Science.gov

Sample records for continuous indentation test

  1. The effect of friction on indentation test results

    NASA Astrophysics Data System (ADS)

    Harsono, E.; Swaddiwudhipong, S.; Liu, Z. S.

    2008-09-01

    A smooth contact analysis is commonly adopted in simulated indentation. Limited studies have been performed to investigate the possibility of deviation due to this simplification. This study involves the finite element simulation of indentation by conical indenters and the Berkovich family of indenters with three different apex angles of indenter tips of 50°, 60° and 70.3°. Loading curvatures and the ratio of the remaining work done to the total work done of the load-indentation curves resulting from the simulated indentation tests considering friction and smooth contact surfaces were compared and discussed. A wide range of elasto-plastic materials obeying the power law strain hardening model were considered in this study. The results as presented herein demonstrate that the effect of friction on the two essential basic parameters from the load-indentation curves, namely, the loading curvatures and the ratio of the work done, varies depending on both mechanical properties of the target materials and the geometries of the indenter tips adopted in the investigation.

  2. Practical limitations to indentation testing of thin films

    SciTech Connect

    Schneider, J.A.; McCarty, K.F.; Heffelfinger, J.R.; Moody, N.R.

    1998-11-01

    A method that is becoming increasingly common for measuring the mechanical behavior of thin films is low-load indentation testing. However, there can be complications in interpreting the results as many factors can affect hardness and moduli measurements such as surface roughness and determination of the indentation contact area. To further the understanding, the mechanical properties of thin (50 nm) films of AlN on sapphire substrates were evaluated using a scanning force microscopy (SFM) based pico-indentation device to allow imaging of the surface and indentations. The primary emphasis was the types of problems or limitations involved in testing very thin, as deposited films in which properties are desired over indentation depths less than 50 nm.

  3. Improved Indentation Test for Measuring Nonlinear Elasticity

    NASA Technical Reports Server (NTRS)

    Eldridge, Jeffrey I.

    2004-01-01

    A cylindrical-punch indentation technique has been developed as a means of measuring the nonlinear elastic responses of materials -- more specifically, for measuring the moduli of elasticity of materials in cases in which these moduli vary with applied loads. This technique offers no advantage for characterizing materials that exhibit purely linear elastic responses (constant moduli of elasticity, independent of applied loads). However, the technique offers a significant advantage for characterizing such important materials as plasma-sprayed thermal-barrier coatings, which, in cyclic loading, exhibit nonlinear elasticity with hysteresis related to compaction and sliding within their microstructures.

  4. Influence of Penetration Rate and Indenter Diameter in Strength Measurement by Indentation Testing on Small Rock Specimens

    NASA Astrophysics Data System (ADS)

    Haftani, Mohammad; Bohloli, Bahman; Nouri, Alireza; Javan, Mohammad Reza Maleki; Moosavi, Mahdi; Moradi, Majid

    2015-03-01

    Indentation testing has been developed as an unconventional method to determine intact rock strength using small rock specimens within the size of drill cuttings. In previous investigations involving indentation testing, researchers have used different indenter stylus geometries, penetration rate (PR) and specimen sizes. These dissimilarities can restrict applications of this method for strength measurement and lead to non-comparable results. This paper investigates the influence of indenter diameter (ID) and PR on indentation indices for carbonate rocks to provide objective comparison and application of the existing correlations. As part of this research, several indentation tests were conducted using different IDs and PRs. The laboratory test results showed that indentation indices can be affected by ID while PR has only minor effect on the indentation indices. Thus, a normalizing function was presented to reduce the dependency of test results to ID. Verification of the findings with independent data confirms the suitability of the suggested normalizing function in determining the rock uniaxial compressive strength using testing data obtained from various IDs and PRs.

  5. Indentation Load Effect on Young's Modulus and Hardness of Porous Sialon Ceramic by Depth Sensing Indentation Tests

    NASA Astrophysics Data System (ADS)

    Osman, Sahin

    2007-11-01

    Depth sensing indentation (DSI) tests at the range of 200-1800 mN are performed on porous sialon ceramic to determine the indentation load on Young's modulus and hardness values. The Young modulus and hardness (Dynamic and Martens) values are deduced by analysing the unloading segments of the DSI test load-displacement curves using the Oliver-Pharr method. It is found that Young's modulus Er, the dynamic hardness HD and the Martens hardness HM exhibit significant indentation load dependences. The values of Young's modulus and hardness decrease with the increasing indentation load, as a result of indentation load effect. The experimental hf/hm ratios lower than the critical value 0.7, with hm being the maximum penetration depth during loading and hf the final unloading depth, indicate that our sample shows the work hardening behaviour.

  6. A simple measuring device for laboratory indentation tests on cartilage.

    PubMed

    Koeller, Wolfgang; Kunow, Julius; Ostermeyer, Oliver; Stomberg, Peter; Boos, Carsten; Russlies, Martin

    2008-04-01

    Mechanical testing of articular cartilage and repair tissue enables judgment of their capacity in withstanding mechanical loading. In the past, different methods have been developed requiring a complex technical setup and extensive data analysis. Therefore, the aim of the present project was to build up a simple measuring apparatus for laboratory indentation tests. The device consists of an incremental optical displacement transducer with a sleeve bearing guided plunger and a spherical tip made of polished steel (radius: 0.75 or 1.5 mm), a sensitive load cell and a stiff frame. The indentation force results from the plunger's gravity plus the force of the spring inside the displacement transducer and levels at 0.170 N or 0.765 N. The displacement transducer is fixed to the frame via the load cell that enables one to detect the initial contact of the tip with the tissue. The load cell has a standard uncertainty of 2 mN and the displacement transducer of 1 microm. From indentation-creep tests, a "0.25-s elastic modulus" is calculated. Measurements on thin rubber sheets were carried out to determine the quality of the measuring device. Compression tests on cylinders made of these rubber sheets yielded control data, and a good agreement with the "0.25-s elastic modulus" was found. Indentation tests on cartilage at different sites of sheep femoral condyles yielded a very good repeatability of the measurement results (+/-7.5%). PMID:18979621

  7. Indentation testing and optimized property identification for viscoelastic materials using the finite element method

    NASA Astrophysics Data System (ADS)

    Resapu, Rajeswara Reddy

    The most common approaches to determining mechanical material properties of materials are tension and compression tests. However, tension and compression testing cannot be implemented under certain loading conditions (immovable object, not enough space to hold object for testing, etc). Similarly, tensile and compression testing cannot be performed on certain types of materials (delicate, bulk, non-machinable, those that cannot be separated from a larger structure, etc). For such cases, other material testing methods need to be implemented. Indentation testing is one such method; this approach is often non-destructive and can be used to characterize regions that are not compatible with other testing methods. However, indentation testing typically leads to force-displacement data as opposed to the direct stress-strain data normally used for the mechanical characterization of materials; this data needs to be analyzed using a suitable approach to determine the associated material properties. As such, methods to establish material properties from force-displacement indentation data need to be identified. In this work, a finite element approach using parameter optimization is developed to determine the mechanical properties from the experimental indentation data. Polymers and tissues tend to have time-dependent mechanical behavior; this means that their mechanical response under load changes with time. This dissertation seeks to characterize the properties of these materials using indentation testing under the assumption that they are linear viscoelastic. An example of a material of interest is the polymer poly vinyl chloride (PVC) that is used as the insulation of some aircraft wiring. Changes in the mechanical properties of this material over years of service can indicate degradation and a potential hazard to continued use. To investigate the validity of using indentation testing to monitor polymer insulation degradation, PVC film and PVC-insulated aircraft wiring are

  8. Determining Tension-Compression Nonlinear Mechanical Properties of Articular Cartilage from Indentation Testing.

    PubMed

    Chen, Xingyu; Zhou, Yilu; Wang, Liyun; Santare, Michael H; Wan, Leo Q; Lu, X Lucas

    2016-04-01

    The indentation test is widely used to determine the in situ biomechanical properties of articular cartilage. The mechanical parameters estimated from the test depend on the constitutive model adopted to analyze the data. Similar to most connective tissues, the solid matrix of cartilage displays different mechanical properties under tension and compression, termed tension-compression nonlinearity (TCN). In this study, cartilage was modeled as a porous elastic material with either a conewise linear elastic matrix with cubic symmetry or a solid matrix reinforced by a continuous fiber distribution. Both models are commonly used to describe the TCN of cartilage. The roles of each mechanical property in determining the indentation response of cartilage were identified by finite element simulation. Under constant loading, the equilibrium deformation of cartilage is mainly dependent on the compressive modulus, while the initial transient creep behavior is largely regulated by the tensile stiffness. More importantly, altering the permeability does not change the shape of the indentation creep curves, but introduces a parallel shift along the horizontal direction on a logarithmic time scale. Based on these findings, a highly efficient curve-fitting algorithm was designed, which can uniquely determine the three major mechanical properties of cartilage (compressive modulus, tensile modulus, and permeability) from a single indentation test. The new technique was tested on adult bovine knee cartilage and compared with results from the classic biphasic linear elastic curve-fitting program. PMID:26240062

  9. Non-ideal effects in indentation testing of soft tissues.

    PubMed

    Finan, John D; Fox, Patrick M; Morrison, Barclay

    2014-06-01

    Indentation has several advantages as a loading mode for determining constitutive behavior of soft, biological tissues. However, indentation induces a complex, spatially heterogeneous deformation field that creates analytical challenges for the calculation of constitutive parameters. As a result, investigators commonly assume small indentation depths and large sample thicknesses to simplify analysis and then restrict indentation depth and sample geometry to satisfy these assumptions. These restrictions limit experimental resolution in some fields, such as brain biomechanics. However, recent experimental evidence suggests that conventionally applied limits are in fact excessively conservative. We conducted a parametric study of indentation loading with various indenter geometries, surface interface conditions, sample compressibility, sample geometry and indentation depth to quantitatively describe the deviation from previous treatments that results from violation of the assumptions of small indentation depth and large sample thickness. We found that the classical solution was surprisingly robust to violation of the assumption of small strain but highly sensitive to violation of the assumption of large sample thickness, particularly if the indenter was cylindrical. The ramifications of these findings for design of indentation experiments are discussed and correction factors are presented to allow future investigators to account for these effects without recreating our finite element models. PMID:23928858

  10. Correction Method of Young's Modulus Measurement for Top Coat of Thermal Barrier Coatings by Instrumented Indentation Test with Spherical Indenter

    NASA Astrophysics Data System (ADS)

    Ohki, Motofumi; Ishibashi, Tatsuya

    Understanding of Young’s modulus of Thermal Barrier Coatings (TBCs) top coat is one of the important factors about improvement reliability of TBCs that is key technology of increasing thermal efficiency of gas turbine. Some measurement procedures have been proposed, but not established yet. Indentation test evaluated only hardness value before, but recently it has developed to be able to evaluate other mechanical properties such as yield strength, Young’s modulus, etc. From such background, application of indentation test for measurement of Young’s modulus of TBCs top coat is effective means. Although pyramidal indenter and calculation method regulated by ISO14577 is usually selected for measurement of Young’s modulus of TBCs top coat, author have proposed spherical indenter and calculation method based on elastic contact theory by Hertz. In this study, influence of different correcting specimens on measurement Young's modulus of TBCs top coat was discussed and it was concluded that the results of HMV500 hardness standard specimen show high uniformity on measured Young’s modulus of TBCs top coat (i.e. less load dependency).

  11. Review of Instrumented Indentation

    PubMed Central

    VanLandingham, Mark R.

    2003-01-01

    Instrumented indentation, also known as depth-sensing indentation or nanoindentation, is increasingly being used to probe the mechanical response of materials from metals and ceramics to polymeric and biological materials. The additional levels of control, sensitivity, and data acquisition offered by instrumented indentation systems have resulted in numerous advances in materials science, particularly regarding fundamental mechanisms of mechanical behavior at micrometer and even sub-micrometer length scales. Continued improvements of instrumented indentation testing towards absolute quantification of a wide range of material properties and behavior will require advances in instrument calibration, measurement protocols, and analysis tools and techniques. In this paper, an overview of instrumented indentation is given with regard to current instrument technology and analysis methods. Research efforts at the National Institute of Standards and Technology (NIST) aimed at improving the related measurement science are discussed.

  12. A Comparison of Quasi-Static Indentation Testing to Low Velocity Impact Testing

    NASA Technical Reports Server (NTRS)

    Nettles, Alan T.; Douglas, Michael J.

    2001-01-01

    The need for a static test method for modeling low-velocity foreign object impact events to composites would prove to be very beneficial to researchers since much more data can be obtained from a static test than from an impact test. In order to examine if this is feasible, a series of static indentation and low velocity impact tests were carried out and compared. Square specimens of many sizes and thickness were utilized to cover the array of types of low velocity impact events. Laminates with a n/4 stacking sequence were employed since this is by the most common type of engineering laminate. Three distinct flexural rigidities under two different boundary conditions were tested in order to obtain damage due to large deflections, contact stresses and both to examine if the static indentation-impact comparisons are valid under the spectrum of damage modes that can be experienced. Comparisons between static indentation and low velocity impact tests were based on the maximum applied transverse load. The dependent parameters examined included dent depth, back surface crack length, delamination area and to a limited extent, load-deflection behavior. Results showed that no distinct differences could be seen between the static indentation tests and the low velocity impact tests, indicating that static indentation can be used to represent a low velocity impact event.

  13. A new method for theoretical analysis of static indentation test.

    PubMed

    Sakamoto, M; Li, G; Hara, T; Chao, E Y

    1996-05-01

    A new mathematical method was developed to study the indentation problem of an infinite elastic layer overlaid on a rigid foundation. Rigid, flat-ended cylindrical or spherical indenters are pressed onto the upper surface of the elastic layer causing a small deformation mode. Shear stresses between the indenter and the layer are assumed negligible and the layer is assumed to be either bonded or unbonded to the rigid foundation. The problem is equivalent to a mixed boundary-value problem of the theory of elasticity. Instead of using the Fredholm integral equation reported in the literature, the new approach obtained closed-form solutions through an infinite series. Convergence can be achieved using less than 10 terms of the series. PMID:8707798

  14. Indentation Tests Reveal Geometry-Regulated Stiffening of Nanotube Junctions.

    PubMed

    Ozden, Sehmus; Yang, Yang; Tiwary, Chandra Sekhar; Bhowmick, Sanjit; Asif, Syed; Penev, Evgeni S; Yakobson, Boris I; Ajayan, Pulickel M

    2016-01-13

    Here we report a unique method to locally determine the mechanical response of individual covalent junctions between carbon nanotubes (CNTs), in various configurations such as "X", "Y", and "Λ"-like. The setup is based on in situ indentation using a picoindenter integrated within a scanning electron microscope. This allows for precise mapping between junction geometry and mechanical behavior and uncovers geometry-regulated junction stiffening. Molecular dynamics simulations reveal that the dominant contribution to the nanoindentation response is due to the CNT walls stretching at the junction. Targeted synthesis of desired junction geometries can therefore provide a "structural alphabet" for construction of macroscopic CNT networks with tunable mechanical response. PMID:26618517

  15. Mechanical characterization of soft materials using transparent indenter testing system and finite element simulation

    NASA Astrophysics Data System (ADS)

    Xuan, Yue

    Background. Soft materials such as polymers and soft tissues have diverse applications in bioengineering, medical care, and industry. Quantitative mechanical characterization of soft materials at multiscales is required to assure that appropriate mechanical properties are presented to support the normal material function. Indentation test has been widely used to characterize soft material. However, the measurement of in situ contact area is always difficult. Method of Approach. A transparent indenter method was introduced to characterize the nonlinear behaviors of soft materials under large deformation. This approach made the direct measurement of contact area and local deformation possible. A microscope was used to capture the contact area evolution as well as the surface deformation. Based on this transparent indenter method, a novel transparent indentation measurement systems has been built and multiple soft materials including polymers and pericardial tissue have been characterized. Seven different indenters have been used to study the strain distribution on the contact surface, inner layer and vertical layer. Finite element models have been built to simulate the hyperelastic and anisotropic material behaviors. Proper material constants were obtained by fitting the experimental results. Results.Homogeneous and anisotropic silicone rubber and porcine pericardial tissue have been examined. Contact area and local deformation were measured by real time imaging the contact interface. The experimental results were compared with the predictions from the Hertzian equations. The accurate measurement of contact area results in more reliable Young's modulus, which is critical for soft materials. For the fiber reinforced anisotropic silicone rubber, the projected contact area under a hemispherical indenter exhibited elliptical shape. The local surface deformation under indenter was mapped using digital image correlation program. Punch test has been applied to thin films of

  16. Mechanical property determination of bone through nano- and micro-indentation testing and finite element simulation

    PubMed Central

    Zhang, Jingzhou; Niebur, Glen L.; Ovaert, Timothy C.

    2009-01-01

    Measurement of the mechanical properties of bone is important for estimating the stresses and strains exerted at the cellular level due to loading experienced on a macro-scale. Nano- and micro-mechanical properties of bone are also of interest to the pharmaceutical industry when drug therapies have intentional or non-intentional effects on bone mineral content and strength. The interactions that can occur between nano- and micro-indentation creep test condition parameters were considered in this study, and average hardness and elastic modulus were obtained as a function of indentation testing conditions (maximum load, load/unload rate, load-holding time, and indenter shape). The results suggest that bone reveals different mechanical properties when loading increases from the nano- to the micro-scale range (μN to N), which were measured using low- and high-load indentation testing systems. A four-parameter visco-elastic/plastic constitutive model was then applied to simulate the indentation load vs. depth response over both load ranges. Good agreement between the experimental data and finite element model was obtained when simulating the visco-elastic/plastic response of bone. The results highlight the complexity of bone as a biological tissue and the need to understand the impact of testing conditions on the measured results. PMID:17961578

  17. Evaluation of coating adhesion using a radial speckle interferometer combined with a micro-indentation test

    NASA Astrophysics Data System (ADS)

    Tendela, Lucas P.; Kaufmann, Guillermo H.

    2012-06-01

    This paper presents a technique to investigate coating adhesion which combines a radial in-plane speckle interferometer and a micro-indentation test. The proposed technique is based on the measurement of the radial in-plane displacement field produced by a micro-indentation introduced on the coated surface of the specimen. Using steel specimens coated with a thin coating of epoxy paint and subjected to different adhesive conditions, it is demonstrated that digital speckle pattern interferometry can be successfully used to measure the small local deformations generated by a micro-indentation. An empirical model, which allows to quantify the adhesion of a given coated-substrate system by the proposed combined technique, is finally presented.

  18. Limit case analysis of the "stable indenter velocity" method for obtaining creep stress exponents from constant load indentation creep tests

    NASA Astrophysics Data System (ADS)

    Campbell, J.; Dean, J.; Clyne, T. W.

    2016-06-01

    This study concerns a commonly-used procedure for evaluating the steady state creep stress exponent, n, from indentation data. The procedure involves monitoring the indenter displacement history under constant load and making the assumption that, once its velocity has stabilised, the system is in a quasi-steady state, with stage II creep dominating the behaviour. The stress and strain fields under the indenter are represented by "equivalent stress" and "equivalent strain rate" values. The estimate of n is then obtained as the gradient of a plot of the logarithm of the equivalent strain rate against the logarithm of the equivalent stress. Concerns have, however, been expressed about the reliability of this procedure, and indeed it has already been shown to be fundamentally flawed. In the present paper, it is demonstrated, using a very simple analysis, that, for a genuinely stable velocity, the procedure always leads to the same, constant value for n (either 1.0 or 0.5, depending on whether the tip shape is spherical or self-similar). This occurs irrespective of the value of the measured velocity, or indeed of any creep characteristic of the material. It is now clear that previously-measured values of n, obtained using this procedure, have varied in a more or less random fashion, depending on the functional form chosen to represent the displacement-time history and the experimental variables (tip shape and size, penetration depth, etc.), with little or no sensitivity to the true value of n.

  19. A Viscoelastic Constitutive Model Can Accurately Represent Entire Creep Indentation Tests of Human Patella Cartilage

    PubMed Central

    Pal, Saikat; Lindsey, Derek P.; Besier, Thor F.; Beaupre, Gary S.

    2013-01-01

    Cartilage material properties provide important insights into joint health, and cartilage material models are used in whole-joint finite element models. Although the biphasic model representing experimental creep indentation tests is commonly used to characterize cartilage, cartilage short-term response to loading is generally not characterized using the biphasic model. The purpose of this study was to determine the short-term and equilibrium material properties of human patella cartilage using a viscoelastic model representation of creep indentation tests. We performed 24 experimental creep indentation tests from 14 human patellar specimens ranging in age from 20 to 90 years (median age 61 years). We used a finite element model to reproduce the experimental tests and determined cartilage material properties from viscoelastic and biphasic representations of cartilage. The viscoelastic model consistently provided excellent representation of the short-term and equilibrium creep displacements. We determined initial elastic modulus, equilibrium elastic modulus, and equilibrium Poisson’s ratio using the viscoelastic model. The viscoelastic model can represent the short-term and equilibrium response of cartilage and may easily be implemented in whole-joint finite element models. PMID:23027200

  20. Contribution to the Determination of In Vivo Mechanical Characteristics of Human Skin by Indentation Test

    PubMed Central

    Zahouani, Hassan

    2013-01-01

    This paper proposes a triphasic model of intact skin in vivo based on a general phenomenological thermohydromechanical and physicochemical (THMPC) approach of heterogeneous media. The skin is seen here as a deforming stratified medium composed of four layers and made out of different fluid-saturated materials which contain also an ionic component. All the layers are treated as linear, isotropic materials described by their own behaviour law. The numerical simulations of in vivo indentation test performed on human skin are given. The numerical results correlate reasonably well with the typical observations of indented human skin. The discussion shows the versatility of this approach to obtain a better understanding on the mechanical behaviour of human skin layers separately. PMID:24324525

  1. SPHERICAL INDENTATION OF SiC

    SciTech Connect

    Wereszczak, Andrew A; Johanns, Kurt E

    2007-01-01

    Instrumented Hertzian indentation testing was performed on several grades of SiCs and the results and preliminary interpretations are presented. The grades included hot-pressed and sintered compositions. One of the hot-pressed grades was additionally subjected to high temperature heat treatment to produce a coarsened grain microstructure to enable the examination of exaggerated grain size on indentation response. Diamond spherical indenters were used in the testing. Indentation load, indentation depth of penetration, and acoustic activity were continually measured during each indentation test. Indentation response and postmortem analysis of induced damage (e.g., ring/cone, radial and median cracking, quasi-plasticity) are compared and qualitatively as a function of grain size. For the case of SiC-N, the instrumented spherical indentation showed that yielding initiated at an average contact stress 12-13 GPa and that there was another event (i.e., a noticeable rate increase in compliance probably associated with extensive ring and radial crack formations) occurring around an estimated average contact stress of 19 GPa.

  2. A novel pillar indentation splitting test for measuring fracture toughness of thin ceramic coatings

    SciTech Connect

    Sebastiani, Marco; Johanns, K. E.; Herbert, Erik G.; Carassiti, Fabio; Pharr, George Mathews

    2014-05-16

    Fracture toughness is an important material property that plays a role in determining the in-service mechanical performance and adhesion of thin ceramic films. Unfortunately, measuring thin film fracture toughness is affected by influences from the substrate and the large residual stresses that can exist in the films. In this paper, we explore a promising new technique that potentially overcomes these problems based on nanoindentation testing of micro-pillars produced by focused ion beam milling of the films. By making the pillar diameter approximately equal to its length, the residual stress in the pillar’s upper portion is almost fully relaxed, and when indented with a sharp Berkovich indenter, the pillars fracture by splitting at reproducible loads that are readily quantified by a sudden displacement excursion in the load displacement behavior. Cohesive finite element simulations are used to analyze and develop, for a given material, a simple relation between the critical load at failure, pillar radius, and fracture toughness. The main novel aspect of this work is that neither crack geometries nor crack sizes need to be measured post test. Furthermore, the residual stress can be measured at the same time with toughness, by comparing the indentation results from the stress-free pillars and the as-deposited film. The method is tested on three different hard coatings formed by physical vapor deposition: titanium nitride, chromium nitride, and a CrAlN/Si3N4 nanocomposite. Results compare well to independently measured values of fracture toughness for the three brittle films. The technique offers several benefits over existing methods.

  3. A novel pillar indentation splitting test for measuring fracture toughness of thin ceramic coatings

    DOE PAGESBeta

    Sebastiani, Marco; Johanns, K. E.; Herbert, Erik G.; Carassiti, Fabio; Pharr, George Mathews

    2014-05-16

    Fracture toughness is an important material property that plays a role in determining the in-service mechanical performance and adhesion of thin ceramic films. Unfortunately, measuring thin film fracture toughness is affected by influences from the substrate and the large residual stresses that can exist in the films. In this paper, we explore a promising new technique that potentially overcomes these problems based on nanoindentation testing of micro-pillars produced by focused ion beam milling of the films. By making the pillar diameter approximately equal to its length, the residual stress in the pillar’s upper portion is almost fully relaxed, and whenmore » indented with a sharp Berkovich indenter, the pillars fracture by splitting at reproducible loads that are readily quantified by a sudden displacement excursion in the load displacement behavior. Cohesive finite element simulations are used to analyze and develop, for a given material, a simple relation between the critical load at failure, pillar radius, and fracture toughness. The main novel aspect of this work is that neither crack geometries nor crack sizes need to be measured post test. Furthermore, the residual stress can be measured at the same time with toughness, by comparing the indentation results from the stress-free pillars and the as-deposited film. The method is tested on three different hard coatings formed by physical vapor deposition: titanium nitride, chromium nitride, and a CrAlN/Si3N4 nanocomposite. Results compare well to independently measured values of fracture toughness for the three brittle films. The technique offers several benefits over existing methods.« less

  4. A novel pillar indentation splitting test for measuring fracture toughness of thin ceramic coatings

    NASA Astrophysics Data System (ADS)

    Sebastiani, M.; Johanns, K. E.; Herbert, E. G.; Carassiti, F.; Pharr, G. M.

    2015-06-01

    The fracture toughness of thin ceramic films is an important material property that plays a role in determining the in-service mechanical performance and adhesion of this important class of engineering materials. Unfortunately, measurement of thin film fracture toughness is affected by influences from the substrate and the large residual stresses that can exist in the films. In this paper, we explore a promising new technique that potentially overcomes these issues based on nanoindentation testing of micro-pillars produced by focused ion beam milling of the films. By making the pillar diameter approximately equal to its length, the residual stress in the upper portion of the pillar is almost fully relaxed, and when indented with a sharp Berkovich indenter, the pillars fracture by splitting at reproducible loads that are readily quantified by a sudden displacement excursion in the load displacement behaviour. Cohesive finite element simulations are used for analysis and development of a simple relationship between the critical load at failure, pillar radius and fracture toughness for a given material. The main novel aspect of this work is that neither crack geometries nor crack sizes need to be measured post test. In addition, the residual stress can be measured at the same time with toughness, by comparison of the indentation results obtained on the stress-free pillars and the as-deposited film. The method is tested on three different hard coatings created by physical vapour deposition, namely titanium nitride, chromium nitride and a CrAlN/Si3N4 nanocomposite. Results compare well to independently measured values of fracture toughness for the three brittle films. The technique offers several benefits over existing methods.

  5. Experimental validation of a flat punch indentation methodology calibrated against unconfined compression tests for determination of soft tissue biomechanics.

    PubMed

    Delaine-Smith, R M; Burney, S; Balkwill, F R; Knight, M M

    2016-07-01

    Mechanical characterisation of soft biological tissues using standard compression or tensile testing presents a significant challenge due to specimen geometrical irregularities, difficulties in cutting intact and appropriately sized test samples, and issues with slippage or damage at the grips. Indentation can overcome these problems but requires fitting a model to the resulting load-displacement data in order to calculate moduli. Despite the widespread use of this technique, few studies experimentally validate their chosen model or compensate for boundary effects. In this study, viscoelastic hydrogels of different concentrations and dimensions were used to calibrate an indentation technique performed at large specimen-strain deformation (20%) and analysed with a range of routinely used mathematical models. A rigid, flat-ended cylindrical indenter was applied to each specimen from which 'indentation moduli' and relaxation properties were calculated and compared against values obtained from unconfined compression. Only one indentation model showed good agreement (<10% difference) with all moduli values obtained from compression. A sample thickness to indenter diameter ratio ≥1:1 and sample diameter to indenter diameter ratio ≥4:1 was necessary to achieve the greatest accuracy. However, it is not always possible to use biological samples within these limits, therefore we developed a series of correction factors. The approach was validated using human diseased omentum and bovine articular cartilage resulting in mechanical properties closely matching compression values. We therefore present a widely useable indentation analysis method to allow more accurate calculation of material mechanics which is important in the study of soft tissue development, ageing, health and disease. PMID:26974584

  6. Indentation fracture of brittle materials

    SciTech Connect

    Lucas, B.N.; Wert, J.J. ); Oliver, W.C. )

    1990-01-01

    The response of four transparent materials, soda-lime glass, fused silica, single crystal (0001) Al{sub 2}O{sub 3} and Y{sub 2}O{sub 3}-ZrO{sub 2}, to contact by a sharp indenter has been studied. In-situ observation and continuous monitoring of the load and displacement throughout the test allowed the indentation fracture sequence of the transparent materials to be characterized and also permitted the effects of these fracture events on the corresponding load displacement curves to be noted. It was found that if the cracks produced during indentation grew discontinuously, they manifested themselves in discontinuities in displacement on the corresponding load-displacement curve. 6 refs., 5 figs., 1 tab.

  7. Elastic response and wrinkling onset of curved elastic membranes subjected to indentation test.

    PubMed

    Bernal, R; Tassius, Ch; Melo, F; Géminard, J-Ch

    2011-02-01

    Starting from a polymeric-fluid droplet, by vulcanization of the fluid free surface, curved elastic membranes, several nanometers thick and a few millimeters in diameter, which enclose a constant fluid volume, are produced. In an indentation-type test, carried out by pushing the membrane along its normal by means of a micro-needle, under some conditions, wrinkles are likely to appear around the contact region. Interestingly, we observe that the instability does not significantly alter the force-displacement relation: the relation between the force and the displacement remains linear and the associated stiffness is simply proportional to the tension of the membrane. In addition, we determine that the wrinkles develop when the stretching modulus of the membrane compares with its tension, which provides a useful method to estimate the elastic constant. PMID:21337016

  8. Characterization of the mechanical properties of skin by inverse analysis combined with the indentation test.

    PubMed

    Delalleau, Alexandre; Josse, Gwendal; Lagarde, Jean-Michel; Zahouani, Hassan; Bergheau, Jean-Michel

    2006-01-01

    This study proposes a new method to determine the mechanical properties of human skin by the use of the indentation test [Pailler-Mattei, 2004. Caractérisation mécanique et tribologique de la peau humaine in vivo, Ph.D. Thesis, ECL-no. 2004-31; Pailler-Mattei, Zahouani, 2004. Journal of Adhesion Science and Technology 18, 1739-1758]. The principle of the measurements consists in applying an in vivo compressive stress [Zhang et al., 1994. Proceedings of the Institution of Mechanical Engineers 208, 217-222; Bosboom et al., 2001. Journal of Biomechanics 34, 1365-1368; Oomens et al., 1984. Selected Proceedings of Meetings of European Society of Biomechanics, pp. 227-232; Oomens et al., 1987. Journal of Biomechanics 20(9), 877-885] on the skin tissue of an individual's forearm. These measurements show an increase in the normal contact force as a function of the indentation depth. The interpretation of such results usually requires a long and tedious phenomenological study. We propose a new method to determine the mechanical parameters which control the response of skin tissue. This method is threefold: experimental, numerical, and comparative. It consists combining experimental results with a numerical finite elements model in order to find out the required parameters. This process uses a scheme of extended Kalman filters (EKF) [Gu et al., 2003. Materials Science and Engineering A345, 223-233; Nakamura et al., 2000. Acta Mater 48, 4293-4306; Leustean and Rosu, 2003. Certifying Kalman filters. RIACS Technical Report 03.02, 27pp. http://gureni.cs.uiuc.edu/~grosu/download/luta + leo.pdf; Welch and Bishop, An introduction to Kalman filter, University of North Carolina at Chapel Hill, 16p. http://www.cs.unc.edu/~welch/kalman/]. The first results presented in this study correspond to a simplified numerical modeling of the global system. The skin is assumed to be a semi-infinite layer with an isotropic linear elastic mechanical behavior [Zhang et al., 1994. Proceedings of

  9. New Rock Abrasivity Test Method for Tool Life Assessments on Hard Rock Tunnel Boring: The Rolling Indentation Abrasion Test (RIAT)

    NASA Astrophysics Data System (ADS)

    Macias, F. J.; Dahl, F.; Bruland, A.

    2016-05-01

    The tunnel boring machine (TBM) method has become widely used and is currently an important presence within the tunnelling industry. Large investments and high geological risk are involved using TBMs, and disc cutter consumption has a great influence on performance and cost, especially in hard rock conditions. Furthermore, reliable cutter life assessments facilitate the control of risk as well as avoiding delays and budget overruns. Since abrasive wear is the most common process affecting cutter consumption, good laboratory tests for rock abrasivity assessments are needed. A new abrasivity test method by rolling disc named Rolling Indentation Abrasion Test (RIAT) has been developed. The goal of the new test design and procedure is to reproduce wear behaviour on hard rock tunnel boring in a more realistic way than the traditionally used methods. Wear by rolling contact on intact rock samples is introduced and several rock types, covering a wide rock abrasiveness range, have been tested by RIAT. The RIAT procedure indicates a great ability of the testing method to assess abrasive wear on rolling discs. In addition and to evaluate the newly developed RIAT test method, a comprehensive laboratory testing programme including the most commonly used abrasivity test methods and the mineral composition were carried out. Relationships between the achieved results from conventional testing and RIAT results have been analysed.

  10. Thermal expansion coefficients of ultralow-k dielectric films by cube corner indentation tests at elevated temperatures

    NASA Astrophysics Data System (ADS)

    Vanstreels, Kris; Zahedmanesh, Houman; Hangen, Ude

    2015-12-01

    This paper demonstrates the use of cube corner indentation tests performed at elevated temperatures to measure the coefficient of thermal expansion (CTE) of ultralow-k dielectric films. Using this approach, the CTE of organo-silicate glass low-k films with different intrinsic film stresses is estimated to vary between 8.2 ± 0.8 ppm/ °C and 10.9 ± 1.1 ppm/ °C. The advantages and limitations of the proposed test methodology are discussed.

  11. Sequential Indentation Tests to Investigate the Influence of Confining Stress on Rock Breakage by Tunnel Boring Machine Cutter in a Biaxial State

    NASA Astrophysics Data System (ADS)

    Liu, Jie; Cao, Ping; Han, Dongya

    2016-04-01

    The influence of confining stress on rock breakage by a tunnel boring machine cutter was investigated by conducting sequential indentation tests in a biaxial state. Combined with morphology measurements of breaking grooves and an analysis of surface and internal crack propagation between nicks, the effects of maximum confining stress and minimum stress on indentation efficiency, crack propagation and chip formation were investigated. Indentation tests and morphology measurements show that increasing a maximum confining stress will result in increased consumed energy in indentations, enlarged groove volumes and promoted indentation efficiency when the corresponding minimum confining stress is fixed. The energy consumed in indentations will increase with increase in minimum confining stress, however, because of the decreased groove volumes as the minimum confining stress increases, the efficiency will decrease. Observations of surface crack propagation show that more intensive fractures will be induced as the maximum confining stress increases, whereas the opposite occurs for an increase of minimum confining stress. An observation of the middle section, cracks and chips shows that as the maximum confining stress increases, chips tend to form in deeper parts when the minimum confining stress is fixed, whereas they tend to formed in shallower parts as the minimum confining stress increases when the maximum confining stress is fixed.

  12. The Use of Acoustic Emission to Characterize Fracture Behavior During Vickers Indentation of HVOF Thermally Sprayed WC-Co Coatings

    NASA Astrophysics Data System (ADS)

    Faisal, N. H.; Steel, J. A.; Ahmed, R.; Reuben, R. L.

    2009-12-01

    This paper describes how acoustic emission (AE) measurements can be used to supplement the mechanical information available from an indentation test. It examines the extent to which AE data can be used to replace time-consuming surface crack measurement data for the assessment of fracture toughness of brittle materials. AE is known to be sensitive to fracture events and so it was expected that features derived from the AE data may provide information on the processes (microscale and macroscale fracture events and densification) occurring during indentation. AE data were acquired during indentation tests on samples of a WC-12%Co coating of nominal thickness 300 μm at a variety of indentation loads. The raw AE signals were reduced to three stages and three features per stage, giving nine possible indicators per indentation. Each indicator was compared with the crack profile, measured both conventionally and using a profiling method which gives the total surface crack length around the indent. A selection of the indents was also sectioned in order to make some observations on the subsurface damage. It has been found that reproducible AE signals are generated during indentation involving three distinct stages, associated, respectively, with nonradial cracking, commencement of radial cracking, and continued descent of the indenter. It has been shown that AE can give at least as good a measure of cracking processes during indentation as is possible using crack measurement after indentation.

  13. A Comparison of Quasi-Static Indentation and Drop-Weight Impact Testing on Carbon-Epoxy Laminates

    NASA Technical Reports Server (NTRS)

    Prabhakaran, R.

    2001-01-01

    The project had two objectives: 1) The primary objective was to characterize damage tolerance of composite materials. To accomplish this, polymer matrix composites were to be subjected to static indentation as well as low-velocity impacts and the results analyzed. 2) A second objective was to investigate the effects of laser shock peening on the damage tolerance of aerospace materials, such as aluminum alloys, in terms of crack nucleation and crack propagation. The impact testing was proposed to be performed using a Dynatup drop tower. The specimens were to be placed over a square opening in a steel platen and impacted with a hemispherical tup. The damage was to be characterized in the laminate specimens. The damage tolerance of aerospace alloys was to be studied by conducting fatigue tests on aluminum alloy specimens with prior shock peening treatment. The crack length was to be monitored by a microscope and the crack propagation rate, da/dN, determined.

  14. Hardness and damage associated with pointed indentations in armor ceramics

    NASA Astrophysics Data System (ADS)

    Swab, Jeffrey J.

    It is empirically known that an armor ceramic should be as hard as or harder than the projectile it intends to defeat. Quasi-static indentation testing is one of the most widely utilized techniques for determining the hardness of armor ceramics. Hardness measurements can also be used to generate other property values (fracture toughness, elastic properties and even the yield strength) that may be relevant to ballistic performance. While the indentation methodologies are simple and straightforward the resultant hardness values for ceramic materials can be influenced by the indenter geometry, indentation load, loading rate, specimen surface finish and ceramic microstructure. This presentation will summarize the results of a study to determine the hardness of a variety of armor-grade ceramics (Al2O3, B 4C, SiC, and WC) with different indenter geometries (Vickers and Knoop) over a range of indentation loads (0.98N to 98N) and discuss the implications for armor ceramics. The resulting data strongly indicates that the best means of determining the hardness of armor ceramics is the use of 19.6N Knoop indentations. While the hardness data and the subsequent analysis clearly support the use of the Knoop methodology to determine the hardness, it does not take into account the response of the ceramic to the indentation process. One response that is continually overlooked is the role of damage and cracking. A detailed understanding of the damage and cracking that occurs during indentation may provide valuable insights to the ballistic performance of the armor ceramics during the earliest stages of impact. To explore this material response a detailed examination of the topography of the indents and the damage and cracking that develops underneath both Knoop and Vickers indentations in a WC and SiC armor ceramic was conducted. The analysis shows that while the same types of cracks are produced in both materials the magnitude of these cracks as well as the type of damage that is

  15. Indentation law for composite laminates

    NASA Technical Reports Server (NTRS)

    Yang, S. H.

    1981-01-01

    Static indentation tests are described for glass/epoxy and graphite/epoxy composite laminates with steel balls as the indentor. Beam specimens clamped at various spans were used for the tests. Loading, unloading, and reloading data were obtained and fitted into power laws. Results show that: (1) contact behavior is not appreciably affected by the span; (2) loading and reloading curves seem to follow the 1.5 power law; and (3) unloading curves are described quite well by a 2.5 power law. In addition, values were determined for the critical indentation, alpha sub cr which can be used to predict permanent indentations in unloading. Since alpha sub cr only depends on composite material properties, only the loading and an unloading curve are needed to establish the complete loading-unloading-reloading behavior.

  16. A representative-sandwich model for simultaneously coupled mechanical-electrical-thermal simulation of a lithium-ion cell under quasi-static indentation tests

    NASA Astrophysics Data System (ADS)

    Zhang, Chao; Santhanagopalan, Shriram; Sprague, Michael A.; Pesaran, Ahmad A.

    2015-12-01

    The safety behavior of lithium-ion batteries under external mechanical crush is a critical concern, especially during large-scale deployment. We previously presented a sequentially coupled mechanical-electrical-thermal modeling approach for studying mechanical-abuse-induced short circuit. In this work, we study different mechanical test conditions and examine the interaction between mechanical failure and electrical-thermal responses, by developing a simultaneously coupled mechanical-electrical-thermal model. The present work utilizes a single representative-sandwich (RS) to model the full pouch cell with explicit representations for each individual component such as the active material, current collector, separator, etc. Anisotropic constitutive material models are presented to describe the mechanical properties of active materials and separator. The model predicts accurately the force-strain response and fracture of battery structure, simulates the local failure of separator layer, and captures the onset of short circuit for lithium-ion battery cells under sphere indentation tests with three different diameters. Electrical-thermal responses to the three different indentation tests are elaborated and discussed. Numerical studies are presented to show the potential impact of test conditions on the electrical-thermal behavior of the cell after the occurrence of short circuit.

  17. Study of indentation of a sample equine bone using finite element simulation and single cycle reference point indentation.

    PubMed

    Hoffseth, Kevin; Randall, Connor; Hansma, Paul; Yang, Henry T Y

    2015-02-01

    In an attempt to study the mechanical behavior of bone under indentation, methods of analyses and experimental validations have been developed, with a selected test material. The test material chosen is from an equine cortical bone. Stress-strain relationships are first obtained from conventional mechanical property tests. A finite element simulation procedure is developed for indentation analyses. The simulation results are experimentally validated by determining (1) the maximum depth of indentation with a single cycle type of reference point indentation, and (2) the profile and depth of the unloaded, permanent indentation with atomic force microscopy. The advantage of incorporating in the simulation a yield criterion calibrated by tested mechanical properties, with different values in tension and compression, is demonstrated. In addition, the benefit of including damage through a reduction in Young's modulus is shown in predicting the permanent indentation after unloading and recovery. The expected differences in response between two indenter tips with different sharpness are predicted and experimentally observed. Results show predicted indentation depths agree with experimental data. Thus, finite element simulation methods with experimental validation, and with damage approximation by a reduction of Young's modulus, may provide a good approach for analysis of indentation of cortical bone. These methods reveal that multiple factors affect measured indentation depth and that the shape of the permanent indentation contains useful information about bone material properties. Only further work can determine if these methods or extensions to these methods can give useful insights into bone pathology, for example the bone fragility of thoroughbred racehorses. PMID:25528690

  18. Analysis of Indentation-Derived Power-Law Creep Response

    NASA Astrophysics Data System (ADS)

    Martinez, Nicholas J.; Shen, Yu-Lin

    2016-03-01

    The use of instrumented indentation to characterize power-law creep is studied by computational modeling. Systematic finite element analyses were conducted to examine how indentation creep tests can be employed to retrieve the steady-state creep parameters pertaining to regular uniaxial loading. The constant indentation load hold and constant indentation-strain-rate methods were considered, first using tin (Sn)-based materials as a model system. The simulated indentation-strain rate-creep stress relations were compared against the uniaxial counterparts serving as model input. It was found that the constant indentation-strain-rate method can help establish steady-state creep, and leads to a more uniform behavior than the constant-load hold method. An expanded parametric analysis was then performed using the constant indentation-strain-rate method, taking into account a wide range of possible power-law creep parameters. The indentation technique was found to give rise to accurate stress exponents, and a certain trend for the ratio between indentation strain rate and uniaxial strain rate was identified. A contour-map representation of the findings serves as practical guidance for determining the uniaxial power-law creep response based on the indentation technique.

  19. A Load-Based Multiple-Partial Unloading Micro-Indentation Technique for Mechanical Property Evaluation

    SciTech Connect

    C. Feng; J.M. Tannenbaum; B.S. Kang; M.A. Alvin

    2009-07-23

    A load-based multiple-partial unloading microindentation technique has been developed for evaluating mechanical properties of materials. Comparing to the current prevailing nano/micro-indentation methods, which require precise measurements of the indentation depth and load, the proposed technique only measures indentation load and the overall indentation displacement (i.e. including displacement of the loading apparatus). Coupled with a multiple-partial unloading procedure during the indentation process, this technique results in a load-depth sensing indentation system capable of determining Young’s modulus of metallic alloys with flat, tubular, or curved architectures. Test results show consistent and correct elastic modulus values when performing indentation tests on standard alloys such as steel, aluminum, bronze, and single crystal superalloys. The proposed micro-indentation technique has led to the development of a portable loaddepth sensing indentation system capable of on-site, in-situ material property measurement.

  20. Self-Similarity Simplification Approaches for the Modeling and Analysis of Rockwell Hardness Indentation

    PubMed Central

    Ma, Li; Zhou, Jack; Lau, Alan; Low, Samuel; deWit, Roland

    2002-01-01

    The indentation process of pressing a Rockwell diamond indenter into inelastic material has been studied to provide a means for the analysis, simulation and prediction of Rockwell hardness tests. The geometrical characteristics of the spheroconical-shaped Rockwell indenter are discussed and fit to a general function in a self-similar way. The complicated moving boundary problem in Rockwell hardness tests is simplified to an intermediate stationary one for a flat die indenter using principle of similarity and cumulative superposition approach. This method is applied to both strain hardening and strain rate dependent materials. The effects of different material properties and indenter geometries on the indentation depth are discussed. PMID:27446740

  1. Indentation of a Power Law Creeping Solid

    NASA Astrophysics Data System (ADS)

    Bower, A. F.; Fleck, N. A.; Needleman, A.; Ogbonna, N.

    1993-04-01

    The aim of this paper is to establish a rigorous theoretical basis for interpreting the results of hardness tests on creeping specimens. We investigate the deformation of a creeping half-space with uniaxial stress-strain behaviour dot{ɛ}=dot{ɛ}0(σ /σ 0)m, which is indented by a rigid punch. Both axisymmetric and plane indenters are considered. The shape of the punch is described by a general expression which includes most indenter profiles of practical importance. Two methods are used to solve the problem. The main results are found using a transformation method suggested by R. Hill. It is shown that the creep indentation problem may be reduced to a form which is independent of the geometry of the punch, and depends only on the material properties through m. The reduced problem consists of a nonlinear elastic half-space, which is indented to a unit depth by a rigid flat punch of unit radius (in the axisymmetric case), or unit semi-width (in the plane case). Exact solutions are given for m = 1 and m = ∞ . For m between these two limits, the reduced problem has been solved using the finite element method. The results enable the load on the indenter and the contact radius to be calculated in terms of the indentation depth and rate of penetration. The stress, strain and displacement fields in the half-space may also be deduced. The accuracy of the solution is demonstrated by comparing the results with full-field finite element calculations. The predictions of the theory are shown to be consistent with experimental observations of hardness tests on creeping materials reported in the literature.

  2. Module Hipot and ground continuity test results

    NASA Technical Reports Server (NTRS)

    Griffith, J. S.

    1984-01-01

    Hipot (high voltage potential) and module frame continuity tests of solar energy conversion modules intended for deployment into large arrays are discussed. The purpose of the tests is to reveal potentially hazardous voltage conditions in installed modules, and leakage currents that may result in loss of power or cause ground fault system problems, i.e., current leakage potential and leakage voltage distribution. The tests show a combined failure rate of 36% (69% when environmental testing is included). These failure rates are believed easily corrected by greater care in fabrication.

  3. Estimation of local anisotropy of plexiform bone: Comparison between depth sensing micro-indentation and Reference Point Indentation.

    PubMed

    Dall'Ara, E; Grabowski, P; Zioupos, P; Viceconti, M

    2015-11-26

    The recently developed Reference Point Indentation (RPI) allows the measurements of bone properties at the tissue level in vivo. The goal of this study was to compare the local anisotropic behaviour of bovine plexiform bone measured with depth sensing micro-indentation tests and with RPI. Fifteen plexiform bone specimens were extracted from a bovine femur and polished down to 0.05µm alumina paste for indentations along the axial, radial and circumferential directions (N=5 per group). Twenty-four micro-indentations (2.5µm in depth, 10% of them were excluded for testing problems) and four RPI-indentations (~50µm in depth) were performed on each sample. The local indentation modulus Eind was found to be highest for the axial direction (24.3±2.5GPa) compared to the one for the circumferential indentations (19% less stiff) and for the radial direction (30% less stiff). RPI measurements were also found to be dependent on indentation direction (p<0.001) with the exception of the Indentation Distance Increase (IDI) (p=0.173). In particular, the unloading slope US1 followed similar trends compared to the Eind: 0.47±0.03N/µm for axial, 11% lower for circumferential and 17% lower for radial. Significant correlations were found between US1 and Eind (p=0.001; R(2)=0.58), while no significant relationship was found between IDI and any of the micro-indentation measurements (p>0.157). In conclusion some of the RPI measurements can provide information about local anisotropy but IDI cannot. Moreover, there is a linear relationship between most local mechanical properties measured with RPI and with micro-indentations, but IDI does not correlate with any micro-indentation measurements. PMID:26477406

  4. Indentation hardness: A simple test that correlates with the dissipated-energy predictor for fatigue-life in bovine pericardium membranes for bioprosthetic heart valves.

    PubMed

    Tobaruela, Almudena; Rojo, Francisco Javier; García Paez, José María; Bourges, Jean Yves; Herrero, Eduardo Jorge; Millán, Isabel; Alvarez, Lourdes; Cordon, Ángeles; Guinea, Gustavo V

    2016-08-01

    The aim of this study was to evaluate the variation of hardness with fatigue in calf pericardium, a biomaterial commonly used in bioprosthetic heart valves, and its relationship with the energy dissipated during the first fatigue cycle that has been shown to be a predictor of fatigue-life (García Páez et al., 2006, 2007; Rojo et al., 2010). Fatigue tests were performed in vitro on 24 pericardium specimens cut in a root-to-apex direction. The specimens were subjected to a maximum stress of 1MPa in blocks of 10, 25, 50, 100, 250, 500, 1000 and 1500 cycles. By means of a modified Shore A hardness test procedure, the hardness of the specimen was measured before and after fatigue tests. Results showed a significant correlation of such hardness with fatigue performance and with the energy dissipated in the first cycle of fatigue, a predictor of pericardium durability. The study showed indentation hardness as a simple and reliable indicator of mechanical performance, one which could be easily implemented in improving tissue selection. PMID:26849027

  5. Continuous waves probing in dynamic acoustoelastic testing

    NASA Astrophysics Data System (ADS)

    Scalerandi, M.; Gliozzi, A. S.; Ait Ouarabi, M.; Boubenider, F.

    2016-05-01

    Consolidated granular media display a peculiar nonlinear elastic behavior, which is normally analysed with dynamic ultrasonic testing exploiting the dependence on amplitude of different measurable quantities, such as the resonance frequency shift, the amount of harmonics generation, or the break of the superposition principle. However, dynamic testing allows measuring effects which are averaged over one (or more) cycles of the exciting perturbation. Dynamic acoustoelastic testing has been proposed to overcome this limitation and allow the determination of the real amplitude dependence of the modulus of the material. Here, we propose an implementation of the approach, in which the pulse probing waves are substituted by continuous waves. As a result, instead of measuring a time-of-flight as a function of the pump strain, we study the dependence of the resonance frequency on the strain amplitude, allowing to derive the same conclusions but with an easier to implement procedure.

  6. Characterization of viscoelastic properties of molybdenum disulphide filled polyamide by indentation

    NASA Astrophysics Data System (ADS)

    Stan, Felicia; Fetecau, Catalin

    2013-05-01

    In this paper, the creep behavior of molybdenum disulphide (MoS2) filled polyamide 66 composite was investigated through sharp indentation at room temperature. Two types of indentation creep test, the 3-step indentation test, and the 5-step indentation test were considered in order to explore whether the measured creep response is mainly viscoelastic or includes a significant contribution from the plastic deformation developed during the loading phase. The experimental indentation creep data were analyzed within an analytical framework based on the hereditary integral operator for the ramp creep and a viscoelastic-plastic (VEP) model in order to determine the indentation creep compliance function including the short- and long-time modulus. The equivalent shear modulus calculated from the creep compliance function was compared to the indentation plane strain modulus derived from the initial slope of the unloading curve in order to investigate the validity of the Oliver and Pharr method.

  7. Fatigue Life of Postbuckled Structures with Indentation Damages

    NASA Technical Reports Server (NTRS)

    Davila, Carlos G.; Bisagni, Chiara

    2016-01-01

    The fatigue life of composite stiffened panels with indentation damage was investigated experimentally using single stringer compression specimens. Indentation damage was induced on one of the two flanges of each stringer. The experiments were conducted using advanced instrumentation, including digital image correlation, passive thermography, and in-situ ultrasonic scanning. Specimens with initial indentation damage lengths of 32 millimeters to 56 millimeters were tested quasi-statically and in fatigue, and the effects of cyclic load amplitude and damage size were studied. A means of comparison of the damage propagation rates and collapse loads based on a stress intensity measure and the Paris law is proposed.

  8. Fatigue Life of Postbuckled Structures with Indentation Damage

    NASA Technical Reports Server (NTRS)

    Davila, Carlos G.; Bisagni, Chiara

    2016-01-01

    The fatigue life of composite stiffened panels with indentation damage was investigated experimentally using single stringer compression specimens. Indentation damage was induced on one of the two flanges of the stringer. The experiments were conducted using advanced instrumentation, including digital image correlation, passive thermography, and in-situ ultrasonic scanning. Specimens with initial indentation damage lengths of 37 millimeters to 56 millimeters were tested in fatigue and the effects of cyclic load amplitude and damage size were studied. A means of comparison of the damage propagation rates and collapse loads based on a stress intensity measure and the Paris law is proposed.

  9. Evaluation for rheological constitutive relations, using the indentation technique

    NASA Astrophysics Data System (ADS)

    Fang, Lei

    1992-01-01

    A simple experimental method of determining the rheological constitutive relations is proposed. The method relies upon an analysis of the frictionless contact of a rigid spherical indenter and the rheological materials. The proposal addresses problems in two fields: rheological constitutive models and contact mechanics. It attempts to evaluate the rheological constitutive relations using an indentation technique. A systematic, optimization-based material parameter/function indentation model is proposed. The identification algorithm is based on a modified Marquardt-Levenberg method. A new integral constitutive equation for viscoelastic materials is derived. The derivation is carried out so that a damage function is included in the model in a relatively convenient form. Inclusion of damage effects makes this constitutive equation considerably more general than the widely accepted K-BKZ integral model. The single-step and double-step stress relaxation indentation experiments on asphalt materials were performed. The K-BKZ, Wagner, and nonlinear Volterra models were evaluated. It is demonstrated that the new integral constitutive model shows a very good agreement with the experimental data. The idea of damage function is introduced not only to have a better fit of data, but the damage (or irreversibility) is observed experimentally. Also, the creep indentation tests on composites were presented. A multiaxial theory of creep deformation for particle-strengthened metal matrix composites (Zhu-Weng Theory) was evaluated. The goal of the proposed research is to develop the indentation technique for use in basic mechanical studies. From the indentation test, material response is measured. The data are used in conjunction with the material parameter identification model to optimally back calculate the constitutive relations. indentation test and other experiment method demonstrates the viability of the proposed approach.

  10. Indentation plasticity and fracture in silicon

    NASA Technical Reports Server (NTRS)

    Rybicki, George C.; Pirouz, P.

    1988-01-01

    Measurements of the ductile-brittle transition temperature of heavily doped silicon were carried out using indentation techniques. Diamond pyramid hardness tests were performed on the (100) face of heavily doped N-type and P-type and intrinsic silicon single crystals. Tests were performed over the range 200 C to 850 C and loads of 100 to 500 g were used. Samples were subsequently etched to reveal dislocation rosettes produced by indentation. Intrinsic silicon underwent a ductile-brittle transition at 660 C, P-type at 645 C and N-type at 625 C. Hardness values varied from 1.1 GPa at 700 C to 11.7 GPa at 200 C. Significant effects of hardness on doping were present only at the highest temperatures. Lower loads generally produced higher hardness but load did not affect the Ductile-Brittle Transition Temperature (DBTT). Fracture toughness values ranged from 0.9 MPa m(1/2) at 200 C to 2.75 MPa m(1/2) near the DBTT. Doping did not affect the fracture toughness of silicon. P-type doping increased the size of dislocation rosettes observed after indentation, but N-type did not, in contradiction of the expected results. Results are discussed in terms of the effect of doping on the dislocation mobility in silicon.

  11. NASA Continues J-2X Powerpack Testing

    NASA Video Gallery

    NASA conducted a long duration test of the J-2X powerpack, 340 seconds total, at the Stennis Space Center in southern Mississippi on May 10, marking another step in SLS development, the next-genera...

  12. 40 CFR 205.160-7 - Continued testing.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 24 2010-07-01 2010-07-01 false Continued testing. 205.160-7 Section 205.160-7 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) NOISE ABATEMENT PROGRAMS TRANSPORTATION EQUIPMENT NOISE EMISSION CONTROLS Motorcycles § 205.160-7 Continued testing. (a)...

  13. 40 CFR 205.160-7 - Continued testing.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 25 2014-07-01 2014-07-01 false Continued testing. 205.160-7 Section 205.160-7 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) NOISE ABATEMENT PROGRAMS TRANSPORTATION EQUIPMENT NOISE EMISSION CONTROLS Motorcycles § 205.160-7 Continued testing. (a)...

  14. 40 CFR 205.160-7 - Continued testing.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 26 2012-07-01 2011-07-01 true Continued testing. 205.160-7 Section 205.160-7 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) NOISE ABATEMENT PROGRAMS TRANSPORTATION EQUIPMENT NOISE EMISSION CONTROLS Motorcycles § 205.160-7 Continued testing. (a)...

  15. 40 CFR 211.212-7 - Continued compliance testing.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 26 2012-07-01 2011-07-01 true Continued compliance testing. 211.212-7 Section 211.212-7 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) NOISE ABATEMENT PROGRAMS PRODUCT NOISE LABELING Hearing Protective Devices § 211.212-7 Continued compliance testing. If...

  16. Inverse finite-element modeling for tissue parameter identification using a rolling indentation probe.

    PubMed

    Liu, Hongbin; Sangpradit, Kiattisak; Li, Min; Dasgupta, Prokar; Althoefer, Kaspar; Seneviratne, Lakmal D

    2014-01-01

    This paper investigates the use of inverse finite-element modeling (IFEM)-based methods for tissue parameter identification using a rolling indentation probe for surgical palpation. An IFEM-based algorithm is proposed for tissue parameter identification through uniaxial indentation. IFEM-based algorithms are also created for locating and identifying the properties of an embedded tumor through rolling indentation of the soft tissue. Two types of parameter identification for the tissue tumor are investigated (1) identifying the stiffness (μ) of a tumor at a known depth and (2) estimating the depth of the tumor (D) with known mechanical properties. The efficiency of proposed methods has been evaluated through silicone and porcine kidney experiments for both uniaxial indentation and rolling indentation. The results show that both of the proposed IFEM methods for uniaxial indentation and rolling indentation have good robustness and can rapidly converge to the correct results. The tissue properties estimated using the developed method are generic and in good agreement with results obtained from standard material tests. The estimation error of μ through uniaxial indentation is below 3 % for both silicone and kidney; the estimation error of μ for the tumor through rolling indentation is 7-9 %. The estimation error of D through rolling indentation is 1-2 mm. PMID:24037385

  17. Poroviscoelastic finite element model including continuous fiber distribution for the simulation of nanoindentation tests on articular cartilage.

    PubMed

    Taffetani, M; Griebel, M; Gastaldi, D; Klisch, S M; Vena, P

    2014-04-01

    Articular cartilage is a soft hydrated tissue that facilitates proper load transfer in diarthroidal joints. The mechanical properties of articular cartilage derive from its structural and hierarchical organization that, at the micrometric length scale, encompasses three main components: a network of insoluble collagen fibrils, negatively charged macromolecules and a porous extracellular matrix. In this work, a constituent-based constitutive model for the simulation of nanoindentation tests on articular cartilage is presented: it accounts for the multi-constituent, non-linear, porous, and viscous aspects of articular cartilage mechanics. In order to reproduce the articular cartilage response under different loading conditions, the model considers a continuous distribution of collagen fibril orientation, swelling, and depth-dependent mechanical properties. The model's parameters are obtained by fitting published experimental data for the time-dependent response in a stress relaxation unconfined compression test on adult bovine articular cartilage. Then, model validation is obtained by simulating three independent experimental tests: (i) the time-dependent response in a stress relaxation confined compression test, (ii) the drained response of a flat punch indentation test and (iii) the depth-dependence of effective Poisson's ratio in a unconfined compression test. Finally, the validated constitutive model has been used to simulate multiload spherical nanoindentation creep tests. Upon accounting for strain-dependent tissue permeability and intrinsic viscoelastic properties of the collagen network, the model accurately fits the drained and undrained curves and time-dependent creep response. The results show that depth-dependent tissue properties and glycosaminoglycan-induced tissue swelling should be accounted for when simulating indentation experiments. PMID:24389384

  18. The bone diagnostic instrument II: Indentation distance increase

    NASA Astrophysics Data System (ADS)

    Hansma, Paul; Turner, Patricia; Drake, Barney; Yurtsev, Eugene; Proctor, Alexander; Mathews, Phillip; Lelujian, Jason; Randall, Connor; Adams, Jonathan; Jungmann, Ralf; Garza-de-Leon, Federico; Fantner, Georg; Mkrtchyan, Haykaz; Pontin, Michael; Weaver, Aaron; Brown, Morton B.; Sahar, Nadder; Rossello, Ricardo; Kohn, David

    2008-06-01

    The bone diagnostic instrument (BDI) is being developed with the long-term goal of providing a way for researchers and clinicians to measure bone material properties of human bone in vivo. Such measurements could contribute to the overall assessment of bone fragility in the future. Here, we describe an improved BDI, the Osteoprobe II™. In the Osteoprobe II™, the probe assembly, which is designed to penetrate soft tissue, consists of a reference probe (a 22 gauge hypodermic needle) and a test probe (a small diameter, sharpened rod) which slides through the inside of the reference probe. The probe assembly is inserted through the skin to rest on the bone. The distance that the test probe is indented into the bone can be measured relative to the position of the reference probe. At this stage of development, the indentation distance increase (IDI) with repeated cycling to a fixed force appears to best distinguish bone that is more easily fractured from bone that is less easily fractured. Specifically, in three model systems, in which previous mechanical testing and/or tests reported here found degraded mechanical properties such as toughness and postyield strain, the BDI found increased IDI. However, it must be emphasized that, at this time, neither the IDI nor any other mechanical measurement by any technique has been shown clinically to correlate with fracture risk. Further, we do not yet understand the mechanism responsible for determining IDI beyond noting that it is a measure of the continuing damage that results from repeated loading. As such, it is more a measure of plasticity than elasticity in the bone.

  19. Fictive temperature-independent density and minimum indentation size effect in calcium aluminosilicate glass

    SciTech Connect

    Gross, T. M.; Tomozawa, M.

    2008-09-15

    Using the calcium aluminosilicate system a glass was developed that exhibits fictive temperature-independent density by creating an intermediate glass between normal and anomalous glasses. Normal glass, such as soda-lime silicate glass, exhibits decreasing density with increasing fictive temperature while anomalous glass, such as silica glass, exhibits increasing density with increasing fictive temperature. This intermediate glass composition was found to exhibit the minimum indentation size effect during indentation hardness testing. It appears that the indentation size effect is correlated with a deformation-induced fictive temperature increase, which is accompanied by a density change and hardness change in the vicinity of the indentation. It is suggested from these observations that indentation size effect originates from the energy required to create interfaces and defects such as shear bands, subsurface cracks, and point defects near the indenter-specimen boundary, which accompany the volume change.

  20. Review of fracture properties of nuclear materials determined by Hertzian indentation

    SciTech Connect

    Routbort, J.; Matzke, H.

    1985-01-01

    A brief description of the determination of the surface fracture energy and the fracture toughness from a Hertzian indentation test is given. A number of theoretical and experimental problems are discussed. Results obtained on a variety of nuclear fuels and nuclear-waste-containment materials are reviewed and compared with values measured by other techniques. The Hertzian indentation test yields reliable fracture parameters.

  1. 40 CFR 211.212-7 - Continued compliance testing.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 26 2013-07-01 2013-07-01 false Continued compliance testing. 211.212-7 Section 211.212-7 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) NOISE ABATEMENT PROGRAMS PRODUCT NOISE LABELING Hearing Protective Devices § 211.212-7 Continued...

  2. 40 CFR 211.212-7 - Continued compliance testing.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 25 2014-07-01 2014-07-01 false Continued compliance testing. 211.212-7 Section 211.212-7 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) NOISE ABATEMENT PROGRAMS PRODUCT NOISE LABELING Hearing Protective Devices § 211.212-7 Continued...

  3. 40 CFR 211.212-7 - Continued compliance testing.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 25 2011-07-01 2011-07-01 false Continued compliance testing. 211.212-7 Section 211.212-7 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) NOISE ABATEMENT PROGRAMS PRODUCT NOISE LABELING Hearing Protective Devices § 211.212-7 Continued...

  4. 40 CFR 211.212-7 - Continued compliance testing.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 24 2010-07-01 2010-07-01 false Continued compliance testing. 211.212-7 Section 211.212-7 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) NOISE ABATEMENT PROGRAMS PRODUCT NOISE LABELING Hearing Protective Devices § 211.212-7 Continued...

  5. Reference point indentation is not indicative of whole mouse bone measures of stress intensity fracture toughness

    PubMed Central

    Carriero, Alessandra; Bruse, Jan L.; Oldknow, Karla J.; Millán, José Luis; Farquharson, Colin; Shefelbine, Sandra J.

    2014-01-01

    Bone fragility is a concern for aged and diseased bone. Measuring bone toughness and understanding fracture properties of the bone are critical for predicting fracture risk associated with age and disease and for preclinical testing of therapies. A reference point indentation technique (BioDent) has recently been developed to determine bone's resistance to fracture in a minimally invasive way by measuring the indentation distance increase (IDI) between the first and last indentations over cyclic indentations in the same position. In this study, we investigate the relationship between fracture toughness KC and reference point indentation parameters (i.e. IDI, total indentation distance (TID) and creep indentation distance (CID)) in bones from 38 mice from six types (C57Bl/6, Balb, oim/oim, oim/+, Phospho1−/− and Phospho1 wild type counterpart). These mice bone are models of healthy and diseased bone spanning a range of fracture toughness from very brittle (oim/oim) to ductile (Phospho1−/−). Left femora were dissected, notched and tested in 3-point bending until complete failure. Contralateral femora were dissected and indented in 10 sites of their anterior and posterior shaft surface over 10 indentation cycles. IDI, TID and CID were measured. Results from this study suggest that reference point indentation parameters are not indicative of stress intensity fracture toughness in mouse bone. In particular, the IDI values at the anterior mid-diaphysis across mouse types overlapped, making it difficult to discern differences between mouse types, despite having extreme differences in stress intensity based toughness measures. When more locations of indentation were considered, the normalised IDIs could distinguish between mouse types. Future studies should investigate the relationship of the reference point indentation parameters for mouse bone in other material properties of the bone tissue in order to determine their use for measuring bone quality. PMID:25280470

  6. An evaluation of the advantages and limitations in simulating indentation cracking with cohesive zone finite elements

    NASA Astrophysics Data System (ADS)

    Johanns, K. E.; Lee, J. H.; Gao, Y. F.; Pharr, G. M.

    2014-01-01

    A cohesive zone model is applied to a finite element (FE) scheme to simulate indentation cracking in brittle materials. Limitations of using the cohesive zone model to study indentation cracking are determined from simulations of a standard fracture toughness specimen and a two-dimensional indentation cracking problem wherein the morphology of the crack and the geometry of the indenter are simplified. It is found that the principles of linear-elastic fracture mechanics can be applied when indentation cracks are long in comparison to the size of the cohesive zone. Vickers and Berkovich pyramidal indentation crack morphologies (3D) are also investigated and found to be controlled by the ratio of elastic modulus to yield strength (E/Y), with median type cracking dominating at low ratios (e.g. E/Y = 10) and Palmqvist type cracking at higher ratios (e.g. E/Y = 100). The results show that cohesive FE simulations of indentation cracking can indeed be used to critically examine the complex relationships between crack morphology, material properties, indenter geometry, and indentation test measurements, provided the crack length is long in comparison to the cohesive zone size.

  7. Indentation device for in situ Raman spectroscopic and optical studies

    NASA Astrophysics Data System (ADS)

    Gerbig, Y. B.; Michaels, C. A.; Forster, A. M.; Hettenhouser, J. W.; Byrd, W. E.; Morris, D. J.; Cook, R. F.

    2012-12-01

    Instrumented indentation is a widely used technique to study the mechanical behavior of materials at small length scales. Mechanical tests of bulk materials, microscopic, and spectroscopic studies may be conducted to complement indentation and enable the determination of the kinetics and physics involved in the mechanical deformation of materials at the crystallographic and molecular level, e.g., strain build-up in crystal lattices, phase transformations, and changes in crystallinity or orientation. However, many of these phenomena occurring during indentation can only be observed in their entirety and analyzed in depth under in situ conditions. This paper describes the design, calibration, and operation of an indentation device that is coupled with a Raman microscope to conduct in situ spectroscopic and optical analysis of mechanically deformed regions of Raman-active, transparent bulk material, thin films or fibers under contact loading. The capabilities of the presented device are demonstrated by in situ studies of the indentation-induced phase transformations of Si thin films and modifications of molecular conformations in high density polyethylene films.

  8. Indentation Methods in Advanced Materials Research Introduction

    SciTech Connect

    Pharr, George Mathews; Cheng, Yang-Tse; Hutchings, Ian; Sakai, Mototsugu; Moody, Neville; Sundararajan, G.; Swain, Michael V.

    2009-01-01

    Since its commercialization early in the 20th century, indentation testing has played a key role in the development of new materials and understanding their mechanical behavior. Progr3ess in the field has relied on a close marriage between research in the mechanical behavior of materials and contact mechanics. The seminal work of Hertz laid the foundations for bringing these two together, with his contributions still widely utilized today in examining elastic behavior and the physics of fracture. Later, the pioneering work of Tabor, as published in his classic text 'The Hardness of Metals', exapdned this understanding to address the complexities of plasticity. Enormous progress in the field has been achieved in the last decade, made possible both by advances in instrumentation, for example, load and depth-sensing indentation and scanning electron microscopy (SEM) and transmission electron microscopy (TEM) based in situ testing, as well as improved modeling capabilities that use computationally intensive techniques such as finite element analysis and molecular dynamics simulation. The purpose of this special focus issue is to present recent state of the art developments in the field.

  9. 40 CFR 205.171-9 - Continued testing.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 24 2010-07-01 2010-07-01 false Continued testing. 205.171-9 Section 205.171-9 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) NOISE ABATEMENT PROGRAMS TRANSPORTATION EQUIPMENT NOISE EMISSION CONTROLS Motorcycle Exhaust Systems § 205.171-9...

  10. 40 CFR 205.171-9 - Continued testing.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 26 2012-07-01 2011-07-01 true Continued testing. 205.171-9 Section 205.171-9 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) NOISE ABATEMENT PROGRAMS TRANSPORTATION EQUIPMENT NOISE EMISSION CONTROLS Motorcycle Exhaust Systems § 205.171-9...

  11. 40 CFR 205.171-9 - Continued testing.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 25 2014-07-01 2014-07-01 false Continued testing. 205.171-9 Section 205.171-9 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) NOISE ABATEMENT PROGRAMS TRANSPORTATION EQUIPMENT NOISE EMISSION CONTROLS Motorcycle Exhaust Systems § 205.171-9...

  12. 40 CFR 205.57-8 - Continued testing.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 24 2010-07-01 2010-07-01 false Continued testing. 205.57-8 Section 205.57-8 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) NOISE ABATEMENT PROGRAMS TRANSPORTATION EQUIPMENT NOISE EMISSION CONTROLS Medium and Heavy Trucks § 205.57-8...

  13. 40 CFR 204.57-8 - Continued testing.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... PROGRAMS NOISE EMISSION STANDARDS FOR CONSTRUCTION EQUIPMENT Portable Air Compressors § 204.57-8 Continued... Administrator may require that any or all compressors of that category, configuration or subgroup thereof... manufacturer in writing of his intent to require such continued testing of compressors pursuant to paragraph...

  14. Fluorescence-based test of fiber-optic continuity.

    PubMed

    Norwood, D P; Vinches, C; Anderson, J F; Reed, W F

    1997-04-20

    There is considerable interest in the use of lasers and optical fibers for the initiation of pyrotechnics. In this application the need develops for a means of testing the continuity of the initiation fiber before initiation of the pyrotechnic. We present proof of the feasibility of an unambiguous continuity test using the fluorescence returned by the fiber from a fluorescent material in or near the pyrotechnic. PMID:18253241

  15. Measurement of corneal tangent modulus using ultrasound indentation.

    PubMed

    Wang, Li-Ke; Huang, Yan-Ping; Tian, Lei; Kee, Chea-Su; Zheng, Yong-Ping

    2016-09-01

    Biomechanical properties are potential information for the diagnosis of corneal pathologies. An ultrasound indentation probe consisting of a load cell and a miniature ultrasound transducer as indenter was developed to detect the force-indentation relationship of the cornea. The key idea was to utilize the ultrasound transducer to compress the cornea and to ultrasonically measure the corneal deformation with the eyeball overall displacement compensated. Twelve corneal silicone phantoms were fabricated with different stiffness for the validation of measurement with reference to an extension test. In addition, fifteen fresh porcine eyes were measured by the developed system in vitro. The tangent moduli of the corneal phantoms calculated using the ultrasound indentation data agreed well with the results from the tensile test of the corresponding phantom strips (R(2)=0.96). The mean tangent moduli of the porcine corneas measured by the proposed method were 0.089±0.026MPa at intraocular pressure (IOP) of 15mmHg and 0.220±0.053MPa at IOP of 30mmHg, respectively. The coefficient of variation (CV) and intraclass correlation coefficient (ICC) of tangent modulus were 14.4% and 0.765 at 15mmHg, and 8.6% and 0.870 at 30mmHg, respectively. The preliminary study showed that ultrasound indentation could be applied to the measurement of corneal tangent modulus with good repeatability and improved measurement accuracy compared to conventional surface displacement-based measurement method. The ultrasound indentation can be a potential tool for the corneal biomechanical properties measurement in vivo. PMID:27262352

  16. Defect formation by pristine indenter at the initial stage of nanoindentation

    NASA Astrophysics Data System (ADS)

    Chen, I.-Hsien; Hsiao, Chun-I.; Behera, Rakesh K.; Hsu, Wen-Dung

    2013-12-01

    Nano-indentation is a sophisticated method to characterize mechanical properties of materials. This method samples a very small amount of material during each indentation. Therefore, this method is extremely useful to measure mechanical properties of nano-materials. The measurements using nanoindentation is very sensitive to the surface topology of the indenter and the indenting surfaces. The mechanisms involved in the entire process of nanoindentation require an atomic level understanding of the interplay between the indenter and the substrate. In this paper, we have used atomistic simulation methods with empirical potentials to investigate the effect of various types of pristine indenter on the defect nucleation and growth. Using molecular dynamics simulations, we have predicted the load-depth curve for conical, vickers, and sperical tip. The results are analyzed based on the coherency between the indenter tip and substrate surface for a fixed depth of 20 Å. The depth of defect nucleation and growth is observed to be dependent on the tip geometry. A tip with larger apex angle nucleates defects at a shallower depth. However, the type of defect generated is dependent on the crystalline orientation of the tip and substrate. For coherent systems, prismatic loops were generated, which released into the substrate along the close-packed directions with continued indentation. For incoherent systems, pyramidal shaped dislocation junctions formed in the FCC systems and disordered atomic clusters formed in the BCC systems. These defect nucleation and growth process provide the atomistic mechanisms responsible for the observed load-depth response during nanoindentation.

  17. Radial in-plane digital speckle pattern interferometer combined with instrumented indentation

    NASA Astrophysics Data System (ADS)

    Viotti, Matias R.; Albertazzi, Armando; Bonomo, Danilo; Fontana, Filipe

    2015-08-01

    This paper presents a modular device based on digital speckle pattern interferometry (DSPI) which is combined with instrumented indentation. The interferometric module uses a diffractive optical element that confers radial in-plane sensitivity enabling the measurement of whole displacement field generated by the shallow indentation print on the surface of the material under testing. The indentation module uses a piezoelectric loading cell and an inductive transducer to simultaneously measure the loading applied on the ball indenter tip as well as its penetration on the material under testing. A mechanical/hydraulic scheme was developed to achieve a high loading capability with a compact indentation module, suitably sized with the interferometric module. A finite element simulation was carried out for a generic low carbon steel material without residual stresses and under a tensile external loading of 25%, 50% and 75% of its yielding stress. In the same way, a steel bar was experimentally indented by using the compact indenter module and the radial in-plane displacements around the indentation were measured with the measurement module. Good agreement was found between the simulated and measured displacement fields. In addition, the influence of the tensile load on the measured displacement fields was clearly observed by the measurement module.

  18. Negative Aspects of Minimum Competency Testing Continue to Surface: Implications.

    ERIC Educational Resources Information Center

    Partridge, Susan

    Although over half of the states in the United States have implemented minimum competency testing (MCT) programs, problems continue to be reported by researchers. Educators have been concerned with these problems since the beginning of MCT. Accounts of testing problems include: (1) Durham, North Carolina students who fail the state-mandated test…

  19. Buccal mucosa ridging and tongue indentation: incidence and associated factors.

    PubMed

    Piquero, K; Ando, T; Sakurai, K

    1999-05-01

    Buccal mucosa ridging and tongue indentation have been considered as one of the visible and reliable signs of bruxism. However, there have not been any reports justifying this relationship scientifically. Moreover, there have not been any studies reporting specific procedures to assess them. Thus, the purpose of the present study was to determine the clinical incidence of buccal mucosa ridging and tongue indentation and assess the possible relationship between certain factors that can influence their occurrence. A total of 244 (178 males and 66 females) dentulous adults from 20 to 59 years of age, who were employees at the Bank of Yokohama, were randomly selected. At first, the buccal mucosa ridging and tongue indentation were classified into three groups based in their intensity: none, mild, and severe. The incidence of both conditions in the different age groups, as well as the incidence by gender was evaluated. Furthermore, the possible relationships between buccal mucosa ridging and tongue indentation and age, gender, clenching awareness, grinding awareness, headache, neck stiffness, vertical dimension, temporomandibular joint (TMJ) pain to palpation, masticatory muscle tenderness to palpation, and the presence of premature contacts were evaluated using the chi-square test. A positive relationship was found between the occurrence of buccal mucosa ridging and tongue indentation and gender (p < 0.01); both conditions were observed more frequently in females than in males. A positive relationship was also found to age; the group between 20-29 years old showed the highest incidence. The vertical dimension had a positive relationship with the occurrence of both buccal mucosa ridging and tongue indentation. Other factors evaluated did not show any correlation. PMID:10825817

  20. A different type of indentation size effect

    SciTech Connect

    Shim, Sang Hoon; Bei, Hongbin; George, Easo P; Pharr, George Mathews

    2008-01-01

    Pop-in during nanoindentation, which indicates the onset of dislocation plasticity, was systematically investigated in annealed and pre-strained single crystals of nickel using spherical indenters with different tip radii. As the indenter radius and pre-strain decrease, the maximum shear stresses determined from the pop-in loads increase. This represents a new type of indentation size effect (ISE), based not on the measured hardness as in conventional ISE, but on the stress needed to initiate dislocation plasticity.

  1. Full-surface deformation measurement of anisotropic tissues under indentation.

    PubMed

    Genovese, Katia; Montes, Areli; Martínez, Amalia; Evans, Sam L

    2015-05-01

    Inverse finite element-based analysis of soft biological tissues is an important tool to investigate their complex mechanical behavior and to develop physical models for medical simulations. Although there have recently been advances in dealing with the computational complexities of modeling biological materials, the collection of a sufficiently dense set of experimental data to properly capture their typically regionally varying properties still remains a critical issue. The aim of this work was to develop and test an optical system that combines 2D-Digital Image Correlation (DIC) and a novel Fringe Projection method with radial sensitivity (RFP) to test soft biological tissues under in vitro indentation. This system has the distinctive capability of using a single camera to retrieve the shape and 3D deformation of the whole upper surface of the indented sample without any blind measurement areas (with exception of the area under the indenter), with nominal depth and in-plane resolution of 0.05 mm and 0.004 mm, respectively. To test and illustrate the capabilities of the developed DIC/RFP system, the in vitro response to indentation of a homogeneous and isotropic latex foam is presented against the response of a slab of porcine ventricular myocardium, a highly in-homogeneous and anisotropic tissue. Our results illustrate the enhanced capabilities of the developed method to capture asymmetry in deformation with respect to standard indentation tests. This feature, together with the possibility of miniaturizing the system into a hand-held probe, makes this method potentially extendable to in vivo settings, alone or in combination with ultrasound measurements. PMID:25857545

  2. Mechanical properties of pulsed laser-deposited hydroxyapatite thin films implanted at high energy with N + and Ar + ions. Part II: nano-scratch tests with spherical tipped indenter

    NASA Astrophysics Data System (ADS)

    Pelletier, H.; Nelea, V.; Mille, P.; Muller, D.

    2004-02-01

    In this study we report a method to improve the adherence of hydroxyapatite (HA) thin films, using an ion beam implantation treatment. Crystalline HA films were grown by pulsed laser deposition technique (PLD), using an excimer KrF * laser. The films were deposited at room temperature in vacuum on Ti-5Al-2.5Fe alloy substrates previously coated with a ceramic TiN buffer layer and then annealed in ambient air at (500-600) °C. After deposition the films were implanted with N + and Ar + ions accelerated at high energy (1-1.5 MeV range) at a fixed dose of 10 16 cm -2. The intrinsic mechanical resistance and adherence to the TiN buffer layer of the implanted HA films have been evaluated by nano-scratch tests. We used for measurements a spherical indenter with a tip radius of 5 μm. Different scratch tests have been performed on implanted and unimplanted areas of films to put into evidence the effects of N + and Ar + ion implantation process on the films properties. Results show an enhancement of the dynamic mechanical properties in the implanted zones and influence of the nature of the implanted species. The best results are obtained for films implanted with nitrogen.

  3. Measuring Several Aspects of Attention in One Test: The Factor Structure of Conners's Continuous Performance Test

    ERIC Educational Resources Information Center

    Egeland, Jens; Kovalik-Gran, Iwona

    2010-01-01

    Objective: Continuous performance tests are known to typically measure sustained attention but usually also yield parameters that potentially measure other subprocesses of attention. The aim of the present study was to test the factor structure of the Conners's Continuous Performance Test (CCPT) in a heterogeneous clinical sample consisting of…

  4. Low Temperature Plasticity of Olivine Determined by Nano-indentation

    NASA Astrophysics Data System (ADS)

    Skemer, P. A.; Kranjc, K.; Rouse, Z.; Flores, K.

    2015-12-01

    Earth's upper mantle is thought to deform mainly by dislocation creep, during which strain-rate and stress are related by a simple power law equation. However at much higher stresses there is a break-down in the power law relationship and strain-rate depends exponentially on stress. This phenomenon, known as low temperature plasticity, may be important in the shallow ductile or semi-brittle regions of the lithosphere, at the tips of cracks, or during high-stress laboratory experiments. Several studies have attempted to constrain the low-temperature rheology of olivine using micro-indentation or high pressure experiments. In this study we provide the first measurements of olivine rheology at low temperature using instrumented nano-indention. Although nano-indentation has been widely used in the materials sciences, its application in the Earth sciences has been very limited. Nano-indentation methods provide rheological measurements that are significantly more precise than other mechanical tests at high pressure and temperature. Moreover, experiments are rapid and largely non-destructive, so many tests can be conducted in a short amount of time. In this study, olivine single crystal and polycrystalline samples were tested using a Hysitron TI950 TriboIndenter. Temperature was varied using a cooling/heating stage from 0-175°C. Experiments were conducted under quasi-static and constant strain-rate conditions. Indentation hardness measurements were converted to uniaxial rheological properties to facilitate direct comparison with previous studies. Yield strengths for olivine range from 4.19 GPa at 175°C to 4.60 GPa at 0°C. Using various models for obstacles to dislocation motion, data are extrapolated to 0 Kelvin to extract a Peierls stress for olivine (5.32-6.45 GPa), which is at the lower end of the range of values determined in previous studies. This study demonstrates the efficacy of the nano-indentation method for the study of mineral rheology, and opens a

  5. Testing and Characterizing of Continuous Fiber Ceramic Composites

    NASA Technical Reports Server (NTRS)

    Lowden, Richard M.; Moore, Karren L.; Tortorelli, Pete F.; Lara-Curzio, Edgar

    1996-01-01

    Understanding interfacial microstructural evolution during environmental testing and use is critical to the development of stable continuous fiber ceramic composites (CFCC's) for their use in 'corrosive' environments. The use of advanced characterization techniques is required to track subtle microstructural changes. These techniques must be coordinated with other CFCC tasks to completely evaluate their interfacial behavior.

  6. Interactions of Task and Subject Variables among Continuous Performance Tests

    ERIC Educational Resources Information Center

    Denney, Colin B.; Rapport, Mark D.; Chung, Kyong-Mee

    2005-01-01

    Background: Contemporary models of working memory suggest that target paradigm (TP) and target density (TD) should interact as influences on error rates derived from continuous performance tests (CPTs). The present study evaluated this hypothesis empirically in a typically developing, ethnically diverse sample of children. The extent to which…

  7. An indentation depth-force sensing wheeled probe for abnormality identification during minimally invasive surgery.

    PubMed

    Liu, H; Puangmali, P; Zbyszewski, D; Elhage, O; Dasgupta, P; Dai, J S; Seneviratne, L; Althoefer, K

    2010-01-01

    This paper presents a novel wheeled probe for the purpose of aiding a surgeon in soft tissue abnormality identification during minimally invasive surgery (MIS), compensating the loss of haptic feedback commonly associated with MIS. Initially, a prototype for validating the concept was developed. The wheeled probe consists of an indentation depth sensor employing an optic fibre sensing scheme and a force/torque sensor. The two sensors work in unison, allowing the wheeled probe to measure the tool-tissue interaction force and the rolling indentation depth concurrently. The indentation depth sensor was developed and initially tested on a homogenous silicone phantom representing a good model for a soft tissue organ; the results show that the sensor can accurately measure the indentation depths occurring while performing rolling indentation, and has good repeatability. To validate the ability of the wheeled probe to identify abnormalities located in the tissue, the device was tested on a silicone phantom containing embedded hard nodules. The experimental data demonstrate that recording the tissue reaction force as well as rolling indentation depth signals during rolling indentation, the wheeled probe can rapidly identify the distribution of tissue stiffness and cause the embedded hard nodules to be accurately located. PMID:20608492

  8. Characterization of viscoelastic materials by quasi-static and dynamic indentation

    NASA Astrophysics Data System (ADS)

    Wang, Lei; Liu, Xianping

    2014-06-01

    This paper describes the experimental measurements of the elastic modulus and hardness of viscoelastic materials under quasi-static and dynamic depth-sensing indentation using a homemade tribology probe microscope (TPM). The indentation measurements were performed using a sapphire sphere tip under various conditions. Materials such as polytetrafluoroethylene, styrene rubber and nitrile rubber were tested in both quasi-static and dynamic experiments. In quasi-static mode, the loading and unloading force curves were obtained from these specimens, and the results show a significant load effect on the measured hardness and elastic modulus. The dynamic indentation tests were conducted under a range of loading forces with various frequencies. The values of storage modulus, loss modulus and damping factor were determined by dynamic indentation. To get an accurate measurement, the stiffness and damping of the instrument were rigorously analyzed. Using dynamic indentation, it was confirmed that the variation in the frequency of the oscillation force has a significant effect on the measured results of the materials. Comparing the results obtained from the quasi-static and dynamic indentations, for the viscoelastic properties, dynamic indentation offers an advantage over the quasi-static method. Collectively, these results clearly demonstrate the capability of our homemade TPM facility to determine the constitutive behavior of viscoelastic solids in the frequency domain.

  9. Testing quantum contextuality of continuous-variable states

    SciTech Connect

    McKeown, Gerard; Paternostro, Mauro; Paris, Matteo G. A.

    2011-06-15

    We investigate the violation of noncontextuality by a class of continuous-variable states, including variations of entangled coherent states and a two-mode continuous superposition of coherent states. We generalize the Kochen-Specker (KS) inequality discussed by Cabello [A. Cabello, Phys. Rev. Lett. 101, 210401 (2008)] by using effective bidimensional observables implemented through physical operations acting on continuous-variable states, in a way similar to an approach to the falsification of Bell-Clauser-Horne-Shimony-Holt inequalities put forward recently. We test for state-independent violation of KS inequalities under variable degrees of state entanglement and mixedness. We then demonstrate theoretically the violation of a KS inequality for any two-mode state by using pseudospin observables and a generalized quasiprobability function.

  10. Comparison of Spherical and Flat Tips for Indentation of Hydrogels

    NASA Astrophysics Data System (ADS)

    Tong, Kelly J.; Ebenstein, Donna M.

    2015-04-01

    Although both spherical and flat tips have been used in nanoindentation studies of soft biomaterials, care must be taken in selecting and validating a tip for a specific application. This article compares the moduli measured using spherical nanoindentation, flat tip (specifically, a flattened cone) nanoindentation, and unconfined compression testing of three polyacrylamide gels with nominal moduli between 10 kPa and 50 kPa. Although spherical indentation moduli were consistent with compression testing moduli and were independent of indentation depth, the flat tip results showed a significant increase in modulus with depth when analyzed using a flat punch model. Alternative methods are proposed to analyze the flat tip data to bring the flat tip results into alignment with the moduli measured using the other mechanical testing techniques.

  11. Performance testing of multi-metal continuous emissions monitors

    SciTech Connect

    Haas, W.J.; French, N.B.; Brown, C.H.; Burns, D.B.; Lemieux, P.M.; Ryan, J.V.; Priebe, S.J.; Waterland, L.R.

    1997-11-17

    Three prototype multi-metals continuous emissions monitors (CEMs) were tested in April 1996 at the Rotary Kiln Incinerator Simulator facility at the US Environmental Protection Agency (EPA) National Risk Management Research Laboratory, Research Triangle Park, North Carolina. The CEM instruments were: Inductively Coupled Plasma-Atomic Emission Spectrometry (ICP-AES); Laser Induced Breakdown Spectrometry-Atomic Emission Spectroscopy (LIBS); and Laser Spark Spectrometry, another LIBS instrument. The three CEMs were tested simultaneously during test periods in which low, medium, and high concentration levels of seven toxic metals -- antimony, arsenic, beryllium, cadmium, chromium, lead, and mercury -- were maintained under carefully controlled conditions. Two methods were used to introduce the test metals into the flue gas: (1) solution atomization, introducing metal-containing aerosol directly into the secondary combustion burner, and (2) injection of fly ash particulates. The testing addressed four measures of CEM performance: relative accuracy (RA), calibration drift, zero drift, and response time. These were accomplished by comparing the toxic metal analyte concentrations reported by the CEMs to the concentrations measured using the EPA reference method (RM) for the same analytes. Overall, the test results showed the prototype nature of the test CEMs and the clear need for further development. None of the CEMs tested consistently achieved RA values of 20% or less as required by the EPA draft performance specification. Instrument size reduction and automation will also likely need additional attention before multi-metal CEMs systems become commercially available for service as envisioned by regulators and citizens.

  12. Ceramic wear in indentation and sliding

    NASA Technical Reports Server (NTRS)

    Miyoshi, K.; Buckley, D. H.

    1984-01-01

    The various wear mechanisms involved with single-crystal ceramic materials in indentation and in sliding contacts. Experiments simulating interfacial events have been conducted with hemispherical, conical and pyramidal indenters (riders). With spherical riders, under either abrasive or adhesive conditions, two types of fracture pits have been observed. First, spherical-shaped fracture pits and wear particles are found as a result of either indenting or sliding. These are shown to be due to a spherical-shaped fracture along the circular or spherical stress trajectories. Second, polyhedral fracture pits and debris, produced by anisotropic fracture, and also found both during indenting and sliding. These are primarily controlled by surface and subsurface cracking along cleavage planes. Several quantitative results have also been obtained from this work. For example, using a pyramidal diamond, crack length of Mn-Zn ferrite in the indentation process grows linearly with increasing normal load. Moreover, the critical load to fracture both in indentation and sliding is essentially isotropic and is found to be directly proportional to the indenter radius.

  13. Thermomechanical indentation of shape memory polymers.

    SciTech Connect

    Long, Kevin N.; Nguyen, Thao D.; Castro, Francisco; Qi, H. Jerry; Dunn, Martin L.; Shandas, Robin

    2007-04-01

    Shape memory polymers (SMPs) are receiving increasing attention because of their ability to store a temporary shape for a prescribed period of time, and then when subjected to an environmental stimulus, recover an original programmed shape. They are attractive candidates for a wide range of applications in microsystems, biomedical devices, deployable aerospace structures, and morphing structures. In this paper we investigate the thermomechanical behavior of shape memory polymers due to instrumented indentation, a loading/deformation scenario that represents complex multiaxial deformation. The SMP sample is indented using a spherical indenter at a temperature T{sub 1} (>T{sub g}). The temperature is then lowered to T{sub 2} (indenter is kept in place. After removal of the indenter at T{sub 2}, an indentation impression exists. Shape memory is then activated by increasing the temperature to T{sub 1} (>T{sub g}) during free recovery the indentation impression disappears and the surface of the SMP recovers to its original profile. A recently-developed three-dimensional finite deformation constitutive model for the thermomechanical behavior of SMPs is then used with the finite element method to simulate this process. Measurement and simulation results are compared for cases of free and constrained recovery and good agreement is obtained, suggesting the appropriateness of the simulation approach for complex multiaxial loading/deformations that are likely to occur in applications.

  14. Evaluation of Fracture Toughness of Tantalum Carbide Ceramic Layer: A Vickers Indentation Method

    NASA Astrophysics Data System (ADS)

    Song, Ke; Xu, Yunhua; Zhao, Nana; Zhong, Lisheng; Shang, Zhao; Shen, Liuliu; Wang, Juan

    2016-06-01

    A tantalum carbide (TaC) ceramic layer was produced on gray cast iron matrix by in situ technique comprising a casting process and a subsequent heat treatment at 1135 °C for 45 min. Indentation fracture toughness in TaC ceramic layer was determined by the Vickers indentation test for various loads. A Niihara approach was chosen to assess the fracture toughness of TaC ceramic layer under condition of the Palmqvist mode in the experiment. The results reveal that K IC evaluation of TaC ceramic layer by the Vickers indentation method strongly depends on the selection of crack system and K IC equations. The critical indentation load for Vickers crack initiation in TaC ceramic layer lies between 1 and 2 N and the cracks show typical intergranular fracture characteristics. Indentation fracture toughness calculated by the indentation method is independent of the indentation load on the specimen. The fracture toughness of TaC ceramic layer is 6.63 ± 0.34 MPa m1/2, and the toughening mechanism is mainly crack deflection.

  15. Evaluation of Fracture Toughness of Tantalum Carbide Ceramic Layer: A Vickers Indentation Method

    NASA Astrophysics Data System (ADS)

    Song, Ke; Xu, Yunhua; Zhao, Nana; Zhong, Lisheng; Shang, Zhao; Shen, Liuliu; Wang, Juan

    2016-07-01

    A tantalum carbide (TaC) ceramic layer was produced on gray cast iron matrix by in situ technique comprising a casting process and a subsequent heat treatment at 1135 °C for 45 min. Indentation fracture toughness in TaC ceramic layer was determined by the Vickers indentation test for various loads. A Niihara approach was chosen to assess the fracture toughness of TaC ceramic layer under condition of the Palmqvist mode in the experiment. The results reveal that K IC evaluation of TaC ceramic layer by the Vickers indentation method strongly depends on the selection of crack system and K IC equations. The critical indentation load for Vickers crack initiation in TaC ceramic layer lies between 1 and 2 N and the cracks show typical intergranular fracture characteristics. Indentation fracture toughness calculated by the indentation method is independent of the indentation load on the specimen. The fracture toughness of TaC ceramic layer is 6.63 ± 0.34 MPa m1/2, and the toughening mechanism is mainly crack deflection.

  16. Quay crane scheduling for an indented berth

    NASA Astrophysics Data System (ADS)

    Lee, Der-Horng; Chen, Jiang Hang; Cao, Jin Xin

    2011-09-01

    This article explores the quay crane scheduling problem at an indented berth. The indented berth is known as an innovative implementation in the container terminals to tackle the challenge from the emergence of more and more mega-containerships. A mixed integer programming model by considering the non-crossing and safety distance constraints is formulated. A Tabu search heuristic is developed to solve the proposed problem. The computational results from this research indicate that the designed Tabu search is an effective method to handle the quay crane scheduling problem at an indented berth.

  17. Continuous bench-scale tests to assess METHOXYCOAL process performance

    SciTech Connect

    Knight, R.A.

    1991-01-01

    Laboratory-scale research conducted at Southern Illinois University at Carbondale (SIUC) has shown that coal pyrolysis in the presence of CH{sub 4} and small quantities of O{sub 2} (the METHOXYCOAL process) can produce high yields of liquids and valuable chemicals compared to conventional pyrolysis. The addition of MgO, coal ash, and clays have been shown to further enhance coal conversion. The goal of this two-year project is to build upon that laboratory research by conducting continuous bench-scale tests at IGT. Tests are being conducted with IBC-101 coal under CH{sub 4}/O{sub 2} blends with and without added coal ash, MgO, and/or clays, at temperatures and pressures up to 1000{degrees}F and 200 psig. These tests will provide data to select preferred operating conditions for chemicals production from high-sulfur Illinois coals.

  18. Determination of mechanical properties from depth-sensing indentation data and results of finite element modeling

    NASA Astrophysics Data System (ADS)

    Isaenkova, M. G.; Perlovich, Yu A.; Krymskaya, O. A.; Zhuk, D. I.

    2016-04-01

    3D finite element model of indentation process with Berkovich tip was created. Using this model with different type of test materials, several series of calculations were made. These calculations lead to determination of material behavior features during indentation. Relations between material properties and its behavior during instrumented indentation were used for construction of dimensionless functions required for development the calculation algorithm, suitable to determine mechanical properties of materials by results of the depth-sensing indentation. Results of mechanical properties determination using elaborated algorithm for AISI 1020 steel grade were compared to properties obtained with standard compression tests. These two results differ by less than 10% for yield stress that evidence of a good accuracy of the proposed technique.

  19. Indentation of pressurized viscoplastic polymer spherical shells

    NASA Astrophysics Data System (ADS)

    Tvergaard, V.; Needleman, A.

    2016-08-01

    The indentation response of polymer spherical shells is investigated. Finite deformation analyses are carried out with the polymer characterized as a viscoelastic/viscoplastic solid. Both pressurized and unpressurized shells are considered. Attention is restricted to axisymmetric deformations with a conical indenter. The response is analyzed for various values of the shell thickness to radius ratio and various values of the internal pressure. Two sets of material parameters are considered: one set having network stiffening at a moderate strain and the other having no network stiffening until very large strains are attained. The transition from an indentation type mode of deformation to a structural mode of deformation involving bending that occurs as the indentation depth increases is studied. The results show the effects of shell thickness, internal pressure and polymer constitutive characterization on this transition and on the deformation modes in each of these regimes.

  20. Effects of B + implantation on Palmqvist and Hertzian indentation response of Ti coated glass

    NASA Astrophysics Data System (ADS)

    Laugier, M. T.

    1991-07-01

    Effects of 1 × 10 16 ions cm -2 100 keV B + implantation on stress and cracking behaviour of Ti magnetron sputtered glass are investigated using indentation techniques. Compressive coating stresses ( ~ 0.3 GPa before implantation, -0.5 GPa after implantation) were determined from reduced Palmqvist indentation crack lengths and inhibition of partial ring cracks, and lateral breakout in sliding Hertzian tests was observed in addition to reduced Palmqvist cracking.

  1. Cyclic Fatigue of Brittle Materials with an Indentation-Induced Flaw System

    NASA Technical Reports Server (NTRS)

    Choi, Sung R.; Salem, Jonathan A.

    1996-01-01

    The ratio of static to cyclic fatigue life, or 'h ratio', was obtained numerically for an indentation flaw system subjected to sinusoidal loading conditions. Emphasis was placed on developing a simple, quick lifetime prediction tool. The solution for the h ratio was compared with experimental static and cyclic fatigue data obtained from as-indented 96 wt.% alumina specimens tested in room-temperature distilled water.

  2. Interaction of Cracks Between Two Adjacent Indents in Glass

    NASA Technical Reports Server (NTRS)

    Choi, S. R.; Salem, J. A.

    1993-01-01

    Experimental observations of the interaction behavior of cracks between two adjacent indents were made using an indentation technique in soda-lime glass. It was specifically demonstrated how one indent crack initiates and propagates in the vicinity of another indent crack. Several types of crack interactions were examined by changing the orientation and distance of one indent relative to the other. It was found that the residual stress field produced by elastic/plastic indentation has a significant influence on controlling the mode of crack interaction. The interaction of an indent crack with a free surface was also investigated for glass and ceramic specimens.

  3. Continuous Operation Test at Engineering Scale Uranium Crystallizer

    NASA Astrophysics Data System (ADS)

    Washiya, Tadahiro; Tayama, Toshimitsu; Nakamura, Kazuhito; Yano, Kimihiko; Shibata, Atsuhiro; Nomura, Kazunori; Chikazawa, Takahiro; Nagata, Masanobu; Kikuchi, Toshiaki

    Uranium crystallization based on solubility difference is one of the remarkable technologies which can provide simple reprocessing process to separate uranium in nitric acid solution since the process is mainly controlled by temperature and concentration of solute ions. Japan Atomic Energy Agency (JAEA) and Mitsubishi Materials Corporation (MMC) are developing the crystallization process for elemental technology of FBR fuel reprocessing. [1-3] The uranium (U) crystallization process is a key technology for New Extraction System for TRU Recovery (NEXT) process that was evaluated as the most promising process for future FBR reprocessing. [4-6] We had developed an innovative crystallizer and carried out several fundamental investigations. On the basis of the results, we fabricated an engineering-scale crystallizer and have carried out continuous operation test to investigate the stability of the equipment at steady and non-steady state conditions by using depleted uranium. As for simulating typical failure events in the crystallizer, crystal accumulation and crystal blockage were induced intentionally, and monitoring method and resuming procedure were evaluated in this work. As the test results, no significant phenomenon was observed in the steady state test. And in the non-steady state test, process fluctuation could be detected by monitoring of screw torque and liquid level in the crystallizer, and all failure events are proven to be recovered by appropriate resumed procedures.

  4. 1997 Performance Testing of Multi-Metal Continuous Emissions Monitors

    SciTech Connect

    Sky +, Inc.

    1998-09-01

    Five prototype and two commercially available multi-metals continuous emissions monitors (CEMs) were tested in September 1997 at the Rotary Kiln Incinerator Simulator facility at the EPA National Risk Management Research Laboratory, Research Triangle Park, North Carolina. The seven CEMs were tested side by side in a long section of duct following the secondary combustion chamber of the RKIS. Two different concentrations of six toxic metals were introduced into the incinerator-approximately 15 and 75 µg/dscm of arsenic, beryllium, cadmium, chromium, lead, and mercury (We also tested for antimony but we are not reporting on it here because EPA recently dropped antimony from the list of metals addressed by the draft MACT rule). These concentrations were chosen to be close to emission standards in the draft MACT rule and the estimated Method Detection Limit (MDL) required of a CEM for regulatory compliance purposes. Results from this test show that no CEMs currently meet the performance specifications in the EPA draft MACT rule for hazardous waste incinerators. Only one of the CEMs tested was able to measure all six metals at the concentrations tested. Even so, the relative accuracy of this CEM varied between 35% and 100%, not 20% or less as required in the EPA performance specification. As a result, we conclude that no CEM is ready for long-term performance validation for compliance monitoring applications. Because sampling and measuring Hg is a recurring problem for multi-metal CEMs as well as Hg CEMs, we recommended that developers participate in a 1998 DOE-sponsored workshop to solve these and other common CEM measurement issues.

  5. Dent Resistance and Effect of Indentation Loading Rate on Superelastic TiNi Alloy

    NASA Astrophysics Data System (ADS)

    Farhat, Zoheir; Jarjoura, George; Shahirnia, Meisam

    2013-08-01

    The large recoverable deformation associated with reversible stress-induced martensitic transformation for superelastic TiNi alloys has been widely exploited in many applications. However, to employ superelastic TiNi in applications where high impact loading is expected, as in bearings, the effect of loading rate on superelasticity needs to be understood. In the current article, the effect of indentation loading rate on dent resistance and superelasticity of TiNi is studied. Indentation tests are performed, at different loading rates on superelastic TiNi alloy and correlated to tensile stress-strain data. It is found that the reversible deformation drops as loading rate is increased and superelasticity diminishes. Based on data collected and results analysis it is proposed that the loss in superelastic behavior under high indentation loading rate is related to retardation of the stress-induced martensitic transformation. Furthermore, a simple heat model was proposed and showed that the temperature rise during indentation is not significant.

  6. Experimental validation of the new modular application of the upper bound theorem in indentation.

    PubMed

    Bermudo, Carolina; Martín, Francisco; Martín, María Jesús; Sevilla, Lorenzo

    2015-01-01

    Nowadays, thanks to the new manufacturing processes, indentation is becoming an essential part of the new arising processes such as the Incremental Forming Processes. This work presents the experimental validation of the analytical model developed for an indentation-based process. The analytical model is originated from the Upper Bound Theorem application by means of its new modular distribution. The modules considered are composed of two Triangular Rigid Zones each. The experimental validation is performed through a series of indentation tests with work-pieces of annealed aluminium EN AW-2030 and punches of steel AISI 304, under plane strain conditions. The results are compared with the ones obtained from the application of this new modular distribution of the Upper Bound Theorem, showing a good approximation and suitability of the model developed for an indentation-based process. PMID:25826738

  7. Experimental Validation of the New Modular Application of the Upper Bound Theorem in Indentation

    PubMed Central

    Bermudo, Carolina; Martín, Francisco; Martín, María Jesús; Sevilla, Lorenzo

    2015-01-01

    Nowadays, thanks to the new manufacturing processes, indentation is becoming an essential part of the new arising processes such as the Incremental Forming Processes. This work presents the experimental validation of the analytical model developed for an indentation-based process. The analytical model is originated from the Upper Bound Theorem application by means of its new modular distribution. The modules considered are composed of two Triangular Rigid Zones each. The experimental validation is performed through a series of indentation tests with work-pieces of annealed aluminium EN AW-2030 and punches of steel AISI 304, under plane strain conditions. The results are compared with the ones obtained from the application of this new modular distribution of the Upper Bound Theorem, showing a good approximation and suitability of the model developed for an indentation-based process. PMID:25826738

  8. An Investigation of the Influence of Body Size and Indentation Asymmetry of the Effectiveness of Body Indentation in Combination with a Cambered Wing

    NASA Technical Reports Server (NTRS)

    Patterson, James C., Jr.; Loving, Donald L.

    1961-01-01

    An investigation has been made of a 450 sweptback cambered wing in combination with an unindented body and a body symmetrically indented with respect to its axes designed for a Mach number of 1.2. The ratio of body frontal area to wing planform area was 0.08 for these wing-body combinations. In order to determine the influence of body size on the effectiveness of indentation, the test data have been compared with previously obtained data for similar configurations having a ratio of body frontal area to wing planform area of 0.04. Also, in order to investigate the relative effectiveness of indentation asymmetry, a specially indented body designed to account for the wing camber and also designed for a Mach number of 1.2 has been included in these tests. The investigation was conducted in the Langley 8-Foot Tunnels Branch at Mach numbers from 0.80 to 1.43 and a Reynolds number of approximately 1.85 x 10(exp 6), based on a mean aerodynamic chord length of 5.955 inches. The data indicate that the configurations with larger ratio of body frontal area to wing planform area had smaller reductions in zero-lift wave drag associated with body indentation than the configurations with smaller ratio of body frontal area to wing planform area. The 0.08-area-ratio configurations also had correspondingly smaller increases in the values of maximum lift-drag ratio than the 0.04-area-ratio configurations. The consideration of wing camber in the body indentation design resulted in a 35.5-percent reduction in zero-lift wave drag, compared with a 21.5-percent reduction associated with the symmetrical indentation, but had a negligible effect on the values of maximum lift-drag ratio.

  9. Measurement of deformation during spherical indentation of metals

    SciTech Connect

    Mulford, R. N.; Benson, D. C.; Hampel, F. G.; Asaro, R. J.

    2004-01-01

    Spherical indentation provides an easy measure of approximate mechanical properties, particularly those of small samples or regions that are not easily measured by other means. Spherical indentation data was analyzed by two methods. An analytical method based on powerlaw hardening yields a stress-strain curve. Finite element modelling based on the Mechanical Threshold Strength (MTS) constitutive model yields constitutive parameters with adequate accuracy. Understanding dynamic fracture requires understanding of the deformation characteristics of the material of interest. A small-scale test is convenient for evaluating local properties of a material, both before and after it has been subjected to dynamic loading, including fracture or spall processes. Systematic changes in the materials properties may also include spatial variation, changes due to aging, or changes resulting from annealing or other treatment. Spherical indentation provides a simple, inexpensive test for evaluating the mechanical properties of materials, requiring only small samples. In order to examine the sensitivity of this type of measurement to changes in strength, hardening, or other deformation characteristics, we must better understand the limits of the analysis, and the sensitivity of the analysis methods to variations in material properties. Variations in the data that arise from uncontrolled characteristics of the sample must also be examined, for example the number of grains sampled, the orientation of particular grains sampled, or the location of the indent relative to grain boundaries. These variations are characteristic of the sample, and samples discussed here may or may not be typical. Several ductile materials are examined to distinguish characteristics of the method from those of the sample.

  10. Tribology behavior during indentation and scratch of thin films on substrates: effects of plastic friction

    NASA Astrophysics Data System (ADS)

    Feng, Biao; Chen, Zhitong

    2015-05-01

    When friction stress on a contact surface reaches material yield strength in shear, contact slippage can occur even if the slipping condition for Coulomb friction is not satisfied. In this paper, a three-dimensional (3-D) scratch model is proposed, which considers combined Coulomb and plastic friction. Influences of plastic friction are discussed for two continuous displacement loading steps: indentation and scratch. For indentation, initially the sliding on the contact surface can not take place and the complete cohesion condition should be employed; then as the indenter is further compressed down to the coating surface, plastic friction instead of Coulomb friction prevails in most of the contact region. For scratch, the previous complete cohesion at the initial indentation is substituted by plastic or Coulomb slipping, and the slippage becomes plastic-sliding governed for a slightly large indentation depth. The effects of the indentation depth and the Coulomb friction coefficient on the scratch friction coefficient are discussed in detail. Several experimental phenomena are interpreted, which include that with an increase of the normal loading, the scratch friction coefficient reduces for the soft coating but grows for the hard coating; and with the growth of hardness after heat treatment, the scratch friction coefficient increases due to weak plastic slippage. Obtained results help to elucidate tribological behaviors during scratch and are helpful for the interpretation of experimental phenomena and the improvement of numerical simulations for the scratch process.

  11. Defect formation by pristine indenter at the initial stage of nanoindentation

    SciTech Connect

    Chen, I-Hsien; Hsiao, Chun-I; Behera, Rakesh K.; Hsu, Wen-Dung

    2013-12-07

    Nano-indentation is a sophisticated method to characterize mechanical properties of materials. This method samples a very small amount of material during each indentation. Therefore, this method is extremely useful to measure mechanical properties of nano-materials. The measurements using nanoindentation is very sensitive to the surface topology of the indenter and the indenting surfaces. The mechanisms involved in the entire process of nanoindentation require an atomic level understanding of the interplay between the indenter and the substrate. In this paper, we have used atomistic simulation methods with empirical potentials to investigate the effect of various types of pristine indenter on the defect nucleation and growth. Using molecular dynamics simulations, we have predicted the load-depth curve for conical, vickers, and sperical tip. The results are analyzed based on the coherency between the indenter tip and substrate surface for a fixed depth of 20 Å. The depth of defect nucleation and growth is observed to be dependent on the tip geometry. A tip with larger apex angle nucleates defects at a shallower depth. However, the type of defect generated is dependent on the crystalline orientation of the tip and substrate. For coherent systems, prismatic loops were generated, which released into the substrate along the close-packed directions with continued indentation. For incoherent systems, pyramidal shaped dislocation junctions formed in the FCC systems and disordered atomic clusters formed in the BCC systems. These defect nucleation and growth process provide the atomistic mechanisms responsible for the observed load-depth response during nanoindentation.

  12. A Comparison of Quasi-Static Indentation to Low-Velocity Impact

    NASA Technical Reports Server (NTRS)

    Nettles, A. T.; Douglas, M. J.

    2000-01-01

    A static test method for modeling low-velocity foreign object impact events to composites would prove to be very beneficial to researchers since much more data can be obtained from a static test than from an impact test. In order to examine if this is feasible, a series of static indentation and low-velocity impact tests were carried out and compared. Square specimens of many sizes and thicknesses were utilized to cover the array of types of low velocity impact events. Laminates with a pi/4 stacking sequence were employed since this is by far the most common type of engineering laminate. Three distinct flexural rigidities -under two different boundary conditions were tested in order to obtain damage ranging from that due to large deflection to contact stresses and levels in-between to examine if the static indentation-impact comparisons are valid under the spectrum of damage modes that can be experienced. Comparisons between static indentation and low-velocity impact tests were based on the maximum applied transverse load. The dependent parameters examined included dent depth, back surface crack length, delamination area, and to a limited extent, load-deflection behavior. Results showed that no distinct differences could be seen between the static indentation tests and the low-velocity impact tests, indicating that static indentation can be used to represent a low-velocity impact event.

  13. A numerical benchmark test for continuous casting of steel III

    NASA Astrophysics Data System (ADS)

    Šarler, B.; Vertnik, R.

    2015-06-01

    This paper represents a continuation of numerical results regarding the recently proposed industrial benchmark test [1], obtained by a meshless method. A part of the benchmark test, involving turbulent fluid flow with solidification in two dimensions, was elaborated in [2]. A preliminary macrosegregation upgrade was presented in [3], and in [4], a first three dimensional test was performed. Previous tests were bound to calculations in mold and sub-moldregions only. In the present paper, reference calculations in two dimensions are presented for the entire strand. The physical model is established on a set of macroscopic equations for mass, energy, momentum, species, turbulent kinetic energy, and dissipation rate. The mixture continuum model is used to treat the solidification system. The mushy zone is modeled as a Darcy porous media with Kozeny-Karman permeability relation, where the morphology of the porous media is modeled by a constant value. The incompressible turbulent flow of the molten steel is described by the Low-Reynolds-Number k-ε turbulence model, closed by the Abe-Kondoh-Nagano closure coefficients and damping functions. Lever microsegregation model is used. The numerical method is established on explicit time-stepping, collocation with scaled multiquadrics radial basis functions with adaptive selection of its shape on non-uniform five-nodded influence domains. The velocity-pressure coupling of the incompressible flow is resolved by the explicit Chorin'sfractional step method. The advantages of the method are its simplicity and efficiency, since no polygonisation is involved, easy adaptation of the nodal points in areas with high gradients, almost the same formulation in two and three dimensions, high accuracy and low numerical diffusion.

  14. A tension stress loading unit designed for characterizing indentation response of single crystal silicon under tension stress

    NASA Astrophysics Data System (ADS)

    Huang, Hu; Zhao, Hongwei; Shi, Chengli; Hu, Xiaoli; Cui, Tao; Tian, Ye

    2013-09-01

    In this paper, a tension stress loading unit is designed to provide tension stress for brittle materials by combining the piezo actuator and the flexible hinge. The structure of the tension stress loading unit is analyzed and discussed via the theoretical method and finite element simulations. Effects of holding time, the installed specimen and hysteresis of the piezo actuator on output performances of the tension stress loading unit are studied in detail. An experiment system is established by combing the indentation testing unit and the developed tension stress loading unit to characterize indentation response of single crystal silicon under tension stress. Experiment results indicate that tension stress leads to increasing of indentation displacement for the same inden-tation load of single crystal silicon. This paper provides a new tool for studying indentation response of brittle materials under tension stress.

  15. Indentation stress dependence of the temperature range of microscopic superelastic behavior of nickel-titanium thin films

    SciTech Connect

    Zhang Yijun; Cheng, Y.-T.; Grummon, David S.

    2005-08-01

    The microscopic superelastic behavior of thin-film NiTi is investigated by instrumented indentation experiments conducted at different temperatures. The indentation-induced superelastic effect is found to be persistent to about 100 K above the austenite transformation finish temperature (A{sub f}). In contrast, the upper temperature where superelastic effect exists is only around A{sub f} plus 40 K in uniaxial tension and compression tests, beyond which the plasticity of the austenite phase overwhelms the transformation-induced superelasticity. By combining the Clausius-Clapeyron equation and spherical cavity model for indentation, we show that the high hydrostatic pressure under the indenter is capable of elevating the transformation temperatures and increase the upper temperature limit of indentation-induced superelastic behavior.

  16. Characterization of Indentation Response and Stiffness Reduction of Bone using a Continuum Damage Model

    PubMed Central

    Zhang, Jingzhou; Michalenko, Michelle M.; Kuhl, Ellen; Ovaert, Timothy C.

    2009-01-01

    Indentation tests can be used to characterize the mechanical properties of bone at small load/length scales offering the possibility of utilizing very small test specimens, which can be excised using minimally-invasive procedures. In addition, the need for mechanical property data from bone may be a requirement for fundamental multi-scale experiments, changes in nano- and micro-mechanical properties (e.g., as affected by changes in bone mineral density) due to drug therapies, and/or the development of computational models. Load vs. indentation depth data, however, is more complex than those obtained from typical macro-scale experiments, primarily due to the mixed state of stress, and thus interpretation of the data and extraction of mechanical properties is more challenging. Previous studies have shown that cortical bone exhibits a visco-elastic response combined with permanent deformation during indentation tests, and that the load vs. indentation depth response can be simulated using a visco-elastic/plastic material model. The model successfully captures the loading and creep displacement behavior, however, it does not adequately reproduce the unloading response near the end of the unloading cycle, where a pronounced decrease in contact stiffness is observed. It is proposed that the stiffness reduction observed in bone results from an increase in damage; therefore, a plastic-damage model was investigated and shown capable of simulating a typical bone indentation response through an axisymmetric finite element simulation. The plastic-damage model was able to reproduce the full indentation response, especially the reduced stiffness behavior exhibited during the latter stages of unloading. The results suggest that the plastic-damage model is suitable for describing the complex indentation response of bone and may provide further insight into the relationship between model parameters and mechanical/physical properties. PMID:20129418

  17. Validation of cartilage thickness calculations using indentation analysis.

    PubMed

    Koff, Matthew F; Chong, Le Roy; Virtue, Patrick; Chen, Dan; Wang, Xioanan; Wright, Timothy; Potter, Hollis G

    2010-04-01

    Different methods have been used to cross-validate cartilage thickness measurements from magnetic resonance images (MRIs); however, a majority of these methods rely on interpolated data points, regional mean and/or maximal thickness, or surface mean thickness for data analysis. Furthermore, the accuracy of MRI cartilage thickness measurements from commercially available software packages has not necessarily been validated and may lead to an under- or overestimation of cartilage thickness. The goal of this study was to perform a matching point-to-point validation of indirect cartilage thickness calculations using a magnetic resonance (MR) image data set with direct cartilage thickness measurements using biomechanical indentation testing at the same anatomical locations. Seven bovine distal femoral condyles were prepared and a novel phantom filled with dilute gadolinium solution was rigidly attached to each specimen. High resolution MR images were acquired, and thickness indentation analysis of the cartilage was performed immediately after scanning. Segmentation of the MR data and cartilage thickness calculation was performed using semi-automated software. Registration of MR and indentation data was performed using the fluid filled phantom. The inter- and intra-examiner differences of the measurements were also determined. A total of 105 paired MRI-indentation thickness data points were analyzed, and a significant correlation between them was found (r=0.88, p<0.0001). The mean difference (+/-std. dev.) between measurement techniques was 0.00+/-0.23 mm, with Bland-Altman limits of agreement of 0.45 mm and -0.46 mm. The intra- and inter-examiner measurement differences were 0.03+/-0.22 mm and 0.05+/-0.24 mm, respectively. This study validated cartilage thickness measurements from MR images with thickness measurements from indentation by using a novel phantom to register the image-based and laboratory-based data sets. The accuracy of the measurements was comparable to

  18. Continuous Improvement in Battery Testing at the NASA/JSC Energy System Test Area

    NASA Technical Reports Server (NTRS)

    Boyd, William; Cook, Joseph

    2003-01-01

    The Energy Systems Test Area (ESTA) at the Lyndon B. Johnson Space Center in Houston, Texas conducts development and qualification tests to fulfill Energy System Division responsibilities relevant to ASA programs and projects. EST A has historically called upon a variety of fluid, mechanical, electrical, environmental, and data system capabilities spread amongst five full-service facilities to test human and human supported spacecraft in the areas of propulsion systems, fluid systems, pyrotechnics, power generation, and power distribution and control systems. Improvements at ESTA are being made in full earnest of offering NASA project offices an option to choose a thorough test regime that is balanced with cost and schedule constraints. In order to continue testing of enabling power-related technologies utilized by the Energy System Division, an especially proactive effort has been made to increase the cost effectiveness and schedule responsiveness for battery testing. This paper describes the continuous improvement in battery testing at the Energy Systems Test Area being made through consolidation, streamlining, and standardization.

  19. Study of Damage and Fracture Toughness Due to Influence of Creep and Fatigue of Commercially Pure Copper by Monotonic and Cyclic Indentation

    NASA Astrophysics Data System (ADS)

    Ghosh, Sabita; Prakash, Raghu V.

    2013-01-01

    Fracture toughness is the ability of a component containing a flow to resist fracture. In the current study, the Ball indentation (BI) test technique, which is well acknowledged as an alternative approach to evaluate mechanical properties of materials due to its semi-nondestructive, fast, and high accurate qualities is used to estimate damage and the fracture toughness for copper samples subjected to varying levels of creep and fatigue. The indentation fracture toughness shows the degradation of Cu samples when they are subjected to different creep conditions. Axial fatigue cycling increases the strength at the mid-gauge section compared to other regions of the samples due to initial strain hardening. The advancement of indentation depth with indentation fatigue cycles experiences transient stage, i.e., jump in indentation depth has been observed, which may be an indication of failure and followed by a steady state with almost constant depth propagation with indentation cycles.

  20. Viscoelastic Characterization of Polytetrafluoroethylene (PTFE) Polymer by Sharp Indentation

    NASA Astrophysics Data System (ADS)

    Stan, Felicia; Munteanu, Ana V.; Fetecau, Catalin

    2011-01-01

    In this paper, indentation of polytetrafluoroethylene (PTFE) polymer with a sharp indenter is investigated in order to identify the material parameters. The indentation creep, i.e., the relative change of the indentation depth under constant load, is investigated based on a hereditary integral and on a rheological model which describes a viscoelastic plastic response. Experimental data were fitted to the model in order to identify the model parameters.

  1. A Load-based Micro-indentation Technique for Mechanical Property and NDE Evaluation

    SciTech Connect

    Bruce S. Kang; Chuanyu Feng; Jared M. Tannenbaum; M.A. Alvin

    2009-06-04

    A load-based micro-indentation technique has been developed for evaluating mechanical properties of materials. Instead of using measured indentation depth or contact area as a necessary parameter, the new technique is based on the indentation load, coupled with a multiple-partial unloading procedure for mechanical property evaluation. The proposed load-based micro-indentation method is capable of determining Young’s modulus of metals, superalloys, and single crystal matrices, and stiffness of coated material systems with flat, tubular, or curved architectures. This micro-indentation technique can be viewed as a viable non-destructive evaluation (NDE) technique for determining as-manufactured and process-exposed metal, superalloy, single crystal, and TBC-coated material properties. Based on this technique, several bond coated substrates were tested at various stages of thermal cycles. The time-series evaluation of test material surface stiffness reveals the status of coating strength without any alternation of the coating surface, making it a true time-series NDE investigation. The microindentation test results show good correlation with post mortem microstructural analyses. This technique also shows promise for the development of a portable instrument for on-line, in-situ NDE and mechanical properties measurement of structural components.

  2. Twinning and martensitic transformations in nickel-enriched 304 austenitic steel during tensile and indentation deformations

    SciTech Connect

    Gussev, Maxim N; Busby, Jeremy T; Byun, Thak Sang; Parish, Chad M

    2013-01-01

    Twinning and martensitic transformation have been investigated in nickel-enriched AISI 304 stainless steel subjected to tensile and indentation deformation. Using electron backscatter diffraction (EBSD), the morphology of alpha- and epsilon-martensite and the effect of grain orientation to load axis on phase and structure transformations were analyzed in detail. It was found that the twinning occurred less frequently under indentation than under tension; also, twinning was not observed in [001] and [101] grains. In tensile tests, the martensite particles preferably formed at the deformation twins, intersections between twins, or at twin-grain boundary intersections. Conversely, martensite formation in the indentation tests was not closely associated with twinning; instead, the majority of martensite was concentrated in the dense colonies near grain boundaries. Martensitic transformation seemed to be obstructed in the [001] grains in both tensile and indentation test cases. Under a tensile stress of 800 MPa, both alpha- and epsilon-martensite were found in the microstructure, but at 1100 MPa only -martensite presented in the specimen. Under indentation, alpha- and epsilon-martensite were observed in the material regardless of stress level.

  3. Axisymmetric indentation of curved elastic membranes by a convex rigid indenter

    PubMed Central

    Pearce, S.P.; King, J.R.; Holdsworth, M.J.

    2011-01-01

    Motivated by applications to seed germination, we consider the transverse deflection that results from the axisymmetric indentation of an elastic membrane by a rigid body. The elastic membrane is fixed around its boundary, with or without an initial pre-stretch, and may be initially curved prior to indentation. General indenter shapes are considered, and the load–indentation curves that result for a range of spheroidal tips are obtained for both flat and curved membranes. Wrinkling may occur when the membrane is initially curved, and a relaxed strain-energy function is used to calculate the deformed profile in this case. Applications to experiments designed to measure the mechanical properties of seed endosperms are discussed. PMID:22298913

  4. An analysis of fully plastic Brinell indentation

    NASA Astrophysics Data System (ADS)

    Biwa, Shiro; Storåkers, Bertil

    1995-08-01

    Indentation of a hard sphere into inelastic solids, Brinell indentation, is examined theoretically and numerically by aid of classical plastic flow theory. With the main interest focused on fully plastic behaviour at indentation the mechanical analysis is carried out for power-law hardening rigid-plastic materials where self-similarity features play a dominant role. It is explained in detail how the problem of a moving contact boundary may be reduced to a stationary one by an appropriate transformation of field variables. Within this setting classical empirical findings by Meyer (1908) and O'Neill (1944) are established on a rigorous theoretical ground. In particular, it is shown to advantage also for nonlinear materials how intermediate solutions for a flat die may by cumulative superposition generate solutions for a class of curved indenters. In the case of perfect plasticity it turns out in the present context that indentation hardness is independent of die profiles. For hardening solids when the material behaviour is history dependent, reduction to a stationary geometry is achieved also by expressing the accumulated strain by cumulative superposition. The intermediate flat die problem is then solved for a variety of hardening exponents by a finite element procedure designed to account for material incompressibility. With finite element computations as a basis desired solutions are obtained by straightforward numerical superposition procedures. Detailed results are then given for bulk quantities such as the mean contact pressure as well as relevant field variables. The influence of hardening characteristics on sinking-in and piling-up of indented surfaces and contact pressure distributions are discussed in the light of earlier findings based on deformation theory of plasticity and available discriminating experiments. Correlation is particularly sought with the celebrated universal hardness parameters proposed by Tabor (1951) and the existence of representative

  5. The Continuized Log-Linear Method: An Alternative to the Kernel Method of Continuization in Test Equating

    ERIC Educational Resources Information Center

    Wang, Tianyou

    2008-01-01

    Von Davier, Holland, and Thayer (2004) laid out a five-step framework of test equating that can be applied to various data collection designs and equating methods. In the continuization step, they presented an adjusted Gaussian kernel method that preserves the first two moments. This article proposes an alternative continuization method that…

  6. Pore-spanning lipid membrane under indentation by a probe tip: a molecular dynamics simulation study.

    PubMed

    Huang, Chen-Hsi; Hsiao, Pai-Yi; Tseng, Fan-Gang; Fan, Shih-Kang; Fu, Chien-Chung; Pan, Rong-Long

    2011-10-01

    We study the indentation of a free-standing lipid membrane suspended over a nanopore on a hydrophobic substrate by means of molecular dynamics simulations. We find that in the course of indentation the membrane bends at the point of contact and the fringes of the membrane glide downward intermittently along the pore edges and stop gliding when the fringes reach the edge bottoms. The bending continues afterward, and the large strain eventually induces a phase transition in the membrane, transformed from a bilayered structure to an interdigitated structure. The membrane is finally ruptured when the indentation goes deep enough. Several local physical quantities in the pore regions are calculated, which include the tilt angle of lipid molecules, the nematic order, the included angle, and the distance between neighboring lipids. The variations of these quantities reveal many detailed, not-yet-specified local structural transitions of lipid molecules under indentation. The force-indentation curve is also studied and discussed. The results make a connection between the microscopic structure and the macroscopic properties and provide deep insight into the understanding of the stability of a lipid membrane spanning over nanopore. PMID:21859109

  7. Indentation modulus and hardness of viscoelastic thin films by atomic force microscopy: A case study.

    PubMed

    Passeri, D; Bettucci, A; Biagioni, A; Rossi, M; Alippi, A; Tamburri, E; Lucci, M; Davoli, I; Berezina, S

    2009-11-01

    We propose a nanoindentation technique based on atomic force microscopy (AFM) that allows one to deduce both indentation modulus and hardness of viscoelastic materials from the force versus penetration depth dependence, obtained by recording the AFM cantilever deflection as a function of the sample vertical displacement when the tip is pressed against (loading phase) and then removed from (unloading phase) the surface of the sample. Reliable quantitative measurements of both indentation modulus and hardness of the investigated sample are obtained by calibrating the technique through a set of different polymeric samples, used as reference materials, whose mechanical properties have been previously determined by standard indentation tests. By analyzing the dependence of the cantilever deflection versus time, the proposed technique allows one to evaluate and correct the effect of viscoelastic properties of the investigated materials, by adapting a post-experiment data processing procedure well-established for standard depth sensing indentation tests. The technique is described in the case of the measurement of indentation modulus and hardness of a thin film of poly(3,4-ethylenedioxythiophene) doped with poly(4-styrenesulfonate), deposited by chronoamperometry on an indium tin oxide (ITO) substrate. PMID:19674843

  8. Carpal tunnel and transverse carpal ligament stiffness with changes in wrist posture and indenter size.

    PubMed

    Holmes, Michael W R; Howarth, Samuel J; Callaghan, Jack P; Keir, Peter J

    2011-11-01

    This study investigated the effects of loading and posture on mechanical properties of the transverse carpal ligament (TCL). Ten fresh-frozen cadaver arms were dissected to expose the TCL and positioned in the load frame of a servo-hydraulic testing machine, equipped with a load cell and custom made indenters. Four cylindrical indenters (5, 10, 20, and 35 mm) loaded the TCL in three wrist postures (30° extension, neutral and 30° flexion). Three loading cycles with a peak force of 50 N were applied at 5 N/s for each condition. The flexed wrist posture had significantly greater TCL stiffness (40.0 ± 3.3 N/mm) than the neutral (35.9 ± 3.5 N/mm, p = 0.045) and extended postures (34.9 ± 2.8 N/mm, p = 0.025). TCL stiffness using the 10 and 20 mm indenters was larger than the 5 mm indenter. Stiffness was greatest with the 20 mm indenter, which had the greatest indenter contact area on the TCL. The 35 mm indenter covered the carpal bones, compressed the carpal tunnel and produced the lowest stiffness. The complexity of the TCL makes it an important part of the carpal tunnel and the mechanical properties found are essential to understanding mechanisms of carpal tunnel syndrome.  PMID:21520261

  9. 2009 Continued Testing of the Orion Atmosphere Revitalization Technology

    NASA Technical Reports Server (NTRS)

    Button, Amy B.; Swerterlitsch, Jeffrey J.

    2010-01-01

    An amine-based carbon dioxide (CO2) and water vapor sorbent in pressure-swing regenerable beds has been developed by Hamilton Sundstrand and baselined for the Orion Atmosphere Revitalization System (ARS). In three previous years at this conference, reports were presented on extensive Johnson Space Center (JSC) testing of this technology in a sea-level pressure environment, with simulated and real human metabolic loads, in both open and closed-loop configurations. The test article design was iterated a third time before the latest series of such tests, which was performed in the first half of 2009. The new design incorporates a canister configuration modification for overall unit compactness and reduced pressure drop, as well as a new process flow control valve that incorporates both compressed gas purge and dual-end vacuum desorption capabilities. This newest test article is very similar to the flight article designs. Baseline tests of the new unit were performed to compare its performance to that of the previous test articles. Testing of compressed gas purge operations helped refine launchpad operating condition recommendations developed in earlier testing. Operating conditions used in flight program computer models were tested to validate the model projections. Specific operating conditions that were recommended by the JSC test team based on past test results were also tested for validation. The effects of vacuum regeneration line pressure on resulting cabin conditions was studied for high metabolic load periods, and a maximum pressure is recommended

  10. Photoplastic analysis of polycarbonate loaded by spherical indentator using strain-freezing method

    SciTech Connect

    Shimamoto, Akira; Umezaki, Eisaku; Nogata, Fumio; Takahashi, Susumu

    1996-12-31

    Hardness test is one of the basic material testings. This investigates strain behavior in polycarbonate loaded by a spherical indentator using the strain-freezing method to establish a method of evaluating the material properties of polymers which have been widely used as machine parts and structural members because of a high elastic modulus and strength. As a result, the strain-freezing method was found to be effective for analyzing strains in polycarbonate loaded by a spherical indentator. Furthermore, the relation between the photoelastic fringe order and principal strain difference is found to be proportional as well as the relation between the total strain.

  11. Indentation of poroviscoelastic vocal fold tissue using an atomic force microscope.

    PubMed

    Heris, Hossein K; Miri, Amir K; Tripathy, Umakanta; Barthelat, Francois; Mongeau, Luc

    2013-12-01

    The elastic properties of the vocal folds (VFs) vary as a function of depth relative to the epithelial surface. The poroelastic anisotropic properties of porcine VFs, at various depths, were measured using atomic force microscopy (AFM)-based indentation. The minimum tip diameter to effectively capture the local properties was found to be 25µm, based on nonlinear laser scanning microscopy data and image analysis. The effects of AFM tip dimensions and AFM cantilever stiffness were systematically investigated. The indentation tests were performed along the sagittal and coronal planes for an evaluation of the VF anisotropy. Hertzian contact theory was used along with the governing equations of linear poroelasticity to calculate the diffusivity coefficient of the tissue from AFM indentation creep testing. The permeability coefficient of the porcine VF was found to be 1.80±0.32×10(-15)m(4)/Ns. PMID:23829979

  12. THE RESPONSE OF SOLIDS TO ELASTIC/ PLASTIC INDENTATION

    SciTech Connect

    Chiang, S. S.; Marshall, D. B.; Evans, A. G.

    1980-11-01

    A new approach for analysing indentation plasticity and indentation fracture is presented, The analysis permits relations to be established between material properties (notably hardness, yield strength and elastic modulus) and the dimensions of the indentation and plastic zone. The predictions are demonstrated to be fully consistent with observations performed on a wide range of materials. The indentation stress fields can also be adapted to generate predictions of indentation fracture thresholds for the three dominant crack types: radial, median and lateral cracks. The predictions are generally consistent with experimental observations.

  13. Continuous unidirectional fiber reinforced composites: Fabrication and testing

    NASA Technical Reports Server (NTRS)

    Weber, M. D.; Spiegel, F. X.; West, Harvey A.

    1994-01-01

    The study of the anisotropic mechanical properties of an inexpensively fabricated composite with continuous unidirectional fibers and a clear matrix was investigated. A method has been developed to fabricate these composites with aluminum fibers and a polymer matrix. These composites clearly demonstrate the properties of unidirectional composites and cost less than five dollars each to fabricate.

  14. Continuous Assessment in the Oral Communication Class: Teacher Constructed Test.

    ERIC Educational Resources Information Center

    Nair-Venugopal, Shanta

    The oral communication course for English majors at the National University of Malaysia includes testing designed by faculty and coordinated with the curriculum. This practice is based on the ideas that a teacher who has been actively involved in curriculum design is in a good position to design a test for that curriculum, and that teacher-made…

  15. Rebound indentation problem for a viscoelastic half-space and axisymmetric indenter - Solution by the method of dimensionality reduction

    NASA Astrophysics Data System (ADS)

    Argatov, Ivan I.; Popov, Valentin L.

    2016-08-01

    The method of dimensionality reduction (MDR) is extended for the axisymmetric frictionless unilateral Hertz-type contact problem for a viscoelastic half-space and an arbitrary axisymmetric rigid indenter under the assumption that an arbitrarily evolving in time circular contact area remains singly connected during the whole process of indentation. In particular, the MDR is applied to study in detail the so-called rebound indentation problem, where the contact radius has a single maximum. It is shown that the obtained closed-form analytical solution for the rebound indentation displacement (recorded in the recovery phase, when the contact force vanishes) does not depend on the indenter shape.

  16. On the determination of elastic coefficients from indentation experiments

    NASA Astrophysics Data System (ADS)

    Tardieu, N.; Constantinescu, A.

    2000-06-01

    The main result of this paper is the extension of the adjoint state method to variational inequalities. This is done for the Signorini contact problem (Kikuchi N and Oden J T 1988 Contact Problems in Elasticity: a Study of Variational Inequalities and Finite Element Methods (Philadelphia: SIAM)) and used for the identification of elastic coefficients from an indentation test. The result is obtained by two independent approaches based on the penalized and respectively, mixed formulations of the direct problem, a Signorini contact problem. An important and astonishing result is that the obtained adjoint problem is a linear problem with Dirichlet boundary conditions. This is expected for problems described with variational equalities (Bui H D 1993 Introduction Aux Problèmes Inverses en Mécanique des Matériaux (Paris: Eyrolles) (Engl. Transl. (Boca Raton, FL: CRC Press)), Lions J L 1968 Contrôle Optimal des Systèmes Gouvernés par des Équations aux Dérivées Partielles (Dunod)), but is a new result for problems described with variational inequalities. As an application, the elastic coefficients of an isotropic body have been identified from the knowledge of a displacement-force curve measured during an indentation test. The efficiency of the method is illustrated on numerical examples for the identification of a bimaterial and a functional gradient material.

  17. Quasi-Static Indentation Analysis of Carbon-Fiber Laminates.

    SciTech Connect

    Briggs, Timothy; English, Shawn Allen; Nelson, Stacy Michelle

    2015-12-01

    A series of quasi - static indentation experiments are conducted on carbon fiber reinforced polymer laminates with a systematic variation of thicknesses and fixture boundary conditions. Different deformation mechanisms and their resulting damage mechanisms are activated b y changing the thickn ess and boundary conditions. The quasi - static indentation experiments have been shown to achieve damage mechanisms similar to impact and penetration, however without strain rate effects. The low rate allows for the detailed analysis on the load response. Moreover, interrupted tests allow for the incremental analysis of various damage mechanisms and pr ogressions. The experimentally tested specimens are non - destructively evaluated (NDE) with optical imaging, ultrasonics and computed tomography. The load displacement responses and the NDE are then utilized in numerical simulations for the purpose of model validation and vetting. The accompanying numerical simulation work serves two purposes. First, the results further reveal the time sequence of events and the meaning behind load dro ps not clear from NDE . Second, the simulations demonstrate insufficiencies in the code and can then direct future efforts for development.

  18. 40 CFR 205.57-8 - Continued testing.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... standards may be distributed into commerce. (e) Any knowing distribution into commerce of a vehicle which... tested before distribution in commerce. (b) The Administrator will notify the manufacturer in writing...

  19. Mechanical evaluation of five flowable resin composites by the dynamic micro-indentation method

    PubMed Central

    Hirayama, Satoshi; Iwai, Hirotoshi

    2014-01-01

    Measurement of the strength of brittle materials, such as resin composites, is extremely difficult. Micro-indentation hardness testing is a convenient way of investigating the mechanical properties of a small volume of material. In this study, the mechanical properties of five commercially available flowable resin composites were investigated by the dynamic micro-indentation method. Additionally, the effects of inorganic-filler content on the dynamic hardness and elastic modulus of flowable composites obtained by this method were investigated. The weight percentages of the inorganic fillers in the resin composites were determined by the ashing technique. The results indicate that the mechanical properties of flowable composites are affected by not only the filler content but also the properties of the resin matrix. In conclusion, the dynamic micro-indentation method is a useful technique for determining the mechanical behavior of dental resin composites as brittle material. PMID:25342983

  20. The nano-epsilon dot method for strain rate viscoelastic characterisation of soft biomaterials by spherical nano-indentation.

    PubMed

    Mattei, G; Gruca, G; Rijnveld, N; Ahluwalia, A

    2015-10-01

    Nano-indentation is widely used for probing the micromechanical properties of materials. Based on the indentation of surfaces using probes with a well-defined geometry, the elastic and viscoelastic constants of materials can be determined by relating indenter geometry and measured load and displacement to parameters which represent stress and deformation. Here we describe a method to derive the viscoelastic properties of soft hydrated materials at the micro-scale using constant strain rates and stress-free initial conditions. Using a new self-consistent definition of indentation stress and strain and corresponding unique depth-independent expression for indentation strain rate, the epsilon dot method, which is suitable for bulk compression testing, is transformed to nano-indentation. We demonstrate how two materials can be tested with a displacement controlled commercial nano-indentor using the nano-espilon dot method (nano-ε̇M) to give values of instantaneous and equilibrium elastic moduli and time constants with high precision. As samples are tested in stress-free initial conditions, the nano-ε̇M could be useful for characterising the micro-mechanical behaviour of soft materials such as hydrogels and biological tissues at cell length scales. PMID:26143307

  1. 40 CFR 205.160-7 - Continued testing.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... vehicle which demonstrates conformance with the applicable standard may be distributed into commerce. (e) Any distribution into commerce of a vehicle which does not comply with the applicable standard is a... be tested before distribution in commerce. (b) The Administrator will notify the manufacturer...

  2. 40 CFR 204.57-8 - Continued testing.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... conformance with the applicable standards may be distributed into commerce. (e) Any knowing distribution into commerce of a compressor which does not comply with the applicable standards is a prohibited act. (Sec. 6... produced at that plant be tested before distribution in commerce. (b) The Administrator will notify...

  3. 40 CFR 205.57-8 - Continued testing.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... with the applicable standards may be distributed into commerce. (e) Any knowing distribution into commerce of a vehicle which does not comply with the applicable standards is a prohibited act. ... at that plant be tested before distribution in commerce. (b) The Administrator will notify...

  4. 40 CFR 205.160-7 - Continued testing.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... vehicle which demonstrates conformance with the applicable standard may be distributed into commerce. (e) Any distribution into commerce of a vehicle which does not comply with the applicable standard is a... be tested before distribution in commerce. (b) The Administrator will notify the manufacturer...

  5. 40 CFR 205.57-8 - Continued testing.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... with the applicable standards may be distributed into commerce. (e) Any knowing distribution into commerce of a vehicle which does not comply with the applicable standards is a prohibited act. ... at that plant be tested before distribution in commerce. (b) The Administrator will notify...

  6. 40 CFR 204.57-8 - Continued testing.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... conformance with the applicable standards may be distributed into commerce. (e) Any knowing distribution into commerce of a compressor which does not comply with the applicable standards is a prohibited act. (Sec. 6... produced at that plant be tested before distribution in commerce. (b) The Administrator will notify...

  7. The Continuous Performance Test in Learning Disabled and Nondisabled Children.

    ERIC Educational Resources Information Center

    Eliason, Michele J.; Richman, Lynn C.

    1987-01-01

    Comparison of 30 learning disabled (LD) children, ages 7 to 13, and controls on a computerized test of attentional skills indicated LD subjects committed more omission errors and responded at a slower rate but did not differ from the controls on commission errors, suggesting inefficient allocation of processing resources rather than attentional…

  8. 40 CFR 204.57-8 - Continued testing.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... conformance with the applicable standards may be distributed into commerce. (e) Any knowing distribution into commerce of a compressor which does not comply with the applicable standards is a prohibited act. (Sec. 6... produced at that plant be tested before distribution in commerce. (b) The Administrator will notify...

  9. Equivalency of Berkovich and conical load-indentation curves

    NASA Astrophysics Data System (ADS)

    Swaddiwudhipong, S.; Hua, J.; Tho, K. K.; Liu, Z. S.

    2006-01-01

    The Berkovich indenter, which is one of the most commonly used indenter tips in instrumented indentation experiments, requires a tedious 3D finite element simulation. The indenter is widely idealized as a conical indenter of 70.3° half-angle to enable a substantially less demanding 2D axisymmetric modelling. Although the approach has been commonly adopted, limited studies have been performed to investigate possible deviations due to this simplification. The present study attempts to address the equivalency of the two indenters by performing extensively both 3D and 2D finite element analyses to simulate the load-displacement response of a wide range of elasto-plastic materials obeying power law strain-hardening during indentation for both Berkovich and conical indenters, respectively. It is demonstrated that the equivalency between these two indenters in terms of curvature of the loading curve is not valid across the range of material properties under study. However, it is established that if only the ratio of the remaining work done (WR) and the total work done (WT) of the load-indentation curve is of interest, this simplification can be adopted with satisfactory results.

  10. Windsurf-Board Sandwich Panels Under Static Indentation

    NASA Astrophysics Data System (ADS)

    Borsellino, C.; Calabrese, L.; di Bella, G.

    2008-03-01

    In recent years composite materials have found application in several fields as sport and sea transportation, where the incidence of the cost of materials is not significant compared with the required high mechanical performances. As a matter of fact, in some sports the whole equipment is nowadays realized in composite materials (i.e. windsurf boards, snowboards). The aim of the present work is to evaluate the mechanical performance of some sandwich structures produced by vacuum bagging technology for the windsurf boards production. The behaviour of the structures is tested under static indentation conditions; different fibres materials, for the skins, and different polystyrene foams, for the core, have been taken into account. In particular both the effect of the kind of fibre (glass, carbon and kevlar fibres) and the effect of the polystyrene cells size (and its density) have been investigated. The purpose was to obtain a stiff structure able to bear localized loads. Additionally, the effects induced on the indentation resistance by both the speed and the diameter of pin have been analysed.

  11. Application of micro-indentation to irradiated alumina and vanadium/alumina joints

    NASA Astrophysics Data System (ADS)

    Hasegawa, A.; Kawamura, Y.; Satou, M.; Abe, K.

    1996-10-01

    The micro-indentation test as a method to introduce interface crack and to investigate the bonding strength of metal/ceramics joints is examined. Micro-indentation test was carried out using Vickers hardness tester at room temperature on joints of poly- or single-crystal alumina and vanadium or vanadium alloys. The vanadium/alumina (V/Al 2O 3) joints, unirradiated and irradiated in FFTF/MOTA in a helium-filled capsule at 693 K, were tested. The irradiation damage of the joint was about 40 dpa. Micro-indentation on the unirradiated joint interface showed several types of deformation and crack propagation behavior depending on the bonding strength of the joints. Irradiation hardening and brittle behavior were observed on the alumina side of the irradiated V/Al 2O 3 joints. Results of micro-indentation test at the V/Al 2O 3 interface showed the possibility of irradiation-induced strengthening of the interface caused by irradiation-induced mixing at the interface.

  12. Pilot plant for flue gas treatment-continuous operation tests

    NASA Astrophysics Data System (ADS)

    Chmielewski, A. G.; Tymiński, B.; Licki, J.; Iller, E.; Zimek, Z.; Radzio, B.

    1995-09-01

    Tests of continous operation have been performed on pilot plant at EPS Kawęczyn in the wide range of SO2 concentration (500-3000 ppm).The bag filter has been applied for aerosol separation. The high efficiences of SO2 and NOX removal, approximately 90% were obtained and influenced by such process parameters as: dose, gas temperature and ammonia stoichiometry. The main apparatus of the pilot plant (e.g. both accelerators) have proved their reliability in hard industrial conditions.

  13. Modal testing for a multispan continuous segmental prestressed concrete bridge

    NASA Astrophysics Data System (ADS)

    Wang, Ming L.; Xu, Fan L.; Satpathi, Debashis; Chen, Zhen L.

    1999-05-01

    Continuous segmental prestressed concrete bridges have been used extensively all over the world since the late 1960's. In this case the authors are investigating one such bridge in the state of Illinois. The bridge has developed extensive cracks on the webs of the segments. Yet, it is very difficult to assess the safety of this bridge. One of the possible ways of coming up with some quantification involves the estimation of the structural dynamic properties, such as modal frequencies and mode shapes. This approach is especially useful if a previous baseline has already been established for that structure. Such a baseline does exist for the structure. This paper is a summary of the ongoing of experimental investigations and Finite Element simulations that have been conducted on the bridge. In particular, three experimental modes have been identified using both forced vibration and ambient vibration excitation at two different seasons of the year and the results have been compared to results that were obtained by CTL twelve years ago.

  14. Quantitative Imaging of Young's Modulus of Soft Tissues from Ultrasound Water Jet Indentation: A Finite Element Study

    PubMed Central

    Lu, Min-Hua; Mao, Rui; Lu, Yin; Liu, Zheng; Wang, Tian-Fu; Chen, Si-Ping

    2012-01-01

    Indentation testing is a widely used approach to evaluate mechanical characteristics of soft tissues quantitatively. Young's modulus of soft tissue can be calculated from the force-deformation data with known tissue thickness and Poisson's ratio using Hayes' equation. Our group previously developed a noncontact indentation system using a water jet as a soft indenter as well as the coupling medium for the propagation of high-frequency ultrasound. The novel system has shown its ability to detect the early degeneration of articular cartilage. However, there is still lack of a quantitative method to extract the intrinsic mechanical properties of soft tissue from water jet indentation. The purpose of this study is to investigate the relationship between the loading-unloading curves and the mechanical properties of soft tissues to provide an imaging technique of tissue mechanical properties. A 3D finite element model of water jet indentation was developed with consideration of finite deformation effect. An improved Hayes' equation has been derived by introducing a new scaling factor which is dependent on Poisson's ratios v, aspect ratio a/h (the radius of the indenter/the thickness of the test tissue), and deformation ratio d/h. With this model, the Young's modulus of soft tissue can be quantitatively evaluated and imaged with the error no more than 2%. PMID:22927890

  15. Quantitative imaging of young's modulus of soft tissues from ultrasound water jet indentation: a finite element study.

    PubMed

    Lu, Min-Hua; Mao, Rui; Lu, Yin; Liu, Zheng; Wang, Tian-Fu; Chen, Si-Ping

    2012-01-01

    Indentation testing is a widely used approach to evaluate mechanical characteristics of soft tissues quantitatively. Young's modulus of soft tissue can be calculated from the force-deformation data with known tissue thickness and Poisson's ratio using Hayes' equation. Our group previously developed a noncontact indentation system using a water jet as a soft indenter as well as the coupling medium for the propagation of high-frequency ultrasound. The novel system has shown its ability to detect the early degeneration of articular cartilage. However, there is still lack of a quantitative method to extract the intrinsic mechanical properties of soft tissue from water jet indentation. The purpose of this study is to investigate the relationship between the loading-unloading curves and the mechanical properties of soft tissues to provide an imaging technique of tissue mechanical properties. A 3D finite element model of water jet indentation was developed with consideration of finite deformation effect. An improved Hayes' equation has been derived by introducing a new scaling factor which is dependent on Poisson's ratios v, aspect ratio a/h (the radius of the indenter/the thickness of the test tissue), and deformation ratio d/h. With this model, the Young's modulus of soft tissue can be quantitatively evaluated and imaged with the error no more than 2%. PMID:22927890

  16. Test/QA Plan (TQAP) for Verification of Semi-Continuous Ambient Air Monitoring Systems

    EPA Science Inventory

    The purpose of the semi-continuous ambient air monitoring technology (or MARGA) test and quality assurance plan is to specify procedures for a verification test applicable to commercial semi-continuous ambient air monitoring technologies. The purpose of the verification test is ...

  17. Effect of viscoplastic material parameters on polymer indentation

    NASA Astrophysics Data System (ADS)

    Tvergaard, V.; Needleman, A.

    2012-09-01

    The effect of material parameters characterizing viscoplastic flow on the indentation response of polymers is investigated using three-dimensional finite element analyses and a one-dimensional expanding spherical cavity model. The polymer is characterized by a finite strain elastic-viscoplastic constitutive relation and two indenter shapes are considered; a conical indenter and a pyramidal indenter. The ability of the simpler expanding spherical cavity model to reproduce the trends obtained from the finite element solutions is assessed for both indenter shapes. Within the range of parameter variations considered, it is found that two material stress parameters characterizing the plastic flow resistance have the largest effect on the value of the indentation hardness although variations in other material parameters can lead to significant variations.

  18. Testing for HER2 in Breast Cancer: A Continuing Evolution

    PubMed Central

    Shah, Sejal; Chen, Beiyun

    2011-01-01

    Human epidermal growth factor receptor 2 (HER2) is an important prognostic and predictive factor in breast cancer. HER2 is overexpressed in approximately 15%–20% of invasive breast carcinomas and is associated with earlier recurrence, shortened disease free survival, and poor prognosis. Trastuzumab (Herceptin) a “humanized” monoclonal antibody targets the extracellular domain of HER2 and is widely used in the management of HER2 positive breast cancers. Accurate assessment of HER2 is thus critical in the management of breast cancer. The aim of this paper is to present a comprehensive review of HER2 with reference to its discovery and biology, clinical significance, prognostic value, targeted therapy, current and new testing modalities, and the interpretation guidelines and pitfalls. PMID:21188214

  19. Discrete dislocation plasticity analysis of the wedge indentation of films

    NASA Astrophysics Data System (ADS)

    Balint, D. S.; Deshpande, V. S.; Needleman, A.; Van der Giessen, E.

    2006-11-01

    The plane strain indentation of single crystal films on a rigid substrate by a rigid wedge indenter is analyzed using discrete dislocation plasticity. The crystals have three slip systems at ±35.3∘ and 90∘ with respect to the indentation direction. The analyses are carried out for three values of the film thickness, 2, 10 and 50 μm, and with the dislocations all of edge character modeled as line singularities in a linear elastic material. The lattice resistance to dislocation motion, dislocation nucleation, dislocation interaction with obstacles and dislocation annihilation are incorporated through a set of constitutive rules. Over the range of indentation depths considered, the indentation pressure for the 10 and 50 μm thick films decreases with increasing contact size and attains a contact size-independent value for contact lengths A>4 μm. On the other hand, for the 2 μm films, the indentation pressure first decreases with increasing contact size and subsequently increases as the plastic zone reaches the rigid substrate. For the 10 and 50 μm thick films sink-in occurs around the indenter, while pile-up occurs in the 2 μm film when the plastic zone reaches the substrate. Comparisons are made with predictions obtained from other formulations: (i) the contact size-independent indentation pressure is compared with that given by continuum crystal plasticity; (ii) the scaling of the indentation pressure with indentation depth is compared with the relation proposed by Nix and Gao [1998. Indentation size effects in crystalline materials: a law for strain gradient plasticity. J. Mech. Phys. Solids 43, 411-423]; and (iii) the computed contact area is compared with that obtained from the estimation procedure of Oliver and Pharr [1992. An improved technique for determining hardness and elastic-modulus using load and displacement sensing indentation experiments, J. Mater. Res. 7, 1564-1583].

  20. Traceable Micro-Force Sensor for Instrumented Indentation Calibration

    SciTech Connect

    Smith, D T; Shaw, G A; Seugling, R M; Xiang, D; Pratt, J R

    2007-04-02

    Instrumented indentation testing (IIT), commonly referred to as nanoindentation when small forces are used, is a popular technique for determining the mechanical properties of small volumes of material. Sample preparation is relatively easy, usually requiring only that a smooth surface of the material to be tested be accessible to a contact probe, and instruments that combine sophisticated automation with straightforward user interfaces are available commercially from several manufacturers. In addition, documentary standards are now becoming available from both the International Standards Organization (ISO 14577) and ASTM International (E28 WK382) that define test methods and standard practices for IIT, and will allow the technique to be used to produce material property data that can be used in product specifications. These standards also define the required level of accuracy of the force data produced by IIT instruments, as well as methods to verify that accuracy. For forces below 10 mN, these requirements can be difficult to meet, particularly for instrument owners who need to verify the performance of their instrument as it is installed at their site. In this paper, we describe the development, performance and application of an SI-traceable force sensor system for potential use in the field calibration of commercial IIT instruments. The force sensor itself, based on an elastically deforming capacitance gauge, is small enough to mount in a commercial instrument as if it were a test specimen, and is used in conjunction with an ultra-high accuracy capacitance bridge. The sensor system is calibrated with NIST-traceable masses over the range 5.0 {micro}N through 5.0 mN. We will present data on its accuracy and precision, as well its potential application to the verification of force in commercial instrumented indentation instruments.

  1. Computational and experimental methodology for site-matched investigations of the influence of mineral mass fraction and collagen orientation on the axial indentation modulus of lamellar bone☆

    PubMed Central

    Spiesz, Ewa M.; Reisinger, Andreas G.; Kaminsky, Werner; Roschger, Paul; Pahr, Dieter H.; Zysset, Philippe K.

    2013-01-01

    Relationships between mineralization, collagen orientation and indentation modulus were investigated in bone structural units from the mid-shaft of human femora using a site-matched design. Mineral mass fraction, collagen fibril angle and indentation moduli were measured in registered anatomical sites using backscattered electron imaging, polarized light microscopy and nano-indentation, respectively. Theoretical indentation moduli were calculated with a homogenization model from the quantified mineral densities and mean collagen fibril orientations. The average indentation moduli predicted based on local mineralization and collagen fibers arrangement were not significantly different from the average measured experimentally with nanoindentation (p=0.9). Surprisingly, no substantial correlation of the measured indentation moduli with tissue mineralization and/or collagen fiber arrangement was found. Nano-porosity, micro-damage, collagen cross-links, non-collagenous proteins or other parameters affect the indentation measurements. Additional testing/simulation methods need to be considered to properly understand the variability of indentation moduli, beyond the mineralization and collagen arrangement in bone structural units. PMID:23994944

  2. Finite Element Analysis of Deformation Due to Ball Indentation and Evaluation of Tensile Properties of Tempered P92 Steel

    NASA Astrophysics Data System (ADS)

    Barbadikar, Dipika R.; Ballal, A. R.; Peshwe, D. R.; Mathew, M. D.

    2015-08-01

    Ball indentation (BI) technique has been effectively used to evaluate the tensile properties with minimal volume of material. In the present investigation, BI test carried out on P92 steel (9Cr-0.5Mo-1.8W), using 0.76 mm diameter silicon nitride ball indenter was modeled using finite element (FE) method and analyzed. The effect of test temperature [300 K and 923 K (27 °C and 650 °C)], tempering temperature [1013 K, 1033 K, and 1053 K (740 °C, 760 °C, and 780 °C)], and coefficient of friction of steel (0.0 to 0.5) on the tensile strength and material pile-up was investigated. The stress and strain distributions underneath the indenter and along the top elements of the model have been studied to understand the deformation behavior. The tensile strength was found to decrease with increase in tempering and test temperatures. The increased pile-up around the indentation was attributed to the decrease in strain hardening exponent ( n) with increase in the test temperature. The pile-up height determined from profilometry studies and FE analysis as well as the load depth curve from BI and FE analysis was in agreement. The maximum strain location below the indentation changes with the test temperature. Stress-strain curves obtained by conventional tensile, BI test, and representative stress-strain concepts of FE model were found exactly matching.

  3. Model for suturing of Superior and Churchill plates: An example of double indentation tectonics

    NASA Astrophysics Data System (ADS)

    Gibb, R. A.

    1983-07-01

    Recent gravity surveys in eastern and southern Hudson Bay, Canada, have revealed, for the first time, the gravity anomaly pattern over the complete length of the proposed circum-Superior suture. A symmetrical distribution of linear, positive anomalies near the southern and eastern perimeters of Hudson Bay suggests a model in which suturing of Superior and Churchill protoplates was accomplished by subduction of oceanic lithosphere and by progressive double indentation of the rigid-plastic Churchill craton by the Thompson and Ungava salients of the rigid Superior protocontinent. Suturing was initiated at the Thompson salient with extrusion of Churchill material laterally along strike-slip faults into the Hudson Bay embayment. With continued subduction, indentation of the Churchill craton by the Ungava salient commenced, so that Churchill material was now extruded from two directions to fill the embayment of Hudson Bay. Following complete suturing of the Hudson Bay embayment, the motion of the Superior plate relative to the Churchill may have changed by about 90° E to facilitate complete closure of the predecessor of the Labrador Sea. The pattern of faulting and other major structural elements of northern Saskatchewan-Manitoba can be interpreted in terms of the proposed analogue model of plane indentation. The regional faults and their senses of motion correspond generally to that predicted by the theoretical pattern of slip lines associated with a wedge-shaped indenter.

  4. Clinical Applications of Continuous Performance Tests: Measuring Attention and Impulsive Responding in Children and Adults.

    ERIC Educational Resources Information Center

    Riccio, Cynthia A.; Reynolds, Cecil R.; Lowe, Patricia A.

    This handbook examines the similarities and differences in continuous performance test (CPT) techniques and their research literature, with thorough reviews of the four major CPTs in use today and overviews of their applications. The chapters are: (1) "Neurobiology of Attention and Executive Control"; (2) "Continuous Performance Test Paradigms and…

  5. Compression of nanowires using a flat indenter: diametrical elasticity measurement.

    PubMed

    Wang, Zhao; Mook, William M; Niederberger, Christoph; Ghisleni, Rudy; Philippe, Laetitia; Michler, Johann

    2012-05-01

    A new experimental approach for the characterization of the diametrical elastic modulus of individual nanowires is proposed by implementing a micro/nanoscale diametrical compression test geometry, using a flat punch indenter. A 250 nm diameter single crystal silicon nanowire is compressed inside of a scanning electron microscope. Since silicon is highly anisotropic, the wire crystal orientation in the compression axis is determined by electron backscatter diffraction. In order to analyze the load-displacement compression data, a two-dimensional analytical closed-form solution based on a classical contact model is proposed. The results of the analytical model are compared with those of finite element simulations and to the experimental diametrical compression results and show good agreement. PMID:22432959

  6. Measurement of ultra thin film fracture toughness by nano-indentation: A numerical study

    NASA Astrophysics Data System (ADS)

    Burke, Benjamin

    As the individual layers of interconnect structures decrease in size, it becomes increasingly difficult to determine the fracture toughness, and hence the reliability, of these layers. After a layer is thinner than ˜500nm, it becomes difficult to determine the fracture toughness directly with traditional methods. Using nano-indentation, it is possible to extract the cohesive and adhesive fracture energies of these films without elaborate experimental setups. There are, however, several issues with this approach. Nano-indentation creates cracks both within the film (the cohesive cracks) and between the film and the substrate (the adhesive cracks) as well as significant plastic deformation of the film and substrate. Using SIMULA Abaqus Standard, a commercial finite element analysis tool, 2D and 3D models were created to examine the deformation characteristics associated with the nano-indentation process. The models either have pre-existing stationary cracks, or simulated by cohesive zone surfaces to account for crack nucleation and growth. The 2D model is axi-symmetric and only accounts for the adhesive crack. It is used primarily as a test the cohesive zone model and to begin to determine experimental testing limits. The 3D model is a one sixth slice of the area indented. Both cohesive and adhesive cracks are modeled and the interaction between the two cracks is investigated. While there are many parameters controlling the crack initiation and propagation process, several trends were identified. The domain of practical testing should be between one and three film thickness, so as to avoid the confluence of the indenter plastic process zone on the propagating crack front. When excursion on the load-indentation depth happens, the fracture energy is about 20% of the associated work done by the indenter (or the area under the excursion segment). The FEM simulation showed the general role of film thickness, toughness and modulus on the initiation and propagation of both

  7. On the mechanical properties of tooth enamel under spherical indentation.

    PubMed

    Chai, Herzl

    2014-11-01

    The mechanical properties of tooth enamel generally exhibit large variations, which reflect its structural and material complexity. Some key properties were evaluated under localized contact, simulating actual functioning conditions. Prominent cusps of extracted human molar teeth were polished down ~0.7 mm below the cusp tip and indented by tungsten carbide balls. The internal damage was assessed after unloading from longitudinal or transverse sections. The ultimate tensile stress (UTS) was determined using a novel bilayer specimen. The damage is characterized by penny-like radial cracks driven by hoop stresses and cylindrical cracks driven along protein-rich interrod materials by shear stresses. Shallow cone cracks typical of homogeneous materials which may cause rapid tooth wear under repeat contact are thus avoided. The mean stress vs. indentation strain curve is highly nonlinear, attributable to plastic shearing of protein between and within enamel rods. This curve is also affected by damage, especially radial cracks, the onset of which depends on ball radius. Several material properties were extracted from the tests, including shear strain at the onset of ring cracks γ(F) (=0.14), UTS (=119 MPa), toughness K(C) (=0.94 MPa m(1/2)), a crack propagation law and a constitutive response determined by trial and error with the aid of a finite-element analysis. These quantities, which are only slightly sensitive to anatomical location within the enamel region tested, facilitate a quantitative assessment of crown failure. Causes for variations in published UTS and K(C) values are discussed. PMID:25034644

  8. Simulated impact damage in a thick graphite/epoxy laminate using spherical indenters

    NASA Technical Reports Server (NTRS)

    Poe, C. C., Jr.

    1988-01-01

    A study was made to determine the extent of fiber damage caused by low-velocity impact of spherical impactors to a very thick graphite/epoxy laminate. The laminate was cut from a filament wound case being developed for the Space Shuttle solid rocket motors. The case was wound using a wet process with AS4W graphite fiber and HBRF-55A epoxy. Impacts were simulated under quasi-static conditions by pressing hemispherically shaped indenters against the laminate at different locations. The contact force and indenter diameter were varied from location to location. The forces were chosen for each indenter diameter to produce contact pressures below and above that required to initiate damage. After the forces were applied, the laminate was cut into smaller pieces so that each piece contained a test site. The pieces were then deplied and the individual plies examined to determine the extent of fiber damage. Broken fibers were found in the outer layers directly beneath the contact site. The locus of broken fibers in each layer resembled a crack normal to the direction of the fibers. The maximum length and depth of the cracks increased with increasing contact pressure and indenter diameter. The internal stresses in the laminate were calculated using Hertz's law and Love's solution for pressure applied on part of the boundary of a semi-infinite body. The maximum length and depth of the cracks were predicted using a maximum shear stress criterion. Predictions and measurements were in good agreement.

  9. The compelling case for indentation as a functional exploratory and characterization tool

    SciTech Connect

    Tandon, Rajan; Marshall, David B.; Cook, Robert F.; Padture, Nitin P.; Oyen, Michelle L.; Pajares, Antonia; Bradby, Jodie E.; Reimanis, Ivar E.; Page, Trevor F.; Pharr, George M.; Lawn, Brian R.

    2015-07-30

    The utility of indentation testing for characterizing a wide range of mechanical properties of brittle materials is highlighted in light of recent articles questioning its validity, specifically in relation to the measurement of toughness. Contrary to assertion by some critics, indentation fracture theory is fundamentally founded in Griffith–Irwin fracture mechanics, based on model crack systems evolving within inhomogeneous but well-documented elastic and elastic–plastic contact stress fields. Notwithstanding some numerical uncertainty in associated stress intensity factor relations, the technique remains an unrivalled quick, convenient and economical means for comparative, site-specific toughness evaluation. Most importantly, indentation patterns are unique fingerprints of mechanical behavior and thereby afford a powerful functional tool for exploring the richness of material diversity. At the same time, it is cautioned that unconditional usage without due attention to the conformation of the indentation patterns can lead to overstated toughness values. Limitations of an alternative, more engineering approach to fracture evaluation, that of propagating a precrack through a “standard” machined specimen, are also outlined. Thus misconceptions in the critical literature concerning the fundamental nature of crack equilibrium and stability within contact and other inhomogeneous stress fields are discussed.

  10. The compelling case for indentation as a functional exploratory and characterization tool

    DOE PAGESBeta

    Tandon, Rajan; Marshall, David B.; Cook, Robert F.; Padture, Nitin P.; Oyen, Michelle L.; Pajares, Antonia; Bradby, Jodie E.; Reimanis, Ivar E.; Page, Trevor F.; Pharr, George M.; et al

    2015-07-30

    The utility of indentation testing for characterizing a wide range of mechanical properties of brittle materials is highlighted in light of recent articles questioning its validity, specifically in relation to the measurement of toughness. Contrary to assertion by some critics, indentation fracture theory is fundamentally founded in Griffith–Irwin fracture mechanics, based on model crack systems evolving within inhomogeneous but well-documented elastic and elastic–plastic contact stress fields. Notwithstanding some numerical uncertainty in associated stress intensity factor relations, the technique remains an unrivalled quick, convenient and economical means for comparative, site-specific toughness evaluation. Most importantly, indentation patterns are unique fingerprints of mechanicalmore » behavior and thereby afford a powerful functional tool for exploring the richness of material diversity. At the same time, it is cautioned that unconditional usage without due attention to the conformation of the indentation patterns can lead to overstated toughness values. Limitations of an alternative, more engineering approach to fracture evaluation, that of propagating a precrack through a “standard” machined specimen, are also outlined. Thus misconceptions in the critical literature concerning the fundamental nature of crack equilibrium and stability within contact and other inhomogeneous stress fields are discussed.« less

  11. Grid indentation analysis of mechanical properties of composite electrodes in Li-ion batteries

    DOE PAGESBeta

    Vasconcelos, Luize Scalco de; Xu, Rong; Li, Jianlin; Zhao, Kejie

    2016-03-09

    We report that electrodes in commercial rechargeable batteries are microscopically heterogeneous materials. The constituent components, including active materials, polymeric binders, and porous conductive matrix, often have large variation in their mechanical properties, making the mechanical characterization of composite electrodes a challenging task. In a model system of LiNi0.5Mn0.3Co0.2O2 cathode, we employ the instrumented grid indentation to determine the elastic modulus and hardness of the constituent phases. The approach relies on a large array of nanoindentation experiments and statistical analysis of the resulting data provided that the maximum indentation depth is carefully chosen. The statistically extracted properties of the active particlesmore » and the surrounding medium are in good agreement with the tests of targeted indentation at selected sites. Lastly, the combinatory technique of grid indentation and statistical deconvolution represents a fast and reliable route to quantify the mechanical properties of composite electrodes that feed the parametric input for the mechanics models.« less

  12. Giant pop-ins and amorphization in germanium during indentation

    NASA Astrophysics Data System (ADS)

    Oliver, David J.; Bradby, Jodie E.; Williams, Jim S.; Swain, Michael V.; Munroe, Paul

    2007-02-01

    Sudden excursions of unusually large magnitude (>1 μm), "giant pop-ins," have been observed in the force-displacement curve for high load indentation of crystalline germanium (Ge). A range of techniques including Raman microspectroscopy, focused ion-beam cross sectioning, and transmission electron microscopy, are applied to study this phenomenon. Amorphous material is observed in residual indents following the giant pop-in. The giant pop-in is shown to be a material removal event, triggered by the development of shallow lateral cracks adjacent to the indent. Enhanced depth recovery, or "elbowing," observed in the force-displacement curve following the giant pop-in is explained in terms of a compliant response of plates of material around the indent detached by lateral cracking. The possible causes of amorphization are discussed, and the implications in light of earlier indentation studies of Ge are considered.

  13. Indentation-flexure and low-velocity impact damage in graphite/epoxy laminates

    NASA Technical Reports Server (NTRS)

    Kwon, Young S.; Sankar, Bhavani V.

    1992-01-01

    Static indentation and low velocity impact tests were performed on quasi-isotropic and cross ply graphite/epoxy composite laminates. The load deflection relations in static tests and impact force history in the impact tests were recorded. The damage was assessed by using ultrasonic C-scanning and photomicrographic techniques. The static behavior of the laminates and damage progression during loading, unloading, and reloading were explained by a simple plate delamination model. A good correlation existed between the static and impact responses. It was found that results from a few static indentation-flexture tests can be used to predict the response and damage in composite laminates due to a class of low velocity impact events.

  14. Bending stress determination in pipes using a radial in-plane digital speckle pattern interferometer combined with instrumented indentation

    NASA Astrophysics Data System (ADS)

    Fontana, Filipe; Viotti, Matias R.; Albertazzi G., Armando, Jr.

    2015-05-01

    This paper presents a modular device based on digital speckle pattern interferometry (DSPI) combined with an instrumented indenter. The system is divided in two modules, the interferometric and the indentation module. The former uses a diffractive optical element (DOE) to obtain radial in-plane sensitivity. This module measures the whole shallow displacement field generated by the indentation print on the surface of the material under testing. The latter module is sized suitably with the interferometric module. The indentation module uses a mechanical/hydraulic scheme to provide the system a high loading capability. A piezoelectric loading cell and an inductive transducer are used to simultaneously measure the load applied on the ball indenter and its penetration on the material. For the experimental tests, a bench capable to apply in a specific pipe a very well-known bending moment was used. This bench is mounted with two 12- meters pipes disposed horizontally. A transverse load is applied in the central cross-section of both pipes. The load application is made by a hydraulic actuator and measured with a load cell. Strain-gages are also used in a half-bridge configuration to measure the strain in the 8 cross-sections distributed along the pipe length. Each cross-section was measured by the proposed instrumented indentation system and compared with the strain-gages and load cell measurements. The results obtained show an uncertainty level around 20-30% of the measured bending stress. Good agreement was found between the computed bending stress using the strain-gages, load cell and the proposed method using the instrumented indentation system.

  15. Thermal Shock Behavior of Silicon Nitride Flexure Beam Specimens with Indentation Cracks

    NASA Technical Reports Server (NTRS)

    Choi, Sung R.; Salem, Jonathan A.

    1994-01-01

    The experimental results of thermal shock testing of silicon nitride flexure beam specimens containing indentation cracks are presented. The thermal stress induced by water quenching is much greater in the transverse direction than in the longitudinal direction, resulting in an insensitivity of residual bend strength to temperature differences up to 580 C. This result indicates that a flexure beam configuration is not an appropriate geometry for thermal shock testing when thermal shock behavior is to be evaluated from residual bend strength data.

  16. AFM indentation study of breast cancer cells

    SciTech Connect

    Li, Q.S.; Lee, G.Y.H.; Ong, C.N.; Lim, C.T.

    2008-10-03

    Mechanical properties of individual living cells are known to be closely related to the health and function of the human body. Here, atomic force microscopy (AFM) indentation using a micro-sized spherical probe was carried out to characterize the elasticity of benign (MCF-10A) and cancerous (MCF-7) human breast epithelial cells. AFM imaging and confocal fluorescence imaging were also used to investigate their corresponding sub-membrane cytoskeletal structures. Malignant (MCF-7) breast cells were found to have an apparent Young's modulus significantly lower (1.4-1.8 times) than that of their non-malignant (MCF-10A) counterparts at physiological temperature (37 deg. C), and their apparent Young's modulus increase with loading rate. Both confocal and AFM images showed a significant difference in the organization of their sub-membrane actin structures which directly contribute to their difference in cell elasticity. This change may have facilitated easy migration and invasion of malignant cells during metastasis.

  17. Test/QA Plan for Verification of Semi-Continuous Ambient Air Monitoring Systems - Second Round

    EPA Science Inventory

    Test/QA Plan for Verification of Semi-Continuous Ambient Air Monitoring Systems - Second Round. Changes reflect performance of second round of testing at new location and with various changes to personnel. Additional changes reflect general improvements to the Version 1 test/QA...

  18. Results of continuous synchronous orbit testing of sealed nickel-cadmium cells

    NASA Technical Reports Server (NTRS)

    Harkness, J. D.

    1981-01-01

    Test results from continuous synchronous orbit testing of sealed nickel cadmium cells are presented. The synchronous orbit regime simulates a space satellite maintaining a position over a fixed point on earth as the earth rotates on its axis and revolves about the sun. Characteristics of each lot of cells, test conditions, and charge control methods are described.

  19. Continual Non-Condensable Gas Removal Testing -- Performance and Lessons Learned

    SciTech Connect

    Charles Mohr; Greg Mines

    2005-09-01

    The operating experience and plant benefit analysis of a membrane-based continuous non-condensable gas (NCG) removal system is discussed. Results from testing at the Mammoth Pacific (Ormat) geothermal plant provide the basis for the benefit analysis.

  20. Occurrence of spherical ceramic debris in indentation and sliding contact

    NASA Technical Reports Server (NTRS)

    Miyoshi, K.; Buckley, D. H.

    1982-01-01

    Indenting experiments were conducted with the silicon carbide (0001) surface in contact with a spherical diamond indenter in air. Sliding friction experiments were also conducted with silicon carbide in contact with iron and iron-based binary alloys at room temperature and 800 C. Fracture pits with a spherical particle and spherical wear debris were observed as a result of indenting and sliding. Spherical debris may be produced by a mechanism that involves a spherical-shaped fracture along the circular or spherical stress trajectories under the inelastic deformation zone.

  1. Variable temperature thin film indentation with a flat punch.

    PubMed

    Cross, Graham L W; O'Connell, Barry S; Pethica, John B; Rowland, Harry; King, William P

    2008-01-01

    We present modifications to conventional nanoindentation that realize variable temperature, flat punch indentation of ultrathin films. The technique provides generation of large strain, thin film extrusion of precise geometries that idealize the essential flows of nanoimprint lithography, and approximate constant area squeeze flow rheometry performed on thin, macroscopic soft matter samples. Punch radii as small as 185 nm have been realized in ten-to-one confinement ratio testing of 36 nm thick polymer films controllably squeezed in the melt state to a gap width of a few nanometers. Self-consistent, compressive stress versus strain measurements of a wide variety of mechanical testing conditions are provided by using a single die-sample system with temperatures ranging from 20 to 125 degrees C and loading rates spanning two decades. Low roughness, well aligned flat punch dies with large contact areas provide precise detection of soft surfaces with standard nanoindenter stiffness sensitivity. Independent heating and thermometry with heaters and thermocouples attached to the die and sample allow introduction of a novel directional heat flux measurement method to ensure isothermal contact conditions. This is a crucial requirement for interpreting the mechanical response in temperature sensitive soft matter systems. Instrumented imprint is a new nanomechanics material testing platform that enables measurements of polymer and soft matter properties during large strains in confined, thin film geometries and extends materials testing capabilities of nanoindentation into low modulus, low strength glassy, and viscoelastic materials. PMID:18248047

  2. SITE project. Phase 1: Continuous data bit-error-rate testing

    NASA Astrophysics Data System (ADS)

    Fujikawa, Gene; Kerczewski, Robert J.

    1992-09-01

    The Systems Integration, Test, and Evaluation (SITE) Project at NASA LeRC encompasses a number of research and technology areas of satellite communications systems. Phase 1 of this project established a complete satellite link simulator system. The evaluation of proof-of-concept microwave devices, radiofrequency (RF) and bit-error-rate (BER) testing of hardware, testing of remote airlinks, and other tests were performed as part of this first testing phase. This final report covers the test results produced in phase 1 of the SITE Project. The data presented include 20-GHz high-power-amplifier testing, 30-GHz low-noise-receiver testing, amplitude equalization, transponder baseline testing, switch matrix tests, and continuous-wave and modulated interference tests. The report also presents the methods used to measure the RF and BER performance of the complete system. Correlations of the RF and BER data are summarized to note the effects of the RF responses on the BER.

  3. SITE project. Phase 1: Continuous data bit-error-rate testing

    NASA Technical Reports Server (NTRS)

    Fujikawa, Gene; Kerczewski, Robert J.

    1992-01-01

    The Systems Integration, Test, and Evaluation (SITE) Project at NASA LeRC encompasses a number of research and technology areas of satellite communications systems. Phase 1 of this project established a complete satellite link simulator system. The evaluation of proof-of-concept microwave devices, radiofrequency (RF) and bit-error-rate (BER) testing of hardware, testing of remote airlinks, and other tests were performed as part of this first testing phase. This final report covers the test results produced in phase 1 of the SITE Project. The data presented include 20-GHz high-power-amplifier testing, 30-GHz low-noise-receiver testing, amplitude equalization, transponder baseline testing, switch matrix tests, and continuous-wave and modulated interference tests. The report also presents the methods used to measure the RF and BER performance of the complete system. Correlations of the RF and BER data are summarized to note the effects of the RF responses on the BER.

  4. Methodology for the evaluation of yield strength and hardening behavior of metallic materials by indentation with spherical tip

    NASA Astrophysics Data System (ADS)

    Ma, Dejun; Ong, Chung Wo; Lu, Jian; He, Jiawen

    2003-07-01

    This article presents a methodology for evaluating the yield strength and hardening behavior of metallic materials by spherical indentation. Two types of assumed material behaviors with a pure elastic-Hollomon's power law hardening and a pure elastic-linear hardening were considered separately in the models of spherical indentation. The numerical relationships between the material properties and indentation responses were established on the basis of dimensional and finite element analysis. As the first approximation to the real plastic flow properties, the yield strengths and hardening behaviors determined from the spherical indentation loading curve and the numerical relationships were used to derive the intersecting points between Hollomon's power law hardening curve and linear hardening line. Through proceeding the three parameter's regression analysis with Swift's power law function for the intersecting points determined at different maximum indentation depths, the final yield strength and hardening behavior of tested material can be obtained. The validation of this method was examined by investigating three groups of materials with near linear hardening behavior, near Hollomon's power law hardening behavior, and initial yield plateau. It is concluded that the proposed method is applicable to a wide variety of materials which exhibit separate hardening behaviors.

  5. Study on the Indentation Creep Behavior of Mg-4Al-RE-0.8Ca Magnesium Alloy

    NASA Astrophysics Data System (ADS)

    Zhang, Yaocheng; Yang, Li; Huang, Zedong; Dai, Jun

    2015-11-01

    The indentation creep behavior of Mg-4Al-RE-0.8Ca (AEC4108) alloy was investigated with a homemade apparatus. The microstructure of the AEC4108 alloy and the chemical composition of the precipitation phases in the alloy before and after creep test were investigated by scanning electron microscope and energy-dispersive spectroscopy. The results reveal that the steady-state indentation creep rate of the AEC4108 alloy is increased with increasing temperature and applied stress. The logarithm of the steady-state creep rates is linearly related to the logarithm of the stress and the reciprocal of the absolute temperature. The indentation creep parameters of AEC4108 alloy are correlated using an empirical equation dot{\\varepsilon }_{s} = 1.253 × 10^{ - 8} × \\upsigma^{3.2} { exp }[ { - 33.89/( {RT} )} ]. The thin acicular Al11La3 and the bone-shaped Al2Ca are precipitated along the grain boundaries, and the granular Al2La is formed within the grain. The indentation creep rate of AEC4108 alloy is controlled by the grain boundary slipping led by viscous dislocation movement. The indentation creep resistance of the AEC4108 alloy under temperature 398-448 K and stress 55-95 MPa is guaranteed by the precipitated phases with high thermal stability pinning at the grain boundary and within the grain.

  6. Script Concordance Testing in Continuing Professional Development: Local or International Reference Panels?

    ERIC Educational Resources Information Center

    Pleguezuelos, E. M.; Hornos, E.; Dory, V.; Gagnon, R.; Malagrino, P.; Brailovsky, C. A.; Charlin, B.

    2013-01-01

    Context: The PRACTICUM Institute has developed large-scale international programs of on-line continuing professional development (CPD) based on self-testing and feedback using the Practicum Script Concordance Test© (PSCT). Aims: To examine the psychometric consequences of pooling the responses of panelists from different countries (composite…

  7. Spherical indentation of free-standing acellular extracellular matrix membranes.

    PubMed

    Cloonan, Aidan J; O'Donnell, Michael R; Lee, William T; Walsh, Michael T; De Barra, Eamonn; McGloughlin, Tim M

    2012-01-01

    Numerous scaffold materials have been developed for tissue engineering and regenerative medicine applications to replace or repair damaged tissues and organs. Naturally occurring scaffold materials derived from acellular xenogeneic and autologous extracellular matrix (ECM) are currently in clinical use. These biological scaffold materials possess inherent variations in mechanical properties. Spherical indentation or ball burst testing has commonly been used to evaluate ECM and harvested tissue due to its ease of use and simulation of physiological biaxial loading, but has been limited by complex material deformation profiles. An analytical methodology has been developed and applied to experimental load-deflection data of a model hyperelastic material and lyophilized ECM scaffolds. An optimum rehydration protocol was developed based on water absorption, hydration relaxation and dynamic mechanical analysis. The analytical methodology was compared with finite element simulations of the tests and excellent correlation was seen between the computed biaxial stress resultants and geometry deformations. A minimum rehydration period of 5 min at 37°C was sufficient for the evaluated multilaminated ECM materials. The proposed approach may be implemented for convenient comparative analysis of ECM materials and source tissues, process optimization or during lot release testing. PMID:21864728

  8. Micromechanical tests of ion irradiated materials: Atomistic simulations and experiments

    SciTech Connect

    Shin, C.; Jin, H. H.; Kwon, J.

    2012-07-01

    We investigated irradiation effects on Fe-Cr binary alloys by using a nano-indentation combined with a continuous stiffness measurement (CSM) technique. We modeled the nano-indentation test by using a finite element method. We could extract the intrinsic hardness and the yield stress of an irradiation hardened region by using a so-called inverse method. SiC micro-pillars of various sizes were fabricated by mask and inductively coupled plasma etching technique and compressed by using flat punch nano-indentation. Compressive fracture strength showed a clear specimen size effect. Brittle-to-Ductile transition at room temperature was observed as the specimen size decreases. The effect of irradiation on the fracture strength of SiC micro-pillars was evaluated by performing ion irradiation with Si ions. We have performed molecular dynamics simulations of nano-indentation and nano-pillar compression tests. Radiation effect was observed which is found to be due to the interaction of dislocations nucleated by spherical indenter with pre-existing radiation defects (voids). These atomistic simulations are expected to significantly contribute to the investigation of the fundamental deformation mechanism of small scale irradiated materials. (authors)

  9. Artificial neural network model for material characterization by indentation

    NASA Astrophysics Data System (ADS)

    Tho, K. K.; Swaddiwudhipong, S.; Liu, Z. S.; Hua, J.

    2004-09-01

    Analytical methods to interpret the indentation load-displacement curves are difficult to formulate and solve due to material and geometric nonlinearities as well as complex contact interactions. In this study, large strain-large deformation finite element analyses were carried out to simulate indentation experiments. An artificial neural network model was constructed for the interpretation of indentation load-displacement curves. The data from finite element analyses were used to train and validate the artificial neural network model. The artificial neural network model was able to accurately determine the material properties when presented with the load-displacement curves that were not used in the training process. The proposed artificial neural network model is robust and directly relates the characteristics of the indentation load-displacement curve to the elasto-plastic material properties.

  10. Evaluation of biological cell properties using dynamic indentation measurement.

    PubMed

    Cao, Guoxin; Chandra, Namas

    2010-02-01

    Viscoelastic mechanical properties of biological cells are commonly measured using atomic force microscope (AFM) dynamic indentation with spherical tips. A semiempirical analysis based on numerical simulation is built to determine the cell mechanical properties. It is shown that the existing analysis cannot reflect the accurate values of cell elastic/dynamic modulus due to the effects of substrate, indenter tip size, and cell size. Among these factors, substrate not only increases the true contact radius but also interferes the indentation stress field, which can cause the overestimation of cell moduli. Typically, the substrate effect is much stronger than the other two influences in cell indentation; and, thus, the cell modulii are usually overestimated. It is estimated that the moduli can be overestimated by as high as over 200% using the existing analysis. In order to obtain the accurate properties of cells, correction factors that account for these effects are required in the existing analysis. PMID:20365612

  11. Indenter growth in analogue models of Alpine-type deformation

    NASA Astrophysics Data System (ADS)

    Bonini, Marco; Sokoutis, Dimitrios; Talbot, Christopher J.; Boccaletti, Mario; Milnes, Alan G.

    1999-02-01

    A series of analogue experiments were carried out to simulate continental convergence, as seen in a profile through the Central Alps. A rigid indenter, representing the Adriatic plate, was driven laterally into a sand pack representing the brittle upper crust of Europe, detached and thickening above its subducting ductile lower crust. The rigid indenter advanced at the same steady rate in each experiment, but the dip of its front face was steepened in 15° increments from 15° to 90°. Where the rigid indenter face dipped at 45° or less, a sand wedge rose and was bound by a series of forekinks that nucleated at the toe of the indenter. Where the face of the rigid indenter dipped 60° or more, the wedge was defined by a single forekink and one or more backkinks that nucleated from a point advancing in front of the indenter toe. We interpret these results as indicating that slices of the sand pack and rising wedge are transferred across kink bands to build an "effective" indenter with a frontal dip closer to that dictated by the changing shear strength of the sand pile, which thickens vertically as it shortens laterally. One of our models (with a rigid indenter dipping 75°) simulates most of the major structures shown in recent syntheses of surface geology and deep seismic data in the Central Alps, without the isostatic lithospheric depression. This model accounts for the late collisional stage (Oligocene to Present) complex strain and metamorphic histories in the core of the orogenic wedge, the rapid rise and extrusion of small pips of Alpine eclogites, and the current passivity of the Insubric Line. It also emphasizes that lateral extension along gently dipping "thrusts" (orogen-normal horizontal escape) is confined to the extruded portion of the rising wedge.

  12. No-observed-effect concentrations in batch and continuous algal toxicity tests

    SciTech Connect

    Chao, M.R.; Chen, C.Y.

    2000-06-01

    In this study, the authors compare the no-observed-effect concentrations (NOECs) of Cd, Ni, Zn, Cu, and Pb based on different response parameters, using batch and continuous algal toxicity tests. For both batch and continuous tests, parameters based on total cell volume (TCV) were found to be less sensitive than those related to cell densities. The above observation mainly occurred because, under the stresses from metal toxicants evaluated in this and a previous study, the mean cell volume (MCV) of algae increased considerably. The increase of MCV compensates for the effects brought about by the reduction in cell density and eventually results in less variation in TCVs. This study shows that parameters based on cell density are quite sensitive and ideal for the estimation of NOECs. In addition, comparison of the NOEC values derived from different culture techniques shows that the continuous methods generally yields lower NOEC values than that obtained by the batch tests. The results of this study also indicate that the NOEC provides more protection to the test organism than the effective concentration at 10% growth reduction (EC10). For toxicity test methods that produce small variations among replicates, the NOEC is still a good indicator of low toxic effect. Furthermore, for the continuous algal toxicity test, a relatively simple approach is proposed to determine the NOEC values based on the algal culture's control charts. The proposed method produced identical results as those based on conventional hypothesis-testing methods.

  13. Molecular dynamics simulation of VN thin films under indentation

    NASA Astrophysics Data System (ADS)

    Fu, Tao; Peng, Xianghe; Huang, Cheng; Yin, Deqiang; Li, Qibin; Wang, Zhongchang

    2015-12-01

    We investigated with molecular dynamics simulation the mechanical responses of VN (0 0 1) thin films subjected to indentation with a diamond columnar indenter. We calculated the generalized stacking-fault energies as a function of the displacement in the rbond2 1 1 0lbond2 directions on the {0 0 1}, {1 1 0}, and {1 1 1} planes, and analyzed systematically the microstructures and their evolution during the indentation with the centro-symmetry parameters and the slices of the VN films. We found the slips on {1 1 0}rbond2 1 1 0lbond2 of the VN film under indentation at the initial stage. With the increase of indentation depth, slips are also activated on {1 1 1}rbond2 1 1 0lbond2 and {1 0 0}rbond2 0 1 1lbond2 systems. We further found that the slip system is determined by the stacking-fault energy rather than the layer spacing. The indentations with other different parameters were also performed, and the results further prove the validity of the conclusion.

  14. Poroviscoelastic characterization of particle-reinforced gelatin gels using indentation and homogenization.

    PubMed

    Galli, Matteo; Fornasiere, Elvis; Cugnoni, Joël; Oyen, Michelle L

    2011-05-01

    Hydrogels are promising materials for bioengineering applications, and are good model materials for the study of hydrated biological tissues. As these materials often have a structural function, the measurement of their mechanical properties is of fundamental importance. In the present study gelatin gels reinforced with ceramic microspheres are produced and their poroviscoelastic response in spherical indentation is studied. The constitutive responses of unreinforced gels are determined using inverse finite element modeling in combination with analytical estimates of material parameters. The behavior of composite gels is assessed by both analytical and numerical homogenization. The results of the identification of the constitutive parameters of unreinforced gels show that it is possible to obtain representative poroviscoelastic parameters by spherical indentation without the need for additional mechanical tests. The agreement between experimental results on composite gelatin and the predictions from homogenization modeling show that the adopted modeling tools are capable of providing estimates of the poroviscoelastic response of particle-reinforced hydrogels. PMID:21396610

  15. Performance testing of multi-metal continuous emissions monitors. Appendix Volume 1

    SciTech Connect

    Haas, W.J. Jr.; French, N.B.; Brown, C.H.; Burns, D.B.; Lemieux, P.M.; Ryan, J.V.; Priebe, S.J.; Waterland, L.R.

    1997-11-17

    This report contains appendices to the study of three prototype multi-metal continuous emission monitors (CEMs). The appendices are: Final report of the Diagnostic Instrumentation and Analytical Laboratory (DIAL) CEM developer team; Final report of Navy/Thermo Jarrell Ash Corp. CEM developer team; Final report of Sandia National Laboratories CEM developer team; Developer team comments; and Performance specification 10 -- Specifications and test procedures for multi-metals continuous monitoring systems in stationary sources.

  16. Assessing a Critical Aspect of Construct Continuity when Test Specifications Change or Test Forms Deviate from Specifications

    ERIC Educational Resources Information Center

    Liu, Jinghua; Dorans, Neil J.

    2013-01-01

    We make a distinction between two types of test changes: inevitable deviations from specifications versus planned modifications of specifications. We describe how score equity assessment (SEA) can be used as a tool to assess a critical aspect of construct continuity, the equivalence of scores, whenever planned changes are introduced to testing…

  17. Mechanical properties of gray and white matter brain tissue by indentation

    PubMed Central

    Budday, Silvia; Nay, Richard; de Rooij, Rijk; Steinmann, Paul; Wyrobek, Thomas; Ovaert, Timothy C.; Kuhl, Ellen

    2015-01-01

    The mammalian brain is composed of an outer layer of gray matter, consisting of cell bodies, dendrites, and unmyelinated axons, and an inner core of white matter, consisting primarily of myelinated axons. Recent evidence suggests that microstructural differences between gray and white matter play an important role during neurodevelopment. While brain tissue as a whole is rheologically well characterized, the individual features of gray and white matter remain poorly understood. Here we quantify the mechanical properties of gray and white matter using a robust, reliable, and repeatable method, flat-punch indentation. To systematically characterize gray and white matter moduli for varying indenter diameters, loading rates, holding times, post-mortem times, and locations we performed a series of n=192 indentation tests. We found that indenting thick, intact coronal slices eliminates the common challenges associated with small specimens: it naturally minimizes boundary effects, dehydration, swelling, and structural degradation. When kept intact and hydrated, brain slices maintained their mechanical characteristics with standard deviations as low as 5% throughout the entire testing period of five days post mortem. White matter, with an average modulus of 1.895kPa±0.592kPa, was on average 39% stiffer than gray matter, p<0.01, with an average modulus of 1.389kPa±0.289kPa, and displayed larger regional variations. It was also more viscous than gray matter and responded less rapidly to mechanical loading. Understanding the rheological differences between gray and white matter may have direct implications on diagnosing and understanding the mechanical environment in neurodevelopment and neurological disorders. PMID:25819199

  18. Experimental and numerical validation for the novel configuration of an arthroscopic indentation instrument

    NASA Astrophysics Data System (ADS)

    Korhonen, Rami K.; Saarakkala, Simo; Töyräs, Juha; Laasanen, Mikko S.; Kiviranta, Ilkka; Jurvelin, Jukka S.

    2003-06-01

    Softening of articular cartilage, mainly attributable to deterioration of superficial collagen network and depletion of proteoglycans, is a sign of incipient osteoarthrosis. Early diagnosis of osteoarthrosis is essential to prevent the further destruction of the tissue. During the past decade, a few arthroscopic instruments have been introduced for the measurement of cartilage stiffness; these can be used to provide a sensitive measure of cartilage status. Ease of use, accuracy and reproducibility of the measurements as well as a low risk of damaging cartilage are the main qualities needed in any clinically applicable instrument. In this study, we have modified a commercially available arthroscopic indentation instrument to better fulfil these requirements when measuring cartilage stiffness in joints with thin cartilage. Our novel configuration was validated by experimental testing as well as by finite element (FE) modelling. Experimental and numerical tests indicated that it would be better to use a smaller reference plate and a lower pressing force (3 N) than those used in the original instrument (7-10 N). The reproducibility (CV = 5.0%) of the in situ indentation measurements was improved over that of the original instrument (CV = 7.6%), and the effect of material thickness on the indentation response was smaller than that obtained with the original instrument. The novel configuration showed a significant linear correlation between the indenter force and the reference dynamic modulus of cartilage in unconfined compression, especially in soft tissue (r = 0.893, p < 0.001, n = 16). FE analyses with a transversely isotropic poroelastic model indicated that the instrument was suitable for detecting the degeneration of superficial cartilage. In summary, the instrument presented in this study allows easy and reproducible measurement of cartilage stiffness, also in thin cartilage, and therefore represents a technical improvement for the early diagnosis of

  19. An Improved Approach to Fracture Toughness Assessment of Brittle Coating on Ductile Substrate Systems under Indentation

    NASA Astrophysics Data System (ADS)

    Demidova, Natalia V.

    Fracture toughness is an important material property that determines the structural integrity of a component with pre-existing or service-generated flaws. In the present research, an indentation-based method and the associated fracture mechanics model are proposed for fracture toughness assessment of brittle coating/ductile substrate systems. The proposed models consider well-developed radial/median cracks generated under sharp indentation, despite that the crack formation process may have gone through crack initiation and propagation phases. For generality, the geometry of a well-developed crack is assumed to be semi-elliptical in shape. The driving force of the crack is considered to stem from the residual plastic zone expansion under the indenter, as well as the far-field Boussinesq (elastic) stress. Three well-defined configurations are studied. For the first configuration, a crack with a depth of less than 7% of the coating thickness is considered. In this case, the problem is treated as the one for the monolithic material with the coating material properties. For the second configuration, a crack that runs deeper than 7% of the coating thickness but is still within the coating layer is analyzed. In this case, the composite hardness is introduced into the analysis to account for the influence of the substrate material properties; and furthermore, an interface correction factor is proposed to take into account the presence of the coating/substrate interface and its influence on the stress intensity factor of the well-developed elliptical cracks. For the third configuration, a crack penetrating into the substrate is considered. In this case, based on the condition of deformation compatibility across the coating/substrate interface, the bulk modulus for the coating/substrate system is introduced into the analysis. A series of indentation tests are conducted on a WC/10Co/4Cr coating/1080 low carbon steel substrate specimen, which is a brittle coating on a ductile

  20. Development of a diagnostic test based on multiple continuous biomarkers with an imperfect reference test.

    PubMed

    García Barrado, Leandro; Coart, Els; Burzykowski, Tomasz

    2016-02-20

    Ignoring the fact that the reference test used to establish the discriminative properties of a combination of diagnostic biomarkers is imperfect can lead to a biased estimate of the diagnostic accuracy of the combination. In this paper, we propose a Bayesian latent-class mixture model to select a combination of biomarkers that maximizes the area under the ROC curve (AUC), while taking into account the imperfect nature of the reference test. In particular, a method for specification of the prior for the mixture component parameters is developed that allows controlling the amount of prior information provided for the AUC. The properties of the model are evaluated by using a simulation study and an application to real data from Alzheimer's disease research. In the simulation study, 100 data sets are simulated for sample sizes ranging from 100 to 600 observations, with a varying correlation between biomarkers. The inclusion of an informative as well as a flat prior for the diagnostic accuracy of the reference test is investigated. In the real-data application, the proposed model was compared with the generally used logistic-regression model that ignores the imperfectness of the reference test. Conditional on the selected sample size and prior distributions, the simulation study results indicate satisfactory performance of the model-based estimates. In particular, the obtained average estimates for all parameters are close to the true values. For the real-data application, AUC estimates for the proposed model are substantially higher than those from the 'traditional' logistic-regression model. PMID:26388206

  1. Implementation of a computer-based test generator to evaluate health professions continuing education.

    PubMed

    Evans, S

    1984-04-01

    A variety of artificial-intelligence-based expert medical systems have been adapted to evaluate a learner's performance in the information areas in which the systems are expert. This paper describes a similar adaptation of a computer-based health sciences tutor (called the COMMES system). The Evaluation Consultant system to be described adapts the COMMES system to become a test generator. This computer-based consultant generates tests entirely on its own, covering programs of study that the COMMES system previously constructed to satisfy a user's identified needs. A health professional is awarded continuing education credits after (1) finishing a study unit constructed by COMMES and (2) completing successfully a test created by the Evaluation Consultant. This system is being implemented in several test sites and has significant advantages for the support of continuing education, especially in rural or isolated areas. PMID:6376676

  2. Characterization of damage mechanisms associated with reference point indentation in human bone.

    PubMed

    Beutel, Bryan G; Kennedy, Oran D

    2015-06-01

    Measurement of bone mineral density (BMD) is the clinical gold standard in cases of compromised skeletal integrity, such as with osteoporosis. While BMD is a useful measurement to index skeletal health, it is also limited since it cannot directly assess any mechanical properties. The ability to directly assess mechanical properties of bone tissue would be clinically important. Reference point indentation (RPI) is a technology that has been designed to try and achieve this goal. While RPI has been shown to detect altered bone tissue properties, the underlying physical mechanism of these measurements has not been characterized. Thus, we designed a study whereby the contribution of (1) test cycle number and (2) test load level to RPI test-induced sub-surface damage was characterized and quantified. Standardized specimens were prepared from cadaveric human tibiae (n=6), such that 12 replicates of each testing condition could be carried out. A custom rig was fabricated to accurately position and map indentation sites. One set of tests was carried out with 1, 5, 10, 15 and 20 cycles (Max Load: 8 N, Freq: 2 Hz), and a second set of tests was carried out with Load levels of 2, 4, 6, 8 or 10 N (Cycle number: 20, Freq: 2 Hz). The RPI parameter Loading Slope (LS) was cycle dependent at 5, 10, 15 and 20 cycles (p<0.05). First Cycle Indentation Distance (ID 1st), Total Indentation Distance (TID), Mean Energy Dissipation (ED), First Cycle Unloading Slope (US 1st), Mean Unloading Slope (US) and LS were significantly different at 6, 8 and 10 N compared to 2 N (p<0.05). From the histomorphometric measurements, damage zone span was significantly different after 5, 10, 15 and 20 cycles compared with 1 cycle while indent profile width and indent profile depth were significantly different at 10, 15 and 20 cycles (p<0.05). With the load varying protocol, each of these parameters differed significantly at each increased load level (4, 6, 8, 10 N) compared with the basal level of 2 N (p<0

  3. Bone indentation recovery time correlates with bond reforming time

    NASA Astrophysics Data System (ADS)

    Thompson, James B.; Kindt, Johannes H.; Drake, Barney; Hansma, Helen G.; Morse, Daniel E.; Hansma, Paul K.

    2001-12-01

    Despite centuries of work, dating back to Galileo, the molecular basis of bone's toughness and strength remains largely a mystery. A great deal is known about bone microsctructure and the microcracks that are precursors to its fracture, but little is known about the basic mechanism for dissipating the energy of an impact to keep the bone from fracturing. Bone is a nanocomposite of hydroxyapatite crystals and an organic matrix. Because rigid crystals such as the hydroxyapatite crystals cannot dissipate much energy, the organic matrix, which is mainly collagen, must be involved. A reduction in the number of collagen cross links has been associated with reduced bone strength and collagen is molecularly elongated (`pulled') when bovine tendon is strained. Using an atomic force microscope, a molecular mechanistic origin for the remarkable toughness of another biocomposite material, abalone nacre, has been found. Here we report that bone, like abalone nacre, contains polymers with `sacrificial bonds' that both protect the polymer backbone and dissipate energy. The time needed for these sacrificial bonds to reform after pulling correlates with the time needed for bone to recover its toughness as measured by atomic force microscope indentation testing. We suggest that the sacrificial bonds found within or between collagen molecules may be partially responsible for the toughness of bone.

  4. Modes of Continuing Professional Education: A Test of Houle's Typology with Business Education Instructors.

    ERIC Educational Resources Information Center

    Powlette, Nina M.; Young, Darius R.

    1989-01-01

    The accuracy of Houle's typology in providing an accurate conceptual description of systematic structural forms of continuing professional education and business education instructors was tested via a survey of 98 (of 129) business educators. Results of rotation factor analysis added inquiry/reinforcement to Houle's 3 learning modes of…

  5. Gender Differences among Children with ADHD on Continuous Performance Tests: A Meta-Analytic Review

    ERIC Educational Resources Information Center

    Hasson, Ramzi; Fine, Jodene Goldenring

    2012-01-01

    Objective: Gender differences among children with ADHD are not well understood. The continuous performance test (CPT) is the most frequently used direct measure of inattention and impulsivity. This meta-analysis compared CPT performance between boys and girls with and without ADHD. Method: All peer-reviewed ADHD studies published between 1980 and…

  6. AFM nanoscale indentation in air of polymeric and hybrid materials with highly different stiffness

    NASA Astrophysics Data System (ADS)

    Suriano, Raffaella; Credi, Caterina; Levi, Marinella; Turri, Stefano

    2014-08-01

    In this study, nanomechanical properties of a variety of polymeric materials was investigated by means of AFM. In particular, selecting different AFM probes, poly(methyl methacrylate) (PMMA), polydimethylsiloxane (PDMS) bulk samples, sol-gel hybrid thin films and hydrated hyaluronic acid hydrogels were indented in air to determine the elastic modulus. The force-distance curves and the indentation data were found to be greatly affected by the cantilever stiffness and by tip geometry. AFM indentation tests show that the choice of the cantilever spring constant and of tip shape is crucially influenced by elastic properties of samples. When adhesion-dominated interactions occur between the tip and the surface of samples, force-displacement curves reveal that a suitable functionalization of AFM probes allows the control of such interactions and the extraction of Young' modulus from AFM curves that would be otherwise unfeasible. By applying different mathematical models depending on AFM probes and materials under investigation, the values of Young's modulus were obtained and compared to those measured by rheological and dynamic mechanical analysis or to literature data. Our results show that a wide range of elastic moduli (10 kPa-10 GPa) can be determined by AFM in good agreement with those measured by conventional macroscopic measurements.

  7. Highly nonlinear stress-relaxation response of articular cartilage in indentation: Importance of collagen nonlinearity.

    PubMed

    Mäkelä, J T A; Korhonen, R K

    2016-06-14

    Modern fibril-reinforced computational models of articular cartilage can include inhomogeneous tissue composition and structure, and nonlinear mechanical behavior of collagen, proteoglycans and fluid. These models can capture well experimental single step creep and stress-relaxation tests or measurements under small strains in unconfined and confined compression. Yet, it is known that in indentation, especially at high strain velocities, cartilage can express highly nonlinear response. Different fibril reinforced poroelastic and poroviscoelastic models were used to assess measured highly nonlinear stress-relaxation response of rabbit articular cartilage in indentation. Experimentally measured depth-dependent volume fractions of different tissue constituents and their mechanical nonlinearities were taken into account in the models. In particular, the collagen fibril network was modeled using eight separate models that implemented five different constitutive equations to describe the nonlinearity. These consisted of linear elastic, nonlinear viscoelastic and multiple nonlinear elastic representations. The model incorporating the most nonlinearly increasing Young׳s modulus of collagen fibrils as a function of strain captured best the experimental data. Relative difference between the model and experiment was ~3%. Surprisingly, the difference in the peak forces between the experiment and the model with viscoelastic collagen fibrils was almost 20%. Implementation of the measured volume fractions did not improve the ability of the model to capture the measured mechanical data. These results suggest that a highly nonlinear formulation for collagen fibrils is needed to replicate multi-step stress-relaxation response of rabbit articular cartilage in indentation with high strain rates. PMID:27130474

  8. Noncontact evaluation of articular cartilage degeneration using a novel ultrasound water jet indentation system.

    PubMed

    Lu, M-H; Zheng, Y P; Huang, Q-H; Ling, C; Wang, Q; Bridal, L; Qin, L; Mak, A

    2009-01-01

    We previously reported a noncontact ultrasound water jet indentation system for measuring and mapping tissue mechanical properties. The key idea was to utilize a water jet as an indenter as well as the coupling medium for high-frequency ultrasound. In this paper, the system was employed to assess articular cartilage degeneration, using stiffness ratio as an indicator of the mechanical properties of samples. Both the mechanical and acoustical properties of intact and degenerated bovine patellar articular cartilage (n = 8) were obtained in situ. It was found that the stiffness ratio was reduced by 44 +/- 17% after the articular cartilage was treated by 0.25% trypsin at 37 degrees C for 4 h while no significant difference in thickness was observed between the intact and degenerated samples. A significant decrease of 36 +/- 20% in the peak-to-peak amplitude of ultrasound echoes reflected from the cartilage surface was also found for the cartilage samples treated by trypsin. The results also showed that the stiffness obtained with the new method highly correlated with that measured using a standard mechanical testing protocol. A good reproducibility of the measurements was demonstrated. The present results showed that the ultrasound water jet indentation system may provide a potential tool for the non-destructive evaluation of articular cartilage degeneration by simultaneously obtaining mechanical properties, acoustical properties, and thickness data. PMID:19011965

  9. Assessing strain mapping by electron backscatter diffraction and confocal Raman microscopy using wedge-indented Si.

    PubMed

    Friedman, Lawrence H; Vaudin, Mark D; Stranick, Stephan J; Stan, Gheorghe; Gerbig, Yvonne B; Osborn, William; Cook, Robert F

    2016-04-01

    The accuracy of electron backscatter diffraction (EBSD) and confocal Raman microscopy (CRM) for small-scale strain mapping are assessed using the multi-axial strain field surrounding a wedge indentation in Si as a test vehicle. The strain field is modeled using finite element analysis (FEA) that is adapted to the near-indentation surface profile measured by atomic force microscopy (AFM). The assessment consists of (1) direct experimental comparisons of strain and deformation and (2) comparisons in which the modeled strain field is used as an intermediate step. Direct experimental methods (1) consist of comparisons of surface elevation and gradient measured by AFM and EBSD and of Raman shifts measured and predicted by CRM and EBSD, respectively. Comparisons that utilize the combined FEA-AFM model (2) consist of predictions of distortion, strain, and rotation for comparison with EBSD measurements and predictions of Raman shift for comparison with CRM measurements. For both EBSD and CRM, convolution of measurements in depth-varying strain fields is considered. The interconnected comparisons suggest that EBSD was able to provide an accurate assessment of the wedge indentation deformation field to within the precision of the measurements, approximately 2×10(-4) in strain. CRM was similarly precise, but was limited in accuracy to several times this value. PMID:26939030

  10. Residual stress and plastic anisotropy in indented 2024-T351 aluminum disks

    SciTech Connect

    Clausen, Bjorn; Prime, Michael B; Saurabh, Kabra; Brown, Donald W; Pagliaro, Pierluigi; Backlund, Peter; Shaw, Sanjiv; Criss, Everett

    2009-01-01

    Recent studies have proven that generating a well defined residual stress state using the indented disk approach is an excellent way to validate experimental and modeling techniques for measuring and predicting residual stresses. The previous studies dealt with indented stainless steel disks, and included experimental determination of residual stresses using the Contour Method and neutron diffraction measurements. The measured residual stress states showed good agreement between the techniques, and a Finite Element Model predicted residual stress state based upon material properties determined form standard tension and compression/tension tests was also in good agreement with the measurements. In the present work, disks of 2024-T351 Aluminum were investigated. As before, the residual stress profile was measured using neutron diffraction and the Contour Method and Finite Element Modeling was employed to predict the residual stress profile. Analysis and comparison of the three techniques were complicated by the fact that the experimental data shows evidence of plastic anisotropy and strong Bauschinger effect within the indented disks.

  11. Shear elastic modulus estimation from indentation and SDUV on gelatin phantoms

    PubMed Central

    Amador, Carolina; Urban, Matthew W.; Chen, Shigao; Chen, Qingshan; An, Kai-Nan; Greenleaf, James F.

    2011-01-01

    Tissue mechanical properties such as elasticity are linked to tissue pathology state. Several groups have proposed shear wave propagation speed to quantify tissue mechanical properties. It is well known that biological tissues are viscoelastic materials; therefore velocity dispersion resulting from material viscoelasticity is expected. A method called Shearwave Dispersion Ultrasound Vibrometry (SDUV) can be used to quantify tissue viscoelasticity by measuring dispersion of shear wave propagation speed. However, there is not a gold standard method for validation. In this study we present an independent validation method of shear elastic modulus estimation by SDUV in 3 gelatin phantoms of differing stiffness. In addition, the indentation measurements are compared to estimates of elasticity derived from shear wave group velocities. The shear elastic moduli from indentation were 1.16, 3.40 and 5.6 kPa for a 7, 10 and 15% gelatin phantom respectively. SDUV measurements were 1.61, 3.57 and 5.37 kPa for the gelatin phantoms respectively. Shear elastic moduli derived from shear wave group velocities were 1.78, 5.2 and 7.18 kPa for the gelatin phantoms respectively. The shear elastic modulus estimated from the SDUV, matched the elastic modulus measured by indentation. On the other hand, shear elastic modulus estimated by group velocity did not agree with indentation test estimations. These results suggest that shear elastic modulus estimation by group velocity will be bias when the medium being investigated is dispersive. Therefore a rheological model should be used in order to estimate mechanical properties of viscoelastic materials. PMID:21317078

  12. Effects of microcomputer-administered diagnostic testing on immediate and continuing science achievement and attitudes

    NASA Astrophysics Data System (ADS)

    Waugh, Michael Leonard

    This investigation had three purposes: (1) to document any immediate and continuing benefits associated with the use of microcomputer-administered testing; (2) to determine what type of student might benefit most from microcomputer-administered diagnostic testing; and (3) to document the feasibility of microcomputer-administered diagnostic testing. The subjects of the study were enrolled in a biology course based on the BSCS Blue text. A random half of the students received behaviorally-stated performance objectives, while the remaining half received behaviorally-stated performance objectives in conjunction with microcomputer-administered diagnostic testing. The results of this study indicate that microcomputer-administered diagnostic testing can positively influence the immediate, but not the continuing, achievement of students in science. In addition, neither student aptitude nor achievement motivation level were found to interact with treatment or influence achievement. Affective data indicate that students react favorably to the use of objectives, computers, and diagnostic testing. Cost summary data reveal that when the expense of administering diagnostic testing by microcomputer is prorated over a five-year period, the cost of a diagnostic test is reduced to approximately three cents.

  13. Continuous-flow stirred-tank reactor 20-L demonstration test: Final report

    SciTech Connect

    Lee, D.D.; Collins, J.L.

    2000-02-01

    One of the proposed methods of removing the cesium, strontium, and transuranics from the radioactive waste storage tanks at Savannah River is the small-tank tetraphenylborate (TPB) precipitation process. A two-reactor-in-series (15-L working volume each) continuous-flow stirred-tank reactor (CSTR) system was designed, constructed, and installed in a hot cell to test the Savannah River process. The system also includes two cross-flow filtration systems to concentrate and wash the slurry produced in the process, which contains the bulk of radioactivity from the supernatant processed through the system. Installation, operational readiness reviews, and system preparation and testing were completed. The first test using the filtration systems, two CSTRs, and the slurry concentration system was conducted over a 61-h period with design removal of Cs, Sr, and U achieved. With the successful completion of Test 1a, the following tests, 1b and 1c, were not required.

  14. Influence of indenter tip geometry on elastic deformation during nanoindentation

    SciTech Connect

    Bei, Hongbin; George, Easo P; Hay, J. L.; Pharr, George Mathews

    2005-01-01

    Nanoindentation with a Berkovich indenter is commonly used to investigate the mechanical behavior of small volumes of materials. To date, most investigators have made the simplifying assumption that the tip is spherical. In reality, indenter tips are much more complex. Here, we develop a new method to describe the tip shape using the experimentally determined area function of the indenter at small depths (0--100 nm). Our analysis accurately predicts the elastic load-displacement curve and allows the theoretical strength of a material to be determined from pop-in data. Application of our new method to single crystal Cr{sub 3}Si shows that the predicted theoretical strengths are within 12% of the ideal strength G/2{pi}, where G is the shear modulus.

  15. Indentation size effect and the plastic compressibility of glass

    SciTech Connect

    Smedskjaer, Morten M.

    2014-06-23

    Oxide glasses exhibit significant densification under an applied isostatic pressure at the glass transition temperature. The glass compressibility is correlated with the chemical composition and atomic packing density, e.g., borate glasses with planar triangular BO{sub 3} units are more disposed for densification than silicate glasses with tetrahedral units. We here show that there is a direct relation between the plastic compressibility following hot isostatic compression and the extent of the indentation size effect (ISE), which is the decrease of hardness with indentation load exhibited by most materials. This could suggest that the ISE is correlated with indentation-induced shear bands, which should form in greater density when the glass network is more adaptable to volume changes through structural and topological rearrangements under an applied pressure.

  16. Thermal wave imaging of indented diamond coated WC

    SciTech Connect

    Feldman, A.

    1997-07-01

    Photothermal radiometry has been used to obtain thermal wave images in the vicinity of indentations in WC{endash}6{percent}Ni coated with chemical vapor deposited (CVD) diamond. Features in the magnitude and phase of the thermal signal profile are consistent with a one dimensional thermal wave theory that assumes (i) an air gap extending well beyond the visibly observable indented region, and (ii) a thermal resistance interface between the diamond film and the substrate over the entire coated surface. The theory allows us to estimate the air gap thickness, which decreases as the distance from the indented region increases. Air gap variations of tens of nanometers appear to be easily detectable. {copyright} {ital 1997 Materials Research Society.}

  17. Elastic anisotropy of uniaxial mineralized collagen fibers measured using two-directional indentation. Effects of hydration state and indentation depth.

    PubMed

    Spiesz, Ewa M; Roschger, Paul; Zysset, Philippe K

    2012-08-01

    Mineralized turkey leg tendon (MTLT) is an attractive model of mineralized collagen fibers, which are also present in bone. Its longitudinal structure is advantageous for the relative simplicity in modeling, yet its anisotropic elastic properties remain unknown. The aim of this study was to quantify the extent of elastic anisotropy of mineralized collagen fibers by using nano- and microindentation to probe a number on MTLT samples in two orthogonal directions. The large dataset allowed the quantification of the extent of anisotropy, depending on the final indentation depth and on the hydration state of the sample. Anisotropy was observed to increase with the sample re-hydration process. Artifacts of indentation in a transverse direction to the main axis of the mineralized tendons in re-hydrated condition were observed. The indentation size effect, that is, the increase of the measured elastic properties with decreasing sampling volume, reported previously on variety of materials, was also observed in MTLT. Indentation work was quantified for both directions of indentation in dried and re-hydrated conditions. As hypothesized, MTLT showed a higher extent of anisotropy compared to cortical and trabecular bone, presumably due to the alignment of mineralized collagen fibers in this tissue. PMID:22664658

  18. Inverse finite element methods for extracting elastic-poroviscoelastic properties of cartilage and other soft tissues from indentation

    NASA Astrophysics Data System (ADS)

    Namani, Ravi

    Mechanical properties are essential for understanding diseases that afflict various soft tissues, such as osteoarthritic cartilage and hypertension which alters cardiovascular arteries. Although the linear elastic modulus is routinely measured for hard materials, standard methods are not available for extracting the nonlinear elastic, linear elastic and time-dependent properties of soft tissues. Consequently, the focus of this work is to develop indentation methods for soft biological tissues; since analytical solutions are not available for the general context, finite element simulations are used. First, parametric studies of finite indentation of hyperelastic layers are performed to examine if indentation has the potential to identify nonlinear elastic behavior. To answer this, spherical, flat-ended conical and cylindrical tips are examined and the influence of thickness is exploited. Also the influence of the specimen/substrate boundary condition (slip or non-slip) is clarified. Second, a new inverse method---the hyperelastic extraction algorithm (HPE)---was developed to extract two nonlinear elastic parameters from the indentation force-depth data, which is the basic measurement in an indentation test. The accuracy of the extracted parameters and the influence of noise in measurements on this accuracy were obtained. This showed that the standard Berkovitch tip could only extract one parameter with sufficient accuracy, since the indentation force-depth curve has limited sensitivity to both nonlinear elastic parameters. Third, indentation methods for testing tissues from small animals were explored. New methods for flat-ended conical tips are derived. These account for practical test issues like the difficulty in locating the surface or soft specimens. Also, finite element simulations are explored to elucidate the influence of specimen curvature on the indentation force-depth curve. Fourth, the influence of inhomogeneity and material anisotropy on the extracted

  19. A New Tissue Resonator Indenter Device and Reliability Study

    PubMed Central

    Jia, Ming; Zu, Jean W.; Hariri, Alireza

    2011-01-01

    Knowledge of tissue mechanical properties is widely required by medical applications, such as disease diagnostics, surgery operation, simulation, planning, and training. A new portable device, called Tissue Resonator Indenter Device (TRID), has been developed for measurement of regional viscoelastic properties of soft tissues at the Bio-instrument and Biomechanics Lab of the University of Toronto. As a device for soft tissue properties in-vivo measurements, the reliability of TRID is crucial. This paper presents TRID’s working principle and the experimental study of TRID’s reliability with respect to inter-reliability, intra-reliability, and the indenter misalignment effect as well. PMID:22346623

  20. Design, fabrication and test of prototype furnace for continuous growth of wide silicon ribbon

    NASA Technical Reports Server (NTRS)

    Duncan, C. S.; Seidensticker, R. G.

    1976-01-01

    A program having the overall objective of growing wide, thin silicon dendritic web crystals quasi-continuously from a semi-automated facility is discussed. The design considerations and fabrication of the facility as well as the test and operation phase are covered; detailed engineering drawings are included as an appendix. During the test and operation phase of the program, more than eighty growth runs and numerous thermal test runs were performed. At the conclusion of the program, 2.4 cm wide web was being grown at thicknesses of 100 to 300 micrometers. As expected, the thickness and growth rate are closely related. Solar cells made from this material were tested at NASA-Lewis and found to have conversion efficiencies comparable to devices fabricated from Czochralski material.

  1. Fabrication and wear test of a continuous fiber/particulate composite total surface hip replacement

    NASA Technical Reports Server (NTRS)

    Roberts, J. C.; Ling, F. F.; Jones, W. R., Jr.

    1981-01-01

    Continuous fiber woven E-glass composite femoral shells having the ame elastic properties as bone were fabricated. The shells were then encrusted with filled epoxy wear resistant coatings and run dry against ultrahigh molecular weight polyethylene acetabular cups in 42,000 and 250,000 cycle were tests on a total hip simulator. The tribological characteristics of these shells atriculating with the acetabular cups are comparable to a vitallium bal articulating with an ultrahigh molecular weight polyethylene cup.

  2. Testing of a Continuous Sampling Mercury CEM at the EPA-Rotary Kiln Incinerator Simulator Facility

    SciTech Connect

    D.P. Baldwin; S.J. Bajic; D.E. Eckels; D.S. Zamzow

    2002-04-12

    This report has been prepared to document the performance of the continuous sampling mercury monitoring system developed by Ames Laboratory for use as a continuous emission monitor (CEM). This work was funded by the U.S. Department of Energy, Office of Environmental Management, Office of Science and Technology, through the Mixed Waste Focus Area. The purpose of the project is to develop instrumentation and methods for spectroscopic field-monitoring applications. During FY01 this included continued development and testing of an echelle spectrometer system for the detection of mercury (Hg) by atomic absorption. Due to the relatively poor limits of detection for Hg by optical emission techniques, the CEM has been designed for the detection of elemental Hg by optical absorption. The sampling system allows continuous introduction of stack gas into the CEM for analysis of elemental and total Hg in the gas stream. A heated pyrolysis tube is used in this system to convert oxidized Hg compounds to elemental Hg prior to analysis for total Hg. The pyrolysis tube is bypassed to measure elemental Hg. The CEM is designed to measure the elemental Hg concentration of the gas sample, measure the total Hg concentration, perform a zero check (analysis of room air), and then re-zero the system (to correct for any instrumental drift that occurs over time). This is done in an automated, sequential measurement cycle to provide continuous monitoring of Hg concentrations in the stack gas. The continuous sampling Hg CEM was tested at the EPA-Rotary Kiln in Durham, NC at the beginning of FY02. This report describes the characteristics and performance of the system and the results of the field tests performed at EPA. The Hg CEM system was developed in response to the need of DOE and other organizations to monitor Hg that may be released during the processing or combustion of hazardous or mixed-waste materials. The promulgation of regulations limiting the release of Hg and requiring continuous

  3. Indentation experiments and simulation of ovine bone using a viscoelastic-plastic damage model

    PubMed Central

    Zhao, Yang; Wu, Ziheng; Turner, Simon; MacLeay, Jennifer; Niebur, Glen L.; Ovaert, Timothy C.

    2015-01-01

    Indentation methods have been widely used to study bone at the micro- and nanoscales. It has been shown that bone exhibits viscoelastic behavior with permanent deformation during indentation. At the same time, damage due to microcracks is induced due to the stresses beneath the indenter tip. In this work, a simplified viscoelastic-plastic damage model was developed to more closely simulate indentation creep data, and the effect of the model parameters on the indentation curve was investigated. Experimentally, baseline and 2-year postovariectomized (OVX-2) ovine (sheep) bone samples were prepared and indented. The damage model was then applied via finite element analysis to simulate the bone indentation data. The mechanical properties of yielding, viscosity, and damage parameter were obtained from the simulations. The results suggest that damage develops more quickly for OVX-2 samples under the same indentation load conditions as the baseline data. PMID:26136623

  4. Water jet indentation for local elasticity measurements of soft materials.

    PubMed

    Chevalier, N R; Dantan, Ph; Gazquez, E; Cornelissen, A J M; Fleury, V

    2016-01-01

    We present a novel elastography method for soft materials (100Pa-100kPa) based on indentation by a μm-sized water jet. We show that the jet creates a localized deformation ("cavity") of the material that can be easily visualized. We study experimentally how cavity width and depth depend on jet speed, height, incidence angle and sample elasticity. We describe how to calibrate the indenter using gels of known stiffness. We then demonstrate that the indenter yields quantitative elasticity values within 10% of those measured by shear rheometry. We corroborate our experimental findings with fluid-solid finite-element simulations that quantitatively predict the cavity profile and fluid flow lines. The water jet indenter permits in situ local stiffness measurements of 2D or 3D gels used for cell culture in physiological buffer, is able to assess stiffness heterogeneities with a lateral resolution in the range 50-500μm (at the tissue scale) and can be assembled at low cost with standard material from a biology laboratory. We therefore believe it will become a valuable method to measure the stiffness of a wide range of soft, synthetic or biological materials. PMID:26830759

  5. Membrane indentation triggers clathrin lattice reorganization and fluidization.

    PubMed

    Cordella, Nicholas; Lampo, Thomas J; Melosh, Nicholas; Spakowitz, Andrew J

    2015-01-21

    Clathrin-mediated endocytosis involves the coordinated assembly of clathrin cages around membrane indentations, necessitating fluid-like reorganization followed by solid-like stabilization. This apparent duality in clathrin's in vivo behavior provides some indication that the physical interactions between clathrin triskelia and the membrane effect a local response that triggers fluid-solid transformations within the clathrin lattice. We develop a computational model to study the response of clathrin protein lattices to spherical deformations of the underlying flexible membrane. These deformations are similar to the shapes assumed during intracellular trafficking of nanoparticles. Through Monte Carlo simulations of clathrin-on-membrane systems, we observe that these membrane indentations give rise to a greater than normal defect density within the overlaid clathrin lattice. In many cases, the bulk surrounding lattice remains in a crystalline phase, and the extra defects are localized to the regions of large curvature. This can be explained by the fact that the in-plane elastic stress in the clathrin lattice are reduced by coupling defects to highly curved regions. The presence of defects brought about by indentation can result in the fluidization of a lattice that would otherwise be crystalline, resulting in an indentation-driven, defect-mediated phase transition. Altering subunit elasticity or membrane properties is shown to drive a similar transition, and we present phase diagrams that map out the combined effects of these parameters on clathrin lattice properties. PMID:25412023

  6. Rigid indented cylindrical cathode for X-ray tube

    DOEpatents

    Hudgens, Claude R.

    1985-01-01

    A cathode assembly for a vacuum tube includes a wire filament, a straight bular anode parallel to and surrounding the wire filament, and insulating spacers for rigidly fastening the filament with respect to the anode, and with one side of the anode indented or flattened such that only one portion of the anode is heated to emitting temperatures by the filament.

  7. Indentation Measurements to Validate Dynamic Elasticity Imaging Methods.

    PubMed

    Altahhan, Khaldoon N; Wang, Yue; Sobh, Nahil; Insana, Michael F

    2016-09-01

    We describe macro-indentation techniques for estimating the elastic modulus of soft hydrogels. Our study describes (a) conditions under which quasi-static indentation can validate dynamic shear-wave imaging estimates and (b) how each of these techniques uniquely biases modulus estimates as they couple to the sample geometry. Harmonic shear waves between 25 and 400 Hz were imaged using ultrasonic Doppler and optical coherence tomography methods to estimate shear dispersion. From the shear-wave speed of sound, average elastic moduli of homogeneous samples were estimated. These results are compared directly with macroscopic indentation measurements measured two ways. One set of measurements applied Hertzian theory to the loading phase of the force-displacement curves using samples treated to minimize surface adhesion forces. A second set of measurements applied Johnson-Kendall-Roberts theory to the unloading phase of the force-displacement curve when surface adhesions were significant. All measurements were made using gelatin hydrogel samples of different sizes and concentrations. Agreement within 5% among elastic modulus estimates was achieved for a range of experimental conditions. Consequently, a simple quasi-static indentation measurement using a common gel can provide elastic modulus measurements that help validate dynamic shear-wave imaging estimates. PMID:26376923

  8. Prediction of Indentation Behavior of Superelastic TiNi

    NASA Astrophysics Data System (ADS)

    Neupane, Rabin; Farhat, Zoheir

    2014-09-01

    Superelastic TiNi shape memory alloys have been extensively used in various applications. The great interest in TiNi alloys is due to its unique shape memory and superelastic effects, along with its superior wear and dent resistance. Assessment of mechanical properties and dent resistance of superelastic TiNi is commonly performed using indentation techniques. However, the coupling of deformation and reversible martensitic transformation of TiNi under indentation conditions makes the interpretation of results challenging. An attempt is made to enhance current interpretation of indentation data. A load-depth curve is predicted that takes into consideration the reversible martensitic transformation. The predicted curve is in good agreement with experimental results. It is found in this study that the elastic modulus is a function of indentation depth. At shallow depths, the elastic modulus is high due to austenite dominance, while at high depths, the elastic modulus drops as the depth increases due to austenite to martensite transition, i.e., martensite dominance. It is also found that TiNi exhibits superior dent resistance compared to AISI 304 steel. There is two orders of magnitude improvement in dent resistance of TiNi in comparison to AISI 304 steel.

  9. Wavelet Processing of Continuous Scanning Laser Doppler Vibrometry data in Non-Destructive Testing

    NASA Astrophysics Data System (ADS)

    Chiariotti, P.; Revel, G. M.; Martarelli, M.

    2015-11-01

    The present paper proposes a novel non-destructive testing procedure based on the exploitation of the simultaneous time and spatial sampling provided by Continuous Scanning Laser Doppler Vibrometry (CSLDV) and the feature extraction capabilities of wavelet-based processing. Two criteria for selecting in an objective way the mother-wavelet to be used in the decomposition procedure, the Relative Wavelet Energy and Energy to Shannon Entropy Ratio, are compared in terms of capability of best locating the damage. The paper demonstrates the applicability of the procedure for the identification of superficial and in-depth defects in simulated and real test cases when an area scan is performed over the test sample. The method shows promising results, since defects are identified in different severity conditions.

  10. NON-DESTRUCTIVE TBC SPALLATION DETECTION BY A MICRO-INDENTATION METHOD

    SciTech Connect

    J. M. Tannenbaum; B.S.-J. Kang; M.A. Alvin

    2010-06-18

    In this research, a load-based depth-sensing micro-indentation method for spallation detection and damage assessment of thermal barrier coating (TBC) materials is presented. A non-destructive multiple loading/partial unloading testing methodology was developed where in stiffness responses of TBC coupons subjected to various thermal cyclic loading conditions were analyzed to predict the spallation site and assess TBC degradation state. The measured stiffness responses at various thermal loading cycles were used to generate time-series color maps for correlation with accumulation of TBC residual stress states. The regions with higher stiffness responses can be linked to a rise in out-of-plane residual stress located near or at the yttria stabilized zirconia (YSZ)/thermally grown oxide (TGO) interface, which is ultimately responsible for initiating TBC spallation failure. A TBC thermal exposure testing plan was carried out where time-series cross-sectional microstructural analyses of damage accumulation and spallation failure associated with the evolution of bond coat/TGO/top coat composite (e.g. thickness, ratcheting, localized oxidations, etc.) of air plasma sprayed (APS) TBCs were evaluated and correlated to the measured stiffness responses at various thermal cycles. The results show that the load-based micro-indentation test methodology is capable of identifying the spallation site(s) before actual occurrence. This micro-indentation technique can be viewed as a viable non-destructive evaluation (NDE) technique for determining as-manufactured and process-exposed TBCs. This technique also shows promise for the development of a portable instrument for on-line, in-situ spallation detection/prediction of industrial-size TBC turbine components.

  11. Online measurement of motivational processes: introducing the Continuous Delay Aversion Test (ConDAT).

    PubMed

    Müller, Ueli C; Sonuga-Barke, Edmund J S; Brandeis, Daniel; Steinhausen, Hans-Christoph

    2006-02-15

    The Continuous Delay Aversion Test (ConDAT), a new computer task for online monitoring and continuously measuring delay aversion (DA), is introduced. DA is a motivational style related to a shortened delay gradient which is proposed as a major endophenotype of attention deficit hyperactivity disorder (ADHD). It is characterised by avoiding or escaping from delay-rich situations despite the prospects of a reward. In each ConDAT trial the rapidly diminishing reward/delay ratio, which tends asymptotically towards zero, is visually presented on the computer screen. The test subject is permanently confronted with the question whether to quit or to continue the trial in the face of the deteriorating reward/time ratio. An elaborated control of stimuli and responses, including the sending of trigger codes to external recording devices, makes the task useful for neurophysiological or brain imaging experiments. Compared to existing tasks, the ConDAT is more flexible and sensitive due to its asymptotic open-ended trials and the interval-scaled output measure. Pilot data give evidence for satisfactory reliability and external validity of the task. PMID:16376991

  12. Morphometric Analysis of Major Catchments Draining the Adriatic Indenter

    NASA Astrophysics Data System (ADS)

    Robl, Jörg; Heberer, Bianca; Neubauer, Franz; Prasicek, Günther; Hergarten, Stefan

    2016-04-01

    Topography and relief in collisional orogens such as the European Alps result from the interplay of uplift driven by plate convergence and crustal shortening, and erosional surface processes that act along evolving topographic gradients and counteract topography formation. Due to ongoing indentation of the Adriatic indenter into the Eastern Alps, the eastern segment of the Adriatic indenter is one of the tectonically most active zones of the Central Mediterranean region. The region is characterized by numerous earthquakes, distinct spatial gradients in recent uplift rates and exhumation level, and active faulting. However, the predominance of carbonaceous lithology hindered low-temperature thermochronology and cosmogenic nuclide dating, so that timing, rates and drivers of south-alpine topography development are still not well constrained. Further on, a systematic morphometric analysis of rivers draining the south-alpine indenter is still missing. In this study we fill this gap and investigate the interplay of tectonics and climate by a morphometric analysis of drainage systems of the eastern segment of the Adriatic indenter. We systematically extract a variety of characteristic channel metrics of four major drainage systems (Adige, Brenta, Piave, and Tagliamento) of this domain and interpret the morphometric results in terms of (a) lithological effects such as erodibility contrasts and karstification, (b) spatially variable uplift rates, (c) base level lowering caused by glacial erosion and possible Messinian preconditioning, and (d) the migration of drainage divides. We find a clear correlation between the normalized steepness index (ksn) and bedrock type. ksn - values are systematically increased whenever rivers incise into the basement of the south-alpine indenter. However, the outcrop of the basement indicates a high level of exhumation and thus the highest overall uplift of the domain such that both increased uplift rates and low rock erodibility may be

  13. Anterior-posterior asymmetry in iris mechanics measured by indentation.

    PubMed

    Whitcomb, Julie E; Amini, Rouzbeh; Simha, Narendra K; Barocas, Victor H

    2011-10-01

    Indentation and histological analysis of the porcine iris were done to assess the relative stiffness of the anterior (stroma) and posterior (dilator and sphincter) layers. The dimensions of the constituent structures were documented histologically by staining with a monoclonal anti-human α-smooth muscle actin antibody to determine the location of the stroma, sphincter, and dilator. Intact porcine irides (4-8 h post-mortem) were bisected into two equal C-shaped halves to indent both surfaces. Indentation experiments were performed using a 1 mm cylindrical indenter tip. The load-displacement curve for each experiment was used to estimate effective instantaneous and equilibrium moduli for the anterior and posterior surfaces of the tissue. A total of 18 irides (9 pairs) with 3-5 indentations per iris surface was performed. The average thickness of the samples was 550 μm; the indentation depth was limited to 60-100 μm depending on the thickness of the sample at each point. Posterior surface indentation gave larger forces than anterior, with the resulting instantaneous modulus of 6.0 ± 0.6 kPa versus 4.0 ± 0.5 kPa (mean ± 95% CI, n = 45, p < 0.001) and equilibrium modulus of 4.4 ± 0.9 versus 2.3 ± 0.3 (p = 0.007). The stress-relaxation analysis revealed that the anterior surface had a shorter relaxation time (121.31 ± 6.84 s) than the posterior surface (210.61 ± 9.41 s, p = 0.03), perhaps due to the permeability of the stroma. Recognizing that our effective modulus calculations in this study did not account for heterogeneity, viscoelasticity, or poroelasticity, we conclude that the posterior components of the iris - dilator, pigment epithelium, and sphincter - are on average stiffer than the stroma and anterior border layer. PMID:21787771

  14. Continuous bench-scale slurry catalyst testing direct coal liquefaction rawhide sub-bituminous coal

    SciTech Connect

    Bauman, R.F.; Coless, L.A.; Davis, S.M.

    1995-12-31

    In 1992, the Department of Energy (DOE) sponsored research to demonstrate a dispersed catalyst system using a combination of molybdenum and iron precursors for direct coal liquefaction. This dispersed catalyst system was successfully demonstrated using Black Thunder sub-bituminous coal at Wilsonville, Alabama by Southern Electric International, Inc. The DOE sponsored research continues at Exxon Research and Development Laboratories (ERDL). A six month continuous bench-scale program using ERDL`s Recycle Coal Liquefaction Unit (RCLU) is planned, three months in 1994 and three months in 1995. The initial conditions in RCLU reflect experience gained from the Wilsonville facility in their Test Run 263. Rawhide sub-bituminous coal which is similar to the Black Thunder coal tested at Wilsonville was used as the feed coal. A slate of five dispersed catalysts for direct coal liquefaction of Rawhide sub-bituminous coal has been tested. Throughout the experiments, the molybdenum addition rate was held constant at 100 wppm while the iron oxide addition rate was varied from 0.25 to 1.0 weight percent (dry coal basis). This report covers the 1994 operations and accomplishments.

  15. Temperature dependence of the anisotropic deformation of Zr-2.5%Nb pressure tube material during micro-indentation

    NASA Astrophysics Data System (ADS)

    Bose, B.; Klassen, R. J.

    2011-12-01

    The effect of temperature on the anisotropic plastic deformation of textured Zr-2.5%Nb pressure tube material was studied using micro-indentation tests performed in the axial, radial, and transverse directions of the tube over the temperature range from 25 to 400 °C. The ratio of the indentation stress in the transverse direction relative to that in the radial and axial directions was 1.29:1 and 1.26:1 at 25 °C but decreased to 1.22:1 and 1.05:1 at 400 °C. The average activation energy of the obstacles that limit the rate of indentation creep increases, from 0.72 to 1.33 eV, with increasing temperature from 25 to 300 °C and is independent of indentation direction. At temperature between 300 °C and 400 °C the measured activation energy is considerably reduced for indentation creep in the transverse direction relative to that of either the axial or radial directions. We conclude that, over this temperature range, the strength of the obstacles that limit the time-dependent dislocation glide on the pyramidal slip system changes relative to that on the prismatic slip system. These findings provide new data on the temperature dependence of the yield stress and creep rate, particularly in the radial direction, of Zr-2.5%Nb pressure tubes and shed new light on the effect of temperature on the operation of dislocation glide on the prismatic and pyramidal slip systems which ultimately determines the degree of mechanical anisotropy in the highly textured Zr-2.5Nb pressure tube material used in CANDU nuclear reactors.

  16. Experimental test of the no-go theorem for continuous ψ-epistemic models

    PubMed Central

    Liao, Kai-Yu; Zhang, Xin-Ding; Guo, Guang-Zhou; Ai, Bao-Quan; Yan, Hui; Zhu, Shi-Liang

    2016-01-01

    Quantum states are the key mathematical objects in quantum theory; however, there is still much debate concerning what a quantum state truly represents. One such century-old debate is whether a quantum state is ontic or epistemic. Recently, a no-go theorem was proposed, stating that the continuous ψ-epistemic models cannot reproduce the measurement statistic of quantum states. Here we experimentally test this theorem with high-dimensional single photon quantum states without additional assumptions except for the fair-sampling assumption. Our experimental results reproduce the prediction of quantum theory and support the no-go theorem. PMID:27241283

  17. Use of Continuous Exponential Families to Link Forms via Anchor Tests. Research Report. ETS RR-11-11

    ERIC Educational Resources Information Center

    Haberman, Shelby J.; Yan, Duanli

    2011-01-01

    Continuous exponential families are applied to linking test forms via an internal anchor. This application combines work on continuous exponential families for single-group designs and work on continuous exponential families for equivalent-group designs. Results are compared to those for kernel and equipercentile equating in the case of chained…

  18. Design and testing of a new, simple continuous bent sagittally focusing monochromator

    SciTech Connect

    Kycia, S.; Inoue, K.; Shen, Q.

    1996-09-01

    A continuous bent sagittally focusing monochromator has been designed and built. The monochromator is compatible with the present single-point bender apparatus designed for polygonal (ribbed) triangular sagittally focusing monochromators. This monochromator implements a new design concept taking advantage of a tapered rectangular wafer to allow for sagittal bending while simultaneously minimizing anticlastic bending. The monochromator was optimized to operate at x-ray energies in the range of 5 to 25 keV. The design was derived from finite element analysis using ANSYS. The monochromator performance was tested by means of an apparatus implementing an x-ray tube source and a double-crystal configuration. This method yields precise contour maps of the entire monochromator surface. Details of the monochromator design, test apparatus, and corresponding results will be presented. {copyright} {ital 1996 American Institute of Physics.}

  19. Performance test of Ti/Au bilayer TES microcalorimeter in combination with continuous ADR

    SciTech Connect

    Ishisaki, Y.; Akamatsu, H.; Hoshino, A.; Numazawa, T.; Kamiya, K.; Fujimoto, R.; Kojima, Y.; Shinozaki, K.; Mitsuda, K.; Shirron, P.

    2009-12-16

    Performance test of a Ti/Au bilayer TES microcalorimeter has been made in combination with a continuous adiabatic demagnetization refrigerator (CADR). The CADR has four stages of ADR to produce continuous cooling by recycling them in dedicated order, and is cryogen-free utilizing a 4K-GM refrigerator. We installed a Ti/Au bilayer TES microcalorimeter and 420-series SQUID array to readout the X-ray signal on the 1st (coldest) stage of the CADR. We successfully operated the CADR at temperature of 120 mK in continuous mode more than 27 hr, however, FWHM energy resolution of the TES microcalorimeter was degraded to 45 eV at 6 keV, as compared to 10 eV when measured in a dilution refrigerator. This is mainly because the temperature stability was not good enough (about 0.6 mK) and the operation temperature was not sufficiently lower than the transition temperature T{sub c} = 135mK of the TES. We operated the TES microcalorimeter at the operation temperature of 105 mK in one-shot mode and the resolution was improved to 30 eV. We also found that the operating point of the TES was affected by the magnetic field of the 3rd and 4th ADR recycle. More complete shielding of the magnetic field is essential for further improvement of the performance of the TES microcalorimeter.

  20. Effect of Heparin on Coagulation Tests: A Comparison of Continuous and Bolus Infusion in Haemodialysis Patients

    PubMed Central

    Nasiri, Ali Akbar; Ahmadidarrehsima, Sudabeh; Balouchi, Abbas; Moghadam, Mahdiye Poodine

    2016-01-01

    Introduction Haemodialysis is one of the most conventional treatments of chronic renal failure. The risk of clot formation is high during haemodialysis due to regular contact of blood with the surfaces of foreign objects such as catheters, dialyzers’ membrane, and other materials used for dialysis. Therefore, to prevent clot formation during haemodialysis, the dialysis system requires anticoagulation; this is usually done by heparin. Aim The present study aimed to compare two heparinization methods and determine the proper impacts of these methods. Materials and Methods In this quasi-experimental study, 80 haemodialysis patients covered by the dialysis center of Amir-al-momenin Hospital of Zabol were studied in two 40-member groups of heparin therapy methods of bolus injection and continuous infusion. PT and PTT were measured in blood samples collected from all patients before starting haemodialysis. The first group received 3000 units of heparin once the haemodialysis machine started to work and 2000 units of heparin two hours later as bolus injection. In the second group, 1500 units of heparin was injected at the start of dialysis after then, 5000 units of heparin (one mL) were mixed with 11 mL of distilled water and infused using a heparin injection pump up to half an hour before the end of dialysis. At 30 minutes after starting dialysis and at the end of 4 hours of haemodialysis, PT and PTT were measured and compared between the two groups. Results According to the results, the mean partial thromboplastin time in the bolus and continuous heparin-receiving group was 41.75±6.29 and 37.90±4.77, respectively, which was statistically significant (p=0.036). But PT was 14.45±1.82 in the bolus heparin group and 13.95±1.39 in the continuous heparin group, which was not significant according to the results of independent t-test (p=0.336). Conclusion The results indicated a statistically significant difference between the bolus heparin injection and the continuous

  1. 42 CFR 84.155 - Airflow resistance test; Type C supplied-air respirator, continuous flow class and Type CE...

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 42 Public Health 1 2011-10-01 2011-10-01 false Airflow resistance test; Type C supplied-air respirator, continuous flow class and Type CE supplied-air respirator; minimum requirements. 84.155 Section... Respirators § 84.155 Airflow resistance test; Type C supplied-air respirator, continuous flow class and...

  2. Effect of Dermatan Sulfate on the Indentation and Tensile Properties of Articular Cartilage

    PubMed Central

    Hall, Melanie L.; Krawczak, David A.; Simha, Narendra K.; Lewis, Jack L.

    2009-01-01

    Objective This paper examines the hypothesis that the dermatan sulfate (DS) chain on decorin is a load carrying element in cartilage and that its damage or removal will alter the material properties. Methods To test this hypothesis, indentation and tensile testing of cartilage from bovine patella was performed before and after digestion with chondroitinase B (cB). Removal of significant amounts of DS by cB digestion was verified by Western blot analysis of proteoglycans extracted from whole and sectioned specimens. Specimens (control and treated) were subjected to a series of step-hold displacements. Elastic modulus during the step rise (rapid modulus) and at equilibrium (equilibrium modulus), and the relaxation function during each step were measured for test (cB and buffer) and control (buffer alone) conditions. Results cB had no effect on any of the viscoelastic mechanical properties measured, either in indentation or tension Conclusion Removing or damaging approximately 50% of the dermatan sulfate had no effect on the mechanical properties, strongly suggesting that dermatan sulfate either carries very low load or no load. PMID:19036614

  3. Adoption of Test Driven Development and Continuous Integration for the Development of the Trick Simulation Toolkit

    NASA Technical Reports Server (NTRS)

    Penn, John M.

    2013-01-01

    This paper describes the adoption of a Test Driven Development approach and a Continuous Integration System in the development of the Trick Simulation Toolkit, a generic simulation development environment for creating high fidelity training and engineering simulations at the NASA/Johnson Space Center and many other NASA facilities. It describes what was learned and the significant benefits seen, such as fast, thorough, and clear test feedback every time code is checked-in to the code repository. It also describes a system that encourages development of code that is much more flexible, maintainable, and reliable. The Trick Simulation Toolkit development environment provides a common architecture for user-defined simulations. Trick builds executable simulations using user-supplied simulation-definition files (S_define) and user supplied "model code". For each Trick-based simulation, Trick automatically provides job scheduling, checkpoint / restore, data-recording, interactive variable manipulation (variable server), and an input-processor. Also included are tools for plotting recorded data and various other supporting tools and libraries. Trick is written in C/C++ and Java and supports both Linux and MacOSX. Prior to adopting this new development approach, Trick testing consisted primarily of running a few large simulations, with the hope that their complexity and scale would exercise most of Trick's code and expose any recently introduced bugs. Unsurprising, this approach yielded inconsistent results. It was obvious that a more systematic, thorough approach was required. After seeing examples of some Java-based projects that used the JUnit test framework, similar test frameworks for C and C++ were sought. Several were found, all clearly inspired by JUnit. Googletest, a freely available Open source testing framework, was selected as the most appropriate and capable. The new approach was implemented while rewriting the Trick memory management component, to eliminate a

  4. Attention and response control in ADHD. Evaluation through integrated visual and auditory continuous performance test.

    PubMed

    Moreno-García, Inmaculada; Delgado-Pardo, Gracia; Roldán-Blasco, Carmen

    2015-01-01

    This study assesses attention and response control through visual and auditory stimuli in a primary care pediatric sample. The sample consisted of 191 participants aged between 7 and 13 years old. It was divided into 2 groups: (a) 90 children with ADHD, according to diagnostic (DSM-IV-TR) (APA, 2002) and clinical (ADHD Rating Scale-IV) (DuPaul, Power, Anastopoulos, & Reid, 1998) criteria, and (b) 101 children without a history of ADHD. The aims were: (a) to determine and compare the performance of both groups in attention and response control, (b) to identify attention and response control deficits in the ADHD group. Assessments were carried out using the Integrated Visual and Auditory Continuous Performance Test (IVA/CPT, Sandford & Turner, 2002). Results showed that the ADHD group had visual and auditory attention deficits, F(3, 170) = 14.38; p < .01, deficits in fine motor regulation (Welch´s t-test = 44.768; p < .001) and sensory/motor activity (Welch'st-test = 95.683, p < .001; Welch's t-test = 79.537, p < .001). Both groups exhibited a similar performance in response control, F(3, 170) = .93, p = .43.Children with ADHD showed inattention, mental processing speed deficits, and loss of concentration with visual stimuli. Both groups yielded a better performance in attention with auditory stimuli. PMID:25734571

  5. Finite-element modeling of soft tissue rolling indentation.

    PubMed

    Sangpradit, Kiattisak; Liu, Hongbin; Dasgupta, Prokar; Althoefer, Kaspar; Seneviratne, Lakmal D

    2011-12-01

    We describe a finite-element (FE) model for simulating wheel-rolling tissue deformations using a rolling FE model (RFEM). A wheeled probe performing rolling tissue indentation has proven to be a promising approach for compensating for the loss of haptic and tactile feedback experienced during robotic-assisted minimally invasive surgery (H. Liu, D. P. Noonan, B. J. Challacombe, P. Dasgupta, L. D. Seneviratne, and K. Althoefer, "Rolling mechanical imaging for tissue abnormality localization during minimally invasive surgery, " IEEE Trans. Biomed. Eng., vol. 57, no. 2, pp. 404-414, Feb. 2010; K. Sangpradit, H. Liu, L. Seneviratne, and K. Althoefer, "Tissue identification using inverse finite element analysis of rolling indentation," in Proc. IEEE Int. Conf. Robot. Autom. , Kobe, Japan, 2009, pp. 1250-1255; H. Liu, D. Noonan, K. Althoefer, and L. Seneviratne, "The rolling approach for soft tissue modeling and mechanical imaging during robot-assisted minimally invasive surgery," in Proc. IEEE Int. Conf. Robot. Autom., May 2008, pp. 845-850; H. Liu, P. Puangmali, D. Zbyszewski, O. Elhage, P. Dasgupta, J. S. Dai, L. Seneviratne, and K. Althoefer, "An indentation depth-force sensing wheeled probe for abnormality identification during minimally invasive surgery," Proc. Inst. Mech. Eng., H, vol. 224, no. 6, pp. 751-63, 2010; D. Noonan, H. Liu, Y. Zweiri, K. Althoefer, and L. Seneviratne, "A dual-function wheeled probe for tissue viscoelastic property identification during minimally invasive surgery," in Proc. IEEE Int. Conf. Robot. Autom. , 2008, pp. 2629-2634; H. Liu, J. Li, Q. I. Poon, L. D. Seneviratne, and K. Althoefer, "Miniaturized force indentation-depth sensor for tissue abnormality identification," IEEE Int. Conf. Robot. Autom., May 2010, pp. 3654-3659). A sound understanding of wheel-tissue rolling interaction dynamics will facilitate the evaluation of signals from rolling indentation. In this paper, we model the dynamic interactions between a wheeled probe and a

  6. Testing of Continuous Sampling Air-ICP and Mercury Systems as Continuous Emission Monitors at the Diagnostic Instrumentation and Analysis Laboratory

    SciTech Connect

    D.P. Baldwin; S.J. Bajic; D.E. Eckels; D.S. Zamzow; G.P. Miller; S. Tao; C.A. Waggoner

    2001-03-15

    This report has been prepared to document the performance of the continuous sampling reduced-pressure air-ICP-AES (inductively coupled plasma--atomic emission spectroscopy) and mercury-monitor systems developed by Ames Laboratory for use as continuous emission monitors (CEM). This work was funded by the U. S. Department of Energy, Office of Environmental Management, Office of Science and Technology, through the Mixed Waste Focus Area. The purpose of the project is to develop instrumentation and methods for spectroscopic field monitoring applications. During FY00 this included continued work on the development of the continuous sample introduction system and the multi-frequency AOTF-echelle spectrometer, used in conjunction with the reduced-pressure air-ICP-AES system as a multi-metal CEM. The assembly, development, and testing of an echelle spectrometer system for the detection of mercury (Hg) by atomic absorption was also completed during FY00. The continuous sampling system and the multi-metal air-ICP and mercury-monitor CEM systems were tested at Mississippi State University at the Diagnostic Instrumentation and Analysis Laboratory (DIAL) at the end of FY00. This report describes the characteristics and performance of these systems, and the results of the field tests performed at DIAL.

  7. Crack nucleation criterion and its application to impact indentation in glasses.

    PubMed

    Luo, Jian; Vargheese, K Deenamma; Tandia, Adama; Hu, Guangli; Mauro, John C

    2016-01-01

    Molecular dynamics (MD) simulations are used to directly observe nucleation of median cracks in oxide glasses under indentation. Indenters with sharp angles can nucleate median cracks in samples with no pre-existing flaws, while indenters with larger indenter angles cannot. Increasing the tip radius increases the critical load for nucleation of the median crack. Based upon an independent set of simulations under homogeneous loading, the fracture criterion in the domain of the principal stresses is constructed. The fracture criterion, or "fracture locus", can quantitatively explain the observed effects of indenter angle and indenter tip radius on median crack nucleation. Our simulations suggest that beyond the maximum principal stress, plasticity and multi-axial stresses should also be considered for crack nucleation under indentation, even for brittle glassy systems. PMID:27079431

  8. Indentation-induced formation of low-dimensional Si structures in KOH solution

    NASA Astrophysics Data System (ADS)

    Yang, Fuqian; Li, Ding

    2010-03-01

    Low-dimensional Si structures, including Si nanobelts and Si micropyramids, were formed on the surface of n-type silicon by microindentation and anisotropic etching in 30 wt% KOH solution at a temperature of 50 °C. The indentation was performed to create local plastic deformation and residual stresses. The residual stresses caused the formation of the Si nanobelts around the sites of indents on the surface of Si (1 1 1) and the Si micropyramids at the sites of indents on the surface of Si (1 0 0). The formation of the Si micropyramids was due to the local 'mask' created by the indentation and the residual stress around the indents. The residual hydrostatic stress at the tensile state increased the local etching rate, which resulted in a surface depression around the indents. The combination of indentation and wet etching process provides a maskless process to potentially produce low-dimensional Si structures in KOH solution at low temperatures.

  9. Crack nucleation criterion and its application to impact indentation in glasses

    PubMed Central

    Luo, Jian; Vargheese, K. Deenamma; Tandia, Adama; Hu, Guangli; Mauro, John C

    2016-01-01

    Molecular dynamics (MD) simulations are used to directly observe nucleation of median cracks in oxide glasses under indentation. Indenters with sharp angles can nucleate median cracks in samples with no pre-existing flaws, while indenters with larger indenter angles cannot. Increasing the tip radius increases the critical load for nucleation of the median crack. Based upon an independent set of simulations under homogeneous loading, the fracture criterion in the domain of the principal stresses is constructed. The fracture criterion, or “fracture locus”, can quantitatively explain the observed effects of indenter angle and indenter tip radius on median crack nucleation. Our simulations suggest that beyond the maximum principal stress, plasticity and multi-axial stresses should also be considered for crack nucleation under indentation, even for brittle glassy systems. PMID:27079431

  10. Crack nucleation criterion and its application to impact indentation in glasses

    NASA Astrophysics Data System (ADS)

    Luo, Jian; Vargheese, K. Deenamma; Tandia, Adama; Hu, Guangli; Mauro, John C.

    2016-04-01

    Molecular dynamics (MD) simulations are used to directly observe nucleation of median cracks in oxide glasses under indentation. Indenters with sharp angles can nucleate median cracks in samples with no pre-existing flaws, while indenters with larger indenter angles cannot. Increasing the tip radius increases the critical load for nucleation of the median crack. Based upon an independent set of simulations under homogeneous loading, the fracture criterion in the domain of the principal stresses is constructed. The fracture criterion, or “fracture locus”, can quantitatively explain the observed effects of indenter angle and indenter tip radius on median crack nucleation. Our simulations suggest that beyond the maximum principal stress, plasticity and multi-axial stresses should also be considered for crack nucleation under indentation, even for brittle glassy systems.