Science.gov

Sample records for continuous cropping

  1. Amazon basin soils: management for continuous crop production.

    PubMed

    Sanchez, P A; Bandy, D E; Villachica, J H; Nicholaides, J J

    1982-05-21

    Technology has been developed which permits continuous production of annual crops in some of the acid, infertile soils of the Amazon Basin. Studies in Yurimaguas, Peru, show that three grain crops can be produced annually with appropriate fertilizer inputs. Twenty-one crops have been harvested during the past 8(1/2) years in the same field, with an average annual production of 7.8 tons of grain per hectare. Soil properties are improving with continuous cultivation. The technology has been validated by local farmers, who normally practice shifting cultivation. Economic interpretations indicate large increases in annual family farm income and a high return on the investment of chemical inputs. Other promising land use alternatives include low-input crop production systems, paddy rice production in fertile alluvial soils, and pastures or agroforestry in rolling areas. Stable, continuous food crop production is an attractive alternative to shifting cultivation in humid tropical regions experiencing severe demographic pressures. For each hectare of land managed in a highly productive manner, there may be less need for clearing additional tropical forests to meet food demands. PMID:17819134

  2. Replacing fallow with continuous cropping reduces crop water productivity of semiarid wheat

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Water supply frequently limits crop yield in semiarid cropping systems; water deficits can restrict yields in drought-affected subhumid regions. In semiarid wheat (Triticum aestivumL.)-based cropping systems, replacing an uncropped fallow period with a crop can increase precipitation use efficiency ...

  3. Effect of Continuous Cropping Generations on Each Component Biomass of Poplar Seedlings during Different Growth Periods

    PubMed Central

    Xia, Jiangbao; Zhang, Shuyong; Li, Tian; Liu, Xia; Zhang, Ronghua; Zhang, Guangcan

    2014-01-01

    In order to investigate the change rules and response characteristics of growth status on each component of poplar seedling followed by continuous cropping generations and growth period, we clear the biomass distribution pattern of poplar seedling, adapt continuous cropping, and provide theoretical foundation and technical reference on cultivation management of poplar seedling, the first generation, second generation, and third generation continuous cropping poplar seedlings were taken as study objects, and the whole poplar seedling was harvested to measure and analyze the change of each component biomass on different growth period poplar leaves, newly emerging branches, trunks and root system, and so forth. The results showed that the whole biomass of poplar seedling decreased significantly with the leaf area and its ratio increased, and the growth was inhibited obviously. The biomass aboveground was more than that underground. The ratios of leaf biomass and newly emerging branches biomass of first continuous cropping poplar seedling were relatively high. With the continuous cropping generations and growth cycle increasing, poplar seedling had a growth strategy to improve the ratio of root-shoot and root-leaf to adapt the limited soil nutrient of continuous cropping. PMID:25401150

  4. [Continuous remediation of heavy metal contaminated soil by co-cropping system enhanced with chelator].

    PubMed

    Wei, Ze-Bin; Guo, Xiao-Fang; Wu, Qi-Tang; Long, Xin-Xian

    2014-11-01

    In order to elucidate the continuous effectiveness of co-cropping system coupling with chelator enhancement in remediating heavy metal contaminated soils and its environmental risk towards underground water, soil lysimeter (0.9 m x 0.9 m x 0.9 m) experiments were conducted using a paddy soil affected by Pb and Zn mining in Lechang district of Guangdong Province, 7 successive crops were conducted for about 2.5 years. The treatments included mono-crop of Sedum alfredii Hance (Zn and Cd hyperaccumulator), mono-crop of corn (Zea mays, cv. Yunshi-5, a low-accumulating cultivar), co-crop of S. alfredii and corn, and co-crop + MC (Mixture of Chelators, comprised of citric acid, monosodium glutamate waste liquid, EDTA and KCI with molar ratio of 10: 1:2:3 at the concentration of 5 mmol x kg(-1) soil). The changes of heavy metal concentrations in plants, soil and underground water were monitored. Results showed that the co-cropping system was suitable only in spring-summer seasons and significantly increased Zn and Cd phytoextraction. In autumn-winter seasons, the growth of S. alfredii and its phytoextraction of Zn and Cd were reduced by co-cropping and MC application. In total, the mono-crops of S. alfredii recorded a highest phytoextraction of Zn and Cd. However, the greatest reduction of soil Zn, Cd and Pb was observed with the co-crop + MC treatment, the reduction rates were 28%, 50%, and 22%, respectively, relative to the initial soil metal content. The reduction of this treatment was mainly attributed to the downwards leaching of metals to the subsoil caused by MC application. The continuous monitoring of leachates during 2. 5 year's experiment also revealed that the addition of MC increased heavy metal concentrations in the leaching water, but they did not significantly exceed the III grade limits of the underground water standard of China. PMID:25639110

  5. Soil N cycling and phenols accumulation under continuous rice cropping in the Grand Prairie region, Arkansas

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soil C stocks in the Grand Prairie region of eastern Arkansas have declined under the prevalent two-year rotation of rice (Orzya sativa L.) soybean (Glycine max (L.) Merr.). Continuous rice cropping could promote soil C sequestration, but in previous work continuous rice averaged 19% less grain yiel...

  6. [Effects of nutrition medium on cucumber growth and soil microenvironment in greenhouse under continuous cropping].

    PubMed

    Wu, Chun-Cheng; Li, Tian-Lai; Cao, Xia; Meng, Si-Da; Zhang, Yong-Yong; Yang, Li-Juan

    2014-05-01

    An experiment of continuous cropping of cucumber in nutrition medium (composted with straw, rural soil and puffed chicken manure) or soil was conducted in greenhouse in order to study the effects of medium type on the cucumber growth and soil microenvironment, respectively. The results showed that the two treatments both displayed different levels of obstacles resulted from continuous cropping. In the same cropping season, the nutrient content, soil invertase and urease activities and B/F (bacteria/fungi) ratio in the nutrition medium were obviously higher but fungi quantity was lower than in the soil medium, suggesting the use of nutrition medium changed the bacterial population structure as to improve the cucumber growth and yield. Under continuous cropping, correlation analysis showed that the bacterial quantity was significantly positively related with plant height and root dry mass, and markedly significantly positive correlation exited between the aboveground dry mass and yield of cucumber. The urease activity was also significantly positively related with the cucumber yield. Compared with the soil medium, the nutrition medium could greatly improve soil microenvironment and alleviate the continuous cropping obstacle. PMID:25129942

  7. Acquisition and management of continuous data streams for crop water management

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Wireless sensor network systems for decision support in crop water management offer many advantages including larger spatial coverage and multiple types of data input. However, collection and management of multiple and continuous data streams for near real-time post analysis can be problematic. Thi...

  8. Continuous Cropping Systems Reduce Near-Surface Maximum Compaction in No-Till Soils

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Because of increased concerns over compaction in NT soils, it is important to assess how continuous cropping systems influence risks of soil compaction across a range of soils and NT management systems. We quantified differences in maximum bulk density (BDmax) and critical water content (CWC) by the...

  9. Partitioning evapotranspiration via continuous sampling of water vapor isotopes over common row crops and candidate biofuel crops.

    NASA Astrophysics Data System (ADS)

    Miller, J. N.; Black, C. K.; Bernacchi, C.

    2014-12-01

    Global demand for renewable energy is accelerating land conversion from common row crops such as maize and soybean to cellulosic biofuel crops such as miscanthus and switchgrass. This land conversion is expected to alter ecohydrology via changes in evapotranspiration (ET). However, the direction in which evapotranspiration will shift, either partitioning more moisture through soil evaporation (E) or through plant transpiration (T) is uncertain. To investigate how land conversion from maize to miscanthus affects ET partitioning we measured the isotopic composition of water vapor via continuous air sampling. We obtained continuous diurnal measurements of δ2H and δ18O for miscanthus and maize on multiple days over the course of the growing season. Water vapor isotopes drawn from two heights were measured at 2 Hz using a cavity ringdown spectrometer and partitioned into components of E and T using a simple mixing equation. A second approach to partitioning was accomplished by subtracting transpiration measurements, obtained through sap flow sensors, from total ET, measured via eddy covariance. Preliminary results reveal that both methods compare favorably and that transpiration dominates variations in ET in miscanthus fields more so than in fields of maize.

  10. A new methodology to map double-cropping croplands based on continuous wavelet transform

    NASA Astrophysics Data System (ADS)

    Qiu, Bingwen; Zhong, Ming; Tang, Zhenghong; Wang, Chongyang

    2014-02-01

    Cropping intensity is one of the major factors in crop production and agricultural intensification. A new double-cropping croplands mapping methodology using Moderate Resolution Imaging Spectroradiometer (MODIS) time series datasets through continuous wavelet transform was proposed in this study. This methodology involved four steps. First, daily continuous MODIS Enhanced Vegetation Index (EVI) time series datasets were developed for the study year. Next, the EVI time series datasets were transformed into a two dimensional (time-frequency) wavelet scalogram based on continuous wavelet transform. Third, a feature extraction process was conducted on the wavelet scalogram, where the characteristic spectra were calculated from the wavelet scalogram and the feature peak within two skeleton lines was obtained. Finally, a threshold was determined for feature peak values to discriminate double-cropping croplands within each pixel. The application of the proposed procedure to China's Henan Province in 2010 produced an objective and accurate spatial distribution map, which correlated well with in situ observation data (over 90% agreement). The proposed new methodology efficiently handled complex variability that might be caused by regional variation in climate, management practices, growth peaks by winter weed or winter wheat, and data noise. Therefore, the methodology shows promise for future studies at regional and global scales.

  11. The Effect of Long-Term Continuous Cropping of Black Pepper on Soil Bacterial Communities as Determined by 454 Pyrosequencing.

    PubMed

    Xiong, Wu; Li, Zhigang; Liu, Hongjun; Xue, Chao; Zhang, Ruifu; Wu, Huasong; Li, Rong; Shen, Qirong

    2015-01-01

    In the present study, 3 replanted black pepper orchards with continuously cropping histories for 10, 21, and 55 years in tropical China, were selected for investigating the effect of monoculture on soil physiochemical properties, enzyme activities, bacterial abundance, and bacterial community structures. Results showed long-term continuous cropping led to a significant decline in soil pH, organic matter contents, enzymatic activities, and resulted in a decrease in soil bacterial abundance. 454 pyrosequencing analysis of 16S rRNA genes revealed that the Acidobacteria and Proteobacteria were the main phyla in the replanted black pepper orchard soils, comprising up to 73.82% of the total sequences; the relative abundances of Bacteroidetes and Firmicutes phyla decreased with long-term continuous cropping; and at genus level, the Pseudomonas abundance significantly depleted after 21 years continuous cropping. In addition, bacterial diversity significantly decreased after 55 years black pepper continuous cropping; obvious variations for community structures across the 3 time-scale replanted black pepper orchards were observed, suggesting monoculture duration was the major determinant for bacterial community structure. Overall, continuous cropping during black pepper cultivation led to a significant decline in soil pH, organic matter contents, enzymatic activities, resulted a decrease in soil bacterial abundance, and altered soil microbial community membership and structure, which in turn resulted in black pepper poor growth in the continuous cropping system. PMID:26317364

  12. The Effect of Long-Term Continuous Cropping of Black Pepper on Soil Bacterial Communities as Determined by 454 Pyrosequencing

    PubMed Central

    Xiong, Wu; Li, Zhigang; Liu, Hongjun; Xue, Chao; Zhang, Ruifu; Wu, Huasong; Li, Rong; Shen, Qirong

    2015-01-01

    In the present study, 3 replanted black pepper orchards with continuously cropping histories for 10, 21, and 55 years in tropical China, were selected for investigating the effect of monoculture on soil physiochemical properties, enzyme activities, bacterial abundance, and bacterial community structures. Results showed long-term continuous cropping led to a significant decline in soil pH, organic matter contents, enzymatic activities, and resulted in a decrease in soil bacterial abundance. 454 pyrosequencing analysis of 16S rRNA genes revealed that the Acidobacteria and Proteobacteria were the main phyla in the replanted black pepper orchard soils, comprising up to 73.82% of the total sequences; the relative abundances of Bacteroidetes and Firmicutes phyla decreased with long-term continuous cropping; and at genus level, the Pseudomonas abundance significantly depleted after 21 years continuous cropping. In addition, bacterial diversity significantly decreased after 55 years black pepper continuous cropping; obvious variations for community structures across the 3 time-scale replanted black pepper orchards were observed, suggesting monoculture duration was the major determinant for bacterial community structure. Overall, continuous cropping during black pepper cultivation led to a significant decline in soil pH, organic matter contents, enzymatic activities, resulted a decrease in soil bacterial abundance, and altered soil microbial community membership and structure, which in turn resulted in black pepper poor growth in the continuous cropping system. PMID:26317364

  13. [Regulation of biochar on matrix enzyme activities and microorganisms around cucumber roots under continuous cropping].

    PubMed

    Zou, Chun-jiao; Zhang, Yong-yong; Zhang, Yi-ming; Guo, Xiao-ou; Li, Ming-jing; Li, Tian-lai

    2015-06-01

    The effects of addition of biochar on the matrix enzymes activity, microorganisms population and microbial community structure were evaluated under cucumber continuous cropping for 6 years (11 rotations). Cucumbers were grown in pots in greenhouse with 5% or 3% of medium (by mass) substituted with biochar. The control consisted of medium alone without biochar. The results showed that the activity of peroxidase was significantly improved to the level of the first rotation crop form 30 to 120 d after planting in both biochar treatments, with the effect of 5% biochar being more significant than that of 3% biochar. However, the neutral phosphatase activity was markedly reduced after biochar treatment. The addition of 5% biochar had significant regulation effect on the activities of invertase and urease from 30 to 90 d after planting, while the addition of 3% biochar had little effect. The populations of bacteria and actinomycetes were increased and the fungi population was reduced in both biochar treatments from 30 to 90 d after planting, and the effect of 5% biochar was more significant than that of 3% biochar. Meanwhile, the addition of biochar significantly increased the diversity of the bacterial community structure. In summary, biochar had obvious regulation effect on soil enzyme activity, microorganism quantity and microbial community in continuous cropping nutrition medium. PMID:26572031

  14. Dynamics of the diversity of fungal and Fusarium communities during continuous cropping of cucumber in the greenhouse.

    PubMed

    Zhou, Xingang; Wu, Fengzhi

    2012-05-01

    The continuous cropping of cucumber in the same potting soils may result in a reduction of yield and quality of the crop, a phenomenon described as soil sickness. The changes of soil microbial communities as affected by continuous cropping and the link between these changes and soil sickness of cucumber are still not clear. In the present study, cucumber was cropped in pots under greenhouse conditions for nine successive cropping cycles. Structures and sizes of rhizosphere fungal and Fusarium (Ascomycota, Fungi) communities, both ubiquitous and ecologically important in soils, were analysed with PCR-denaturing gradient gel electrophoresis and quantitative reverse transcription PCR, respectively. Cucumber showed retarded growth in the seventh cropping cycle. The RNA- and DNA-based fungal community structures derived from the same sample differed from each other, and the active soil fungal communities were more sensitive to continuous cropping. The RNA-based fungal and Fusarium community sizes were larger in the seventh cropping cycle than in the other cropping cycles. Overall, the findings of this study indicate that the population sizes rather than the diversity of fungi and Fusarium communities are linked to the soil sickness associated with cucumber cultivation. PMID:22273443

  15. [Impact of long-term continuous cropping on the Fusarium population in soybean rhizosphere].

    PubMed

    Wei, Wei; Xu, Yan-Li; Zhu, Lin; Zhang, Si-Jia; Li, S

    2014-02-01

    The impact of long-term continuous cropping on the Fusarium population abundance and diversity, pathogenicity and phylogeny in soybean field were analyzed by using isolation, morphological identification, pathogenicity test, sequencing analysis and molecular marker with restricted fragment length polymorphisms (RFLP). The soybean field was located at the Hailun Experimental Station of Agricultural Ecology of Chinese Academy of Sciences in Northeast China and had been under a long-term rotation experiment designed to two treatments, i. e., long-term continuous cropping (LCC) of soybean for 20 years and short-term continuous cropping (SCC) for 3 years. In SCC field, the population density of Fusarium spp. was 6.0 x 10(4) CFU x g(-1), in which F. oxysporum, F. graminearum and F. verticillioides possessing high pathogenicity and F. solani possessing moderate pathogenicity were the dominant species. In LCC field, the population density of Fusarium population and the dominance index of dominant species were significantly lower than that in SCC. The population density of F. oxysporum, F. graminearum and F. solani were only 36% , 32% and 22% of that in SCC, and F. verticillioide with highest pathogenicity was absent. The diversity and evenness index of Fusarium population were significantly higher than that in SCC. F. tricinctum, F. lateritium and F. avenaceum, just isolated from LCC, possessing a distant genetic relationship with Fusarium isolates possessing high pathogenicity based on internal transcribed spacer (ITS) and translation elongation factor 1-alpha (EF-1alpha) gene, were non-pathogenicity for soybean. Thus, it seemed that LCC of soybean could cause the inhibition of soil Fusarium population size, alteration of Fusarium community composition and genetic diversity, and even the decline of pathogenicity for soybean root rot disease of Fusarium population. PMID:24830251

  16. Soil Eukaryotic Microorganism Succession as Affected by Continuous Cropping of Peanut - Pathogenic and Beneficial Fungi were Selected

    PubMed Central

    Chen, Mingna; Li, Xiao; Yang, Qingli; Chi, Xiaoyuan; Pan, Lijuan; Chen, Na; Yang, Zhen; Wang, Tong; Wang, Mian; Yu, Shanlin

    2012-01-01

    Peanut is an important oil crop worldwide and shows considerable adaptability but growth and yield are negatively affected by continuous cropping. Soil micro-organisms are efficient bio-indicators of soil quality and plant health and are critical to the sustainability of soil-based ecosystem function and to successful plant growth. In this study, 18S rRNA gene clone library analyses were employed to study the succession progress of soil eukaryotic micro-organisms under continuous peanut cultivation. Eight libraries were constructed for peanut over three continuous cropping cycles and its representative growth stages. Cluster analyses indicated that soil micro-eukaryotic assemblages obtained from the same peanut cropping cycle were similar, regardless of growth period. Six eukaryotic groups were found and fungi predominated in all libraries. The fungal populations showed significant dynamic change and overall diversity increased over time under continuous peanut cropping. The abundance and/or diversity of clones affiliated with Eurotiales, Hypocreales, Glomerales, Orbiliales, Mucorales and Tremellales showed an increasing trend with continuous cropping but clones affiliated with Agaricales, Cantharellales, Pezizales and Pyxidiophorales decreased in abundance and/or diversity over time. The current data, along with data from previous studies, demonstrated that the soil microbial community was affected by continuous cropping, in particular, the pathogenic and beneficial fungi that were positively selected over time, which is commonplace in agro-ecosystems. The trend towards an increase in fungal pathogens and simplification of the beneficial fungal community could be important factors contributing to the decline in peanut growth and yield over many years of continuous cropping. PMID:22808226

  17. [Effects of bio-organic fertilizer and fungicide application on continuous cropping obstacles of cut chrysanthemum].

    PubMed

    Chen, Xi; Zhao, Shuang; Yao, Jian-jun; Ye, Yan-ping; Song, Ai-ping; Chen, Fa-di; Chen, Su-mei; Dong, Xue-na

    2015-04-01

    Abstract: Fusarium wilt is a soil borne disease caused by plant continuous cropping in monoculture Chrysanthemum morifolium 'Youxiang' monoculture not only declines plant quality and yield but also decreases soil enzymes and soil microbial diversity over successive cultivation. In this article, the effects of fungicide (Carbendazim MBC), antifungal enhanced bio-organic fertilizer (BOF), and their combined application on the quality and soil enzymes activities of Chrysanthemum morifolium 'Youxiang' in continuous cropping systems were investigated. The results showed that both bioorganic fertilizer (BOF) and fungicide (MBC) single application could effectively prevent the occurrence of Fusarium wilt disease of cut chrysanthemum. Bio-organic fertilizer application was more effective on root activity, soil enzymes activities and quality (shoot height, stem diameter, leaf SPAD value, ray floret number, shoot fresh mass) improvement of cut chrysanthemum, while fungicide single application was responsible for soil enzymatic activities suppression to some extent. The combined application treatment (MBC+BOF) showed the best effects on quality improvement and soil enzyme activities promotion. PMID:26259468

  18. Biodegradation of Fresh vs. Oven-Dried Inedible Crop Residue in a Continuously Stirred Tank Reactor

    NASA Technical Reports Server (NTRS)

    Crawford, Kamau; Strayer, Richard

    1998-01-01

    The degradation of soluble organics and mineral recovery from fresh and oven-dried biomass were compared in an Intermediate-Scale Aerobic Bioreactor (8 L working volume) to determine if drying crop residue improves performance in a continuously stirred tank reactor (CSTR). The study was conducted in an Intermediate-Scale Aerobic Bioreactor (ISAB) CSTR with dimensions of 390 mm height x 204 mm diameter. The pH in the bioreactor was controlled at 6.0, temperature at 30 C, and aeration at 7.0 L/min. Gases monitored were CO2 evolution and dissolved oxygen. Homogeneously mixed wheat cultures, used either fresh or oven-dried biomass and were leached, then placed in the ISAB for a 4-day degradation period. Studies found that mineral recovery was greater for leached oven-dried crop residue. However, after activity by the mixed microbial communities in the ISAB CSTR, there were little notable differences in the measured mineral recovery and degradation of soluble organic compounds. Degradation of soluble organic compounds was also shown to improve for leached oven-dried crop residue, but after mixing in the CSTR the degradation of the fresh biomass seemed to be slightly greater. Time for the biomass to turn in the CSTR appeared to be one factor for the experimental differences between the fresh and oven-dried biomass. Other factors, although not as defined, were the differing physical structures in the cell walls and varying microbial components of the fresh and oven-dried treatments due to changes in chemical composition after drying of the biomass.

  19. [Continuous cropping obstacle and rhizospheric microecology. II. Root exudates and phenolic acids].

    PubMed

    Zhang, S; Gao, Z

    2000-02-01

    This paper discussed the effect of main crop root exudates the relationship between the kinds and amounts of root exudates and the growth of different kinds of crops and their environments. From the aspects of the decompostion of crop residues and the excretion of root systems, the source, form and adsorption mechanism of soil phenolic acids and their effect on crop growth and soil bio-activity were also elaborated. PMID:11766577

  20. Soil Chemical Property Changes in Eggplant/Garlic Relay Intercropping Systems under Continuous Cropping

    PubMed Central

    Wang, Mengyi; Wu, Cuinan; Cheng, Zhihui; Meng, Huanwen; Zhang, Mengru; Zhang, Hongjing

    2014-01-01

    Soil sickness is a critical problem for eggplant (Solanum melongena L.) under continuous cropping that affects sustainable eggplant production. Relay intercropping is a significant technique on promoting soil quality, improving eco-environment, and raising output. Field experiments were conducted from September 2010 to November 2012 in northwest China to determine the effects of relay intercropping eggplant with garlic (Allium sativum L.) on soil enzyme activities, available nutrient contents, and pH value under a plastic tunnel. Three treatments were in triplicate using randomized block design: eggplant monoculture (CK), eggplant relay intercropping with normal garlic (NG) and eggplant relay intercropping with green garlic (GG). The major results are as follows: (1) the activities of soil invertase, urease, and alkaline phosphatase were generally enhanced in NG and GG treatments; (2) relay intercropping significantly increased the soil available nutrient contents, and they were mostly higher in GG than NG. On April 11, 2011, the eggplant/garlic co-growth stage, the available nitrogen content in GG was 76.30 mg·kg−1, significantly higher than 61.95 mg·kg−1 in NG. For available potassium on April 17, 2012, they were 398.48 and 387.97 mg·kg−1 in NG and GG, both were significantly higher than 314.84 mg·kg−1 in CK; (3) the soil pH showed a significantly higher level in NG treatment, but lower in GG treatment compared with CK. For the last samples in 2012, soil pH in NG and GG were 7.70 and 7.46, the highest and lowest one among them; (4) the alkaline phosphatase activity and pH displayed a similar decreasing trend with continuous cropping. These findings indicate that relay intercropping eggplant with garlic could be an ideal farming system to effectively improve soil nutrient content, increase soil fertility, and alleviate soil sickness to some extent. These findings are important in helping to develop sustainable eggplant production. PMID:25340875

  1. Soil chemical property changes in eggplant/garlic relay intercropping systems under continuous cropping.

    PubMed

    Wang, Mengyi; Wu, Cuinan; Cheng, Zhihui; Meng, Huanwen; Zhang, Mengru; Zhang, Hongjing

    2014-01-01

    Soil sickness is a critical problem for eggplant (Solanum melongena L.) under continuous cropping that affects sustainable eggplant production. Relay intercropping is a significant technique on promoting soil quality, improving eco-environment, and raising output. Field experiments were conducted from September 2010 to November 2012 in northwest China to determine the effects of relay intercropping eggplant with garlic (Allium sativum L.) on soil enzyme activities, available nutrient contents, and pH value under a plastic tunnel. Three treatments were in triplicate using randomized block design: eggplant monoculture (CK), eggplant relay intercropping with normal garlic (NG) and eggplant relay intercropping with green garlic (GG). The major results are as follows: (1) the activities of soil invertase, urease, and alkaline phosphatase were generally enhanced in NG and GG treatments; (2) relay intercropping significantly increased the soil available nutrient contents, and they were mostly higher in GG than NG. On April 11, 2011, the eggplant/garlic co-growth stage, the available nitrogen content in GG was 76.30 mg·kg(-1), significantly higher than 61.95 mg·kg(-1) in NG. For available potassium on April 17, 2012, they were 398.48 and 387.97 mg·kg(-1) in NG and GG, both were significantly higher than 314.84 mg·kg(-1) in CK; (3) the soil pH showed a significantly higher level in NG treatment, but lower in GG treatment compared with CK. For the last samples in 2012, soil pH in NG and GG were 7.70 and 7.46, the highest and lowest one among them; (4) the alkaline phosphatase activity and pH displayed a similar decreasing trend with continuous cropping. These findings indicate that relay intercropping eggplant with garlic could be an ideal farming system to effectively improve soil nutrient content, increase soil fertility, and alleviate soil sickness to some extent. These findings are important in helping to develop sustainable eggplant production. PMID:25340875

  2. [Fate and balance of bulk blending controlled release fertilizer nitrogen under continuous cropping of mustard].

    PubMed

    Zhang, Pan-Pan; Fan, Xiao-Lin

    2012-10-01

    Under the conditions of applying water soluble fertilizer and its bulk blending with controlled release fertilizer (BB-CRF), and by using micro-lysimeter, this paper quantitatively studied the nitrogen (N) uptake by mustard, the soil N losses from N2O emission, leaching and others, and the N residual in soil in three rotations of continuously cropped mustard. In the treatment of BB-CRF with 25% of controlled release nitrogen, the N uptake by mustard increased with rotations, and the yield by the end of the experiment was significantly higher than that in the treatment of water soluble fertilizer. The cumulated N2O emission loss and the N leaching loss were obviously higher in treatment water soluble fertilizer than in treatment BB-CRF. NO3(-)-N was the primary form of N in the leachate. In relative to water soluble fertilizer, BB-CRF altered the fates of fertilizer nitrogen, i.e., the N uptake by mustard and the N residual in soil increased by 75.4% and 76.0%, and the N leaching loss and other apparent N losses decreased by 27.1% and 66.3%, respectively. The application of BB-CRF could be an effective way to reduce the various losses of fertilizer N while increase the fertilizer N use efficiency, and the controlled release fertilizer is the environmentally friendly fertilizer with the property of high N use efficiency. PMID:23359937

  3. Ten Years of Continuous Annual No-Till Cropping vs. Winter Wheat - Fallow in the Pacific Northwest

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A 10-yr experiment was conducted to evaluate continuous annual (i.e., no summer fallow) cropping systems using no-till as an alternative to tillage-intensive winter wheat (Triticum aestivum L.) – summer fallow (WW-SF). Soft white and hard white classes of winter and spring wheat, spring barley (Hor...

  4. Effects of long-term continuous cropping on soil nematode community and soil condition associated with replant problem in strawberry habitat

    NASA Astrophysics Data System (ADS)

    Li, Xingyue; Lewis, Edwin E.; Liu, Qizhi; Li, Heqin; Bai, Chunqi; Wang, Yuzhu

    2016-08-01

    Continuous cropping changes soil physiochemical parameters, enzymes and microorganism communities, causing “replant problem” in strawberry cultivation. We hypothesized that soil nematode community would reflect the changes in soil conditions caused by long-term continuous cropping, in ways that are consistent and predictable. To test this hypothesis, we studied the soil nematode communities and several soil parameters, including the concentration of soil phenolic acids, organic matter and nitrogen levels, in strawberry greenhouse under continuous-cropping for five different durations. Soil pH significantly decreased, and four phenolic acids, i.e., p-hydroxybenzoic acid, ferulic acid, cinnamic acid and p-coumaric acid, accumulated with time under continuous cropping. The four phenolic acids were highly toxic to Acrobeloides spp., the eudominant genus in non-continuous cropping, causing it to reduce to a resident genus after seven-years of continuous cropping. Decreased nematode diversity indicated loss of ecosystem stability and sustainability because of continuous-cropping practice. Moreover, the dominant decomposition pathway was altered from bacterial to fungal under continuous cropping. Our results suggest that along with the continuous-cropping time in strawberry habitat, the soil food web is disturbed, and the available plant nutrition as well as the general health of the soil deteriorates; these changes can be indicated by soil nematode community.

  5. Effects of long-term continuous cropping on soil nematode community and soil condition associated with replant problem in strawberry habitat

    PubMed Central

    Li, Xingyue; Lewis, Edwin E.; Liu, Qizhi; Li, Heqin; Bai, Chunqi; Wang, Yuzhu

    2016-01-01

    Continuous cropping changes soil physiochemical parameters, enzymes and microorganism communities, causing “replant problem” in strawberry cultivation. We hypothesized that soil nematode community would reflect the changes in soil conditions caused by long-term continuous cropping, in ways that are consistent and predictable. To test this hypothesis, we studied the soil nematode communities and several soil parameters, including the concentration of soil phenolic acids, organic matter and nitrogen levels, in strawberry greenhouse under continuous-cropping for five different durations. Soil pH significantly decreased, and four phenolic acids, i.e., p-hydroxybenzoic acid, ferulic acid, cinnamic acid and p-coumaric acid, accumulated with time under continuous cropping. The four phenolic acids were highly toxic to Acrobeloides spp., the eudominant genus in non-continuous cropping, causing it to reduce to a resident genus after seven-years of continuous cropping. Decreased nematode diversity indicated loss of ecosystem stability and sustainability because of continuous-cropping practice. Moreover, the dominant decomposition pathway was altered from bacterial to fungal under continuous cropping. Our results suggest that along with the continuous-cropping time in strawberry habitat, the soil food web is disturbed, and the available plant nutrition as well as the general health of the soil deteriorates; these changes can be indicated by soil nematode community. PMID:27506379

  6. Effects of long-term continuous cropping on soil nematode community and soil condition associated with replant problem in strawberry habitat.

    PubMed

    Li, Xingyue; Lewis, Edwin E; Liu, Qizhi; Li, Heqin; Bai, Chunqi; Wang, Yuzhu

    2016-01-01

    Continuous cropping changes soil physiochemical parameters, enzymes and microorganism communities, causing "replant problem" in strawberry cultivation. We hypothesized that soil nematode community would reflect the changes in soil conditions caused by long-term continuous cropping, in ways that are consistent and predictable. To test this hypothesis, we studied the soil nematode communities and several soil parameters, including the concentration of soil phenolic acids, organic matter and nitrogen levels, in strawberry greenhouse under continuous-cropping for five different durations. Soil pH significantly decreased, and four phenolic acids, i.e., p-hydroxybenzoic acid, ferulic acid, cinnamic acid and p-coumaric acid, accumulated with time under continuous cropping. The four phenolic acids were highly toxic to Acrobeloides spp., the eudominant genus in non-continuous cropping, causing it to reduce to a resident genus after seven-years of continuous cropping. Decreased nematode diversity indicated loss of ecosystem stability and sustainability because of continuous-cropping practice. Moreover, the dominant decomposition pathway was altered from bacterial to fungal under continuous cropping. Our results suggest that along with the continuous-cropping time in strawberry habitat, the soil food web is disturbed, and the available plant nutrition as well as the general health of the soil deteriorates; these changes can be indicated by soil nematode community. PMID:27506379

  7. The Effects of Cattle Manure and Garlic Rotation on Soil under Continuous Cropping of Watermelon (Citrullus lanatus L.)

    PubMed Central

    Liu, Changming; Wang, Yongqi; Ma, Jianxiang; Zhang, Yong; Li, Hao; Zhang, Xian

    2016-01-01

    Continuous cropping of watermelon (Citrullus lanatus L.) can lead to reduced yield and quality. We aimed to determine the effects of cattle manure addition and rotation with green garlic to improve yield and reduce disease incidence in watermelon and to examine the effects on the biological and chemical characteristics of the soil. Field experiments were performed during 2012–2014 on land previously under two years of continuous watermelon cropping in northwest China. We examined three treatment combinations: watermelon and garlic rotation, cattle manure application before watermelon planting, and combined cattle manure addition and crop rotation. Watermelon monoculture was retained as a control. Watermelon yield was significantly higher and disease incidence was lower in the treatments than the control. The populations of soil bacteria and actinomycetes and the bacteria/fungi ratio increased significantly and soil enzyme activities were generally enhanced under treatments. Available nutrients and soil organic matter contents were much higher under experimental treatments than the control. Results suggest both cattle manure application and garlic rotation can ameliorate the negative effects of continuous cropping. The combined treatment of cattle manure addition and green garlic rotation was optimal to increase yield, reduce disease incidence and enhance soil quality. PMID:27258145

  8. The Effects of Cattle Manure and Garlic Rotation on Soil under Continuous Cropping of Watermelon (Citrullus lanatus L.).

    PubMed

    Yang, Ruiping; Mo, Yanling; Liu, Changming; Wang, Yongqi; Ma, Jianxiang; Zhang, Yong; Li, Hao; Zhang, Xian

    2016-01-01

    Continuous cropping of watermelon (Citrullus lanatus L.) can lead to reduced yield and quality. We aimed to determine the effects of cattle manure addition and rotation with green garlic to improve yield and reduce disease incidence in watermelon and to examine the effects on the biological and chemical characteristics of the soil. Field experiments were performed during 2012-2014 on land previously under two years of continuous watermelon cropping in northwest China. We examined three treatment combinations: watermelon and garlic rotation, cattle manure application before watermelon planting, and combined cattle manure addition and crop rotation. Watermelon monoculture was retained as a control. Watermelon yield was significantly higher and disease incidence was lower in the treatments than the control. The populations of soil bacteria and actinomycetes and the bacteria/fungi ratio increased significantly and soil enzyme activities were generally enhanced under treatments. Available nutrients and soil organic matter contents were much higher under experimental treatments than the control. Results suggest both cattle manure application and garlic rotation can ameliorate the negative effects of continuous cropping. The combined treatment of cattle manure addition and green garlic rotation was optimal to increase yield, reduce disease incidence and enhance soil quality. PMID:27258145

  9. Soil bacterial and fungal community dynamics in relation to Panax notoginseng death rate in a continuous cropping system

    PubMed Central

    Dong, Linlin; Xu, Jiang; Feng, Guangquan; Li, Xiwen; Chen, Shilin

    2016-01-01

    Notoginseng (Panax notoginseng), a valuable herbal medicine, has high death rates in continuous cropping systems. Variation in the soil microbial community is considered the primary cause of notoginseng mortality, although the taxa responsible for crop failure remains unidentified. This study used high-throughput sequencing methods to characterize changes in the microbial community and screen microbial taxa related to the death rate. Fungal diversity significantly decreased in soils cropped with notoginseng for three years. The death rate and the fungal diversity were significantly negatively correlated, suggesting that fungal diversity might be a potential bioindicator of soil health. Positive correlation coefficients revealed that Burkholderiales, Syntrophobacteraceae, Myrmecridium, Phaeosphaeria, Fusarium, and Phoma were better adapted to colonization of diseased plants. The relative abundance of Fusarium oxysporum (R = 0.841, P < 0.05) and Phaeosphaeria rousseliana (R = 0.830, P < 0.05) were positively associated with the death rate. F. oxysporum was a pathogen of notoginseng root-rot that caused seedling death. Negative correlation coefficients indicated that Thermogemmatisporaceae, Actinosynnemataceae, Hydnodontaceae, Herpotrichiellaceae, and Coniosporium might be antagonists of pathogens, and the relative abundance of Coniosporium perforans was negatively correlated with the death rate. Our findings provide a dynamic overview of the microbial community and present a clear scope for screening beneficial microbes and pathogens of notoginseng. PMID:27549984

  10. Soil bacterial and fungal community dynamics in relation to Panax notoginseng death rate in a continuous cropping system.

    PubMed

    Dong, Linlin; Xu, Jiang; Feng, Guangquan; Li, Xiwen; Chen, Shilin

    2016-01-01

    Notoginseng (Panax notoginseng), a valuable herbal medicine, has high death rates in continuous cropping systems. Variation in the soil microbial community is considered the primary cause of notoginseng mortality, although the taxa responsible for crop failure remains unidentified. This study used high-throughput sequencing methods to characterize changes in the microbial community and screen microbial taxa related to the death rate. Fungal diversity significantly decreased in soils cropped with notoginseng for three years. The death rate and the fungal diversity were significantly negatively correlated, suggesting that fungal diversity might be a potential bioindicator of soil health. Positive correlation coefficients revealed that Burkholderiales, Syntrophobacteraceae, Myrmecridium, Phaeosphaeria, Fusarium, and Phoma were better adapted to colonization of diseased plants. The relative abundance of Fusarium oxysporum (R = 0.841, P < 0.05) and Phaeosphaeria rousseliana (R = 0.830, P < 0.05) were positively associated with the death rate. F. oxysporum was a pathogen of notoginseng root-rot that caused seedling death. Negative correlation coefficients indicated that Thermogemmatisporaceae, Actinosynnemataceae, Hydnodontaceae, Herpotrichiellaceae, and Coniosporium might be antagonists of pathogens, and the relative abundance of Coniosporium perforans was negatively correlated with the death rate. Our findings provide a dynamic overview of the microbial community and present a clear scope for screening beneficial microbes and pathogens of notoginseng. PMID:27549984

  11. Application of PCR-Denaturing-Gradient Gel Electrophoresis (DGGE) Method to Examine Microbial Community Structure in Asparagus Fields with Growth Inhibition due to Continuous Cropping

    PubMed Central

    Urashima, Yasufumi; Sonoda, Takahiro; Fujita, Yuko; Uragami, Atsuko

    2012-01-01

    Growth inhibition due to continuous cropping of asparagus is a major problem; the yield of asparagus in replanted fields is low compared to that in new fields, and missing plants occur among young seedlings. Although soil-borne disease and allelochemicals are considered to be involved in this effect, this is still controversial. We aimed to develop a technique for the biological field diagnosis of growth inhibition due to continuous cropping. Therefore, in this study, fungal community structure and Fusarium community structure in continuously cropped fields of asparagus were analyzed by polymerase chain reaction/denaturing-gradient gel electrophoresis (PCR-DGGE). Soil samples were collected from the Aizu region of Fukushima Prefecture, Japan. Soil samples were taken from both continuously cropped fields of asparagus with growth inhibition and healthy neighboring fields of asparagus. The soil samples were collected from the fields of 5 sets in 2008 and 4 sets in 2009. We were able to distinguish between pathogenic and non-pathogenic Fusarium by using Alfie1 and Alfie2GC as the second PCR primers and PCR-DGGE. Fungal community structure was not greatly involved in the growth inhibition of asparagus due to continuous cropping. By contrast, the band ratios of Fusarium oxysporum f. sp. asparagi in growth-inhibited fields were higher than those in neighboring healthy fields. In addition, there was a positive correlation between the band ratios of Fusarium oxysporum f. sp. asparagi and the ratios of missing asparagus plants. We showed the potential of biological field diagnosis of growth inhibition due to continuous cropping of asparagus using PCR-DGGE. PMID:22200640

  12. Semi-continuous anaerobic co-digestion of dairy manure with three crop residues for biogas production.

    PubMed

    Li, Jiang; Wei, Luoyu; Duan, Qiwu; Hu, Guoquan; Zhang, Guozhi

    2014-03-01

    The characteristics of anaerobic semi-continuous co-digestion of dairy manure (DM) with three crop straw residues (SRs), rice straw, corn stalks and wheat straw under five mass mixing ratios (SRs/DM) were investigated. During the anaerobic digestion (AD) process, four periods were identified: startup, first stage of stabilization, second stage of stabilization, and suppression. Following the four periods, the biogas production rate varied between 101 and 576mL L(-1)d(-1). A high CH4 content and volatile solid reduction was maintained at the SRs/DM mass mixing ratio 1:9. The highest cumulative biogas production of more than 19L was obtained at ratio 5:5. However, ratio 9:1 performed worst in the whole process. Systematic analysis of the elements revealed nitrogen, phosphorus, and trace elements contents were important for the AD. Overall, the semi-continuous AD is efficient within a wide range of SRs/DM mass mixing ratios. PMID:24525215

  13. Growth and physiological changes in continuously cropped eggplant (Solanum melongena L.) upon relay intercropping with garlic (Allium sativum L.)

    PubMed Central

    Wang, Mengyi; Wu, Cuinan; Cheng, Zhihui; Meng, Huanwen

    2015-01-01

    Relay intercropping represents an alternative for sustainable production of vegetables, but the changes of internally antioxidant defense combined with the growth and yield are not clear. Field experiment was carried out to investigate the malondialdehyde (MDA) content and activity levels of superoxide dismutase (SOD), peroxidase (POD), polyphenol oxidase (PPO), and phenylalanine ammonia-lyase (PAL) in eggplant (Solanum melongena L.) and plant height, stem diameter, maximal leaf area, and yield of eggplant grown under successive cropping in the year 2011 and 2012 to see if relay intercropping with garlic (Allium sativum L.) could benefit to eggplant growth and yield. Three experimental treatments with three repeats in each were carried out (completely randomized block design): eggplant monoculture (CK), eggplant relay intercropping with normal garlic (NG), and eggplant relay intercropping with green garlic (GG). In both years, the MDA content was significantly lower and SOD and POD activities were generally lower in NG and GG compared with CK in most sampling dates. PPO activity trends were generally opposite to those of POD. The general trend of PAL activity was similar to MDA. The plant height and stem of eggplant was lower, but the maximal leaf area was larger in NG and GG in 2011; in 2012 the plant growth was stronger in relay intercropping treatments. For eggplant yield in 2011, NG was 2.85% higher than CK; after the time for the green garlic pulled out was moved forward in 2012, the yield was increased by 6.26 and 7.80%, respectively, in NG and GG. The lower MDA content and enzyme activities in relay intercropping treatments showed that the eggplant suffered less damage from environment and continuous cropping obstacles, which promoted healthier plant. Thus from both the growth and physiological perspective, it was concluded that eggplant/garlic relay intercropping is a beneficial cultivation practice maintaining stronger plant growth and higher yield. PMID

  14. Native root-associated bacteria rescue a plant from a sudden-wilt disease that emerged during continuous cropping.

    PubMed

    Santhanam, Rakesh; Luu, Van Thi; Weinhold, Arne; Goldberg, Jay; Oh, Youngjoo; Baldwin, Ian T

    2015-09-01

    Plants maintain microbial associations whose functions remain largely unknown. For the past 15 y, we have planted the annual postfire tobacco Nicotiana attenuata into an experimental field plot in the plant's native habitat, and for the last 8 y the number of plants dying from a sudden wilt disease has increased, leading to crop failure. Inadvertently we had recapitulated the common agricultural dilemma of pathogen buildup associated with continuous cropping for this native plant. Plants suffered sudden tissue collapse and black roots, symptoms similar to a Fusarium-Alternaria disease complex, recently characterized in a nearby native population and developed into an in vitro pathosystem for N. attenuata. With this in vitro disease system, different protection strategies (fungicide and inoculations with native root-associated bacterial and fungal isolates), together with a biochar soil amendment, were tested further in the field. A field trial with more than 900 plants in two field plots revealed that inoculation with a mixture of native bacterial isolates significantly reduced disease incidence and mortality in the infected field plot without influencing growth, herbivore resistance, or 32 defense and signaling metabolites known to mediate resistance against native herbivores. Tests in a subsequent year revealed that a core consortium of five bacteria was essential for disease reduction. This consortium, but not individual members of the root-associated bacteria community which this plant normally recruits during germination from native seed banks, provides enduring resistance against fungal diseases, demonstrating that native plants develop opportunistic mutualisms with prokaryotes that solve context-dependent ecological problems. PMID:26305938

  15. Growth and physiological changes in continuously cropped eggplant (Solanum melongena L.) upon relay intercropping with garlic (Allium sativum L.).

    PubMed

    Wang, Mengyi; Wu, Cuinan; Cheng, Zhihui; Meng, Huanwen

    2015-01-01

    Relay intercropping represents an alternative for sustainable production of vegetables, but the changes of internally antioxidant defense combined with the growth and yield are not clear. Field experiment was carried out to investigate the malondialdehyde (MDA) content and activity levels of superoxide dismutase (SOD), peroxidase (POD), polyphenol oxidase (PPO), and phenylalanine ammonia-lyase (PAL) in eggplant (Solanum melongena L.) and plant height, stem diameter, maximal leaf area, and yield of eggplant grown under successive cropping in the year 2011 and 2012 to see if relay intercropping with garlic (Allium sativum L.) could benefit to eggplant growth and yield. Three experimental treatments with three repeats in each were carried out (completely randomized block design): eggplant monoculture (CK), eggplant relay intercropping with normal garlic (NG), and eggplant relay intercropping with green garlic (GG). In both years, the MDA content was significantly lower and SOD and POD activities were generally lower in NG and GG compared with CK in most sampling dates. PPO activity trends were generally opposite to those of POD. The general trend of PAL activity was similar to MDA. The plant height and stem of eggplant was lower, but the maximal leaf area was larger in NG and GG in 2011; in 2012 the plant growth was stronger in relay intercropping treatments. For eggplant yield in 2011, NG was 2.85% higher than CK; after the time for the green garlic pulled out was moved forward in 2012, the yield was increased by 6.26 and 7.80%, respectively, in NG and GG. The lower MDA content and enzyme activities in relay intercropping treatments showed that the eggplant suffered less damage from environment and continuous cropping obstacles, which promoted healthier plant. Thus from both the growth and physiological perspective, it was concluded that eggplant/garlic relay intercropping is a beneficial cultivation practice maintaining stronger plant growth and higher yield. PMID

  16. Native root-associated bacteria rescue a plant from a sudden-wilt disease that emerged during continuous cropping

    PubMed Central

    Santhanam, Rakesh; Luu, Van Thi; Weinhold, Arne; Goldberg, Jay; Oh, Youngjoo; Baldwin, Ian T.

    2015-01-01

    Plants maintain microbial associations whose functions remain largely unknown. For the past 15 y, we have planted the annual postfire tobacco Nicotiana attenuata into an experimental field plot in the plant’s native habitat, and for the last 8 y the number of plants dying from a sudden wilt disease has increased, leading to crop failure. Inadvertently we had recapitulated the common agricultural dilemma of pathogen buildup associated with continuous cropping for this native plant. Plants suffered sudden tissue collapse and black roots, symptoms similar to a Fusarium–Alternaria disease complex, recently characterized in a nearby native population and developed into an in vitro pathosystem for N. attenuata. With this in vitro disease system, different protection strategies (fungicide and inoculations with native root-associated bacterial and fungal isolates), together with a biochar soil amendment, were tested further in the field. A field trial with more than 900 plants in two field plots revealed that inoculation with a mixture of native bacterial isolates significantly reduced disease incidence and mortality in the infected field plot without influencing growth, herbivore resistance, or 32 defense and signaling metabolites known to mediate resistance against native herbivores. Tests in a subsequent year revealed that a core consortium of five bacteria was essential for disease reduction. This consortium, but not individual members of the root-associated bacteria community which this plant normally recruits during germination from native seed banks, provides enduring resistance against fungal diseases, demonstrating that native plants develop opportunistic mutualisms with prokaryotes that solve context-dependent ecological problems. PMID:26305938

  17. [Effects of different application rates of calcium cyanamide on soil microbial biomass and enzyme activity in cucumber continuous cropping].

    PubMed

    Zhang, Xue-peng; Ning, Tang-yuan; Yang, Yan; Sun, Tao; Zhang, Shu-min; Wang, Bin

    2015-10-01

    A 2-year field experiment was conducted to study the effects of CaCN2 combined with cucumber straw retention on soil microbial biomass carbon (SMBC) , soil microbial biomass nitrogen (SMBN) and soil enzyme activities under cucumber continuous cropping system. Four treatments were used in this study as follows: CK (null CaCN2), CaCN2-90 (1350 kg CaCN2 . hm-2) CaCN2-60 (900 kg CaCN2 . hm-2), CaCN2-30 (450 kg CaCN2 . hm-2). The results indicated that, compared with the other treatments, CaCN2-90 treatment significantly decreased SMBC in 0-10 cm soil layer at seedling stage, but increased SMBC in 0-20 cm soil layer after early-fruit stage. Compared with CK, CaCN2 increased SMBC in 0-20 cm soil layer at late-fruit stage, and increased SMBN in 0-10 cm soil layer at mid- and late-fruit stages, however there was no significant trend among CaCN2 treatments in the first year (2012), while in the second year (2013) SMBN increased with the increasing CaCN2 amount after mid-fruit stage. CaCN2 increased straw decaying and nutrients releasing, and also increased soil organic matter. Furthermore, the CaCN2-90 could accelerate straw decomposition. Compared with CK, CaCN2 effectively increased soil urease, catalase and polyphenol oxidase activity. The soil urease activity increased while the polyphenol oxidase activity decreased with the increase of CaCN2, and CaCN2-60 could significantly improve catalase activity. Soil organic matter, urease activity and catalase activity had significant positive correlations with SMBC and SMBN. However, polyphenol oxidase activity was negatively correlated to SMBC and SMBN. Our findings indicated that CaCN2 application at 900 kg . hm-2 combined with cucumber straw retention could effectively improve soil environment, alleviating the soil obstacles under the cucumber continuous cropping system. PMID:26995916

  18. [Effects of rotation and fallowing on the microbial communities and enzyme activities in a solar greenhouse soil under continuous cucumber cropping].

    PubMed

    Yang, Feng-juan; Wu, Huan-tao; Wei, Min; Wang, Xiu-feng; Shi, Qing-hua

    2009-12-01

    A pot experiment was conducted to study the effects of rotation and fallowing on the microbial communities and enzyme activities in a greenhouse soil continuously cropped with cucumber and on the growth and yield of followed cucumber. Comparing with continuous cropping, rotation improved the components of soil microbial communities, which was manifested in the increase of bacteria and actinomycetes and the decrease of fungi. Rotation and fallowing enhanced the activities of soil invertase, urease, catalase, and polyphenol oxidase significantly. The quantities of soil bacteria and actinomycetes and the activity of soil invertase increased at the fruiting stage of cucumber plants, being the maximum at harvest stage, but decreased thereafter. In contrast, the quantity of soil fungi had a linear increase, and the activities of soil urease, catalase, and polyphenol oxidase decreased gradually during fruit development. Welsh onion and waxy maize promoted the growth and fruiting of the followed cucumber plants significantly, being the optimal rotation crops for cucumber. PMID:20353066

  19. Developing suppressive soil for root diseases of soybean with continuous long-term cropping of soybean in black soil of northeast China

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Field experiments were set up in northeast China in 1991 to test if suppressive soil to soybean root diseases could be developed with continuous long-term soybean cropping. Based on the field observation in 2007, 2009, and 2011, soybean root growth was promoted and the severities of root disease wer...

  20. Comparing production practices and costs for continuous corn and corn-soybean cropping systems: A National Survey of 2005 corn-for-grain producers

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Forecasts for increased corn acreage will likely lead to an increase in continuous corn cropping systems which may require producers to adjust their production practices compared to the more widely practiced corn-soybean rotation system. Using 2005 field-level data from a probability-based national...

  1. The Lower Sevier River Basin Crop Monitor and Forecast Decision Support System: Exploiting Landsat Imagery to Provide Continuous Information to Farmers and Water Managers

    NASA Astrophysics Data System (ADS)

    Torres-Rua, A. F.; Walker, W. R.; McKee, M.

    2013-12-01

    The last century has seen a large number of innovations in agriculture such as better policies for water control and management, upgraded water conveyance, irrigation, distribution, and monitoring systems, and better weather forecasting products. In spite of this, irrigation management and irrigation water deliveries by farmers/water managers is still based on factors like water share amounts, tradition, and past experience on irrigation. These factors are not necessarily related to the actual crop water use; they are followed because of the absence of related information provided in a timely manner at an affordable cost. Thus, it is necessary to develop means to deliver continuous and personalized information about crop water requirements to water users/managers at the field and irrigation system levels so managers at these levels can better quantify the required versus available water for irrigation during the irrigation season. This study presents a new decision support system (DSS) platform that addresses the absence of information on actual crop water requirements and crop performance by providing continuous updated farm-based crop water use along with other farm performance indicators such as crop yield and farm management to irrigators and water managers. This DSS exploits the periodicity of the Landsat Satellite Mission (8 to 16 days, depending on the period of interest) to provide remote monitoring at the individual field and irrigation system levels. The Landsat satellite images are converted into information about crop water use, yield performance and field management through application of state-of-the-art semi-physical and statistical algorithms that provide this information at a pixel basis that are ultimately aggregated to field and irrigation system levels. A version of the DSS has been implemented for the agricultural lands in the Lower Sevier River, Utah, and has been operational since the beginning of the 2013 irrigation season. The main goal of

  2. Reducing environmental risk of excessively fertilized soils and improving cucumber growth by Caragana microphylla-straw compost application in long-term continuous cropping systems.

    PubMed

    Tian, Yongqiang; Wang, Qing; Zhang, Weihua; Gao, Lihong

    2016-02-15

    Continuous cropping is a common agricultural practice in the word. In China, farmers often apply excessive fertilizers to fields in an attempt to maintain yields in continuous cropping systems. However, this practice often results in high nutrient concentrations in soils, nutrient pollution in leaching water and more crop disease. Here, we investigated 8 different soils from continuously cropped cucumbers in Northern China that grouped into those with extremely high nutrient levels (EHNL) and those with lower nutrient levels (LNL). All soils were treated with Caragana microphylla-straw (CMS) compost addition, and then were used to measure soil physiochemical and microbial properties, leaching water quality, plant root growth and cucumber fruit yield. In general, the EHNL-soil showed higher nitrate, phosphorus and potassium concentrations in the leaching water compared to the LNL-soil. However, the CMS compost application increased soil nutrient and water holding capacities, total microbial biomass (bacteria and fungi), root length, plant biomass and fruit yields, but decreased nutrient concentrations in the leaching water from the EHNL-soil. In addition, the CMS compost decreased the number of Fusarium oxysporum f. sp. cucumerinum in soils with very high concentration of mineral nitrogen. Our results infer that CMS compost application was an effective method for reducing environmental risk of excessively fertilized soils. PMID:26657371

  3. [Effects of cotton stalk biochar on microbial community structure and function of continuous cropping cotton rhizosphere soil in Xinjiang, China].

    PubMed

    Gu, Mei-ying; Tang, Guang-mu; Liu, Hong-liang; Li, Zhi-qiang; Liu, Xiao-wei; Xu, Wan-li

    2016-01-01

    In this study, field trials were conducted to examine the effects of cotton stalk biochar on microbial population, function and structural diversity of microorganisms in rhizosphere soil of continuous cotton cropping field in Xinjiang by plate count, Biolog and DGGE methods. The experiment was a factorial design with four treatments: 1) normal fertilization with cotton stalk removed (NPK); 2) normal fertilization with cotton stalk powdered and returned to field (NPKS); 3) normal fertilization plus cotton stalk biochar at 22.50 t · hm⁻² (NPKB₁); and 4) normal fertilization plus cotton stalk biochar at 45.00 t · hm⁻² (NPKB₂). The results showed that cotton stalk biochar application obviously increased the numbers of bacteria and actinomycetes in the rhizospheric soil. Compared with NPK treatment, the number of fungi was significantly increased in the NPKB₁treatment, but not in the NPKB₂ treatment. However, the number of fungi was generally lower in the biochar amended (NPKB₁, NPKB₂) than in the cotton stalk applied plots (NPKS). Application of cotton stalk biochar increased values of AWCD, and significantly improved microbial richness index, suggesting that the microbial ability of utilizing carbohydrates, amino acids and carboxylic acids, especially phenolic acids was enhanced. The number of DGGE bands of NPKB₂ treatment was the greatest, with some species of Gemmatimonadetes, Acidobacteria, Proteobacteria and Actinobacteria being enriched. UPGMC Cluster analysis pointed out that bacterial communities in the rhizospheric soil of NPKB₂ treatment were different from those in the NPK, NPKS and NPKB₁treatments, which belonged to the same cluster. These results indicated that application of cotton stalk biochar could significantly increase microbial diversity and change soil bacterial community structure in the cotton rhizosphere soil, thus improving the health of soil ecosystem. PMID:27228607

  4. Assessment of crop yield losses in Punjab and Haryana using two years of continuous in-situ ozone measurements

    NASA Astrophysics Data System (ADS)

    Sinha, B.; Singh Sangwan, K.; Maurya, Y.; Kumar, V.; Sarkar, C.; Chandra, B. P.; Sinha, V.

    2015-01-01

    In this study we use a high quality dataset of in-situ ozone measurements at a suburban site called Mohali in the state of Punjab to estimate ozone related crop yield losses for wheat, rice, cotton and maize for Punjab and the neighbouring state Haryana for the years 2011-2013. We inter-compare crop yield loss estimates according to different exposure metrics such as AOT40 and M7 for the two major crop growing seasons of Kharif (June-October) and Rabi (November-April) and establish a new crop yield exposure relationship for South Asian wheat and rice cultivars. These are a factor of two more sensitive to ozone induced crop yield losses compared to their European and American counterparts. Relative yield losses based on the AOT40 metrics ranged from 27-41% for wheat, 21-26% for rice, 9-11% for maize and 47-58% for cotton. Crop production losses for wheat amounted to 20.8 million t in fiscal year 2012-2013 and 10.3 million t in fiscal year 2013-2014 for Punjab and Haryana jointly. Crop production losses for rice totalled 5.4 million t in fiscal year 2012-2013 and 3.2 million t year 2013-2014 for Punjab and Haryana jointly. The Indian National Food Security Ordinance entitles ~ 820 million of India's poor to purchase about 60 kg of rice/wheat per person annually at subsidized rates. The scheme requires 27.6 Mt of wheat and 33.6 Mt of rice per year. Mitigation of ozone related crop production losses in Punjab and Haryana alone could provide >50% of the wheat and ~10% of the rice required for the scheme. The total economic cost losses in Punjab and Haryana amounted to USD 6.5 billion in the fiscal year 2012-2013 and USD 3.7 billion in the fiscal year 2013-2014. This economic loss estimate represents a very conservative lower limit based on the minimum support price of the crop, which is lower than the actual production costs. The upper limit for ozone related crop yield losses in entire India currently amounts to 3.5-20% of India's GDP. Mitigation of high surface ozone

  5. Microbial Community Composition and Functionality As Affected by An Integrated Crop-Livestock System Compared to Continuous Cotton

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Water availability is a primary limiting factor facing agricultural systems in most semi-arid regions across the world. This study is part of a larger long-term project to develop and evaluate integrated crop and livestocksystems in order to reduce dependence on underground water sources by optimizi...

  6. Assessment of crop yield losses in Punjab and Haryana using 2 years of continuous in situ ozone measurements

    NASA Astrophysics Data System (ADS)

    Sinha, B.; Singh Sangwan, K.; Maurya, Y.; Kumar, V.; Sarkar, C.; Chandra, B. P.; Sinha, V.

    2015-08-01

    In this study we use a high-quality data set of in situ ozone measurements at a suburban site called Mohali in the state of Punjab to estimate ozone-related crop yield losses for wheat, rice, cotton and maize for Punjab and the neighbouring state Haryana for the years 2011-2013. We intercompare crop yield loss estimates according to different exposure metrics, such as AOT40 (accumulated ozone exposure over a threshold of 40) and M7 (mean 7-hour ozone mixing ratio from 09:00 to 15:59), for the two major crop growing seasons of kharif (June-October) and rabi (November-April) and establish a new crop-yield-exposure relationship for southern Asian wheat, maize and rice cultivars. These are a factor of 2 more sensitive to ozone-induced crop yield losses compared to their European and American counterparts. Relative yield losses based on the AOT40 metrics ranged from 27 to 41 % for wheat, 21 to 26 % for rice, 3 to 5 % for maize and 47 to 58 % for cotton. Crop production losses for wheat amounted to 20.8 ± 10.4 million t in the fiscal year of 2012-2013 and 10.3 ± 4.7 million t in the fiscal year of 2013-2014 for Punjab and Haryana taken together. Crop production losses for rice totalled 5.4 ± 1.2 million t in the fiscal year of 2012-2013 and 3.2 ± 0.8 million t in the year 2013-2014 for Punjab and Haryana taken together. The Indian National Food Security Ordinance entitles ~ 820 million of India's poor to purchase about 60 kg of rice or wheat per person annually at subsidized rates. The scheme requires 27.6 Mt of wheat and 33.6 Mt of rice per year. The mitigation of ozone-related crop production losses in Punjab and Haryana alone could provide > 50 % of the wheat and ~ 10 % of the rice required for the scheme. The total economic cost losses in Punjab and Haryana amounted to USD 6.5 ± 2.2 billion in the fiscal year of 2012-2013 and USD 3.7 ± 1.2 billion in the fiscal year of 2013-2014. This economic loss estimate represents a very conservative lower limit based on

  7. [Applicability of agricultural production systems simulator (APSIM) in simulating the production and water use of wheat-maize continuous cropping system in North China Plain].

    PubMed

    Wang, Lin; Zheng, You-fei; Yu, Qiang; Wang, En-li

    2007-11-01

    The Agricultural Production Systems Simulator (APSIM) was applied to simulate the 1999-2001 field experimental data and the 2002-2003 water use data at the Yucheng Experiment Station under Chinese Ecosystem Research Network, aimed to verify the applicability of the model to the wheat-summer maize continuous cropping system in North China Plain. The results showed that the average errors of the simulations of leaf area index (LAI), biomass, and soil moisture content in 1999-2000 and 2000-2001 field experiments were 27.61%, 24.59% and 7.68%, and 32.65%, 35.95% and 10.26%, respectively, and those of LAI and biomass on the soils with high and low moisture content in 2002-2003 were 26.65% and 14.52%, and 23.91% and 27.93%, respectively. The simulations of LAI and biomass accorded well with the measured values, with the coefficients of determination being > 0.85 in 1999-2000 and 2002-2003, and 0.78 in 2000-2001, indicating that APSIM had a good applicability in modeling the crop biomass and soil moisture content in the continuous cropping system, but the simulation error of LAI was a little larger. PMID:18260451

  8. Different continuous cropping spans significantly affect microbial community membership and structure in a vanilla-grown soil as revealed by deep pyrosequencing.

    PubMed

    Xiong, Wu; Zhao, Qingyun; Zhao, Jun; Xun, Weibing; Li, Rong; Zhang, Ruifu; Wu, Huasong; Shen, Qirong

    2015-07-01

    In the present study, soil bacterial and fungal communities across vanilla continuous cropping time-series fields were assessed through deep pyrosequencing of 16S ribosomal RNA (rRNA) genes and internal transcribed spacer (ITS) regions. The results demonstrated that the long-term monoculture of vanilla significantly altered soil microbial communities. Soil fungal diversity index increased with consecutive cropping years, whereas soil bacterial diversity was relatively stable. Bray-Curtis dissimilarity cluster and UniFrac-weighted principal coordinate analysis (PCoA) revealed that monoculture time was the major determinant for fungal community structure, but not for bacterial community structure. The relative abundances (RAs) of the Firmicutes, Actinobacteria, Bacteroidetes, and Basidiomycota phyla were depleted along the years of vanilla monoculture. Pearson correlations at the phyla level demonstrated that Actinobacteria, Armatimonadetes, Bacteroidetes, Verrucomicrobia, and Firmicutes had significant negative correlations with vanilla disease index (DI), while no significant correlation for fungal phyla was observed. In addition, the amount of the pathogen Fusarium oxysporum accumulated with increasing years and was significantly positively correlated with vanilla DI. By contrast, the abundance of beneficial bacteria, including Bradyrhizobium and Bacillus, significantly decreased over time. In sum, soil weakness and vanilla stem wilt disease after long-term continuous cropping can be attributed to the alteration of the soil microbial community membership and structure, i.e., the reduction of the beneficial microbes and the accumulation of the fungal pathogen. PMID:25391237

  9. Continuous rice cropping has been sequestering carbon in soils in Java and South Korea for the past 30 years

    NASA Astrophysics Data System (ADS)

    Minasny, Budiman; McBratney, Alex B.; Hong, Suk Young; Sulaeman, Yiyi; Kim, Myung Sook; Zhang, Yong Seon; Kim, Yi Hyun; Han, Kyung Hwa

    2012-09-01

    The soil system represents the dominant terrestrial reservoir of carbon in the biosphere. Deforestation, poor land management, and excessive cropping lead to a decrease in soil carbon stocks, but intensive cropping can reverse this trend. We discuss long-term soil organic carbon data from two major rice-growing areas: Java (Indonesia) and South Korea. Soil organic carbon content in the top 15 cm for both countries has increased in recent decades. In South Korea, the top 15 cm of soils store about 31 Tg (1012 g) of carbon (C) with a sequestration rate of 0.3 Tg C per year. In Java, the agricultural topsoils accumulated more than 1.7 Tg C per year over the period 1990-2010. We attribute the increase in measured SOC mainly to increases in above- and below- ground biomass due to fertilization. Good agronomic practices can maintain and increase soil carbon, which ensures soil security to produce food and fiber.

  10. Variation of rhizosphere bacterial community in watermelon continuous mono-cropping soil by long-term application of a novel bioorganic fertilizer.

    PubMed

    Ling, Ning; Deng, Kaiying; Song, Yang; Wu, Yunchen; Zhao, Jun; Raza, Waseem; Huang, Qiwei; Shen, Qirong

    2014-01-01

    The application method for a novel bioorganic fertilizer (BIO) was developed to improve its biocontrol efficacy of Fusarium wilt (Ling et al. 2010). However, its efficacy on controlling Fusarium wilt and the variations of microbial community after long-term application for watermelon production had not been elucidated. To clarify, a 4-years pot experiment of mono-cropping watermelon was conducted. The results revealed that though the disease incidences were increased in all treatments with the increase of continuous cropping years, the treatment of BIO application both in nursery and pot soil always maintained the lowest disease incidence. The real-time PCR results showed that the population of Paenibacillus polymyxa was decreased with continuous cropping years, but in all seasons, the treatment with BIO application both in nursery and pot soil had a highest population of P. polymyxa than the other treatments. On the other hand, the abundance of the pathogen FON was increased with the increase of continuous cropping years and the lowest rate of increase was found by BIO application in both nursery and pot soil. DGGE patterns showed that the bacterial diversity was weakened after mono-cropping of watermelon for 4 years, but the consecutive applications of BIO at nursery and transplanting stage resulted in the minimal change of bacterial diversity. More detailed differences on bacterial diversity between control and double application of BIO treatment after 4-years monoculture were analyzed by 454 pyrosequencing, which showed the dominant phyla found in both samples were Firmicutes, Proteobacteria and Actinobacteria, and the consecutive applications of BIO recruited more beneficial bacteria than control, such as Bacillus, Paenibacillus, Haliangium, Streptomyces. Overall, these results, to a certain extent, approved that the consecutive applications of BIO at nursery and transplanting stage could effectively suppress watermelon Fusarium wilt by regulating the

  11. Semi-continuous anaerobic digestion of different silage crops: VFAs formation, methane yield from fiber and non-fiber components and digestate composition.

    PubMed

    Pokój, T; Bułkowska, K; Gusiatin, Z M; Klimiuk, E; Jankowski, K J

    2015-08-01

    This study presents the results of long-term semi-continuous experiments on anaerobic digestion at an HRT of 45d with ten silages: 2 annual and 4 perennial crops, and 4 mixtures of annual with perennial crops. The composition of substrates and digestates was determined with Van Soest's fractionation method. Removal of non-fiber materials ranged from 49.4% (Miscanthus sacchariflorus) to 89.3% (Zea mays alone and mixed with M. sacchariflorus), that of fiber materials like lignin ranged from 0.005% (Z. mays alone and mixed with grasses at VS ratio of 90:10%) to 46.5% (Sida hermaphrodita). The lowest stability of anaerobic digestion, as confirmed by normalized data concentrations of volatile fatty acids, was reported for both miscanthuses and sugar sorghum. The methane yield coefficients for non-fiber and fiber materials were 0.3666 and 0.2556L/g, respectively. All digestate residues had high fertilizing value, especially those from mixtures of crops. PMID:25958143

  12. Soil microbial community structure, diversity and functionality in integrated livestock-crop production systems compared to continuous cotton

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Many regions of the world are facing soil quality and sustainability problems due to monoculture. In the Texas High Plains of US, cotton (Gossypium hirsutum) production under continuous monoculture and conventional tillage (since the 1940’s) has contributed to wind-induced soil erosion and organic m...

  13. Recovery of resources for advanced life support space applications: effect of retention time on biodegradation of two crop residues in a fed-batch, continuous stirred tank reactor.

    PubMed

    Strayer, R F; Finger, B W; Alazraki, M P; Cook, K; Garland, J L

    2002-09-01

    Bioreactor retention time is a key process variable that will influence costs that are relevant to long distance space travel or long duration space habitation. However. little is known about the effects of this parameter on the microbiological treatment options that are being proposed for Advanced Life Support (ALS) systems. Two bioreactor studies were designed to examine this variable. In the first one, six retention times ranging from 1.3 to 21.3 days--were run in duplicate, 81 working-volume continuous stirred tank reactors (CSTR) that were fed ALS wheat residues. Ash-free dry weight loss, carbon mineralization, soluble TOC reduction, changes in fiber content (cellulose, hemicellulose, and lignin), bacterial numbers, and mineral recoveries were monitored. At short retention times--1.33 days--biodegradation was poor (total: 16-20%, cellulose - 12%, hemicellulose - 28%) but soluble TOC was decreased by 75-80% and recovery of major crop inorganic nutrients was adequate, except for phosphorus. A high proportion of the total bacteria (ca. 83%) was actively respiring. At the longest retention time tested, 21.3 days, biodegradation was good (total: 55-60%, cellulose ca. 70%, hemicellulose - ca. 55%) and soluble TOC was decreased by 80%. Recovery of major nutrients, except phosphorus, remained adequate. A very low proportion of total bacteria was actively respiring (ca. 16%). The second bioreactor study used potato residue to determine if even shorter retention times could be used (range 0.25-2.0 days). Although overall biodegradation deteriorated, the degradation of soluble TOC continued to be ca. 75%. We conclude that if the goal of ALS bioprocessing is maximal degradation of crop residues, including cellulose, then retention times of 10 days or longer will be needed. If the goal is to provide inorganic nutrients with the smallest volume/weight bioreactor possible, then a retention time of 1 day (or less) is sufficient. PMID:12139328

  14. Recovery of resources for advanced life support space applications: effect of retention time on biodegradation of two crop residues in a fed-batch, continuous stirred tank reactor

    NASA Technical Reports Server (NTRS)

    Strayer, R. F.; Finger, B. W.; Alazraki, M. P.; Cook, K.; Garland, J. L.

    2002-01-01

    Bioreactor retention time is a key process variable that will influence costs that are relevant to long distance space travel or long duration space habitation. However. little is known about the effects of this parameter on the microbiological treatment options that are being proposed for Advanced Life Support (ALS) systems. Two bioreactor studies were designed to examine this variable. In the first one, six retention times ranging from 1.3 to 21.3 days--were run in duplicate, 81 working-volume continuous stirred tank reactors (CSTR) that were fed ALS wheat residues. Ash-free dry weight loss, carbon mineralization, soluble TOC reduction, changes in fiber content (cellulose, hemicellulose, and lignin), bacterial numbers, and mineral recoveries were monitored. At short retention times--1.33 days--biodegradation was poor (total: 16-20%, cellulose - 12%, hemicellulose - 28%) but soluble TOC was decreased by 75-80% and recovery of major crop inorganic nutrients was adequate, except for phosphorus. A high proportion of the total bacteria (ca. 83%) was actively respiring. At the longest retention time tested, 21.3 days, biodegradation was good (total: 55-60%, cellulose ca. 70%, hemicellulose - ca. 55%) and soluble TOC was decreased by 80%. Recovery of major nutrients, except phosphorus, remained adequate. A very low proportion of total bacteria was actively respiring (ca. 16%). The second bioreactor study used potato residue to determine if even shorter retention times could be used (range 0.25-2.0 days). Although overall biodegradation deteriorated, the degradation of soluble TOC continued to be ca. 75%. We conclude that if the goal of ALS bioprocessing is maximal degradation of crop residues, including cellulose, then retention times of 10 days or longer will be needed. If the goal is to provide inorganic nutrients with the smallest volume/weight bioreactor possible, then a retention time of 1 day (or less) is sufficient.

  15. Identification and Characterization of 40 Isolated Rehmannia glutinosa MYB Family Genes and Their Expression Profiles in Response to Shading and Continuous Cropping

    PubMed Central

    Wang, Fengqing; Suo, Yanfei; Wei, He; Li, Mingjie; Xie, Caixia; Wang, Lina; Chen, Xinjian; Zhang, Zhongyi

    2015-01-01

    The v-myb avian myeloblastosis viral oncogene homolog (MYB) superfamily constitutes one of the most abundant groups of transcription factors (TFs) described in plants. To date, little is known about the MYB genes in Rehmannia glutinosa. Forty unique MYB genes with full-length cDNA sequences were isolated. These 40 genes were grouped into five categories, one R1R2R3-MYB, four TRFL MYBs, four SMH MYBs, 25 R2R3-MYBs, and six MYB-related members. The MYB DNA-binding domain (DBD) sequence composition was conserved among proteins of the same subgroup. As expected, most of the closely related members in the phylogenetic tree exhibited common motifs. Additionally, the gene structure and motifs of the R. glutinosa MYB genes were analyzed. MYB gene expression was analyzed in the leaf and the tuberous root under two abiotic stress conditions. Expression profiles showed that most R. glutinosa MYB genes were expressed in the leaf and the tuberous root, suggesting that MYB genes are involved in various physiological and developmental processes in R. glutinosa. Seven MYB genes were up-regulated in response to shading in at least one tissue. Two MYB genes showed increased expression and 13 MYB genes showed decreased expression in the tuberous root under continuous cropping. This investigation is the first comprehensive study of the MYB gene family in R. glutinosa. PMID:26147429

  16. Intercropping of Green Garlic (Allium sativum L.) Induces Nutrient Concentration Changes in the Soil and Plants in Continuously Cropped Cucumber (Cucumis sativus L.) in a Plastic Tunnel

    PubMed Central

    Xiao, Xuemei; Cheng, Zhihui; Meng, Huanwen; Liu, Lihong; Li, Hezi; Dong, Yinxin

    2013-01-01

    A pot-based experiment was conducted to investigate nutrient concentrations in cucumber plants intercropped with various amounts of green garlic. In addition, the soil nutrient contents were studied over two consecutive growing seasons. The results revealed that the accumulation of biomass and the nutritional elements nitrogen (N), phosphorus (P), potassium (K), calcium (Ca) and manganese (Mn) in cucumber plants were significantly increased for intercropping treatments during the two growing seasons compared to monoculture. Conversely, magnesium (Mg) concentrations were decreased in the cucumber plants. Shoot iron (Fe) concentrations decreased whereas root Fe concentrations increased in the intercropping system. Shoot and root zinc (Zn) concentrations decreased during the fall of 2011 but increased during the spring of 2012. Soil organic matter and available N, P and K were significantly increased as the proportion of intercropped green garlic increasing. Medium levels of intercropping green garlic improved cucumber nutrient concentrations the most. The regression analysis showed that the concentrations of most elements were significantly related to the amounts of garlic bulbs, especially the microelements in the spring 2011. The available soil N and organic matter were linearly related to the amounts of garlic bulbs. The results indicate that the nutritional status of the soil and plants of continuously cropped cucumber could be improved by intercropping with green garlic. PMID:23637994

  17. AGRONOMIC FEASIBILITY OF A CONTINUOUS DOUBLE CROP OF WINTER WHEAT AND SOYBEAN GROWN SOLELY FOR FORAGE IN THE SOUTHERN GREAT PLAINS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In the Southern Great Plains winter wheat is grown for grain-crop and used extensively for forage. During summer, wheat fields are normally fallow and summer forage is mostly native and improved warm-season perennial grass that decline in quality as they mature. Dry-land double cropping soybean behi...

  18. Carbon and Nitrogen Mineralization in Relation to Soil Particle-Size Fractions after 32 Years of Chemical and Manure Application in a Continuous Maize Cropping System

    PubMed Central

    Shao, Xingfang; Zhu, Ping; Zhang, Wenju; Xu, Minggang; Murphy, Daniel V.

    2016-01-01

    Long-term manure application is recognized as an efficient management practice to enhance soil organic carbon (SOC) accumulation and nitrogen (N) mineralization capacity. A field study was established in 1979 to understand the impact of long-term manure and/or chemical fertilizer application on soil fertility in a continuous maize cropping system. Soil samples were collected from field plots in 2012 from 9 fertilization treatments (M0CK, M0N, M0NPK, M30CK, M30N, M30NPK, M60CK, M60N, and M60NPK) where M0, M30, and M60 refer to manure applied at rates of 0, 30, and 60 t ha−1 yr−1, respectively; CK indicates no fertilizer; N and NPK refer to chemical fertilizer in the forms of either N or N plus phosphorus (P) and potassium (K). Soils were separated into three particle-size fractions (2000–250, 250–53, and <53 μm) by dry- and wet-sieving. A laboratory incubation study of these separated particle-size fractions was used to evaluate the effect of long-term manure, in combination with/without chemical fertilization application, on the accumulation and mineralization of SOC and total N in each fraction. Results showed that long-term manure application significantly increased SOC and total N content and enhanced C and N mineralization in the three particle-size fractions. The content of SOC and total N followed the order 2000–250 μm > 250–53μm > 53 μm fraction, whereas the amount of C and N mineralization followed the reverse order. In the <53 μm fraction, the M60NPK treatment significantly increased the amount of C and N mineralized (7.0 and 10.1 times, respectively) compared to the M0CK treatment. Long-term manure application, especially when combined with chemical fertilizers, resulted in increased soil microbial biomass C and N, and a decreased microbial metabolic quotient. Consequently, long-term manure fertilization was beneficial to both soil C and N turnover and microbial activity, and had significant effect on the microbial metabolic quotient

  19. Carbon and Nitrogen Mineralization in Relation to Soil Particle-Size Fractions after 32 Years of Chemical and Manure Application in a Continuous Maize Cropping System.

    PubMed

    Cai, Andong; Xu, Hu; Shao, Xingfang; Zhu, Ping; Zhang, Wenju; Xu, Minggang; Murphy, Daniel V

    2016-01-01

    Long-term manure application is recognized as an efficient management practice to enhance soil organic carbon (SOC) accumulation and nitrogen (N) mineralization capacity. A field study was established in 1979 to understand the impact of long-term manure and/or chemical fertilizer application on soil fertility in a continuous maize cropping system. Soil samples were collected from field plots in 2012 from 9 fertilization treatments (M0CK, M0N, M0NPK, M30CK, M30N, M30NPK, M60CK, M60N, and M60NPK) where M0, M30, and M60 refer to manure applied at rates of 0, 30, and 60 t ha(-1) yr(-1), respectively; CK indicates no fertilizer; N and NPK refer to chemical fertilizer in the forms of either N or N plus phosphorus (P) and potassium (K). Soils were separated into three particle-size fractions (2000-250, 250-53, and <53 μm) by dry- and wet-sieving. A laboratory incubation study of these separated particle-size fractions was used to evaluate the effect of long-term manure, in combination with/without chemical fertilization application, on the accumulation and mineralization of SOC and total N in each fraction. Results showed that long-term manure application significantly increased SOC and total N content and enhanced C and N mineralization in the three particle-size fractions. The content of SOC and total N followed the order 2000-250 μm > 250-53 μm > 53 μm fraction, whereas the amount of C and N mineralization followed the reverse order. In the <53 μm fraction, the M60NPK treatment significantly increased the amount of C and N mineralized (7.0 and 10.1 times, respectively) compared to the M0CK treatment. Long-term manure application, especially when combined with chemical fertilizers, resulted in increased soil microbial biomass C and N, and a decreased microbial metabolic quotient. Consequently, long-term manure fertilization was beneficial to both soil C and N turnover and microbial activity, and had significant effect on the microbial metabolic quotient. PMID

  20. Cover Crops

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cover crops are great tools to improve soil quality and health, and great tools to increase carbon sequestration. They are nutrient management tools that can help scavenge nitrate, cycle nitrogen to the following crop, mine NO3 from groundwater, and increase nitrogen use efficiency of cropping syste...

  1. Integrating multiple satellite data for crop monitoring

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Remote sensing provides a valuable data source for detecting crop types, monitoring crop condition and predicting crop yields from space. Routine and continuous remote sensing data are critical for agricultural research and operational applications. Since crop field dimensions tend to be relatively ...

  2. Containment of the western corn rootworm Diabrotica v.virgifera: continued successful management 2008 in southern Switzerland by monitoring and crop rotation.

    PubMed

    Hummel, Hans E; Bertossa, M

    2009-01-01

    Diabrotica virgifera virgifera LeConte (Col.: Chrysomelidae), known as western corn rootworm (WCR) and endemic in North America, invaded Europe about two decades ago. Various unsuccessful attempts have been made to eradicate it from the Old World. Management with a variety of strategies is the option now remaining. WCR management in Southern Switzerland by a unique containment approach has been practiced successfully since 2003 using biotechnical means. Without any chemical pesticides or GMO input, the Swiss government mandated adherence to strict crop rotation. In addition to the economic benefits of this relatively simple approach, the environment was saved a considerable burden of pesticide applications. Other countries are invited to follow this example of sustainable pest management. PMID:20222583

  3. Crop Biotechnology

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The influence of crop biotechnology on outcomes of agricultural practices and economics is readily evidenced by the escalating acreage of genetically engineered crops, all occurring in a relatively short time span. Until the mid 1990s, virtually no acreage was planted with commercial genetically mo...

  4. Crop residues

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Crop residues [e.g., corn (Zea mays) stover and small grain straw] are sometimes excluded when discussing cellulosic energy crops per se, but because of the vast area upon which they are grown and their current role in the development of cellulosic energy systems. This chapter focuses on current cor...

  5. 7 CFR 457.137 - Green pea crop insurance provisions.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 6 2012-01-01 2012-01-01 false Green pea crop insurance provisions. 457.137 Section 457.137 Agriculture Regulations of the Department of Agriculture (Continued) FEDERAL CROP INSURANCE CORPORATION, DEPARTMENT OF AGRICULTURE COMMON CROP INSURANCE REGULATIONS § 457.137 Green pea crop insurance provisions. The Green Pea Crop...

  6. 7 CFR 1208.3 - Crop year.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 10 2014-01-01 2014-01-01 false Crop year. 1208.3 Section 1208.3 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (MARKETING AGREEMENTS... § 1208.3 Crop year. Crop year means the 12-month period from April 1 to March 31 or such other...

  7. 7 CFR 1208.3 - Crop year.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 10 2013-01-01 2013-01-01 false Crop year. 1208.3 Section 1208.3 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (MARKETING AGREEMENTS... § 1208.3 Crop year. Crop year means the 12-month period from April 1 to March 31 or such other...

  8. Sunflower crop

    SciTech Connect

    Beard, B.H.

    1981-05-01

    A review of the sunflower as a major commercial crop, including its history, cultivation, hybridization and uses. It is grown principally for its oil which is high in polyunsaturated fatty acids and used in a variety of foods. Recently it has been tested in diesel engines and a high protein meal is produced from the seed residues.

  9. 7 CFR 457.135 - Onion crop insurance provisions.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 6 2014-01-01 2014-01-01 false Onion crop insurance provisions. 457.135 Section 457.135 Agriculture Regulations of the Department of Agriculture (Continued) FEDERAL CROP INSURANCE CORPORATION, DEPARTMENT OF AGRICULTURE COMMON CROP INSURANCE REGULATIONS § 457.135 Onion crop...

  10. 7 CFR 457.136 - Tobacco crop insurance provisions.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 6 2012-01-01 2012-01-01 false Tobacco crop insurance provisions. 457.136 Section 457.136 Agriculture Regulations of the Department of Agriculture (Continued) FEDERAL CROP INSURANCE CORPORATION, DEPARTMENT OF AGRICULTURE COMMON CROP INSURANCE REGULATIONS § 457.136 Tobacco crop...

  11. 7 CFR 457.136 - Tobacco crop insurance provisions.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 6 2013-01-01 2013-01-01 false Tobacco crop insurance provisions. 457.136 Section 457.136 Agriculture Regulations of the Department of Agriculture (Continued) FEDERAL CROP INSURANCE CORPORATION, DEPARTMENT OF AGRICULTURE COMMON CROP INSURANCE REGULATIONS § 457.136 Tobacco crop...

  12. 7 CFR 457.169 - Mint crop insurance provisions.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 6 2014-01-01 2014-01-01 false Mint crop insurance provisions. 457.169 Section 457.169 Agriculture Regulations of the Department of Agriculture (Continued) FEDERAL CROP INSURANCE CORPORATION, DEPARTMENT OF AGRICULTURE COMMON CROP INSURANCE REGULATIONS § 457.169 Mint crop...

  13. 7 CFR 457.171 - Cabbage crop insurance provisions.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 6 2012-01-01 2012-01-01 false Cabbage crop insurance provisions. 457.171 Section 457.171 Agriculture Regulations of the Department of Agriculture (Continued) FEDERAL CROP INSURANCE CORPORATION, DEPARTMENT OF AGRICULTURE COMMON CROP INSURANCE REGULATIONS § 457.171 Cabbage crop...

  14. 7 CFR 457.136 - Tobacco crop insurance provisions.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 6 2014-01-01 2014-01-01 false Tobacco crop insurance provisions. 457.136 Section 457.136 Agriculture Regulations of the Department of Agriculture (Continued) FEDERAL CROP INSURANCE CORPORATION, DEPARTMENT OF AGRICULTURE COMMON CROP INSURANCE REGULATIONS § 457.136 Tobacco crop...

  15. 7 CFR 457.169 - Mint crop insurance provisions.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 6 2012-01-01 2012-01-01 false Mint crop insurance provisions. 457.169 Section 457.169 Agriculture Regulations of the Department of Agriculture (Continued) FEDERAL CROP INSURANCE CORPORATION, DEPARTMENT OF AGRICULTURE COMMON CROP INSURANCE REGULATIONS § 457.169 Mint crop...

  16. 7 CFR 457.171 - Cabbage crop insurance provisions.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 6 2013-01-01 2013-01-01 false Cabbage crop insurance provisions. 457.171 Section 457.171 Agriculture Regulations of the Department of Agriculture (Continued) FEDERAL CROP INSURANCE CORPORATION, DEPARTMENT OF AGRICULTURE COMMON CROP INSURANCE REGULATIONS § 457.171 Cabbage crop...

  17. 7 CFR 457.136 - Tobacco crop insurance provisions.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 6 2010-01-01 2010-01-01 false Tobacco crop insurance provisions. 457.136 Section 457.136 Agriculture Regulations of the Department of Agriculture (Continued) FEDERAL CROP INSURANCE CORPORATION, DEPARTMENT OF AGRICULTURE COMMON CROP INSURANCE REGULATIONS § 457.136 Tobacco crop...

  18. 7 CFR 457.169 - Mint crop insurance provisions.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 6 2010-01-01 2010-01-01 false Mint crop insurance provisions. 457.169 Section 457.169 Agriculture Regulations of the Department of Agriculture (Continued) FEDERAL CROP INSURANCE CORPORATION, DEPARTMENT OF AGRICULTURE COMMON CROP INSURANCE REGULATIONS § 457.169 Mint crop...

  19. 7 CFR 457.171 - Cabbage crop insurance provisions.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 6 2014-01-01 2014-01-01 false Cabbage crop insurance provisions. 457.171 Section 457.171 Agriculture Regulations of the Department of Agriculture (Continued) FEDERAL CROP INSURANCE CORPORATION, DEPARTMENT OF AGRICULTURE COMMON CROP INSURANCE REGULATIONS § 457.171 Cabbage crop...

  20. 7 CFR 457.136 - Tobacco crop insurance provisions.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 6 2011-01-01 2011-01-01 false Tobacco crop insurance provisions. 457.136 Section 457.136 Agriculture Regulations of the Department of Agriculture (Continued) FEDERAL CROP INSURANCE CORPORATION, DEPARTMENT OF AGRICULTURE COMMON CROP INSURANCE REGULATIONS § 457.136 Tobacco crop...

  1. 7 CFR 457.171 - Cabbage crop insurance provisions.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 6 2010-01-01 2010-01-01 false Cabbage crop insurance provisions. 457.171 Section 457.171 Agriculture Regulations of the Department of Agriculture (Continued) FEDERAL CROP INSURANCE CORPORATION, DEPARTMENT OF AGRICULTURE COMMON CROP INSURANCE REGULATIONS § 457.171 Cabbage crop...

  2. 7 CFR 457.169 - Mint crop insurance provisions.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 6 2013-01-01 2013-01-01 false Mint crop insurance provisions. 457.169 Section 457.169 Agriculture Regulations of the Department of Agriculture (Continued) FEDERAL CROP INSURANCE CORPORATION, DEPARTMENT OF AGRICULTURE COMMON CROP INSURANCE REGULATIONS § 457.169 Mint crop...

  3. 7 CFR 457.160 - Processing tomato crop insurance provisions.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 6 2011-01-01 2011-01-01 false Processing tomato crop insurance provisions. 457.160 Section 457.160 Agriculture Regulations of the Department of Agriculture (Continued) FEDERAL CROP INSURANCE CORPORATION, DEPARTMENT OF AGRICULTURE COMMON CROP INSURANCE REGULATIONS § 457.160 Processing tomato crop insurance provisions. The...

  4. 7 CFR 457.153 - Peach crop insurance provisions.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 6 2013-01-01 2013-01-01 false Peach crop insurance provisions. 457.153 Section 457.153 Agriculture Regulations of the Department of Agriculture (Continued) FEDERAL CROP INSURANCE CORPORATION, DEPARTMENT OF AGRICULTURE COMMON CROP INSURANCE REGULATIONS § 457.153 Peach crop...

  5. 7 CFR 457.104 - Cotton crop insurance provisions.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 6 2011-01-01 2011-01-01 false Cotton crop insurance provisions. 457.104 Section 457.104 Agriculture Regulations of the Department of Agriculture (Continued) FEDERAL CROP INSURANCE CORPORATION, DEPARTMENT OF AGRICULTURE COMMON CROP INSURANCE REGULATIONS § 457.104 Cotton crop...

  6. 7 CFR 457.133 - Prune crop insurance provisions.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 6 2012-01-01 2012-01-01 false Prune crop insurance provisions. 457.133 Section 457.133 Agriculture Regulations of the Department of Agriculture (Continued) FEDERAL CROP INSURANCE CORPORATION, DEPARTMENT OF AGRICULTURE COMMON CROP INSURANCE REGULATIONS § 457.133 Prune crop...

  7. 7 CFR 457.122 - Walnut crop insurance provisions.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 6 2012-01-01 2012-01-01 false Walnut crop insurance provisions. 457.122 Section 457.122 Agriculture Regulations of the Department of Agriculture (Continued) FEDERAL CROP INSURANCE CORPORATION, DEPARTMENT OF AGRICULTURE COMMON CROP INSURANCE REGULATIONS § 457.122 Walnut crop...

  8. 7 CFR 457.104 - Cotton crop insurance provisions.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 6 2014-01-01 2014-01-01 false Cotton crop insurance provisions. 457.104 Section 457.104 Agriculture Regulations of the Department of Agriculture (Continued) FEDERAL CROP INSURANCE CORPORATION, DEPARTMENT OF AGRICULTURE COMMON CROP INSURANCE REGULATIONS § 457.104 Cotton crop...

  9. 7 CFR 457.122 - Walnut crop insurance provisions.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 6 2014-01-01 2014-01-01 false Walnut crop insurance provisions. 457.122 Section 457.122 Agriculture Regulations of the Department of Agriculture (Continued) FEDERAL CROP INSURANCE CORPORATION, DEPARTMENT OF AGRICULTURE COMMON CROP INSURANCE REGULATIONS § 457.122 Walnut crop...

  10. 7 CFR 457.153 - Peach crop insurance provisions.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 6 2014-01-01 2014-01-01 false Peach crop insurance provisions. 457.153 Section 457.153 Agriculture Regulations of the Department of Agriculture (Continued) FEDERAL CROP INSURANCE CORPORATION, DEPARTMENT OF AGRICULTURE COMMON CROP INSURANCE REGULATIONS § 457.153 Peach crop...

  11. 7 CFR 457.159 - Stonefruit crop insurance provisions.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 6 2013-01-01 2013-01-01 false Stonefruit crop insurance provisions. 457.159 Section 457.159 Agriculture Regulations of the Department of Agriculture (Continued) FEDERAL CROP INSURANCE CORPORATION, DEPARTMENT OF AGRICULTURE COMMON CROP INSURANCE REGULATIONS § 457.159 Stonefruit crop...

  12. 7 CFR 457.104 - Cotton crop insurance provisions.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 6 2013-01-01 2013-01-01 false Cotton crop insurance provisions. 457.104 Section 457.104 Agriculture Regulations of the Department of Agriculture (Continued) FEDERAL CROP INSURANCE CORPORATION, DEPARTMENT OF AGRICULTURE COMMON CROP INSURANCE REGULATIONS § 457.104 Cotton crop...

  13. 7 CFR 457.122 - Walnut crop insurance provisions.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 6 2010-01-01 2010-01-01 false Walnut crop insurance provisions. 457.122 Section 457.122 Agriculture Regulations of the Department of Agriculture (Continued) FEDERAL CROP INSURANCE CORPORATION, DEPARTMENT OF AGRICULTURE COMMON CROP INSURANCE REGULATIONS § 457.122 Walnut crop...

  14. 7 CFR 457.159 - Stonefruit crop insurance provisions.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 6 2014-01-01 2014-01-01 false Stonefruit crop insurance provisions. 457.159 Section 457.159 Agriculture Regulations of the Department of Agriculture (Continued) FEDERAL CROP INSURANCE CORPORATION, DEPARTMENT OF AGRICULTURE COMMON CROP INSURANCE REGULATIONS § 457.159 Stonefruit crop...

  15. 7 CFR 457.153 - Peach crop insurance provisions.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 6 2012-01-01 2012-01-01 false Peach crop insurance provisions. 457.153 Section 457.153 Agriculture Regulations of the Department of Agriculture (Continued) FEDERAL CROP INSURANCE CORPORATION, DEPARTMENT OF AGRICULTURE COMMON CROP INSURANCE REGULATIONS § 457.153 Peach crop...

  16. 7 CFR 457.133 - Prune crop insurance provisions.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 6 2014-01-01 2014-01-01 false Prune crop insurance provisions. 457.133 Section 457.133 Agriculture Regulations of the Department of Agriculture (Continued) FEDERAL CROP INSURANCE CORPORATION, DEPARTMENT OF AGRICULTURE COMMON CROP INSURANCE REGULATIONS § 457.133 Prune crop...

  17. 7 CFR 457.133 - Prune crop insurance provisions.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 6 2013-01-01 2013-01-01 false Prune crop insurance provisions. 457.133 Section 457.133 Agriculture Regulations of the Department of Agriculture (Continued) FEDERAL CROP INSURANCE CORPORATION, DEPARTMENT OF AGRICULTURE COMMON CROP INSURANCE REGULATIONS § 457.133 Prune crop...

  18. 7 CFR 457.122 - Walnut crop insurance provisions.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 6 2013-01-01 2013-01-01 false Walnut crop insurance provisions. 457.122 Section 457.122 Agriculture Regulations of the Department of Agriculture (Continued) FEDERAL CROP INSURANCE CORPORATION, DEPARTMENT OF AGRICULTURE COMMON CROP INSURANCE REGULATIONS § 457.122 Walnut crop...

  19. 7 CFR 457.104 - Cotton crop insurance provisions.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 6 2012-01-01 2012-01-01 false Cotton crop insurance provisions. 457.104 Section 457.104 Agriculture Regulations of the Department of Agriculture (Continued) FEDERAL CROP INSURANCE CORPORATION, DEPARTMENT OF AGRICULTURE COMMON CROP INSURANCE REGULATIONS § 457.104 Cotton crop...

  20. Rice: The First Crop Genome.

    PubMed

    Jackson, Scott A

    2016-12-01

    Rice was the first sequenced crop genome, paving the way for the sequencing of additional and more complicated crop genomes. The impact that the genome sequence made on rice genetics and breeding research was immediate, as evidence by citations and DNA marker use. The impact on other crop genomes was evident too, particularly for those within the grass family. As we celebrate 10 years since the completion of the rice genome sequence, we look forward to new empowering tool sets that will further revolutionize research in rice genetics and breeding and result in varieties that will continue to feed a growing population. PMID:27003180

  1. Crop Rotation in Row Crop Production Systems

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Crop rotation is a system of growing different kinds of crops in recurrent succession on the same land. Thus, in the strictest sense, crop rotation is more than just changing crops from year to year based on current economic situations. Rather, it is a long-term plan for soil and farm management. Cr...

  2. Soil quality in a pecan – Kura clover alley cropping system in the midwestern USA

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Intercropping alleys in agroforestry provides an income source until the tree crop produces harvestable yields. However, cultivation of annual crops decreases soil organic matter and increases soil erosion potential, especially on sloping landscapes. Perennial crops maintain a continuous soil cover,...

  3. Improving selenium nutritional value of major crops

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Micronutrient efficiency and development of nutrient-dense crops continue to be one of the most important global challenges. Se is an essential micronutrient to humans and serves as a cancer preventative agent. In order to improve Se nutritional and health promoting values in food crops, a better un...

  4. Origins of food crops connect countries worldwide.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Crop genetic diversity is concentrated within specific geographic regions worldwide. While access to this diversity is critical to continued increases in agricultural productivity, the geopolitical significance of the geography of crop diversity has not been quantified. We assess the degree to which...

  5. Energy crops for ethanol: a processing perspective

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Global production of bioethanol for fuel is over 13 billions gal per year. Continued expansion of ethanol production will necessitate developing lignocellulose as an alternative to today’s use of starch and sugar producing crops. Dedicated energy crops are one such option. In the U.S., it has bee...

  6. Simulating Stochastic Crop Management in Cropping Systems

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Introduction -- Crop simulation models are uniquely suitable for examining long term crop responses to environmental variability due to changes in climate or other factors. Long-term studies typically emphasize variability related to weather conditions; certain weather-dependent cropping practices m...

  7. Fiber crops

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Much research continues to develop renewable, recyclable, sustainable, and bio-based products from agricultural feed stocks such as cotton and flax fiber. Primary requirements are sustainable production, low cost, and consistent and known quality. To better understand these products, research contin...

  8. 7 CFR 457.141 - Rice crop insurance provisions.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... preceding crop year unless allowed by the Special Provisions; or (2) That does not meet the rotation... 7 Agriculture 6 2013-01-01 2013-01-01 false Rice crop insurance provisions. 457.141 Section 457.141 Agriculture Regulations of the Department of Agriculture (Continued) FEDERAL CROP...

  9. 7 CFR 407.2 - Availability of Federal crop insurance.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 6 2011-01-01 2011-01-01 false Availability of Federal crop insurance. 407.2 Section 407.2 Agriculture Regulations of the Department of Agriculture (Continued) FEDERAL CROP INSURANCE... Federal crop insurance. (a) Insurance shall be offered under the provisions of this part on the...

  10. 7 CFR 457.2 - Availability of Federal crop insurance.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 6 2011-01-01 2011-01-01 false Availability of Federal crop insurance. 457.2 Section 457.2 Agriculture Regulations of the Department of Agriculture (Continued) FEDERAL CROP INSURANCE CORPORATION, DEPARTMENT OF AGRICULTURE COMMON CROP INSURANCE REGULATIONS § 457.2 Availability of Federal...

  11. 7 CFR 457.117 - Forage production crop insurance provisions.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 6 2011-01-01 2011-01-01 false Forage production crop insurance provisions. 457.117 Section 457.117 Agriculture Regulations of the Department of Agriculture (Continued) FEDERAL CROP INSURANCE CORPORATION, DEPARTMENT OF AGRICULTURE COMMON CROP INSURANCE REGULATIONS § 457.117...

  12. 7 CFR 457.151 - Forage seeding crop insurance provisions.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 6 2013-01-01 2013-01-01 false Forage seeding crop insurance provisions. 457.151 Section 457.151 Agriculture Regulations of the Department of Agriculture (Continued) FEDERAL CROP INSURANCE CORPORATION, DEPARTMENT OF AGRICULTURE COMMON CROP INSURANCE REGULATIONS § 457.151 Forage...

  13. 7 CFR 457.117 - Forage production crop insurance provisions.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 6 2012-01-01 2012-01-01 false Forage production crop insurance provisions. 457.117 Section 457.117 Agriculture Regulations of the Department of Agriculture (Continued) FEDERAL CROP INSURANCE CORPORATION, DEPARTMENT OF AGRICULTURE COMMON CROP INSURANCE REGULATIONS § 457.117...

  14. 7 CFR 457.117 - Forage production crop insurance provisions.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 6 2014-01-01 2014-01-01 false Forage production crop insurance provisions. 457.117 Section 457.117 Agriculture Regulations of the Department of Agriculture (Continued) FEDERAL CROP INSURANCE CORPORATION, DEPARTMENT OF AGRICULTURE COMMON CROP INSURANCE REGULATIONS § 457.117...

  15. 7 CFR 457.117 - Forage production crop insurance provisions.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 6 2013-01-01 2013-01-01 false Forage production crop insurance provisions. 457.117 Section 457.117 Agriculture Regulations of the Department of Agriculture (Continued) FEDERAL CROP INSURANCE CORPORATION, DEPARTMENT OF AGRICULTURE COMMON CROP INSURANCE REGULATIONS § 457.117...

  16. 7 CFR 457.151 - Forage seeding crop insurance provisions.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 6 2014-01-01 2014-01-01 false Forage seeding crop insurance provisions. 457.151 Section 457.151 Agriculture Regulations of the Department of Agriculture (Continued) FEDERAL CROP INSURANCE CORPORATION, DEPARTMENT OF AGRICULTURE COMMON CROP INSURANCE REGULATIONS § 457.151 Forage...

  17. 7 CFR 457.151 - Forage seeding crop insurance provisions.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 6 2010-01-01 2010-01-01 false Forage seeding crop insurance provisions. 457.151 Section 457.151 Agriculture Regulations of the Department of Agriculture (Continued) FEDERAL CROP INSURANCE CORPORATION, DEPARTMENT OF AGRICULTURE COMMON CROP INSURANCE REGULATIONS § 457.151 Forage...

  18. Genomic exploitation of genetic variation for crop improvement

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Crop plants produce food, fiber, and fuel that are essential to human civilization and mainstays of economic prosperity. Our society continues to cultivate and improve the crop plants for better quality and productivity with sustainable environments. The process of crop genetic improvement has bee...

  19. Impacts of Cropping Intensity on Soil C and Net Greenhouse Gas Fluxes for Dryland Cropping in Northeastern Colorado

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In 1985, land that was traditionally used for conventional tillage wheat/fallow cropping was converted to no till alternative cropping systems to investigate soil carbon changes. After 12 years of average to above average precipitation, continuous no till cropping with out summer fallow had stored ...

  20. Seed fates in crop-wild hybrid sunflower: crop allele and maternal effects.

    PubMed

    Pace, Brian A; Alexander, Helen M; Emry, Jason D; Mercer, Kristin L

    2015-02-01

    Domestication has resulted in selection upon seed traits found in wild populations, yet crop-wild hybrids retain some aspects of both parental phenotypes. Seed fates of germination, dormancy, and mortality can influence the success of crop allele introgression in crop-wild hybrid zones, especially if crop alleles or crop-imparted seed coverings result in out-of-season germination. We performed a seed burial experiment using crop, wild, and diverse hybrid sunflower (Helianthus annuus) cross types to test how a cross type's maternal parent and nuclear genetic composition might affect its fate under field conditions. We observed higher maladaptive fall germination in the crop- and F1- produced seeds than wild-produced seeds and, due to an interaction with percent crop alleles, fall germination was higher for cross types with more crop-like nuclear genetics. By spring, crop-produced cross types had the highest overwintering mortality, primarily due to higher fall germination. Early spring germination was identical across maternal types, but germination continued for F1-produced seeds. In conclusion, the more wild-like the maternal parent or the less proportion of the cross type's genome contributed by the crop, the greater likelihood a seed will remain ungerminated than die. Wild-like dormancy may facilitate introgression through future recruitment from the soil seed bank. PMID:25685189

  1. Double- and relay-cropping of energy crops in the northern Great Plains, USA

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In a growing developing world, innovative cropping systems are necessary to obtain continuous and sustainable supplies of food, feed, fuel, and bio-based products. Double- and relay- cropping systems are an option to produce biofuels, food, and biomass feedstock in a single season on the same land w...

  2. Crop synergism can help dryland crop production

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Water supply is a major constraint for crop production in dryland agriculture across the world, and extensive research has been conducted to improve water use. In the grass steppe of the United States, water use has improved through a series of management advancements, such as preservation of crop ...

  3. Wind Turbines Benefit Crops

    SciTech Connect

    Takle, Gene

    2010-01-01

    Ames Laboratory associate scientist Gene Takle talks about research into the effect of wind turbines on nearby crops. Preliminary results show the turbines may have a positive effect by cooling and drying the crops and assisting with carbon dioxide uptake.

  4. Wind Turbines Benefit Crops

    ScienceCinema

    Takle, Gene

    2013-03-01

    Ames Laboratory associate scientist Gene Takle talks about research into the effect of wind turbines on nearby crops. Preliminary results show the turbines may have a positive effect by cooling and drying the crops and assisting with carbon dioxide uptake.

  5. Crop productivity and economics during the transition to alternative cropping systems

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Increasing economic pressures and continued environmental concerns in agricultural production have heightened the need for more sustainable cropping systems. Research is needed to identify systems that simultaneously improve the economic and social viability of farms and rural communities while prot...

  6. Sorghums as energy crops

    SciTech Connect

    Lipinsky, E. S.; Kresovich, S.

    1980-01-01

    The botanical, physiological, and agronomic characteristics of sorghum are described. Integration concepts to improve sorghum prospects are discussed as follows: multiple sweet sorghum crops each year, integration with sugarcane, integration with sugar beets, integration with starch crops, sweet stemmed grain sorghum, and integration with lignocellulosic crops. (MHR)

  7. Cucurbitaceae (Vine Crops)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Cucurbitaceae or vine crop family is a distinct family without any close relatives. The Cucurbitaceae or vine crop family includes many important vegetables collectively referred to as cucurbits. Cucumber, melon, and watermelon are major crop species originally from the Old World (cucumber fro...

  8. Cover crops for Alabama

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cover crops are grown to benefit the following crop as well as to improve the soil, but they are normally not intended for harvest. Selecting the right cover crops for farming operations can improve yields, soil and water conservation and quality, and economic productivity. Properly managed cover ...

  9. Cover Crop Management

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The potential benefits of cover crops in vegetable production systems depend on the type of cover crop that is used and how it is managed from planting to termination date. This chapter focuses on management practices that are applicable to a broad range cover crops and vegetable production systems ...

  10. Using pennycress, camelina, and canola cash crops to provision pollinators

    Technology Transfer Automated Retrieval System (TEKTRAN)

    As pollinator decline continues, the need to provide high value forage for insects continues to rise. Finding agricultural crops to diversify the landscape and provide forage is one way to improve pollinator health. Three winter industrial oilseed crops (pennycress, winter camelina, and winter canol...

  11. 7 CFR 457.106 - Texas citrus tree crop insurance provisions.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 6 2012-01-01 2012-01-01 false Texas citrus tree crop insurance provisions. 457.106 Section 457.106 Agriculture Regulations of the Department of Agriculture (Continued) FEDERAL CROP INSURANCE CORPORATION, DEPARTMENT OF AGRICULTURE COMMON CROP INSURANCE REGULATIONS § 457.106 Texas citrus tree crop insurance provisions. The...

  12. Limited irrigation of corn-based no-till crop rotations in West Central Great Plains

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Due to numerous alternatives in crop sequence and changes in crop yield and price, finding the most profitable crop rotation for an area is a continuous research challenge. The objective of this study was to evaluate 1-, 2-, 3-, and 4-yr limited irrigation corn (Zea mays L.)-based crop rotations for...

  13. Long-term tillage and poultry litter application impacts on crop production in northeastern Alabama

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Conservation tillage, manure application, and crop rotations are thought to increase yields compared to conventional monoculture (continuous cropping system without rotation) tillage systems. The objective of this study was to evaluate cropping sequences of corn with a wheat cover crop and corn with...

  14. Analysis of scanner data for crop inventories

    NASA Technical Reports Server (NTRS)

    Horvath, R. (Principal Investigator); Cicone, R. C.; Kauth, R. J.; Malila, W. A.; Pont, W.; Thelen, B.; Sellman, A.

    1981-01-01

    Accomplishments for a machine-oriented small grains labeler T&E, and for Argentina ground data collection are reported. Features of the small grains labeler include temporal-spectral profiles, which characterize continuous patterns of crop spectral development, and crop calendar shift estimation, which adjusts for planting date differences of fields within a crop type. Corn and soybean classification technology development for area estimation for foreign commodity production forecasting is reported. Presentations supporting quarterly project management reviews and a quarterly technical interchange meeting are also included.

  15. The Use of Cover Crops as Climate-Smart Management in Midwest Cropping Systems

    NASA Astrophysics Data System (ADS)

    Basche, A.; Miguez, F.; Archontoulis, S.; Kaspar, T.

    2014-12-01

    The observed trends in the Midwestern United States of increasing rainfall variability will likely continue into the future. Events such as individual days of heavy rain as well as seasons of floods and droughts have large impacts on agricultural productivity and the natural resource base that underpins it. Such events lead to increased soil erosion, decreased water quality and reduced corn and soybean yields. Winter cover crops offer the potential to buffer many of these impacts because they essentially double the time for a living plant to protect and improve the soil. However, at present, cover crops are infrequently utilized in the Midwest (representing 1-2% of row cropped land cover) in particular due to producer concerns over higher costs and management, limited time and winter growing conditions as well as the potential harm to corn yields. In order to expand their use, there is a need to quantify how cover crops impact Midwest cropping systems in the long term and namely to understand how to optimize the benefits of cover crops while minimizing their impacts on cash crops. We are working with APSIM, a cropping systems platform, to specifically quantify the long term future impacts of cover crop incorporation in corn-based cropping systems. In general, our regional analysis showed only minor changes to corn and soybean yields (<1% differences) when a cover crop was or was not included in the simulation. Further, a "bad spring" scenario (where every third year had an abnormally wet/cold spring and cover crop termination and planting cash crop were within one day) did not result in any major changes to cash crop yields. Through simulations we estimate an average increase of 4-9% organic matter improvement in the topsoil and an average decrease in soil erosion of 14-32% depending on cover crop planting date and growth. Our work is part of the Climate and Corn-based Cropping Systems Coordinated Agriculture Project (CSCAP), a collaboration of eleven Midwestern

  16. Effects of Potato-Cotton Cropping Systems and Nematicides on Plant-Parasitic Nematodes and Crop Yields

    PubMed Central

    Crow, W. T.; Weingartner, D. P.; Dickson, D. W.

    2000-01-01

    Belonolaimus longicaudatus has been reported as damaging both potato (Solanum tuberosum) and cotton (Gossypium hirsutum). These crops are not normally grown in cropping systems together in areas where the soil is infested with B. longicaudatus. During the 1990s cotton was grown in a potato production region that was a suitable habitat for B. longicaudatus. It was not known how integrating the production of these two crops by rotation or double-cropping would affect the population densities of B. longicaudatus, other plant-parasitic nematodes common in the region, or crop yields. A 3-year field study evaluated the viability of both crops in monocropping, rotation, and double-cropping systems. Viability was evaluated using effects on population densities of plant-parasitic nematodes and yields. Rotation of cotton with potato was found to decrease population densities of B. longicaudatus and Meloidogyne incognita in comparison with continuous potato. Population densities of B. longicaudatus following double-cropping were greater than following continuous cotton. Yields of both potato and cotton in rotation were equivalent to either crop in monocropping. Yields of both crops were lower following double-cropping when nematicides were not used. PMID:19270980

  17. Ecoinformatics Reveals Effects of Crop Rotational Histories on Cotton Yield

    PubMed Central

    Meisner, Matthew H.; Rosenheim, Jay A.

    2014-01-01

    Crop rotation has been practiced for centuries in an effort to improve agricultural yield. However, the directions, magnitudes, and mechanisms of the yield effects of various crop rotations remain poorly understood in many systems. In order to better understand how crop rotation influences cotton yield, we used hierarchical Bayesian models to analyze a large ecoinformatics database consisting of records of commercial cotton crops grown in California's San Joaquin Valley. We identified several crops that, when grown in a field the year before a cotton crop, were associated with increased or decreased cotton yield. Furthermore, there was a negative association between the effect of the prior year's crop on June densities of the pest Lygus hesperus and the effect of the prior year's crop on cotton yield. This suggested that some crops may enhance L. hesperus densities in the surrounding agricultural landscape, because residual L. hesperus populations from the previous year cannot continuously inhabit a focal field and attack a subsequent cotton crop. In addition, we found that cotton yield declined approximately 2.4% for each additional year in which cotton was grown consecutively in a field prior to the focal cotton crop. Because L. hesperus is quite mobile, the effects of crop rotation on L. hesperus would likely not be revealed by small plot experimentation. These results provide an example of how ecoinformatics datasets, which capture the true spatial scale of commercial agriculture, can be used to enhance agricultural productivity. PMID:24465657

  18. Determination of crop coefficients (Kc) for irrigation management of crops

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Weighing lysimeters are used to measure crop water use during the growing season. By relating the water use of a specific crop to a well-watered reference crop such as grass, crop coefficients (Kc) can be developed to assist in predicting crop needs using meteorological data available from weather ...

  19. Genetic transformation of major cereal crops.

    PubMed

    Ji, Qing; Xu, Xing; Wang, Kan

    2013-01-01

    Of the more than 50,000 edible plant species in the world, at least 10,000 species are cereal grains. Three major cereal crops, rice (Oryza sativa), maize (Zea mays), and wheat (Triticum sp.), provide two-thirds of the world's food energy intake. Although crop yields have improved tremendously thanks to technological advances in the past 50 years, population increases and climate changes continue to threaten the sustainability of current crop productions. Whereas conventional and marker-assisted breeding programs continue to play a major role in crop improvement, genetic engineering has drawn an intense worldwide interest from the scientific community. In the past decade, genetic transformation technologies have revolutionized agricultural practices and millions of hectares of biotech crops have been cultured. Because of its unique ability to insert well-characterized gene sequences into the plant genome, genetic engineering can also provide effective tools to address fundamental biological questions. This technology is expected to continue to be an indispensable approach for both basic and applied research. Here, we overview briefly the development of the genetic transformation in the top seven cereals, namely maize, rice, wheat, barley (Hordeum vulgare), sorghum (Sorghum sp.), oat (Avena sativa), and millets. The advantages and disadvantages of the two major transformation methods, Agrobacterium tumefaciens-mediated and biolistic methods, are also discussed. PMID:24166432

  20. Simulation of crop evapotranspiration and crop coefficient in weighing lysimeters

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Accurate quantification of crop evapotranspiration (ET) is critical in optimizing irrigation water productivity, especially, in the semiarid regions of the world where limited rainfall is supplemented by irrigation for profitable crop production. In this context, cropping system models are potential...

  1. Concepts in crop rotations

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Crop rotations have been a part of civilization since the Middle Ages. With colonization of what would become the United States came new crops of tobacco, cotton, and corn, the first two of which would play significant roles in both the economic beginnings and social fabric of the new country, how ...

  2. Success with cover crops

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cover crops are an important tool for producers interested in improving soil and crop productivity. They help control erosion, improve soil quality, improve soil properties that impact water infiltration and conservation, provide habitat and food for beneficial insects, and provide food for wildlif...

  3. Waves and Crops

    ERIC Educational Resources Information Center

    Bennett, J.

    1973-01-01

    Discusses wave patterns on the surfaces of ripening wheat and barley crops when the wind is moderately strong. Examines the structure of the turbulence over such natural surfaces and conditions under which the crop may be damaged by the wind. (JR)

  4. OVERVIEW OF CROP BIOTECHNOLOGY

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The influence of crop biotechnology on outcomes of agricultural practices and economics is readily evidenced by the escalating acreage of genetically engineered crops, all occurring in a relatively short time span. Until the mid 1990s, virtually no acreage was planted with commercial genetically mo...

  5. Crop Sequence Economics in Dynamic Cropping Systems

    Technology Transfer Automated Retrieval System (TEKTRAN)

    No-till production systems allow more intensified and diversified production in the northern Great Plains; however, this has increased the need for information on improving economic returns through crop sequence selection. Field research was conducted 6 km southwest of Mandan ND to determine the inf...

  6. Influence of post-harvest crop residue fires on surface ozone mixing ratios in the N.W. IGP analyzed using 2 years of continuous in situ trace gas measurements

    NASA Astrophysics Data System (ADS)

    Kumar, V.; Sarkar, C.; Sinha, V.

    2016-04-01

    O3, CO, and NOx affect air quality and tropospheric chemistry but factors that control them in the densely populated N.W. Indo-Gangetic Plain (IGP) are poorly understood. This work presents the first simultaneous 2 year long in situ data set acquired from August 2011 to September 2013 at a N.W. IGP site (30.667°N, 76.729°E; 310 m asl). We investigate the impact of emissions and meteorology on the diel and seasonal variability of O3, CO, and NOx. Regional post-harvest crop residue fires contribute majorly to an enhancement of 19 ppb in hourly averaged ozone concentrations under similar meteorological conditions in summer and 7 ppb under conditions of lower radiation during the post monsoon. d[O3]/dt (from sunrise to daytime O3 maxima) was highest during periods influenced by post-harvest fires in post monsoon season (9.2 ppb h-1) and lowest during monsoon season (4.1 ppb h-1). Analysis of air mass clusters revealed that enhanced chemical formation of O3 and not transport was the driver of the summertime and post monsoon ambient O3 maxima. Despite having high daytime NOx (>12 ppb) and CO (>440 ppb) in winter, average daytime O3 was less than 40 ppb due to reduced photochemistry and fog. Average daytime O3 during the monsoon was less than 45 ppb due to washout of precursors and suppressed photochemistry due to cloud cover. The 8 h ambient air quality O3 standard was violated on 451 days in the period August 2011-September 2013. The results show that substantial mitigation efforts are required to reduce regional O3 pollution in the N.W. IGP.

  7. 7 CFR 457.150 - Dry bean crop insurance provisions.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 CFR part 400, subpart T, and pay an additional premium, you may increase your prevented planting... 7 Agriculture 6 2011-01-01 2011-01-01 false Dry bean crop insurance provisions. 457.150 Section 457.150 Agriculture Regulations of the Department of Agriculture (Continued) FEDERAL CROP...

  8. 7 CFR 457.134 - Peanut crop insurance provisions.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... guarantee for timely planted acreage. If you have additional levels of coverage, as specified in 7 CFR part... 7 Agriculture 6 2012-01-01 2012-01-01 false Peanut crop insurance provisions. 457.134 Section 457.134 Agriculture Regulations of the Department of Agriculture (Continued) FEDERAL CROP...

  9. 7 CFR 457.108 - Sunflower seed crop insurance provisions.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... rotation requirements shown in the Special Provisions; and (b) Any acreage of the insured crop damaged... 7 Agriculture 6 2014-01-01 2014-01-01 false Sunflower seed crop insurance provisions. 457.108 Section 457.108 Agriculture Regulations of the Department of Agriculture (Continued) FEDERAL...

  10. 7 CFR 457.134 - Peanut crop insurance provisions.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... guarantee for timely planted acreage. If you have additional levels of coverage, as specified in 7 CFR part... 7 Agriculture 6 2011-01-01 2011-01-01 false Peanut crop insurance provisions. 457.134 Section 457.134 Agriculture Regulations of the Department of Agriculture (Continued) FEDERAL CROP...

  11. 7 CFR 457.150 - Dry bean crop insurance provisions.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 CFR part 400, subpart T, and pay an additional premium, you may increase your prevented planting... 7 Agriculture 6 2013-01-01 2013-01-01 false Dry bean crop insurance provisions. 457.150 Section 457.150 Agriculture Regulations of the Department of Agriculture (Continued) FEDERAL CROP...

  12. 7 CFR 457.134 - Peanut crop insurance provisions.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... guarantee for timely planted acreage. If you have additional levels of coverage, as specified in 7 CFR part... 7 Agriculture 6 2013-01-01 2013-01-01 false Peanut crop insurance provisions. 457.134 Section 457.134 Agriculture Regulations of the Department of Agriculture (Continued) FEDERAL CROP...

  13. 7 CFR 457.108 - Sunflower seed crop insurance provisions.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... rotation requirements shown in the Special Provisions; and (b) Any acreage of the insured crop damaged... 7 Agriculture 6 2012-01-01 2012-01-01 false Sunflower seed crop insurance provisions. 457.108 Section 457.108 Agriculture Regulations of the Department of Agriculture (Continued) FEDERAL...

  14. 7 CFR 457.134 - Peanut crop insurance provisions.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... guarantee for timely planted acreage. If you have additional levels of coverage, as specified in 7 CFR part... 7 Agriculture 6 2010-01-01 2010-01-01 false Peanut crop insurance provisions. 457.134 Section 457.134 Agriculture Regulations of the Department of Agriculture (Continued) FEDERAL CROP...

  15. 7 CFR 457.134 - Peanut crop insurance provisions.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... guarantee for timely planted acreage. If you have additional levels of coverage, as specified in 7 CFR part... 7 Agriculture 6 2014-01-01 2014-01-01 false Peanut crop insurance provisions. 457.134 Section 457.134 Agriculture Regulations of the Department of Agriculture (Continued) FEDERAL CROP...

  16. 7 CFR 457.168 - Mustard crop insurance provisions.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... have limited or additional levels of coverage, as specified in 7 CFR part 400, subpart T, and pay an... 7 Agriculture 6 2013-01-01 2013-01-01 false Mustard crop insurance provisions. 457.168 Section 457.168 Agriculture Regulations of the Department of Agriculture (Continued) FEDERAL CROP...

  17. 7 CFR 457.150 - Dry bean crop insurance provisions.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 CFR part 400, subpart T, and pay an additional premium, you may increase your prevented planting... 7 Agriculture 6 2012-01-01 2012-01-01 false Dry bean crop insurance provisions. 457.150 Section 457.150 Agriculture Regulations of the Department of Agriculture (Continued) FEDERAL CROP...

  18. 7 CFR 457.108 - Sunflower seed crop insurance provisions.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... rotation requirements shown in the Special Provisions; and (b) Any acreage of the insured crop damaged... 7 Agriculture 6 2013-01-01 2013-01-01 false Sunflower seed crop insurance provisions. 457.108 Section 457.108 Agriculture Regulations of the Department of Agriculture (Continued) FEDERAL...

  19. 7 CFR 457.150 - Dry bean crop insurance provisions.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 CFR part 400, subpart T, and pay an additional premium, you may increase your prevented planting... 7 Agriculture 6 2014-01-01 2014-01-01 false Dry bean crop insurance provisions. 457.150 Section 457.150 Agriculture Regulations of the Department of Agriculture (Continued) FEDERAL CROP...

  20. 7 CFR 201.49 - Other crop seed.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 3 2010-01-01 2010-01-01 false Other crop seed. 201.49 Section 201.49 Agriculture..., Inspections, Marketing Practices), DEPARTMENT OF AGRICULTURE (CONTINUED) FEDERAL SEED ACT FEDERAL SEED ACT REGULATIONS Purity Analysis in the Administration of the Act § 201.49 Other crop seed. (a) Seeds of...

  1. Bt Crops and Invertebrate Non-target Effects – Revisited

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Crops that have been transgenically engineered for resistance to select insect pests by the use of genes from a common soil bacteria (Bacillus thuringiensis) were grown on about 42 million hectares in 20 countries in 2007. Debate continues on the environmental risk of these crops. This short artic...

  2. 7 CFR 457.165 - Millet crop insurance provisions.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... levels of coverage, as specified in 7 CFR part 400, subpart T, and pay an additional premium, you may... 7 Agriculture 6 2014-01-01 2014-01-01 false Millet crop insurance provisions. 457.165 Section 457.165 Agriculture Regulations of the Department of Agriculture (Continued) FEDERAL CROP...

  3. 7 CFR 457.165 - Millet crop insurance provisions.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... levels of coverage, as specified in 7 CFR part 400, subpart T, and pay an additional premium, you may... 7 Agriculture 6 2012-01-01 2012-01-01 false Millet crop insurance provisions. 457.165 Section 457.165 Agriculture Regulations of the Department of Agriculture (Continued) FEDERAL CROP...

  4. 7 CFR 457.165 - Millet crop insurance provisions.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... levels of coverage, as specified in 7 CFR part 400, subpart T, and pay an additional premium, you may... 7 Agriculture 6 2013-01-01 2013-01-01 false Millet crop insurance provisions. 457.165 Section 457.165 Agriculture Regulations of the Department of Agriculture (Continued) FEDERAL CROP...

  5. 7 CFR 457.165 - Millet crop insurance provisions.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... levels of coverage, as specified in 7 CFR part 400, subpart T, and pay an additional premium, you may... 7 Agriculture 6 2010-01-01 2010-01-01 false Millet crop insurance provisions. 457.165 Section 457.165 Agriculture Regulations of the Department of Agriculture (Continued) FEDERAL CROP...

  6. 7 CFR 457.165 - Millet crop insurance provisions.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... levels of coverage, as specified in 7 CFR part 400, subpart T, and pay an additional premium, you may... 7 Agriculture 6 2011-01-01 2011-01-01 false Millet crop insurance provisions. 457.165 Section 457.165 Agriculture Regulations of the Department of Agriculture (Continued) FEDERAL CROP...

  7. 7 CFR 201.49 - Other crop seed.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 3 2011-01-01 2011-01-01 false Other crop seed. 201.49 Section 201.49 Agriculture..., Inspections, Marketing Practices), DEPARTMENT OF AGRICULTURE (CONTINUED) FEDERAL SEED ACT FEDERAL SEED ACT REGULATIONS Purity Analysis in the Administration of the Act § 201.49 Other crop seed. (a) Seeds of...

  8. 40 CFR 180.40 - Tolerances for crop groups.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 25 2013-07-01 2013-07-01 false Tolerances for crop groups. 180.40 Section 180.40 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) PESTICIDE PROGRAMS TOLERANCES AND EXEMPTIONS FOR PESTICIDE CHEMICAL RESIDUES IN FOOD Procedural Regulations § 180.40 Tolerances for crop groups. (a) Group or...

  9. 7 CFR 760.816 - Value loss crops.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 7 2011-01-01 2011-01-01 false Value loss crops. 760.816 Section 760.816 Agriculture Regulations of the Department of Agriculture (Continued) FARM SERVICE AGENCY, DEPARTMENT OF AGRICULTURE...) Notwithstanding any other provisions of this part, this section applies to value loss crops and tropical...

  10. 7 CFR 760.816 - Value loss crops.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 7 2010-01-01 2010-01-01 false Value loss crops. 760.816 Section 760.816 Agriculture Regulations of the Department of Agriculture (Continued) FARM SERVICE AGENCY, DEPARTMENT OF AGRICULTURE...) Notwithstanding any other provisions of this part, this section applies to value loss crops and tropical...

  11. Greenhouse gas emissions from traditional and biofuels cropping systems

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cropping systems can have a tremendous effect on the greenhouse gas emissions from soils. The objectives of this study were to compare greenhouse gas emissions from traditional (continuous corn or corn/soybean rotation) and biomass (miscanthus, sorghum, switchgrass) cropping systems. Biomass croppin...

  12. 7 CFR 201.49 - Other crop seed.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 3 2014-01-01 2014-01-01 false Other crop seed. 201.49 Section 201.49 Agriculture..., Inspections, Marketing Practices), DEPARTMENT OF AGRICULTURE (CONTINUED) FEDERAL SEED ACT FEDERAL SEED ACT REGULATIONS Purity Analysis in the Administration of the Act § 201.49 Other crop seed. (a) Seeds of...

  13. 7 CFR 201.49 - Other crop seed.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 3 2012-01-01 2012-01-01 false Other crop seed. 201.49 Section 201.49 Agriculture..., Inspections, Marketing Practices), DEPARTMENT OF AGRICULTURE (CONTINUED) FEDERAL SEED ACT FEDERAL SEED ACT REGULATIONS Purity Analysis in the Administration of the Act § 201.49 Other crop seed. (a) Seeds of...

  14. 7 CFR 201.49 - Other crop seed.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 3 2013-01-01 2013-01-01 false Other crop seed. 201.49 Section 201.49 Agriculture..., Inspections, Marketing Practices), DEPARTMENT OF AGRICULTURE (CONTINUED) FEDERAL SEED ACT FEDERAL SEED ACT REGULATIONS Purity Analysis in the Administration of the Act § 201.49 Other crop seed. (a) Seeds of...

  15. A national research & development strategy for biomass crop feedstocks

    SciTech Connect

    Wright, L.L.; Cushman, J.H.

    1997-07-01

    Planning was initiated in 1996 with the objective of reevaluating current biomass feedstock research and development strategies to: (1) assure that by 2005, one or more commercial lignocellulosic to ethanol projects will be able to acquire a dependable supply of biomass crop feedstocks; (2) assure that recently initiated demonstrations of crops to electricity will be successful and; (3) assure that the research base needed to support future biomass industry expansion is being developed. Multiple trends and analyses indicate that biomass energy research and development strategies must take into account the fact that competition for land will define the upper limits of available biomass energy crop supplies and will largely dictate the price of those supplies. Only crop production and utilization strategies which contribute profit to the farmer or landowner and to energy producers will be used commercially for biomass energy production. Strategies for developing biomass {open_quotes}energy{close_quotes} crop supplies must take into consideration all of the methods by which biomass crops will enter biomass energy markets. The lignocellulosic materials derived from crops can be available as primary residues or crop by-products; secondary residues or processing by-products; co-products (at both the crop production and processing stages); or, as dedicated energy crops. Basic research and development (R&D) leading to yield improvement continues to be recommended as a major long-term focus for dedicated energy crops. Many additional near term topics need attention, some of which are also applicable to by-products and co-products. Switchgrass R&D should be expanded and developed with greater collaboration of USDA and state extension groups. Woody crop research should continue with significant cost-share from industries developing the crops for other commercial products. Co-product options need more investigation.

  16. 7 CFR 993.20 - Crop year.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 8 2010-01-01 2010-01-01 false Crop year. 993.20 Section 993.20 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Marketing Agreements and Orders; Fruits, Vegetables, Nuts), DEPARTMENT OF AGRICULTURE DRIED PRUNES PRODUCED IN CALIFORNIA Order Regulating Handling Definitions §...

  17. 7 CFR 987.6 - Crop year.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 8 2010-01-01 2010-01-01 false Crop year. 987.6 Section 987.6 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Marketing Agreements and Orders; Fruits, Vegetables, Nuts), DEPARTMENT OF AGRICULTURE DOMESTIC DATES PRODUCED OR PACKED IN RIVERSIDE COUNTY, CALIFORNIA Order...

  18. 7 CFR 930.4 - Crop year.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 8 2014-01-01 2014-01-01 false Crop year. 930.4 Section 930.4 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (MARKETING AGREEMENTS AND ORDERS; FRUITS, VEGETABLES, NUTS), DEPARTMENT OF AGRICULTURE TART CHERRIES GROWN IN THE STATES...

  19. 7 CFR 930.4 - Crop year.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 8 2010-01-01 2010-01-01 false Crop year. 930.4 Section 930.4 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Marketing Agreements and Orders; Fruits, Vegetables, Nuts), DEPARTMENT OF AGRICULTURE TART CHERRIES GROWN IN THE STATES...

  20. 7 CFR 985.10 - Crop.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 8 2013-01-01 2013-01-01 false Crop. 985.10 Section 985.10 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (MARKETING AGREEMENTS AND ORDERS; FRUITS, VEGETABLES, NUTS), DEPARTMENT OF AGRICULTURE MARKETING ORDER REGULATING THE HANDLING OF SPEARMINT OIL PRODUCED IN THE FAR WEST...

  1. 7 CFR 989.21 - Crop year.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 8 2014-01-01 2014-01-01 false Crop year. 989.21 Section 989.21 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (MARKETING AGREEMENTS AND ORDERS; FRUITS, VEGETABLES, NUTS), DEPARTMENT OF AGRICULTURE RAISINS PRODUCED FROM GRAPES GROWN...

  2. 7 CFR 989.21 - Crop year.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 8 2010-01-01 2010-01-01 false Crop year. 989.21 Section 989.21 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Marketing Agreements and Orders; Fruits, Vegetables, Nuts), DEPARTMENT OF AGRICULTURE RAISINS PRODUCED FROM GRAPES GROWN...

  3. 7 CFR 930.4 - Crop year.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 8 2012-01-01 2012-01-01 false Crop year. 930.4 Section 930.4 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Marketing Agreements and Orders; Fruits, Vegetables, Nuts), DEPARTMENT OF AGRICULTURE TART CHERRIES GROWN IN THE STATES...

  4. 7 CFR 985.10 - Crop.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 8 2012-01-01 2012-01-01 false Crop. 985.10 Section 985.10 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Marketing Agreements and Orders; Fruits, Vegetables, Nuts), DEPARTMENT OF AGRICULTURE MARKETING ORDER REGULATING THE HANDLING OF SPEARMINT OIL PRODUCED IN THE FAR WEST...

  5. 7 CFR 985.10 - Crop.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 8 2014-01-01 2014-01-01 false Crop. 985.10 Section 985.10 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (MARKETING AGREEMENTS AND ORDERS; FRUITS, VEGETABLES, NUTS), DEPARTMENT OF AGRICULTURE MARKETING ORDER REGULATING THE HANDLING OF SPEARMINT OIL PRODUCED IN THE FAR WEST...

  6. 7 CFR 985.10 - Crop.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 8 2011-01-01 2011-01-01 false Crop. 985.10 Section 985.10 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Marketing Agreements and Orders; Fruits, Vegetables, Nuts), DEPARTMENT OF AGRICULTURE MARKETING ORDER REGULATING THE HANDLING OF SPEARMINT OIL PRODUCED IN THE FAR WEST...

  7. 7 CFR 985.10 - Crop.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 8 2010-01-01 2010-01-01 false Crop. 985.10 Section 985.10 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Marketing Agreements and Orders; Fruits, Vegetables, Nuts), DEPARTMENT OF AGRICULTURE MARKETING ORDER REGULATING THE HANDLING OF SPEARMINT OIL PRODUCED IN THE FAR WEST...

  8. Annual Weeds, Alternative Crops for Alternative Fuel

    Technology Transfer Automated Retrieval System (TEKTRAN)

    All cropland acreage in Alabama is infested with one or more species of annual weeds. Weeds are estimated to cost producers in the state approximately 8% of their potential yield, even with the current weed control technology available. Weed management continues to be the most expensive row crop pr...

  9. 7 CFR 989.21 - Crop year.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 8 2012-01-01 2012-01-01 false Crop year. 989.21 Section 989.21 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Marketing Agreements and Orders; Fruits, Vegetables, Nuts), DEPARTMENT OF AGRICULTURE RAISINS PRODUCED FROM GRAPES GROWN...

  10. 7 CFR 989.21 - Crop year.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 8 2013-01-01 2013-01-01 false Crop year. 989.21 Section 989.21 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (MARKETING AGREEMENTS AND ORDERS; FRUITS, VEGETABLES, NUTS), DEPARTMENT OF AGRICULTURE RAISINS PRODUCED FROM GRAPES GROWN...

  11. Tillage and grazing impact on annual crop yields following a conversion from perennial grass to annual crops

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Interest in methods to transition from perennial grasses to annual crops should continue to increase because of expiration of Conservation Reserve Program (CRP) contracts in the USA and a desire by some to include a perennial phase in annual crop rotations. A four-year study was initiated in 2005 at...

  12. Using cover crops and cropping systems for nitrogen management

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The reasons for using cover crops and optimized cropping sequences to manage nitrogen (N) are to maximize economic returns, improve soil quality and productivity, and minimize losses of N that might adversely impact environmental quality. Cover crops and cropping systems’ effects on N management are...

  13. Cover crop biomass harvest for bioenergy: implications for crop productivity

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Winter cover crops, such as rye (Secale cereale), are usually used in conservation agriculture systems in the Southeast. Typically, the cover crop is terminated two to three weeks before planting the summer crop, with the cover biomass left on the soil surface as a mulch. However, these cover crops ...

  14. Transgenics in crops

    NASA Technical Reports Server (NTRS)

    Li, Y.; Wu, Y. H.; McAvoy, R.; Duan, H.

    2001-01-01

    With rapid world population growth and declining availability of fresh water and arable land, a new technology is urgently needed to enhance agricultural productivity. Recent discoveries in the field of crop transgenics clearly demonstrate the great potential of this technology for increasing food production and improving food quality while preserving the environment for future generations. In this review, we briefly discuss some of the recent achievements in crop improvement that have been made using gene transfer technology.

  15. Radioactivity in food crops

    SciTech Connect

    Drury, J.S.; Baldauf, M.F.; Daniel, E.W.; Fore, C.S.; Uziel, M.S.

    1983-05-01

    Published levels of radioactivity in food crops from 21 countries and 4 island chains of Oceania are listed. The tabulation includes more than 3000 examples of 100 different crops. Data are arranged alphabetically by food crop and geographical origin. The sampling date, nuclide measured, mean radioactivity, range of radioactivities, sample basis, number of samples analyzed, and bibliographic citation are given for each entry, when available. Analyses were reported most frequently for /sup 137/Cs, /sup 40/K, /sup 90/Sr, /sup 226/Ra, /sup 228/Ra, plutonium, uranium, total alpha, and total beta, but a few authors also reported data for /sup 241/Am, /sup 7/Be, /sup 60/Co, /sup 55/Fe, /sup 3/H, /sup 131/I, /sup 54/Mn, /sup 95/Nb, /sup 210/Pb, /sup 210/Po, /sup 106/Ru, /sup 125/Sb, /sup 228/Th, /sup 232/Th, and /sup 95/Zr. Based on the reported data it appears that radioactivity from alpha emitters in food crops is usually low, on the order of 0.1 Bq.g/sup -1/ (wet weight) or less. Reported values of beta radiation in a given crop generally appear to be several orders of magnitude greater than those of alpha emitters. The most striking aspect of the data is the great range of radioactivity reported for a given nuclide in similar food crops with different geographical origins.

  16. Rice crop risk map in Babahoyo canton (Ecuador)

    NASA Astrophysics Data System (ADS)

    Valverde Arias, Omar; Tarquis, Ana; Garrido, Alberto

    2016-04-01

    It is widely known that extreme climatic phenomena occur with more intensity and frequency. This fact has put more pressure over farming, making agricultural and livestock production riskier. In order to reduce hazards and economic loses that could jeopardize farmer's incomes and even its business continuity, it is very important to implement agriculture risk management plans by governments and institutions. One of the main strategies is transfer risk by agriculture insurance. Agriculture insurance based in indexes has a significant growth in the last decade. And consist in a comparison between measured index values with a defined threshold that triggers damage losses. However, based index insurance could not be based on an isolated measurement. It is necessary to be integrated in a complete monitoring system that uses many sources of information and tools. For example, index influence areas, crop production risk maps, crop yields, claim statistics, and so on. Crop production risk is related with yield variation of crops and livestock, due to weather, pests, diseases, and other factors that affect both the quantity and quality of commodities produced. This is the risk which farmers invest more time managing, and it is completely under their control. The aim of this study is generate a crop risk map of rice that can provide risk manager important information about the status of crop facing production risks. Then, based on this information, it will be possible to make best decisions to deal with production risk. The rice crop risk map was generated qualifying a 1:25000 scale soil and climatic map of Babahoyo canton, which is located in coast region of Ecuador, where rice is one of the main crops. The methodology to obtain crop risk map starts by establishing rice crop requirements and indentifying the risks associated with this crop. A second step is to evaluate soil and climatic conditions of the study area related to optimal crop requirements. Based on it, we can

  17. Grand challenges for crop science

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Crop science is a highly integrative science using the disciplines of conventional plant breeding, transgenic crop improvement, plant physiology, and cropping system sciences to develop improved varieties of agronomic, turf, and forage crops to produce feed, food, fuel, and fiber for our world's gro...

  18. Cover crops and N credits

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cover crops often provide many short- and long-term benefits to cropping systems. Legume cover crops can significantly reduce the N fertilizer requirement of non-legume cash crops that follow. The objectives of this presentation were to: I) educate stakeholders about the potential benefits of cover ...

  19. Cover crops and vegetable rotations

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Farmers have long known that winter cover crops can decrease soil erosion, increase soil organic matter and fertility, and provide a beneficial impact on the following crop, but it is not always known which cover crop will provide the best results for a specific region and cropping system. Research...

  20. Biotechnology: herbicide-resistant crops

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Transgenic, herbicide-resistant (HR) crops are planted on about 80% of the land covered by transgenic crops. More than 90% of HR crios are glyphosate-resistant (GR) crops, the others being resistant to glufosinate. The wide-scale adoption of HR crops, largely for economic reasons, has been the mos...

  1. Crop stress detection and classification using hyperspectral remote sensing

    NASA Astrophysics Data System (ADS)

    Irby, Jon Trenton

    Agricultural production has observed many changes in technology over the last 20 years. Producers are able to utilize technologies such as site-specific applicators and remotely sensed data to assist with decision making for best management practices which can improve crop production and provide protection to the environment. It is known that plant stress can interfere with photosynthetic reactions within the plant and/or the physical structure of the plant. Common types of stress associated with agricultural crops include herbicide induced stress, nutrient stress, and drought stress from lack of water. Herbicide induced crop stress is not a new problem. However, with increased acreage being planting in varieties/hybrids that contain herbicide resistant traits, herbicide injury to non-target crops will continue to be problematic for producers. With rapid adoption of herbicide-tolerant cropping systems, it is likely that herbicide induced stress will continue to be a major concern. To date, commercially available herbicide-tolerant varieties/hybrids contain traits which allow herbicides like glyphosate and glufosinate-ammonium to be applied as a broadcast application during the growing season. Both glyphosate and glufosinate-ammonium are broad spectrum herbicides which have activity on a large number of plant species, including major crops like non-transgenic soybean, corn, and cotton. Therefore, it is possible for crop stress from herbicide applications to occur in neighboring fields that contain susceptible crop varieties/hybrids. Nutrient and moisture stress as well as stress caused by herbicide applications can interact to influence yields in agricultural fields. If remotely sensed data can be used to accurately identify specific levels of crop stress, it is possible that producers can use this information to better assist them in crop management to maximize yields and protect their investments. This research was conducted to evaluate classification of specific

  2. 7 CFR 457.161 - Canola and rapeseed crop insurance provisions.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 6 2014-01-01 2014-01-01 false Canola and rapeseed crop insurance provisions. 457.161 Section 457.161 Agriculture Regulations of the Department of Agriculture (Continued) FEDERAL CROP INSURANCE CORPORATION, DEPARTMENT OF AGRICULTURE COMMON CROP INSURANCE REGULATIONS § 457.161 Canola...

  3. 7 CFR 457.161 - Canola and rapeseed crop insurance provisions.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 6 2013-01-01 2013-01-01 false Canola and rapeseed crop insurance provisions. 457.161 Section 457.161 Agriculture Regulations of the Department of Agriculture (Continued) FEDERAL CROP INSURANCE CORPORATION, DEPARTMENT OF AGRICULTURE COMMON CROP INSURANCE REGULATIONS § 457.161 Canola...

  4. Improving soybean performance in the Northern Great Plains through the use of cover crops

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cover crops are capable of providing “multiple services” for improving soil quality and enhancing annual crop growth. Maintaining continuous plant cover on agricultural fields with cover crop is of great interest to improve nutrient cycling, prevent soil degradation, and promote further adoption of...

  5. 7 CFR 987.50 - Application after end of crop year.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 8 2011-01-01 2011-01-01 false Application after end of crop year. 987.50 Section 987... Regulation § 987.50 Application after end of crop year. Unless otherwise specified the regulations and the bonding rates established for any crop year shall continue in effect with respect to all free dates...

  6. 7 CFR 457.129 - Fresh market sweet corn crop insurance provisions.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 6 2014-01-01 2014-01-01 false Fresh market sweet corn crop insurance provisions. 457.129 Section 457.129 Agriculture Regulations of the Department of Agriculture (Continued) FEDERAL CROP INSURANCE CORPORATION, DEPARTMENT OF AGRICULTURE COMMON CROP INSURANCE REGULATIONS § 457.129 Fresh...

  7. Western Oregon Grass Seed Crop Rotation and Straw Residue Effects on Soil Quality

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Little is known about the impact of crop rotation and post-harvest residue management on the agricultural sustainability of conventional grass seed cropping systems in the Willamette Valley of western Oregon, U.S.A. The effects of a six-year rotation (continuous grass versus diverse crop species rot...

  8. The Potato Systems Planner: Cropping System Impacts on Profitability, Income Variability, and Economic Risk

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Potato (Solanum tuberosum L.) producers recognize the benefits of crop rotation; however, the economics of producing a high value crop, such as potato, create incentives for continuous potato production. Our USDA-ARS interdisciplinary team evaluated cropping systems of potato in two and three year ...

  9. Limited irrigation of corn-based no-till crop rotations in west central Great Plains.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Identifying the most profitable crop rotation for an area is a continuous research challenge. The objective of this study was to evaluate 2, 3, and 4 yr. limited irrigation corn (Zea mays L.) based crop rotations for grain yield, available soil water, crop water productivity, and profitability in co...

  10. 7 CFR 457.139 - Fresh market tomato (dollar plan) crop insurance provisions.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 6 2011-01-01 2011-01-01 false Fresh market tomato (dollar plan) crop insurance provisions. 457.139 Section 457.139 Agriculture Regulations of the Department of Agriculture (Continued) FEDERAL CROP INSURANCE CORPORATION, DEPARTMENT OF AGRICULTURE COMMON CROP INSURANCE REGULATIONS §...

  11. 7 CFR 457.148 - Fresh market pepper crop insurance provisions.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 6 2010-01-01 2010-01-01 false Fresh market pepper crop insurance provisions. 457.148 Section 457.148 Agriculture Regulations of the Department of Agriculture (Continued) FEDERAL CROP INSURANCE CORPORATION, DEPARTMENT OF AGRICULTURE COMMON CROP INSURANCE REGULATIONS § 457.148 Fresh...

  12. 7 CFR 457.148 - Fresh market pepper crop insurance provisions.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 6 2011-01-01 2011-01-01 false Fresh market pepper crop insurance provisions. 457.148 Section 457.148 Agriculture Regulations of the Department of Agriculture (Continued) FEDERAL CROP INSURANCE CORPORATION, DEPARTMENT OF AGRICULTURE COMMON CROP INSURANCE REGULATIONS § 457.148 Fresh...

  13. 7 CFR 457.139 - Fresh market tomato (dollar plan) crop insurance provisions.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 6 2010-01-01 2010-01-01 false Fresh market tomato (dollar plan) crop insurance provisions. 457.139 Section 457.139 Agriculture Regulations of the Department of Agriculture (Continued) FEDERAL CROP INSURANCE CORPORATION, DEPARTMENT OF AGRICULTURE COMMON CROP INSURANCE REGULATIONS §...

  14. Dryland soil chemical properties and crop yields affected by long-term tillage and cropping sequence.

    PubMed

    Sainju, Upendra M; Allen, Brett L; Caesar-TonThat, Thecan; Lenssen, Andrew W

    2015-01-01

    Information on the effect of long-term management on soil nutrients and chemical properties is scanty. We examined the 30-year effect of tillage frequency and cropping sequence combination on dryland soil Olsen-P, K, Ca, Mg, Na, SO4-S, and Zn concentrations, pH, electrical conductivity (EC), and cation exchange capacity (CEC) at the 0-120 cm depth and annualized crop yield in the northern Great Plains, USA. Treatments were no-till continuous spring wheat (Triticum aestivum L.) (NTCW), spring till continuous spring wheat (STCW), fall and spring till continuous spring wheat (FSTCW), fall and spring till spring wheat-barley (Hordeum vulgare L., 1984-1999) followed by spring wheat-pea (Pisum sativum L., 2000-2013) (FSTW-B/P), and spring till spring wheat-fallow (STW-F, traditional system). At 0-7.5 cm, P, K, Zn, Na, and CEC were 23-60% were greater, but pH, buffer pH, and Ca were 6-31% lower in NTCW, STCW, and FSTW-B/P than STW-F. At 7.5-15 cm, K was 23-52% greater, but pH, buffer pH, and Mg were 3-21% lower in NTCW, STCW, FSTCW, FSTW-B/P than STW-F. At 60-120 cm, soil chemical properties varied with treatments. Annualized crop yield was 23-30% lower in STW-F than the other treatments. Continuous N fertilization probably reduced soil pH, Ca, and Mg, but greater crop residue returned to the soil increased P, K, Na, Zn, and CEC in NTCW and STCW compared to STW-F. Reduced tillage with continuous cropping may be adopted for maintaining long-term soil fertility and crop yields compared with the traditional system. PMID:26171303

  15. 75 FR 59057 - Common Crop Insurance Regulations, Cotton Crop Insurance Provisions and Macadamia Nut Crop...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-27

    ... March 30, 2010 (75 FR 15778-15891). Need for Correction As published, the final regulation contained... Insurance Corporation 7 CFR Part 457 RIN 0563-AB96 Common Crop Insurance Regulations, Cotton Crop Insurance Provisions and Macadamia Nut Crop Insurance Provisions; Correction AGENCY: Federal Crop Insurance...

  16. Dryland crop yields and soil organic matter as influenced by long-term tillage and cropping sequence

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Long-term management practices are needed to sustain dryland crop yields and maintain soil organic matter in the northern Great Plains. We evaluated the 21-yr effects of no-till continuous spring wheat (NTCW), spring till continuous spring wheat (STCW), fall and spring till continuous spring wheat (...

  17. Crop Coefficients of Some Selected Crops of Andhra Pradesh

    NASA Astrophysics Data System (ADS)

    Reddy, K. Chandrasekhar; Arunajyothy, S.; Mallikarjuna, P.

    2015-06-01

    Precise information on crop coefficients for estimating crop evapotranspiration (ETc) for regional scale irrigation planning is a major impediment in many regions. Crop coefficients suggested based on lysimeter data by earlier investigators have to be locally calibrated to account for the differences in the crop canopy under given climatic conditions. In the present study crop coefficients were derived based on reference crop evapotranspiration (ET0) estimated from Penman-Monteith equation and lysimeter measured ETc for groundnut, paddy, tobacco, sugarcane and castor crops at Tirupati, Nellore, Rajahmundry, Anakapalli and Rajendranagar centers of Andhra Pradesh respectively. Crop coefficients derived were compared with those recommended by FAO-56. The mean crop coefficients at different stages of growth were significantly different from those of FAO-56 curve though a similar trend was observed. A third order polynomial crop coefficient model has therefore been developed as a function of time (days after sowing the crop) for deriving suitable crop coefficients. The crop coefficient models suggested may be adopted to estimate crop evapotranspiration in the study area with reasonable degree of accuracy.

  18. 75 FR 15777 - Common Crop Insurance Regulations, Basic Provisions; and Various Crop Insurance Provisions

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-30

    ...The Federal Crop Insurance Corporation (FCIC) finalizes the Common Crop Insurance Regulations, Basic Provisions, Small Grains Crop Insurance Provisions, Cotton Crop Insurance Provisions, Sunflower Seed Crop Insurance Provisions, Coarse Grains Crop Insurance Provisions, Malting Barley Crop Insurance Provisions, Rice Crop Insurance Provisions, and Canola and Rapeseed Crop Insurance Provisions to......

  19. Assessing Biofuel Crop Invasiveness: A Case Study

    PubMed Central

    Buddenhagen, Christopher Evan; Chimera, Charles; Clifford, Patti

    2009-01-01

    Background There is widespread interest in biofuel crops as a solution to the world's energy needs, particularly in light of concerns over greenhouse-gas emissions. Despite reservations about their adverse environmental impacts, no attempt has been made to quantify actual, relative or potential invasiveness of terrestrial biofuel crops at an appropriate regional or international scale, and their planting continues to be largely unregulated. Methodology/Principal Findings Using a widely accepted weed risk assessment system, we analyzed a comprehensive list of regionally suitable biofuel crops to show that seventy percent have a high risk of becoming invasive versus one-quarter of non-biofuel plant species and are two to four times more likely to establish wild populations locally or be invasive in Hawaii or in other locations with a similar climate. Conclusions/Significance Because of climatic and ecological similarities, predictions of biofuel crop invasiveness in Hawaii are applicable to other vulnerable island and subtropical ecosystems worldwide. We demonstrate the utility of an accessible and scientifically proven risk assessment protocol that allows users to predict if introduced species will become invasive in their region of interest. Other evidence supports the contention that propagule pressure created by extensive plantings will exacerbate invasions, a scenario expected with large-scale biofuel crop cultivation. Proactive measures, such as risk assessments, should be employed to predict invasion risks, which could then be mitigated via implementation of appropriate planting policies and adoption of the “polluter-pays” principle. PMID:19384412

  20. Nitrogen, Tillage, and Crop Rotation Effects On Carbon Dioxide and Methane Fluxes from Irrigated Cropping Systems

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Long-term effects of tillage intensity, N fertilization, and crop rotation on carbon dioxide (CO2) and methane (CH4) flux from semiarid irrigated soils are poorly understood. We evaluated effects of: a) tillage intensity [no-till (NT) and moldboard plow tillage (CT)] in a continuous corn rotation; b...

  1. Continuous Problem of Function Continuity

    ERIC Educational Resources Information Center

    Jayakody, Gaya; Zazkis, Rina

    2015-01-01

    We examine different definitions presented in textbooks and other mathematical sources for "continuity of a function at a point" and "continuous function" in the context of introductory level Calculus. We then identify problematic issues related to definitions of continuity and discontinuity: inconsistency and absence of…

  2. CROP-RESIDUE MANAGEMENT

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Our agricultural production system is under increasing pressure to provide low cost, high quality food, fiber and biofuels while maintaining and preserving the environment. Increased interest in crop residues for production system sustainability is related to the recognition that the soil, water and...

  3. Future generation energy crops

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Although cropping systems in the Midwest that emphasize corn (Zea mays), soybean (Glycine max), and wheat (Triticum aestivum) are some of the most highly productive in the US, the growing lack of agricultural diversity in this region threatens to jeopardize long-term sustainability. Added to this co...

  4. Biotechnology Towards Energy Crops.

    PubMed

    Margaritopoulou, Theoni; Roka, Loukia; Alexopoulou, Efi; Christou, Myrsini; Rigas, Stamatis; Haralampidis, Kosmas; Milioni, Dimitra

    2016-03-01

    New crops are gradually establishing along with cultivation systems to reduce reliance on depleting fossil fuel reserves and sustain better adaptation to climate change. These biological assets could be efficiently exploited as bioenergy feedstocks. Bioenergy crops are versatile renewable sources with the potential to alternatively contribute on a daily basis towards the coverage of modern society's energy demands. Biotechnology may facilitate the breeding of elite energy crop genotypes, better suited for bio-processing and subsequent use that will improve efficiency, further reduce costs, and enhance the environmental benefits of biofuels. Innovative molecular techniques may improve a broad range of important features including biomass yield, product quality and resistance to biotic factors like pests or microbial diseases or environmental cues such as drought, salinity, freezing injury or heat shock. The current review intends to assess the capacity of biotechnological applications to develop a beneficial bioenergy pipeline extending from feedstock development to sustainable biofuel production and provide examples of the current state of the art on future energy crops. PMID:26798073

  5. Nitrogen catch crops

    Technology Transfer Automated Retrieval System (TEKTRAN)

    High costs of nitrogen (N) fertilizer and the potential for N losses to ground and surface water have resulted in increased interest in using catch crops to recover this N. Research on potatoes has shown that the amount of N lost to leaching can be as much as the amount of N removed from the field ...

  6. Major Cucurbit Crops

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cucurbit is a general term to denote all species within the Cucurbitaceae family, which includes approximately 800 species in 130 genera. Cucurbits are mostly annual, herbaceous, tendril-bearing and frost sensitive vines and are among the economically most important vegetable crops worldwide. Cucurb...

  7. Global crop forecasting

    NASA Technical Reports Server (NTRS)

    Macdonald, R. B.; Hall, F. G.

    1980-01-01

    The needs for and remote sensing means of global crop forecasting are discussed, and key results of the Large Area Crop Inventory Experiment (LACIE) are presented. Current crop production estimates provided by foreign countries are shown often to be inadequate, and the basic elements of crop production forecasts are reviewed. The LACIE project is introduced as a proof-of-concept experiment designed to assimilate remote sensing technology, monitor global wheat production, evaluate key technical problems, modify the technique accordingly and demonstrate the feasibility of a global agricultural monitoring system. The global meteorological data, sampling and aggregation techniques, Landsat data analysis procedures and yield forecast procedures used in the experiment are outlined. Accuracy assessment procedures employed to evaluate LACIE technology performance are presented, and improvements in system efficiency and capacity during the three years of operation are pointed out. Results of LACIE estimates of Soviet, U.S. and Canadian wheat production are presented which demonstrate the feasibility and accuracy of the remote-sensing approach for global food and fiber monitoring.

  8. Crop Dusting Using GPS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Global Positioning System (GPS) receivers and GPS-based swath guidance systems are used on agricultural aircraft for remote sensing, airplane guidance, and to support variable-rate aerial application of crop inputs such as insecticides, cotton growth regulators, and defoliants. Agricultural aircraf...

  9. Ethanol from Sugar Crops

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The world-wide impetus to produce alternatives to petroleum-based fuels and relatively low profit for sugar are putting pressure on the sugar industry to diversify for sustainability. Sugar crops, mainly sugarcane, sugar beet, and sweet sorghum, fit well into the emerging concept of a renewable car...

  10. Dynamic crop sequencing in Western Australian cropping systems

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In the last decade in Western Australia crop sequences have become increasingly dominated by wheat. Wheat may now be grown in sequence with a wide range of crops and pastures that may influence the yield of the subsequent wheat crop by suppressing weeds, disease, or increasing the supply of nitroge...

  11. Crop synergism: a natural benefit to improve crop production

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cropping systems in the Great Plains are changing because of no-till. Rotations now include a diversity of crops in contrast with rotations in tilled systems that grow only one or two crops. This change in rotation design has enabled producers to develop population-based weed management and reduce...

  12. Composition of Cereal Crop Residue in Dryland Cropping Systems

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cereal crops and cultivars vary in their composition, and also in their decomposition and contribution to soil organic matter. Large quantities of cereal crop residue that decompose slowly present an obstacle to the adoption of minimum till or no-till seeding, conversely lower quantities of crop re...

  13. [Effects of different cropping patterns on soil enzyme activities and soil microbial community diversity in oasis farmland].

    PubMed

    Li, Rui; Liu, Yu; Chu, Gui-xin

    2015-02-01

    Effects of long-term cropping patterns on the activities of peroxidase, invertase, arylsulfatase, dehydrogenase and protease were investigated in this paper. Four long-term cropping patterns included (1) 10 years continuous cropping of corn, (2) 8 years continuous cropping of wheat followed by 10 years continuous cropping of cotton, (3) 15 years continuous cropping of cotton, and (4) 6 years continuous cropping of cotton followed by 6 years of wheat/sunflower rotation. The responses of soil bacteria, fungi, ammonia oxidizing bacteria (AOB) , and the ammonia oxidizing archaea (AOA) to different copping patterns were analyzed. The results showed that cropping patterns significantly affected the activities of soil peroxidase, arylsulfatase, dehydrogenase and protease, while had no significant effect on soil invertase activity. The cropping patterns significantly influenced the diversity index of AOA, but had no significant influence on that of soil bacteria, fungi and AOB. The community structures of soil fungi and AOB were more sensitive to cropping patterns than soil bacteria and AOA. In conclusion, long-term continuous cropping of cotton decreased the activities of soil enzymes activities and soil microbial diversity in oasis farmland, while crop rotation could alleviate the negative influence. PMID:26094465

  14. Preliminary process engineering evaluation of ethanol production from vegetative crops

    NASA Astrophysics Data System (ADS)

    Moreira, A. R.; Linden, J. C.; Smith, D. H.; Villet, R. H.

    1982-12-01

    Vegetative crops show good potential as feedstock for ethanol production via cellulose hydrolysis and yeast fermentation. The low levels of lignin encountered in young plant tissues show an inverse relationship with the high cellulose digestibility during hydrolysis with cellulose enzymes. Ensiled sorghum species and brown midrib mutants of sorghum exhibit high glucose yields after enzyme hydrolysis as well. Vegetative crop materials as candidate feedstocks for ethanol manufacture should continue to be studied. The species studied so far are high value cash crops and result in relatively high costs for the final ethanol product. Unconventional crops, such as pigweed, kochia, and Russian thistle, which can use water efficiently and grow on relatively arid land under conditions not ideal for food production, should be carefully evaluated with regard to their cultivation requirements, photosynthesis rates, and cellulose digestibility. Such crops should result in more favorable process economics for alcohol production.

  15. Viroids: New and continuing risks for horticultural and agricultural crops

    Technology Transfer Automated Retrieval System (TEKTRAN)

    One of the most intriguing classes of plant pathogens are the viroids. Subviral pathogens that have been isolated from higher plants afflicted with specific diseases, their hosts include both herbaceous and woody species - agronomic as well as ornamental. Identification of viroid-infected plants ca...

  16. Multi-scale indicators in CropWatch

    NASA Astrophysics Data System (ADS)

    Wu, B.; Gommes, R.; Zhang, M.; Zeng, H.; Yan, N.; Zhang, N.; Zou, W.; Chang, S.; Liu, G.

    2013-12-01

    separately. For China, a special indicator (crop type proportion, CTP) will be used to estimate planting area by crop type. Based on the multi-scale remote sensing based indicators, CropWatch can identify recent and noteworthy changes affecting wheat, maize, rice and soybean, and focus on trends that are likely to continue.

  17. WATER USE IN CROP PRODUCTION

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This is a review of the book "Water Use in Crop Production", which comprises sixteen chapters on the state of research on water use in crop production. The first three chapters are reviews of water conservation principles and practices, crop water use response to carbon dioxide and temperature, and ...

  18. Sugar crops for fuel alcohol

    SciTech Connect

    Irvine, J.E.

    1980-01-01

    The use of alcohol rather than petroleum as a fuel source would require a large amount of land and suitable crops. Acerage now in use for food crops and animal production in the USA is given. The author presents alternatives to present land use in order to free acreage for energy crops such as sorghum, sugar beets, and sugar cane. (DC)

  19. Crop Sequence Calculator, v. 3

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Producers need to know how to sequence crops to develop sustainable dynamic cropping systems that take advantage of inherent internal resources, such as crop synergism, nutrient cycling, and soil water, and capitalize on external resources, such as weather, markets, and government programs. Version ...

  20. Effects of bt crops on arthropod natual enemies: a global synthesis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The global adoption of transgenic crops producing the insecticidal proteins from Bacillus thuringiensis Berliner (Bacillaceae), (Bt) continues to grow with 66 M hectares of Bt crops grown in a total of 25 countries in 2011 (James 2011). Unintended environmental effects from the technology continue t...

  1. Soil profile organic carbon as affected by tillage and cropping systems

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Reports on the long-term effects of tillage and cropping systems on soil organic carbon (SOC) sequestration in the entire rooting profile are limited. A long-term experiment with three cropping systems [continuous corn (CC), continuous soybean (CSB), and soybean-corn (SB-C)] in six primary tillage s...

  2. 75 FR 15603 - Common Crop Insurance Regulations; Florida Avocado Crop Insurance Provisions

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-30

    ...The Federal Crop Insurance Corporation (FCIC) finalizes the Common Crop Insurance Regulations; Florida Avocado Crop Insurance Provisions to convert the Florida avocado pilot crop insurance program to a permanent insurance program for the 2011 and succeeding crop...

  3. Weighing Lysimeters for Developing Crop Coefficients and Efficient Irrigation Practices for Vegetable Crops

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Large weighing lysimeters are expensive but invaluable tools for measuring crop evapotranspiration and developing crop coefficients for horticultural crops. Crop coefficients are used by both growers and researchers to estimate crop water use and accurately schedule irrigations. Two lysimeters of ...

  4. 7 CFR 205.205 - Crop rotation practice standard.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 3 2011-01-01 2011-01-01 false Crop rotation practice standard. 205.205 Section 205.205 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing Practices), DEPARTMENT OF AGRICULTURE (CONTINUED) ORGANIC FOODS PRODUCTION ACT PROVISIONS NATIONAL...

  5. Weather based risks and insurances for crop production in Belgium

    NASA Astrophysics Data System (ADS)

    Gobin, Anne

    2014-05-01

    Extreme weather events such as late frosts, droughts, heat waves and rain storms can have devastating effects on cropping systems. Damages due to extreme events are strongly dependent on crop type, crop stage, soil type and soil conditions. The perspective of rising risk-exposure is exacerbated further by limited aid received for agricultural damage, an overall reduction of direct income support to farmers and projected intensification of weather extremes with climate change. According to both the agriculture and finance sectors, a risk assessment of extreme weather events and their impact on cropping systems is needed. The impact of extreme weather events particularly during the sensitive periods of the farming calendar requires a modelling approach to capture the mixture of non-linear interactions between the crop, its environment and the occurrence of the meteorological event. The risk of soil moisture deficit increases towards harvesting, such that drought stress occurs in spring and summer. Conversely, waterlogging occurs mostly during early spring and autumn. Risks of temperature stress appear during winter and spring for chilling and during summer for heat. Since crop development is driven by thermal time and photoperiod, the regional crop model REGCROP (Gobin, 2010) enabled to examine the likely frequency, magnitude and impacts of frost, drought, heat stress and waterlogging in relation to the cropping season and crop sensitive stages. The risk profiles were subsequently confronted with yields, yield losses and insurance claims for different crops. Physically based crop models such as REGCROP assist in understanding the links between different factors causing crop damage as demonstrated for cropping systems in Belgium. Extreme weather events have already precipitated contraction of insurance coverage in some markets (e.g. hail insurance), and the process can be expected to continue if the losses or damages from such events increase in the future. Climate

  6. Oilseed crop with promise

    SciTech Connect

    Senft, D.

    1986-02-01

    Cuphea, a relatively unknown plant outside the scientific community, might someday provide valuable oils for manufacturing soaps, detergents, surfactants, and lubricants, and may have medical, nutritional and dietetic applications as well. Unique properties of oils found in its seed make cuphea a potentially valuable new crop for the USA. Its seeds contain large quantities of medium-chain fatty acids such as lauric acid, which is used in manufacturing soaps and detergents. Other medium-chain fatty acids in cuphea can be used for clinical treatment of rare human ailments associated with fat absorption. New uses for the fatty acids in the seed may be developed and economic conditions may change, making the crop more or less valuable.

  7. Soil Water Improvements with the Long Term Use of a Winter Rye Cover Crop

    NASA Astrophysics Data System (ADS)

    Basche, A.; Kaspar, T.; Archontoulis, S.; Jaynes, D. B.; Sauer, T. J.; Parkin, T.; Miguez, F.

    2015-12-01

    The Midwestern United States, a region that produces one-third of maize and one-quarter of soybeans globally, is projected to experience increasing rainfall variability with future climate change. One approach to mitigate climate impacts is to utilize crop and soil management practices that enhance soil water storage, reducing the risks of flooding and runoff as well as drought-induced crop water stress. While some research indicates that a winter cover crop in a maize-soybean rotation increases soil water, producers continue to be concerned that water use by cover crops will reduce water for a following cash crop. We analyzed continuous in-field soil moisture measurements over from 2008-2014 at a Central Iowa research site that has included a winter rye cover crop in a maize-soybean rotation for thirteen years. This period of study included years in the top third of wettest years on record (2008, 2010, 2014) as well as years in the bottom third of driest years (2012, 2013). We found the cover crop treatment to have significantly higher soil water storage from 2012-2014 when compared to the no cover crop treatment and in most years greater soil water content later in the growing season when a cover crop was present. We further found that the winter rye cover crop significantly increased the field capacity water content and plant available water compared to the no cover crop treatment. Finally, in 2012 and 2013, we measured maize and soybean biomass every 2-3 weeks and did not see treatment differences in crop growth, leaf area or nitrogen uptake. Final crop yields were not statistically different between the cover and no cover crop treatment in any of the years of this analysis. This research indicates that the long-term use of a winter rye cover crop can improve soil water dynamics without sacrificing cash crop growth.

  8. Proteomics: a biotechnology tool for crop improvement

    PubMed Central

    Eldakak, Moustafa; Milad, Sanaa I. M.; Nawar, Ali I.; Rohila, Jai S.

    2013-01-01

    A sharp decline in the availability of arable land and sufficient supply of irrigation water along with a continuous steep increase in food demands have exerted a pressure on farmers to produce more with fewer resources. A viable solution to release this pressure is to speed up the plant breeding process by employing biotechnology in breeding programs. The majority of biotechnological applications rely on information generated from various -omic technologies. The latest outstanding improvements in proteomic platforms and many other but related advances in plant biotechnology techniques offer various new ways to encourage the usage of these technologies by plant scientists for crop improvement programs. A combinatorial approach of accelerated gene discovery through genomics, proteomics, and other associated -omic branches of biotechnology, as an applied approach, is proving to be an effective way to speed up the crop improvement programs worldwide. In the near future, swift improvements in -omic databases are becoming critical and demand immediate attention for the effective utilization of these techniques to produce next-generation crops for the progressive farmers. Here, we have reviewed the recent advances in proteomics, as tools of biotechnology, which are offering great promise and leading the path toward crop improvement for sustainable agriculture. PMID:23450788

  9. Proteomics: a biotechnology tool for crop improvement.

    PubMed

    Eldakak, Moustafa; Milad, Sanaa I M; Nawar, Ali I; Rohila, Jai S

    2013-01-01

    A sharp decline in the availability of arable land and sufficient supply of irrigation water along with a continuous steep increase in food demands have exerted a pressure on farmers to produce more with fewer resources. A viable solution to release this pressure is to speed up the plant breeding process by employing biotechnology in breeding programs. The majority of biotechnological applications rely on information generated from various -omic technologies. The latest outstanding improvements in proteomic platforms and many other but related advances in plant biotechnology techniques offer various new ways to encourage the usage of these technologies by plant scientists for crop improvement programs. A combinatorial approach of accelerated gene discovery through genomics, proteomics, and other associated -omic branches of biotechnology, as an applied approach, is proving to be an effective way to speed up the crop improvement programs worldwide. In the near future, swift improvements in -omic databases are becoming critical and demand immediate attention for the effective utilization of these techniques to produce next-generation crops for the progressive farmers. Here, we have reviewed the recent advances in proteomics, as tools of biotechnology, which are offering great promise and leading the path toward crop improvement for sustainable agriculture. PMID:23450788

  10. Multi-use crops and botanochemical production

    SciTech Connect

    Bagby, M.O.; Buchanan, R.A.; Otey, F.H.

    1981-01-01

    Oil- and hydrocarbon-producing plants are especially attractive as future energy and chemical resources. Plants already supply several products competitive with synthetic petrochemicals. These products include tall oil, naval stores, seed oils, and plant oils. For this discussion, we refer to such products collectively as oils and hydrocarbons. For many years, the US Department of Agriculture has actively pursued a multi-disciplined approach to identify and establish new crops as renewable resources. Patterned after the Department's program to identify annually renewable fibrous plants that could be cultivated for papermaking, an analytical screening program was instituted in 1974 to identify and evaluate species as sources of multi-use oil- and hydrocarbon-producing crops for food material and energy production. The multi-use concept requires plant breeders and agronomists to deal with a variety of new crops, each yielding several different products of varying economic value. In screening plant species as potential crops, a rating system was employed that emphasized potential economy of plant production, total biomass yield, and oil and hydrocarbon content. Subsequently, all candidates were ranked by this rating system. It should be emphasized that vigorous perennials were given preference over annuals, with the concept that seed-bed preparation would be infrequent for perennials. Data for over 300 species have been accumulated, and about 40 species have been identified that have sufficient potential to merit further consideration. Nearly all of these species are being further investigated by USDA plant scientists; meanwhile, the screening program continues.

  11. The effects of weed-crop competition on nutrient uptake as affected by crop rotation and fertilizers.

    PubMed

    Mohammaddoust-E-Chamanabad, Hamid Reza; Asghari, Ali; Tulikov, Aleksander Mikhailovic

    2007-11-15

    A field study at the Agricultural University of Timiriazev, Moscow, was conducted to determine the effect of crop rotation and Long-term fertilizer application on differences in the competitive ability of spring barley and weeds to nutrient uptake in 2004 and 2005. Spring barley was cultivated in continuous and in crop rotation with winter rye, potato, clover, flax and fallow, with and without NPK application since 1912. Spring barley, especially in no fertilizer plots grown in crop rotation has greater dry mass than spring barley grown in continuous. While dry weed mass markedly decreased in crop rotation. Decrease dry weeds mass was greater when NPK had applied. The statistical analyses show that when spring barley grew in competition with weeds in the no fertilizer plots, crop rotation significantly increased nutrient content in spring barley, but when fertilizer applied the content of N, P2O5 and K2O in barley did not change. Lowest weeds nutrient content observed where soil fertility was increased by crop rotation and NPK application. Crop rotation significantly increased total nutrient uptake of soils by spring barley, but decreased total nutrient uptake by weeds. PMID:19090292

  12. Meteorological risks and impacts on crop production systems in Belgium

    NASA Astrophysics Data System (ADS)

    Gobin, Anne

    2013-04-01

    the sensitive stages of summer crops increases and may be further aggravated by atmospheric moisture deficits and heat stress. Summer crops may therefore benefit from earlier planting dates and beneficial moisture conditions during early canopy development, but will suffer from increased drought and heat stress during crop maturity. During the harvesting stages, the number of waterlogged days increases in particular for tuber crops. Physically based crop models assist in understanding the links between different factors causing crop damage. The approach allows for assessing the meteorological impacts on crop growth due to the sensitive stages occurring earlier during the growing season and due to extreme weather events. Though average yields have risen continuously between 1947 and 2008 mainly due to technological advances, there is no evidence that relative tolerance to adverse weather conditions such as atmospheric moisture deficit and temperature extremes has changed.

  13. GEOGLAM Crop Monitor Assessment Tool: Developing Monthly Crop Condition Assessments

    NASA Astrophysics Data System (ADS)

    McGaughey, K.; Becker Reshef, I.; Barker, B.; Humber, M. L.; Nordling, J.; Justice, C. O.; Deshayes, M.

    2014-12-01

    The Group on Earth Observations (GEO) developed the Global Agricultural Monitoring initiative (GEOGLAM) to improve existing agricultural information through a network of international partnerships, data sharing, and operational research. This presentation will discuss the Crop Monitor component of GEOGLAM, which provides the Agricultural Market Information System (AMIS) with an international, multi-source, and transparent consensus assessment of crop growing conditions, status, and agro-climatic conditions likely to impact global production. This activity covers the four primary crop types (wheat, maize, rice, and soybean) within the main agricultural producing regions of the AMIS countries. These assessments have been produced operationally since September 2013 and are published in the AMIS Market Monitor Bulletin. The Crop Monitor reports provide cartographic and textual summaries of crop conditions as of the 28th of each month, according to crop type. This presentation will focus on the building of international networks, data collection, and data dissemination.

  14. Soil moisture monitoring for crop management

    NASA Astrophysics Data System (ADS)

    Boyd, Dale

    2015-07-01

    The 'Risk management through soil moisture monitoring' project has demonstrated the capability of current technology to remotely monitor and communicate real time soil moisture data. The project investigated whether capacitance probes would assist making informed pre- and in-crop decisions. Crop potential and cropping inputs are increasingly being subject to greater instability and uncertainty due to seasonal variability. In a targeted survey of those who received regular correspondence from the Department of Primary Industries it was found that i) 50% of the audience found the information generated relevant for them and less than 10% indicted with was not relevant; ii) 85% have improved their knowledge/ability to assess soil moisture compared to prior to the project, with the most used indicator of soil moisture still being rain fall records; and iii) 100% have indicated they will continue to use some form of the technology to monitor soil moisture levels in the future. It is hoped that continued access to this information will assist informed input decisions. This will minimise inputs in low decile years with a low soil moisture base and maximise yield potential in more favourable conditions based on soil moisture and positive seasonal forecasts

  15. Assessing evapotranspiration, basal crop coefficient, and irrigation efficiency in production peach orchard in California's San Joaquin Valley

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Accurate field scale observations of crop water use are necessary to maximize crop productivity with limited water resources and to parameterize regional and continental satellite models to estimate near real-time crop water use. However, rapid, continuous observations of field-scale water use in Ca...

  16. Continuous steam explosion

    SciTech Connect

    Taylor, J.D.; Yu, E.K.C.

    1995-02-01

    StakeTech has focused on developing steam explosion on a commercial basis. The company essentially a biomass conversion company dealing with cellulosic biomass such as wood, crop residues and, more recently, wastepaper and municipal solid waste (MSW). They are faced with a tremendous opportunity to develop uses for the 50% of biomass that is currently wasted. The StakeTech steam explosion process is able to break the bonds using only high-pressure steam with no chemical additives. The continuous StakeTech System now has been installed in five countries and has proved effective in processing a wide variety of raw materials including wood chips, straw, sugarcane bagasse, and waste paper. End-use applications range from specialty chemicals to large-volume agricultural products. The increase of development activities in steam explosion should lead to expanded end-use applications, and acceptance of the technology by industry should accelerate in the years to come.

  17. Integrated approaches to climate-crop modelling: needs and challenges.

    PubMed

    Betts, Richard A

    2005-11-29

    may be affected by changes in runoff as a direct consequence of climate change, and may also be affected by climate-related changes in demand for water for other uses. It is, therefore, necessary to consider the interactions between the responses of several impacts sectors to climate change. Overall, there is a strong case for a much closer coupling between models of climate, crops and hydrology, but this in itself poses challenges arising from issues of scale and errors in the models. A strategy is proposed whereby the pursuit of a fully coupled climate-chemistry-crop-hydrology model is paralleled by continued use of separate climate and land surface models but with a focus on consistency between the models. PMID:16433093

  18. Molecular mechanisms involved in convergent crop domestication.

    PubMed

    Lenser, Teresa; Theißen, Günter

    2013-12-01

    Domestication has helped to understand evolution. We argue that, vice versa, novel insights into evolutionary principles could provide deeper insights into domestication. Molecular analyses have demonstrated that convergent phenotypic evolution is often based on molecular changes in orthologous genes or pathways. Recent studies have revealed that during plant domestication the causal mutations for convergent changes in key traits are likely to be located in particular genes. These insights may contribute to defining candidate genes for genetic improvement during the domestication of new plant species. Such efforts may help to increase the range of arable crops available, thus increasing crop biodiversity and food security to help meet the predicted demands of the continually growing global population under rapidly changing environmental conditions. PMID:24035234

  19. Space Data for Crop Management

    NASA Technical Reports Server (NTRS)

    1990-01-01

    CROPIX, Inc., formed in 1984 by Frank Lamb, president of the Eastern Oregon Farming Company, monitors primarily potato crops in a 20,000 square mile area of northern Oregon and central Washington. Potatoes are a high value specialty crop that can be more profitable to the farmer if he has advance knowledge of market conditions, knows when to harvest, and when to take it to market. By processing and collecting data collected by the NASA-developed Landsat Earth Resources survey satellites, Lamb is able to provide accurate information on crop acreage and conditions on a more timely basis than the routine estimates by the USDA. CROPIX uses Landsat data to make acreage estimates of crops, and to calculate a field-by-field vegetative index number. CROPIX then distributes to its customers a booklet containing color-coded maps, an inventory of crops, plus data and graphs on crop conditions and other valuable information.

  20. Genetic perspectives on crop domestication

    PubMed Central

    Gross, Briana L.; Olsen, Kenneth M.

    2010-01-01

    The process of crop domestication has long been a topic of active research for biologists, anthropologists and others. Genetic data have proved a powerful resource for drawing inferences on questions regarding the geographical origins of crops, the numbers of independent domestication events for a given crop species, the specific molecular changes underlying domestication traits, and the nature of artificial selection during domestication and subsequent crop improvement. We would argue that these genetic inferences are fundamentally compatible with recent archaeological data that support a view of domestication as a geographically diffuse, gradual process. In this review, we summarize methodologies ranging from QTL mapping to resequencing used in genetic analyses of crop evolution. We also highlight recent major insights regarding the timing and spatial patterning of crop domestication and the distinct genetic underpinnings of domestication, diversification, and improvement traits. PMID:20541451

  1. Crop responses to climatic variation

    PubMed Central

    Porter, John R; Semenov, Mikhail A

    2005-01-01

    The yield and quality of food crops is central to the well being of humans and is directly affected by climate and weather. Initial studies of climate change on crops focussed on effects of increased carbon dioxide (CO2) level and/or global mean temperature and/or rainfall and nutrition on crop production. However, crops can respond nonlinearly to changes in their growing conditions, exhibit threshold responses and are subject to combinations of stress factors that affect their growth, development and yield. Thus, climate variability and changes in the frequency of extreme events are important for yield, its stability and quality. In this context, threshold temperatures for crop processes are found not to differ greatly for different crops and are important to define for the major food crops, to assist climate modellers predict the occurrence of crop critical temperatures and their temporal resolution. This paper demonstrates the impacts of climate variability for crop production in a number of crops. Increasing temperature and precipitation variability increases the risks to yield, as shown via computer simulation and experimental studies. The issue of food quality has not been given sufficient importance when assessing the impact of climate change for food and this is addressed. Using simulation models of wheat, the concentration of grain protein is shown to respond to changes in the mean and variability of temperature and precipitation events. The paper concludes with discussion of adaptation possibilities for crops in response to drought and argues that characters that enable better exploration of the soil and slower leaf canopy expansion could lead to crop higher transpiration efficiency. PMID:16433091

  2. Crop dusting or composting?

    PubMed

    Nemec, Patricia B

    2013-09-01

    In the education and training realm of psychiatric rehabilitation, this article uses a composting/crop-dusting metaphor to describe a competency-based framework of staff development. The crop-dusting, or "fly over," approach to training is likened to an aerial dump of information that may have some positive effect on growth if it's done at the right time and in the right place. The composting approach to training makes use of assessment, preparation, delivery, and follow-up. These four phases are linked to the specific training content and individualized to both the organization and the learners. A thorough training assessment examines existing competencies, how the content will be applied on the job, and whether current job expectations and responsibilities will support the use of the new knowledge and skill. Preparation is important in designing the training activities that are so critical to meeting the needs of adult learners and to ensuring their ability to understand and apply the training content. Delivery of the training must include practice opportunities with feedback and opportunities for trainees to work with the new knowledge or skills in a way that will preview, enhance, and clarify using them on the job. Follow-up should be designed from the beginning and is determined by the purpose of the training. Finally, observation and evaluation bring the process full circle by beginning the assessment for the next round of training. PMID:24059634

  3. Crop diversity sequencing can improve crop tolerance to weeds

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The corn-soybean rotation in eastern South Dakota has led to a weed community comprised of species with similar life cycles to the crops; subsequently, weed management is a major input cost for producers. We are exploring crop diversity in this rotation to determine if producers can reduce the need...

  4. 605 Salad crops: Root, bulb, and tuber Crops

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Root and tuber crops (potato, cassava, sweet potato, and yams) comprise 4 of the 10 major food staples of the world and serve as a major source of energy for the poor of developing nations. Minimal strain placed on agro ecosystems by root and tuber crops highlight their welcomed contribution to the ...

  5. Are the yields of major cereal crops stagnating? Results from the newly developed high spatial resolution crop yield time series

    NASA Astrophysics Data System (ADS)

    Ray, D. K.; Ramankutty, N.; Foley, J. A.

    2011-12-01

    A variety of global scale studies that use crop yield time series for the last 50 years have remained constrained to using national level information due to the lack of high spatial resolution crop yield time series data. In this presentation we will unveil a new global crop yield data set for the 1961-2008 time period, at 5 min spatial resolution, and covering 174 crops. We developed this data by collecting national and sub-national harvested area and production information for individual crops. This new dataset can be used to answer questions related to global agriculture at a resolution and over a time period not previously possible. We have used this new dataset to address the question of whether the yields of the three important cereal crops -- maize, rice and wheat -- are stagnating as widely reported. Our results show that while in the older crop belts of the world yield improvements have slowed, a green revolution type of major yield increases in maize, rice and wheat are continuing in newly cultivated areas of the world.

  6. Integrated approaches to climate–crop modelling: needs and challenges

    PubMed Central

    A. Betts, Richard

    2005-01-01

    irrigation may be affected by changes in runoff as a direct consequence of climate change, and may also be affected by climate-related changes in demand for water for other uses. It is, therefore, necessary to consider the interactions between the responses of several impacts sectors to climate change. Overall, there is a strong case for a much closer coupling between models of climate, crops and hydrology, but this in itself poses challenges arising from issues of scale and errors in the models. A strategy is proposed whereby the pursuit of a fully coupled climate–chemistry–crop–hydrology model is paralleled by continued use of separate climate and land surface models but with a focus on consistency between the models. PMID:16433093

  7. Cover Crop Basics for Nutrient Management

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cover crops are an under-utilized tool in Mid-Atlantic agriculture. Among their many benefits, cover crops supply N for the next crop and/or conserve residual N, and have great potential to improve soil quality. Before using cover crops, growers must identify niches within their cropping system an...

  8. AGRONOMY AND PHYSIOLOGY OF TROPICAL COVER CROPS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cover crops are important components of a sustainable crop production system. They can be planted with plantation crops such as cacao, coffee, banana, rubber and oil palm or in rotation with cash crops. Their use in a cropping system is mainly beneficial for soil and water conservation, recycling of...

  9. Irrigation modeling with AquaCrop

    Technology Transfer Automated Retrieval System (TEKTRAN)

    AquaCrop is a crop water productivity model developed by the Land and Water Division of UN-FAO. It simulates yield response to water of herbaceous crops, and is suited to address conditions where water is a key limiting factor in crop production. AquaCrop attempts to balance accuracy, simplicity, an...

  10. 75 FR 34319 - User Fees for 2010 Crop Cotton Classification Services to Growers

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-17

    ...The Agricultural Marketing Service (AMS) will maintain user fees for cotton producers for 2010 crop cotton classification services under the Cotton Statistics and Estimates Act at the same level as in 2009. These fees are also authorized under the Cotton Standards Act of 1923. The 2009 crop user fee was $2.20 per bale, and this rule will continue the fee for the 2010 cotton crop at that same......

  11. Double- and relay-cropping oilseed and biomass crops for sustainable energy production

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Economically and environmentally sustainable bioenergy production requires strategic integration of biofuel crops into modern cropping systems. Double- and relay-cropping can offer a means of increasing production efficiency to boost profits and provide environmental benefits through crop diversific...

  12. Biosolarization in garlic crop

    NASA Astrophysics Data System (ADS)

    Fabeiro, Concepcion; Andres, Manuela; Wic, Consuelo

    2014-05-01

    One of the most important limitations of garlic cultivation is the presence of various soil pathogens. Fusarium proliferatum and Sclerotinium cepivorum and nematode Ditilenchus dipsaci cause such problems that prevent the repetition of the crop in the same field for at least 5 -8 years or soil disinfection is necessary. Chemical disinfection treatments have an uncertain future, in the European Union are reviewing their use, due to the effect on the non-pathogenic soil fauna. This situation causes a itinerant cultivation to avoid the limitations imposed by soil diseases, thereby increasing production costs. The Santa Monica Cooperative (Albacete, Spain) requested advice on possible alternative techniques, solarization and biosolarization. For which a trial was conducted to evaluate the effectiveness on the riverside area of the municipality. This place has recently authorized irrigation, which would allow the repeated cultivation of garlic if the incidence of soil diseases and the consequent soil fatigue could be avoided. Additionally, this work will serve to promote the cultivation of organic garlic. Last, but not least, the biosolarization technique allows to use waste from wineries, oil mills and mushroom crops. (Bello et al. 2003). The essay should serve as demonstrative proof for farmers' cooperative members. The specific objective for this first year is to assess, the effect on the global soil biota, on the final garlic production and quality and the effect of biosolarization to control soil pathogens. The trial is set on a cooperative's plot previously cultivated with corn. 5 treatments were set, defined by different amounts of organic matter applied, 7.5, 5, 2.5 kg m -2, a solarized with no organic matter, and a control without any treatment. The plot has inground sprinkler for full coverage with four sprinkler lines demarcating the five bands of differential treatment, randomly arranged. Organic matter was incorporated the August 14, 2013, then thoroughly

  13. Midwest Cover Crops Field Guide

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Producers who want to prevent soil erosion, improve nutrient cycling, sustain their soils, and protect/maintain the environment have been returning to a very old practice: planting cover crops. Cover crops are effective tools for reducing soil erosion and increasing nutrient recycling on farmlands, ...

  14. Crop Residue and Soil Water

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Crop yield is greatly influenced by the amount of water that moves from the soil, through the plant, and out into the atmosphere. Winter wheat yield responds linearly to available soil water content at planting (bu/a = 5.56 + 5.34*inches). Therefore, storing precipitation in the soil during non-crop...

  15. Alternative cropping systems for sugarcane

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Planting cover crops during the fallow period prior to planting sugarcane has the potential to influence not only the following sugarcane crop, but the economics of the production system as a whole. Research was conducted at the USDA, ARS, Sugarcane Research Unit at Houma, LA to determine the impac...

  16. Cryopreservation of Temperate Berry Crops

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Preservation of clonal fruit crops requires vegetative propagation. Cryopreservation in liquid nitrogen is considered an ideal method for long-term germplasm storage. Most of the existing cryopreservation techniques are effective for temperate berry crops. The availability of many techniques provi...

  17. Transgenic Crops for Herbicide Resistance

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Since their introduction in 1995, crops made resistant to the broad-spectrum herbicides glyphosate and glufosinate with transgenes are widely available and used in much of the world. As of 2008, over 80% of the transgenic crops grown world-wide have this transgenic trait. This technology has had m...

  18. High plains cover crop research

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Some recent statements have been made about the benefits of growing cover crops in mixtures as compared with single-species plantings of cover crops. Those stated benefits have included greatly reduced water use, enhanced soil microbiological activity, increased biomass productivity, and enhanced wa...

  19. Transgenic horticultural crops in Asia

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Modern biotechnology applications, including genetic engineering, are a powerful tool to complement the conventional methods of crop improvement. Asia currently has three countries cultivating biotech/transgenic crops – China, India, and the Philippines, but only China commercially grows a transgen...

  20. Cell wall proteomics of crops

    PubMed Central

    Komatsu, Setsuko; Yanagawa, Yuki

    2012-01-01

    Cell wall proteins play key roles in cell structure and metabolism, cell enlargement, signal transduction, responses to environmental stress, and many other physiological events. Agricultural crops are often used for investigating stress tolerance because cultivars with differing degrees of tolerance are available. Abiotic and biotic stress factors markedly influence the geographical distribution and yields of many crop species. Crop cell wall proteomics is of particular importance for improving crop productivity, particularly under unfavorable environmental conditions. To better understand the mechanisms underlying stress response in crops, cell wall proteomic analyses are being increasingly utilized. In this review, the methods of purification and purity assays of cell wall protein fractions from crops are described, and the results of protein identification using gel-based and gel-free proteomic techniques are presented. Furthermore, protein composition of the cell walls of rice, wheat, maize, and soybean are compared, and the role of cell wall proteins in crops under flooding and drought stress is discussed. This review will be useful for clarifying the role of the cell wall of crops in response to environmental stresses. PMID:23403621

  1. Genetic Engineering and Crop Production.

    ERIC Educational Resources Information Center

    Jones, Helen C.; Frost, S.

    1991-01-01

    With a spotlight upon current agricultural difficulties and environmental dilemmas, this paper considers both the extant and potential applications of genetic engineering with respect to crop production. The nonagricultural factors most likely to sway the impact of this emergent technology upon future crop production are illustrated. (JJK)

  2. Drought stress responses in crops.

    PubMed

    Shanker, Arun K; Maheswari, M; Yadav, S K; Desai, S; Bhanu, Divya; Attal, Neha Bajaj; Venkateswarlu, B

    2014-03-01

    Among the effects of impending climate change, drought will have a profound impact on crop productivity in the future. Response to drought stress has been studied widely, and the model plant Arabidopsis has guided the studies on crop plants with genome sequence information viz., rice, wheat, maize and sorghum. Since the value of functions of genes, dynamics of pathways and interaction of networks for drought tolerance in plants can only be judged by evidence from field performance, this mini-review provides a research update focussing on the current developments on the response to drought in crop plants. Studies in Arabidopsis provide the basis for interpreting the available information in a systems biology perspective. In particular, the elucidation of the mechanism of drought stress response in crops is considered from evidence-based outputs emerging from recent omic studies in crops. PMID:24408129

  3. 75 FR 70850 - Common Crop Insurance Regulations; Extra Long Staple Cotton Crop Provisions

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-19

    ... Long Staple Cotton Crop Provisions AGENCY: Federal Crop Insurance Corporation, USDA. ACTION: Proposed... amend the Common Crop Insurance Regulations, Extra Long Staple Cotton Crop Insurance Provisions to... statement into the Crop Provisions, and to make the Extra Long Staple Cotton Crop Insurance...

  4. Seed fates in crop–wild hybrid sunflower: crop allele and maternal effects

    PubMed Central

    Pace, Brian A; Alexander, Helen M; Emry, Jason D; Mercer, Kristin L

    2015-01-01

    Domestication has resulted in selection upon seed traits found in wild populations, yet crop-wild hybrids retain some aspects of both parental phenotypes. Seed fates of germination, dormancy, and mortality can influence the success of crop allele introgression in crop-wild hybrid zones, especially if crop alleles or crop-imparted seed coverings result in out-of-season germination. We performed a seed burial experiment using crop, wild, and diverse hybrid sunflower (Helianthus annuus) cross types to test how a cross type's maternal parent and nuclear genetic composition might affect its fate under field conditions. We observed higher maladaptive fall germination in the crop- and F1- produced seeds than wild-produced seeds and, due to an interaction with percent crop alleles, fall germination was higher for cross types with more crop-like nuclear genetics. By spring, crop-produced cross types had the highest overwintering mortality, primarily due to higher fall germination. Early spring germination was identical across maternal types, but germination continued for F1-produced seeds. In conclusion, the more wild-like the maternal parent or the less proportion of the cross type's genome contributed by the crop, the greater likelihood a seed will remain ungerminated than die. Wild-like dormancy may facilitate introgression through future recruitment from the soil seed bank. PMID:25685189

  5. Cropping Sequence and Nitrogen Fertilization Effects on Dryland Soil Nitrous Oxide Emission

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Emission of nitrous oxide (N2O), a potent greenhouse gas responsible for global warming, may be influenced by cropping and N fertilization management. The effects of three cropping sequences [no-tilled continuous malt barley (NTCB), no-tilled malt barley-pea (NTB-P), and conventional tilled malt bar...

  6. Grazing winter rye cover crop in a cotton no-till system: yield and economics

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Winter cover crop adoption in conservation management systems continues to be limited in the US but could be encouraged if establishment costs could be offset. A 4-yr field experiment was conducted near Watkinsville, Georgia in which a rye (Secale cereale L.) cover crop was either grazed by catt...

  7. 7 CFR 1412.31 - Direct payment yields for covered commodities, except pulse crops.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... for covered commodities at part 1412 of this chapter in effect on January 1, 2008 (see 7 CFR part 1412... pulse crops. 1412.31 Section 1412.31 Agriculture Regulations of the Department of Agriculture (Continued... commodities, except pulse crops. (a) The direct payment yield for each covered commodity, except pulse...

  8. 7 CFR 1437.504 - Notice of loss for covered tropical crops.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... day the eligible natural disaster occurred or, for prolonged natural disasters, such as a drought and... loss event that can be harvested after the eligible natural disaster must be harvested, or continue to... having a zero yield capability for the crop year involved for purposes of constructing a crop...

  9. 7 CFR 1437.504 - Notice of loss for covered tropical crops.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... day the eligible natural disaster occurred or, for prolonged natural disasters, such as a drought and... loss event that can be harvested after the eligible natural disaster must be harvested, or continue to... having a zero yield capability for the crop year involved for purposes of constructing a crop...

  10. 7 CFR 981.57 - Application of salable and reserve percentages after end of crop year.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ...), DEPARTMENT OF AGRICULTURE ALMONDS GROWN IN CALIFORNIA Order Regulating Handling Volume Regulation § 981.57... established for any crop year shall continue in effect with respect to all almonds for which the reserve... requirements for all such almonds theretofore received for his own account or handled during that crop...

  11. 7 CFR 981.57 - Application of salable and reserve percentages after end of crop year.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ...), DEPARTMENT OF AGRICULTURE ALMONDS GROWN IN CALIFORNIA Order Regulating Handling Volume Regulation § 981.57... established for any crop year shall continue in effect with respect to all almonds for which the reserve... requirements for all such almonds theretofore received for his own account or handled during that crop...

  12. 7 CFR 981.57 - Application of salable and reserve percentages after end of crop year.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ...), DEPARTMENT OF AGRICULTURE ALMONDS GROWN IN CALIFORNIA Order Regulating Handling Volume Regulation § 981.57... established for any crop year shall continue in effect with respect to all almonds for which the reserve... requirements for all such almonds theretofore received for his own account or handled during that crop...

  13. 7 CFR 981.57 - Application of salable and reserve percentages after end of crop year.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ...), DEPARTMENT OF AGRICULTURE ALMONDS GROWN IN CALIFORNIA Order Regulating Handling Volume Regulation § 981.57... established for any crop year shall continue in effect with respect to all almonds for which the reserve... requirements for all such almonds theretofore received for his own account or handled during that crop...

  14. 7 CFR 981.57 - Application of salable and reserve percentages after end of crop year.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ...), DEPARTMENT OF AGRICULTURE ALMONDS GROWN IN CALIFORNIA Order Regulating Handling Volume Regulation § 981.57... established for any crop year shall continue in effect with respect to all almonds for which the reserve... requirements for all such almonds theretofore received for his own account or handled during that crop...

  15. Radiometer footprint model to estimate sunlit and shaded components for row crops

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This paper describes a geometric model for computing the relative proportion of sunlit vegetation, shaded vegetation, sunlit soil, and shaded soil appearing in a circular or elliptical radiometer footprint for row crops, where the crop rows were modeled as continuous ellipses. The model was validate...

  16. 7 CFR 1437.504 - Notice of loss for covered tropical crops.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 10 2010-01-01 2010-01-01 false Notice of loss for covered tropical crops. 1437.504 Section 1437.504 Agriculture Regulations of the Department of Agriculture (Continued) COMMODITY CREDIT CORPORATION, DEPARTMENT OF AGRICULTURE LOANS, PURCHASES, AND OTHER OPERATIONS NONINSURED CROP...

  17. 7 CFR 1437.504 - Notice of loss for covered tropical crops.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 10 2011-01-01 2011-01-01 false Notice of loss for covered tropical crops. 1437.504 Section 1437.504 Agriculture Regulations of the Department of Agriculture (Continued) COMMODITY CREDIT CORPORATION, DEPARTMENT OF AGRICULTURE LOANS, PURCHASES, AND OTHER OPERATIONS NONINSURED CROP...

  18. 7 CFR 205.602 - Nonsynthetic substances prohibited for use in organic crop production.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 3 2013-01-01 2013-01-01 false Nonsynthetic substances prohibited for use in organic... AGRICULTURE (CONTINUED) ORGANIC FOODS PRODUCTION ACT PROVISIONS NATIONAL ORGANIC PROGRAM Administrative The... organic crop production. The following nonsynthetic substances may not be used in organic crop...

  19. 7 CFR 205.602 - Nonsynthetic substances prohibited for use in organic crop production.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 3 2012-01-01 2012-01-01 false Nonsynthetic substances prohibited for use in organic... AGRICULTURE (CONTINUED) ORGANIC FOODS PRODUCTION ACT PROVISIONS NATIONAL ORGANIC PROGRAM Administrative The... organic crop production. The following nonsynthetic substances may not be used in organic crop...

  20. 7 CFR 205.602 - Nonsynthetic substances prohibited for use in organic crop production.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 3 2014-01-01 2014-01-01 false Nonsynthetic substances prohibited for use in organic... AGRICULTURE (CONTINUED) ORGANIC FOODS PRODUCTION ACT PROVISIONS NATIONAL ORGANIC PROGRAM Administrative The... organic crop production. The following nonsynthetic substances may not be used in organic crop...

  1. Alfalfa: a companion crop with corn for bioenergy

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Corn grain-based ethanol is the major form of biofuel production in the USA. However, there are concerns about growing corn in rotation with soybean or as a continuous corn crop for ethanol, including high energy inputs, high soil erosion potential, and high nutrient inputs and loss to the environme...

  2. Sugarcane yield response to soybean double-cropping in Louisiana

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The interruption of continuous sugarcane plantings with a soybean (Glycine max) crop during the spring/summer fallow period between sugarcane plantings represents an economical opportunity for sugarcane growers in Louisiana. The objective of the experiment was to determine if soybeans grown in the u...

  3. 7 CFR 457.122 - Walnut crop insurance provisions.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    .... Interplanted—Acreage on which two or more crops are planted in any form of alternating or mixed pattern. Net... continuously in force, coverage begins on the day immediately following the end of the insurance period for the... net delivered weight, will be reduced by the quality adjustment factors contained in the...

  4. 7 CFR 457.155 - Processing bean crop insurance provisions.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... additional levels of coverage, as specified in 7 CFR part 400, subpart T, and pay an additional premium, you... 7 Agriculture 6 2012-01-01 2012-01-01 false Processing bean crop insurance provisions. 457.155 Section 457.155 Agriculture Regulations of the Department of Agriculture (Continued) FEDERAL...

  5. 7 CFR 457.155 - Processing bean crop insurance provisions.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... additional levels of coverage, as specified in 7 CFR part 400, subpart T, and pay an additional premium, you... 7 Agriculture 6 2010-01-01 2010-01-01 false Processing bean crop insurance provisions. 457.155 Section 457.155 Agriculture Regulations of the Department of Agriculture (Continued) FEDERAL...

  6. 7 CFR 457.155 - Processing bean crop insurance provisions.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... additional levels of coverage, as specified in 7 CFR part 400, subpart T, and pay an additional premium, you... 7 Agriculture 6 2014-01-01 2014-01-01 false Processing bean crop insurance provisions. 457.155 Section 457.155 Agriculture Regulations of the Department of Agriculture (Continued) FEDERAL...

  7. 7 CFR 457.155 - Processing bean crop insurance provisions.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... additional levels of coverage, as specified in 7 CFR part 400, subpart T, and pay an additional premium, you... 7 Agriculture 6 2013-01-01 2013-01-01 false Processing bean crop insurance provisions. 457.155 Section 457.155 Agriculture Regulations of the Department of Agriculture (Continued) FEDERAL...

  8. 7 CFR 932.19 - Crop year and fiscal year.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 8 2010-01-01 2010-01-01 false Crop year and fiscal year. 932.19 Section 932.19 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Marketing Agreements and Orders; Fruits, Vegetables, Nuts), DEPARTMENT OF AGRICULTURE OLIVES GROWN IN CALIFORNIA Order Regulating Handling Definitions...

  9. 7 CFR 932.19 - Crop year and fiscal year.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 8 2012-01-01 2012-01-01 false Crop year and fiscal year. 932.19 Section 932.19 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Marketing Agreements and Orders; Fruits, Vegetables, Nuts), DEPARTMENT OF AGRICULTURE OLIVES GROWN IN CALIFORNIA...

  10. 7 CFR 932.19 - Crop year and fiscal year.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 8 2014-01-01 2014-01-01 false Crop year and fiscal year. 932.19 Section 932.19 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (MARKETING AGREEMENTS AND ORDERS; FRUITS, VEGETABLES, NUTS), DEPARTMENT OF AGRICULTURE OLIVES GROWN IN CALIFORNIA...

  11. 7 CFR 932.19 - Crop year and fiscal year.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 8 2013-01-01 2013-01-01 false Crop year and fiscal year. 932.19 Section 932.19 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (MARKETING AGREEMENTS AND ORDERS; FRUITS, VEGETABLES, NUTS), DEPARTMENT OF AGRICULTURE OLIVES GROWN IN CALIFORNIA...

  12. 7 CFR 201.18 - Other agricultural seeds (crop seeds).

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 3 2010-01-01 2010-01-01 false Other agricultural seeds (crop seeds). 201.18 Section... SERVICE (Standards, Inspections, Marketing Practices), DEPARTMENT OF AGRICULTURE (CONTINUED) FEDERAL SEED ACT FEDERAL SEED ACT REGULATIONS Labeling Agricultural Seeds § 201.18 Other agricultural seeds...

  13. Using Mustard Seed Meal and Cover Crops for Weed Control

    Technology Transfer Automated Retrieval System (TEKTRAN)

    There continues to be a steady growth in the use of fall planted brassica cover crops in the Columbia Basin especially prior to potatoes. Several benefits include better water infiltration, reclaiming nitrogen, reduced erosion, and suppression of nematodes, diseases, and weeds. Weed suppression is...

  14. 7 CFR 457.131 - Macadamia nut crop insurance provisions.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... accordance with Actual Production History (APH) regulations, 7 CFR part 400, subpart G, and applicable policy... 7 Agriculture 6 2012-01-01 2012-01-01 false Macadamia nut crop insurance provisions. 457.131 Section 457.131 Agriculture Regulations of the Department of Agriculture (Continued) FEDERAL...

  15. 7 CFR 457.131 - Macadamia nut crop insurance provisions.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... accordance with Actual Production History (APH) regulations, 7 CFR part 400, subpart G, and applicable policy... 7 Agriculture 6 2011-01-01 2011-01-01 false Macadamia nut crop insurance provisions. 457.131 Section 457.131 Agriculture Regulations of the Department of Agriculture (Continued) FEDERAL...

  16. 7 CFR 457.131 - Macadamia nut crop insurance provisions.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... accordance with Actual Production History (APH) regulations, 7 CFR part 400, subpart G, and applicable policy... 7 Agriculture 6 2013-01-01 2013-01-01 false Macadamia nut crop insurance provisions. 457.131 Section 457.131 Agriculture Regulations of the Department of Agriculture (Continued) FEDERAL...

  17. 7 CFR 457.131 - Macadamia nut crop insurance provisions.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... accordance with Actual Production History (APH) regulations, 7 CFR part 400, subpart G, and applicable policy... 7 Agriculture 6 2014-01-01 2014-01-01 false Macadamia nut crop insurance provisions. 457.131 Section 457.131 Agriculture Regulations of the Department of Agriculture (Continued) FEDERAL...

  18. Potential for Entomopathogens to Delay Resistance to Bt Crops

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The past decade has witnessed a continual increase in the use of crops genetically modified to produce insecticidal toxins from the bacterium Bacillus thuringiensis (Bt). This presents the challenge of designing agricultural systems to manage pests and the evolution of resistance to Bt. Currently,...

  19. 7 CFR 201.18 - Other agricultural seeds (crop seeds).

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 3 2011-01-01 2011-01-01 false Other agricultural seeds (crop seeds). 201.18 Section... SERVICE (Standards, Inspections, Marketing Practices), DEPARTMENT OF AGRICULTURE (CONTINUED) FEDERAL SEED ACT FEDERAL SEED ACT REGULATIONS Labeling Agricultural Seeds § 201.18 Other agricultural seeds...

  20. Crop diversity on traditional great plains wheat farms

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Historically, the vast majority of cropland in the western Great Plains was either seeded to continuous monoculture wheat or was in a wheat-fallow rotation. The objective of this paper is to determine the combined effects of crop diversity and tillage systems on wheat grain yield and net returns fo...

  1. 7 CFR 201.18 - Other agricultural seeds (crop seeds).

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 3 2014-01-01 2014-01-01 false Other agricultural seeds (crop seeds). 201.18 Section... SERVICE (Standards, Inspections, Marketing Practices), DEPARTMENT OF AGRICULTURE (CONTINUED) FEDERAL SEED ACT FEDERAL SEED ACT REGULATIONS Labeling Agricultural Seeds § 201.18 Other agricultural seeds...

  2. 7 CFR 201.18 - Other agricultural seeds (crop seeds).

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 3 2012-01-01 2012-01-01 false Other agricultural seeds (crop seeds). 201.18 Section... SERVICE (Standards, Inspections, Marketing Practices), DEPARTMENT OF AGRICULTURE (CONTINUED) FEDERAL SEED ACT FEDERAL SEED ACT REGULATIONS Labeling Agricultural Seeds § 201.18 Other agricultural seeds...

  3. 7 CFR 201.18 - Other agricultural seeds (crop seeds).

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 3 2013-01-01 2013-01-01 false Other agricultural seeds (crop seeds). 201.18 Section... SERVICE (Standards, Inspections, Marketing Practices), DEPARTMENT OF AGRICULTURE (CONTINUED) FEDERAL SEED ACT FEDERAL SEED ACT REGULATIONS Labeling Agricultural Seeds § 201.18 Other agricultural seeds...

  4. Recycling crop residues for use in recirculating hydroponic crop production

    NASA Technical Reports Server (NTRS)

    Mackowiak, C. L.; Garland, J. L.; Sager, J. C.

    1996-01-01

    As part of bioregenerative life support feasibility testing by NASA, crop residues are being used to resupply elemental nutrients to recirculating hydroponic crop production systems. Methods for recovering nutrients from crop residues have evolved from water soaking (leaching) to rapid aerobic bioreactor processing. Leaching residues recovered the majority of elements but it also recovered significant amounts of soluble organics. The high organic content of leachates was detrimental to plant growth. Aerobic bioreactor processing reduced the organic content ten-fold, which reduced or eliminated phytotoxic effects. Wheat and potato production studies were successful using effluents from reactors having with 8- to 1-day retention times. Aerobic bioreactor effluents supplied at least half of the crops elemental mass needs in these studies. Descriptions of leachate and effluent mineral content, biomass productivity, microbial activity, and nutrient budgets for potato and wheat are presented.

  5. Recycling crop residues for use in recirculating hydroponic crop production.

    PubMed

    Mackowiak, C L; Garland, J L; Sager, J C

    1996-12-01

    As part of bioregenerative life support feasibility testing by NASA, crop residues are being used to resupply elemental nutrients to recirculating hydroponic crop production systems. Methods for recovering nutrients from crop residues have evolved from water soaking (leaching) to rapid aerobic bioreactor processing. Leaching residues recovered the majority of elements but it also recovered significant amounts of soluble organics. The high organic content of leachates was detrimental to plant growth. Aerobic bioreactor processing reduced the organic content ten-fold, which reduced or eliminated phytotoxic effects. Wheat and potato production studies were successful using effluents from reactors having with 8- to 1-day retention times. Aerobic bioreactor effluents supplied at least half of the crops elemental mass needs in these studies. Descriptions of leachate and effluent mineral content, biomass productivity, microbial activity, and nutrient budgets for potato and wheat are presented. PMID:11541570

  6. The application of genomics and bioinformatics to accelerate crop improvement in a changing climate.

    PubMed

    Batley, Jacqueline; Edwards, David

    2016-04-01

    The changing climate and growing global population will increase pressure on our ability to produce sufficient food. The breeding of novel crops and the adaptation of current crops to the new environment are required to ensure continued food production. Advances in genomics offer the potential to accelerate the genomics based breeding of crop plants. However, relating genomic data to climate related agronomic traits for use in breeding remains a huge challenge, and one which will require coordination of diverse skills and expertise. Bioinformatics, when combined with genomics has the potential to help maintain food security in the face of climate change through the accelerated production of climate ready crops. PMID:26926905

  7. Selection of herbaceous energy crops for the western corn belt

    SciTech Connect

    Anderson, I.C.; Buxton, D.R.; Hallam, J.A.

    1994-05-01

    The ultimate economic feasibility of biomass depends on its cost of production and on the cost of competing fuels. The purpose of this research project is to evaluate the production costs of several combinations of species and management systems for producing herbaceous biomass for energy use in Iowa. Herbaceous biomass production systems have costs similar to other crop production systems, such as corn, soybean, and forages. Thus, the factors influencing the costs of producing dedicated biomass energy crops include technological factors such as the cultivation system, species, treatments, soil type, and site and economic factors such as input prices and use of fixed resources. In order to investigate how these production alternatives are influenced by soil resources, and climate conditions, two locations in Iowa, Ames and Chariton, with different soil types and slightly different weather patterns were selected for both the agronomic and economic analyses. Nine crops in thirteen cropping systems were grown at the two sites for five years, from 1988 to 1992. Some of the systems had multiple cropping or interplanting, using combinations of cool-season species and warm-season species, in order to meet multiple objectives of maximum biomass, minimal soil loss, reduced nitrogen fertilization or diminished pesticide inputs. Six of the systems use continuous monocropping of herbaceous crops with an emphasis on production. The seven other systems consist of similar crops, but with crop rotation and soil conservation considerations. While the erosion and other off-site effects of these systems is an important consideration in their overall evaluation, this report will concentrate on direct production costs only.

  8. Crop Registration: The Pathway to Public Access of Plant Genetic Materials to Build Crops for the Future

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Starting as Crop Science Registrations in the American Journal of the Society of Agronomy in 1926, and continuing 80+ years later in the Journal of Plant Registrations, 11,241 plant cultivars, germplasm, parental lines, genetic stocks and mapping populations have been registered as of December 31, 2...

  9. Evapotranspiration and water use efficiency in maize-soybean crops in the US Midwest

    NASA Astrophysics Data System (ADS)

    Hussain, M. Z.; Hamilton, S. K.; Bhardwaj, A. K.; Basso, B.; Thelen, K.; Robertson, P.

    2015-12-01

    Evapotranspiration from maize and soybean crops is an important component of terrestrial water balance in the US Midwest. In this study we examine water use in continuous maize (corn) vs. maize-soybean rotations, with cover crops planted in some years. From 2010-14, we continuously measured growing season evapotranspiration (ET) based on daily drawdown of soil moisture content using TDR (time-domain reflectometry) probes installed throughout the root zone. Treatments included continuous maize (CM), continuous maize with cover crops (CMC) and maize-soybean rotation with cover crops (MSC), all grown without irrigation in a temperate humid climate (Michigan, USA). Cover crops were planted in the autumn after harvest of the main crop and harvested in spring prior to planting of the next main crop during 2012-2013 (2013) and 2013-2014 (2014). Four study years (2010, 2011, 2013 and 2014) had normal growing season rainfall (568, 555, 445, and 472 mm) while 2012 was an extreme drought season with a growing-season rainfall deficit of ~50% (210 mm below average). Growing season ET in CM, CMC and MSC during years of normal rainfall averaged 517, 433, and 443 mm, respectively, compared to 455, 374 and 304 mm in the 2012 drought year. Cover crop ET was inconsequential to the subsequent main crops due to abundant rainfall in the spring periods; soils held as much water as they could at the transition from cover crops to main crops. Grain yield in years of normal rainfall for CM, CMC and MSC averaged 12.6, 8.4 and 7.8 Mg ha-1, respectively, compared to 4.9, 4.0, and 4.0 Mg ha-1 in the 2012 drought year. Maximum biomass in years of normal rainfall averaged 38, 30 and 21 Mg ha-1 compared to 19, 13, and 13 Mg ha-1 in the drought year. Water use efficiencies, defined as ratio of maximum standing-stock biomass to growing season evapotranspiration, were 74, 69, and 47 kg ha-1 mm-1 for CM, CMC and MSC in years of normal rainfall, while values in the drought year were 41, 34 and 46 kg ha

  10. Plant and Crop Databases

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Databases have become an integral part of all aspects of biological research, including basic and applied plant biology. The importance of databases continues to increase as the volume of data from direct and indirect genomics approaches expands. What is not always obvious to users of databases is t...

  11. Biotechnology of oil seed crops

    SciTech Connect

    James, A.T.

    1985-02-01

    A general summary of possibilities and limitation application of biotechnology processes to processing and/or production of fats and oils is presented. Enzymatic processes, cloning of premium perennial oil crops and genetic manipulation of oil seed compositions are discussed.

  12. Nitrogen, tillage, and crop rotation effects on nitrous oxide emissions from irrigated cropping systems.

    PubMed

    Halvorson, Ardell D; Del Grosso, Stephen J; Reule, Curtis A

    2008-01-01

    We evaluated the effects of irrigated crop management practices on nitrous oxide (N(2)O) emissions from soil. Emissions were monitored from several irrigated cropping systems receiving N fertilizer rates ranging from 0 to 246 kg N ha(-1) during the 2005 and 2006 growing seasons. Cropping systems included conventional-till (CT) continuous corn (Zea mays L.), no-till (NT) continuous corn, NT corn-dry bean (Phaseolus vulgaris L.) (NT-CDb), and NT corn-barley (Hordeum distichon L.) (NT-CB). In 2005, half the N was subsurface band applied as urea-ammonium nitrate (UAN) at planting to all corn plots, with the rest of the N applied surface broadcast as a polymer-coated urea (PCU) in mid-June. The entire N rate was applied as UAN at barley and dry bean planting in the NT-CB and NT-CDb plots in 2005. All plots were in corn in 2006, with PCU being applied at half the N rate at corn emergence and a second N application as dry urea in mid-June followed by irrigation, both banded on the soil surface in the corn row. Nitrous oxide fluxes were measured during the growing season using static, vented chambers (1-3 times wk(-1)) and a gas chromatograph analyzer. Linear increases in N(2)O emissions were observed with increasing N-fertilizer rate, but emission amounts varied with growing season. Growing season N(2)O emissions were greater from the NT-CDb system during the corn phase of the rotation than from the other cropping systems. Crop rotation and N rate had more effect than tillage system on N(2)O emissions. Nitrous oxide emissions from N application ranged from 0.30 to 0.75% of N applied. Spikes in N(2)O emissions after N fertilizer application were greater with UAN and urea than with PCU fertilizer. The PCU showed potential for reducing N(2)O emissions from irrigated cropping systems. PMID:18574163

  13. Novel enabling technologies of gene isolation and plant transformation for improved crop protection

    SciTech Connect

    Torok, Tamas

    2013-02-04

    Meeting the needs of agricultural producers requires the continued development of improved transgenic crop protection products. The completed project focused on developing novel enabling technologies of gene discovery and plant transformation to facilitate the generation of such products.

  14. Crop rotation principles for the northern Plains

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Crop selection and sequencing serve as a cornerstone of sustainable cropping systems. Among the many options available to select and sequence crops, a fixed-sequence system, whereby crops are sequenced in a consistent, unchanging pattern, is the most simple. Fixed-sequence systems, however, can co...

  15. 26 CFR 1.268-1 - Items attributable to an unharvested crop sold with the land.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... with the land. 1.268-1 Section 1.268-1 Internal Revenue INTERNAL REVENUE SERVICE, DEPARTMENT OF THE TREASURY (CONTINUED) INCOME TAX (CONTINUED) INCOME TAXES (CONTINUED) Items Not Deductible § 1.268-1 Items... allowed in respect of items attributable to the production of an unharvested crop which is sold,...

  16. Developing trap cropping systems for effective organic management of key insect pests of cucurbit crops (IPM)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Trap cropping is a behaviorally-based pest management approach that functions by planting highly attractive plants next to a higher value crop so as to attract the pest to the trap crop plants, thus preventing or making less likely the arrival of the pest to the main crop (= cash crop). In 2012, a s...

  17. The dynamics of hydroponic crops for simulation studies of the CELSS initial reference configurations

    NASA Technical Reports Server (NTRS)

    Volk, Tyler

    1993-01-01

    During the past several years, the NASA Program in Controlled Ecological Life Support Systems (CELSS) has continued apace with crop research and logistic, technological, and scientific strides. These include the CELSS Test Facility planned for the space station and its prototype Engineering Development Unit, soon to be active at Ames Research Center (as well as the advanced crop growth research chamber at Ames); the large environmental growth chambers and the planned human test bed facility at Johnson Space Center; the NSCORT at Purdue with new candidate crops and diverse research into the CELSS components; the gas exchange data for soy, potatoes, and wheat from Kennedy Space Center (KSC); and the high-precision gas exchange data for wheat from Utah State University (USU). All these developments, taken together, speak to the need for crop modeling as a means to connect the findings of the crop physiologists with the engineers designing the system. A need also exists for crop modeling to analyze and predict the gas exchange data from the various locations to maximize the scientific yield from the experiments. One fruitful approach employs what has been called the 'energy cascade'. Useful as a basis for CELSS crop growth experimental design, the energy cascade as a generic modeling approach for CELSS crops is a featured accomplishment in this report. The energy cascade is a major tool for linking CELSS crop experiments to the system design. The energy cascade presented here can help collaborations between modelers and crop experimenters to develop the most fruitful experiments for pushing the limits of crop productivity. Furthermore, crop models using the energy cascade provide a natural means to compare, feature for feature, the crop growth components between different CELSS experiments, for example, at Utah State University and Kennedy Space Center.

  18. Climate change impacts on crop yield: evidence from China.

    PubMed

    Wei, Taoyuan; Cherry, Todd L; Glomrød, Solveig; Zhang, Tianyi

    2014-11-15

    When estimating climate change impact on crop yield, a typical assumption is constant elasticity of yield with respect to a climate variable even though the elasticity may be inconstant. After estimating both constant and inconstant elasticities with respect to temperature and precipitation based on provincial panel data in China 1980-2008, our results show that during that period, the temperature change contributes positively to total yield growth by 1.3% and 0.4% for wheat and rice, respectively, but negatively by 12% for maize. The impacts of precipitation change are marginal. We also compare our estimates with other studies and highlight the implications of the inconstant elasticities for crop yield, harvest and food security. We conclude that climate change impact on crop yield would not be an issue in China if positive impacts of other socio-economic factors continue in the future. PMID:25181045

  19. Salinity tolerance of crops - what is the cost?

    PubMed

    Munns, Rana; Gilliham, Matthew

    2015-11-01

    Soil salinity reduces crop yield. The extent and severity of salt-affected agricultural land is predicted to worsen as a result of inadequate drainage of irrigated land, rising water tables and global warming. The growth and yield of most plant species are adversely affected by soil salinity, but varied adaptations can allow some crop cultivars to continue to grow and produce a harvestable yield under moderate soil salinity. Significant costs are associated with saline soils: the economic costs to the farming community and the energy costs of plant adaptations. We briefly consider mechanisms of adaptation and highlight recent research examples through a lens of their applicability to improving the energy efficiency of crops under saline field conditions. PMID:26108441

  20. Biotechnology in biomass crop production

    SciTech Connect

    Harry, D.E.; Sederoff, R.R. . Dept. of Forestry; North Carolina State Univ., Raleigh, NC . Dept. of Forestry)

    1989-12-01

    There is great potential for the application of plant genetic engineering to production of biomass crops. Two factors largely determine the feasibility of crop improvement using genetic engineering: (1) the status of technology for the transfer and expression of foreign genetic material in plants, and (2) the level of understanding about genetic factors involved in the process or trait to be manipulated. Although information and technology for exploiting the potential of genetic engineering is in an early developmental phase, new research initiatives can now be taken to make significant advances. In this report we evaluate the nature and status of information and technology relating to specific problems of interest for production of biomass crops. In our discussions, we emphasize woody crops because our expertise is stronger in this area, but we have included information on herbaceous crops as appropriate. Plant genetic engineering has the potential to improve plantation or stand establishment, biomass production, and structural or chemical properties for efficient biomass utilization by either direct combustion or by conversion. Such research programs must be highly interdisciplinary, involving new technologies in laboratory research, in addition to traditional field testing. 119 refs.

  1. Fluorescence of crop residue: postmortem analysis of crop conditions

    NASA Astrophysics Data System (ADS)

    McMurtrey, James E., III; Kim, Moon S.; Daughtry, Craig S. T.; Corp, Lawrence A.; Chappelle, Emmett W.

    1997-07-01

    Fluorescence of crop residues at the end of the growing season may provide an indicator of the past crop's vegetative condition. Different levels of nitrogen (N) fertilization were applied to field grown corn and wheat at Beltsville, Maryland. The N fertilizer treatments produce a range of physiological conditions, pigment concentrations, biomass levels, and grain yields that resulted in varying growth and stress conditions in the living crops. After normal harvesting procedures the crop residues remained. The fluorescence spectral characteristics of the plant residues from crops grown under different levels of N nutrition were analyzed. The blue-green fluorescence response of in-vitro residue biomass of the N treated field corn had different magnitudes. A blue-green- yellow algorithm, (460/525)*600 nm, gave the best separations between prior corn growth conditions at different N fertilization levels. Relationships between total dry biomass, the grain yield, and fluorescence properties in the 400 - 670 nm region of the spectrum were found in both corn and wheat residues. The wheat residue was analyzed to evaluate the constituents responsible for fluorescence. A ratio of the blue-green, 450/550 nm, images gave the best separation among wheat residues at different N fertilization levels. Fluorescence of extracts from wheat residues showed inverse fluorescence intensities as a function of N treatments compared to that of the intact wheat residue or ground residue samples. The extracts also had an additional fluorescence emission peak in the red, 670 nm. Single band fluorescence intensity in corn and wheat residues is due mostly to the quantity of the material on the soil surface. Ratios of fluorescence bands varied as a result of the growth conditions created by the N treatments and are thought to be indicative of the varying concentrations of the plant residues fluorescing constituents. Estimates of the amount and cost effectiveness of N fertilizers to satisfy

  2. Environmental health impacts of feeding crops to farmed fish.

    PubMed

    Fry, Jillian P; Love, David C; MacDonald, Graham K; West, Paul C; Engstrom, Peder M; Nachman, Keeve E; Lawrence, Robert S

    2016-05-01

    Half of the seafood consumed globally now comes from aquaculture, or farmed seafood. Aquaculture therefore plays an increasingly important role in the global food system, the environment, and human health. Traditionally, aquaculture feed has contained high levels of wild fish, which is unsustainable for ocean ecosystems as demand grows. The aquaculture industry is shifting to crop-based feed ingredients, such as soy, to replace wild fish as a feed source and allow for continued industry growth. This shift fundamentally links seafood production to terrestrial agriculture, and multidisciplinary research is needed to understand the ecological and environmental health implications. We provide basic estimates of the agricultural resource use associated with producing the top five crops used in commercial aquaculture feed. Aquaculture's environmental footprint may now include nutrient and pesticide runoff from industrial crop production, and depending on where and how feed crops are produced, could be indirectly linked to associated negative health outcomes. We summarize key environmental health research on health effects associated with exposure to air, water, and soil contaminated by industrial crop production. Our review also finds that changes in the nutritional content of farmed seafood products due to altered feed composition could impact human nutrition. Based on our literature reviews and estimates of resource use, we present a conceptual framework describing the potential links between increasing use of crop-based ingredients in aquaculture and human health. Additional data and geographic sourcing information for crop-based ingredients are needed to fully assess the environmental health implications of this trend. This is especially critical in the context of a food system that is using both aquatic and terrestrial resources at unsustainable rates. PMID:26970884

  3. Variation of Bacterial Community Diversity in Rhizosphere Soil of Sole-Cropped versus Intercropped Wheat Field after Harvest.

    PubMed

    Yang, Zhenping; Yang, Wenping; Li, Shengcai; Hao, Jiaomin; Su, Zhifeng; Sun, Min; Gao, Zhiqiang; Zhang, Chunlai

    2016-01-01

    As the major crops in north China, spring crops are usually planted from April through May every spring and harvested in fall. Wheat is also a very common crop traditionally planted in fall or spring and harvested in summer year by year. This continuous cropping system exhibited the disadvantages of reducing the fertility of soil through decreasing microbial diversity. Thus, management of microbial diversity in the rhizosphere plays a vital role in sustainable crop production. In this study, ten common spring crops in north China were chosen sole-cropped and four were chosen intercropped with peanut in wheat fields after harvest. Denaturing gradient gel electrophoresis (DGGE) and DNA sequencing of one 16S rDNA fragment were used to analyze the bacterial diversity and species identification. DGGE profiles showed the bacterial community diversity in rhizosphere soil samples varied among various crops under different cropping systems, more diverse under intercropping system than under sole-cropping. Some intercropping-specific bands in DGGE profiles suggested that several bacterial species were stimulated by intercropping systems specifically. Furthermore, the identification of these dominant and functional bacteria by DNA sequencing indicated that intercropping systems are more beneficial to improve soil fertility. Compared to intercropping systems, we also observed changes in microbial community of rhizosphere soil under sole-crops. The rhizosphere bacterial community structure in spring crops showed a strong crop species-specific pattern. More importantly, Empedobacter brevis, a typical plant pathogen, was only found in the carrot rhizosphere, suggesting carrot should be sown prudently. In conclusion, our study demonstrated that crop species and cropping systems had significant effects on bacterial community diversity in the rhizosphere soils. We strongly suggest sorghum, glutinous millet and buckwheat could be taken into account as intercropping crops with peanut

  4. Variation of Bacterial Community Diversity in Rhizosphere Soil of Sole-Cropped versus Intercropped Wheat Field after Harvest

    PubMed Central

    Yang, Zhenping; Yang, Wenping; Li, Shengcai; Hao, Jiaomin; Su, Zhifeng; Sun, Min; Gao, Zhiqiang; Zhang, Chunlai

    2016-01-01

    As the major crops in north China, spring crops are usually planted from April through May every spring and harvested in fall. Wheat is also a very common crop traditionally planted in fall or spring and harvested in summer year by year. This continuous cropping system exhibited the disadvantages of reducing the fertility of soil through decreasing microbial diversity. Thus, management of microbial diversity in the rhizosphere plays a vital role in sustainable crop production. In this study, ten common spring crops in north China were chosen sole-cropped and four were chosen intercropped with peanut in wheat fields after harvest. Denaturing gradient gel electrophoresis (DGGE) and DNA sequencing of one 16S rDNA fragment were used to analyze the bacterial diversity and species identification. DGGE profiles showed the bacterial community diversity in rhizosphere soil samples varied among various crops under different cropping systems, more diverse under intercropping system than under sole-cropping. Some intercropping-specific bands in DGGE profiles suggested that several bacterial species were stimulated by intercropping systems specifically. Furthermore, the identification of these dominant and functional bacteria by DNA sequencing indicated that intercropping systems are more beneficial to improve soil fertility. Compared to intercropping systems, we also observed changes in microbial community of rhizosphere soil under sole-crops. The rhizosphere bacterial community structure in spring crops showed a strong crop species-specific pattern. More importantly, Empedobacter brevis, a typical plant pathogen, was only found in the carrot rhizosphere, suggesting carrot should be sown prudently. In conclusion, our study demonstrated that crop species and cropping systems had significant effects on bacterial community diversity in the rhizosphere soils. We strongly suggest sorghum, glutinous millet and buckwheat could be taken into account as intercropping crops with peanut

  5. Determining the potential productivity of food crops in controlled environments

    NASA Technical Reports Server (NTRS)

    Bugbee, Bruce

    1992-01-01

    The quest to determine the maximum potential productivity of food crops is greatly benefitted by crop growth models. Many models have been developed to analyze and predict crop growth in the field, but it is difficult to predict biological responses to stress conditions. Crop growth models for the optimal environments of a Controlled Environment Life Support System (CELSS) can be highly predictive. This paper discusses the application of a crop growth model to CELSS; the model is used to evaluate factors limiting growth. The model separately evaluates the following four physiological processes: absorption of PPF by photosynthetic tissue, carbon fixation (photosynthesis), carbon use (respiration), and carbon partitioning (harvest index). These constituent processes determine potentially achievable productivity. An analysis of each process suggests that low harvest index is the factor most limiting to yield. PPF absorption by plant canopies and respiration efficiency are also of major importance. Research concerning productivity in a CELSS should emphasize: (1) the development of gas exchange techniques to continuously monitor plant growth rates and (2) environmental techniques to reduce plant height in communities.

  6. Field spectroscopy of agricultural crops

    NASA Technical Reports Server (NTRS)

    Bauer, M. E.; Daughtry, C. S. T.; Biehl, L. L.; Kanemasu, E. T.; Hall, F. G.

    1986-01-01

    The development of the full potential of multispectral data acquired from satellites, requires quantitative knowledge, and physical models of the spectral properties of specific earth surface features. Knowledge of the relationships between spectral-radiometric characteristics and important biophysical parameters of agricultural crops and soils can best be obtained by carefully controlled studies of fields or plots. It is important to select plots where data describing the agronomic-biophysical properties of the crop canopies and soil background are attainable, taking into account also the feasibility of frequent timely calibrated spectral measurements. The term 'field spectroscopy' is employed for this research. The present paper is concerned with field research which was sponsored by NASA as part of the AgRISTARS Supporting Research Project. Attention is given to field research objectives, field research instrumentation, measurement procedures, spectral-temporal profile modeling, and the effects of cultural and environmental factors on crop reflectance.

  7. Crop identification using ERTS imagery

    NASA Technical Reports Server (NTRS)

    Horton, M. L.; Heilman, J. L.

    1973-01-01

    Digital analysis of August 15 ERTS-I imagery for southeastern South Dakota was performed to determine the feasibility of conducting crop surveys from satellites. Selected areas of bands 4, 5, 6, and 7 positive transparencies were converted to digital form utilizing Signal Analysis and Dissemination Equipment (SADE). The optical transmission values were printed out in a spatial format. Visual analysis of the printouts indicated that cultivated areas were readily distinguished from non-cultivated areas in all four bands. Bare soil was easily recognized in all four bands. Corn and soybeans, the two major crops in the area, were treated as separate classes rather than as a single class called row crops. Bands 6 and 7 provided good results in distinguishing between corn and soybeans.

  8. Microwave emission and crop residues

    NASA Technical Reports Server (NTRS)

    Jackson, Thomas J.; O'Neill, Peggy E.

    1991-01-01

    A series of controlled experiments were conducted to determine the significance of crop residues or stubble in estimating the emission of the underlying soil. Observations using truck-mounted L and C band passive microwave radiometers showed that for dry wheat and soybeans the dry residue caused negligible attenuation of the background emission. Green residues, with water contents typical of standing crops, did have a significant effect on the background emission. Results for these green residues also indicated that extremes in plant structure, as created using parallel and perpendicular stalk orientations, can cause very large differences in the degree of attenuation.

  9. Can crops tolerate acid rain

    SciTech Connect

    Kaplan, J.K.

    1989-11-01

    This brief article describes work by scientists at the ARS Air Quality-Plant Growth and Development Laboratory in Raleigh, North Carolina, that indicates little damage to crops as a result of acid rain. In studies with simulated acid rain and 216 exposed varieties of 18 crops, there were no significant injuries nor was there reduced growth in most species. Results of chronic and acute exposures were correlated in sensitive tomato and soybean plants and in tolerant winter wheat and lettuce plants. These results suggest that 1-hour exposures could be used in the future to screen varieties for sensitivity to acid rain.

  10. Space Technology for Crop Drying

    NASA Technical Reports Server (NTRS)

    1980-01-01

    McDonnell Douglas came up with a new method of drying agricultural crops derived from vacuum chamber technology called MIVAC, a compression of microwave vacuum drying system. A distant cousin of the home microwave oven, MIVAC dries by means of electrically- generated microwaves introduced to a crop-containing vacuum chamber. Microwaves remove moisture quickly and the very low pressure atmosphere in the chamber permits effective drying at much lower than customary temperatures. Thus energy demand is doubly reduced by lower heat requirement and by the shorter time electric power is needed.

  11. Connecting Groundwater, Crop Price, and Crop Production Variability in India

    NASA Astrophysics Data System (ADS)

    Pollack, A.; Lobell, D. B.; Jain, M.

    2015-12-01

    Farmers in India rely on groundwater resources for irrigation and production of staple crops that provide over half of the calories consumed domestically each year. While this has been a productive strategy in increasing agricultural production and maintaining high yields, groundwater resources are depleting at a quicker rate than natural resources can replace. This issue gains relevance as climate variability concurrently adds to yearly fluctuations in farmer demand for irrigation each year, which can create high risk for farmers that depend on consistent yields, but do not have access to dwindling water resources. This study investigates variability in groundwater levels from 2005 to 2013 in relation to crop prices and production by analyzing district-level datasets made available through India's government. Through this analysis, we show the impact of groundwater variability on price variability, crop yield, and production during these years. By examining this nine-year timescale, we extend our analysis to forthcoming years to demonstrate the increasing importance of groundwater resources in irrigation, and suggest strategies to reduce the impact of groundwater shortages on crop production and prices.

  12. Economic impacts of glyphosate-resistant crops.

    PubMed

    Gianessi, Leonard P

    2008-04-01

    Glyphosate-resistant crops have been widely planted since their introduction in 1996. Growers have numerous choices for herbicide treatments and have chosen to plant glyphosate-resistant crops on the basis of economic factors. The economic effects of the widespread planting of glyphosate-resistant crops have included reductions in herbicide expenses, increases in seed costs, increased yield and changes in the relative profitability of crops that has resulted in changes in which crops are planted. In addition, non-pecuniary benefits have accrued as a result of the simplicity of weed management in the glyphosate-resistant crop systems. PMID:18181242

  13. Effect of intercropping period management on runoff and erosion in a maize cropping system.

    PubMed

    Laloy, Eric; Bielders, C L

    2010-01-01

    The management of winter cover crops is likely to influence their performance in reducing runoff and erosion during the intercropping period that precedes spring crops but also during the subsequent spring crop. This study investigated the impact of two dates of destruction and burial of a rye (Secale cereale L.) and ryegrass (Lolium multiflorum Lam.) cover crop on runoff and erosion, focusing on a continuous silage maize (Zea mays L.) cropping system. Thirty erosion plots with various intercrop management options were monitored for 3 yr at two sites. During the intercropping period, cover crops reduced runoff and erosion by more than 94% compared with untilled, post-maize harvest plots. Rough tillage after maize harvest proved equally effective as a late sown cover crop. There was no effect of cover crop destruction and burial dates on runoff and erosion during the intercropping period, probably because rough tillage for cover crop burial compensates for the lack of soil cover. During two of the monitored maize seasons, it was observed that plots that had been covered during the previous intercropping period lost 40 to 90% less soil compared with maize plots that had been left bare during the intercropping period. The burial of an aboveground cover crop biomass in excess of 1.5 t ha(-1) was a necessary, yet not always sufficient, condition to induce a residual effect. Because of the possible beneficial residual effect of cover crop burial on erosion reduction, the sowing of a cover crop should be preferred over rough tillage after maize harvest. PMID:20400595

  14. Crop and pasture response to climate change.

    PubMed

    Tubiello, Francesco N; Soussana, Jean-François; Howden, S Mark

    2007-12-11

    We review recent research of importance to understanding crop and pasture plant species response to climate change. Topics include plant response to elevated CO(2) concentration, interactions with climate change variables and air pollutants, impacts of increased climate variability and frequency of extreme events, the role of weeds and pests, disease and animal health, issues in biodiversity, and vulnerability of soil carbon pools. We critically analyze the links between fundamental knowledge at the plant and plot level and the additional socio-economic variables that determine actual production and trade of food at regional to global scales. We conclude by making recommendations for current and future research needs, with a focus on continued and improved integration of experimental and modeling efforts. PMID:18077401

  15. Farm-scale costs and returns for second generation bioenergy cropping systems in the US Corn Belt

    NASA Astrophysics Data System (ADS)

    Manatt, Robert K.; Hallam, Arne; Schulte, Lisa A.; Heaton, Emily A.; Gunther, Theo; Hall, Richard B.; Moore, Ken J.

    2013-09-01

    While grain crops are meeting much of the initial need for biofuels in the US, cellulosic or second generation (2G) materials are mandated to provide a growing portion of biofuel feedstocks. We sought to inform development of a 2G crop portfolio by assessing the profitability of novel cropping systems that potentially mitigate the negative effects of grain-based biofuel crops on food supply and environmental quality. We analyzed farm-gate costs and returns of five systems from an ongoing experiment in central Iowa, USA. The continuous corn cropping system was most profitable under current market conditions, followed by a corn-soybean rotation that incorporated triticale as a 2G cover crop every third year, and a corn-switchgrass system. A novel triticale-hybrid aspen intercropping system had the highest yields over the long term, but could only surpass the profitability of the continuous corn system when biomass prices exceeded foreseeable market values. A triticale/sorghum double cropping system was deemed unviable. We perceive three ways 2G crops could become more cost competitive with grain crops: by (1) boosting yields through substantially greater investment in research and development, (2) increasing demand through substantially greater and sustained investment in new markets, and (3) developing new schemes to compensate farmers for environmental benefits associated with 2G crops.

  16. CROP GENOME DATABASES -- CRITICAL ISSUES

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Crop genome databases, see www.agron.missouri.edu/bioservers.html of the past decade have had designed and implemented (1) models and schema for the genome and related domains; (2) methodologies for input of data by expert biologists and high-throughput projects; and (3) various text, graphical, and...

  17. Sustainability of Switchgrass Cropping Systems

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Switchgrass (Panicum virgatum L.) is a perennial C4 grass that is native to the eastern two thirds of temperate North America. It has been used for conservation purposes and as a pasture grass since the 1940’s. It is currently being developed as a cellulosic biomass energy crop because it can produ...

  18. Risk Management of GM Crops

    EPA Science Inventory

    Driven by biofuel demand, a significant increase in GM corn acreage is anticipated for the 2007 growing season with future planted GM corn acreage approaching 80% of the corn crop by 2009. As demand increases, grower non-compliance with mandated planting requirements is likely to...

  19. Nutrient biofortification of food crops

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Plant-based foods offer an array of nutrients that are essential for human nutrition and promote good health. However, the major staple crops of the world are often deficient in some of these nutrients. Traditional agricultural approaches can marginally enhance the nutritional value of some foods, b...

  20. Natural Rubber from Domestic Crops

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The United States is wholly dependent upon imports of natural rubber from tropical countries and is the world’s largest consumer of this strategic raw material. Development of domestic rubber crops will create supply security for this strategic raw material, enhance rural development, and create bio...

  1. Crop stubble needs and opportunities

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Farmers in Australia and elsewhere around the world are being offered opportunities to market their crop residues as a bioenergy feedstock, but many are not aware of how that could affect their soil resources. This report shares information from the USDA-ARS Renewable Energy Assessment Project (REAP...

  2. Vegetable Crop Pests. MEP 311.

    ERIC Educational Resources Information Center

    Kantzes, James G.; And Others

    As part of a cooperative extension service series by the University of Maryland, this publication introduces the identification and control of common agricultural pests of vegetable crops. The first of the five sections defines "pest" and "weed" and generally introduces different kinds of pests in the categories of insects, weeds, and diseases.…

  3. Fruit Crop Pests. MEP 312.

    ERIC Educational Resources Information Center

    Weaver, Leslie O.; And Others

    As part of a cooperative extension service series by the University of Maryland this publication introduces the identification and control of common agricultural pests of fruit crops. The first of the five sections defines "pest" and "weed" and generally introduces different kinds of pests in the categories of insects, weeds, and diseases. Also in…

  4. Bioenergy Potential of Forage Crops

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Biomass generally refers to the organic matter from plants and, in terms of energy production, includes herbaceous and woody crops along with their residues. Biofuels derived from this organic matter include alcohols, ethers, esters, and other chemicals. The term biofuels often is used interchangeab...

  5. SIMULATED ACID RAIN ON CROPS

    EPA Science Inventory

    In 1981, simulated H2SO4 acid rain was applied to alfalfa and tall fescue and a 2:1 ratio of H2SO4:HNO3 acid rain was applied to alfalfa, tall fescue, barley, wheat, potato, tomato, radish, and corn crops growing in the open field at Corvallis, Oregon. Careful attention was given...

  6. Papaya: environment and crop physiology

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Papaya (Carica papaya L.) is a principal horticultural crop of tropical and subtropical regions. Knowledge of how papaya responds to environmental factors provides a scientific basis for the development of management strategies to optimize fruit yield and quality. A better understanding of genotyp...

  7. IN SEASON CROP N MANAGEMENT

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Traditional nitrogen (N) management schemes for corn production in the USA have resulted in low N use efficiency (NUE), environmental contamination, and considerable public debate regarding use of N fertilizers in crop production. Hence, development of alternative schemes that improve NUE and minimi...

  8. The limits of crop productivity

    NASA Technical Reports Server (NTRS)

    Bugbee, Bruce; Monje, Oscar

    1992-01-01

    The component processes that govern yield limits in food crops are reviewed and how each process can be individually measured is described. The processes considered include absorption of photosynthetic radiation by green tissue, carbon-fixation efficiency in photosynthesis, carbon use efficiency in respiration, biomass allocation to edible products, and efficiency of photosynthesis and respiration. The factors limiting yields in optimal environments are considered.

  9. Biodiversity: Building blocks for crops

    Technology Transfer Automated Retrieval System (TEKTRAN)

    An increasing global population will require more efficient food production. By year 2025, we will need 20-24% increases in yields of crops to meet the projected increase in food, fiber, and bioenergy demand from the global population. The competition to use limited land and sometimes compromised ...

  10. Natural Products in Crop Protection

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The success of modern agricultural practices is due in part to discovery and adoption of chemicals for pest control. Indeed, the tremendous increase in crop yields associated with the ‘green’ revolution would not have been achieved without the contribution of these synthetic compounds. The abundance...

  11. Precision Fertigation for Specialty Crops

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Advances in micro irrigation have facilitated greater adoption of fertigation for specialty crops. Fertigation improves nutrient uptake efficiency, minimize leaching of NO3-N below the root zone, and increases the yield and quality as compared to those with dry fertilizer broadcast. This paper is ba...

  12. AN APPROACH TO TRANSGENIC CROP MONITORING

    EPA Science Inventory

    Remote sensing by aerial or satellite images may provide a method of identifying transgenic pesticidal crop distribution in the landscape. Genetically engineered crops containing bacterial gene(s) that express an insecticidal protein from Bacillus thuringiensis (Bt) are regulated...

  13. Nutritionally enhanced food crops; progress and perspectives.

    PubMed

    Hefferon, Kathleen L

    2015-01-01

    Great progress has been made over the past decade with respect to the application of biotechnology to generate nutritionally improved food crops. Biofortified staple crops such as rice, maize and wheat harboring essential micronutrients to benefit the world's poor are under development as well as new varieties of crops which have the ability to combat chronic disease. This review discusses the improvement of the nutritional status of crops to make a positive impact on global human health. Several examples of nutritionally enhanced crops which have been developed using biotechnological approaches will be discussed. These range from biofortified crops to crops with novel abilities to fight disease. The review concludes with a discussion of hurdles faced with respect to public perception, as well as directions of future research and development for nutritionally enhanced food crops. PMID:25679450

  14. Nutritionally Enhanced Food Crops; Progress and Perspectives

    PubMed Central

    Hefferon, Kathleen L.

    2015-01-01

    Great progress has been made over the past decade with respect to the application of biotechnology to generate nutritionally improved food crops. Biofortified staple crops such as rice, maize and wheat harboring essential micronutrients to benefit the world’s poor are under development as well as new varieties of crops which have the ability to combat chronic disease. This review discusses the improvement of the nutritional status of crops to make a positive impact on global human health. Several examples of nutritionally enhanced crops which have been developed using biotechnological approaches will be discussed. These range from biofortified crops to crops with novel abilities to fight disease. The review concludes with a discussion of hurdles faced with respect to public perception, as well as directions of future research and development for nutritionally enhanced food crops. PMID:25679450

  15. Crop Genetics: The Seeds of Revolution.

    ERIC Educational Resources Information Center

    DeYoung, H. Garrett

    1983-01-01

    Current research in plant genetics is described. Benefits of this research (which includes genetic engineering applications) will include reduction/elimination of crop diseases, assurance of genetic stability, and the creation of new crop varieties. (JN)

  16. Genetically engineered crops: from idea to product.

    PubMed

    Prado, Jose Rafael; Segers, Gerrit; Voelker, Toni; Carson, Dave; Dobert, Raymond; Phillips, Jonathan; Cook, Kevin; Cornejo, Camilo; Monken, Josh; Grapes, Laura; Reynolds, Tracey; Martino-Catt, Susan

    2014-01-01

    Genetically engineered crops were first commercialized in 1994 and since then have been rapidly adopted, enabling growers to more effectively manage pests and increase crop productivity while ensuring food, feed, and environmental safety. The development of these crops is complex and based on rigorous science that must be well coordinated to create a plant with desired beneficial phenotypes. This article describes the general process by which a genetically engineered crop is developed from an initial concept to a commercialized product. PMID:24579994

  17. Looking forward to genetically edited fruit crops.

    PubMed

    Nagamangala Kanchiswamy, Chidananda; Sargent, Daniel James; Velasco, Riccardo; Maffei, Massimo E; Malnoy, Mickael

    2015-02-01

    The availability of genome sequences for many fruit crops has redefined the boundaries of genetic engineering and genetically modified (GM) crop plants. However commercialization of GM crops is hindered by numerous regulatory and social hurdles. Here, we focus on recently developed genome-editing tools for fruit crop improvement and their importance from the consumer perspective. Challenges and opportunities for the deployment of new genome-editing tools for fruit plants are also discussed. PMID:25129425

  18. Economics of Rainfed Cropping Systems: Northeast Thailand

    NASA Astrophysics Data System (ADS)

    Johnson, Sam H., III; Charoenwatana, Terd

    1981-06-01

    Using a computer model to simulate effective rainfall, it is shown that a flexible rainfed cropping system based on a legume crop planted before rice has a greater expected return than present subsistent rainfed cropping systems. Combining a legume crop intercropped with cassava or kenaf further increases the expected returns yet maintains the stability of the new system. Further research is required to bring the farmer's yields up to match experiment station results and to facilitate effective transfer policies.

  19. Water and nutrient deficits, crop yields, and climate change

    SciTech Connect

    Reddy, K.R.; Reddy, A.R.; Hodges, H.F.; McKinion, J.M.

    1997-12-31

    Plant responses to rising CO{sub 2} environments have been largely determined in nearly optimum conditions for growth. In many studies, the nature of the experiment allowed only limited or no control of environmental factors other than [CO{sub 2}]. Here, we report the results from cotton plants grown in naturally-lit chambers in which temperature, [CO{sub 2}], water, and nutrients were controlled and varied systematically. Photosynthesis and transpiration of crop canopies were measured continuously.

  20. Tragedies and Crops: Understanding Natural Selection To Improve Cropping Systems.

    PubMed

    Anten, Niels P R; Vermeulen, Peter J

    2016-06-01

    Plant communities with traits that would maximize community performance can be invaded by plants that invest extra in acquiring resources at the expense of others, lowering the overall community performance, a so-called tragedy of the commons (TOC). By contrast, maximum community performance is usually the objective in agriculture. We first give an overview of the occurrence of TOCs in plants, and explore the extent to which past crop breeding has led to trait values that go against an unwanted TOC. We then show how linking evolutionary game theory (EGT) with mechanistic knowledge of the physiological processes that drive trait expression and the ecological aspects of biotic interactions in agro-ecosystems might contribute to increasing crop yields and resource-use efficiency. PMID:27012675

  1. Control of crop diseases, third edition

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The authors in the Control of Crop Diseases cover a wide range of topics from crop diseases and their diagnosis and eradication to a primer on fungicides and legislation. This wide range of topics, all critical to the topic of crop diseases, thus appeals to a wide audience from molecular biologists,...

  2. Evaluating Decision Rules for Dryland Crop Selection

    Technology Transfer Automated Retrieval System (TEKTRAN)

    No-till dryland cropping systems in the central Great Plains have more water available for crop production than the traditional conventionally tilled winter wheat (Triticum aestium L.)-fallow systems because of greater precipitation storage efficiency. That water is used most efficiently when a crop...

  3. Possible future directions in crop yield forecasting

    NASA Technical Reports Server (NTRS)

    Colwell, J. E.

    1979-01-01

    This paper examines present and future possible applications of remote sensing to crop yield forecasting. It is concluded that there are ways in which Landsat data could be used to assist in crop yield forecasting using present technology. A framework for global crop yield forecasting which uses remote sensing, meteorological, field and ancillary data, as available, is proposed for the future.

  4. 7 CFR 993.20 - Crop year.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 8 2011-01-01 2011-01-01 false Crop year. 993.20 Section 993.20 Agriculture... Order Regulating Handling Definitions § 993.20 Crop year. Crop year means the 12-month period beginning August 1 of any year and ending July 31 of the following year....

  5. 7 CFR 996.3 - Crop year.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 8 2011-01-01 2011-01-01 false Crop year. 996.3 Section 996.3 Agriculture Regulations... DOMESTIC AND IMPORTED PEANUTS MARKETED IN THE UNITED STATES Definitions § 996.3 Crop year. Crop year means the 12-month period beginning with July 1 of any year and ending with June 30 of the following...

  6. 7 CFR 1221.6 - Crop year.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 10 2010-01-01 2010-01-01 false Crop year. 1221.6 Section 1221.6 Agriculture... INFORMATION ORDER Sorghum Promotion, Research, and Information Order Definitions § 1221.6 Crop year. Crop year... calendar year in which sorghum is normally harvested....

  7. 7 CFR 930.4 - Crop year.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 8 2011-01-01 2011-01-01 false Crop year. 930.4 Section 930.4 Agriculture Regulations... Definitions § 930.4 Crop year. Crop year means the 12-month period beginning on July 1 of any year and ending on June 30 of the following year, or such other period as the Board, with the approval of...

  8. 7 CFR 987.6 - Crop year.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 8 2011-01-01 2011-01-01 false Crop year. 987.6 Section 987.6 Agriculture Regulations... RIVERSIDE COUNTY, CALIFORNIA Order Regulating Handling Definitions § 987.6 Crop year. Crop year means the 12-month period beginning October 1 of each year and ending September 30 of the following year....

  9. 7 CFR 989.21 - Crop year.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 8 2011-01-01 2011-01-01 false Crop year. 989.21 Section 989.21 Agriculture... CALIFORNIA Order Regulating Handling Definitions § 989.21 Crop year. Crop year means the 12-month period beginning with August 1 of any year and ending with July 31 of the following year....

  10. 7 CFR 1221.6 - Crop year.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 10 2011-01-01 2011-01-01 false Crop year. 1221.6 Section 1221.6 Agriculture... INFORMATION ORDER Sorghum Promotion, Research, and Information Order Definitions § 1221.6 Crop year. Crop year... calendar year in which sorghum is normally harvested....

  11. 7 CFR 996.3 - Crop year.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 8 2010-01-01 2010-01-01 false Crop year. 996.3 Section 996.3 Agriculture Regulations... DOMESTIC AND IMPORTED PEANUTS MARKETED IN THE UNITED STATES Definitions § 996.3 Crop year. Crop year means the 12-month period beginning with July 1 of any year and ending with June 30 of the following...

  12. 7 CFR 1221.6 - Crop year.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... AND ORDERS; MISCELLANEOUS COMMODITIES), DEPARTMENT OF AGRICULTURE SORGHUM PROMOTION, RESEARCH, AND INFORMATION ORDER Sorghum Promotion, Research, and Information Order Definitions § 1221.6 Crop year. Crop year means the time period by which the USDA reports crop production for sorghum and is indicated by...

  13. 7 CFR 1221.6 - Crop year.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... AND ORDERS; MISCELLANEOUS COMMODITIES), DEPARTMENT OF AGRICULTURE SORGHUM PROMOTION, RESEARCH, AND INFORMATION ORDER Sorghum Promotion, Research, and Information Order Definitions § 1221.6 Crop year. Crop year means the time period by which the USDA reports crop production for sorghum and is indicated by...

  14. 7 CFR 1221.6 - Crop year.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... AND ORDERS; MISCELLANEOUS COMMODITIES), DEPARTMENT OF AGRICULTURE SORGHUM PROMOTION, RESEARCH, AND INFORMATION ORDER Sorghum Promotion, Research, and Information Order Definitions § 1221.6 Crop year. Crop year means the time period by which the USDA reports crop production for sorghum and is indicated by...

  15. 7 CFR 1437.12 - Crop definition.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 10 2011-01-01 2011-01-01 false Crop definition. 1437.12 Section 1437.12 Agriculture... AGRICULTURE LOANS, PURCHASES, AND OTHER OPERATIONS NONINSURED CROP DISASTER ASSISTANCE PROGRAM General Provisions § 1437.12 Crop definition. (a) For the purpose of providing benefits under this part, CCC will,...

  16. Timely precipitation drives cover crop outcomes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cover crops can expand ecosystem services, though sound management recommendations for their use within semi-arid cropping systems is currently constrained by a lack of information. This study was conducted to determine agroecosystem responses to late-summer seeded cover crops under no-till managem...

  17. Collection of sugarcane crop residue for energy

    SciTech Connect

    Eiland, B.R.; Clayton, J.E.

    1982-12-01

    Crop residue left after sugarcane harvesting was recovered using a forage harvester and a large round baler. The quantity, bulk density and moisture content of the crop residue was determined in four fields. Crop residue from 7 ha was burned in boilers at a sugar mill. Samples of this residue were tested by a laboratory and compared to sugarcane bagasse.

  18. Roadmap to increased cover crop adoption

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cover crops are increasingly utilized by farmers and promoted by agronomists for the multiple benefits they contribute to soil and crop management systems. Yet, only a small percentage of cropland is planted to cover crops. In June of 2012, the National Wildlife Federation brought together 36 of the...

  19. Water usage in southeastern bioenergy crop production

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The southeastern United States with its long growing season and mild winter temperatures has long been able to produce a variety of food, forage, and fiber crops. In addition to these crops, the Southeast is capable of producing a plethora of lignoceullosic-based bioenergy crops for conversion into ...

  20. Nutrient management studies in biofuel cropping systems

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Research was conducted to determine the effect of nutrient management practices on biofuel crop production, and to evaluate long term effects of biofuel crop production on selected chemical, physical and microbiological properties. Experimental plots for research on biofuel crop production were esta...

  1. 7 CFR 993.20 - Crop year.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 8 2014-01-01 2014-01-01 false Crop year. 993.20 Section 993.20 Agriculture... Order Regulating Handling Definitions § 993.20 Crop year. Crop year means the 12-month period beginning August 1 of any year and ending July 31 of the following year....

  2. 7 CFR 930.4 - Crop year.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 8 2013-01-01 2013-01-01 false Crop year. 930.4 Section 930.4 Agriculture Regulations... Definitions § 930.4 Crop year. Crop year means the 12-month period beginning on July 1 of any year and ending on June 30 of the following year, or such other period as the Board, with the approval of...

  3. 7 CFR 987.6 - Crop year.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 8 2012-01-01 2012-01-01 false Crop year. 987.6 Section 987.6 Agriculture Regulations... RIVERSIDE COUNTY, CALIFORNIA Order Regulating Handling Definitions § 987.6 Crop year. Crop year means the 12-month period beginning October 1 of each year and ending September 30 of the following year....

  4. 7 CFR 987.6 - Crop year.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 8 2014-01-01 2014-01-01 false Crop year. 987.6 Section 987.6 Agriculture Regulations... RIVERSIDE COUNTY, CALIFORNIA Order Regulating Handling Definitions § 987.6 Crop year. Crop year means the 12-month period beginning October 1 of each year and ending September 30 of the following year....

  5. 7 CFR 993.20 - Crop year.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 8 2012-01-01 2012-01-01 false Crop year. 993.20 Section 993.20 Agriculture... Order Regulating Handling Definitions § 993.20 Crop year. Crop year means the 12-month period beginning August 1 of any year and ending July 31 of the following year....

  6. 7 CFR 987.6 - Crop year.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 8 2013-01-01 2013-01-01 false Crop year. 987.6 Section 987.6 Agriculture Regulations... RIVERSIDE COUNTY, CALIFORNIA Order Regulating Handling Definitions § 987.6 Crop year. Crop year means the 12-month period beginning October 1 of each year and ending September 30 of the following year....

  7. 7 CFR 996.3 - Crop year.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 8 2014-01-01 2014-01-01 false Crop year. 996.3 Section 996.3 Agriculture Regulations... DOMESTIC AND IMPORTED PEANUTS MARKETED IN THE UNITED STATES Definitions § 996.3 Crop year. Crop year means the 12-month period beginning with July 1 of any year and ending with June 30 of the following...

  8. 7 CFR 993.20 - Crop year.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 8 2013-01-01 2013-01-01 false Crop year. 993.20 Section 993.20 Agriculture... Order Regulating Handling Definitions § 993.20 Crop year. Crop year means the 12-month period beginning August 1 of any year and ending July 31 of the following year....

  9. 7 CFR 996.3 - Crop year.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 8 2012-01-01 2012-01-01 false Crop year. 996.3 Section 996.3 Agriculture Regulations... DOMESTIC AND IMPORTED PEANUTS MARKETED IN THE UNITED STATES Definitions § 996.3 Crop year. Crop year means the 12-month period beginning with July 1 of any year and ending with June 30 of the following...

  10. 7 CFR 996.3 - Crop year.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 8 2013-01-01 2013-01-01 false Crop year. 996.3 Section 996.3 Agriculture Regulations... DOMESTIC AND IMPORTED PEANUTS MARKETED IN THE UNITED STATES Definitions § 996.3 Crop year. Crop year means the 12-month period beginning with July 1 of any year and ending with June 30 of the following...

  11. Effects of climate change on suitable rice cropping areas, cropping systems and crop water requirements in southern China

    DOE PAGESBeta

    Ye, Qing; Yang, Xiaoguang; Dai, Shuwei; Chen, Guangsheng; Li, Yong; Zhang, Caixia

    2015-06-05

    Here, we discuss that rice is one of the main crops grown in southern China. Global climate change has significantly altered the local water availability and temperature regime for rice production. In this study, we explored the influence of climate change on suitable rice cropping areas, rice cropping systems and crop water requirements (CWRs) during the growing season for historical (from 1951 to 2010) and future (from 2011 to 2100) time periods. The results indicated that the land areas suitable for rice cropping systems shifted northward and westward from 1951 to 2100 but with different amplitudes.

  12. 78 FR 47214 - Common Crop Insurance Regulations; Extra Long Staple Cotton Crop Provisions

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-05

    ... Insurance Regulations; Extra Long Staple Cotton Crop Provisions AGENCY: Federal Crop Insurance Corporation... the Common Crop Insurance Regulations, Extra Long Staple (ELS) Cotton Crop Insurance Provisions to... 48 FR 29115, June 24, 1983. Executive Order 12988 This proposed rule has been reviewed in...

  13. 76 FR 32067 - Common Crop Insurance Regulations; Extra Long Staple Cotton Crop Provisions

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-03

    ... Corporation 7 CFR Part 457 RIN 0563-AC27 Common Crop Insurance Regulations; Extra Long Staple Cotton Crop... Insurance Corporation (FCIC) finalizes amendments made to the Common Crop Insurance Regulations, Extra Long... incorporate a current Special Provisions statement into the Crop Provisions, and to make the Extra Long...

  14. 77 FR 27658 - Common Crop Insurance Regulations; Processing Sweet Corn Crop Insurance Provisions

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-11

    ...The Federal Crop Insurance Corporation (FCIC) proposes to amend the Common Crop Insurance Regulations, Processing Sweet Corn Crop Insurance Provisions. The intended effect of this action is to provide policy changes that better meet the needs of insured producers. The proposed changes will be effective for the 2013 and succeeding crop...

  15. Cover crop effects on soil carbon and nitrogen under bioenergy sorghum crops

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cover crops can increase soil C and N storage and reduce the potential for N leaching under agronomic crops, but information on their benefits under bioenergy crops is scanty due to the removal of aboveground biomass. The objective of the study was to evaluate the effect of cover crops on soil organ...

  16. Use Of Crop Canopy Size To Estimate Water Requirements Of Vegetable Crops

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Planting time, plant density, variety, and cultural practices vary widely for horticultural crops. It is difficult to estimate crop water requirements for crops with these variations. Canopy size, or factional ground cover, as an indicator of intercepted sunlight, is related to crop water use. We...

  17. 76 FR 43606 - Common Crop Insurance Regulations; Onion Crop Insurance Provisions

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-21

    .... See the Notice related to 7 CFR part 3015, subpart V, published at 48 FR 29115, June 24, 1983... Insurance Regulations; Onion Crop Insurance Provisions AGENCY: Federal Crop Insurance Corporation, USDA... Common Crop Insurance Regulations, Onion Crop Insurance Provisions. The intended effect of this action...

  18. Estimating Crop Water use From Remotely Sensed NDVI, Crop Models and Reference ET

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Crop water use can be estimated from reference evapotranspiration, ETo, calculated from weather station data, and estimated crop coefficients, Kc. However, because Kc varies with crop growth rate, planting density, and management practices, generic Kc curves often don’t match actual crop water use....

  19. Ammonia volatilization from crop residues and frozen green manure crops

    NASA Astrophysics Data System (ADS)

    de Ruijter, F. J.; Huijsmans, J. F. M.; Rutgers, B.

    2010-09-01

    Agricultural systems can lose substantial amounts of nitrogen (N). To protect the environment, the European Union (EU) has adopted several directives that set goals to limit N losses. National Emission Ceilings (NEC) are prescribed in the NEC directive for nitrogen oxides and ammonia. Crop residues may contribute to ammonia volatilization, but sufficient information on their contribution to the national ammonia volatilization is lacking. Experiments were carried out with the aim to assess the ammonia volatilization of crop residues left on the soil surface or incorporated into the soil under the conditions met in practice in the Netherlands during late autumn and winter. Ammonia emission from residues of broccoli, leek, sugar beet, cut grass, fodder radish (fresh and frozen) and yellow mustard (frozen) was studied during two winter seasons using volatilization chambers. Residues were either placed on top of soil or mixed with soil. Mixing residues with soil gave insignificant ammonia volatilization, whereas volatilization was 5-16 percent of the N content of residues when placed on top of soil. Ammonia volatilization started after at least 4 days. Total ammonia volatilization was related to C/N-ratio and N concentration of the plant material. After 37 days, cumulative ammonia volatilization was negligible from plant material with N concentration below 2 percent, and was 10 percent of the N content of plant material with 4 percent N. These observations can be explained by decomposition of plant material by micro-organisms. After an initial built up of the microbial population, NH 4+ that is not needed for their own growth is released and can easily emit as NH 3 at the soil surface. The results of the experiments were used to estimate the contribution of crop residues to ammonia volatilization in the Netherlands. Crop residues of arable crops and residues of pasture topping may contribute more than 3 million kg NH 3-N to the national ammonia volatilization of the

  20. 26 CFR 1.268-1 - Items attributable to an unharvested crop sold with the land.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... with the land. 1.268-1 Section 1.268-1 Internal Revenue INTERNAL REVENUE SERVICE, DEPARTMENT OF THE TREASURY (CONTINUED) INCOME TAX (CONTINUED) INCOME TAXES Items Not Deductible § 1.268-1 Items attributable... in respect of items attributable to the production of an unharvested crop which is sold,...

  1. 7 CFR 205.207 - Wild-crop harvesting practice standard.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 3 2011-01-01 2011-01-01 false Wild-crop harvesting practice standard. 205.207 Section 205.207 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing Practices), DEPARTMENT OF AGRICULTURE (CONTINUED) ORGANIC FOODS PRODUCTION ACT PROVISIONS...

  2. 7 CFR 205.206 - Crop pest, weed, and disease management practice standard.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 3 2011-01-01 2011-01-01 false Crop pest, weed, and disease management practice standard. 205.206 Section 205.206 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing Practices), DEPARTMENT OF AGRICULTURE (CONTINUED) ORGANIC FOODS PRODUCTION...

  3. 7 CFR 205.602 - Nonsynthetic substances prohibited for use in organic crop production.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 3 2010-01-01 2010-01-01 false Nonsynthetic substances prohibited for use in organic crop production. 205.602 Section 205.602 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing Practices), DEPARTMENT OF AGRICULTURE (CONTINUED) ORGANIC FOODS...

  4. Genetically Modified Herbicide-Tolerant Crops, Weeds, and Herbicides: Overview and Impact.

    PubMed

    Bonny, Sylvie

    2016-01-01

    Genetically modified (GM) crops have been and continue to be a subject of controversy despite their rapid adoption by farmers where approved. For the last two decades, an important matter of debate has been their impact on pesticide use, particularly for herbicide-tolerant (HT) crops. Some claim that these crops bring about a decrease in herbicide use, while others claim the opposite. In fact, since 1996, most cultivated GMOs have been GMHT crops, which involve the use of an associated herbicide, generally glyphosate. In their very first years of adoption, HT crops often led to some decrease in herbicide use. However, the repetition of glyphosate-tolerant crops and of glyphosate only applications in the same fields without sufficient alternation and herbicide diversity has contributed to the appearance of glyphosate-resistant weeds. These weeds have resulted in a rise in the use of glyphosate and other herbicides. This article explores this situation and the impacts of herbicide-resistant weeds, using an interdisciplinary approach and drawing on recent data. The paper analyzes the spread of GMHT crops worldwide and their consequences on herbicide use in the USA in particular. It then addresses the global development of glyphosate-resistant weeds and their impact, particularly focusing on the USA. Finally, the last section explores how industry, farmers, and weed scientists are coping with the spread of resistant weeds. The concluding comments deal more widely with trends in GM crops. PMID:26296738

  5. Herbicide-Resistant Crops: Utilities and Limitations for Herbicide-Resistant Weed Management

    PubMed Central

    2010-01-01

    Since 1996, genetically modified herbicide-resistant (HR) crops, particularly glyphosate-resistant (GR) crops, have transformed the tactics that corn, soybean, and cotton growers use to manage weeds. The use of GR crops continues to grow, but weeds are adapting to the common practice of using only glyphosate to control weeds. Growers using only a single mode of action to manage weeds need to change to a more diverse array of herbicidal, mechanical, and cultural practices to maintain the effectiveness of glyphosate. Unfortunately, the introduction of GR crops and the high initial efficacy of glyphosate often lead to a decline in the use of other herbicide options and less investment by industry to discover new herbicide active ingredients. With some exceptions, most growers can still manage their weed problems with currently available selective and HR crop-enabled herbicides. However, current crop management systems are in jeopardy given the pace at which weed populations are evolving glyphosate resistance. New HR crop technologies will expand the utility of currently available herbicides and enable new interim solutions for growers to manage HR weeds, but will not replace the long-term need to diversify weed management tactics and discover herbicides with new modes of action. This paper reviews the strengths and weaknesses of anticipated weed management options and the best management practices that growers need to implement in HR crops to maximize the long-term benefits of current technologies and reduce weed shifts to difficult-to-control and HR weeds. PMID:20586458

  6. Genetically Modified Herbicide-Tolerant Crops, Weeds, and Herbicides: Overview and Impact

    NASA Astrophysics Data System (ADS)

    Bonny, Sylvie

    2016-01-01

    Genetically modified (GM) crops have been and continue to be a subject of controversy despite their rapid adoption by farmers where approved. For the last two decades, an important matter of debate has been their impact on pesticide use, particularly for herbicide-tolerant (HT) crops. Some claim that these crops bring about a decrease in herbicide use, while others claim the opposite. In fact, since 1996, most cultivated GMOs have been GMHT crops, which involve the use of an associated herbicide, generally glyphosate. In their very first years of adoption, HT crops often led to some decrease in herbicide use. However, the repetition of glyphosate-tolerant crops and of glyphosate only applications in the same fields without sufficient alternation and herbicide diversity has contributed to the appearance of glyphosate-resistant weeds. These weeds have resulted in a rise in the use of glyphosate and other herbicides. This article explores this situation and the impacts of herbicide-resistant weeds, using an interdisciplinary approach and drawing on recent data. The paper analyzes the spread of GMHT crops worldwide and their consequences on herbicide use in the USA in particular. It then addresses the global development of glyphosate-resistant weeds and their impact, particularly focusing on the USA. Finally, the last section explores how industry, farmers, and weed scientists are coping with the spread of resistant weeds. The concluding comments deal more widely with trends in GM crops.

  7. Space Chambers for Crop Treatment

    NASA Technical Reports Server (NTRS)

    1985-01-01

    Vacuum chambers, operated by McDonnell Douglas Corporation to test spacecraft, can also be used to dry water-soaked records. The drying temperature is low enough to allow paper to dry without curling or charging. Agricultural crops may also be dried using a spinoff system called MIVAC, which has proven effective in drying rice, wheat, soybeans, corn, etc. The system is energy efficient and can incorporate a sanitation process for destroying insects without contamination.

  8. Decomposing global crop yield variability

    NASA Astrophysics Data System (ADS)

    Ben-Ari, Tamara; Makowski, David

    2014-11-01

    Recent food crises have highlighted the need to better understand the between-year variability of agricultural production. Although increasing future production seems necessary, the globalization of commodity markets suggests that the food system would also benefit from enhanced supplies stability through a reduction in the year-to-year variability. Here, we develop an analytical expression decomposing global crop yield interannual variability into three informative components that quantify how evenly are croplands distributed in the world, the proportion of cultivated areas allocated to regions of above or below average variability and the covariation between yields in distinct world regions. This decomposition is used to identify drivers of interannual yield variations for four major crops (i.e., maize, rice, soybean and wheat) over the period 1961-2012. We show that maize production is fairly spread but marked by one prominent region with high levels of crop yield interannual variability (which encompasses the North American corn belt in the USA, and Canada). In contrast, global rice yields have a small variability because, although spatially concentrated, much of the production is located in regions of below-average variability (i.e., South, Eastern and South Eastern Asia). Because of these contrasted land use allocations, an even cultivated land distribution across regions would reduce global maize yield variance, but increase the variance of global yield rice. Intermediate results are obtained for soybean and wheat for which croplands are mainly located in regions with close-to-average variability. At the scale of large world regions, we find that covariances of regional yields have a negligible contribution to global yield variance. The proposed decomposition could be applied at any spatial and time scales, including the yearly time step. By addressing global crop production stability (or lack thereof) our results contribute to the understanding of a key

  9. Ancestors of modern plant crops.

    PubMed

    Salse, Jérôme

    2016-04-01

    Recent accumulation of plant genomic resources offers the opportunity to compare modern genomes and model their evolutionary history from their reconstructed Most Recent Common Ancestors (MRCAs) that can be used as a guide to unveil the forces driving the evolutionary success of angiosperms and ultimately to perform applied translational research from models to crops. This article reviews the current state of art of recent structural comparative genomics studies through ancestral genome reconstruction, that is, the field of in silico paleogenomics. PMID:26985732

  10. MODELING WORLD BIOENERGY CROP POTENTIAL

    NASA Astrophysics Data System (ADS)

    Hagiwara, Kensuke; Hanasaki, Naota; Kanae, Shinjiro

    Bioenergy is regarded as clean energy due to its characteristics and expected to be a new support of world energy de¬mand, but there are few integrated assessments of the potential of bioenergy considering sustainable land use. We esti¬mated the global bioenergy potential with an integrated global water resources model, the H08. It can simulate the crop yields on global-scale at a spatial resolution of 0.50.5. Seven major crops in the world were considered; namely, maize, sugar beet, sugar cane, soybean, rapeseed, rice, and wheat, of which the first 5 are commonly used to produce biofuel now. Three different land-cover types were chosen as potential area for cultivation of biofuel-producing crop: fallow land, grassland, and portion of forests (excluding areas sensitive for biodiversity such as frontier forest). We attempted to estimate the maximum global bioenergy potential and it was estimated to be 1120EJ. Bioenergy potential depends on land-use limitations for the protection of bio-diversity and security of food. In another condition which assumed more land-use limitations, bioenergy potential was estimated to be 70-233EJ.

  11. Androgenesis in recalcitrant solanaceous crops.

    PubMed

    Seguí-Simarro, José M; Corral-Martínez, Patricia; Parra-Vega, Verónica; González-García, Beatriz

    2011-05-01

    Tomato, eggplant, and pepper are three solanaceous crops of outstanding importance worldwide. For hybrid seed production in these species, a fast and cheap method to obtain pure (homozygous) lines is a priority. Traditionally, pure lines are produced by classical inbreeding and selection techniques, which are time consuming (several years) and costly. Alternatively, it has become possible to accelerate the production of homozygous lines through a biotechnological approach: the induction of androgenesis to generate doubled haploid (homozygous) plants. This biotechnological in vitro tool reduces the process to only one generation, which implies important time and costs savings. These facts make androgenic doubled haploids the choice in a number of important crops where the methodology is well set up. Unfortunately, recalcitrant solanaceous crops such as tomato, eggplant, and pepper are still far from an efficient and reliable technology to be applied on a routine basis to different genotypes in breeding programs. In eggplant and pepper, only anther cultures are known to work relatively well. Unfortunately, a more efficient and promising technique, the culture of isolated microspores, is not sufficiently developed yet. In tomato, none of these methods is available nowadays. However, recent advances in the knowledge of embryo development are filling the gaps and opening new ways to achieve the final goal of an efficient protocol in these three recalcitrant species. In this review, we outline the state of the art on androgenic induction in tomato, eggplant, and pepper, and postulate new experimental ways in order to overcome current limitations. PMID:21191595

  12. The crop growth research chamber

    NASA Technical Reports Server (NTRS)

    Wagenbach, Kimberly

    1993-01-01

    The Crop Growth Research Chamber (CGRC) has been defined by CELSS principle investigators and science advisory panels as a necessary ground-based tool in the development of a regenerative life support system. The focus of CGRC research will be on the biomass production component of the CELSS system. The ground-based Crop Growth Research Chamber is for the study of plant growth and development under stringently controlled environments isolated from the external environment. The chamber has importance in three areas of CELSS activities: (1) crop research; (2) system control and integration, and (3) flight hardware design and experimentation. The laboratory size of the CGRC will be small enough to allow duplication of the unit, the conducting of controlled experiments, and replication of experiments, but large enough to provide information representative of larger plant communities. Experiments will focus on plant growth in a wide variety of environments and the effects of those environments on plant production of food, water, oxygen, toxins, and microbes. To study these effects in a closed system, tight control of the environment is necessary.

  13. Greenhouse Gas Emissions Associated With Establishing Energy Crops

    NASA Astrophysics Data System (ADS)

    NiChonchubhair, Orlaith; Osborne, Bruce; Krol, Dominika; Williams, Mike; Jones, Mike; Lanigan, Gary

    2013-04-01

    of a dense canopy in its first year and correspondingly high net CO2 uptake, which increased further in the second year to a value close to that of year-3 Miscanthus. However, continued development of the Miscanthus crop to full maturity and maximum biomass yields is expected to enhance further the superior GHG sink strength of Miscanthus relative to RCG. This research highlights the high GHG efficiency of perennial biomass crops, which, combined with fossil fuel displacement during combustion, may present opportunities in the future for offsetting emissions in the agricultural sector.

  14. Plastid biotechnology for crop production: present status and future perspectives

    PubMed Central

    Daniell, Henry

    2012-01-01

    The world population is expected to reach an estimated 9.2 billion by 2050. Therefore, food production globally has to increase by 70% in order to feed the world, while total arable land, which has reached its maximal utilization, may even decrease. Moreover, climate change adds yet another challenge to global food security. In order to feed the world in 2050, biotechnological advances in modern agriculture are essential. Plant genetic engineering, which has created a new wave of global crop production after the first green revolution, will continue to play an important role in modern agriculture to meet these challenges. Plastid genetic engineering, with several unique advantages including transgene containment, has made significant progress in the last two decades in various biotechnology applications including development of crops with high levels of resistance to insects, bacterial, fungal and viral diseases, different types of herbicides, drought, salt and cold tolerance, cytoplasmic male sterility, metabolic engineering, phytoremediation of toxic metals and production of many vaccine antigens, biopharmaceuticals and biofuels. However, useful traits should be engineered via chloroplast genomes of several major crops. This review provides insight into the current state of the art of plastid engineering in relation to agricultural production, especially for engineering agronomic traits. Understanding the bottleneck of this technology and challenges for improvement of major crops in a changing climate are discussed. PMID:21437683

  15. Herbaceous Energy Crops Program. Annual progress report for FY 1985

    SciTech Connect

    Cushman, J.H.; Turhollow, A.F.; Johnston, J.W.

    1986-04-01

    This report describes the activities and accomplishments of the Herbaceous Energy Crops Program (HECP) for the year ending September 30, 1985. HECP emphasizes lignocellulosic forage crops. In FY 1985 screening and selection trails began on seven species of perennial and annual grasses and legumes in five projects in the Southeast and the Midwest-Lake State regions. Research also continued on the development of winter rapeseed as a disel-fuel substitute. Activities in FY 1985 included crosses and selections to incorporate atrazine resistance and reduced vernalization requirements in genotypes with desirable seed and oil qualities. Exploratory research efforts in FY 1985 included the physiology and biochemistry of hydrocarbon production in latex bearing plants, the productivity of cattail stands under sustained harvesting, and the development of tissue culture techniques for hard-to-culture sorghum genotypes. Environmental and economic analyses in FY 1985 included completion of a resource assessment of the southwestern United States, a study on successful new crop introductions, and initiation of studies on near-term markets for lignocellulosic energy crops and on vegetable oil extraction facilities. 8 figs., 2 tabs.

  16. Crop residue decomposition in Minnesota biochar amended plots

    NASA Astrophysics Data System (ADS)

    Weyers, S. L.; Spokas, K. A.

    2014-02-01

    Impacts of biochar application at laboratory scales are routinely studied, but impacts of biochar application on decomposition of crop residues at field scales have not been widely addressed. The priming or hindrance of crop residue decomposition could have a cascading impact on soil processes, particularly those influencing nutrient availability. Our objectives were to evaluate biochar effects on field decomposition of crop residue, using plots that were amended with biochars made from different feedstocks and pyrolysis platforms prior to the start of this study. Litterbags containing wheat straw material were buried below the soil surface in a continuous-corn cropped field in plots that had received one of seven different biochar amendments or a non-charred wood pellet amendment 2.5 yr prior to start of this study. Litterbags were collected over the course of 14 weeks. Microbial biomass was assessed in treatment plots the previous fall. Though first-order decomposition rate constants were positively correlated to microbial biomass, neither parameter was statistically affected by biochar or wood-pellet treatments. The findings indicated only a residual of potentially positive and negative initial impacts of biochars on residue decomposition, which fit in line with established feedstock and pyrolysis influences. Though no significant impacts were observed with field-weathered biochars, effective soil management may yet have to account for repeat applications of biochar.

  17. Crop residue decomposition in Minnesota biochar-amended plots

    NASA Astrophysics Data System (ADS)

    Weyers, S. L.; Spokas, K. A.

    2014-06-01

    Impacts of biochar application at laboratory scales are routinely studied, but impacts of biochar application on decomposition of crop residues at field scales have not been widely addressed. The priming or hindrance of crop residue decomposition could have a cascading impact on soil processes, particularly those influencing nutrient availability. Our objectives were to evaluate biochar effects on field decomposition of crop residue, using plots that were amended with biochars made from different plant-based feedstocks and pyrolysis platforms in the fall of 2008. Litterbags containing wheat straw material were buried in July of 2011 below the soil surface in a continuous-corn cropped field in plots that had received one of seven different biochar amendments or a uncharred wood-pellet amendment 2.5 yr prior to start of this study. Litterbags were collected over the course of 14 weeks. Microbial biomass was assessed in treatment plots the previous fall. Though first-order decomposition rate constants were positively correlated to microbial biomass, neither parameter was statistically affected by biochar or wood-pellet treatments. The findings indicated only a residual of potentially positive and negative initial impacts of biochars on residue decomposition, which fit in line with established feedstock and pyrolysis influences. Overall, these findings indicate that no significant alteration in the microbial dynamics of the soil decomposer communities occurred as a consequence of the application of plant-based biochars evaluated here.

  18. Analysing MODIS Phenometrics Quality on Cropped Land in West Africa

    NASA Astrophysics Data System (ADS)

    Vintrou, Elodie; Begue, Agnes; Baron, Christian; Lo Seen, Danny; Alexandre, Saad; Traore, Seydou

    2012-04-01

    Crop phenology is essential information when evaluating crop production in the food insecure regions of West Africa. The only currently available global product that includes phenological variables is the MODIS Land Cover Dynamics Yearly (MCD12Q2) product. This product is produced each year at 500 m spatial resolution, from the 8-day vegetation index EVI (Enhanced Vegetation Index) calculated from the NBAR reflectance (Nadir Bidirectional Reflectance Distribution Function - Adjusted Reflectance). In order to analyze the information content of MODIS MCD12Q2 product, the phenological variables were extracted for areas previously identified as cropped on eight specific sites in Mali and compared to rainfall data and expert knowledge on Malian agriculture. MODIS MCD12Q2 data analysis showed that only 70% of the cropped pixels in Southern Mali had a complete phenology information on the whole vegetation cycle (four phenometrics values), and that a large part of the pixels displayed unrealistic late Start-Of-Season (SOS) values. A close analysis of the original EVI data indicated that these inconsistent SOS values were due to missing EVI data during the vegetation development phase (due to the presence of cloud cover) conducting to a false detection of SOS. We then proposed a simple way to correct the SOS values. In Africa, food security systems could benefit from such a phenology product, by utilizing its spatially continuous information in agro-meteorological modeling, and thus improving agricultural production estimation.

  19. The components of crop productivity: measuring and modeling plant metabolism

    NASA Technical Reports Server (NTRS)

    Bugbee, B.

    1995-01-01

    Several investigators in the CELSS program have demonstrated that crop plants can be remarkably productive in optimal environments where plants are limited only by incident radiation. Radiation use efficiencies of 0.4 to 0.7 g biomass per mol of incident photons have been measured for crops in several laboratories. Some early published values for radiation use efficiency (1 g mol-1) were inflated due to the effect of side lighting. Sealed chambers are the basic research module for crop studies for space. Such chambers allow the measurement of radiation and CO2 fluxes, thus providing values for three determinants of plant growth: radiation absorption, photosynthetic efficiency (quantum yield), and respiration efficiency (carbon use efficiency). Continuous measurement of each of these parameters over the plant life cycle has provided a blueprint for daily growth rates, and is the basis for modeling crop productivity based on component metabolic processes. Much of what has been interpreted as low photosynthetic efficiency is really the result of reduced leaf expansion and poor radiation absorption. Measurements and models of short-term (minutes to hours) and long-term (days to weeks) plant metabolic rates have enormously improved our understanding of plant environment interactions in ground-based growth chambers and are critical to understanding plant responses to the space environment.

  20. Extreme weather events and global crop production

    NASA Astrophysics Data System (ADS)

    Ray, D. K.; Gerber, J. S.; West, P. C.

    2014-12-01

    Extreme weather events can lead to significant loss in crop production and even trigger global price spikes. However it is still not clear where exactly and what types of extreme events have resulted in sharp declines in crop production. Neither is it clear how frequently such extreme events have resulted in extreme crop production losses. Using extreme event metrics with a newly developed high resolution and long time series of crop statistics database we identify the frequency and type of extreme event driven crop production losses globally at high resolutions. In this presentation we will present our results as global maps identifying the frequency and type of extreme weather events that resulted in extreme crop production losses and quantify the losses. Understanding how extreme events affects crop production is critical for managing risk in the global food system

  1. Time Series Analysis of Remote Sensing Observations for Citrus Crop Growth Stage and Evapotranspiration Estimation

    NASA Astrophysics Data System (ADS)

    Sawant, S. A.; Chakraborty, M.; Suradhaniwar, S.; Adinarayana, J.; Durbha, S. S.

    2016-06-01

    Satellite based earth observation (EO) platforms have proved capability to spatio-temporally monitor changes on the earth's surface. Long term satellite missions have provided huge repository of optical remote sensing datasets, and United States Geological Survey (USGS) Landsat program is one of the oldest sources of optical EO datasets. This historical and near real time EO archive is a rich source of information to understand the seasonal changes in the horticultural crops. Citrus (Mandarin / Nagpur Orange) is one of the major horticultural crops cultivated in central India. Erratic behaviour of rainfall and dependency on groundwater for irrigation has wide impact on the citrus crop yield. Also, wide variations are reported in temperature and relative humidity causing early fruit onset and increase in crop water requirement. Therefore, there is need to study the crop growth stages and crop evapotranspiration at spatio-temporal scale for managing the scarce resources. In this study, an attempt has been made to understand the citrus crop growth stages using Normalized Difference Time Series (NDVI) time series data obtained from Landsat archives (http://earthexplorer.usgs.gov/). Total 388 Landsat 4, 5, 7 and 8 scenes (from year 1990 to Aug. 2015) for Worldwide Reference System (WRS) 2, path 145 and row 45 were selected to understand seasonal variations in citrus crop growth. Considering Landsat 30 meter spatial resolution to obtain homogeneous pixels with crop cover orchards larger than 2 hectare area was selected. To consider change in wavelength bandwidth (radiometric resolution) with Landsat sensors (i.e. 4, 5, 7 and 8) NDVI has been selected to obtain continuous sensor independent time series. The obtained crop growth stage information has been used to estimate citrus basal crop coefficient information (Kcb). Satellite based Kcb estimates were used with proximal agrometeorological sensing system

  2. Soil organic carbon assessments in cropping systems using isotopic techniques

    NASA Astrophysics Data System (ADS)

    Martín De Dios Herrero, Juan; Cruz Colazo, Juan; Guzman, María Laura; Saenz, Claudio; Sager, Ricardo; Sakadevan, Karuppan

    2016-04-01

    Introduction of improved farming practices are important to address the challenges of agricultural production, food security, climate change and resource use efficiency. The integration of livestock with crops provides many benefits including: (1) resource conservation, (2) ecosystem services, (3) soil quality improvements, and (4) risk reduction through diversification of enterprises. Integrated crop livestock systems (ICLS) with the combination of no-tillage and pastures are useful practices to enhance soil organic carbon (SOC) compared with continuous cropping systems (CCS). In this study, the SOC and its fractions in two cropping systems namely (1) ICLS, and (2) CCS were evaluated in Southern Santa Fe Province in Argentina, and the use of delta carbon-13 technique and soil physical fractionation were evaluated to identify sources of SOC in these systems. Two farms inside the same soil cartographic unit and landscape position in the region were compared. The ICLS farm produces lucerne (Medicago sativa Merrill) and oat (Avena sativa L.) grazed by cattle alternatively with grain summer crops sequence of soybean (Glicine max L.) and corn (Zea mays L.), and the farm under continuous cropping system (CCS) produces soybean and corn in a continuous sequence. The soil in the area is predominantly a Typic Hapludoll. Soil samples from 0-5 and 0-20 cm depths (n=4) after the harvest of grain crops were collected in each system and analyzed for total organic carbon (SOC, 0-2000 μm), particulate organic carbon (POC, 50-100 μm) and mineral organic carbon (MOC, <50 μm). Delta carbon-13 was determined by isotopic ratio mass spectrometry. In addition, a site with natural vegetation (reference site, REF) was also sampled for delta carbon-13 determination. ANOVA and Tukey statistical analysis were carried out for all data. The SOC was higher in ICLS than in CCS at both depths (20.8 vs 17.7 g kg-1 for 0-5 cm and 16.1 vs 12.7 g kg-1 at 0-20 cm, respectively, P<0.05). MOC was

  3. Comparison of Crop Rotation and Fallow for Management of Heterodera glycines and Meloidogyne spp. in Soybean

    PubMed Central

    Weaver, D. B.; Rodríguez-Kábana, R.; Carden, E. L.

    1995-01-01

    The effects of cropping systems (fallow, rotation with sorghum-sudangrass hybrid [Sorghum bicolor × S. sudanense], and continuous soybean [Glycine max]), nematicide (aldicarb) treatment, and soybean cultivar on yield and nematode population densities were studied in a field infested with a mixture of Meloidogyne spp. and Heterodera glycines. Soybean following sorghum-sudangrass yielded 111 kg/ha more than soybean following fallow and 600 kg/ha more than continuous soybean. Aldicarb treatment increased yield by 428 kg/ha, regardless of previous crop. Cultivars interacted significantly with nematicide treatment and previous crop with respect to yield. Sorghum-sudangrass reduced numbers of Meloidogyne spp. compared with fallow and continuous soybean, but cropping system did not affect H. glycines numbers. The cultivar × previous crop and cultivar × nematicide interactions were significant for numbers of Meloidogyne spp. and H. glycines. We concluded that sorghum-sudangrass hybrid and fallow are effective in reducing yield losses caused by mixed populations of Meloidogyne and H. glycines. Highest yields were obtained using crop rotation and cultivars with the highest levels of resistance to both nematodes. PMID:19277326

  4. Handling Procedures of Vegetable Crops

    NASA Technical Reports Server (NTRS)

    Perchonok, Michele; French, Stephen J.

    2004-01-01

    The National Aeronautics and Space Administration (NASA) is working towards future long duration manned space flights beyond low earth orbit. The duration of these missions may be as long as 2.5 years and will likely include a stay on a lunar or planetary surface. The primary goal of the Advanced Food System in these long duration exploratory missions is to provide the crew with a palatable, nutritious, and safe food system while minimizing volume, mass, and waste. Vegetable crops can provide the crew with added nutrition and variety. These crops do not require any cooking or food processing prior to consumption. The vegetable crops, unlike prepackaged foods, will provide bright colors, textures (crispy), and fresh aromas. Ten vegetable crops have been identified for possible use in long duration missions. They are lettuce, spinach, carrot, tomato, green onion, radish, bell pepper, strawberries, fresh herbs, and cabbage. Whether these crops are grown on a transit vehicle (e.g., International Space Station) or on the lunar or planetary surface, it will be necessary to determine how to safely handle the vegetables while maintaining acceptability. Since hydrogen peroxide degrades into water and oxygen and is generally recognized as safe (GRAS), hydrogen peroxide has been recommended as the sanitizer. The objective of th is research is to determine the required effective concentration of hydrogen peroxide. In addition, it will be determined whether the use of hydrogen peroxide, although a viable sanitizer, adversely affects the quality of the vegetables. Vegetables will be dipped in 1 % hydrogen peroxide, 3% hydrogen peroxide, or 5% hydrogen peroxide. Treated produce and controls will be stored in plastic bags at 5 C for up to 14 days. Sensory, color, texture, and total plate count will be measured. The effect on several vegetables including lettuce, radish, tomato and strawberries has been completed. Although each vegetable reacts to hydrogen peroxide differently, the

  5. Exploring the Limits of Crop Productivity 1

    PubMed Central

    Bugbee, Bruce G.; Salisbury, Frank B.

    1988-01-01

    The long-term vegetative and reproductive growth rates of a wheat crop (Triticum aestivum L.) were determined in three separate studies (24, 45, and 79 days) in response to a wide range of photosynthetic photon fluxes (PPF, 400-2080 micromoles per square meter per second; 22-150 moles per square meter per day; 16-20-hour photoperiod) in a near-optimum, controlled-environment. The CO2 concentration was elevated to 1200 micromoles per mole, and water and nutrients were supplied by liquid hydroponic culture. An unusually high plant density (2000 plants per square meter) was used to obtain high yields. Crop growth rate and grain yield reached 138 and 60 grams per square meter per day, respectively; both continued to increase up to the highest integrated daily PPF level, which was three times greater than a typical daily flux in the field. The conversion efficiency of photosynthesis (energy in biomass/energy in photosynthetic photons) was over 10% at low PPF but decreased to 7% as PPF increased. Harvest index increased from 41 to 44% as PPF increased. Yield components for primary, secondary, and tertiary culms were analyzed separately. Tillering produced up to 7000 heads per square meter at the highest PPF level. Primary and secondary culms were 10% more efficient (higher harvest index) than tertiary culms; hence cultural, environmental, or genetic changes that increase the percentage of primary and secondary culms might increase harvest index and thus grain yield. Wheat is physiologically and genetically capable of much higher productivity and photosynthetic efficiency than has been recorded in a field environment. PMID:11537442

  6. Hydroponic Crop Production using Recycled Nutrients from Inedible Crop Residues

    NASA Technical Reports Server (NTRS)

    Garland, Jay L.; Mackowiak, Cheryl L.; Sager, John C.

    1993-01-01

    The coupling of plant growth and waste recycling systems is an important step toward the development of bioregenerative life support systems. This research examined the effectiveness of two alternative methods for recycling nutrients from the inedible fraction (residue) of candidate crops in a bioregenerative system as follows: (1) extraction in water, or leaching, and (2) combustion at 550 C, with subsequent reconstitution of the ash in acid. The effectiveness of the different methods was evaluated by (1) comparing the percent recovery of nutrients, and (2) measuring short- and long-term plant growth in hydroponic solutions, based on recycled nutrients.

  7. The UK Crop Plant Bioinformatics Network (UK CropNet)

    PubMed Central

    May, Sean

    2000-01-01

    UK CropNet currently provides a range of databases (and database-mining tools) to the plant community that are all freely accessible through our website (http://ukcrop.net/). Recent upgrades have meant that we can now expand the range of available facilities (e.g. addition of new databases) whilst also strengthening and improving access to existing services (e.g. providing a BLAST search facility against sequences in our databases). This article will briefly outline these and other new developments in our service. PMID:11119312

  8. Adverse weather impacts on arable cropping systems

    NASA Astrophysics Data System (ADS)

    Gobin, Anne

    2016-04-01

    Damages due to extreme or adverse weather strongly depend on crop type, crop stage, soil conditions and management. The impact is largest during the sensitive periods of the farming calendar, and requires a modelling approach to capture the interactions between the crop, its environment and the occurrence of the meteorological event. The hypothesis is that extreme and adverse weather events can be quantified and subsequently incorporated in current crop models. Since crop development is driven by thermal time and photoperiod, a regional crop model was used to examine the likely frequency, magnitude and impacts of frost, drought, heat stress and waterlogging in relation to the cropping season and crop sensitive stages. Risk profiles and associated return levels were obtained by fitting generalized extreme value distributions to block maxima for air humidity, water balance and temperature variables. The risk profiles were subsequently confronted with yields and yield losses for the major arable crops in Belgium, notably winter wheat, winter barley, winter oilseed rape, sugar beet, potato and maize at the field (farm records) to regional scale (statistics). The average daily vapour pressure deficit (VPD) and reference evapotranspiration (ET0) during the growing season is significantly lower (p < 0.001) and has a higher variability before 1988 than after 1988. Distribution patterns of VPD and ET0 have relevant impacts on crop yields. The response to rising temperatures depends on the crop's capability to condition its microenvironment. Crops short of water close their stomata, lose their evaporative cooling potential and ultimately become susceptible to heat stress. Effects of heat stress therefore have to be combined with moisture availability such as the precipitation deficit or the soil water balance. Risks of combined heat and moisture deficit stress appear during the summer. These risks are subsequently related to crop damage. The methodology of defining

  9. Management controls on nitrous oxide emissions from row crop agriculture

    NASA Astrophysics Data System (ADS)

    Gelfand, I.; Shcherbak, I.; Millar, N.; Robertson, G. P.

    2011-12-01

    Agriculture is a significant source of the potent greenhouse gas (GHG) nitrous oxide (N2O), accounting for ~70% of total anthropic N2O emissions in the US primarily as a result of N fertilizer application. Emissions of N2O are the largest contributor to the global warming potential of row-crop agriculture. Management, including choice of crop type and rotation strongly impacts N2O emissions, but continuous emissions data from row-crops over multiple rotations are lacking. Empirical quantification of these long-term emissions and the development of crop- and rotation-specific N2O emission factors are vital for improving estimates of agricultural GHG emissions, important for informing management practices to reduce agriculture's GHG footprint, and developing mitigation protocols for environmental markets. Over 20 years we measured soil N2O emissions and calculated crop and management specific emission factors in four continuous rotations of corn (Zea mays) - soybean (Glycine max) - wheat (Triticum aestivum) under conventional tillage (CT), zero tillage (NT), low chemical input (LI), and biologically (Org) based management. Two of these systems (LI and Org) included winter cover crops, red clover (Trifolium pratense) or ray (Secale cereale). While average soil N2O fluxes in all systems where similar (2.9±0.2 to 3.8±0.5 g N2O-N ha-1 d-1), there was a significant interaction of total emissions with crop and phase. Surprisingly, the lowest total emissions from the corn period of the rotation were from CT, and the highest from LI, with 608±4 and 983±8 g N2O-N ha-1 crop year-1, respectively. Total emissions during the wheat period of the rotation showed the opposite trend, with total emissions of 942±7 and 524±38 g N2O-N ha-1 crop year-1, for CT ant LI, respectively. Total emissions from the soybean period of the rotation were highest under NT and lowest under CT management (526±5 and 296±2 g N2O-N ha-1 crop year-1, respectively). Emission efficiency, N2O emitted

  10. Parameterization of FAO's AquaCrop Model by Integrating a Hydrological Model and Climate Indices

    NASA Astrophysics Data System (ADS)

    Langhorn, C.; Kienzle, S. W.; Doria, R.; Jiskoot, H.; Cheng, H.

    2014-12-01

    One of the greatest global challenges is to meet growing food demand under rapidly changing climate conditions. Continued global population growth increases the pressure on the agriculture sector to produce enough food to feed the world. In 2013, the province of Alberta, Canada, set a record high for principal field crop production of 34.5 million tonnes (Matejovsky, 2014). AquaCrop, a crop yield and water productivity model developed by the Land and Water Division of the Food and Agriculture Organization of the United Nations (FAO), attempts to balance the accuracy, simplicity and robustness of crop modelling (Steduto et al., 2009). The model is focused on the three components of the soil-plant-atmosphere continuum. AquaCrop is applied in this study for simulating hard red spring wheat and durum wheat yields, and simulated yields are verified against observed yields available from a crop insurer. One of the challenges of crop yield modelling is the selection of a realistic seeding date, which can vary by four to five weeks (end of March to end of April). In order to enable realistic simulation for the historical period 1950-2010 as well the future period 2041-2070, AquaCrop is coupled with the ACRU agro-hydrological modelling system to determine the soil moisture conditions after the spring snow melt, and with a WMO climate index which determines the climatological beginning of the growing season. Therefore, the selection of a realistic seeding data for individual years can be dynamically optimized, based on the combination of the beginning of the climatological growing season and soil moisture status. The results of the coupling of ACRU and calculated climate indices with AquaCrop will be presented to show how improvements of parameterization of the AquaCrop model can be used to simulate wheat yields in Southern Alberta under changing climate conditions.

  11. Residual phosphorus and zinc influence wheat productivity under rice-wheat cropping system.

    PubMed

    Amanullah; Inamullah

    2016-01-01

    Continuous cropping of rice (Oryza sativa L.) and wheat (Triticum aestivum L.) deplete soil fertility and crop productivity. One strategy to increase crop productivity under rice-wheat system is balanced application of crop nutrients. Field experiment was conducted to assess the impact of phosphorus (0, 40, 80, 120 kg P ha(-1)) and zinc (0, 5, 10, 15 kg Zn ha(-1)) on the productivity of rice genotypes (fine and coarse) and their residual effects on the grain yield (GY) and its components (YC) of the succeeding wheat crop under rice-wheat cropping system (RWCS) in North Western Pakistan during 2011-12 and 2012-13. After rice harvest in both years, wheat variety "Siren-2010" was grown on the same layout but no additional P, K and Zn was applied to wheat crop in each year. The GY and YC of wheat significantly increased in the treatments receiving the higher P levels (120 > 80 > 40 > 0 kg P ha(-1)) and Zn (15 > 10 > 5 > 0 kg Zn ha(-1)) in the previous rice crop. The residual soil P and Zn contents after rice harvest, GY and YC of wheat increased significantly under low yielding fine genotype (B-385) as compared to the high yielding coarse genotypes (F-Malakand and Pukhraj). The residual soil P and Zn, GY and of wheat increased significantly in the second year as compared with the first year of experiment. These results confirmed strong carry over effects of both P and Zn applied to the previous rice crop on the subsequent wheat crop under RWCS. PMID:27026947

  12. Soil organic carbon dynamics and crop yield for different crop rotations in a degraded ferruginous tropical soil in a semi-arid region: a simulation approach

    PubMed Central

    SOLER, C. M. TOJO; BADO, V. B.; TRAORE, K.; BOSTICK, W. MCNAIR; JONES, J. W.; HOOGENBOOM, G.

    2011-01-01

    SUMMARY In recent years, simulation models have been used as a complementary tool for research and for quantifying soil carbon sequestration under widely varying conditions. This has improved the understanding and prediction of soil organic carbon (SOC) dynamics and crop yield responses to soil and climate conditions and crop management scenarios. The goal of the present study was to estimate the changes in SOC for different cropping systems in West Africa using a simulation model. A crop rotation experiment conducted in Farakô-Ba, Burkina Faso was used to evaluate the performance of the cropping system model (CSM) of the Decision Support System for Agrotechnology Transfer (DSSAT) for simulating yield of different crops. Eight crop rotations that included cotton, sorghum, peanut, maize and fallow, and three different management scenarios, one without N (control), one with chemical fertilizer (N) and one with manure applications, were studied. The CSM was able to simulate the yield trends of various crops, with inconsistencies for a few years. The simulated SOC increased slightly across the years for the sorghum–fallow rotation with manure application. However, SOC decreased for all other rotations except for the continuous fallow (native grassland), in which the SOC remained stable. The model simulated SOC for the continuous fallow system with a high degree of accuracy normalized root mean square error (RMSE)=0·001, while for the other crop rotations the simulated SOC values were generally within the standard deviation (s.d.) range of the observed data. The crop rotations that included a supplemental N-fertilizer or manure application showed an increase in the average simulated aboveground biomass for all crops. The incorporation of this biomass into the soil after harvest reduced the loss of SOC. In the present study, the observed SOC data were used for characterization of production systems with different SOC dynamics. Following careful evaluation of the CSM

  13. Soil organic carbon dynamics and crop yield for different crop rotations in a degraded ferruginous tropical soil in a semi-arid region: a simulation approach.

    PubMed

    Soler, C M Tojo; Bado, V B; Traore, K; Bostick, W McNair; Jones, J W; Hoogenboom, G

    2011-10-01

    In recent years, simulation models have been used as a complementary tool for research and for quantifying soil carbon sequestration under widely varying conditions. This has improved the understanding and prediction of soil organic carbon (SOC) dynamics and crop yield responses to soil and climate conditions and crop management scenarios. The goal of the present study was to estimate the changes in SOC for different cropping systems in West Africa using a simulation model. A crop rotation experiment conducted in Farakô-Ba, Burkina Faso was used to evaluate the performance of the cropping system model (CSM) of the Decision Support System for Agrotechnology Transfer (DSSAT) for simulating yield of different crops. Eight crop rotations that included cotton, sorghum, peanut, maize and fallow, and three different management scenarios, one without N (control), one with chemical fertilizer (N) and one with manure applications, were studied. The CSM was able to simulate the yield trends of various crops, with inconsistencies for a few years. The simulated SOC increased slightly across the years for the sorghum-fallow rotation with manure application. However, SOC decreased for all other rotations except for the continuous fallow (native grassland), in which the SOC remained stable. The model simulated SOC for the continuous fallow system with a high degree of accuracy normalized root mean square error (RMSE)=0·001, while for the other crop rotations the simulated SOC values were generally within the standard deviation (s.d.) range of the observed data. The crop rotations that included a supplemental N-fertilizer or manure application showed an increase in the average simulated aboveground biomass for all crops. The incorporation of this biomass into the soil after harvest reduced the loss of SOC. In the present study, the observed SOC data were used for characterization of production systems with different SOC dynamics. Following careful evaluation of the CSM with

  14. Responses of Crop Water Use Efficiency to Climate Change and Agronomic Measures in the Semiarid Area of Northern China.

    PubMed

    Zhang, Jingting; Ren, Wei; An, Pingli; Pan, Zhihua; Wang, Liwei; Dong, Zhiqiang; He, Di; Yang, Jia; Pan, Shufen; Tian, Hanqin

    2015-01-01

    It has long been concerned how crop water use efficiency (WUE) responds to climate change. Most of existing researches have emphasized the impact of single climate factor but have paid less attention to the effect of developed agronomic measures on crop WUE. Based on the long-term field observations/experiments data, we investigated the changing responses of crop WUE to climate variables (temperature and precipitation) and agronomic practices (fertilization and cropping patterns) in the semi-arid area of northern China (SAC) during two periods, 1983-1999 and 2000-2010 (drier and warmer). Our results suggest that crop WUE was an intrinsical system sensitive to climate change and agronomic measures. Crops tend to reach the maximum WUE (WUEmax) in warm-dry environment while reach the stable minimum WUE (WUEmin) in warm-wet environment, with a difference between WUEmax and WUEmin ranging from 29.0%-55.5%. Changes in temperature and precipitation in the past three decades jointly enhanced crop WUE by 8.1%-30.6%. Elevated fertilizer and rotation cropping would increase crop WUE by 5.6-11.0% and 19.5-92.9%, respectively. These results indicate crop has the resilience by adjusting WUE, which is not only able to respond to subsequent periods of favorable water balance but also to tolerate the drought stress, and reasonable agronomic practices could enhance this resilience. However, this capacity would break down under impact of climate changes and unconscionable agronomic practices (e.g. excessive N/P/K fertilizer or traditional continuous cropping). Based on the findings in this study, a conceptual crop WUE model is constructed to indicate the threshold of crop resilience, which could help the farmer develop appropriate strategies in adapting the adverse impacts of climate warming. PMID:26336098

  15. Responses of Crop Water Use Efficiency to Climate Change and Agronomic Measures in the Semiarid Area of Northern China

    PubMed Central

    Zhang, Jingting; Ren, Wei; An, Pingli; Pan, Zhihua; Wang, Liwei; Dong, Zhiqiang; He, Di; Yang, Jia; Pan, Shufen; Tian, Hanqin

    2015-01-01

    It has long been concerned how crop water use efficiency (WUE) responds to climate change. Most of existing researches have emphasized the impact of single climate factor but have paid less attention to the effect of developed agronomic measures on crop WUE. Based on the long-term field observations/experiments data, we investigated the changing responses of crop WUE to climate variables (temperature and precipitation) and agronomic practices (fertilization and cropping patterns) in the semi-arid area of northern China (SAC) during two periods, 1983–1999 and 2000–2010 (drier and warmer). Our results suggest that crop WUE was an intrinsical system sensitive to climate change and agronomic measures. Crops tend to reach the maximum WUE (WUEmax) in warm-dry environment while reach the stable minimum WUE (WUEmin) in warm-wet environment, with a difference between WUEmax and WUEmin ranging from 29.0%-55.5%. Changes in temperature and precipitation in the past three decades jointly enhanced crop WUE by 8.1%-30.6%. Elevated fertilizer and rotation cropping would increase crop WUE by 5.6–11.0% and 19.5–92.9%, respectively. These results indicate crop has the resilience by adjusting WUE, which is not only able to respond to subsequent periods of favorable water balance but also to tolerate the drought stress, and reasonable agronomic practices could enhance this resilience. However, this capacity would break down under impact of climate changes and unconscionable agronomic practices (e.g. excessive N/P/K fertilizer or traditional continuous cropping). Based on the findings in this study, a conceptual crop WUE model is constructed to indicate the threshold of crop resilience, which could help the farmer develop appropriate strategies in adapting the adverse impacts of climate warming. PMID:26336098

  16. Metabolomics of Genetically Modified Crops

    PubMed Central

    Simó, Carolina; Ibáñez, Clara; Valdés, Alberto; Cifuentes, Alejandro; García-Cañas, Virginia

    2014-01-01

    Metabolomic-based approaches are increasingly applied to analyse genetically modified organisms (GMOs) making it possible to obtain broader and deeper information on the composition of GMOs compared to that obtained from traditional analytical approaches. The combination in metabolomics of advanced analytical methods and bioinformatics tools provides wide chemical compositional data that contributes to corroborate (or not) the substantial equivalence and occurrence of unintended changes resulting from genetic transformation. This review provides insight into recent progress in metabolomics studies on transgenic crops focusing mainly in papers published in the last decade. PMID:25334064

  17. Metabolomics of genetically modified crops.

    PubMed

    Simó, Carolina; Ibáñez, Clara; Valdés, Alberto; Cifuentes, Alejandro; García-Cañas, Virginia

    2014-01-01

    Metabolomic-based approaches are increasingly applied to analyse genetically modified organisms (GMOs) making it possible to obtain broader and deeper information on the composition of GMOs compared to that obtained from traditional analytical approaches. The combination in metabolomics of advanced analytical methods and bioinformatics tools provides wide chemical compositional data that contributes to corroborate (or not) the substantial equivalence and occurrence of unintended changes resulting from genetic transformation. This review provides insight into recent progress in metabolomics studies on transgenic crops focusing mainly in papers published in the last decade. PMID:25334064

  18. Growing root, tuber and nut crops hydroponically for CELSS

    NASA Astrophysics Data System (ADS)

    Hill, W. A.; Mortley, D. G.; Mackowiak, C. L.; Loretan, P. A.; Tibbitts, T. W.; Wheeler, R. M.; Bonsi, C. K.; Morris, C. E.

    1992-07-01

    Among the crops selected by the National Aeronautics and Space Administration for growth in controlled ecological life support systems are four that have subsurface edible parts - potatoes, sweet potatoes, sugar beets and peanuts. These crops have been produced in open and closed (recirculating), solid media and liquid, hydroponic systems. Fluorescent, fluorescent plus incandescent and high pressure sodium plus metal halide lamps have proven to be effective light sources. Continuous light with 16°C and 28/22°C (day/night) temperatures have produced highest yields for potato and sweet potato, respectively. Dry weight yields of up to 4685, 2541, 1151 and 207 g m-e for potatoes, sweet potatoes, sugar beets and peanuts, respectively, have been produced in controlled environment hydroponic systems.

  19. Sorghum - a versatile, multi-purpose biomass crop

    SciTech Connect

    Clark, J.W.; Jolts, E.J.; Miller, F.R.

    1981-01-01

    Sorghums are versatile, energy-efficient plants that exhibit excellent potentials for multi-product use. Grain sorghum, although already a major feed and food crop, offers promise as a source of starch and sugar for fermentation alcohol, as well as a number of fiber products. Sweet sorghum, a variety rich in extractable fermentable sugars, is now in limited production, but can be a major sugar, grain, forage, fuel and industrial products raw material. Sorghums can be grown in virtually every state. The need for multi-product crops to improve agricultural land productivities and to offset increasing cultural costs is detailed. Results of continuing plant breeding work to enhance sorghum varieties for multiple uses are discussed.

  20. Growing root, tuber and nut crops hydroponically for CELSS.

    PubMed

    Hill, W A; Mortley, D G; Mackowiak, C L; Loretan, P A; Tibbitts, T W; Wheeler, R M; Bonsi, C K; Morris, C E

    1992-01-01

    Among the crops selected by the National Aeronautics and Space Administration for growth in controlled ecological life support systems are four that have subsurface edible parts -- potatoes, sweet potatoes, sugar beets and peanuts. These crops have been produced in open and closed (recirculating), solid media and liquid, hydroponic systems. Fluorescent , fluorescent plus incandescent and high pressure sodium plus metal halide lamps have proven to be effective light sources. Continuous light with 16 degrees C and 28/22 degrees C (day/night) temperatures have produced highest yields for potato and sweet potato, respectively. Dry weight yields of up to 4685, 2541, 1151 and 207 g m-2 for for potatoes, sweet potatoes, sugar beets and peanuts, respectively, have been produced in controlled environment hydroponic systems. PMID:11537058

  1. Effect of plant interaction on wind-induced crop motion.

    PubMed

    Doaré, O; Moulia, B; de Langre, E

    2004-04-01

    Plant motion due to wind affects plant growth, a phenomenon called thigmomorphogenesis. Despite intensive studies of the turbulence over plant canopies, the study of plant motion induced by wind has often been limited to individual trees or cereal plants. Few models of global canopy motions are available. Moreover the numerical analysis of models that are based on individual stems becomes time consuming when dealing with crops. A model of motion within the canopies is proposed here using a wave propagation equation within a homogenized continuous medium, and a forcing function representing turbulent gusts advected over the canopy. This model is derived from a discrete model of a set of plant shoots represented as individual oscillators, including elastic contacts between shoots. Such contacts induce nonlinearities into the wave equation. A new experimental method to measure stem dynamical properties and elastic collision properties is presented with an illustration on alfalfa stems. Results obtained modeling plant motions in an alfalfa crop are presented. PMID:15179844

  2. Growing root, tuber and nut crops hydroponically for CELSS

    NASA Technical Reports Server (NTRS)

    Hill, W. A.; Mortley, D. G.; Loretan, P. A.; Bonsi, C. K.; Morris, C. E.; Mackowiak, C. L.; Wheeler, R. M.; Tibbitts, T. W.

    1992-01-01

    Among the crops selected by NASA for growth in controlled ecological life-support systems are four that have subsurface edible parts: potatoes, sweet potatoes, sugar beets and peanuts. These crops can be produced in open and closed (recirculating), solid media and liquid, hydroponic systems. Fluorescent, fluorescent plus incandescent, and high-pressure sodium-plus-metal-halide lamps have proven to be effective light sources. Continuous light with 16-C and 28/22-C (day/night) temperatures produce highest yields for potato and sweet potato, respectively. Dry weight yields of up to 4685, 2541, 1151 and 207 g/sq m for potatoes, sweet potatoes, sugar beets and peanuts, respectively, are produced in controlled environment hydroponic systems.

  3. Linking Drought Information to Crop Yield

    NASA Astrophysics Data System (ADS)

    Madadgar, S.; Farahmand, A.; Li, L.; Aghakouchak, A.

    2015-12-01

    Droughts have detrimental impacts on agricultural yields all over the world every year. This study analyzes the relationship between three drought indicators including Standardized Precipitation Index (SPI); Standardized Soil Moisture Index (SSI), Multivariate Standardized Drought Index (MSDI) and the yields of five largest rain-fed crops in Australia (wheat, broad beans, canola, lupins and barley). Variation of the five chosen crop yields is overall in agreement with the three drought indicators SPI, SSI, and MSDI during the analysis period of 1980-2012. This study develops a bivariate copula model to investigate the statistical dependence of drought and crop yield. Copula functions are used to establish the existing connections between climate variables and crop yields during the Millennium drought in Australia. The proposed model estimates the likelihood of crop yields given the observed or predicted drought indicators SPI, SSI or MSDI. The results are also useful to estimate crop yields associated with different thresholds of precipitation or soil moisture.

  4. Seeing is believing I: The use of thermal sensing from satellite imagery to predict crop yield

    NASA Astrophysics Data System (ADS)

    B, Potgieter A.; D, Rodriguez; B, Power; J, Mclean; P, Davis

    2014-02-01

    Volatility in crop production has been part of the Australian environment since cropping began with the arrival of the first European settlers. Climate variability is the main factor affecting crop production at national, state and local scales. At field level spatial patterns on yield production are also determined by spatially changing soil properties in interaction with seasonal climate conditions and weather patterns at critical stages in the crop development. Here we used a combination of field level weather records, canopy characteristics, and satellite information to determine the spatial performance of a large field of wheat. The main objective of this research is to determine the ability of remote sensing technologies to capture yield losses due to water stress at the canopy level. The yield, canopy characteristics (i.e. canopy temperature and ground cover) and seasonal conditions of a field of wheat (~1400ha) (-29.402° South and 149.508°, New South Wales, Australia) were continuously monitored during the winter of 2011. Weather and crop variables were continuously monitored by installing three automatic weather stations in a transect covering different positions and soils in the landscape. Weather variables included rainfall, minimum and maximum temperatures and relative humidity, and crop characteristics included ground cover and canopy temperature. Satellite imagery Landsat TM 5 and 7 was collected at five different stages in the crop cycle. Weather variables and crop characteristics were used to calculate a crop stress index (CSI) at point and field scale (39 fields). Field data was used to validate a spatial satellite image derived index. Spatial yield data was downloaded from the harvester at the different locations in the field. We used the thermal band (land surface temperature, LST) and enhanced vegetation index (EVI) bands from the MODIS (250 m for visible bands and 1km for thermal band) and a derived EVI from Landsat TM 7 (25 m for visible and

  5. Effects of Neonicotinoids and Crop Rotation for Managing Wireworms in Wheat Crops.

    PubMed

    Esser, Aaron D; Milosavljević, Ivan; Crowder, David W

    2015-08-01

    Soil-dwelling insects are severe pests in many agroecosystems. These pests have cryptic life cycles, making sampling difficult and damage hard to anticipate. The management of soil insects is therefore often based on preventative insecticides applied at planting or cultural practices. Wireworms, the subterranean larvae of click beetles (Coleoptera: Elateridae), have re-emerged as problematic pests in cereal crops in the Pacific Northwestern United States. Here, we evaluated two management strategies for wireworms in long-term field experiments: 1) treating spring wheat seed with the neonicotinoid thiamethoxam and 2) replacing continuous spring wheat with a summer fallow and winter wheat rotation. Separate experiments were conducted for two wireworm species--Limonius californicus (Mannerheim) and Limonius infuscatus (Motschulsky). In the experiment with L. californicus, spring wheat yields and economic returns increased by 24-30% with neonicotinoid treatments. In contrast, in the experiment with L. infuscatus, spring wheat yields and economic returns did not increase with neonicotinoids despite an 80% reduction in wireworms. Thus, the usefulness of seed-applied neonicotinoids differed based on the wireworm species present. In experiments with both species, we detected significantly fewer wireworms with a no-till summer fallow and winter wheat rotation compared with continuous spring wheat. This suggests that switching from continuous spring wheat to a winter wheat and summer fallow rotation may aid in wireworm management. More generally, our results show that integrated management of soil-dwelling pests such as wireworms may require both preventative insecticide treatments and cultural practices. PMID:26470320

  6. 9 CFR 205.107 - Crop year.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 9 Animals and Animal Products 2 2011-01-01 2011-01-01 false Crop year. 205.107 Section 205.107... Regulations § 205.107 Crop year. (a) The crop year, according to which subsection (c)(2)(C)(ii)(IV) requires... calendar year in which it is harvested or to be harvested; (2) For animals, the calendar year in which...

  7. 9 CFR 205.107 - Crop year.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 9 Animals and Animal Products 2 2012-01-01 2012-01-01 false Crop year. 205.107 Section 205.107... Regulations § 205.107 Crop year. (a) The crop year, according to which subsection (c)(2)(C)(ii)(IV) requires... calendar year in which it is harvested or to be harvested; (2) For animals, the calendar year in which...

  8. 9 CFR 205.107 - Crop year.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 9 Animals and Animal Products 2 2013-01-01 2013-01-01 false Crop year. 205.107 Section 205.107... Regulations § 205.107 Crop year. (a) The crop year, according to which subsection (c)(2)(C)(ii)(IV) requires... calendar year in which it is harvested or to be harvested; (2) For animals, the calendar year in which...

  9. 9 CFR 205.107 - Crop year.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 9 Animals and Animal Products 2 2014-01-01 2014-01-01 false Crop year. 205.107 Section 205.107... Regulations § 205.107 Crop year. (a) The crop year, according to which subsection (c)(2)(C)(ii)(IV) requires... calendar year in which it is harvested or to be harvested; (2) For animals, the calendar year in which...

  10. Diversifying crops: the Nicaraguan experiment.

    PubMed

    Meyrat, A

    1992-01-01

    Over 1/2 of Nicaragua's population lives in the Pacific Plains where cotton has been grown intensively for 40 years. This single-crop economy has led to massive deforestation, wind and water erosion has affected the soil, and extensive use of pesticides has deposited excessive amounts of DDT in the breast milk of nursing mothers. After the downfall of the Somoza dictatorship the subsequent agrarian reform has been hampered by lack of information and training on sustainable methods of farming. The Pikin Guerrero project is a sustainable development experiment involving 2200 peasant families jointly run by the Nicaraguan Institute for Natural Resources and the Environment (IRENA) and the World Conservation Union (IUCN). The farmers grow corn and beans while exhausting the area's natural resources through forest clearing with the result of spreading erosion of fragile soils. 400 farmers have reshaped their production systems with the help of experts. Annual crops have become more diverse: yucca, 10 varieties of bean, 3 of pineapple, and 4 of corn, plus coffee, mango, bananas, and avocado. Soil conservation practices have been introduced, and farmers have built terraces. The initial pilot project comprised 5000 hectares, it is being expanded to cover another 10,000 hectares. The introduction of family planning to the local people is the next undertaking. PMID:12317702

  11. Short rotation Wood Crops Program

    SciTech Connect

    Wright, L.L.; Ehrenshaft, A.R.

    1990-08-01

    This report synthesizes the technical progress of research projects in the Short Rotation Woody Crops Program for the year ending September 30, 1989. The primary goal of this research program, sponsored by the US Department of Energy's Biofuels and Municipal Waste Technology Division, is the development of a viable technology for producing renewable feedstocks for conversion to biofuels. One of the more significant accomplishments was the documentation that short-rotation woody crops total delivered costs could be $40/Mg or less under optimistic but attainable conditions. By taking advantage of federal subsidies such as those offered under the Conservation Reserve Program, wood energy feedstock costs could be lower. Genetic improvement studies are broadening species performance within geographic regions and under less-than-optimum site conditions. Advances in physiological research are identifying key characteristics of species productivity and response to nutrient applications. Recent developments utilizing biotechnology have achieved success in cell and tissue culture, somaclonal variation, and gene-insertion studies. Productivity gains have been realized with advanced cultural studies of spacing, coppice, and mixed-species trials. 8 figs., 20 tabs.

  12. Origins of food crops connect countries worldwide

    PubMed Central

    Achicanoy, Harold A.; Bjorkman, Anne D.; Navarro-Racines, Carlos; Guarino, Luigi; Flores-Palacios, Ximena; Engels, Johannes M. M.; Wiersema, John H.; Dempewolf, Hannes; Sotelo, Steven; Ramírez-Villegas, Julian; Castañeda-Álvarez, Nora P.; Fowler, Cary; Jarvis, Andy; Rieseberg, Loren H.; Struik, Paul C.

    2016-01-01

    Research into the origins of food plants has led to the recognition that specific geographical regions around the world have been of particular importance to the development of agricultural crops. Yet the relative contributions of these different regions in the context of current food systems have not been quantified. Here we determine the origins (‘primary regions of diversity’) of the crops comprising the food supplies and agricultural production of countries worldwide. We estimate the degree to which countries use crops from regions of diversity other than their own (‘foreign crops’), and quantify changes in this usage over the past 50 years. Countries are highly interconnected with regard to primary regions of diversity of the crops they cultivate and/or consume. Foreign crops are extensively used in food supplies (68.7% of national food supplies as a global mean are derived from foreign crops) and production systems (69.3% of crops grown are foreign). Foreign crop usage has increased significantly over the past 50 years, including in countries with high indigenous crop diversity. The results provide a novel perspective on the ongoing globalization of food systems worldwide, and bolster evidence for the importance of international collaboration on genetic resource conservation and exchange.

  13. 7 CFR 1218.4 - Crop year.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... AND ORDERS; MISCELLANEOUS COMMODITIES), DEPARTMENT OF AGRICULTURE BLUEBERRY PROMOTION, RESEARCH, AND INFORMATION ORDER Blueberry Promotion, Research, and Information Order Definitions § 1218.4 Crop year....

  14. 7 CFR 1218.4 - Crop year.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... AND ORDERS; MISCELLANEOUS COMMODITIES), DEPARTMENT OF AGRICULTURE BLUEBERRY PROMOTION, RESEARCH, AND INFORMATION ORDER Blueberry Promotion, Research, and Information Order Definitions § 1218.4 Crop year....

  15. 7 CFR 1218.4 - Crop year.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... AND ORDERS; MISCELLANEOUS COMMODITIES), DEPARTMENT OF AGRICULTURE BLUEBERRY PROMOTION, RESEARCH, AND INFORMATION ORDER Blueberry Promotion, Research, and Information Order Definitions § 1218.4 Crop year....

  16. 7 CFR 1218.4 - Crop year.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... AND ORDERS; MISCELLANEOUS COMMODITIES), DEPARTMENT OF AGRICULTURE BLUEBERRY PROMOTION, RESEARCH, AND INFORMATION ORDER Blueberry Promotion, Research, and Information Order Definitions § 1218.4 Crop year....

  17. 7 CFR 1218.4 - Crop year.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... AND ORDERS; MISCELLANEOUS COMMODITIES), DEPARTMENT OF AGRICULTURE BLUEBERRY PROMOTION, RESEARCH, AND INFORMATION ORDER Blueberry Promotion, Research, and Information Order Definitions § 1218.4 Crop year....

  18. 7 CFR 1219.5 - Crop year.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... AND ORDERS; MISCELLANEOUS COMMODITIES), DEPARTMENT OF AGRICULTURE HASS AVOCADO PROMOTION, RESEARCH, AND INFORMATION Hass Avocado Promotion, Research, and Information Order Definitions § 1219.5 Crop...

  19. 7 CFR 1219.5 - Crop year.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... AND ORDERS; MISCELLANEOUS COMMODITIES), DEPARTMENT OF AGRICULTURE HASS AVOCADO PROMOTION, RESEARCH, AND INFORMATION Hass Avocado Promotion, Research, and Information Order Definitions § 1219.5 Crop...

  20. 7 CFR 1219.5 - Crop year.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... AND ORDERS; MISCELLANEOUS COMMODITIES), DEPARTMENT OF AGRICULTURE HASS AVOCADO PROMOTION, RESEARCH, AND INFORMATION Hass Avocado Promotion, Research, and Information Order Definitions § 1219.5 Crop...

  1. 7 CFR 1219.5 - Crop year.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... AND ORDERS; MISCELLANEOUS COMMODITIES), DEPARTMENT OF AGRICULTURE HASS AVOCADO PROMOTION, RESEARCH, AND INFORMATION Hass Avocado Promotion, Research, and Information Order Definitions § 1219.5 Crop...

  2. 7 CFR 1219.5 - Crop year.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... AND ORDERS; MISCELLANEOUS COMMODITIES), DEPARTMENT OF AGRICULTURE HASS AVOCADO PROMOTION, RESEARCH, AND INFORMATION Hass Avocado Promotion, Research, and Information Order Definitions § 1219.5 Crop...

  3. Crop emergence date determination from spectral data

    NASA Technical Reports Server (NTRS)

    Badhwar, G. D.

    1980-01-01

    Estimating the emergence of a given crop, such as wheat or barley, is proposed using an analytic method which relies on the hypothesis that in the region (lambda = 0.70-1.35 microns) a given crop, after emergence, has a unique spectral profile in time. If the crop emerges early or late, relative to a reference standard determined for a given segment, the profile is displaced but has the same shape. Therefore, given the crop specific constants of the reference profile and a sufficient number of Landsat observations of reflectivity at specific times, the emergence date of a field can be determined.

  4. Large area crop inventory experiment crop assessment subsystem software requirements document

    NASA Technical Reports Server (NTRS)

    1975-01-01

    The functional data processing requirements are described for the Crop Assessment Subsystem of the Large Area Crop Inventory Experiment. These requirements are used as a guide for software development and implementation.

  5. Effect of diversified crop rotations on groundwater levels and crop water productivity in the North China Plain

    NASA Astrophysics Data System (ADS)

    Yang, Xiaolin; Chen, Yuanquan; Pacenka, Steven; Gao, Wangsheng; Ma, Li; Wang, Guangya; Yan, Peng; Sui, Peng; Steenhuis, Tammo S.

    2015-03-01

    Water shortage is the major bottleneck that limits sustainable yield of agriculture in the North China Plain. Due to the over-exploitation of groundwater for irrigating the winter wheat-summer maize double cropping systems, a groundwater crisis is becoming increasingly serious. To help identify more efficient and sustainable utilization of the limited water resources, the water consumption and water use efficiency of five irrigated cropping systems were calculated and the effect of cropping systems on groundwater table changes was estimated based on a long term field experiment from 2003 to 2013 in the North China Plain interpreted using a soil-water-balance model. The five cropping systems included sweet potato → cotton → sweet potato → winter wheat-summer maize (SpCSpWS, 4-year cycle), ryegrass-cotton → peanuts → winter wheat-summer maize (RCPWS, 3-year cycle), peanuts → winter wheat-summer maize (PWS, 2-year cycle), winter wheat-summer maize (WS, 1-year cycle), and continuous cotton (Cont C). The five cropping systems had a wide range of annual average actual evapotranspiration (ETa): Cont C (533 mm/year) < SpCSpWS (556 mm/year) < PWS (615 mm/year) < RCPWS (650 mm/year) < WS rotation (734 mm/year). The sequence of the simulated annual average groundwater decline due to the five cropping systems was WS (1.1 m/year) > RCPWS (0.7 m/year) > PWS (0.6 m/year) > SPCSPWS and Cont C (0.4 m/year). The annual average economic output water use efficiency (WUEe) increased in the order SpCSpWS (11.6 yuan ¥ m-3) > RCPWS (9.0 ¥ m-3) > PWS (7.3 ¥ m-3) > WS (6.8 ¥ m-3) > Cont C (5.6 ¥ m-3) from 2003 to 2013. Results strongly suggest that diversifying crop rotations could play a critically important role in mitigating the over-exploitation of the groundwater, while ensuring the food security or boosting the income of farmers in the North China Plain.

  6. [Effects of crop rotation and bio-organic manure on soil microbial characteristics of Chrysanthemum cropping system].

    PubMed

    Xiao, Xin; Zhu, Wei; Du, Chao; Shi, Ya-dong; Wang, Jian-fei

    2015-06-01

    We conducted a field experiment to evaluate the effects of rotation system and bio-organic manure on soil microbial characteristics of Chrysanthemum cropping system. Taking Chrysanthemum morifolium Ramat and wheat as experimental plants, treatments under Chrysanthemum continuous cropping system (M1), conventional Chrysanthemum-wheat rotation system (M2), and Chrysanthemum-wheat rotation system receiving bio-organic manure application of 200 kg · 667 m(-2) (M3) were designed. Soil chemical properties, soil microbial biomass carbon (MBC) and nitrogen (MBN), and the amounts of different types of soil microorganisms were determined. Results showed that compared with M1, treatments of M2 and M3 significantly increased soil pH, organic matter, available N, P, and K, MBC, MBN, and the amounts of bacteria, fungi and actinomycetes, but decreased the ratio of MBC/MBN, and the relative percentage of fungi in the total amount of microorganisms. Treatment of M3 had the highest contents of soil organic matter, available N, available P, available K, MBC, MBN, and the amounts of bacteria, fungi and actinomycetes, with the values being 15.62 g · kg(-1), 64.75 mg · kg(-1), 83.26 mg · kg(-1), 96.72 mg · kg(-1), 217.40 mg · kg(-1), 38.41 mg · kg(-1), 22.31 x 10(6) cfu · g(-1), 56.36 x 10(3) cfu · g(-1), 15.90 x 10(5) cfu · g(-1), respectively. We concluded that rational crop rotation and bio-organic manure application could weaken soil acidification, improve soil fertility and microbial community structure, increase the efficiency of nutrition supply, and have a positive effect on reducing the obstacles of continuous cropping. PMID:26572032

  7. Organic amendment of crop soil and its relation to hotspots of bacterial nitrogen cycling

    NASA Astrophysics Data System (ADS)

    Pereg, Lily; McMillan, Mary

    2015-04-01

    Crop production in Australian soils requires a high use of fertilisers, including N, P and K for continues utilisation of the soil. Growers often grow crops in rotation of summer crop, such as cotton with winter crop, such as wheat in the same field. Growers are getting more and more aware about sustainability of the soil resources and the more adventurous ones use soil amendments, such as organic supplements in addition to the chemical fertilisers. We have collected soil samples from fields that were cultivated in preparation for planting cotton and tested the soil for its bacterial populations with potential to perform different functions, including those related to the nitrogen cycling. One of our aims was to determine whether organic amendments create hotspots for bacterial functions related to bacterial nitrogen cycling. This pan of the project will be discussed in this presentation.

  8. Insect Pollinated Crops, Insect Pollinators and US Agriculture: Trend Analysis of Aggregate Data for the Period 1992–2009

    PubMed Central

    Calderone, Nicholas W.

    2012-01-01

    In the US, the cultivated area (hectares) and production (tonnes) of crops that require or benefit from insect pollination (directly dependent crops: apples, almonds, blueberries, cucurbits, etc.) increased from 1992, the first year in this study, through 1999 and continued near those levels through 2009; aggregate yield (tonnes/hectare) remained unchanged. The value of directly dependent crops attributed to all insect pollination (2009 USD) decreased from $14.29 billion in 1996, the first year for value data in this study, to $10.69 billion in 2001, but increased thereafter, reaching $15.12 billion by 2009. The values attributed to honey bees and non-Apis pollinators followed similar patterns, reaching $11.68 billion and $3.44 billion, respectively, by 2009. The cultivated area of crops grown from seeds resulting from insect pollination (indirectly dependent crops: legume hays, carrots, onions, etc.) was stable from 1992 through 1999, but has since declined. Production of those crops also declined, albeit not as rapidly as the decline in cultivated area; this asymmetry was due to increases in aggregate yield. The value of indirectly dependent crops attributed to insect pollination declined from $15.45 billion in 1996 to $12.00 billion in 2004, but has since trended upward. The value of indirectly dependent crops attributed to honey bees and non-Apis pollinators, exclusive of alfalfa leafcutter bees, has declined since 1996 to $5.39 billion and $1.15 billion, respectively in 2009. The value of alfalfa hay attributed to alfalfa leafcutter bees ranged between $4.99 and $7.04 billion. Trend analysis demonstrates that US producers have a continued and significant need for insect pollinators and that a diminution in managed or wild pollinator populations could seriously threaten the continued production of insect pollinated crops and crops grown from seeds resulting from insect pollination. PMID:22629374

  9. Insect pollinated crops, insect pollinators and US agriculture: trend analysis of aggregate data for the period 1992-2009.

    PubMed

    Calderone, Nicholas W

    2012-01-01

    In the US, the cultivated area (hectares) and production (tonnes) of crops that require or benefit from insect pollination (directly dependent crops: apples, almonds, blueberries, cucurbits, etc.) increased from 1992, the first year in this study, through 1999 and continued near those levels through 2009; aggregate yield (tonnes/hectare) remained unchanged. The value of directly dependent crops attributed to all insect pollination (2009 USD) decreased from $14.29 billion in 1996, the first year for value data in this study, to $10.69 billion in 2001, but increased thereafter, reaching $15.12 billion by 2009. The values attributed to honey bees and non-Apis pollinators followed similar patterns, reaching $11.68 billion and $3.44 billion, respectively, by 2009. The cultivated area of crops grown from seeds resulting from insect pollination (indirectly dependent crops: legume hays, carrots, onions, etc.) was stable from 1992 through 1999, but has since declined. Production of those crops also declined, albeit not as rapidly as the decline in cultivated area; this asymmetry was due to increases in aggregate yield. The value of indirectly dependent crops attributed to insect pollination declined from $15.45 billion in 1996 to $12.00 billion in 2004, but has since trended upward. The value of indirectly dependent crops attributed to honey bees and non-Apis pollinators, exclusive of alfalfa leafcutter bees, has declined since 1996 to $5.39 billion and $1.15 billion, respectively in 2009. The value of alfalfa hay attributed to alfalfa leafcutter bees ranged between $4.99 and $7.04 billion. Trend analysis demonstrates that US producers have a continued and significant need for insect pollinators and that a diminution in managed or wild pollinator populations could seriously threaten the continued production of insect pollinated crops and crops grown from seeds resulting from insect pollination. PMID:22629374

  10. Environmental enhancement using short-rotation woody crops and perennial grasses as alternative agricultural crops

    SciTech Connect

    Tolbert, V.R.; Schiller, A.

    1995-12-31

    Short-rotation woody crops and perennial grasses are grown as biomass feedstocks for energy and fiber. When replacing traditional row crops on similar lands, these alternative crops can provide multiple environmental benefits in addition to enhancing rural economies and providing valuable feedstock resources. The Department of Energy is supporting research to address how these crops can provide environmental benefits to soil, water and native wildlife species in addition to providing bioenergy feedstocks. Research is underway to address the potential for biomass crops to provide soil conservation and water quality improvements in crop settings. Replacement of traditional erosive row crops with biomass crops on marginal lands and establishment of biomass plantations as filter strips adjacent to streams and wetlands are being studied. The habitat value of different biomass crops for selected wildlife species is also under study. To date, these studies have shown that in comparison with row crops biomass plantings of both grass and tree crops increased biodiversity of birds; however, the habitat value of tree plantations is not equivalent to natural forests. The effects on native wildlife of establishing multiple plantations across a landscape are being studied. Combining findings on wildlife use of individual plantations with information on the cumulative effects of multiple plantations on wildlife populations can provide guidance for establishing and managing biomass crops to enhance biodiversity while providing biomass feedstocks. Data from site-specific environmental studies can provide input for evaluation of the probable effects of large-scale plantings at both landscape and regional levels of resolution.

  11. A Centralized Regional Database for Winter Cover Crops in Annual Cropping Systems

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Winter cover crops have the potential to reduce erosion, minimize losses of nitrogen and phosphorus, and increase soil carbon in annual cropping systems in the Midwest. Public support, however, for incentives to farmers to adopt cover crops is minimal. Therefore, development of location-specific rec...

  12. Crop Canopy and Residue Rainfall Interception Effects on Water and Crop Growth

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Crop canopies and residues have been shown to intercept a significant amount of rainfall. However, rainfall or irrigation interception by crops and residues has often been overlooked in hydrologic modelling. Crop canopy interception is controlled by canopy density and rainfall intensity and durati...

  13. Nitrogen, Tillage, and Crop Rotation Effects on Nitrous Oxide Emissions from Irrigated Cropping Systems

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This study evaluated the effects of irrigated crop management practices on nitrous oxide (N2O) emissions. Emissions were monitored from several irrigated cropping systems receiving N fertilizer rates ranging from 0 to 246 kg N ha-1 during the 2005 and 2006 growing seasons. Cropping systems includ...

  14. Soil and crop nitrogen as influenced by tillage, cover crops, and nitrogen fertilization

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soil and crop management practices may influence soil mineral N, crop N uptake, and N leaching. We evaluated the effects of three tillage practices [no-till (NT), strip till (ST), and chisel till (CT)], four cover crops {legume [hairy vetch (Vicia villosa Roth)], nonlegume [rye (Secale cereale L.)],...

  15. 77 FR 59045 - Common Crop Insurance Regulations; Prune Crop Insurance Provisions

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-09-26

    ...The Federal Crop Insurance Corporation (FCIC) finalizes the Common Crop Insurance Regulations, Prune Crop Insurance Provisions. The intended effect of this action is to provide policy changes and clarify existing policy provisions to better meet the needs of insured producers, and to reduce vulnerability to program fraud, waste, and abuse. The changes will apply for the 2013 and succeeding......

  16. Mixed cropping has the potential to enhance flood tolerance of drought-adapted grain crops.

    PubMed

    Iijima, Morio; Awala, Simon K; Watanabe, Yoshinori; Kawato, Yoshimasa; Fujioka, Yuichiro; Yamane, Koji; Wada, Kaede C

    2016-03-15

    Recently, the occurrences of extreme flooding and drought, often in the same areas, have increased due to climate change. Wetland plant species are known to oxygenate their rhizospheres by releasing oxygen (O2) from their roots. We tested the hypothesis that wetland species could help upland species under flood conditions; that is, O2 released from the wetland crop roots would ameliorate rhizosphere O2-deficient stress and hence facilitate upland crop root function. Flooding tolerance of upland-adapted staple crops-pearl millet (Pennisetum glaucum) and sorghum (Sorghum bicolor) mix-cropped with rice (Oryza spp.) was investigated in glasshouse and laboratory. We found a phenomenon that strengthens the flood tolerance of upland crops when two species-one wetland and one drought tolerant-were grown using the mixed cropping technique that results in close tangling of their root systems. This technique improved the photosynthetic and transpiration rates of upland crops subjected to flood stress (O2-deficient nutrient culture). Shoot relative growth rates during the flooding period (24 days) tended to be higher under mixed cropping compared with single cropping. Radial oxygen loss from the wetland crop roots might be contributed to the phenomenon observed. Mixed cropping of wet and dryland crops is a new concept that has the potential to overcome flood stress under variable environmental conditions. PMID:26803216

  17. 78 FR 22411 - Common Crop Insurance Regulations; Florida Citrus Fruit Crop Insurance Provisions; Correction

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-16

    ... Florida Citrus Fruit Crop Insurance Provisions that published on Friday, December 21, 2012, (74 FR 75509... Corporation 7 CFR Part 457 RIN 0563-AC39 Common Crop Insurance Regulations; Florida Citrus Fruit Crop... Friday, December 21, 2012. The regulation pertains to the insurance of Florida Citrus Fruit....

  18. Growth and yield of winter wheat as affected by preceding crop and crop management

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Producers in eastern South Dakota are interested in adding winter wheat (Triticum aestivum L.) to the corn (Zea mays L.)-soybean (Glycine max Merrill) rotation to improve crop yield and pest management. Our study quantified winter wheat response to preceding crop and crop management. Preceding cro...

  19. Comparing cropping system productivity of fixed rotations and a flexible fallow system using Aqua-Crop

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In the Central High Plains, the predominant crop rotation is winter wheat (Triticum aestivum L.)-fallow. Producers are looking to add diversity and intensity to their cropping systems and improve water use efficiency by adding summer crops, however, the elimination of summer fallow may increase the ...

  20. Planting dates for multiple cropping of biofuel feedstock and specialty crops

    Technology Transfer Automated Retrieval System (TEKTRAN)

    It is necessary to determine planting and harvesting windows in order to develop production systems for biofuel feedstock and specialty crops in rotation. The biodiesel feedstock crops Canola and Sunflower; and the bioethanol feedstock crops Sorghum and Sweet corn were established at various dates ...