Thus the anode not only has an electrical function but serves as a prefilter. The cathode has a small diameter, e.g. a rod of about 1/4 inch (6.25 mm) diameter. Thus the plasma source output is well localized, even with cathode spot movement which is limited in area, so that it effectively couples into a miniaturized filter. With a small area cathode, the material eroded from the cathode needs to be replaced to maintain plasma production. Therefore, the source includes a cathode advancement or feed mechanism coupled to cathode rod. The cathode also requires a cooling mechanism. The movable cathode rod is housed in a cooled metal shield or tube which serves as both a current conductor, thus reducing ohmic heat produced in the cathode, and as the heat sink for heat generated at or near the cathode. Cooling of the cathode housing tube is done by contact with coolant at a place remote from the active cathode surface. The source is operated in pulsed mode at relatively high currents, about 1 kA. The high arc current can also be used to operate the magnetic filter. A cathodic arc plasma deposition system using this source can be used for the deposition of ultrathin amorphous hard carbon (a-C) films for the magnetic storage industry.

  12. Cathode material for lithium batteries

    DOEpatents

    Park, Sang-Ho; Amine, Khalil

    2015-01-13

    A method of manufacture an article of a cathode (positive electrode) material for lithium batteries. The cathode material is a lithium molybdenum composite transition metal oxide material and is prepared by mixing in a solid state an intermediate molybdenum composite transition metal oxide and a lithium source. The mixture is thermally treated to obtain the lithium molybdenum composite transition metal oxide cathode material.

  13. Cathode material for lithium batteries

    DOEpatents

    Park, Sang-Ho; Amine, Khalil

    2013-07-23

    A method of manufacture an article of a cathode (positive electrode) material for lithium batteries. The cathode material is a lithium molybdenum composite transition metal oxide material and is prepared by mixing in a solid state an intermediate molybdenum composite transition metal oxide and a lithium source. The mixture is thermally treated to obtain the lithium molybdenum composite transition metal oxide cathode material.

  14. Effective Stabilization of a High-Loading Sulfur Cathode and a Lithium-Metal Anode in Li-S Batteries Utilizing SWCNT-Modulated Separators.

    PubMed

    Chang, Chi-Hao; Chung, Sheng-Heng; Manthiram, Arumugam

    2016-01-13

    A custom single-wall carbon nanotube (SWCNT)-modulated separator is employed to directly suppress the polysulfide migration and indirectly protect the lithium-metal anode from severe polysulfide contamination. The conductive sp(2) -carbon scaffold continuously reactivates and reutilizes the trapped active material, so the SWCNT-modulated separator provides a facile way to facilitate the implementation of pure sulfur cathodes with high sulfur contents and loadings. PMID:26580705

  15. A Hollow Cathode Magnetron (HCM)

    SciTech Connect

    S.A. Cohen; Z. Wang

    1998-04-01

    A new type of plasma sputtering device, named the hollow cathode magnetron (HCM), has been developed by surrounding a planar magnetron cathode with a hollow cathode structure (HCS). Operating characteristics of HCMs, current-voltage ( I-V ) curves for fixed discharge pressure and voltage-pressure ( V-p ) curves for fixed cathode current, are measured. Such characteristics are compared with their planar magnetron counterparts. New operation regimes, such as substantially lower pressures (0.3 mTorr), were discovered for HCMs. Cathode erosion profiles show marked improvement over planar magnetron in terms of material utilization. The use of HCMs for thin film deposition are discussed.

  16. Performance Enhancement of Small Molecular Solar Cells by Bilayer Cathode Buffer.

    PubMed

    Sun, Qinjun; Zhao, Huanbin; Zhou, Miao; Gao, Liyan; Hao, Yuying

    2016-04-01

    An effective composite bilayer cathode buffer structure is proposed for use in small molecular solar cells. CsF was doped in Alq3 to form the first cathode buffer, leading to small serial resistances. BCP was used as the second cathode buffer to block the holes to the electrode. The optimized bilayer cathode buffer significantly increased the short circuit and fill factor of devices. By integrating this bilayer cathode buffer, the CuPc/C60 small molecular heterojunction cell exhibited a power conversion efficiency of up to 0.8%, which was an improvement of 56% compared to a device with only the Alq3 cathode buffer. Meanwhile, the bilayer cathode buffer still has a good protective effect on the performance of the device. PMID:27451719

  17. Synopsis of Cathode #4 Activation

    SciTech Connect

    Kwan, Joe; Ekdahl, C.; Harrison, J.; Kwan, J.; Leitner, M.; McCruistian, T.; Mitchell, R.; Prichard, B.; Roy, P.

    2006-05-26

    The purpose of this report is to describe the activation of the fourth cathode installed in the DARHT-II Injector. Appendices have been used so that an extensive amount of data could be included without danger of obscuring important information contained in the body of the report. The cathode was a 612 M type cathode purchased from Spectra-Mat. Section II describes the handling and installation of the cathode. Section III is a narrative of the activation based on information located in the Control Room Log Book supplemented with time plots of pertinent operating parameters. Activation of the cathode was performed in accordance with the procedure listed in Appendix A. The following sections provide more details on the total pressure and constituent partial pressures in the vacuum vessel, cathode heater power/filament current, and cathode temperature.

  18. Air cathode structure manufacture

    DOEpatents

    Momyer, William R.; Littauer, Ernest L.

    1985-01-01

    An improved air cathode structure for use in primary batteries and the like. The cathode structure includes a matrix active layer, a current collector grid on one face of the matrix active layer, and a porous, nonelectrically conductive separator on the opposite face of the matrix active layer, the collector grid and separator being permanently bonded to the matrix active layer. The separator has a preselected porosity providing low IR losses and high resistance to air flow through the matrix active layer to maintain high bubble pressure during operation of the battery. In the illustrated embodiment, the separator was formed of porous polypropylene. A thin hydrophobic film is provided, in the preferred embodiment, on the current collecting metal grid.

  19. Thermionic emission cathodes

    SciTech Connect

    Misumi, A.; Saito, S.

    1981-07-21

    A thermionic emission cathode comprising a base metal made of nickel-tungsten series alloy, for example an alloy comprising 90 to 70% by weight of nickel and 10 to 30% by weight of tungsten, and an emitter layer, which is formed on the base, made from a mixture of tungsten powder or nickel-tungsten alloy powder comprising 90 to 70% by weight of nickel and 10 to 30% by weight of tungsten, Ba/sub 3/Wo/sub 6/ powder and (C) zirconium powder or ZrH/sub 2/ powder, and if necessary interposing a powder layer between the base and the emitter layer, said powder layer having the same composition as the base metal and a particle size of 1 to 10 ..mu..m sealed on the surface of the base with a distribution density of 0.5 to 5.0 mg/cm/sup 2/, can be applied to both directly and indirectly heated type cathodes. Said cathode has such advantages as being able to be miniaturized and to have high current density.

  20. Life-limiting mechanisms in Ba-oxide, Ba-dispenser and Ba-Scandate cathodes

    NASA Astrophysics Data System (ADS)

    Gaertner, G.; Barratt, D.

    2005-09-01

    Ba-oxide, Ba-dispenser and Ba-Scandate cathodes have been continuously improved in their emission performance in the past decades. Ba-oxide and Ba-dispenser cathodes are also the dominant types of thermionic cathodes used in most vacuum tube applications. When improvements in emissive properties are introduced, their impact on cathode life - where several years in a vacuum tube environment are typically required - also needs to be known. Hence, the investigation of cathode life-limiting effects is the basis of accelerated life predictions and of further cathode improvement. In this contribution, the main effects limiting the operating life of Ba/BaO-based thermionic cathodes are discussed, especially related to intrinsic dispensation and resupply to the emissive surface. Emission poisoning induced by adsorption of poisonous gases will not be addressed here. We will stress common points and point out the differences between the three types.

  1. Improved Rare-Earth Emitter Hollow Cathode

    NASA Technical Reports Server (NTRS)

    Goebel, Dan M.

    2011-01-01

    An improvement has been made to the design of the hollow cathode geometry that was created for the rare-earth electron emitter described in Compact Rare Earth Emitter Hollow Cathode (NPO-44923), NASA Tech Briefs, Vol. 34, No. 3 (March 2010), p. 52. The original interior assembly was made entirely of graphite in order to be compatible with the LaB6 material, which cannot be touched by metals during operation due to boron diffusion causing embrittlement issues in high-temperature refractory materials. Also, the graphite tube was difficult to machine and was subject to vibration-induced fracturing. This innovation replaces the graphite tube with one made out of refractory metal that is relatively easy to manufacture. The cathode support tube is made of molybdenum or molybdenum-rhenium. This material is easily gun-bored to near the tolerances required, and finish machined with steps at each end that capture the orifice plate and the mounting flange. This provides the manufacturability and robustness needed for flight applications, and eliminates the need for expensive e-beam welding used in prior cathodes. The LaB6 insert is protected from direct contact with the refractory metal tube by thin, graphite sleeves in a cup-arrangement around the ends of the insert. The sleeves, insert, and orifice plate are held in place by a ceramic spacer and tungsten spring inserted inside the tube. To heat the cathode, an insulating tube is slipped around the refractory metal hollow tube, which can be made of high-temperature materials like boron nitride or aluminum nitride. A screw-shaped slot, or series of slots, is machined in the outside of the ceramic tube to constrain a refractory metal wire wound inside the slot that is used as the heater. The screw slot can hold a single heater wire that is then connected to the front of the cathode tube by tack-welding to complete the electrical circuit, or it can be a double slot that takes a bifilar wound heater with both leads coming out

  2. Cathodic degradation of antibiotics: characterization and pathway analysis.

    PubMed

    Kong, Deyong; Liang, Bin; Yun, Hui; Cheng, Haoyi; Ma, Jincai; Cui, Minhua; Wang, Aijie; Ren, Nanqi

    2015-04-01

    Antibiotics in wastewaters must be degraded to eliminate their antibacterial activity before discharging into the environment. A cathode can provide continuous electrons for the degradation of refractory pollutants, however the cathodic degradation feasibility, efficiency and pathway for different kinds of antibiotics is poorly understood. Here, we investigated the degradation of four antibiotics, namely nitrofurazone (NFZ), metronidazole (MNZ), chloramphenicol (CAP), and florfenicol (FLO) by a poised cathode in a dual chamber electrochemical reactor. The cyclic voltammetry preliminarily proved the feasibility of the cathodic degradation of these antibiotics. The cathodic reducibility of these antibiotics followed the order of NFZ > MNZ > CAP > FLO. A decreased phosphate buffered solution (PBS) concentration as low as 2 mM or utilization of NaCl buffer solution as catholyte had significant influence on antibiotics degradation rate and efficiency for CAP and FLO but not for NFZ and MNZ. PBS could be replaced by Na2CO3-NaHCO3 buffer solution as catholyte for the degradation of these antibiotics. Reductive dechlorination of CAP proceeded only after the reduction of the nitro group to aromatic amine. The composition of the degradation products depended on the cathode potential except for MNZ. The cathodic degradation process could eliminate the antibacterial activity of these antibiotics. The current study suggests that the electrochemical reduction could serve as a potential pretreatment or advanced treatment unit for the treatment of antibiotics containing wastewaters. PMID:25660806

  3. Cathodic arc deposition of barium oxide for oxide-coated cathodes

    SciTech Connect

    Umstattd, R.; Pi, T.; Luhmann, N. Jr.; Scheitrum, G.; Monteiro, O.; Brown, I.

    1998-12-31

    Cathodic arc deposition is used to create a barium oxide plasma which is then deposited/implanted onto a cathode nickel substrate. The primary motivation for this work is the critical need for a reliable, repeatable thermionic cathode for the production of high power, microsecond duration microwave pulses. The deposition is performed by generating a cathodic arc discharge at the surface of a barium of barium-strontium alloy rod. The metal plasma thus created is deposited onto the target in the presence of small amounts of oxygen. Difficulties in handling the highly hygroscopic barium and strontium sources were addressed by encapsulating the source rods in thin nickel sleeves (nickel being the major constituent of the deposition target). Both filtered and unfiltered depositions were performed; the former in the interest of improving film quality and the latter in an effort to improve deposition rate. The plasma deposition is monitored via a rate thickness monitor, an optical emission spectrometer for plasma composition information, and an electrostatic probe for the density and temperature profile of the plasma. Good film adhesion is critical for oxide cathodes since they are continually cycled, this, substrates are pulse biased during deposition to encourage implantation. An initial test was performed in which a film of barium oxide approximately one micron in thickness was deposited onto a small section of a 1 in. diameter nickel cathode with better than expected mission results. These preliminary results will be presented together with the results from follow-up experiments done to improve overall coating quality and emission performance.

  4. Continuous Bulk FeCuC Aerogel with Ultradispersed Metal Nanoparticles: An Efficient 3D Heterogeneous Electro-Fenton Cathode over a Wide Range of pH 3-9.

    PubMed

    Zhao, Hongying; Qian, Lin; Guan, Xiaohong; Wu, Deli; Zhao, Guohua

    2016-05-17

    Novel iron-copper-carbon (FeCuC) aerogel was fabricated through a one-step process from metal-resin precursors and then activated with CO2 and N2 in environmentally friendly way. The activated FeCuC aerogel was applied in a heterogeneous electro-Fenton (EF) process and exhibited higher mineralization efficiency than homogeneous EF technology. High total organic carbon (TOC) removal of organic pollutants with activated FeCuC aerogel was achieved at a wide range of pH values (3-9). The chemical oxygen demand (COD) of real dyeing wastewater was below China's discharge standard after 30 min of treatment, and the specific energy consumption was low (9.2 kW·h·kg(-1)COD(-1)), corresponding to a power consumption of only ∼0.34 kW·h per ton of wastewater. The enhanced mineralization efficiency of FeCuC aerogel was mostly attributable to ultradispersed metallic Fe-Cu nanoparticles embedded in 3D carbon matrix and the CO2-N2 treatment. The CO2 activation enhanced the accessibility of the aerogel's pores, and the secondary N2 activation enlarged the porosity and regenerated the ultradispersed zerovalent iron (Fe(0)) with reductive carbon. Cu(0) acted as a reduction promoter for interfacial electron transfer. Moreover, activated FeCuC aerogel presented low iron leaching (<0.1 ppm) in acidic solution and can be molded into different sizes with high flexibility. Thus, this material could be used as a low-cost cathode and efficient heterogeneous EF technology for actual wastewater treatment. PMID:27082750

  5. A critical survey of considerations in maintaining process continuity during voltage dips while protecting motors with reclosing and bus-transfer practices

    SciTech Connect

    Mulukutla, S.S. ); Gulachenski, E.M. )

    1992-08-01

    Continuous-process plants, such as Petro-chemical Industries and Paper Mills with thermo-mechanical pulping, are being designed today with fewer and larger components arranged in single-train configurations. Maintaining operating continuity with fewer components requires high equipment reliability. Motor controls for large components are using magnetic contactors equipped with automatic undervoltage reclosing. A voltage dip where contactors drop open and reclose can be very serious because of the nature of motors and their driven loads during voltage transients. In this paper, the general nature of the problem and criteria for safe reclosing or transfer of several motors on the same bus are presented. Finally, various protective schemes against out-of-phase reclosing and transfer, as well as methods of riding through voltage dips, are discussed.

  6. Emission from ferroelectric cathodes

    SciTech Connect

    Sampayan, S.E.; Caporaso, G.J.; Holmes, C.L.; Lauer, E.J.; Prosnitz, D.; Trimble, D.O.; Westenskow, G.A.

    1993-05-17

    We have recently initiated an investigation of electron emission from ferroelectric cathodes. Our experimental apparatus consisted of an electron diode and a 250 kV, 12 ohm, 70 ns pulsed high voltage power source. A planar triode modulator driven by a synthesized waveform generator initiates the polarization inversion and allows inversion pulse tailoring. The pulsed high voltage power source is capable of delivering two high voltage pulses within 50 ns of each other and is capable of operating at a sustained repetition rate of 5 Hz. Our initial measurements indicate that emission current densities above the Child-Langmuir Space Charge Limit are possible. We explain this effect to be based on a non-zero initial energy of the emitted electrons. We also determined that this effect is strongly coupled to relative timing between the inversion pulse and application of the main anode-cathode pulse. We also have initiated brightness measurements of the emitted beam. As in our previous measurements at this Laboratory, we performed the measurement using a pepper pot technique. Beam-let profiles are recorded with a fast phosphor and gated cameras. We describe our apparatus and preliminary measurements.

  7. Hot hollow cathode gun assembly

    DOEpatents

    Zeren, J.D.

    1983-11-22

    A hot hollow cathode deposition gun assembly includes a hollow body having a cylindrical outer surface and an end plate for holding an adjustable heat sink, the hot hollow cathode gun, two magnets for steering the plasma from the gun into a crucible on the heat sink, and a shutter for selectively covering and uncovering the crucible.

  8. Virtual cathode microwave devices: Basics

    NASA Astrophysics Data System (ADS)

    Thode, L. E.; Snell, C. M.

    Unlike a conventional microwave tube, a virtual-cathode device operates above the space-charge limit where the depth of the space-charge potential can cause electron reflection. The region associated with this electron reflection is referred to as a virtual cathode. Microwaves can be generated through oscillations in the position of the virtual cathode and through the bunching of electrons trapped in a potential well between the real and virtual cathodes. These two mechanisms are competitive. There are three basic classes of virtual cathode devices: (1) reflex triode; (2) reditron and side-shoot vircator; and (3) reflex diode or vircator. The reflex diode is the highest power virtual-cathode device. For the reflex diode the energy exchange between the beam and electromagnetic wave occurs in both the axial and radial directions. In some designs the oscillating virtual-cathode frequency exceeds the reflexing-electron frequency while in other designs the reflexing-electron frequency exceeds the oscillating virtual-cathode frequency. For the flex diode, a periodic disruption in magnetic insulation can modulate the high-frequency microwave power. Overall, particle-in-cell simulation predictions and axial reflex diode experiments are in good agreement. Although frequency stability and phase locking of the reflex diode have been demonstrated, little progress has been made in efficiency enhancement.

  9. Cheaper Hydride-Forming Cathodes

    NASA Technical Reports Server (NTRS)

    Jones, Jack A.; Blue, Gary

    1990-01-01

    Hydride-forming cathodes for electrochemical experiments made of materials or combinations of materials cheaper and more abundant than pure palladium, according to proposal. Concept prompted by needs of experimenters in now-discredited concept of electrochemical nuclear fusion, cathodes useful in other electrochemical applications involving generation or storage of hydrogen, deuterium, or tritium.

  10. Virtual cathode microwave devices -- Basics

    SciTech Connect

    Thode, L.E.; Snell, C.M.

    1991-01-01

    Unlike a conventional microwave tube, a virtual-cathode device operates above the space-charge limit where the depth of the space-charge potential can cause electron reflection. The region associated with this electron reflection is referred to as a virtual cathode. Microwaves can be generated through oscillations in the position of the virtual cathode and through the bunching of electrons trapped in a potential well between the real and virtual cathodes. These two mechanisms are competitive. There are three basic classes of virtual cathode devices: (1) reflex triode; (2) reditron and side-shoot vircator; and (3) reflex diode or vircator. The reflex diode is the highest power virtual-cathode device. For the reflex diode the energy exchange between the beam and electromagnetic wave occurs in both the axial and radial directions. In some designs the oscillating-virtual-cathode frequency exceeds the reflexing-electron frequency exceeds the oscillating-virtual-cathode frequency. For the flex diode a periodic disruption in magnetic insulation can modulate the high- frequency microwave power. Overall, particle-in-cell simulation predictions and axial reflex diode experiments are in good agreement. Although frequency stability and phase locking of the reflex diode have been demonstrated, little progress has been made in efficiency enhancement. 58 refs., 11 figs.

  11. A hollow cathode hydrogen ion source. [for controlled fusion

    NASA Technical Reports Server (NTRS)

    Sovey, J. S.; Mirtich, M. J.

    1977-01-01

    High current density ion sources have been used to heat plasmas in controlled thermonuclear reaction experiments. High beam currents imply relatively high emission currents from cathodes which have generally taken the form of tungsten filaments. This paper describes a hydrogen ion source which was primarily developed to assess the emission current capability and design requirements for hollow cathodes for application in neutral injection devices. The hydrogen source produced ions by electron bombardment via a single hollow cathode. Source design followed mercury ion thruster technology, using a weak magnetic field to enhance ionization efficiency. A 1.3-cm-diam hollow cathode using a low work function material dispenser performed satisfactorily over a discharge current range of 10-90 A. Cylindrical probe measurements taken without ion extraction indicate maximum ion number densities on the order of 10 trillion/cu cm. Discharge durations ranged from 30 sec to continuous operation. Tests with beam extraction at 2.5 keV and 30 A discharge current yield average ion beam current densities of 0.1 A/sq cm over a 5-cm extraction diameter. Results of this study can be used to supply the baseline information needed to scale hollow cathodes for operation at discharge currents of hundreds of amperes using distributed cathodes.

  12. Apparatus and method for treating a cathode material provided on a thin-film substrate

    DOEpatents

    Hanson, Eric J.; Kooyer, Richard L.

    2001-01-01

    An apparatus and method for treating a cathode material provided on a surface of a continuous thin-film substrate and a treated thin-film cathode having increased smoothness are disclosed. A web of untreated cathode material is moved between a feed mechanism and a take-up mechanism, and passed through a treatment station. The web of cathode material typically includes areas having surface defects, such as prominences extending from the surface of the cathode material. The surface of the cathode material is treated with an abrasive material to reduce the height of the prominences so as to increase an 85 degree gloss value of the cathode material surface by at least approximately 10. The web of cathode material may be subjected to a subsequent abrasive treatment at the same or other treatment station. Burnishing or lapping film is employed at a treatment station to process the cathode material. An abrasive roller may alternatively be used to process the web of cathode material. The apparatus and method of the present invention may also be employed to treat the surface of a lithium anode foil so as to cleanse and reduce the roughness of the anode foil surface.

  13. Apparatus and method for treating a cathode material provided on a thin-film substrate

    DOEpatents

    Hanson, Eric J.; Kooyer, Richard L.

    2003-01-01

    An apparatus and method for treating a cathode material provided on a surface of a continuous thin-film substrate and a treated thin-film cathode having increased smoothness are disclosed. A web of untreated cathode material is moved between a feed mechanism and a take-up mechanism, and passed through a treatment station. The web of cathode material typically includes areas having surface defects, such as prominences extending from the surface of the cathode material. The surface of the cathode material is treated with an abrasive material to reduce the height of the prominences so as to increase an 85 degree gloss value of the cathode material surface by at least approximately 10. The web of cathode material may be subjected to a subsequent abrasive treatment at the same or other treatment station. Burnishing or lapping film is employed at a treatment station to process the cathode material. An abrasive roller may alternatively be used to process the web of cathode material. The apparatus and method of the present invention may also be employed to treat the surface of a lithium anode foil so as to cleanse and reduce the roughness of the anode foil surface.

  14. Hollow-cathode evaporators

    SciTech Connect

    Saenko, V.A.; Kravatskii, V.A.; Veremeichenko, G.N.; Vladimirov, A.I.

    1985-08-01

    This paper describes devices for producing plasma from the vapor of a solid substance under vacuum and depositing films from the plasma. The plasma is produced by a discharge between a hollow cathode crucible and an anode, which are placed in a magnetic field longitudinal in relation to the vapor flow. The basic parameters are: film deposition rate 1-70 nm/sec, consumption of working substance 1-30 mg/sec, ionization factor for the working substance in the flow 1-10%, ion-current density at the substrate 0.1-10 mA/cm/sup 2/. Films of Cu, Au, Ag, Cr, and A1 have been made with parameters better than those of films deposited without ionization.

  15. Research on an improved explosive emission cathode

    NASA Astrophysics Data System (ADS)

    Liu, Guozhi; Sun, Jun; Shao, Hao; Chen, Changhua; Zhang, Xiaowei

    2009-06-01

    This paper presents a physical description of the cathode plasma process of an explosive emission cathode (EEC) and experimental results on a type of oil-immersed graphite EEC. It is believed that the generation of a cathode plasma is mainly dependent on the state of the cathode surface, and that adsorbed gases and dielectrics on the cathode surface play a leading role in the formation of the cathode plasma. Based on these ideas, a type of oil-immersed graphite EEC is proposed and fabricated. The experiments indicate that the oil-immersed cathodes have improved emissive properties and longer lifetimes.

  16. Three year tests on cathodic prevention of reinforced concrete structures

    SciTech Connect

    Bertolini, L.; Bolzoni, F.; Pedeferri, P.; Pastore, T.

    1997-12-01

    The effectiveness of cathodic protection applied to new reinforced or prestressed concrete structures exposed to chloride environments for preventing pitting corrosion has been studied. The operating conditions have been evaluated with long term tests on reinforced concrete slabs polarized with current densities ranging from 0.5 to 20 mA/m{sup 2} and subjected to chloride ponding. Laboratory tests were carried out to estimate the pitting potential versus the chloride content and to evaluate the effect of low cathodic currents on the chloride migration in the concrete cover. The results show that cathodic prevention may be effective in preventing pitting corrosion initiation by increasing the critical chloride content and that this technique can be safely applied also to new prestressed structures. The effect of current densities up to 2 mA/m{sup 2} on chloride migration was negligible during the first three years of test.

  17. Magnetic-cusp, cathodic-arc source

    DOEpatents

    Falabella, Steven

    1995-01-01

    A magnetic-cusp for a cathodic-arc source wherein the arc is confined to the desired cathode surface, provides a current path for electrons from the cathode to the anode, and utilizes electric and magnetic fields to guide ions from the cathode to a point of use, such as substrates to be coated. The magnetic-cusp insures arc stability by an easy magnetic path from anode to cathode, while the straight-through arrangement leads to high ion transmission.

  18. Hollow Cathode With Multiple Radial Orifices

    NASA Technical Reports Server (NTRS)

    Brophy, John R.

    1992-01-01

    Improved hollow cathode serving as source of electrons has multiple radial orifices instead of single axial orifice. Distributes ion current more smoothly, over larger area. Prototype of high-current cathodes for ion engines in spacecraft. On Earth, cathodes used in large-diameter ion sources for industrial processing of materials. Radial orientation of orifices in new design causes current to be dispersed radially in vicinity of cathode. Advantageous where desireable to produce plasma more nearly uniform over wider region around cathode.

  19. Cold cathode vacuum discharge tube

    DOEpatents

    Boettcher, Gordon E.

    1998-01-01

    A cold cathode vacuum discharge tube, and method for making same, with an interior surface of the trigger probe coated with carbon deposited by carbon vapor deposition (CVD) or diamond-like carbon (DLC) deposition. Preferably a solid graphite insert is employed in the probe-cathode structure in place of an aluminum bushing employed in the prior art. The CVD or DLC probe face is laser scribed to allow resistance trimming to match available trigger voltage signals and to reduce electrical aging.

  20. Cold cathode vacuum gauging system

    DOEpatents

    Denny, Edward C.

    2004-03-09

    A vacuum gauging system of the cold cathode type is provided for measuring the pressure of a plurality of separate vacuum systems, such as in a gas centrifuge cascade. Each casing is fitted with a gauge tube assembly which communicates with the vacuum system in the centrifuge casing. Each gauge tube contains an anode which may be in the form of a slender rod or wire hoop and a cathode which may be formed by the wall of the gauge tube. The tube is provided with an insulated high voltage connector to the anode which has a terminal for external connection outside the vacuum casing. The tube extends from the casing so that a portable magnet assembly may be inserted about the tube to provide a magnetic field in the area between the anode and cathode necessary for pressure measurements in a cold cathode-type vacuum gauge arrangement. The portable magnetic assembly is provided with a connector which engages the external high voltage terminal for providing power to the anode within in the gauge tube. Measurement is made in the same manner as the prior cold cathode gauges in that the current through the anode to the cathode is measured as an indication of the pressure. By providing the portable magnetic assembly, a considerable savings in cost, installation, and maintenance of vacuum gauges for pressure measurement in a gas centrifuge cascade is realizable.

  1. International Space Station Cathode Life Testing

    NASA Technical Reports Server (NTRS)

    Soulas, George C.; Sarver-Verhey, Timothy R.

    1997-01-01

    Four hollow cathode assembly (HCA) life tests were initiated at operating conditions simulating on-orbit operation of the International Space Station plasma contactor. The objective of these tests is to demonstrate the mission-required 18,000 hour lifetime with high-fidelity development model HCAS. HCAs are operated with a continuous 6 sccm xenon flow rate and 3 A anode current. On-orbit emission current requirements are simulated with a square waveform consisting of 50 minutes at a 2.5 A emission current and 40 minutes with no emission current. One HCA test was terminated after approximately 8,000 hours so that a destructive analysis could be performed. The analysis revealed no life-limiting processes and the ultimate lifetime was projected to be greater than the mission requirement. Testing continues for the remaining three HCAs which have accumulated approximately 8,000 hours, 10,000 hours, and 11,000 hours, respectively, as of June 1997. Anode and bias voltages, strong indicators of cathode electron emitter condition, are within acceptable ranges and have exhibited no life- or performance-limiting phenomena to date.

  2. 40 CFR 261.41 - Notification and Recordkeeping for Used, Intact Cathode Ray Tubes (CRTs) Exported for Reuse.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Used, Intact Cathode Ray Tubes (CRTs) Exported for Reuse. 261.41 Section 261.41 Protection of... HAZARDOUS WASTE Exclusions/Exemptions § 261.41 Notification and Recordkeeping for Used, Intact Cathode Ray Tubes (CRTs) Exported for Reuse. (a) Persons who export used, intact CRTs for reuse must send a...

  3. 40 CFR 261.41 - Notification and Recordkeeping for Used, Intact Cathode Ray Tubes (CRTs) Exported for Reuse.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Used, Intact Cathode Ray Tubes (CRTs) Exported for Reuse. 261.41 Section 261.41 Protection of... HAZARDOUS WASTE Exclusions/Exemptions § 261.41 Notification and Recordkeeping for Used, Intact Cathode Ray Tubes (CRTs) Exported for Reuse. (a) Persons who export used, intact CRTs for reuse must send a...

  4. 40 CFR 261.41 - Notification and Recordkeeping for Used, Intact Cathode Ray Tubes (CRTs) Exported for Reuse.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Used, Intact Cathode Ray Tubes (CRTs) Exported for Reuse. 261.41 Section 261.41 Protection of... HAZARDOUS WASTE Exclusions/Exemptions § 261.41 Notification and Recordkeeping for Used, Intact Cathode Ray Tubes (CRTs) Exported for Reuse. (a) Persons who export used, intact CRTs for reuse must send a...

  5. 40 CFR 261.41 - Notification and Recordkeeping for Used, Intact Cathode Ray Tubes (CRTs) Exported for Reuse.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Used, Intact Cathode Ray Tubes (CRTs) Exported for Reuse. 261.41 Section 261.41 Protection of... HAZARDOUS WASTE Exclusions/Exemptions § 261.41 Notification and Recordkeeping for Used, Intact Cathode Ray Tubes (CRTs) Exported for Reuse. (a) Persons who export used, intact CRTs for reuse must send a...

  6. Hollow cathodes for arcjet thrusters

    NASA Technical Reports Server (NTRS)

    Luebben, Craig R.; Wilbur, Paul J.

    1987-01-01

    In an attempt to prevent exterior spot emission, hollow cathode bodies and orifice plates were constructed from boron nitride which is an electrical insulator, but the orifice plates melted and/or eroded at high interelectrode pressures. The most suitable hollow cathodes tested included a refractory metal orifice plate in a boron nitride body, with the insert insulated electrically from the orifice plate. In addition, the hollow cathode interior was evacuated to assure a low pressure at the insert surface, thus promoting diffuse electron emission. At high interelectrode pressures, the electrons tended to flow through the orifice plate rather than through the orifice, which could result in overheating of the orifice plate. Using a carefully aligned centerline anode, electron flow through the orifice could be sustained at interelectrode pressures up to 500 torr - but the current flow path still occasionally jumped from the orifice to the orifice plate. Based on these tests, it appears that a hollow cathode would operate most effectively at pressures in the arcjet regime with a refractory, chemically stable, and electrically insulating cathode body and orifice plate.

  7. Influence of a partially oxidized calcium cathode on the performance of polymeric light emitting diodes

    NASA Astrophysics Data System (ADS)

    Andersson, G. G.; de Jong, M. P.; Janssen, F. J. J.; Sturm, J. M.; van IJzendoorn, L. J.; Denier van der Gon, A. W.; de Voigt, M. J. A.; Brongersma, H. H.

    2001-08-01

    We investigated the influence of the presence of oxygen during the deposition of the calcium cathode on the structure and on the performance of polymeric light emitting diodes (pLEDs). The oxygen background pressure during deposition of the calcium cathode of polymeric LEDs was varied. Subsequently, the oxygen depth distribution was measured and correlated with the performance of the pLEDs. The devices have been fabricated in a recently built ultraclean setup. The polymer layers of the pLEDs have been spincoated in a dry nitrogen atmosphere and transported directly into an ultrahigh vacuum chamber where the metal electrodes have been deposited by evaporation. We used indium-tin-oxide as anode, OC1C10 PPV as electroluminescent polymer, calcium as cathode, and aluminum as protecting layer. We achieved reproducibility of about 15% in current and brightness for devices fabricated in an oxygen atmosphere of ≪10-9 mbar. For further investigations the calcium deposition was carried out in an oxygen atmosphere from 10-8 to 10-5 mbar. We determined the amount of oxygen in the different layers of the current-voltage-light characterized pLEDs with elastic recoil detection analysis and correlated it with the characteristics of the devices. The external efficiency of the pLEDs decreases continuously with increasing oxygen pressure, the current shows a pronounced minimum. The brightness mostly decreases with increasing oxygen with an indication of a slight minimum. PLEDs with completely oxidized calcium are not operational. The first contact of the pLEDs with the dry glove box environment leads to an immediate reduction of current and brightness which is caused by the cooling of the devices by several degrees. Determining reproducible characteristics of pLEDs in the vacuum requires the measurement of their temperature.

  8. Cold cathode vacuum discharge tube

    DOEpatents

    Boettcher, G.E.

    1998-03-10

    A cold cathode vacuum discharge tube, and method for making same, are disclosed with an interior surface of the trigger probe coated with carbon deposited by carbon vapor deposition (CVD) or diamond-like carbon (DLC) deposition. Preferably a solid graphite insert is employed in the probe-cathode structure in place of an aluminum bushing employed in the prior art. The CVD or DLC probe face is laser scribed to allow resistance trimming to match available trigger voltage signals and to reduce electrical aging. 15 figs.

  9. Cold cathode vacuum discharge tube

    DOEpatents

    Boettcher, G.E.

    1998-04-14

    A cold cathode vacuum discharge tube, and method for making same, with an interior surface of the trigger probe coated with carbon deposited by chemical vapor deposition (CVD) or diamond-like carbon (DLC) deposition are disclosed. Preferably a solid graphite insert is employed in the probe-cathode structure in place of an aluminum bushing employed in the prior art. The CVD or DLC probe face is laser scribed to allow resistance trimming to match available trigger voltage signals and to reduce electrical aging. 14 figs.

  10. Mechanistic Enhancement of SOFC Cathode Durability

    SciTech Connect

    Wachsman, Eric

    2015-08-31

    Durability of solid oxide fuel cells (SOFC) under “real world” conditions is an issue for commercial deployment. In particular cathode exposure to moisture, CO2, Cr vapor (from interconnects and BOP), and particulates results in long-term performance degradation issues. Here, we have conducted a multi-faceted fundamental investigation of the effect of these contaminants on cathode performance degradation mechanisms in order to establish cathode composition/structures and operational conditions to enhance cathode durability.

  11. Remote control for anode-cathode adjustment

    DOEpatents

    Roose, Lars D.

    1991-01-01

    An apparatus for remotely adjusting the anode-cathode gap in a pulse power machine has an electric motor located within a hollow cathode inside the vacuum chamber of the pulse power machine. Input information for controlling the motor for adjusting the anode-cathode gap is fed into the apparatus using optical waveguides. The motor, controlled by the input information, drives a worm gear that moves a cathode tip. When the motor drives in one rotational direction, the cathode is moved toward the anode and the size of the anode-cathode gap is diminished. When the motor drives in the other direction, the cathode is moved away from the anode and the size of the anode-cathode gap is increased. The motor is powered by batteries housed in the hollow cathode. The batteries may be rechargeable, and they may be recharged by a photovoltaic cell in combination with an optical waveguide that receives recharging energy from outside the hollow cathode. Alternatively, the anode-cathode gap can be remotely adjusted by a manually-turned handle connected to mechanical linkage which is connected to a jack assembly. The jack assembly converts rotational motion of the handle and mechanical linkage to linear motion of the cathode moving toward or away from the anode.

  12. Novel Cathodes Prepared by Impregnation Procedures

    SciTech Connect

    Eduardo Paz

    2006-09-30

    (1) We showed that similar results were obtained when using various LSM precursors to produce LSM-YSZ cathodes. (2) We showed that enhanced performance could be achieved by adding LSCo to LSMYSZ cathodes. (3) We have preliminary results showing that there is a slow deactivation with LSFYSZ cathodes.

  13. Flickering of thoriated and lanthanized tungsten cathodes

    NASA Astrophysics Data System (ADS)

    Hoebing, Thomas; Hermanns, Patrick; Bergner, Andre; Ruhrmann, Cornelia; Traxler, Hannes; Wesemann, Ingmar; Mentel, Juergen; Awakowicz, Peter

    2014-10-01

    Tungsten cathodes in HID-lamps are commonly doped with rare earth oxides to reduce the work function Φ. A popular dopant ThO2 decreases Φ from 4.55 eV to 3.0 eV and, therewith, reduces the cathode temperature. La2O3-cathodes seem to represent an alternative, since the reduction of Φ is comparable to that of thoriated cathodes. But a temporally unstable arc attachment can be observed at cathodes doped with La2O3. At thoriated cathodes, this flickering can also be detected, but less pronounced. It is attributed to a temporal increase of Φ, induced by a transient shortage of La at the cathode tip. The arc attachment moves from the tip to colder areas of the cathode, where a high amount of La is present. Reasons for a temporal increase of Φ can be attributed to an insufficient transport of oxides from the interior of the cathode and an insufficient return of vaporized La by an ion current from the arc plasma to the cathode. Enrichments of La/Th compounds are formed on the cathode surface providing emitter material in case of a shortage at the tip. Cathode coverage and diffusion in the interior of the electrode, ThO2- and La2O3-electrodes behave differently. Differences and their influence on the stability of the arc will be presented.

  14. High-current-density, high brightness cathodes for free electron laser applications

    SciTech Connect

    Green, M.C. . Palo Alto Microwave Tube Div.)

    1987-06-01

    This report discusses the following topics: brightness and emittance of electron beams and cathodes; general requirements for cathodes in high brightness electron guns; candidate cathode types; plasma and field emission cathodes; true field emission cathodes; oxide cathodes; lanthanum hexaborides cathodes; laser driven thermionic cathodes; laser driven photocathodes; impregnated porous tungsten dispenser cathodes; and choice of best performing cathode types.

  15. A metal-dielectric cathode

    NASA Astrophysics Data System (ADS)

    Fan, Yu-Wei; Zhong, Hui-Huang; Li, Zhi-Qiang; Yang, Han-Wu; Shu, Ting; Zhou, Heng; Yuan, Cheng-Wei; Zhang, Jun; Luo, Ling

    2008-07-01

    In order to improve the pulse repetition rate and the maintenance-free lifetime of an improved magnetically insulated transmission line oscillator (MILO) previously developed in our laboratory, a metal-dielectric cathode is investigated experimentally. It consists of three components: a stainless steel base, bronze foils, and double-sided printed boards. The experimental results show that the shot-to-shot reproducibility of the diode voltage and current is very good and the performances of the improved MILO are steady. In addition, no observable degradation could be detected in the emissive characteristic of the metal-dielectric cathode after 350 shots. The experimental results prove that the metal-dielectric cathode is a promising cathode for repetitively pulsed MILO operation. However, the leading edge of the radiated microwave pulse is gradually delayed during the repetition rate. A likely reason is that high pressure results in gas ionization in the beam-microwave interaction region, and plasma formation delays the time that the improved MILO achieves nonlinear steady state.

  16. Cathode for molten salt batteries

    DOEpatents

    Mamantov, Gleb; Marassi, Roberto

    1977-01-01

    A molten salt electrochemical system for battery applications comprises tetravalent sulfur as the active cathode material with a molten chloroaluminate solvent comprising a mixture of AlCl.sub.3 and MCl having a molar ratio of AlCl.sub.3 /MCl from greater than 50.0/50.0 to 80/20.

  17. Design, construction and long life endurance testing of cathode assemblies for use in microwave high-power transmitting tubes

    NASA Astrophysics Data System (ADS)

    Batra, R.; Marino, D.

    1986-09-01

    The cathode life test program sponsored by NASA Lewis Research Center at Watkins-Johnson Company has been in continuous operation since 1972. Its primary objective has been to evaluate the long life capability of barium dispenser cathodes to produce emission current densities of 2 A sq. cm. or more in an operational environment simulating that of a highpower microwave tube. The life test vehicles were equipped with convergent flow electron guns, drift space tubes with solenoid magnets for electron beam confinement and water-cooled depressed collectors. A variety of cathode types has been tested, including GE Tungstate, Litton Impregnated, Philips Type B and M, Semicon types S and M, and Spectra-Mat Type M. Recent emphasis has been on monitoring the performance of Philips Type M cathodes at 2 A sq. cm. and Sprectra-Mat and Semicon Type M cathodes at 4 A sq. cm. These cathodes have been operated at a constant current of 616 mA and a cathode anode voltage on the order of 10 kV. Cathode temperatures were maintained at 1010 C true as measured from black body holes in the backs of the cathodes. This report presents results of the cathode life test program from July l982 through April l986. The results include hours of operation and performance data in the form of normalized emission current density versus temperature curves (Miram plots).

  18. Design, construction and long life endurance testing of cathode assemblies for use in microwave high-power transmitting tubes

    NASA Technical Reports Server (NTRS)

    Batra, R.; Marino, D.

    1986-01-01

    The cathode life test program sponsored by NASA Lewis Research Center at Watkins-Johnson Company has been in continuous operation since 1972. Its primary objective has been to evaluate the long life capability of barium dispenser cathodes to produce emission current densities of 2 A sq. cm. or more in an operational environment simulating that of a highpower microwave tube. The life test vehicles were equipped with convergent flow electron guns, drift space tubes with solenoid magnets for electron beam confinement and water-cooled depressed collectors. A variety of cathode types has been tested, including GE Tungstate, Litton Impregnated, Philips Type B and M, Semicon types S and M, and Spectra-Mat Type M. Recent emphasis has been on monitoring the performance of Philips Type M cathodes at 2 A sq. cm. and Sprectra-Mat and Semicon Type M cathodes at 4 A sq. cm. These cathodes have been operated at a constant current of 616 mA and a cathode anode voltage on the order of 10 kV. Cathode temperatures were maintained at 1010 C true as measured from black body holes in the backs of the cathodes. This report presents results of the cathode life test program from July l982 through April l986. The results include hours of operation and performance data in the form of normalized emission current density versus temperature curves (Miram plots).

  19. High-emission cold cathode

    DOEpatents

    Mancebo, L.

    1974-01-29

    A field-emission cathode having a multitude of field emission points for emitting a copious stream of electrons when subjected to a high field is described. The cathode is constructed by compressing a multitude of tungsten strips alternately arranged with molybdenum strips and copper ribbons or compressing alternately arranged copper plated tungsten and molybdenum strips, heating the arrangement to braze the tungsten and molybdenum strips together with the copper, machining and grinding the exposed strip edges of one side of the brazed arrangement to obtain a precisely planar surface, etching a portion of the molybdenum and copper to leave the edges of the tungsten strips protruding for electron emission, and subjecting the protruding edges of the tungsten strips to a high electric field to degas and roughen the surface to pnovide a large number of emitting points. The resulting structure is particularly useful as a cathode in a transversely excited gaseous laser where the cathode is mounted in a vacuum chamber for emitting electrons under the influence of a high electric field between the cathode and an extractor grid. The electrons pass through the extractor grid, a thin window in the wall of the laser chamber and into the laser chamber which is filled with a gaseous mixture of helium, nitrogen, and carbon dioxide. A second grid is mounted on the gaseous side of the window. The electrons pass into the laser chamber under the influence of a second electric field between the second grid and an anode in the laser chamber to raise selected gas atoms of the gaseous mixture to appropriately excited states so that a subsequent coherent light beam passing through the mixture transversely to the electron stream through windows in opposite ends of the laser chamber stimulates the excited atoms to amplify the beam. (Official Gazette)

  20. Anion-redox nanolithia cathodes for Li-ion batteries

    NASA Astrophysics Data System (ADS)

    Zhu, Zhi; Kushima, Akihiro; Yin, Zongyou; Qi, Lu; Amine, Khalil; Lu, Jun; Li, Ju

    2016-08-01

    The development of lithium–air batteries is plagued by a high potential gap (>1.2 V) between charge and discharge, and poor cyclability due to the drastic phase change of O2 (gas) and Ox‑ (condensed phase) at the cathode during battery operations. Here we report a cathode consisting of nanoscale amorphous lithia (nanolithia) confined in a cobalt oxide, enabling charge/discharge between solid Li2O/Li2O2/LiO2 without any gas evolution. The cathode has a theoretical capacity of 1,341 Ah kg‑1, a mass density exceeding 2.2 g cm‑3, and a practical discharge capacity of 587 Ah kg‑1 at 2.55 V versus Li/Li+. It also displays stable cycling performance (only 1.8% loss after 130 cycles in lithium-matched full-cell tests against Li4Ti5O12 anode), as well as a round-trip overpotential of only 0.24 V. Interestingly, the cathode is automatically protected from O2 gas release and overcharging through the shuttling of self-generated radical species soluble in the carbonate electrolyte.

  1. Cathode for aluminum producing electrolytic cell

    DOEpatents

    Brown, Craig W.

    2004-04-13

    A method of producing aluminum in an electrolytic cell comprising the steps of providing an anode in a cell, preferably a non-reactive anode, and also providing a cathode in the cell, the cathode comprised of a base material having low electrical conductivity reactive with molten aluminum to provide a highly electrically conductive layer on the base material. Electric current is passed from the anode to the cathode and alumina is reduced and aluminum is deposited at the cathode. The cathode base material is selected from boron carbide, and zirconium oxide.

  2. Nonaqueous battery with organic compound cathode

    SciTech Connect

    Yamaji, A.; Yamaki, J.

    1981-02-17

    A battery embodying this invention comprises: an anode including an anode-active material formed of one metal selected from the Group IA metals or preferably lithium metal; a cathode including a cathode-active material formed of metal or metal-free organic compounds having a phthalocyanine function or organic compounds having a porphin function; and an electrolyte prepared from a material which is chemically stable to the cathode and anode materials and permits the migration of the ion of the anode metal to the cathode for electrochemical reaction with the cathode-active material.

  3. Cathodes for ceria-based fuel cells

    SciTech Connect

    Doshi, R.; Krumpelt, M.; Ricvhards, V.L.

    1997-08-01

    Work is underway to develop a solid oxide fuel cell that has a ceria-based electrolyte and operates at lower temperatures (500-600{degrees}C) than conventional zirconia-based cells. At present the performance of this ceria-based solid oxide fuel cell is limited by the polarization of conventional cathode materials. The performance of alternative cathodes was measured by impedance spectroscopy and dc polarization. The performance was found to improve by using a thin dense interface layer and by using two-phase cathodes with an electrolyte and an electronic phase. The cathode performance was also found to increase with increasing ionic conductivity for single phase cathodes.

  4. Improved Cathode Structure for a Direct Methanol Fuel Cell

    NASA Technical Reports Server (NTRS)

    Valdez, Thomas; Narayanan, Sekharipuram

    2005-01-01

    An improved cathode structure on a membrane/electrode assembly has been developed for a direct methanol fuel cell, in a continuing effort to realize practical power systems containing such fuel cells. This cathode structure is intended particularly to afford better cell performance at a low airflow rate. A membrane/electrode assembly of the type for which the improved cathode structure was developed (see Figure 1) is fabricated in a process that includes brush painting and spray coating of catalyst layers onto a polymer-electrolyte membrane and onto gas-diffusion backings that also act as current collectors. The aforementioned layers are then dried and hot-pressed together. When completed, the membrane/electrode assembly contains (1) an anode containing a fine metal black of Pt/Ru alloy, (2) a membrane made of Nafion 117 or equivalent (a perfluorosulfonic acid-based hydrophilic, proton-conducting ion-exchange polymer), (3) a cathode structure (in the present case, the improved cathode structure described below), and (4) the electrically conductive gas-diffusion backing layers, which are made of Toray 060(TradeMark)(or equivalent) carbon paper containing between 5 and 6 weight percent of poly(tetrafluoroethylene). The need for an improved cathode structure arises for the following reasons: In the design and operation of a fuel-cell power system, the airflow rate is a critical parameter that determines the overall efficiency, cell voltage, and power density. It is desirable to operate at a low airflow rate in order to obtain thermal and water balance and to minimize the size and mass of the system. The performances of membrane/electrode assemblies of prior design are limited at low airflow rates. Methanol crossover increases the required airflow rate. Hence, one way to reduce the required airflow rate is to reduce the effect of methanol crossover. Improvement of the cathode structure - in particular, addition of hydrophobic particles to the cathode - has been

  5. Invited article: physical and chemical analyses of impregnated cathodes operated in a plasma environment.

    PubMed

    Sengupta, Anita; Kulleck, James; Hill, Norm; Ohlinger, Wayne

    2008-11-01

    Destructive analyses of impregnated-cathode assemblies from an ion thruster life test were performed to characterize erosion and degradation after 30,472 h of operation. Post-test inspection of each cathode included examination of the emitter (insert), orifice plate, cathode tube, heater, anode assembly, insulator, and propellant isolator. The discharge-cathode assembly experienced significant erosion due to ion sputtering from the discharge plasma. The keeper electrode plate was removed and the heater and orifice plate were heavily eroded at the conclusion of the test. Had the test continued, these processes would likely have led to cathode failure. The discharge cathode insert experienced significant tungsten transport and temperature dependent barium oxide depletion within the matrix. Using barium depletion semiempirical relations developed by Palluel and Shroff, it is estimated that 25,000 h of operation remained in the discharge insert at the conclusion of the test. In contrast, the neutralizer insert exhibited significantly less tungsten transport and barium oxide depletion consistent with its lower current operation. The neutralizer was estimated to have 140,000 h of insert life remaining at the conclusion of the test. Neither insert had evidence of tungstate or oxide layer formation, previously known to have impeded cathode ignition and operation in similar long duration hollow-cathode tests. The neutralizer cathode was in excellent condition at the conclusion of the test with the exception of keeper tube erosion from direct plume-ion impingement, a previously underappreciated life-limiting mechanism. The most critical finding from the test was a power dependent deposition process within the neutralizer-cathode orifice. The process manifested at low-power operation and led to the production of energetic ions in the neutralizer plume, a potential life-limiting process for the neutralizer. Subsequent return of the engine and neutralizer operation to full

  6. Particle size effect of Ni-rich cathode materials on lithium ion battery performance

    SciTech Connect

    Hwang, Ilkyu; Department of Chemical Engineering, Kyungppok National University, Daegu 702-701 ; Lee, Chul Wee; Kim, Jae Chang; Yoon, Songhun

    2012-01-15

    Graphical abstract: The preparation condition of Ni-rich cathode materials was investigated. When the retention time was short, a poor cathode performance was observed. For long retention time condition, cathode performance displayed a best result at pH 12. Highlights: Black-Right-Pointing-Pointer Ni-rich cathode materials (LiNi{sub 0.8}Co{sub 0.15}Al{sub 0.05}O{sub 2}) were prepared by co-precipitation method using separate addition of Al salt. Black-Right-Pointing-Pointer Particle size of Ni-rich cathode materials became larger with increase of retention time and solution pH. Black-Right-Pointing-Pointer Cathode performance was poor for low retention time. Black-Right-Pointing-Pointer Optimal pH for co-precipitation was 12. -- Abstract: Herein, Ni-rich cathode materials (LiNi{sub 0.8}Co{sub 0.15}Al{sub 0.05}O{sub 2}) in lithium ion batteries are prepared by a separate addition of Ni/Co salt and Al sol solution using a continuously stirred tank reactor. Retention time and solution pH were controlled in order to obtain high performance cathode material. Particle size increase was observed with a higher retention time of the reactants. Also, primary and secondary particles became smaller according to an increase of solution pH, which was probably due to a decrease of growth rate. From the cathode application, a high discharge capacity (175 mAh g{sup -1}), a high initial efficiency (90%) and a good cycleability were observed in the cathode material prepared under pH 12 condition, which was attributed to its well-developed layered property and the optimal particle size. However, rate capability was inversely proportional to the particle size, which was clarified by a decrease of charge-transfer resistance measured in the electrochemical impedance spectroscopy.

  7. Invited Article: Physical and chemical analyses of impregnated cathodes operated in a plasma environment

    NASA Astrophysics Data System (ADS)

    Sengupta, Anita; Kulleck, James; Hill, Norm; Ohlinger, Wayne

    2008-11-01

    Destructive analyses of impregnated-cathode assemblies from an ion thruster life test were performed to characterize erosion and degradation after 30 472 h of operation. Post-test inspection of each cathode included examination of the emitter (insert), orifice plate, cathode tube, heater, anode assembly, insulator, and propellant isolator. The discharge-cathode assembly experienced significant erosion due to ion sputtering from the discharge plasma. The keeper electrode plate was removed and the heater and orifice plate were heavily eroded at the conclusion of the test. Had the test continued, these processes would likely have led to cathode failure. The discharge cathode insert experienced significant tungsten transport and temperature dependent barium oxide depletion within the matrix. Using barium depletion semiempirical relations developed by Palluel and Shroff, it is estimated that 25 000 h of operation remained in the discharge insert at the conclusion of the test. In contrast, the neutralizer insert exhibited significantly less tungsten transport and barium oxide depletion consistent with its lower current operation. The neutralizer was estimated to have 140 000 h of insert life remaining at the conclusion of the test. Neither insert had evidence of tungstate or oxide layer formation, previously known to have impeded cathode ignition and operation in similar long duration hollow-cathode tests. The neutralizer cathode was in excellent condition at the conclusion of the test with the exception of keeper tube erosion from direct plume-ion impingement, a previously underappreciated life-limiting mechanism. The most critical finding from the test was a power dependent deposition process within the neutralizer-cathode orifice. The process manifested at low-power operation and led to the production of energetic ions in the neutralizer plume, a potential life-limiting process for the neutralizer. Subsequent return of the engine and neutralizer operation to full

  8. Investigating Microbial Fuel Cell Bioanode Performance Under Different Cathode Conditions

    SciTech Connect

    Borole, Abhijeet P; Hamilton, Choo Yieng; Aaron, D; Tsouris, Costas

    2009-01-01

    A compact, three-in-one, flow-through, porous, electrode design with minimal electrode spacing and minimal dead volume was implemented to develop a microbial fuel cell (MFC) with improved anode performance. A biofilm-dominated anode consortium enriched under a multimode, continuous-flow regime was used. The increase in the power density of the MFC was investigated by changing the cathode (type, as well as catholyte strength) to determine whether anode was limiting. The power density obtained with an air-breathing cathode was 56 W/m3 of net anode volume (590 mW/m2) and 203 W/m3 (2160 mW/m2) with a 50-mM ferricyanide- based cathode. Increasing the ferricyanide concentration and ionic strength further increased the power density, reaching 304 W/m3 (3220 mW/m2, with 200 mM ferricyanide and 200 mM buffer concentration). The increasing trend in the power density indicated that the anode was not limiting and that higher power densities could be obtained using cathodes capable of higher rates of oxidation. The internal solution resistance for the MFC was 5 6 X, which supported the improved performance of the anode design. A new parameter defined as the ratio of projected surface area to total anode volume is suggested as a design parameter to relate volumetric and area-based power densities and to enable comparison of various MFC configurations.

  9. Nickel-titanium-phosphate cathodes

    DOEpatents

    Belharouak, Ilias; Amine, Khalil

    2008-12-16

    Cathode materials having an improved electronic conductivity allowing for faster kinetics in the electrochemical reaction, as well as higher conductivity to meet the power requirements for many consumer applications, especially at low temperatures. The cathode material comprises a compound from the family of compounds where the basic unit is generally represented by Li.sub.xNi.sub.0.5TiOPO.sub.4. The structure of Li.sub.xNi.sub.0.5TiOPO.sub.4 includes corner sharing octahedra [TiO.sub.6] running along the C-axis. The structure is such that nearly three Li atoms are being inserted in Li.sub.xNi.sub.0.5TiOPO.sub.4. A cell in accordance with the principles of the present invention is rechargable and demonstrates a high capacity of lithium intercalation and fast kinetics.

  10. Filters for cathodic arc plasmas

    DOEpatents

    Anders, Andre; MacGill, Robert A.; Bilek, Marcela M. M.; Brown, Ian G.

    2002-01-01

    Cathodic arc plasmas are contaminated with macroparticles. A variety of magnetic plasma filters has been used with various success in removing the macroparticles from the plasma. An open-architecture, bent solenoid filter, with additional field coils at the filter entrance and exit, improves macroparticle filtering. In particular, a double-bent filter that is twisted out of plane forms a very compact and efficient filter. The coil turns further have a flat cross-section to promote macroparticle reflection out of the filter volume. An output conditioning system formed of an expander coil, a straightener coil, and a homogenizer, may be used with the magnetic filter for expanding the filtered plasma beam to cover a larger area of the target. A cathodic arc plasma deposition system using this filter can be used for the deposition of ultrathin amorphous hard carbon (a-C) films for the magnetic storage industry.