Sample records for continuous conduction mode

  1. Comparison of detectability in step-and-shoot mode and continuous mode digital tomosynthesis systems

    NASA Astrophysics Data System (ADS)

    Lee, Changwoo; Han, Minah; Baek, Jongduk

    2017-03-01

    Digital tomosynthesis system has been widely used in chest, dental, and breast imaging. Since the digital tomosynthesis system provides volumetric images from multiple projection data, structural noise inherent in X-ray radiograph can be reduced, and thus signal detection performance is improved. Currently, tomosynthesis system uses two data acquisition modes: step-and-shoot mode and continuous mode. Several studies have been conducted to compare the system performance of two acquisition modes with respect to spatial resolution and contrast. In this work, we focus on signal detectability in step-and-shoot mode and continuous mode. For evaluation, uniform background is considered, and eight spherical objects with diameters of 0.5, 0.8, 1, 2, 3, 5, 8, 10 mm are used as signals. Projection data with and without spherical objects are acquired in step-and-shoot mode and continuous mode, respectively, and quantum noise are added. Then, noisy projection data are reconstructed by FDK algorithm. To compare the detection performance of two acquisition modes, we calculate task signal-to-noise ratio (SNR) of channelized Hotelling observer with Laguerre-Gauss channels for each spherical object. While the task-SNR values of two acquisition modes are similar for spherical objects larger than 1 mm diameter, step-and-shoot mode yields higher detectability for small signal sizes. The main reason of this behavior is that small signal is more affected by X-ray tube motion blur than large signal. Our results indicate that it is beneficial to use step-and-shoot data acquisition mode to improve the detectability of small signals (i.e., less than 1 mm diameter) in digital tomosynthesis systems.

  2. On the Alternate Stirring Mode of F-EMS for Bloom Continuous Castings

    NASA Astrophysics Data System (ADS)

    Sun, Haibo; Li, Liejun; Ye, Dexin; Wu, Xuexing

    2018-05-01

    Local solute transportation behaviors under different alternate stirring parameters of final electromagnetic stirring (F-EMS) and their influences on the internal quality of the as-cast bloom are compared and evaluated based on a developed coupled model of electromagnetism, heat, and solute transport. To this end, plant trials were conducted in Shaoguan Steel, China. Under the action of F-EMS, a negative segregation band in an ellipse shape is observed at the central area of strand cross section, where the minimum carbon segregation degree is decreased from 0.98 to 0.84 as the stirring duration increases from 15 to 35 seconds in the alternate stirring mode, while it is reduced to 0.805 in the continuous stirring mode. The white band and shrinkage cavity are simultaneously observed at strand center under the conditions of continuous stirring mode, and alternate stirring mode with a stirring period of 35 seconds because of the local over-sustaining melt rotation. In contrast, the V-shape porosity belt width and strand center segregation fluctuation range increase from 60 to 90 mm and from 0.12 to 0.30, respectively, as the stirring duration is reduced from 25 to 15 seconds in the alternate stirring mode because of the poor mixing of the local melt at the strand center.

  3. Continuous scanning mode for ptychography

    DOE PAGES

    Clark, Jesse N.; Huang, Xiaojing; Harder, Ross J.; ...

    2014-10-15

    We outline how ptychographic imaging can be performed without the need for discrete scan positions. Through an idealized experiment, we demonstrate how a discrete-position scan regime can be replaced with a continuously scanned one with suitable modification of the reconstruction scheme based on coherent modes. Thus, the impact of this is that acquisition times can be reduced, significantly aiding ptychographic imaging with x rays, electrons, or visible light.

  4. Phonon modes and thermal conductance in carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Tomanek, David

    2001-03-01

    The unique electronic transport behavior of quasi-1D carbon nanotubes(Stefano Sanvito, Young-Kyun Kwon, David Tomanek, and Colin J. Lambert, Phys. Rev. Lett. 84), 1974 (2000). finds an unexpected counterpart in their unusually high thermal conductance.(Savas Berber, Young-Kyun Kwon, and David Tomanek, Phys. Rev. Lett. 84), 4613 (2000). The latter is a consequence of the structural rigidity of nanotubes, resulting in a large sound velocity, and their phonon structure. Soft phonon modes, primarily associated with tube bending and twisting, are essentially decoupled from the energy-carrying hard phonon modes which originate in the stretching and bending of interatomic bonds. The absence of an efficient coupling mechanism between these different phonon modes is responsible for their low damping and a long phonon mean free path. With a peak value λ=37,000W/m/K at 100K, the thermal conductance of an isolated (10,10) nanotube, predicted using non-equilibrium molecular dynamics simulations, is comparable to that of isotopically pure diamond. At room temperature, the predicted value λ=6,600W/m/K even exceeds that of this best thermal conductor. Unlike bulk graphite, where coupling between the flexible layers reduces the basal plane thermal conductance by one order of magnitude, we find that the inter-tube coupling in nanotube ropes does not reduce the single-tube conductance significantly.

  5. Plasmon modes supported by left-handed material slab waveguide with conducting interfaces

    NASA Astrophysics Data System (ADS)

    Taya, Sofyan A.

    2018-07-01

    Theoretical analysis of left-handed material core layer waveguide in the presence of interface free charge layers is presented. The thickness of the interface charge layer can be neglected compared with the incident wavelength. The tangential component of the magnetic field is no longer continuous due to the conducting interfaces. The non-homogeneous boundary conditions are solved and the corresponding dispersion relation is found. The dispersion properties are studied. The proposed structure is found to support even as well as odd plasmon modes. Moreover, the structure shows abnormal dispersion property of decreasing the effective index with the increase of the frequency which means negative group velocity.

  6. Monolithic dual-mode distributed feedback semiconductor laser for tunable continuous-wave terahertz generation.

    PubMed

    Kim, Namje; Shin, Jaeheon; Sim, Eundeok; Lee, Chul Wook; Yee, Dae-Su; Jeon, Min Yong; Jang, Yudong; Park, Kyung Hyun

    2009-08-03

    We report on a monolithic dual-mode semiconductor laser operating in the 1550-nm range as a compact optical beat source for tunable continuous-wave (CW) terahertz (THz) generation. It consists of two distributed feedback (DFB) laser sections and one phase section between them. Each wavelength of the two modes can be independently tuned by adjusting currents in micro-heaters which are fabricated on the top of the each DFB section. The continuous tuning of the CW THz emission from Fe(+)-implanted InGaAs photomixers is successfully demonstrated using our dual-mode laser as the excitation source. The CW THz frequency is continuously tuned from 0.17 to 0.49 THz.

  7. Hardness variation of welded boron steel using continuous wave (CW) and pulse wave (PW) mode of fiber laser

    NASA Astrophysics Data System (ADS)

    Yaakob, K. I.; Ishak, M.; Idris, S. R. A.; Aiman, M. H.; Khalil, N. Z.

    2017-09-01

    Recent car manufacturer requirement in lightweight and optimum safety lead to utilization of boron steel with tailor welded blank approach. Laser welding process in tailor welded blank (TWB) production can be applied in continuous wave (CW) of pulse wave (PW) which produce different thermal experience in welded area. Instead of microstructure identification, hardness properties also can determine the behavior of weld area. In this paper, hardness variation of welded boron steel using PW and CW mode is investigated. Welding process is conducted using similar average power for both welding mode. Hardness variation across weld area is observed. The result shows similar hardness pattern across weld area for both welding mode. Hardness degradation at fusion zone (FZ) is due to ferrite formation existence from high heat input applied. With additional slower cooling rate for CW mode, the hardness degradation is become obvious. The normal variation of hardness behavior with PW mode might lead to good strength.

  8. Teleportation of Two-Mode Quantum State of Continuous Variables

    NASA Astrophysics Data System (ADS)

    Song, Tong-Qiang

    2004-03-01

    Using two Einstein-Podolsky-Rosen pair eigenstates |η> as quantum channels, we study the teleportation of two-mode quantum state of continuous variables. The project supported by Natural Science Foundation of Zhejiang Province of China and Open Foundation of Laboratory of High-Intensity Optics, Shanghai Institute of Optics and Fine Mechanics

  9. Invited Article: Generation of one-million-mode continuous-variable cluster state by unlimited time-domain multiplexing

    NASA Astrophysics Data System (ADS)

    Yoshikawa, Jun-ichi; Yokoyama, Shota; Kaji, Toshiyuki; Sornphiphatphong, Chanond; Shiozawa, Yu; Makino, Kenzo; Furusawa, Akira

    2016-09-01

    In recent quantum optical continuous-variable experiments, the number of fully inseparable light modes has drastically increased by introducing a multiplexing scheme either in the time domain or in the frequency domain. Here, modifying the time-domain multiplexing experiment reported in the work of Yokoyama et al. [Nat. Photonics 7, 982 (2013)], we demonstrate the successive generation of fully inseparable light modes for more than one million modes. The resulting multi-mode state is useful as a dual-rail continuous variable cluster state. We circumvent the previous problem of optical phase drifts, which has limited the number of fully inseparable light modes to around ten thousands, by continuous feedback control of the optical system.

  10. Higher order mode couplers for normal conducting DORIS 5-cell cavities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dewersteg, B.; Seesselberg, E.; Zolfaghari, A.

    1985-10-01

    The beam intensity of the DORIS e -e storage ring is limited to about 100 mA average circulation current as a result of instabilities driven by higher order rf cavity modes. Thus an investigation has been made of the higher order mode impedances of the DORIS rf accelerator cavities. These cavities are the same as the normally conducting inductively coupled 500 MHz 5-cell structures used in PETRA. The results of the investigation were applied for the construction of inductive and capacitive attenuation antennae corresponding to specific mode spectra and mode impedances. The antennae must fit into the existing 35 mmmore » pick up flanges of the cavities and in spite of these size and position limitations they must be efficient in reducing the shunt impedances of the dangerous modes.« less

  11. Generalized classes of continuous symmetries in two-mode Dicke models

    NASA Astrophysics Data System (ADS)

    Moodie, Ryan I.; Ballantine, Kyle E.; Keeling, Jonathan

    2018-03-01

    As recently realized experimentally [Nature (London) 543, 87 (2017), 10.1038/nature21067], one can engineer models with continuous symmetries by coupling two cavity modes to trapped atoms via a Raman pumping geometry. Considering specifically cases where internal states of the atoms couple to the cavity, we show an extended range of parameters for which continuous symmetry breaking can occur, and we classify the distinct steady states and time-dependent states that arise for different points in this extended parameter regime.

  12. KINK AND SAUSAGE MODES IN NONUNIFORM MAGNETIC SLABS WITH CONTINUOUS TRANSVERSE DENSITY DISTRIBUTIONS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yu, Hui; Li, Bo; Chen, Shao-Xia

    2015-11-20

    We examine the influence of a continuous density structuring transverse to coronal slabs on the dispersive properties of fundamental standing kink and sausage modes supported therein. We derive generic dispersion relations (DRs) governing linear fast waves in pressureless straight slabs with general transverse density distributions, and focus on cases where the density inhomogeneity takes place in a layer of arbitrary width and in arbitrary form. The physical relevance of the solutions to the DRs is demonstrated by the corresponding time-dependent computations. For all profiles examined, the lowest order kink modes are trapped regardless of longitudinal wavenumber k. A continuous density distribution introducesmore » a difference to their periods of ≲13% when k is the observed range relative to the case where the density profile takes a step function form. Sausage modes and other branches of kink modes are leaky at small k, and their periods and damping times are heavily influenced by how the transverse density profile is prescribed, in particular the length scale. These modes have sufficiently high quality to be observable only for physical parameters representative of flare loops. We conclude that while the simpler DR pertinent to a step function profile can be used for the lowest order kink modes, the detailed information on the transverse density structuring needs to be incorporated into studies of sausage modes and higher order kink modes.« less

  13. A novel continuous fractional sliding mode control

    NASA Astrophysics Data System (ADS)

    Muñoz-Vázquez, A. J.; Parra-Vega, V.; Sánchez-Orta, A.

    2017-10-01

    A new fractional-order controller is proposed, whose novelty is twofold: (i) it withstands a class of continuous but not necessarily differentiable disturbances as well as uncertainties and unmodelled dynamics, and (ii) based on a principle of dynamic memory resetting of the differintegral operator, it is enforced an invariant sliding mode in finite time. Both (i) and (ii) account for exponential convergence of tracking errors, where such principle is instrumental to demonstrate the closed-loop stability, robustness and a sustained sliding motion, as well as that high frequencies are filtered out from the control signal. The proposed methodology is illustrated with a representative simulation study.

  14. Tissue lesion created by HIFU in continuous scanning mode

    NASA Astrophysics Data System (ADS)

    Fan, Tingbo; Liu, Zhenbo; Zhang, Dong

    2012-09-01

    The lesion formation was numerically and experimentally investigated by the continuous scanning mode. Simulations were presented based on the combination of Khokhlov-Zabolotskaya-Kuznetov (KZK) equation and bio-heat equation. Measurements were performed on porcine liver tissues using a 1.01 MHz single-element focused transducer at various acoustic powers, confirmed the predicted results. Controlling of the peak temperature and lesion by the scanning speed may be exploited for improvement of efficiency in HIFU therapy.

  15. Continuous-variable entanglement and quantum-state teleportation between optical and macroscopic vibrational modes through radiation pressure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pirandola, Stefano; Mancini, Stefano; Vitali, David

    2003-12-01

    We study an isolated, perfectly reflecting, mirror illuminated by an intense laser pulse. We show that the resulting radiation pressure efficiently entangles a mirror vibrational mode with the two reflected optical sideband modes of the incident carrier beam. The entanglement of the resulting three-mode state is studied in detail and it is shown to be robust against the mirror mode temperature. We then show how this continuous-variable entanglement can be profitably used to teleport an unknown quantum state of an optical mode onto the vibrational mode of the mirror.

  16. Numerical study on a single-mode continuous-wave thermally guiding very-large-mode-area fiber amplifier

    NASA Astrophysics Data System (ADS)

    Cao, Jianqiu; Liu, Wenbo; Ying, Hanyuan; Chen, Jinbao; Lu, Qisheng

    2018-03-01

    The characteristics of a single-mode continuous-wave thermally guiding very-large-mode-area fiber amplifier are investigated numerically using the rate-equation model while taking thermal transfer into account. It is revealed that the seed power should play an important role in the fiber amplifier and should be large enough to ensure high output efficiency. The effects of three pumping schemes (i.e. the co-, counter- and bi-directional pumping schemes) and the initial refraction index difference are also studied. It is revealed that the optimum fiber length changes with the pumping scheme, and the initial refraction index difference should be lower than 10-4 in order to ensure the linear increment of the output signal power with the pump power. Furthermore, a brief comparison between the thermally induced waveguides in the fiber amplifiers for three pumping schemes is also made.

  17. Multipartite entanglement in three-mode Gaussian states of continuous-variable systems: Quantification, sharing structure, and decoherence

    NASA Astrophysics Data System (ADS)

    Adesso, Gerardo; Serafini, Alessio; Illuminati, Fabrizio

    2006-03-01

    We present a complete analysis of the multipartite entanglement of three-mode Gaussian states of continuous-variable systems. We derive standard forms which characterize the covariance matrix of pure and mixed three-mode Gaussian states up to local unitary operations, showing that the local entropies of pure Gaussian states are bound to fulfill a relationship which is stricter than the general Araki-Lieb inequality. Quantum correlations can be quantified by a proper convex roof extension of the squared logarithmic negativity, the continuous-variable tangle, or contangle. We review and elucidate in detail the proof that in multimode Gaussian states the contangle satisfies a monogamy inequality constraint [G. Adesso and F. Illuminati, New J. Phys8, 15 (2006)]. The residual contangle, emerging from the monogamy inequality, is an entanglement monotone under Gaussian local operations and classical communications and defines a measure of genuine tripartite entanglements. We determine the analytical expression of the residual contangle for arbitrary pure three-mode Gaussian states and study in detail the distribution of quantum correlations in such states. This analysis yields that pure, symmetric states allow for a promiscuous entanglement sharing, having both maximum tripartite entanglement and maximum couplewise entanglement between any pair of modes. We thus name these states GHZ/W states of continuous-variable systems because they are simultaneous continuous-variable counterparts of both the GHZ and the W states of three qubits. We finally consider the effect of decoherence on three-mode Gaussian states, studying the decay of the residual contangle. The GHZ/W states are shown to be maximally robust against losses and thermal noise.

  18. Multipartite entanglement in three-mode Gaussian states of continuous-variable systems: Quantification, sharing structure, and decoherence

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adesso, Gerardo; Centre for Quantum Computation, DAMTP, Centre for Mathematical Sciences, University of Cambridge, Wilberforce Road, Cambridge CB3 0WA; Serafini, Alessio

    2006-03-15

    We present a complete analysis of the multipartite entanglement of three-mode Gaussian states of continuous-variable systems. We derive standard forms which characterize the covariance matrix of pure and mixed three-mode Gaussian states up to local unitary operations, showing that the local entropies of pure Gaussian states are bound to fulfill a relationship which is stricter than the general Araki-Lieb inequality. Quantum correlations can be quantified by a proper convex roof extension of the squared logarithmic negativity, the continuous-variable tangle, or contangle. We review and elucidate in detail the proof that in multimode Gaussian states the contangle satisfies a monogamy inequalitymore » constraint [G. Adesso and F. Illuminati, New J. Phys8, 15 (2006)]. The residual contangle, emerging from the monogamy inequality, is an entanglement monotone under Gaussian local operations and classical communications and defines a measure of genuine tripartite entanglements. We determine the analytical expression of the residual contangle for arbitrary pure three-mode Gaussian states and study in detail the distribution of quantum correlations in such states. This analysis yields that pure, symmetric states allow for a promiscuous entanglement sharing, having both maximum tripartite entanglement and maximum couplewise entanglement between any pair of modes. We thus name these states GHZ/W states of continuous-variable systems because they are simultaneous continuous-variable counterparts of both the GHZ and the W states of three qubits. We finally consider the effect of decoherence on three-mode Gaussian states, studying the decay of the residual contangle. The GHZ/W states are shown to be maximally robust against losses and thermal noise.« less

  19. Multi-Mode Excitation and Data Reduction for Fatigue Crack Characterization in Conducting Plates

    NASA Technical Reports Server (NTRS)

    Wincheski, B.; Namkung, M.; Fulton, J. P.; Clendenin, C. G.

    1992-01-01

    Advances in the technique of fatigue crack characterization by resonant modal analysis have been achieved through a new excitation mechanism and data reduction of multiple resonance modes. A non-contacting electromagnetic device is used to apply a time varying Lorentz force to thin conducting sheets. The frequency and direction of the Lorentz force are such that resonance modes are generated in the test sample. By comparing the change in frequency between distinct resonant modes of a sample, detecting and sizing of fatigue cracks are achieved and frequency shifts caused by boundary condition changes can be discriminated against. Finite element modeling has been performed to verify experimental results.

  20. Non-negligible Contributions to Thermal Conductivity From Localized Modes in Amorphous Silicon Dioxide

    PubMed Central

    Lv, Wei; Henry, Asegun

    2016-01-01

    Thermal conductivity is important for almost all applications involving heat transfer. The theory and modeling of crystalline materials is in some sense a solved problem, where one can now calculate their thermal conductivity from first principles using expressions based on the phonon gas model (PGM). However, modeling of amorphous materials still has many open questions, because the PGM itself becomes questionable when one cannot rigorously define the phonon velocities. In this report, we used our recently developed Green-Kubo modal analysis (GKMA) method to study amorphous silicon dioxide (a-SiO2). The predicted thermal conductivities exhibit excellent agreement with experiments and anharmonic effects are included in the thermal conductivity calculation for all the modes in a-SiO2 for the first time. Previously, localized modes (locons) have been thought to have a negligible contribution to thermal conductivity, due to their highly localized nature. However, in a-SiO2 our results indicate that locons contribute more than 10% to the total thermal conductivity from 400 K to 800 K and they are largely responsible for the increase in thermal conductivity of a-SiO2 above room temperature. This is an effect that cannot be explained by previous methods and therefore offers new insight into the nature of phonon transport in amorphous/glassy materials. PMID:27767082

  1. Effects of sputtering mode on the microstructure and ionic conductivity of yttria-stabilized zirconia films

    NASA Astrophysics Data System (ADS)

    Yeh, Tsung-Her; Lin, Ruei-De; Cherng, Bo-Ruei; Cherng, Jyh-Shiarn

    2018-05-01

    The microstructure and ionic conductivity of reactively sputtered yttria-stabilized zirconia (YSZ) films are systematically studied. Those films were reactively sputtered in various sputtering modes using a closed-loop controlled system with plasma emission monitoring. A transition-mode sputtering corresponding to 45% of target poisoning produces a microstructure with ultrafine crystallites embedded in an amorphous matrix, which undergoes an abnormal grain growth upon annealing at 800 °C. At 500 °C, the measured ionic conductivity of this annealed film is higher, by about a half order of magnitude, than those of its poisoned-mode counterparts, which are in turn significantly higher than that of the YSZ bulk by about two orders of magnitude. The abnormally-grown ultra-large grain size of the film deposited in the transition mode and then annealed is believed to be responsible for the former comparison due to the suppression of the grain boundary blocking effect, while the latter comparison can be attributed to the interface effect.

  2. High-power terahertz quantum cascade lasers with ∼0.23 W in continuous wave mode

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Xuemin; Shen, Changle; Jiang, Tao

    2016-07-15

    Terahertz quantum cascade lasers with a record output power up to ∼0.23 W in continuous wave mode were obtained. We show that the optimal 2.9-mm-long device operating at 3.11 THz has a low threshold current density of 270 A/cm{sup 2} at ∼15 K. The maximum operating temperature arrived at ∼65 K in continuous wave mode and the internal quantum efficiencies decreased from 0.53 to 0.19 for the devices with different cavity lengths. By using one convex lens with the effective focal length of 13 mm, the beam profile was collimated to be a quasi Gaussian distribution.

  3. Impact of pacemaker mode in patients with atrioventricular conduction disturbance after trans-catheter aortic valve implantation.

    PubMed

    Takahashi, Masao; Badenco, Nicolas; Monteau, Jacques; Gandjbakhch, Estelle; Extramiana, Fabrice; Urena, Marina; Karam, Nicole; Marijon, Eloi; Algalarrondo, Vincent; Teiger, Emmanuel; Lellouche, Nicolas

    2018-03-14

    This study aimed to assess the impact of pacemaker mode programming on clinical outcomes in patients with high-degree atrioventricular conduction disturbance (AVCD) after transcatheter aortic valve implantation (TAVI). Although high-degree AVCD after TAVI can receive pacemaker, recovery of the AVCD is often observed. Specific pacemaker algorithms (AAI-DDD mode switch) are available which favor spontaneous atrioventricular conduction. Of 1,621 consecutive multi-center TAVI patients, 269 (16.4%) received pacemaker. We retrospectively included 91 patients with persistent high-degree AVCD at hospital discharge. Pacemaker dependency was defined as absence, inadequate intrinsic ventricular rhythm, or ventricular pacing time > 95% on pacemaker interrogation during follow-up. Comparison of heart failure hospitalization and death between conventional DDD (cDDD) and other modes was examined (AAI-DDD and VVI). During a mean follow-up duration of 13 months, the pacemaker dependency rate was 52.8%. Patients with cDDD mode (N = 36: 40.0%) had significantly more pacemaker dependency. Multivariate analysis showed that cDDD mode was independently associated with pacemaker dependency (odds ratio = 3.63, P = 0.03). Moreover, cDDD patients had a significant higher incidence of heart failure hospitalization (Hospitalization: cDDD vs. others = 45.4% vs. 18.2%, P = 0.03) and had a higher incidence of mortality (Death: cDDD vs. the others = 27.0% vs. 4.4%, P = 0.06). Up to half of patients implanted for high-degree AVCD after TAVI had conduction recovery. Patients with cDDD programming at hospital discharge had more pacemaker dependency and a worse cardiac prognosis. Thus, pacemaker mode should be systematically set to promote spontaneous atrioventricular conduction in patients with pacemaker implantation after TAVI. © 2018 Wiley Periodicals, Inc.

  4. Engineering non-linear resonator mode interactions in circuit QED by continuous driving: Introduction

    NASA Astrophysics Data System (ADS)

    Pfaff, Wolfgang; Reagor, Matthew; Heeres, Reinier; Ofek, Nissim; Chou, Kevin; Blumoff, Jacob; Leghtas, Zaki; Touzard, Steven; Sliwa, Katrina; Holland, Eric; Krastanov, Stefan; Frunzio, Luigi; Devoret, Michel; Jiang, Liang; Schoelkopf, Robert

    2015-03-01

    High-Q microwave resonators show great promise for storing and manipulating quantum states in circuit QED. Using resonator modes as such a resource in quantum information processing applications requires the ability to manipulate the state of a resonator efficiently. Further, one must engineer appropriate coupling channels without spoiling the coherence properties of the resonator. We present an architecture that combines millisecond lifetimes for photonic quantum states stored in a linear resonator with fast measurement provided by a low-Q readout resonator. We demonstrate experimentally how a continuous drive on a transmon can be utilized to generate highly non-classical photonic states inside the high-Q resonator via effective nonlinear resonator mode interactions. Our approach opens new avenues for using modes of long-lived linear resonators in the circuit QED platform for quantum information processing tasks.

  5. Acoustic mode measurements in the inlet of a model turbofan using a continuously rotating rake

    NASA Astrophysics Data System (ADS)

    Heidelberg, Laurence J.; Hall, David G.

    1993-01-01

    Comprehensive measurements of the spinning acoustic mode structure in the inlet of the Advanced Ducted Propeller (ADP) have been completed. These measurements were taken using a unique and previously untried method which was first proposed by T.G. Sofrin. A continuously rotating microphone system was employed. The ADP model was designed and built by Pratt & Whitney and tested in the NASA Lewis 9- by 15-foot Anechoic Wind Tunnel. Three inlet configurations were tested with cut-on and cutoff stator vane sets. The cutoff stator was designed to suppress all modes at the blade passing frequency. Rotating rake measurements indicate that several extraneous circumferential modes were active. The mode orders suggest that their source was an interaction between the rotor and small interruptions in the casing tip treatment. The cut-on stator produced the expected circumferential modes plus higher levels of the unexpected modes seen with the cutoff stator.

  6. Acoustic Mode Measurements in the Inlet of a Model Turbofan Using a Continuously Rotating Rake

    NASA Technical Reports Server (NTRS)

    Heidelberg, Laurence J.; Hall, David G.

    1992-01-01

    Comprehensive measurements of the spinning acoustic mode structure in the inlet of the Advanced Ducted Propeller (ADP) have been completed. These measurements were taken using a unique and previously untried method which was first proposed by T.G. Sofrin. A continuously rotating microphone system was employed. The ADP model was designed and built by Pratt & Whitney and tested in the NASA Lewis 9- by 15-foot Anechoic Wind Tunnel. Three inlet configurations were tested with cut-on and cutoff stator vane sets. The cutoff stator was designed to suppress all modes at the blade passing frequency. Rotating rake measurements indicate that several extraneous circumferential modes were active. The mode orders suggest that their source was an interaction between the rotor and small interruptions in the casing tip treatment. The cut-on stator produced the expected circumferential modes plus higher levels of the unexpected modes seen with the cutoff stator.

  7. Collective-Goldstone-mode-induced ultralow lattice thermal conductivity in Sn-filled skutterudite SnFe4Sb12

    NASA Astrophysics Data System (ADS)

    Fu, Yuhao; He, Xin; Zhang, Lijun; Singh, David J.

    2018-01-01

    We demonstrate that the concept of Goldstone bosons can be exploited for phonon control and thermal conductivity reduction of materials. By studying lattice dynamics of the Sn filled skutterudite SnFe4Sb12 , we find Sn off-centers in its coordination cage in contrast to the common rare earth fillers. This leads to low-frequency Goldstone-like modes below 1 THz associated mainly with Sn motions. Importantly, these involve collective motion of other atoms, especially Sb, in the host skutterudite lattice. The optical modes transversing to the Sn off-centering direction are identified as Goldstone type modes in association with a three-dimensional Mexican-hat-like potential energy surface. The interaction of these collective Goldstone modes with the host heat-carrying phonons is shown to lead to ultralow lattice thermal conductivity.

  8. Enhanced method to reconstruct mode shapes of continuous scanning measurements using the Hilbert Huang transform and the modal analysis method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Jongsuh; Hussain, Syed Hassaan; Wang, Semyung, E-mail: smwang@gist.ac.kr

    2014-09-15

    Generally, it is time consuming to experimentally identify the operating deflection shape or mode shape of a structure. To overcome this problem, the Hilbert Huang transform (HHT) technique has been recently proposed. This technique is used to extract the mode shape from measurements that continuously measure the vibration of a region of interest within a structure using a non-contact laser sensor. In previous research regarding the HHT, two technical processes were needed to obtain the mode shape for each mode. The purpose of this study is to improve and complement our previous research, and for this purpose, a modal analysismore » approach is adapted without using the two technical processes to obtain an accurate un-damped impulse response of each mode for continuous scanning measurements. In addition, frequency response functions for each type of beam are derived, making it possible to make continuously scanned measurements along a straight profile. In this paper, the technical limitations and drawbacks of the damping compensation technique used in previous research are identified. In addition, the separation of resonant frequency (the Doppler effect) that occurs in continuous scanning measurements and the separation of damping phenomenon are also observed. The proposed method is quantitatively verified by comparing it with the results obtained from a conventional approach to estimate the mode shape with an impulse response.« less

  9. Collective-Goldstone-mode-induced ultralow lattice thermal conductivity in Sn-filled skutterudite SnFe 4 Sb 12

    DOE PAGES

    Fu, Yuhao; He, Xin; Zhang, Lijun; ...

    2018-01-03

    Here, we demonstrate that the concept of Goldstone bosons can be exploited for phonon control and thermal conductivity reduction of materials. By studying lattice dynamics of the Sn filled skutterudite SnFe 4Sb 12, we find Sn off-centers in its coordination cage in contrast to the common rare earth fillers. This leads to low-frequency Goldstone-like modes below 1 THz associated mainly with Sn motions. Importantly, these involve collective motion of other atoms, especially Sb, in the host skutterudite lattice. The optical modes transversing to the Sn off-centering direction are identified as Goldstone type modes in association with a three-dimensional Mexican-hat-like potentialmore » energy surface. The interaction of these collective Goldstone modes with the host heat-carrying phonons is shown to lead to ultralow lattice thermal conductivity.« less

  10. Collective-Goldstone-mode-induced ultralow lattice thermal conductivity in Sn-filled skutterudite SnFe 4 Sb 12

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fu, Yuhao; He, Xin; Zhang, Lijun

    Here, we demonstrate that the concept of Goldstone bosons can be exploited for phonon control and thermal conductivity reduction of materials. By studying lattice dynamics of the Sn filled skutterudite SnFe 4Sb 12, we find Sn off-centers in its coordination cage in contrast to the common rare earth fillers. This leads to low-frequency Goldstone-like modes below 1 THz associated mainly with Sn motions. Importantly, these involve collective motion of other atoms, especially Sb, in the host skutterudite lattice. The optical modes transversing to the Sn off-centering direction are identified as Goldstone type modes in association with a three-dimensional Mexican-hat-like potentialmore » energy surface. The interaction of these collective Goldstone modes with the host heat-carrying phonons is shown to lead to ultralow lattice thermal conductivity.« less

  11. Optimization of transonic wind tunnel data acquisition and control systems for providing continuous mode tests

    NASA Astrophysics Data System (ADS)

    Petronevich, V. V.

    2016-10-01

    The paper observes the issues related to the increase of efficiency and information content of experimental research in transonic wind tunnels (WT). In particular, questions of optimizing the WT Data Acquisition and Control Systems (DACS) to provide the continuous mode test method are discussed. The problem of Mach number (M number) stabilization in the test section of the large transonic compressor-type wind tunnels at subsonic flow conditions with continuous change of the aircraft model angle of attack is observed on the example of T-128 wind tunnel. To minimize the signals distortion in T-128 DACS measurement channels the optimal MGCplus filter settings of the data acquisition system used in T-128 wind tunnel to measure loads were experimentally determined. As a result of the tests performed a good agreement of the results of balance measurements for pitch/pause and continuous test modes was obtained. Carrying out balance tests for pitch/pause and continuous test methods was provided by the regular data acquisition and control system of T-128 wind tunnel with unified software package POTOK. The architecture and functional abilities of POTOK software package are observed.

  12. Continuous Variable Cluster State Generation over the Optical Spatial Mode Comb

    DOE PAGES

    Pooser, Raphael C.; Jing, Jietai

    2014-10-20

    One way quantum computing uses single qubit projective measurements performed on a cluster state (a highly entangled state of multiple qubits) in order to enact quantum gates. The model is promising due to its potential scalability; the cluster state may be produced at the beginning of the computation and operated on over time. Continuous variables (CV) offer another potential benefit in the form of deterministic entanglement generation. This determinism can lead to robust cluster states and scalable quantum computation. Recent demonstrations of CV cluster states have made great strides on the path to scalability utilizing either time or frequency multiplexingmore » in optical parametric oscillators (OPO) both above and below threshold. The techniques relied on a combination of entangling operators and beam splitter transformations. Here we show that an analogous transformation exists for amplifiers with Gaussian inputs states operating on multiple spatial modes. By judicious selection of local oscillators (LOs), the spatial mode distribution is analogous to the optical frequency comb consisting of axial modes in an OPO cavity. We outline an experimental system that generates cluster states across the spatial frequency comb which can also scale the amount of quantum noise reduction to potentially larger than in other systems.« less

  13. The acoustic low-degree modes of the Sun measured with 14 years of continuous GOLF & VIRGO measurements

    NASA Astrophysics Data System (ADS)

    García, R. A.; Salabert, D.; Ballot, J.; Sato, K.; Mathur, S.; Jiménez, A.

    2011-01-01

    The helioseismic Global Oscillation at Low Frequency (GOLF) and the Variability of solar Irradiance and Gravity Oscillations (VIRGO) instruments onboard SoHO, have been observing the Sun continuously for the last 14 years. In this preliminary work, we characterize the acoustic modes over the entire p-mode range in both, Doppler velocity and luminosity, with a special care for the low-frequency modes taking advantage of the stability and the high duty cycle of space observations.

  14. Continuous Processing of High Thermal Conductivity Polyethylene Fibers and Sheets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    2016-12-01

    This factsheet describes a project that developed a new, continuous manufacturing process to make high molecular weight, high thermal conductivity polyethylene fibers and sheets to replace metals and ceramics in heat transfer applications.

  15. Study on the continuing education innovative talents training mode of civil engineering major

    NASA Astrophysics Data System (ADS)

    Sun, Shengnan; Su, Zhibin; Cui, Shicai

    2017-12-01

    According to the characteristics of civil engineering professional continuing education, continuing education of innovative talents training mode suitable for the characteristics of our school is put forward in this paper. The characteristics of the model include: the education of professional basic courses and specialized courses should be paid attention to; engineering training should be strengthened and engineering quality should be trained; the concept of large civil engineering should be highlighted, the specialized areas should be broadened, and the curriculum system should be reconstructed; the mechanism of personnel training program should be constructed by the employers, the domestic highlevel institutions and our university. It is hoped that the new training model will promote the development of continuing education of civil engineering specialty in our university.

  16. Failure mode and effects analysis drastically reduced potential risks in clinical trial conduct.

    PubMed

    Lee, Howard; Lee, Heechan; Baik, Jungmi; Kim, Hyunjung; Kim, Rachel

    2017-01-01

    Failure mode and effects analysis (FMEA) is a risk management tool to proactively identify and assess the causes and effects of potential failures in a system, thereby preventing them from happening. The objective of this study was to evaluate effectiveness of FMEA applied to an academic clinical trial center in a tertiary care setting. A multidisciplinary FMEA focus group at the Seoul National University Hospital Clinical Trials Center selected 6 core clinical trial processes, for which potential failure modes were identified and their risk priority number (RPN) was assessed. Remedial action plans for high-risk failure modes (RPN >160) were devised and a follow-up RPN scoring was conducted a year later. A total of 114 failure modes were identified with an RPN score ranging 3-378, which was mainly driven by the severity score. Fourteen failure modes were of high risk, 11 of which were addressed by remedial actions. Rescoring showed a dramatic improvement attributed to reduction in the occurrence and detection scores by >3 and >2 points, respectively. FMEA is a powerful tool to improve quality in clinical trials. The Seoul National University Hospital Clinical Trials Center is expanding its FMEA capability to other core clinical trial processes.

  17. Failure mode and effects analysis drastically reduced potential risks in clinical trial conduct

    PubMed Central

    Baik, Jungmi; Kim, Hyunjung; Kim, Rachel

    2017-01-01

    Background Failure mode and effects analysis (FMEA) is a risk management tool to proactively identify and assess the causes and effects of potential failures in a system, thereby preventing them from happening. The objective of this study was to evaluate effectiveness of FMEA applied to an academic clinical trial center in a tertiary care setting. Methods A multidisciplinary FMEA focus group at the Seoul National University Hospital Clinical Trials Center selected 6 core clinical trial processes, for which potential failure modes were identified and their risk priority number (RPN) was assessed. Remedial action plans for high-risk failure modes (RPN >160) were devised and a follow-up RPN scoring was conducted a year later. Results A total of 114 failure modes were identified with an RPN score ranging 3–378, which was mainly driven by the severity score. Fourteen failure modes were of high risk, 11 of which were addressed by remedial actions. Rescoring showed a dramatic improvement attributed to reduction in the occurrence and detection scores by >3 and >2 points, respectively. Conclusions FMEA is a powerful tool to improve quality in clinical trials. The Seoul National University Hospital Clinical Trials Center is expanding its FMEA capability to other core clinical trial processes. PMID:29089745

  18. Survival of Listeria monocytogenes and Salmonella spp. on catfish exposed to microwave heating in a continuous mode

    USDA-ARS?s Scientific Manuscript database

    Microwave (MW) heating using continuous output may provide better and consistent cooking for foods. Currently, household units with a build-in inverter device are available in which the output is continuous vs. the traditional on-off mode. With an inverter, these MW ovens may provide consistent he...

  19. Effects of carbon brush anode size and loading on microbial fuel cell performance in batch and continuous mode

    NASA Astrophysics Data System (ADS)

    Lanas, Vanessa; Ahn, Yongtae; Logan, Bruce E.

    2014-02-01

    Larger scale microbial fuel cells (MFCs) require compact architectures to efficiently treat wastewater. We examined how anode-brush diameter, number of anodes, and electrode spacing affected the performance of the MFCs operated in fed-batch and continuous flow mode. All anodes were initially tested with the brush core set at the same distance from the cathode. In fed-batch mode, the configuration with three larger brushes (25 mm diameter) produced 80% more power (1240 mW m-2) than reactors with eight smaller brushes (8 mm) (690 mW m-2). The higher power production by the larger brushes was due to more negative and stable anode potentials than the smaller brushes. The same general result was obtained in continuous flow operation, although power densities were reduced. However, by moving the center of the smaller brushes closer to the cathode (from 16.5 to 8 mm), power substantially increased from 690 to 1030 mW m-2 in fed batch mode. In continuous flow mode, power increased from 280 to 1020 mW m-2, resulting in more power production from the smaller brushes than the larger brushes (540 mW m-2). These results show that multi-electrode MFCs can be optimized by selecting smaller anodes, placed as close as possible to the cathode.

  20. 15 ps quasi-continuously pumped passively mode-locked highly doped Nd:YAG laser in bounce geometry

    NASA Astrophysics Data System (ADS)

    Jelínek, M., Jr.; Kubeček, V.

    2011-09-01

    A semiconductor saturable absorber mirror mode-locking of a quasi-continuously pumped laser based on 2.4 at.% Nd:YAG slab in a bounce geometry was demonstrated and investigated. Output mode-locked and Q-switched train containing 15 pulses with total energy of 500 μJ was generated directly from the oscillator. The measured 15 ps pulse duration and excellent temporal stability ±2 ps are the best values for pure passively mode-locked and Q-switched Nd:YAG laser with the pulse pumping. Furthermore, using the cavity dumping technique, single 19 ps pulse with energy of 25 μJ was extracted directly from the oscillator.

  1. Continuous tuning of two-section, single-mode terahertz quantum-cascade lasers by fiber-coupled, near-infrared illumination

    NASA Astrophysics Data System (ADS)

    Hempel, Martin; Röben, Benjamin; Niehle, Michael; Schrottke, Lutz; Trampert, Achim; Grahn, Holger T.

    2017-05-01

    The dynamical tuning due to rear facet illumination of single-mode, terahertz (THz) quantum-cascade lasers (QCLs) which employ distributed feedback gratings are compared to the tuning of single-mode QCLs based on two-section cavities. The THz QCLs under investigation emit in the range of 3 to 4.7 THz. The tuning is achieved by illuminating the rear facet of the QCL with a fiber-coupled light source emitting at 777 nm. Tuning ranges of 5.0 and 11.9 GHz under continuous-wave and pulsed operation, respectively, are demonstrated for a single-mode, two-section cavity QCL emitting at about 3.1 THz, which exhibits a side-mode suppression ratio better than -25 dB.

  2. The structure of mode-locking regions of piecewise-linear continuous maps: II. Skew sawtooth maps

    NASA Astrophysics Data System (ADS)

    Simpson, D. J. W.

    2018-05-01

    In two-parameter bifurcation diagrams of piecewise-linear continuous maps on , mode-locking regions typically have points of zero width known as shrinking points. Near any shrinking point, but outside the associated mode-locking region, a significant proportion of parameter space can be usefully partitioned into a two-dimensional array of annular sectors. The purpose of this paper is to show that in these sectors the dynamics is well-approximated by a three-parameter family of skew sawtooth circle maps, where the relationship between the skew sawtooth maps and the N-dimensional map is fixed within each sector. The skew sawtooth maps are continuous, degree-one, and piecewise-linear, with two different slopes. They approximate the stable dynamics of the N-dimensional map with an error that goes to zero with the distance from the shrinking point. The results explain the complicated radial pattern of periodic, quasi-periodic, and chaotic dynamics that occurs near shrinking points.

  3. Operation of Terahertz Quantum-cascade Lasers at 164 K in Pulsed Mode and at 117 K in Continuous-wave Mode

    NASA Technical Reports Server (NTRS)

    Williams, Benjamin S.; Kumar, Sushil; Hu, Qing; Reno, John L.

    2005-01-01

    We report the demonstration of a terahertz quantum-cascade laser that operates up to 164 K in pulsed mode and 117 K in continuous-wave mod e at approximately 3.0 THz. The active region was based on a resonant -phonon depopulation scheme and a metal-metal waveguide was used for modal confinement. Copper to copper thermocompression wafer bonding w as used to fabricate the waveguide, which displayed improved thermal properties compared to a previous indium-gold bonding method.

  4. A continuous-discrete approach for evaluation of natural frequencies and mode shapes of high-rise buildings

    NASA Astrophysics Data System (ADS)

    Malekinejad, Mohsen; Rahgozar, Reza; Malekinejad, Ali; Rahgozar, Peyman

    2016-09-01

    In this paper, a continuous-discrete approach based on the concept of lumped mass and equivalent continuous approach is proposed for free vibration analysis of combined system of framed tube, shear core and outrigger-belt truss in high-rise buildings. This system is treated as a continuous system (i.e., discrete beams and columns are replaced with equivalent continuous membranes) and a discrete system (or lumped mass system) at different stages of dynamic analysis. The structure is discretized at each floor of the building as a series of lumped masses placed at the center of shear core. Each mass has two transitional degrees of freedom (lateral and axial( and one rotational. The effect of shear core and outrigger-belt truss on framed tube system is modeled as a rotational spring placed at the location of outrigger-belt truss system along structure's height. By solving the resulting eigen problem, natural frequencies and mode-shapes are obtained. Numerical examples are presented to show acceptable accuracy of the procedure in estimating the fundamental frequencies and corresponding mode shapes of the combined system as compared to finite element analysis of the complete structure. The simplified proposed method is much faster and should be more suitable for rapid interactive design.

  5. Localization of vibrational modes leads to reduced thermal conductivity of amorphous heterostructures

    NASA Astrophysics Data System (ADS)

    Giri, Ashutosh; Donovan, Brian F.; Hopkins, Patrick E.

    2018-05-01

    We investigate the vibrational heat transfer mechanisms in amorphous Stillinger-Weber silicon and germanium-based alloys and heterostructures via equilibrium and nonequilibrium molecular dynamics simulations along with lattice dynamics calculations. We find that similar to crystalline alloys, amorphous alloys demonstrate large size effects in thermal conductivity, while layering the constituent materials into superlattice structures leads to length-independent thermal conductivities. The thermal conductivity of an amorphous SixGe1 -x alloy reduces by as much as ˜53 % compared to the thermal conductivity of amorphous silicon; compared to the larger reduction in crystalline phases due to alloying, we show that compositional disorder rather than structural disorder has a larger impact on the thermal conductivity reduction. Our thermal conductivity predictions for a-Si/a-Ge superlattices suggest that the alloy limit in amorphous SiGe-based structures can be surpassed with interface densities above ˜0.35 nm-1 . We attribute the larger reduction in thermal conductivity of layered Si/Ge heterostructures to greater localization of modes at and around the cutoff frequency of the softer layer as demonstrated via lattice dynamics calculations and diffusivities of individual eigenmodes calculated according to the Allen-Feldman theory [P. B. Allen and J. L. Feldman, Phys. Rev. B 48, 12581 (1993), 10.1103/PhysRevB.48.12581] for our amorphous SiGe-based alloys and superlattice structures.

  6. A Latent Class Multidimensional Scaling Model for Two-Way One-Mode Continuous Rating Dissimilarity Data

    ERIC Educational Resources Information Center

    Vera, J. Fernando; Macias, Rodrigo; Heiser, Willem J.

    2009-01-01

    In this paper, we propose a cluster-MDS model for two-way one-mode continuous rating dissimilarity data. The model aims at partitioning the objects into classes and simultaneously representing the cluster centers in a low-dimensional space. Under the normal distribution assumption, a latent class model is developed in terms of the set of…

  7. Numerical simulation of the optimal two-mode attacks for two-way continuous-variable quantum cryptography in reverse reconciliation

    NASA Astrophysics Data System (ADS)

    Zhang, Yichen; Li, Zhengyu; Zhao, Yijia; Yu, Song; Guo, Hong

    2017-02-01

    We analyze the security of the two-way continuous-variable quantum key distribution protocol in reverse reconciliation against general two-mode attacks, which represent all accessible attacks at fixed channel parameters. Rather than against one specific attack model, the expression of secret key rates of the two-way protocol are derived against all accessible attack models. It is found that there is an optimal two-mode attack to minimize the performance of the protocol in terms of both secret key rates and maximal transmission distances. We identify the optimal two-mode attack, give the specific attack model of the optimal two-mode attack and show the performance of the two-way protocol against the optimal two-mode attack. Even under the optimal two-mode attack, the performances of two-way protocol are still better than the corresponding one-way protocol, which shows the advantage of making double use of the quantum channel and the potential of long-distance secure communication using a two-way protocol.

  8. Reconstruction of the in-plane mode shape of a rotating tire with a continuous scanning measurement using the Hilbert-Huang transform.

    PubMed

    Lee, Jongsuh; Wang, Semyung; Pluymers, Bert; Desmet, Wim; Kindt, Peter

    2015-02-01

    Generally, the dynamic characteristics (natural frequency, damping, and mode shape) of a structure can be estimated by experimental modal analysis. Among these dynamic characteristics, mode shape requires multiple measurements of the structure at different positions, which increases the experimental cost and time. Recently, the Hilbert-Huang transform (HHT) method has been introduced to extract mode-shape information from a continuous measurement, which requires vibration measurements from one position to another position continuously with a non-contact sensor. In this research study, an effort has been made to estimate the mode shapes of a rolling tire with a single measurement instead of using the conventional experimental setup (i.e., measurement of the vibration of a rolling tire at multiple positions similar to the case of a non-rotating structure), which is used to estimate the dynamic behavior of a rolling tire. For this purpose, HHT, which was used in the continuous measurement of a non-rotating structure in previous research studies, has been used for the case of a rotating system in this study. Ambiguous mode combinations can occur in this rotating system, and therefore, a method to overcome this ambiguity is proposed in this study. In addition, the specific phenomenon for a rotating system is introduced, and the effect of this phenomenon with regard to the obtained results through HHT is investigated.

  9. Nonlinear absorption properties of ZnO and Al doped ZnO thin films under continuous and pulsed modes of operations

    NASA Astrophysics Data System (ADS)

    Sandeep, K. M.; Bhat, Shreesha; Dharmaprakash, S. M.

    2018-06-01

    In the present investigation, we present the variations in nonlinear optical (NLO) properties of undoped and Al doped ZnO (AZO) films under two different off-resonant regimes using continuous and pulsed mode lasers. Z-scan open aperture experiment is performed to quantify nonlinear absorption constant and imaginary component of third order susceptibility. Reverse saturable absorption (RSA) and saturable absorption (SA) behaviors are noticed in both undoped and AZO films under pulsed mode and continuous wavelength (CW) regime respectively. The RSA and SA behavior observed in the films are attributed to two photon absorption (TPA) and thermal lensing properties respectively. The thermal lensing is assisted by the thermo-optic effects within the films due to the continuous illumination of the laser.

  10. Continuous-flow electrophoresis: Membrane-associated deviations of buffer pH and conductivity

    NASA Technical Reports Server (NTRS)

    Smolka, A. J. K.; Mcguire, J. K.

    1978-01-01

    The deviations in buffer pH and conductivity which occur near the electrode membranes in continuous-flow electrophoresis were studied in the Beckman charged particle electrophoresis system and the Hanning FF-5 preparative electrophoresis instrument. The nature of the membranes separating the electrode compartments from the electrophoresis chamber, the electric field strength, and the flow rate of electrophoresis buffer were all found to influence the formation of the pH and conductivity gradients. Variations in electrode buffer flow rate and the time of electrophoresis were less important. The results obtained supported the hypothesis that a combination of Donnan membrane effects and the differing ionic mobilities in the electrophoresis buffer was responsible for the formation of the gradients. The significance of the results for the design and stable operation of continuous-flow electrophoresis apparatus was discussed.

  11. Continuous-variable quantum computing in optical time-frequency modes using quantum memories.

    PubMed

    Humphreys, Peter C; Kolthammer, W Steven; Nunn, Joshua; Barbieri, Marco; Datta, Animesh; Walmsley, Ian A

    2014-09-26

    We develop a scheme for time-frequency encoded continuous-variable cluster-state quantum computing using quantum memories. In particular, we propose a method to produce, manipulate, and measure two-dimensional cluster states in a single spatial mode by exploiting the intrinsic time-frequency selectivity of Raman quantum memories. Time-frequency encoding enables the scheme to be extremely compact, requiring a number of memories that are a linear function of only the number of different frequencies in which the computational state is encoded, independent of its temporal duration. We therefore show that quantum memories can be a powerful component for scalable photonic quantum information processing architectures.

  12. Influence of Secondary Cooling Mode on Solidification Structure and Macro-segregation Behavior for High-carbon Continuous Casting Bloom

    NASA Astrophysics Data System (ADS)

    Dou, Kun; Yang, Zhenguo; Liu, Qing; Huang, Yunhua; Dong, Hongbiao

    2017-07-01

    A cellular automaton-finite element coupling model for high-carbon continuously cast bloom of GCr15 steel is established to simulate the solidification structure and to investigate the influence of different secondary cooling modes on characteristic parameters such as equiaxed crystal ratio, grain size and secondary dendrite arm spacing, in which the effect of phase transformation and electromagnetic stirring is taken into consideration. On this basis, evolution of carbon macro-segregation for GCr15 steel bloom is researched correspondingly via industrial tests. Based on above analysis, the relationship among secondary cooling modes, characteristic parameters for solidification structure as well as carbon macro-segregation is illustrated to obtain optimum secondary cooling strategy and alleviate carbon macro-segregation degree for GCr15 steel bloom in continuous casting process. The evaluating method for element macro-segregation is applicable in various steel types.

  13. Mode selection in square resonator microlasers for widely tunable single mode lasing.

    PubMed

    Tang, Ming-Ying; Sui, Shao-Shuai; Yang, Yue-De; Xiao, Jin-Long; Du, Yun; Huang, Yong-Zhen

    2015-10-19

    Mode selection in square resonator semiconductor microlasers is demonstrated by adjusting the width of the output waveguide coupled to the midpoint of one side. The simulation and experimental results reveal that widely tunable single mode lasing can be realized in square resonator microlasers. Through adjusting the width of the output waveguide, the mode interval of the high-Q modes can reach four times of the longitudinal mode interval. Therefore, mode hopping can be efficiently avoided and the lasing wavelength can be tuned continuously by tuning the injection current. For a 17.8-μm-side-length square microlaser with a 1.4-μm-width output waveguide, mode-hopping-free single-mode operation is achieved with a continuous tuning range of 9.2 nm. As a result, the control of the lasing mode is realized for the square microlasers.

  14. Jet behaviors and ejection mode recognition of electrohydrodynamic direct-write

    NASA Astrophysics Data System (ADS)

    Zheng, Jianyi; Zhang, Kai; Jiang, Jiaxin; Wang, Xiang; Li, Wenwang; Liu, Yifang; Liu, Juan; Zheng, Gaofeng

    2018-01-01

    By introducing image recognition and micro-current testing, jet behavior research was conducted, in which the real-time recognition of ejection mode was realized. To study the factors influencing ejection modes and the current variation trends under different modes, an Electrohydrodynamic Direct-Write (EDW) system with functions of current detection and ejection mode recognition was firstly built. Then a program was developed to recognize the jet modes. As the voltage applied to the metal tip increased, four jet ejection modes in EDW occurred: droplet ejection mode, Taylor cone ejection mode, retractive ejection mode and forked ejection mode. In this work, the corresponding relationship between the ejection modes and the effect on fiber deposition as well as current was studied. The real-time identification of ejection mode and detection of electrospinning current was realized. The results in this paper are contributed to enhancing the ejection stability, providing a good technical basis to produce continuous uniform nanofibers controllably.

  15. Entanglement transfer from two-mode continuous variable SU(2) cat states to discrete qubits systems in Jaynes-Cummings Dimers

    PubMed Central

    Ran, Du; Hu, Chang-Sheng; Yang, Zhen-Biao

    2016-01-01

    We study the entanglement transfer from a two-mode continuous variable system (initially in the two-mode SU(2) cat states) to a couple of discrete two-state systems (initially in an arbitrary mixed state), by use of the resonant Jaynes-Cummings (JC) interaction. We first quantitatively connect the entanglement transfer to non-Gaussianity of the two-mode SU(2) cat states and find a positive correlation between them. We then investigate the behaviors of the entanglement transfer and find that it is dependent on the initial state of the discrete systems. We also find that the largest possible value of the transferred entanglement exhibits a variety of behaviors for different photon number as well as for the phase angle of the two-mode SU(2) cat states. We finally consider the influences of the noise on the transferred entanglement. PMID:27553881

  16. Investigation on Microstructure and Mechanical Properties of Continuous and Pulsed Current Gas Tungsten Arc Welded alloy 600

    NASA Astrophysics Data System (ADS)

    Srikanth, A.; Manikandan, M.

    2018-02-01

    The present study investigates the microstructure and mechanical properties of joints fabricated by Continuous and pulsed current gas tungsten arc welded alloy 600. Welding was done by autogenous mode. The macro examination was carried out to evaluate the welding defects in the weld joints. Optical and Scanning Electron Microscope (SEM) were performed to assess the microstructural changes in the fusion zone. Energy Dispersive Spectroscopy (EDS) analysis was carried to evaluate the microsegregation of alloying elements in the fusion zone. The tensile test was conducted to assess the strength of the weld joints. The results show that no welding defects were observed in the fusion zones of Continuous and Pulsed current Gas Tungsten Arc Welding. The refined microstructure was found in the pulsed current compared to continuous current mode. Microsegregation was not noticed in the weld grain boundary of continuous and pulsed current mode. The pulsed current shows improved mechanical properties compared to the continuous current mode.

  17. Effect of instantaneous and continuous quenches on the density of vibrational modes in model glasses.

    PubMed

    Lerner, Edan; Bouchbinder, Eran

    2017-08-01

    Computational studies of supercooled liquids often focus on various analyses of their "underlying inherent states"-the glassy configurations at zero temperature obtained by an infinitely fast (instantaneous) quench from equilibrium supercooled states. Similar protocols are also regularly employed in investigations of the unjamming transition at which the rigidity of decompressed soft-sphere packings is lost. Here we investigate the statistics and localization properties of low-frequency vibrational modes of glassy configurations obtained by such instantaneous quenches. We show that the density of vibrational modes grows as ω^{β} with β depending on the parent temperature T_{0} from which the glassy configurations were instantaneously quenched. For quenches from high temperature liquid states we find β≈3, whereas β appears to approach the previously observed value β=4 as T_{0} approaches the glass transition temperature. We discuss the consistency of our findings with the theoretical framework of the soft potential model, and contrast them with similar measurements performed on configurations obtained by continuous quenches at finite cooling rates. Our results suggest that any physical quench at rates sufficiently slower than the inverse vibrational time scale-including all physically realistic quenching rates of molecular or atomistic glasses-would result in a glass whose density of vibrational modes is universally characterized by β=4.

  18. Effect of instantaneous and continuous quenches on the density of vibrational modes in model glasses

    NASA Astrophysics Data System (ADS)

    Lerner, Edan; Bouchbinder, Eran

    2017-08-01

    Computational studies of supercooled liquids often focus on various analyses of their "underlying inherent states"—the glassy configurations at zero temperature obtained by an infinitely fast (instantaneous) quench from equilibrium supercooled states. Similar protocols are also regularly employed in investigations of the unjamming transition at which the rigidity of decompressed soft-sphere packings is lost. Here we investigate the statistics and localization properties of low-frequency vibrational modes of glassy configurations obtained by such instantaneous quenches. We show that the density of vibrational modes grows as ωβ with β depending on the parent temperature T0 from which the glassy configurations were instantaneously quenched. For quenches from high temperature liquid states we find β ≈3 , whereas β appears to approach the previously observed value β =4 as T0 approaches the glass transition temperature. We discuss the consistency of our findings with the theoretical framework of the soft potential model, and contrast them with similar measurements performed on configurations obtained by continuous quenches at finite cooling rates. Our results suggest that any physical quench at rates sufficiently slower than the inverse vibrational time scale—including all physically realistic quenching rates of molecular or atomistic glasses—would result in a glass whose density of vibrational modes is universally characterized by β =4 .

  19. [Usefulness of Bolus Administration Using the FLEX Mode(Bolus Infusion Mode)for Baclofen Tolerance].

    PubMed

    Tanaka, Kazunori

    2017-02-01

    Intrathecal baclofen(ITB)is used to treat intractable spasticity of various etiologies and can provide better control of spasticity through the adjustment of the dose administered through the pump. However, in patients who develop tolerance to baclofen with the standard simple continuous mode, a sharp increase in dose becomes necessary, and spasticity can become harder to control. We investigated whether switching from the simple continuous mode to the bolus infusion mode was effective in controlling spasticity in patients with baclofen tolerance. We reported four patients undergoing ITB therapy at our facility who were considered to have developed baclofen tolerance. We observed the number of bolus infusions and total dose suitable for maintaining spasticity control after switching from the simple continuous mode to the bolus infusion mode. After switching to the bolus infusion mode, the total dose could be reduced in the short term; however, in the long term, the frequency of bolus infusions had to be increased to maintain spasticity control. Two years after changing to bolus infusion six times a day, the total dose was higher than that in the simple continuous mode for two of the four patients, and was the same level in the other two patients. Our four cases suggest that bolus infusion is effective in patients with baclofen tolerance during ITB therapy. Therefore, the conditions of bolus infusion should be further investigated.

  20. Synthesis of Continuous Conductive PEDOT:PSS Nanofibers by Electrospinning: A Conformal Coating for Optoelectronics.

    PubMed

    Bessaire, Bastien; Mathieu, Maillard; Salles, Vincent; Yeghoyan, Taguhi; Celle, Caroline; Simonato, Jean-Pierre; Brioude, Arnaud

    2017-01-11

    A process to synthesize continuous conducting nanofibers were developed using PEDOT:PSS as a conducting polymer and an electrospinning method. Experimental parameters were carefully explored to achieve reproducible conductive nanofibers synthesis in large quantities. In particular, relative humidity during the electrospinning process was proven to be of critical importance, as well as doping post-treatment involving glycols and alcohols. The synthesized fibers were assembled as a mat on glass substrates, forming a conductive and transparent electrode and their optoelectronic have been fully characterized. This method produces a conformable conductive and transparent coating that is well-adapted to nonplanar surfaces, having very large aspect ratio features. A demonstration of this property was made using surfaces having deep trenches and high steps, where conventional transparent conductive materials fail because of a lack of conformability.

  1. Thermomechanically coupled conduction mode laser welding simulations using smoothed particle hydrodynamics

    NASA Astrophysics Data System (ADS)

    Hu, Haoyue; Eberhard, Peter

    2017-10-01

    Process simulations of conduction mode laser welding are performed using the meshless Lagrangian smoothed particle hydrodynamics (SPH) method. The solid phase is modeled based on the governing equations in thermoelasticity. For the liquid phase, surface tension effects are taken into account to simulate the melt flow in the weld pool, including the Marangoni force caused by a temperature-dependent surface tension gradient. A non-isothermal solid-liquid phase transition with the release or absorption of additional energy known as the latent heat of fusion is considered. The major heat transfer through conduction is modeled, whereas heat convection and radiation are neglected. The energy input from the laser beam is modeled as a Gaussian heat source acting on the initial material surface. The developed model is implemented in Pasimodo. Numerical results obtained with the model are presented for laser spot welding and seam welding of aluminum and iron. The change of process parameters like welding speed and laser power, and their effects on weld dimensions are investigated. Furthermore, simulations may be useful to obtain the threshold for deep penetration welding and to assess the overall welding quality. A scalability and performance analysis of the implemented SPH algorithm in Pasimodo is run in a shared memory environment. The analysis reveals the potential of large welding simulations on multi-core machines.

  2. Current distribution in tissues with conducted electrical weapons operated in drive-stun mode.

    PubMed

    Panescu, Dorin; Kroll, Mark W; Brave, Michael

    2016-08-01

    The TASER® conducted electrical weapon (CEW) is best known for delivering electrical pulses that can temporarily incapacitate subjects by overriding normal motor control. The alternative drive-stun mode is less understood and the goal of this paper is to analyze the distribution of currents in tissues when the CEW is operated in this mode. Finite element modeling (FEM) was used to approximate current density in tissues with boundary electrical sources placed 40 mm apart. This separation was equivalent to the distance between drive-stun mode TASER X26™, X26P, X2 CEW electrodes located on the device itself and between those located on the expended CEW cartridge. The FEMs estimated the amount of current flowing through various body tissues located underneath the electrodes. The FEM simulated the attenuating effects of both a thin and of a normal layer of fat. The resulting current density distributions were used to compute the residual amount of current flowing through deeper layers of tissue. Numerical modeling estimated that the skin, fat and skeletal muscle layers passed at least 86% or 91% of total CEW current, assuming a thin or normal fat layer thickness, respectively. The current density and electric field strength only exceeded thresholds which have increased probability for ventricular fibrillation (VFTJ), or for cardiac capture (CCTE), in the skin and the subdermal fat layers. The fat layer provided significant attenuation of drive-stun CEW currents. Beyond the skeletal muscle layer, only fractional amounts of the total CEW current were estimated to flow. The regions presenting risk for VF induction or for cardiac capture were well away from the typical heart depth.

  3. Liquid-phase epitaxy grown PbSnTe distributed feedback laser diodes with broad continuous single-mode tuning range

    NASA Technical Reports Server (NTRS)

    Hsieh, H.-H.; Fonstad, C. G.

    1980-01-01

    Distributed feedback (DFB) pulsed laser operation has been demonstrated in stripe geometry Pb(1-x)Sn(x)Te double-heterostructures grown by liquid-phase epitaxy. The grating structure of 0.79 micron periodicity operates in first order near 12.8 microns and was fabricated prior to the liquid-phase epitaxial growth using holographic exposure techniques. These DFB lasers had moderate thresholds, 3.6 kA/sq cm, and the output power versus current curves exhibited a sharp turn-on free of kinks. Clean, single-mode emission spectra, continuously tunable over a range in excess of 20 per cm, centered about 780 per cm (12.8 microns), and at an average rate of 1.2 per cm-K from 9 to 26 K, were observed. While weaker modes could at times be seen in the spectrum, substantially single-mode operation was obtained over the entire operating range and to over 10 times threshold.

  4. Continuous-wave to pulse regimes for a family of passively mode-locked lasers with saturable nonlinearity

    NASA Astrophysics Data System (ADS)

    Dikandé, Alain M.; Voma Titafan, J.; Essimbi, B. Z.

    2017-10-01

    The transition dynamics from continuous-wave to pulse regimes of operation for a generic model of passively mode-locked lasers with saturable absorbers, characterized by an active medium with non-Kerr nonlinearity, are investigated analytically and numerically. The system is described by a complex Ginzburg-Landau equation with a general m:n saturable nonlinearity (i.e {I}m/{(1+{{Γ }}I)}n, where I is the field intensity and m and n are two positive numbers), coupled to a two-level gain equation. An analysis of stability of continuous waves, following the modulational instability approach, provides a global picture of the self-starting dynamics in the system. The analysis reveals two distinct routes depending on values of the couple (m, n), and on the dispersion regime: in the normal dispersion regime, when m = 2 and n is arbitrary, the self-starting requires positive values of the fast saturable absorber and nonlinearity coefficients, but negative values of these two parameters for the family with m = 0. However, when the spectral filter is negative, the laser can self-start for certain values of the input field and the nonlinearity saturation coefficient Γ. The present work provides a general map for the self-starting mechanisms of rare-earth doped figure-eight fiber lasers, as well as Kerr-lens mode-locked solid-state lasers.

  5. Bioelectrochemical conversion of CO2 to chemicals: CO2 as a next generation feedstock for electricity-driven bioproduction in batch and continuous modes.

    PubMed

    Bajracharya, Suman; Vanbroekhoven, Karolien; Buisman, Cees J N; Strik, David P B T B; Pant, Deepak

    2017-09-21

    The recent concept of microbial electrosynthesis (MES) has evolved as an electricity-driven production technology for chemicals from low-value carbon dioxide (CO 2 ) using micro-organisms as biocatalysts. MES from CO 2 comprises bioelectrochemical reduction of CO 2 to multi-carbon organic compounds using the reducing equivalents produced at the electrically-polarized cathode. The use of CO 2 as a feedstock for chemicals is gaining much attention, since CO 2 is abundantly available and its use is independent of the food supply chain. MES based on CO 2 reduction produces acetate as a primary product. In order to elucidate the performance of the bioelectrochemical CO 2 reduction process using different operation modes (batch vs. continuous), an investigation was carried out using a MES system with a flow-through biocathode supplied with 20 : 80 (v/v) or 80 : 20 (v/v) CO 2  : N 2 gas. The highest acetate production rate of 149 mg L -1 d -1 was observed with a 3.1 V applied cell-voltage under batch mode. While running in continuous mode, high acetate production was achieved with a maximum rate of 100 mg L -1 d -1 . In the continuous mode, the acetate production was not sustained over long-term operation, likely due to insufficient microbial biocatalyst retention within the biocathode compartment (i.e. suspended micro-organisms were washed out of the system). Restarting batch mode operations resulted in a renewed production of acetate. This showed an apparent domination of suspended biocatalysts over the attached (biofilm forming) biocatalysts. Long term CO 2 reduction at the biocathode resulted in the accumulation of acetate, and more reduced compounds like ethanol and butyrate were also formed. Improvements in the production rate and different biomass retention strategies (e.g. selecting for biofilm forming micro-organisms) should be investigated to enable continuous biochemical production from CO 2 using MES. Certainly, other process optimizations will be

  6. Reduced Default Mode Connectivity in Adolescents With Conduct Disorder.

    PubMed

    Broulidakis, M John; Fairchild, Graeme; Sully, Kate; Blumensath, Thomas; Darekar, Angela; Sonuga-Barke, Edmund J S

    2016-09-01

    Conduct disorder (CD) is characterized by impulsive, aggressive, and antisocial behaviors that might be related to deficits in empathy and moral reasoning. The brain's default mode network (DMN) has been implicated in self-referential cognitive processes of this kind. This study examined connectivity between key nodes of the DMN in 29 adolescent boys with CD and 29 age- and sex-matched typically developing adolescent boys. The authors ensured that group differences in DMN connectivity were not explained by comorbidity with other disorders by systematically controlling for the effects of substance use disorders (SUDs), attention-deficit/hyperactivity disorder (ADHD) symptoms, psychopathic traits, and other common mental health problems. Only after adjusting for co-occurring ADHD symptoms, the group with CD showed hypoconnectivity between core DMN regions compared with typically developing controls. ADHD symptoms were associated with DMN hyperconnectivity. There was no effect of psychopathic traits on DMN connectivity in the group with CD, and the key results were unchanged when controlling for SUDs and other common mental health problems. Future research should directly investigate the possibility that the aberrant DMN connectivity observed in the present study contributes to CD-related deficits in empathy and moral reasoning and examine self-referential cognitive processes in CD more generally. Copyright © 2016 American Academy of Child and Adolescent Psychiatry. All rights reserved.

  7. Nonlinear mode interaction in equal-leg angle struts susceptible to cellular buckling.

    PubMed

    Bai, L; Wang, F; Wadee, M A; Yang, J

    2017-11-01

    A variational model that describes the interactive buckling of a thin-walled equal-leg angle strut under pure axial compression is presented. A formulation combining the Rayleigh-Ritz method and continuous displacement functions is used to derive a system of differential and integral equilibrium equations for the structural component. Solving the equations using numerical continuation reveals progressive cellular buckling (or snaking) arising from the nonlinear interaction between the weak-axis flexural buckling mode and the strong-axis flexural-torsional buckling mode for the first time-the resulting behaviour being highly unstable. Physical experiments conducted on 10 cold-formed steel specimens are presented and the results show good agreement with the variational model.

  8. Soft phonon modes driven huge difference on lattice thermal conductivity between topological semimetal WC and WN

    NASA Astrophysics Data System (ADS)

    Guo, San-Dong; Chen, Peng

    2018-04-01

    Topological semimetals are currently attracting increasing interest due to their potential applications in topological qubits and low-power electronics, which are closely related to their thermal transport properties. Recently, the triply degenerate nodal points near the Fermi level of WC are observed by using angle-resolved photoemission spectroscopy. In this work, by solving the Boltzmann transport equation based on first-principles calculations, we systematically investigate the phonon transport properties of topological semimetals WC and WN. The predicted room-temperature lattice thermal conductivities of WC (WN) along the a and c directions are 1140.64 (7.47) W m-1 K-1 and 1214.69 (5.39) W m-1 K-1. Considering the similar crystal structure of WC and WN, it is quite interesting to find that the thermal conductivity of WC is more than two orders of magnitude higher than that of WN. It is found that, different from WN, the large acoustic-optical (a-o) gap prohibits the acoustic+acoustic → optical (aao) scattering, which gives rise to very long phonon lifetimes, leading to ultrahigh lattice thermal conductivity in WC. For WN, the lack of an a-o gap is due to soft phonon modes in optical branches, which can provide more scattering channels for aao scattering, producing very short phonon lifetimes. Further deep insight can be attained from their different electronic structures. Distinctly different from that in WC, the density of states of WN at the Fermi level becomes very sharp, which leads to destabilization of WN, producing soft phonon modes. It is found that the small shear modulus G and C44 limit the stability of WN, compared with WC. Our studies provide valuable information for phonon transports in WC and WN, and motivate further experimental studies to study their lattice thermal conductivities.

  9. Scaling Fiber Lasers to Large Mode Area: An Investigation of Passive Mode-Locking Using a Multi-Mode Fiber

    PubMed Central

    Ding, Edwin; Lefrancois, Simon; Kutz, Jose Nathan; Wise, Frank W.

    2011-01-01

    The mode-locking of dissipative soliton fiber lasers using large mode area fiber supporting multiple transverse modes is studied experimentally and theoretically. The averaged mode-locking dynamics in a multi-mode fiber are studied using a distributed model. The co-propagation of multiple transverse modes is governed by a system of coupled Ginzburg–Landau equations. Simulations show that stable and robust mode-locked pulses can be produced. However, the mode-locking can be destabilized by excessive higher-order mode content. Experiments using large core step-index fiber, photonic crystal fiber, and chirally-coupled core fiber show that mode-locking can be significantly disturbed in the presence of higher-order modes, resulting in lower maximum single-pulse energies. In practice, spatial mode content must be carefully controlled to achieve full pulse energy scaling. This paper demonstrates that mode-locking performance is very sensitive to the presence of multiple waveguide modes when compared to systems such as amplifiers and continuous-wave lasers. PMID:21731106

  10. Scaling Fiber Lasers to Large Mode Area: An Investigation of Passive Mode-Locking Using a Multi-Mode Fiber.

    PubMed

    Ding, Edwin; Lefrancois, Simon; Kutz, Jose Nathan; Wise, Frank W

    2011-01-01

    The mode-locking of dissipative soliton fiber lasers using large mode area fiber supporting multiple transverse modes is studied experimentally and theoretically. The averaged mode-locking dynamics in a multi-mode fiber are studied using a distributed model. The co-propagation of multiple transverse modes is governed by a system of coupled Ginzburg-Landau equations. Simulations show that stable and robust mode-locked pulses can be produced. However, the mode-locking can be destabilized by excessive higher-order mode content. Experiments using large core step-index fiber, photonic crystal fiber, and chirally-coupled core fiber show that mode-locking can be significantly disturbed in the presence of higher-order modes, resulting in lower maximum single-pulse energies. In practice, spatial mode content must be carefully controlled to achieve full pulse energy scaling. This paper demonstrates that mode-locking performance is very sensitive to the presence of multiple waveguide modes when compared to systems such as amplifiers and continuous-wave lasers.

  11. 20 CFR 220.186 - When and how often the Board will conduct a continuing disability review.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... Social Security Act. (b) When the Board will conduct a continuing disability review. A continuing... technology raises a disability issue.); (4) The annuitant returns to work and successfully completes a period... returned to work, or that the annuitant is failing to follow the provisions of the Social Security Act, the...

  12. 20 CFR 220.186 - When and how often the Board will conduct a continuing disability review.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... Social Security Act. (b) When the Board will conduct a continuing disability review. A continuing... technology raises a disability issue.); (4) The annuitant returns to work and successfully completes a period... returned to work, or that the annuitant is failing to follow the provisions of the Social Security Act, the...

  13. 20 CFR 220.186 - When and how often the Board will conduct a continuing disability review.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... Social Security Act. (b) When the Board will conduct a continuing disability review. A continuing... technology raises a disability issue.); (4) The annuitant returns to work and successfully completes a period... returned to work, or that the annuitant is failing to follow the provisions of the Social Security Act, the...

  14. Mode evolution in polarization maintain few mode fibers and applications in mode-division-multiplexing systems

    NASA Astrophysics Data System (ADS)

    Li, Yan; Zeng, Xinglin; Mo, Qi; Li, Wei; Liu, Zhijian; Wu, Jian

    2016-10-01

    In few-mode polarization-maintaining-fiber (FM-PMF), the effective-index splitting exists not only between orthogonally polarization state but also between degenerated modes within a high-order mode group. Hence besides the polarization state evolution, the mode patterns in each LP set are need to be analyzed. In this letter, the completed firstorder mode (LP11 mode) evolution in PM-FMF is analyzed and represented by analogous Jones vector and Poincarésphere respectively. Furthermore, with Jones matrix analysis, the modal dynamics in FM-PMFs is conveniently analyzed. The conclusions are used to propose a PM-FMF based LP11 mode rotator and an PM-FMF based OAM generator. Both simulation and experiments are conducted to investigate performance of the two devices.

  15. Picosecond pulses from wavelength-swept continuous-wave Fourier domain mode-locked lasers.

    PubMed

    Eigenwillig, Christoph M; Wieser, Wolfgang; Todor, Sebastian; Biedermann, Benjamin R; Klein, Thomas; Jirauschek, Christian; Huber, Robert

    2013-01-01

    Ultrafast lasers have a crucial function in many fields of science; however, up to now, high-energy pulses directly from compact, efficient and low-power semiconductor lasers are not available. Therefore, we introduce a new approach based on temporal compression of the continuous-wave, wavelength-swept output of Fourier domain mode-locked lasers, where a narrowband optical filter is tuned synchronously to the round-trip time of light in a kilometre-long laser cavity. So far, these rapidly swept lasers enabled orders-of-magnitude speed increase in optical coherence tomography. Here we report on the generation of ~60-70 ps pulses at 390 kHz repetition rate. As energy is stored optically in the long-fibre delay line and not as population inversion in the laser-gain medium, high-energy pulses can now be generated directly from a low-power, compact semiconductor-based oscillator. Our theory predicts subpicosecond pulses with this new technique in the future.

  16. Picosecond pulses from wavelength-swept continuous-wave Fourier domain mode-locked lasers

    NASA Astrophysics Data System (ADS)

    Eigenwillig, Christoph M.; Wieser, Wolfgang; Todor, Sebastian; Biedermann, Benjamin R.; Klein, Thomas; Jirauschek, Christian; Huber, Robert

    2013-05-01

    Ultrafast lasers have a crucial function in many fields of science; however, up to now, high-energy pulses directly from compact, efficient and low-power semiconductor lasers are not available. Therefore, we introduce a new approach based on temporal compression of the continuous-wave, wavelength-swept output of Fourier domain mode-locked lasers, where a narrowband optical filter is tuned synchronously to the round-trip time of light in a kilometre-long laser cavity. So far, these rapidly swept lasers enabled orders-of-magnitude speed increase in optical coherence tomography. Here we report on the generation of ~60-70 ps pulses at 390 kHz repetition rate. As energy is stored optically in the long-fibre delay line and not as population inversion in the laser-gain medium, high-energy pulses can now be generated directly from a low-power, compact semiconductor-based oscillator. Our theory predicts subpicosecond pulses with this new technique in the future.

  17. Continuous monitoring of bacterial biofilm growth using uncoated Thickness-Shear Mode resonators

    NASA Astrophysics Data System (ADS)

    Castro, P.; Resa, P.; Durán, C.; Maestre, J. R.; Mateo, M.; Elvira, L.

    2012-12-01

    Quartz Crystal Microbalances (QCM) were used to nondestructively monitor in real time the microbial growth of the bacteria Staphylococcus epidermidis (S. epidermidis) in a liquid broth. QCM, sometimes referred to as Thickness-Shear Mode (TSM) resonators, are highly sensitive sensors not only able to measure very small mass, but also non-gravimetric contributions of viscoelastic media. These devices can be used as biosensors for bacterial detection and are employed in many applications including their use in the food industry, water and environment monitoring, pharmaceutical sciences and clinical diagnosis. In this work, three strains of S. epidermidis (which differ in the ability to produce biofilm) have been continuously monitored using an array of piezoelectric TSM resonators, at 37 °C in a selective culturing media. Microbial growth was followed by measuring the changes in the crystal resonant frequency and bandwidth at several harmonics. It was shown that microbial growth can be monitored in real time using multichannel and multiparametric QCM sensors.

  18. The Influences of Presentation Modes and Conducting Gestures on the Perceptions of Expressive Choral Performance of High School Musicians Attending a Summer Choral Camp

    ERIC Educational Resources Information Center

    Napoles, Jessica

    2013-01-01

    The purpose of this study was to examine the influences of presentation modes (audio and visual) on perceptions of expressive choral performance. The stimulus recording included four choral selections, each conducted by a different conductor in two ways: using expressive conducting gestures and using strict conducting gestures. Three groups of…

  19. High-power LED light sources for optical measurement systems operated in continuous and overdriven pulsed modes

    NASA Astrophysics Data System (ADS)

    Stasicki, Bolesław; Schröder, Andreas; Boden, Fritz; Ludwikowski, Krzysztof

    2017-06-01

    The rapid progress of light emitting diode (LED) technology has recently resulted in the availability of high power devices with unprecedented light emission intensities comparable to those of visible laser light sources. On this basis two versatile devices have been developed, constructed and tested. The first one is a high-power, single-LED illuminator equipped with exchangeable projection lenses providing a homogenous light spot of defined diameter. The second device is a multi-LED illuminator array consisting of a number of high-power LEDs, each integrated with a separate collimating lens. These devices can emit R, G, CG, B, UV or white light and can be operated in pulsed or continuous wave (CW) mode. Using an external trigger signal they can be easily synchronized with cameras or other devices. The mode of operation and all parameters can be controlled by software. Various experiments have shown that these devices have become a versatile and competitive alternative to laser and xenon lamp based light sources. The principle, design, achieved performances and application examples are given in this paper.

  20. In Vitro Comparison of a Vibrating Mesh Nebulizer Operating in Inspiratory Synchronized and Continuous Nebulization Modes During Noninvasive Ventilation.

    PubMed

    Michotte, Jean-Bernard; Staderini, Enrico; Le Pennec, Deborah; Dugernier, Jonathan; Rusu, Rares; Roeseler, Jean; Vecellio, Laurent; Liistro, Giuseppe; Reychler, Grégory

    2016-08-01

    Backround: Coupling nebulization with noninvasive ventilation (NIV) has been shown to be effective in patients with respiratory diseases. However, a breath-synchronized nebulization option that could potentially improve drug delivery by limiting drug loss during exhalation is currently not available on bilevel ventilators. The aim of this in vitro study was to compare aerosol delivery of amikacin with a vibrating mesh nebulizer coupled to a single-limb circuit bilevel ventilator, using conventional continuous (Conti-Neb) and experimental inspiratory synchronized (Inspi-Neb) nebulization modes. Using an adult lung bench model of NIV, we tested a vibrating mesh device coupled with a bilevel ventilator in both nebulization modes. Inspi-Neb delivered aerosol only during the whole inspiratory phase, whereas Conti-Neb delivered aerosol continuously. The nebulizer was charged with amikacin solution (250 mg/3 mL) and placed at two different positions: between the lung and exhalation port and between the ventilator and exhalation port. Inhaled, expiratory wasted and circuit lost doses were assessed by residual gravimetric method. Particle size distribution of aerosol delivered at the outlet of the ventilator circuit during both nebulization modes was measured by laser diffraction method. Regardless of the nebulizer position, Inspi-Neb produced higher inhaled dose (p < 0.01; +6.3% to +16.8% of the nominal dose), lower expiratory wasted dose (p < 0.05; -2.7% to -42.6% of the nominal dose), and greater respirable dose (p < 0.01; +8.4% to +15.2% of the nominal dose) than Conti-Neb. The highest respirable dose was found with the nebulizer placed between the lung and exhalation port (48.7% ± 0.3% of the nominal dose). During simulated NIV with a single-limb circuit bilevel ventilator, the use of inspiratory synchronized vibrating mesh nebulization improves respirable dose and reduces drug loss of amikacin compared with continuous vibrating mesh nebulization.

  1. Mode coupling in hybrid square-rectangular lasers for single mode operation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ma, Xiu-Wen; Huang, Yong-Zhen, E-mail: yzhuang@semi.ac.cn; Yang, Yue-De

    Mode coupling between a square microcavity and a Fabry-Pérot (FP) cavity is proposed and demonstrated for realizing single mode lasers. The modulations of the mode Q factor as simulation results are observed and single mode operation is obtained with a side mode suppression ratio of 46 dB and a single mode fiber coupling loss of 3.2 dB for an AlGaInAs/InP hybrid laser as a 300-μm-length and 1.5-μm-wide FP cavity connected to a vertex of a 10-μm-side square microcavity. Furthermore, tunable single mode operation is demonstrated with a continuous wavelength tuning range over 10 nm. The simple hybrid structure may shed light on practicalmore » applications of whispering-gallery mode microcavities in large-scale photonic integrated circuits and optical communication and interconnection.« less

  2. Sliding Mode Control of the X-33 Vehicle in Launch Mode

    NASA Technical Reports Server (NTRS)

    Shtessel, Yuri; Jackson, Mark; Hall, Charles; Krupp, Don; Hendrix, N. Douglas

    1998-01-01

    The "nested" structure of the control system for the X33 vehicle in launch mode is developed. Employing backstopping concepts, the outer loop (guidance) and the Inner loop (rates) continuous sliding mode controllers are designed. Simulations of the 3-DOF model of the X33 launch vehicle showed an accurate, robust, de-coupled tracking performance.

  3. Improved dichotomous search frequency offset estimator for burst-mode continuous phase modulation

    NASA Astrophysics Data System (ADS)

    Zhai, Wen-Chao; Li, Zan; Si, Jiang-Bo; Bai, Jun

    2015-11-01

    A data-aided technique for carrier frequency offset estimation with continuous phase modulation (CPM) in burst-mode transmission is presented. The proposed technique first exploits a special pilot sequence, or training sequence, to form a sinusoidal waveform. Then, an improved dichotomous search frequency offset estimator is introduced to determine the frequency offset using the sinusoid. Theoretical analysis and simulation results indicate that our estimator is noteworthy in the following aspects. First, the estimator can operate independently of timing recovery. Second, it has relatively low outlier, i.e., the minimum signal-to-noise ratio (SNR) required to guarantee estimation accuracy. Finally, the most important property is that our estimator is complexity-reduced compared to the existing dichotomous search methods: it eliminates the need for fast Fourier transform (FFT) and modulation removal, and exhibits faster convergence rate without accuracy degradation. Project supported by the National Natural Science Foundation of China (Grant No. 61301179), the Doctorial Programs Foundation of the Ministry of Education, China (Grant No. 20110203110011), and the Programme of Introducing Talents of Discipline to Universities, China (Grant No. B08038).

  4. Soft Phonon Modes Leading to Ultralow Thermal Conductivity and High Thermoelectric Performance in AgCuTe.

    PubMed

    Roychowdhury, Subhajit; Jana, Manoj K; Pan, Jaysree; Guin, Satya N; Sanyal, Dirtha; Waghmare, Umesh V; Biswas, Kanishka

    2018-04-03

    Crystalline solids with intrinsically low lattice thermal conductivity (κ L ) are crucial to realizing high-performance thermoelectric (TE) materials. Herein, we show an ultralow κ L of 0.35 Wm -1  K -1 in AgCuTe, which has a remarkable TE figure-of-merit, zT of 1.6 at 670 K when alloyed with 10 mol % Se. First-principles DFT calculation reveals several soft phonon modes in its room-temperature hexagonal phase, which are also evident from low-temperature heat-capacity measurement. These phonon modes, dominated by Ag vibrations, soften further with temperature giving a dynamic cation disorder and driving the superionic transition. Intrinsic factors cause an ultralow κ L in the room-temperature hexagonal phase, while the dynamic disorder of Ag/Cu cations leads to reduced phonon frequencies and mean free paths in the high-temperature rocksalt phase. Despite the cation disorder at elevated temperatures, the crystalline conduits of the rigid anion sublattice give a high power factor. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Continuous Nanoparticle Assembly by a Modulated Photo-Induced Microbubble for Fabrication of Micrometric Conductive Patterns.

    PubMed

    Armon, Nina; Greenberg, Ehud; Layani, Michael; Rosen, Yitzchak S; Magdassi, Shlomo; Shpaisman, Hagay

    2017-12-20

    The laser-induced microbubble technique (LIMBT) has recently been developed for micro-patterning of various materials. In this method, a laser beam is focused on a dispersion of nanoparticles leading to the formation of a microbubble due to laser heating. Convection currents around the microbubble carry nanoparticles so that they become pinned to the bubble/substrate interface. The major limitation of this technique is that for most materials, a noncontinuous deposition is formed. We show that continuous patterns can be formed by preventing the microbubble from being pinned to the deposited material. This is done by modulating the laser so that the construction and destruction of the microbubble are controlled. When the method is applied to a dispersion of Ag nanoparticles, continuous electrically conductive lines are formed. Furthermore, the line width is narrower than that achieved by the standard nonmodulated LIMBT. This approach can be applied to the direct-write fabrication of micron-size conductive patterns in electronic devices without the use of photolithography.

  6. The Conduct of Continuous Operations,

    DTIC Science & Technology

    1987-04-30

    INTRODUCTION The great campaigns of the twentieth century have one thing in common : at least one operational pause occurred between the commencement of...and General Staff College published a series of books on the conduct of war by armies and army groups. Common themes in these works were: the importance...be so located that It can be carried out without interruption from the enemy; sufficient time should be available for placing troops in relative

  7. Damage localization by statistical evaluation of signal-processed mode shapes

    NASA Astrophysics Data System (ADS)

    Ulriksen, M. D.; Damkilde, L.

    2015-07-01

    Due to their inherent, ability to provide structural information on a local level, mode shapes and t.lieir derivatives are utilized extensively for structural damage identification. Typically, more or less advanced mathematical methods are implemented to identify damage-induced discontinuities in the spatial mode shape signals, hereby potentially facilitating damage detection and/or localization. However, by being based on distinguishing damage-induced discontinuities from other signal irregularities, an intrinsic deficiency in these methods is the high sensitivity towards measurement, noise. The present, article introduces a damage localization method which, compared to the conventional mode shape-based methods, has greatly enhanced robustness towards measurement, noise. The method is based on signal processing of spatial mode shapes by means of continuous wavelet, transformation (CWT) and subsequent, application of a generalized discrete Teager-Kaiser energy operator (GDTKEO) to identify damage-induced mode shape discontinuities. In order to evaluate whether the identified discontinuities are in fact, damage-induced, outlier analysis of principal components of the signal-processed mode shapes is conducted on the basis of T2-statistics. The proposed method is demonstrated in the context, of analytical work with a free-vibrating Euler-Bernoulli beam under noisy conditions.

  8. Lommel modes

    NASA Astrophysics Data System (ADS)

    Kovalev, Alexey A.; Kotlyar, Victor V.

    2015-03-01

    We study a non-paraxial family of nondiffracting laser beams whose complex amplitude is proportional to an n-th order Lommel function of two variables. These beams are referred to as Lommel modes. Explicit analytical relations for the angular spectrum of plane waves and orbital angular momentum of the Lommel beams have been derived. The even (n=2p) and odd (n=2p+1) Lommel modes are mutually orthogonal, as are the Lommel modes characterized by different projections of the wave vector on the optical axis. At a definite parameter, the Lommel modes change to conventional Bessel beams. Asymmetry of the Lommel modes depends on a complex parameter с, with its modulus in the polar notation defining the intensity pattern in the beam‧s cross-section and the argument defining the angle of rotation of the intensity pattern about the optical axis. If the parameter с is real or purely imaginary, the transverse intensity component of the Lommel modes is specularly symmetric about the Cartesian coordinate axes. Besides, with the modulus of the с parameter increasing from 0 to 1, the orbital angular momentum of the Lommel modes increases from a finite value proportional to the topological charge n to infinity. The orbital angular momentum of the Lommel modes undergoes continuous variations, in contrast to its discrete changes in the Bessel modes.

  9. A novel alternate feeding mode for semi-continuous anaerobic co-digestion of food waste with chicken manure.

    PubMed

    Wang, Ming; Sun, Xianli; Li, Pengfei; Yin, Lili; Liu, Dan; Zhang, Yingwei; Li, Wenzhe; Zheng, Guoxiang

    2014-07-01

    A novel alternate feeding mode was introduced to study the possibilities of improving methane yield from anaerobic co-digestion of food waste (FW) with chicken manure (CM). Two kinds of feeding sequence (a day FW and next day CM (FM/CM), two days FM and the third day CM (FW/FM/CM)) were investigated in semi-continuous anaerobic digestion and lasted 225 days, and the mono-digestions of FW and CM were used as control group, respectively. The feeding sequence of FW/CM and mono-digestion of CM were observed to fail to produce gas at hydraulic retention time (HRT) of 70 days due to the ammonia inhibition, however, the mode of FW/FM/CM was proved to successfully run at HRT of 35 days with a higher OLR of 2.50 kg L(-1)d(-1) and obtain a higher methane production rate of 507.58 ml g(-1) VS and volumetric biogas production rate of 2.1 L L(-1)d(-1). Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. Dual-Mode Combustion

    NASA Technical Reports Server (NTRS)

    Goyne, Christopher P.; McDaniel, James C.

    2002-01-01

    The Department of Mechanical and Aerospace Engineering at the University of Virginia has conducted an investigation of the mixing and combustion processes in a hydrogen fueled dual-mode scramjet combustor. The experiment essentially consisted of the "direct connect" continuous operation of a Mach 2 rectangular combustor with a single unswept ramp fuel injector. The stagnation enthalpy of the test flow simulated a flight Mach number of 5. Measurements were obtained using conventional wall instrumentation and laser based diagnostics. These diagnostics included, pressure and wall temperature measurements, Fuel Plume Imaging (FPI) and Particle Image Velocimetry (PIV). A schematic of the combustor configuration and a summary of the measurements obtained are presented. The experimental work at UVa was parallel by Computational Fluid Dynamics (CFD) work at NASA Langley. The numerical and experiment results are compared in this document.

  11. Topological Magnon Modes in Patterned Ferrimagnetic Insulator Thin Films.

    PubMed

    Li, Yun-Mei; Xiao, Jiang; Chang, Kai

    2018-05-09

    Manipulation of magnons opens an attractive direction in the future energy-efficient information processing devices. Such quasi-particles can transfer and process information free from the troublesome Ohmic loss in conventional electronic devices. Here, we propose to realize topologically protected magnon modes using the interface between the patterned ferrimagnetic insulator thin films of different configurations without the Dzyaloshinskii-Moriya interaction. The interface thus behaves like a perfect waveguide to conduct the magnon modes lying in the band gap. These modes are immune to backscattering even in sharply bent tracks, robust against the disorders, and maintain a high degree of coherence during propagation. We design a magnonic Mach-Zehnder interferometer, which realizes a continuous change of magnon signal with varying external magnetic field or driving frequency. Our results pave a new way for realizing topologically protected magnon waveguide and finally achieving a scalable low-dissipation spintronic devices and even the magnonic integrated circuit.

  12. Quasi-continuous frequency tunable terahertz quantum cascade lasers with coupled cavity and integrated photonic lattice.

    PubMed

    Kundu, Iman; Dean, Paul; Valavanis, Alexander; Chen, Li; Li, Lianhe; Cunningham, John E; Linfield, Edmund H; Davies, A Giles

    2017-01-09

    We demonstrate quasi-continuous tuning of the emission frequency from coupled cavity terahertz frequency quantum cascade lasers. Such coupled cavity lasers comprise a lasing cavity and a tuning cavity which are optically coupled through a narrow air slit and are operated above and below the lasing threshold current, respectively. The emission frequency of these devices is determined by the Vernier resonance of longitudinal modes in the lasing and the tuning cavities, and can be tuned by applying an index perturbation in the tuning cavity. The spectral coverage of the coupled cavity devices have been increased by reducing the repetition frequency of the Vernier resonance and increasing the ratio of the free spectral ranges of the two cavities. A continuous tuning of the coupled cavity modes has been realized through an index perturbation of the lasing cavity itself by using wide electrical heating pulses at the tuning cavity and exploiting thermal conduction through the monolithic substrate. Single mode emission and discrete frequency tuning over a bandwidth of 100 GHz and a quasi-continuous frequency coverage of 7 GHz at 2.25 THz is demonstrated. An improvement in the side mode suppression and a continuous spectral coverage of 3 GHz is achieved without any degradation of output power by integrating a π-phase shifted photonic lattice in the laser cavity.

  13. Adaptive variational mode decomposition method for signal processing based on mode characteristic

    NASA Astrophysics Data System (ADS)

    Lian, Jijian; Liu, Zhuo; Wang, Haijun; Dong, Xiaofeng

    2018-07-01

    Variational mode decomposition is a completely non-recursive decomposition model, where all the modes are extracted concurrently. However, the model requires a preset mode number, which limits the adaptability of the method since a large deviation in the number of mode set will cause the discard or mixing of the mode. Hence, a method called Adaptive Variational Mode Decomposition (AVMD) was proposed to automatically determine the mode number based on the characteristic of intrinsic mode function. The method was used to analyze the simulation signals and the measured signals in the hydropower plant. Comparisons have also been conducted to evaluate the performance by using VMD, EMD and EWT. It is indicated that the proposed method has strong adaptability and is robust to noise. It can determine the mode number appropriately without modulation even when the signal frequencies are relatively close.

  14. Mode perturbation method for optimal guided wave mode and frequency selection.

    PubMed

    Philtron, J H; Rose, J L

    2014-09-01

    With a thorough understanding of guided wave mechanics, researchers can predict which guided wave modes will have a high probability of success in a particular nondestructive evaluation application. However, work continues to find optimal mode and frequency selection for a given application. This "optimal" mode could give the highest sensitivity to defects or the greatest penetration power, increasing inspection efficiency. Since material properties used for modeling work may be estimates, in many cases guided wave mode and frequency selection can be adjusted for increased inspection efficiency in the field. In this paper, a novel mode and frequency perturbation method is described and used to identify optimal mode points based on quantifiable wave characteristics. The technique uses an ultrasonic phased array comb transducer to sweep in phase velocity and frequency space. It is demonstrated using guided interface waves for bond evaluation. After searching nearby mode points, an optimal mode and frequency can be selected which has the highest sensitivity to a defect, or gives the greatest penetration power. The optimal mode choice for a given application depends on the requirements of the inspection. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. Modes of interaction between nanostructured metal and a conducting mirror as a function of separation and incident polarization

    NASA Astrophysics Data System (ADS)

    Bonnie, F.; Arnold, M. D.; Smith, G. B.; Gentle, A. R.

    2013-09-01

    The optical resonances that occur in nanostructured metal layers are modulated in thin film stacks if the nanostructured layer is separated from a reflecting conducting layer by various thicknesses of thin dielectric. We have measured and modeled the optical response of interacting silver layers, with alumina spacer thickness ranging from a few nm to 50 nm, for s- and p-polarized incident light, and a range of incident angles. Standard thin film models, including standard effective medium models for the nanostructured layer, will break down for spacer thickness below a critical threshold. For example, with polarisation in the film plane and some nano-islands, it may occur at around 10 nm depending on spacer refractive index. Of particular interest here are novel effects observed with the onset of percolation in the nanolayer. Hot spot effects can be modified by nearby mirrors. Other modes to consider include (a) a two-particle mode involving a particle and its mirror image (b) A Fano resonance from hybridisation of localized and de-localised plasmon modes (c) a Babinet's core-(partial) shell particle with metal core-dielectric shell in metal (d) spacing dependent phase modulation (e) the impact of field gradients induced by the mirror at the nano-layer.

  16. Influences of operational parameters on phosphorus removal in batch and continuous electrocoagulation process performance.

    PubMed

    Nguyen, Dinh Duc; Yoon, Yong Soo; Bui, Xuan Thanh; Kim, Sung Su; Chang, Soon Woong; Guo, Wenshan; Ngo, Huu Hao

    2017-11-01

    Performance of an electrocoagulation (EC) process in batch and continuous operating modes was thoroughly investigated and evaluated for enhancing wastewater phosphorus removal under various operating conditions, individually or combined with initial phosphorus concentration, wastewater conductivity, current density, and electrolysis times. The results revealed excellent phosphorus removal (72.7-100%) for both processes within 3-6 min of electrolysis, with relatively low energy requirements, i.e., less than 0.5 kWh/m 3 for treated wastewater. However, the removal efficiency of phosphorus in the continuous EC operation mode was better than that in batch mode within the scope of the study. Additionally, the rate and efficiency of phosphorus removal strongly depended on operational parameters, including wastewater conductivity, initial phosphorus concentration, current density, and electrolysis time. Based on experimental data, statistical model verification of the response surface methodology (RSM) (multiple factor optimization) was also established to provide further insights and accurately describe the interactive relationship between the process variables, thus optimizing the EC process performance. The EC process using iron electrodes is promising for improving wastewater phosphorus removal efficiency, and RSM can be a sustainable tool for predicting the performance of the EC process and explaining the influence of the process variables.

  17. Culture modes and financial evaluation of two oleaginous microalgae for biodiesel production in desert area with open raceway pond.

    PubMed

    He, Qiaoning; Yang, Haijian; Hu, Chunxiang

    2016-10-01

    Cultivation modes of autotrophic microalgae for biodiesel production utilizing open raceway pond were analyzed in this study. Five before screened good microalgae were tested their lipid productivity and biodiesel quality again in outdoor 1000L ORP. Then, Chlorella sp. L1 and Monoraphidium dybowskii Y2 were selected due to their stronger environmental adaptability, higher lipid productivity and better biodiesel properties. Further scale up cultivation for two species with batch and semi-continuous culture was conducted. In 40,000L ORP, higher lipid productivity (5.15 versus 4.06gm(-2)d(-1) for Chlorella sp. L1, 5.35 versus 3.00gm(-2)d(-1) for M. dybowskii Y2) was achieved in semi-continuous mode. Moreover, the financial costs of 14.18$gal(-1) and 13.31$gal(-1) for crude biodiesel in two microalgae with semi-continuous mode were more economically feasible for commercial production on large scale outdoors. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Continuous-wave optical stimulation of the rat prostate nerves using an all-single-mode 1455 nm diode laser and fiber system

    NASA Astrophysics Data System (ADS)

    Tozburun, Serhat; Lagoda, Gwen A.; Burnett, Arthur L.; Fried, Nathaniel M.

    2011-03-01

    Optical nerve stimulation (ONS) has recently been reported as a potential alternative to electrical nerve stimulation. Continuous-wave (CW) laser stimulation of the prostate cavernous nerves (CN) in a rat model, in vivo, has also been demonstrated in our previous studies. The objective of this study is to present a new all-single-mode-fiber configuration for ONS with the laser operating in CW mode for potential diagnostic applications. An infrared pigtailed single-mode diode laser (λ = 1455 nm) was used in this study for noncontact ONS. This new all-fiber approach introduces several advantages including: (1) a less expensive and more compact ONS system, (2) elimination of alignment of optical components, and (3) an improved spatial beam profile. Successful optical stimulation of the rat CN using this new design was observed after the CN reached a threshold temperature of ~ 41 °C with response times as short as 3 s. Upon further study, this configuration may be useful for identification and preservation of the cavernous nerves during prostate cancer surgery.

  19. ToF-SIMS Depth Profiling Of Insulating Samples, Interlaced Mode Or Non-interlaced Mode?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Zhaoying; Jin, Ke; Zhang, Yanwen

    2014-11-01

    Dual beam depth profiling strategy has been widely adopted in ToF-SIMS depth profiling, in which two basic operation modes, interlaced mode and non-interlaced mode, are commonly used. Generally, interlaced mode is recommended for conductive or semi-conductive samples, whereas non-interlaced mode is recommended for insulating samples, where charge compensation can be an issue. Recent publications, however, show that the interlaced mode can be used effectively for glass depth profiling, despite the fact that glass is an insulator. In this study, we provide a simple guide for choosing between interlaced mode and non-interlaced mode for insulator depth profiling. Two representative cases aremore » presented: (1) depth profiling of a leached glass sample, and (2) depth profiling of a single crystal MgO sample. In brief, the interlaced mode should be attempted first, because (1) it may provide reasonable-quality data, and (2) it is time-saving for most cases, and (3) it introduces low H/C/O background. If data quality is the top priority and measurement time is flexible, non-interlaced mode is recommended because interlaced mode may suffer from low signal intensity and poor mass resolution. A big challenge is tracking trace H/C/O in a highly insulating sample (e.g., MgO), because non-interlaced mode may introduce strong H/C/O background but interlaced mode may suffer from low signal intensity. Meanwhile, a C or Au coating is found to be very effective to improve the signal intensity. Surprisingly, the best analyzing location is not on the C or Au coating, but at the edge (outside) of the coating.« less

  20. Studies with sample conductivity, insertion rates, and particle deflection in a continuous flow electrophoresis system

    NASA Technical Reports Server (NTRS)

    Williams, G., Jr.

    1982-01-01

    The continuous flow electrophoresis system makes electrophoresis possible in a free-flowing film of aqueous electrolyte medium. The sample continuously enters the electrolyte at the top of the chamber and is subjected to the action of a lateral dc field. This divides the sample into fractions since each component has a distinctive electrophoretic mobility. Tests were made using monodisperse polystyrene latex microspheres to determine optimum sample conductivity, insertion rates and optimum electric field applications as baseline data for future STS flight experiments. Optimum sample flow rates for the selected samples were determined to be approximately 26 micro-liters/min. Experiments with samples in deionized water yielded best results and voltages in the 20 V/cm to 30 V/cm range were optimum. Deflections of formaldehyde fixed turkey and bovine erythrocytes were determined using the continuous flow electrophoresis system. The effects of particle interactions on sample resolution and migration in the chamber was also evaluated.

  1. Quantized Majorana conductance.

    PubMed

    Zhang, Hao; Liu, Chun-Xiao; Gazibegovic, Sasa; Xu, Di; Logan, John A; Wang, Guanzhong; van Loo, Nick; Bommer, Jouri D S; de Moor, Michiel W A; Car, Diana; Op Het Veld, Roy L M; van Veldhoven, Petrus J; Koelling, Sebastian; Verheijen, Marcel A; Pendharkar, Mihir; Pennachio, Daniel J; Shojaei, Borzoyeh; Lee, Joon Sue; Palmstrøm, Chris J; Bakkers, Erik P A M; Sarma, S Das; Kouwenhoven, Leo P

    2018-04-05

    Majorana zero-modes-a type of localized quasiparticle-hold great promise for topological quantum computing. Tunnelling spectroscopy in electrical transport is the primary tool for identifying the presence of Majorana zero-modes, for instance as a zero-bias peak in differential conductance. The height of the Majorana zero-bias peak is predicted to be quantized at the universal conductance value of 2e 2 /h at zero temperature (where e is the charge of an electron and h is the Planck constant), as a direct consequence of the famous Majorana symmetry in which a particle is its own antiparticle. The Majorana symmetry protects the quantization against disorder, interactions and variations in the tunnel coupling. Previous experiments, however, have mostly shown zero-bias peaks much smaller than 2e 2 /h, with a recent observation of a peak height close to 2e 2 /h. Here we report a quantized conductance plateau at 2e 2 /h in the zero-bias conductance measured in indium antimonide semiconductor nanowires covered with an aluminium superconducting shell. The height of our zero-bias peak remains constant despite changing parameters such as the magnetic field and tunnel coupling, indicating that it is a quantized conductance plateau. We distinguish this quantized Majorana peak from possible non-Majorana origins by investigating its robustness to electric and magnetic fields as well as its temperature dependence. The observation of a quantized conductance plateau strongly supports the existence of Majorana zero-modes in the system, consequently paving the way for future braiding experiments that could lead to topological quantum computing.

  2. Synchronized growth and neutral lipid accumulation in Chlorella sorokiniana FC6 IITG under continuous mode of operation.

    PubMed

    Kumar, Vikram; Muthuraj, Muthusivaramapandian; Palabhanvi, Basavaraj; Das, Debasish

    2016-01-01

    Synchronized growth and neutral lipid accumulation with high lipid productivity under mixotrophic growth of the strain Chlorella sorokiniana FC6 IITG was achieved via manipulation of substrates feeding mode and supplementation of lipid elicitors in the growth medium. Screening and optimization of lipid elicitors resulted in lipid productivity of 110.59mgL(-1)day(-1) under the combined effect of lipid inducers sodium acetate and sodium chloride. Fed-batch cultivation of the strain in bioreactor with intermittent feeding of limiting nutrients and lipid inducer resulted in maximum biomass and lipid productivity of 2.08 and 0.97gL(-1)day(-1) respectively. Further, continuous production of biomass with concomitant lipid accumulation was demonstrated via continuous feeding of BG11 media supplemented with lipid inducers sodium acetate and sodium chloride. The improved biomass and lipid productivity in chemostat was found to be 2.81 and 1.27gL(-1)day(-1) respectively operated at a dilution rate of 0.54day(-1). Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. AN EVALUATION OF PRIMARY DATA-COLLECTION MODES IN AN ADDRESS-BASED SAMPLING DESIGN.

    PubMed

    Amaya, Ashley; Leclere, Felicia; Carris, Kari; Liao, Youlian

    2015-01-01

    As address-based sampling becomes increasingly popular for multimode surveys, researchers continue to refine data-collection best practices. While much work has been conducted to improve efficiency within a given mode, additional research is needed on how multimode designs can be optimized across modes. Previous research has not evaluated the consequences of mode sequencing on multimode mail and phone surveys, nor has significant research been conducted to evaluate mode sequencing on a variety of indicators beyond response rates. We conducted an experiment within the Racial and Ethnic Approaches to Community Health across the U.S. Risk Factor Survey (REACH U.S.) to evaluate two multimode case-flow designs: (1) phone followed by mail (phone-first) and (2) mail followed by phone (mail-first). We compared response rates, cost, timeliness, and data quality to identify differences across case-flow design. Because surveys often differ on the rarity of the target population, we also examined whether changes in the eligibility rate altered the choice of optimal case flow. Our results suggested that, on most metrics, the mail-first design was superior to the phone-first design. Compared with phone-first, mail-first achieved a higher yield rate at a lower cost with equivalent data quality. While the phone-first design initially achieved more interviews compared to the mail-first design, over time the mail-first design surpassed it and obtained the greatest number of interviews.

  4. Default mode network activity in male adolescents with conduct and substance use disorder*

    PubMed Central

    Dalwani, Manish S.; Tregellas, Jason R.; Andrews-Hanna, Jessica R.; Mikulich-Gilbertson, Susan K.; Raymond, Kristen M.; Banich, Marie T.; Crowley, Thomas J.; Sakai, Joseph T.

    2013-01-01

    Background Adolescents with conduct disorder (CD) and substance use disorders (SUD) experience difficulty evaluating and regulating their behavior in anticipation of future consequences. Given the role of the brain's default mode network (DMN) in self-reflection and future thought, this study investigates whether DMN is altered in adolescents with CD and SUD, relative to controls. Methods Twenty adolescent males with CD and SUD and 20 male controls of similar ages underwent functional magnetic resonance imaging as they completed a risk-taking decision task. We used independent component analysis as a data-driven approach to identify the DMN spatial component in individual subjects. DMN activity was then compared between groups. Results Compared to controls, patients showed reduced activity in superior, medial and middle frontal gyrus (Brodmann area (BA) 10), retrosplenial cortex (BA 30) and lingual gyrus (BA 18), and bilateral middle temporal gryus (BA 21/22) - DMN regions thought to support self-referential evaluation, memory, foresight, and perspective taking. Furthermore, this pattern of reduced activity in patients remained robust after adjusting for the effects of depression and attention-deficit hyperactivity disorder (ADHD). Conversely, when not adjusting for effects of depression and ADHD, patients demonstrated greater DMN activity than controls solely in the cuneus (BA 19). Conclusions Collectively, these results suggest that comorbid CD and SUD in adolescents is characterized by atypical activity in brain regions thought to play an important role in introspective processing. These functional imbalances in brain networks may provide further insight into the neural underpinnings of conduct and substance use disorders. PMID:24210423

  5. A Review and Empirical Comparison of Two Treatments for Adolescent Males with Conduct and Personality Disorder: Mode Deactivation Therapy and Cognitive Behavior Therapy

    ERIC Educational Resources Information Center

    Apsche, Jack A.; Bass, Christopher K.; Jennings, Jerry L.; Siv, Alexander M.

    2005-01-01

    This research study compared the efficacy of two treatment methodologies for adolescent males in residential treatment with conduct disorders and/or personality dysfunctions and documented problems with physical and sexual aggression. The results showed that Mode Deactivation Therapy, an advanced form of cognitive behavioral therapy based on…

  6. Ringing phenomenon based whispering-gallery-mode sensing

    PubMed Central

    Ye, Ming-Yong; Shen, Mei-Xia; Lin, Xiu-Min

    2016-01-01

    Highly sensitive sensing is one of the most important applications of whispering-gallery-mode (WGM) microresonators, which is usually accomplished through a tunable continuous-wave laser sweeping over a whispering-gallery mode with the help of a fiber taper in a relative slow speed. It is known that if a tunable continuous-wave laser sweeps over a high quality whispering-gallery mode in a fast speed, a ringing phenomenon will be observed. The ringing phenomenon in WGM microresonators is mainly used to measure the Q factors and mode-coupling strengths. Here we experimentally demonstrate that the WGM sensing can be achieved based on the ringing phenomenon. This kind of sensing is accomplished in a much shorter time and is immune to the noise caused by the laser wavelength drift. PMID:26796871

  7. Histological Study of Induced Incisions on Rabbits' Tongues with Three Diode Lasers with Different Wavelengths in Continuous Mode

    PubMed Central

    Yammine, Salwa; Jabbour, Edgard

    2018-01-01

    Objective Diode lasers have multiple indications in everyday dental practice. They allow carrying out incisions, coagulation of soft tissue, and Low-Level Laser Therapy. The goal of this study is to compare histologically the tissue interaction zones and edges of an induced laser incision on rabbits' tongues with three different wavelengths of 810, 940, and 980 nm in continuous mode. Methods Fourteen male rabbits were divided into six groups. Each animal underwent three incisions of 10 mm length on the right ventral face of the tongue, carried out in continuous mode with three diode lasers with different wavelengths of 810, 940, and 980 nm. Rabbits were sacrificed at 0, 1, 2, 6, and 15 hours and 14 days. Five rabbits were sacrificed at 0 hours and 2 hours and one rabbit was sacrificed at 1, 6, and 15 hours and at 14 days. The appearance of neutrophils marked the onset time of the inflammatory reaction. Histological study of the incisions was chosen to evaluate the edges and to measure the depth and width of carbonization and necrotic and inflammatory zones. Healing was evaluated at 14 days. Friedman test was used to assess statistical differences between groups. Results In the experimental adopted conditions, the carbonization zone was marked by degradation of vacuoles and an elongation of nuclei and was observed on the edges of incisions. Carbonization and necrotic and inflammatory zones were measured for rabbits sacrificed at 0, 1, 2, 6, and 15 hours but the onset of inflammation zone marked by the infiltration of neutrophils did not appear before 6 hours. The neutrophils infiltration was higher at 15 hours than at 6 hours. Complete healing was shown at 14 days. According to the time for the regularity of the edges, the interpretation was qualitative without a statistical test. The statistical analysis of the three different diode lasers in this study showed nonsignificant difference between the different groups for the depth (p = 0.121) and width (p = 0

  8. Closed-loop ARS mode for scanning ion conductance microscopy with improved speed and stability for live cell imaging applications.

    PubMed

    Jung, Goo-Eun; Noh, Hanaul; Shin, Yong Kyun; Kahng, Se-Jong; Baik, Ku Youn; Kim, Hong-Bae; Cho, Nam-Joon; Cho, Sang-Joon

    2015-07-07

    Scanning ion conductance microscopy (SICM) is an increasingly useful nanotechnology tool for non-contact, high resolution imaging of live biological specimens such as cellular membranes. In particular, approach-retract-scanning (ARS) mode enables fast probing of delicate biological structures by rapid and repeated approach/retraction of a nano-pipette tip. For optimal performance, accurate control of the tip position is a critical issue. Herein, we present a novel closed-loop control strategy for the ARS mode that achieves higher operating speeds with increased stability. The algorithm differs from that of most conventional (i.e., constant velocity) approach schemes as it includes a deceleration phase near the sample surface, which is intended to minimize the possibility of contact with the surface. Analysis of the ion current and tip position demonstrates that the new mode is able to operate at approach speeds of up to 250 μm s(-1). As a result of the improved stability, SICM imaging with the new approach scheme enables significantly improved, high resolution imaging of subtle features of fixed and live cells (e.g., filamentous structures & membrane edges). Taken together, the results suggest that optimization of the tip approach speed can substantially improve SICM imaging performance, further enabling SICM to become widely adopted as a general and versatile research tool for biological studies at the nanoscale level.

  9. Continuous Flow Chemistry: Reaction of Diphenyldiazomethane with p-Nitrobenzoic Acid.

    PubMed

    Aw, Alex; Fritz, Marshall; Napoline, Jonathan W; Pollet, Pamela; Liotta, Charles L

    2017-11-15

    Continuous flow technology has been identified as instrumental for its environmental and economic advantages leveraging superior mixing, heat transfer and cost savings through the "scaling out" strategy as opposed to the traditional "scaling up". Herein, we report the reaction of diphenyldiazomethane with p-nitrobenzoic acid in both batch and flow modes. To effectively transfer the reaction from batch to flow mode, it is essential to first conduct the reaction in batch. As a consequence, the reaction of diphenyldiazomethane was first studied in batch as a function of temperature, reaction time, and concentration to obtain kinetic information and process parameters. The glass flow reactor set-up is described and combines two types of reaction modules with "mixing" and "linear" microstructures. Finally, the reaction of diphenyldiazomethane with p-nitrobenzoic acid was successfully conducted in the flow reactor, with up to 95% conversion of the diphenyldiazomethane in 11 min. This proof of concept reaction aims to provide insight for scientists to consider flow technology's competitiveness, sustainability, and versatility in their research.

  10. Mode switching characteristics of PSR B0329+54 at 150 MHz

    NASA Astrophysics Data System (ADS)

    Białkowski, Sławomir; Lewandowski, Wojciech; Kijak, Jarosław; Błaszkiewicz, Leszek; Krankowski, Andrzej; Osłowski, Stefan

    2018-06-01

    We present the results of 60 hours of observations of PSR B0329+54 with the LOFAR PL-612 station located in Bałdy near Olsztyn, Poland and managed by University of Warmia and Mazury in Olsztyn (UWM). Observations were conducted in August/September 2016 and in May and August 2017 using the HBA antennas, at the central frequency of about 140 MHz, and they were conducted in form of six 10-hour semi-continuous observing sessions. The main goal of the analysis was the study of the mode switching phenomenon in this pulsar, and our results show that at this frequency the abnormal profile mode is present only for about 12.6% of time on average, which is lower than for the analysis of a very large set of 1.5 GHz observations performed at Ürümqi observatory in 2011. Also worth mentioning is the fact, that the results shown in this paper also demonstrate the first scientific output concerning pulsar observations with the PL-612 station.

  11. System and method for continuous solids slurry depressurization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Leininger, Thomas Frederick; Steele, Raymond Douglas; Yen, Hsien-Chin William

    A continuous slag processing system includes a rotating parallel disc pump, coupled to a motor and a brake. The rotating parallel disc pump includes opposing discs coupled to a shaft, an outlet configured to continuously receive a fluid at a first pressure, and an inlet configured to continuously discharge the fluid at a second pressure less than the first pressure. The rotating parallel disc pump is configurable in a reverse-acting pump mode and a letdown turbine mode. The motor is configured to drive the opposing discs about the shaft and against a flow of the fluid to control a differencemore » between the first pressure and the second pressure in the reverse-acting pump mode. The brake is configured to resist rotation of the opposing discs about the shaft to control the difference between the first pressure and the second pressure in the letdown turbine mode.« less

  12. Measurement of absolute frequency of continuous-wave terahertz radiation in real time using a free-running, dual-wavelength mode-locked, erbium-doped fibre laser

    PubMed Central

    Hu, Guoqing; Mizuguchi, Tatsuya; Zhao, Xin; Minamikawa, Takeo; Mizuno, Takahiko; Yang, Yuli; Li, Cui; Bai, Ming; Zheng, Zheng; Yasui, Takeshi

    2017-01-01

    A single, free-running, dual-wavelength mode-locked, erbium-doped fibre laser was exploited to measure the absolute frequency of continuous-wave terahertz (CW-THz) radiation in real time using dual THz combs of photo-carriers (dual PC-THz combs). Two independent mode-locked laser beams with different wavelengths and different repetition frequencies were generated from this laser and were used to generate dual PC-THz combs having different frequency spacings in photoconductive antennae. Based on the dual PC-THz combs, the absolute frequency of CW-THz radiation was determined with a relative precision of 1.2 × 10−9 and a relative accuracy of 1.4 × 10−9 at a sampling rate of 100 Hz. Real-time determination of the absolute frequency of CW-THz radiation varying over a few tens of GHz was also demonstrated. Use of a single dual-wavelength mode-locked fibre laser, in place of dual mode-locked lasers, greatly reduced the size, complexity, and cost of the measurement system while maintaining the real-time capability and high measurement precision. PMID:28186148

  13. Sampling of the telescope image plane using single- and few-mode fibre arrays

    NASA Astrophysics Data System (ADS)

    Corbett, Jason C.

    2009-02-01

    The coupling efficiency of starlight into single and few-mode fibres fed with lenslet arrays to provide a continuous field of view is investigated. The single-mode field of view (FOV) and overall transmission is a highly complicated function of wavelength and fibre size leading to a continuous sample only in cases of poor throughput. Significant improvements are found in the few-mode regime with a continuous and efficient sample of the image plane shown to be possible with as few as 4 modes. This work is of direct relevance to the coupling of celestial light into photonic instrumentation and the removal of image scrambling and reduction of focal ratio degradation (FRD) using multi-mode fibre to single-mode fibre array converters.

  14. Comparative Analyses of Multi-Pulse Phase Controlled Rectifiers in Continuous Conduction Mode with a Two-Pole LC Output Filter for Surface Ship DC Applications

    DTIC Science & Technology

    2013-03-01

    for this sub-mode, the minimum inductor current occurs at an angle 3 3t  (where 3 60    referenced to  ), as shown in Figure 13. 24...can be rewritten as    sin cos cosb b b ApA B      . (73) Grouping similar terms, yields  sin cosb b ApA B         , (74...where the fundamental frequency and each harmonic component are displayed graphically in a bar chart format as shown in Figure 25. The total current

  15. Ubiquitination switches EphA2 vesicular traffic from a continuous safeguard to a finite signalling mode

    PubMed Central

    Sabet, Ola; Stockert, Rabea; Xouri, Georgia; Brüggemann, Yannick; Stanoev, Angel; Bastiaens, Philippe I. H.

    2015-01-01

    Autocatalytic phosphorylation of receptor tyrosine kinases (RTKs) enables diverse, context-dependent responses to extracellular signals but comes at the price of autonomous, ligand-independent activation. Using a conformational biosensor that reports on the kinase activity of the cell guidance ephrin receptor type-A (EphA2) in living cells, we observe that autonomous EphA2 activation is suppressed by vesicular recycling and dephosphorylation by protein tyrosine phosphatases 1B (PTP1B) near the pericentriolar recycling endosome. This spatial segregation of catalytically superior PTPs from RTKs at the plasma membrane is essential to preserve ligand responsiveness. Ligand-induced clustering, on the other hand, promotes phosphorylation of a c-Cbl docking site and ubiquitination of the receptor, thereby redirecting it to the late endosome/lysosome. We show that this switch from cyclic to unidirectional receptor trafficking converts a continuous suppressive safeguard mechanism into a transient ligand-responsive signalling mode. PMID:26292967

  16. 1.9 W continuous-wave single transverse mode emission from 1060 nm edge-emitting lasers with vertically extended lasing area

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miah, M. J., E-mail: jarez.miah@tu-berlin.de; Posilovic, K.; Kalosha, V. P.

    2014-10-13

    High-brightness edge-emitting semiconductor lasers having a vertically extended waveguide structure emitting in the 1060 nm range are investigated. Ridge waveguide (RW) lasers with 9 μm stripe width and 2.64 mm cavity length yield highest to date single transverse mode output power for RW lasers in the 1060 nm range. The lasers provide 1.9 W single transverse mode optical power under continuous-wave (cw) operation with narrow beam divergences of 9° in lateral and 14° (full width at half maximum) in vertical direction. The beam quality factor M{sup 2} is less than 1.9 up to 1.9 W optical power. A maximum brightness of 72 MWcm{sup −2}sr{supmore » −1} is obtained. 100 μm wide and 3 mm long unpassivated broad area lasers provide more than 9 W optical power in cw operation.« less

  17. Vertically Aligned and Continuous Nanoscale Ceramic-Polymer Interfaces in Composite Solid Polymer Electrolytes for Enhanced Ionic Conductivity.

    PubMed

    Zhang, Xiaokun; Xie, Jin; Shi, Feifei; Lin, Dingchang; Liu, Yayuan; Liu, Wei; Pei, Allen; Gong, Yongji; Wang, Hongxia; Liu, Kai; Xiang, Yong; Cui, Yi

    2018-06-13

    Among all solid electrolytes, composite solid polymer electrolytes, comprised of polymer matrix and ceramic fillers, garner great interest due to the enhancement of ionic conductivity and mechanical properties derived from ceramic-polymer interactions. Here, we report a composite electrolyte with densely packed, vertically aligned, and continuous nanoscale ceramic-polymer interfaces, using surface-modified anodized aluminum oxide as the ceramic scaffold and poly(ethylene oxide) as the polymer matrix. The fast Li + transport along the ceramic-polymer interfaces was proven experimentally for the first time, and an interfacial ionic conductivity higher than 10 -3 S/cm at 0 °C was predicted. The presented composite solid electrolyte achieved an ionic conductivity as high as 5.82 × 10 -4 S/cm at the electrode level. The vertically aligned interfacial structure in the composite electrolytes enables the viable application of the composite solid electrolyte with superior ionic conductivity and high hardness, allowing Li-Li cells to be cycled at a small polarization without Li dendrite penetration.

  18. Enhanced adsorption of ionizable antibiotics on activated carbon fiber under electrochemical assistance in continuous-flow modes.

    PubMed

    Wang, Sitan; Li, Xiaona; Zhao, Huimin; Quan, Xie; Chen, Shuo; Yu, Hongtao

    2018-05-01

    Ionizable antibiotics have attracted serious concerns because of their variable dissociation forms and thereby rendering unique toxicity and microorganism resistance. Developing an efficient and environmentally friendly method for removing these micropollutants from environmental media remains very challenging. Here, electro-assisted adsorption onto activated carbon fiber in continuous-flow mode was used to remove three ionizable antibiotics, sulfadimethoxine (SDM), ciprofloxacin (CIP), and clarithromycin (CLA), from water. Benefiting from strengthened electrostatic interactions, the adsorption capacities for the target antibiotics (10 mg/L) in flow mode (70.9-202.2 mg/g) increased by ∼5 times under a potential of 1.0 V (SDM) or -1.0 V (CIP and CLA) relative to those of open circuit (OC) adsorption. Meanwhile, effluent concentration decreased from >100 μg/L to 9.6 μg/L with removal efficiency increasing from 99.0% to 99.9%. Moreover, high recovery efficiency of ACF up to 96.35 ± 0.65% was achieved by imposing a reverse potential (-1.0 V) relative to that used for SDM adsorption. In addition, trace levels of antibiotics (364-580 ng/L) in surface water could be removed effectively to achieve low effluent concentration (0.4-1.2 ng/L) and high removal efficiency (99.9%) upon treating up to ∼1560 bed volumes (BVs), demonstrating the potential of electro-assisted adsorption for practical application in water treatment. Copyright © 2018 Elsevier Ltd. All rights reserved.

  19. Gate sequence for continuous variable one-way quantum computation

    PubMed Central

    Su, Xiaolong; Hao, Shuhong; Deng, Xiaowei; Ma, Lingyu; Wang, Meihong; Jia, Xiaojun; Xie, Changde; Peng, Kunchi

    2013-01-01

    Measurement-based one-way quantum computation using cluster states as resources provides an efficient model to perform computation and information processing of quantum codes. Arbitrary Gaussian quantum computation can be implemented sufficiently by long single-mode and two-mode gate sequences. However, continuous variable gate sequences have not been realized so far due to an absence of cluster states larger than four submodes. Here we present the first continuous variable gate sequence consisting of a single-mode squeezing gate and a two-mode controlled-phase gate based on a six-mode cluster state. The quantum property of this gate sequence is confirmed by the fidelities and the quantum entanglement of two output modes, which depend on both the squeezing and controlled-phase gates. The experiment demonstrates the feasibility of implementing Gaussian quantum computation by means of accessible gate sequences.

  20. Subcritical crack growth in soda-lime glass in combined mode I and mode II loading

    NASA Technical Reports Server (NTRS)

    Singh, Dileep; Shetty, Dinesh K.

    1990-01-01

    Subcritical crack growth under mixed-mode loading was studied in soda-lime glass. Pure mode I, combined mode I and mode II, and pure mode II loadings were achieved in precracked disk specimens by loading in diametral compression at selected angles with respect to the symmetric radial crack. Crack growth was monitored by measuring the resistance changes in a microcircuit grid consisting of parallel, electrically conducting grid lines deposited on the surface of the disk specimens by photolithography. Subcritical crack growth rates in pure mode I, pure mode II, and combined mode I and mode II loading could be described by an exponential relationship between crack growth rate and an effective crack driving force derived from a mode I-mode II fracture toughness envelope. The effective crack driving force was based on an empirical representation of the noncoplanar strain energy release rate. Stress intensities for kinked cracks were assessed using the method of caustics and an initial decrease and a subsequent increase in the subcritical crack growth rates of kinked cracks were shown to correlate with the variations of the mode I and the mode II stress intensities.

  1. A new continuous sliding mode control approach with actuator saturation for control of 2-DOF helicopter system.

    PubMed

    Sadala, S P; Patre, B M

    2018-03-01

    The 2-degree of freedom (DOF) helicopter system is a typical higher-order, multi-variable, nonlinear and strong coupled control system. The helicopter dynamics also includes parametric uncertainties and is subject to unknown external disturbances. Such complicated system requires designing a sophisticated control algorithm that can handle these difficulties. This paper presents a new robust control algorithm which is a combination of two continuous control techniques, composite nonlinear feedback (CNF) and super-twisting control (STC) methods. In the existing integral sliding mode (ISM) based CNF control law, the discontinuous term exhibits chattering which is not desirable for many practical applications. As the continuity of well known STC reduces chattering in the system, the proposed strategy is beneficial over the current ISM based CNF control law which has a discontinuous term. Two controllers with integral sliding surface are designed to control the position of the pitch and the yaw angles of the 2- DOF helicopter. The adequacy of this specific combination has been exhibited through general analysis, simulation and experimental results of 2-DOF helicopter setup. The acquired results demonstrate the good execution of the proposed controller regarding stabilization, following reference input without overshoot against actuator saturation and robustness concerning to the limited matched disturbances. Copyright © 2018 ISA. Published by Elsevier Ltd. All rights reserved.

  2. Tunable continuous-wave terahertz generation/detection with compact 1.55 μm detuned dual-mode laser diode and InGaAs based photomixer.

    PubMed

    Kim, Namje; Han, Sang-Pil; Ko, Hyunsung; Leem, Young Ahn; Ryu, Han-Cheol; Lee, Chul Wook; Lee, Donghun; Jeon, Min Yong; Noh, Sam Kyu; Park, Kyung Hyun

    2011-08-01

    We demonstrate a tunable continuous-wave (CW) terahertz (THz) homodyne system with a novel detuned dual-mode laser diode (DML) and low-temperature-grown (LTG) InGaAs photomixers. The optical beat source with the detuned DML showed a beat frequency tuning range of 0.26 to over 1.07 THz. Log-spiral antenna integrated LTG InGaAs photomixers are used as THz wave generators and detectors. The CW THz radiation frequency was continuously tuned to over 1 THz. Our results clearly show the feasibility of a compact and fast scanning CW THz spectrometer consisting of a fiber-coupled detuned DML and photomixers operating in the 1.55-μm range.

  3. Advances in heat conduction models and approaches for the prediction of lattice thermal conductivity of dielectric materials

    NASA Astrophysics Data System (ADS)

    Saikia, Banashree

    2017-03-01

    An overview of predominant theoretical models used for predicting the thermal conductivities of dielectric materials is given. The criteria used for different theoretical models are explained. This overview highlights a unified theory based on temperature-dependent thermal-conductivity theories, and a drifting of the equilibrium phonon distribution function due to normal three-phonon scattering processes causes transfer of phonon momentum to (a) the same phonon modes (KK-S model) and (b) across the phonon modes (KK-H model). Estimates of the lattice thermal conductivities of LiF and Mg2Sn for the KK-H model are presented graphically.

  4. One Continuous Auditing Practice in China: Data-oriented Online Auditing(DOOA)

    NASA Astrophysics Data System (ADS)

    Chen, Wei; Zhang, Jin-Cheng; Jiang, Yu-Quan

    Application of information technologies (IT) in the field of audit is worth studying. Continuous auditing (CA) is an active research domain in computer-assisted audit field. In this paper, the concept of continuous auditing is analyzed firstly. Then, based on analysis on research literatures of continuous auditing, technique realization methods are classified into embedded mode and separate mode. According to the condition of implementing online auditing in China, data-oriented online auditing (DOOA) used in China is also one of separate mode of continuous auditing. And the principle of DOOA is analyzed. Furthermore, the advantages and disadvantages of DOOA are also discussed. Finally, advices to implement DOOA in China are given, and the future research topics related to continuous auditing are also discussed.

  5. Continuous higher-order sliding mode control with time-varying gain for a class of uncertain nonlinear systems.

    PubMed

    Han, Yaozhen; Liu, Xiangjie

    2016-05-01

    This paper presents a continuous higher-order sliding mode (HOSM) control scheme with time-varying gain for a class of uncertain nonlinear systems. The proposed controller is derived from the concept of geometric homogeneity and super-twisting algorithm, and includes two parts, the first part of which achieves smooth finite time stabilization of pure integrator chains. The second part conquers the twice differentiable uncertainty and realizes system robustness by employing super-twisting algorithm. Particularly, time-varying switching control gain is constructed to reduce the switching control action magnitude to the minimum possible value while keeping the property of finite time convergence. Examples concerning the perturbed triple integrator chains and excitation control for single-machine infinite bus power system are simulated respectively to demonstrate the effectiveness and applicability of the proposed approach. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.

  6. Phase transitions in the distribution of the Andreev conductance of superconductor-metal junctions with multiple transverse modes.

    PubMed

    Damle, Kedar; Majumdar, Satya N; Tripathi, Vikram; Vivo, Pierpaolo

    2011-10-21

    We compute analytically the full distribution of Andreev conductance G(NS) of a metal-superconductor interface with a large number N(c) of transverse modes, using a random matrix approach. The probability distribution P(G(NS),N(c) in the limit of large N(c) displays a Gaussian behavior near the average value =(2-√2)N(c) and asymmetric power-law tails in the two limits of very small and very large G(NS). In addition, we find a novel third regime sandwiched between the central Gaussian peak and the power-law tail for large G(NS). Weakly nonanalytic points separate these four regimes-these are shown to be consequences of three phase transitions in an associated Coulomb gas problem. © 2011 American Physical Society

  7. Evaluation of lymph node perfusion using continuous mode harmonic ultrasonography with a second-generation contrast agent.

    PubMed

    Rubaltelli, Leopoldo; Khadivi, Yeganeh; Tregnaghi, Alberto; Stramare, Roberto; Ferro, Federica; Borsato, Simonetta; Fiocco, Ugo; Adami, Fausto; Rossi, Carlo Riccardo

    2004-06-01

    To evaluate the contribution of continuous mode contrast-enhanced harmonic ultrasonography (CE-HUS) with a second-generation contrast agent to the characterization of superficial lymphadenopathies with respect to conventional ultrasonographic techniques (B-mode and power Doppler). Fifty-six lymph nodes from 45 patients were studied both by conventional techniques and by CE-HUS. The dimensions, intranodal architecture, margins, and location of vessels were evaluated. Subsequently, all the lymph nodes were examined by CE-HUS, and enhancement of echogenicity was evaluated. The diagnoses obtained by means of fine-needle aspiration cytologic examination, surgical biopsy, or both were compared with those obtained by ultrasonography. Of the lymph nodes examined, 30 were benign and 26 were malignant (18 metastases and 8 non-Hodgkin lymphomas). The study using CE-HUS showed intense homogeneous enhancement in 28 of 30 reactive lymph nodes; perfusion defects in 17, of which 15 were neoplastic and 2 were inflammatory; intense but inhomogeneous speckled enhancement in the early arterial phase in 5 cases of lymphoma; and, last, scarce or absent intranodal enhancement in 4 metastases. The specificity, sensitivity, and accuracy of conventional techniques in differentiation between benign and malignant lymph nodes were 76%, 80%, and 78% versus 93%, 92%, and 92.8% for CE-HUS. The increase in correct diagnoses was significant (P = .05) when conventional ultrasonography was tested against CE-HUS. Superficial lymph nodes can be characterized as being neoplastic or benign with a high degree of diagnostic accuracy on the basis of the perfusion characteristics evaluated by CE-HUS. This technique has been shown to afford a higher degree of accuracy than currently obtainable by any other ultrasonographic technique.

  8. Nursing essential principles: continuous renal replacement therapy.

    PubMed

    Richardson, Annette; Whatmore, Jayne

    2015-01-01

    This article aims to guide critical care nurses with the care and management of patients on continuous renal replacement therapy (CRRT). CRRT, a highly specialized therapy involving complex nursing care, is used widely in the intensive care unit to treat patients with acute kidney injury. A literature search was conducted using CINAHL, Medline from PubMed and BNI using the search terms CRRT or continuous veno-venous haemofiltration and nursing or nurses from 2000 onwards and limited to the English language. The appraised evidence and expert opinion is used in this article. Four essential nursing principles for CRRT are reviewed (1) the importance of continuous assessment of the indications to influence the appropriate mode; (2) ensuring good vascular access; (3) the avoidance of unnecessary interruptions and (4) the prevention of complications. The identified four essential nursing principles provide guidance on this complex aspects of nursing practice. Specific nursing research to guide the care and management of this therapy is limited so should be explored in the future. Critical care nurses caring for and managing patients on CRRT require an understanding of how to deliver safe CRRT. © 2014 British Association of Critical Care Nurses.

  9. Mathematical estimation of melt depth in conduction mode of laser spot remelting process

    NASA Astrophysics Data System (ADS)

    Hadi, Iraj

    2012-12-01

    A one-dimensional mathematical model based on the front tracking method was developed to predict the melt depth as a function of internal and external parameters of laser spot remelting process in conduction mode. Power density, pulse duration, and thermophysical properties of material including thermal diffusivity, melting point, latent heat, and absorption coefficient have been taken into account in the model of this article. By comparing the theoretical results and experimental welding data of commercial pure nickel and titanium plates, the validity of the developed model was examined. Comparison shows a reasonably good agreement between the theory and experiment. For the sake of simplicity, a graphical technique was presented to obtain the melt depth of various materials at any arbitrary amount of power density and pulse duration. In the graphical technique, two dimensionless constants including the Stefan number (Ste) and an introduced constant named laser power factor (LPF) are used. Indeed, all of the internal and external parameters have been gathered in LPF. The effect of power density and pulse duration on the variation of melt depth for different materials such as aluminum, copper, and stainless steel were investigated. Additionally, appropriate expressions were extracted to describe the minimum power density and time to reach melting point in terms of process parameters. A simple expression is also extracted to estimate the thickness of mushy zone for alloys.

  10. 3 kW single stage all-fiber Yb-doped single-mode fiber laser for highly reflective and highly thermal conductive materials processing

    NASA Astrophysics Data System (ADS)

    Ikoma, S.; Nguyen, H. K.; Kashiwagi, M.; Uchiyama, K.; Shima, K.; Tanaka, D.

    2017-02-01

    A 3 kW single stage all-fiber Yb-doped single-mode fiber laser with bi-directional pumping configuration has been demonstrated. Our newly developed high-power LD modules are employed for a high available pump power of 4.9 kW. The length of the delivery fiber is 20 m which is long enough to be used in most of laser processing machines. An output power of 3 kW was achieved at a pump power of 4.23 kW. The slope efficiency was 70%. SRS was able to be suppressed at the same output power by increasing ratio of backward pump power. The SRS level was improved by 5dB when 57% backward pump ratio was adopted compared with the case of 50%. SRS was 35dB below the laser power at the output power of 3 kW even with a 20-m delivery fiber. The M-squared factor was 1.3. Single-mode beam quality was obtained. To evaluate practical utility of the 3 kW single-mode fiber laser, a Bead-on-Plate (BoP) test onto a pure copper plate was executed. The BoP test onto a copper plate was made without stopping or damaging the laser system. That indicates our high power single-mode fiber lasers can be used practically in processing of materials with high reflectivity and high thermal conductivity.

  11. High-Throughput Continuous Hydrothermal Synthesis of Transparent Conducting Aluminum and Gallium Co-doped Zinc Oxides.

    PubMed

    Howard, Dougal P; Marchand, Peter; McCafferty, Liam; Carmalt, Claire J; Parkin, Ivan P; Darr, Jawwad A

    2017-04-10

    High-throughput continuous hydrothermal flow synthesis was used to generate a library of aluminum and gallium-codoped zinc oxide nanoparticles of specific atomic ratios. Resistivities of the materials were determined by Hall Effect measurements on heat-treated pressed discs and the results collated into a conductivity-composition map. Optimal resistivities of ∼9 × 10 -3 Ω cm were reproducibly achieved for several samples, for example, codoped ZnO with 2 at% Ga and 1 at% Al. The optimum sample on balance of performance and cost was deemed to be ZnO codoped with 3 at% Al and 1 at% Ga.

  12. Tunable zero-line modes via magnetic field in bilayer graphene

    NASA Astrophysics Data System (ADS)

    Wang, Ke; Qiao, Zhenhua

    Zero-line modes appear in bilayer graphene at the internal boundary between two opposite vertical electrostatic confinements. These one-dimensional modes are metallic along the boundary and exhibit quantized conductance in the absence of inter-valley scattering. However, experimental results show that the conductance is around 0.5 e2/h rather than quantized. This observation can be explained from our numerical results, which suggest that the scattering between zero-line mode and bound states and the presence of atomic scale disorders that provide inter-valley scattering can effectively reduce the conductance to about 0.5 e2/h. We further find that out-of-plane magnetic field can strongly suppress these scattering mechanisms and gives rise to nearly quantized conductance. On one hand, the presence of magnetic field makes bound states become Landau levels, which reduces the scattering between zero-line mode and bound states. On the other hand, the wave function distributions of oppositely propagating zero-line modes at different valleys are spatially separated, which can strongly suppress the inter-valley scattering. Specifically speaking, the conductance can be increased to 3.2 e2/h at 8 T even when the atomic Anderson type disorders are considered.

  13. Characterization of mode 1 and mixed-mode failure of adhesive bonds between composite adherends

    NASA Technical Reports Server (NTRS)

    Mall, S.; Johnson, W. S.

    1985-01-01

    A combined experimental and analytical investigation of an adhesively bonded composite joint was conducted to characterize both the static and fatigue beyond growth mechanism under mode 1 and mixed-mode 1 and 2 loadings. Two bonded systems were studied: graphite/epoxy adherends bonded with EC 3445 and FM-300 adhesives. For each bonded system, two specimen types were tested: a double-cantilever-beam specimen for mode 1 loading and a cracked-lapshear specimen for mixed-mode 1 and 2 loading. In all specimens tested, failure occurred in the form of debond growth. Debonding always occurred in a cohesive manner with EC 3445 adhesive. The FM-300 adhesive debonded in a cohesive manner under mixed-mode 1 and 2 loading, but in a cohesive, adhesive, or combined cohesive and adhesive manner under mode 1 loading. Total strain-energy release rate appeared to be the driving parameter for debond growth under static and fatigue loadings.

  14. Atmospheric Excitation of Planetary Normal Modes

    NASA Technical Reports Server (NTRS)

    Tanimoto, Toshiro

    2001-01-01

    The objectives of this study were to: (1) understand the phenomenon of continuous free oscillations of the Earth and (2) examine the idea of using this phenomenon for planetary seismology. We first describe the results on (1) and present our evaluations of the idea (2) in the final section. In 1997, after almost forty years since the initial attempt by Benioff et al, continuous free oscillations of the Earth were discovered. Spheroidal fundamental modes between 2 and 7 millihertz are excited continuously with acceleration amplitudes of about 0.3-0.5 nanogals. The signal is now commonly found in virtually all data recorded by STS-1 type broadband seismometers at quiet sites. Seasonal variation in amplitude and the existence of two coupled modes between the atmosphere and the solid Earth support that these oscillations are excited by the atmosphere. Stochastic excitation due to atmospheric turbulence is a favored mechanism, providing a good match between theory and data. The atmosphere has ample energy to support this theory because excitation of these modes require only 500-10000 W whereas the atmosphere contains about 117 W of kinetic energy. An application of this phenomenon includes planetary seismology, because other planets may be oscillating due to atmospheric excitation. The interior structure of planets could be learned by determining the eigenfrequencies in the continuous free oscillations. It is especially attractive to pursue this idea for tectonically quiet planets, since quakes may be too infrequent to be recorded by seismic instruments.

  15. Frequency Management for Electromagnetic Continuous Wave Conductivity Meters

    PubMed Central

    Mazurek, Przemyslaw; Putynkowski, Grzegorz

    2016-01-01

    Ground conductivity meters use electromagnetic fields for the mapping of geological variations, like the determination of water amount, depending on ground layers, which is important for the state analysis of embankments. The VLF band is contaminated by numerous natural and artificial electromagnetic interference signals. Prior to the determination of ground conductivity, the meter’s working frequency is not possible, due to the variable frequency of the interferences. Frequency management based on the analysis of the selected band using track-before-detect (TBD) algorithms, which allows dynamical frequency changes of the conductivity of the meter transmitting part, is proposed in the paper. Naive maximum value search, spatio-temporal TBD (ST-TBD), Viterbi TBD and a new algorithm that uses combined ST-TBD and Viterbi TBD are compared. Monte Carlo tests are provided for the numerical analysis of the properties for a single interference signal in the considered band, and a new approach based on combined ST-TBD and Viterbi algorithms shows the best performance. The considered algorithms process spectrogram data for the selected band, so DFT (Discrete Fourier Transform) could be applied for the computation of the spectrogram. Real–time properties, related to the latency, are discussed also, and it is shown that TBD algorithms are feasible for real applications. PMID:27070608

  16. Frequency Management for Electromagnetic Continuous Wave Conductivity Meters.

    PubMed

    Mazurek, Przemyslaw; Putynkowski, Grzegorz

    2016-04-07

    Ground conductivity meters use electromagnetic fields for the mapping of geological variations, like the determination of water amount, depending on ground layers, which is important for the state analysis of embankments. The VLF band is contaminated by numerous natural and artificial electromagnetic interference signals. Prior to the determination of ground conductivity, the meter's working frequency is not possible, due to the variable frequency of the interferences. Frequency management based on the analysis of the selected band using track-before-detect (TBD) algorithms, which allows dynamical frequency changes of the conductivity of the meter transmitting part, is proposed in the paper. Naive maximum value search, spatio-temporal TBD (ST-TBD), Viterbi TBD and a new algorithm that uses combined ST-TBD and Viterbi TBD are compared. Monte Carlo tests are provided for the numerical analysis of the properties for a single interference signal in the considered band, and a new approach based on combined ST-TBD and Viterbi algorithms shows the best performance. The considered algorithms process spectrogram data for the selected band, so DFT (Discrete Fourier Transform) could be applied for the computation of the spectrogram. Real-time properties, related to the latency, are discussed also, and it is shown that TBD algorithms are feasible for real applications.

  17. Recent Enhancements to the National Transonic Facility (Mixed Mode Operations)

    NASA Technical Reports Server (NTRS)

    Kilgore, W. Allen; Chan, David; Balakrishna, S.; Wahls, Richard A.

    2006-01-01

    The U.S. National Transonic Facility continues to make enhancements to provide quality data in a safe, efficient and cost effective method for aerodynamic ground testing. Recent enhancements discussed in this paper include the development of a Mixed-mode of operations that combine Air-mode operations with Nitrogen-mode operations. This implementation and operational results of this new Mixed-mode expands the ambient temperature transonic region of testing beyond the Air-mode limitations at a significantly reduced cost over Nitrogen Mode operation.

  18. A Review and Empirical Comparison of Three Treatments for Adolescent Males with Conduct and Personality Disorder: Mode Deactivation Therapy, Cognitive Behavior Therapy and Social Skills Training

    ERIC Educational Resources Information Center

    Apsche, Jack A.; Bass, Christopher K.

    2006-01-01

    This research study compared the efficacy of three treatment methodologies for adolescent males in residential treatment with conduct disorders and/or personality dysfunctions and documented problems with physical and sexual aggression. The results showed that Mode Deactivation Therapy, an advanced form of cognitive behavioral therapy based on…

  19. Identification of nonlinear modes using phase-locked-loop experimental continuation and normal form

    NASA Astrophysics Data System (ADS)

    Denis, V.; Jossic, M.; Giraud-Audine, C.; Chomette, B.; Renault, A.; Thomas, O.

    2018-06-01

    In this article, we address the model identification of nonlinear vibratory systems, with a specific focus on systems modeled with distributed nonlinearities, such as geometrically nonlinear mechanical structures. The proposed strategy theoretically relies on the concept of nonlinear modes of the underlying conservative unforced system and the use of normal forms. Within this framework, it is shown that without internal resonance, a valid reduced order model for a nonlinear mode is a single Duffing oscillator. We then propose an efficient experimental strategy to measure the backbone curve of a particular nonlinear mode and we use it to identify the free parameters of the reduced order model. The experimental part relies on a Phase-Locked Loop (PLL) and enables a robust and automatic measurement of backbone curves as well as forced responses. It is theoretically and experimentally shown that the PLL is able to stabilize the unstable part of Duffing-like frequency responses, thus enabling its robust experimental measurement. Finally, the whole procedure is tested on three experimental systems: a circular plate, a chinese gong and a piezoelectric cantilever beam. It enable to validate the procedure by comparison to available theoretical models as well as to other experimental identification methods.

  20. Equilibrium sampling through membranes (ESTM) of acidic organic pollutants using hollow fibre modules in continuous steady-state mode.

    PubMed

    Larsson, Niklas; Utterback, Karl; Toräng, Lars; Risberg, Johan; Gustafsson, Per; Mayer, Philipp; Jönsson, Jan Ke

    2009-08-01

    Hollow fibre (HF) membrane modules were applied in continuous mode for equilibrium sampling through membranes (ESTM) of polar organic pollutants. Phenolic compounds (chlorophenols, cresols and phenol) served as model substances and ESTM was tuned towards the measurement of freely dissolved concentrations (C(free)). HF membrane modules were constructed using thin-walled membrane, 1-m module length and low packing density in order to optimise the uptake kinetics of the analytes into the acceptor solution. Such custom made devices were tested and compared to commercially available modules. The former modules performed best for continuous ESTM. The custom made modules provided steady-state equilibrium within 20-40 min and enrichment that was in general agreement with calculated distribution ratios between acceptor and sample. In experiments during which sample concentration was changed, acceptor response time to decreased sample concentration was around 30 min for custom built modules. In the presence of commercial humic acids, analytes showed lower steady-state enrichment, which is due to a decrease in C(free). Continuous ESTM may be automated and is suggested for use in online determination of C(free) of pollutants and studies on sorption of pollutants. Future studies should include optimisation of the membrane liquid and factors regarding the residence time of the acceptor solution in the fibre lumen. Qualitative aspects of DOM should also be included, as natural DOM can be fractionated. C(free) could be correlated to DOM properties that have previously been shown to influence sorption, such as aromaticity, carboxylic acid content and molecular size.

  1. Dual-Mode Combustion of Hydrogen in a Mach 5, Continuous-Flow Facility

    NASA Technical Reports Server (NTRS)

    Goyne, C. P.; McDaniel, J. C.; Quagliaroli, T. M.; Krauss, R. H.; Day, S. W.; Reubush, D. E. (Technical Monitor); McClinton, C. R. (Technical Monitor); Reubush, D. E.

    2001-01-01

    Results of an experimental and numerical study of a dual-mode scramjet combustor are reported. The experiment consisted of a direct-connect test of a Mach 2 hydrogen-air combustor with a single unswept-ramp fuel injector. The flow stagnation enthalpy simulated a flight Mach number of 5. Measurements were obtained using conventional wall instrumentation and a particle-imaging laser diagnostic technique. The particle imaging was enabled through the development of a new apparatus for seeding fine silicon dioxide particles into the combustor fuel stream. Numerical simulations of the combustor were performed using the GASP code. The modeling, and much of the experimental work, focused on the supersonic combustion mode. Reasonable agreement was observed between experimental and numerical wall pressure distributions. However, the numerical model was unable to predict accurately the effects of combustion on the fuel plume size, penetration, shape, and axial growth.

  2. Quantized Majorana conductance

    NASA Astrophysics Data System (ADS)

    Zhang, Hao; Liu, Chun-Xiao; Gazibegovic, Sasa; Xu, Di; Logan, John A.; Wang, Guanzhong; van Loo, Nick; Bommer, Jouri D. S.; de Moor, Michiel W. A.; Car, Diana; Op Het Veld, Roy L. M.; van Veldhoven, Petrus J.; Koelling, Sebastian; Verheijen, Marcel A.; Pendharkar, Mihir; Pennachio, Daniel J.; Shojaei, Borzoyeh; Lee, Joon Sue; Palmstrøm, Chris J.; Bakkers, Erik P. A. M.; Sarma, S. Das; Kouwenhoven, Leo P.

    2018-04-01

    Majorana zero-modes—a type of localized quasiparticle—hold great promise for topological quantum computing. Tunnelling spectroscopy in electrical transport is the primary tool for identifying the presence of Majorana zero-modes, for instance as a zero-bias peak in differential conductance. The height of the Majorana zero-bias peak is predicted to be quantized at the universal conductance value of 2e2/h at zero temperature (where e is the charge of an electron and h is the Planck constant), as a direct consequence of the famous Majorana symmetry in which a particle is its own antiparticle. The Majorana symmetry protects the quantization against disorder, interactions and variations in the tunnel coupling. Previous experiments, however, have mostly shown zero-bias peaks much smaller than 2e2/h, with a recent observation of a peak height close to 2e2/h. Here we report a quantized conductance plateau at 2e2/h in the zero-bias conductance measured in indium antimonide semiconductor nanowires covered with an aluminium superconducting shell. The height of our zero-bias peak remains constant despite changing parameters such as the magnetic field and tunnel coupling, indicating that it is a quantized conductance plateau. We distinguish this quantized Majorana peak from possible non-Majorana origins by investigating its robustness to electric and magnetic fields as well as its temperature dependence. The observation of a quantized conductance plateau strongly supports the existence of Majorana zero-modes in the system, consequently paving the way for future braiding experiments that could lead to topological quantum computing.

  3. Testing quantum contextuality of continuous-variable states

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McKeown, Gerard; Paternostro, Mauro; Paris, Matteo G. A.

    2011-06-15

    We investigate the violation of noncontextuality by a class of continuous-variable states, including variations of entangled coherent states and a two-mode continuous superposition of coherent states. We generalize the Kochen-Specker (KS) inequality discussed by Cabello [A. Cabello, Phys. Rev. Lett. 101, 210401 (2008)] by using effective bidimensional observables implemented through physical operations acting on continuous-variable states, in a way similar to an approach to the falsification of Bell-Clauser-Horne-Shimony-Holt inequalities put forward recently. We test for state-independent violation of KS inequalities under variable degrees of state entanglement and mixedness. We then demonstrate theoretically the violation of a KS inequality for anymore » two-mode state by using pseudospin observables and a generalized quasiprobability function.« less

  4. A minimalist operating mode for UKIRT

    NASA Astrophysics Data System (ADS)

    Kerr, Tom; Davis, Gary R.; Craig, Simon C.; Walther, Craig; Chuter, Tim

    2012-09-01

    In late 2010, driven by funding pressure from its governing body, the United Kingdom Infrared Telescope (UKIRT) underwent the most significant operational change in its history culminating in a new "minimalist mode" operation. Since 13th December 2010 this telescope, situated at the summit of Mauna Kea, Hawaii, has been operated remotely from the Joint Astronomy Centre in Hilo, with a priority on completing the UKIRT Infrared Deep Sky Survey (UKIDSS) but also continued support of other international programmes. In mid-2012, while remaining in minimalist mode, the observatory plans to start a new and ambitious near-infrared survey of the northern sky called the UKIRT Hemisphere Survey. The change to minimalist mode has resulted in the following: the cost of running the observatory has been reduced from 3.9M to 2.0M yet despite the changes, which included a reduction in staff and support, the UKIRT continues to operate at 90% efficiency, a level it has operated at for the last several years. The fault rate remains extremely low (approximately 3%) and has not been affected by remote operations and up until February 2012 no time-losing faults were attributed to operating remotely. This paper discusses the motivations behind the change to minimalist mode, the new mode of operation itself, the effect, if any, of the change on operational efficiency and the challenges facing a remotely operated telescope at a remote mountain site.

  5. A Characteristic Mode Analysis of Conductive Nanowires and Microwires Above a Lossy Dielectric Half-Space

    NASA Astrophysics Data System (ADS)

    Kiddle, Daniel S.

    Nanowires possess extraordinary mechanical, thermoelectric and electromagnetic properties which led to their incorporation in a wide variety of applications. The purpose of this study is to investigate the effect of material on the electromagnetic response of these nanowires. We used the Method of Moments (MOM) for Arbitrarily Thin Wire (ATW) formulation as an efficient computational technique for calculating the electromagnetic response of nanowires. To explain the calculated electromagnetic response, we evoked the Characteristic Mode Analysis (CMA) which decomposes the current on the wire into a superposition of fundamental current modes. These modes are weighted by two coefficients: (i) the relative importance of each mode at a certain frequency, termed Modal Significance, and (ii) the level of coupling between the incident field and the mode termed the Modal Excitation Coefficient. In this, work we study how the wire's material affect the Modal Significance and the Modal Excitation Coefficient of nanowires. Our results show that the material of the nanowire has a strong effect on the resonance frequency, the bandwidth, and the overlap of the modes showing that the material of the nanowire can be used as a tuning factor to develop sensors with desired radiation characteristics. Nanowires are commonly grown vertically on a substrate and, therefore, we also study the effect of the presence of a lossy dielectric half-space on their electromagnetic response. To efficiently account for this interface, we utilize a modified Green's function using the rigorous Sommerfeld integrals. Our results show that the relative permittivity of the substrate decreases the resonance frequencies of the nanowires and significantly alters their radiation patterns. Most importantly, we find that, if the nanowire is near the interface, its evanescent field's couple to the dielectric half space leading to the majority of the scattered power radiated into the substrate with high

  6. Can carbon nanotube fibers achieve the ultimate conductivity?—Coupled-mode analysis for electron transport through the carbon nanotube contact

    NASA Astrophysics Data System (ADS)

    Xu, Fangbo; Sadrzadeh, Arta; Xu, Zhiping; Yakobson, Boris I.

    2013-08-01

    Recent measurements of carbon nanotube (CNT) fibers electrical conductivity still show the values lower than that of individual CNTs, by about one magnitude order. The imperfections of manufacturing process and constituent components are described as culprits. What if every segment is made perfect? In this work, we study the quantum conductance through the parallel junction of flawless armchair CNTs using tight-binding method in conjunction with non-equilibrium Green's function approach. Short-range oscillations within the long-range oscillations as well as decaying envelopes are all observed in the computed Fermi-level (low bias) conductance as a function of contact length, L. The propagation of CNTs' Bloch waves is cast in the coupled-mode formalism and helps to reveal the quantum interference nature of various behaviors of conductance. Our analysis shows that the Bloch waves at the Fermi-level propagate through a parallel junction without reflection only at an optimal value of contact length. For quite a long junction, however, the conductance at the Fermi level diminishes due to the perturbation of periodic potential field of close-packed CNTs. Thus, a macroscopic fiber, containing an infinite number of junctions, forms a filter that permits passage of electrons with specific wave vectors, and these wave vectors are determined by the collection of all the junction lengths. We also argue that the energy gap introduced by long junctions can be overcome by small voltage (˜0.04 V) across the whole fiber. Overall, developing long individual all-armchair metallic CNTs serves as a promising way to the manufacture of high-conductivity fibers.

  7. Continuous-variable quantum teleportation with non-Gaussian resources

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dell'Anno, F.; Dipartimento di Fisica, Universita degli Studi di Salerno, Via S. Allende, I-84081 Baronissi; CNR-INFM Coherentia, Napoli, Italy and CNISM Unita di Salerno and INFN Sezione di Napoli, Gruppo Collegato di Salerno, Baronissi

    2007-08-15

    We investigate continuous variable quantum teleportation using non-Gaussian states of the radiation field as entangled resources. We compare the performance of different classes of degaussified resources, including two-mode photon-added and two-mode photon-subtracted squeezed states. We then introduce a class of two-mode squeezed Bell-like states with one-parameter dependence for optimization. These states interpolate between and include as subcases different classes of degaussified resources. We show that optimized squeezed Bell-like resources yield a remarkable improvement in the fidelity of teleportation both for coherent and nonclassical input states. The investigation reveals that the optimal non-Gaussian resources for continuous variable teleportation are those thatmore » most closely realize the simultaneous maximization of the content of entanglement, the degree of affinity with the two-mode squeezed vacuum, and the, suitably measured, amount of non-Gaussianity.« less

  8. Proposal on How To Conduct a Biopharmaceutical Process Failure Mode and Effect Analysis (FMEA) as a Risk Assessment Tool.

    PubMed

    Zimmermann, Hartmut F; Hentschel, Norbert

    2011-01-01

    With the publication of the quality guideline ICH Q9 "Quality Risk Management" by the International Conference on Harmonization, risk management has already become a standard requirement during the life cycle of a pharmaceutical product. Failure mode and effect analysis (FMEA) is a powerful risk analysis tool that has been used for decades in mechanical and electrical industries. However, the adaptation of the FMEA methodology to biopharmaceutical processes brings about some difficulties. The proposal presented here is intended to serve as a brief but nevertheless comprehensive and detailed guideline on how to conduct a biopharmaceutical process FMEA. It includes a detailed 1-to-10-scale FMEA rating table for occurrence, severity, and detectability of failures that has been especially designed for typical biopharmaceutical processes. The application for such a biopharmaceutical process FMEA is widespread. It can be useful whenever a biopharmaceutical manufacturing process is developed or scaled-up, or when it is transferred to a different manufacturing site. It may also be conducted during substantial optimization of an existing process or the development of a second-generation process. According to their resulting risk ratings, process parameters can be ranked for importance and important variables for process development, characterization, or validation can be identified. Health authorities around the world ask pharmaceutical companies to manage risk during development and manufacturing of pharmaceuticals. The so-called failure mode and effect analysis (FMEA) is an established risk analysis tool that has been used for decades in mechanical and electrical industries. However, the adaptation of the FMEA methodology to pharmaceutical processes that use modern biotechnology (biopharmaceutical processes) brings about some difficulties, because those biopharmaceutical processes differ from processes in mechanical and electrical industries. The proposal presented here

  9. High power, widely tunable, mode-hop free, continuous wave external cavity quantum cascade laser for multi-species trace gas detection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Centeno, R.; Marchenko, D.; Mandon, J.

    We present a high power, widely tunable, continuous wave external cavity quantum cascade laser designed for infrared vibrational spectroscopy of molecules exhibiting broadband and single line absorption features. The laser source exhibits single mode operation with a tunability up to 303 cm{sup −1} (∼24% of the center wavelength) at 8 μm, with a maximum optical output power of 200 mW. In combination with off-axis integrated output spectroscopy, trace-gas detection of broadband absorption gases such as acetone was performed and a noise equivalent absorption sensitivity of 3.7 × 10{sup −8 }cm{sup −1 }Hz{sup −1/2} was obtained.

  10. 940  mW 1564  nm multi-longitudinal-mode and 440  mW 1537  nm single-longitudinal-mode continuous-wave Er:Yb:Lu2Si2O7 microchip lasers.

    PubMed

    Huang, Jianhua; Chen, Yujin; Lin, Yanfu; Gong, Xinghong; Luo, Zundu; Huang, Yidong

    2018-04-15

    An Er:Yb:Lu 2 Si 2 O 7 microchip laser was constructed by placing a 1.2 mm thick, Y-cut Er:Yb:Lu 2 Si 2 O 7 microchip between two 1.2 mm thick sapphire crystals, in which input and output mirrors were directly deposited onto one face of each crystal. End-pumped by a continuous-wave 975.4 nm diode laser, a 1564 nm multi-longitudinal-mode laser with a maximum output power of 940 mW and slope efficiency of 20% was realized at an absorbed pump power of 5.5 W when the transmission of output mirror was 2.2%. When the transmission of the output mirror was increased to 6%, a 1537 nm single-longitudinal-mode laser with a maximum output power of 440 mW and slope efficiency of 12% was realized at an absorbed pump power of 4.3 W. The results indicate that the Er:Yb:Lu 2 Si 2 O 7 crystal is a promising microchip gain medium to realize a single-longitudinal-mode laser.

  11. Stabilizing windings for tilting and shifting modes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jardin, S.C.; Christensen, U.R.

    1982-02-26

    This invention provides simple, inexpensive, independent and passive, conducting loops for stabilizing a plasma ring having externally produced equilibrium fields on opposite sides of the plasma ring and internal plasma currents that interact to tilt and/or shift the plasma ring relative to the externally produced equilibrium field so as to produce unstable tilting and/or shifting modes in the plasma ring. More particularly this invention provides first and second passive conducting loops for containing first and second induced currents in first and second directions corresponding to the amplitude and directions of the unstable tilting and/or shifting modes in the plasma ring.more » To this end, the induced currents provide additional magnetic fields for producing restoring forces and/or restoring torques for counteracting the tilting and/or shifting modes when the conducting loops are held fixed in stationary positions relative to the externally produced equilibrium fields on opposite sides of the plasma ring.« less

  12. Oscillations in the reduction of permanganate by hydrogen peroxide or by ninhydrin in a batch reactor and mixed-mode oscillations in a continuous-flow stirred tank reactor

    NASA Astrophysics Data System (ADS)

    Tóthová, Mária; Nagy, Arpád; Treindl, Ľudovít.

    1999-01-01

    The periodical reduction of permanganate by hydrogen peroxide or by ninhydrin with transient oscillations in a closed system has been observed and discussed in relation to the first two permanganate oscillators described earlier. The mixed-mode oscillations of the permanganate-H 2O 2 oscillating system in a continuous-flow stirred tank reactor have been described.

  13. An integrated parity-time symmetric wavelength-tunable single-mode microring laser

    PubMed Central

    Liu, Weilin; Li, Ming; Guzzon, Robert S.; Norberg, Erik J.; Parker, John S.; Lu, Mingzhi; Coldren, Larry A.; Yao, Jianping

    2017-01-01

    Mode control in a laser cavity is critical for a stable single-mode operation of a ring laser. In this study we propose and experimentally demonstrate an electrically pumped parity-time (PT)-symmetric microring laser with precise mode control, to achieve wavelength-tunable single-mode lasing with an improved mode suppression ratio. The proposed PT-symmetric laser is implemented based on a photonic integrated circuit consisting of two mutually coupled active microring resonators. By incorporating multiple semiconductor optical amplifiers in the microring resonators, the PT-symmetry condition can be achieved by a precise manipulation of the interplay between the gain and loss in the two microring resonators, and the incorporation of phase modulators in the microring resonators enables continuous wavelength tuning. Single-mode lasing at 1,554.148 nm with a sidemode suppression ratio exceeding 36 dB is demonstrated and the lasing wavelength is continuously tunable from 1,553.800 to 1,554.020 nm. PMID:28497784

  14. An integrated parity-time symmetric wavelength-tunable single-mode microring laser.

    PubMed

    Liu, Weilin; Li, Ming; Guzzon, Robert S; Norberg, Erik J; Parker, John S; Lu, Mingzhi; Coldren, Larry A; Yao, Jianping

    2017-05-12

    Mode control in a laser cavity is critical for a stable single-mode operation of a ring laser. In this study we propose and experimentally demonstrate an electrically pumped parity-time (PT)-symmetric microring laser with precise mode control, to achieve wavelength-tunable single-mode lasing with an improved mode suppression ratio. The proposed PT-symmetric laser is implemented based on a photonic integrated circuit consisting of two mutually coupled active microring resonators. By incorporating multiple semiconductor optical amplifiers in the microring resonators, the PT-symmetry condition can be achieved by a precise manipulation of the interplay between the gain and loss in the two microring resonators, and the incorporation of phase modulators in the microring resonators enables continuous wavelength tuning. Single-mode lasing at 1,554.148 nm with a sidemode suppression ratio exceeding 36 dB is demonstrated and the lasing wavelength is continuously tunable from 1,553.800 to 1,554.020 nm.

  15. Actively mode-locked erbium fiber ring laser using a Fabry-Perot semiconductor modulator as mode locker and tunable filter

    NASA Astrophysics Data System (ADS)

    Li, Shenping; Chan, K. T.

    1999-05-01

    A wavelength-tunable actively mode-locked erbium fiber ring laser was demonstrated using a Fabry-Perot semiconductor modulator. The modulator played the simultaneous roles of an intensity mode locker and a tunable optical filter. Stable single- or dual-wavelength nearly transform-limited picosecond pulses at gigabit repetition rates were generated. Continuous wavelength tuning was achieved by simply controlling the temperature of the modulator. Pulse train with a repetition rate up to 19.93 GHz (eight times the driving frequency) was obtained by using rational harmonic mode-locking technique.

  16. Doped SnO₂ transparent conductive multilayer thin films explored by continuous composition spread.

    PubMed

    Lee, Jin Ju; Ha, Jong-Yoon; Choi, Won-Kook; Cho, Yong Soo; Choi, Ji-Won

    2015-04-13

    Mn-doped SnO₂ thin films were fabricated by a continuous composition spread (CCS) method on a glass substrate at room temperature to find optimized compositions. The fabricated materials were found to have a lower resistivity than pure SnO₂ thin films because of oxygen vacancies generated by Mn doping. As Mn content was increased, resistivity was found to decrease for limited doping concentrations. The minimum thin film resistivity was 0.29 Ω-cm for a composition of 2.59 wt % Mn-doped SnO₂. The Sn-O vibrational stretching frequency in FT-IR showed a blue shift, consistent with oxygen deficiency. Mn-doped SnO₂/Ag/Mn-doped SnO₂ multilayer structures were fabricated using this optimized composition deposited by an on-axis radio frequency (RF) sputter. The multilayer transparent conducting oxide film had a resistivity of 7.35 × 10⁻⁵ Ω-cm and an average transmittance above 86% in the 550 nm wavelength region.

  17. Fracture under combined modes in 4340 steel

    NASA Technical Reports Server (NTRS)

    Shah, R. C.

    1974-01-01

    An experimental investigation was conducted to study the interaction of combined modes of loading on crack instability in the presence of the opening and sliding modes of stress intensity factors, the opening and tearing modes of stress intensity factors, and all three modes of stress intensity factors. Through-cracked and surface-cracked flat and round specimens, and round notched bar specimens fabricated from high strength 4340 steel were used for the investigation. The results are evaluated to determine fracture criteria under the combined modes of stress intensity factors for the 4340 steel. These results are compared with the results of other investigators obtained for different materials.

  18. Multi-mode horn

    NASA Technical Reports Server (NTRS)

    Neilson, Jeffrey M. (Inventor)

    2002-01-01

    A horn has an input aperture and an output aperture, and comprises a conductive inner surface formed by rotating a curve about a central axis. The curve comprises a first arc having an input aperture end and a transition end, and a second arc having a transition end and an output aperture end. When rotated about the central axis, the first arc input aperture end forms an input aperture, and the second arc output aperture end forms an output aperture. The curve is then optimized to provide a mode conversion which maximizes the power transfer of input energy to the Gaussian mode at the output aperture.

  19. Observation of conducting filament growth in nanoscale resistive memories

    NASA Astrophysics Data System (ADS)

    Yang, Yuchao; Gao, Peng; Gaba, Siddharth; Chang, Ting; Pan, Xiaoqing; Lu, Wei

    2012-03-01

    Nanoscale resistive switching devices, sometimes termed memristors, have recently generated significant interest for memory, logic and neuromorphic applications. Resistive switching effects in dielectric-based devices are normally assumed to be caused by conducting filament formation across the electrodes, but the nature of the filaments and their growth dynamics remain controversial. Here we report direct transmission electron microscopy imaging, and structural and compositional analysis of the nanoscale conducting filaments. Through systematic ex-situ and in-situ transmission electron microscopy studies on devices under different programming conditions, we found that the filament growth can be dominated by cation transport in the dielectric film. Unexpectedly, two different growth modes were observed for the first time in materials with different microstructures. Regardless of the growth direction, the narrowest region of the filament was found to be near the dielectric/inert-electrode interface in these devices, suggesting that this region deserves particular attention for continued device optimization.

  20. Interface conductance modal analysis of lattice matched InGaAs/InP

    NASA Astrophysics Data System (ADS)

    Gordiz, Kiarash; Henry, Asegun

    2016-05-01

    We studied the heat conduction at InGaAs/InP interfaces and found that the total value of interface conductance was quite high ˜830 MW m-2 K-1. The modal contributions to the thermal interface conductance (TIC) were then investigated to determine the mode responsible. Using the recently developed interface conductance modal analysis method, we showed that more than 70% of the TIC arises from extended modes in the system. The lattice dynamics calculations across the interface revealed that, unlike any other interfaces previously studied, the different classes of vibration around the interface of InGaAs/InP naturally segregate into distinct regions with respect to frequency. In addition, interestingly, the entire region of frequency overlap between the sides of the interface is occupied by extended modes, whereby the two materials vibrate together with a single frequency. We also mapped the correlations between modes, which showed that the contribution by extended modes to the TIC primarily arises from coupling to the modes that have the same frequencies of vibration (i.e., autocorrelations). Moreover, interfacial modes despite their low population still contribute more than 6% to interfacial thermal transport. The analysis sheds light on the nature of heat conduction by different classes of vibration that exist in interfacial systems, which has technological relevance to applications such as thermophotovoltaics and optoelectronics.

  1. Design of an ultra low power third order continuous time current mode ΣΔ modulator for WLAN applications.

    PubMed

    Behzadi, Kobra; Baghelani, Masoud

    2014-05-01

    This paper presents a third order continuous time current mode ΣΔ modulator for WLAN 802.11b standard applications. The proposed circuit utilized feedback architecture with scaled and optimized DAC coefficients. At circuit level, we propose a modified cascade current mirror integrator with reduced input impedance which results in more bandwidth and linearity and hence improves the dynamic range. Also, a very fast and precise novel dynamic latch based current comparator is introduced with low power consumption. This ultra fast comparator facilitates increasing the sampling rate toward GHz frequencies. The modulator exhibits dynamic range of more than 60 dB for 20 MHz signal bandwidth and OSR of 10 while consuming only 914 μW from 1.8 V power supply. The FoM of the modulator is calculated from two different methods, and excellent performance is achieved for proposed modulator.

  2. Design of an ultra low power third order continuous time current mode ΣΔ modulator for WLAN applications

    PubMed Central

    Behzadi, Kobra; Baghelani, Masoud

    2013-01-01

    This paper presents a third order continuous time current mode ΣΔ modulator for WLAN 802.11b standard applications. The proposed circuit utilized feedback architecture with scaled and optimized DAC coefficients. At circuit level, we propose a modified cascade current mirror integrator with reduced input impedance which results in more bandwidth and linearity and hence improves the dynamic range. Also, a very fast and precise novel dynamic latch based current comparator is introduced with low power consumption. This ultra fast comparator facilitates increasing the sampling rate toward GHz frequencies. The modulator exhibits dynamic range of more than 60 dB for 20 MHz signal bandwidth and OSR of 10 while consuming only 914 μW from 1.8 V power supply. The FoM of the modulator is calculated from two different methods, and excellent performance is achieved for proposed modulator. PMID:25685504

  3. Innovation of University Teaching Faculty Management Mode

    ERIC Educational Resources Information Center

    Han, Yuzheng; Wang, Boyu

    2015-01-01

    With the deepening of university reform in China, the traditional teaching faculty management mode has been exposed more and more defects. To make innovation of the university teaching faculty management mode becomes the voice of the times. Universities should conduct careful research on this issue in the development. Starting from the…

  4. An Investigation of CTOL Dual-Mode PAVE Concepts

    NASA Technical Reports Server (NTRS)

    Marchman, James F., III; Interatep, Nanyaporn; Skelton, Eugene; Mason, William H.

    2002-01-01

    A study was conducted to assess the feasibility of the dual-mode concept for a personal air vehicle, to determine how constraints differ between the dual-mode concept and a Conventional Takeoff and Landing (CTOL) general aviation aircraft, to recommend a dual-mode vehicle concept, and to recommend areas where further research can contribute to the successful development of a viable PAVE vehicle design.

  5. Dual-Pump CARS Measurements in the University of Virginia's Dual-Mode Scramjet: Configuration "C"

    NASA Technical Reports Server (NTRS)

    Cutler, Andrew D.; Magnotti, Gaetano; Cantu, Luca; Gallo, Emanuela; Danehy, Paul M.; Rockwell, Robert; Goyne, Christopher; McDaniel, James

    2013-01-01

    Measurements have been conducted at the University of Virginia Supersonic Combustion Facility in configuration C of the dual-mode scramjet. This is a continuation of previously published works on configuration A. The scramjet is hydrogen fueled and operated at two equivalence ratios, one representative of the scram mode and the other of the ram mode. Dual-pump CARS was used to acquire the mole fractions of the major species as well as the rotational and vibrational temperatures of N2. Developments in methods and uncertainties in fitting CARS spectra for vibrational temperature are discussed. Mean quantities and the standard deviation of the turbulent fluctuations at multiple planes in the flow path are presented. In the scram case the combustion of fuel is completed before the end of the measurement domain, while for the ram case the measurement domain extends into the region where the flow is accelerating and combustion is almost completed. Higher vibrational than rotational temperature is observed in those parts of the hot combustion plume where there is substantial H2 (and hence chemical reaction) present.

  6. Characteristics of ZnO nanostructures synthesized by sonochemical reaction: Effects of continuous and pulse waves

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Widiyastuti, W., E-mail: widi@chem-eng.its.ac.id; Machmudah, Siti; Kusdianto,

    Nanostructured ZnO was synthesized by a sonochemical reaction. Ultrasonic irradiation were set up in continuous, pulse in 3 seconds on and a second off (on:off=3:1), and pulse in 2 seconds on and a second off (on:off=2:1) wave modes for 1.5 hours. The characteristics of particles generated by these modes such as morphology, crystallinity, FTIR, photoluminescence, and photocatalytic activity to degrade methylene blue were compared. Zinc nitrate and ammonia water-based solutions were selected as chemicals without the addition of other surfactants. The morphology of the generated ZnO particles could be tuned from flower-like, needle- or hairy-like, and spherical structures by changingmore » the mode of ultrasonic irradiation from continuous, on:off=3:1, and on:off=2:1 modes, respectively. The generated particles indicated that a wurtzite structure of ZnO in a hexagonal phase was formed. The crystalline sizes of particles generated in continuous, on:off=3:1, and on:off=2:1 modes were 28, 27, 24 nm. A similar position of reduction peak of FTIR in all samples indicated that no differences in particles chemical bonding characteristics. Photoluminescence intensity was also decreased with changes the wave mode from continuous to pulse. Photocatalytic activity was also evaluated resulting in particles synthesized by continuous mode had the highest methylene blue degradation degree following by on:off=3:1, and on:off=2:1 modes.« less

  7. Characteristics of ZnO nanostructures synthesized by sonochemical reaction: Effects of continuous and pulse waves

    NASA Astrophysics Data System (ADS)

    Widiyastuti, W.; Machmudah, Siti; Kusdianto, Nurtono, Tantular; Winardi, Sugeng

    2015-12-01

    Nanostructured ZnO was synthesized by a sonochemical reaction. Ultrasonic irradiation were set up in continuous, pulse in 3 seconds on and a second off (on:off=3:1), and pulse in 2 seconds on and a second off (on:off=2:1) wave modes for 1.5 hours. The characteristics of particles generated by these modes such as morphology, crystallinity, FTIR, photoluminescence, and photocatalytic activity to degrade methylene blue were compared. Zinc nitrate and ammonia water-based solutions were selected as chemicals without the addition of other surfactants. The morphology of the generated ZnO particles could be tuned from flower-like, needle- or hairy-like, and spherical structures by changing the mode of ultrasonic irradiation from continuous, on:off=3:1, and on:off=2:1 modes, respectively. The generated particles indicated that a wurtzite structure of ZnO in a hexagonal phase was formed. The crystalline sizes of particles generated in continuous, on:off=3:1, and on:off=2:1 modes were 28, 27, 24 nm. A similar position of reduction peak of FTIR in all samples indicated that no differences in particles chemical bonding characteristics. Photoluminescence intensity was also decreased with changes the wave mode from continuous to pulse. Photocatalytic activity was also evaluated resulting in particles synthesized by continuous mode had the highest methylene blue degradation degree following by on:off=3:1, and on:off=2:1 modes.

  8. Towards cooperative guidance and control of highly automated vehicles: H-Mode and Conduct-by-Wire.

    PubMed

    Flemisch, Frank Ole; Bengler, Klaus; Bubb, Heiner; Winner, Hermann; Bruder, Ralph

    2014-01-01

    This article provides a general ergonomic framework of cooperative guidance and control for vehicles with an emphasis on the cooperation between a human and a highly automated vehicle. In the twenty-first century, mobility and automation technologies are increasingly fused. In the sky, highly automated aircraft are flying with a high safety record. On the ground, a variety of driver assistance systems are being developed, and highly automated vehicles with increasingly autonomous capabilities are becoming possible. Human-centred automation has paved the way for a better cooperation between automation and humans. How can these highly automated systems be structured so that they can be easily understood, how will they cooperate with the human? The presented research was conducted using the methods of iterative build-up and refinement of framework by triangulation, i.e. by instantiating and testing the framework with at least two derived concepts and prototypes. This article sketches a general, conceptual ergonomic framework of cooperative guidance and control of highly automated vehicles, two concepts derived from the framework, prototypes and pilot data. Cooperation is exemplified in a list of aspects and related to levels of the driving task. With the concept 'Conduct-by-Wire', cooperation happens mainly on the guidance level, where the driver can delegate manoeuvres to the automation with a specialised manoeuvre interface. With H-Mode, a haptic-multimodal interaction with highly automated vehicles based on the H(orse)-Metaphor, cooperation is mainly done on guidance and control with a haptically active interface. Cooperativeness should be a key aspect for future human-automation systems. Especially for highly automated vehicles, cooperative guidance and control is a research direction with already promising concepts and prototypes that should be further explored. The application of the presented approach is every human-machine system that moves and includes high

  9. A monitor for continuous measurement of temperature, pH, and conductance of wet precipitation: Preliminary results from the Adirondack Mountains, New York

    USGS Publications Warehouse

    Johnsson, P.A.; Reddy, M.M.

    1990-01-01

    This report describes a continuous wet-only precipitation monitor designed by the U.S. Geological Survey to record variations in rainfall temperature, pH, and specific conductance at 1-min intervals over the course of storms. Initial sampling in the Adirondack Mountains showed that rainfall acidity varied over the course of summer storms, with low initial pH values increasing as storm intensity increased.This report describes a continuous wet-only precipitation monitor designed by the U.S. Geological Survey to record variations in rainfall temperature, pH, and specific conductance at 1-min intervals over the course of storms. Initial sampling in the Adirondack Mountains showed that rainfall acidity varied over the course of summer storms, with low initial pH values increasing as storm intensity increased.

  10. Andreev rectifier: A nonlocal conductance signature of topological phase transitions

    NASA Astrophysics Data System (ADS)

    Rosdahl, T. Ö.; Vuik, A.; Kjaergaard, M.; Akhmerov, A. R.

    2018-01-01

    The proximity effect in hybrid superconductor-semiconductor structures, crucial for realizing Majorana edge modes, is complicated to control due to its dependence on many unknown microscopic parameters. In addition, defects can spoil the induced superconductivity locally in the proximitized system, which complicates measuring global properties with a local probe. We show how to use the nonlocal conductance between two spatially separated leads to probe three global properties of a proximitized system: the bulk superconducting gap, the induced gap, and the induced coherence length. Unlike local conductance spectroscopy, nonlocal conductance measurements distinguish between nontopological zero-energy modes localized around potential inhomogeneities, and true Majorana edge modes that emerge in the topological phase. In addition, we find that the nonlocal conductance is an odd function of bias at the topological phase transition, acting as a current rectifier in the low-bias limit. More generally, we identify conditions for crossed Andreev reflection to dominate the nonlocal conductance and show how to design a Cooper pair splitter in the open regime.

  11. Mode trap for absorbing transverse modes of an accelerated electron beam

    DOEpatents

    Chojnacki, E.P.

    1994-05-31

    A mode trap to trap and absorb transverse modes formed by a beam in a linear accelerator includes a waveguide having a multiplicity of electrically conductive (preferably copper) irises and rings, each iris and ring including an aperture, and the irises and rings being stacked in a side-by-side, alternating fashion such that the apertures of the irises and rings are concentrically aligned. An absorbing material layer such as a dielectric is embedded in each iris and ring, and this absorbing material layer encircles, but is circumferentially spaced from its respective aperture. Each iris and ring includes a plurality of circumferentially spaced slots around its aperture and extending radially out toward its absorbing material layer. 9 figs.

  12. Mode trap for absorbing transverse modes of an accelerated electron beam

    DOEpatents

    Chojnacki, Eric P.

    1994-01-01

    A mode trap to trap and absorb transverse modes formed by a beam in a linear accelerator includes a waveguide having a multiplicity of electrically conductive (preferably copper) irises and rings, each iris and ring including an aperture, and the irises and rings being stacked in a side-by-side, alternating fashion such that the apertures of the irises and rings are concentrically aligned. An absorbing material layer such as a dielectric is embedded in each iris and ring, and this absorbing material layer encircles, but is circumferentially spaced from its respective aperture. Each iris and ring includes a plurality of circumferentially spaced slots around its aperture and extending radially out toward its absorbing material layer.

  13. Conductivity of an atomically defined metallic interface

    PubMed Central

    Oliver, David J.; Maassen, Jesse; El Ouali, Mehdi; Paul, William; Hagedorn, Till; Miyahara, Yoichi; Qi, Yue; Guo, Hong; Grütter, Peter

    2012-01-01

    A mechanically formed electrical nanocontact between gold and tungsten is a prototypical junction between metals with dissimilar electronic structure. Through atomically characterized nanoindentation experiments and first-principles quantum transport calculations, we find that the ballistic conduction across this intermetallic interface is drastically reduced because of the fundamental mismatch between s wave-like modes of electron conduction in the gold and d wave-like modes in the tungsten. The mechanical formation of the junction introduces defects and disorder, which act as an additional source of conduction losses and increase junction resistance by up to an order of magnitude. These findings apply to nanoelectronics and semiconductor device design. The technique that we use is very broadly applicable to molecular electronics, nanoscale contact mechanics, and scanning tunneling microscopy. PMID:23129661

  14. Analysis of digital images into energy-angular momentum modes.

    PubMed

    Vicent, Luis Edgar; Wolf, Kurt Bernardo

    2011-05-01

    The measurement of continuous wave fields by a digital (pixellated) screen of sensors can be used to assess the quality of a beam by finding its formant modes. A generic continuous field F(x, y) sampled at an N × N Cartesian grid of point sensors on a plane yields a matrix of values F(q(x), q(y)), where (q(x), q(y)) are integer coordinates. When the approximate rotational symmetry of the input field is important, one may use the sampled Laguerre-Gauss functions, with radial and angular modes (n, m), to analyze them into their corresponding coefficients F(n, m) of energy and angular momentum (E-AM). The sampled E-AM modes span an N²-dimensional space, but are not orthogonal--except for parity. In this paper, we propose the properly orthonormal "Laguerre-Kravchuk" discrete functions Λ(n, m)(q(x), q(y)) as a convenient basis to analyze the sampled beams into their E-AM polar modes, and with them synthesize the input image exactly.

  15. DSPI technique for nanometer vibration mode measurement

    NASA Astrophysics Data System (ADS)

    Yue, Kaiduan; Jia, Shuhai; Tan, Yushan

    2000-05-01

    A time-average DSPI method for nanometer vibration mode measurement is presented in this paper. The phase continuous scan technique is combined with the Bessel fringe-shifting technique to quantitatively analyze the vibration mode by time-average DSPI is used in measurement system. Through the phase continuous scan, the background and speckle items are completely eliminated, which improves the fringe quality and enhances the signal-to-noise ratio of interferogram. There is no need to calibrate the optical phase-shifter exactly in this method. The anti-disturbance capability of this method is higher than that of the phase-stepping technique, so it is robust and easy to be used. In the vibration measurement system, the speckle average technology is used, so the high quality measuring results are obtained.

  16. Propagation characteristics of ultrasonic guided waves in continuously welded rail

    NASA Astrophysics Data System (ADS)

    Yao, Wenqing; Sheng, Fuwei; Wei, Xiaoyuan; Zhang, Lei; Yang, Yuan

    2017-07-01

    Rail defects cause numerous railway accidents. Trains are derailed and serious consequences often occur. Compared to traditional bulk wave testing, ultrasonic guided waves (UGWs) can provide larger monitoring ranges and complete coverage of the waveguide cross-section. These advantages are of significant importance for the non-destructive testing (NDT) of the continuously welded rail, and the technique is therefore widely used in high-speed railways. UGWs in continuous welded rail (CWR) and their propagation characteristics have been discussed in this paper. Finite element methods (FEMs) were used to accomplish a vibration modal analysis, which is extended by a subsequent dispersion analysis. Wave structure features were illustrated by displacement profiles. It was concluded that guided waves have the ability to detect defects in the rail via choice of proper mode and frequency. Additionally, thermal conduction that is caused by temperature variation in the rail is added into modeling and simulation. The results indicated that unbalanced thermal distribution may lead to the attenuation of UGWs in the rail.

  17. Anomalous thermal conductivity of monolayer boron nitride

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tabarraei, Alireza, E-mail: atabarra@uncc.edu; Wang, Xiaonan

    In this paper, we use nonequilibrium molecular dynamics modeling to investigate the thermal properties of monolayer hexagonal boron nitride nanoribbons under uniaxial strain along their longitudinal axis. Our simulations predict that hexagonal boron nitride shows an anomalous thermal response to the applied uniaxial strain. Contrary to three dimensional materials, under uniaxial stretching, the thermal conductivity of boron nitride nanoribbons first increases rather than decreasing until it reaches its peak value and then starts decreasing. Under compressive strain, the thermal conductivity of monolayer boron nitride ribbons monolithically reduces rather than increasing. We use phonon spectrum and dispersion curves to investigate themore » mechanism responsible for the unexpected behavior. Our molecular dynamics modeling and density functional theory results show that application of longitudinal tensile strain leads to the reduction of the group velocities of longitudinal and transverse acoustic modes. Such a phonon softening mechanism acts to reduce the thermal conductivity of the nanoribbons. On the other hand, a significant increase in the group velocity (stiffening) of the flexural acoustic modes is observed, which counteracts the phonon softening effects of the longitudinal and transverse modes. The total thermal conductivity of the ribbons is a result of competition between these two mechanisms. At low tensile strain, the stiffening mechanism overcomes the softening mechanism which leads to an increase in the thermal conductivity. At higher tensile strain, the softening mechanism supersedes the stiffening and the thermal conductivity slightly reduces. Our simulations show that the decrease in the thermal conductivity under compressive strain is attributed to the formation of buckling defects which reduces the phonon mean free path.« less

  18. A survey on the preference for continuing professional dental education amongst general dental practitioners who attended the 26th Asia Pacific Dental Congress.

    PubMed

    Chan, W C; Ng, C H; Yiu, B K; Liu, C Y; Ip, C M; Siu, H H; Chiu, G K C; Hägg, U; Jin, L J

    2006-11-01

    To identify the subjects of interest and to examine the modes as well as means of study for continuing professional dental education amongst general dental practitioners who attended the 26th Asia Pacific Dental Congress, 28 May-1 June 2004, Hong Kong. A total of 381 general dental practitioners as the registered conference delegates from Hong Kong, Mainland China and other Asia-Pacific regions were randomly selected for the present survey. The survey was conducted through face-to-face interviews by a group of practising dentists in Hong Kong. Overall, orthodontics and prosthodontics were the most popular subjects for clinical degree programmes, whilst oral implantology and cosmetic dentistry were the highly preferred subjects for continuing education courses. Concerning the preferred mode of study for degree programmes, the part-time study mode was chosen by 68.3% of the participating dentists. A didactic teaching approach was preferred by most of the participants (81.7%) for postgraduate study. The majority of the interviewees (76.5%) were interested in a proposed clinical degree programme to be offered jointly by The University of Hong Kong and a leading university in the Mainland. Overall, there was no marked difference in the preference for continuing dental education amongst the respondents from Hong Kong, Mainland China and other Asia-Pacific regions. The present survey shows the currently preferred specialty areas and subjects for continuing professional dental education amongst the general dental practitioners who attended the 26th Asia Pacific Dental Congress, with didactic teaching as the most preferred mode of study on a part-time basis.

  19. Phase-change memory: A continuous multilevel compact model of subthreshold conduction and threshold switching

    NASA Astrophysics Data System (ADS)

    Pigot, Corentin; Gilibert, Fabien; Reyboz, Marina; Bocquet, Marc; Zuliani, Paola; Portal, Jean-Michel

    2018-04-01

    Phase-change memory (PCM) compact modeling of the threshold switching based on a thermal runaway in Poole–Frenkel conduction is proposed. Although this approach is often used in physical models, this is the first time it is implemented in a compact model. The model accuracy is validated by a good correlation between simulations and experimental data collected on a PCM cell embedded in a 90 nm technology. A wide range of intermediate states is measured and accurately modeled with a single set of parameters, allowing multilevel programing. A good convergence is exhibited even in snapback simulation owing to this fully continuous approach. Moreover, threshold properties extraction indicates a thermally enhanced switching, which validates the basic hypothesis of the model. Finally, it is shown that this model is compliant with a new drift-resilient cell-state metric. Once enriched with a phase transition module, this compact model is ready to be implemented in circuit simulators.

  20. Phonon Transport at Crystalline Si/Ge Interfaces: The Role of Interfacial Modes of Vibration

    PubMed Central

    Gordiz, Kiarash; Henry, Asegun

    2016-01-01

    We studied the modal contributions to heat conduction at crystalline Si and crystalline Ge interfaces and found that more than 15% of the interface conductance arises from less than 0.1% of the modes in the structure. Using the recently developed interface conductance modal analysis (ICMA) method along with a new complimentary methodology, we mapped the correlations between modes, which revealed that a small group of interfacial modes, which exist between 12–13 THz, exhibit extremely strong correlation with other modes in the system. It is found that these interfacial modes (e.g., modes with large eigen vectors for interfacial atoms) are enabled by the degree of anharmonicity near the interface, which is higher than in the bulk, and therefore allows this small group of modes to couple to all others. The analysis sheds light on the nature of localized vibrations at interfaces and can be enlightening for other investigations of localization. PMID:26979787

  1. Excitation of Continuous and Discrete Modes in Incompressible Boundary Layers

    NASA Technical Reports Server (NTRS)

    Ashpis, David E.; Reshotko, Eli

    1998-01-01

    This report documents the full details of the condensed journal article by Ashpis & Reshotko (JFM, 1990) entitled "The Vibrating Ribbon Problem Revisited." A revised formal solution of the vibrating ribbon problem of hydrodynamic stability is presented. The initial formulation of Gaster (JFM, 1965) is modified by application of the Briggs method and a careful treatment of the complex double Fourier transform inversions. Expressions are obtained in a natural way for the discrete spectrum as well as for the four branches of the continuous spectra. These correspond to discrete and branch-cut singularities in the complex wave-number plane. The solutions from the continuous spectra decay both upstream and downstream of the ribbon, with the decay in the upstream direction being much more rapid than that in the downstream direction. Comments and clarification of related prior work are made.

  2. Continuous Carbon Nanotube-Ultrathin Graphite Hybrid Foams for Increased Thermal Conductivity and Suppressed Subcooling in Composite Phase Change Materials.

    PubMed

    Kholmanov, Iskandar; Kim, Jaehyun; Ou, Eric; Ruoff, Rodney S; Shi, Li

    2015-12-22

    Continuous ultrathin graphite foams (UGFs) have been actively researched recently to obtain composite materials with increased thermal conductivities. However, the large pore size of these graphitic foams has resulted in large thermal resistance values for heat conduction from inside the pore to the high thermal conductivity graphitic struts. Here, we demonstrate that the effective thermal conductivity of these UGF composites can be increased further by growing long CNT networks directly from the graphite struts of UGFs into the pore space. When erythritol, a phase change material for thermal energy storage, is used to fill the pores of UGF-CNT hybrids, the thermal conductivity of the UGF-CNT/erythritol composite was found to increase by as much as a factor of 1.8 compared to that of a UGF/erythritol composite, whereas breaking the UGF-CNT bonding in the hybrid composite resulted in a drop in the effective room-temperature thermal conductivity from about 4.1 ± 0.3 W m(-1) K(-1) to about 2.9 ± 0.2 W m(-1) K(-1) for the same UGF and CNT loadings of about 1.8 and 0.8 wt %, respectively. Moreover, we discovered that the hybrid structure strongly suppresses subcooling of erythritol due to the heterogeneous nucleation of erythritol at interfaces with the graphitic structures.

  3. Mode Transitions in Magnetically Shielded Hall Effect Thrusters

    NASA Technical Reports Server (NTRS)

    Sekerak, Michael J.; Longmier, Benjamin W.; Gallimore, Alec D.; Huang, Wensheng; Kamhawi, Hani; Hofer, Richard R.; Jorns, Benjamin A.; Polk, James E.

    2014-01-01

    A mode transition study is conducted in magnetically shielded thrusters where the magnetic field magnitude is varied to induce mode transitions. Three different oscillatory modes are identified with the 20-kW NASA-300MS-2 and the 6-kW H6MS: Mode 1) global mode similar to unshielded thrusters at low magnetic fields, Mode 2) cathode oscillations at nominal magnetic fields, and Mode 3) combined spoke, cathode and breathing mode oscillations at high magnetic fields. Mode 1 exhibits large amplitude, low frequency (1-10 kHz), breathing mode type oscillations where discharge current mean value and oscillation amplitude peak. The mean discharge current is minimized while thrust-to-power and anode efficiency are maximized in Mode 2, where higher frequency (50-90 kHz), low amplitude, cathode oscillations dominate. Thrust is maximized in Mode 3 and decreases by 5-6% with decreasing magnetic field strength. The presence or absence of spokes and strong cathode oscillations do not affect each other or discharge current. Similar to unshielded thrusters, mode transitions and plasma oscillations affect magnetically shielded thruster performance and should be characterized during system development.

  4. The Atacama B-mode Search: Status and Prospect

    NASA Astrophysics Data System (ADS)

    Kusaka, Akito

    2013-04-01

    The Atacama B-mode Search (ABS) experiment is a 145 GHz polarimeter designed to measure the B-mode polarization of the Cosmic Microwave Background (CMB) at degre angular scales. In January 2012, ABS has deployed 240 polarimeters employing transition-edge sensor (TES) bolometers. ABS has unique advantages for the measurement of B modes. This includes a continuously rotating half-wave plate that provides fast and clean modulation, as well as systematically clean optics that consist of a cryogenic side-fed Dragone telescope and feedhorn coupled TES polarimeters. In this talk, we will present the status and prospect of ABS.

  5. How to Conduct Store Observations of Tobacco Marketing and Products.

    PubMed

    Feld, Ashley L; Johnson, Trent O; Byerly, Katherine W; Ribisl, Kurt M

    2016-02-18

    As tobacco companies continue to heavily market their products at the point of sale, tobacco control groups seek strategies to combat the negative effects of this marketing. Store observations, which have been widely used by researchers and practitioners alike, are an excellent surveillance tool. This article provides a guide for public health practitioners interested in working in the tobacco retail environment by detailing the steps involved in conducting store observations of tobacco marketing and products including 1) obtaining tobacco product retailer lists, 2) creating measures, 3) selecting a mode of data collection, 4) training data collectors, and 5) analyzing data. We also highlight issues that may arise while in the field and provide information on disseminating results of store observations, including the potential policy implications.

  6. How to Conduct Store Observations of Tobacco Marketing and Products

    PubMed Central

    Feld, Ashley L.; Johnson, Trent O.; Byerly, Katherine W.

    2016-01-01

    As tobacco companies continue to heavily market their products at the point of sale, tobacco control groups seek strategies to combat the negative effects of this marketing. Store observations, which have been widely used by researchers and practitioners alike, are an excellent surveillance tool. This article provides a guide for public health practitioners interested in working in the tobacco retail environment by detailing the steps involved in conducting store observations of tobacco marketing and products including 1) obtaining tobacco product retailer lists, 2) creating measures, 3) selecting a mode of data collection, 4) training data collectors, and 5) analyzing data. We also highlight issues that may arise while in the field and provide information on disseminating results of store observations, including the potential policy implications. PMID:26890408

  7. Monitoring and manipulating Higgs and Goldstone modes in a supersolid quantum gas.

    PubMed

    Léonard, Julian; Morales, Andrea; Zupancic, Philip; Donner, Tobias; Esslinger, Tilman

    2017-12-15

    Higgs and Goldstone modes are collective excitations of the amplitude and phase of an order parameter that is related to the breaking of a continuous symmetry. We directly studied these modes in a supersolid quantum gas created by coupling a Bose-Einstein condensate to two optical cavities, whose field amplitudes form the real and imaginary parts of a U(1)-symmetric order parameter. Monitoring the cavity fields in real time allowed us to observe the dynamics of the associated Higgs and Goldstone modes and revealed their amplitude and phase nature. We used a spectroscopic method to measure their frequencies, and we gave a tunable mass to the Goldstone mode by exploring the crossover between continuous and discrete symmetry. Our experiments link spectroscopic measurements to the theoretical concept of Higgs and Goldstone modes. Copyright © 2017 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

  8. Anatomy of the dorsal default-mode network in conduct disorder: Association with callous-unemotional traits.

    PubMed

    Sethi, Arjun; Sarkar, Sagari; Dell'Acqua, Flavio; Viding, Essi; Catani, Marco; Murphy, Declan G M; Craig, Michael C

    2018-04-01

    We recently reported that emotional detachment in adult psychopathy was associated with structural abnormalities in the dorsal 'default-mode' network (DMN). However, it is unclear whether these differences are present in young people at risk of psychopathy. The most widely recognised group at risk for psychopathy are children/adolescents with conduct disorder (CD) and callous-unemotional (CU) traits. We therefore examined the microstructure of the dorsal DMN in 27 CD youths (14-with/13-without CU traits) compared to 16 typically developing controls using DTI tractography. Both CD groups had significantly (p < 0.025) reduced dorsal DMN radial diffusivity compared to controls. In those with diagnostically significant CU traits, exploratory analyses (uncorrected for multiple comparisons) suggested that radial diffusivity was negatively correlated with CU severity (Left: rho = -0.68, p = 0.015). These results suggest that CD youths have microstructural abnormalities in the same network as adults with psychopathy. Further, the association with childhood/adolescent measures of emotional detachment (CU traits) resembles the relationship between emotional detachment and network microstructure in adult psychopaths. However, these changes appear to occur in opposite directions - with increased myelination in adolescent CD but reduced integrity in adult psychopathy. Collectively, these findings suggest that developmental abnormalities in dorsal DMN may play a role in the emergence of psychopathy. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.

  9. Novel structure design of composite proton exchange membranes with continuous and through-membrane proton-conducting channels

    NASA Astrophysics Data System (ADS)

    Wang, Hang; Tang, Chenxiao; Zhuang, Xupin; Cheng, Bowen; Wang, Wei; Kang, Weimin; Li, Hongjun

    2017-10-01

    The primary goal of this study is to develop a high-performanced proton exchange membrane with the characteristics of through-membrane and continuous solution blown nanofibers as proton-conducting channels. The curled sulfonated phenolphthalein poly (ether sulfone) and poly (vinylidene fluoride) nanofibers were separately fabricated through the solution blowing process which is a new nanofiber fabricating method with high productivity, then they were fabricated into a sandwich-structured mat. Then this sandwich-structured mat was hot-pressed to form the designed structure using different melting temperatures of the two polymers by melting and making poly (vinylidene fluoride) flow into the phenolphthalein poly (ether sulfone) nanofiber mat. The characteristics of the composite membrane, such as morphology and performance of the membrane, were investigated. The characterization results proved the successful preparation of the membrane structure. Performance results showed that the novel structured membrane with through-membrane nanofibers significantly improved water swelling and methanol permeability, though its conductivity is lower than that of Nafion, the cell performance showed comparable results. Therefore, the novel structure design can be considered as a promising method for preparing of proton exchange membranes.

  10. Goldstone-like phonon modes in a (111)-strained perovskite

    NASA Astrophysics Data System (ADS)

    Marthinsen, A.; Griffin, S. M.; Moreau, M.; Grande, T.; Tybell, T.; Selbach, S. M.

    2018-01-01

    Goldstone modes are massless particles resulting from spontaneous symmetry breaking. Although such modes are found in elementary particle physics as well as in condensed-matter systems like superfluid helium, superconductors, and magnons, structural Goldstone modes are rare. Epitaxial strain in thin films can induce structures and properties not accessible in bulk and has been intensively studied for (001)-oriented perovskite oxides. Here we predict Goldstone-like phonon modes in (111)-strained SrMn O3 by first-principles calculations. Under compressive strain the coupling between two in-plane rotational instabilities gives rise to a Mexican hat-shaped energy surface characteristic of a Goldstone mode. Conversely, large tensile strain induces in-plane polar instabilities with no directional preference, giving rise to a continuous polar ground state. Such phonon modes with U (1) symmetry could emulate structural condensed-matter Higgs modes. The mass of this Higgs boson, given by the shape of the Mexican hat energy surface, can be tuned by strain through proper choice of substrate.

  11. Evaluation of a Graduate Seminar Conducted by Listserv.

    ERIC Educational Resources Information Center

    Weiss, Renee E.; Morrison, Gary R.

    This study examined the efficacy of a class discussion conducted by listserv which was used instead of classroom meetings for a graduate seminar. Research focused on whether this mode of communication was successful for the purpose of the course, and how this mode of communication could be improved as a means for replacing or supplementing…

  12. The intergenerational transmission of conduct problems.

    PubMed

    Raudino, Alessandra; Fergusson, David M; Woodward, Lianne J; Horwood, L John

    2013-03-01

    Drawing on prospective longitudinal data, this paper examines the intergenerational transmission of childhood conduct problems in a sample of 209 parents and their 331 biological offspring studied as part of the Christchurch Health and Developmental Study. The aims were to estimate the association between parental and offspring conduct problems and to examine the extent to which this association could be explained by (a) confounding social/family factors from the parent's childhood and (b) intervening factors reflecting parental behaviours and family functioning. The same item set was used to assess childhood conduct problems in parents and offspring. Two approaches to data analysis (generalised estimating equation regression methods and latent variable structural equation modelling) were used to examine possible explanations of the intergenerational continuity in behaviour. Regression analysis suggested that there was moderate intergenerational continuity (r = 0.23, p < 0.001) between parental and offspring conduct problems. This continuity was not explained by confounding factors but was partially mediated by parenting behaviours, particularly parental over-reactivity. Latent variable modelling designed to take account of non-observed common genetic and environmental factors underlying the continuities in problem behaviours across generations also suggested that parenting behaviour played a role in mediating the intergenerational transmission of conduct problems. There is clear evidence of intergenerational continuity in conduct problems. In part this association reflects a causal chain process in which parental conduct problems are associated (directly or indirectly) with impaired parenting behaviours that in turn influence risks of conduct problems in offspring.

  13. Tuning Interfacial Thermal Conductance of Graphene Embedded in Soft Materials by Vacancy Defects

    DOE PAGES

    Liu, Ying; Hu, Chongze; Huang, Jingsong; ...

    2015-06-23

    Nanocomposites based on graphene dispersed in matrices of soft materials are promising thermal management materials. Their effective thermal conductivity depends on both the thermal conductivity of graphene and the conductance of the thermal transport across graphene-matrix interfaces. Here we report on molecular dynamics simulations of the thermal transport across the interfaces between defected graphene and soft materials in two different modes: in the across mode, heat enters graphene from one side of its basal plane and leaves through the other side; in the non-across mode, heat enters or leaves a graphene simultaneously from both sides of its basal plane. Wemore » show that, as the density of vacancy defects in graphene increases from 0 to 8%, the conductance of the interfacial thermal transport in the across mode increases from 160.4 16 to 207.8 11 MW/m2K, while that in the non-across mode increases from 7.2 0.1 to 17.8 0.6 MW/m2K. The molecular mechanisms for these variations of thermal conductance are clarified by using the phonon density of states and structural characteristics of defected graphenes. On the basis of these results and effective medium theory, we show that it is possible to enhance the effective thermal conductivity of thermal nanocomposites by tuning the density of vacancy defects in graphene despite the fact that graphene s thermal conductivity always decreases as vacancy defects are introduced.« less

  14. Flexible Transparent Conductive Films with High Performance and Reliability Using Hybrid Structures of Continuous Metal Nanofiber Networks for Flexible Optoelectronics.

    PubMed

    Park, Juyoung; Hyun, Byung Gwan; An, Byeong Wan; Im, Hyeon-Gyun; Park, Young-Geun; Jang, Junho; Park, Jang-Ung; Bae, Byeong-Soo

    2017-06-21

    We report an Ag nanofiber-embedded glass-fabric reinforced hybrimer (AgNF-GFRHybrimer) composite film as a reliable and high-performance flexible transparent conducting film. The continuous AgNF network provides superior optoelectronic properties of the composite film by minimizing transmission loss and junction resistance. In addition, the excellent thermal/chemical stability and mechanical durability of the GFRHybrimer matrix provides enhanced mechanical durability and reliability of the final AgNF-GFRHybrimer composite film. To demonstrate the availability of our AgNF-GFRHybrimer composite as a transparent conducting film, we fabricated a flexible organic light-emitting diode (OLED) device on the AgNF-GFRHybrimer film; the OLED showed stable operation during a flexing.

  15. Rocket-Based Combined Cycle Flowpath Testing for Modes 1 and 4

    NASA Technical Reports Server (NTRS)

    Rice, Tharen

    2002-01-01

    Under sponsorship of the NASA Glenn Research Center (NASA GRC), the Johns Hopkins University Applied Physics Laboratory (JHU/APL) designed and built a five-inch diameter, Rocket-Based Combined Cycle (RBCC) engine to investigate mode 1 and mode 4 engine performance as well as Mach 4 inlet performance. This engine was designed so that engine area and length ratios were similar to the NASA GRC GTX engine is shown. Unlike the GTX semi-circular engine design, the APL engine is completely axisymmetric. For this design, a traditional rocket thruster was installed inside of the scramjet flowpath, along the engine centerline. A three part test series was conducted to determine Mode I and Mode 4 engine performance. In part one, testing of the rocket thruster alone was accomplished and its performance determined (average Isp efficiency = 90%). In part two, Mode 1 (air-augmented rocket) testing was conducted at a nominal chamber pressure-to-ambient pressure ratio of 100 with the engine inlet fully open. Results showed that there was neither a thrust increment nor decrement over rocket-only thrust during Mode 1 operation. In part three, Mode 4 testing was conducted with chamber pressure-to-ambient pressure ratios lower than desired (80 instead of 600) with the inlet fully closed. Results for this testing showed a performance decrease of 20% as compared to the rocket-only testing. It is felt that these results are directly related to the low pressure ratio tested and not the engine design. During this program, Mach 4 inlet testing was also conducted. For these tests, a moveable centerbody was tested to determine the maximum contraction ratio for the engine design. The experimental results agreed with CFD results conducted by NASA GRC, showing a maximum geometric contraction ratio of approximately 10.5. This report details the hardware design, test setup, experimental results and data analysis associated with the aforementioned tests.

  16. Generation of sub-100-fs pulses from a CW mode-locked chromium-doped forsterite laser

    NASA Technical Reports Server (NTRS)

    Seas, A.; Petricevic, V.; Alfano, R. R.

    1992-01-01

    Generation of femtosecond pulses from a continuous-wave mode-locked chromium-doped forsterite laser is reported. The forsterite laser was actively mode locked by using an acoustooptic modulator operating at 78 MHz with two Brewster high-dispersion glass prisms for intracavity chirp compensation. Transform-limited sub-100-fs pulses were routinely generated in the TEM(00) mode with 85 mW of continuous power (with 1 percent output coupler), tunable over 1230-1280 nm. The shortest pulses measured had a 60-fs pulse width.

  17. All-fiber radially/azimuthally polarized lasers based on mode coupling of tapered fibers.

    PubMed

    Mao, Dong; He, Zhiwen; Lu, Hua; Li, Mingkun; Zhang, Wending; Cui, Xiaoqi; Jiang, Biqiang; Zhao, Jianlin

    2018-04-01

    We demonstrate a mode converter with an insertion loss of 0.36 dB based on mode coupling of tapered single-mode and two-mode fibers, and realize all-fiber flexible cylindrical vector lasers at 1550 nm. Attributing to the continuous distribution of a tangential electric field at taper boundaries, the laser is switchable between the radially and azimuthally polarized states by adjusting the input polarization. In the temporal domain, the operation is controllable among continuous-wave, Q-switched, and mode-locked statuses by changing the saturable absorber or pump strength. The duration of Q-switched radially/azimuthally polarized laser spans from 10.4/10.8 to 6/6.4 μs at the pump range of 38 to 58 mW, while that of the mode-locked pulse varies from 39.2/31.9 to 5.6/5.2 ps by controlling the laser bandwidth. The proposed laser combines the features of a cylindrical vector beam, a fiber laser, and an ultrafast pulse, providing a special and cost-effective source for practical applications.

  18. On the r-mode spectrum of relativistic stars in the low-frequency approximation

    NASA Astrophysics Data System (ADS)

    Ruoff, Johannes; Kokkotas, Kostas D.

    2001-12-01

    The axial modes for non-barotropic relativistic rotating neutron stars with uniform angular velocity are studied, using the slow-rotation formalism together with the low-frequency approximation, first investigated by Kojima. The time-independent form of the equations leads to a singular eigenvalue problem, which admits a continuous spectrum. We show that for l=2, it is nevertheless also possible to find discrete mode solutions (the r modes). However, under certain conditions related to the equation of state and the compactness of the stellar model, the eigenfrequency lies inside the continuous band and the associated velocity perturbation is divergent; hence these solutions have to be discarded as being unphysical. We corroborate our results by explicitly integrating the time-dependent equations. For stellar models admitting a physical r-mode solution, it can indeed be excited by arbitrary initial data. For models admitting only an unphysical mode solution, the evolutions do not show any tendency to oscillate with the respective frequency. For higher values of l it seems that in certain cases there are no mode solutions at all.

  19. Are quantum spin Hall edge modes more resilient to disorder, sample geometry and inelastic scattering than quantum Hall edge modes?

    PubMed

    Mani, Arjun; Benjamin, Colin

    2016-04-13

    On the surface of 2D topological insulators, 1D quantum spin Hall (QSH) edge modes occur with Dirac-like dispersion. Unlike quantum Hall (QH) edge modes, which occur at high magnetic fields in 2D electron gases, the occurrence of QSH edge modes is due to spin-orbit scattering in the bulk of the material. These QSH edge modes are spin-dependent, and chiral-opposite spins move in opposing directions. Electronic spin has a larger decoherence and relaxation time than charge. In view of this, it is expected that QSH edge modes will be more robust to disorder and inelastic scattering than QH edge modes, which are charge-dependent and spin-unpolarized. However, we notice no such advantage accrues in QSH edge modes when subjected to the same degree of contact disorder and/or inelastic scattering in similar setups as QH edge modes. In fact we observe that QSH edge modes are more susceptible to inelastic scattering and contact disorder than QH edge modes. Furthermore, while a single disordered contact has no effect on QH edge modes, it leads to a finite charge Hall current in the case of QSH edge modes, and thus a vanishing of the pure QSH effect. For more than a single disordered contact while QH states continue to remain immune to disorder, QSH edge modes become more susceptible--the Hall resistance for the QSH effect changes sign with increasing disorder. In the case of many disordered contacts with inelastic scattering included, while quantization of Hall edge modes holds, for QSH edge modes a finite charge Hall current still flows. For QSH edge modes in the inelastic scattering regime we distinguish between two cases: with spin-flip and without spin-flip scattering. Finally, while asymmetry in sample geometry can have a deleterious effect in the QSH case, it has no impact in the QH case.

  20. A Practical English Teaching Mode of Vocational Education: Induction-Interaction Learning Community

    ERIC Educational Resources Information Center

    Zhang, Yonglong

    2008-01-01

    Secondary Vocational School Students are characterized by the awkward fact "congenital malnutrition" and "acquired development deficiency", continuously adopting of the current teaching methods and modes of General Education is completely impossible. In this report, a new English Teaching Mode of Induction-Interaction Learning…

  1. Extracting the regional common-mode component of GPS station position time series from dense continuous network

    NASA Astrophysics Data System (ADS)

    Tian, Yunfeng; Shen, Zheng-Kang

    2016-02-01

    We develop a spatial filtering method to remove random noise and extract the spatially correlated transients (i.e., common-mode component (CMC)) that deviate from zero mean over the span of detrended position time series of a continuous Global Positioning System (CGPS) network. The technique utilizes a weighting scheme that incorporates two factors—distances between neighboring sites and their correlations of long-term residual position time series. We use a grid search algorithm to find the optimal thresholds for deriving the CMC that minimizes the root-mean-square (RMS) of the filtered residual position time series. Comparing to the principal component analysis technique, our method achieves better (>13% on average) reduction of residual position scatters for the CGPS stations in western North America, eliminating regional transients of all spatial scales. It also has advantages in data manipulation: less intervention and applicable to a dense network of any spatial extent. Our method can also be used to detect CMC irrespective of its origins (i.e., tectonic or nontectonic), if such signals are of particular interests for further study. By varying the filtering distance range, the long-range CMC related to atmospheric disturbance can be filtered out, uncovering CMC associated with transient tectonic deformation. A correlation-based clustering algorithm is adopted to identify stations cluster that share the common regional transient characteristics.

  2. Direct diode-pumped Kerr-lens mode-locked Ti:sapphire laser

    PubMed Central

    Durfee, Charles G.; Storz, Tristan; Garlick, Jonathan; Hill, Steven; Squier, Jeff A.; Kirchner, Matthew; Taft, Greg; Shea, Kevin; Kapteyn, Henry; Murnane, Margaret; Backus, Sterling

    2012-01-01

    We describe a Ti:sapphire laser pumped directly with a pair of 1.2W 445nm laser diodes. With over 30mW average power at 800 nm and a measured pulsewidth of 15fs, Kerr-lens-modelocked pulses are available with dramatically decreased pump cost. We propose a simple model to explain the observed highly stable Kerr-lens modelocking in spite of the fact that both the mode-locked and continuous-wave modes are smaller than the pump mode in the crystal. PMID:22714433

  3. Size effects on the thermal conductivity of amorphous silicon thin films

    DOE PAGES

    Thomas Edwin Beechem; Braun, Jeffrey L.; Baker, Christopher H.; ...

    2016-04-01

    In this study, we investigate thickness-limited size effects on the thermal conductivity of amorphous silicon thin films ranging from 3 to 1636 nm grown via sputter deposition. While exhibiting a constant value up to ~100 nm, the thermal conductivity increases with film thickness thereafter. The thickness dependence we demonstrate is ascribed to boundary scattering of long wavelength vibrations and an interplay between the energy transfer associated with propagating modes (propagons) and nonpropagating modes (diffusons). A crossover from propagon to diffuson modes is deduced to occur at a frequency of ~1.8 THz via simple analytical arguments. These results provide empirical evidencemore » of size effects on the thermal conductivity of amorphous silicon and systematic experimental insight into the nature of vibrational thermal transport in amorphous solids.« less

  4. Numerical simulation of quench protection for a 1.5 T persistent mode MgB2 conduction-cooled MRI magnet

    NASA Astrophysics Data System (ADS)

    Deissler, Robert J.; Baig, Tanvir; Poole, Charles; Amin, Abdullah; Doll, David; Tomsic, Michael; Martens, Michael

    2017-02-01

    The active quench protection of a 1.5 T MgB2 conduction-cooled MRI magnet operating in persistent current mode is considered. An active quench protection system relies on the detection of the resistive voltage developed in the magnet, which is used to trigger the external energizing of quench heaters located on the surfaces of all ten coil bundles. A numerical integration of the heat equation is used to determine the development of the temperature profile and the maximum temperature in the coil at the origin, or ‘hot spot’, of the quench. Both n-value of the superconductor and magnetoresistance of the wire are included in the simulations. An MgB2 wire manufactured by Hyper Tech Research, Inc. was used as the basis to model the wire for the simulations. With the proposed active quench protection system, the maximum temperature was limited to 200 K or less, which is considered low enough to prevent damage to the magnet. By substituting Glidcop for the Monel in the wire sheath or by increasing the thermal conductivity of the insulation, the margin for safe operation was further increased, the maximum temperature decreasing by more than 40 K. The strain on the MgB2 filaments is calculated using ANSYS, verifying that the stress and strain limits in the MgB2 superconductor and epoxy insulation are not exceeded.

  5. Quantum correlations for bipartite continuous-variable systems

    NASA Astrophysics Data System (ADS)

    Ma, Ruifen; Hou, Jinchuan; Qi, Xiaofei; Wang, Yangyang

    2018-04-01

    Two quantum correlations Q and Q_P for (m+n)-mode continuous-variable systems are introduced in terms of average distance between the reduced states under the local Gaussian positive operator-valued measurements, and analytical formulas of these quantum correlations for bipartite Gaussian states are provided. It is shown that the product states do not contain these quantum correlations, and conversely, all (m+n)-mode Gaussian states with zero quantum correlations are product states. Generally, Q≥ Q_{P}, but for the symmetric two-mode squeezed thermal states, these quantum correlations are the same and a computable formula is given. In addition, Q is compared with Gaussian geometric discord for symmetric squeezed thermal states.

  6. Q-mode versus R-mode principal component analysis for linear discriminant analysis (LDA)

    NASA Astrophysics Data System (ADS)

    Lee, Loong Chuen; Liong, Choong-Yeun; Jemain, Abdul Aziz

    2017-05-01

    Many literature apply Principal Component Analysis (PCA) as either preliminary visualization or variable con-struction methods or both. Focus of PCA can be on the samples (R-mode PCA) or variables (Q-mode PCA). Traditionally, R-mode PCA has been the usual approach to reduce high-dimensionality data before the application of Linear Discriminant Analysis (LDA), to solve classification problems. Output from PCA composed of two new matrices known as loadings and scores matrices. Each matrix can then be used to produce a plot, i.e. loadings plot aids identification of important variables whereas scores plot presents spatial distribution of samples on new axes that are also known as Principal Components (PCs). Fundamentally, the scores matrix always be the input variables for building classification model. A recent paper uses Q-mode PCA but the focus of analysis was not on the variables but instead on the samples. As a result, the authors have exchanged the use of both loadings and scores plots in which clustering of samples was studied using loadings plot whereas scores plot has been used to identify important manifest variables. Therefore, the aim of this study is to statistically validate the proposed practice. Evaluation is based on performance of external error obtained from LDA models according to number of PCs. On top of that, bootstrapping was also conducted to evaluate the external error of each of the LDA models. Results show that LDA models produced by PCs from R-mode PCA give logical performance and the matched external error are also unbiased whereas the ones produced with Q-mode PCA show the opposites. With that, we concluded that PCs produced from Q-mode is not statistically stable and thus should not be applied to problems of classifying samples, but variables. We hope this paper will provide some insights on the disputable issues.

  7. Acoustic mode measurements in the inlet of a model turbofan using a continuously rotating rake: Data collection/analysis techniques

    NASA Technical Reports Server (NTRS)

    Hall, David G.; Heidelberg, Laurence; Konno, Kevin

    1993-01-01

    The rotating microphone measurement technique and data analysis procedures are documented which are used to determine circumferential and radial acoustic mode content in the inlet of the Advanced Ducted Propeller (ADP) model. Circumferential acoustic mode levels were measured at a series of radial locations using the Doppler frequency shift produced by a rotating inlet microphone probe. Radial mode content was then computed using a least squares curve fit with the measured radial distribution for each circumferential mode. The rotating microphone technique is superior to fixed-probe techniques because it results in minimal interference with the acoustic modes generated by rotor-stator interaction. This effort represents the first experimental implementation of a measuring technique developed by T. G. Sofrin. Testing was performed in the NASA Lewis Low Speed Anechoic Wind Tunnel at a simulated takeoff condition of Mach 0.2. The design is included of the data analysis software and the performance of the rotating rake apparatus. The effect of experiment errors is also discussed.

  8. Acoustic mode measurements in the inlet of a model turbofan using a continuously rotating rake - Data collection/analysis techniques

    NASA Technical Reports Server (NTRS)

    Hall, David G.; Heidelberg, Laurence; Konno, Kevin

    1993-01-01

    The rotating microphone measurement technique and data analysis procedures are documented which are used to determine circumferential and radial acoustic mode content in the inlet of the Advanced Ducted Propeller (ADP) model. Circumferential acoustic mode levels were measured at a series of radial locations using the Doppler frequency shift produced by a rotating inlet microphone probe. Radial mode content was then computed using a least squares curve fit with the measured radial distribution for each circumferential mode. The rotating microphone technique is superior to fixed-probe techniques because it results in minimal interference with the acoustic modes generated by rotor-stator interaction. This effort represents the first experimental implementation of a measuring technique developed by T. G. Sofrin. Testing was performed in the NASA Lewis Low Speed Anechoic Wind Tunnel at a simulated takeoff condition of Mach 0.2. The design is included of the data analysis software and the performance of the rotating rake apparatus. The effect of experiment errors is also discussed.

  9. Transverse single-mode edge-emitting lasers based on coupled waveguides.

    PubMed

    Gordeev, Nikita Yu; Payusov, Alexey S; Shernyakov, Yuri M; Mintairov, Sergey A; Kalyuzhnyy, Nikolay A; Kulagina, Marina M; Maximov, Mikhail V

    2015-05-01

    We report on the transverse single-mode emission from InGaAs/GaAs quantum well edge-emitting lasers with broadened waveguide. The lasers are based on coupled large optical cavity (CLOC) structures where high-order vertical modes of the broad active waveguide are suppressed due to their resonant tunneling into a coupled single-mode passive waveguide. The CLOC lasers have shown stable Gaussian-shaped vertical far-field profiles with a reduced divergence of ∼22° FWHM (full width at half-maximum) in CW (continuous-wave) operation.

  10. Dissipation of hydrological tracers and the herbicide S-metolachlor in batch and continuous-flow wetlands.

    PubMed

    Maillard, Elodie; Lange, Jens; Schreiber, Steffi; Dollinger, Jeanne; Herbstritt, Barbara; Millet, Maurice; Imfeld, Gwenaël

    2016-02-01

    Pesticide dissipation in wetland systems with regard to hydrological conditions and operational modes is poorly known. Here, we investigated in artificial wetlands the impact of batch versus continuous-flow modes on the dissipation of the chiral herbicide S-metolachlor (S-MET) and hydrological tracers (bromide, uranine and sulforhodamine B). The wetlands received water contaminated with the commercial formulation Mercantor Gold(®) (960 g L(-1) of S-MET, 87% of the S-enantiomer). The tracer mass budget revealed that plant uptake, sorption, photo- and presumably biodegradation were prominent under batch mode (i.e. characterized by alternating oxic-anoxic conditions), in agreement with large dissipation of S-MET (90%) under batch mode. Degradation was the main dissipation pathway of S-MET in the wetlands. The degradate metolachlor oxanilic acid (MOXA) mainly formed under batch mode, whereas metolachlor ethanesulfonic acid (MESA) prevailed under continuous-flow mode, suggesting distinct degradation pathways in each wetland. R-enantiomer was preferentially degraded under batch mode, which indicated enantioselective biodegradation. The release of MESA and MOXA by the wetlands as well as the potential persistence of S-MET compared to R-MET under both oxic and anoxic conditions may be relevant for groundwater and ecotoxicological risk assessment. This study shows the effect of batch versus continuous modes on pollutant dissipation in wetlands, and that alternate biogeochemical conditions under batch mode enhance S-MET biodegradation. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Coupling of damped and growing modes in unstable shear flow

    DOE PAGES

    Fraser, A. E.; Terry, P. W.; Zweibel, E. G.; ...

    2017-06-14

    Analysis of the saturation of the Kelvin-Helmholtz instability is undertaken to determine the extent to which the conjugate linearly stable mode plays a role. For a piecewise-continuous mean flow profile with constant shear in a fixed layer, it is shown that the stable mode is nonlinearly excited, providing an injection-scale sink of the fluctuation energy similar to what has been found for gyroradius-scale drift-wave turbulence. Quantitative evaluation of the contribution of the stable mode to the energy balance at the onset of saturation shows that nonlinear energy transfer to the stable mode is as significant as energy transfer to smallmore » scales in balancing energy injected into the spectrum by the instability. The effect of the stable mode on momentum transport is quantified by expressing the Reynolds stress in terms of stable and unstable mode amplitudes at saturation, from which it is found that the stable mode can produce a sizable reduction in the momentum flux.« less

  12. Coupling of damped and growing modes in unstable shear flow

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fraser, A. E.; Terry, P. W.; Zweibel, E. G.

    Analysis of the saturation of the Kelvin-Helmholtz instability is undertaken to determine the extent to which the conjugate linearly stable mode plays a role. For a piecewise-continuous mean flow profile with constant shear in a fixed layer, it is shown that the stable mode is nonlinearly excited, providing an injection-scale sink of the fluctuation energy similar to what has been found for gyroradius-scale drift-wave turbulence. Quantitative evaluation of the contribution of the stable mode to the energy balance at the onset of saturation shows that nonlinear energy transfer to the stable mode is as significant as energy transfer to smallmore » scales in balancing energy injected into the spectrum by the instability. The effect of the stable mode on momentum transport is quantified by expressing the Reynolds stress in terms of stable and unstable mode amplitudes at saturation, from which it is found that the stable mode can produce a sizable reduction in the momentum flux.« less

  13. Monolithic single mode interband cascade lasers with wide wavelength tunability

    NASA Astrophysics Data System (ADS)

    von Edlinger, M.; Weih, R.; Scheuermann, J.; Nähle, L.; Fischer, M.; Koeth, J.; Kamp, M.; Höfling, S.

    2016-11-01

    Monolithic two-section interband cascade lasers offering a wide wavelength tunability in the wavelength range around 3.7 μm are presented. Stable single mode emission in several wavelength channels was realized using the concept of binary superimposed gratings and two-segment Vernier-tuning. The wavelength selective elements in the two segments were based on specially designed lateral metal grating structures defined by electron beam lithography. A dual-step dry etch process provided electrical separation between the segments. Individual current control of the segments allowed wavelength channel selection as well as continuous wavelength tuning within channels. A discontinuous tuning range extending over 158 nm in up to six discrete wavelength channels was achieved. Mode hop free wavelength tuning up to 14 nm was observed within one channel. The devices can be operated in continuous wave mode up to 30 °C with the output powers of 3.5 mW around room temperature.

  14. A symmetry measure for damage detection with mode shapes

    NASA Astrophysics Data System (ADS)

    Chen, Justin G.; Büyüköztürk, Oral

    2017-11-01

    This paper introduces a feature for detecting damage or changes in structures, the continuous symmetry measure, which can quantify the amount of a particular rotational, mirror, or translational symmetry in a mode shape of a structure. Many structures in the built environment have geometries that are either symmetric or almost symmetric, however damage typically occurs in a local manner causing asymmetric changes in the structure's geometry or material properties, and alters its mode shapes. The continuous symmetry measure can quantify these changes in symmetry as a novel indicator of damage for data-based structural health monitoring approaches. This paper describes the concept as a basis for detecting changes in mode shapes and detecting structural damage. Application of the method is demonstrated in various structures with different symmetrical properties: a pipe cross-section with a finite element model and experimental study, the NASA 8-bay truss model, and the simulated IASC-ASCE structural health monitoring benchmark structure. The applicability and limitations of the feature in applying it to structures of varying geometries is discussed.

  15. Robust model predictive control for constrained continuous-time nonlinear systems

    NASA Astrophysics Data System (ADS)

    Sun, Tairen; Pan, Yongping; Zhang, Jun; Yu, Haoyong

    2018-02-01

    In this paper, a robust model predictive control (MPC) is designed for a class of constrained continuous-time nonlinear systems with bounded additive disturbances. The robust MPC consists of a nonlinear feedback control and a continuous-time model-based dual-mode MPC. The nonlinear feedback control guarantees the actual trajectory being contained in a tube centred at the nominal trajectory. The dual-mode MPC is designed to ensure asymptotic convergence of the nominal trajectory to zero. This paper extends current results on discrete-time model-based tube MPC and linear system model-based tube MPC to continuous-time nonlinear model-based tube MPC. The feasibility and robustness of the proposed robust MPC have been demonstrated by theoretical analysis and applications to a cart-damper springer system and a one-link robot manipulator.

  16. Three-mode mode-division-multiplexing passive optical network over 12-km low mode-crosstalk FMF using all-fiber mode MUX/DEMUX

    NASA Astrophysics Data System (ADS)

    Ren, Fang; Li, Juhao; Wu, Zhongying; Hu, Tao; Yu, Jinyi; Mo, Qi; He, Yongqi; Chen, Zhangyuan; Li, Zhengbin

    2017-01-01

    We propose three-mode mode-division-multiplexing passive optical network (MDM-PON) based on low mode-crosstalk few-mode fiber (FMF) and all-fiber mode multiplexer/demultiplexer (MUX/DEMUX). The FMF with step-index profile is designed and fabricated for effectively three-independent-spatial-mode transmission and low mode-crosstalk for MDM-PON transmission. The all-fiber mode MUX/DEMUX are composed of cascaded mode selective couplers (MSCs), which simultaneously multiplex or demultiplex multiple modes. Based on the low mode-crosstalk of the FMF and all-fiber mode MUX/DEMUX, each optical network unit (ONU) communicates with the optical line terminal (OLT) independently utilizing a different optical linearly polarized (LP) spatial mode in MDM-PON system. We experimentally demonstrate MDM-PON transmission of three independent-spatial-modes over 12-km FMF with 10-Gb/s optical on-off keying (OOK) signal and direct detection.

  17. Two-mode PLC-based mode multi/demultiplexer for mode and wavelength division multiplexed transmission.

    PubMed

    Hanzawa, Nobutomo; Saitoh, Kuimasa; Sakamoto, Taiji; Matsui, Takashi; Tsujikawa, Kyozo; Koshiba, Masanori; Yamamoto, Fumihiko

    2013-11-04

    We proposed a PLC-based mode multi/demultiplexer (MUX/DEMUX) with an asymmetric parallel waveguide for mode division multiplexed (MDM) transmission. The mode MUX/DEMUX including a mode conversion function with an asymmetric parallel waveguide can be realized by matching the effective indices of the LP(01) and LP(11) modes of two waveguides. We report the design of a mode MUX/DEMUX that can support C-band WDM-MDM transmission. The fabricated mode MUX/DEMUX realized a low insertion loss of less than 1.3 dB and high a mode extinction ratio that exceeded 15 dB. We used the fabricated mode MUX/DEMUX to achieve a successful 2 mode x 4 wavelength x 10 Gbps transmission over a 9 km two-mode fiber with a penalty of less than 1 dB.

  18. White-Light Whispering-Gallery-Mode Optical Resonators

    NASA Technical Reports Server (NTRS)

    Matsko, Andrey; Savchenkov, Anatoliy; Maleki, Lute

    2006-01-01

    Whispering-gallery-mode (WGM) optical resonators can be designed to exhibit continuous spectra over wide wavelength bands (in effect, white-light spectra), with ultrahigh values of the resonance quality factor (Q) that are nearly independent of frequency. White-light WGM resonators have potential as superior alternatives to (1) larger, conventional optical resonators in ring-down spectroscopy, and (2) optical-resonator/electro-optical-modulator structures used in coupling of microwave and optical signals in atomic clocks. In these and other potential applications, the use of white-light WGM resonators makes it possible to relax the requirement of high-frequency stability of lasers, thereby enabling the use of cheaper lasers. In designing a white-light WGM resonator, one exploits the fact that the density of the mode spectrum increases predictably with the thickness of the resonator disk. By making the resonator disk sufficiently thick, one can make the frequency differences between adjacent modes significantly less than the spectral width of a single mode, so that the spectral peaks of adjacent modes overlap, making the resonator spectrum essentially continuous. Moreover, inasmuch as the Q values of the various modes are determined primarily by surface Rayleigh scattering that does not depend on mode numbers, all the modes have nearly equal Q. By use of a proper coupling technique, one can ensure excitation of a majority of the modes. For an experimental demonstration of a white-light WGM resonator, a resonator disk 0.5-mm thick and 5 mm in diameter was made from CaF2. The shape of the resonator and the fiberoptic coupling arrangement were as shown in Figure 1. The resonator was excited with laser light having a wavelength of 1,320 nm and a spectral width of 4 kHz. The coupling efficiency exceeded 80 percent at any frequency to which the laser could be set in its tuning range, which was >100-GHz wide. The resonator response was characterized by means of ring

  19. Mode demultiplexer using angularly multiplexed volume holograms.

    PubMed

    Wakayama, Yuta; Okamoto, Atsushi; Kawabata, Kento; Tomita, Akihisa; Sato, Kunihiro

    2013-05-20

    This study proposes a volume holographic demultiplexer (VHDM) for extracting the spatial modes excited in a multimode fiber. A unique feature of the demultiplexer is that it can separate a number of multiplexed modes output from a fiber in different directions by using multi-recorded holograms without beam splitters, which results in a simple configuration as compared with that using phase plates instead of holograms. In this study, an experiment is conducted to demonstrate the basic operations for three LP mode groups to confirm the performance of the proposed VHDM and to estimate the signal-to-crosstalk noise ratio (SNR). As a result, an SNR of greater than 20 dB is obtained.

  20. Generalized thermoelastic diffusive waves in heat conducting materials

    NASA Astrophysics Data System (ADS)

    Sharma, J. N.

    2007-04-01

    Keeping in view the applications of diffusion processes in geophysics and electronics industry, the aim of the present paper is to give a detail account of the plane harmonic generalized thermoelastic diffusive waves in heat conducting solids. According to the characteristic equation, three longitudinal waves namely, elastodiffusive (ED), mass diffusion (MD-mode) and thermodiffusive (TD-mode), can propagate in such solids in addition to transverse waves. The transverse waves get decoupled from rest of the fields and hence remain unaffected due to temperature change and mass diffusion effects. These waves travel without attenuation and dispersion. The other generalized thermoelastic diffusive waves are significantly influenced by the interacting fields and hence suffer both attenuation and dispersion. At low frequency mass diffusion and thermal waves do not exist but at high-frequency limits these waves propagate with infinite velocity being diffusive in character. Moreover, in the low-frequency regions, the disturbance is mainly dominant by mechanical process of transportation of energy and at high-frequency regions it is significantly dominated by a close to diffusive process (heat conduction or mass diffusion). Therefore, at low-frequency limits the waves like modes are identifiable with small amplitude waves in elastic materials that do not conduct heat. The general complex characteristic equation is solved by using irreducible case of Cardano's method with the help of DeMoivre's theorem in order to obtain phase speeds, attenuation coefficients and specific loss factor of energy dissipation of various modes. The propagation of waves in case of non-heat conducting solids is also discussed. Finally, the numerical solution is carried out for copper (solvent) and zinc (solute) materials and the obtained phase velocities, attenuation coefficients and specific loss factor of various thermoelastic diffusive waves are presented graphically.

  1. Magnetization dynamics of Ni80Fe20 nanowires with continuous width modulation

    NASA Astrophysics Data System (ADS)

    Xiong, L. L.; Kostylev, M.; Adeyeye, A. O.

    2017-06-01

    A systematic investigation of the magnetization reversal and the dynamic behaviors of uncoupled Ni80Fe20 nanowires (NWs) with artificial continuous width modulation is presented. In contrast with the single resonance mode observed in the homogeneous NWs from the broadband ferromagnetic resonance spectroscopy, the NWs with continuous width modulation display three to five distinct resonance modes with increasing wire thickness in the range from 5 to 70 nm due to the nonuniform demagnetizing field. The highest frequency mode and the frequency difference between the two distinct highest modes are shown to be markedly sensitive to the NW thickness. Interestingly, we found that these modes can be described in terms of the quantization of the standing spin waves due to confined varied width. In addition, the easy axis coercive field for the width modulated NWs is much higher than homogeneous NWs of the same thickness when less than 70 nm. Our experimental results are in good qualitative agreement with the micromagnetic simulations. The results may find potential applications in the design and optimization of tunable magnonic filters.

  2. Photo-conductive detection of continuous THz waves via manipulated ultrafast process in nanostructures

    NASA Astrophysics Data System (ADS)

    Moon, Kiwon; Lee, Eui Su; Lee, Il-Min; Park, Dong Woo; Park, Kyung Hyun

    2018-01-01

    Time-domain and frequency-domain terahertz (THz) spectroscopy systems often use materials fabricated with exotic and expensive methods that intentionally introduce defects to meet short carrier lifetime requirements. In this study, we demonstrate the development of a nano-photomixer that meets response speed requirements without using defect-incorporated, low-temperature-grown (LTG) semiconductors. Instead, we utilized a thin InGaAs layer grown on a semi-insulating InP substrate by metal-organic chemical vapor deposition (MOCVD) combined with nano-electrodes to manipulate local ultrafast photo-carrier dynamics via a carefully designed field-enhancement and plasmon effect. The developed nano-structured photomixer can detect continuous-wave THz radiation up to a frequency of 2 THz with a peak carrier collection efficiency of 5%, which is approximately 10 times better than the reference efficiency of 0.4%. The better efficiency results from the high carrier mobility of the MOCVD-grown InGaAs thin layer with the coincidence of near-field and plasmon-field distributions in the nano-structure. Our result not only provides a generally applicable methodology for manipulating ultrafast carrier dynamics by means of nano-photonic techniques to break the trade-off relation between the carrier lifetime and mobility in typical LTG semiconductors but also contributes to mass-producible photo-conductive THz detectors to facilitate the widespread application of THz technology.

  3. Mixed-Mode Surveys: A Strategy to Reduce Costs and Enhance Response Rates

    ERIC Educational Resources Information Center

    Tobin, Daniel; Thomson, Joan; Radhakrishna, Rama; LaBorde, Luke

    2012-01-01

    Mixed-mode surveys present one opportunity for Extension to determine program outcomes at lower costs. In order to conduct a follow-up evaluation, we implemented a mixed-mode survey that relied on communication using the Web, postal mailings, and telephone calls. Using multiple modes conserved costs by reducing the number of postal mailings yet…

  4. Reason and Condition for Mode Kissing in MASW Method

    NASA Astrophysics Data System (ADS)

    Gao, Lingli; Xia, Jianghai; Pan, Yudi; Xu, Yixian

    2016-05-01

    Identifying correct modes of surface waves and picking accurate phase velocities are critical for obtaining an accurate S-wave velocity in MASW method. In most cases, inversion is easily conducted by picking the dispersion curves corresponding to different surface-wave modes individually. Neighboring surface-wave modes, however, will nearly meet (kiss) at some frequencies for some models. Around the frequencies, they have very close roots and energy peak shifts from one mode to another. At current dispersion image resolution, it is difficult to distinguish different modes when mode-kissing occurs, which is commonly seen in near-surface earth models. It will cause mode misidentification, and as a result, lead to a larger overestimation of S-wave velocity and error on depth. We newly defined two mode types based on the characteristics of the vertical eigendisplacements calculated by generalized reflection and transmission coefficient method. Rayleigh-wave mode near the kissing points (osculation points) change its type, that is to say, one Rayleigh-wave mode will contain different mode types. This mode type conversion will cause the mode-kissing phenomenon in dispersion images. Numerical tests indicate that the mode-kissing phenomenon is model dependent and that the existence of strong S-wave velocity contrasts increases the possibility of mode-kissing. The real-world data shows mode misidentification caused by mode-kissing phenomenon will result in higher S-wave velocity of bedrock. It reminds us to pay attention to this phenomenon when some of the underground information is known.

  5. Orodispersible films: Product transfer from lab-scale to continuous manufacturing.

    PubMed

    Thabet, Yasmin; Breitkreutz, Joerg

    2018-01-15

    Orodispersible films have been described as new beneficial dosage forms for special patient populations. Due to various production settings, different requirements on film formulations are required for non- continuous and continuous manufacturing. In this study, a continuous coating machine was qualified in regards of the process conditions for film compositions and their effects on the formed films. To investigate differences between both manufacturing processes, various film formulations of hydrochlorothiazide and hydroxypropylcellulose (HPC) or hydroxypropylmethycellulose (HPMC) as film formers were produced and the resulting films were characterized. The qualification of the continuously operating coating machine reveals no uniform heat distribution during drying. Coating solutions for continuous manufacturing should provide at least a dynamic viscosity of 1 Pa*s (wet film thickness of 500 μm, velocity of 15.9 cm/min). HPC films contain higher residuals of ethanol or acetone in bench-scale than in continuous production mode. Continuous production lead to lower drug content of the films. All continuously produced films disintegrate within less than 30 s. There are observed significant effects of the production process on the film characteristics. When transferring film manufacturing from lab-scale to continuous mode, film compositions, processing conditions and suitable characterization methods have to be carefully selected and adopted. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Fundamental-mode MMF transmission enabled by mode conversion

    NASA Astrophysics Data System (ADS)

    Wu, Zhongying; Li, Juhao; Tian, Yu; Ge, Dawei; Zhu, Jinglong; Ren, Fang; Mo, Qi; Yu, Jinyi; Li, Zhengbin; Chen, Zhangyuan; He, Yongqi

    2018-03-01

    Modal dispersion in conventional multi-mode fiber (MMF) will cause serious signal degradation and an effective solution is to restrict the signal transmission in the fundamental mode of MMF. In this paper, unlike previous methods by filtering out higher-order modes, we propose to adopt low-modal-crosstalk mode converters to realize fundamental-mode MMF transmission. We design and fabricate all-fiber mode-selective couplers (MSC), which perform mode conversion between the fundamental mode in single-mode fiber (SMF) and fundamental mode in MMF. The proposed scheme is experimentally compared with center launching method under different MMF links and then its wavelength division multiplexing (WDM) transmission performance is investigated. Experimental results indicate that the proposed mode conversion scheme could achieve better transmission performance and works well for the whole C-band.

  7. Nine-channel wavelength tunable single mode laser array based on slots.

    PubMed

    Guo, Wei-Hua; Lu, Qiaoyin; Nawrocka, Marta; Abdullaev, Azat; O'Callaghan, James; Donegan, John F

    2013-04-22

    A 9-channel wavelength tunable single-mode laser array based on slots is presented. The fabricated laser array demonstrated a threshold current in a range of 19~21 mA with the SOA unbiased at 20°C under continuous wave condition. Stable single mode performances have been observed with side-mode suppression-ratio (SMSR) > 50 dB. The output power higher than 37 mW was obtained at the SOA injected current of 70 mA for all the 9 channels within the laser array. A wavelength quasi-continuous tuning range of about 27 nm has been achieved for the laser array with the temperature variations from 10°C to 45°C. This array platform is of a single growth and monolithically integrable. It can be easily fabricated by standard photolithography. In addition, it potentially removes the yield problem due to the uncertainty of the facet cleaving.

  8. A new mode of community continuing care service for COPD patients in China: participation of respiratory nurse specialists.

    PubMed

    Li, Pingdong; Gong, Yucui; Zeng, Guangqiao; Ruan, Liang; Li, Guifen

    2015-01-01

    This study explored a community nursing service mode in which respiratory nurse specialists cared for patients with chronic obstructive pulmonary disease (COPD) in a 12-week period after hospital discharge, with the aim of better preventing acute exacerbations, improving health-related quality of life (HRQOL) and reducing medical expenses in these patients. We carried out a prospective randomized controlled study in which 68 COPD patients discharged were recruited from a general hospital in Guangzhou, China, were randomized divided into two groups. The control group underwent conventional nursing care, and the intervention group received community continuing care by respiratory nurse specialists. The observation period was 12 weeks. The results of intervention were evaluated using the Seattle Obstructive Lung Disease Questionnaire (SOLDQ) and the COPD Self-Efficacy Scale (CSES). In addition, the frequency of acute exacerbations, emergency treatments or hospitalizations, and medical expenses were recorded in the 12-week observation period. After six weeks, the total and subscale scores (P < 0.05) of SOLDQ and CSES significantly improved compared to the baseline ones in the intervention group. The control group had significantly higher scores in the treatment satisfaction (TS) of SOLDQ, the total score, and the weather/environment and behavioral risk factors of CSES. After 12 weeks, the total and subscale scores of SOLDQ and CSES showed a sustained and significant growth in the intervention group (P < 0.05). The control group had significantly higher scores only in the weather/environment risk factor of CSES. During the 12-week observation, the intervention group had significantly fewer acute exacerbations, emergency treatments or re-hospitalizations and significantly lower average medical expenses than the control group (P < 0.05). Community continuing care by respiratory nurse specialists may improve HRQOL, increase self-efficacy, reduce incidence of acute

  9. A new mode of community continuing care service for COPD patients in China: participation of respiratory nurse specialists

    PubMed Central

    Li, Pingdong; Gong, Yucui; Zeng, Guangqiao; Ruan, Liang; Li, Guifen

    2015-01-01

    Objective: This study explored a community nursing service mode in which respiratory nurse specialists cared for patients with chronic obstructive pulmonary disease (COPD) in a 12-week period after hospital discharge, with the aim of better preventing acute exacerbations, improving health-related quality of life (HRQOL) and reducing medical expenses in these patients. Methods: We carried out a prospective randomized controlled study in which 68 COPD patients discharged were recruited from a general hospital in Guangzhou, China, were randomized divided into two groups. The control group underwent conventional nursing care, and the intervention group received community continuing care by respiratory nurse specialists. The observation period was 12 weeks. The results of intervention were evaluated using the Seattle Obstructive Lung Disease Questionnaire (SOLDQ) and the COPD Self-Efficacy Scale (CSES). In addition, the frequency of acute exacerbations, emergency treatments or hospitalizations, and medical expenses were recorded in the 12-week observation period. Results: After six weeks, the total and subscale scores (P < 0.05) of SOLDQ and CSES significantly improved compared to the baseline ones in the intervention group. The control group had significantly higher scores in the treatment satisfaction (TS) of SOLDQ, the total score, and the weather/environment and behavioral risk factors of CSES. After 12 weeks, the total and subscale scores of SOLDQ and CSES showed a sustained and significant growth in the intervention group (P < 0.05). The control group had significantly higher scores only in the weather/environment risk factor of CSES. During the 12-week observation, the intervention group had significantly fewer acute exacerbations, emergency treatments or re-hospitalizations and significantly lower average medical expenses than the control group (P < 0.05). Conclusions: Community continuing care by respiratory nurse specialists may improve HRQOL, increase self

  10. Geodesic acoustic modes in noncircular cross section tokamaks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sorokina, E. A., E-mail: sorokina.ekaterina@gmail.com; Lakhin, V. P.; Konovaltseva, L. V.

    2017-03-15

    The influence of the shape of the plasma cross section on the continuous spectrum of geodesic acoustic modes (GAMs) in a tokamak is analyzed in the framework of the MHD model. An expression for the frequency of a local GAM for a model noncircular cross section plasma equilibrium is derived. Amendments to the oscillation frequency due to the plasma elongation and triangularity and finite tokamak aspect ratio are calculated. It is shown that the main factor affecting the GAM spectrum is the plasma elongation, resulting in a significant decrease in the mode frequency.

  11. Pulsed versus continuous wave low-level light therapy on osteoarticular signs and symptoms in limited scleroderma (CREST syndrome): a case report

    NASA Astrophysics Data System (ADS)

    Barolet, Daniel

    2014-11-01

    Limited cutaneous systemic sclerosis (lcSSc) was formerly known as CREST syndrome in reference to the associated clinical features: calcinosis, Raynaud's phenomenon, esophageal dysfunction, sclerodactyly, and telangiectasias. The transforming growth factor beta has been identified as a major player in the pathogenic process, where low-level light therapy (LLLT) has been shown to modulate this cytokine superfamily. This case study was conducted to assess the efficacy of 940 nm using millisecond pulsing and continuous wave (CW) modes on osteoarticular signs and symptoms associated with lcSSc. The patient was treated two to three times a week for 13 weeks using a sequential pulsing mode on one elbow and a CW mode on the other. Efficacy assessments included inflammation, symptoms, pain, health scales, patient satisfaction, clinical global impression, and adverse effects monitoring. Considerable functional and morphologic improvements were observed after LLLT, with the best results seen with the pulsing mode. No adverse effects were noted. Pulsed LLLT represents a treatment alternative for osteoarticular signs and symptoms in limited scleroderma (CREST syndrome).

  12. Reusable Launch Vehicle Control in Multiple Time Scale Sliding Modes

    NASA Technical Reports Server (NTRS)

    Shtessel, Yuri

    1999-01-01

    A reusable launch vehicle control problem during ascent is addressed via multiple-time scaled continuous sliding mode control. The proposed sliding mode controller utilizes a two-loop structure and provides robust, de-coupled tracking of both orientation angle command profiles and angular rate command profiles in the presence of bounded external disturbances and plant uncertainties. Sliding mode control causes the angular rate and orientation angle tracking error dynamics to be constrained to linear, de-coupled, homogeneous, and vector valued differential equations with desired eigenvalues placement. The dual-time scale sliding mode controller was designed for the X-33 technology demonstration sub-orbital launch vehicle in the launch mode. 6DOF simulation results show that the designed controller provides robust, accurate, de-coupled tracking of the orientation angle command profiles in presence of external disturbances and vehicle inertia uncertainties. It creates possibility to operate the X-33 vehicle in an aircraft-like mode with reduced pre-launch adjustment of the control system.

  13. Modal Contributions to Heat Conduction across Crystalline and Amorphous Si/Ge Interfaces

    NASA Astrophysics Data System (ADS)

    Gordiz, Kiarash; Henry, Asegun

    Until now, our entire understanding of interfacial heat transfer has been based on the phonon gas model and Landauer formalism. Based on this framework, it is difficult to offer any intuition on heat transfer between two solid materials if one side of the interface is an amorphous structure. Here, using the interface conductance modal analysis (ICMA) method, we investigate the modal contributions to thermal interface conductance (TIC) through crystalline (c) and amorphous (a) Si/Ge interfaces. It is revealed that around 15% of the conductance through the cSi/cGe interface arises from less than 0.1% of the modes of vibration in the structure that exist between 12-13THz and because of their large eigenvectors around the interface are classified as interfacial modes. Correlation maps show that these interfacial modes exhibit strong correlations with all the other modes. The physics behind this strong coupling ability is studied by calculating the mode-level harmonic and anharmonic energy distribution among all the atoms in the system. It is found that these interfacial modes are enabled by the large degree of anharmonicity near the interface, which is higher than the bulk and ultimately allows this small group of modes to couple to other modes of vibration. In addition, unlike the cSi/cGe, correlation maps for aSi/cGe, cSi/aGe, and aSi/aGe interfaces show that the majority of contributions to TIC arise from auto-correlations instead of cross-correlations. The provided analysis sheds light on the nature of localized vibrations at interfaces and can be enlightening for other investigations of localization.

  14. Neurotoxicity of Persistent Organic Pollutants: Possible Mode(s) of Action and Further Considerations

    PubMed Central

    Kodavanti, Prasada Rao S.

    2005-01-01

    Persistent organic pollutants (POPs) are long-lived toxic organic compounds and are of major concern for human and ecosystem health. Although the use of most POPs is banned in most countries, some organochlorine pesticides are still being used in several parts of the world. Although environmental levels of some POPs such as polychlorinated biphenyls (PCBs) have declined, newly emerging POPs such as polybrominated diphenyl ethers (PBDEs) have been increasing considerably. Exposure to POPs has been associated with a wide spectrum of effects including reproductive, developmental, immunologic, carcinogenic, and neurotoxic effects. It is of particular concern that neurotoxic effects of some POPs have been observed in humans at low environmental concentrations. This review focuses on PCBs as a representative chemical class of POPs and discusses the possible mode(s) of action for the neurotoxic effects with emphasis on comparing dose-response and structure-activity relationships (SAR) with other structurally related chemicals. There is sufficient epidemiological and experimental evidence showing that PCB exposure is associated with motor and cognitive deficits in humans and animal models. Although several potential mode(s) of actions were postulated for PCB-induced neurotoxic effects, changes in neurotransmitter systems, altered intracellular signalling processes, and thyroid hormone imbalance are predominant ones. These three potential mechanisms are discussed in detail in vitro and in vivo. In addition, SAR was conducted on other structurally similar chemicals to see if they have a common mode(s) of action. Relative potency factors for several of these POPs were calculated based on their effects on intracellular signalling processes. This is a comprehensive review comparing molecular effects at the cellular level to the neurotoxic effects seen in the whole animal for environmentally relevant POPs. PMID:18648619

  15. Edge plasma boundary layer generated by kink modes in tokamaks

    NASA Astrophysics Data System (ADS)

    Zakharov, Leonid E.

    2011-06-01

    This paper describes the structure of the electric current generated by external wall touching and free boundary kink modes at the plasma edge using the ideally conducting plasma model. Both kinds of modes generate δ-functional surface current at the plasma edge. Free boundary kink modes also perturb the core plasma current, which in the plasma edge compensates the difference between the δ-functional surface currents of free boundary and wall touching kink modes. In addition, the resolution of an apparent paradox with the pressure balance across the plasma boundary in the presence of the surface currents is provided.

  16. Femtosecond diode-pumped mode-locked neodymium lasers

    NASA Astrophysics Data System (ADS)

    Kubeček, Václav; Jelínek, Michal; Čech, Miroslav; Vyhlídal, David; Su, Liangbi; Jiang, Dapeng; Ma, Fengkai; Qian, Xiaobo; Wang, Jingya; Xu, Jun

    2016-12-01

    Fluoride-type crystals (CaF2, SrF2) doped with neodymium Nd3+ and codoped with buffer ions for breaking clusters of active ions and increasing fluorescence efficiency, present interesting alternative as laser active media for the diode-pumped mode-locked lasers. In comparison with widely used materials as Nd:YAG or Nd:YVO4, they have broad emission spectra as well as longer fluorescence lifetime, in comparison with Nd:glass, SrF2 and CaF2 have better thermal conductivity. In spite of the fact, that this thermal conductivity decreases with Nd3+ doping concentration, these crystals are alternative for the Nd:glass in subpicosecond mode-locked laser systems. In this paper we review the basic results reported recently on these active materials and in the second part we present our results achieved in low power diode pumped passively mode locked lasers with Nd,La:CaF2 and Nd,Y:SrF2 crystals. The pulses as short as 258 fs at wavelength of 1057 nm were obtained in the first case, while 5 ps long pulses at 1065 nm were generated from the second laser system.

  17. The second-order interference of two independent single-mode He-Ne lasers

    NASA Astrophysics Data System (ADS)

    Liu, Jianbin; Le, Mingnan; Bai, Bin; Wang, Wentao; Chen, Hui; Zhou, Yu; Li, Fu-li; Xu, Zhuo

    2015-09-01

    The second-order spatial and temporal interference patterns with two independent single-mode continuous-wave He-Ne lasers are observed when these two lasers are incident to two adjacent input ports of a 1:1 non-polarizing beam splitter, respectively. Two-photon interference based on the superposition principle in Feynman's path integral theory is employed to interpret the experimental results. The conditions to observe the second-order interference pattern with two independent single-mode continuous-wave lasers are discussed. It is concluded that frequency stability is important to observe the second-order interference pattern with two independent light beams.

  18. Soliton microdynamics and thermal conductivity of uranium nitride at high temperatures

    NASA Astrophysics Data System (ADS)

    Dubovsky, O. A.; Orlov, A. V.; Semenov, V. A.

    2011-09-01

    The microdynamics of soliton waves and localized modes of nonlinear vibrations of the acoustic and optical types in uranium nitride has been investigated. It has been shown that, with an increase in the excitation energy in the spectral gap between the bands of optical and acoustic phonons, the energies of solitons increase, whereas the energies of local modes decrease. The previously experimentally observed unidentified quasi-resonant features, which shift in the gap with variations in the temperature, can represent the revealed soliton waves and local modes. The microdynamics of heat conduction of uranium nitride has been studied for the stochastic generation of soliton waves and local modes in the case of spatially distant energy absorption. The thermal conductivity coefficient determined from the temperature gradient and the absorbed energy flux insignificantly exceeds the experimentally observed values, which are decreased because of the presence of structural defects of different types in the material.

  19. Active mode locking of lasers by piezoelectrically induced diffraction modulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Krausz, F.; Turi, L.; Kuti, C.

    A new amplitude-modulation mode-locking technique is presented. Acoustic waves are generated directly on the faces of a resonant photoelastic medium. The created standing waves cause a highly efficient diffraction modulation of light. The modulation depth of standing-wave mode lockers is related to material and drive parameters and a figure of merit is introduced. With a lithium niobate crystal modulation depths over 10 are achieved at 1.054 {mu}m and 1 W of radio frequency power. Using this device for the active mode locking of a continuous-wave Nd:glass laser pulses as short as 3.8 ps are produced at a repetition rate ofmore » 66 MHz. Limitations of amplitude-modulation mode locking by standing acoustic waves are discussed.« less

  20. Active mode locking of lasers by piezoelectrically induced diffraction modulation

    NASA Astrophysics Data System (ADS)

    Krausz, F.; Turi, L.; Kuti, Cs.; Schmidt, A. J.

    1990-04-01

    A new amplitude-modulation mode-locking technique is presented. Acoustic waves are generated directly on the faces of a resonant photoelastic medium. The created standing waves cause a highly efficient diffraction modulation of light. The modulation depth of standing-wave mode lockers is related to material and drive parameters and a figure of merit is introduced. With a lithium niobate crystal modulation depths over 10 are achieved at 1.054 μm and 1 W of radio frequency power. Using this device for the active mode locking of a continuous-wave Nd:glass laser pulses as short as 3.8 ps are produced at a repetition rate of 66 MHz. Limitations of amplitude-modulation mode locking by standing acoustic waves are discussed.

  1. PLC-based mode multi/demultiplexers for mode division multiplexing

    NASA Astrophysics Data System (ADS)

    Saitoh, Kunimasa; Hanzawa, Nobutomo; Sakamoto, Taiji; Fujisawa, Takeshi; Yamashita, Yoko; Matsui, Takashi; Tsujikawa, Kyozo; Nakajima, Kazuhide

    2017-02-01

    Recently developed PLC-based mode multi/demultiplexers (MUX/DEMUXs) for mode division multiplexing (MDM) transmission are reviewed. We firstly show the operation principle and basic characteristics of PLC-based MUX/DEMUXs with an asymmetric directional coupler (ADC). We then demonstrate the 3-mode (2LP-mode) multiplexing of the LP01, LP11a, and LP11b modes by using fabricated PLC-based mode MUX/DEMUX on one chip. In order to excite LP11b mode in the same plane, a PLC-based LP11 mode rotator is introduced. Finally, we show the PLC-based 6-mode (4LP-mode) MUX/DEMUX with a uniform height by using ADCs, LP11 mode rotators, and tapered waveguides. It is shown that the LP21a mode can be excited from the LP11b mode by using ADC, and the two nearly degenerated LP21b and LP02 modes can be (de)multiplexed separately by using tapered mode converter from E13 (E31) mode to LP21b (LP02) mode.

  2. Linear mode stability of the Kerr-Newman black hole and its quasinormal modes.

    PubMed

    Dias, Óscar J C; Godazgar, Mahdi; Santos, Jorge E

    2015-04-17

    We provide strong evidence that, up to 99.999% of extremality, Kerr-Newman black holes (KNBHs) are linear mode stable within Einstein-Maxwell theory. We derive and solve, numerically, a coupled system of two partial differential equations for two gauge invariant fields that describe the most general linear perturbations of a KNBH. We determine the quasinormal mode (QNM) spectrum of the KNBH as a function of its three parameters and find no unstable modes. In addition, we find that the lowest radial overtone QNMs that are connected continuously to the gravitational ℓ=m=2 Schwarzschild QNM dominate the spectrum for all values of the parameter space (m is the azimuthal number of the wave function and ℓ measures the number of nodes along the polar direction). Furthermore, the (lowest radial overtone) QNMs with ℓ=m approach Reω=mΩH(ext) and Imω=0 at extremality; this is a universal property for any field of arbitrary spin |s|≤2 propagating on a KNBH background (ω is the wave frequency and ΩH(ext) the black hole angular velocity at extremality). We compare our results with available perturbative results in the small charge or small rotation regimes and find good agreement.

  3. Quasinormal modes of Reissner-Nordstrom black holes

    NASA Technical Reports Server (NTRS)

    Leaver, Edward W.

    1990-01-01

    A matrix-eigenvalue algorithm is presented for accurately computing the quasi-normal frequencies and modes of charged static blackholes. The method is then refined through the introduction of a continued-fraction step. The approach should generalize to a variety of nonseparable wave equations, including the Kerr-Newman case of charged rotating blackholes.

  4. Burst mode pumping: A new mechanism of drinking in mosquitoes

    DOE PAGES

    Kikuchi, Kenji; Stremler, Mark A.; Chatterjee, Souvick; ...

    2018-03-20

    Mosquitoes transport liquid foods into the body using two muscular pumps in the head. In normal drinking, these pumps reciprocate in a stereotyped pattern of oscillation, with a high frequency but small stroke volume. Do mosquitoes modulate their neuromotor programs for pumping to produce different drinking modes? More broadly, what are the mechanical consequences of a two-pump system in insects? To address these questions, we used synchrotron x-ray imaging and fluid mechanical modeling to investigate drinking performance in mosquitoes. X-ray imaging of the pumps during drinking revealed two modes of pumping: continuous reciprocation with multiple small strokes, and a newlymore » discovered ‘burst mode’ involving a single, large-volume stroke. Results from modeling demonstrate that burst mode pumping creates a very large pressure drop and high volume flow rate, but requires a massive increase in power, suggesting that continuous pumping is more economical for drinking. Modeling also demonstrates that, from one mode of pumping to the other, the mechanical role of the individual pumps changes. Furthermore, these results suggest that the advantage of a two-pump system in insects lies in its flexibility, enabling the animal to pump efficiently or powerfully as demanded by environmental considerations.« less

  5. Burst mode pumping: A new mechanism of drinking in mosquitoes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kikuchi, Kenji; Stremler, Mark A.; Chatterjee, Souvick

    Mosquitoes transport liquid foods into the body using two muscular pumps in the head. In normal drinking, these pumps reciprocate in a stereotyped pattern of oscillation, with a high frequency but small stroke volume. Do mosquitoes modulate their neuromotor programs for pumping to produce different drinking modes? More broadly, what are the mechanical consequences of a two-pump system in insects? To address these questions, we used synchrotron x-ray imaging and fluid mechanical modeling to investigate drinking performance in mosquitoes. X-ray imaging of the pumps during drinking revealed two modes of pumping: continuous reciprocation with multiple small strokes, and a newlymore » discovered ‘burst mode’ involving a single, large-volume stroke. Results from modeling demonstrate that burst mode pumping creates a very large pressure drop and high volume flow rate, but requires a massive increase in power, suggesting that continuous pumping is more economical for drinking. Modeling also demonstrates that, from one mode of pumping to the other, the mechanical role of the individual pumps changes. Furthermore, these results suggest that the advantage of a two-pump system in insects lies in its flexibility, enabling the animal to pump efficiently or powerfully as demanded by environmental considerations.« less

  6. Growth performance, innate immune responses and disease resistance of fingerling blunt snout bream, Megalobrama amblycephala adapted to different berberine-dietary feeding modes.

    PubMed

    Xu, Wei-Na; Chen, Dan-Hong; Chen, Qing-Qing; Liu, Wen-Bin

    2017-09-01

    A 8-week feeding trial was conducted to evaluate the effect of different berberine-dietary feeding modes on growth, non-specific immune responses and disease resistance of blunt snout bream, Megalobrama amblycephala. Fish (average initial weight 4.70 ± 0.02 g) were fed two fat levels (5% and 10%) diets in three berberine-feeding modes (supplementing 50 mg/kg berberine continuously, two-week or four-week intervals) with four replicates, respectively. Then, fish were challenged by Aeromonas hydrophila and mortality was recorded for the next 96 h after feeding trial. The results showed that different feeding modes of berberine significantly influenced growth, innate immunity and antioxidant capability of fish. Fish fed normal diet with 50 mg/kg berberine at two-week interval mode reflected remarkably (P < 0.05) high weight gain (WG). Plasma TC and TG contents were significantly (P < 0.05) decreased. The lysozyme (LYZ) activities, complement component 3 (C3) and complement component 4 (C4) concentrations were significantly (P < 0.05) increased. Fish not only exhibited relatively low hepatopancreas malondialdehyde (MDA) and lipid peroxide (LPO) contents, but also significantly (P < 0.05) improved superoxide dismutase (SOD) and catalase (CAT) activities. Fish mortality after challenged by Aeromonas hydrophila was decreased. Same results were also presented in fish fed high-fat diet with 50 mg/kg berberine at two-week, four-week intervals or continuous feeding modes. Based on fish healthy improvement and feeding cost saving, blunt snout bream fed normal diet with 50 mg/kg berberine at two-week interval or fed high-fat diet with berberine at two-week or four-week intervals were optimal feeding mode, respectively. Copyright © 2017. Published by Elsevier Ltd.

  7. Design of Dual-Mode Local Oscillators Using CMOS Technology for Motion Detection Sensors.

    PubMed

    Ha, Keum-Won; Lee, Jeong-Yun; Kim, Jeong-Geun; Baek, Donghyun

    2018-04-01

    Recently, studies have been actively carried out to implement motion detecting sensors by applying radar techniques. Doppler radar or frequency-modulated continuous wave (FMCW) radar are mainly used, but each type has drawbacks. In Doppler radar, no signal is detected when the movement is stopped. Also, FMCW radar cannot function when the detection object is near the sensor. Therefore, by implementing a single continuous wave (CW) radar for operating in dual-mode, the disadvantages in each mode can be compensated for. In this paper, a dual mode local oscillator (LO) is proposed that makes a CW radar operate as a Doppler or FMCW radar. To make the dual-mode LO, a method that controls the division ratio of the phase locked loop (PLL) is used. To support both radar mode easily, the proposed LO is implemented by adding a frequency sweep generator (FSG) block to a fractional-N PLL. The operation mode of the LO is determined by according to whether this block is operating or not. Since most radar sensors are used in conjunction with microcontroller units (MCUs), the proposed architecture is capable of dual-mode operation by changing only the input control code. In addition, all components such as VCO, LDO, and loop filter are integrated into the chip, so complexity and interface issues can be solved when implementing radar sensors. Thus, the proposed dual-mode LO is suitable as a radar sensor.

  8. Design of Dual-Mode Local Oscillators Using CMOS Technology for Motion Detection Sensors

    PubMed Central

    Lee, Jeong-Yun; Kim, Jeong-Geun

    2018-01-01

    Recently, studies have been actively carried out to implement motion detecting sensors by applying radar techniques. Doppler radar or frequency-modulated continuous wave (FMCW) radar are mainly used, but each type has drawbacks. In Doppler radar, no signal is detected when the movement is stopped. Also, FMCW radar cannot function when the detection object is near the sensor. Therefore, by implementing a single continuous wave (CW) radar for operating in dual-mode, the disadvantages in each mode can be compensated for. In this paper, a dual mode local oscillator (LO) is proposed that makes a CW radar operate as a Doppler or FMCW radar. To make the dual-mode LO, a method that controls the division ratio of the phase locked loop (PLL) is used. To support both radar mode easily, the proposed LO is implemented by adding a frequency sweep generator (FSG) block to a fractional-N PLL. The operation mode of the LO is determined by according to whether this block is operating or not. Since most radar sensors are used in conjunction with microcontroller units (MCUs), the proposed architecture is capable of dual-mode operation by changing only the input control code. In addition, all components such as VCO, LDO, and loop filter are integrated into the chip, so complexity and interface issues can be solved when implementing radar sensors. Thus, the proposed dual-mode LO is suitable as a radar sensor. PMID:29614777

  9. Smart catheter flow sensor for real-time continuous regional cerebral blood flow monitoring

    NASA Astrophysics Data System (ADS)

    Li, Chunyan; Wu, Pei-Ming; Hartings, Jed A.; Wu, Zhizhen; Ahn, Chong H.; LeDoux, David; Shutter, Lori A.; Narayan, Raj K.

    2011-12-01

    We present a smart catheter flow sensor for real-time, continuous, and quantitative measurement of regional cerebral blood flow using in situ temperature and thermal conductivity compensation. The flow sensor operates in a constant-temperature mode and employs a periodic heating and cooling technique. This approach ensures zero drift and provides highly reliable data with microelectromechanical system-based thin film sensors. The developed flow sensor has a sensitivity of 0.973 mV/ml/100 g/min in the range from 0 to 160 ml/100 g/min with a linear correlation coefficient of R2 = 0.9953. It achieves a resolution of 0.25 ml/100 g/min and an accuracy better than 5 ml/100 g/min.

  10. Majorana zero modes in superconductor-semiconductor heterostructures

    NASA Astrophysics Data System (ADS)

    Lutchyn, R. M.; Bakkers, E. P. A. M.; Kouwenhoven, L. P.; Krogstrup, P.; Marcus, C. M.; Oreg, Y.

    2018-05-01

    Realizing topological superconductivity and Majorana zero modes in the laboratory is a major goal in condensed-matter physics. In this Review, we survey the current status of this rapidly developing field, focusing on proposals for the realization of topological superconductivity in semiconductor-superconductor heterostructures. We examine materials science progress in growing InAs and InSb semiconductor nanowires and characterizing these systems. We then discuss the observation of robust signatures of Majorana zero modes in recent experiments, paying particular attention to zero-bias tunnelling conduction measurements and Coulomb blockade experiments. We also outline several next-generation experiments probing exotic properties of Majorana zero modes, including fusion rules and non-Abelian exchange statistics. Finally, we discuss prospects for implementing Majorana-based topological quantum computation.

  11. Mode coupling at connectors in mode-division multiplexed transmission over few-mode fiber.

    PubMed

    Vuong, Jordi; Ramantanis, Petros; Frignac, Yann; Salsi, Massimiliano; Genevaux, Philippe; Bendimerad, Djalal F; Charlet, Gabriel

    2015-01-26

    In mode-division multiplexed (MDM) transmission systems, mode coupling is responsible for inter-modal crosstalk. We consider the transmission of modulated signals over a few-mode fiber (FMF) having low mode coupling and large differential mode group delay in the presence of a non-ideal fiber connection responsible for extra mode coupling. In this context, we first analytically derive the coupling matrix of the multimode connector and we numerically study the dependence of the matrix coefficients as a function of the butt-joint connection characteristics. The numerical results are then validated through an experiment with a five-mode setup. Finally, through numerical simulations, we assess the impact of the connector on the signal quality investigating different receiver digital signal processing (DSP) schemes.

  12. Universal Quantum Computing with Measurement-Induced Continuous-Variable Gate Sequence in a Loop-Based Architecture

    NASA Astrophysics Data System (ADS)

    Takeda, Shuntaro; Furusawa, Akira

    2017-09-01

    We propose a scalable scheme for optical quantum computing using measurement-induced continuous-variable quantum gates in a loop-based architecture. Here, time-bin-encoded quantum information in a single spatial mode is deterministically processed in a nested loop by an electrically programmable gate sequence. This architecture can process any input state and an arbitrary number of modes with almost minimum resources, and offers a universal gate set for both qubits and continuous variables. Furthermore, quantum computing can be performed fault tolerantly by a known scheme for encoding a qubit in an infinite-dimensional Hilbert space of a single light mode.

  13. Universal Quantum Computing with Measurement-Induced Continuous-Variable Gate Sequence in a Loop-Based Architecture.

    PubMed

    Takeda, Shuntaro; Furusawa, Akira

    2017-09-22

    We propose a scalable scheme for optical quantum computing using measurement-induced continuous-variable quantum gates in a loop-based architecture. Here, time-bin-encoded quantum information in a single spatial mode is deterministically processed in a nested loop by an electrically programmable gate sequence. This architecture can process any input state and an arbitrary number of modes with almost minimum resources, and offers a universal gate set for both qubits and continuous variables. Furthermore, quantum computing can be performed fault tolerantly by a known scheme for encoding a qubit in an infinite-dimensional Hilbert space of a single light mode.

  14. Significant reduction of thermal conductivity in Si/Ge core-shell nanowires.

    PubMed

    Hu, Ming; Giapis, Konstantinos P; Goicochea, Javier V; Zhang, Xiaoliang; Poulikakos, Dimos

    2011-02-09

    We report on the effect of germanium (Ge) coatings on the thermal transport properties of silicon (Si) nanowires using nonequilibrium molecular dynamics simulations. Our results show that a simple deposition of a Ge shell of only 1 to 2 unit cells in thickness on a single crystalline Si nanowire can lead to a dramatic 75% decrease in thermal conductivity at room temperature compared to an uncoated Si nanowire. By analyzing the vibrational density states of phonons and the participation ratio of each specific mode, we demonstrate that the reduction in the thermal conductivity of Si/Ge core-shell nanowire stems from the depression and localization of long-wavelength phonon modes at the Si/Ge interface and of high frequency nonpropagating diffusive modes.

  15. Monolithic quasi-sliding-mode controller for SIDO buck converter with a self-adaptive free-wheeling current level

    NASA Astrophysics Data System (ADS)

    Xiaobo, Wu; Qing, Liu; Menglian, Zhao; Mingyang, Chen

    2013-01-01

    An analog implementation of a novel fixed-frequency quasi-sliding-mode controller for single-inductor dual-output (SIDO) buck converter in pseudo-continuous conduction mode (PCCM) with a self-adaptive freewheeling current level (SFCL) is presented. Both small and large signal variations around the operation point are considered to achieve better transient response so as to reduce the cross-regulation of this SIDO buck converter. Moreover, an internal integral loop is added to suppress the steady-state regulation error introduced by conventional PWM-based sliding mode controllers. Instead of keeping it as a constant value, the free-wheeling current level varies according to the load condition to maintain high power efficiency and less cross-regulation at the same time. To verify the feasibility of the proposed controller, an SIDO buck converter with two regulated output voltages, 1.8 V and 3.3 V, is designed and fabricated in HEJIAN 0.35 μm CMOS process. Simulation and experiment results show that the transient time of this SIDO buck converter drops to 10 μs while the cross-regulation is reduced to 0.057 mV/mA, when its first load changes from 50 to 100 mA.

  16. Optimization of few-mode-fiber based mode converter for mode division multiplexing transmission

    NASA Astrophysics Data System (ADS)

    Xie, Yiwei; Fu, Songnian; Zhang, Minming; Tang, M.; Shum, P.; Liu, Deming

    2013-10-01

    Few-mode-fiber (FMF) based mode division multiplexing (MDM) is a promising technique to further increase the transmission capacity of single mode fibers. We propose and numerically investigate a fiber-optical mode converter (MC) using long period gratings (LPGs) fabricated on the FMF by point-by-point CO2 laser inscription technique. In order to precisely excite three modes (LP01, LP11, and LP02), both untilted LPG and tilted LPG are comprehensively optimized through the length, index modulation depth, and tilt angle of the LPG in order to achieve a mode contrast ratio (MCR) of more than 20 dB with less wavelength dependence. It is found that the proposed MCs have obvious advantages of high MCR, low mode crosstalk, easy fabrication and maintenance, and compact size.

  17. High power continuous operation of a widely tunable quantum cascade laser with an integrated amplifier

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Slivken, S.; Sengupta, S.; Razeghi, M., E-mail: razeghi@eecs.northwestern.edu

    2015-12-21

    Wide electrical tuning and high continuous output power is demonstrated from a single mode quantum cascade laser emitting at a wavelength near 4.8 μm. This is achieved in a space efficient manner by integrating an asymmetric sampled grating distributed feedback tunable laser with an optical amplifier. An initial demonstration of high peak power operation in pulsed mode is demonstrated first, with >5 W output over a 270 nm (113 cm{sup −1}) spectral range. Refinement of the geometry leads to continuous operation with a single mode spectral coverage of 300 nm (120 cm{sup −1}) and a maximum continuous power of 1.25 W. The output beam is shown tomore » be nearly diffraction-limited, even at high amplifier current.« less

  18. Effect of pulsed and continuous ultrasound on structural and magnetic properties of nano-sized Ni0.4Cu0.2Zn0.4Fe2O4 ferrite

    NASA Astrophysics Data System (ADS)

    Hassen, Harzali; Adel, Megriche; Arbi, Mgaidi

    2018-03-01

    Ultrasound-assisted co-precipitation has been used to prepare nano-sized Ni0.4Cu0.2Zn0.4Fe2O4 ferrite. Continuous (C-US) and pulsed (P-US) ultrasound modes are used at constant frequency = 20 kHz, reaction time = 2 h and pulse durations of 10 s on and 10 s off. All experiments were conducted at two temperatures 90 and 100°C. Samples were characterized by X-ray diffraction (XRD), Fourier transform spectroscopy (FT-IR), N2 adsorption isotherms at 77 k analysis (BET), transmission electron microscopy (TEM) and vibrating sample magnetometry (VSM) techniques. A nanocrystalline single-phase with particle size in the range 12-18 nm is obtained in both modes: continuous and pulsed ultrasound mode. FT-IR measurements show two absorption bands assigned to the tetrahedral and octahedral vibrations (ν1 and ν2) characteristics of cubic spinel ferrite. The specific surface area (S BET) is in the range of 110-140 m2 g-1 and an average pore size between 5.5 and 6.5 nm. The lowest values are obtained in pulsed mode. Finally, this work shows that the magnetic properties are affected by the ultrasound conditions, without affecting the particle shape. The saturation magnetization (Ms) values obtained for all samples are comparable. In P-US mode, the saturation magnetization (Ms) increases as temperature increases. Moreover, P-US mode opens a new avenue for synthesis of NiCuZn ferrites.

  19. Constraining primordial vector mode from B-mode polarization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Saga, Shohei; Ichiki, Kiyotomo; Shiraishi, Maresuke, E-mail: saga.shohei@nagoya-u.jp, E-mail: maresuke.shiraishi@pd.infn.it, E-mail: ichiki@a.phys.nagoya-u.ac.jp

    The B-mode polarization spectrum of the Cosmic Microwave Background (CMB) may be the smoking gun of not only the primordial tensor mode but also of the primordial vector mode. If there exist nonzero vector-mode metric perturbations in the early Universe, they are known to be supported by anisotropic stress fluctuations of free-streaming particles such as neutrinos, and to create characteristic signatures on both the CMB temperature, E-mode, and B-mode polarization anisotropies. We place constraints on the properties of the primordial vector mode characterized by the vector-to-scalar ratio r{sub v} and the spectral index n{sub v} of the vector-shear power spectrum,more » from the Planck and BICEP2 B-mode data. We find that, for scale-invariant initial spectra, the ΛCDM model including the vector mode fits the data better than the model including the tensor mode. The difference in χ{sup 2} between the vector and tensor models is Δχ{sup 2} = 3.294, because, on large scales the vector mode generates smaller temperature fluctuations than the tensor mode, which is preferred for the data. In contrast, the tensor mode can fit the data set equally well if we allow a significantly blue-tilted spectrum. We find that the best-fitting tensor mode has a large blue tilt and leads to an indistinct reionization bump on larger angular scales. The slightly red-tilted vector mode supported by the current data set can also create O(10{sup -22})-Gauss magnetic fields at cosmological recombination. Our constraints should motivate research that considers models of the early Universe that involve the vector mode.« less

  20. An analysis toolbox to explore mesenchymal migration heterogeneity reveals adaptive switching between distinct modes

    PubMed Central

    Shafqat-Abbasi, Hamdah; Kowalewski, Jacob M; Kiss, Alexa; Gong, Xiaowei; Hernandez-Varas, Pablo; Berge, Ulrich; Jafari-Mamaghani, Mehrdad; Lock, John G; Strömblad, Staffan

    2016-01-01

    Mesenchymal (lamellipodial) migration is heterogeneous, although whether this reflects progressive variability or discrete, 'switchable' migration modalities, remains unclear. We present an analytical toolbox, based on quantitative single-cell imaging data, to interrogate this heterogeneity. Integrating supervised behavioral classification with multivariate analyses of cell motion, membrane dynamics, cell-matrix adhesion status and F-actin organization, this toolbox here enables the detection and characterization of two quantitatively distinct mesenchymal migration modes, termed 'Continuous' and 'Discontinuous'. Quantitative mode comparisons reveal differences in cell motion, spatiotemporal coordination of membrane protrusion/retraction, and how cells within each mode reorganize with changed cell speed. These modes thus represent distinctive migratory strategies. Additional analyses illuminate the macromolecular- and cellular-scale effects of molecular targeting (fibronectin, talin, ROCK), including 'adaptive switching' between Continuous (favored at high adhesion/full contraction) and Discontinuous (low adhesion/inhibited contraction) modes. Overall, this analytical toolbox now facilitates the exploration of both spontaneous and adaptive heterogeneity in mesenchymal migration. DOI: http://dx.doi.org/10.7554/eLife.11384.001 PMID:26821527

  1. Spatial-mode switchable ring fiber laser based on low mode-crosstalk all-fiber mode MUX/DEMUX

    NASA Astrophysics Data System (ADS)

    Ren, Fang; Yu, Jinyi; Wang, Jianping

    2018-05-01

    We report an all-fiber ring laser that emits linearly polarized (LP) modes based on the intracavity all-fiber mode multiplexer/demultiplexer (MUX/DEMUX). Multiple LP modes in ring fiber laser are generated by taking advantage of mode MUX/DEMUX. The all-fiber mode MUX/DEMUX are composed of cascaded mode-selective couplers (MSCs). The output lasing mode of the ring fiber laser can be switched among the three lowest-order LP modes by employing combination of a mode MUX and a simple N × 1 optical switch. The slope efficiencies, optical spectra and mode profiles are measured.

  2. 1.9 μm square-wave passively Q-witched mode-locked fiber laser.

    PubMed

    Ma, Wanzhuo; Wang, Tianshu; Su, Qingchao; Wang, Furen; Zhang, Jing; Wang, Chengbo; Jiang, Huilin

    2018-05-14

    We propose and demonstrate the operation of Q-switched mode-locked square-wave pulses in a thulium-holmium co-doped fiber laser. By using a nonlinear amplifying loop mirror, continuous square-wave dissipative soliton resonance pulse is obtained with 4.4 MHz repetition rate. With the increasing pump power, square-wave pulse duration can be broadened from 1.7 ns to 3.2 ns. On such basis Q-switched mode-locked operation is achieved by properly setting the pump power and the polarization controllers. The internal mode-locked pulses in Q-switched envelope still keep square-wave type. The Q-switched repetition rate can be varied from 41.6 kHz to 74 kHz by increasing pump power. The corresponding average single-pulse energy increases from 2.67 nJ to 5.2 nJ. The average peak power is also improved from 0.6 W to 1.1 W when continuous square-wave operation is changed into Q-switched mode-locked operation. It indicates that Q-switched mode-locked operation is an effective method to increase the square-wave pulse energy and peak power.

  3. Assessing acute toxicity of effluent from a textile industry and nearby river waters using sulfur-oxidizing bacteria in continuous mode.

    PubMed

    Gurung, Anup; Hassan, Sedky H A; Oh, Sang-Eun

    2011-10-01

    Bioassays are becoming an important tool for assessing the toxicity of complex mixtures of substances in aquatic environments in which Daphnia magna is routinely used as a test organism. Bioassays outweigh physicochemical analyses and are valuable in the decision-making process pertaining to the final discharge of effluents from wastewater treatment plants as they measure the total effect of the discharge which is ecologically relevant. In this study, the aquatic toxicity of a textile plant effluent and river water downstream from the plant were evaluated with sulfur-oxidizing bacterial biosensors in continuous mode. Collected samples were analysed for different physicochemical parameters and 1,4-dioxane was detected in the effluent. The effluent contained a relatively high chemical oxygen demand of 60 mg L(-1), which exceeded the limit set by the Korean government for industrial effluent discharges. Results showed that both the effluent and river waters were toxic to sulfur-oxidizing bacteria. These results show the importance of incorporating bioassays to detect toxicity in wastewater effluents for the sustainable management of water resources.

  4. Chandrasekhar-Kendall modes and Taylor relaxation in an axisymmetric torus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tang, X.Z.; Boozer, A.H.; Department of Applied Physics and Applied Mathematics, Columbia University, New York, New York 10027

    2005-10-01

    The helicity-conserving Taylor relaxation of a plasma in a toroidal chamber to a force-free configuration, which means j=(j{sub parallel})/B)B with j{sub parallel}/B independent of position, can be generalized to include the external injection of magnetic helicity. When this is done, j{sub parallel}/B has resonant values, which can be understood using the eigenmodes of Taylor-relaxed plasmas enclosed by a perfectly conducting toroidal shell. These eigenmodes include a toroidal generalization of those found by Chandrasekhar and Kendall (CK) [Astrophys. J. 126, 457 (1957)] for a spherical chamber, which has no externally produced magnetic flux. It is shown that the CK modes inmore » an axisymmetric torus are of three types: (1) helical modes as well as axisymmetric modes that have (2) and have no (3) net toroidal flux. Yoshida and Giga (YG) [Math. Z. 204, 235 (1990)] published a fourth class of modes: axisymmetric modes that have no net toroidal flux in the chamber due to toroidal flux produced by a net poloidal current in the shell canceling the net toroidal flux from the plasma currents. Jensen and Chu [Phys. Fluids 27, 2881 (1984)], as well as Taylor [Rev. Mod. Phys. 58, 741 (1986)], considered modes in which the vector potential was zero on the axisymmetric toroidal chamber. It is shown that these Jensen-Chu-Taylor modes include only the CK helical modes and the CK axisymmetric modes without net toroidal flux. If the toroidal chamber is perfectly conducting except for a cut that prevents a net poloidal current from flowing, resonances in j{sub parallel}/B occur at the eigenvalues of the axisymmetric CK modes. Jensen and Chu studied this type of resonance. Without the cut, so a poloidal current flows to conserve the net toroidal flux, it is shown that j{sub parallel}/B resonances occur at the eigenvalues of the CK modes that have no net toroidal flux and at the eigenvalues of the YG modes, which are upshifted from the eigenvalues of the axisymmetric CK modes

  5. Algorithm for Determination of Orion Ascent Abort Mode Achievability

    NASA Technical Reports Server (NTRS)

    Tedesco, Mark B.

    2011-01-01

    For human spaceflight missions, a launch vehicle failure poses the challenge of returning the crew safely to earth through environments that are often much more stressful than the nominal mission. Manned spaceflight vehicles require continuous abort capability throughout the ascent trajectory to protect the crew in the event of a failure of the launch vehicle. To provide continuous abort coverage during the ascent trajectory, different types of Orion abort modes have been developed. If a launch vehicle failure occurs, the crew must be able to quickly and accurately determine the appropriate abort mode to execute. Early in the ascent, while the Launch Abort System (LAS) is attached, abort mode selection is trivial, and any failures will result in a LAS abort. For failures after LAS jettison, the Service Module (SM) effectors are employed to perform abort maneuvers. Several different SM abort mode options are available depending on the current vehicle location and energy state. During this region of flight the selection of the abort mode that maximizes the survivability of the crew becomes non-trivial. To provide the most accurate and timely information to the crew and the onboard abort decision logic, on-board algorithms have been developed to propagate the abort trajectories based on the current launch vehicle performance and to predict the current abort capability of the Orion vehicle. This paper will provide an overview of the algorithm architecture for determining abort achievability as well as the scalar integration scheme that makes the onboard computation possible. Extension of the algorithm to assessing abort coverage impacts from Orion design modifications and launch vehicle trajectory modifications is also presented.

  6. Pulsation Modes of sdBV Stars Observed with Kepler

    NASA Astrophysics Data System (ADS)

    Reed, M. D.; Baran, A. S.; Quint, A. C.; Telting, J. H.; Østensen, R. H.; O'Toole, S. J.

    2012-03-01

    During the Kepler satellite's first year of operation, its short cadence observations were obtained in a survey mode where targets received one month of nearly continuous observations. 48 subdwarf B stars were observed of which 14 were found to be pulsators, with only one of these having predominantly short periods. The other 13 were mostly long-period (g-mode) pulsators. With Kepler's exquisite duty cycle and data quality, an average of 23 periods per star were detected with ranges from 6 to 44. As the g-mode pulsations are high-overtone (typically n > 10), asymptotic period relations could apply and so we searched for evenly spaced periods. We found these for l =1 and 2 modes in all but one of the Kepler stars and that one outlier has a very complex temporal spectrum caused by a close companion. We were able to associate 204 of 299 measured periods with l = 1 and 2 modes. Those results should provide tight constraints on pulsation models. However, they also offer a surprise as current structure models predict significant mode trapping, which is inconsistent with the period spacings we have found.

  7. Influence of Mixed Mode I-Mode II Loading on Fatigue Delamination Growth Characteristics of a Graphite Epoxy Tape Laminate

    NASA Technical Reports Server (NTRS)

    Ratcliffe, James G.; Johnston, William M., Jr.

    2014-01-01

    Mixed mode I-mode II interlaminar tests were conducted on IM7/8552 tape laminates using the mixed-mode bending test. Three mixed mode ratios, G(sub II)/G(sub T) = 0.2, 0.5, and 0.8, were considered. Tests were performed at all three mixed-mode ratios under quasi-static and cyclic loading conditions, where the former static tests were used to determine initial loading levels for the latter fatigue tests. Fatigue tests at each mixed-mode ratio were performed at four loading levels, Gmax, equal to 0.5G(sub c), 0.4G(sub c), 0.3G(sub c), and 0.2G(sub c), where G(sub c) is the interlaminar fracture toughness of the corresponding mixed-mode ratio at which a test was performed. All fatigue tests were performed using constant-amplitude load control and delamination growth was automatically documented using compliance solutions obtained from the corresponding quasi-static tests. Static fracture toughness data yielded a mixed-mode delamination criterion that exhibited monotonic increase in Gc with mixed-mode ratio, G(sub II)/G(sub T). Fatigue delamination onset parameters varied monotonically with G(sub II)/G(sub T), which was expected based on the fracture toughness data. Analysis of non-normalized data yielded a monotonic change in Paris law exponent with mode ratio. This was not the case when normalized data were analyzed. Fatigue data normalized by the static R-curve were most affected in specimens tested at G(sub II)/G(sub T)=0.2 (this process has little influence on the other data). In this case, the normalized data yielded a higher delamination growth rate compared to the raw data for a given loading level. Overall, fiber bridging appeared to be the dominant mechanism, affecting delamination growth rates in specimens tested at different load levels and differing mixed-mode ratios.

  8. Mind the Mode: Differences in Paper vs. Web-Based Survey Modes Among Women With Cancer.

    PubMed

    Hagan, Teresa L; Belcher, Sarah M; Donovan, Heidi S

    2017-09-01

    Researchers administering surveys seek to balance data quality, sources of error, and practical concerns when selecting an administration mode. Rarely are decisions about survey administration based on the background of study participants, although socio-demographic characteristics like age, education, and race may contribute to participants' (non)responses. In this study, we describe differences in paper- and web-based surveys administered in a national cancer survivor study of women with a history of cancer to compare the ability of each survey administrative mode to provide quality, generalizable data. We compared paper- and web-based survey data by socio-demographic characteristics of respondents, missing data rates, scores on primary outcome measure, and administrative costs and time using descriptive statistics, tests of mean group differences, and linear regression. Our findings indicate that more potentially vulnerable patients preferred paper questionnaires and that data quality, responses, and costs significantly varied by mode and participants' demographic information. We provide targeted suggestions for researchers conducting survey research to reduce survey error and increase generalizability of study results to the patient population of interest. Researchers must carefully weigh the pros and cons of survey administration modes to ensure a representative sample and high-quality data. Copyright © 2017 American Academy of Hospice and Palliative Medicine. Published by Elsevier Inc. All rights reserved.

  9. Calculus Student Understanding of Continuity

    ERIC Educational Resources Information Center

    Wangle, Jayleen Lillian

    2013-01-01

    Continuity is a central concept in calculus. Yet very few students seem to understand the nature of continuity. The research described was conducted in two stages. Students were asked questions in multiple choice and true/false format regarding function, limit and continuity. These results were used to identify participants as strong, weak or…

  10. Thermal conductivity of freestanding single wall carbon nanotube sheet by Raman spectroscopy.

    PubMed

    Sahoo, Satyaprakash; Chitturi, Venkateswara Rao; Agarwal, Radhe; Jiang, Jin-Wu; Katiyar, Ram S

    2014-11-26

    Thermal properties of single wall carbon nanotube sheets (SWCNT-sheets) are of significant importance in the area of thermal management, as an isolated SWCNT possesses high thermal conductivity of the value about 3000 W m(-1) K(-1). Here we report an indirect method of estimating the thermal conductivity of a nanometer thick suspended SWCNT-sheet by employing the Raman scattering technique. Tube diameter size is examined by the transmissions electron microscopy study. The Raman analysis of the radial breathing modes predicts narrow diameter size distribution with achiral (armchair) symmetry of the constituent SWCNTs. From the first order temperature coefficient of the A1g mode of the G band along with the laser power dependent frequency shifting of this mode, the thermal conductivity of the suspended SWCNT-sheet is estimated to be about ∼18.3 W m(-1) K(-1). Our theoretical study shows that the thermal conductivity of the SWCNT-sheet has contributions simultaneously from the intratube and intertube thermal transport. The intertube thermal conductivity (with contributions from the van der Waals interaction) is merely around 0.7 W m(-1) K(-1), which is three orders smaller than the intratube thermal conductivity, leading to an abrupt decrease in the thermal conductivity of the SWCNT-sheet as compared to the reported value for isolated SWCNT.

  11. Conductance signatures of electron confinement induced by strained nanobubbles in graphene

    NASA Astrophysics Data System (ADS)

    Bahamon, Dario A.; Qi, Zenan; Park, Harold S.; Pereira, Vitor M.; Campbell, David K.

    2015-09-01

    We investigate the impact of strained nanobubbles on the conductance characteristics of graphene nanoribbons using a combined molecular dynamics - tight-binding simulation scheme. We describe in detail how the conductance, density of states, and current density of zigzag or armchair graphene nanoribbons are modified by the presence of a nanobubble. In particular, we establish that low-energy electrons can be confined in the vicinity of or within the nanobubbles by the delicate interplay among the pseudomagnetic field pattern created by the shape of the bubble, mode mixing, and substrate interaction. The coupling between confined evanescent states and propagating modes can be enhanced under different clamping conditions, which translates into Fano resonances in the conductance traces.

  12. Few-mode fiber based Raman distributed temperature sensing.

    PubMed

    Wang, Meng; Wu, Hao; Tang, Ming; Zhao, Zhiyong; Dang, Yunli; Zhao, Can; Liao, Ruolin; Chen, Wen; Fu, Songnian; Yang, Chen; Tong, Weijun; Shum, Perry Ping; Liu, Deming

    2017-03-06

    We proposed and experimentally demonstrated a few mode fiber (FMF) based Raman distributed temperature sensor (RDTS) to extend the sensing distance with enhanced signal-to-noise ratio (SNR) of backscattered anti-Stokes spontaneous Raman scattering. Operating in the quasi-single mode (QSM) with efficient fundamental mode excitement, the FMF allows much larger input pump power before the onset of stimulated Raman scattering compared with the standard single mode fiber (SSMF) and mitigates the detrimental differential mode group delay (DMGD) existing in the conventional multimode fiber (MMF) based RDTS system. Comprehensive theoretical analysis has been conducted to reveal the benefits of RDTS brought by QSM operated FMFs with the consideration of geometric/optical parameters of different FMFs. The measurement uncertainty of FMF based scheme has also been evaluated. Among fibers being investigated and compared (SSMF, 2-mode and 4-mode FMFs, respectively), although an ideal 4-mode FMF based RDTS has the largest SNR enhancement in principle, real fabrication imperfections and larger splicing loss degrade its performance. While the 2-mode FMF based system outperforms in longer distance measurement, which agrees well with the theoretical calculations considering real experimental parameters. Using the conventional RDTS hardware, a 30-ns single pulse at 1550nm has been injected as the pump; the obtained temperature resolutions at 20km distance are estimated to be about 10°C, 7°C and 6°C for the SSMF, 4-mode and 2-mode FMFs, respectively. About 4°C improvement over SSMF on temperature resolution at the fiber end with 3m spatial resolution within 80s measuring time over 20km 2-mode FMFs have been achieved.

  13. Analysis of Coherent Phonon Signals by Sparsity-promoting Dynamic Mode Decomposition

    NASA Astrophysics Data System (ADS)

    Murata, Shin; Aihara, Shingo; Tokuda, Satoru; Iwamitsu, Kazunori; Mizoguchi, Kohji; Akai, Ichiro; Okada, Masato

    2018-05-01

    We propose a method to decompose normal modes in a coherent phonon (CP) signal by sparsity-promoting dynamic mode decomposition. While the CP signals can be modeled as the sum of finite number of damped oscillators, the conventional method such as Fourier transform adopts continuous bases in a frequency domain. Thus, the uncertainty of frequency appears and it is difficult to estimate the initial phase. Moreover, measurement artifacts are imposed on the CP signal and deforms the Fourier spectrum. In contrast, the proposed method can separate the signal from the artifact precisely and can successfully estimate physical properties of the normal modes.

  14. Duct Mode Measurements on the TFE731-60 Full Scale Engine

    NASA Technical Reports Server (NTRS)

    Sutliff, Daniel L.; Konno, Kevin E.; Heidelberg, Laurence J.

    2002-01-01

    A continuously rotating rake with radial microphones was developed to measure the inlet and exhaust duct modes on a TFE731-60 turbofan engine. This was the first time the rotating rake technology was used on a production engine. The modal signature for the first three fan harmonics was obtained in the inlet and exhaust. Rotor-stator and rotor-strut interaction modes were measured. Total harmonic power was calculated over a range of fan speeds. Above sonic tip speed, the rotor locked mode was not strong enough to be identified, but the 'buzz-saw' noise at fan sub-harmonics was identified.

  15. Distributed feedback laser diode integrated with distributed Bragg reflector for continuous-wave terahertz generation.

    PubMed

    Kim, Namje; Han, Sang-Pil; Ryu, Han-Cheol; Ko, Hyunsung; Park, Jeong-Woo; Lee, Donghun; Jeon, Min Yong; Park, Kyung Hyun

    2012-07-30

    A widely tunable dual mode laser diode with a single cavity structure is demonstrated. This novel device consists of a distributed feedback (DFB) laser diode and distributed Bragg reflector (DBR). Micro-heaters are integrated on the top of each section for continuous and independent wavelength tuning of each mode. By using a single gain medium in the DFB section, an effective common optical cavity and common modes are realized. The laser diode shows a wide tunability of the optical beat frequency, from 0.48 THz to over 2.36 THz. Continuous wave THz radiation is also successfully generated with low-temperature grown InGaAs photomixers from 0.48 GHz to 1.5 THz.

  16. ELM Suppression and Pedestal Structure in I-Mode Plasmas

    NASA Astrophysics Data System (ADS)

    Walk, John

    2013-10-01

    The I-mode regime is characterized by the formation of a temperature pedestal and enhanced energy confinement (H98 up to 1.2), without an accompanying density pedestal or drop in particle transport. Unlike ELMy H-modes, I-mode operation appears to have naturally-occurring suppression of large ELMs in addition to its highly favorable scalings of pedestal structure (and therefore overall performance). Instead, continuous Weakly Coherent Modes help to regulate density. Extensive study of the ELMy H-mode has led to the development of the EPED model, which utilizes calculations of coupled peeling-ballooning MHD modes and kinetic-ballooning mode (KBM) stability limits to predict the pedestal structure preceding an ELM crash. We apply similar tools to the structure and ELM stability of I-mode pedestals. Peeling-ballooning MHD calculations are completed using the ELITE code, showing I-mode pedestals to be generally MHD-stable. Under certain conditions, intermittent ELMs are observed in I-mode at reduced field, typically triggered by sawtooth crashes; modification of the temperature pedestal (and therefore the pressure profile stability) by sawtooth heat pulses is being examined in ELITE. Modeled stability to KBM turbulence in I-mode and ELMy H-mode suggests that typical I-modes are stable against KBM turbulence. Measured I-mode pedestals are significantly wider (more stable) than the width scaling with the square root of poloidal beta characteristic of the KBM-limited pedestals in ELMy H-mode. Finally, we explore scalings of pedestal structure with engineering parameters compared to ELMy H-modes on C-Mod. In particular, we focus on scalings of the pressure pedestal with heating power (and its relation to the favorable scaling of confinement with power in I-mode) and on relationships between heat flux and pedestal temperature gradients. This work is supported by DOE agreement DE-FC02-99ER54512. Theory work at General Atomics is supported by DOE agreement DE-FG02-99ER54309.

  17. An SMS (single mode - multi mode - single mode) fiber structure for vibration sensing

    NASA Astrophysics Data System (ADS)

    Waluyo, T. B.; Bayuwati, D.

    2017-04-01

    We describe an SMS (single mode - multi mode - single mode) fiber structure to be used in a vibration sensing system. The fiber structure was fabricated by splicing a section (about 300 mm in length) of a step index multi mode fiber between two single mode fibers obtained from a communication grade fiber patchcord. Interference between higher order modes occurs while light from a narrow band light source travels along the multi mode fiber. When the multi mode fiber vibrates, the refractive index profile is changed because of the photo-elastics effect and the amplitude of the interference pattern is changed accordingly. To simulate a vibrating structure we used a loudspeaker to vibrate a wooden table. By using a digital oscilloscope, we recorded and analysed the vibrating signals obtained from the SMS fiber structure as well as from a GS-32CT geophone for referencing. We observed that this SMS fiber structure was potential to be used in a vibration sensing system with a measurement range from 30 to 180 Hz with inherent optical fiber sensor advantages such as light weight, immune to electromagnetic interference, and no electricity in the sensing part.

  18. Mode-based microparticle conveyor belt in air-filled hollow-core photonic crystal fiber.

    PubMed

    Schmidt, Oliver A; Euser, Tijmen G; Russell, Philip St J

    2013-12-02

    We show how microparticles can be moved over long distances and precisely positioned in a low-loss air-filled hollow-core photonic crystal fiber using a coherent superposition of two co-propagating spatial modes, balanced by a backward-propagating fundamental mode. This creates a series of trapping positions spaced by half the beat-length between the forward-propagating modes (typically a fraction of a millimeter). The system allows a trapped microparticle to be moved along the fiber by continuously tuning the relative phase between the two forward-propagating modes. This mode-based optical conveyor belt combines long-range transport of microparticles with a positional accuracy of 1 µm. The technique also has potential uses in waveguide-based optofluidic systems.

  19. Telephone-quality pathological speech classification using empirical mode decomposition.

    PubMed

    Kaleem, M F; Ghoraani, B; Guergachi, A; Krishnan, S

    2011-01-01

    This paper presents a computationally simple and effective methodology based on empirical mode decomposition (EMD) for classification of telephone quality normal and pathological speech signals. EMD is used to decompose continuous normal and pathological speech signals into intrinsic mode functions, which are analyzed to extract physically meaningful and unique temporal and spectral features. Using continuous speech samples from a database of 51 normal and 161 pathological speakers, which has been modified to simulate telephone quality speech under different levels of noise, a linear classifier is used with the feature vector thus obtained to obtain a high classification accuracy, thereby demonstrating the effectiveness of the methodology. The classification accuracy reported in this paper (89.7% for signal-to-noise ratio 30 dB) is a significant improvement over previously reported results for the same task, and demonstrates the utility of our methodology for cost-effective remote voice pathology assessment over telephone channels.

  20. Causality analysis of leading singular value decomposition modes identifies rotor as the dominant driving normal mode in fibrillation

    NASA Astrophysics Data System (ADS)

    Biton, Yaacov; Rabinovitch, Avinoam; Braunstein, Doron; Aviram, Ira; Campbell, Katherine; Mironov, Sergey; Herron, Todd; Jalife, José; Berenfeld, Omer

    2018-01-01

    Cardiac fibrillation is a major clinical and societal burden. Rotors may drive fibrillation in many cases, but their role and patterns are often masked by complex propagation. We used Singular Value Decomposition (SVD), which ranks patterns of activation hierarchically, together with Wiener-Granger causality analysis (WGCA), which analyses direction of information among observations, to investigate the role of rotors in cardiac fibrillation. We hypothesized that combining SVD analysis with WGCA should reveal whether rotor activity is the dominant driving force of fibrillation even in cases of high complexity. Optical mapping experiments were conducted in neonatal rat cardiomyocyte monolayers (diameter, 35 mm), which were genetically modified to overexpress the delayed rectifier K+ channel IKr only in one half of the monolayer. Such monolayers have been shown previously to sustain fast rotors confined to the IKr overexpressing half and driving fibrillatory-like activity in the other half. SVD analysis of the optical mapping movies revealed a hierarchical pattern in which the primary modes corresponded to rotor activity in the IKr overexpressing region and the secondary modes corresponded to fibrillatory activity elsewhere. We then applied WGCA to evaluate the directionality of influence between modes in the entire monolayer using clear and noisy movies of activity. We demonstrated that the rotor modes influence the secondary fibrillatory modes, but influence was detected also in the opposite direction. To more specifically delineate the role of the rotor in fibrillation, we decomposed separately the respective SVD modes of the rotor and fibrillatory domains. In this case, WGCA yielded more information from the rotor to the fibrillatory domains than in the opposite direction. In conclusion, SVD analysis reveals that rotors can be the dominant modes of an experimental model of fibrillation. Wiener-Granger causality on modes of the rotor domains confirms their

  1. 3-D Mixed Mode Delamination Fracture Criteria - An Experimentalist's Perspective

    NASA Technical Reports Server (NTRS)

    Reeder, James R.

    2006-01-01

    Many delamination failure criteria based on fracture toughness have been suggested over the past few decades, but most only covered the region containing mode I and mode II components of loading because that is where toughness data existed. With new analysis tools, more 3D analyses are being conducted that capture a mode III component of loading. This has increased the need for a fracture criterion that incorporates mode III loading. The introduction of a pure mode III fracture toughness test has also produced data on which to base a full 3D fracture criterion. In this paper, a new framework for visualizing 3D fracture criteria is introduced. The common 2D power law fracture criterion was evaluated to produce unexpected predictions with the introduction of mode III and did not perform well in the critical high mode I region. Another 2D criterion that has been shown to model a wide range of materials well was used as the basis for a new 3D criterion. The new criterion is based on assumptions that the relationship between mode I and mode III toughness is similar to the relation between mode I and mode II and that a linear interpolation can be used between mode II and mode III. Until mixed-mode data exists with a mode III component of loading, 3D fracture criteria cannot be properly evaluated, but these assumptions seem reasonable.

  2. Plasmon Excitations of Multi-layer Graphene on a Conducting Substrate

    PubMed Central

    Gumbs, Godfrey; Iurov, Andrii; Wu, Jhao-Ying; Lin, M. F.; Fekete, Paula

    2016-01-01

    We predict the existence of low-frequency nonlocal plasmons at the vacuum-surface interface of a superlattice of N graphene layers interacting with conducting substrate. We derive a dispersion function that incorporates the polarization function of both the graphene monolayers and the semi-infinite electron liquid at whose surface the electrons scatter specularly. We find a surface plasmon-polariton that is not damped by particle-hole excitations or the bulk modes and which separates below the continuum mini-band of bulk plasmon modes. The surface plasmon frequency of the hybrid structure always lies below , the surface plasmon frequency of the conducting substrate. The intensity of this mode depends on the distance of the graphene layers from the conductor’s surface, the energy band gap between valence and conduction bands of graphene monolayer and, most importantly, on the number of two-dimensional layers. For a sufficiently large number of layers the hybrid structure has no surface plasmon. The existence of plasmons with different dispersion relations indicates that quasiparticles with different group velocity may coexist for various ranges of wavelengths determined by the number of layers in the superlattice. PMID:26883086

  3. Dancing bunches as Van Kampen modes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burov, A.; /Fermilab

    2011-03-01

    Van Kampen modes are eigen-modes of Jeans-Vlasov equation [1-3]. Their spectrum consists of continuous and, possibly, discrete parts. Onset of a discrete van Kampen mode means emergence of a coherent mode without any Landau damping; thus, even a tiny couple-bunch wake is sufficient to drive instability. Longitudinal instabilities observed at Tevatron [4], RHIC [5] and SPS [6] can be explained as loss of Landau damping (LLD), which is shown here to happen at fairly low impedances. For repulsive wakes and single-harmonic RF, LLD is found to be extremely sensitive to steepness of the bunch distribution function at small amplitudes. Basedmore » on that, a method of beam stabilization is suggested. Emergence of a discrete van Kampen mode means either loss of Landau damping or instability. Longitudinal bunch stability is analysed in weak head-tail approximation for inductive impedance and single-harmonic RF. The LLD threshold intensities are found to be rather low: for cases under study all of them do not exceed a few percent of the zero-amplitude incoherent synchrotron frequency shift, strongly decreasing for shorter bunches. Because of that, LLD can explain longitudinal instabilities happened at fairly low impedances at Tevatron [4], and possibly for RHIC [5] and SPS [6], being in that sense an alternative to the soliton explanation [5, 20]. Although LLD itself results in many cases in emergence of a mode with zero growth rate, any couple-bunch (and sometimes multi-turn) wake would drive instability for that mode, however small this wake is. LLD is similar to a loss of immune system of a living cell, when any microbe becomes fatal for it. The emerging discrete mode is normally very different from the rigid-bunch motion; thus the rigid-mode model significantly overestimates the LLD threshold. The power low of LLD predicted in Ref. [17] agrees with results of this paper. However, the numerical factor in that scaling low strongly depends on the bunch distribution

  4. Anharmonicity Rise the Thermal Conductivity in Amorphous Silicon

    NASA Astrophysics Data System (ADS)

    Lv, Wei; Henry, Asegun

    We recently proposed a new method called Direct Green-Kubo Modal Analysis (GKMA) method, which has been shown to calculate the thermal conductivity (TC) of several amorphous materials accurately. A-F method has been widely used for amorphous materials. However, researchers have found out that it failed on several different materials. The missing component of A-F method is the harmonic approximation and considering only the interactions of modes with similar frequencies, which neglect interactions of modes with large frequency difference. On the contrary, GKMA method, which is based on molecular dynamics, intrinsically includes all types of phonon interactions. In GKMA method, each mode's TC comes from both mode self-correlations (autocorrelations) and mode-mode correlations (crosscorrelations). We have demonstrated that the GKMA predicted TC of a-Si from Tersoff potential is in excellent agreement with one of experimental results. In this work, we will present the GKMA applications on a-Si using multiple potentials and gives us more insight of the effect of anharmonicity on the TC of amorphous silicon. This research was supported Intel grant AGMT DTD 1-15-13 and computational resources by NSF supported XSEDE resources under allocations DMR130105 and TG- PHY130049.

  5. Tunable heat conduction through coupled Fermi-Pasta-Ulam chains

    NASA Astrophysics Data System (ADS)

    Su, Ruixia; Yuan, Zongqiang; Wang, Jun; Zheng, Zhigang

    2015-01-01

    We conduct a study on heat conduction through coupled Fermi-Pasta-Ulam (FPU) chains by using classical molecular dynamics simulations. Our attention is dedicated to showing how the phonon transport is affected by the interchain coupling. It has been well accepted that the heat conduction could be impeded by the interchain interaction due to the interface phonon scattering. However, recent theoretical and experimental studies suggest that the thermal conductivity of nanoscale materials can be counterintuitively enhanced by the interaction with the substrate. In the present paper, by consecutively varying the interchain coupling intensity, we observed both enhancement and suppression of thermal transport through the coupled FPU chains. For weak interchain couplings, it is found that the heat flux increases with the coupling intensity, whereas in the case of strong interchain couplings, the energy transport is found to be suppressed by the interchain interaction. Based on the phonon spectral energy density method, we attribute the enhancement of the energy transport to the excited phonon modes (in addition to the intrinsic phonon modes), while the upward shift of the high-frequency phonon branch and the interface phonon-phonon scattering account for the suppressed heat conduction.

  6. Operationalization of Strategic Change in Continuing Education

    ERIC Educational Resources Information Center

    Wong, Evia O. W.

    2005-01-01

    Purpose: Hong Kong continuing education has encountered vigorous change in recent years. It is not limited to the mode of teaching and learning. Changing government policies, fund cutting to the higher education system and the entry of overseas university degrees increase the intensity of competition in the environment to an extraordinary extent.…

  7. Continuities, Discontinuities, Interactions: Values, Education, and Neuroethics

    ERIC Educational Resources Information Center

    Semetsky, Inna

    2009-01-01

    This article begins by revisiting the current model of values education (moral education) which has recently been set up in Australian schools. This article problematizes the pedagogical model of teaching values in the direct transmission mode from the perspective of the continuity of experience as central to the philosophies of John Dewey and…

  8. 7 CFR 1485.28 - Ethical conduct.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 10 2013-01-01 2013-01-01 false Ethical conduct. 1485.28 Section 1485.28 Agriculture Regulations of the Department of Agriculture (Continued) COMMODITY CREDIT CORPORATION, DEPARTMENT OF... COMMODITIES Market Access Program § 1485.28 Ethical conduct. (a) A MAP Participant shall conduct its business...

  9. 7 CFR 1485.28 - Ethical conduct.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 10 2014-01-01 2014-01-01 false Ethical conduct. 1485.28 Section 1485.28 Agriculture Regulations of the Department of Agriculture (Continued) COMMODITY CREDIT CORPORATION, DEPARTMENT OF... COMMODITIES Market Access Program § 1485.28 Ethical conduct. (a) A MAP Participant shall conduct its business...

  10. Comparison of VDL Modes in the Aeronautical Telecommunications Network

    NASA Technical Reports Server (NTRS)

    Bretmersky, Steven; Konangi, Vijay K.; Kerczewski, Robert J.

    2002-01-01

    VHF Digital Link (VDL) has been identified as a method of communication between aircraft and ground stations in the Aeronautical Telecommunications Network (ATN). Three different modes of VDL have been suggested for implementation. Simulations were conducted to compare the data transfer capabilities of VDL Modes 2, 3, and 4. These simulations focus on up to 50 aircraft communicating with a single VDL ground station. The data traffic is generated by the standard File Transfer Protocol (FTP) and Hyper Text Transfer Protocol (HTTP) applications in the aircraft. Comparisons of the modes are based on the number of files and pages transferred and the response time.

  11. SAMPEX Spin Stabilized Mode

    NASA Technical Reports Server (NTRS)

    Tsai, Dean C.; Markley, F. Landis; Watson, Todd P.

    2008-01-01

    The Solar, Anomalous, and Magnetospheric Particle Explorer (SAMPEX), the first of the Small Explorer series of spacecraft, was launched on July 3, 1992 into an 82' inclination orbit with an apogee of 670 km and a perigee of 520 km and a mission lifetime goal of 3 years. After more than 15 years of continuous operation, the reaction wheel began to fail on August 18,2007. With a set of three magnetic torquer bars being the only remaining attitude actuator, the SAMPEX recovery team decided to deviate from its original attitude control system design and put the spacecraft into a spin stabilized mode. The necessary operations had not been used for many years, which posed a challenge. However, on September 25, 2007, the spacecraft was successfully spun up to 1.0 rpm about its pitch axis, which points at the sun. This paper describes the diagnosis of the anomaly, the analysis of flight data, the simulation of the spacecraft dynamics, and the procedures used to recover the spacecraft to spin stabilized mode.

  12. Temperature Variation under Continuous Light Restores Tomato Leaf Photosynthesis and Maintains the Diurnal Pattern in Stomatal Conductance

    PubMed Central

    Haque, Mohammad S.; de Sousa, Alexandra; Soares, Cristiano; Kjaer, Katrine H.; Fidalgo, Fernanda; Rosenqvist, Eva; Ottosen, Carl-Otto

    2017-01-01

    The response of tomato plants (Solanum lycopersicum L. cv. Aromata) to continuous light (CL) in relation to photosynthesis, abscisic acid (ABA) and reactive oxygen species (ROS) was investigated to improve the understanding of the development and/or alleviation of CL-induced leaf injury in constant and diurnal temperature fluctuations with similar daily light integral and daily mean temperature. The plants were grown in three photoperiodic treatments for 15 days; One treatment with a 16/8 h light/dark period and a light/dark temperature of 27/17°C (Control), two CL treatments with 24 h photoperiods, one with a constant temperature of 24°C (CLCT) and the other one with variable temperature of 27/17°C for 16/8 ho, respectively (CLVT). A diurnal pattern of stomatal conductance (gs) and [ABA] was observed in the plants grown in the control and CLVT conditions, while the plants in CLCT conditions experienced a significant decrease in stomatal conductance aligned with an increase in ABA. The net photosynthesis (A) was significantly reduced in CLCT, aligned with a significant decrease in the maximum rate of Rubisco carboxylation (Vcmax), the maximum rate of electron transport (Jmax) and mesophyll diffusion conductance to CO2 (gm) in comparison to the control and CLVT. An increased production of H2O2 and O2•- linked with increased activities of antioxidative enzymes was seen in both CL treatments, but despite of this, leaf injuries were only observed in the CLCT treatment. The results suggest that the diurnal temperature fluctuations alleviated the CL injury symptoms, probably because the diurnal cycles of cellular mechanisms were maintained. The ROS were shown not to be directly involved in CL-induced leaf injury, since both ROS production and scavenging was highest in CLVT without leaf chlorotic symptoms. PMID:28979273

  13. Non-equilibrium many-body influence on mode-locked Vertical External-cavity Surface-emitting Lasers

    NASA Astrophysics Data System (ADS)

    Kilen, Isak Ragnvald

    Vertical external-cavity surface-emitting lasers are ideal testbeds for studying the influence of the non-equilibrium many-body dynamics on mode locking. As we will show in this thesis, ultra short pulse generation involves a marked departure from Fermi carrier distributions assumed in prior theoretical studies. A quantitative model of the mode locking dynamics is presented, where the semiconductor Bloch equations with Maxwell's equation are coupled, in order to study the influences of quantum well carrier scattering on mode locking dynamics. This is the first work where the full model is solved without adiabatically eliminating the microscopic polarizations. In many instances we find that higher order correlation contributions (e.g. polarization dephasing, carrier scattering, and screening) can be represented by rate models, with the effective rates extracted at the level of second Born-Markov approximations. In other circumstances, such as continuous wave multi-wavelength lasing, we are forced to fully include these higher correlation terms. In this thesis we identify the key contributors that control mode locking dynamics, the stability of single pulse mode-locking, and the influence of higher order correlation in sustaining multi-wavelength continuous wave operation.

  14. Tunneling conductance in semiconductor-superconductor hybrid structures

    NASA Astrophysics Data System (ADS)

    Stenger, John; Stanescu, Tudor D.

    2017-12-01

    We study the differential conductance for charge tunneling into a semiconductor wire-superconductor hybrid structure, which is actively investigated as a possible scheme for realizing topological superconductivity and Majorana zero modes. The calculations are done based on a tight-binding model of the heterostructure using both a Blonder-Tinkham-Klapwijk approach and a Keldysh nonequilibrium Green's function method. The dependence of various tunneling conductance features on the coupling strength between the semiconductor and the superconductor, the tunnel barrier height, and temperature is systematically investigated. We find that treating the parent superconductor as an active component of the system, rather than a passive source of Cooper pairs, has qualitative consequences regarding the low-energy behavior of the differential conductance. In particular, the presence of subgap states in the parent superconductor, due to disorder and finite magnetic fields, leads to characteristic particle-hole asymmetric features and to the breakdown of the quantization of the zero-bias peak associated with the presence of Majorana zero modes localized at the ends of the wire. The implications of these findings for the effort toward the realization of Majorana bound states with true non-Abelian properties are discussed.

  15. A new optimal sliding mode controller design using scalar sign function.

    PubMed

    Singla, Mithun; Shieh, Leang-San; Song, Gangbing; Xie, Linbo; Zhang, Yongpeng

    2014-03-01

    This paper presents a new optimal sliding mode controller using the scalar sign function method. A smooth, continuous-time scalar sign function is used to replace the discontinuous switching function in the design of a sliding mode controller. The proposed sliding mode controller is designed using an optimal Linear Quadratic Regulator (LQR) approach. The sliding surface of the system is designed using stable eigenvectors and the scalar sign function. Controller simulations are compared with another existing optimal sliding mode controller. To test the effectiveness of the proposed controller, the controller is implemented on an aluminum beam with piezoceramic sensor and actuator for vibration control. This paper includes the control design and stability analysis of the new optimal sliding mode controller, followed by simulation and experimental results. The simulation and experimental results show that the proposed approach is very effective. © 2013 ISA. Published by Elsevier Ltd. All rights reserved.

  16. Continuing Education: The Emergence of a Functioning Model.

    ERIC Educational Resources Information Center

    Graziano, John A.; Roberts, Elizabeth H.

    1980-01-01

    The basic models of mandated, postlicensing, educational activity for professionals are reviewed including: (1) podiatry model (course content, mode of delivery, lecturer credentials, and administrative controls); (2) continuing competence model; and (3) peer review model. The podiatry model is thought to be the most logical, expedient, and…

  17. Model predictive control of an air suspension system with damping multi-mode switching damper based on hybrid model

    NASA Astrophysics Data System (ADS)

    Sun, Xiaoqiang; Yuan, Chaochun; Cai, Yingfeng; Wang, Shaohua; Chen, Long

    2017-09-01

    This paper presents the hybrid modeling and the model predictive control of an air suspension system with damping multi-mode switching damper. Unlike traditional damper with continuously adjustable damping, in this study, a new damper with four discrete damping modes is applied to vehicle semi-active air suspension. The new damper can achieve different damping modes by just controlling the on-off statuses of two solenoid valves, which makes its damping adjustment more efficient and more reliable. However, since the damping mode switching induces different modes of operation, the air suspension system with the new damper poses challenging hybrid control problem. To model both the continuous/discrete dynamics and the switching between different damping modes, the framework of mixed logical dynamical (MLD) systems is used to establish the system hybrid model. Based on the resulting hybrid dynamical model, the system control problem is recast as a model predictive control (MPC) problem, which allows us to optimize the switching sequences of the damping modes by taking into account the suspension performance requirements. Numerical simulations results demonstrate the efficacy of the proposed control method finally.

  18. Application of rrm as behavior mode choice on modelling transportation

    NASA Astrophysics Data System (ADS)

    Surbakti, M. S.; Sadullah, A. F.

    2018-03-01

    Transportation mode selection, the first step in transportation planning process, is probably one of the most important planning elements. The development of models that can explain the preference of passengers regarding their chosen mode of public transport option will contribute to the improvement and development of existing public transport. Logit models have been widely used to determine the mode choice models in which the alternative are different transport modes. Random Regret Minimization (RRM) theory is a theory developed from the behavior to choose (choice behavior) in a state of uncertainty. During its development, the theory was used in various disciplines, such as marketing, micro economy, psychology, management, and transportation. This article aims to show the use of RRM in various modes of selection, from the results of various studies that have been conducted both in north sumatera and western Java.

  19. A Network Model for the Effective Thermal Conductivity of Rigid Fibrous Refractory Insulations

    NASA Technical Reports Server (NTRS)

    Marschall, Jochen; Cooper, D. M. (Technical Monitor)

    1995-01-01

    A procedure is described for computing the effective thermal conductivity of a rigid fibrous refractory insulation. The insulation is modeled as a 3-dimensional Cartesian network of thermal conductance. The values and volume distributions of the conductance are assigned to reflect the physical properties of the insulation, its constituent fibers, and any permeating gas. The effective thermal conductivity is computed by considering the simultaneous energy transport by solid conduction, gas conduction and radiation through a cubic volume of model insulation; thus the coupling between heat transfer modes is retained (within the simplifications inherent to the model), rather than suppressed by treating these heat transfer modes as independent. The model takes into account insulation composition, density and fiber anisotropy, as well as the geometric and material properties of the constituent fibers. A relatively good agreement, between calculated and experimentally derived thermal conductivity values, is obtained for a variety of rigid fibrous insulations.

  20. First-principles prediction of phononic thermal conductivity of silicene: A comparison with graphene

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gu, Xiaokun; Yang, Ronggui, E-mail: Ronggui.Yang@Colorado.Edu

    2015-01-14

    There has been great interest in two-dimensional materials, beyond graphene, for both fundamental sciences and technological applications. Silicene, a silicon counterpart of graphene, has been shown to possess some better electronic properties than graphene. However, its thermal transport properties have not been fully studied. In this paper, we apply the first-principles-based phonon Boltzmann transport equation to investigate the thermal conductivity of silicene as well as the phonon scattering mechanisms. Although both graphene and silicene are two-dimensional crystals with similar crystal structure, we find that phonon transport in silicene is quite different from that in graphene. The thermal conductivity of silicenemore » shows a logarithmic increase with respect to the sample size due to the small scattering rates of acoustic in-plane phonon modes, while that of graphene is finite. Detailed analysis of phonon scattering channels shows that the linear dispersion of the acoustic out-of-plane (ZA) phonon modes, which is induced by the buckled structure, makes the long-wavelength longitudinal acoustic phonon modes in silicene not as efficiently scattered as that in graphene. Compared with graphene, where most of the heat is carried by the acoustic out-of-plane (ZA) phonon modes, the ZA phonon modes in silicene only have ∼10% contribution to the total thermal conductivity, which can also be attributed to the buckled structure. This systematic comparison of phonon transport and thermal conductivity of silicene and graphene using the first-principle-based calculations shed some light on other two-dimensional materials, such as two-dimensional transition metal dichalcogenides.« less

  1. Dual-cavity mode converter for a fundamental mode output in an over-moded relativistic backward-wave oscillator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Jiawei; Huang, Wenhua; Science and Technology on High Power Microwave Laboratory, Northwest Institute of Nuclear Technology, Xi'an 710024

    2015-03-16

    A dual-cavity TM{sub 02}–TM{sub 01} mode converter is designed for a dual-mode operation over-moded relativistic backward-wave oscillator. With the converter, the fundamental mode output is achieved. Particle-in-cell simulation shows that the efficiency of beam-wave conversion was over 46% and a pureTM{sub 01} mode output was obtained. Effects of end reflection provided by the mode converter were studied. Adequate TM{sub 01} mode feedback provided by the converter enhances conversion efficiency. The distance between the mode converter and extraction cavity critically affect the generation of microwaves depending on the reflection phase of TM{sub 01} mode feedback.

  2. 7 CFR 97.157 - Professional conduct.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing Practices), DEPARTMENT OF AGRICULTURE (CONTINUED) COMMODITY LABORATORY TESTING PROGRAMS... appearing before the Office shall conform to the standards of ethical and professional conduct, generally...

  3. Thermal conductivity anisotropy of metasedimentary and igneous rocks

    NASA Astrophysics Data System (ADS)

    Davis, Michael G.; Chapman, David S.; van Wagoner, Thomas M.; Armstrong, Phillip A.

    2007-05-01

    Thermal conductivity anisotropy was determined for three sets of metasedimentary and igneous rocks from central Utah, USA. Most conductivity measurements were made in transient mode with a half-space, line source instrument oriented in two orthogonal directions on a flat face cut perpendicular to bedding. One orientation of the probe yields thermal conductivity parallel to bedding (kpar) directly, the other orientation of the probe measures a product of conductivities parallel and perpendicular to bedding from which the perpendicular conductivity (kperp) is calculated. Some direct measurements of kpar and kperp were made on oriented cylindrical discs using a conventional divided bar device in steady state mode. Anisotropy is defined as kpar/kperp. Precambrian argillites from Big Cottonwood Canyon have anisotropy values from 0.8 to 2.1 with corresponding conductivity perpendicular to bedding of 2.0 to 6.2 W m-1 K-1. Anisotropy values for Price Canyon sedimentary samples are less than 1.2 with a mean of 1.04 although thermal conductivity perpendicular to bedding for the samples varied from 1.3 to 5.0 W m-1 K-1. The granitic rocks were found to be essentially isotropic with thermal conductivity perpendicular to bedding having a range of 2.2 to 3.2 W m-1 K-1 and a mean of 2.68 W m-1 K-1. The results confirm the observation by Deming [1994] that anisotropy is negligible for rocks having kperp greater than 4.0 W m-1 K-1 and generally increases for low conductivity metamorphic and clay-rich rocks. There is little evidence, however, for his suggestion that thermal conductivity anisotropy of all rocks increases systematically to about 2.5 for low thermal conductivity rocks.

  4. Burst Mode ASIC-Based Modem

    NASA Technical Reports Server (NTRS)

    1997-01-01

    The NASA Lewis Research Center is sponsoring the Advanced Communication Technology Insertion (ACTION) for Commercial Space Applications program. The goal of the program is to expedite the development of new technology with a clear path towards productization and enhancing the competitiveness of U.S. manufacturers. The industry has made significant investment in developing ASIC-based modem technology for continuous-mode applications and has made investigations into East, reliable acquisition of burst-mode digital communication signals. With rapid advances in analog and digital communications ICs, it is expected that more functions will be integrated onto these parts in the near future. In addition custom ASIC's can also be developed to address the areas not covered by the other IC's. Using the commercial chips and custom ASIC's, lower-cost, compact, reliable, and high-performance modems can be built for demanding satellite communication application. This report outlines a frequency-hop burst modem design based on commercially available chips.

  5. A One Year Study of Mode Deactivation Therapy: Adolescent Residential Patients with Conduct and Personality Disorders

    ERIC Educational Resources Information Center

    Murphy, Christopher J.; Siv, Alexander M.

    2011-01-01

    This case study is to evaluate the effectiveness of Mode Deactivation Therapy (MDT) implementation in a child and adolescent residential treatment unit and provide preliminary effectiveness data on MDT versus treatment as usual (TAU). This case study compared the efficacy of two treatment methodologies for adolescent males in residential treatment…

  6. Single-mode fiber laser based on core-cladding mode conversion.

    PubMed

    Suzuki, Shigeru; Schülzgen, Axel; Peyghambarian, N

    2008-02-15

    A single-mode fiber laser based on an intracavity core-cladding mode conversion is demonstrated. The fiber laser consists of an Er-doped active fiber and two fiber Bragg gratings. One Bragg grating is a core-cladding mode converter, and the other Bragg grating is a narrowband high reflector that selects the lasing wavelength. Coupling a single core mode and a single cladding mode by the grating mode converter, the laser operates as a hybrid single-mode laser. This approach for designing a laser cavity provides a much larger mode area than conventional large-mode-area step-index fibers.

  7. Astigmatism and defocus wavefront correction via Zernike modes produced with fluidic lenses

    PubMed Central

    Marks, Randall; Mathine, David L.; Schwiegerling, Jim; Peyman, Gholam; Peyghambarian, Nasser

    2010-01-01

    Fluidic lenses have been developed for ophthalmic applications with continuously varying optical powers for second order Zernike modes. Continuously varying corrections for both myopic and hyperopic defocus have been demonstrated over a range of three diopters using a fluidic lens with a circular retaining aperture. Likewise, a six diopter range of astigmatism has been continuously corrected using fluidic lenses with rectangular apertures. Imaging results have been characterized using a model eye. PMID:19571912

  8. Continuous Odour Measurement with Chemosensor Systems

    NASA Astrophysics Data System (ADS)

    Boeker, Peter; Haas, T.; Diekmann, B.; Lammer, P. Schulze

    2009-05-01

    The continuous odour measurement is a challenging task for chemosensor systems. Firstly, a long term and stable measurement mode must be guaranteed in order to preserve the validity of the time consuming and expensive olfactometric calibration data. Secondly, a method is needed to deal with the incoming sensor data. The continuous online detection of signal patterns, the correlated gas emission and the assigned odour data is essential for the continuous odour measurement. Thirdly, a severe danger of over-fitting in the process of the odour calibration is present, because of the high measurement uncertainty of the olfactometry. In this contribution we present a technical solution for continuous measurements comprising of a hybrid QMB-sensor array and electrochemical cells. A set of software tools enables the efficient data processing and calibration and computes the calibration parameters. The internal software of the measurement systems microcontroller processes the calibration parameters online for the output of the desired odour information.

  9. Rotating Rake Turbofan Duct Mode Measurement System

    NASA Technical Reports Server (NTRS)

    Sutliff, Daniel L.

    2005-01-01

    An experimental measurement system was developed and implemented by the NASA Glenn Research Center in the 1990s to measure turbofan duct acoustic modes. The system is a continuously rotating radial microphone rake that is inserted into the duct. This Rotating Rake provides a complete map of the acoustic duct modes present in a ducted fan and has been used on a variety of test articles: from a low-speed, concept test rig, to a full-scale production turbofan engine. The Rotating Rake has been critical in developing and evaluating a number of noise reduction concepts as well as providing experimental databases for verification of several aero-acoustic codes. More detailed derivation of the unique Rotating Rake equations are presented in the appendix.

  10. Entanglement and purity of two-mode Gaussian states in noisy channels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Serafini, Alessio; Illuminati, Fabrizio; De Siena, Silvio

    2004-02-01

    We study the evolution of purity, entanglement, and total correlations of general two-mode continuous variable Gaussian states in arbitrary uncorrelated Gaussian environments. The time evolution of purity, von Neumann entropy, logarithmic negativity, and mutual information is analyzed for a wide range of initial conditions. In general, we find that a local squeezing of the bath leads to a faster degradation of purity and entanglement, while it can help to preserve the mutual information between the modes.

  11. Exponential protection of zero modes in Majorana islands.

    PubMed

    Albrecht, S M; Higginbotham, A P; Madsen, M; Kuemmeth, F; Jespersen, T S; Nygård, J; Krogstrup, P; Marcus, C M

    2016-03-10

    Majorana zero modes are quasiparticle excitations in condensed matter systems that have been proposed as building blocks of fault-tolerant quantum computers. They are expected to exhibit non-Abelian particle statistics, in contrast to the usual statistics of fermions and bosons, enabling quantum operations to be performed by braiding isolated modes around one another. Quantum braiding operations are topologically protected insofar as these modes are pinned near zero energy, with the departure from zero expected to be exponentially small as the modes become spatially separated. Following theoretical proposals, several experiments have identified signatures of Majorana modes in nanowires with proximity-induced superconductivity and atomic chains, with small amounts of mode splitting potentially explained by hybridization of Majorana modes. Here, we use Coulomb-blockade spectroscopy in an InAs nanowire segment with epitaxial aluminium, which forms a proximity-induced superconducting Coulomb island (a 'Majorana island') that is isolated from normal-metal leads by tunnel barriers, to measure the splitting of near-zero-energy Majorana modes. We observe exponential suppression of energy splitting with increasing wire length. For short devices of a few hundred nanometres, sub-gap state energies oscillate as the magnetic field is varied, as is expected for hybridized Majorana modes. Splitting decreases by a factor of about ten for each half a micrometre of increased wire length. For devices longer than about one micrometre, transport in strong magnetic fields occurs through a zero-energy state that is energetically isolated from a continuum, yielding uniformly spaced Coulomb-blockade conductance peaks, consistent with teleportation via Majorana modes. Our results help to explain the trivial-to-topological transition in finite systems and to quantify the scaling of topological protection with end-mode separation.

  12. A streamlined failure mode and effects analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ford, Eric C., E-mail: eford@uw.edu; Smith, Koren; Terezakis, Stephanie

    Purpose: Explore the feasibility and impact of a streamlined failure mode and effects analysis (FMEA) using a structured process that is designed to minimize staff effort. Methods: FMEA for the external beam process was conducted at an affiliate radiation oncology center that treats approximately 60 patients per day. A structured FMEA process was developed which included clearly defined roles and goals for each phase. A core group of seven people was identified and a facilitator was chosen to lead the effort. Failure modes were identified and scored according to the FMEA formalism. A risk priority number,RPN, was calculated and usedmore » to rank failure modes. Failure modes with RPN > 150 received safety improvement interventions. Staff effort was carefully tracked throughout the project. Results: Fifty-two failure modes were identified, 22 collected during meetings, and 30 from take-home worksheets. The four top-ranked failure modes were: delay in film check, missing pacemaker protocol/consent, critical structures not contoured, and pregnant patient simulated without the team's knowledge of the pregnancy. These four failure modes hadRPN > 150 and received safety interventions. The FMEA was completed in one month in four 1-h meetings. A total of 55 staff hours were required and, additionally, 20 h by the facilitator. Conclusions: Streamlined FMEA provides a means of accomplishing a relatively large-scale analysis with modest effort. One potential value of FMEA is that it potentially provides a means of measuring the impact of quality improvement efforts through a reduction in risk scores. Future study of this possibility is needed.« less

  13. A streamlined failure mode and effects analysis.

    PubMed

    Ford, Eric C; Smith, Koren; Terezakis, Stephanie; Croog, Victoria; Gollamudi, Smitha; Gage, Irene; Keck, Jordie; DeWeese, Theodore; Sibley, Greg

    2014-06-01

    Explore the feasibility and impact of a streamlined failure mode and effects analysis (FMEA) using a structured process that is designed to minimize staff effort. FMEA for the external beam process was conducted at an affiliate radiation oncology center that treats approximately 60 patients per day. A structured FMEA process was developed which included clearly defined roles and goals for each phase. A core group of seven people was identified and a facilitator was chosen to lead the effort. Failure modes were identified and scored according to the FMEA formalism. A risk priority number,RPN, was calculated and used to rank failure modes. Failure modes with RPN > 150 received safety improvement interventions. Staff effort was carefully tracked throughout the project. Fifty-two failure modes were identified, 22 collected during meetings, and 30 from take-home worksheets. The four top-ranked failure modes were: delay in film check, missing pacemaker protocol/consent, critical structures not contoured, and pregnant patient simulated without the team's knowledge of the pregnancy. These four failure modes had RPN > 150 and received safety interventions. The FMEA was completed in one month in four 1-h meetings. A total of 55 staff hours were required and, additionally, 20 h by the facilitator. Streamlined FMEA provides a means of accomplishing a relatively large-scale analysis with modest effort. One potential value of FMEA is that it potentially provides a means of measuring the impact of quality improvement efforts through a reduction in risk scores. Future study of this possibility is needed.

  14. Integrating Aesthetics: Transforming Continuing Education through Africentric Practice

    ERIC Educational Resources Information Center

    Ellis, Auburn E.

    2013-01-01

    Background: Manuscript written for the Adult Education Research Conference based on dissertation research completed at National Louis University. Purpose: To increase knowledge base of art based learning as a mode of anti-racist pedagogy and the use of an Africentric framework for continuing and professional education. Setting: African Centered…

  15. DecouplingModes: Passive modes amplitudes

    NASA Astrophysics Data System (ADS)

    Shaw, J. Richard; Lewis, Antony

    2018-01-01

    DecouplingModes calculates the amplitude of the passive modes, which requires solving the Einstein equations on superhorizon scales sourced by the anisotropic stress from the magnetic fields (prior to neutrino decoupling), and the magnetic and neutrino stress (after decoupling). The code is available as a Mathematica notebook.

  16. Preferred Exertion across Three Common Modes of Exercise Training.

    ERIC Educational Resources Information Center

    Glass, Stephen C.; Chvala, Angela M.

    2001-01-01

    Examined the influence of exercise mode on self-selected exercise intensities. Participants performed three types of intensity tests. Researchers collected data on VO2 values continuously and recorded 1-minute averages several times for each submaximal test. Participants allowed to self-select exercise intensity chose work rates within the…

  17. Wavelength-tunable, passively mode-locked fiber laser based on graphene and chirped fiber Bragg grating.

    PubMed

    He, Xiaoying; Liu, Zhi-bo; Wang, D N

    2012-06-15

    We demonstrate a wavelength-tunable, passively mode-locked erbium-doped fiber laser based on graphene and chirped fiber Bragg grating. The saturable absorber used to enable passive mode-locking in the fiber laser is a section of microfiber covered by graphene film, which allows light-graphene interaction via the evanescent field of the microfiber. The wavelength of the laser can be continuously tuned by adjusting the chirped fiber Bragg grating, while maintaining mode-locking stability. Such a system has high potential in tuning the mode-locked laser pulses across a wide wavelength range.

  18. Fiber Mode Scrambler for the Subaru Infrared Doppler Instrument (IRD)

    NASA Astrophysics Data System (ADS)

    Ishizuka, Masato; Kotani, Takayuki; Nishikawa, Jun; Kurokawa, Takashi; Mori, Takahiro; Kokubo, Tsukasa; Tamura, Motohide

    2018-06-01

    We report the results of fiber mode scrambler experiments for the Infra-Red Doppler instrument (IRD) on the Subaru 8.2-m telescope. IRD is a fiber-fed, high precision radial velocity (RV) instrument to search for exoplanets around nearby M dwarfs at near-infrared wavelengths. It is a high-resolution spectrograph with an Echelle grating. The expected RV measurement precision is ∼1 m s‑1 with a state of the art laser frequency comb for the wavelength calibration. In IRD observations, one of the most significant instrumental noise is a change of intensity distribution of multi-mode fiber exit, which degrades RV measurement precision. To stabilize the intensity distribution of fiber exit an introduction of fiber mode scrambler is mandatory. Several kinds of mode scramblers have been suggested in previous research, though it is necessary to determine the most appropriate mode scrambler system for IRD. Thus, we conducted systematic measurements of performance for a variety of mode scramblers, both static and dynamic. We tested various length multi-mode fibers, an octagonal fiber, a double fiber scrambler, and two kinds of dynamic scramblers, and their combinations. We report the performances of these mode scramblers and propose candidate mode scrambler systems for IRD.

  19. Ballistic and Diffusive Thermal Conductivity of Graphene

    NASA Astrophysics Data System (ADS)

    Saito, Riichiro; Masashi, Mizuno; Dresselhaus, Mildred S.

    2018-02-01

    This paper is a contribution to the Physical Review Applied collection in memory of Mildred S. Dresselhaus. Phonon-related thermal conductivity of graphene is calculated as a function of the temperature and sample size of graphene in which the crossover of ballistic and diffusive thermal conductivity occurs at around 100 K. The diffusive thermal conductivity of graphene is evaluated by calculating the phonon mean free path for each phonon mode in which the anharmonicity of a phonon and the phonon scattering by a 13C isotope are taken into account. We show that phonon-phonon scattering of out-of-plane acoustic phonon by the anharmonic potential is essential for the largest thermal conductivity. Using the calculated results, we can design the optimum sample size, which gives the largest thermal conductivity at a given temperature for applying thermal conducting devices.

  20. Spatial Distortion of Vibration Modes via Magnetic Correlation of Impurities

    NASA Astrophysics Data System (ADS)

    Krasniqi, F. S.; Zhong, Y.; Epp, S. W.; Foucar, L.; Trigo, M.; Chen, J.; Reis, D. A.; Wang, H. L.; Zhao, J. H.; Lemke, H. T.; Zhu, D.; Chollet, M.; Fritz, D. M.; Hartmann, R.; Englert, L.; Strüder, L.; Schlichting, I.; Ullrich, J.

    2018-03-01

    Long wavelength vibrational modes in the ferromagnetic semiconductor Ga0.91 Mn0.09 As are investigated using time resolved x-ray diffraction. At room temperature, we measure oscillations in the x-ray diffraction intensity corresponding to coherent vibrational modes with well-defined wavelengths. When the correlation of magnetic impurities sets in, we observe the transition of the lattice into a disordered state that does not support coherent modes at large wavelengths. Our measurements point toward a magnetically induced broadening of long wavelength vibrational modes in momentum space and their quasilocalization in the real space. More specifically, long wavelength vibrational modes cannot be assigned to a single wavelength but rather should be represented as a superposition of plane waves with different wavelengths. Our findings have strong implications for the phonon-related processes, especially carrier-phonon and phonon-phonon scattering, which govern the electrical conductivity and thermal management of semiconductor-based devices.

  1. MO-FG-202-03: Efficient Data Collection of Continuous 2D and Discrete Relative Dosimetric Data for Annual LINAC QA Using TrueBeam Developer Mode and a 1D Scanning Tank

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Knutson, N; Schmidt, M; University of Rhode Island, Kingston, RI

    2016-06-15

    Purpose: To develop a method to exploit real-time dynamic machine and couch parameter control during linear accelerator (LINAC) beam delivery to facilitate efficient performance of TG-142 suggested, Annual LINAC QA tests. Methods: Varian’s TrueBeam Developer Mode (Varian Medical Systems, Palo Alto, CA) facilitates control of Varian’s TrueBeam LINAC via instructions provided in Extensible Markup Language (XML) files. This allows machine and couch parameters to be varied dynamically, in real-time, during beam delivery. Custom XML files were created to allow for the collection of (1) continuous Tissue Maximum Ratios (TMRs), (2) beam profiles, and (3) continuous output factors using a 1D-scanningmore » tank. TMRs were acquired by orienting an ionization chamber (IC) at isocenter (depth=25cm) and synchronizing a depth scan towards the water surface while lowering the couch at 1mm/s. For beam profiles, the couch was driven laterally and longitudinally while logging IC electrometer readings. Output factors (OFs) where collected by continually varying field sizes (4×4 to 30×30-cm{sup 2}) at a constant speed of 6.66 mm/s. To validate measurements, comparisons were made to data collected using traditional methods (e.g. 1D or 3D tank). Results: All data collecting using the proposed methods agreed with traditionally collected data (TMRs within 1%, OFs within 0.5% and beam profile agreement within 1% / 1mm) while taking less time to collect (factor of approximately 1/10) and with a finer sample resolution. Conclusion: TrueBeam developer mode facilitates collection of continuous data with the same accuracy as traditionally collected data with a finer resolution in less time. Results demonstrate an order of magnitude increase in sampled resolution and an order of magnitude reduction in collection time compared to traditional acquisition methods (e.g. 3D scanning tank). We are currently extending this approach to perform other TG-142 tasks.« less

  2. Quantized charge transport in chiral Majorana edge modes

    NASA Astrophysics Data System (ADS)

    Rachel, Stephan; Mascot, Eric; Cocklin, Sagen; Vojta, Matthias; Morr, Dirk K.

    2017-11-01

    Majorana fermions can be realized as quasiparticles in topological superconductors, with potential applications in topological quantum computing. Recently, lattices of magnetic adatoms deposited on the surface of s -wave superconductors—Shiba lattices—have been proposed as a new platform for topological superconductivity. These systems possess the great advantage that they are accessible via scanning-probe techniques and thus enable the local manipulation and detection of Majorana modes. Using a nonequilibrium Green's function technique we demonstrate that the topological Majorana edge modes of nanoscopic Shiba islands display universal electronic and transport properties. Most remarkably, these Majorana modes possess a quantized charge conductance that is proportional to the topological Chern number, C , and carry a supercurrent whose chirality reflects the sign of C . These results establish nanoscopic Shiba islands as promising components in future topology-based devices.

  3. Smooth integral sliding mode controller for the position control of Stewart platform.

    PubMed

    Kumar P, Ramesh; Chalanga, Asif; Bandyopadhyay, B

    2015-09-01

    This paper proposes the application of a new algorithm for the position control of a Stewart platform. The conventional integral sliding mode controller is a combination of nominal control and discontinuous feedback control hence the overall control is discontinuous in nature. The discontinuity in the feedback control is undesirable for practical applications due to chattering which causes the wear and tear of the mechanical actuators. In this paper the existing integral sliding mode control law for systems with matched disturbances is modified by replacing the discontinuous part by a continuous modified twisting control. This proposed controller is continuous in nature due to the combinations of two continuous controls. The desired position of the platform has been achieved using the proposed controller even in the presence of matched disturbances. The effectiveness of the proposed controller has been proved with the simulation results. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.

  4. Project Delivery System Mode Decision Based on Uncertain AHP and Fuzzy Sets

    NASA Astrophysics Data System (ADS)

    Kaishan, Liu; Huimin, Li

    2017-12-01

    The project delivery system mode determines the contract pricing type, project management mode and the risk allocation among all participants. Different project delivery system modes have different characteristics and applicable scope. For the owners, the selection of the delivery mode is the key point to decide whether the project can achieve the expected benefits, it relates to the success or failure of project construction. Under the precondition of comprehensively considering the influence factors of the delivery mode, the model of project delivery system mode decision was set up on the basis of uncertain AHP and fuzzy sets, which can well consider the uncertainty and fuzziness when conducting the index evaluation and weight confirmation, so as to rapidly and effectively identify the most suitable delivery mode according to project characteristics. The effectiveness of the model has been verified via the actual case analysis in order to provide reference for the construction project delivery system mode.

  5. Using BiSON to detect solar internal g-modes

    NASA Astrophysics Data System (ADS)

    Kuszlewicz, J.; Davies, G. R.; Chaplin, W. J.

    2015-09-01

    The unambiguous detection of individual solar internal g modes continues to elude us. With the aid of new additions to calibration procedures, as well as updated methods to combine multi-site time series more effectively, the noise and signal detection threshold levels in the low-frequency domain (where the g modes are expected to be found) have been greatly improved. In the BiSON 23-year dataset these levels now rival those of GOLF, and with much greater frequency resolution available, due to the long time series, there is an opportunity to place more constraints on the upper limits of individual g mode amplitudes. Here we detail recent work dedicated to the challenges of observing low-frequency oscillations using a ground-based network, including the role of the window function as well as the effect of calibration on the low frequency domain.

  6. Mechanical design and fabrication of the VHF-gun, the Berkeley normal-conducting continuous-wave high-brightness electron source

    NASA Astrophysics Data System (ADS)

    Wells, R. P.; Ghiorso, W.; Staples, J.; Huang, T. M.; Sannibale, F.; Kramasz, T. D.

    2016-02-01

    A high repetition rate, MHz-class, high-brightness electron source is a key element in future high-repetition-rate x-ray free electron laser-based light sources. The VHF-gun, a novel low frequency radio-frequency gun, is the Lawrence Berkeley National Laboratory (LBNL) response to that need. The gun design is based on a normal conducting, single cell cavity resonating at 186 MHz in the VHF band and capable of continuous wave operation while still delivering the high accelerating fields at the cathode required for the high brightness performance. The VHF-gun was fabricated and successfully commissioned in the framework of the Advanced Photo-injector EXperiment, an injector built at LBNL to demonstrate the capability of the gun to deliver the required beam quality. The basis for the selection of the VHF-gun technology, novel design features, and fabrication techniques are described.

  7. Mechanical design and fabrication of the VHF-gun, the Berkeley normal-conducting continuous-wave high-brightness electron source.

    PubMed

    Wells, R P; Ghiorso, W; Staples, J; Huang, T M; Sannibale, F; Kramasz, T D

    2016-02-01

    A high repetition rate, MHz-class, high-brightness electron source is a key element in future high-repetition-rate x-ray free electron laser-based light sources. The VHF-gun, a novel low frequency radio-frequency gun, is the Lawrence Berkeley National Laboratory (LBNL) response to that need. The gun design is based on a normal conducting, single cell cavity resonating at 186 MHz in the VHF band and capable of continuous wave operation while still delivering the high accelerating fields at the cathode required for the high brightness performance. The VHF-gun was fabricated and successfully commissioned in the framework of the Advanced Photo-injector EXperiment, an injector built at LBNL to demonstrate the capability of the gun to deliver the required beam quality. The basis for the selection of the VHF-gun technology, novel design features, and fabrication techniques are described.

  8. Quantized edge modes in atomic-scale point contacts in graphene

    NASA Astrophysics Data System (ADS)

    Kinikar, Amogh; Phanindra Sai, T.; Bhattacharyya, Semonti; Agarwala, Adhip; Biswas, Tathagata; Sarker, Sanjoy K.; Krishnamurthy, H. R.; Jain, Manish; Shenoy, Vijay B.; Ghosh, Arindam

    2017-07-01

    The zigzag edges of single- or few-layer graphene are perfect one-dimensional conductors owing to a set of gapless states that are topologically protected against backscattering. Direct experimental evidence of these states has been limited so far to their local thermodynamic and magnetic properties, determined by the competing effects of edge topology and electron-electron interaction. However, experimental signatures of edge-bound electrical conduction have remained elusive, primarily due to the lack of graphitic nanostructures with low structural and/or chemical edge disorder. Here, we report the experimental detection of edge-mode electrical transport in suspended atomic-scale constrictions of single and multilayer graphene created during nanomechanical exfoliation of highly oriented pyrolytic graphite. The edge-mode transport leads to the observed quantization of conductance close to multiples of G0 = 2e2/h. At the same time, conductance plateaux at G0/2 and a split zero-bias anomaly in non-equilibrium transport suggest conduction via spin-polarized states in the presence of an electron-electron interaction.

  9. Quantized edge modes in atomic-scale point contacts in graphene.

    PubMed

    Kinikar, Amogh; Phanindra Sai, T; Bhattacharyya, Semonti; Agarwala, Adhip; Biswas, Tathagata; Sarker, Sanjoy K; Krishnamurthy, H R; Jain, Manish; Shenoy, Vijay B; Ghosh, Arindam

    2017-07-01

    The zigzag edges of single- or few-layer graphene are perfect one-dimensional conductors owing to a set of gapless states that are topologically protected against backscattering. Direct experimental evidence of these states has been limited so far to their local thermodynamic and magnetic properties, determined by the competing effects of edge topology and electron-electron interaction. However, experimental signatures of edge-bound electrical conduction have remained elusive, primarily due to the lack of graphitic nanostructures with low structural and/or chemical edge disorder. Here, we report the experimental detection of edge-mode electrical transport in suspended atomic-scale constrictions of single and multilayer graphene created during nanomechanical exfoliation of highly oriented pyrolytic graphite. The edge-mode transport leads to the observed quantization of conductance close to multiples of G 0  = 2e 2 /h. At the same time, conductance plateaux at G 0 /2 and a split zero-bias anomaly in non-equilibrium transport suggest conduction via spin-polarized states in the presence of an electron-electron interaction.

  10. Quantification and scaling of multipartite entanglement in continuous variable systems.

    PubMed

    Adesso, Gerardo; Serafini, Alessio; Illuminati, Fabrizio

    2004-11-26

    We present a theoretical method to determine the multipartite entanglement between different partitions of multimode, fully or partially symmetric Gaussian states of continuous variable systems. For such states, we determine the exact expression of the logarithmic negativity and show that it coincides with that of equivalent two-mode Gaussian states. Exploiting this reduction, we demonstrate the scaling of the multipartite entanglement with the number of modes and its reliable experimental estimate by direct measurements of the global and local purities.

  11. Imaging modes of atomic force microscopy for application in molecular and cell biology.

    PubMed

    Dufrêne, Yves F; Ando, Toshio; Garcia, Ricardo; Alsteens, David; Martinez-Martin, David; Engel, Andreas; Gerber, Christoph; Müller, Daniel J

    2017-04-06

    Atomic force microscopy (AFM) is a powerful, multifunctional imaging platform that allows biological samples, from single molecules to living cells, to be visualized and manipulated. Soon after the instrument was invented, it was recognized that in order to maximize the opportunities of AFM imaging in biology, various technological developments would be required to address certain limitations of the method. This has led to the creation of a range of new imaging modes, which continue to push the capabilities of the technique today. Here, we review the basic principles, advantages and limitations of the most common AFM bioimaging modes, including the popular contact and dynamic modes, as well as recently developed modes such as multiparametric, molecular recognition, multifrequency and high-speed imaging. For each of these modes, we discuss recent experiments that highlight their unique capabilities.

  12. Time-optimal thermalization of single-mode Gaussian states

    NASA Astrophysics Data System (ADS)

    Carlini, Alberto; Mari, Andrea; Giovannetti, Vittorio

    2014-11-01

    We consider the problem of time-optimal control of a continuous bosonic quantum system subject to the action of a Markovian dissipation. In particular, we consider the case of a one-mode Gaussian quantum system prepared in an arbitrary initial state and which relaxes to the steady state due to the action of the dissipative channel. We assume that the unitary part of the dynamics is represented by Gaussian operations which preserve the Gaussian nature of the quantum state, i.e., arbitrary phase rotations, bounded squeezing, and unlimited displacements. In the ideal ansatz of unconstrained quantum control (i.e., when the unitary phase rotations, squeezing, and displacement of the mode can be performed instantaneously), we study how control can be optimized for speeding up the relaxation towards the fixed point of the dynamics and we analytically derive the optimal relaxation time. Our model has potential and interesting applications to the control of modes of electromagnetic radiation and of trapped levitated nanospheres.

  13. Results from a Test Fixture for button BPM Trapped Mode Measurements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cameron,P.; Bacha, B.; Blednykh, A.

    2009-05-04

    A variety of measures have been suggested to mitigate the problem of button BPM trapped mode heating. A test fixture, using a combination of commercial-off-the-shelf and custom machined components, was assembled to validate the simulations. We present details of the fixture design, measurement results, and a comparison of the results with the simulations. A brief history of the trapped mode button heating problem and a set of design rules for BPM button optimization are presented elsewhere in these proceedings. Here we present measurements on a test fixture that was assembled to confirm, if possible, a subset of those rules: (1)more » Minimize the trapped mode impedance and the resulting power deposited in this mode by the beam. (2) Maximize the power re-radiated back into the beampipe. (3) Maximize electrical conductivity of the outer circumference of the button and minimize conductivity of the inner circumference of the shell, to shift power deposition from the button to the shell. The problem is then how to extract useful and relevant information from S-parameter measurements of the test fixture.« less

  14. Design and construction of a vertical hydroponic system with semi-continuous and continuous nutrient cycling

    NASA Astrophysics Data System (ADS)

    Siswanto, Dian; Widoretno, Wahyu

    2017-11-01

    Problems due to the increase in agricultural land use change can be solved by hydroponic system applications. Many hydroponic studies have been conducted in several countries while their applications in Indonesia requires modification and adjustment. This research was conducted to design and construct a hydroponic system with semi-continuous and continuous nutrition systems. The hydroponic system which was used adapts the ebb and flow system, and the nutrient film technique (NFT). This hydroponic system was made from polyvinyl chloride (PVC) pipes with a length of 197 cm, a diameter of 16 cm, and a slope of 4°. It was constructed from four PVC pipes. In semi-continuous irrigation treatment, nutrients flow four to six times for each of ten minutes depending on plant development and the estimated evapotranspiration occurring, while in a continuous nutrient system the nutrients are streamed for twenty-four hours without stopping at a maximum flow rate of 13.7 L per second.

  15. Attenuation characteristics of the fundamental modes that propagate in buried iron water pipes.

    PubMed

    Long, R; Lowe, M; Cawley, P

    2003-09-01

    The attenuation of the fundamental non-torsional modes that propagate down buried iron water pipes has been studied. The mode shapes, mode attenuation due to leakage into the surrounding medium and the scattering of the modes as they interact with pipe joints and fittings have been investigated. In the low frequency region the mode predicted to dominate over significant propagation distances approximates a plane wave in the water within the pipe. The established acoustic technique used to locate leaks in buried iron water pipes assumes that leak noise propagates as a single non-dispersive mode at a velocity related to the low frequency asymptote of this water borne mode. Experiments have been conducted on buried water mains at test sites in the UK to verify the attenuation and velocity dispersion predictions.

  16. Lattice thermal conductivity of borophene from first principle calculation

    NASA Astrophysics Data System (ADS)

    Xiao, Huaping; Cao, Wei; Ouyang, Tao; Guo, Sumei; He, Chaoyu; Zhong, Jianxin

    2017-04-01

    The phonon transport property is a foundation of understanding a material and predicting the potential application in mirco/nano devices. In this paper, the thermal transport property of borophene is investigated by combining first-principle calculations and phonon Boltzmann transport equation. At room temperature, the lattice thermal conductivity of borophene is found to be about 14.34 W/mK (error is about 3%), which is much smaller than that of graphene (about 3500 W/mK). The contributions from different phonon modes are qualified, and some phonon modes with high frequency abnormally play critical role on the thermal transport of borophene. This is quite different from the traditional understanding that thermal transport is usually largely contributed by the low frequency acoustic phonon modes for most of suspended 2D materials. Detailed analysis further reveals that the scattering between the out-of-plane flexural acoustic mode (FA) and other modes likes FA + FA/TA/LA/OP ↔ TA/LA/OP is the predominant phonon process channel. Finally the vibrational characteristic of some typical phonon modes and mean free path distribution of different phonon modes are also presented in this work. Our results shed light on the fundamental phonon transport properties of borophene, and foreshow the potential application for thermal management community.

  17. USING CONTINUOUS MONITORS FOR CONDUCTING TRACER STUDIES IN WATER DISTRIBUTION SYSTEMS

    EPA Science Inventory

    The use of online monitors for conducting a distribution system tracer study is proving to be an essential tool to accurately understand the flow dynamics in a distribution system. In a series of field testing sponsored by U. S. Environmental Protection Agency (EPA) and Greater ...

  18. Defect induced guided waves mode conversion

    NASA Astrophysics Data System (ADS)

    Wandowski, Tomasz; Kudela, Pawel; Malinowski, Pawel; Ostachowicz, Wieslaw

    2016-04-01

    This paper deals with analysis of guided waves mode conversion phenomenon in fiber reinforced composite materials. Mode conversion phenomenon may take place when propagating elastic guided waves interact with discontinuities in the composite waveguide. The examples of such discontinuities are sudden thickness change or delamination between layers in composite material. In this paper, analysis of mode conversion phenomenon is based on full wave-field signals. In the full wave-field approach signals representing propagation of elastic waves are gathered from dense mesh of points that span over investigated area of composite part. This allow to animate the guided wave propagation. The reported analysis is based on signals resulting from numerical calculations and experimental measurements. In both cases defect in the form of delamination is considered. In the case of numerical research, Spectral Element Method (SEM) is utilized, in which a mesh is composed of 3D elements. Numerical model includes also piezoelectric transducer. Full wave-field experimental measurements are conducted by using piezoelectric transducer for guided wave excitation and Scanning Laser Doppler Vibrometer (SLDV) for sensing.

  19. Wide range local resistance imaging on fragile materials by conducting probe atomic force microscopy in intermittent contact mode

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vecchiola, Aymeric; Concept Scientific Instruments, ZA de Courtaboeuf, 2 rue de la Terre de Feu, 91940 Les Ulis; Unité Mixte de Physique CNRS-Thales UMR 137, 1 avenue Augustin Fresnel, 91767 Palaiseau

    An imaging technique associating a slowly intermittent contact mode of atomic force microscopy (AFM) with a home-made multi-purpose resistance sensing device is presented. It aims at extending the widespread resistance measurements classically operated in contact mode AFM to broaden their application fields to soft materials (molecular electronics, biology) and fragile or weakly anchored nano-objects, for which nanoscale electrical characterization is highly demanded and often proves to be a challenging task in contact mode. Compared with the state of the art concerning less aggressive solutions for AFM electrical imaging, our technique brings a significantly wider range of resistance measurement (over 10more » decades) without any manual switching, which is a major advantage for the characterization of materials with large on-sample resistance variations. After describing the basics of the set-up, we report on preliminary investigations focused on academic samples of self-assembled monolayers with various thicknesses as a demonstrator of the imaging capabilities of our instrument, from qualitative and semi-quantitative viewpoints. Then two application examples are presented, regarding an organic photovoltaic thin film and an array of individual vertical carbon nanotubes. Both attest the relevance of the technique for the control and optimization of technological processes.« less

  20. Tectonic mode switches and the nature of orogenesis

    NASA Astrophysics Data System (ADS)

    Lister, Gordon; Forster, Marnie

    2009-12-01

    The birth and death of many mountain belts occurs in lithosphere that over-rides major subduction zones. Here the tectonic mode (shortening versus extension) can abruptly switch, even during continuous and otherwise smooth convergence. If the hinge line of the foundering slab rapidly retreats (i.e. rolls back), the foundering slab creates a gravitational potential well into which the orogen collapses. This motion, coupled with stress guides, can "pull" the orogen apart. A slowing of roll-back (or of hinge retreat) means that the subduction flexure may subsequently begin to be "pushed back" or be "pushed over" by the advancing orogen. The consequence of such changes in relative motion is that orogenic belts are affected by abrupt tectonic mode switches. The change from "push" to "pull" leads to a sudden change from horizontal extension to horizontal shortening, potentially throughout the entire mass of the orogenic lithosphere that over-rides the subducting slab. The sequencing of these tectonic mode switches affects the thermal evolution of the orogen, and thus fundamentally determines the nature of orogenesis. This insight led to us to our quite different views as to how orogens work. It is evident that orogens affected by abrupt "push-pull" mode switches are characterized by high-pressure metamorphism, whereas orogens affected by abrupt "pull-push" mode switches are characterized by high-temperature metamorphism, magmatism and anatexis.

  1. Violation of Bell's Inequality Using Continuous Variable Measurements

    NASA Astrophysics Data System (ADS)

    Thearle, Oliver; Janousek, Jiri; Armstrong, Seiji; Hosseini, Sara; Schünemann Mraz, Melanie; Assad, Syed; Symul, Thomas; James, Matthew R.; Huntington, Elanor; Ralph, Timothy C.; Lam, Ping Koy

    2018-01-01

    A Bell inequality is a fundamental test to rule out local hidden variable model descriptions of correlations between two physically separated systems. There have been a number of experiments in which a Bell inequality has been violated using discrete-variable systems. We demonstrate a violation of Bell's inequality using continuous variable quadrature measurements. By creating a four-mode entangled state with homodyne detection, we recorded a clear violation with a Bell value of B =2.31 ±0.02 . This opens new possibilities for using continuous variable states for device independent quantum protocols.

  2. Determination of continuous variable entanglement by purity measurements.

    PubMed

    Adesso, Gerardo; Serafini, Alessio; Illuminati, Fabrizio

    2004-02-27

    We classify the entanglement of two-mode Gaussian states according to their degree of total and partial mixedness. We derive exact bounds that determine maximally and minimally entangled states for fixed global and marginal purities. This characterization allows for an experimentally reliable estimate of continuous variable entanglement based on measurements of purity.

  3. 21 CFR 868.5120 - Anesthesia conduction catheter.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Anesthesia conduction catheter. 868.5120 Section... (CONTINUED) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Therapeutic Devices § 868.5120 Anesthesia conduction catheter. (a) Identification. An anesthesia conduction catheter is a flexible tubular device used to inject...

  4. 21 CFR 868.5120 - Anesthesia conduction catheter.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Anesthesia conduction catheter. 868.5120 Section... (CONTINUED) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Therapeutic Devices § 868.5120 Anesthesia conduction catheter. (a) Identification. An anesthesia conduction catheter is a flexible tubular device used to inject...

  5. 21 CFR 868.5120 - Anesthesia conduction catheter.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Anesthesia conduction catheter. 868.5120 Section... (CONTINUED) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Therapeutic Devices § 868.5120 Anesthesia conduction catheter. (a) Identification. An anesthesia conduction catheter is a flexible tubular device used to inject...

  6. Discrete event simulation tool for analysis of qualitative models of continuous processing systems

    NASA Technical Reports Server (NTRS)

    Malin, Jane T. (Inventor); Basham, Bryan D. (Inventor); Harris, Richard A. (Inventor)

    1990-01-01

    An artificial intelligence design and qualitative modeling tool is disclosed for creating computer models and simulating continuous activities, functions, and/or behavior using developed discrete event techniques. Conveniently, the tool is organized in four modules: library design module, model construction module, simulation module, and experimentation and analysis. The library design module supports the building of library knowledge including component classes and elements pertinent to a particular domain of continuous activities, functions, and behavior being modeled. The continuous behavior is defined discretely with respect to invocation statements, effect statements, and time delays. The functionality of the components is defined in terms of variable cluster instances, independent processes, and modes, further defined in terms of mode transition processes and mode dependent processes. Model construction utilizes the hierarchy of libraries and connects them with appropriate relations. The simulation executes a specialized initialization routine and executes events in a manner that includes selective inherency of characteristics through a time and event schema until the event queue in the simulator is emptied. The experimentation and analysis module supports analysis through the generation of appropriate log files and graphics developments and includes the ability of log file comparisons.

  7. Black holes by analytic continuation

    NASA Astrophysics Data System (ADS)

    Amati, D.; Russo, J. G.

    1997-07-01

    In the context of a two-dimensional exactly solvable model, the dynamics of quantum black holes is obtained by analytically continuing the description of the regime where no black hole is formed. The resulting spectrum of outgoing radiation departs from the one predicted by the Hawking model in the region where the outgoing modes arise from the horizon with Planck-order frequencies. This occurs early in the evaporation process, and the resulting physical picture is unconventional. The theory predicts that black holes will only radiate out an energy of Planck mass order, stabilizing after a transitory period. The continuation from a regime without black hole formation-accessible in the 1+1 gravity theory considered-is implicit in an S-matrix approach and suggests in this way a possible solution to the problem of information loss.

  8. Comparative study of lesions created by high-intensity focused ultrasound using sequential discrete and continuous scanning strategies.

    PubMed

    Fan, Tingbo; Liu, Zhenbo; Zhang, Dong; Tang, Mengxing

    2013-03-01

    Lesion formation and temperature distribution induced by high-intensity focused ultrasound (HIFU) were investigated both numerically and experimentally via two energy-delivering strategies, i.e., sequential discrete and continuous scanning modes. Simulations were presented based on the combination of Khokhlov-Zabolotskaya-Kuznetsov (KZK) equation and bioheat equation. Measurements were performed on tissue-mimicking phantoms sonicated by a 1.12-MHz single-element focused transducer working at an acoustic power of 75 W. Both the simulated and experimental results show that, in the sequential discrete mode, obvious saw-tooth-like contours could be observed for the peak temperature distribution and the lesion boundaries, with the increasing interval space between two adjacent exposure points. In the continuous scanning mode, more uniform peak temperature distributions and lesion boundaries would be produced, and the peak temperature values would decrease significantly with the increasing scanning speed. In addition, compared to the sequential discrete mode, the continuous scanning mode could achieve higher treatment efficiency (lesion area generated per second) with a lower peak temperature. The present studies suggest that the peak temperature and tissue lesion resulting from the HIFU exposure could be controlled by adjusting the transducer scanning speed, which is important for improving the HIFU treatment efficiency.

  9. A general solution strategy of modified power method for higher mode solutions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Peng; Lee, Hyunsuk; Lee, Deokjung, E-mail: deokjung@unist.ac.kr

    2016-01-15

    A general solution strategy of the modified power iteration method for calculating higher eigenmodes has been developed and applied in continuous energy Monte Carlo simulation. The new approach adopts four features: 1) the eigen decomposition of transfer matrix, 2) weight cancellation for higher modes, 3) population control with higher mode weights, and 4) stabilization technique of statistical fluctuations using multi-cycle accumulations. The numerical tests of neutron transport eigenvalue problems successfully demonstrate that the new strategy can significantly accelerate the fission source convergence with stable convergence behavior while obtaining multiple higher eigenmodes at the same time. The advantages of the newmore » strategy can be summarized as 1) the replacement of the cumbersome solution step of high order polynomial equations required by Booth's original method with the simple matrix eigen decomposition, 2) faster fission source convergence in inactive cycles, 3) more stable behaviors in both inactive and active cycles, and 4) smaller variances in active cycles. Advantages 3 and 4 can be attributed to the lower sensitivity of the new strategy to statistical fluctuations due to the multi-cycle accumulations. The application of the modified power method to continuous energy Monte Carlo simulation and the higher eigenmodes up to 4th order are reported for the first time in this paper. -- Graphical abstract: -- Highlights: •Modified power method is applied to continuous energy Monte Carlo simulation. •Transfer matrix is introduced to generalize the modified power method. •All mode based population control is applied to get the higher eigenmodes. •Statistic fluctuation can be greatly reduced using accumulated tally results. •Fission source convergence is accelerated with higher mode solutions.« less

  10. 12 CFR 229.58 - Mode of delivery of information.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 12 Banks and Banking 3 2011-01-01 2011-01-01 false Mode of delivery of information. 229.58 Section 229.58 Banks and Banking FEDERAL RESERVE SYSTEM (CONTINUED) BOARD OF GOVERNORS OF THE FEDERAL RESERVE... bank instead may provide an electronic image of the original check or sufficient copy if the recipient...

  11. Spatial Distortion of Vibration Modes via Magnetic Correlation of Impurities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Krasniqi, Faton S.; Zhong, Yinpeng; Epp, S. W.

    Long wavelength vibrational modes in the ferromagnetic semiconductor Ga 0.91M n0.09As are investigated using time resolved x-ray diffraction. At room temperature, we measure oscillations in the x-ray diffraction intensity corresponding to coherent vibrational modes with well-defined wavelengths. When the correlation of magnetic impurities sets in, we observe the transition of the lattice into a disordered state that does not support coherent modes at large wavelengths. Our measurements point toward a magnetically induced broadening of long wavelength vibrational modes in momentum space and their quasilocalization in the real space. More specifically, long wavelength vibrational modes cannot be assigned to a singlemore » wavelength but rather should be represented as a superposition of plane waves with different wavelengths. Lastly, our findings have strong implications for the phonon-related processes, especially carrier-phonon and phonon-phonon scattering, which govern the electrical conductivity and thermal management of semiconductor-based devices.« less

  12. Spatial Distortion of Vibration Modes via Magnetic Correlation of Impurities

    DOE PAGES

    Krasniqi, Faton S.; Zhong, Yinpeng; Epp, S. W.; ...

    2018-03-08

    Long wavelength vibrational modes in the ferromagnetic semiconductor Ga 0.91M n0.09As are investigated using time resolved x-ray diffraction. At room temperature, we measure oscillations in the x-ray diffraction intensity corresponding to coherent vibrational modes with well-defined wavelengths. When the correlation of magnetic impurities sets in, we observe the transition of the lattice into a disordered state that does not support coherent modes at large wavelengths. Our measurements point toward a magnetically induced broadening of long wavelength vibrational modes in momentum space and their quasilocalization in the real space. More specifically, long wavelength vibrational modes cannot be assigned to a singlemore » wavelength but rather should be represented as a superposition of plane waves with different wavelengths. Lastly, our findings have strong implications for the phonon-related processes, especially carrier-phonon and phonon-phonon scattering, which govern the electrical conductivity and thermal management of semiconductor-based devices.« less

  13. Scanning ion-conductance and atomic force microscope with specialized sphere-shaped nanopippettes

    NASA Astrophysics Data System (ADS)

    Zhukov, M. V.; Sapozhnikov, I. D.; Golubok, A. O.; Chubinskiy-Nadezhdin, V. I.; Komissarenko, F. E.; Lukashenko, S. Y.

    2017-11-01

    A scanning ion-conductance microscope was designed on the basis of scanning probe microscope NanoTutor. The optimal parameters of nanopipettes fabrication were found according to scanning electron microscopy diagnostics, current-distance I (Z) and current-voltage characteristics. A comparison of images of test objects, including biological samples, was carried out in the modes of optical microscopy, atomic force microscopy and scanning ion-conductance microscopy. Sphere-shaped nanopippettes probes were developed and tested to increase the stability of pipettes, reduce invasiveness and improve image quality of atomic force microscopy in tapping mode. The efficiency of sphere-shaped nanopippettes is shown.

  14. XPAR-2 Search Mode Initial Design

    DTIC Science & Technology

    2013-11-01

    by an azimuth sector, an elevation sector, and out to a required maximum range. The frame-time, which is defined as the time it takes the antenna beam...continues its scan, more targets are detected and the measurements are used to form their track files, which are then updated when the beam scans over...every additional target to be tracked. Although the track update rate can be made much faster than that in the TWS mode, it is obvious that there is a

  15. Strain gage based determination of mixed mode SIFs

    NASA Astrophysics Data System (ADS)

    Murthy, K. S. R. K.; Sarangi, H.; Chakraborty, D.

    2018-05-01

    Accurate determination of mixed mode stress intensity factors (SIFs) is essential in understanding and analysis of mixed mode fracture of engineering components. Only a few strain gage determination of mixed mode SIFs are reported in literatures and those also do not provide any prescription for radial locations of strain gages to ensure accuracy of measurement. The present investigation experimentally demonstrates the efficacy of a proposed methodology for the accurate determination of mixed mode I/II SIFs using strain gages. The proposed approach is based on the modified Dally and Berger's mixed mode technique. Using the proposed methodology appropriate gage locations (optimal locations) for a given configuration have also been suggested ensuring accurate determination of mixed mode SIFs. Experiments have been conducted by locating the gages at optimal and non-optimal locations to study the efficacy of the proposed approach. The experimental results from the present investigation show that highly accurate SIFs (0.064%) can be determined using the proposed approach if the gages are located at the suggested optimal locations. On the other hand, results also show the very high errors (212.22%) in measured SIFs possible if the gages are located at non-optimal locations. The present work thus clearly substantiates the importance of knowing the optimal locations of the strain gages apriori in accurate determination of SIFs.

  16. Advanced surface chemical analysis of continuously manufactured drug loaded composite pellets.

    PubMed

    Hossain, Akter; Nandi, Uttom; Fule, Ritesh; Nokhodchi, Ali; Maniruzzaman, Mohammed

    2017-04-15

    The aim of the present study was to develop and characterise polymeric composite pellets by means of continuous melt extrusion techniques. Powder blends of a steroid hormone (SH) as a model drug and either ethyl cellulose (EC N10 and EC P7 grades) or hydroxypropyl methylcellulose (HPMC AS grade) as polymeric carrier were extruded using a Pharma 11mm twin screw extruder in a continuous mode of operation to manufacture extruded composite pellets of 1mm length. Molecular modelling study using commercial Gaussian 09 software outlined a possible drug-polymer interaction in the molecular level to develop solid dispersions of the drug in the pellets. Solid-state analysis conducted via a differential scanning calorimetry (DSC), hot stage microscopy (HSM) and X-ray powder diffraction (XRPD) analyses revealed the amorphous state of the drug in the polymer matrices. Surface analysis using SEM/energy dispersive X-ray (EDX) of the produced pellets arguably showed a homogenous distribution of the C and O atoms in the pellet matrices. Moreover, advanced chemical surface analysis conducted via atomic force microscopy (AFM) showed a homogenous phase system having the drug molecule dispersed onto the amorphous matrices while Raman mapping confirmed the homogenous single-phase drug distribution in the manufactured composite pellets. Such composite pellets are expected to deliver multidisciplinary applications in drug delivery and medical sciences by e.g. modifying drug solubility/dissolutions or stabilizing the unstable drug (e.g. hormone, protein) in the composite network. Copyright © 2016. Published by Elsevier Inc.

  17. Optical frequency-domain chromatic dispersion measurement method for higher-order modes in an optical fiber.

    PubMed

    Ahn, Tae-Jung; Jung, Yongmin; Oh, Kyunghwan; Kim, Dug Young

    2005-12-12

    We propose a new chromatic dispersion measurement method for the higher-order modes of an optical fiber using optical frequency modulated continuous-wave (FMCW) interferometry. An optical fiber which supports few excited modes was prepared for our experiments. Three different guiding modes of the fiber were identified by using far-field spatial beam profile measurements and confirmed with numerical mode analysis. By using the principle of a conventional FMWC interferometry with a tunable external cavity laser, we have demonstrated that the chromatic dispersion of a few-mode optical fiber can be obtained directly and quantitatively as well as qualitatively. We have also compared our measurement results with those of conventional modulation phase-shift method.

  18. Optimization of passively mode-locked quasi-continuously diode-pumped Nd:GdVO4 laser in bounce geometry

    NASA Astrophysics Data System (ADS)

    Frank, Milan; Jelínek, Michal; Kubeček, Václav

    2015-01-01

    In this paper the operation of pulsed diode-pumped Nd:GdVO4 laser oscillator in bounce geometry passively modelocked using semiconductor saturable absorber mirror (SAM), generating microjoule level picosecond pulses at wavelength of 1063 nm, is reported. Optimization of the output coupling for generation either Q-switched mode locked pulse trains or cavity dumped single pulses with maximum energy was performed, which resulted in extraction of single pulses as short as 10 ps and energy of 20 uJ. In comparison with the previous results obtained with this Nd:GdVO4 oscillator and saturable absorber in transmission mode, the achieved pulse duration is five times shorter. Using different absorbers and parameters of single pulse extraction enables generation of the pulses with duration up to 100 ps with the energy in the range from 10 to 20 μJ.

  19. Nonlinear MHD simulations of Quiescent H-mode plasmas in DIII-D

    DOE PAGES

    Liu, Feng; Huijsmans, G. T. A.; Loarte, A.; ...

    2015-09-04

    In the Quiescent H-mode (QH-mode) regime, the edge harmonic oscillation (EHO), thought to be a saturated kink-peeling mode (KPM) driven unstable by current and rotation, is found in experiment to provide sufficient stationary edge particle transport to avoid the periodic expulsion of particles and energy by edge localized modes (ELMs). In this article, both linear and nonlinear MHD modelling of QH-mode plasmas from the DIII-D tokamak have been investigated to understand the mechanism leading to the appearance of the EHO in QH-mode plasmas. For the first time nonlinear MHD simulations with low-n modes both with ideal wall and resistive wallmore » boundary conditions have been carried out with 3-D non-linear MHD code JOREK. The results show, in agreement with the original conjectures, that in the nonlinear phase, kink peeling modes are the main unstable modes in QH-mode plasmas of DIIID and that the kink-peeling modes saturate non-linearly leading to a 3-D stationary state. The characteristics of the kink-peeling modes, in terms of mode structure and associated decrease of the edge plasma density associated with them, are in good agreement with experimental measurements of the EHO in DIII-D. Finally, the effect of plasma resistivity, the role of plasma parallel rotation as well as the effect of the conductivity of the vacuum vessel wall on the destabilization and saturation of kink-peeling modes have been evaluated for experimental QH-mode plasma conditions in DIII-D.« less

  20. Dynamic growth of mixed-mode shear cracks

    USGS Publications Warehouse

    Andrews, D.J.

    1994-01-01

    A pure mode II (in-plane) shear crack cannot propagate spontaneously at a speed between the Rayleigh and S-wave speeds, but a three-dimensional (3D) or two-dimensional (2D) mixed-mode shear crack can propagate in this range, being driven by the mode III (antiplane) component. Two different analytic solutions have been proposed for the mode II component in this case. The first is the solution valid for crack speed less than the Rayleigh speed. When applied above the Rayleigh speed, it predicts a negative stress intensity factor, which implies that energy is generated at the crack tip. Burridge proposed a second solution, which is continuous at the crack tip, but has a singularity in slip velocity at the Rayleigh wave. Spontaneous propagation of a mixed-mode rupture has been calculated with a slip-weakening friction law, in which the slip velocity vector is colinear with the total traction vector. Spontaneous trans-Rayleigh rupture speed has been found. The solution depends on the absolute stress level. The solution for the in-plane component appears to be a superposition of smeared-out versions of the two analytic solutions. The proportion of the first solution increases with increasing absolute stress. The amplitude of the negative in-plane traction pulse is less than the absolute final sliding traction, so that total in-plane traction does not reverse. The azimuth of the slip velocity vector varies rapidly between the onset of slip and the arrival of the Rayleigh wave. The variation is larger at smaller absolute stress.

  1. Drift mode accelerometry for spaceborne gravity measurements

    NASA Astrophysics Data System (ADS)

    Conklin, John W.

    2015-11-01

    A drift mode accelerometer is a precision instrument for spacecraft that overcomes much of the acceleration noise and readout dynamic range limitations of traditional electrostatic accelerometers. It has the potential of achieving acceleration noise performance similar to that of drag-free systems over a restricted frequency band without the need for external drag-free control or continuous spacecraft propulsion. Like traditional accelerometers, the drift mode accelerometer contains a high-density test mass surrounded by an electrode housing, which can control and sense all six degrees of freedom of the test mass. Unlike traditional accelerometers, the suspension system is operated with a low duty cycle so that the limiting suspension force noise only acts over brief, known time intervals, which can be neglected in the data analysis. The readout is performed using a laser interferometer which is immune to the dynamic range limitations of even the best voltage references typically used to determine the inertial acceleration of electrostatic accelerometers. The drift mode accelerometer is a novel offshoot of the like-named operational mode of the LISA Pathfinder spacecraft, in which its test mass suspension system is cycled on and off to estimate the acceleration noise associated with the front-end electronics. This paper presents the concept of a drift mode accelerometer, describes the operation of such a device, develops models for its performance with respect to non-drag-free satellite geodesy and gravitational wave missions, and discusses plans for testing the performance of a prototype sensor in the laboratory using torsion pendula.

  2. Generation of continuous-wave 194 nm laser for mercury ion optical frequency standard

    NASA Astrophysics Data System (ADS)

    Zou, Hongxin; Wu, Yue; Chen, Guozhu; Shen, Yong; Liu, Qu; Precision measurement; atomic clock Team

    2015-05-01

    194 nm continuous-wave (CW) laser is an essential part in mercury ion optical frequency standard. The continuous-wave tunable radiation sources in the deep ultraviolet (DUV) region of the spectrum is also serviceable in high-resolution spectroscopy with many atomic and molecular lines. We introduce a scheme to generate continuous-wave 194 nm radiation with SFM in a Beta Barium Borate (BBO) crystal here. The two source beams are at 718 nm and 266 nm, respectively. Due to the property of BBO, critical phase matching (CPM) is implemented. One bow-tie cavity is used to resonantly enhance the 718 nm beam while the 266 nm makes a single pass, which makes the configuration easy to implement. Considering the walk-off effect in CPM, the cavity mode is designed to be elliptical so that the conversion efficiency can be promoted. Since the 266 nm radiation is generated by a 532 nm laser through SHG in a BBO crystal with a large walk-off angle, the output mode is quite non-Gaussian. To improve mode matching, we shaped the 266 nm beam into Gaussian modes with a cylindrical lens and iris diaphragm. As a result, 2.05 mW 194 nm radiation can be generated. As we know, this is the highest power for 194 nm CW laser using SFM in BBO with just single resonance. The work is supported by the National Natural Science Foundation of China (Grant No. 91436103 and No. 11204374).

  3. The effect of pressure anisotropy on ballooning modes in tokamak plasmas

    NASA Astrophysics Data System (ADS)

    Johnston, A.; Hole, M. J.; Qu, Z. S.; Hezaveh, H.

    2018-06-01

    Edge Localised Modes are thought to be caused by a spectrum of magnetohydrodynamic instabilities, including the ballooning mode. While ballooning modes have been studied extensively both theoretically and experimentally, the focus of the vast majority of this research has been on isotropic plasmas. The prevalence of pressure anisotropy in modern tokamaks thus motivates further study of these modes. This paper presents a numerical analysis of ballooning modes in anisotropic equilibria. The investigation was conducted using the newly-developed codes HELENA+ATF and MISHKA-A, which adds anisotropic physics to equilibria and stability analysis. We have examined the impact of anisotropy on the stability of an n = 30 ballooning mode, confirming results conform to previous calculations in the isotropic limit. Growth rates of ballooning modes in equilibria with different levels of anisotropy were then calculated using the stability code MISHKA-A. The key finding was that the level of anisotropy had a significant impact on ballooning mode growth rates. For {T}\\perp > {T}| | , typical of ICRH heating, the growth rate increases, while for {T}\\perp < {T}| | , typical of neutral beam heating, the growth rate decreases.

  4. Modification of Akhieser mechanism in Si nanomembranes and thermal conductivity dependence of the Q-factor of high frequency nanoresonators

    NASA Astrophysics Data System (ADS)

    Chávez-Ángel, E.; Zarate, R. A.; Gomis-Bresco, J.; Alzina, F.; Sotomayor Torres, C. M.

    2014-12-01

    We present and validate a reformulated Akhieser model that takes into account the reduction of thermal conductivity due to the impact of boundary scattering on the thermal phonons’ lifetime. We consider silicon nanomembranes with mechanical mode frequencies in the GHz range as textbook examples of nanoresonators. The model successfully accounts for the measured shortening of the mechanical mode lifetime. Moreover, the thermal conductivity is extracted from the measured lifetime of the mechanical modes in the high-frequency regime, thereby demonstrating that the Q-factor can be used as an indication of the thermal conductivity and/or diffusivity of a mechanical resonator.

  5. Conductance dips and spin precession in a nonuniform waveguide with spin–orbit coupling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Malyshev, A. I., E-mail: malyshev@phys.unn.ru; Kozulin, A. S.

    An infinite waveguide with a nonuniformity, a segment of finite length with spin–orbit coupling, is considered in the case when the Rashba and Dresselhaus parameters are identical. Analytical expressions have been derived in the single-mode approximation for the conductance of the system for an arbitrary initial spin state. Based on numerical calculations with several size quantization modes, we have detected and described the conductance dips arising when the waves are localized in the nonuniformity due to the formation of an effective potential well in it. We show that allowance for the evanescent modes under carrier spin precession in an effectivemore » magnetic field does not lead to a change in the direction of the average spin vector at the output of the system.« less

  6. Adiabatically tapered microstructured mode converter for selective excitation of the fundamental mode in a few mode fiber.

    PubMed

    Taher, Aymen Belhadj; Di Bin, Philippe; Bahloul, Faouzi; Tartaret-Josnière, Etienne; Jossent, Mathieu; Février, Sébastien; Attia, Rabah

    2016-01-25

    We propose a new technique to selectively excite the fundamental mode in a few mode fiber (FMF). This method of excitation is made from a single mode fiber (SMF) which is inserted facing the FMF into an air-silica microstructured cane before the assembly is adiabatically tapered. We study theoretically and numerically this method by calculating the effective indices of the propagated modes, their amplitudes along the taper and the adiabaticity criteria, showing the ability to achieve an excellent selective excitation of the fundamental mode in the FMF with negligible loss. We experimentally demonstrate that the proposed solution provides a successful mode conversion and allows an almost excellent fundamental mode excitation in the FMF (representing 99.8% of the total power).

  7. Thermal Conductivity Anisotropy of Metasedimentary and Igneous Rocks

    NASA Astrophysics Data System (ADS)

    Davis, M. G.; Chapman, D. S.; van Wagoner, T. M.; Armstrong, P. A.

    2005-12-01

    Thermal conductivity anisotropy was determined for two sets of rocks: a series of sandstones, mudstones, and limey shales of Cretaceous age from Price Canyon, Utah, and metasedimentary argillites and quartzites of Precambrian age from the Big Cottonwood Formation in north central Utah. Additional anisotropy measurements were made on granitic rocks from two Tertiary plutons in Little Cottonwood Canyon, north central Utah. Most conductivity measurements were made in transient mode with a half-space, line-source instrument oriented in two orthogonal directions on a flat face cut perpendicular to bedding. One orientation of the probe yields thermal conductivity parallel to bedding (kmax) directly, the other orientation of the probe measures a product of conductivities parallel and perpendicular to bedding from which the perpendicular conductivity (kperp) is calculated. Some direct measurements of kmax and kperp were made on oriented cylindrical discs using a conventional divided bar device in steady-state mode. Anisotropy is defined as kmax/kperp. The Precambrian argillites from Big Cottonwood Canyon have anisotropy values from 0.8 to 2.1 with corresponding conductivity perpendicular to bedding of 2.0 to 6.2 W m-1 K-1. Anisotropy values for the Price Canyon samples are less than 1.2 with a mean of 1.04 although thermal conductivity perpendicular to bedding for the samples varied from 1.3 to 5.0 W m-1 K-1. The granitic rocks were found to be essentially isotropic with thermal conductivity perpendicular to bedding having a range of 2.2 to 3.2 W m-1 K-1 and a mean of 2.68 W m-1 K-1. The results confirm the observation by Deming (1994) that anisotropy is negligible for rocks having kperp greater than 4.0 W m-1 K-1 and generally increases for low conductivity metamorphic and clay-rich rocks. There is little evidence, however, for his suggestion that thermal conductivity anisotropy of all rocks increases systematically to about 2.5 for low thermal conductivity rocks.

  8. Marketing Continuing Education: A Study of Price Strategies. Occasional Papers in Continuing Education, No. 11.

    ERIC Educational Resources Information Center

    Lamoureux, Marvin E.

    The objective of the study conducted at the Centre for Continuing Education (CCE) at the University of British Columbia was to determine that threshold pricing not only existed for continuing education courses, but also was applicable to an administrative decision-making structure. The first part of the three-part investigation analyzed consumer…

  9. Mixing modes in a population-based interview survey: comparison of a sequential and a concurrent mixed-mode design for public health research.

    PubMed

    Mauz, Elvira; von der Lippe, Elena; Allen, Jennifer; Schilling, Ralph; Müters, Stephan; Hoebel, Jens; Schmich, Patrick; Wetzstein, Matthias; Kamtsiuris, Panagiotis; Lange, Cornelia

    2018-01-01

    Population-based surveys currently face the problem of decreasing response rates. Mixed-mode designs are now being implemented more often to account for this, to improve sample composition and to reduce overall costs. This study examines whether a concurrent or sequential mixed-mode design achieves better results on a number of indicators of survey quality. Data were obtained from a population-based health interview survey of adults in Germany that was conducted as a methodological pilot study as part of the German Health Update (GEDA). Participants were randomly allocated to one of two surveys; each of the surveys had a different design. In the concurrent mixed-mode design ( n  = 617) two types of self-administered questionnaires (SAQ-Web and SAQ-Paper) and computer-assisted telephone interviewing were offered simultaneously to the respondents along with the invitation to participate. In the sequential mixed-mode design ( n  = 561), SAQ-Web was initially provided, followed by SAQ-Paper, with an option for a telephone interview being sent out together with the reminders at a later date. Finally, this study compared the response rates, sample composition, health indicators, item non-response, the scope of fieldwork and the costs of both designs. No systematic differences were identified between the two mixed-mode designs in terms of response rates, the socio-demographic characteristics of the achieved samples, or the prevalence rates of the health indicators under study. The sequential design gained a higher rate of online respondents. Very few telephone interviews were conducted for either design. With regard to data quality, the sequential design (which had more online respondents) showed less item non-response. There were minor differences between the designs in terms of their costs. Postage and printing costs were lower in the concurrent design, but labour costs were lower in the sequential design. No differences in health indicators were found between

  10. Continuous-variable controlled-Z gate using an atomic ensemble

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang Mingfeng; Jiang Nianquan; Jin Qingli

    2011-06-15

    The continuous-variable controlled-Z gate is a canonical two-mode gate for universal continuous-variable quantum computation. It is considered as one of the most fundamental continuous-variable quantum gates. Here we present a scheme for realizing continuous-variable controlled-Z gate between two optical beams using an atomic ensemble. The gate is performed by simply sending the two beams propagating in two orthogonal directions twice through a spin-squeezed atomic medium. Its fidelity can run up to one if the input atomic state is infinitely squeezed. Considering the noise effects due to atomic decoherence and light losses, we show that the observed fidelities of the schememore » are still quite high within presently available techniques.« less

  11. Thermal conductivity of supercooled water.

    PubMed

    Biddle, John W; Holten, Vincent; Sengers, Jan V; Anisimov, Mikhail A

    2013-04-01

    The heat capacity of supercooled water, measured down to -37°C, shows an anomalous increase as temperature decreases. The thermal diffusivity, i.e., the ratio of the thermal conductivity and the heat capacity per unit volume, shows a decrease. These anomalies may be associated with a hypothesized liquid-liquid critical point in supercooled water below the line of homogeneous nucleation. However, while the thermal conductivity is known to diverge at the vapor-liquid critical point due to critical density fluctuations, the thermal conductivity of supercooled water, calculated as the product of thermal diffusivity and heat capacity, does not show any sign of such an anomaly. We have used mode-coupling theory to investigate the possible effect of critical fluctuations on the thermal conductivity of supercooled water and found that indeed any critical thermal-conductivity enhancement would be too small to be measurable at experimentally accessible temperatures. Moreover, the behavior of thermal conductivity can be explained by the observed anomalies of the thermodynamic properties. In particular, we show that thermal conductivity should go through a minimum when temperature is decreased, as Kumar and Stanley observed in the TIP5P model of water. We discuss physical reasons for the striking difference between the behavior of thermal conductivity in water near the vapor-liquid and liquid-liquid critical points.

  12. Powder-Derived High-Conductivity Coatings for Copper Alloys

    NASA Technical Reports Server (NTRS)

    Thomas-Ogbuji, Linus U.

    2003-01-01

    Makers of high-thermal-flux engines prefer copper alloys as combustion chamber liners, owing to a need to maximize heat dissipation. Since engine environments are strongly oxidizing in nature and copper alloys generally have inadequate resistance to oxidation, the liners need coatings for thermal and environmental protection; however, coatings must be chosen with great care in order to avoid significant impairment of thermal conductivity. Powder-derived chromia- and alumina- forming alloys are being studied under NASA's programs for advanced reusable launch vehicles to succeed the space shuttle fleet. NiCrAlY and Cu-Cr compositions optimized for high thermal conductivity have been tested for static and cyclic oxidation, and for susceptibility to blanching - a mode of degradation arising from oxidation-reduction cycling. The results indicate that the decision to coat the liners or not, and which coating/composition to use, depends strongly on the specific oxidative degradation mode that prevails under service conditions.

  13. Investigation on the oscillation modes in a thermoacoustic Stirling prime mover: mode stability and mode transition

    NASA Astrophysics Data System (ADS)

    Yu, Z. B.; Li, Q.; Chen, X.; Guo, F. Z.; Xie, X. J.; Wu, J. H.

    2003-12-01

    The purpose of this paper is to investigate the stability of oscillation modes in a thermoacoustic Stirling prime mover, which is a combination of looped tube and resonator. Two modes, with oscillation frequencies of 76 and 528 Hz, have been observed, stabilities of which are widely different. The stability of the high frequency mode (HFM) is affected by low frequency mode (LFM) strongly. Once the LFM is excited when the HFM is present, the HFM will be gradually slaved and suppressed by the LFM. The details of the transition from HFM to LFM have been described. The two stability curves of the two modes have been measured. Mean pressure Pm is an important control parameter influencing the mode stability in the tested system.

  14. Reusable Launch Vehicle Control In Multiple Time Scale Sliding Modes

    NASA Technical Reports Server (NTRS)

    Shtessel, Yuri; Hall, Charles; Jackson, Mark

    2000-01-01

    A reusable launch vehicle control problem during ascent is addressed via multiple-time scaled continuous sliding mode control. The proposed sliding mode controller utilizes a two-loop structure and provides robust, de-coupled tracking of both orientation angle command profiles and angular rate command profiles in the presence of bounded external disturbances and plant uncertainties. Sliding mode control causes the angular rate and orientation angle tracking error dynamics to be constrained to linear, de-coupled, homogeneous, and vector valued differential equations with desired eigenvalues placement. Overall stability of a two-loop control system is addressed. An optimal control allocation algorithm is designed that allocates torque commands into end-effector deflection commands, which are executed by the actuators. The dual-time scale sliding mode controller was designed for the X-33 technology demonstration sub-orbital launch vehicle in the launch mode. Simulation results show that the designed controller provides robust, accurate, de-coupled tracking of the orientation angle command profiles in presence of external disturbances and vehicle inertia uncertainties. This is a significant advancement in performance over that achieved with linear, gain scheduled control systems currently being used for launch vehicles.

  15. 980 nm diode laser with automatic power control mode for dermatological applications

    NASA Astrophysics Data System (ADS)

    Belikov, Andrey V.; Gelfond, Mark L.; Shatilova, Ksenia V.; Sosenkova, Svetlana A.; Lazareva, Anastasia A.

    2015-07-01

    Results of nevus, papilloma, dermatofibroma, and basal cell skin cancer removal by a 980+/-10 nm diode laser with "blackened" tip operating in continuous (CW) mode and automatic power control (APC) mode are compared. It was demonstrated that using APC mode decreases the width of collateral damage at removing of these nosological neoplasms of human skin. The mean width of collateral damage reached 0.846+/-0.139 mm for patient group with nevus removing by 980 nm diode laser operating in CW mode, papilloma - 0.443+/-0.312 mm, dermatofibroma - 0.923+/-0.271 mm, and basal cell skin cancer - 0.787+/-0.325 mm. The mean width of collateral damage reached 0.592+/-0.197 mm for patient group with nevus removing by 980 nm diode laser operating in APC mode, papilloma - 0.191+/-0.162 mm, dermatofibroma - 0.476+/-0.366 mm, and basal cell skin cancer - 0.517+/-0.374 mm. It was found that the percentage of laser wounds with collateral damage less than 300 μm of quantity of removed nosological neoplasms in APC mode is 50%, that significantly higher than the percentage of laser wounds obtained using CW mode (13.4%).

  16. Family Mode Deactivation Therapy in a Residential Setting: Treating Adolescents with Conduct Disorder and Multi-Axial Diagnosis

    ERIC Educational Resources Information Center

    Apsche, Jack A.; Bass, Christopher K.; Zeiter, J. Scott; Houston, Marsha Ann

    2008-01-01

    Mode Deactivation Therapy (MDT) has been shown to be an effective treatment for a variety of adolescent disorders including emotional dysregulation, behavioral dysregulation, physical aggression, sexual aggression, and many harmful symptoms of anxiety and traumatic stress. MDT Family Therapy has been effective in reducing family disharmony in case…

  17. Parametric Study Conducted of Rocket- Based, Combined-Cycle Nozzles

    NASA Technical Reports Server (NTRS)

    Steffen, Christopher J., Jr.; Smith, Timothy D.

    1998-01-01

    Having reached the end of the 20th century, our society is quite familiar with the many benefits of recycling and reusing the products of civilization. The high-technology world of aerospace vehicle design is no exception. Because of the many potential economic benefits of reusable launch vehicles, NASA is aggressively pursuing this technology on several fronts. One of the most promising technologies receiving renewed attention is Rocket-Based, Combined-Cycle (RBCC) propulsion. This propulsion method combines many of the efficiencies of high-performance jet aircraft with the power and high-altitude capability of rocket engines. The goal of the present work at the NASA Lewis Research Center is to further understand the complex fluid physics within RBCC engines that govern system performance. This work is being performed in support of NASA's Advanced Reusable Technologies program. A robust RBCC engine design optimization demands further investigation of the subsystem performance of the engine's complex propulsion cycles. The RBCC propulsion system under consideration at Lewis is defined by four modes of operation in a singlestage- to-orbit configuration. In the first mode, the engine functions as a rocket-driven ejector. When the rocket engine is switched off, subsonic combustion (mode 2) is present in the ramjet mode. As the vehicle continues to accelerate, supersonic combustion (mode 3) occurs in the ramjet mode. Finally, as the edge of the atmosphere is approached and the engine inlet is closed off, the rocket is reignited and the final accent to orbit is undertaken in an all-rocket mode (mode 4). The performance of this fourth and final mode is the subject of this present study. Performance is being monitored in terms of the amount of thrust generated from a given amount of propellant.

  18. Longitudinal mode selection in a delay-line homogeneously broadened oscillator with a fast saturable amplifier.

    PubMed

    Fleyer, Michael; Horowitz, Moshe

    2017-05-01

    Homogeneously broadened delay-line oscillators such as lasers or optoelectronic oscillators (OEOs) can potentially oscillate in a large number of cavity modes that are supported by their amplifier bandwidth. In a continuous wave operating mode, the oscillating mode is selected between one or few cavity modes that experience the highest small-signal gain. In this manuscript, we show that the oscillation mode of a homogeneously broadened oscillator can be selected from a large number of modes in a frequency region that can be broader than the full width at half maximum of the effective cavity filter. The mode is selected by a short-time injection of an external signal into the oscillator. After the external signal is turned off, the oscillation is maintained in the selected mode even if this mode has a significantly lower small-signal gain than that of other cavity modes. The stability of the oscillation is obtained due to nonlinear saturation effect in the oscillator amplifier. We demonstrate, experimentally and theoretically, mode selection in a long cavity OEO. We could select any desired mode between 400 cavity modes while maintaining ultra-low phase noise in the selected mode and in the non-oscillating modes. No mode-hopping was observed during our maximum measurement duration of about 24 hours.

  19. Guidelines for Conducting an Ethnic Heritage Search.

    ERIC Educational Resources Information Center

    Williams, Maxine Patrick

    Based on the work of a 22-member research team in the San Diego Community College District, this booklet offers guidelines for developing cultural awareness and presents instruments for conducting an ethnic heritage search, i.e., a systematic examination of a culture to, for example, reveal reasons for customs or practices or clarify the modes of…

  20. Parental preference and perspectives on continuous pulse oximetry in infants and children with bronchiolitis

    PubMed Central

    Hendaus, Mohamed A; Nassar, Suzan; Leghrouz, Bassil A; Alhammadi, Ahmed H; Alamri, Mohammed

    2018-01-01

    Objective The purpose of the study was to investigate parental preference of continuous pulse oximetry in infants and children with bronchiolitis. Materials and methods A cross-sectional prospective study was conducted at Hamad Medical Corporation in Qatar. Parents of infants and children <24 months old and hospitalized with bronchiolitis were offered an interview survey. Results A total of 132 questionnaires were completed (response rate 100%). Approximately 90% of participants were 20–40 years of age, and 85% were females. The mean age of children was 7.2±5.8 months. Approximately eight in ten parents supported the idea of continuous pulse oximetry in children with bronchiolitis. Almost 43% of parents believed that continuous pulse-oximetry monitoring would delay their children’s hospital discharge. Interestingly, approximately 85% of caregivers agreed that continuous pulse oximetry had a good impact on their children’s health. In addition, around one in two of the participants stated that good bedside examinations can obviate the need for continuous pulse oximetry. Furthermore, 80% of parents believed that continuous pulse-oximetry monitoring would give the health-care provider a good sense of security regarding the child’s health. Finally, being a male parent was associated with significantly increased risk of reporting unnecessary fatigue, attributed to the sound of continuous pulse oximetry (P=0.031). Conclusion Continuous pulse-oximetry monitoring in children with bronchiolitis was perceived as reassuring for parents. Involving parents in decision-making is considered essential in the better management of children with bronchiolitis or any other disease. The first step to decrease continuous pulse oximetry will require provider education and change as well. Furthermore, we recommend proper counseling for parents, emphasizing that medical technology is not always essential, but is a complementary mode of managing a disease. PMID:29662305

  1. Prevalence of conduction delay of the right atrium in patients with SSS: implications for pacing site selection.

    PubMed

    Verlato, Roberto; Zanon, Francesco; Bertaglia, Emanuele; Turrini, Pietro; Baccillieri, Maria Stella; Baracca, Enrico; Bongiorni, Maria Grazia; Zampiero, Aldo; Zonzin, Pietro; Pascotto, Pietro; Venturini, Diego; Corbucci, Giorgio

    2007-09-01

    To evaluate the prevalence of severe right atrial conduction delay in patients with sinus node dysfunction (SND) and atrial fibrillation (AF) and the effects of pacing in the right atrial appendage (RAA) and in the inter-atrial septum (IAS). Forty-two patients (15 male, 72 +/- 7 years) underwent electrophysiologic study to measure the difference between the conduction time from RAA to coronary sinus ostium during stimulation at 600 ms and after extrastimulus (DeltaCTos). Patients were classified as group A if DeltaCTos > 60 ms and group B if < 60 ms. Each Group was randomized to RAA/IAS pacing and algorithms ON/OFF. Fifteen patients (36%, group A) had DeltaCTos = 76 +/- 11 ms and 27 patients (64%, group B) had DeltaCTos = 36 +/- 20 ms. Twenty-two patients were paced at the RAA and 20 at the IAS. During the study, no AF recurrences were reported in 11 of 42 (26%) patients, independently of RAA or IAS pacing. Patients from group A and RAA pacing had 0.79 +/- 0.81 episodes of AF/day during DDD, which increased to 1.52 +/- 1.41 episodes of AF/day during DDDR + Alg (P = 0.046). Those with IAS pacing had 0.5 +/- 0.24 episodes of AF/day during DDD, which decreased to 0.06 +/- 0.08 episodes of AF/day during DDDR + Alg (P = 0.06). In group B, no differences were reported between pacing sites and pacing modes. Severe right atrial conduction delay is present in one-third of patients with SND and AF: continuous pacing at the IAS is superior to RAA for AF recurrences. In patients without severe conduction delay, no differences between pacing site or mode were observed.

  2. Broken symmetries, zero-energy modes, and quantum transport in disordered graphene: from supermetallic to insulating regimes.

    PubMed

    Cresti, Alessandro; Ortmann, Frank; Louvet, Thibaud; Van Tuan, Dinh; Roche, Stephan

    2013-05-10

    The role of defect-induced zero-energy modes on charge transport in graphene is investigated using Kubo and Landauer transport calculations. By tuning the density of random distributions of monovacancies either equally populating the two sublattices or exclusively located on a single sublattice, all conduction regimes are covered from direct tunneling through evanescent modes to mesoscopic transport in bulk disordered graphene. Depending on the transport measurement geometry, defect density, and broken sublattice symmetry, the Dirac-point conductivity is either exceptionally robust against disorder (supermetallic state) or suppressed through a gap opening or by algebraic localization of zero-energy modes, whereas weak localization and the Anderson insulating regime are obtained for higher energies. These findings clarify the contribution of zero-energy modes to transport at the Dirac point, hitherto controversial.

  3. PLC-based LP₁₁ mode rotator for mode-division multiplexing transmission.

    PubMed

    Saitoh, Kunimasa; Uematsu, Takui; Hanzawa, Nobutomo; Ishizaka, Yuhei; Masumoto, Kohei; Sakamoto, Taiji; Matsui, Takashi; Tsujikawa, Kyozo; Yamamoto, Fumihiko

    2014-08-11

    A PLC-based LP11 mode rotator is proposed. The proposed mode rotator is composed of a waveguide with a trench that provides asymmetry of the waveguide. Numerical simulations show that converting LP11a (LP11b) mode to LP11b (LP11a) mode can be achieved with high conversion efficiency (more than 90%) and little polarization dependence over a wide wavelength range from 1450 nm to 1650 nm. In addition, we fabricate the proposed LP11 mode rotator using silica-based PLC. It is confirmed that the fabricated mode rotator can convert LP11a mode to LP11b mode over a wide wavelength range.

  4. Competition and evolution of dielectric waveguide mode and plasmonic waveguide mode

    NASA Astrophysics Data System (ADS)

    Yuan, Sheng-Nan; Fang, Yun-Tuan

    2017-10-01

    In order to study the coupling and evolution law of the waveguide mode and two plasmonic surface modes, we construct a line defect waveguide based on hexagonal honeycomb plasmonic photonic crystal. Through adjusting the radius of the edge dielectric rods, the competition and evolution behaviors occur between dielectric waveguide mode and plasmonic waveguide mode. There are three status: only plasmonic waveguide modes occur for rA < 0.09a; only dielectric waveguide modes occur for rA > 0.25a; two kinds of modes coexist for 0.09a < rA < 0.25a. The plasmonic waveguide mode has advantages in achieving slow light.

  5. Wave Propagation and Localization via Quasi-Normal Modes and Transmission Eigenchannels

    NASA Astrophysics Data System (ADS)

    Wang, Jing; Shi, Zhou; Davy, Matthieu; Genack, Azriel Z.

    2013-10-01

    Field transmission coefficients for microwave radiation between arrays of points on the incident and output surfaces of random samples are analyzed to yield the underlying quasi-normal modes and transmission eigenchannels of each realization of the sample. The linewidths, central frequencies, and transmitted speckle patterns associated with each of the modes of the medium are found. Modal speckle patterns are found to be strongly correlated leading to destructive interference between modes. This explains distinctive features of transmission spectra and pulsed transmission. An alternate description of wave transport is obtained from the eigenchannels and eigenvalues of the transmission matrix. The maximum transmission eigenvalue, τ1 is near unity for diffusive waves even in turbid samples. For localized waves, τ1 is nearly equal to the dimensionless conductance, which is the sum of all transmission eigenvalues, g = Στn. The spacings between the ensemble averages of successive values of lnτn are constant and equal to the inverse of the bare conductance in accord with predictions by Dorokhov. The effective number of transmission eigenvalues Neff determines the contrast between the peak and background of radiation focused for maximum peak intensity. The connection between the mode and channel approaches is discussed.

  6. Wave Propagation and Localization via Quasi-Normal Modes and Transmission Eigenchannels

    NASA Astrophysics Data System (ADS)

    Wang, Jing; Shi, Zhou; Davy, Matthieu; Genack, Azriel Z.

    Field transmission coefficients for microwave radiation between arrays of points on the incident and output surfaces of random samples are analyzed to yield the underlying quasi-normal modes and transmission eigenchannels of each realization of the sample. The linewidths, central frequencies, and transmitted speckle patterns associated with each of the modes of the medium are found. Modal speckle patterns are found to be strongly correlated leading to destructive interference between modes. This explains distinctive features of transmission spectra and pulsed transmission. An alternate description of wave transport is obtained from the eigenchannels and eigenvalues of the transmission matrix. The maximum transmission eigenvalue, τ1 is near unity for diffusive waves even in turbid samples. For localized waves, τ1 is nearly equal to the dimensionless conductance, which is the sum of all transmission eigenvalues, g = Στn. The spacings between the ensemble averages of successive values of lnτn are constant and equal to the inverse of the bare conductance in accord with predictions by Dorokhov. The effective number of transmission eigenvalues Neff determines the contrast between the peak and background of radiation focused for maximum peak intensity. The connection between the mode and channel approaches is discussed.

  7. Noise characterization of a pulse train generated by actively mode-locked lasers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eliyahu, D.; Salvatore, R.A.; Yariv, A.

    1996-07-01

    We analyze the entire power spectrum of pulse trains generated by a continuously operating actively mode-locked laser in the presence of noise. We consider the effect of amplitude, pulse-shape, and timing-jitter fluctuations that are characterized by stationary processes. Effects of correlations between different parameters of these fluctuations are studied also. The nonstationary timing-jitter fluctuations of passively mode-locked lasers and their influence on the power spectrum is discussed as well. {copyright} {ital 1996 Optical Society of America.}

  8. Imbalance between abstract and concrete repetitive thinking modes in schizophrenia.

    PubMed

    Maurage, Pierre; Philippot, Pierre; Grynberg, Delphine; Leleux, Dominique; Delatte, Benoît; Mangelinckx, Camille; Belge, Jan-Baptist; Constant, Eric

    2017-10-01

    Repetitive thoughts can be divided in two modes: abstract/analytic (decontextualized and dysfunctional) and concrete/experiential (problem-focused and adaptive). They constitute a transdiagnostic process involved in many psychopathological states but have received little attention in schizophrenia, as earlier studies only indexed increased ruminations (related to dysfunctional repetitive thoughts) without jointly exploring both modes. This study explored the two repetitive thinking modes, beyond ruminations, to determine their imbalance in schizophrenia. Thirty stabilized patients with schizophrenia and 30 matched controls completed the Repetitive Response Scale and the Mini Cambridge-Exeter Repetitive Thought Scale, both measuring repetitive thinking modes. Complementary measures related to schizophrenic symptomatology, depression and anxiety were also conducted. Compared to controls, patients with schizophrenia presented an imbalance between repetitive thinking modes, with increased abstract/analytic and reduced concrete/experiential thoughts, even after controlling for comorbidities. Schizophrenia is associated with stronger dysfunctional repetitive thoughts (i.e. abstract thinking) and impaired ability to efficiently use repetitive thinking for current problem-solving (i.e. concrete thinking). This imbalance confirms the double-faced nature of repetitive thinking modes, whose influence on schizophrenia's symptomatology should be further investigated. The present results also claim for evaluating these processes in clinical settings and for rehabilitating the balance between opposite repetitive thinking modes. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Drift Mode Accelerometry for Spaceborne Gravity Measurements

    NASA Astrophysics Data System (ADS)

    Conklin, J. W.; Shelley, R.; Chilton, A.; Olatunde, T.; Ciani, G.; Mueller, G.

    2014-12-01

    A drift mode accelerometer is a precision instrument for spacecraft that overcomes much of the acceleration noise and readout dynamic range limitations of traditional electrostatic accelerometers. It has the potential of achieving acceleration noise performance similar to that of drag-free systems over a restricted frequency band without the need for external drag-free control or continuous spacecraft propulsion. Like traditional accelerometers, the drift mode accelerometer contains a high-density test mass surrounded by an electrode housing, which can control and sense all six degrees of freedom of the test mass. Unlike traditional accelerometers, the suspension system is operated with a low duty cycle so that the limiting suspension force noise only acts over brief, known time intervals, which can be accounted for in the data analysis. The readout is performed using a laser interferometer which is immune to the dynamic range limitations of even the best voltage references typically used to determine the inertial acceleration of electrostatic accelerometers. This presentation describes operation and performance modeling for such a device with respect to a low Earth orbiting satellite geodesy mission. Methods for testing the drift mode accelerometer with the University of Florida precision torsion pendulum will also be discussed.

  10. Analysis and Synthesis of Memory-Based Fuzzy Sliding Mode Controllers.

    PubMed

    Zhang, Jinhui; Lin, Yujuan; Feng, Gang

    2015-12-01

    This paper addresses the sliding mode control problem for a class of Takagi-Sugeno fuzzy systems with matched uncertainties. Different from the conventional memoryless sliding surface, a memory-based sliding surface is proposed which consists of not only the current state but also the delayed state. Both robust and adaptive fuzzy sliding mode controllers are designed based on the proposed memory-based sliding surface. It is shown that the sliding surface can be reached and the closed-loop control system is asymptotically stable. Furthermore, to reduce the chattering, some continuous sliding mode controllers are also presented. Finally, the ball and beam system is used to illustrate the advantages and effectiveness of the proposed approaches. It can be seen that, with the proposed control approaches, not only can the stability be guaranteed, but also its transient performance can be improved significantly.

  11. Focusing light through dynamical samples using fast continuous wavefront optimization.

    PubMed

    Blochet, B; Bourdieu, L; Gigan, S

    2017-12-01

    We describe a fast continuous optimization wavefront shaping system able to focus light through dynamic scattering media. A micro-electro-mechanical system-based spatial light modulator, a fast photodetector, and field programmable gate array electronics are combined to implement a continuous optimization of a wavefront with a single-mode optimization rate of 4.1 kHz. The system performances are demonstrated by focusing light through colloidal solutions of TiO 2 particles in glycerol with tunable temporal stability.

  12. Fracture modes in human teeth.

    PubMed

    Lee, J J-W; Kwon, J-Y; Chai, H; Lucas, P W; Thompson, V P; Lawn, B R

    2009-03-01

    The structural integrity of teeth under stress is vital to functional longevity. We tested the hypothesis that this integrity is limited by fracture of the enamel. Experiments were conducted on molar teeth, with a metal rod loaded onto individual cusps. Fracture during testing was tracked with a video camera. Two longitudinal modes of cracking were observed: median cracking from the contact zone, and margin cracking along side walls. Median cracks initiated from plastic damage at the contact site, at first growing slowly and then accelerating to the tooth margin. Margin cracks appeared to originate from the cemento-enamel junction, and traversed the tooth wall adjacent to the loaded cusp from the gingival to the occlusal surface. All cracks remained confined within the enamel shell up to about 550 N. At higher loads, additional crack modes--such as enamel chipping and delamination--began to manifest themselves, leading to more comprehensive failure of the tooth structure.

  13. Single-Mode VCSELs

    NASA Astrophysics Data System (ADS)

    Larsson, Anders; Gustavsson, Johan S.

    The only active transverse mode in a truly single-mode VCSEL is the fundamental mode with a near Gaussian field distribution. A single-mode VCSEL produces a light beam of higher spectral purity, higher degree of coherence and lower divergence than a multimode VCSEL and the beam can be more precisely shaped and focused to a smaller spot. Such beam properties are required in many applications. In this chapter, after discussing applications of single-mode VCSELs, we introduce the basics of fields and modes in VCSELs and review designs implemented for single-mode emission from VCSELs in different materials and at different wavelengths. This includes VCSELs that are inherently single-mode as well as inherently multimode VCSELs where higher-order modes are suppressed by mode selective gain or loss. In each case we present the current state-of-the-art and discuss pros and cons. At the end, a specific example with experimental results is provided and, as a summary, the most promising designs based on current technologies are identified.

  14. Quantum transport in alkane molecular wires: Effects of binding modes and anchoring groups

    NASA Astrophysics Data System (ADS)

    Sheng, W.; Li, Z. Y.; Ning, Z. Y.; Zhang, Z. H.; Yang, Z. Q.; Guo, H.

    2009-12-01

    Effects of binding modes and anchoring groups on nonequilibrium electronic transport properties of alkane molecular wires are investigated from atomic first-principles based on density functional theory and nonequilibrium Green's function formalism. Four typical binding modes, top, bridge, hcp-hollow, and fcc-hollow, are considered at one of the two contacts. For wires with three different anchoring groups, dithiol, diamine, or dicarboxylic acid, the low bias conductances resulting from the four binding modes are all found to have either a high or a low value, well consistent with recent experimental observations. The trend can be rationalized by the behavior of electrode-induced gap states at small bias. When bias increases to higher values, states from the anchoring groups enter into the bias window and contribute significantly to the tunneling process so that transport properties become more complicated for the four binding modes. Other low bias behaviors including the values of the inverse length scale for tunneling characteristic, contact resistance, and the ratios of the high/low conductance values are also calculated and compared to experimental results. The conducting capabilities of the three anchoring groups are found to decrease from dithiol, diamine to dicarboxylic-acid, largely owing to a decrease in binding strength to the electrodes. Our results give a clear microscopic picture to the transport physics and provide reasonable qualitative explanations for the corresponding experimental data.

  15. Mode pumping experiments on biomolecules

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Austin, R.H.; Erramilli, S.; Xie, A.

    1995-12-31

    We will explore several aspects of protein dynamics and energy transfer that can be explored by using the intense, picosecond, tunable mid-IR output of the FEL. In order of appearance they are: (1) Saturation recovery and inter-level coupling of the low temperature amide-I band in acetanilide. This is a continuation of earlier experiments to test soliton models in crystalline hydrogen bonded solids. In this experiment we utilize the sub-picosecond time resolution and low repetition rate of the Stanford SCLA FEL to do both T{sub 1} and T{sub 2} relaxation measurements at 1650 cm{sup -1}. (2) Probing the influence of collectivemore » dynamics in sensory rhodopsin. In this experiment we use the FIR output of the Stanford FIREFLY FEL to determine the lifetime of collective modes in the photo-active protein sensory rhodopsin, and begin experiments on the influence of collective modes on retinal reaction dynamics. (3) Probing the transition states of enzymes. This experiment, in the initial stages, attempts to use the intense IR output of the FEL to probe and influence the reaction path of a transition state analog for the protein nucleoside hydrolase. The transition state of the inosine substrate is believed to have critical modes softened by the protein so that bond-breaking paths show absorption at approximately 800 cm{sup -1}. A form of action spectrum using FEL excitation will be used to probe this state.« less

  16. Effects of lithium insertion on thermal conductivity of silicon nanowires

    NASA Astrophysics Data System (ADS)

    Xu, Wen; Zhang, Gang; Li, Baowen

    2015-04-01

    Recently, silicon nanowires (SiNWs) have been applied as high-performance Li battery anodes, since they can overcome the pulverization and mechanical fracture during lithiation. Although thermal stability is one of the most important parameters that determine safety of Li batteries, thermal conductivity of SiNWs with Li insertion remains unclear. In this letter, using molecular dynamics simulations, we study room temperature thermal conductivity of SiNWs with Li insertion. It is found that compared with the pristine SiNW, there is as much as 60% reduction in thermal conductivity with 10% concentration of inserted Li atoms, while under the same impurity concentration the reduction in thermal conductivity of the mass-disordered SiNW is only 30%. With lattice dynamics calculations and normal mode decomposition, it is revealed that the phonon lifetimes in SiNWs decrease greatly due to strong scattering of phonons by vibrational modes of Li atoms, especially for those high frequency phonons. The observed strong phonon scattering phenomenon in Li-inserted SiNWs is similar to the phonon rattling effect. Our study serves as an exploration of thermal properties of SiNWs as Li battery anodes or weakly coupled with impurity atoms.

  17. Flight Simulator Evaluation of Enhanced Propulsion Control Modes for Emergency Operation

    NASA Technical Reports Server (NTRS)

    Litt, Jonathan, S; Sowers, T.; Owen, A., Karl; Fulton, Christopher, E.; Chicatelli, Amy, K.

    2012-01-01

    This paper describes piloted evaluation of enhanced propulsion control modes for emergency operation of aircraft. Fast Response and Overthrust modes were implemented to assess their ability to help avoid or mitigate potentially catastrophic situations, both on the ground and in flight. Tests were conducted to determine the reduction in takeoff distance achievable using the Overthrust mode. Also, improvements in Dutch roll damping, enabled by using yaw rate feedback to the engines to replace the function of a stuck rudder, were investigated. Finally, pilot workload and ability to handle the impaired aircraft on approach and landing were studied. The results showed that improvement in all aspects is possible with these enhanced propulsion control modes, but the way in which they are initiated and incorporated is important for pilot comfort and perceived benefit.

  18. Pathological speech signal analysis and classification using empirical mode decomposition.

    PubMed

    Kaleem, Muhammad; Ghoraani, Behnaz; Guergachi, Aziz; Krishnan, Sridhar

    2013-07-01

    Automated classification of normal and pathological speech signals can provide an objective and accurate mechanism for pathological speech diagnosis, and is an active area of research. A large part of this research is based on analysis of acoustic measures extracted from sustained vowels. However, sustained vowels do not reflect real-world attributes of voice as effectively as continuous speech, which can take into account important attributes of speech such as rapid voice onset and termination, changes in voice frequency and amplitude, and sudden discontinuities in speech. This paper presents a methodology based on empirical mode decomposition (EMD) for classification of continuous normal and pathological speech signals obtained from a well-known database. EMD is used to decompose randomly chosen portions of speech signals into intrinsic mode functions, which are then analyzed to extract meaningful temporal and spectral features, including true instantaneous features which can capture discriminative information in signals hidden at local time-scales. A total of six features are extracted, and a linear classifier is used with the feature vector to classify continuous speech portions obtained from a database consisting of 51 normal and 161 pathological speakers. A classification accuracy of 95.7 % is obtained, thus demonstrating the effectiveness of the methodology.

  19. Universal quantum computation with temporal-mode bilayer square lattices

    NASA Astrophysics Data System (ADS)

    Alexander, Rafael N.; Yokoyama, Shota; Furusawa, Akira; Menicucci, Nicolas C.

    2018-03-01

    We propose an experimental design for universal continuous-variable quantum computation that incorporates recent innovations in linear-optics-based continuous-variable cluster state generation and cubic-phase gate teleportation. The first ingredient is a protocol for generating the bilayer-square-lattice cluster state (a universal resource state) with temporal modes of light. With this state, measurement-based implementation of Gaussian unitary gates requires only homodyne detection. Second, we describe a measurement device that implements an adaptive cubic-phase gate, up to a random phase-space displacement. It requires a two-step sequence of homodyne measurements and consumes a (non-Gaussian) cubic-phase state.

  20. Validation of Mode-S Meteorological Routine Air Report aircraft observations

    NASA Astrophysics Data System (ADS)

    Strajnar, B.

    2012-12-01

    The success of mesoscale data assimilation depends on the availability of three-dimensional observations with high spatial and temporal resolution. This paper describes an example of such observations, available through Mode-S air traffic control system composed of ground radar and transponders on board the aircraft. The meteorological information is provided by interrogation of a dedicated meteorological data register, called Meteorological Routine Air Report (MRAR). MRAR provides direct measurements of temperature and wind, but is only returned by a small fraction of aircraft. The quality of Mode-S MRAR data, collected at the Ljubljana Airport, Slovenia, is assessed by its comparison with AMDAR and high-resolution radiosonde data sets, which enable high- and low-level validation, respectively. The need for temporal smoothing of raw Mode-S MRAR data is also studied. The standard deviation of differences between smoothed Mode-S MRAR and AMDAR is 0.35°C for temperature, 0.8 m/s for wind speed and below 10 degrees for wind direction. The differences with respect to radiosondes are larger, with standard deviations of approximately 1.7°C, 3 m/s and 25 degrees for temperature, wind speed and wind direction, respectively. It is concluded that both wind and temperature observations from Mode-S MRAR are accurate and therefore potentially very useful for data assimilation in numerical weather prediction models.

  1. Averaged variational principle for autoresonant Bernstein-Greene-Kruskal modes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Khain, P.; Friedland, L.

    2010-10-15

    Whitham's averaged variational principle is applied in studying dynamics of formation of autoresonant (continuously phase-locked) Bernstein-Greene-Kruskal (BGK) modes in a plasma driven by a chirped frequency ponderomotive wave. A flat-top electron velocity distribution is used as a model allowing a variational formulation within the water bag theory. The corresponding Lagrangian, averaged over the fast phase variable yields evolution equations for the slow field variables, allows uniform description of all stages of excitation of driven-chirped BGK modes, and predicts modulational stability of these nonlinear phase-space structures. Numerical solutions of the system of slow variational equations are in good agreement with Vlasov-Poissonmore » simulations.« less

  2. Continuous desalting of refolded protein solution improves capturing in ion exchange chromatography: A seamless process.

    PubMed

    Walch, Nicole; Jungbauer, Alois

    2017-06-01

    Truly continuous biomanufacturing processes enable an uninterrupted feed stream throughout the whole production without the need for holding tanks. We have utilized microporous anion and cation exchangers into which only salts, but not proteins, can penetrate into the pores for desalting of protein solutions, while diafiltration or dilution is usually employed for feed adjustments. Anion exchange and cation exchange chromatography columns were connected in series to remove both anions and cations. To increase operation performance, a continuous process was developed comprised of four columns. Continuous mode was achieved by staggered cycle operation, where one set of columns, consisting of one anion exchange and one cation exchange column, was loaded during the regeneration of the second set. Refolding, desalting and subsequent ion exchange capturing with a scFv as the model protein was demonstrated. The refolding solution was successfully desalted resulting in a consistent conductivity below 0.5 mS/cm from initial values of 10 to 11 mS/cm. With continuous operation process time could be reduced by 39% while productivity was increased to 163% compared to batch operation. Desalting of the protein solution resulted in up to 7-fold higher binding capacities in the subsequent ion exchange capture step with conventional protein binding resins. © 2017 The Authors. Biotechnology Journal published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. The Mode of Professional Teaching Practice of FCS Teacher-Leaders and Non-Teacher-Leaders.

    ERIC Educational Resources Information Center

    Fox, Candace K.; Laster, Janet F.

    A study was conducted to determine which of the following modes of professional practice is the dominant mode used by Ohio family and consumer science (FCS) teachers when implementing a refined critical science based curriculum: technical-rational; reflective-ethical; and process-oriented. The target population consisted of 1,013 secondary…

  4. Thermal Conductivity of Twisted Bilayer Graphene Nanoribbons from Non-equilibrium Molecular Dynamics Study.

    NASA Astrophysics Data System (ADS)

    Li, Chenyang; Su, Shanshan; Ge, Supeng; Lake, Roger

    Misorientation of the two layers of bilayer graphene affects both the electronic properties and the vibrational modes or phonons. The phonon density of modes is little affected by misorientation, however, zone-folding can allow new Umklapp scattering processes that could affect the phonon transport and thermal conductivity. To investigate this, we use NEMD molecular dynamics simulations as implemented in LAMMPS to study the thermal conductivity of the misoriented graphene bilayers. Seven commensurate misorientation angles varying from 6.01º to 48.36º have modeled and analyzed to understand how the misorientation angle affects the thermal conductivity of relatively wide ( 10 nm) misoriented bilayer graphene nanoribbons (m-BLGNRs). Within numerical accuracy, we find that the thermal conductivity of the m-BLGNRs for all of the simulated commensurate angles have the same thermal conductivity with AB stacked and AA stacked BLGNRs. These results indicate that neither the misorientation angle nor the stacking order affect the thermal conductivity of BLGNRs. This work was supported as part by the NSF #1307671.

  5. Timing the Mode Switch in a Sequential Mixed-Mode Survey: An Experimental Evaluation of the Impact on Final Response Rates, Key Estimates, and Costs

    PubMed Central

    Wagner, James; Schroeder, Heather M.; Piskorowski, Andrew; Ursano, Robert J.; Stein, Murray B.; Heeringa, Steven G.; Colpe, Lisa J.

    2017-01-01

    Mixed-mode surveys need to determine a number of design parameters that may have a strong influence on costs and errors. In a sequential mixed-mode design with web followed by telephone, one of these decisions is when to switch modes. The web mode is relatively inexpensive but produces lower response rates. The telephone mode complements the web mode in that it is relatively expensive but produces higher response rates. Among the potential negative consequences, delaying the switch from web to telephone may lead to lower response rates if the effectiveness of the prenotification contact materials is reduced by longer time lags, or if the additional e-mail reminders to complete the web survey annoy the sampled person. On the positive side, delaying the switch may decrease the costs of the survey. We evaluate these costs and errors by experimentally testing four different timings (1, 2, 3, or 4 weeks) for the mode switch in a web–telephone survey. This experiment was conducted on the fourth wave of a longitudinal study of the mental health of soldiers in the U.S. Army. We find that the different timings of the switch in the range of 1–4 weeks do not produce differences in final response rates or key estimates but longer delays before switching do lead to lower costs. PMID:28943717

  6. Linearly polarized vector modes: enabling MIMO-free mode-division multiplexing.

    PubMed

    Wang, Lixian; Nejad, Reza Mirzaei; Corsi, Alessandro; Lin, Jiachuan; Messaddeq, Younès; Rusch, Leslie; LaRochelle, Sophie

    2017-05-15

    We experimentally investigate mode-division multiplexing in an elliptical ring core fiber (ERCF) that supports linearly polarized vector modes (LPV). Characterization show that the ERCF exhibits good polarization maintaining properties over eight LPV modes with effective index difference larger than 1 × 10 -4 . The ERCF further displays stable mode power and polarization extinction ratio when subjected to external perturbations. Crosstalk between the LPV modes, after propagating through 0.9 km ERCF, is below -14 dB. By using six LPV modes as independent data channels, we achieved the transmission of 32 Gbaud QPSK over 0.9 km ERCF without any multiple-input-multiple-output (MIMO) or polarization-division multiplexing (PDM) signal processing.

  7. The Singularity Mystery Associated with a Radially Continuous Maxwell Viscoelastic Structure

    NASA Technical Reports Server (NTRS)

    Fang, Ming; Hager, Bradford H.

    1995-01-01

    The singularity problem associated with a radially continuous Maxwell viscoclastic structure is investigated. A special tool called the isolation function is developed. Results calculated using the isolation function show that the discrete model assumption is no longer valid when the viscoelastic parameter becomes a continuous function of radius. Continuous variations in the upper mantle viscoelastic parameter are especially powerful in destroying the mode-like structures. The contribution to the load Love numbers of the singularities is sensitive to the convexity of the viscoelastic parameter models. The difference between the vertical response and the horizontal response found in layered viscoelastic parameter models remains with continuous models.

  8. Tuned-circuit dual-mode Johnson noise thermometers

    NASA Astrophysics Data System (ADS)

    Shepard, R. L.; Carroll, R. M.; Falter, D. D.; Blalock, T. V.; Roberts, M. J.

    1992-02-01

    Dual-mode Johnson noise and direct current (DC) resistance thermometers can be used in control systems where prompt indications of temperature changes and long-term accuracy are needed. Such a thermometer is being developed for the SP-100 space nuclear electric power system that requires temperature measurement at 1400 K in space for 10 years, of which 7 are expected to be at full reactor power. Several direct coupled and transformer coupled, tuned resistance inductance capacitance (RLC) circuits that produce a single, continuous voltage signal were evaluated for noise temperature measurement. The simple direct coupled RLC circuit selected provides a mean squared noise voltage that depends only on the capacitance used and the temperature of the sensor, and it is independent of the value of or changes in the sensor resistance. These circuits provide a noise signal with long term accuracy but require integrating noise signals for a finite length of time. The four wire resistor for the noise temperature sensor allows simultaneous DC resistance measurements to be made that provide a prompt, continuous temperature indication signal. The DC current mode is employed continuously, and a noise voltage measurement is made periodically to correct the temperature indication. The differential noise voltage preamplifier used substantially reduces electromagnetic interference (EMI) in the system. A sensor has been tested that should provide good performance (+/- 1 percent accuracy) and long-term (10 year) reliability in space environments. Accurate noise temperature measurements were made at temperatures above 1300 K, where significant insulator shunting occurs, even though shunting does affect the dc resistance measurements and makes the system more susceptible to EMI.

  9. Response of a grounded dielectric slab to an impulse line source using leaky modes

    NASA Technical Reports Server (NTRS)

    Duffy, Dean G.

    1994-01-01

    This paper describes how expansions in leaky (or improper) modes may be used to represent the continuous spectrum in an open radiating waveguide. The technique requires a thorough knowledge of the life history of the improper modes as they migrate from improper to proper Riemann surfaces. The method is illustrated by finding the electric field resulting from an impulsively forced current located in the free space above a grounded dielectric slab.

  10. A Two-Wheel Observing Mode for the MAP Spacecraft

    NASA Technical Reports Server (NTRS)

    Starin, Scott R.; ODonnell, James R., Jr.

    2001-01-01

    The Microwave Anisotropy Probe (MAP) is a follow-on to the Differential Microwave Radiometer (DMR) instrument on the Cosmic Background Explorer (COBE). Due to the MAP project's limited mass, power, and budget, a traditional reliability concept including fully redundant components was not feasible. The MAP design employs selective hardware redundancy, along with backup software modes and algorithms, to improve the odds of mission success. This paper describes the effort to develop a backup control mode, known as Observing II, that will allow the MAP science mission to continue in the event of a failure of one of its three reaction wheel assemblies. This backup science mode requires a change from MAP's nominal zero-momentum control system to a momentum-bias system. In this system, existing thruster-based control modes are used to establish a momentum bias about the sun line sufficient to spin the spacecraft up to the desired scan rate. Natural spacecraft dynamics exhibits spin and nutation similar to the nominal MAP science mode with different relative rotation rates, so the two reaction wheels are used to establish and maintain the desired nutation angle from the sun line. Detailed descriptions of the ObservingII control algorithm and simulation results will be presented, along with the operational considerations of performing the rest of MAP's necessary functions with only two wheels.

  11. Few-Mode Whispering-Gallery-Mode Resonators

    NASA Technical Reports Server (NTRS)

    Savchenkov, Anatoliy; Strekalov, Dmitry; Matsko, Andrey; Iltchenko, Vladimir; Maleki, Lute

    2006-01-01

    Whispering-gallery-mode (WGM) optical resonators of a type now under development are designed to support few well-defined waveguide modes. In the simplest case, a resonator of this type would support one equatorial family of WGMs; in a more complex case, such a resonator would be made to support two, three, or some other specified finite number of modes. Such a resonator can be made of almost any transparent material commonly used in optics. The nature of the supported modes does not depend on which material is used, and the geometrical dispersion of this resonator is much smaller than that of a typical prior WGM resonator. Moreover, in principle, many such resonators could be fabricated as integral parts of a single chip. Basically, a resonator of this type consists of a rod, made of a suitable transparent material, from which protrudes a thin circumferential belt of the same material. The belt is integral with the rest of the rod (see figure) and acts as a circumferential waveguide. If the depth (d) and width (w) of the belt are made appropriately small, then the belt acts as though it were the core of a single-mode optical fiber: the belt and its adjacent supporting rod material support a single, circumferentially propagating mode or family of modes. It has been shown theoretically that the fiber-optic-like behavior of the belton- rod resonator structure can be summarized, in part, by the difference, Dn, between (1) an effective index of refraction of an imaginary fiber core and (2) the index of refraction (n) of the transparent rod/belt material. It has also been shown theoretically that for a given required value of Dn, the required depth of the belt can be estimated as d R Dn, where R is the radius of the rod. It must be emphasized that this estimated depth is independent of n and, hence, is independent of the choice of rod material. As in the cases of prior WGM resonators, input/output optical coupling involves utilization of evanescent fields. In the

  12. Comparing mode-crosstalk and mode-dependent loss of laterally displaced orbital angular momentum and Hermite-Gaussian modes for free-space optical communication.

    PubMed

    Ndagano, Bienvenu; Mphuthi, Nokwazi; Milione, Giovanni; Forbes, Andrew

    2017-10-15

    There is interest in using orbital angular momentum (OAM) modes to increase the data speed of free-space optical communication. A prevalent challenge is the mitigation of mode-crosstalk and mode-dependent loss that is caused by the modes' lateral displacement at the data receiver. Here, the mode-crosstalk and mode-dependent loss of laterally displaced OAM modes (LG 0,+1 , LG 0,-1 ) are experimentally compared to that of a Hermite-Gaussian (HG) mode subset (HG 0,1 , HG 1,0 ). It is shown, for an aperture larger than the modes' waist sizes, some of the HG modes can experience less mode-crosstalk and mode-dependent loss when laterally displaced along a symmetry axis. It is also shown, over a normal distribution of lateral displacements whose standard deviation is 2× the modes' waist sizes, on average, the HG modes experience 66% less mode-crosstalk and 17% less mode-dependent loss.

  13. 47 CFR 73.1216 - Licensee-conducted contests.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... licensee that broadcasts or advertises information about a contest it conducts shall fully and accurately... licensee-conducted contests not broadcast or advertised to the general public or to a substantial segment....1216 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) BROADCAST RADIO SERVICES RADIO...

  14. Two-mode squeezed light source for quantum illumination and quantum imaging

    NASA Astrophysics Data System (ADS)

    Masada, Genta

    2015-09-01

    We started to research quantum illumination radar and quantum imaging by utilizing high quality continuous-wave two-mode squeezed light source as a quantum entanglement resource. Two-mode squeezed light is a macroscopic quantum entangled state of the electro-magnetic field and shows strong correlation between quadrature phase amplitudes of each optical field. One of the most effective methods to generate two-mode squeezed light is combining two independent single-mode squeezed lights by using a beam splitter with relative phase of 90 degrees between each optical field. As a first stage of our work we are developing two-mode squeezed light source for exploring the possibility of quantum illumination radar and quantum imaging. In this article we introduce current development of experimental investigation of single-mode squeezed light. We utilize a sub-threshold optical parametric oscillator with bow-tie configuration which includes a periodically-polled potassium titanyl phosphate crystal as a nonlinear optical medium. We observed the noise level of squeezed quadrature -3.08+/-0.13 dB and anti-squeezed quadrature at 9.29+/-0.13 dB, respectively. We also demonstrated the remote tuning of squeezing level of the light source which leads to the technology for tuning the quantum entanglement in order to adapt to the actual environmental condition.

  15. Teleportation-based quantum information processing with Majorana zero modes

    DOE PAGES

    Vijay, Sagar; Fu, Liang

    2016-12-29

    In this work, we present a measurement-based scheme for performing braiding operations on Majorana zero modes in mesoscopic superconductor islands and for detecting their non-Abelian statistics without moving or hybridizing them. In our scheme for “braiding without braiding”, the topological qubit encoded in any pair of well-separated Majorana zero modes is read out from the transmission phase shift in electron teleportation through the island in the Coulomb-blockade regime. Finally, we propose experimental setups to measure the teleportation phase shift via conductance in an electron interferometer or persistent current in a closed loop.

  16. Teleportation-based quantum information processing with Majorana zero modes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vijay, Sagar; Fu, Liang

    In this work, we present a measurement-based scheme for performing braiding operations on Majorana zero modes in mesoscopic superconductor islands and for detecting their non-Abelian statistics without moving or hybridizing them. In our scheme for “braiding without braiding”, the topological qubit encoded in any pair of well-separated Majorana zero modes is read out from the transmission phase shift in electron teleportation through the island in the Coulomb-blockade regime. Finally, we propose experimental setups to measure the teleportation phase shift via conductance in an electron interferometer or persistent current in a closed loop.

  17. Variable optical attenuator and dynamic mode group equalizer for few mode fibers.

    PubMed

    Blau, Miri; Weiss, Israel; Gerufi, Jonathan; Sinefeld, David; Bin-Nun, Moran; Lingle, Robert; Grüner-Nielsen, Lars; Marom, Dan M

    2014-12-15

    Variable optical attenuation (VOA) for three-mode fiber is experimentally presented, utilizing an amplitude spatial light modulator (SLM), achieving up to -28dB uniform attenuation for all modes. Using the ability to spatially vary the attenuation distribution with the SLM, we also achieve up to 10dB differential attenuation between the fiber's two supported mode group (LP₀₁ and LP₁₁). The spatially selective attenuation serves as the basis of a dynamic mode-group equalizer (DME), potentially gain-balancing mode dependent optical amplification. We extend the experimental three mode DME functionality with a performance analysis of a fiber supporting 6 spatial modes in four mode groups. The spatial modes' distribution and overlap limit the available dynamic range and performance of the DME in the higher mode count case.

  18. Low threshold diode-pumped picosecond mode-locked Nd:YAG laser with a semiconductor saturable absorber mirror

    NASA Astrophysics Data System (ADS)

    Eshghi, M. J.; Majdabadi, A.; Koohian, A.

    2017-01-01

    In this paper, a low threshold diode pumped passively mode-locked Nd:YAG laser has been demonstrated by using a semiconductor saturable absorber mirror. The threshold power for continuous-wave mode-locking is relatively low, about 3.2 W. The resonator stability across the pump power has been analytically examined. Moreover, the mode overlap between the pump beam and the laser fundamental mode has been simulated by MATLAB software. Adopting Z-shaped resonator configuration and suitable design of the resonator’s arm lengths, has enabled the author to prepare mode-locking conditions, and obtain 40 ps pulses with 112 MHz pulse repetition rate. The laser output was stable without any Q switched instability. To the best of our knowledge, this is the lowest threshold for CW mode-locking operation of a Nd:YAG laser.

  19. 40 CFR 792.130 - Conduct of a study.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 32 2011-07-01 2011-07-01 false Conduct of a study. 792.130 Section... ACT (CONTINUED) GOOD LABORATORY PRACTICE STANDARDS Protocol for and Conduct of A Study § 792.130 Conduct of a study. (a) The study shall be conducted in accordance with the protocol. (b) The test systems...

  20. Thermal Stress Analysis of a Continuous and Pulsed End-Pumped Nd:YAG Rod Crystal Using Non-Classic Conduction Heat Transfer Theory

    NASA Astrophysics Data System (ADS)

    Mojahedi, Mahdi; Shekoohinejad, Hamidreza

    2018-02-01

    In this paper, temperature distribution in the continuous and pulsed end-pumped Nd:YAG rod crystal is determined using nonclassical and classical heat conduction theories. In order to find the temperature distribution in crystal, heat transfer differential equations of crystal with consideration of boundary conditions are derived based on non-Fourier's model and temperature distribution of the crystal is achieved by an analytical method. Then, by transferring non-Fourier differential equations to matrix equations, using finite element method, temperature and stress of every point of crystal are calculated in the time domain. According to the results, a comparison between classical and nonclassical theories is represented to investigate rupture power values. In continuous end pumping with equal input powers, non-Fourier theory predicts greater temperature and stress compared to Fourier theory. It also shows that with an increase in relaxation time, crystal rupture power decreases. Despite of these results, in single rectangular pulsed end-pumping condition, with an equal input power, Fourier theory indicates higher temperature and stress rather than non-Fourier theory. It is also observed that, when the relaxation time increases, maximum amounts of temperature and stress decrease.

  1. 40 CFR 53.6 - Right to witness conduct of tests.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 5 2010-07-01 2010-07-01 false Right to witness conduct of tests. 53.6 Section 53.6 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) AMBIENT AIR MONITORING REFERENCE AND EQUIVALENT METHODS General Provisions § 53.6 Right to witness conduct...

  2. Helicon modes in uniform plasmas. I. Low m modes

    NASA Astrophysics Data System (ADS)

    Urrutia, J. M.; Stenzel, R. L.

    2015-09-01

    Helicons are whistler modes with azimuthal wave numbers. They arise in bounded gaseous and solid state plasmas, but the present work shows that very similar modes also exist in unbounded uniform plasmas. The antenna properties determine the mode structure. A simple antenna is a magnetic loop with dipole moment aligned either along or across the ambient background magnetic field B0. For such configurations, the wave magnetic field has been measured in space and time in a large and uniform laboratory plasma. The observed wave topology for a dipole along B0 is similar to that of an m = 0 helicon mode. It consists of a sequence of alternating whistler vortices. For a dipole across B0, an m = 1 mode is excited which can be considered as a transverse vortex which rotates around B0. In m = 0 modes, the field lines are confined to each half-wavelength vortex while for m = 1 modes they pass through the entire wave train. A subset of m = 1 field lines forms two nested helices which rotate in space and time like corkscrews. Depending on the type of the antenna, both m = + 1 and m = -1 modes can be excited. Helicons in unbounded plasmas also propagate transverse to B0. The transverse and parallel wave numbers are about equal and form oblique phase fronts as in whistler Gendrin modes. By superimposing small amplitude fields of several loop antennas, various antenna combinations have been created. These include rotating field antennas, helical antennas, and directional antennas. The radiation efficiency is quantified by the radiation resistance. Since helicons exist in unbounded laboratory plasmas, they can also arise in space plasmas.

  3. Surface conductance of graphene from non-contact resonant cavity.

    PubMed

    Obrzut, Jan; Emiroglu, Caglar; Kirillov, Oleg; Yang, Yanfei; Elmquist, Randolph E

    2016-06-01

    A method is established to reliably determine surface conductance of single-layer or multi-layer atomically thin nano-carbon graphene structures. The measurements are made in an air filled standard R100 rectangular waveguide configuration at one of the resonant frequency modes, typically at TE 103 mode of 7.4543 GHz. Surface conductance measurement involves monitoring a change in the quality factor of the cavity as the specimen is progressively inserted into the cavity in quantitative correlation with the specimen surface area. The specimen consists of a nano-carbon-layer supported on a low loss dielectric substrate. The thickness of the conducting nano-carbon layer does not need to be explicitly known, but it is assumed that the lateral dimension is uniform over the specimen area. The non-contact surface conductance measurements are illustrated for a typical graphene grown by chemical vapor deposition process, and for a high quality monolayer epitaxial graphene grown on silicon carbide wafers for which we performed non-gated quantum Hall resistance measurements. The sequence of quantized transverse Hall resistance at the Landau filling factors ν = ±6 and ±2, and the absence of the Hall plateau at ν = 4 indicate that the epitaxially grown graphene is a high quality mono-layer. The resonant microwave cavity measurement is sensitive to the surface and bulk conductivity, and since no additional processing is required, it preserves the integrity of the conductive graphene layer. It allows characterization with high speed, precision and efficiency, compared to transport measurements where sample contacts must be defined and applied in multiple processing steps.

  4. Fabrication of multilayered conductive polymer structures via selective visible light photopolymerization

    NASA Astrophysics Data System (ADS)

    Cullen, Andrew T.; Price, Aaron D.

    2017-04-01

    Electropolymerization of pyrrole is commonly employed to fabricate intrinsically conductive polymer films that exhibit desirable electromechanical properties. Due to their monolithic nature, electroactive polypyrrole films produced via this process are typically limited to simple linear or bending actuation modes, which has hindered their application in complex actuation tasks. This initiative aims to develop the specialized fabrication methods and polymer formulations required to realize three-dimensional conductive polymer structures capable of more elaborate actuation modes. Our group has previously reported the application of the digital light processing additive manufacturing process for the fabrication of three-dimensional conductive polymer structures using ultraviolet radiation. In this investigation, we further expand upon this initial work and present an improved polymer formulation designed for digital light processing additive manufacturing using visible light. This technology enables the design of novel electroactive polymer sensors and actuators with enhanced capabilities and brings us one step closer to realizing more advanced electroactive polymer enabled devices.

  5. Acoustic emission signatures of damage modes in concrete

    NASA Astrophysics Data System (ADS)

    Aggelis, D. G.; Mpalaskas, A. C.; Matikas, T. E.; Van Hemelrijck, D.

    2014-03-01

    The characterization of the dominant fracture mode may assist in the prediction of the remaining life of a concrete structure due to the sequence between successive tensile and shear mechanisms. Acoustic emission sensors record the elastic responses after any fracture event converting them into electric waveforms. The characteristics of the waveforms vary according to the movement of the crack tips, enabling characterization of the original mode. In this study fracture experiments on concrete beams are conducted. The aim is to examine the typical acoustic signals emitted by different fracture modes (namely tension due to bending and shear) in a concrete matrix. This is an advancement of a recent study focusing on smaller scale mortar and marble specimens. The dominant stress field and ultimate fracture mode is controlled by modification of the four-point bending setup while acoustic emission is monitored by six sensors at fixed locations. Conclusions about how to distinguish the sources based on waveform parameters of time domain (duration, rise time) and frequency are drawn. Specifically, emissions during the shear loading exhibit lower frequencies and longer duration than tensile. Results show that, combination of AE features may help to characterize the shift between dominant fracture modes and contribute to the structural health monitoring of concrete. This offers the basis for in-situ application provided that the distortion of the signal due to heterogeneous wave path is accounted for.

  6. 32 CFR 202.9 - Conducting RAB meetings.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 32 National Defense 2 2014-07-01 2014-07-01 false Conducting RAB meetings. 202.9 Section 202.9 National Defense Department of Defense (Continued) OFFICE OF THE SECRETARY OF DEFENSE (CONTINUED... Administrative Record. (2) The records, reports, minutes, appendixes, working papers, drafts, studies, agenda, or...

  7. 32 CFR 202.9 - Conducting RAB meetings.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 32 National Defense 2 2012-07-01 2012-07-01 false Conducting RAB meetings. 202.9 Section 202.9 National Defense Department of Defense (Continued) OFFICE OF THE SECRETARY OF DEFENSE (CONTINUED... Administrative Record. (2) The records, reports, minutes, appendixes, working papers, drafts, studies, agenda, or...

  8. Implementation and flight-test of a multi-mode rotorcraft flight-control system for single-pilot use in poor visibility

    NASA Technical Reports Server (NTRS)

    Hindson, William S.

    1987-01-01

    A flight investigation was conducted to evaluate a multi-mode flight control system designed according to the most recent recommendations for handling qualities criteria for new military helicopters. The modes and capabilities that were included in the system are those considered necessary to permit divided-attention (single-pilot) lowspeed and hover operations near the ground in poor visibility conditions. Design features included mode-selection and mode-blending logic, the use of an automatic position-hold mode that employed precision measurements of aircraft position, and a hover display which permitted manually-controlled hover flight tasks in simulated instrument conditions. Pilot evaluations of the system were conducted using a multi-segment evaluation task. Pilot comments concerning the use of the system are provided, and flight-test data are presented to show system performance.

  9. [Application of participatory teaching mode in oral health education].

    PubMed

    Ci, Xiang-ke; Zhao, Yu-hong; Wan, Li; Xiong, Wei; Wang, Yu-jiang; Ou, Xiao-yan

    2013-06-01

    To apply participatory teaching mode in oral health education, and to assess its role in cultivating comprehensive stomatological professionals suitable for the development of modern medicine. Sixty undergraduate students from grade 2005 in Stomatological College of Nanchang University were selected. Among those students, oral health education course was carried out by traditional teaching mode, while 120 undergraduate students from grades 2006 to 2007 received participatory teaching approach, which paid attention to practice in oral health education practice course. After the course, a survey and evaluation of teaching effectiveness was conducted. Questionnaire survey showed that participatory teaching mode could significantly improve the students' capabilities and provide much more help to their study. Application of participatory teaching mode in oral health education course for undergraduates is feasible. It can improve students' comprehensive ability and cultivate their cultural literacy and scientific literacy. It also meets the training goal of stomatological professionals and the development trend of education reform. Supported by Higher School Teaching Reform Research Subject of Jiangxi Province(JXJG-10-1-42).

  10. 40 CFR 792.130 - Conduct of a study.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 31 2010-07-01 2010-07-01 true Conduct of a study. 792.130 Section 792... (CONTINUED) GOOD LABORATORY PRACTICE STANDARDS Protocol for and Conduct of A Study § 792.130 Conduct of a study. (a) The study shall be conducted in accordance with the protocol. (b) The test systems shall be...

  11. Isochoric thermal conductivity of solid n-alkanes: Hexane C6H14

    NASA Astrophysics Data System (ADS)

    Konstantinov, V. A.; Revyakin, V. P.; Sagan, V. V.

    2011-05-01

    The isochoric thermal conductivity of solid n-hexane C6H14 is studied using three samples with different densities for temperatures ranging from 100 K to the onset of melting. In all cases, the isochoric thermal conductivity varies more weakly than Λ∝1/T. The present results are compared with the thermal conductivities of other representatives of the n-alkanes. The contributions of low-frequency phonons and "diffuse modes" to the thermal conductivity are calculated.

  12. Thermal conductivity of disordered two-dimensional binary alloys.

    PubMed

    Zhou, Yang; Guo, Zhi-Xin; Cao, Hai-Yuan; Chen, Shi-You; Xiang, Hong-Jun; Gong, Xin-Gao

    2016-10-20

    Using non-equilibrium molecular dynamics simulations, we have studied the effect of disorder on the thermal conductivity of two-dimensional (2D) C 1-x N x alloys. We find that the thermal conductivity not only depends on the substitution concentration of nitrogen, but also strongly depends on the disorder distribution. A general linear relationship is revealed between the thermal conductivity and the participation ratio of phonons in 2D alloys. Localization mode analysis further indicates that the thermal conductivity variation in the ordered alloys can be attributed to the number of inequivalent atoms. As for the disordered alloys, we find that the thermal conductivity variation can be described by a simple linear formula with the disorder degree and the substitution concentration. The present study suggests some general guidance for phonon manipulation and thermal engineering in low dimensional alloys.

  13. Fabrication of a saturable absorber WS2 and its mode locking in solid-state laser

    NASA Astrophysics Data System (ADS)

    Zhang, Chun-Yu; Zhang, Ling; Tang, Xiao-Ying; Yang, Ying-Ying

    2018-04-01

    We report on a passively mode-locked Nd : LuVO4 laser using a type saturable absorber of tungsten disulfide (WS2) fabricated by chemical vapor deposition method. At the pump power of 3.3 W, 1.18-W average output power of continuous-wave mode-locked laser with optical conversion efficiency of 36% was achieved. To the best of our knowledge, this is the highest output power of passively mode-locked solid-state laser based on WS2. The repetition rate of passively mode-locked pulse was 80 MHz with the pulse energy of 14.8 nJ. Our experimental results show that WS2 is an excellent type of saturable absorber.

  14. Designing perfect linear polarization converters using perfect electric and magnetic conducting surfaces

    PubMed Central

    Zhou, Gaochao; Tao, Xudong; Shen, Ze; Zhu, Guanghao; Jin, Biaobing; Kang, Lin; Xu, Weiwei; Chen, Jian; Wu, Peiheng

    2016-01-01

    We propose a kind of general framework for the design of a perfect linear polarization converter that works in the transmission mode. Using an intuitive picture that is based on the method of bi-directional polarization mode decomposition, it is shown that when the device under consideration simultaneously possesses two complementary symmetry planes, with one being equivalent to a perfect electric conducting surface and the other being equivalent to a perfect magnetic conducting surface, linear polarization conversion can occur with an efficiency of 100% in the absence of absorptive losses. The proposed framework is validated by two design examples that operate near 10 GHz, where the numerical, experimental and analytic results are in good agreements. PMID:27958313

  15. Mode-locked Ti:sapphire laser oscillators pumped by wavelength-multiplexed laser diodes

    NASA Astrophysics Data System (ADS)

    Sugiyama, Naoto; Tanaka, Hiroki; Kannari, Fumihiko

    2018-05-01

    We directly pumped a Ti:sapphire laser by combining 478 and 520 nm laser diodes to prevent the effect of absorption loss induced by the pump laser of shorter wavelengths (∼450 nm). We obtain a continuous-wave output power of 660 mW at a total incident pump power of 3.15 W. We demonstrate mode locking using a semiconductor saturable absorber mirror, and 126 fs pulses were obtained at a repetition rate of 192 MHz. At the maximum pump power, the average output power is 315 mW. Shorter mode-locked pulses of 42 and 48 fs were respectively achieved by Kerr-lens mode locking with average output powers of 280 and 360 mW at a repetition rate of 117 MHz.

  16. Electrical model of dielectric barrier discharge homogenous and filamentary modes

    NASA Astrophysics Data System (ADS)

    López-Fernandez, J. A.; Peña-Eguiluz, R.; López-Callejas, R.; Mercado-Cabrera, A.; Valencia-Alvarado, R.; Muñoz-Castro, A.; Rodríguez-Méndez, B. G.

    2017-01-01

    This work proposes an electrical model that combines homogeneous and filamentary modes of an atmospheric pressure dielectric barrier discharge cell. A voltage controlled electric current source has been utilized to implement the power law equation that represents the homogeneous discharge mode, which starts when the gas breakdown voltage is reached. The filamentary mode implies the emergence of electric current conducting channels (microdischarges), to add this phenomenon an RC circuit commutated by an ideal switch has been proposed. The switch activation occurs at a higher voltage level than the gas breakdown voltage because it is necessary to impose a huge electric field that contributes to the appearance of streamers. The model allows the estimation of several electric parameters inside the reactor that cannot be measured. Also, it is possible to appreciate the modes of the DBD depending on the applied voltage magnitude. Finally, it has been recognized a good agreement between simulation outcomes and experimental results.

  17. High-Q lattice mode matched structural resonances in terahertz metasurfaces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Ningning; Zhang, Weili, E-mail: weili.zhang@okstate.edu; Singh, Ranjan, E-mail: ranjans@ntu.edu.sg

    2016-07-11

    The quality (Q) factor of metamaterial resonances is limited by the radiative and non-radiative losses. At terahertz frequencies, the dominant loss channel is radiative in nature since the non-radiative losses are low due to high conductivity of metals. Radiative losses could be suppressed by engineering the meta-atom structure. However, such suppression usually occurs at the fundamental resonance mode which is typically a closed mode resonance such as an inductive-capacitive resonance or a Fano resonance. Here, we report an order of magnitude enhancement in Q factor of all the structural eigenresonances of a split-ring resonator fueled by the lattice mode matching.more » We match the fundamental order diffractive mode to each of the odd and even eigenresonances, thus leading to a tremendous line-narrowing of all the resonances. Such precise tailoring and control of the structural resonances in a metasurface lattice could have potential applications in low-loss devices, sensing, and design of high-Q metamaterial cavities.« less

  18. Continuous-wave and quasi-continuous wave thulium-doped all-fiber laser: implementation on kidney stone fragmentations.

    PubMed

    Pal, Debasis; Ghosh, Aditi; Sen, Ranjan; Pal, Atasi

    2016-08-10

    A continuous-wave (CW) as well as quasi-continuous wave (QCW) thulium-doped all-fiber laser at 1.94 μm has been designed for targeting applications in urology. The thulium-doped active fiber with an octagonal-shaped inner cladding is pumped at 793 nm to achieve stable CW laser power of 10 W with 32% lasing efficiency (against launched pump power). The linear variation of laser power with pump offers a scope of further power scaling. A QCW operation with variation of duty cycle from 0.5% to 90%, repetition rate from 0.1 Hz to 1 kHz, and pulse width from 40 μs to 2 s has been presented. Laser power of 9.5 W in CW mode of operation and average power of 5.2 W with energy range of 10.4-104 mJ in QCW mode of operation has been employed to fragment calcium oxalate monohydrate kidney stones (size of 1.5-4 cm) having different colors and composition. Dependence of ablation threshold, ablation rate, and average fragmented particle size on the average power and energy has been studied. One minute of laser exposure results in fragmentation of a stone surface with ablation rate of 8  mg/min having minimum particle size of 6.54 μm with an average size of 20-100 μm ensuring the natural removal of fragmented parts through the urethra.

  19. Cooling system for continuous metal casting machines

    DOEpatents

    Draper, Robert; Sumpman, Wayne C.; Baker, Robert J.; Williams, Robert S.

    1988-01-01

    A continuous metal caster cooling system is provided in which water is supplied in jets from a large number of small nozzles 19 against the inner surface of rim 13 at a temperature and with sufficient pressure that the velocity of the jets is sufficiently high that the mode of heat transfer is substantially by forced convection, the liquid being returned from the cooling chambers 30 through return pipes 25 distributed interstitially among the nozzles.

  20. Cooling system for continuous metal casting machines

    DOEpatents

    Draper, R.; Sumpman, W.C.; Baker, R.J.; Williams, R.S.

    1988-06-07

    A continuous metal caster cooling system is provided in which water is supplied in jets from a large number of small nozzles against the inner surface of rim at a temperature and with sufficient pressure that the velocity of the jets is sufficiently high that the mode of heat transfer is substantially by forced convection, the liquid being returned from the cooling chambers through return pipes distributed interstitially among the nozzles. 9 figs.

  1. Effect of conductivity and concentration on the sample stream in the transverse axis of a continuous flow electrophoresis chamber

    NASA Technical Reports Server (NTRS)

    Miller, Teresa Y.; Williams, George O.; Snyder, Robert S.

    1985-01-01

    The resolution of continuous flow electrophoresis systems is generally measured by the spread of the sample bands in the direction of the electrophoretic migration. This paper evaluates the cross section of the sample bands in the plane perpendicular to the flow and shows that the spread in the direction perpendicular to the migration increased significantly with the applied electric field. Concentrated samples of monodisperse latex particles and vinyltoluene T-butylstyrene particles in sample buffers of different electrical conductivities were used to map the shape of the sample bands relative to the zero electric field case. As the electric field was applied, the sample band spread from an initial diameter of only one-third the chamber thickness until it approached the chamber walls where electroosmosis significantly reduced the resolution of separation. It can be shown, however, that it is possible to minimize these distortions by careful sample preparation and experiment design.

  2. Safety Management of a Clinical Process Using Failure Mode and Effect Analysis: Continuous Renal Replacement Therapies in Intensive Care Unit Patients.

    PubMed

    Sanchez-Izquierdo-Riera, Jose Angel; Molano-Alvarez, Esteban; Saez-de la Fuente, Ignacio; Maynar-Moliner, Javier; Marín-Mateos, Helena; Chacón-Alves, Silvia

    2016-01-01

    The failure mode and effect analysis (FMEA) may improve the safety of the continuous renal replacement therapies (CRRT) in the intensive care unit. We use this tool in three phases: 1) Retrospective observational study. 2) A process FMEA, with implementation of the improvement measures identified. 3) Cohort study after FMEA. We included 54 patients in the pre-FMEA group and 72 patients in the post-FMEA group. Comparing the risks frequencies per patient in both groups, we got less cases of under 24 hours of filter survival time in the post-FMEA group (31 patients 57.4% vs. 21 patients 29.6%; p < 0.05); less patients suffered circuit coagulation with inability to return the blood to the patient (25 patients [46.3%] vs. 16 patients [22.2%]; p < 0.05); 54 patients (100%) versus 5 (6.94%) did not get phosphorus levels monitoring (p < 0.05); in 14 patients (25.9%) versus 0 (0%), the CRRT prescription did not appear on medical orders. As a measure of improvement, we adopt a dynamic dosage management. After the process FMEA, there were several improvements in the management of intensive care unit patients receiving CRRT, and we consider it a useful tool for improving the safety of critically ill patients.

  3. High single-spatial-mode pulsed power from 980 nm emitting diode lasers

    NASA Astrophysics Data System (ADS)

    Hempel, Martin; Tomm, Jens W.; Elsaesser, Thomas; Bettiati, Mauro

    2012-11-01

    Single-spatial-mode pulsed powers as high as 13 W and 20 W in 150 and 50 ns pulses, respectively, are reported for 980 nm emitting lasers. In terms of energy, single-spatial-mode values of up to 2 μJ within 150 ns pulses are shown. In this high-power pulsed operation, the devices shield themselves from facet degradation, being the main degradation source in continuous wave (cw) operation. Our results pave the way towards additional applications while employing available standard devices, which have originally been designed as very reliable cw fiber pumps.

  4. Edge-localized mode avoidance and pedestal structure in I-mode plasmasa)

    NASA Astrophysics Data System (ADS)

    Walk, J. R.; Hughes, J. W.; Hubbard, A. E.; Terry, J. L.; Whyte, D. G.; White, A. E.; Baek, S. G.; Reinke, M. L.; Theiler, C.; Churchill, R. M.; Rice, J. E.; Snyder, P. B.; Osborne, T.; Dominguez, A.; Cziegler, I.

    2014-05-01

    I-mode is a high-performance tokamak regime characterized by the formation of a temperature pedestal and enhanced energy confinement, without an accompanying density pedestal or drop in particle and impurity transport. I-mode operation appears to have naturally occurring suppression of large Edge-Localized Modes (ELMs) in addition to its highly favorable scalings of pedestal structure and overall performance. Extensive study of the ELMy H-mode has led to the development of the EPED model, which utilizes calculations of coupled peeling-ballooning MHD modes and kinetic-ballooning mode (KBM) stability limits to predict the pedestal structure preceding an ELM crash. We apply similar tools to the structure and ELM stability of I-mode pedestals. Analysis of I-mode discharges prepared with high-resolution pedestal data from the most recent C-Mod campaign reveals favorable pedestal scalings for extrapolation to large machines—pedestal temperature scales strongly with power per particle Pnet/n ¯e, and likewise pedestal pressure scales as the net heating power (consistent with weak degradation of confinement with heating power). Matched discharges in current, field, and shaping demonstrate the decoupling of energy and particle transport in I-mode, increasing fueling to span nearly a factor of two in density while maintaining matched temperature pedestals with consistent levels of Pnet/n ¯e. This is consistent with targets for increased performance in I-mode, elevating pedestal βp and global performance with matched increases in density and heating power. MHD calculations using the ELITE code indicate that I-mode pedestals are strongly stable to edge peeling-ballooning instabilities. Likewise, numerical modeling of the KBM turbulence onset, as well as scalings of the pedestal width with poloidal beta, indicates that I-mode pedestals are not limited by KBM turbulence—both features identified with the trigger for large ELMs, consistent with the observed suppression of

  5. 7 CFR 900.303 - Conduct of referendum.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... Conduct of Referenda To Determine Producer Approval of Milk Marketing Orders To Be Made Effective Pursuant to Agricultural Marketing Agreement Act of 1937, as Amended § 900.303 Conduct of referendum. The... Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Marketing...

  6. 21 CFR 868.5120 - Anesthesia conduction catheter.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Anesthesia conduction catheter. 868.5120 Section 868.5120 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Therapeutic Devices § 868.5120 Anesthesia conduction...

  7. 21 CFR 868.5120 - Anesthesia conduction catheter.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Anesthesia conduction catheter. 868.5120 Section 868.5120 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Therapeutic Devices § 868.5120 Anesthesia conduction...

  8. 47 CFR 22.921 - 911 call processing procedures; 911-only calling mode.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 47 Telecommunication 2 2014-10-01 2014-10-01 false 911 call processing procedures; 911-only calling mode. 22.921 Section 22.921 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) COMMON CARRIER SERVICES PUBLIC MOBILE SERVICES Cellular Radiotelephone Service § 22.921 911 call processing...

  9. 47 CFR 22.921 - 911 call processing procedures; 911-only calling mode.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 47 Telecommunication 2 2013-10-01 2013-10-01 false 911 call processing procedures; 911-only calling mode. 22.921 Section 22.921 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) COMMON CARRIER SERVICES PUBLIC MOBILE SERVICES Cellular Radiotelephone Service § 22.921 911 call processing...

  10. Mediation Analysis of Mode Deactivation Therapy (Reanalysis and Interpretation)

    ERIC Educational Resources Information Center

    Bass, Christopher K.; Apsche, Jack A.

    2013-01-01

    A key component of Mode Deactivation Therapy (MDT) is the development of self-awareness and regulatory skills by the client with the aim of helping adolescent males with conduct disordered behaviors, including sexually inappropriate behaviors and emotional dysregulation. The goal includes altering specific behaviors to fall within socially…

  11. Flexible Modes Control Using Sliding Mode Observers: Application to Ares I

    NASA Technical Reports Server (NTRS)

    Shtessel, Yuri B.; Hall, Charles E.; Baev, Simon; Orr, Jeb S.

    2010-01-01

    The launch vehicle dynamics affected by bending and sloshing modes are considered. Attitude measurement data that are corrupted by flexible modes could yield instability of the vehicle dynamics. Flexible body and sloshing modes are reconstructed by sliding mode observers. The resultant estimates are used to remove the undesirable dynamics from the measurements, and the direct effects of sloshing and bending modes on the launch vehicle are compensated by means of a controller that is designed without taking the bending and sloshing modes into account. A linearized mathematical model of Ares I launch vehicle was derived based on FRACTAL, a linear model developed by NASA/MSFC. The compensated vehicle dynamics with a simple PID controller were studied for the launch vehicle model that included two bending modes, two slosh modes and actuator dynamics. A simulation study demonstrated stable and accurate performance of the flight control system with the augmented simple PID controller without the use of traditional linear bending filters.

  12. Mode II Interlaminar Fracture Toughness and Fatigue Characterization of a Graphite Epoxy Composite Material

    NASA Technical Reports Server (NTRS)

    O'Brien, T. Kevin; Johnston, William M.; Toland, Gregory J.

    2010-01-01

    Mode II interlaminar fracture toughness and delamination onset and growth characterization data were generated for IM7/8552 graphite epoxy composite materials from two suppliers for use in fracture mechanics analyses. Both the fracture toughness testing and the fatigue testing were conducted using the End-notched Flexure (ENF) test. The ENF test for mode II fracture toughness is currently under review by ASTM as a potential standard test method. This current draft ASTM protocol was used as a guide to conduct the tests on the IM7/8552 material. This report summarizes the test approach, methods, procedures and results of this characterization effort.

  13. A Comparative Study on the Practice of Continuous Assessment between Addis Ababa and Unity Universities

    ERIC Educational Resources Information Center

    Zeleke, Aytaged Sisay

    2013-01-01

    This paper aims to explore the practice of continuous assessment at Unity University College and Addis Ababa University. It has also investigated constraints instructors say they have been facing in implementing continuous assessment. Students' attitudes about the practice of this assessment mode towards their course achievements were explored.…

  14. Using Dentistry as a Case Study to Examine Continuing Education and Its Impact on Practice

    ERIC Educational Resources Information Center

    Bullock, Alison; Firmstone, Vickie; Frame, John; Thomas, Hywel

    2010-01-01

    Continuing education is a defining characteristic of work in the professions. Yet the approach various professional groups take to continuing professional development (CPD) differs widely in terms of regulatory frameworks and requirements, modes of delivery and funding. Importantly, little is understood about how CPD impacts on practice. This…

  15. Thermal conductance of suspended nanoribbons: interplay between strain and interatomic potential nonlinearity

    NASA Astrophysics Data System (ADS)

    Barreto, Roberto; Florencia Carusela, M.; Monastra, Alejandro G.

    2017-10-01

    We investigate the role that nonlinearity in the interatomic potential has on the thermal conductance of a suspended nanoribbon when it is subjected to a longitudinal strain. To focus on the first cubic and quartic nonlinear terms of a general potential, we propose an atomic system based on an α-β Fermi-Pasta-Ulam nearest neighbor interaction. We perform classical molecular dynamics simulations to investigate the contribution of longitudinal, transversal and flexural modes to the thermal conductance as a function of the α-β parameters and the applied strain. We compare the cases where atoms are allowed to vibrate only in plane (2D) with the case of vibrations in and out of plane (3D). We find that the dependence of conductance on α and β relies on a crossover phenomenon between linear/nonlinear delocalized/localized flexural and transversal modes, driven by an on/off switch of the strain.

  16. Third-order optical conductivity of an electron fluid

    NASA Astrophysics Data System (ADS)

    Sun, Zhiyuan; Basov, D. N.; Fogler, M. M.

    2018-02-01

    We derive the nonlinear optical conductivity of an isotropic electron fluid at frequencies below the interparticle collision rate. In this regime, governed by hydrodynamics, the conductivity acquires a universal form at any temperature, chemical potential, and spatial dimension. We show that the nonlinear response of the fluid to a uniform field is dominated by the third-order conductivity tensor σ(3 ) whose magnitude and temperature dependence differ qualitatively from those in the conventional kinetic regime of higher frequencies. We obtain explicit formulas for σ(3 ) for Dirac materials such as graphene and Weyl semimetals. We make predictions for the third-harmonic generation, renormalization of the collective-mode spectrum, and the third-order circular magnetic birefringence experiments.

  17. Mode division multiplexing using an orbital angular momentum mode sorter and MIMO-DSP over a graded-index few-mode optical fibre

    PubMed Central

    Huang, Hao; Milione, Giovanni; Lavery, Martin P. J.; Xie, Guodong; Ren, Yongxiong; Cao, Yinwen; Ahmed, Nisar; An Nguyen, Thien; Nolan, Daniel A.; Li, Ming-Jun; Tur, Moshe; Alfano, Robert R.; Willner, Alan E.

    2015-01-01

    Mode division multiplexing (MDM)– using a multimode optical fiber’s N spatial modes as data channels to transmit N independent data streams – has received interest as it can potentially increase optical fiber data transmission capacity N-times with respect to single mode optical fibers. Two challenges of MDM are (1) designing mode (de)multiplexers with high mode selectivity (2) designing mode (de)multiplexers without cascaded beam splitting’s 1/N insertion loss. One spatial mode basis that has received interest is that of orbital angular momentum (OAM) modes. In this paper, using a device referred to as an OAM mode sorter, we show that OAM modes can be (de)multiplexed over a multimode optical fiber with higher than −15 dB mode selectivity and without cascaded beam splitting’s 1/N insertion loss. As a proof of concept, the OAM modes of the LP11 mode group (OAM−1,0 and OAM+1,0), each carrying 20-Gbit/s polarization division multiplexed and quadrature phase shift keyed data streams, are transmitted 5km over a graded-index, few-mode optical fibre. Channel crosstalk is mitigated using 4 × 4 multiple-input-multiple-output digital-signal-processing with <1.5 dB power penalties at a bit-error-rate of 2 × 10−3. PMID:26450398

  18. Mode division multiplexing using an orbital angular momentum mode sorter and MIMO-DSP over a graded-index few-mode optical fibre.

    PubMed

    Huang, Hao; Milione, Giovanni; Lavery, Martin P J; Xie, Guodong; Ren, Yongxiong; Cao, Yinwen; Ahmed, Nisar; An Nguyen, Thien; Nolan, Daniel A; Li, Ming-Jun; Tur, Moshe; Alfano, Robert R; Willner, Alan E

    2015-10-09

    Mode division multiplexing (MDM)- using a multimode optical fiber's N spatial modes as data channels to transmit N independent data streams - has received interest as it can potentially increase optical fiber data transmission capacity N-times with respect to single mode optical fibers. Two challenges of MDM are (1) designing mode (de)multiplexers with high mode selectivity (2) designing mode (de)multiplexers without cascaded beam splitting's 1/N insertion loss. One spatial mode basis that has received interest is that of orbital angular momentum (OAM) modes. In this paper, using a device referred to as an OAM mode sorter, we show that OAM modes can be (de)multiplexed over a multimode optical fiber with higher than -15 dB mode selectivity and without cascaded beam splitting's 1/N insertion loss. As a proof of concept, the OAM modes of the LP11 mode group (OAM-1,0 and OAM+1,0), each carrying 20-Gbit/s polarization division multiplexed and quadrature phase shift keyed data streams, are transmitted 5km over a graded-index, few-mode optical fibre. Channel crosstalk is mitigated using 4 × 4 multiple-input-multiple-output digital-signal-processing with <1.5 dB power penalties at a bit-error-rate of 2 × 10(-3).

  19. Mode division multiplexing using an orbital angular momentum mode sorter and MIMO-DSP over a graded-index few-mode optical fibre

    NASA Astrophysics Data System (ADS)

    Huang, Hao; Milione, Giovanni; Lavery, Martin P. J.; Xie, Guodong; Ren, Yongxiong; Cao, Yinwen; Ahmed, Nisar; An Nguyen, Thien; Nolan, Daniel A.; Li, Ming-Jun; Tur, Moshe; Alfano, Robert R.; Willner, Alan E.

    2015-10-01

    Mode division multiplexing (MDM)- using a multimode optical fiber’s N spatial modes as data channels to transmit N independent data streams - has received interest as it can potentially increase optical fiber data transmission capacity N-times with respect to single mode optical fibers. Two challenges of MDM are (1) designing mode (de)multiplexers with high mode selectivity (2) designing mode (de)multiplexers without cascaded beam splitting’s 1/N insertion loss. One spatial mode basis that has received interest is that of orbital angular momentum (OAM) modes. In this paper, using a device referred to as an OAM mode sorter, we show that OAM modes can be (de)multiplexed over a multimode optical fiber with higher than -15 dB mode selectivity and without cascaded beam splitting’s 1/N insertion loss. As a proof of concept, the OAM modes of the LP11 mode group (OAM-1,0 and OAM+1,0), each carrying 20-Gbit/s polarization division multiplexed and quadrature phase shift keyed data streams, are transmitted 5km over a graded-index, few-mode optical fibre. Channel crosstalk is mitigated using 4 × 4 multiple-input-multiple-output digital-signal-processing with <1.5 dB power penalties at a bit-error-rate of 2 × 10-3.

  20. Recent progress in continuous and semi-continuous processing of solid oral dosage forms: a review.

    PubMed

    Teżyk, Michał; Milanowski, Bartłomiej; Ernst, Andrzej; Lulek, Janina

    2016-08-01

    continuous materials flow through the whole manufacturing process and the development of new computational methods to assess or simulate these new manufacturing techniques. The attempt to connect the primary and secondary production steps proves that development of continuously operating lines is possible. A mind-set change is needed to be able to face, and fully assess, the advantages and disadvantages of switching from batch to continuous mode production.

  1. Picosecond passively mode-locked mid-infrared fiber laser

    NASA Astrophysics Data System (ADS)

    Wei, C.; Zhu, X.; Norwood, R. A.; Kieu, K.; Peyghambarian, N.

    2013-02-01

    Mode-locked mid-infrared (mid-IR) fiber lasers are of increasing interest due to their many potential applications in spectroscopic sensors, infrared countermeasures, laser surgery, and high-efficiency pump sources for nonlinear wavelength convertors. Er3+-doped ZBLAN (ZrF4-BaF2-LaF3-AlF3-NaF) fiber lasers, which can emit mid-IR light at 2.65-2.9 μm through the transition from the upper energy level 4I11/2 to the lower laser level 4I13/2, have attracted much attention because of their broad emission range, high optical efficiency, and the ready availability of diode pump lasers at the two absorption peaks of Er3+ ions (975 nm and 976 nm). In recent years, significant progress on high power Er3+- doped ZBLAN fiber lasers has been achieved and over 20 watt cw output at 2.8 μm has been demonstrated; however, there has been little progress on ultrafast mid-IR ZBLAN fiber lasers to date. We report a passively mode-locked Er3+- doped ZBLAN fiber laser in which a Fe2+:ZnSe crystal was used as the intracavity saturable absorber. Fe2+:ZnSe is an ideal material for mid-IR laser pulse generation because of its large saturable absorption cross-section and small saturation energy along with the excellent opto-mechanical (damage threshold ~2 J/cm2) and physical characteristics of the crystalline ZnSe host. A 1.6 m double-clad 8 mol% Er3+-doped ZBLAN fiber was used in our experiment. The fiber core has a diameter of 15 μm and a numerical aperture (NA) of 0.1. The inner circular cladding has a diameter of 125 μm and an NA of 0.5. Both continuous-wave and Q-switched mode-locking pulses at 2.8 μm were obtained. Continuous-wave mode locking operation with a pulse duration of 19 ps and an average power of 51 mW were achieved when a collimated beam traversed the Fe2+:ZnSe crystal. When the cavity was modified to provide a focused beam at the Fe2+:ZnSe crystal, Q-switched mode-locked operation with a pulse duration of 60 ps and an average power of 4.6 mW was achieved. More powerful

  2. Optimization of passively mode-locked Nd:GdVO4 laser with the selectable pulse duration 15-70 ps

    NASA Astrophysics Data System (ADS)

    Frank, Milan; Jelínek, Michal; Vyhlídal, David; Kubeček, Václav

    2016-12-01

    In this paper the optimization of a continuously diode-pumped Nd:GdVO4 laser oscillator in bounce geometry passively mode-locked using semiconductor saturable absorber mirror is presented. In the previous results the Nd:GdVO4 laser system generating 30 ps pulses with the average output power of 6.9 W at the repetition rate of 200 MHz at the wavelength of 1063 nm was reported. Now we are demonstrating up to three times increase of peak power due to the optimization of mode-matching in the laser resonator. Depending on the oscillator configuration we obtained the stable continuously mode-locked operation with pulses having selectable duration from 15 ps to 70 ps with the average output power of 7 W and the repetition rate of 150 MHz.

  3. Mode identification from spectroscopy of gravity-mode pulsators

    NASA Astrophysics Data System (ADS)

    Pollard, K. R.; Brunsden, E.; Cottrell, P. L.; Davie, M.; Greenwood, A.; Wright, D. J.; De Cat, P.

    2014-02-01

    The gravity modes present in γ Doradus stars probe the deep stellar interiors and are thus of particular interest in asteroseismology. For the MUSICIAN programme at the University of Canterbury, we obtain extensive high-resolution echelle spectra of γ Dor stars from the Mt John University Observatory in New Zealand. We analyze these to obtain the pulsational frequencies and identify these with the multiple pulsational modes excited in the star. A summary of recent results from our spectroscopic mode-identification programme is given.

  4. 42 CFR 431.713 - Continuing study and investigation.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... Programs for Licensing Nursing Home Administrators § 431.713 Continuing study and investigation. The agency or board must conduct a continuing study of nursing homes and administrators within the State to...

  5. Effects of lithium insertion on thermal conductivity of silicon nanowires

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Wen; Institute of High Performance Computing, A*STAR, Singapore, Singapore 138632; Zhang, Gang, E-mail: zhangg@ihpc.a-star.edu.sg

    2015-04-27

    Recently, silicon nanowires (SiNWs) have been applied as high-performance Li battery anodes, since they can overcome the pulverization and mechanical fracture during lithiation. Although thermal stability is one of the most important parameters that determine safety of Li batteries, thermal conductivity of SiNWs with Li insertion remains unclear. In this letter, using molecular dynamics simulations, we study room temperature thermal conductivity of SiNWs with Li insertion. It is found that compared with the pristine SiNW, there is as much as 60% reduction in thermal conductivity with 10% concentration of inserted Li atoms, while under the same impurity concentration the reductionmore » in thermal conductivity of the mass-disordered SiNW is only 30%. With lattice dynamics calculations and normal mode decomposition, it is revealed that the phonon lifetimes in SiNWs decrease greatly due to strong scattering of phonons by vibrational modes of Li atoms, especially for those high frequency phonons. The observed strong phonon scattering phenomenon in Li-inserted SiNWs is similar to the phonon rattling effect. Our study serves as an exploration of thermal properties of SiNWs as Li battery anodes or weakly coupled with impurity atoms.« less

  6. 21 CFR 868.5140 - Anesthesia conduction kit.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Anesthesia conduction kit. 868.5140 Section 868.5140 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Therapeutic Devices § 868.5140 Anesthesia conduction kit. (a...

  7. 21 CFR 868.5150 - Anesthesia conduction needle.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Anesthesia conduction needle. 868.5150 Section 868.5150 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Therapeutic Devices § 868.5150 Anesthesia conduction needle. (a...

  8. 21 CFR 868.5140 - Anesthesia conduction kit.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Anesthesia conduction kit. 868.5140 Section 868.5140 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Therapeutic Devices § 868.5140 Anesthesia conduction kit. (a...

  9. 21 CFR 868.5150 - Anesthesia conduction needle.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Anesthesia conduction needle. 868.5150 Section 868.5150 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Therapeutic Devices § 868.5150 Anesthesia conduction needle. (a...

  10. Gas release and conductivity modification studies

    NASA Technical Reports Server (NTRS)

    Linson, L. M.; Baxter, D. C.

    1979-01-01

    The behavior of gas clouds produced by releases from orbital velocity in either a point release or venting mode is described by the modification of snowplow equations valid in an intermediate altitude regime. Quantitative estimates are produced for the time dependence of the radius of the cloud, the average internal energy, the translational velocity, and the distance traveled. The dependence of these quantities on the assumed density profile, the internal energy of the gas, and the ratio of specific heats is examined. The new feature is the inclusion of the effect of the large orbital velocity. The resulting gas cloud models are used to calculate the characteristics of the field line integrated Pedersen conductivity enhancements that would be produced by the release of barium thermite at orbital velocity in either the point release or venting modes as a function of release altitude and chemical payload weight.

  11. 42 CFR 431.713 - Continuing study and investigation.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 42 Public Health 4 2011-10-01 2011-10-01 false Continuing study and investigation. 431.713 Section... Programs for Licensing Nursing Home Administrators § 431.713 Continuing study and investigation. The agency or board must conduct a continuing study of nursing homes and administrators within the State to...

  12. 42 CFR 431.713 - Continuing study and investigation.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 42 Public Health 4 2010-10-01 2010-10-01 false Continuing study and investigation. 431.713 Section... Programs for Licensing Nursing Home Administrators § 431.713 Continuing study and investigation. The agency or board must conduct a continuing study of nursing homes and administrators within the State to...

  13. Mixed-mode cyclic debonding of adhesively bonded composite joints. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Rezaizadeh, M. A.; Mall, S.

    1985-01-01

    A combined experimental-analytical investigation to characterize the cyclic failure mechanism of a simple composite-to-composite bonded joint is conducted. The cracked lap shear (CLS) specimens of graphite/epoxy adherend bonded with EC-3445 adhesive are tested under combined mode 1 and 2 loading. In all specimens tested, fatigue failure occurs in the form of cyclic debonding. The cyclic debond growth rates are measured. The finite element analysis is employed to compute the mode 1, mode 2, and total strain energy release rates (i.e., GI, GII, and GT). A wide range of mixed-mode loading, i.e., GI/GII ranging from 0.03 to 0.38, is obtained. The total strain energy release rate, G sub T, appeared to be the driving parameter for cyclic debonding in the tested composite bonded system.

  14. An electron beam linear scanning mode for industrial limited-angle nano-computed tomography.

    PubMed

    Wang, Chengxiang; Zeng, Li; Yu, Wei; Zhang, Lingli; Guo, Yumeng; Gong, Changcheng

    2018-01-01

    Nano-computed tomography (nano-CT), which utilizes X-rays to research the inner structure of some small objects and has been widely utilized in biomedical research, electronic technology, geology, material sciences, etc., is a high spatial resolution and non-destructive research technique. A traditional nano-CT scanning model with a very high mechanical precision and stability of object manipulator, which is difficult to reach when the scanned object is continuously rotated, is required for high resolution imaging. To reduce the scanning time and attain a stable and high resolution imaging in industrial non-destructive testing, we study an electron beam linear scanning mode of nano-CT system that can avoid mechanical vibration and object movement caused by the continuously rotated object. Furthermore, to further save the scanning time and study how small the scanning range could be considered with acceptable spatial resolution, an alternating iterative algorithm based on ℓ 0 minimization is utilized to limited-angle nano-CT reconstruction problem with the electron beam linear scanning mode. The experimental results confirm the feasibility of the electron beam linear scanning mode of nano-CT system.

  15. An electron beam linear scanning mode for industrial limited-angle nano-computed tomography

    NASA Astrophysics Data System (ADS)

    Wang, Chengxiang; Zeng, Li; Yu, Wei; Zhang, Lingli; Guo, Yumeng; Gong, Changcheng

    2018-01-01

    Nano-computed tomography (nano-CT), which utilizes X-rays to research the inner structure of some small objects and has been widely utilized in biomedical research, electronic technology, geology, material sciences, etc., is a high spatial resolution and non-destructive research technique. A traditional nano-CT scanning model with a very high mechanical precision and stability of object manipulator, which is difficult to reach when the scanned object is continuously rotated, is required for high resolution imaging. To reduce the scanning time and attain a stable and high resolution imaging in industrial non-destructive testing, we study an electron beam linear scanning mode of nano-CT system that can avoid mechanical vibration and object movement caused by the continuously rotated object. Furthermore, to further save the scanning time and study how small the scanning range could be considered with acceptable spatial resolution, an alternating iterative algorithm based on ℓ0 minimization is utilized to limited-angle nano-CT reconstruction problem with the electron beam linear scanning mode. The experimental results confirm the feasibility of the electron beam linear scanning mode of nano-CT system.

  16. Hybrid Electron Microscopy Normal Mode Analysis graphical interface and protocol.

    PubMed

    Sorzano, Carlos Oscar S; de la Rosa-Trevín, José Miguel; Tama, Florence; Jonić, Slavica

    2014-11-01

    This article presents an integral graphical interface to the Hybrid Electron Microscopy Normal Mode Analysis (HEMNMA) approach that was developed for capturing continuous motions of large macromolecular complexes from single-particle EM images. HEMNMA was shown to be a good approach to analyze multiple conformations of a macromolecular complex but it could not be widely used in the EM field due to a lack of an integral interface. In particular, its use required switching among different software sources as well as selecting modes for image analysis was difficult without the graphical interface. The graphical interface was thus developed to simplify the practical use of HEMNMA. It is implemented in the open-source software package Xmipp 3.1 (http://xmipp.cnb.csic.es) and only a small part of it relies on MATLAB that is accessible through the main interface. Such integration provides the user with an easy way to perform the analysis of macromolecular dynamics and forms a direct connection to the single-particle reconstruction process. A step-by-step HEMNMA protocol with the graphical interface is given in full details in Supplementary material. The graphical interface will be useful to experimentalists who are interested in studies of continuous conformational changes of macromolecular complexes beyond the modeling of continuous heterogeneity in single particle reconstruction. Copyright © 2014 Elsevier Inc. All rights reserved.

  17. Influence of heat transmission mode on heating rates and on the selection of patches for heating in a mediterranean lizard.

    PubMed

    Belliure, Josabel; Carrascal, Luis M

    2002-01-01

    Heliothermy (heat gain by radiation) has been given a prominent role in basking lizards. However, thigmothermy (heat gain by conduction) could be relevant for heating in small lizards. To ascertain the importance of the different heat transmission modes to the thermoregulatory processes, we conducted an experimental study where we analyzed the role of heat transmission modes on heating rates and on the selection of sites for heating in the Mediterranean lizard Acanthodactylus erythrurus (Lacertidae). The study was conducted under laboratory conditions, where two situations of different operative temperatures (38 degrees and 50 degrees C) were simulated in a terrarium. In a first experiment, individuals were allowed to heat up during 2 min at both temperatures and under both heat transmission modes. In a second experiment, individuals were allowed to select between patches differing in the main transmission mode, at both temperatures, to heat up. Experiences were conducted with live, nontethered lizards with a starting body temperature of 27 degrees C. Temperature had a significant effect on the heating rate, with heat gain per unit of time being faster at the higher operative temperature (50 degrees C). The effect of the mode of heat transmission on the heating rate was also significant: at 50 degrees C, heating rate was greater when the main heat transmission mode was conduction from the substrate (thigmothermy) than when heating was mainly due to heat gain by radiation (heliothermy); at 38 degrees C, heating rates did not significantly differ between transmission modes. At 38 degrees C, selection of the site for heating was not significantly different from that expected by chance. However, at 50 degrees C, the heating site offering the slowest heating rate (heliothermic patch) was selected. These results show that heating rates vary not only with environmental temperature but also with different predominant heat transmission modes. Lizards are able to identify

  18. Stabilizing windings for tilting and shifting modes

    DOEpatents

    Jardin, Stephen C.; Christensen, Uffe R.

    1984-01-01

    This invention relates to passive conducting loops for stabilizing a plasma ring against unstable tilting and/or shifting modes. To this end, for example, plasma ring in a spheromak is stabilized by a set of four figure-8 shaped loops having one pair on one side of the plasma and one pair on the other side with each pair comprising two loops whose axes are transverse to each other.

  19. Angular dispersion of oblique phonon modes in BiFeO3 from micro-Raman scattering

    NASA Astrophysics Data System (ADS)

    Hlinka, J.; Pokorny, J.; Karimi, S.; Reaney, I. M.

    2011-01-01

    The angular dispersion of oblique phonon modes in a multiferroic BiFeO3 has been obtained from a micro-Raman spectroscopic investigation of a coarse grain ceramic sample. Continuity of the measured angular dispersion curves allows conclusive identification of all pure zone-center polar modes. The method employed here to reconstruct the anisotropic crystal property from a large set of independent local measurements on a macroscopically isotropic ceramic sample profits from the considerable dispersion of the oblique modes in ferroelectric perovskites and it can be in principle conveniently applied to any other optically uniaxial ferroelectric material.

  20. Teleportation of a Kind of Three-Mode Entangled States of Continuous Variables

    NASA Astrophysics Data System (ADS)

    Fan, Hong-Yi; Liang, Xian-Ting

    2005-11-01

    A quantum teleportation scheme to teleport a kind of tripartite entangled states of continuous variables by using a quantum channel composed of three bipartite entangled states is proposed. The joint Bell measurement is feasible because the bipartite entangled states are complete and the squeezed state has a natural representation in the entangled state basis. The calculation is greatly simplified by using the Schmidt decomposition of the entangled states. The project supported by the President Funds of the Chinese Academy of Sciences and National Natural Science Foundation of China under Grant No. 10475056

  1. Damage Identification in Beam Structure using Spatial Continuous Wavelet Transform

    NASA Astrophysics Data System (ADS)

    Janeliukstis, R.; Rucevskis, S.; Wesolowski, M.; Kovalovs, A.; Chate, A.

    2015-11-01

    In this paper the applicability of spatial continuous wavelet transform (CWT) technique for damage identification in the beam structure is analyzed by application of different types of wavelet functions and scaling factors. The proposed method uses exclusively mode shape data from the damaged structure. To examine limitations of the method and to ascertain its sensitivity to noisy experimental data, several sets of simulated data are analyzed. Simulated test cases include numerical mode shapes corrupted by different levels of random noise as well as mode shapes with different number of measurement points used for wavelet transform. A broad comparison of ability of different wavelet functions to detect and locate damage in beam structure is given. Effectiveness and robustness of the proposed algorithms are demonstrated experimentally on two aluminum beams containing single mill-cut damage. The modal frequencies and the corresponding mode shapes are obtained via finite element models for numerical simulations and by using a scanning laser vibrometer with PZT actuator as vibration excitation source for the experimental study.

  2. Breadboard RL10-11B low thrust operating mode

    NASA Technical Reports Server (NTRS)

    Kmiec, Thomas D.; Galler, Donald E.

    1987-01-01

    Cryogenic space engines require a cooling process to condition engine hardware to operating temperature before start. This can be accomplished most efficiently by burning propellants that would otherwise be dumped overboard after cooling the engine. The resultant low thrust operating modes are called Tank Head Idle and Pumped Idle. During February 1984, Pratt & Whitney conducted a series of tests demonstrating operation of the RL10 rocket engines at low thrust levels using a previously untried hydrogen/oxygen heat exchanger. The initial testing of the RL10-11B Breadboard Low Thrust Engine is described. The testing demonstrated operation at both tank head idle and pumped idle modes.

  3. Interpretation of frequency sweeping of n=0 mode in JET

    NASA Astrophysics Data System (ADS)

    Berk, H. L.

    2006-04-01

    Persistent rapid up and down frequency chirping modes with a toroidal mode number of zero (n=0) are observed in the JET tokamak when energetic ions, in the range of several hundred keV, are created by high field side ion cyclotron resonance frequency heating. Fokker-Planck calculations demonstrate that the heating method enables the formation of an energetically inverted ion distribution which supplies the free energy for the ions to excite a global geodesic acoustic mode (GGAM). The large frequency shifts of this mode are attributed to the formation of phase space structures whose frequencies, which are locked to an ion orbit resonance frequency, are forced to continually shift so that energetic particle energy can be released to counterbalance the energy dissipation present in the background plasma. In collaboration with C.J. Boswell, MIT; D. Borba, A.C.A. Figueiredo, Center for Nuclear Fusion Association; T. Johnson, Alfven Laboratory, KTH; M.F.F. Nave, Center for Nuclear Fusion Association; S.D. Pinches, Max Planck Institute for Plasma Physics; S.E. Sharapov, UKEA Culham Science Centre; and T. Zhou, University of Texas at Austin.

  4. Edge-localized mode avoidance and pedestal structure in I-mode plasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Walk, J. R., E-mail: jrwalk@psfc.mit.edu; Hughes, J. W.; Hubbard, A. E.

    I-mode is a high-performance tokamak regime characterized by the formation of a temperature pedestal and enhanced energy confinement, without an accompanying density pedestal or drop in particle and impurity transport. I-mode operation appears to have naturally occurring suppression of large Edge-Localized Modes (ELMs) in addition to its highly favorable scalings of pedestal structure and overall performance. Extensive study of the ELMy H-mode has led to the development of the EPED model, which utilizes calculations of coupled peeling-ballooning MHD modes and kinetic-ballooning mode (KBM) stability limits to predict the pedestal structure preceding an ELM crash. We apply similar tools to themore » structure and ELM stability of I-mode pedestals. Analysis of I-mode discharges prepared with high-resolution pedestal data from the most recent C-Mod campaign reveals favorable pedestal scalings for extrapolation to large machines—pedestal temperature scales strongly with power per particle P{sub net}/n{sup ¯}{sub e}, and likewise pedestal pressure scales as the net heating power (consistent with weak degradation of confinement with heating power). Matched discharges in current, field, and shaping demonstrate the decoupling of energy and particle transport in I-mode, increasing fueling to span nearly a factor of two in density while maintaining matched temperature pedestals with consistent levels of P{sub net}/n{sup ¯}{sub e}. This is consistent with targets for increased performance in I-mode, elevating pedestal β{sub p} and global performance with matched increases in density and heating power. MHD calculations using the ELITE code indicate that I-mode pedestals are strongly stable to edge peeling-ballooning instabilities. Likewise, numerical modeling of the KBM turbulence onset, as well as scalings of the pedestal width with poloidal beta, indicates that I-mode pedestals are not limited by KBM turbulence—both features identified with the trigger for large ELMs

  5. Low-bending loss and single-mode operation in few-mode optical fiber

    NASA Astrophysics Data System (ADS)

    Yin, Ping; Wang, Hua; Chen, Ming-Yang; Wei, Jin; Cai, Zhi-Min; Li, Lu-Ming; Yang, Ji-Hai; Zhu, Yuan-Feng

    2016-10-01

    The technique of eliminating the higher-order modes in a few-mode optical fiber is proposed. The fiber is designed with a group of defect modes in the cladding. The higher-order modes in the fiber can be eliminated by bending the fiber to induce strong coupling between the defect modes and the higher-order modes. Numerical simulation shows the bending losses of the LP01 mode are lower than 1.5×10-4 dB/turn for the wavelength shorter than 1.625 μm. The proposed fiber can be bent multiple turns at small bending radius which are preferable for FTTH related applications.

  6. Plasma Modes

    NASA Astrophysics Data System (ADS)

    Dubin, D. H. E.

    This chapter explores several aspects of the linear electrostatic normal modes of oscillation for a single-species non-neutral plasma in a Penning trap. Linearized fluid equations of motion are developed, assuming the plasma is cold but collisionless, which allow derivation of the cold plasma dielectric tensor and the electrostatic wave equation. Upper hybrid and magnetized plasma waves in an infinite uniform plasma are described. The effect of the plasma surface in a bounded plasma system is considered, and the properties of surface plasma waves are characterized. The normal modes of a cylindrical plasma column are discussed, and finally, modes of spheroidal plasmas, and finite temperature effects on the modes, are briefly described.

  7. Terahertz light-emitting graphene-channel transistor toward single-mode lasing

    NASA Astrophysics Data System (ADS)

    Yadav, Deepika; Tamamushi, Gen; Watanabe, Takayuki; Mitsushio, Junki; Tobah, Youssef; Sugawara, Kenta; Dubinov, Alexander A.; Satou, Akira; Ryzhii, Maxim; Ryzhii, Victor; Otsuji, Taiichi

    2018-03-01

    A distributed feedback dual-gate graphene-channel field-effect transistor (DFB-DG-GFET) was fabricated as a current-injection terahertz (THz) light-emitting laser transistor. We observed a broadband emission in a 1-7.6-THz range with a maximum radiation power of 10 μW as well as a single-mode emission at 5.2 THz with a radiation power of 0.1 μW both at 100 K when the carrier injection stays between the lower cutoff and upper cutoff threshold levels. The device also exhibited peculiar nonlinear threshold-like behavior with respect to the current-injection level. The LED-like broadband emission is interpreted as an amplified spontaneous THz emission being transcended to a single-mode lasing. Design constraints on waveguide structures for better THz photon field confinement with higher gain overlapping as well as DFB cavity structures with higher Q factors are also addressed towards intense, single-mode continuous wave THz lasing at room temperature.

  8. A Process Evaluation of Project Developmental Continuity. Interim Report VI: Executive Summary. Recommendations for Continuing the Impact Study.

    ERIC Educational Resources Information Center

    Granville, Arthur C.; Love, John M.

    This brief report summarizes the analysis and conclusions presented in detail in Interim Report VI regarding the feasibility of conducting a longitudinal study of Project Developmental Continuity (PDC). This project is a Head Start demonstration program aimed at providing educational and developmental continuity between children's Head Start and…

  9. Influence of curing mode with a LED unit on polymerization contraction kinetics and degree of conversion of dental resin-based materials.

    PubMed

    Mortier, Eric; Simon, Yorick; Dahoun, Abdelsellam; Gerdolle, David

    2009-01-01

    The purpose of this study was to evaluate the influence of photopolymerization mode with a light emitting diode (LED) lamp on the curing contraction kinetics and degree of conversion of 3 resin-based restorative materials. The curing contraction kinetics of Admira (ADM), Filtek P60 (P60), and Filtek Flow (FLO) were measured by the glass slide method. The materials were exposed to light from a 1,000 mW/cm-(2) power LED lamp (Elipar Freelight 2) in 3 modes: 2 continuous modes of 20 and 40 seconds (C20 and C40), and 1 exponential mode (E20; 5 seconds of exponential power increase followed by 15 seconds of maximum intensity). The degree of conversion (DC) was measured for each of the materials, and each of the modes by Fourier transformed infra-red spectrometry. P60 had the significantly lowest final contraction and FLO the highest among all light exposure modes. The C20 and C40 modes did not produce any difference in contraction or degree of conversion. The E20 mode led to a significant slowing of contraction speed combined with greater final contraction. Use of a LED lamp (1,000 mW/cm2) in continuous mode reduces the exposure time by half for identical curing shrinkage and degree of conversion.

  10. Manipulation and simulations of thermal field profiles in laser heat-mode lithography

    NASA Astrophysics Data System (ADS)

    Wei, Tao; Wei, Jingsong; Wang, Yang; Zhang, Long

    2017-12-01

    Laser heat-mode lithography is a very useful method for high-speed fabrication of large-area micro/nanostructures. To obtain nanoscale pattern structures, one needs to manipulate the thermal diffusion channels. This work reports the manipulation of the thermal diffusion in laser heat-mode lithography and provides methods to restrain the in-plane thermal diffusion and improve the out-of-plane thermal diffusion. The thermal field profiles in heat-mode resist thin films have been given. It is found that the size of the heat-spot can be decreased by decreasing the thickness of the heat-mode resist thin films, inserting the thermal conduction layers, and shortening the laser irradiation time. The optimized laser writing strategy is also given, where the in-plane thermal diffusion is completely restrained and the out-of-plane thermal diffusion is improved. The heat-spot size is almost equal to that of the laser spot, accordingly. This work provides a very important guide to laser heat-mode lithography.

  11. Modeling of a microchannel plate working in pulsed mode

    NASA Astrophysics Data System (ADS)

    Secroun, Aurelia; Mens, Alain; Segre, Jacques; Assous, Franck; Piault, Emmanuel; Rebuffie, Jean-Claude

    1997-05-01

    MicroChannel Plates (MCPs) are used in high speed cinematography systems such as MCP framing cameras and streak camera readouts. In order to know the dynamic range or the signal to noise ratio that are available in these devices, a good knowledge of the performances of the MCP is essential. The point of interest of our simulation is the working mode of the microchannel plate--that is light pulsed mode--, in which the signal level is relatively high and its duration can be shorter than the time needed to replenish the wall of the channel, when other papers mainly studied night vision applications with weak continuous and nearly single electron input signal. Also our method allows the simulation of saturation phenomena due to the large number of electrons involved, whereas the discrete models previously used for simulating pulsed mode might not be properly adapted. Here are presented the choices made in modeling the microchannel, more specifically as for the physics laws, the secondary emission parameters and the 3D- geometry. In a last part first results are shown.

  12. Pulsatile support using a rotary left ventricular assist device with an electrocardiography-synchronized rotational speed control mode for tracking heart rate variability.

    PubMed

    Arakawa, Mamoru; Nishimura, Takashi; Takewa, Yoshiaki; Umeki, Akihide; Ando, Masahiko; Kishimoto, Yuichiro; Kishimoto, Satoru; Fujii, Yutaka; Date, Kazuma; Kyo, Shunei; Adachi, Hideo; Tatsumi, Eisuke

    2016-06-01

    We previously developed a novel control system for a continuous-flow left ventricular assist device (LVAD), the EVAHEART, and demonstrated that sufficient pulsatility can be created by increasing its rotational speed in the systolic phase (pulsatile mode) in a normal heart animal model. In the present study, we assessed this system in its reliability and ability to follow heart rate variability. We implanted an EVAHEART via left thoracotomy into five goats for the Study for Fixed Heart Rate with ventricular pacing at 80, 100, 120 and 140 beats/min and six goats for the Study for native heart rhythm. We tested three modes: the circuit clamp, the continuous mode and the pulsatile mode. In the pulsatile mode, rotational speed was increased during the initial 35 % of the RR interval by automatic control based on the electrocardiogram. Pulsatility was evaluated by pulse pressure and dP/dt max of aortic pressure. As a result, comparing the pulsatile mode with the continuous mode, the pulse pressure was 28.5 ± 5.7 vs. 20.3 ± 7.9 mmHg, mean dP/dt max was 775.0 ± 230.5 vs 442.4 ± 184.7 mmHg/s at 80 bpm in the study for fixed heart rate, respectively (P < 0.05). The system successfully determined the heart rate to be 94.6 % in native heart rhythm. Furthermore, pulse pressure was 41.5 ± 7.9 vs. 27.8 ± 5.6 mmHg, mean dP/dt max was 716.2 ± 133.9 vs 405.2 ± 86.0 mmHg/s, respectively (P < 0.01). In conclusion, our newly developed the pulsatile mode for continuous-flow LVADs reliably provided physiological pulsatility with following heart rate variability.

  13. Electric field variations measured continuously in free air over a conductive thin zone in the tilted Lias-epsilon black shales near Osnabrück, Northwest Germany

    NASA Astrophysics Data System (ADS)

    Gurk, M.; Bosch, F. P.; Tougiannidis, N.

    2013-04-01

    Common studies on the static electric field distribution over a conductivity anomaly use the self-potential method. However, this method is time consuming and requires nonpolarizable electrodes to be placed in the ground. Moreover, the information gained by this method is restricted to the horizontal variations of the electric field. To overcome the limitation in the self-potential technique, we conducted a field experiment using a non conventional technique to assess the static electric field over a conductivity anomaly. We use two metallic potential probes arranged on an insulated boom with a separation of 126 cm. When placed into the electric field of the free air, a surface charge will be induced on each probe trying to equalize with the potential of the surrounding atmosphere. The use of a plasma source at both probes facilitated continuous and quicker measurement of the electric field in the air. The present study shows first experimental measurements with a modified potential probe technique (MPP) along a 600-meter-long transect to demonstrate the general feasibility of this method for studying the static electric field distribution over shallow conductivity anomalies. Field measurements were carried out on a test site on top of the Bramsche Massif near Osnabrück (Northwest Germany) to benefit from a variety of available near surface data over an almost vertical conductivity anomaly. High resolution self-potential data served in a numerical analysis to estimate the expected individual components of the electric field vector. During the experiment we found more anomalies in the vertical and horizontal components of the electric field than self-potential anomalies. These contrasting findings are successfully cross-validated with conventional near surface geophysical methods. Among these methods, we used self-potential, radiomagnetotelluric, electric resistivity tomography and induced polarization data to derive 2D conductivity models of the subsurface in

  14. Travel mode and physical activity at Sydney University.

    PubMed

    Rissel, Chris; Mulley, Corinne; Ding, Ding

    2013-08-09

    How staff and students travel to university can impact their physical activity level. An online survey of physical activity and travel behaviour was conducted in early November 2012 to inform planning of physical activity and active travel promotion programs at the University of Sydney, Australia as part of the "Sit Less, Move More" sub-committee of the Healthy University Initiative, and as baseline data for evaluation. There were 3,737 useable responses, 60% of which were from students. Four out of five respondents travelled to the University on the day of interest (Tuesday, November 30, 2012). The most frequently used travel modes were train (32%), car as driver (22%), bus (17%), walking (17%) and cycling (6%). Staff were twice as likely to drive as students, and also slightly more likely to use active transport, defined as walking and cycling (26% versus 22%). Overall, 41% of respondents were sufficiently active (defined by meeting physical activity recommendations of 150 min per week). Participants were more likely to meet physical activity recommendations if they travelled actively to the University. With a high proportion of respondents using active travel modes or public transport already, increasing the physical activity levels and increasing the use of sustainable travel modes would mean a mode shift from public transport to walking and cycling for students is needed and a mode shift from driving to public transport or active travel for University staff. Strategies to achieve this are discussed.

  15. Travel Mode and Physical Activity at Sydney University

    PubMed Central

    Rissel, Chris; Mulley, Corinne; Ding, Ding

    2013-01-01

    How staff and students travel to university can impact their physical activity level. An online survey of physical activity and travel behaviour was conducted in early November 2012 to inform planning of physical activity and active travel promotion programs at the University of Sydney, Australia as part of the “Sit Less, Move More” sub-committee of the Healthy University Initiative, and as baseline data for evaluation. There were 3,737 useable responses, 60% of which were from students. Four out of five respondents travelled to the University on the day of interest (Tuesday, November 30, 2012). The most frequently used travel modes were train (32%), car as driver (22%), bus (17%), walking (17%) and cycling (6%). Staff were twice as likely to drive as students, and also slightly more likely to use active transport, defined as walking and cycling (26% versus 22%). Overall, 41% of respondents were sufficiently active (defined by meeting physical activity recommendations of 150 min per week). Participants were more likely to meet physical activity recommendations if they travelled actively to the University. With a high proportion of respondents using active travel modes or public transport already, increasing the physical activity levels and increasing the use of sustainable travel modes would mean a mode shift from public transport to walking and cycling for students is needed and a mode shift from driving to public transport or active travel for University staff. Strategies to achieve this are discussed. PMID:23939390

  16. Influence of water conductivity on particular electrospray modes with dc corona discharge — optical visualization approach

    NASA Astrophysics Data System (ADS)

    Pongrác, Branislav; Kim, Hyun-Ha; Negishi, Nobuaki; Machala, Zdenko

    2014-08-01

    The effect of water conductivity on electrospraying of water was studied in combination with positive DC corona discharge generated in air. We used a point-to-plane geometry of electrodes with a hollow syringe needle anode opposite to the metal mesh cathode. We employed total average current measurements and high-speed camera fast time-resolved imaging. We visualized the formation of a water jet (filament) and investigated corona discharge behavior for various water conductivities. Depending on the conductivity, various jet properties were observed: pointy, prolonged, and fast spreading water filaments for lower conductivity; in contrast to rounder, broader, and shorter quickly disintegrating filaments for higher conductivity. The large acceleration values (4060 m/s2 and 520 m/s2 for 2 μS/cm and 400 μS/cm, respectively) indicate that the process is mainly governed by the electrostatic force. In addition, with increasing conductivity, the breakdown voltage for corona-to-spark transition was decreasing.

  17. A reconstruction of sexual modes throughout animal evolution.

    PubMed

    Sasson, Daniel A; Ryan, Joseph F

    2017-12-06

    Although most extant animals have separate sexes, simultaneous hermaphrodites can be found in lineages throughout the animal kingdom. However, the sexual modes of key ancestral nodes including the last common ancestor (LCA) of all animals remain unclear. Without these data, it is difficult to infer the reproductive-state transitions that occurred early in animal evolution, and thus a broad understanding of the evolution of animal reproduction remains elusive. In this study, we use a composite phylogeny from four previously published studies, two alternative topologies (ctenophores or sponges as sister to the rest of animals), and multiple phylogenetic approaches to conduct the most extensive analysis to date of the evolution of animal sexual modes. Our analyses clarify the sexual mode of many ancestral animal nodes and allow for sound inferences of modal transitions that have occurred in animal history. Our results also indicate that the transition from separate sexes to hermaphroditism has been more common in animal history than the reverse. These results provide the most complete view of the evolution of animal sexual modes to date and provide a framework for future inquiries into the correlation of these transitions with genes, behaviors, and physiology. These results also suggest that mutations promoting hermaphroditism have historically been more likely to invade gonochoristic populations than vice versa.

  18. Low thermal conductivity in ultrathin carbon nanotube (2, 1)

    PubMed Central

    Zhu, Liyan; Li, Baowen

    2014-01-01

    Molecular dynamic simulations reveal that the ultrathin carbon nanotube (CNT) (2, 1) with a reconstructed structure exhibits a surprisingly low thermal conductivity, which is only ~16–30% of those in regular CNTs, e.g. CNT (2, 2) and (5, 5). Detailed lattice dynamic calculations suggest that the acoustic phonon modes greatly soften in CNT (2, 1) as compared to regular CNTs. Moreover, both phonon group velocities and phonon lifetimes strikingly decrease in CNT (2, 1), which result in the remarkable reduction of thermal conductivity. Besides, isotope doping and chemical functionalization enable the further reduction of thermal conductivity in CNT (2, 1). PMID:24815003

  19. Thermal characterization of phacoemulsification probes operated in axial and torsional modes.

    PubMed

    Zacharias, Jaime

    2015-01-01

    To analyze temperature increases and identify potential sources of heat generated when sleeved and sleeveless phacoemulsification probes were operated in axial and torsional modes using the Infiniti Vision System with the Ozil torsional handpiece. Phacodynamics Laboratory, Pasteur Ophthalmic Clinic, Santiago, Chile. Experimental study. Two computer-controlled thermal transfer systems were developed to evaluate the contribution of internal metal stress and tip-to-sleeve friction on heat generation during phacoemulsification using axial and torsional ultrasound modalities. Both systems incorporated infrared thermal imaging and used a black-body film to accurately capture temperature measurements. Axial mode was consistently associated with greater temperature increases than torsional mode whether tips were operated with or without sleeves. In tests involving bare tips, axial mode and torsional mode peaked at 51.7°C and 34.2°C, respectively. In an example using sleeved tips in which a 30.0 g load was applied for 1 second, temperatures for axial mode reached 45°C and for torsional mode, 38°C. Friction between the sleeved probe and the incisional wall contributed more significantly to the temperature increase than internal metal stress regardless of the mode used. In all experiments, the temperature increase observed with axial mode was greater than that observed with torsional mode, even when conditions such as power or amplitude and flow rate were varied. Tip-to-sleeve friction was a more dominant source of phaco probe heating than internal metal stress. The temperature increase due to internal metal stress was greater with axial mode than with torsional mode. Dr. Zacharias received research funding from Alcon Laboratories, Inc., to conduct this study. He has no financial or proprietary interest in any material or method mentioned. Copyright © 2015 ASCRS and ESCRS. Published by Elsevier Inc. All rights reserved.

  20. Nonlinear dynamics of toroidal Alfvén eigenmodes in the presence of tearing modes

    NASA Astrophysics Data System (ADS)

    Zhu, J.; Ma, Z. W.; Wang, S.; Zhang, W.

    2018-04-01

    A hybrid simulation is carried out to study nonlinear dynamics of n  =  1 toroidal Alfvén eigenmodes (TAEs) with the m/n  =  2/1 tearing mode. It is found that the n  =  1 TAE is first excited by isotropic energetic particles at the linear stage and reaches the first steady state due to wave-particle interaction. After the saturation of the n  =  1 TAE, the m/n  =  2/1 tearing mode grows continuously and reaches its steady state due to nonlinear mode-mode coupling, especially, the n  =  0 component plays a very important role in the tearing mode saturation. The results suggest that the enhancement of the tearing mode activity with increase of the resistivity could weaken the TAE frequency chirping through the interaction between the p  =  1 TAE resonance and the p  =  2 tearing mode resonance for passing particles in the phase space, which is opposite to the classical physical picture of the TAE frequency chirping that is enhanced with dissipation increase.