Science.gov

Sample records for continuous theta burst

  1. Continuous theta burst stimulation of angular gyrus reduces subjective recollection.

    PubMed

    Yazar, Yasemin; Bergström, Zara M; Simons, Jon S

    2014-01-01

    The contribution of lateral parietal regions such as the angular gyrus to human episodic memory has been the subject of much debate following widespread observations of left parietal activity in healthy volunteers during functional neuroimaging studies of memory retrieval. Patients with lateral parietal lesions are not amnesic, but recent evidence indicates that their memory abilities may not be entirely preserved. Whereas recollection appears intact when objective measures such as source accuracy are used, patients often exhibit reduced subjective confidence in their accurate recollections. When asked to recall autobiographical memories, they may produce spontaneous narratives that lack richness and specificity, but can remember specific details when prompted. Two distinct theoretical accounts have been proposed to explain these results: that the patients have a deficit in the bottom-up capturing of attention by retrieval output, or that they have an impairment in the subjective experience of recollection. The present study aimed to differentiate between these accounts using continuous theta burst stimulation (cTBS) in healthy participants to disrupt function of specific left parietal subregions, including angular gyrus. Inconsistent with predictions of the attentional theory, angular gyrus cTBS did not result in greater impairment of free recall than cued recall. Supporting predictions of the subjective recollection account, temporary disruption of angular gyrus was associated with highly accurate source recollection accuracy but a selective reduction in participants' rated source confidence. The findings are consistent with a role for angular gyrus in the integration of memory features into a conscious representation that enables the subjective experience of remembering. PMID:25333985

  2. Network mechanisms of responsiveness to continuous theta-burst stimulation.

    PubMed

    Rizk, Sviatlana; Ptak, Radek; Nyffeler, Thomas; Schnider, Armin; Guggisberg, Adrian G

    2013-10-01

    Continuous theta-burst stimulation (cTBS) can modify behavior, but effects are inconsistent and their mechanisms insufficiently understood. As coherence in resting-state networks influences human behavior, we hypothesized that cTBS may act via modulation of neural oscillation coherence. This study used electroencephalography (EEG) to investigate whether behavioral effects of cTBS on visuospatial attention are associated with coherence changes in the attention network. In healthy human subjects, cTBS of the right posterior parietal cortex (PPC) and the right frontal eye field was compared with sham stimulation. Effects on visuospatial attention were quantified with a visual exploration task, and network effects were assessed from surface EEG with inverse solutions and source coherence analyses. Before stimulation, left visual exploration was linearly correlated with alpha-band coherence between the right temporo-parietal cortex and the rest of the brain. Posterior parietal cortex stimulation induced neglect-like visual exploration behavior in the majority, but not all, subjects. It reduced alpha-band coherence between the stimulation site and the rest of the brain but also enhanced it between the contralateral left parietal cortex and the rest of the brain. The contralateral increase correlated with the induced reduction in left visual attention. The behavioral response of individual participants to cTBS could be predicted by coherence in the right temporo-parietal junction before stimulation. Behavioral effects of cTBS therefore depend on network states before stimulation and are linearly associated with changes in network interactions. In particular, cTBS modulates an interhemispheric competition in alpha-band coherence. EEG network imaging might help to optimize therapeutic cTBS in the future. PMID:23941616

  3. Modulation of Visual Cortex Excitability by Continuous Theta Burst Stimulation Depends on Coil Type

    PubMed Central

    Brückner, Sabrina; Kammer, Thomas

    2016-01-01

    Subthreshold continuous theta burst stimulation of the visual cortex has been reported to cause inhibitory effects on phosphene threshold. In contrast, we observed no inhibition in a former study applying higher stimulation intensities. The main discrepancies between our experiments and the former studies were stimulation intensity and coil type. We aimed at investigating the role of these factors on the modulatory effects of continuous theta burst stimulation applied to the visual cortex. In a between-group-design, we used either a figure-of-eight-coil or a round coil, respectively. We measured phosphene thresholds prior and after continuous theta burst stimulation applied at 80% of individual phosphene threshold. With the figure-of-eight-coil, phosphene thresholds significantly decreased following stimulation. This is in line with the results of our former study but contrary to the increase observed in the other two studies. Using a round coil, no significant effect was observed. A correlation analysis revealed an inhibitory effect in subjects with higher phosphene thresholds only. Furthermore, the slope of the baseline phosphene threshold seems to predict the direction of modulation, independent from coil type. Thus, modulatory effects of continuous theta burst stimulation seem to depend on coil type and psychophysics parameters, probably due to different cortex volumes stimulated. Stochastic resonance phenomena might account for the differences observed. PMID:27459108

  4. Combined transcranial alternating current stimulation and continuous theta burst stimulation: a novel approach for neuroplasticity induction.

    PubMed

    Goldsworthy, Mitchell R; Vallence, Ann-Maree; Yang, Ruiting; Pitcher, Julia B; Ridding, Michael C

    2016-02-01

    Non-invasive brain stimulation can induce functionally relevant plasticity in the human cortex, making it potentially useful as a therapeutic tool. However, the induced changes are highly variable between individuals, potentially limiting research and clinical utility. One factor that might contribute to this variability is the level of cortical inhibition at the time of stimulation. The alpha rhythm (~ 8-13 Hz) recorded with electroencephalography (EEG) is thought to reflect pulsatile cortical inhibition; therefore, targeting non-invasive brain stimulation to particular phases of the alpha rhythm may provide an approach to enhance plasticity induction. Transcranial alternating current stimulation (tACS) has been shown to entrain cortical oscillations in a frequency-specific manner. We investigated whether the neuroplastic response to continuous theta burst stimulation (cTBS) was enhanced by timing bursts of stimuli to the peak or the trough of a tACS-imposed alpha rhythm. While motor evoked potentials (MEPs) were unaffected when cTBS was applied in-phase with the peak of the tACS-imposed oscillation, MEP depression was enhanced when cTBS was applied in-phase with the trough. This enhanced MEP depression was dependent on the individual peak frequency of the endogenous alpha rhythm recorded with EEG prior to stimulation, and was strongest in those participants classified as non-responders to standard cTBS. These findings suggest that tACS may be used in combination with cTBS to enhance the plasticity response. Furthermore, the peak frequency of endogenous alpha, as measured with EEG, may be used as a simple marker to pre-select those individuals likely to benefit from this approach. PMID:26663460

  5. Enhancing treatment effects by combining continuous theta burst stimulation with smooth pursuit training.

    PubMed

    Hopfner, Simone; Cazzoli, Dario; Müri, René M; Nef, Tobias; Mosimann, Urs P; Bohlhalter, Stephan; Vanbellingen, Tim; Nyffeler, Thomas

    2015-07-01

    Continuous theta burst stimulation (cTBS) represents a promising approach in the treatment of neglect syndrome. However, it is not known whether cTBS in conjunction with another technique may enhance the therapeutic effects. In the present sham-controlled study, we aimed to combine cTBS with smooth pursuit training (SPT), another method known to effectively improve neglect symptoms, and to evaluate whether this combination would result in a stronger effect than SPT alone. Eighteen patients with left spatial neglect after right-hemispheric stroke were included in the study and performed a cancellation task on a large 54.6″ touchscreen monitor. A sequential application of cTBS and SPT induced a significantly greater improvement of neglect than SPT alone. After the combined application of these two methods, patients detected significantly more targets and their cancellation behaviour presented a significantly greater shift towards the contralesional hemispace. We suggest that a combined, sequential application of cTBS and SPT is a promising new approach to treat neglect. PMID:25455568

  6. Continuous theta-burst stimulation demonstrates a causal role of premotor homunculus in action understanding.

    PubMed

    Michael, John; Sandberg, Kristian; Skewes, Joshua; Wolf, Thomas; Blicher, Jakob; Overgaard, Morten; Frith, Chris D

    2014-04-01

    Although it is well established that regions of premotor cortex (PMC) are active during action observation, it remains controversial whether they play a causal role in action understanding. In the experiment reported here, we used off-line continuous theta-burst stimulation (cTBS) to investigate this question. Participants received cTBS over the hand and lip areas of left PMC, in separate sessions, before completing a pantomime-recognition task in which half of the trials contained pantomimed hand actions, and half contained pantomimed mouth actions. The results reveal a double dissociation: Participants were less accurate in recognizing pantomimed hand actions after receiving cTBS over the hand area than over the lip area and less accurate in recognizing pantomimed mouth actions after receiving cTBS over the lip area than over the hand area. This finding constrains theories of action understanding by showing that somatotopically organized regions of PMC contribute causally to action understanding and, thus, that the mechanisms underpinning action understanding and action performance overlap. PMID:24549297

  7. Asymmetry in the dorsolateral prefrontal cortex and aggressive behavior: a continuous theta-burst magnetic stimulation study.

    PubMed

    Perach-Barzilay, N; Tauber, A; Klein, E; Chistyakov, A; Ne'eman, R; Shamay-Tsoory, S G

    2013-01-01

    Aggressive behavior is aimed at causing damage or pain to another individual. Aggression has been associated with structural and functional deficits in numerous brain areas, including the dorsolateral region of the prefrontal cortex (DLPFC), typically related to inhibition and impulse control. In this study, we used inhibitory continuous theta-burst magnetic stimulation (cTBS) to explore the role of the right and left DLPFC in aggression. Sixteen healthy right-handed volunteers underwent two sessions involving random, real and sham, right and left DLPFC stimulations. These sessions were followed by the Social Orientation Paradigm (SOP), a monetary task that was specially designed to assess participants' aggressive tendencies by measuring the patterns of their reactive aggression (a response to a perceived provocation) and proactive aggression (an aggressive act with goal-oriented purposes). Results indicate that using cTBS to target the left DLPFC was associated with a greater increase in aggressive responses than right DLPFC stimulation. This pattern of results was found for both reactive and proactive types of aggressive reactions. It is concluded that DLPFC asymmetry is involved in modulating reactive and proactive aggression. Our results are in line with recent studies suggesting that the left DLPFC plays a major role in aggressive behavior. PMID:22963204

  8. Continuous Theta Burst Stimulation (cTBS) on Left Cerebellar Hemisphere Affects Mental Rotation Tasks during Music Listening

    PubMed Central

    Picazio, Silvia; Oliveri, Massimiliano; Koch, Giacomo; Caltagirone, Carlo; Petrosini, Laura

    2013-01-01

    Converging evidence suggests an association between spatial and music domains. A cerebellar role in music-related information processing as well as in spatial-temporal tasks has been documented. Here, we investigated the cerebellar role in the association between spatial and musical domains, by testing performances in embodied (EMR) or abstract (AMR) mental rotation tasks of subjects listening Mozart Sonata K.448, which is reported to improve spatial-temporal reasoning, in the presence or in the absence of continuous theta burst stimulation (cTBS) of the left cerebellar hemisphere. In the absence of cerebellar cTBS, music listening did not influence either MR task, thus not revealing a “Mozart Effect”. Cerebellar cTBS applied before musical listening made subjects faster (P = 0.005) and less accurate (P = 0.005) in performing the EMR but not the AMR task. Thus, cerebellar inhibition by TBS unmasked the effect of musical listening on motor imagery. These data support a coupling between music listening and sensory-motor integration in cerebellar networks for embodied representations. PMID:23724071

  9. Variation in left posterior parietal-motor cortex interhemispheric facilitation following right parietal continuous theta-burst stimulation in healthy adults.

    PubMed

    Killington, Christopher; Barr, Christopher; Loetscher, Tobias; Bradnam, Lynley V

    2016-08-25

    Spatial neglect is modeled on an imbalance of interhemispheric inhibition (IHI); however evidence is emerging that it may not explain neglect in all cases. The aim of this study was to investigate the IHI imbalance model of visual neglect in healthy adults, using paired pulse transcranial magnetic stimulation to probe excitability of projections from posterior parietal cortex (PPC) to contralateral primary motor cortex (M1) bilaterally. Motor-evoked potentials (MEPs) were recorded from the first dorsal interossei and facilitation was determined as ratio of conditioned to non-conditioned MEP amplitude. A laterality index reflecting the balance of excitability between the two hemispheres was calculated. A temporal order judgment task (TOJ) assessed visual attention. Continuous theta-burst stimulation was used to transiently suppress right parietal cortex activity and the effect on laterality and judgment task measured, along with associations between baseline and post stimulation measures. Stimulation had conflicting results on laterality, with most participants demonstrating an effect in the negative direction with no decrement in the TOJ task. Correlation analysis suggests a strong association between laterality direction and degree of facilitation of left PPC-to right M1 following stimulation (r=.902), with larger MEP facilitation at baseline demonstrating greater reduction (r=-.908). Findings indicate there was relative balance between the cortices at baseline but right PPC suppression did not evoke left PPC facilitation in most participants, contrary to the IHI imbalance model. Left M1 facilitation prior to stimulation may predict an individual's response to continuous theta-burst stimulation of right PPC. PMID:27267243

  10. Multiple blocks of intermittent and continuous theta-burst stimulation applied via transcranial magnetic stimulation differently affect sensory responses in rat barrel cortex

    PubMed Central

    Thimm, Andreas; Funke, Klaus

    2015-01-01

    Cortical sensory processing varies with cortical state and the balance of inhibition to excitation. Repetitive transcranial magnetic stimulation (rTMS) has been shown to modulate human cortical excitability. In a rat model, we recently showed that intermittent theta-burst stimulation (iTBS) applied to the corpus callosum, to activate primarily supragranular cortical pyramidal cells but fewer subcortical neurons, strongly reduced the cortical expression of parvalbumin (PV), indicating reduced activity of fast-spiking interneurons. Here, we used the well-studied rodent barrel cortex system to test how iTBS and continuous TBS (cTBS) modulate sensory responses evoked by either single or double stimuli applied to the principal (PW) and/or adjacent whisker (AW) in urethane-anaesthetized rats. Compared to sham stimulation, iTBS but not cTBS particularly enhanced late (>18 ms) response components of multi-unit spiking and local field potential responses in layer 4 but not the very early response (<18 ms). Similarly, only iTBS diminished the suppression of the second response evoked by paired PW or AW–PW stimulation at 20 ms intervals. The effects increased with each of the five iTBS blocks applied. With cTBS a mild effect similar to that of iTBS was first evident after 4–5 stimulation blocks. Enhanced cortical c-Fos and zif268 expression but reduced PV and GAD67 expression was found only after iTBS, indicating increased cortical activity due to lowered inhibition. We conclude that iTBS but less cTBS may primarily weaken a late recurrent-type cortical inhibition mediated via a subset of PV+ interneurons, enabling stronger late response components believed to contribute to the perception of sensory events. PMID:25504571

  11. Differential effects of continuous theta burst stimulation over left premotor cortex and right prefrontal cortex on modulating upper limb somatosensory input.

    PubMed

    Brown, Matt J N; Staines, W Richard

    2016-02-15

    Somatosensory evoked potentials (SEPs) represent somatosensory processing in non-primary motor areas (i.e. frontal N30 and N60) and somatosensory cortices (i.e. parietal P50). It is well-known that the premotor cortex (PMC) and prefrontal cortex (PFC) are involved in the preparation and planning of upper limb movements but it is currently unclear how they modulate somatosensory processing for upper limb motor control. In the current study, two experiments examined SEP modulations after continuous theta burst stimulation (cTBS) was used to transiently disrupt the left PMC (Experiment 1) and right PFC (Experiment 2). Both Experiment 1 (n=15) and Experiment 2 (n=16) used pre-post experimental designs. In both experiments participants performed a task requiring detection of varying amplitudes of attended vibrotactile (VibT) stimuli to the left index finger (D2) and execution of a pre-matched finger sequence with the right (contralateral) hand to specific VibT targets. During the task, SEPs were measured to median nerve (MN) stimulations time-locked during pre-stimulus (250 ms before VibT), early response selection (250 ms after VibT), late preparatory (750 ms after VibT) and execution (1250 ms VibT) phases. The key findings of Experiment 1 revealed significant decreases in N30 and N60 peak amplitudes after cTBS to PMC. In contrast, the results of Experiment 2, also found significant decreased N60 peak amplitudes as well as trends for increased N30 and P50 peak amplitudes. A direct comparison of Experiment 1 and Experiment 2 confirmed differential modulation of N30 peak amplitudes after PMC (gated) compared to PFC (enhanced) cTBS. Collectively, these results support that both the left PMC and right PFC have modulatory roles on early somatosensory input into non-primary motor areas, such as PMC and supplementary motor area (SMA), represented by frontal N30 and N60 SEPs. These results confirm that PMC and PFC are both part of a network that regulates somatosensory input

  12. Effects of theta burst stimulation on referred phantom sensations in patients with spinal cord injury.

    PubMed

    Nardone, Raffaele; De Blasi, Pierpaolo; Höller, Yvonne; Taylor, Alexandra C; Brigo, Francesco; Trinka, Eugen

    2016-03-01

    To further explore the mechanisms underlying cortical reorganization in patients with phantom sensations after deafferentation, a repetitive transcranial magnetic stimulation study was carried out in two patients with referred phantom sensations (RPS) after incomplete spinal cord injury at the thoracic level. We delivered continuous (inhibitory), intermittent (excitatory), and placebo theta burst stimulation to the contralateral primary motor cortex (M1), primary somatosensory cortex (S1), and secondary somatosensory cortex (S2). Perception of RPS was significantly and transiently disrupted by inhibitory theta burst stimulation applied over S1 and, to a lesser extent, S2. This study supports the hypothesis that RPS depend on remapping in the somatosensory cortex and provides further electrophysiological evidence in vivo that cortical reorganizational processes are critically modulated by GABAergic mechanisms. Enhancement of GABAergic activity may block cortical reorganization, leading to RPS in spinal cord injury patients. PMID:26626415

  13. Effects of intermittent theta burst stimulation on spasticity after stroke.

    PubMed

    Kim, Dae Hyun; Shin, Ji Cheol; Jung, Seungsoo; Jung, Tae-Min; Kim, Deog Young

    2015-07-01

    Spasticity is a common cause of long-term disability in poststroke hemiplegic patients. We investigated whether intermittent theta burst stimulation (iTBS) could reduce upper-limb spasticity after a stroke. Fifteen hemiplegic stroke patients were recruited for a double-blind sham-controlled cross-over design study. A single session of iTBS or sham stimulation was delivered on the motor hotspot of the affected flexor carpi radialis muscle in a random and counterbalanced order with a 1-week interval. Modified Ashworth scale (MAS), modified Tardieu scale (MTS), H-wave/M-wave amplitude ratio, peak torque (PT), peak torque angle (PTA), work of affected wrist flexor, and rectified integrated electromyographic activity of the flexor carpi radialis muscle were measured before, immediately after, 30 min after, and 1 week after iTBS or sham stimulation. Repeated-measures analysis of variance showed a significant interaction between time and intervention for the MAS, MTS, PT, PTA, and rectified integrated electromyographic activity (P<0.05), indicating that these parameters were significantly improved by iTBS compared with sham stimulation. However, the H-wave/M-wave amplitude ratio and work were not affected. MAS and MTS significantly improved for at least 30 min after iTBS, but the other parameters only improved immediately after iTBS (P<0.05). In conclusion, iTBS on the affected hemisphere may help to reduce poststroke spasticity transiently. PMID:26011507

  14. Modulatory Effects of Theta Burst Stimulation on Cerebellar Nonsomatic Functions

    PubMed Central

    Demirtas-Tatlidede, Asli; Freitas, Catarina; Pascual-Leone, Alvaro; Schmahmann, Jeremy D.

    2011-01-01

    Clinical and functional imaging studies suggest that the cerebellar vermis is involved in the regulation of a range of nonsomatic functions including cardiovascular control, thirst, feeding behavior, and primal emotions. Cerebello-hypothalamic circuits have been postulated to be a potential neuroanatomical substrate underlying this modulation. We tested this putative relationship between the cerebellar vermis and nonsomatic functions by stimulating the cerebellum noninvasively via neuronavigated transcranial magnetic stimulation. In this randomized, counter-balanced, within-subject study, intermittent theta burst stimulation (TBS) was applied on three different days to the vermis and the right and left cerebellar hemispheres of 12 right-handed normal subjects with the aim of modulating activity in the targeted cerebellar structure. TBS-associated changes were investigated via cardiovascular monitoring, a series of emotionally arousing picture stimuli, subjective analog scales for primal emotions, and the Profile of Mood States test. All 36 sessions of cerebellar stimulation were tolerated well without serious adverse events. Cardiovascular monitoring pointed to a mild but significant decrease in heart rate subsequent to vermal stimulation; no changes were detected in systolic or diastolic blood pressure measurements. Subjective ratings detected a significant increase in Thirst and a trend toward increased Appetite following vermal stimulation. These observations are consistent with existing neurophysiological and neuroimaging data indicating a role for the cerebellum in the regulation of visceral responses. In conjunction with the modulatory function of the cerebellum, our results suggest a role for the vermis in somatovisceral integration likely through cerebello-hypothalamic pathways. Further research is warranted to elucidate the potential mechanisms underlying the cerebellar modulation of nonsomatic functions. PMID:21132574

  15. Theta-burst Transcranial Magnetic Stimulation Alters the Functional Topography of the Cortical Motor Network

    PubMed Central

    NOH, Nor Azila; FUGGETTA, Giorgio; MANGANOTTI, Paolo

    2015-01-01

    Background: Transcranial magnetic stimulation (TMS) is a non-invasive tool that is able to modulate the electrical activity of the brain depending upon its protocol of stimulation. Theta burst stimulation (TBS) is a high-frequency TMS protocol that is able to induce prolonged plasticity changes in the brain. The induction of plasticity-like effects by TBS is useful in both experimental and therapeutic settings; however, the underlying neural mechanisms of this modulation remain unclear. The aim of this study was to investigate the effects of continuous TBS (cTBS) on the intrahemispheric and interhemispheric functional connectivity of the resting and active brain. Methods: A total of 26 healthy humans were randomly divided into two groups that received either real cTBS or sham (control) over the left primary motor cortex. Surface electroencephalogram (EEG) was used to quantify the changes of neural oscillations after cTBS at rest and after a choice reaction time test. The cTBS-induced EEG oscillations were computed using spectral analysis of event-related coherence (ERCoh) of theta (4–7.5 Hz), low alpha (8–9.5 Hz), high alpha (10–12.5 Hz), low beta (13–19.5 Hz), and high beta (20–30 Hz) brain rhythms. Results: We observed a global decrease in functional connectivity of the brain in the cTBS group when compared to sham in the low beta brain rhythm at rest and high beta brain rhythm during the active state. In particular, EEG spectral analysis revealed that high-frequency beta, a cortically generated brain rhythm, was the most sensitive band that was modulated by cTBS. Conclusion: Overall, our findings suggest that cTBS, a TMS protocol that mimics the mechanism of long-term depression of synaptic plasticity, modulates motor network oscillations primarily at the cortical level and might interfere with cortical information coding. PMID:27006636

  16. Cerebellar theta burst stimulation dissociates memory components in eyeblink classical conditioning.

    PubMed

    Monaco, J; Casellato, C; Koch, G; D'Angelo, E

    2014-11-01

    The cerebellum plays a critical role in forming precisely timed sensory-motor associations. This process is thought to proceed through two learning phases: one leading to memory acquisition; and the other leading more slowly to memory consolidation and saving. It has been proposed that fast acquisition occurs in the cerebellar cortex, while consolidation is dislocated into the deep cerebellar nuclei. However, it was not clear how these two components could be identified in eyeblink classical conditioning (EBCC) in humans, a paradigm commonly used to investigate associative learning. In 22 subjects, we show that EBCC proceeded through a fast acquisition phase, returned toward basal levels during extinction and then was consolidated, as it became evident from the saving effect observed when re-testing the subjects after 1 week of initial training. The results were fitted using a two-state multi-rate learning model extended to account for memory consolidation. Transcranial magnetic stimulation was used to apply continuous theta-burst stimulation (cTBS) to the lateral cerebellum just after the first training session. Half of the subjects received real cTBS and half sham cTBS. After cTBS, but not sham cTBS, consolidation was unaltered but the extinction process was significantly impaired. These data suggest that cTBS can dissociate EBCC extinction (related to the fast learning process) from consolidation (related to the slow learning process), probably by acting through a selective alteration of cerebellar plasticity. PMID:25185744

  17. The effects of theta-burst stimulation on sleep and vigilance in humans

    PubMed Central

    Mensen, Armand; Gorban, Corina; Niklaus, Marcel; Kuske, Eva; Khatami, Ramin

    2014-01-01

    Repetitive transcranial magnetic stimulation (TMS) has become a popular tool to modulate neuronal networks and associated brain functions in both clinical and basic research. Yet few studies have examined the potential effects of cortical stimulation on general levels of vigilance. In this exploratory study, we used theta-burst protocols, both continuous (cTBS) and intermittent (iTBS) patterns, to examine whether inhibition or excitation of the left dorso-lateral prefrontal cortex (dlPFC) was able to induce reliable and acute changes to vigilance measures, compared to the left dorso-lateral associative visual cortex (dlAVC) as a control site in line with previous work. Partially sleep restricted participants underwent four separate sessions in a single day, in a between subjects design for TBS stimulation type and within subjects for locaton, each consisting of maintenance of wakefulness test (MWT), a sleep latency test, and a psychomotor vigilance task (PVT). TBS significantly affected measures of sleep consolidation, namely latency to sleep stage 2 and sleep efficiency, but had no effects on sleep drive or psychomotor vigilance levels for either TBS type or location. Contrary to our initial hypothesis of the dlAVC as a control site, stimulation to this region resulted in the largest differential effects between stimulation types. Moreover, the effect of TBS was found to be consistent throughout the day. These data may provide the basis for further investigation into therapeutic applications of TBS in sleep disorders. PMID:24971057

  18. Effects of two weeks of cerebellar theta burst stimulation in cervical dystonia patients.

    PubMed

    Koch, Giacomo; Porcacchia, Paolo; Ponzo, Viviana; Carrillo, Fatima; Cáceres-Redondo, María Teresa; Brusa, Livia; Desiato, Maria Teresa; Arciprete, Flavio; Di Lorenzo, Francesco; Pisani, Antonio; Caltagirone, Carlo; Palomar, Francisco J; Mir, Pablo

    2014-01-01

    Dystonia is generally regarded as a disorder of the basal ganglia and their efferent connections to the thalamus and brainstem, but an important role of cerebellar-thalamo-cortical (CTC) circuits in the pathophysiology of dystonia has been invoked. Here in a sham controlled trial, we tested the effects of two-weeks of cerebellar continuous theta burst stimulation (cTBS) in a sample of cervical dystonia (CD) patients. Clinical evaluations were performed by administering the Toronto Western Spasmodic Torticollis Rating Scale (TWSTRS) and the Burke-Fahn-Marsden Dystonia Rating Scale (BFMDRS). We used TMS to measure the inhibitory connectivity between the cerebellum and the contralateral motor cortex (cerebellar brain inhibition [CBI]), and the excitability of the contralateral primary motor cortex assessing intracortical inhibition (SICI), intracortical facilitation (ICF) and cortical silent period (CSP). Paired associative stimulation (PAS) was tested to evaluate the level and the topographical specificity of cortical plasticity, which is abnormally enhanced and non-focal in CD patients. Two weeks of cerebellar stimulation resulted in a small but significant clinical improvement as measured by the TWSTRS of approximately 15%. Cerebellar stimulation modified the CBI circuits and reduced the heterotopic PAS potentiation, leading to a normal pattern of topographic specific induced plasticity. These data provide novel evidence CTC circuits could be a potential target to partially control some dystonic symptoms in patients with cervical dystonia. PMID:24881805

  19. Perfusion MRI Indexes Variability in the Functional Brain Effects of Theta-Burst Transcranial Magnetic Stimulation

    PubMed Central

    Gratton, Caterina; Lee, Taraz G.; Nomura, Emi M.; D’Esposito, Mark

    2014-01-01

    Transcranial Magnetic Stimulation (TMS) is an important tool for testing causal relationships in cognitive neuroscience research. However, the efficacy of TMS can be variable across individuals and difficult to measure. This variability is especially a challenge when TMS is applied to regions without well-characterized behavioral effects, such as in studies using TMS on multi-modal areas in intrinsic networks. Here, we examined whether perfusion fMRI recordings of Cerebral Blood Flow (CBF), a quantitative measure sensitive to slow functional changes, reliably index variability in the effects of stimulation. Twenty-seven participants each completed four combined TMS-fMRI sessions during which both resting state Blood Oxygen Level Dependent (BOLD) and perfusion Arterial Spin Labeling (ASL) scans were recorded. In each session after the first baseline day, continuous theta-burst TMS (TBS) was applied to one of three locations: left dorsolateral prefrontal cortex (L dlPFC), left anterior insula/frontal operculum (L aI/fO), or left primary somatosensory cortex (L S1). The two frontal targets are components of intrinsic networks and L S1 was used as an experimental control. CBF changes were measured both before and after TMS on each day from a series of interleaved resting state and perfusion scans. Although TBS led to weak selective increases under the coil in CBF measurements across the group, individual subjects showed wide variability in their responses. TBS-induced changes in rCBF were related to TBS-induced changes in functional connectivity of the relevant intrinsic networks measured during separate resting-state BOLD scans. This relationship was selective: CBF and functional connectivity of these networks were not related before TBS or after TBS to the experimental control region (S1). Furthermore, subject groups with different directions of CBF change after TBS showed distinct modulations in the functional interactions of targeted networks. These results suggest

  20. Long-Term Potentiation by Theta-Burst Stimulation Using Extracellular Field Potential Recordings in Acute Hippocampal Slices.

    PubMed

    Abrahamsson, Therese; Lalanne, Txomin; Watt, Alanna J; Sjöström, P Jesper

    2016-01-01

    This protocol describes how to carry out theta-burst long-term potentiation (LTP) with extracellular field recordings in acute rodent hippocampal slices. This method is relatively simple and noninvasive and provides a way to sample many neurons simultaneously, making it suitable for applications requiring higher throughput than whole-cell recording. PMID:27250947

  1. The Contribution of Primary Motor Cortex Is Essential for Probabilistic Implicit Sequence Learning: Evidence from Theta Burst Magnetic Stimulation

    ERIC Educational Resources Information Center

    Wilkinson, Leonora; Teo, James T.; Obeso, Ignacio; Rothwell, John C.; Jahanshahi, Marjan

    2010-01-01

    Theta burst transcranial magnetic stimulation (TBS) is considered to produce plastic changes in human motor cortex. Here, we examined the inhibitory and excitatory effects of TBS on implicit sequence learning using a probabilistic serial reaction time paradigm. We investigated the involvement of several cortical regions associated with implicit…

  2. Transient Beneficial Effects of Excitatory Theta Burst Stimulation in a Patient with Phonological Agraphia after Left Supramarginal Gyrus Infarction

    ERIC Educational Resources Information Center

    Nardone, Raffaele; De Blasi, Pierpaolo; Zuccoli, Giulio; Tezzon, Frediano; Golaszewski, Stefan; Trinka, Eugen

    2012-01-01

    We report a patient showing isolated phonological agraphia after an ischemic stroke involving the left supramarginal gyrus (SMG). In this patient, we investigated the effects of focal repetitive transcranial magnetic stimulation (rTMS) given as theta burst stimulation (TBS) over the left SMG, corresponding to the Brodmann area (BA) 40. The patient…

  3. High amplitude theta wave bursts: a novel electroencephalographic feature of rem sleep and cataplexy.

    PubMed

    Lo Martire, Viviana Carmen; Bastianini, Stefano; Berteotti, Chiara; Silvani, Alessandro; Zoccoli, Giovanna

    2015-01-01

    High amplitude theta wave bursts (HATs) were originally described during REMS and cataplexy in ORX-deficient mice as a novel neurophysiological correlate of narcolepsy (Bastianini et al., 2012). This finding was replicated the following year by Vassalli et al. in both ORX-deficient narcoleptic mice and narcoleptic children during cataplexy episodes (Vassalli et al., 2013). The relationship between HATs and narcolepsy-cataplexy in mice and patients indicates that the lack of ORX peptides is responsible for this abnormal EEG activity, the physiological meaning of which is still unknown. This review aimed to explore different phasic EEG events previously described in the published literature in order to find analogies and differences with HATs observed in narcoleptic mice and patients. We found similarities in terms of morphology, frequency and duration between HATs and several physiological (mu and wicket rhythms, sleep spindles, saw-tooth waves) or pathological (SWDs, HVSs, bursts of polyphasic complexes EEG complexes reported in a mouse model of CJD, and BSEs) EEG events. However, each of these events also shows significant differences from HATs, and thus cannot be equaled to them. The available evidence thus suggests that HATs are a novel neurophysiological phenomenon. Further investigations on HATs are required in order to investigate their physiological meaning, to individuate their brain structure(s) of origin, and to clarify the neural circuits involved in their manifestation. PMID:26742662

  4. Theta burst stimulation to characterize changes in brain plasticity following mild traumatic brain injury: a proof-of-principle study

    PubMed Central

    Tremblay, Sara; Vernet, Marine; Bashir, Shahid; Pascual-Leone, Alvaro; Théoret, Hugo

    2016-01-01

    Purpose Recent studies investigating the acute effects of mild traumatic brain injury (mTBI) suggest the presence of unbalanced excitatory and inhibitory mechanisms within primary motor cortex (M1). Whether these abnormalities are associated with impaired synaptic plasticity remains unknown. Methods The effects of continuous theta burst stimulation (cTBS) on transcranial magnetic stimulation-induced motor evoked potentials (MEPs) were assessed on average two weeks and six weeks following mTBI in five individuals. Results The procedure was well-tolerated by all participants. Continuous TBS failed to induce a significant reduction of MEP amplitudes two weeks after the injury, but response to cTBS normalized six weeks following injury, as a majority of patients became asymptomatic. Conclusions These preliminary results suggest that cTBS can be used to assess M1 synaptic plasticity in the acute and sub-acute phases following mTBI and may provide insights into neurobiological substrates of symptoms and consequences of mTBI. PMID:25735241

  5. Interhemispheric Plasticity following Intermittent Theta Burst Stimulation in Chronic Poststroke Aphasia

    PubMed Central

    Griffis, Joseph C.; Nenert, Rodolphe; Allendorfer, Jane B.; Szaflarski, Jerzy P.

    2016-01-01

    The effects of noninvasive neurostimulation on brain structure and function in chronic poststroke aphasia are poorly understood. We investigated the effects of intermittent theta burst stimulation (iTBS) applied to residual language-responsive cortex in chronic patients using functional and anatomical MRI data acquired before and after iTBS. Lateralization index (LI) analyses, along with comparisons of inferior frontal gyrus (IFG) activation and connectivity during covert verb generation, were used to assess changes in cortical language function. Voxel-based morphometry (VBM) was used to assess effects on regional grey matter (GM). LI analyses revealed a leftward shift in IFG activity after treatment. While left IFG activation increased, right IFG activation decreased. Changes in right to left IFG connectivity during covert verb generation also decreased after iTBS. Behavioral correlations revealed a negative relationship between changes in right IFG activation and improvements in fluency. While anatomical analyses did not reveal statistically significant changes in grey matter volume, the fMRI results provide evidence for changes in right and left IFG function after iTBS. The negative relationship between post-iTBS changes in right IFG activity during covert verb generation and improvements in fluency suggests that iTBS applied to residual left-hemispheric language areas may reduce contralateral responses related to language production and facilitate recruitment of residual language areas after stroke. PMID:26881111

  6. Short theta burst stimulation to left frontal cortex prior to encoding enhances subsequent recognition memory.

    PubMed

    Demeter, Elise; Mirdamadi, Jasmine L; Meehan, Sean K; Taylor, Stephan F

    2016-08-01

    Deep semantic encoding of verbal stimuli can aid in later successful retrieval of those stimuli from long-term episodic memory. Evidence from numerous neuropsychological and neuroimaging experiments demonstrate regions in left prefrontal cortex, including left dorsolateral prefrontal cortex (DLPFC), are important for processes related to encoding. Here, we investigated the relationship between left DLPFC activity during encoding and successful subsequent memory with transcranial magnetic stimulation (TMS). In a pair of experiments using a 2-session within-subjects design, we stimulated either left DLPFC or a control region (Vertex) with a single 2-s train of short theta burst stimulation (sTBS) during a semantic encoding task and then gave participants a recognition memory test. We found that subsequent memory was enhanced on the day left DLPFC was stimulated, relative to the day Vertex was stimulated, and that DLPFC stimulation also increased participants' confidence in their decisions during the recognition task. We also explored the time course of how long the effects of sTBS persisted. Our data suggest 2 s of sTBS to left DLPFC is capable of enhancing subsequent memory for items encoded up to 15 s following stimulation. Collectively, these data demonstrate sTBS is capable of enhancing long-term memory and provide evidence that TBS protocols are a potentially powerful tool for modulating cognitive function. PMID:27098772

  7. Frontal and parietal theta burst TMS impairs working memory for visual-spatial conjunctions.

    PubMed

    Morgan, Helen M; Jackson, Margaret C; van Koningsbruggen, Martijn G; Shapiro, Kimron L; Linden, David E J

    2013-03-01

    In tasks that selectively probe visual or spatial working memory (WM) frontal and posterior cortical areas show a segregation, with dorsal areas preferentially involved in spatial (e.g. location) WM and ventral areas in visual (e.g. object identity) WM. In a previous fMRI study [1], we showed that right parietal cortex (PC) was more active during WM for orientation, whereas left inferior frontal gyrus (IFG) was more active during colour WM. During WM for colour-orientation conjunctions, activity in these areas was intermediate to the level of activity for the single task preferred and non-preferred information. To examine whether these specialised areas play a critical role in coordinating visual and spatial WM to perform a conjunction task, we used theta burst transcranial magnetic stimulation (TMS) to induce a functional deficit. Compared to sham stimulation, TMS to right PC or left IFG selectively impaired WM for conjunctions but not single features. This is consistent with findings from visual search paradigms, in which frontal and parietal TMS selectively affects search for conjunctions compared to single features, and with combined TMS and functional imaging work suggesting that parietal and frontal regions are functionally coupled in tasks requiring integration of visual and spatial information. Our results thus elucidate mechanisms by which the brain coordinates spatially segregated processing streams and have implications beyond the field of working memory. PMID:22483548

  8. Theta Burst Stimulation of the Cerebellum Modifies the TMS-Evoked N100 Potential, a Marker of GABA Inhibition

    PubMed Central

    2015-01-01

    Theta burst stimulation (TBS) of the cerebellum, a potential therapy for neurological disease, can modulate corticospinal excitability via the dentato-thalamo-cortical pathway, but it is uncertain whether its effects are mediated via inhibitory or facilitatory networks. The aim of this study was to investigate the effects of 30Hz cerebellar TBS on the N100 waveform of the TMS-evoked potential (TEP), a marker of intracortical GABAB-mediated inhibition. 16 healthy participants (aged 18–30 years; 13 right handed and 3 left handed) received 30Hz intermittent TBS (iTBS), continuous TBS (cTBS) or sham stimulation over the right cerebellum, in three separate sessions. The first 8 participants received TBS at a stimulus intensity of 80% of active motor threshold (AMT), while the remainder received 90% of AMT. Motor evoked potentials (MEP) and TEP were recorded before and after each treatment, by stimulating the first dorsal interosseus area of the left motor cortex. Analysis of the 13 right handed participants showed that iTBS at 90% of AMT increased the N100 amplitude compared to sham and cTBS, without significantly altering MEP amplitude. cTBS at 80% of active motor threshold decreased the N100 amplitude and cTBS overall reduced resting MEP amplitude. The study demonstrates effects of 30Hz cerebellar TBS on inhibitory cortical networks that may be useful for treatment of neurological conditions associated with dysfunctional intracortical inhibition. PMID:26529225

  9. Intermittent Theta Burst Stimulation Increases Reward Responsiveness in Individuals with Higher Hedonic Capacity

    PubMed Central

    Duprat, Romain; De Raedt, Rudi; Wu, Guo-Rong; Baeken, Chris

    2016-01-01

    Background: Repetitive transcranial magnetic stimulation over the left dorsolateral prefrontal cortex (DLPFC) has been documented to influence striatal and orbitofrontal dopaminergic activity implicated in reward processing. However, the exact neuropsychological mechanisms of how DLPFC stimulation may affect the reward system and how trait hedonic capacity may interact with the effects remains to be elucidated. Objective: In this sham-controlled study in healthy individuals, we investigated the effects of a single session of neuronavigated intermittent theta burst stimulation (iTBS) on reward responsiveness, as well as the influence of trait hedonic capacity. Methods: We used a randomized crossover single session iTBS design with an interval of 1 week. We assessed reward responsiveness using a rewarded probabilistic learning task and measured individual trait hedonic capacity (the ability to experience pleasure) with the temporal experience of pleasure scale questionnaire. Results: As expected, the participants developed a response bias toward the most rewarded stimulus (rich stimulus). Reaction time and accuracy for the rich stimulus were respectively shorter and higher as compared to the less rewarded stimulus (lean stimulus). Active or sham stimulation did not seem to influence the outcome. However, when taking into account individual trait hedonic capacity, we found an early significant increase in the response bias only after active iTBS. The higher the individual's trait hedonic capacity, the more the response bias toward the rich stimulus increased after the active stimulation. Conclusion: When taking into account trait hedonic capacity, one active iTBS session over the left DLPFC improved reward responsiveness in healthy male participants with higher hedonic capacity. This suggests that individual differences in hedonic capacity may influence the effects of iTBS on the reward system. PMID:27378888

  10. The potential synergism by combining external counterpulsation with intermittent theta burst stimulation in post-stroke motor function recovery.

    PubMed

    He, Weijia; Au-Yeung, Suk-Yin Stephanie; Mak, Margaret; Leung, Thomas Wai Hong; Leung, Howan; Wong, Lawrence Ka Sing

    2016-08-01

    Upper limb weakness and incoordination is a common disability following ischemic stroke. Previous studies have showed that the single application of external counterpulsation (ECP) and intermittent theta burst stimulation (iTBS) can effectively enhance the cortical motor excitability and facilitate recovery. However, it remains uncertain if sequential application of these therapies would further augment the recovery. We hypothesize a synergistic effect of ECP followed by iTBS to upper limb function may happen through improvements in both cerebral perfusion and neuron excitability. PMID:27372874

  11. Visual-spatial memory may be enhanced with theta burst deep brain stimulation of the fornix: a preliminary investigation with four cases.

    PubMed

    Miller, Jonathan P; Sweet, Jennifer A; Bailey, Christopher M; Munyon, Charles N; Luders, Hans O; Fastenau, Philip S

    2015-07-01

    Memory loss after brain injury can be a source of considerable morbidity, but there are presently few therapeutic options for restoring memory function. We have previously demonstrated that burst stimulation of the fornix is able to significantly improve memory in a rodent model of traumatic brain injury. The present study is a preliminary investigation with a small group of cases to explore whether theta burst stimulation of the fornix might improve memory in humans. Four individuals undergoing stereo-electroencephalography evaluation for drug-resistant epilepsy were enrolled. All participants were implanted with an electrode into the proximal fornix and dorsal hippocampal commissure on the language dominant (n = 3) or language non-dominant (n = 1) side, and stimulation of this electrode reliably produced a diffuse evoked potential in the head and body of the ipsilateral hippocampus. Each participant underwent testing of verbal memory (Rey Auditory-Verbal Learning Test), visual-spatial memory (Medical College of Georgia Complex Figure Test), and visual confrontational naming (Boston Naming Test Short Form) once per day over at least two consecutive days using novel test forms each day. For 50% of the trials, the fornix electrode was continuously stimulated using a burst pattern (200 Hz in 100 ms trains, five trains per second, 100 µs, 7 mA) and was compared with sham stimulation. Participants and examiners were blinded to whether stimulation was active or not, and the order of stimulation was randomized. The small sample size precluded use of inferential statistics; therefore, data were analysed using descriptive statistics and graphic analysis. Burst stimulation of the fornix was not perceived by any of the participants but was associated with a robust reversible improvement in immediate and delayed performance on the Medical College of Georgia Complex Figure Test. There were no apparent differences on either Rey Auditory-Verbal Learning Test or Boston Naming

  12. Accelerated intermittent theta burst stimulation treatment in medication-resistant major depression: A fast road to remission?

    PubMed

    Duprat, Romain; Desmyter, Stefanie; Rudi, De Raedt; van Heeringen, Kees; Van den Abbeele, Dirk; Tandt, Hannelore; Bakic, Jasmina; Pourtois, Gilles; Dedoncker, Josefien; Vervaet, Myriam; Van Autreve, Sara; Lemmens, Gilbert M D; Baeken, Chris

    2016-08-01

    Although accelerated repetitive Transcranial Magnetic Stimulation (rTMS) paradigms and intermittent Theta-burst Stimulation (iTBS) may have the potency to result in superior clinical outcomes in Treatment Resistant Depression (TRD), accelerated iTBS treatment has not yet been studied. In this registered randomized double-blind sham-controlled crossover study, spread over four successive days, 50 TRD patients received 20 iTBS sessions applied to the left dorsolateral prefrontal cortex (DLPFC). The accelerated iTBS treatment procedure was found to be safe and resulted in immediate statistically significant decreases in depressive symptoms regardless of order/type of stimulation (real/sham). While only 28% of the patients showed a 50% reduction of their initial Hamilton Depression Rating Scale score at the end of the two-week procedure, this response rate increased to 38% when assessed two weeks after the end of the sham-controlled iTBS protocol, indicating delayed clinical effects. Importantly, 30% of the responders were considered in clinical remission. We found no demographic predictors for response. Our findings indicate that only four days of accelerated iTBS treatment applied to the left DLPFC in TRD may lead to meaningful clinical responses within two weeks post stimulation. PMID:27107779

  13. A Comparative Study of the Impact of Theta-Burst and High-Frequency Stimulation on Memory Performance.

    PubMed

    Zhu, Yating; Wang, Rubin; Wang, Yihong

    2016-01-01

    The transformation of the information stored in the working memory into the system of long-term memory depends on the physiological mechanism, long-term potential (LTP). In a large number of experimental studies, theta-burst stimulation (TBS) and high-frequency stimulation (HFS) are LTP induction protocols. However, they have not been adapted to the model related to memory. In this paper, the improved Camperi-Wang (C-W) model with Ca(2+) subsystem-induced bi-stability was adopted, and TBS and HFS were simulated to act as the initial stimuli of this working memory model. Evaluating the influence of stimuli properties (cycle, amplitude, duty ration) on memory mechanism of the model, it is found that both TBS and HFS can be adopted to activate working memory model and produce long-term memory. Moreover, the different impacts of two types of stimuli on the formation of long-term memory were analyzed as well. Thus, the importance of this study lies firstly in describing the link and interaction between working memory and long-term memory from the quantitative view, which provides a theoretical basis for the study of neural dynamics mechanism of long-term memory formation in the future. PMID:26869903

  14. A Comparative Study of the Impact of Theta-Burst and High-Frequency Stimulation on Memory Performance

    PubMed Central

    Zhu, Yating; Wang, Rubin; Wang, Yihong

    2016-01-01

    The transformation of the information stored in the working memory into the system of long-term memory depends on the physiological mechanism, long-term potential (LTP). In a large number of experimental studies, theta-burst stimulation (TBS) and high-frequency stimulation (HFS) are LTP induction protocols. However, they have not been adapted to the model related to memory. In this paper, the improved Camperi–Wang (C–W) model with Ca2+ subsystem-induced bi-stability was adopted, and TBS and HFS were simulated to act as the initial stimuli of this working memory model. Evaluating the influence of stimuli properties (cycle, amplitude, duty ration) on memory mechanism of the model, it is found that both TBS and HFS can be adopted to activate working memory model and produce long-term memory. Moreover, the different impacts of two types of stimuli on the formation of long-term memory were analyzed as well. Thus, the importance of this study lies firstly in describing the link and interaction between working memory and long-term memory from the quantitative view, which provides a theoretical basis for the study of neural dynamics mechanism of long-term memory formation in the future. PMID:26869903

  15. Can intermittent theta burst stimulation as add-on to psychotherapy improve nicotine abstinence? Results from a pilot study.

    PubMed

    Dieler, Alica C; Dresler, Thomas; Joachim, Kathrin; Deckert, Jürgen; Herrmann, Martin J; Fallgatter, Andreas J

    2014-01-01

    Smoking is among the leading causes of mortality worldwide. Discontinuing smoking can increase life expectancy to the presmoking level. Unaided attempts are often ineffective, strengthening the necessity of cognitive-behavioral therapy (CBT), nicotine replacement or pharmacotherapy. Still, relapse rates are high. Recently, a modulation of nicotine craving, which predicts relapse, through transcranial magnetic stimulation to the prefrontal cortex was shown. In a pilot study, we investigated whether 4 sessions of intermittent theta burst stimulation (iTBS) as add-on treatment to CBT reduces nicotine craving and improves long-term abstinence (at 3, 6 and 12 months). Smokers were randomly assigned to a treatment (n = 38) or a sham group (n = 36). Although we did not find reduced craving, we could show higher abstinence rates in the treatment group at 3 months. At 6 and 12 months abstinence rates did not differ significantly. Results at 12 months, however, have to be interpreted cautiously due to significant differences in the dropout rates between the two groups at this time point. We provide first evidence for a beneficial effect of additional iTBS on intermediate nicotine abstinence; however, the low number of iTBS sessions might have prevented longer effects. More lasting effects might be achieved by iTBS maintenance sessions in analogy to the treatment of depression. PMID:24924851

  16. Modulation of left primary motor cortex excitability after bimanual training and intermittent theta burst stimulation to left dorsal premotor cortex.

    PubMed

    Neva, Jason L; Vesia, Michael; Singh, Amaya M; Staines, W Richard

    2014-03-15

    Bimanual visuomotor movement training (BMT) enhances the excitability of human preparatory premotor and primary motor (M1) cortices compared to unimanual movement. This occurs when BMT involves mirror symmetrical movements of both upper-limbs (in-phase) but not with non-symmetrical movements (anti-phase). The neural mechanisms mediating the effect of BMT is unclear, but may involve interhemispheric connections between homologous M1 representations as well as the dorsal premotor cortices (PMd). The purpose of this study is to assess how intermittent theta burst stimulation (iTBS) of the left PMd affects left M1 excitability, and the possible combined effects of iTBS to left PMd applied before a single session of BMT. Left M1 excitability was quantified using transcranial magnetic stimulation (TMS) in terms of both the amplitudes and spatial extent of motor evoked potentials (MEPs) for the extensor carpi radialis (ECR) before and multiple time points following (1) BMT, (2) iTBS to left PMd or (3) iTBS to left PMd and BMT. Although there was not a greater increase in either specific measure of M1 excitability due to the combination of the interventions, iTBS applied before BMT showed that both the spatial extent and global MEP amplitude for the ECR became larger in parallel, whereas the spatial extent was enhanced with BMT alone and global MEP amplitude was enhanced with iTBS to left PMd alone. These results suggest that the modulation of rapid functional M1 excitability associated with BMT and iTBS of the left PMd could operate under related early markers of neuro-plastic mechanisms, which may be expressed in concurrent and distinct patterns of M1 excitability. Critically, this work may guide rehabilitation training and stimulation techniques that modulate cortical excitability after brain injury. PMID:24388976

  17. Theta Burst Stimulation in the Rehabilitation of the Upper Limb: A Semirandomized, Placebo-Controlled Trial in Chronic Stroke Patients

    PubMed Central

    Talelli, Penelope; Wallace, Amanda; Dileone, Michelle; Hoad, Damon; Cheeran, Binith; Oliver, Rupert; VandenBos, Mehdi; Hammerbeck, Ulrike; Barratt, Karen; Gillini, Cecilia; Musumeci, Gabriella; Boudrias, Marie-Hélène; Cloud, Geoffrey C.; Ball, Joanna; Marsden, Jonathan F.; Ward, Nicholas S.; Di Lazzaro, Vincenzo; Greenwood, Richard G.; Rothwell, John C.

    2013-01-01

    Background Noninvasive cortical stimulation could represent an add-on treatment to enhance motor recovery after stroke. However, its clinical value, including anticipated size and duration of the treatment effects, remains largely unknown. Objective The authors designed a small semi-randomized clinical trial to explore whether long-lasting clinically important gains can be achieved by adding theta burst stimulation (TBS), a form of repetitive transcranial magnetic stimulation (TMS), to a rehabilitation program for the hand. Methods A total of 41 chronic stroke patients received excitatory TBS to the ipsilesional hemisphere or inhibitory TBS to the contralesional hemisphere in 2 centers; each active group was compared with a group receiving sham TBS. TBS was followed by physical therapy for 10 working days. Patients and therapists were blinded to the type of TBS. Primary outcome measures (9-hole Peg Test [9HPT], Jebsen Taylor Test [JTT], and grip and pinch-grip dynamometry) were assessed 4, 30, and 90 days post treatment. The clinically important difference was defined as 10% of the maximum score. Results There were no differences between the active treatment and sham groups in any of the outcome measures. All patients achieved small sustainable improvements—9HPT, 5% of maximum (confidence interval [CI] = 3%-7%); JTT, 5.7% (CI = 3%-8%); and grip strength, 6% (CI = 2%-10%)—all below the defined clinically important level. Conclusions Cortical stimulation did not augment the gains from a late rehabilitation program. The effect size anticipated by the authors was overestimated. These results can improve the design of future work on therapeutic uses of TMS. PMID:22412171

  18. Structural Organization of the Corpus Callosum Predicts Attentional Shifts after Continuous Theta Burst Stimulation

    PubMed Central

    Humphreys, Glyn W.; Sotiropoulos, Stamatios N.; Kennard, Christopher; Cazzoli, Dario

    2015-01-01

    Repetitive transcranial magnetic stimulation (rTMS) applied over the right posterior parietal cortex (PPC) in healthy participants has been shown to trigger a significant rightward shift in the spatial allocation of visual attention, temporarily mimicking spatial deficits observed in neglect. In contrast, rTMS applied over the left PPC triggers a weaker or null attentional shift. However, large interindividual differences in responses to rTMS have been reported. Studies measuring changes in brain activation suggest that the effects of rTMS may depend on both interhemispheric and intrahemispheric interactions between cortical loci controlling visual attention. Here, we investigated whether variability in the structural organization of human white matter pathways subserving visual attention, as assessed by diffusion magnetic resonance imaging and tractography, could explain interindividual differences in the effects of rTMS. Most participants showed a rightward shift in the allocation of spatial attention after rTMS over the right intraparietal sulcus (IPS), but the size of this effect varied largely across participants. Conversely, rTMS over the left IPS resulted in strikingly opposed individual responses, with some participants responding with rightward and some with leftward attentional shifts. We demonstrate that microstructural and macrostructural variability within the corpus callosum, consistent with differential effects on cross-hemispheric interactions, predicts both the extent and the direction of the response to rTMS. Together, our findings suggest that the corpus callosum may have a dual inhibitory and excitatory function in maintaining the interhemispheric dynamics that underlie the allocation of spatial attention. SIGNIFICANCE STATEMENT The posterior parietal cortex (PPC) controls allocation of attention across left versus right visual fields. Damage to this area results in neglect, characterized by a lack of spatial awareness of the side of space contralateral to the brain injury. Transcranial magnetic stimulation over the PPC is used to study cognitive mechanisms of spatial attention and to examine the potential of this technique to treat neglect. However, large individual differences in behavioral responses to stimulation have been reported. We demonstrate that the variability in the structural organization of the corpus callosum accounts for these differences. Our findings suggest novel dual mechanism of the corpus callosum function in spatial attention and have broader implications for the use of stimulation in neglect rehabilitation. PMID:26586822

  19. LTP in Hippocampal Area CA1 Is Induced by Burst Stimulation over a Broad Frequency Range Centered around Delta

    ERIC Educational Resources Information Center

    Grover, Lawrence M.; Kim, Eunyoung; Cooke, Jennifer D.; Holmes, William R.

    2009-01-01

    Long-term potentiation (LTP) is typically studied using either continuous high-frequency stimulation or theta burst stimulation. Previous studies emphasized the physiological relevance of theta frequency; however, synchronized hippocampal activity occurs over a broader frequency range. We therefore tested burst stimulation at intervals from 100…

  20. Intermittent Theta Burst Over M1 May Increase Peak Power of a Wingate Anaerobic Test and Prevent the Reduction of Voluntary Activation Measured with Transcranial Magnetic Stimulation

    PubMed Central

    Giboin, Louis-Solal; Thumm, Patrick; Bertschinger, Raphael; Gruber, Markus

    2016-01-01

    Despite the potential of repetitive transcranial magnetic stimulation (rTMS) to improve performances in patients suffering from motor neuronal afflictions, its effect on motor performance enhancement in healthy subjects during a specific sport task is still unknown. We hypothesized that after an intermittent theta burst (iTBS) treatment, performance during the Wingate Anaerobic Test (WAnT) will increase and supraspinal fatigue following the exercise will be lower in comparison to a control treatment. Ten subjects participated in two randomized experiments consisting of a WAnT 5 min after either an iTBS or a control treatment. We determined voluntary activation (VA) of the right knee extensors with TMS (VATMS) and with peripheral nerve stimulation (VAPNS) of the femoral nerve, before and after the WAnT. T-tests were applied to the WAnT results and a two way within subject ANOVA was applied to VA results. The iTBS treatment increased the peak power and the maximum pedalling cadence and suppressed the reduction of VATMS following the WAnT compared to the control treatment. No behavioral changes related to fatigue (mean power and fatigue index) were observed. These results indicate for the first time that iTBS could be used as a potential intervention to improve anaerobic performance in a sport specific task. PMID:27486391

  1. Intermittent Theta-Burst Stimulation of the Right Dorsolateral Prefrontal Cortex to Promote Metaphor Comprehension in Parkinson Disease: A Case Study.

    PubMed

    Tremblay, Christina; Monetta, Laura; Langlois, Mélanie; Schneider, Cyril

    2016-01-01

    This single-case research-designed study explored whether intermittent theta-burst stimulation (iTBS) of the right dorsolateral prefrontal cortex (DLPFC) could improve metaphor comprehension in people with Parkinson disease (PD) and language impairments. A right-handed participant with PD diagnosed 9 years ago, receiving long-term treatment with levodopa, and with metaphor comprehension impairment was recruited to undergo 10 sessions of sham stimulation (in 2wk), a washout period (6wk), and then 10 sessions of iTBS (in 2wk). Clinical scores of metaphor comprehension and motor evaluation (Unified Parkinson Disease Rating Scale part III) and transcranial magnetic stimulation to test the excitability of the primary motor cortex (M1) were used at baseline, postsham, post-iTBS, and at 3 follow-ups (8, 14, and 20wk post-iTBS). Metaphor comprehension was improved after iTBS, and the highest scores were obtained 8 weeks later (P=.01). This improvement was correlated with the increase of the right M1 excitability (r=-.86, P=.03) and with the decrease of transcallosal inhibition latency from the left to the right hemisphere (r=-.88, P=.02). Sham yielded no effect (P>.05). Administration of iTBS over the right DLPFC improved metaphor comprehension likely by a long-term influence on brain synaptic plasticity, including improvement of interhemispheric dialogue. More studies are warranted to confirm these findings in larger samples of participants with PD. PMID:26407481

  2. Intermittent Theta-Burst Transcranial Magnetic Stimulation Alters Electrical Properties of Fast-Spiking Neocortical Interneurons in an Age-Dependent Fashion.

    PubMed

    Hoppenrath, Kathrin; Härtig, Wolfgang; Funke, Klaus

    2016-01-01

    Modulation of human cortical excitability by repetitive transcranial magnetic stimulation (rTMS) appears to be in part related to changed activity of inhibitory systems. Our own studies showed that intermittent theta-burst stimulation (iTBS) applied via rTMS to rat cortex primarily affects the parvalbumin-expressing (PV) fast-spiking interneurons (FSIs), evident via a strongly reduced PV expression. We further found the iTBS effect on PV to be age-dependent since no reduction in PV could be induced before the perineuronal nets (PNNs) of FSIs start to grow around postnatal day (PD) 30. To elucidate possible iTBS-induced changes in the electrical properties of FSIs and cortical network activity during cortical critical period, we performed ex vivo-in vitro whole-cell patch clamp recordings from pre-labeled FSIs in the current study. FSIs of verum iTBS-treated rats displayed a higher excitability than sham-treated controls at PD29-38, evident as higher rates of induced action potential firing at low current injections (100-200 pA) and a more depolarized resting membrane potential. This effect was absent in younger (PD26-28) and older animals (PD40-62). Slices of verum iTBS-treated rats further showed higher rates of spontaneous excitatory postsynaptic currents (sEPSCs). Based on these and previous findings we conclude that FSIs are particularly sensitive to TBS during early cortical development, when FSIs show an activity-driven step of maturation which is paralleled by intense growth of the PNNs and subsequent closure of the cortical critical period. Although to be proven further, rTMS may be a possible early intervention to compensate for hypo-activity related mal-development of cortical neuronal circuits. PMID:27065812

  3. Intermittent Theta-Burst Transcranial Magnetic Stimulation Alters Electrical Properties of Fast-Spiking Neocortical Interneurons in an Age-Dependent Fashion

    PubMed Central

    Hoppenrath, Kathrin; Härtig, Wolfgang; Funke, Klaus

    2016-01-01

    Modulation of human cortical excitability by repetitive transcranial magnetic stimulation (rTMS) appears to be in part related to changed activity of inhibitory systems. Our own studies showed that intermittent theta-burst stimulation (iTBS) applied via rTMS to rat cortex primarily affects the parvalbumin-expressing (PV) fast-spiking interneurons (FSIs), evident via a strongly reduced PV expression. We further found the iTBS effect on PV to be age-dependent since no reduction in PV could be induced before the perineuronal nets (PNNs) of FSIs start to grow around postnatal day (PD) 30. To elucidate possible iTBS-induced changes in the electrical properties of FSIs and cortical network activity during cortical critical period, we performed ex vivo—in vitro whole-cell patch clamp recordings from pre-labeled FSIs in the current study. FSIs of verum iTBS-treated rats displayed a higher excitability than sham-treated controls at PD29–38, evident as higher rates of induced action potential firing at low current injections (100–200 pA) and a more depolarized resting membrane potential. This effect was absent in younger (PD26–28) and older animals (PD40–62). Slices of verum iTBS-treated rats further showed higher rates of spontaneous excitatory postsynaptic currents (sEPSCs). Based on these and previous findings we conclude that FSIs are particularly sensitive to TBS during early cortical development, when FSIs show an activity-driven step of maturation which is paralleled by intense growth of the PNNs and subsequent closure of the cortical critical period. Although to be proven further, rTMS may be a possible early intervention to compensate for hypo-activity related mal-development of cortical neuronal circuits. PMID:27065812

  4. Safety and tolerability of theta burst stimulation vs. single and paired pulse transcranial magnetic stimulation: a comparative study of 165 pediatric subjects

    PubMed Central

    Hong, Yaejee H.; Wu, Steve W.; Pedapati, Ernest V.; Horn, Paul S.; Huddleston, David A.; Laue, Cameron S.; Gilbert, Donald L.

    2015-01-01

    Background: Although single- and paired-pulse (sp/pp) transcranial magnetic stimulation (TMS) studies are considered minimal risk in adults and children, the safety profile for theta-burst TMS (TBS) is unknown. Objective: In this comparative analysis, we explored the rate, severity, and specific symptoms of TMS-related adverse effects (AEs) between sp/ppTMS and TBS in subjects between ages 6 and 18 years. Method: Data from 165 participants from 2009 to 2014 were analyzed. Assessment of AEs was performed based on baseline and post-TMS administration of a symptom-based questionnaire that rated AEs on a 5-level ordinal scale (minimal, mild, moderate, marked, severe). AE rates and severity were compared using Chi Square or Fisher’s Exact Test depending on data characteristics. Result: Overall, no seizures or severe-rated AEs were reported by 165 pediatric participants. The rate of AE in all TBS sessions was 10.5% (n = 76, 95% CI: 4.7–19.7%), whereas the rate of AE in all sp/ppTMS sessions was 12.4% (n = 89, 95% CI: 6.3–21.0%). There was no statistical difference in AE rates between TBS and sp/ppTMS (p = 0.71). In all sp/ppTMS and TBS sessions, 20 subjects reported a total of 35 AEs, among these 31 (~88.6%) were rated as “minimal” or “mild”. There was no difference in the severity of AE between TBS and sp/ppTMS (p = 1.0). Only one of 76 TBS participants reported an AE rated as more than minimal/mild. Conclusion: Our comparative analysis showed that TBS appears to be as safe as sp/ppTMS in terms of AE rate and severity. This report supports further investigation of TBS in children. PMID:25698958

  5. Augmenting saturated LTP by broadly spaced episodes of theta-burst stimulation in hippocampal area CA1 of adult rats and mice

    PubMed Central

    Cao, Guan

    2014-01-01

    Hippocampal long-term potentiation (LTP) is a model system for studying cellular mechanisms of learning and memory. Recent interest in mechanisms underlying the advantage of spaced over massed learning has prompted investigation into the effects of distributed episodes of LTP induction. The amount of LTP induced in hippocampal area CA1 by one train (1T) of theta-burst stimulation (TBS) in young Sprague-Dawley rats was further enhanced by additional bouts of 1T given at 1-h intervals. However, in young Long-Evans (LE) rats, 1T did not initially saturate LTP. Instead, a stronger LTP induction paradigm using eight trains of TBS (8T) induced saturated LTP in hippocampal slices from both young and adult LE rats as well as adult mice. The saturated LTP induced by 8T could be augmented by another episode of 8T following an interval of at least 90 min. The success rate across animals and slices in augmenting LTP by an additional episode of 8T increased significantly with longer intervals between the first and last episodes, ranging from 0% at 30- and 60-min intervals to 13–66% at 90- to 180-min intervals to 90–100% at 240-min intervals. Augmentation above initially saturated LTP was blocked by the N-methyl-d-aspartate (NMDA) glutamate receptor antagonist d-2-amino-5-phosphonovaleric acid (d-APV). These findings suggest that the strength of induction and interval between episodes of TBS, as well as the strain and age of the animal, are important components in the augmentation of LTP. PMID:25057146

  6. Initiate and Maintain Cavitation by Combining High Amplitude Bursts and Continuous Ultrasound Exposure in Culture Medium

    NASA Astrophysics Data System (ADS)

    Mestas, J.-L.; Alberti, L.; Chesnais, S.; Lafon, C.; Blay, J.-Y.; Cathignol, D.

    2006-05-01

    Ultrasound can produce a variety of nonthermal bioeffects via acoustic cavitation. Most studies on cavitation effects pointed on the difficulty of initiating and controlling the cavitation phenomenon. Our objective is to obtain reproducible viability and transfection rate in the case of the application of a continuous low intensity ultrasound exposure. We propose to initiate and maintain cavitation in the medium by combining a continuous ultrasound exposure with periodical high amplitude bursts. Cells were exposed to ultrasound (444.5 kHz) transmitted through the bottom of twelve-well culture plates containing prostatic cells (AT2, 2.5 106 cells/mL), the plasmid DsRed in transfection case (200 μg/mL) and culture media. The cavitation effects were evaluated on the cell viability and transfection, determined 0 to 3 days after exposure by a flow cytometer (FACScan; total counted events: 10 000). Bursts of 1.73 W/cm2 intensity level had no effect on cells when their duration was lower than 100 ms and their frequency lower than 4 bursts/min. When combined with continuous exposure, only one burst of 1.73 W/cm2 intensity level and 50 ms duration was sufficient to activate the cavitation phenomenon in the medium.

  7. Star Formation in Ultrafaint Dwarfs: Continuous or Single-Age Bursts?

    NASA Astrophysics Data System (ADS)

    Webster, David; Bland-Hawthorn, Joss; Sutherland, Ralph

    2015-02-01

    We model the chemical evolution of six ultra-faint dwarfs (UFDs): Bootes I, Canes Venatici II, Coma Berenices, Hercules, Leo IV, and Ursa Major I based on their recently determined star formation histories. We show that two single-age bursts cannot explain the observed [α/Fe] versus [Fe/H] distribution in these galaxies and that some self-enrichment is required within the first burst. An alternative scenario is modeled, in which star formation is continuous except for short interruptions when one or more supernovae temporarily blow the dense gas out from the center of the system. This model allows for self-enrichment and can reproduce the chemical abundances of the UFDs in which the second burst is only a trace population. We conclude that the most likely star formation history is one or two extended periods of star formation, with the first burst lasting for at least 100 Myr. As found in earlier work, the observed properties of UFDs can be explained by formation at a low mass ({{M}vir}∼ {{10}7} M⊙), rather than being stripped remnants of much larger systems.

  8. STAR FORMATION IN ULTRA-FAINT DWARFS: CONTINUOUS OR SINGLE-AGE BURSTS?

    SciTech Connect

    Webster, David; Bland-Hawthorn, Joss; Sutherland, Ralph

    2015-01-30

    We model the chemical evolution of six ultra-faint dwarfs (UFDs): Bootes I, Canes Venatici II, Coma Berenices, Hercules, Leo IV, and Ursa Major I based on their recently determined star formation histories. We show that two single-age bursts cannot explain the observed [α/Fe] versus [Fe/H] distribution in these galaxies and that some self-enrichment is required within the first burst. An alternative scenario is modeled, in which star formation is continuous except for short interruptions when one or more supernovae temporarily blow the dense gas out from the center of the system. This model allows for self-enrichment and can reproduce the chemical abundances of the UFDs in which the second burst is only a trace population. We conclude that the most likely star formation history is one or two extended periods of star formation, with the first burst lasting for at least 100 Myr. As found in earlier work, the observed properties of UFDs can be explained by formation at a low mass (M{sub vir}∼10{sup 7} M{sub ⊙}), rather than being stripped remnants of much larger systems.

  9. Role of Broca's Area in Implicit Motor Skill Learning: Evidence from Continuous Theta-Burst Magnetic Stimulation

    ERIC Educational Resources Information Center

    Clerget, Emeline; Poncin, William; Fadiga, Luciano; Olivier, Etienne

    2012-01-01

    Complex actions can be regarded as a concatenation of simple motor acts, arranged according to specific rules. Because the caudal part of the Broca's region (left Brodmann's area 44, BA 44) is involved in processing hierarchically organized behaviors, we aimed to test the hypothesis that this area may also play a role in learning structured motor…

  10. Improved dichotomous search frequency offset estimator for burst-mode continuous phase modulation

    NASA Astrophysics Data System (ADS)

    Zhai, Wen-Chao; Li, Zan; Si, Jiang-Bo; Bai, Jun

    2015-11-01

    A data-aided technique for carrier frequency offset estimation with continuous phase modulation (CPM) in burst-mode transmission is presented. The proposed technique first exploits a special pilot sequence, or training sequence, to form a sinusoidal waveform. Then, an improved dichotomous search frequency offset estimator is introduced to determine the frequency offset using the sinusoid. Theoretical analysis and simulation results indicate that our estimator is noteworthy in the following aspects. First, the estimator can operate independently of timing recovery. Second, it has relatively low outlier, i.e., the minimum signal-to-noise ratio (SNR) required to guarantee estimation accuracy. Finally, the most important property is that our estimator is complexity-reduced compared to the existing dichotomous search methods: it eliminates the need for fast Fourier transform (FFT) and modulation removal, and exhibits faster convergence rate without accuracy degradation. Project supported by the National Natural Science Foundation of China (Grant No. 61301179), the Doctorial Programs Foundation of the Ministry of Education, China (Grant No. 20110203110011), and the Programme of Introducing Talents of Discipline to Universities, China (Grant No. B08038).

  11. Constraining Lorentz invariance violation from the continuous spectra of short gamma-ray bursts

    NASA Astrophysics Data System (ADS)

    Chang, Zhe; Li, Xin; Lin, Hai-Nan; Sang, Yu; Wang, Ping; Wang, Sai

    2016-04-01

    In some quantum gravity theories, a foamy structure of space-time may lead to Lorentz invariance violation (LIV). As the most energetic explosions in the Universe, gamma-ray bursts (GRBs) provide an effect way to probe quantum gravity effects. In this paper, we use the continuous spectra of 20 short GRBs detected by the Swift satellite to give a conservative lower limit of quantum gravity energy scale M QG. Due to the LIV effect, photons with different energy have different velocities. This will lead to the delayed arrival of high energy photons relative to low energy ones. Based on the fact that the LIV-induced time delay cannot be longer than the duration of a GRB, we present the most conservative estimate of the quantum gravity energy scales from 20 short GRBs. The strictest constraint, M QG > 5.05 × 1014 GeV in the linearly corrected case, is from GRB 140622A. Our constraint on M QG, although not as tight as previous results, is the safest and most reliable so far. Supported by National Natural Science Foundation of China (11375203, 11305181, 11322545, 11335012) and Knowledge Innovation Program of The Chinese Academy of Sciences

  12. A Search for Nontriggered Gamma-Ray Bursts in the BATSE Continuous Records: First Results

    NASA Astrophysics Data System (ADS)

    Stern, B. E.; Tikhomirova, Ya.; Stepanov, M.; Kompaneets, D.; Berezhnoy, A.; Svensson, R.

    2000-09-01

    An off-line scan for nontriggered gamma-ray bursts (GRBs) in the BATSE daily records at 1024 ms time resolution covering about 7 yr of observations gave 1353 nontriggered and 1581 triggered GRBs. The scan efficiency was measured by adding artificial test bursts to the data. The logN-logP distribution could be extended down to peak fluxes, P~0.1 photons cm-2 s-1. Previous indications of a turnover at small P are not confirmed. The logN-logP distribution cannot be fitted with a standard candle model with a nonevolving GRB source population, assuming that there are no large non-GRB contaminations. It is likely that the intrinsic luminosity function of GRBs is wide.

  13. Simultaneous observations of a theta aurora and associated magnetotail plasmas

    SciTech Connect

    Huang, C.Y.; Craven, J.D.; Frank, L.A.

    1989-08-01

    Observations of a transpolar arc and simultaneous measurements of associated plasmas in the magnetotail lobe on March 25, 1982, are presented. The auroral imager on board Dynamics Explorer 1 observes a theta aurora in the northern polar cap for more than 2 hours, between 0502 and 0720 UT. ISEE 1 is located in the southern lobe of the geomagnetic tail at a distance of 22.2 RE during this time. The plasma and particle detectors measure intermittent bursts of particle fluxes between 0530 and 0705 UT. The observations suggest that these particle fluxes represent the high-altitude signature of a theta aurora in the southern polar cap. The relatively dense and energetic plasmas are organized into several filamentary structures. Magnetic mapping between the two polar regions indicates that the theta aurora in the southern hemisphere is a mirror reflection about the noon-midnight meridional plane of the theta aurora in the northern hemisphere.

  14. Simultaneous observations of a theta aurora and associated magnetotail plasmas

    NASA Technical Reports Server (NTRS)

    Huang, C. Y.; Craven, J. D.; Frank, L. A.

    1989-01-01

    Observations of a transpolar arc and simultaneous measurements of associated plasmas in the magnetotail lobe on March 25, 1982, are presented. The auroral imager on board Dynamics Explorer 1 observes a theta aurora in the northern polar cap for more than two hours, between 0502 and 0720 UT. ISEE 1 is located in the southern lobe of the geomagnetic tail at a distance of 22.2 R(E) during this time. The plasma and particle detectors measure intermittent bursts of particle fluxes between 0530 and 0705 UT. The observations suggest that these particle fluxes represent the high-altitude signature of a theta aurora in the southern polar cap. The relatively dense and energetic plasmas are organized into several filamentary structures. Magnetic mapping between the two polar regions indicates that the theta aurora in the Southern Hemisphere is a mirror reflection about the noon-midnight meridional plane of the theta aurora in the Northern Hemisphere.

  15. Understanding the theta aurora

    NASA Astrophysics Data System (ADS)

    Fear, Robert; Milan, Steve; Carter, Jennifer; Maggiolo, Romain; Fazakerley, Andrew; Dandouras, Iannis; Mende, Stephen

    2015-04-01

    The theta aurora, first observed by Dynamics Explorer in the 1980s, is a configuration of the Earth's aurora in which auroral emissions extend into and across the polar cap in the form of a transpolar arc. It is well established that the theta aurora occurs predominantly when the interplanetary magnetic field has a northward component, but over the last thirty years various mechanisms have been put forward to explain this intriguing phenomenon. In the last couple of years, a range of evidence has accumulated which strongly suggests that the transpolar arc is formed as proposed by Milan et al. (2005): magnetotail reconnection occurs during intervals of northward IMF, which results in a local "wedge" of closed magnetospheric flux that remains trapped in the magnetotail. Precipitation on these closed field lines results in the transpolar arc analogously to the formation of the aurora in the main oval. Evidence for magnetotail reconnection as the cause of the theta aurora includes the timescales necessary to influence the location at which the transpolar arc forms, and the presence of characteristic ionospheric flows which are excited by magnetotail reconnection and which are statistically associated with transpolar arcs (Fear & Milan, 2012a,b). Most recently, direct observation has been made of a localised wedge of closed magnetic flux, "trapped" in the lobe, which was observed to move back and forth in a manner which (to our knowledge) can only be explained by the magnetotail reconnection mechanism (Fear et al., 2014). In this talk, we summarise the evidence for the formation of the theta aurora by magnetotail reconnection, and discuss the remaining challenges in obtaining a comprehensive understanding of this spectacular phenomenon.

  16. Analytical Insights on Theta-Gamma Coupled Neural Oscillators

    PubMed Central

    2013-01-01

    In this paper, we study the dynamics of a quadratic integrate-and-fire neuron, spiking in the gamma (30–100 Hz) range, coupled to a delta/theta frequency (1–8 Hz) neural oscillator. Using analytical and semianalytical methods, we were able to derive characteristic spiking times for the system in two distinct regimes (depending on parameter values): one regime where the gamma neuron is intrinsically oscillating in the absence of theta input, and a second one in which gamma spiking is directly gated by theta input, i.e., windows of gamma activity alternate with silence periods depending on the underlying theta phase. In the former case, we transform the equations such that the system becomes analogous to the Mathieu differential equation. By solving this equation, we can compute numerically the time to the first gamma spike, and then use singular perturbation theory to find successive spike times. On the other hand, in the excitable condition, we make direct use of singular perturbation theory to obtain an approximation of the time to first gamma spike, and then extend the result to calculate ensuing gamma spikes in a recursive fashion. We thereby give explicit formulas for the onset and offset of gamma spike burst during a theta cycle, and provide an estimation of the total number of spikes per theta cycle both for excitable and oscillator regimes. PMID:23945442

  17. Theta-rhythmic drive between medial septum and hippocampus in slow-wave sleep and microarousal: a Granger causality analysis.

    PubMed

    Kang, D; Ding, M; Topchiy, I; Shifflett, L; Kocsis, B

    2015-11-01

    Medial septum (MS) plays a critical role in controlling the electrical activity of the hippocampus (HIPP). In particular, theta-rhythmic burst firing of MS neurons is thought to drive lasting HIPP theta oscillations in rats during waking motor activity and REM sleep. Less is known about MS-HIPP interactions in nontheta states such as non-REM sleep, in which HIPP theta oscillations are absent but theta-rhythmic burst firing in subsets of MS neurons is preserved. The present study used Granger causality (GC) to examine the interaction patterns between MS and HIPP in slow-wave sleep (SWS, a nontheta state) and during its short interruptions called microarousals (a transient theta state). We found that during SWS, while GC revealed a unidirectional MS→HIPP influence over a wide frequency band (2-12 Hz, maximum: ∼8 Hz), there was no theta peak in the hippocampal power spectra, indicating a lack of theta activity in HIPP. In contrast, during microarousals, theta peaks were seen in both MS and HIPP power spectra and were accompanied by bidirectional GC with MS→HIPP and HIPP→MS theta drives being of equal magnitude. Thus GC in a nontheta state (SWS) vs. a theta state (microarousal) primarily differed in the level of HIPP→MS. The present findings suggest a modification of our understanding of the role of MS as the theta generator in two regards. First, a MS→HIPP theta drive does not necessarily induce theta field oscillations in the hippocampus, as found in SWS. Second, HIPP theta oscillations entail bidirectional theta-rhythmic interactions between MS and HIPP. PMID:26354315

  18. Ramanujan's mock theta functions.

    PubMed

    Griffin, Michael; Ono, Ken; Rolen, Larry

    2013-04-01

    In his famous deathbed letter, Ramanujan introduced the notion of a mock theta function, and he offered some alleged examples. Recent work by Zwegers [Zwegers S (2001) Contemp Math 291:268-277 and Zwegers S (2002) PhD thesis (Univ of Utrecht, Utrecht, The Netherlands)] has elucidated the theory encompassing these examples. They are holomorphic parts of special harmonic weak Maass forms. Despite this understanding, little attention has been given to Ramanujan's original definition. Here, we prove that Ramanujan's examples do indeed satisfy his original definition. PMID:23536292

  19. The theta aurora

    NASA Technical Reports Server (NTRS)

    Frank, L. A.; Craven, J. D.; Gurnett, D. A.; Shawhan, S. D.; Burch, J. L.; Winningham, J. D.; Chappell, C. R.; Waite, J. H.; Maynard, N. C.; Sugiura, M.

    1986-01-01

    A comprehensive review is presented of the characteristics of theta aurora as revealed from four imaging efforts with the DE 1 and 2 satellites. The theta aurora consists of an auroral oval with a sun-aligned arc extending from the dayside to the nightside sectors of the oval. The DE 1 spacecraft provided high altitude simultaneous measurements of the electric and magnetic fields and plasma and the DE 2 collected equivalent low altitude data on the four events. The plasma was found to convect sunward when the transpolar arc appeared, while the convection was antisunward in other regions over the polar cap. The arc plasmas featured field-aligned electron acceleration into the polar atmosphere and field-aligned current sheets, both of which were sparse over the rest of the polar cap. The ions originated in the ionosphere and the solar wind; ions over the rest of the polar cap mainly arrived from the magnetosphere. Further discussions are provided of the dominant electrons and ions and the associated flow directions into and out of the various regions of the pole, similarities between the transpolar arc and the auroral oval, and interactions between the ionosphere and the auroral phenomena.

  20. Theta vocabulary II. Multidimensional case

    NASA Astrophysics Data System (ADS)

    Kharchev, S.; Zabrodin, A.

    2016-06-01

    It is shown that the Jacobi and Riemann identities of degree four for the multidimensional theta functions as well as the Weierstrass identities emerge as algebraic consequences of the fundamental multidimensional binary identities connecting the theta functions with Riemann matrices τ and 2 τ.

  1. Detection of the closure-burst transitions of stops and affricates in continuous speech using the plosion index.

    PubMed

    Ananthapadmanabha, T V; Prathosh, A P; Ramakrishnan, A G

    2014-01-01

    Automatic and accurate detection of the closure-burst transition events of stops and affricates serves many applications in speech processing. A temporal measure named the plosion index is proposed to detect such events, which are characterized by an abrupt increase in energy. Using the maxima of the pitch-synchronous normalized cross correlation as an additional temporal feature, a rule-based algorithm is designed that aims at selecting only those events associated with the closure-burst transitions of stops and affricates. The performance of the algorithm, characterized by receiver operating characteristic curves and temporal accuracy, is evaluated using the labeled closure-burst transitions of stops and affricates of the entire TIMIT test and training databases. The robustness of the algorithm is studied with respect to global white and babble noise as well as local noise using the TIMIT test set and on telephone quality speech using the NTIMIT test set. For these experiments, the proposed algorithm, which does not require explicit statistical training and is based on two one-dimensional temporal measures, gives a performance comparable to or better than the state-of-the-art methods. In addition, to test the scalability, the algorithm is applied on the Buckeye conversational speech corpus and databases of two Indian languages. PMID:24437786

  2. Resonances, and mechanisms of Theta-production

    SciTech Connect

    Ya.I. Azimov; I.I. Strakovsky

    2004-09-01

    After explaining necessity of exotic hadrons, we discuss mechanisms which could determine production of the exotic Theta-baryon. A possible important role of resonances (producing the Theta in real or virtual decays) is emphasized for various processes. Several experimental directions for studies of such resonances, and the Theta itself, are suggested. We briefly discuss also recent negative results on the Theta-baryon.

  3. The post-pollination ethylene burst and the continuation of floral advertisement are harbingers of non-random mate selection in Nicotiana attenuata.

    PubMed

    Bhattacharya, Samik; Baldwin, Ian T

    2012-08-01

    The self-compatible plant Nicotiana attenuata grows in genetically diverse populations after fires, and produces flowers that remain open for 3 days and are visited by assorted pollinators. To determine whether and when post-pollination non-random mate selection occurs among self and non-self pollen, seed paternity and semi-in vivo pollen tube growth were determined in controlled single/mixed pollinations. Despite all pollen sources being equally proficient in siring seeds in single-genotype pollinations, self pollen was consistently selected in mixed pollinations, irrespective of maternal genotype. However, clear patterns of mate discrimination occurred amongst non-self pollen when mixed pollinations were performed soon after corollas open, including selection against hygromycin B resistance (transformation selectable marker) in wild-type styles and for it in transformed styles. However, mate choice among pollen genotypes was completely shut down in plants transformed to be unable to produce (irACO) or perceive (ETR1) ethylene. The post-pollination ethylene burst, which originates primarily from the stigma and upper style, was strongly correlated with mate selection in single and mixed hand-pollinations using eight pollen donors in two maternal ecotypes. The post-pollination ethylene burst was also negatively correlated with the continuation of emission of benzylacetone, the most abundant pollinator-attracting corolla-derived floral volatile. We conclude that ethylene signaling plays a pivotal role in mate choice, and the post-pollination ethylene burst and the termination of benzylacetone release are accurate predictors, both qualitatively and quantitatively, of pre-zygotic mate selection and seed paternity. PMID:22458597

  4. Magnetar Bursts

    NASA Technical Reports Server (NTRS)

    Kouveliotou, Chryssa

    2014-01-01

    The Fermi/Gamma-ray Burst Monitor (GBM) was launched in June 2008. During the last five years the instrument has observed several hundreds of bursts from 8 confirmed magnetars and 19 events from unconfirmed sources. I will discuss the results of the GBM magnetar burst catalog, expand on the different properties of their diverse source population, and compare these results with the bursting activity of past sources. I will then conclude with thoughts of how these properties fit the magnetar theoretical models.

  5. Theta EEG neurofeedback benefits early consolidation of motor sequence learning.

    PubMed

    Rozengurt, Roman; Barnea, Anat; Uchida, Sunao; Levy, Daniel A

    2016-07-01

    Procedural learning is subject to consolidation processes believed to depend on the modulation of functional connections involved in representing the acquired skill. While sleep provides the most commonly studied framework for such consolidation processes, posttraining modulation of oscillatory brain activity may also impact on plasticity processes. Under the hypothesis that consolidation of motor learning is associated with theta band activity, we used EEG neurofeedback (NFB) to enable participants to selectively increase either theta or beta power in their EEG spectra following the acquisition phase of motor sequence learning. We tested performance on a motor task before and after training, right after the NFB session to assess immediate NFB effects, 1 day after NFB to assess interaction between NFB effects and overnight sleep-dependent stabilization, and 1 week after the initial session, to assess the effects of NFB on long-term stabilization of motor training. We also explored the extent of the influence of single-electrode NFB on EEG recorded across the scalp. Results revealed a significantly greater improvement in performance immediately after NFB in the theta group than in the beta group. This effect continued for testing up to 1 week following training. Across participants, post-NFB improvement correlated positively with theta/beta ratio change achieved during NFB. Additionally, NFB was found to cause widespread band-power modulation beyond the electrode used for feedback. Thus, upregulating postlearning theta power may yield contributions to the immediate performance and subsequent consolidation of an acquired motor skill. PMID:27080752

  6. On Ramanujan's definition of mock theta function.

    PubMed

    Rhoades, Robert C

    2013-05-01

    In his famous "deathbed" letter, Ramanujan "defined" the notion of a mock theta function and offered some examples of functions he believed satisfied his definition. Very recently, Griffin et al. established for the first time that Ramanujan's mock theta functions actually satisfy his own definition. On the other hand, Zwegers' 2002 doctoral thesis [Zwegers S (2002) Mock theta functions. PhD thesis (Univ Utrecht, Utrecht, The Netherlands)] showed that all of Ramanujan's examples are holomorphic parts of harmonic Maass forms. This has led to an alternate definition of a mock theta function. This paper shows that Ramanujan's definition of mock theta function is not equivalent to the modern definition. PMID:23625007

  7. Heterogeneity in Short Gamma-Ray Bursts

    NASA Technical Reports Server (NTRS)

    Norris, Jay P.; Gehrels Neil; Scargle, Jeffrey D.

    2011-01-01

    We analyze the Swift/BAT sample of short gamma-ray bursts, using an objective Bayesian Block procedure to extract temporal descriptors of the bursts' initial pulse complexes (IPCs). The sample comprises 12 and 41 bursts with and without extended emission (EE) components, respectively. IPCs of non-EE bursts are dominated by single pulse structures, while EE bursts tend to have two or more pulse structures. The medians of characteristic timescales - durations, pulse structure widths, and peak intervals - for EE bursts are factors of approx 2-3 longer than for non-EE bursts. A trend previously reported by Hakkila and colleagues unifying long and short bursts - the anti-correlation of pulse intensity and width - continues in the two short burst groups, with non-EE bursts extending to more intense, narrower pulses. In addition we find that preceding and succeeding pulse intensities are anti-correlated with pulse interval. We also examine the short burst X-ray afterglows as observed by the Swift/XRT. The median flux of the initial XRT detections for EE bursts (approx 6 X 10(exp -10) erg / sq cm/ s) is approx > 20 x brighter than for non-EE bursts, and the median X-ray afterglow duration for EE bursts (approx 60,000 s) is approx 30 x longer than for non-EE bursts. The tendency for EE bursts toward longer prompt-emission timescales and higher initial X-ray afterglow fluxes implies larger energy injections powering the afterglows. The longer-lasting X-ray afterglows of EE bursts may suggest that a significant fraction explode into more dense environments than non-EE bursts, or that the sometimes-dominant EE component efficiently p()wers the afterglow. Combined, these results favor different progenitors for EE and non-EE short bursts.

  8. Ketamine disrupts theta modulation of gamma in a computer model of hippocampus

    PubMed Central

    Neymotin, Samuel A.; Lazarewicz, Maciej T.; Sherif, Mohamed; Contreras, Diego; Finkel, Leif H.; Lytton, William W.

    2011-01-01

    Abnormalities in oscillations have been suggested to play a role in schizophrenia. We studied theta-modulated gamma oscillations in a computer model of hippocampal CA3 in vivo with and without simulated application of ketamine, an NMDA receptor antagonist and psychotomimetic. Networks of 1200 multi-compartment neurons (pyramidal, basket and oriens-lacunosum moleculare, OLM, cells) generated theta and gamma oscillations from intrinsic network dynamics: basket cells primarily generated gamma and amplified theta, while OLM cells strongly contributed to theta. Extrinsic medial septal inputs paced theta and amplified both theta and gamma oscillations. Exploration of NMDA receptor reduction across all location combinations demonstrated that the experimentally-observed ketamine effect occurred only with isolated reduction of NMDA receptors on OLMs. In the ketamine simulations, lower OLM activity reduced theta power and disinhibited pyramidal cells, resulting in increased basket cell activation and gamma power. Our simulations predict: ketamine increases firing rates;oscillations can be generated by intrinsic hippocampal circuits;medial septum inputs pace and augment oscillations;pyramidal cells lead basket cells at the gamma peak but lag at trough;basket cells amplify theta rhythms;ketamine alters oscillations due to primary blockade at OLM NMDA receptors;ketamine alters phase relationships of cell firing;ketamine reduces network responsivity to the environmentketamine effect could be reversed by providing a continuous inward current to OLM cells. We suggest that this last prediction has implications for a possible novel treatment for cognitive deficits of schizophrenia by targeting OLM cells. PMID:21832203

  9. Traveling Theta Waves in the Human Hippocampus.

    PubMed

    Zhang, Honghui; Jacobs, Joshua

    2015-09-01

    The hippocampal theta oscillation is strongly correlated with behaviors such as memory and spatial navigation, but we do not understand its specific functional role. One hint of theta's function came from the discovery in rodents that theta oscillations are traveling waves that allow parts of the hippocampus to simultaneously exhibit separate oscillatory phases. Because hippocampal theta oscillations in humans have different properties compared with rodents, we examined these signals directly using multielectrode recordings from neurosurgical patients. Our findings confirm that human hippocampal theta oscillations are traveling waves, but also show that these oscillations appear at a broader range of frequencies compared with rodents. Human traveling waves showed a distinctive pattern of spatial propagation such that there is a consistent phase spread across the hippocampus regardless of the oscillations' frequency. This suggests that traveling theta oscillations are important functionally in humans because they coordinate phase coding throughout the hippocampus in a consistent manner. Significance statement: We show for the first time in humans that hippocampal theta oscillations are traveling waves, moving along the length of the hippocampus in a posterior-anterior direction. The existence of these traveling theta waves is important for understanding hippocampal neural coding because they cause neurons at separate positions in the hippocampus to experience different theta phases simultaneously. The theta phase that a neuron measures is a key factor in how that cell represents behavioral information. Therefore, the existence of traveling theta waves indicates that, to fully understand how a hippocampal neuron represents information, it is vital to also account for that cell's location in addition to conventional measures of neural activity. PMID:26354915

  10. Numerical experiments on the theta pinch

    NASA Technical Reports Server (NTRS)

    Volosevich, P. P.; Zukakishyili, G. G.

    1979-01-01

    Numerical calculation of theta pinch problems are presented. Physical processes in theta pinch systems are considered in a one dimensional, two temperature magnetohydrodynamic, approximation with allowance for end losses by longitudinal heat conductivity. The numerical calculations are compared with results of earlier experiments.

  11. Spatial Working Memory in Humans Depends on Theta and High Gamma Synchronization in the Prefrontal Cortex.

    PubMed

    Alekseichuk, Ivan; Turi, Zsolt; Amador de Lara, Gabriel; Antal, Andrea; Paulus, Walter

    2016-06-20

    Previous, albeit correlative, findings have shown that the neural mechanisms underlying working memory critically require cross-structural and cross-frequency coupling mechanisms between theta and gamma neural oscillations. However, the direct causality between cross-frequency coupling and working memory performance remains to be demonstrated. Here we externally modulated the interaction of theta and gamma rhythms in the prefrontal cortex using novel cross-frequency protocols of transcranial alternating current stimulation to affect spatial working memory performance in humans. Enhancement of working memory performance and increase of global neocortical connectivity were observed when bursts of high gamma oscillations (80-100 Hz) coincided with the peaks of the theta waves, whereas superimposition on the trough of the theta wave and low gamma frequency protocols were ineffective. Thus, our results demonstrate the sensitivity of working memory performance and global neocortical connectivity to the phase and rhythm of the externally driven theta-gamma cross-frequency synchronization. PMID:27238283

  12. Developmental change in EEG theta activity in the medial prefrontal cortex during response control.

    PubMed

    Liu, Zhong-Xu; Woltering, Steven; Lewis, Marc D

    2014-01-15

    Cognitive control functions continue to improve from infancy until early adulthood, allowing flexible adaptation to a complex environment. However, it remains controversial how this development in cognitive capabilities is mediated by changes in cortical activity: both age-related increases and decreases of mediofrontal neural activity have been observed and interpreted as neural underpinnings of this functional development. To better understand this developmental process, we examined EEG theta activity in the mediofrontal region using a Go/No-go response control task. We found that both pre-stimulus baseline theta-power and theta-power during the response control task, without baseline-correction, decreased with age. Conversely, when task-related theta-power was baseline corrected (using a ratio method), it exhibited a positive developmental trajectory. The age-related theta-power increase was source-localized to the anterior cingulate cortex. This increase in theta activity also partially mediated age-related improvements in response control and was greatest in a condition that demanded greater effort. Theta activity in older children also showed greater temporal reliability across trials as measured by inter-trial phase-coherence. Interestingly, directly subtracting baseline activity from task-related activity did not yield significant developmental effects, which highlights the necessity of separating and contrasting the pre-stimulus baseline with task-related processing in the understanding of neurodevelopmental changes. PMID:24007804

  13. Emotional conflict processing induce boosted theta oscillation.

    PubMed

    Ma, Jianling; Liu, Chang; Chen, Xu

    2015-05-19

    Although previous studies have reported the neural correlates and dynamics of emotional conflict processing, the neural oscillatory features of such processing remain unclear. The present study uses time-frequency analysis to determine the event-related spectral perturbation (ERSP) characteristics underlying emotional conflict processing. Our behavioral results replicate previous findings of shorter response times and fewer response errors under the congruent condition relative to the incongruent condition, indicating a robust interference effect. Theta oscillatory activity was larger for the incongruent than for the congruent condition over frontal and frontal-central midline areas, reflecting a greater need for control under conditions of conflict. Moreover, the theta power difference was negatively associated with the RT difference, indicating that greater theta power leads to better behavioral performance. The present findings provide evidence that the theta oscillation is necessary for the control of emotional conflict. PMID:25863173

  14. Note on trigonometric expansions of theta functions

    NASA Astrophysics Data System (ADS)

    Chouikha, A. Raouf

    2003-04-01

    We are interested in properties of coefficients of certain expansions of the classical theta functions. We show that they are solutions of a differential system derived from the heat equation. We plan to explicitly give expressions of these coefficients.

  15. Human hippocampal theta activity during virtual navigation.

    PubMed

    Ekstrom, Arne D; Caplan, Jeremy B; Ho, Emily; Shattuck, Kirk; Fried, Itzhak; Kahana, Michael J

    2005-01-01

    This study examines whether 4-8-Hz theta oscillations can be seen in the human hippocampus, and whether these oscillations increase during virtual movement and searching, as they do in rodents. Recordings from both hippocampal and neocortical depth electrodes were analyzed while six epileptic patients played a virtual taxi-driver game. During the game, the patients alternated between searching for passengers, whose locations were random, and delivering them to stores, whose locations remained constant. In both hippocampus and neocortex, theta increased during virtual movement in all phases of the game. Hippocampal and neocortical theta activity were also significantly correlated with each other, but this correlation did not differ between neocortex and hippocampus and within disparate neocortical electrodes. Our findings demonstrate the existence of movement-related theta oscillations in human hippocampus, and suggest that both cortical and hippocampal oscillations play a role in attention and sensorimotor integration. PMID:16114040

  16. Respiratory cycle entrainment of septal neurons mediates the fast coupling of sniffing rate and hippocampal theta rhythm

    PubMed Central

    Tsanov, Marian; Chah, Ehsan; Reilly, Richard; O∼Mara, Shane M

    2014-01-01

    Memory for odour information may result from temporal coupling between the olfactory and hippocampal systems. Respiration defines the frequency of olfactory perception, but how the respiratory rate affects hippocampal oscillations remains poorly understood. The afferent connectivity of the medial septum/diagonal band of Broca complex (MS/DB) proposes this region as a crossroads between respiratory and limbic pathways. Here we investigate if the firing rates of septal neurons integrate respiratory rate signals. We demonstrate that approximately 50% of MS/DB neurons are temporally correlated with sniffing frequency. Moreover, a group of slow-spiking septal neurons are phase-locked to the sniffing cycle. We show that inter-burst intervals of MS/DB theta cells relate to the sniff rate. Intranasal odour infusion evokes sniff phase preference for the activity of fast-spiking MS/DB neurons. Concurrently, the infusion augments the correlation between sniffing and limbic theta oscillations. During periods of sniffing–theta correlation, CA1 place cells fired preferentially during the inhalation phase, suggesting the theta cycle as a coherent time frame for central olfactory processing. Furthermore, injection of the GABAergic agonist muscimol into medial septum induces a parallel decrease of sniffing and theta frequencies. Our findings provide experimental evidence that MS/DB does not merely generate theta rhythm, but actively integrates sensorimotor stimuli that reflect sniffing rate. Such integration may provide temporal oscillatory synchronisation of MS/DB-innervated limbic structures with the sniffing cycle. PMID:24329896

  17. Adaptive [theta]-methods for pricing American options

    NASA Astrophysics Data System (ADS)

    Khaliq, Abdul Q. M.; Voss, David A.; Kazmi, Kamran

    2008-12-01

    We develop adaptive [theta]-methods for solving the Black-Scholes PDE for American options. By adding a small, continuous term, the Black-Scholes PDE becomes an advection-diffusion-reaction equation on a fixed spatial domain. Standard implementation of [theta]-methods would require a Newton-type iterative procedure at each time step thereby increasing the computational complexity of the methods. Our linearly implicit approach avoids such complications. We establish a general framework under which [theta]-methods satisfy a discrete version of the positivity constraint characteristic of American options, and numerically demonstrate the sensitivity of the constraint. The positivity results are established for the single-asset and independent two-asset models. In addition, we have incorporated and analyzed an adaptive time-step control strategy to increase the computational efficiency. Numerical experiments are presented for one- and two-asset American options, using adaptive exponential splitting for two-asset problems. The approach is compared with an iterative solution of the two-asset problem in terms of computational efficiency.

  18. Speech encoding by coupled cortical theta and gamma oscillations.

    PubMed

    Hyafil, Alexandre; Fontolan, Lorenzo; Kabdebon, Claire; Gutkin, Boris; Giraud, Anne-Lise

    2015-01-01

    Many environmental stimuli present a quasi-rhythmic structure at different timescales that the brain needs to decompose and integrate. Cortical oscillations have been proposed as instruments of sensory de-multiplexing, i.e., the parallel processing of different frequency streams in sensory signals. Yet their causal role in such a process has never been demonstrated. Here, we used a neural microcircuit model to address whether coupled theta-gamma oscillations, as observed in human auditory cortex, could underpin the multiscale sensory analysis of speech. We show that, in continuous speech, theta oscillations can flexibly track the syllabic rhythm and temporally organize the phoneme-level response of gamma neurons into a code that enables syllable identification. The tracking of slow speech fluctuations by theta oscillations, and its coupling to gamma-spiking activity both appeared as critical features for accurate speech encoding. These results demonstrate that cortical oscillations can be a key instrument of speech de-multiplexing, parsing, and encoding. PMID:26023831

  19. Distinct representations and theta dynamics in dorsal and ventral hippocampus

    PubMed Central

    Royer, Sébastien; Sirota, Anton; Patel, Jagdish; Buzsáki, György

    2010-01-01

    Although anatomical, lesion and imaging studies of the hippocampus indicate qualitatively different information processing along its septo-temporal axis, physiological mechanisms supporting such distinction are missing. We found fundamental differences between the dorsal (dCA3) and the ventral-most parts (vCA3) of the hippocampus in both environmental representation and temporal dynamics. Discrete place fields of dCA3 neurons evenly covered all parts of the testing environments. In contrast, vCA3 neurons i) rarely showed continuous two-dimensional place fields, ii) differentiated open and closed arms of a radial maze, and iii) discharged similar firing patterns with respect to the goals, both on multiple arms of a radial maze and during opposite journeys in a zig-zag maze. In addition, theta power and the fraction of theta-rhythmic neurons were substantially reduced in the ventral as compared to dorsal hippocampus. We hypothesize that the spatial representation in the septo-temporal axis of the hippocampus is progressively decreased. This change is paralleled with a reduction of theta rhythm and an increased representation of non-spatial information. PMID:20130187

  20. Characterizing Oscillatory Bursts in Single-Trial EEG Data

    NASA Technical Reports Server (NTRS)

    Knuth, K. H.; Shah, A. S.; Lakatos, P.; Schroeder, C. E.

    2004-01-01

    Oscillatory bursts in numerous bands ranging from low (theta) to high frequencies (e.g., gamma) undoubtedly play an important role in cortical dynamics. Largely because of the inadequacy of existing analytic techniques. however, oscillatory bursts and their role in cortical processing remains poorly understood. To study oscillatory bursts effectively one must be able to isolate them and characterize them in the single trial. We describe a series of straightforward analysis techniques that produce useful indices of burst characteristics. First, stimulus-evoked responses are estimated using Differentially Variable Component Analysis (dVCA), and are subtracted from the single-trial. The single-trial characteristics of the evoked responses are stored to identify possible correlations with burst activity. Time-frequency (T-F), or wavelet, analyses are then applied to the single trial residuals. While T-F plots have been used in recent studies to identify and isolate bursts, we go further by fitting each burst in the T-F plot with a two-dimensional Gaussian. This provides a set of burst characteristics, such as, center time. burst duration, center frequency. frequency dispersion. and amplitude, all of which contribute to the accurate characterization of the individual burst. The burst phase can also be estimated. Burst characteristics can be quantified with several standard techniques (e.g.. histogramming and clustering), as well as Bayesian techniques (e.g., blocking) to allow a more parametric description analysis of the characteristics of oscillatory bursts, and the relationships of specific parameters to cortical excitability and stimulus integration.

  1. RELATIVISTIC JET DYNAMICS AND CALORIMETRY OF GAMMA-RAY BURSTS

    SciTech Connect

    Wygoda, N.; Waxman, E.; Frail, D. A.

    2011-09-10

    We present numerical solutions of the two-dimensional relativistic hydrodynamics equations describing the deceleration and expansion of highly relativistic conical jets, of opening angles 0.05 {<=} {theta}{sub 0} {<=} 0.2, propagating into a medium of uniform density. Jet evolution is followed from a collimated relativistic outflow to the quasi-spherical non-relativistic phase. We show that relativistic sideways expansion becomes significant beyond the radius r{sub {theta}} at which the expansion Lorentz factor drops to {theta}{sup -1}{sub 0}. This is consistent with simple analytic estimates, which predict faster sideways expansion than has been claimed based on earlier numerical modeling. For t > t{sub s} = r{sub {theta}}/c the emission of radiation from the jet blast wave is similar to that of a spherical blast wave carrying the same energy (significant deviations at t {approx} t{sub s} occur only for well off-axis observers, {theta}{sub obs} {approx} 1 >> {theta}{sub 0}). Thus, the total (calorimetric) energy of gamma-ray burst blast waves may be estimated with only a small fractional error based on t > t{sub s} observations.

  2. Analysis of matrix cracking and local delamination in (O/theta/-theta)sub s graphite epoxy laminates under tension load

    NASA Technical Reports Server (NTRS)

    Salpekar, S. A.; O'Brien, T. K.

    1991-01-01

    Several 3D finite element analyses of (O/theta/-theta)sub s graphite epoxy laminates, where theta = 15, 20, 25, 30, and 45 deg, subjected to axial tension load were performed. The interlaminar stresses in the theta/-theta interface were calculated with and without a matrix crack in the central -theta plies. The interlaminar normal stress changes from a small compressive stress when no matrix crack is present to a high tensile stress at the intersection of the matrix crack and free edge. The analysis of local delamination from the -theta matrix crack indicates a high strain energy release rate and a localized mode I component near the free edge, within one ply distance from the matrix crack. In order to examine the stress state causing the matrix cracking the maximum principal normal stress in a plane perpendicular to the fiber direction in the -theta ply was calculated in an uncracked laminate. The corresponding shear stress parallel to the fiber was also calculated. The principal normal stress at the laminate edge increases through the ply thickness and reached a very high tensile value at the theta/-theta interface indicating that the crack in the -theta ply may initiate at the theta/-theta interface. Crack profiles on the laminate edge in the -theta ply were constructed from the principal stress directions. The cracks were found to be more curved for layups with smaller theta angles, which is consistent with experimental observations in the literature.

  3. Analysis of matrix cracking and local delamination in (0/theta/-theta)sub s graphite epoxy laminates under tension load

    NASA Technical Reports Server (NTRS)

    Salpekar, S. A.; Obrien, T. K.

    1991-01-01

    Several 3D finite element analyses of (0/theta/-theta)sub s graphite epoxy laminates, where theta=15, 20, 25, 30, and 45 deg, subjected to axial tension load were performed. The interlaminar stresses in the theta/-theta interface were calculated with and without a matrix crack in the central -theta plies. The interlaminar normal stress changes from a small compressive stress when no matrix crack is present to a high tensile stress at the intersection of the matrix crack and free edge. The analysis of local delamination from the -theta matrix crack indicates a high strain energy release rate and a localized mode I component near the free edge, within one ply distance from the matrix crack. In order to examine the stress state causing the matrix cracking the maximum principal normal stress in a plane perpendicular to the fiber direction in the -theta ply was calculated in an uncracked laminate. The corresponding shear stress parallel to the fiber was also calculated. The principal normal stress at the laminate edge increases through the ply thickness and reached a very high tensile value at the theta/-theta interface indicating that the crack in the -theta ply may initiate at the theta/-theta interface. Crack profiles on the laminate edge in the -theta ply were constructed from the principal stress directions. The cracks were found to be more curved for layups with smaller theta angles, which is consistent with experimental observations in the literature.

  4. Measuring Theta_13 at Daya Bay

    SciTech Connect

    Lau, Kwong

    2014-03-14

    We measured the neutrino mixing angle, theta13, presumably related to the preponderance of matter over antimatter in our universe with high precision. We determined theta13 by measuring the disappearance of neutrinos from a group of six nuclear reactors. The target, located inside a mountain at about 2 km from the reactors, is 80 tons of liquid scintillator doped with trace amount of Gadolinium to increase its neutron detection efficiency. The neutrino flux is measured by the inverse beta-decay reaction where the final-state particles are detected by the liquid scintillator. The measured value of theta13, based on data collected over 3 years, is large, around 8 degrees, rendering the measurement of the parameter related to matter-antimatter asymmetry in future long baseline neutrino experiments easier.

  5. The position and polarization of Type III solar bursts

    NASA Technical Reports Server (NTRS)

    Dulk, G. A.; Suzuki, S.

    1980-01-01

    The position and polarization of Type III solar bursts in the range of 24-220 MHz are studied, with emphasis on the bursts continuing to frequencies lower than 24 MHz. Consideration is given to the statistics of burst polarization, the relation between polarization and source position, and brightness temperature, flux densities, and source sizes.

  6. Analysis of matrix cracking and local delamination in (0/theta/-theta)s graphite epoxy laminates under tensile load

    NASA Technical Reports Server (NTRS)

    Salpekar, S. A.; O'Brien, T. K.

    1993-01-01

    Three-dimensional element analyses of (0/theta/-theta)s graphite epoxy laminates, where theta = 15, 20, 25, 30, and 45 deg, subjected to axial tensile load, were performed. The interlaminar stresses in the theta/-theta interface were calculated with and without a matrix crack in the central -theta plies. The interlaminar normal stress changes from a small compressive stress when no matrix crack is present to a high tensile stress at the intersection of the matrix crack and the free edge. The analysis of local delamination from the -theta matrix crack indicates a high strain energy release rate and a localized Mode I component near the free edge, within one-ply distance from the matrix crack. To examine the stress state causing the matrix cracking, the maximum principal normal stress in a plane perpendicular to the fiber direction in the -theta ply was calculated in an uncracked laminate. The corresponding shear stress parallel to the fiber was also calculated. The principal normal stress at the laminate edge increased through the ply thickness and reached a very high tensile value at the theta/-theta interface indicating that the crack in the -theta ply may initiate at the theta/-theta interface.

  7. Hippocampal theta, gamma, and theta-gamma coupling: effects of aging, environmental change, and cholinergic activation

    PubMed Central

    Jacobson, Tara K.; Howe, Matthew D.; Schmidt, Brandy; Hinman, James R.; Escabí, Monty A.

    2013-01-01

    Hippocampal theta and gamma oscillations coordinate the timing of multiple inputs to hippocampal neurons and have been linked to information processing and the dynamics of encoding and retrieval. One major influence on hippocampal rhythmicity is from cholinergic afferents. In both humans and rodents, aging is linked to impairments in hippocampus-dependent function along with degradation of cholinergic function. Cholinomimetics can reverse some age-related memory impairments and modulate oscillations in the hippocampus. Therefore, one would expect corresponding changes in these oscillations and possible rescue with the cholinomimetic physostigmine. Hippocampal activity was recorded while animals explored a familiar or a novel maze configuration. Reexposure to a familiar situation resulted in minimal aging effects or changes in theta or gamma oscillations. In contrast, exploration of a novel maze configuration increased theta power; this was greater in adult than old animals, although the deficit was reversed with physostigmine. In contrast to the theta results, the effects of novelty, age, and/or physostigmine on gamma were relatively weak. Unrelated to the behavioral situation were an age-related decrease in the degree of theta-gamma coupling and the fact that physostigmine lowered the frequency of theta in both adult and old animals. The results indicate that age-related changes in gamma and theta modulation of gamma, while reflecting aging changes in hippocampal circuitry, seem less related to aging changes in information processing. In contrast, the data support a role for theta and the cholinergic system in encoding and that hippocampal aging is related to impaired encoding of new information. PMID:23303862

  8. Human Hippocampal Theta Oscillations during Movement without Visual Cues.

    PubMed

    Qasim, Salman E; Jacobs, Joshua

    2016-03-16

    The hippocampus exhibits theta oscillations when animals navigate. Vass et al. (2016) discovered that theta oscillations are also present when humans are moved through a virtual environment without sensory feedback, indicating that theta oscillations have a general role in spatial cognition beyond sensorimotor processing. PMID:26985718

  9. Bursts in discontinuous Aeolian saltation.

    PubMed

    Carneiro, M V; Rasmussen, K R; Herrmann, H J

    2015-01-01

    Close to the onset of Aeolian particle transport through saltation we find in wind tunnel experiments a regime of discontinuous flux characterized by bursts of activity. Scaling laws are observed in the time delay between each burst and in the measurements of the wind fluctuations at the fluid threshold Shields number θc. The time delay between each burst decreases on average with the increase of the Shields number until sand flux becomes continuous. A numerical model for saltation including the wind-entrainment from the turbulent fluctuations can reproduce these observations and gives insight about their origin. We present here also for the first time measurements showing that with feeding it becomes possible to sustain discontinuous flux even below the fluid threshold. PMID:26073305

  10. Bursts in discontinuous Aeolian saltation

    PubMed Central

    Carneiro, M. V.; Rasmussen, K. R.; Herrmann, H. J.

    2015-01-01

    Close to the onset of Aeolian particle transport through saltation we find in wind tunnel experiments a regime of discontinuous flux characterized by bursts of activity. Scaling laws are observed in the time delay between each burst and in the measurements of the wind fluctuations at the fluid threshold Shields number θc. The time delay between each burst decreases on average with the increase of the Shields number until sand flux becomes continuous. A numerical model for saltation including the wind-entrainment from the turbulent fluctuations can reproduce these observations and gives insight about their origin. We present here also for the first time measurements showing that with feeding it becomes possible to sustain discontinuous flux even below the fluid threshold. PMID:26073305

  11. Analysis of Q burst waveforms

    NASA Astrophysics Data System (ADS)

    Ogawa, Toshio; Komatsu, Masayuki

    2007-04-01

    The electric field changes in ELF to VLF were observed with a ball antenna in fair weather at Kochi (latitude 33.3°N, longitude 133.4°E) during 2003-2004. Some 376 Q bursts were obtained, seven examples of which are analyzed in the present study. The continuous frequency spectra of the Q bursts and the background noises from 1.0 Hz to 11 kHz are compared, and it was found that the Q bursts prevail over the background in the frequency range from 1 to 300 Hz. The surplus is 20 dB (in amplitude) near the fundamental mode frequency. The "W"-type changes found in the initial portion of the Q burst waveforms are interpreted as the combined electromagnetic waveform of direct and antipodal waves from the causative lightning strokes. From the time intervals between the two waves, the source-receiver distances are estimated as far as 19 Mm. The pulses to excite the Schumann resonances in the Q bursts are clearly identified.

  12. Further study of the theta component of the interplanetary magnetic field.

    NASA Technical Reports Server (NTRS)

    Rosenberg, R. L.; Coleman, P. J., Jr.; Ness, N. F.

    1973-01-01

    Measurements of the interplanetary magnetic field taken with Imp 3, Pioneer 6, and Explorer 34 constitute a large portion of the data available at low and moderate solar activity and provide nearly continuous coverage from mid-1965 through 1966 without radial effects. Study of these observations provides further evidence for the following B sub theta effect initially discovered with Mariners 2, 4, and 5. At low or moderate solar activity, the mean value of B sub theta is negative (approximately northward in the observations) above the solar equatorial plane and positive below it for an interplanetary field directed outward from the sun, and vice versa for an inward field. Thus, for an outward field, the r-theta component of a line of magnetic force above or below the equatorial plane was skewed relative to the average value of r in the direction away from the equatorial plane. Comparisons between different spacecraft are discussed.

  13. Electromagnetic theta gun and tubular projectiles

    SciTech Connect

    Burgess, T.J.; Cnare, E.C.; Oberkampf, W.L.; Beard, S.G.; Cowan, M.

    1980-12-01

    Unlike the better known rail gun, the theta gun applies the propelling force along the length of its projectile. This is shown to allow much greater acceleration of high fineness ratio projectiles for a given barrel pressure, allowing much shorter barrels for military applications. A computer code which simulates performance of the theta gun is described and experimental results from a few simple, low energy experiments show close agreement with code predictions. Trajectories and aerodynamic heating for three candidate military projectiles are calculated for vertical and horizontal atmospheric launches where initial velocity is as high as 3 km/s. The calculations indicate that in some cases a thin layer of heatshield (ablator) will be required to control projectile heating.

  14. A Neocortical Delta Rhythm Facilitates Reciprocal Interlaminar Interactions via Nested Theta Rhythms

    PubMed Central

    Carracedo, Lucy M.; Kjeldsen, Henrik; Cunnington, Leonie; Jenkins, Alastair; Schofield, Ian; Cunningham, Mark O.; Davies, Ceri H.; Traub, Roger D.

    2013-01-01

    Delta oscillations (1–4 Hz) associate with deep sleep and are implicated in memory consolidation and replay of cortical responses elicited during wake states. A potent local generator has been characterized in thalamus, and local generators in neocortex have been suggested. Here we demonstrate that isolated rat neocortex generates delta rhythms in conditions mimicking the neuromodulatory state during deep sleep (low cholinergic and dopaminergic tone). The rhythm originated in an NMDA receptor-driven network of intrinsic bursting (IB) neurons in layer 5, activating a source of GABAB receptor-mediated inhibition. In contrast, regular spiking (RS) neurons in layer 5 generated theta-frequency outputs. In layer 2/3 principal cells, outputs from IB cells associated with IPSPs, whereas those from layer 5 RS neurons related to nested bursts of theta-frequency EPSPs. Both interlaminar spike and field correlations revealed a sequence of events whereby sparse spiking in layer 2/3 was partially reflected back from layer 5 on each delta period. We suggest that these reciprocal, interlaminar interactions may represent a “Helmholtz machine”-like process to control synaptic rescaling during deep sleep. PMID:23804097

  15. Speech encoding by coupled cortical theta and gamma oscillations

    PubMed Central

    Hyafil, Alexandre; Fontolan, Lorenzo; Kabdebon, Claire; Gutkin, Boris; Giraud, Anne-Lise

    2015-01-01

    Many environmental stimuli present a quasi-rhythmic structure at different timescales that the brain needs to decompose and integrate. Cortical oscillations have been proposed as instruments of sensory de-multiplexing, i.e., the parallel processing of different frequency streams in sensory signals. Yet their causal role in such a process has never been demonstrated. Here, we used a neural microcircuit model to address whether coupled theta–gamma oscillations, as observed in human auditory cortex, could underpin the multiscale sensory analysis of speech. We show that, in continuous speech, theta oscillations can flexibly track the syllabic rhythm and temporally organize the phoneme-level response of gamma neurons into a code that enables syllable identification. The tracking of slow speech fluctuations by theta oscillations, and its coupling to gamma-spiking activity both appeared as critical features for accurate speech encoding. These results demonstrate that cortical oscillations can be a key instrument of speech de-multiplexing, parsing, and encoding. DOI: http://dx.doi.org/10.7554/eLife.06213.001 PMID:26023831

  16. Gamma-Ray Bursts in the Swift Era

    NASA Technical Reports Server (NTRS)

    Gehrels, Neil; Ramirez-Ruiz, E.; Fox, D. B.

    2010-01-01

    With its rapid-response capability and multiwavelength complement of instruments, the Swift satellite has transformed our physical understanding of gamma-ray bursts. Providing high-quality observations of hundreds of bursts, and facilitating a wide range of follow-up observations within seconds of each event, Swift has revealed an unforeseen richness in observed burst properties, shed light on the nature of short-duration bursts, and helped realize the promise of gamma-ray bursts as probes of the processes and environments of star formation out to the earliest cosmic epochs. These advances have opened new perspectives on the nature and properties of burst central engines, interactions with the burst environment from microparsec to gigaparsec scales, and the possibilities for non-photonic signatures. Our understanding of these extreme cosmic sources has thus advanced substantially; yet more than forty years after their discovery, gamma-ray bursts continue to present major challenges on both observational and theoretical fronts.

  17. Progressive Fracture of [0/90/ + or - Theta]s Composite Structure Under Uniform Pressure Load

    NASA Technical Reports Server (NTRS)

    Gotsis, Pascalis K.; Chamis, Christos C.; Gotsis, Christos K.; Mouratidis, Ericos

    2007-01-01

    S-Glass/epoxy [0/90/plus or minus theta]s for theta =45 deg., 60 deg., and 75 deg. laminated fiber-reinforced composite stiffened plate was simulated to investigated for damage and fracture progression under uniform pressure. An integrated computer code was augmented for the simulation of the damage initiation, growth, accumulation, and propagation to fracture and to structural collapse. Results show in detail the damage progression sequence and structural fracture resistance during different degradation stages. Damage through the thickness of the laminate initiated first at [0/90/plus or minus 45]s at 15.168 MPa (2200 psi), followed by [0/90/plus or minus 60]s at 16.96 MPa (2460 psi) and finally by [0/90/plus or minus 75]s at 19.3 MPa (2800 psi). After damage initiation happened the cracks propagate rapidly to structural fracture.

  18. The Fermi-GBM X-Ray Burst Monitor: Thermonuclear Bursts from 4U 0614+09

    NASA Astrophysics Data System (ADS)

    Linares, M.; Connaughton, V.; Jenke, P.; van der Horst, A. J.; Camero-Arranz, A.; Kouveliotou, C.; Chakrabarty, D.; Beklen, E.; Bhat, P. N.; Briggs, M. S.; Finger, M.; Paciesas, W. S.; Preece, R.; von Kienlin, A.; Wilson-Hodge, C. A.

    2012-12-01

    Thermonuclear bursts from slowly accreting neutron stars (NSs) have proven difficult to detect, yet they are potential probes of the thermal properties of the NS interior. During the first year of a systematic all-sky search for X-ray bursts using the Gamma-ray Burst Monitor aboard the Fermi Gamma-ray Space Telescope we have detected 15 thermonuclear bursts from the NS low-mass X-ray binary 4U 0614+09 when it was accreting at nearly 1% of the Eddington limit. We measured an average burst recurrence time of 12 ± 3 days (68% confidence interval) between 2010 March and 2011 March, classified all bursts as normal duration bursts and placed a lower limit on the recurrence time of long/intermediate bursts of 62 days (95% confidence level). We discuss how observations of thermonuclear bursts in the hard X-ray band compare to pointed soft X-ray observations and quantify such bandpass effects on measurements of burst radiated energy and duration. We put our results for 4U 0614+09 in the context of other bursters and briefly discuss the constraints on ignition models. Interestingly, we find that the burst energies in 4U 0614+09 are on average between those of normal duration bursts and those measured in long/intermediate bursts. Such a continuous distribution in burst energy provides a new observational link between normal and long/intermediate bursts. We suggest that the apparent bimodal distribution that defined normal and long/intermediate duration bursts during the last decade could be due to an observational bias toward detecting only the longest and most energetic bursts from slowly accreting NSs.

  19. THE FERMI-GBM X-RAY BURST MONITOR: THERMONUCLEAR BURSTS FROM 4U 0614+09

    SciTech Connect

    Linares, M.; Chakrabarty, D.; Connaughton, V.; Bhat, P. N.; Briggs, M. S.; Preece, R.; Jenke, P.; Kouveliotou, C.; Wilson-Hodge, C. A.; Camero-Arranz, A.; Finger, M.; Paciesas, W. S.; Beklen, E.; Von Kienlin, A.

    2012-12-01

    Thermonuclear bursts from slowly accreting neutron stars (NSs) have proven difficult to detect, yet they are potential probes of the thermal properties of the NS interior. During the first year of a systematic all-sky search for X-ray bursts using the Gamma-ray Burst Monitor aboard the Fermi Gamma-ray Space Telescope we have detected 15 thermonuclear bursts from the NS low-mass X-ray binary 4U 0614+09 when it was accreting at nearly 1% of the Eddington limit. We measured an average burst recurrence time of 12 {+-} 3 days (68% confidence interval) between 2010 March and 2011 March, classified all bursts as normal duration bursts and placed a lower limit on the recurrence time of long/intermediate bursts of 62 days (95% confidence level). We discuss how observations of thermonuclear bursts in the hard X-ray band compare to pointed soft X-ray observations and quantify such bandpass effects on measurements of burst radiated energy and duration. We put our results for 4U 0614+09 in the context of other bursters and briefly discuss the constraints on ignition models. Interestingly, we find that the burst energies in 4U 0614+09 are on average between those of normal duration bursts and those measured in long/intermediate bursts. Such a continuous distribution in burst energy provides a new observational link between normal and long/intermediate bursts. We suggest that the apparent bimodal distribution that defined normal and long/intermediate duration bursts during the last decade could be due to an observational bias toward detecting only the longest and most energetic bursts from slowly accreting NSs.

  20. A Non-Triggered Burst Supplement to the BATSE Gamma-Ray Burst Catalogs

    NASA Technical Reports Server (NTRS)

    Kommers, J.; Lewin, W. H.; Kouveliotou, C.; vanParadijs, J.; Pendleton, G. N.; Meegan, C. A.; Fishman, G. J.

    1998-01-01

    The Burst and Transient Source Experiment (BATSE) on the Compton Gamma Ray Observatory detects gamma-ray bursts (GRBs) with a real-time burst detection (or "trigger") system running onboard the spacecraft. Under some circumstances, however, a GRB may not activate the onboard burst trigger. For example, the burst may be too faint to exceed the onboard detection threshold, or it may occur while the onboard burst trigger is disabled for technical reasons. This paper is a catalog of such "non-triggered" GRBs that were detected in a search of the archival continuous data from BATSE. It lists 873 non-triggered bursts that were recorded between 1991 December 9.0 and 1997 December 17.0. For each burst, the catalog gives an estimated source direction, duration, peak flux, and fluence. Similar data are presented for 50 additional bursts of unknown origin that were detected in the 25-50 keV range; these events may represent the low-energy "tail" of the GRB spectral distribution. This catalog increases the number of GRBs detected with BATSE by 48% during the time period covered by the search.

  1. Burst-by-burst laser frequency monitor

    NASA Technical Reports Server (NTRS)

    Esproles, Carlos (Inventor)

    1994-01-01

    The invention is a system for real-time frequency monitoring and display of an RF burst where the burst frequency is analyzed and displayed on a burst-by-burst basis in order to allow for frequency control. Although the invention was made for monitoring the laser frequency of a LIDAR system, it has other applications where realtime monitoring is required. The novelty of the invention resides in the use of a counter that is reset at the beginning of each unit time of monitoring and then gated for a unit of time. The invention also has an LED bar graph for displaying the measure of frequency at the end of each unit time in either a bar length mode or a moving dot mode. In the latter mode, the operator makes necessary adjustments to maintain the dot at the center of the bar graph.

  2. How long does a burst burst?

    SciTech Connect

    Zhang, Bin-Bin; Connaughton, Valerie; Briggs, Michael S.; Zhang, Bing; Murase, Kohta

    2014-05-20

    Several gamma-ray bursts (GRBs) last much longer (∼hours) in γ-rays than typical long GRBs (∼minutes), and it has recently been proposed that these 'ultra-long GRBs' may form a distinct population, probably with a different (e.g., blue supergiant) progenitor than typical GRBs. However, Swift observations suggest that many GRBs have extended central engine activities manifested as flares and internal plateaus in X-rays. We perform a comprehensive study on a large sample of Swift GRBs with X-Ray Telescope observations to investigate GRB central engine activity duration and to determine whether ultra-long GRBs are unusual events. We define burst duration t {sub burst} based on both γ-ray and X-ray light curves rather than using γ-ray observations alone. We find that t {sub burst} can be reliably measured in 343 GRBs. Within this 'good' sample, 21.9% GRBs have t {sub burst} ≳ 10{sup 3} s and 11.5% GRBs have t {sub burst} ≳ 10{sup 4} s. There is an apparent bimodal distribution of t {sub burst} in this sample. However, when we consider an 'undetermined' sample (304 GRBs) with t {sub burst} possibly falling in the gap between GRB duration T {sub 90} and the first X-ray observational time, as well as a selection effect against t {sub burst} falling into the first Swift orbital 'dead zone' due to observation constraints, the intrinsic underlying t {sub burst} distribution is consistent with being a single component distribution. We found that the existing evidence for a separate ultra-long GRB population is inconclusive, and further multi-wavelength observations are needed to draw a firmer conclusion. We also discuss the theoretical implications of our results. In particular, the central engine activity duration of GRBs is generally much longer than the γ-ray T {sub 90} duration and it does not even correlate with T {sub 90}. It would be premature to make a direct connection between T {sub 90} and the size of the progenitor star.

  3. Theta oscillations accompanying concurrent auditory stream segregation.

    PubMed

    Tóth, Brigitta; Kocsis, Zsuzsanna; Urbán, Gábor; Winkler, István

    2016-08-01

    The ability to isolate a single sound source among concurrent sources is crucial for veridical auditory perception. The present study investigated the event-related oscillations evoked by complex tones, which could be perceived as a single sound and tonal complexes with cues promoting the perception of two concurrent sounds by inharmonicity, onset asynchrony, and/or perceived source location difference of the components tones. In separate task conditions, participants performed a visual change detection task (visual control), watched a silent movie (passive listening) or reported for each tone whether they perceived one or two concurrent sounds (active listening). In two time windows, the amplitude of theta oscillation was modulated by the presence vs. absence of the cues: 60-350ms/6-8Hz (early) and 350-450ms/4-8Hz (late). The early response appeared both in the passive and the active listening conditions; it did not closely match the task performance; and it had a fronto-central scalp distribution. The late response was only elicited in the active listening condition; it closely matched the task performance; and it had a centro-parietal scalp distribution. The neural processes reflected by these responses are probably involved in the processing of concurrent sound segregation cues, in sound categorization, and response preparation and monitoring. The current results are compatible with the notion that theta oscillations mediate some of the processes involved in concurrent sound segregation. PMID:27170058

  4. The GLAST Burst Monitor

    SciTech Connect

    Meegan, Charles; Fishman, Gerald; Kouveliotou, Chryssa; Wilson-Hodge, Colleen; Bhat, Narayana; Connaughton, Valerie; Briggs, Michael; Paciesas, William; Preece, Robert; Diehl, Roland; Greiner, Jochen; Kienlin, Andreas von; Lichti, Giselher; Steinle, Helmut; Kippen, R. Marc

    2007-07-12

    The GLAST Burst Monitor (GBM) comprises an array of NaI and BGO scintillation detectors designed to enhance the scientific return from GLAST in the study of gamma-ray bursts (GRBs). By observing in the 10 keV to 30 MeV energy range, GBM extends the spectral coverage of GRBs more than 3 decades below the LAT energy threshold. GBM computes burst locations on-board, allowing repointing of the GLAST Observatory to place strong bursts within the LAT field-of-view to observe delayed high-energy emission.

  5. The GLAST Burst Monitor

    NASA Technical Reports Server (NTRS)

    Meegan, Charles; Bhat, Narayana; Connaughton, Valerie; Briggs, Michael; Diehl, Roland; Fishman, Gerald; Greiner, Jochen; Kippen, R. Marc; vonKienlin, Andreas; Kouveliotou, Chryssa; Lichti, Giselher; Paciesas, William; Preece, Robert; Steinle, Helmut; Wilson-Hodge, Colleen

    2007-01-01

    The GLAST Burst Monitor (GBM) comprises an array of NaI and BGO scintillation detectors designed to enhance the scientific return from GLAST in the study of gamma-ray bursts (GRBs). By observing in the 10 keV to 30 MeV energy range, GBM extends the spectral coverage of GRBs more than 3 decades below the LAT energy threshold. GBM computes burst locations on-board, allowing repointing of the GLAST Observatory to place strong bursts within the LAT field-of-view to observe delayed high-energy emission.

  6. Geometric analysis of transient bursts

    NASA Astrophysics Data System (ADS)

    Osinga, Hinke M.; Tsaneva-Atanasova, Krasimira T.

    2013-12-01

    We consider the effect of a brief stimulation from the rest state of a minimal neuronal model with multiple time scales. Such transient dynamics brings out the intrinsic bursting capabilities of the system. Our main goal is to show that a minimum of three dimensions is enough to generate spike-adding phenomena in transient responses, and that the onset of a new spike can be tracked using existing continuation packages. We take a geometric approach to illustrate how the underlying fast subsystem organises the spike adding in much the same way as for spike adding in periodic bursts, but the bifurcation analysis for spike onset is entirely different. By using a generic model, we further strengthen claims made in our earlier work that our numerical method for spike onset can be used for a broad class of systems.

  7. A Nontriggered Burst Supplement to the BATSE Gamma-Ray Burst Catalogs

    NASA Technical Reports Server (NTRS)

    Kommers, Jefferson M.; Lewin, Walter H. G.; Kouveliotou, Chryssa; vanParadijs, Jan; Pendleton, Geoffrey N.; Meegan, Charles A.; Fishman, Gerald J.

    2001-01-01

    The Burst and Transient Source Experiment (BATSE) on the Compton Gamma Ray Observatory detects gamma-ray bursts (GRBs) with a real-time burst detection (or "trigger") system running onboard the spacecraft. Under some circumstances, however, a GRB may not activate the on-board burst trigger. For example, the burst may be too faint to exceed the on-board detection threshold, or it may occur while the on-board burst trigger is disabled for technical reasons. This paper describes a catalog of 873 "nontriggered" GRBs that were detected in a search of the archival continuous data from BATSE recorded between 1991 December 9.0 and 1997 December 17.0. For each burst, the catalog gives an estimated source direction, duration, peak flux, and fluence. Similar data are presented for 50 additional bursts of unknown origin that were detected in the 25-50 keV range; these events may represent the low-energy "tail" of the GRB spectral distribution. This catalog increases the number of GRBs detected with BATSE by 48% during the time period covered by the search.

  8. Hippocampo-cerebellar theta band phase synchrony in rabbits.

    PubMed

    Wikgren, J; Nokia, M S; Penttonen, M

    2010-02-17

    Hippocampal functioning, in the form of theta band oscillation, has been shown to modulate and predict cerebellar learning of which rabbit eyeblink conditioning is perhaps the most well-known example. The contribution of hippocampal neural activity to cerebellar learning is only possible if there is a functional connection between the two structures. Here, in the context of trace eyeblink conditioning, we show (1) that, in addition to the hippocampus, prominent theta oscillation also occurs in the cerebellum, and (2) that cerebellar theta oscillation is synchronized with that in the hippocampus. Further, the degree of phase synchrony (PS) increased both as a response to the conditioning stimuli and as a function of the relative power of hippocampal theta oscillation. However, the degree of PS did not change as a function of either training or learning nor did it predict learning rate as the hippocampal theta ratio did. Nevertheless, theta band synchronization might reflect the formation of transient neural assemblies between the hippocampus and the cerebellum. These findings help us understand how hippocampal function can affect eyeblink conditioning, during which the critical plasticity occurs in the cerebellum. Future studies should examine cerebellar unit activity in relation to hippocampal theta oscillations in order to discover the detailed mechanisms of theta-paced neural activity. PMID:19945512

  9. Theta Phase Synchrony and Conscious Target Perception

    PubMed Central

    Slagter, Heleen A.; Lutz, Antoine; Greischar, Lawrence L.; Nieuwenhuis, Sander; Davidson, Richard J.

    2008-01-01

    The information processing capacity of the human mind is limited, as is evidenced by the attentional blink—a deficit in identifying the second of two targets (T1 and T2) presented in close succession. This deficit is thought to result from an overinvestment of limited resources in T1 processing. We previously reported that intensive mental training in a style of meditation aimed at reducing elaborate object processing, reduced brain resource allocation to T1, and improved T2 accuracy [Slagter, H. A., Lutz, A., Greisschar, L. L., Frances, A. D., Nieuwenhuis, S., Davis, J., et al. Mental training affects distribution of limited brain resources. PloS Biology, 5, e138, 2007]. Here we report EEG spectral analyses to examine the possibility that this reduction in elaborate T1 processing rendered the system more available to process new target information, as indexed by T2-locked phase variability. Intensive mental training was associated with decreased cross-trial variability in the phase of oscillatory theta activity after successfully detected T2s, in particular, for those individuals who showed the greatest reduction in brain resource allocation to T1. These data implicate theta phase locking in conscious target perception, and suggest that after mental training the cognitive system is more rapidly available to process new target information. Mental training was not associated with changes in the amplitude of T2-induced responses or oscillatory activity before task onset. In combination, these findings illustrate the usefulness of systematic mental training in the study of the human mind by revealing the neural mechanisms that enable the brain to successfully represent target information. PMID:18823234

  10. Neural circuits underlying the generation of theta oscillations.

    PubMed

    Pignatelli, Michele; Beyeler, Anna; Leinekugel, Xavier

    2012-01-01

    Theta oscillations represent the neural network configuration underlying active awake behavior and paradoxical sleep. This major EEG pattern has been extensively studied, from physiological to anatomical levels, for more than half a century. Nevertheless the cellular and network mechanisms accountable for the theta generation are still not fully understood. This review synthesizes the current knowledge on the circuitry involved in the generation of theta oscillations, from the hippocampus to extra hippocampal structures such as septal complex, entorhinal cortex and pedunculopontine tegmentum, a main trigger of theta state through direct and indirect projections to the septal complex. We conclude with a short overview of the perspectives offered by technical advances for deciphering more precisely the different neural components underlying the emergence of theta oscillations. PMID:21964249

  11. Gamma Ray Bursts - Observations

    NASA Technical Reports Server (NTRS)

    Gehrels, N.; Cannizzo, J. K.

    2010-01-01

    We are in an exciting period of discovery for gamma-ray bursts. The Swift observatory is detecting 100 bursts per year, providing arcsecond localizations and sensitive observations of the prompt and afterglow emission. The Fermi observatory is observing 250 bursts per year with its medium-energy GRB instrument and about 10 bursts per year with its high-energy LAT instrument. In addition, rapid-response telescopes on the ground are providing new capabilities to study optical emission during the prompt phase and spectral signatures of the host galaxies. The combined data set is enabling great advances in our understanding of GRBs including afterglow physics, short burst origin, and high energy emission.

  12. Learning to learn: theta oscillations predict new learning, which enhances related learning and neurogenesis.

    PubMed

    Nokia, Miriam S; Sisti, Helene M; Choksi, Monica R; Shors, Tracey J

    2012-01-01

    Animals in the natural world continuously encounter learning experiences of varying degrees of novelty. New neurons in the hippocampus are especially responsive to learning associations between novel events and more cells survive if a novel and challenging task is learned. One might wonder whether new neurons would be rescued from death upon each new learning experience or whether there is an internal control system that limits the number of cells that are retained as a function of learning. In this experiment, it was hypothesized that learning a task that was similar in content to one already learned previously would not increase cell survival. We further hypothesized that in situations in which the cells are rescued hippocampal theta oscillations (3-12 Hz) would be involved and perhaps necessary for increasing cell survival. Both hypotheses were disproved. Adult male Sprague-Dawley rats were trained on two similar hippocampus-dependent tasks, trace and very-long delay eyeblink conditioning, while recording hippocampal local-field potentials. Cells that were generated after training on the first task were labeled with bromodeoxyuridine and quantified after training on both tasks had ceased. Spontaneous theta activity predicted performance on the first task and the conditioned stimulus induced a theta-band response early in learning the first task. As expected, performance on the first task correlated with performance on the second task. However, theta activity did not increase during training on the second task, even though more cells were present in animals that had learned. Therefore, as long as learning occurs, relatively small changes in the environment are sufficient to increase the number of surviving neurons in the adult hippocampus and they can do so in the absence of an increase in theta activity. In conclusion, these data argue against an upper limit on the number of neurons that can be rescued from death by learning. PMID:22348078

  13. Sawtooth bursts: observations and model

    NASA Astrophysics Data System (ADS)

    Karlický, M.; Bárta, M.; Klassen, A.; Aurass, H.; Mann, G.

    2002-12-01

    An example of the sawtooth burst observed during the November 3, 1997 flare is shown. Basic parameters of the sawtooth bursts are summarized and compared with those of fibers, fiber chains, zebras, EEL bursts and lace bursts. The sawtooth bursts are found to be most similar to the lace bursts, therefore the lace bursts model is proposed also for them. Then using this model the dynamic spectrum with the sawtooth burst is modelled. The model considers accelerated electrons with an unstable distribution function on the double resonance frequency and quasi-periodic variations of the electron plasma density and/or magnetic field in the radio source.

  14. Theta synchronizes the activity of medial prefrontal neurons during learning.

    PubMed

    Paz, Rony; Bauer, Elizabeth P; Paré, Denis

    2008-07-01

    Memory consolidation is thought to involve the gradual transfer of transient hippocampal-dependent traces to distributed neocortical sites via the rhinal cortices. Recently, medial prefrontal (mPFC) neurons were shown to facilitate this process when their activity becomes synchronized. However, the mechanisms underlying this enhanced synchrony remain unclear. Because the hippocampus projects to the mPFC, we tested whether theta oscillations contribute to synchronize mPFC neurons during learning. Thus, we obtained field (LFP) and unit recordings from multiple mPFC sites during the acquisition of a trace-conditioning task, where a visual conditioned stimulus (CS) predicted reward delivery. In quiet waking, the activity of mPFC neurons was modulated by theta oscillations. During conditioning, CS presentation caused an increase in mPFC theta power that augmented as the CS gained predictive value for reward delivery. This increased theta power coincided with a transient theta phase locking at distributed mPFC sites, an effect that was also manifest in the timing of mPFC unit activity. Overall, these results show that theta oscillations contribute to synchronize neuronal activity at distributed mPFC sites, suggesting that the hippocampus, by generating a stronger theta source during learning, can synchronize mPFC activity, in turn facilitating rhinal transfer of its activity to the neocortex. PMID:18612069

  15. 49 CFR 179.400-6 - Bursting and buckling pressure.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 3 2013-10-01 2013-10-01 false Bursting and buckling pressure. 179.400-6 Section 179.400-6 Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND... 107A) § 179.400-6 Bursting and buckling pressure. (a) (b) The outer jacket of the required...

  16. 49 CFR 179.400-6 - Bursting and buckling pressure.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 3 2014-10-01 2014-10-01 false Bursting and buckling pressure. 179.400-6 Section 179.400-6 Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND... 107A) § 179.400-6 Bursting and buckling pressure. (a) (b) The outer jacket of the required...

  17. 49 CFR 179.400-6 - Bursting and buckling pressure.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 3 2011-10-01 2011-10-01 false Bursting and buckling pressure. 179.400-6 Section 179.400-6 Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND... 107A) § 179.400-6 Bursting and buckling pressure. (a) (b) The outer jacket of the required...

  18. On vortex bursting

    NASA Technical Reports Server (NTRS)

    Werle, H.

    1984-01-01

    Vortex bursting is studied by means of visualization. The physical behavior of the phenomenon is emphasized, and its similarity with boundary layer separation or wake bursting becomes apparent. The essential influence of an increasing pressure gradient on the initiation, the position and the type of bursting is clearly confirmed. The evolution of the phenomena as a function of several parameters is analyzed in the case of delta wings, alone or installed on aircraft models, and compared with the results of similar wind tunnel or flight tests.

  19. Analysis of the energetic parameters of a theta pinch

    SciTech Connect

    Cavalcanti, G. H.; Farias, E. E.

    2009-12-15

    This work is devoted to study experimentally the performance of a theta pinch when the number of capacitors and turns of magnetic coil and the diameter of the glass tube are changed. To model the theta pinch a simple RLC circuit is used and the measurement of energy transmission from the bank of capacitors to the plasma is made using few experimental resources. In this work it was analyzed more than 2500 curves with a nonlinear procedure. Our results show that it is possible to design an optimized theta pinch making the appropriated choice of energetic parameters and therefore to reduce the stress of the system.

  20. INTEGRAL burst alert service

    NASA Technical Reports Server (NTRS)

    Pedersen, H.; Jennings, D.; Mereghetti, S.; Teegarden, B.

    1997-01-01

    The detection, accurate positioning, and spectral analysis of cosmic gamma ray bursts is an objective of the International Gamma Ray Astrophysics Laboratory (INTEGRAL) mission. Due to their unpredictable nature, gamma ray bursts can only be observed in serendipity mode. In order to allow and promote multiwavelength follow-up observations of such events, it is desirable to make the information available to the astrophysics community with a minimum delay through the use of Internet. Ideally, the data dissemination should occur within a few seconds of the start of the burst event so that follow up observations can proceed while gamma rays are still being emitted. The technical feasibility of building such a system to disseminate INTEGRAL burst alerts in real time is currently under consideration, the preliminary results of which are presented. It is concluded that such an alert service is technically feasible.

  1. Extragalactic Radio Bursts

    NASA Astrophysics Data System (ADS)

    Bailes, Matthew; Johnston, Simon; Bhat, Ramesh; Burke-Spolaor, Sarah; Barnes, David; van Straten, Willem

    2008-04-01

    We propose a sky monitoring survey that will piggy-back multibeam observations of other scientific programmes; the intent of our search is to intercept and analyse millisecond-duration, single, impulsive bursts from transient events in the extragalactic sky.

  2. Extragalactic Radio Bursts

    NASA Astrophysics Data System (ADS)

    Burke-Spolaor, Sarah; Johnston, Simon; Bailes, Matthew; Bhat, Ramesh; Barnes, David; van Straten, Willem

    2008-10-01

    We propose a sky monitoring survey that will piggy-back multibeam observations of other scientific programmes; the intent of our search is to intercept and analyse millisecond-duration, single, impulsive bursts from transient events in the extragalactic sky.

  3. Genesis and Control of bursting activity in a neuronal model

    NASA Astrophysics Data System (ADS)

    Cymbalyuk, Gennady

    2005-11-01

    Neurons are observed in one of four fundamental activity modes: silence, sub-threshold oscillations, tonic spiking, and bursting. Neurons exhibit various activity regimes and regime transitions that reflect their complement of ionic channels and modulatory state. The leech presents unique opportunities for experimental and theoretical studies on the dynamics of neuronal activity. The central pattern generator controlling the leech's heartbeat contains identified pairs of mutually inhibitory neurons. Bursting activity of neurons is an oscillatory activity consisting of intervals of repetitive spiking separated by intervals of quiescence. It has been observed in neurons under normal and pathological conditions. Neurons which are capable of generating bursting activity endogenously play an important role in motor control and other brain functions. Burst duration, interburst interval and spike frequency are crucial temporal characteristics of bursting activity and thus have to be regulated. Application of the bifurcation theory of dynamical systems suggests new mechanism of how bursting activity can be generated by neurons and how burst duration can be regulated. Here we describe two mechanisms for the transition between tonic spiking and bursting. First mechanism describes a smooth, continuous and reversible transition from tonic spiking into bursting in a model neuron. The burst duration increases with no bound as 1/(a-a0)^1/2, where a0 is a parameter determining the transition. The characteristic features of this mechanism are that (a) the burst duration can be made arbitrarily long while (b) inter-burst interval does not depend on the parameter. The second mechanism is concerned with bi-stability where simultaneous tonic spiking and bursting activities co-exist in a neuron. The mechanism is based on a saddle-node periodic orbit bifurcation with non-central homoclinic orbits. This bifurcation describes a transition between three qualitatively different types of

  4. Intrinsic Cornu Ammonis Area 1 Theta-Nested Gamma Oscillations Induced by Optogenetic Theta Frequency Stimulation

    PubMed Central

    Butler, James L.; Mendonça, Philipe R. F.; Robinson, Hugh P. C.

    2016-01-01

    Gamma oscillations (30–120 Hz) are thought to be important for various cognitive functions, including perception and working memory, and disruption of these oscillations has been implicated in brain disorders, such as schizophrenia and Alzheimer's disease. The cornu ammonis area 1 (CA1) of the hippocampus receives gamma frequency inputs from upstream regions (cornu ammonis area 3 and medial entorhinal cortex) and generates itself a faster gamma oscillation. The exact nature and origin of the intrinsic CA1 gamma oscillation is still under debate. Here, we expressed channelrhodopsin-2 under the CaMKIIα promoter in mice and prepared hippocampal slices to produce a model of intrinsic CA1 gamma oscillations. Sinusoidal optical stimulation of CA1 at theta frequency was found to induce robust theta-nested gamma oscillations with a temporal and spatial profile similar to CA1 gamma in vivo. The results suggest the presence of a single gamma rhythm generator with a frequency range of 65–75 Hz at 32°C. Pharmacological analysis found that the oscillations depended on both AMPA and GABAA receptors. Cell-attached and whole-cell recordings revealed that excitatory neuron firing slightly preceded interneuron firing within each gamma cycle, suggesting that this intrinsic CA1 gamma oscillation is generated with a pyramidal–interneuron circuit mechanism. SIGNIFICANCE STATEMENT This study demonstrates that the cornu ammonis area 1 (CA1) is capable of generating intrinsic gamma oscillations in response to theta input. This gamma generator is independent of activity in the upstream regions, highlighting that CA1 can produce its own gamma oscillation in addition to inheriting activity from the upstream regions. This supports the theory that gamma oscillations predominantly function to achieve local synchrony, and that a local gamma generated in each area conducts the signal to the downstream region. PMID:27076416

  5. GLAST's GBM Burst Trigger

    NASA Technical Reports Server (NTRS)

    Band, D.; Briggs, M.; Connaughton, V.; Kippen, M.; Preece, R.

    2003-01-01

    The GLAST Burst Monitor (GBM) will detect and localize bursts for the GLAST mission, and provide the spectral and temporal context in the traditional 10 keV to 25 MeV band for the high energy observations by the Large Area Telescope (LAT). The GBM will use traditional rate triggers in up to three energy bands, and on a variety of timescales between 16 ms and 16 s.

  6. GLAST's GBM Burst Trigger

    SciTech Connect

    Band, D.; Kippen, M.

    2004-09-28

    The GLAST Burst Monitor (GBM) will detect and localize bursts for the GLAST mission, and provide the spectral and temporal context in the traditional 10 keV to 25 MeV band for the high energy observations by the Large Area Telescope (LAT). The GBM will use traditional rate triggers in up to three energy bands, and on a variety of timescales between 16 ms and 16 s.

  7. Burst diaphragm sequence valve

    NASA Astrophysics Data System (ADS)

    Wisneskie, Bradley D.; Hyman, Sheldon; Hallum, Charles E.

    1991-11-01

    A burst diaphragm sequence valve which effectively combines the structure of a burst diaphragm with that of an ordinary swing check valve, the pivot of the ordinary swing check valve being replaced by an integral flexural hinge. The sequence valve provides a way to sequentially burn solid propellant hot gas generators which exit into a common gas manifold, thereby enabling gas-powered devices to operate for a longer time than the duration of one gas generator burn.

  8. SELECTION EFFECTS ON THE OBSERVED REDSHIFT DEPENDENCE OF GAMMA-RAY BURST JET OPENING ANGLES

    SciTech Connect

    Lu Ruijing; Wei Junjie; Liang Enwei; Qin Shufu

    2012-02-01

    An apparent redshift dependence of the jet opening angles ({theta}{sub j}) of gamma-ray bursts (GRBs) is observed from the current GRB sample. We investigate whether this dependence can be explained with instrumental selection effects and observational biases by a bootstrapping method. Assuming that (1) the GRB rate follows the star formation history and the cosmic metallicity history and (2) the intrinsic distributions of the jet-corrected luminosity (L{sub {gamma}}) and {theta}{sub j} are a Gaussian or a power-law function, we generate a mock Swift/Burst Alert Telescope (BAT) sample by considering various instrumental selection effects, including the flux threshold and the trigger probability of BAT, the probabilities of a GRB jet pointing to the instrument solid angle, and the probability of redshift measurement. Our results reproduce the observed {theta}{sub j} - z dependence well. We find that in the case of L{sub {gamma}}{proportional_to}{theta}{sup 2}{sub j} good consistency between the mock and observed samples can be obtained, indicating that both L{sub {gamma}} and {theta}{sub j} are degenerate for a flux-limited sample. The parameter set (L{sub {gamma}}, {theta}{sub j}) = (4.9 Multiplication-Sign 10{sup 49} erg s{sup -1}, 0.054 rad) gives the best consistency for the current Swift GRB sample. Considering the beaming effect, the derived intrinsic local GRB rate is accordingly 2.85 Multiplication-Sign 10{sup 2} Gpc{sup -3} yr{sup -1}, inferring that {approx}0.59% of Type Ib/c supernovae may be accompanied by a GRB.

  9. Parameters for burst detection

    PubMed Central

    Bakkum, Douglas J.; Radivojevic, Milos; Frey, Urs; Franke, Felix; Hierlemann, Andreas; Takahashi, Hirokazu

    2014-01-01

    Bursts of action potentials within neurons and throughout networks are believed to serve roles in how neurons handle and store information, both in vivo and in vitro. Accurate detection of burst occurrences and durations are therefore crucial for many studies. A number of algorithms have been proposed to do so, but a standard method has not been adopted. This is due, in part, to many algorithms requiring the adjustment of multiple ad-hoc parameters and further post-hoc criteria in order to produce satisfactory results. Here, we broadly catalog existing approaches and present a new approach requiring the selection of only a single parameter: the number of spikes N comprising the smallest burst to consider. A burst was identified if N spikes occurred in less than T ms, where the threshold T was automatically determined from observing a probability distribution of inter-spike-intervals. Performance was compared vs. different classes of detectors on data gathered from in vitro neuronal networks grown over microelectrode arrays. Our approach offered a number of useful features including: a simple implementation, no need for ad-hoc or post-hoc criteria, and precise assignment of burst boundary time points. Unlike existing approaches, detection was not biased toward larger bursts, allowing identification and analysis of a greater range of neuronal and network dynamics. PMID:24567714

  10. Hippocampal-Prefrontal Theta Oscillations Support Memory Integration.

    PubMed

    Backus, Alexander R; Schoffelen, Jan-Mathijs; Szebényi, Szabolcs; Hanslmayr, Simon; Doeller, Christian F

    2016-02-22

    Integration of separate memories forms the basis of inferential reasoning--an essential cognitive process that enables complex behavior. Considerable evidence suggests that both hippocampus and medial prefrontal cortex (mPFC) play a crucial role in memory integration. Although previous studies indicate that theta oscillations facilitate memory processes, the electrophysiological mechanisms underlying memory integration remain elusive. To bridge this gap, we recorded magnetoencephalography data while participants performed an inference task and employed novel source reconstruction techniques to estimate oscillatory signals from the hippocampus. We found that hippocampal theta power during encoding predicts subsequent memory integration. Moreover, we observed increased theta coherence between hippocampus and mPFC. Our results suggest that integrated memory representations arise through hippocampal theta oscillations, possibly reflecting dynamic switching between encoding and retrieval states, and facilitating communication with mPFC. These findings have important implications for our understanding of memory-based decision making and knowledge acquisition. PMID:26832442

  11. Reversed theta sequences of hippocampal cell assemblies during backward travel.

    PubMed

    Cei, Anne; Girardeau, Gabrielle; Drieu, Céline; Kanbi, Karim El; Zugaro, Michaël

    2014-05-01

    Hippocampal cell assemblies coding for past, present and future events form theta-timescale (~100 ms) sequences that represent spatio-temporal episodes. However, the underlying mechanisms remain largely unknown. We recorded hippocampal and entorhinal cortical activity as rats experienced backward travel on a model train. Although the firing fields of place cells remained stable, the order in which they were activated in the theta sequence was reversed during backward travel. Thus, hippocampal cell assemblies coordinated their relative timing to correctly predict the sequential traversal of place fields in reverse order. At the single-cell level, theta phase represented distance traveled through the field, even though the head of the rat was oriented opposite to travel direction and entorhinal head-direction cells maintained their preferred firing direction. Our results challenge most theoretical models of theta sequence generation in the hippocampus. PMID:24667574

  12. Neutrino mass hierarchy determination for theta{sub 13} = 0

    SciTech Connect

    Gandhi, Raj; Ghoshal, Pomita; Goswami, Srubabati; Sankar, S. Uma

    2010-03-30

    We examine the possibility of determining the neutrino mass hierarchy in the limit theta{sub 13} = 0 using atmospheric neutrinos as the source. In this limit, theta{sub 13} driven matter effects are absent so independent measurements of DELTA{sub 31} and DELTA{sub 32} can, in principle, lead to hierarchy determination. Since their difference is DELTA{sub 21}, one needs an experimental arrangement where DELTA{sub 21}L/E > or approx. 1 can be achieved. This can be satisfied by atmospheric neutrinos which have a large range of L and E. Still, we find that hierarchy determination in the theta{sub 13} = 0 limit with atmospheric neutrinos is not a realistic possibility, even in conjunction with a beam experiment like T2K or NOnuA. We discuss why, and also reiterate the general conditions for hierarchy determination if theta{sub 13} = 0.

  13. Probing {theta}{sub 23} in neutrino telescopes

    SciTech Connect

    Choubey, Sandhya; Niro, Viviana; Rodejohann, Werner

    2008-06-01

    Among all neutrino mixing parameters, the atmospheric neutrino mixing angle {theta}{sub 23} introduces the strongest variation on the flux ratios of ultrahigh-energy neutrinos. We investigate the potential of these flux ratio measurements at neutrino telescopes to constrain {theta}{sub 23}. We consider astrophysical neutrinos originating from pion, muon-damped, and neutron sources and make a comparative study of their sensitivity reach to {theta}{sub 23}. It is found that neutron sources are most favorable for testing deviations from maximal {theta}{sub 23}. Using a {chi}{sup 2} analysis, we show, in particular, the power of combining (i) different flux ratios from the same type of source, and also (ii) combining flux ratios from different astrophysical sources. We include in our analysis 'impure' sources, i.e., deviations from the usually assumed initial (1 ratio 2 ratio 0), (0 ratio 1 ratio 0), or (1 ratio 0 ratio 0) flux compositions.

  14. The cos-theta coil re-re-visited

    NASA Astrophysics Data System (ADS)

    Crawford, Christopher

    2013-10-01

    Precision measurement of symmetry violating effects such the electric dipole moment (EDM) of fundamental particles requires extremely uniform fields. The cos-theta coil is the standard workhorse for generating uniform transverse magnetic fields in these experiments. Limitations in field uniformity include fringe effects (finite length), discretization (finite number of wires), and construction tolerance (finite resources). The field can be isolated from its environment by superposition of two coaxial cos-theta coils of different radii and opposite magnetic moment (double-cos-theta coil), or by shielding the coil inside a permeable or superconducting cylinder. I will discuss methods for optimizing the field uniformity of a compact cos-theta coil, and compare the ultimate limit on errors due to each source described above. Within the context of the scalar potential, I will show a straightforward generalization to non-circular coils with z- or ϕ-symmetry. Supported in part by DOE contract DE-SC0008107.

  15. Modulation of EEG Theta Band Signal Complexity by Music Therapy

    NASA Astrophysics Data System (ADS)

    Bhattacharya, Joydeep; Lee, Eun-Jeong

    The primary goal of this study was to investigate the impact of monochord (MC) sounds, a type of archaic sounds used in music therapy, on the neural complexity of EEG signals obtained from patients undergoing chemotherapy. The secondary goal was to compare the EEG signal complexity values for monochords with those for progressive muscle relaxation (PMR), an alternative therapy for relaxation. Forty cancer patients were randomly allocated to one of the two relaxation groups, MC and PMR, over a period of six months; continuous EEG signals were recorded during the first and last sessions. EEG signals were analyzed by applying signal mode complexity, a measure of complexity of neuronal oscillations. Across sessions, both groups showed a modulation of complexity of beta-2 band (20-29Hz) at midfrontal regions, but only MC group showed a modulation of complexity of theta band (3.5-7.5Hz) at posterior regions. Therefore, the neuronal complexity patterns showed different changes in EEG frequency band specific complexity resulting in two different types of interventions. Moreover, the different neural responses to listening to monochords and PMR were observed after regular relaxation interventions over a short time span.

  16. Medial prefrontal theta phase coupling during spatial memory retrieval.

    PubMed

    Kaplan, Raphael; Bush, Daniel; Bonnefond, Mathilde; Bandettini, Peter A; Barnes, Gareth R; Doeller, Christian F; Burgess, Neil

    2014-06-01

    Memory retrieval is believed to involve a disparate network of areas, including medial prefrontal and medial temporal cortices, but the mechanisms underlying their coordination remain elusive. One suggestion is that oscillatory coherence mediates inter-regional communication, implicating theta phase and theta-gamma phase-amplitude coupling in mnemonic function across species. To examine this hypothesis, we used non-invasive whole-head magnetoencephalography (MEG) as participants retrieved the location of objects encountered within a virtual environment. We demonstrate that, when participants are cued with the image of an object whose location they must subsequently navigate to, there is a significant increase in 4-8 Hz theta power in medial prefrontal cortex (mPFC), and the phase of this oscillation is coupled both with ongoing theta phase in the medial temporal lobe (MTL) and perceptually induced 65-85 Hz gamma amplitude in medial parietal cortex. These results suggest that theta phase coupling between mPFC and MTL and theta-gamma phase-amplitude coupling between mPFC and neocortical regions may play a role in human spatial memory retrieval. PMID:24497013

  17. Control of timing, rate and bursts of hippocampal place cells by dendritic and somatic inhibition

    PubMed Central

    Royer, Sébastien; Zemelman, Boris V; Losonczy, Attila; Kim, Jinhyun; Chance, Frances; Magee, Jeffrey C; Buzsáki, György

    2016-01-01

    A consortium of inhibitory neurons control the firing patterns of pyramidal cells, but their specific roles in the behaving animal are largely unknown. We performed simultaneous physiological recordings and optogenetic silencing of either perisomatic (parvalbumin (PV) expressing) or dendrite-targeting (somatostatin (SOM) expressing) interneurons in hippocampal area CA1 of head-fixed mice actively moving a treadmill belt rich with visual-tactile stimuli. Silencing of either PV or SOM interneurons increased the firing rates of pyramidal cells selectively in their place fields, with PV and SOM interneurons having their largest effect during the rising and decaying parts of the place field, respectively. SOM interneuron silencing powerfully increased burst firing without altering the theta phase of spikes. In contrast, PV interneuron silencing had no effect on burst firing, but instead shifted the spikes’ theta phase toward the trough of theta. These findings indicate that perisomatic and dendritic inhibition have distinct roles in controlling the rate, burst and timing of hippocampal pyramidal cells. PMID:22446878

  18. Exploratory depth-of-burst experiments

    SciTech Connect

    Reichenbach, H.; Behrens, K.; Kuhl, A.

    1991-12-12

    This report describes the first small-scale explosion experiments with aerated grout (i.e., YTONG). Apart from data referring to crater depth and volume versus depth of burst (DOB), isobaric DOB curves in the range of 1.5 psi {le} p {le} 15 psi were established. The comparison with previous HOB values shows that the ground range to a given overpressure is considerably reduced with increasing depth of burst. The authors plan to continue the airblast investigations with different types of soil materials.

  19. Method and apparatus for coherent burst ranging

    DOEpatents

    Wachter, Eric A.; Fisher, Walter G.

    1998-01-01

    A high resolution ranging method is described utilizing a novel modulated waveform, hereafter referred to as coherent burst modulation. In the coherent burst method, high frequency modulation of an acoustic or electromagnetic transmitter, such as a laser, is performed at a modulation frequency. This modulation frequency is transmitted quasi-continuously in the form of interrupted bursts of radiation. Energy from the transmitter is directed onto a target, interacts with the target, and the returning energy is collected. The encoded burst pattern contained in the collected return signal is detected coherently by a receiver that is tuned so as to be principally sensitive to the modulation frequency. The receiver signal is processed to determine target range using both time-of-flight of the burst envelope and phase shift of the high frequency modulation. This approach effectively decouples the maximum unambiguous range and range resolution relationship of earlier methods, thereby allowing high precision ranging to be conducted at arbitrarily long distances using at least one burst of encoded energy. The use of a receiver tuned to the high frequency modulation contained within the coherent burst vastly improves both sensitivity in the detection of the target return signal and rejection of background interferences, such as ambient acoustic or electromagnetic noise. Simultaneous transmission at several energies (or wavelengths) is possible by encoding each energy with a separate modulation frequency or pattern; electronic demodulation at the receiver allows the return pattern for each energy to be monitored independently. Radial velocity of a target can also be determined by monitoring change in phase shift of the return signal as a function of time.

  20. Method and apparatus for coherent burst ranging

    DOEpatents

    Wachter, E.A.; Fisher, W.G.

    1998-04-28

    A high resolution ranging method is described utilizing a novel modulated waveform, hereafter referred to as coherent burst modulation. In the coherent burst method, high frequency modulation of an acoustic or electromagnetic transmitter, such as a laser, is performed at a modulation frequency. This modulation frequency is transmitted quasi-continuously in the form of interrupted bursts of radiation. Energy from the transmitter is directed onto a target, interacts with the target, and the returning energy is collected. The encoded burst pattern contained in the collected return signal is detected coherently by a receiver that is tuned so as to be principally sensitive to the modulation frequency. The receiver signal is processed to determine target range using both time-of-flight of the burst envelope and phase shift of the high frequency modulation. This approach effectively decouples the maximum unambiguous range and range resolution relationship of earlier methods, thereby allowing high precision ranging to be conducted at arbitrarily long distances using at least one burst of encoded energy. The use of a receiver tuned to the high frequency modulation contained within the coherent burst vastly improves both sensitivity in the detection of the target return signal and rejection of background interferences, such as ambient acoustic or electromagnetic noise. Simultaneous transmission at several energies (or wavelengths) is possible by encoding each energy with a separate modulation frequency or pattern; electronic demodulation at the receiver allows the return pattern for each energy to be monitored independently. Radial velocity of a target can also be determined by monitoring change in phase shift of the return signal as a function of time. 12 figs.

  1. Paired Burst Stimulation Causes GABAA Receptor-Dependent Spike Firing Facilitation in CA1 of Rat Hippocampal Slices

    PubMed Central

    Tominaga, Takashi; Tominaga, Yoko

    2016-01-01

    The theta oscillation (4–8 Hz) is a pivotal form of oscillatory activity in the hippocampus that is intermittently concurrent with gamma (25–100 Hz) burst events. In in vitro preparation, a stimulation protocol that mimics the theta oscillation, theta burst stimulation (TBS), is used to induce long-term potentiation. Thus, TBS is thought to have a distinct role in the neural network of the hippocampal slice preparation. However, the specific mechanisms that make TBS induce such neural circuit modifications are still unknown. Using electrophysiology and voltage-sensitive dye imaging (VSDI), we have found that TBS induces augmentation of spike firing. The augmentation was apparent in the first couple of brief burst stimulation (100 Hz four pulses) on a TBS-train in a presence of NMDA receptor blocker (APV 50 μM). In this study, we focused on the characterizes of the NMDA independent augmentation caused by a pair of the brief burst stimulation (the first pair of the TBS; paired burst stimulation-PBS). We found that PBS enhanced membrane potential responses on VSDI signal and intracellular recordings while it was absent in the current recording under whole-cell clamp condition. The enhancement of the response accompanied the augmentation of excitatory postsynaptic potential (EPSP) to spike firing (E-S) coupling. The paired burst facilitation (PBF) reached a plateau when the number of the first burst stimulation (priming burst) exceeds three. The interval between the bursts of 150 ms resulted in the maximum PBF. Gabazine (a GABAA receptor antagonist) abolished PBF. The threshold for spike generation of the postsynaptic cells measured with a current injection to cells was not lowered by the priming burst of PBS. These results indicate that PBS activates the GABAergic system to cause short-term E-S augmentation without raising postsynaptic excitability. We propose that a GABAergic system of area CA1 of the hippocampus produce the short-term E-S plasticity that could

  2. Interplanetary Type IV Bursts

    NASA Astrophysics Data System (ADS)

    Hillaris, A.; Bouratzis, C.; Nindos, A.

    2016-08-01

    We study the characteristics of moving type IV radio bursts that extend to hectometric wavelengths (interplanetary type IV or type {IV}_{{IP}} bursts) and their relationship with energetic phenomena on the Sun. Our dataset comprises 48 interplanetary type IV bursts observed with the Radio and Plasma Wave Investigation (WAVES) instrument onboard Wind in the 13.825 MHz - 20 kHz frequency range. The dynamic spectra of the Radio Solar Telescope Network (RSTN), the Nançay Decametric Array (DAM), the Appareil de Routine pour le Traitement et l' Enregistrement Magnetique de l' Information Spectral (ARTEMIS-IV), the Culgoora, Hiraso, and the Institute of Terrestrial Magnetism, Ionosphere and Radio Wave Propagation (IZMIRAN) Radio Spectrographs were used to track the evolution of the events in the low corona. These were supplemented with soft X-ray (SXR) flux-measurements from the Geostationary Operational Environmental Satellite (GOES) and coronal mass ejections (CME) data from the Large Angle and Spectroscopic Coronagraph (LASCO) onboard the Solar and Heliospheric Observatory (SOHO). Positional information of the coronal bursts was obtained by the Nançay Radioheliograph (NRH). We examined the relationship of the type IV events with coronal radio bursts, CMEs, and SXR flares. The majority of the events (45) were characterized as compact, their duration was on average 106 minutes. This type of events was, mostly, associated with M- and X-class flares (40 out of 45) and fast CMEs, 32 of these events had CMEs faster than 1000 km s^{-1}. Furthermore, in 43 compact events the CME was possibly subjected to reduced aerodynamic drag as it was propagating in the wake of a previous CME. A minority (three) of long-lived type {IV}_{{IP}} bursts was detected, with durations from 960 minutes to 115 hours. These events are referred to as extended or long duration and appear to replenish their energetic electron content, possibly from electrons escaping from the corresponding coronal

  3. Quantum modular forms, mock modular forms, and partial theta functions

    NASA Astrophysics Data System (ADS)

    Kimport, Susanna

    Defined by Zagier in 2010, quantum modular forms have been the subject of an explosion of recent research. Many of these results are aimed at discovering examples of these functions, which are defined on the rational numbers and have "nice" modularity properties. Though the subject is in its early stages, numerous results (including Zagier's original examples) show these objects naturally arising from many areas of mathematics as limits of other modular-like functions. One such family of examples is due to Folsom, Ono, and Rhoades, who connected these new objects to partial theta functions (introduced by Rogers in 1917) and mock modular forms (about which there is a rich theory, whose origins date back to Ramanujan in 1920). In this thesis, we build off of the work of Folsom, Ono, and Rhoades by providing an infinite family of quantum modular forms of arbitrary positive half-integral weight. Further, this family of quantum modular forms "glues" mock modular forms to partial theta functions and is constructed from a so-called "universal" mock theta function by extending a method of Eichler and Zagier (originally defined for holomorphic Jacobi forms) into a non-holomorphic setting. In addition to the infinite family, we explore the weight 1/2 and 3/2 functions in more depth. For both of these weights, we are able to explicitly write down the quantum modular form, as well as the corresponding "errors to modularity," which can be shown to be Mordell integrals of specific theta functions and, as a consequence, are real-analytic functions. Finally, we turn our attention to the partial theta functions associated with these low weight examples. Berndt and Kim provide asymptotic expansions for a certain class of partial theta functions as q approaches 1 radially within the unit disk. Here, we extend this work to not only obtain asymptotic expansions for this class of functions as q approaches any root of unity, but also for a certain class of derivatives of these functions

  4. Optimal Swimming with a Burst-and-Coast Behaviour

    NASA Astrophysics Data System (ADS)

    Akoz, Emre; Moored, Keith

    2014-11-01

    Swimming animals are typically assumed to be continuously adding power to the fluid throughout a period of motion. On the other hand, animals have been observed using a non-continuously powered motion described as a burst-and-coast or burst-and-glide behavior. When animals use a non-continuously powered motion it is estimated that their cost of transport is reduced by as much as 45%. However, there are competing mechanisms in the literature that lead to this conclusion. The present study aims to identify the underlying mechanism of burst-and-coast energy savings and to quantify the scaling of optimal motions. A two-dimensional boundary element method approach is used to quantify the performance and wake structure of a free-swimming pitching panel operating with a burst-and-coast behavior. Supported by the Office of Naval Research under Program Director Dr. Bob Brizzolara, MURI Grant Number N00014-14-1-0533.

  5. The discovery of rapidly repetitive X-ray bursts from a new source in Scorpius

    NASA Technical Reports Server (NTRS)

    Lewin, W. H. G.; Doty, J.; Clark, G. W.; Bradt, H. V. D.; Doxsey, R.; Hearn, D. R.; Hoffman, J. A.; Jernigan, J. G.; Li, F. K.; Rappaport, S. A.

    1976-01-01

    Rapidly repetitive X-ray bursts have been observed from a new X-ray source in Scorpius. More than 2000 bursts were observed during the 4-day continual SAS-3 observations of this source designated MXB 1730-335. The time interval between bursts varied from a minimum of about 6 s to a maximum of about 5 minutes. The energy in a given burst is approximately linearly proportional to the time interval to the next burst. The largest bursts observed last for about 60 s and represent an energy release of approximately 10 to the 40th ergs for an assumed distance to the source of 10 kpc. The smallest bursts observed last only for a few seconds. We suggest that the bursts are caused by sporadic precipitations of plasma from a reservoir in the magnetosphere of a neutron star. The reservoir is replenished at a nearly constant rate by mass transferred from a binary companion.

  6. Harnessing the power of theta: natural manipulations of cognitive performance during hippocampal theta-contingent eyeblink conditioning.

    PubMed

    Hoffmann, Loren C; Cicchese, Joseph J; Berry, Stephen D

    2015-01-01

    Neurobiological oscillations are regarded as essential to normal information processing, including coordination and timing of cells and assemblies within structures as well as in long feedback loops of distributed neural systems. The hippocampal theta rhythm is a 3-12 Hz oscillatory potential observed during cognitive processes ranging from spatial navigation to associative learning. The lower range, 3-7 Hz, can occur during immobility and depends upon the integrity of cholinergic forebrain systems. Several studies have shown that the amount of pre-training theta in the rabbit strongly predicts the acquisition rate of classical eyeblink conditioning and that impairment of this system substantially slows the rate of learning. Our lab has used a brain-computer interface (BCI) that delivers eyeblink conditioning trials contingent upon the explicit presence or absence of hippocampal theta. A behavioral benefit of theta-contingent training has been demonstrated in both delay and trace forms of the paradigm with a two- to four-fold increase in learning speed. This behavioral effect is accompanied by enhanced amplitude and synchrony of hippocampal local field potential (LFP)s, multi-unit excitation, and single-unit response patterns that depend on theta state. Additionally, training in the presence of hippocampal theta has led to increases in the salience of tone-induced unit firing patterns in the medial prefrontal cortex, followed by persistent multi-unit activity during the trace interval. In cerebellum, rhythmicity and precise synchrony of stimulus time-locked LFPs with those of hippocampus occur preferentially under the theta condition. Here we review these findings, integrate them into current models of hippocampal-dependent learning and suggest how improvement in our understanding of neurobiological oscillations is critical for theories of medial temporal lobe processes underlying intact and pathological learning. PMID:25918501

  7. Harnessing the power of theta: natural manipulations of cognitive performance during hippocampal theta-contingent eyeblink conditioning

    PubMed Central

    Hoffmann, Loren C.; Cicchese, Joseph J.; Berry, Stephen D.

    2015-01-01

    Neurobiological oscillations are regarded as essential to normal information processing, including coordination and timing of cells and assemblies within structures as well as in long feedback loops of distributed neural systems. The hippocampal theta rhythm is a 3–12 Hz oscillatory potential observed during cognitive processes ranging from spatial navigation to associative learning. The lower range, 3–7 Hz, can occur during immobility and depends upon the integrity of cholinergic forebrain systems. Several studies have shown that the amount of pre-training theta in the rabbit strongly predicts the acquisition rate of classical eyeblink conditioning and that impairment of this system substantially slows the rate of learning. Our lab has used a brain-computer interface (BCI) that delivers eyeblink conditioning trials contingent upon the explicit presence or absence of hippocampal theta. A behavioral benefit of theta-contingent training has been demonstrated in both delay and trace forms of the paradigm with a two- to four-fold increase in learning speed. This behavioral effect is accompanied by enhanced amplitude and synchrony of hippocampal local field potential (LFP)s, multi-unit excitation, and single-unit response patterns that depend on theta state. Additionally, training in the presence of hippocampal theta has led to increases in the salience of tone-induced unit firing patterns in the medial prefrontal cortex, followed by persistent multi-unit activity during the trace interval. In cerebellum, rhythmicity and precise synchrony of stimulus time-locked LFPs with those of hippocampus occur preferentially under the theta condition. Here we review these findings, integrate them into current models of hippocampal-dependent learning and suggest how improvement in our understanding of neurobiological oscillations is critical for theories of medial temporal lobe processes underlying intact and pathological learning. PMID:25918501

  8. Theta oscillations and human navigation: a magnetoencephalography study.

    PubMed

    de Araújo, Dráulio B; Baffa, Oswaldo; Wakai, Ronald T

    2002-01-01

    Magnetoencephalography (MEG) was used to study alpha and theta activity while subjects navigated through a computer-generated virtual reality town. The subjects were first allowed to explore the environment freely. They then had to navigate from a starting point to a destination, knowing that an obstruction would appear at one of several possible locations along the main route and force them to take a detour. Spatiotemporal analysis of the theta and alpha bands were performed (1) prior to the start of navigation, (2) from the start of navigation until the obstruction was encountered, (3) during the time subjects were contemplating a detour and were not navigating, and (4) from the resumption of navigation until the destination was reached. In all subjects, theta power was strongest during the two periods of navigation. The peak frequency of the oscillations was approximately 3.7 Hz. Control studies consisted of a motor task similar to that required for navigation, passive viewing of a tour through the same virtual reality town, and a mental concentration task. No consistent increases in theta power were seen in the MEG during any of the control tasks. The results suggest an association between theta rhythm and the performance of navigational tasks in humans. PMID:11798388

  9. Chronic stimulation of cultured neuronal networks boosts low-frequency oscillatory activity at theta and gamma with spikes phase-locked to gamma frequencies

    NASA Astrophysics Data System (ADS)

    Leondopulos, Stathis S.; Boehler, Michael D.; Wheeler, Bruce C.; Brewer, Gregory J.

    2012-04-01

    Slow wave oscillations in the brain are essential for coordinated network activity but have not been shown to self-organize in vitro. Here, the development of dissociated hippocampal neurons into an active network with oscillations on multi-electrode arrays was evaluated in the absence and presence of chronic external stimulation. Significant changes in signal power were observed in the range of 1-400 Hz with an increase in amplitude during bursts. Stimulation increased oscillatory activity primarily in the theta (4-11 Hz) and slow gamma (30-55 Hz) bands. Spikes were most prominently phase-locked to the slow gamma waves. Notably, the dissociated network self-organized to exhibit sustained delta, theta, beta and gamma oscillations without input from cortex, thalamus or organized pyramidal cell layers.

  10. The GLAST Burst Monitor

    NASA Technical Reports Server (NTRS)

    Meegan, Charles A.

    2004-01-01

    The Gamma Ray Large Area Space Telescope (GLAST) observatory, scheduled for launch in 2007, comprises the Large Area Telescope (LAT) and the GLAST Burst Monitor (GBM). spectral changes that are known to occur within GRBs. between the NASA Marshall Space Flight Center, the University of Alabama in Huntsville, and the Max Planck Institute for Extraterrestrial Physics. It consists of an array of NaI and BGO scintillation detectors operating in the 10 kev to 25 MeV range. The field of view includes the entire unocculted sky when the observatory is pointing close to the zenith. The GBM will enhance LAT observations of GRBs by extending the spectral coverage into the range of current GRB databases, and will provide a trigger for reorienting the spacecraft to observe delayed emission from bursts outside the LAT field of view. GBM is expected to trigger on about 200 bursts per year, and will provide on-board locations of strong bursts accurate to better than 10 degrees.

  11. Theta oscillations regulate the speed of locomotion via a hippocampus to lateral septum pathway

    PubMed Central

    Bender, Franziska; Gorbati, Maria; Cadavieco, Marta Carus; Denisova, Natalia; Gao, Xiaojie; Holman, Constance; Korotkova, Tatiana; Ponomarenko, Alexey

    2015-01-01

    Hippocampal theta oscillations support encoding of an animal's position during spatial navigation, yet longstanding questions about their impact on locomotion remain unanswered. Combining optogenetic control of hippocampal theta oscillations with electrophysiological recordings in mice, we show that hippocampal theta oscillations regulate locomotion. In particular, we demonstrate that their regularity underlies more stable and slower running speeds during exploration. More regular theta oscillations are accompanied by more regular theta-rhythmic spiking output of pyramidal cells. Theta oscillations are coordinated between the hippocampus and its main subcortical output, the lateral septum (LS). Chemo- or optogenetic inhibition of this pathway reveals its necessity for the hippocampal regulation of running speed. Moreover, theta-rhythmic stimulation of LS projections to the lateral hypothalamus replicates the reduction of running speed induced by more regular hippocampal theta oscillations. These results suggest that changes in hippocampal theta synchronization are translated into rapid adjustment of running speed via the LS. PMID:26455912

  12. Theta oscillations regulate the speed of locomotion via a hippocampus to lateral septum pathway.

    PubMed

    Bender, Franziska; Gorbati, Maria; Cadavieco, Marta Carus; Denisova, Natalia; Gao, Xiaojie; Holman, Constance; Korotkova, Tatiana; Ponomarenko, Alexey

    2015-01-01

    Hippocampal theta oscillations support encoding of an animal's position during spatial navigation, yet longstanding questions about their impact on locomotion remain unanswered. Combining optogenetic control of hippocampal theta oscillations with electrophysiological recordings in mice, we show that hippocampal theta oscillations regulate locomotion. In particular, we demonstrate that their regularity underlies more stable and slower running speeds during exploration. More regular theta oscillations are accompanied by more regular theta-rhythmic spiking output of pyramidal cells. Theta oscillations are coordinated between the hippocampus and its main subcortical output, the lateral septum (LS). Chemo- or optogenetic inhibition of this pathway reveals its necessity for the hippocampal regulation of running speed. Moreover, theta-rhythmic stimulation of LS projections to the lateral hypothalamus replicates the reduction of running speed induced by more regular hippocampal theta oscillations. These results suggest that changes in hippocampal theta synchronization are translated into rapid adjustment of running speed via the LS. PMID:26455912

  13. Collective Dynamics for Heterogeneous Networks of Theta Neurons

    NASA Astrophysics Data System (ADS)

    Luke, Tanushree

    Collective behavior in neural networks has often been used as an indicator of communication between different brain areas. These collective synchronization and desynchronization patterns are also considered an important feature in understanding normal and abnormal brain function. To understand the emergence of these collective patterns, I create an analytic model that identifies all such macroscopic steady-states attainable by a network of Type-I neurons. This network, whose basic unit is the model "theta'' neuron, contains a mixture of excitable and spiking neurons coupled via a smooth pulse-like synapse. Applying the Ott-Antonsen reduction method in the thermodynamic limit, I obtain a low-dimensional evolution equation that describes the asymptotic dynamics of the macroscopic mean field of the network. This model can be used as the basis in understanding more complicated neuronal networks when additional dynamical features are included. From this reduced dynamical equation for the mean field, I show that the network exhibits three collective attracting steady-states. The first two are equilibrium states that both reflect partial synchronization in the network, whereas the third is a limit cycle in which the degree of network synchronization oscillates in time. In addition to a comprehensive identification of all possible attracting macro-states, this analytic model permits a complete bifurcation analysis of the collective behavior of the network with respect to three key network features: the degree of excitability of the neurons, the heterogeneity of the population, and the overall coupling strength. The network typically tends towards the two macroscopic equilibrium states when the neuron's intrinsic dynamics and the network interactions reinforce each other. In contrast, the limit cycle state, bifurcations, and multistability tend to occur when there is competition between these network features. I also outline here an extension of the above model where the

  14. Segmented flow sampling with push-pull theta pipettes.

    PubMed

    Saha-Shah, Anumita; Green, Curtis M; Abraham, David H; Baker, Lane A

    2016-03-21

    We report development of a mobile and easy-to-fabricate theta pipette microfluidic device for segmented flow sampling. The theta pipettes were also used as electrospray emitters for analysis of sub-nanoliter segments, which resulted in delivery of analyte to the vacuum inlet of the mass spectrometer without multiple transfer steps. Theta pipette probes enable sample collection with high spatial resolution due to micron or smaller sized probe inlets and can be used to manipulate aqueous segments in the range of 200 pL to tens of nanoliters. Optimized conditions can enable sampling with high spatial and temporal resolution, suitable for chemical monitoring in biological samples and studies of sample heterogeneity. Intercellular heterogeneity among Allium cepa cells was studied by collecting cytoplasm from multiple cells using a single probe. Extracted cytoplasm was analyzed in a fast and high throughput manner by direct electrospray mass spectrometry of segmented sample from the probe tip. PMID:26907673

  15. Geometrical model for non-zero {theta}{sub 13}

    SciTech Connect

    Chen Junmou; Wang Bin; Li Xueqian

    2011-10-01

    Based on Friedberg and Lee's geometric picture by which the tribimaximal Pontecorvo-Maki-Nakawaga-Sakata leptonic mixing matrix is constructed, namely, corresponding mixing angles correspond to the geometric angles among the sides of a cube. We suggest that the three realistic mixing angles, which slightly deviate from the values determined for the cube, are due to a viable deformation from the perfectly cubic shape. Taking the best-fitted results of {theta}{sub 12} and {theta}{sub 23} as inputs, we determine the central value of sin{sup 2}2{theta}{sub 13} should be 0.0238, with a relatively large error tolerance; this value lies in the range of measurement precision of the Daya Bay experiment and is consistent with recent results from the T2K Collaboration.

  16. Frontal theta as a mechanism for cognitive control

    PubMed Central

    Cavanagh, James F.; Frank, Michael J.

    2014-01-01

    Recent advancements in cognitive neuroscience have afforded a description of neural responses in terms of latent algorithmic operations. However, the adoption of this approach to human scalp EEG has been more limited, despite the ability of this methodology to quantify canonical neuronal processes. Here we provide evidence that theta band activities over the mid-frontal cortex appear to reflect a common computation used for realizing the need for cognitive control. Moreover, by virtue of inherent properties of field oscillations, these theta band processes may be used to communicate this need and subsequently implement such control across disparate brain regions. Frontal theta is thus a compelling candidate mechanism by which emergent processes such as ‘cognitive control’ may be biophysically realized. PMID:24835663

  17. Swift Burst Alert Telescope (BAT) Instrument Response

    NASA Technical Reports Server (NTRS)

    Parsons, A.; Hullinger, D.; Markwardt, C.; Barthelmy, S.; Cummings, J.; Gehrels, N.; Krimm, H.; Tueller, J.; Fenimore, E.; Palmer, D.

    2004-01-01

    The Burst Alert Telescope (BAT), a large coded aperture instrument with a wide field-of-view (FOV), provides the gamma-ray burst triggers and locations for the Swift Gamma-Ray Burst Explorer. In addition to providing this imaging information, BAT will perform a 15 keV - 150 keV all-sky hard x-ray survey based on the serendipitous pointings resulting from the study of gamma-ray bursts and will also monitor the sky for transient hard x-ray sources. For BAT to provide spectral and photometric information for the gamma-ray bursts, the transient sources and the all-sky survey, the BAT instrument response must be determined to an increasingly greater accuracy. In this talk, we describe the BAT instrument response as determined to an accuracy suitable for gamma-ray burst studies. We will also discuss the public data analysis tools developed to calculate the BAT response to sources at different energies and locations in the FOV. The level of accuracy required for the BAT instrument response used for the hard x-ray survey is significantly higher because this response must be used in the iterative clean algorithm for finding fainter sources. Because the bright sources add a lot of coding noise to the BAT sky image, fainter sources can be seen only after the counts due to the bright sources are removed. The better we know the BAT response, the lower the noise in the cleaned spectrum and thus the more sensitive the survey. Since the BAT detector plane consists of 32768 individual, 4 mm square CZT gamma-ray detectors, the most accurate BAT response would include 32768 individual detector response functions to separate mask modulation effects from differences in detector efficiencies! We describe OUT continuing work to improve the accuracy of the BAT instrument response and will present the current results of Monte Carlo simulations as well as BAT ground calibration data.

  18. Pre-stimulus thalamic theta power predicts human memory formation.

    PubMed

    Sweeney-Reed, Catherine M; Zaehle, Tino; Voges, Jürgen; Schmitt, Friedhelm C; Buentjen, Lars; Kopitzki, Klaus; Richardson-Klavehn, Alan; Hinrichs, Hermann; Heinze, Hans-Jochen; Knight, Robert T; Rugg, Michael D

    2016-09-01

    Pre-stimulus theta (4-8Hz) power in the hippocampus and neocortex predicts whether a memory for a subsequent event will be formed. Anatomical studies reveal thalamus-hippocampal connectivity, and lesion, neuroimaging, and electrophysiological studies show that memory processing involves the dorsomedial (DMTN) and anterior thalamic nuclei (ATN). The small size and deep location of these nuclei have limited real-time study of their activity, however, and it is unknown whether pre-stimulus theta power predictive of successful memory formation is also found in these subcortical structures. We recorded human electrophysiological data from the DMTN and ATN of 7 patients receiving deep brain stimulation for refractory epilepsy. We found that greater pre-stimulus theta power in the right DMTN was associated with successful memory encoding, predicting both behavioral outcome and post-stimulus correlates of successful memory formation. In particular, significant correlations were observed between right DMTN theta power and both frontal theta and right ATN gamma (32-50Hz) phase alignment, and frontal-ATN theta-gamma cross-frequency coupling. We draw the following primary conclusions. Our results provide direct electrophysiological evidence in humans of a role for the DMTN as well as the ATN in memory formation. Furthermore, prediction of subsequent memory performance by pre-stimulus thalamic oscillations provides evidence that post-stimulus differences in thalamic activity that index successful and unsuccessful encoding reflect brain processes specifically underpinning memory formation. Finally, the findings broaden the understanding of brain states that facilitate memory encoding to include subcortical as well as cortical structures. PMID:27208861

  19. Differential geometry of the Fermat quartic and theta functions

    NASA Astrophysics Data System (ADS)

    Hadnot, Jason

    2012-02-01

    The universal curve over a finite cover of the moduli space of elliptic curves with level four structure is embedded in C as the Fermat quartic and is parametrized via the four Jacobi theta functions. Constructions from completely integrable systems have shown the importance of looking at the curvature of certain spaces and here we compute sectional curvatures. For our computations, we choose the ambient Fubini-Study metric of C. We also derive several theta identities which arise from the quartic's holomorphic two-form.

  20. Automatic recognition of type III solar radio bursts: Automated Radio Burst Identification System method and first observations

    NASA Astrophysics Data System (ADS)

    Lobzin, Vasili V.; Cairns, Iver H.; Robinson, Peter A.; Steward, Graham; Patterson, Garth

    2009-04-01

    Because of the rapidly increasing role of technology, including complicated electronic systems, spacecraft, etc., modern society has become more vulnerable to a set of extraterrestrial influences (space weather) and requires continuous observation and forecasts of space weather. The major space weather events like solar flares and coronal mass ejections are usually accompanied by solar radio bursts, which can be used for a real-time space weather forecast. Coronal type III radio bursts are produced near the local electron plasma frequency and near its harmonic by fast electrons ejected from the solar active regions and moving through the corona and solar wind. These bursts have dynamic spectra with frequency rapidly falling with time, the typical duration of the coronal burst being about 1-3 s. This paper presents a new method developed to detect coronal type III bursts automatically and its implementation in a new Automated Radio Burst Identification System. The central idea of the implementation is to use the Radon transform for more objective detection of the bursts as approximately straight lines in dynamic spectra. Preliminary tests of the method with the use of the spectra obtained during 13 days show that the performance of the current implementation is quite high, ˜84%, while no false positives are observed and 23 events not listed previously are found. Prospects for improvements are discussed. The first automatically detected coronal type III radio bursts are presented.

  1. A repeating fast radio burst

    NASA Astrophysics Data System (ADS)

    Spitler, L. G.; Scholz, P.; Hessels, J. W. T.; Bogdanov, S.; Brazier, A.; Camilo, F.; Chatterjee, S.; Cordes, J. M.; Crawford, F.; Deneva, J.; Ferdman, R. D.; Freire, P. C. C.; Kaspi, V. M.; Lazarus, P.; Lynch, R.; Madsen, E. C.; McLaughlin, M. A.; Patel, C.; Ransom, S. M.; Seymour, A.; Stairs, I. H.; Stappers, B. W.; van Leeuwen, J.; Zhu, W. W.

    2016-03-01

    Fast radio bursts are millisecond-duration astronomical radio pulses of unknown physical origin that appear to come from extragalactic distances. Previous follow-up observations have failed to find additional bursts at the same dispersion measure (that is, the integrated column density of free electrons between source and telescope) and sky position as the original detections. The apparent non-repeating nature of these bursts has led to the suggestion that they originate in cataclysmic events. Here we report observations of ten additional bursts from the direction of the fast radio burst FRB 121102. These bursts have dispersion measures and sky positions consistent with the original burst. This unambiguously identifies FRB 121102 as repeating and demonstrates that its source survives the energetic events that cause the bursts. Additionally, the bursts from FRB 121102 show a wide range of spectral shapes that appear to be predominantly intrinsic to the source and which vary on timescales of minutes or less. Although there may be multiple physical origins for the population of fast radio bursts, these repeat bursts with high dispersion measure and variable spectra specifically seen from the direction of FRB 121102 support an origin in a young, highly magnetized, extragalactic neutron star.

  2. A repeating fast radio burst.

    PubMed

    Spitler, L G; Scholz, P; Hessels, J W T; Bogdanov, S; Brazier, A; Camilo, F; Chatterjee, S; Cordes, J M; Crawford, F; Deneva, J; Ferdman, R D; Freire, P C C; Kaspi, V M; Lazarus, P; Lynch, R; Madsen, E C; McLaughlin, M A; Patel, C; Ransom, S M; Seymour, A; Stairs, I H; Stappers, B W; van Leeuwen, J; Zhu, W W

    2016-03-10

    Fast radio bursts are millisecond-duration astronomical radio pulses of unknown physical origin that appear to come from extragalactic distances. Previous follow-up observations have failed to find additional bursts at the same dispersion measure (that is, the integrated column density of free electrons between source and telescope) and sky position as the original detections. The apparent non-repeating nature of these bursts has led to the suggestion that they originate in cataclysmic events. Here we report observations of ten additional bursts from the direction of the fast radio burst FRB 121102. These bursts have dispersion measures and sky positions consistent with the original burst. This unambiguously identifies FRB 121102 as repeating and demonstrates that its source survives the energetic events that cause the bursts. Additionally, the bursts from FRB 121102 show a wide range of spectral shapes that appear to be predominantly intrinsic to the source and which vary on timescales of minutes or less. Although there may be multiple physical origins for the population of fast radio bursts, these repeat bursts with high dispersion measure and variable spectra specifically seen from the direction of FRB 121102 support an origin in a young, highly magnetized, extragalactic neutron star. PMID:26934226

  3. The GLAST Burst Monitor

    SciTech Connect

    Bhat, P.N.; Briggs, M.S.; Connaughton, V.; Paciesas, W.S.; Preece, R.D.; Meegan, C.A.; Fishman, G.J.; Wilson, R.B.; Lichti, G.G.; Diehl, R.; Greiner, J.; Schoenfelder, V.; Kienlin, A. von; Kippen, R.M.; Kouveliotou, C.

    2004-09-28

    The Gamma Ray Large Area Space Telescope (GLAST) mission is a followup to the successful EGRET experiment onboard the Compton Gamma Ray Observatory (CGRO). It will provide a high-sensitivity survey of the sky in high-energy {gamma}-rays, and will perform detailed observations of persistent and transient sources. There are two experiments onboard the GLAST - the Large Area Telescope (LAT) and the GLAST Burst Monitor (GBM).The primary mission of the GBM instrument is to support the LAT in observing {gamma}-ray bursts (GRBs) by providing low-energy measurements with high time resolution and rapid burst locations over a large field-of-view ({>=} 8 sr). The GBM will complement the LAT measurements by observing GRBs in the energy range 10 keV to 30 MeV, the region of the spectral turnover in most GRBs. An important objective of the GBM is to compute the locations of GRB sources on-board the spacecraft and quickly communicate them to the LAT and to the ground to allow rapid followup observations. This information may be used to re-point the LAT towards particularly interesting burst sources that occurred outside its field-of-view. The GBM consists of 14 uncollimated scintillation detectors coupled to phototubes to measure {gamma}-ray energies and time profiles. Two types of detectors are used to obtain spectral information over a wide energy range: 12 NaI(Tl) detectors (10 keV to 1 MeV), and 2 BGO detectors (150 keV to 30 MeV). The detectors are distributed around the GLAST spacecraft to provide a large, unobstructed field of view. The 12 NaI(Tl) detectors are mounted with different orientations for use in locating GRB sources.

  4. Analysis of Burst Observations by GLAST'S LAT

    SciTech Connect

    Band, D

    2003-12-17

    Analyzing data from GLAST's Large Area Telescope (LAT) will require sophisticated techniques. The PSF and effective area are functions of both photon energy and the position in the field-of-view. During most of the mission the observatory will survey the sky continuously and thus the LAT will detect each count from a source at a different detector orientation; each count requires its own response function. The likelihood as a function of celestial position and photon energy will be the foundation of the standard analysis techniques. However the 20 MeV-300 GeV emission at the time of the {approx}100 keV burst emission (timescale of {approx}10 s) can be isolated and analyzed because essentially no non-burst counts are expected within a PSF radius of the burst location during the burst. Both binned and unbinned (in energy) spectral fitting will be possible. Longer timescale afterglow emission will require the likelihood analysis that will be used for persistent sources.

  5. Search for bursts in air shower data

    NASA Technical Reports Server (NTRS)

    Bruce, T. E. G.; Clay, R. W.; Dawson, B. R.; Protheroe, R. J.; Blair, D. G.; Cinquini, P.

    1985-01-01

    There have been reports in recent years of the possible observation of bursts in air shower data. If such events are truly of an astrophysical nature then, they represent an important new class of phemonenon since no other bursts have been observed above the MeV level. The spectra of conventional gamma ray bursts are unknown at higher energies but their observed spectra at MeV energies appear generally to exhibit a steepening in the higher MeV range and are thus unlikely to extrapolate to measurable fluxes at air shower energies. An attempt has been made to look for deviations from randomness in the arrival times of air showers above approx. 10 to the 14th power eV with a number of systems and results so far are presented here. This work will be continued for a substantial period of ime with a system capable of recording bursts with multiple events down to a spacing of 4 microns. Earlier data have also been searched for the possible association of air shower events with a glitch of the Vela pulsar.

  6. The Swift Gamna-Ray Burst Mission

    NASA Technical Reports Server (NTRS)

    Gehrels, Neil

    2005-01-01

    Swift is a NASA Explorer mission that will be launched in late 2004. It is a multiwavelength observatory for transient astronomy. The goals of the mission are to determine the origin of gamma-ray bursts and their afterglows and use bursts to probe the early Universe. The mission will also perform a hard x-ray survey at the 1 milliCrab level and will continuously monitor the sky for transients. A wide-field gamma-ray camera will detect more than a hundred GRBs per year to 3 times fainter than BATSE. Sensitive narrow-field X-ray and UV/optical telescopes will be pointed at the burst location in 20 to 70 sec by an autonomously controlled "swift" spacecraft. For each burst, arcsec positions will be determined and optical/UV/X-ray/gamma-ray spectrophotometry performed. The instrumentation is a combination of existing flight-spare hardware and design from XMM and Spectrum-X/JET-X contributed by collaborators in the UK and Italy and development of a coded-aperture camera with a large-area (-0.5 square meter) CdZnTe detector array. The ground station in Malindi is contributed by the Italian Space Agency. Key components of the mission are vigorous follow-up and outreach programs to engage the astronomical community and public in Swift.

  7. A Low energy neutrino factory for large theta(13)

    SciTech Connect

    Geer, Steve; Mena, Olga; Pascoli, Silvia; /Durham U., IPPP

    2007-01-01

    If the value of {theta}{sub 13} is within the reach of the upcoming generation of long-baseline experiments, T2K and NOvA, they show that a low-energy neutrino factory, with peak energy in the few GeV range, would provide a sensitive tool to explore CP-violation and the neutrino mass hierarchy. They consider baselines with typical length 1000-1500 km. The unique performance of the low energy neutrino factory is due to the rich neutrino oscillation pattern at energies between 1 and 4 GeV at baselines {Omicron}(1000) km. They perform both a semi-analytical study of the sensitivities and a numerical analysis to explore how well this setup can measure {theta}{sub 13}, CP-violation, and determine the type of mass hierarchy and the {theta}{sub 23} quadrant. A low energy neutrino factory provides a powerful tool to resolve ambiguities and make precise parameter determinations, for both large and fairly small values of the mixing parameter {theta}{sub 13}.

  8. Holomorphic projections and Ramanujan’s mock theta functions

    PubMed Central

    Imamoğlu, Özlem; Raum, Martin; Richter, Olav K.

    2014-01-01

    We use spectral methods of automorphic forms to establish a holomorphic projection operator for tensor products of vector-valued harmonic weak Maass forms and vector-valued modular forms. We apply this operator to discover simple recursions for Fourier series coefficients of Ramanujan’s mock theta functions. PMID:24591582

  9. Presence of state transitions in the cryptophyte alga Guillardia theta

    PubMed Central

    Cheregi, Otilia; Kotabová, Eva; Prášil, Ondřej; Schröder, Wolfgang P.; Kaňa, Radek; Funk, Christiane

    2015-01-01

    Plants and algae have developed various regulatory mechanisms for optimal delivery of excitation energy to the photosystems even during fluctuating light conditions; these include state transitions as well as non-photochemical quenching. The former process maintains the balance by redistributing antennae excitation between the photosystems, meanwhile the latter by dissipating excessive excitation inside the antennae. In the present study, these mechanisms have been analysed in the cryptophyte alga Guillardia theta. Photoprotective non-photochemical quenching was observed in cultures only after they had entered the stationary growth phase. These cells displayed a diminished overall photosynthetic efficiency, measured as CO2 assimilation rate and electron transport rate. However, in the logarithmic growth phase G. theta cells redistributed excitation energy via a mechanism similar to state transitions. These state transitions were triggered by blue light absorbed by the membrane integrated chlorophyll a/c antennae, and green light absorbed by the lumenal biliproteins was ineffective. It is proposed that state transitions in G. theta are induced by small re-arrangements of the intrinsic antennae proteins, resulting in their coupling/uncoupling to the photosystems in state 1 or state 2, respectively. G. theta therefore represents a chromalveolate algae able to perform state transitions. PMID:26254328

  10. Presence of state transitions in the cryptophyte alga Guillardia theta.

    PubMed

    Cheregi, Otilia; Kotabová, Eva; Prášil, Ondřej; Schröder, Wolfgang P; Kaňa, Radek; Funk, Christiane

    2015-10-01

    Plants and algae have developed various regulatory mechanisms for optimal delivery of excitation energy to the photosystems even during fluctuating light conditions; these include state transitions as well as non-photochemical quenching. The former process maintains the balance by redistributing antennae excitation between the photosystems, meanwhile the latter by dissipating excessive excitation inside the antennae. In the present study, these mechanisms have been analysed in the cryptophyte alga Guillardia theta. Photoprotective non-photochemical quenching was observed in cultures only after they had entered the stationary growth phase. These cells displayed a diminished overall photosynthetic efficiency, measured as CO2 assimilation rate and electron transport rate. However, in the logarithmic growth phase G. theta cells redistributed excitation energy via a mechanism similar to state transitions. These state transitions were triggered by blue light absorbed by the membrane integrated chlorophyll a/c antennae, and green light absorbed by the lumenal biliproteins was ineffective. It is proposed that state transitions in G. theta are induced by small re-arrangements of the intrinsic antennae proteins, resulting in their coupling/uncoupling to the photosystems in state 1 or state 2, respectively. G. theta therefore represents a chromalveolate algae able to perform state transitions. PMID:26254328

  11. Interindividual Differences in Alpha and Theta Power Reflect Memory Performance.

    ERIC Educational Resources Information Center

    Klimesch, W.; Vogt, F.; Doppelmayr, M.

    1999-01-01

    Tested whether tonic EEG power is related to memory performance by analyzing ongoing EEG for 60 subjects in 5 experimental conditions. Subjects with good memory performance had significantly larger upper alpha power, but less theta and lower alpha power. Also discusses findings for subjects good at calculation. (SLD)

  12. O/E/O storage mechanism for burst contention resolution in optical burst switching networks

    NASA Astrophysics Data System (ADS)

    Sun, Yutong; Zheng, Xiaoping; Zhang, Hanyi; Pu, Tao; Wang, Lei; Guo, Yili

    2005-11-01

    Burst contention resolution is one of the most important issues in optical burst switching (OBS) networks. In this paper, an O/E/O conversion and electronic storage mechanism for contention resolution is proposed. Compared with fiber delay lines (FDL) O/E/O strategy can provide much longer and continuous delay time for the contending bursts, which can significantly reduce burst loss rate. For this mechanism, a new burst scheduling algorithm called Shortest Delay- Best Fit (SD-BF) is proposed here to improve bandwidth utilization. In a network, O/E/O can be implemented with FDL to achieve a better performance while reducing node cost. In this paper, a semi-share structure for this combination strategy is proposed to balance the cost and performance. Numerical results show that a better performance is achieved by the combination strategy in the long haul back-bone networks. We also investigate the maximum electronic RAM capacity needed in the nodes to support O/E/O storage, and how to implement Quality-of-Service (QoS) with O/E/O storage.

  13. Violations of parity and charge conjugation in the {theta} vacuum with imaginary chemical potential

    SciTech Connect

    Kouno, Hiroaki; Sakai, Yuji; Sasaki, Takahiro; Kashiwa, Kouji; Yahiro, Masanobu

    2011-04-01

    Charge conjugation (C) and parity (P) are exact symmetries at {theta}={pi} and {Theta}{identical_to}{mu}/(iT)={pi}, where {theta} is the parameter of the so-called {theta} vacuum, {mu} is the imaginary quark-number chemical potential and T is the temperature. Spontaneous breakings of these discrete symmetries are investigated by the Polyakov-loop extended Nambu-Jona-Lasinio model. At zero T, P symmetry is spontaneously broken while C symmetry is conserved. As T increases, P symmetry is restored just after C symmetry is spontaneously broken, so that either P or C symmetry or both the symmetries are spontaneously broken for any T. The chiral-symmetry restoration and the deconfinement transition at {theta}={Theta}=0 are remnants of the P restoration and the C breaking at {theta}={Theta}={pi}, respectively.

  14. Upgrade of a Theta Pinch Plasma Source for Energetic Plasma Flow Generation and Fusion-Related Material Interaction Study

    NASA Astrophysics Data System (ADS)

    Jung, Soonwook; Surla, Vijay; Ruzic, David

    2010-11-01

    In order to investigate material erosion by exposure to a burst of high density plasma in a laboratory setting, a theta pinch device called the Divertor Erosion and Vapor Shielding eXperiment facility was built at UIUC. It consists of a theta-pinch coil driven by pulse discharge from 32 μF capacitor bank to produce high density plasma. Recent measurements have shown that plasma sustains approximately for 100 μs at each pulse, with 1.0 ± 0.2(10)21 /m^3 plasma density and 12.5 ± 2.5 eV electron temperature. To simulate the extreme condition in magnetic fusion device a higher electron temperature is desired. For this reason, several upgrades have been implemented: (1) the main capacitor bank, for compression and heating was operated in conjunction with RF antenna and a preionization bank. (2) a guide magnetic field was installed to transport the flow minimizing losses in the radial direction and (3) a crow-bar circuit was added to prevent the pinch from ringing and therefore working against the imposed static magnetic field. The results from the upgrades will be presented.

  15. Learner Acquisition of Dialect Variation in a Study Abroad Context: The Case of the Spanish [Theta

    ERIC Educational Resources Information Center

    Ringer-Hilfinger, Kathryn

    2012-01-01

    The present study aims at analyzing the acquisition of dialect variation by native English-speaking university students who study Spanish for a semester in Spain. The selected variable is the phoneme /[theta]/ (theta). The goal is to assess learner awareness, opinion, and use of [theta]. Data were elicited through a set of oral and written tasks…

  16. Modulation of Hippocampal Theta Oscillations and Spatial Memory by Relaxin-3 Neurons of the Nucleus Incertus

    ERIC Educational Resources Information Center

    Ma, Sherie; Olucha-Bordonau, Francisco E.; Hossain, M. Akhter; Lin, Feng; Kuei, Chester; Liu, Changlu; Wade, John D.; Sutton, Steven W.; Nunez, Angel; Gundlach, Andrew L.

    2009-01-01

    Hippocampal theta rhythm is thought to underlie learning and memory, and it is well established that "pacemaker" neurons in medial septum (MS) modulate theta activity. Recent studies in the rat demonstrated that brainstem-generated theta rhythm occurs through a multisynaptic pathway via the nucleus incertus (NI), which is the primary source of the…

  17. UWB dual burst transmit driver

    SciTech Connect

    Dallum, Gregory E.; Pratt, Garth C.; Haugen, Peter C.; Zumstein, James M.; Vigars, Mark L.; Romero, Carlos E.

    2012-04-17

    A dual burst transmitter for ultra-wideband (UWB) communication systems generates a pair of precisely spaced RF bursts from a single trigger event. An input trigger pulse produces two oscillator trigger pulses, an initial pulse and a delayed pulse, in a dual trigger generator. The two oscillator trigger pulses drive a gated RF burst (power output) oscillator. A bias driver circuit gates the RF output oscillator on and off and sets the RF burst packet width. The bias driver also level shifts the drive signal to the level that is required for the RF output device.

  18. X-ray burst sources

    NASA Technical Reports Server (NTRS)

    Lewin, W. H. G.

    1986-01-01

    There are about 100 bright X-ray sources in the Galaxy that are accretion-driven systems composed of a neutron star and a low mass companion that fills its critical Roche lobe. Many of these systems generate recurring X-ray bursts that are the result of thermonuclear flashes in the neutron star's surface layers, and are accompanied by a somewhat delayed optical burst due to X-ray heating of accretion disk. The Rapid Burster discovered in 1976 exhibits an interval between bursts that is strongly correlated with the energy in the preceding burst. There is no optical identification for this object.

  19. Tensor analyzing powers T/sub 20/(theta) and T/sub 22/(theta) in the /sup 2/H(darrow,. gamma. ) /sup 4/He reaction

    SciTech Connect

    Seyler, R.G.; Weller, H.R.

    1985-05-01

    Reaction theory expressions are used to prove that the tensor analyzing powers T/sub 20/(theta) and T/sub 22/(theta) for the /sup 2/H(darrow,..gamma..) /sup 4/He reaction are isotropic if the reaction is pure E2 and terms quadratic in channel-spin-2 matrix elements are neglected. Experimental departures from isotropy can be expected near theta-0/sup 0/, 90/sup 0/, and 189/sup 0/.

  20. Gamma-ray bursts.

    PubMed

    Gehrels, Neil; Mészáros, Péter

    2012-08-24

    Gamma-ray bursts (GRBs) are bright flashes of gamma rays coming from the cosmos. They occur roughly once per day, typically last for tens of seconds, and are the most luminous events in the universe. More than three decades after their discovery, and after pioneering advances from space and ground experiments, they still remain mysterious. The launch of the Swift and Fermi satellites in 2004 and 2008 brought in a trove of qualitatively new data. In this Review, we survey the interplay between these recent observations and the theoretical models of the prompt GRB emission and the subsequent afterglow. PMID:22923573

  1. Gamma Ray Bursts

    NASA Technical Reports Server (NTRS)

    Gehrels, Neil; Meszaros, Peter

    2012-01-01

    Gamma-ray bursts (GRBs) are bright flashes of gamma-rays coming from the cosmos. They occur roughly once per day ,last typically lOs of seconds and are the most luminous events in the universe. More than three decades after their discovery, and after pioneering advances from space and ground experiments, they still remain mysterious. The launch of the Swift and Fermi satellites in 2004 and 2008 brought in a trove of qualitatively new data. In this review we survey the interplay between these recent observations and the theoretical models of the prompt GRB emission and the subsequent afterglows.

  2. Gamma-Ray Bursts

    NASA Astrophysics Data System (ADS)

    Gehrels, Neil; Mészáros, Péter

    2012-08-01

    Gamma-ray bursts (GRBs) are bright flashes of gamma rays coming from the cosmos. They occur roughly once per day, typically last for tens of seconds, and are the most luminous events in the universe. More than three decades after their discovery, and after pioneering advances from space and ground experiments, they still remain mysterious. The launch of the Swift and Fermi satellites in 2004 and 2008 brought in a trove of qualitatively new data. In this Review, we survey the interplay between these recent observations and the theoretical models of the prompt GRB emission and the subsequent afterglow.

  3. Event-related desynchronization of frontal-midline theta rhythm during preconscious auditory oddball processing.

    PubMed

    Kawamata, Masaru; Kirino, Eiji; Inoue, Reiichi; Arai, Heii

    2007-10-01

    The goal of this study was to explore the frontal-midline theta rhythm (Fm theta) generation mechanism employing event-related desynchronization/synchronization (ERD/ERS) analysis in relation to task-irrelevant external stimuli. A dual paradigm was employed: a videogame and the simultaneous presentation of passive auditory oddball stimuli. We analyzed the data concerning ERD/ERS using both Fast Fourier Transformation (FFT) and wavelet transform (WT). In the FFT data, during the periods with appearance of Fm theta, apparent ERD of the theta band was observed at Fz and Cz. ERD when Fm theta was present was much more prominent than when Fm theta was absent. In the WT data, as in the FFT data, ERD was seen again, but in this case the ERD was preceded by ERS during both the periods with and without Fm theta. Furthermore, the WT analysis indicated that ERD was followed by ERS during the periods without Fm theta. However, during Fm theta, no apparent ERS following ERD was seen. In our study, Fm theta was desynchronized by the auditory stimuli that were independent of the video game task used to evoke the Fm theta. The ERD of Fm theta might be reflecting the mechanism of "positive suppression" to process external auditory stimuli automatically and preventing attentional resources from being unnecessarily allocated to those stimuli. Another possibility is that Fm theta induced by our dual paradigm may reflect information processing modeled by multi-item working memory requirements for playing the videogame and the simultaneous auditory processing using a memory trace. ERS in the WT data without Fm theta might indicate further processing of the auditory information free from "positive suppression" control reflected by Fm theta. PMID:17993201

  4. Search for gamma ray bursts with coincident balloon flights

    NASA Technical Reports Server (NTRS)

    Cline, T. L.; Desai, U. D.; Schmidt, W. K. H.; Teegarden, B. J.

    1976-01-01

    A search was conducted for cosmic gamma ray bursts of small size and of sufficient frequency of occurrence to be detected during a one day observation program. Two similar detectors, successfully balloon-borne from launch sites in South Dakota and Texas, achieved about 20 hours of simultaneous operation at several millibars atmospheric depth, with continuous separation of over 1,500 km. Fluctuations of the counting rates of less than 150 keV photons with temporal structures from microseconds to several minutes were compared in order to detect coincident or associated responses from the two instruments. No coincident gamma-ray burst events were detected. The resulting integral size spectrum of small bursts, from this and from all other searches, remains a spectrum of upper limits, consistent with an extrapolation of the size spectrum of the largest known bursts, fitting a power low of index -1.5.

  5. Burst Mode ASIC-Based Modem

    NASA Technical Reports Server (NTRS)

    1997-01-01

    The NASA Lewis Research Center is sponsoring the Advanced Communication Technology Insertion (ACTION) for Commercial Space Applications program. The goal of the program is to expedite the development of new technology with a clear path towards productization and enhancing the competitiveness of U.S. manufacturers. The industry has made significant investment in developing ASIC-based modem technology for continuous-mode applications and has made investigations into East, reliable acquisition of burst-mode digital communication signals. With rapid advances in analog and digital communications ICs, it is expected that more functions will be integrated onto these parts in the near future. In addition custom ASIC's can also be developed to address the areas not covered by the other IC's. Using the commercial chips and custom ASIC's, lower-cost, compact, reliable, and high-performance modems can be built for demanding satellite communication application. This report outlines a frequency-hop burst modem design based on commercially available chips.

  6. A model code for the radiative theta pinch

    SciTech Connect

    Lee, S.; Saw, S. H.; Lee, P. C. K.; Akel, M.; Damideh, V.; Khattak, N. A. D.; Mongkolnavin, R.; Paosawatyanyong, B.

    2014-07-15

    A model for the theta pinch is presented with three modelled phases of radial inward shock phase, reflected shock phase, and a final pinch phase. The governing equations for the phases are derived incorporating thermodynamics and radiation and radiation-coupled dynamics in the pinch phase. A code is written incorporating correction for the effects of transit delay of small disturbing speeds and the effects of plasma self-absorption on the radiation. Two model parameters are incorporated into the model, the coupling coefficient f between the primary loop current and the induced plasma current and the mass swept up factor f{sub m}. These values are taken from experiments carried out in the Chulalongkorn theta pinch.

  7. Simplified scaling model for the THETA-pinch

    SciTech Connect

    Ewing, K. J.; Thomson, D. B.

    1982-02-01

    A simple ID scaling model for the fast THETA-pinch was developed and written as a code that would be flexible, inexpensive in computer time, and readily available for use with the Los Alamos explosive-driven high-magnetic-field program. The simplified model uses three successive separate stages: (1) a snowplow-like radial implosion, (2) an idealized resistive annihilation of reverse bias field, and (3) an adiabatic compression stage of a BETA = 1 plasma for which ideal pressure balance is assumed to hold. The code uses one adjustable fitting constant whose value was first determined by comparison with results from the Los Alamos Scylla III, Scyllacita, and Scylla IA THETA-pinches.

  8. Swift's 500th Gamma Ray Burst

    NASA Video Gallery

    On April 13, 2010, NASA's Swift Gamma-ray Burst Explorer satellite discovered its 500th burst. Swift's main job is to quickly localize each gamma-ray burst (GRB), report its position so that others...

  9. Cold iron cos THETA magnet option for the SSC

    SciTech Connect

    Reardon, P.

    1985-01-01

    We review first the evolution over the past several years of a cold iron, high field cos THETA magnet design option for the SSC. We note the collaborative approach pursued by BNL and LBL on the 2-in-1 option, and the culmination of this effort in the tests of the BNL 4.5 m model magnets. Next, we discuss the subsequent 1-in-1 option being pursued jointly by BNL, Fermilab and LBL.

  10. The role of REM sleep theta activity in emotional memory

    PubMed Central

    Hutchison, Isabel C.; Rathore, Shailendra

    2015-01-01

    While non-REM (NREM) sleep has been strongly implicated in the reactivation and consolidation of memory traces, the role of rapid-eye movement (REM) sleep remains unclear. A growing body of research on humans and animals provide behavioral evidence for a role of REM sleep in the strengthening and modulation of emotional memories. Theta activity—which describes low frequency oscillations in the local field potential within the hippocampus, amygdala and neocortex—is a prominent feature of both wake and REM sleep in humans and rodents. Theta coherence between the hippocampus and amygdala drives large-scale pontine-geniculo-occipital (PGO) waves, the density of which predicts increases in plasticity-related gene expression. This could potentially facilitate the processing of emotional memory traces within the hippocampus during REM sleep. Further, the timing of hippocampal activity in relation to theta phase is vital in determining subsequent potentiation of neuronal activity. This could allow the emotionally modulated strengthening of novel and gradual weakening of consolidated hippocampal memory traces during REM sleep. Hippocampal theta activity is also correlated with REM sleep levels of achetylcholine - which is thought to reduce hippocampal inputs in the neocortex. The additional low levels of noradrenaline during REM sleep, which facilitate feedback within the neocortex, could allow the integration of novel memory traces previously consolidated during NREM sleep. We therefore propose that REM sleep mediates the prioritized processing of emotional memories within the hippocampus, the integration of previously consolidated memory traces within the neocortex, as well as the disengagement of consolidated neocortical memory traces from the hippocampus. PMID:26483709

  11. Correlation of hippocampal theta rhythm with changes in cutaneous temperature

    NASA Technical Reports Server (NTRS)

    Horowitz, J. M.; Saleh, M. A.; Karem, R. D.

    1974-01-01

    Investigation of the possibility that the hippocampus performs the function of alerting an animal to changes in cutaneous temperature, using unanesthetized, loosely restrained rabbits. The results indicate that the hippocampal theta rhythm, which appears to be evoked by changes in cutaneous temperature, can be related to a specific type of hyppocampal neuron which is, in turn, connected with other areas of the brain involved in temperature regulation.

  12. The role of REM sleep theta activity in emotional memory.

    PubMed

    Hutchison, Isabel C; Rathore, Shailendra

    2015-01-01

    While non-REM (NREM) sleep has been strongly implicated in the reactivation and consolidation of memory traces, the role of rapid-eye movement (REM) sleep remains unclear. A growing body of research on humans and animals provide behavioral evidence for a role of REM sleep in the strengthening and modulation of emotional memories. Theta activity-which describes low frequency oscillations in the local field potential within the hippocampus, amygdala and neocortex-is a prominent feature of both wake and REM sleep in humans and rodents. Theta coherence between the hippocampus and amygdala drives large-scale pontine-geniculo-occipital (PGO) waves, the density of which predicts increases in plasticity-related gene expression. This could potentially facilitate the processing of emotional memory traces within the hippocampus during REM sleep. Further, the timing of hippocampal activity in relation to theta phase is vital in determining subsequent potentiation of neuronal activity. This could allow the emotionally modulated strengthening of novel and gradual weakening of consolidated hippocampal memory traces during REM sleep. Hippocampal theta activity is also correlated with REM sleep levels of achetylcholine - which is thought to reduce hippocampal inputs in the neocortex. The additional low levels of noradrenaline during REM sleep, which facilitate feedback within the neocortex, could allow the integration of novel memory traces previously consolidated during NREM sleep. We therefore propose that REM sleep mediates the prioritized processing of emotional memories within the hippocampus, the integration of previously consolidated memory traces within the neocortex, as well as the disengagement of consolidated neocortical memory traces from the hippocampus. PMID:26483709

  13. Grid cells and theta as oscillatory interference: theory and predictions.

    PubMed

    Burgess, Neil

    2008-01-01

    The oscillatory interference model [Burgess et al. (2007) Hippocampus 17:801-802] of grid cell firing is reviewed as an algorithmic level description of path integration and as an implementation level description of grid cells and their inputs. New analyses concern the relationships between the variables in the model and the theta rhythm, running speed, and the intrinsic firing frequencies of grid cells. New simulations concern the implementation of velocity-controlled oscillators (VCOs) with different preferred directions in different neurons. To summarize the model, the distance traveled along a specific direction is encoded by the phase of a VCO relative to a baseline frequency. Each VCO is an intrinsic membrane potential oscillation whose frequency increases from baseline as a result of depolarization by synaptic input from speed modulated head-direction cells. Grid cell firing is driven by the VCOs whose preferred directions match the current direction of motion. VCOs are phase-reset by location-specific input from place cells to prevent accumulation of error. The baseline frequency is identified with the local average of VCO frequencies, while EEG theta frequency is identified with the global average VCO frequency and comprises two components: the frequency at zero speed and a linear response to running speed. Quantitative predictions are given for the inter-relationships between a grid cell's intrinsic firing frequency and grid scale, the two components of theta frequency, and the running speed of the animal. Qualitative predictions are given for the properties of the VCOs, and the relationship between environmental novelty, the two components of theta, grid scale and place cell remapping. PMID:19021256

  14. Rapid memory stabilization by transient theta coherence in the human medial temporal lobe.

    PubMed

    Thézé, Raphaël; Guggisberg, Adrian G; Nahum, Louis; Schnider, Armin

    2016-04-01

    Presenting stimuli again after presentation of intervening stimuli improves their retention, an effect known as the spacing effect. However, using event-related potentials (ERPs), we had observed that immediate, in comparison to spaced, repetition of pictures induced a positive frontal potential at 200-300 ms. This potential appeared to emanate from the left medial temporal lobe (MTL), a structure critical for memory consolidation. In this study, we tested the behavioral relevance of this signal and explored functional connectivity changes during picture repetition. We obtained high-density electroencephalographic recordings from 14 healthy subjects performing a continuous recognition task where pictures were either repeated immediately or after 9 intervening items. Conventional ERP analysis replicated the positive frontal potential emanating from the left MTL at 250-350 ms in response to immediately repeated stimuli. Connectivity analysis showed that this ERP was associated with increased coherence in the MTL region-left more that right-in the theta-band (3.5-7 Hz) 200-400 ms following immediate, but not spaced, repetition. This increase was stronger in subjects who better recognized immediately repeated stimuli after 30 min. These findings indicate that transient theta-band synchronization between the MTL and the rest of the brain at 200-400 ms reflects a memory stabilizing signal. © 2015 Wiley Periodicals, Inc. PMID:26386180

  15. Cell discharge correlates of posterior hypothalamic theta rhythm. Recipe for success in recording stable field potential.

    PubMed

    Bocian, Renata; Kłos-Wojtczak, Paulina; Konopacki, Jan

    2016-09-01

    The theta rhythm discovered in the posterior hypothalamus area (PHa) differs from theta observed in the hippocampal formation. In comparison to hippocampal spontaneous theta, the theta recorded in the PHa is rarely registered, has lower amplitude, often disappears, and sometimes returns after a few minutes. These features indicate that spontaneous theta recorded in the PHa is not an appropriate experimental model to search for the correlation between PHa cell discharges and local field potential. In this paper we present standard experimental conditions necessary to record theta-related cells in the PHa in anesthetized rats. Three pharmacological agents were used in the experiments to induce PHa theta rhythm in urethanized rats: carbachol (CCH), carbenoxolone and kainic acid, which are potent enough to induce well-synchronized PHa theta. However, CCH was found to be the best pharmacological tool to induce PHa theta oscillations, due to its longest duration of action and lack of preliminary epileptogenic effects. It seems that CCH-induced theta can be the most suitable pharmacological model for experiments with the use of protocol of long-lasting recordings of PHa theta-related cell discharges. PMID:27353451

  16. A Modified Theta Projection Model for Creep Behavior of Metals and Alloys

    NASA Astrophysics Data System (ADS)

    Kumar, Manish; Singh, I. V.; Mishra, B. K.; Ahmad, S.; Venugopal Rao, A.; Kumar, Vikas

    2016-06-01

    In this work, a modified theta projection model is proposed for the constitutive modeling of creep behavior of metals and alloys. In the conventional theta projection model, strain hardening exponent is a function of time and theta, whereas in the modified theta projection model, the exponent is taken as a function of time, theta, and applied stress. The results obtained by the modified theta projection model for Al 2124 T851 alloy at constant uniaxial tensile stress are compared with the experimental results and with the predictions of the conventional theta projection method. The creep behavior of Al 7075 T651 alloy is also predicted using modified and conventional theta projection model and compared with the available experimental data. It is observed that the modified theta projection model captures the creep behavior more accurately as compared to the conventional theta projection model. The modified theta projection model can be used to predict the creep strain of pure metals and class M alloys (similar creep behavior to pure metals) for intermediate range of stress and temperature.

  17. Theta Series, Wall-Crossing and Quantum Dilogarithm Identities

    NASA Astrophysics Data System (ADS)

    Alexandrov, Sergei; Pioline, Boris

    2016-05-01

    Motivated by mathematical structures which arise in string vacua and gauge theories with {{{N}=2}} supersymmetry, we study the properties of certain generalized theta series which appear as Fourier coefficients of functions on a twisted torus. In Calabi-Yau string vacua, such theta series encode instanton corrections from k Neveu-Schwarz five-branes. The theta series are determined by vector-valued wave-functions, and in this work we obtain the transformation of these wave-functions induced by Kontsevich-Soibelman symplectomorphisms. This effectively provides a quantum version of these transformations, where the quantization parameter is inversely proportional to the five-brane charge k. Consistency with wall-crossing implies a new five-term relation for Faddeev's quantum dilogarithm {Φ_b} at b = 1, which we prove. By allowing the torus to be non-commutative, we obtain a more general five-term relation valid for arbitrary b and k, which may be relevant for the physics of five-branes at finite chemical potential for angular momentum.

  18. Theta Series, Wall-Crossing and Quantum Dilogarithm Identities

    NASA Astrophysics Data System (ADS)

    Alexandrov, Sergei; Pioline, Boris

    2016-08-01

    Motivated by mathematical structures which arise in string vacua and gauge theories with N=2 supersymmetry, we study the properties of certain generalized theta series which appear as Fourier coefficients of functions on a twisted torus. In Calabi-Yau string vacua, such theta series encode instanton corrections from k Neveu-Schwarz five-branes. The theta series are determined by vector-valued wave-functions, and in this work we obtain the transformation of these wave-functions induced by Kontsevich-Soibelman symplectomorphisms. This effectively provides a quantum version of these transformations, where the quantization parameter is inversely proportional to the five-brane charge k. Consistency with wall-crossing implies a new five-term relation for Faddeev's quantum dilogarithm {Φ_b} at b = 1, which we prove. By allowing the torus to be non-commutative, we obtain a more general five-term relation valid for arbitrary b and k, which may be relevant for the physics of five-branes at finite chemical potential for angular momentum.

  19. Impaired theta-gamma coupling in APP-deficient mice

    PubMed Central

    Zhang, Xiaomin; Zhong, Wewei; Brankačk, Jurij; Weyer, Sascha W.; Müller, Ulrike C.; Tort, Adriano B. L.; Draguhn, Andreas

    2016-01-01

    Amyloid precursor protein (APP) is critically involved in the pathophysiology of Alzheimer’s disease, but its physiological functions remain elusive. Importantly, APP knockout (APP-KO) mice exhibit cognitive deficits, suggesting that APP plays a role at the neuronal network level. To investigate this possibility, we recorded local field potentials (LFPs) from the posterior parietal cortex, dorsal hippocampus and lateral prefrontal cortex of freely moving APP-KO mice. Spectral analyses showed that network oscillations within the theta- and gamma-frequency bands were not different between APP-KO and wild-type mice. Surprisingly, however, while gamma amplitude coupled to theta phase in all recorded regions of wild-type animals, in APP-KO mice theta-gamma coupling was strongly diminished in recordings from the parietal cortex and hippocampus, but not in LFPs recorded from the prefrontal cortex. Thus, lack of APP reduces oscillatory coupling in LFP recordings from specific brain regions, despite not affecting the amplitude of the oscillations. Together, our findings reveal reduced cross-frequency coupling as a functional marker of APP deficiency at the network level. PMID:26905287

  20. Burst propagation in Texas Helimak

    NASA Astrophysics Data System (ADS)

    Pereira, F. A. C.; Toufen, D. L.; Guimarães-Filho, Z. O.; Caldas, I. L.; Gentle, K. W.

    2016-05-01

    We present investigations of extreme events (bursts) propagating in the Texas Helimak, a toroidal plasma device in which the radial electric field can be changed by application of bias. In the experiments analyzed, a large grid of Langmuir probes measuring ion saturation current fluctuations is used to study the burst propagation and its dependence on the applied bias voltage. We confirm previous results reported on the turbulence intermittency in the Texas Helimak, extending them to a larger radial interval with a density ranging from a uniform decay to an almost uniform value. For our analysis, we introduce an improved procedure, based on a multiprobe bidimensional conditional averaging method, to assure precise determination of burst statistical properties and their spatial profiles. We verify that intermittent bursts have properties that vary in the radial direction. The number of bursts depends on the radial position and on the applied bias voltage. On the other hand, the burst characteristic time and size do not depend on the applied bias voltage. The bias voltage modifies the vertical and radial burst velocity profiles differently. The burst velocity is smaller than the turbulence phase velocity in almost all the analyzed region.

  1. Quantum Key Based Burst Confidentiality in Optical Burst Switched Networks

    PubMed Central

    Balamurugan, A. M.; Sivasubramanian, A.

    2014-01-01

    The optical burst switching (OBS) is an emergent result to the technology concern that could achieve a feasible network in future. They are endowed with the ability to meet the bandwidth requirement of those applications that require intensive bandwidth. There are more domains opening up in the OBS that evidently shows their advantages and their capability to face the future network traffic. However, the concept of OBS is still far from perfection facing issues in case of security threat. The transfer of optical switching paradigm to optical burst switching faces serious downfall in the fields of burst aggregation, routing, authentication, dispute resolution, and quality of service (QoS). This paper deals with employing RC4 (stream cipher) to encrypt and decrypt bursts thereby ensuring the confidentiality of the burst. Although the use of AES algorithm has already been proposed for the same issue, by contrasting the two algorithms under the parameters of burst encryption and decryption time, end-to-end delay, it was found that RC4 provided better results. This paper looks to provide a better solution for the confidentiality of the burst in OBS networks. PMID:24578663

  2. Quantum key based burst confidentiality in optical burst switched networks.

    PubMed

    Balamurugan, A M; Sivasubramanian, A

    2014-01-01

    The optical burst switching (OBS) is an emergent result to the technology concern that could achieve a feasible network in future. They are endowed with the ability to meet the bandwidth requirement of those applications that require intensive bandwidth. There are more domains opening up in the OBS that evidently shows their advantages and their capability to face the future network traffic. However, the concept of OBS is still far from perfection facing issues in case of security threat. The transfer of optical switching paradigm to optical burst switching faces serious downfall in the fields of burst aggregation, routing, authentication, dispute resolution, and quality of service (QoS). This paper deals with employing RC4 (stream cipher) to encrypt and decrypt bursts thereby ensuring the confidentiality of the burst. Although the use of AES algorithm has already been proposed for the same issue, by contrasting the two algorithms under the parameters of burst encryption and decryption time, end-to-end delay, it was found that RC4 provided better results. This paper looks to provide a better solution for the confidentiality of the burst in OBS networks. PMID:24578663

  3. Observations of Solar Radio Bursts with NRL LWA Antenna Prototypes

    NASA Astrophysics Data System (ADS)

    Stewart, K. P.; Hicks, B. C.; Crane, P. C.; Kassim, N. E.; MacDowall, R. J.; Bradley, R.; Erickson, W. C.

    2005-12-01

    We present spectra of solar bursts observed with active antenna prototypes. Combining active antenna systems developed for the NLTA (NRL Long-wavelength Test Array) and experience gained from BIRS (Bruny Island Radio Spectrometer) we have developed the GDRT (Goddard Decametric Radio Telescope). The GDRT and Green Bank Solar Radio Burst Spectrometer (GB/SRBS) serve as the northern hemisphere companions to BIRS, which operates in Tasmania. These instruments continuously scan from <12 MHz to >100 MHz while simultaneously applying RFI mitigation algorithms to produce a continuous record of solar activity. This space weather initiative demonstrates one application of hardware developed for the LWA (Long Wavelength Array).

  4. Comets, X-ray bursts, and gamma-ray bursts

    NASA Technical Reports Server (NTRS)

    Katz, J. I.

    1986-01-01

    The proposal, revived by Tremaine and Zytkow (1985), that accretion of comets by neutron stars may be the origin of gamma-ray bursts is considered. This mechanism has difficulty accounting for the observed gamma-ray spectrum and optical counterparts of the bursts. The survival of comets near supernovae is investigated. Ablation rates and the thermal structure of an ablating surface layer are calculated. In some circumstances, mechanical disruption will erode a comet more rapidly than evaporation. The accretion of comets by neutron stars may produce a class of X-ray burst sources with novel properties.

  5. Comparison of numerical techniques for the evaluation of the Doppler broadening functions psi(x,theta) and chi(x,theta)

    NASA Technical Reports Server (NTRS)

    Canright, R. B., Jr.; Semler, T. T.

    1972-01-01

    Several approximations to the Doppler broadening functions psi(x, theta) and chi(x, theta) are compared with respect to accuracy and speed of evaluation. A technique, due to A. M. Turning (1943), is shown to be at least as accurate as direct numerical quadrature and somewhat faster than Gaussian quadrature. FORTRAN 4 listings are included.

  6. Continuous, Full-Circle Arctangent Circuit

    NASA Technical Reports Server (NTRS)

    Alhorn, Dean C.; Howard, David E.; Smith, Dennis A.

    2005-01-01

    A circuit generates an analog voltage proportional to an angle, in response to two sinusoidal input voltages having magnitudes proportional to the sine and cosine of the angle, respectively. That is to say, given input voltages proportional to sin(Omega(t))sin(Theta) and sin(Omega(t))cos(Theta) [where Theta denotes the angle, mega denotes 2(pi) x a carrier frequency, and t denotes time], the circuit generates a steady voltage proportional to Theta. The output voltage varies continuously from its minimum to its maximum value as Theta varies from -180deg to 180deg. While the circuit could accept input modulated sine and cosine signals from any source, it must be noted that such signals are typical of the outputs of shaft-angle resolvers in electromagnetic actuators used to measure and control shaft angles for diverse purposes like aiming scientific instruments and adjusting valve openings. In effect, the circuit is an analog computer that calculates the arctangent of the ratio between the sine and cosine signals. The full-circle angular range of this arctangent circuit stands in contrast to the range of prior analog arctangent circuits, which is from slightly greater than -90deg to slightly less than +90deg. Moreover, for applications in which continuous variation of output is preferred to discrete increments of output, this circuit offers a clear advantage over resolver- to-digital integrated circuits.

  7. Type 2 and type 3 burst theory

    NASA Technical Reports Server (NTRS)

    Smith, D. F.

    1973-01-01

    The present state of the theory of type 3 bursts is reviewed by dividing the problem into the exciting agency, radiation source, and propagation of radiation between the source and the observer. In-situ measurements indicate that the excitors are electron streams of energy about 40 keV which are continuously relaxing. An investigation of neutralization of an electron stream indicates that n sub s is much less than 100,000 n sub e, where n sub s is the stream density and n sub e the coronal electron density. In situ observations are consistent with this result. An analysis of propagation of electrons in the current sheets of coronal streamers shows that such propagation at heights greater than 1 solar radius is impossible. The mechanisms for radiation are reviewed; it is shown that fundamental radiation at high frequencies (approximately 100 MHz) is highly beamed in the radial direction and that near the earth second harmonic radiation must be dominant. Because of beaming of the fundamental at high frequencies, it can often be quite weak near the limb so that the second harmonic is dominant. In considering propagation to the observer, the results of scattering of radiation are discussed. The present state of the theory of type 2 bursts is reviewed in the same manner as type 3 bursts.

  8. Gamma-ray burst populations

    NASA Astrophysics Data System (ADS)

    Virgili, Francisco Javier

    Over the last fifty years the field of gamma-ray bursts has shown incredible growth, but the amassing of data has also left observers and theorists alike wondering about some of the basic questions surrounding these phenomena. Additionally, these events show remarkable individuality and extrema, ranging in redshift throughout the observable universe and over ten orders of magnitude in energy. This work focuses on analyzing groups of bursts that are different from the general trend and trying to understand whether these bursts are from different intrinsic populations and if so, what can be said about their progenitors. This is achieved through numerical Monte Carlo simulations and statistical inference in conjunction with current GRB observations. Chapter 1 gives a general introduction of gamma-ray burst theory and observations in a semi-historical context. Chapter 2 provides an introduction to the theory and practical issues surrounding the numerical simulations and statistics. Chapters 3--5 are each dedicated to a specific problem relating to a different type of GRB population: high-luminosity v. low-luminosity bursts, constraints from high-redshift bursts, and Type I v. Type II bursts. Chapter 6 follows with concluding remarks.

  9. Cosmological gamma-ray bursts

    NASA Technical Reports Server (NTRS)

    Paczynski, Bohdan

    1991-01-01

    The distribution in angle and flux of gamma-ray bursts indicates that the majority of gamma-ray bursters are at cosmological distances, i.e., at z of about 1. The rate is then about 10 exp -8/yr in a galaxy like the Milky Way, i.e., orders of magnitude lower than the estimated rate for collisions between neutron stars in close binary systems. The energy per burst is about 10 exp 51 ergs, assuming isotropic emission. The events appear to be less energetic and more frequent if their emission is strongly beamed. Some tests for the distance scale are discussed: a correlation between the burst's strength and its spectrum; the absorption by the Galactic gas below about 2 keV; the X-ray tails caused by forward scattering by the Galactic dust; about 1 month recurrence of some bursts caused by gravitational lensing by foreground galaxies; and a search for gamma-ray bursts in M31. The bursts appear to be a manifestation of something exotic, but conventional compact objects can provide an explanation. The best possibility is offered by a decay of a bindary composed of a spinning-stellar-mass black-hole primary and a neutron or a strange-quark star secondary. In the final phase the secondary is tidally disrupted, forms an accretion disk, and up to 10 exp 54 ergs are released. A very small fraction of this energy powers the gamma-ray burst.

  10. Gamma Ray Burst Discoveries with the Swift Mission

    NASA Technical Reports Server (NTRS)

    Gehrels, Neil

    2009-01-01

    Gamma-ray bursts (GRBs) are among the most fascinating occurrences in the universe. They are powerful explosions, visible to high redshift, and thought to be the signature of black hole formation. The Swift Observatory has been detecting 100 bursts per year for 4 years and has greatly stimulated the field with new findings. Observations are made of the X-ray and optical afterglow from approximately 1 minute after the burst, continuing for days. Evidence is building that the long and short duration subcategories of GRBs have very different origins: massive star core collapse to a black hole for long bursts and binary neutron star coalescence to a black hole for short bursts. The similarity to Type II and Ia supernovae originating from young and old stellar progenitors is striking. Bursts are providing a new tool to study the high redshift universe. Swift has detected several events at z>5 and one at z=6.7 giving metallicity measurements and other data on galaxies at previously inaccessible distances. The talk will present the latest results from Swift in GRB astronomy.

  11. Gamma Ray Burst Discoveries with the Swift Mission

    NASA Technical Reports Server (NTRS)

    Gehrels, Neil

    2008-01-01

    Gamma-ray bursts (GRBs) are among the most fascinating occurrences in the universe. They are powerful explosions, visible to high redshift, and thought to be the signature of black hole formation. The Swift Observatory has been detecting 100 bursts per year for 3 years and has greatly stimulated the field with new findings. Observations are made of the X-ray and optical afterglow from approximately 1 minute after the burst, continuing for days. Evidence is building that the long and short duration subcategories of GRBs have very different origins: massive star core collapse to a black hole for long bursts and binary neutron star coalescence to a black hole for short bursts. The similarity to Type II and Ia supernovae originating from young and old stellar progenitors is striking. Bursts are providing a new tool to study the high redshift universe. Swift has detected several events at z greater than 5 and one at z=6.3 giving metallicity measurements and other data on galaxies at previously inaccessible distances. The talk will present the latest results from Swift in GRB astronomy.

  12. Gamma Ray Burst Discoveries with the Swift Mission

    NASA Technical Reports Server (NTRS)

    Gehrels, Neil

    2008-01-01

    Gamma-ray bursts (GRBs) are among the most fascinating occurrences in the universe. They are powerful explosions, visible to high redshift, and thought to be the signature of black hole formation. The Swift Observatory has been detecting 100 bursts per year for 3 years and has greatly stimulated the field with new findings. Observations are made of the X-ray and optical afterglow from - 1 minute after the burst, continuing for days. Evidence is building that the long and short duration subcategories of GRBs have very different origins: massive star core collapse to a black hole for long bursts and binary neutron star coalescence to a black hole for short bursts. The similarity to Type I1 and Ia supernovae originating from young and old stellar progenitors is striking. Bursts are providing a new tool to study the high redshift universe. Swift has detected several events at z>5 and one at z=6.3 giving metallicity measurements and other data on galaxies at previously inaccessible distances. The talk will present the latest results from Swift in GRB astronomy.

  13. Peak frequency in the theta and alpha bands correlates with human working memory capacity.

    PubMed

    Moran, Rosalyn J; Campo, Pablo; Maestu, Fernando; Reilly, Richard B; Dolan, Raymond J; Strange, Bryan A

    2010-01-01

    Theta oscillations in the local field potential of neural ensembles are considered key mediators of human working memory. Theoretical accounts arising from animal hippocampal recordings propose that the phase of theta oscillations serves to instantiate sequential neuronal firing to form discrete representations of items held online. Human evidence of phase relationships in visual working memory has enhanced this theory, implicating long theta cycles in supporting greater memory capacity. Here we use human magnetoencephalographic recordings to examine a novel, alternative principle of theta functionality. The principle we hypothesize is derived from information theory and predicts that rather than long (low frequency) theta cycles, short (high frequency) theta cycles are best suited to support high information capacity. From oscillatory activity recorded during the maintenance period of a visual working memory task we show that a network of brain regions displays an increase in peak 4-12 Hz frequency with increasing memory load. Source localization techniques reveal that this network comprises bilateral prefrontal and right parietal cortices. Further, the peak of oscillation along this theta-alpha frequency axis is significantly higher in high capacity individuals compared to low capacity individuals. Importantly while we observe the adherence of cortical neuronal oscillations to our novel principle of theta functioning, we also observe the traditional inverse effect of low frequency theta maintaining high loads, where critically this was located in medial temporal regions suggesting parallel, dissociable hippocampal-centric, and prefrontal-centric theta mechanisms. PMID:21206531

  14. Sex differences in human EEG theta oscillations during spatial navigation in virtual reality.

    PubMed

    Kober, Silvia Erika; Neuper, Christa

    2011-03-01

    The present study examines theta oscillations (electroencephalographic (EEG) activity with a frequency of 4-8 Hz) in male and female young adults during spatial navigation in virtual environments. Twenty-seven participants (13 males and 14 females) performed a spatial navigation task in a virtual maze where they had to find the shortest ways between landmarks. Absolute theta band power and event-related desynchronisation/synchronisation (ERD/ERS) in the theta frequency band was used to analyze the EEG data. Processing of spatial cues or landmarks induced cortical theta activity compared to a baseline condition, confirming the hypothesis that theta oscillations reflect sensorimotor integration. The sensorimotor integration hypothesis proposes that theta oscillations coordinate sensory information with a motor plan to direct wayfinding behaviour to known goal locations. No sex differences were found in spatial performance. However, female participants showed a stronger increase in theta oscillations during processing of landmarks as navigational aids compared to a baseline condition than men. Additionally, a higher theta power was associated with an increased navigation performance in women, whereas an increase in theta power was associated with a decreased navigation performance in men. These results might indicate a stronger sensorimotor integration in females than in males. Possible explanations for the emerged sex differences in cortical theta activity are discussed. PMID:21146566

  15. Aged rats show dominant modulation of lower frequency hippocampal theta rhythm during running.

    PubMed

    Li, Jia-Yi; Kuo, Terry B J; Yang, Cheryl C H

    2016-10-01

    Aging causes considerable decline in both physiological and mental functions, particularly cognitive function. The hippocampal theta rhythm (4-12Hz) is related to both cognition and locomotion. Aging-related findings of the frequency and amplitude of hippocampal theta oscillations are inconsistent and occasionally contradictory. This inconsistency may be due to the effects of the sleep/wake state and different frequency subbands being overlooked. We assumed that aged rats have lower responses of the hippocampal theta rhythm during running, which is mainly due to the dominant modulation of theta frequency subbands related to cognition. By simultaneously recording electroencephalography, physical activity (PA), and the heart rate (HR), this experiment explored the theta oscillations before, during, and after treadmill running at a constant speed in 8-week-old (adult) and 60-week-old (middle-aged) rats. Compared with adult rats, the middle-aged rats exhibited lower theta activity in all frequency ranges before running. Running increased the theta frequency (Frq, 4-12Hz), total activity of the whole theta band (total power, TP), activity of the middle theta frequency (MT, 6.5-9.5Hz), and PA in both age groups. However, the middle-aged rats still showed fewer changes in these parameters during the whole running process. After the waking baseline values were substracted, middle-aged rats showed significantly fewer differences in ΔFrq, ΔTP, and ΔMT but significantly more differences in low-frequency theta activity (4.0-6.5Hz) and HR than the adult rats did. Therefore, the decreasing activity and response of the whole theta band in the middle-aged rats resulted in dominant modulation of the middle to lower frequency (4.0-9.5Hz) theta rhythm. The different alterations in the theta rhythm during treadmill running in the two groups may reflect that learning decline with age. PMID:27496645

  16. Effects of photoperiod and temperature on the timing of bud burst in Norway spruce (Picea abies).

    PubMed

    Partanen, Jouni; Koski, Veikko; Hänninen, Heikki

    1998-12-01

    We examined the effects of several photoperiod and temperature regimes imposed during the winter-spring period on the timing of bud burst in rooted cuttings of Norway spruce (Picea abies (L.) Karst.) grown in a greenhouse in Finland. The treatments were initiated in November and December after the cuttings had been exposed to natural chilling and freezing events. Irrespective of the treatments applied, time to bud burst decreased with increased duration of previous exposure to natural chilling and freezing events. Fluctuating day/night temperatures and continuous lengthening of the photoperiod hastened bud burst. Shortening the photoperiod delayed bud burst, suggesting that little or no ontogenetic development toward bud burst takes place during mild periods before the winter solstice. In the case of climatic warming, this phenomenon may prevent the premature onset of growth that has been predicted by computer simulations with models that only consider temperature regulation of bud burst. PMID:12651402

  17. Experimental observation of transition from chaotic bursting to chaotic spiking in a neural pacemaker

    NASA Astrophysics Data System (ADS)

    Gu, Huaguang

    2013-06-01

    The transition from chaotic bursting to chaotic spiking has been simulated and analyzed in theoretical neuronal models. In the present study, we report experimental observations in a neural pacemaker of a transition from chaotic bursting to chaotic spiking within a bifurcation scenario from period-1 bursting to period-1 spiking. This was induced by adjusting extracellular calcium or potassium concentrations. The bifurcation scenario began from period-doubling bifurcations or period-adding sequences of bursting pattern. This chaotic bursting is characterized by alternations between multiple continuous spikes and a long duration of quiescence, whereas chaotic spiking is comprised of fast, continuous spikes without periods of quiescence. Chaotic bursting changed to chaotic spiking as long interspike intervals (ISIs) of quiescence disappeared within bursting patterns, drastically decreasing both ISIs and the magnitude of the chaotic attractors. Deterministic structures of the chaotic bursting and spiking patterns are also identified by a short-term prediction. The experimental observations, which agree with published findings in theoretical neuronal models, demonstrate the existence and reveal the dynamics of a neuronal transition from chaotic bursting to chaotic spiking in the nervous system.

  18. 30 CFR 57.3461 - Rock bursts.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Rock bursts. 57.3461 Section 57.3461 Mineral...-Underground Only § 57.3461 Rock bursts. (a) Operators of mines which have experienced a rock burst shall— (1) Within twenty four hours report to the nearest MSHA office each rock burst which: (i) Causes persons...

  19. 30 CFR 57.3461 - Rock bursts.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Rock bursts. 57.3461 Section 57.3461 Mineral...-Underground Only § 57.3461 Rock bursts. (a) Operators of mines which have experienced a rock burst shall— (1) Within twenty four hours report to the nearest MSHA office each rock burst which: (i) Causes persons...

  20. 30 CFR 57.3461 - Rock bursts.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Rock bursts. 57.3461 Section 57.3461 Mineral...-Underground Only § 57.3461 Rock bursts. (a) Operators of mines which have experienced a rock burst shall— (1) Within twenty four hours report to the nearest MSHA office each rock burst which: (i) Causes persons...

  1. 30 CFR 57.3461 - Rock bursts.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Rock bursts. 57.3461 Section 57.3461 Mineral...-Underground Only § 57.3461 Rock bursts. (a) Operators of mines which have experienced a rock burst shall— (1) Within twenty four hours report to the nearest MSHA office each rock burst which: (i) Causes persons...

  2. 30 CFR 57.3461 - Rock bursts.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Rock bursts. 57.3461 Section 57.3461 Mineral...-Underground Only § 57.3461 Rock bursts. (a) Operators of mines which have experienced a rock burst shall— (1) Within twenty four hours report to the nearest MSHA office each rock burst which: (i) Causes persons...

  3. Theta brain rhythms index perceptual narrowing in infant speech perception

    PubMed Central

    Bosseler, Alexis N.; Taulu, Samu; Pihko, Elina; Mäkelä, Jyrki P.; Imada, Toshiaki; Ahonen, Antti; Kuhl, Patricia K.

    2013-01-01

    The development of speech perception shows a dramatic transition between infancy and adulthood. Between 6 and 12 months, infants' initial ability to discriminate all phonetic units across the world's languages narrows—native discrimination increases while non-native discrimination shows a steep decline. We used magnetoencephalography (MEG) to examine whether brain oscillations in the theta band (4–8 Hz), reflecting increases in attention and cognitive effort, would provide a neural measure of the perceptual narrowing phenomenon in speech. Using an oddball paradigm, we varied speech stimuli in two dimensions, stimulus frequency (frequent vs. infrequent) and language (native vs. non-native speech syllables) and tested 6-month-old infants, 12-month-old infants, and adults. We hypothesized that 6-month-old infants would show increased relative theta power (RTP) for frequent syllables, regardless of their status as native or non-native syllables, reflecting young infants' attention and cognitive effort in response to highly frequent stimuli (“statistical learning”). In adults, we hypothesized increased RTP for non-native stimuli, regardless of their presentation frequency, reflecting increased cognitive effort for non-native phonetic categories. The 12-month-old infants were expected to show a pattern in transition, but one more similar to adults than to 6-month-old infants. The MEG brain rhythm results supported these hypotheses. We suggest that perceptual narrowing in speech perception is governed by an implicit learning process. This learning process involves an implicit shift in attention from frequent events (infants) to learned categories (adults). Theta brain oscillatory activity may provide an index of perceptual narrowing beyond speech, and would offer a test of whether the early speech learning process is governed by domain-general or domain-specific processes. PMID:24130536

  4. Theta-Pinch Thruster for Piloted Deep Space Exploration

    NASA Technical Reports Server (NTRS)

    LaPointe, Mike R.; Reddy, Dhanireddy (Technical Monitor)

    2000-01-01

    A new high-power propulsion concept that combines a rapidly pulsed theta-pinch discharge with upstream particle reflection by a magnetic mirror was evaluated under a Phase 1 grant awarded through the NASA Institute for Advanced Concepts. Analytic and numerical models were developed to predict the performance of a theta-pinch thruster operated over a wide range of initial gas pressures and discharge periods. The models indicate that a 1 m radius, 10 m long thruster operated with hydrogen propellant could provide impulse-bits ranging from 1 N-s to 330 N-s with specific impulse values of 7,500 s to 2,500 s, respectively. A pulsed magnetic field strength of 2 T is required to compress and heat the preionized hydrogen over a 10(exp -3) second discharge period, with about 60% of the heated plasma exiting the chamber each period to produce thrust. The unoptimized thruster efficiency is low, peaking at approximately 16% for an initial hydrogen chamber pressure of 100 Torr. The specific impulse and impulse-bit at this operating condition are 3,500 s and 90 N-s, respectively, and the required discharge energy is approximately 9x10(exp 6) J. For a pulse repetition rate of 10 Hz, the engine would produce an average thrust of 900 N at 3,500 s specific impulse. Combined with the electrodeless nature of the device, these performance parameters indicate that theta-pinch thrusters could provide unique, long-life propulsion systems for piloted deep space mission applications.

  5. The effective chiral Lagrangian from the theta term

    SciTech Connect

    Mereghetti, E.; Hockings, W.H.; Kolck, U. van

    2010-11-15

    We construct the effective chiral Lagrangian involving hadronic and electromagnetic interactions originating from the QCD {theta}-bar term. We impose vacuum alignment at both quark and hadronic levels, including field redefinitions to eliminate pion tadpoles. We show that leading time-reversal-violating (TV) hadronic interactions are related to isospin-violating interactions that can in principle be determined from charge-symmetry-breaking experiments. We discuss the complications that arise from TV electromagnetic interactions. Some implications of the expected sizes of various pion-nucleon TV interactions are presented, and the pion-nucleon form factor is used as an example.

  6. Chiral symmetry breaking and {theta} vacuum structure in QCD

    SciTech Connect

    Morchio, G. Strocchi, F.

    2009-10-15

    The solution of the axial U(1) problem, the role of the topology of the gauge group in forcing the breaking of axial symmetry in any irreducible representation of the observable algebra and the {theta} vacua structure are revisited in the temporal gauge with attention to the mathematical consistency of the derivations. Both realizations with strong and weak Gauss law are discussed; the control of the general mechanisms and structures is obtained on the basis of the localization of the (large) gauge transformations and the local generation of the chiral symmetry. The Schwinger model in the temporal gauge exactly reproduces the general results.

  7. Do gamma-ray burst sources repeat?

    NASA Technical Reports Server (NTRS)

    Meegan, C. A.; Hartmann, D. H.; Brainerd, J. J.; Briggs, M.; Paciesas, W. S.; Pendleton, G.; Kouveliotou, C.; Fishman, G.; Blumenthal, G.; Brock, M.

    1994-01-01

    The demonstration of repeated gamma-ray bursts from an individual source would severely constrain burst source models. Recent reports of evidence for repetition in the first BATSE burst catalog have generated renewed interest in this issue. Here, we analyze the angular distribution of 585 bursts of the second BATSE catalog (Meegan et al. 1994). We search for evidence of burst recurrence using the nearest and farthest neighbor statistic ad the two-point angular correlation function. We find the data to be consistent with the hypothesis that burst sources do not repeat; however, a repeater fraction of up to about 20% of the bursts cannot be excluded.

  8. Associative Memory Storage and Retrieval: Involvement of Theta Oscillations in Hippocampal Information Processing

    PubMed Central

    Stella, Federico; Treves, Alessandro

    2011-01-01

    Theta oscillations are thought to play a critical role in neuronal information processing, especially in the hippocampal region, where their presence is particularly salient. A detailed description of theta dynamics in this region has revealed not only a consortium of layer-specific theta dipoles, but also within-layer differences in the expression of theta. This complex and articulated arrangement of current flows is reflected in the way neuronal firing is modulated in time. Several models have proposed that these different theta modulators flexibly coordinate hippocampal regions, to support associative memory formation and retrieval. Here, we summarily review different approaches related to this issue and we describe a mechanism, based on experimental and simulation results, for memory retrieval in CA3 involving theta modulation. PMID:21961072

  9. Cosmic gamma-ray bursts

    NASA Astrophysics Data System (ADS)

    Vedrenne, G.

    1981-06-01

    The general characteristics of gamma-ray bursts are considered. During the period from 1967 to 1977 62 gamma-ray bursts were discovered. Between September 1978 and December 1980 more than 40 bursts were observed with the aid of interplanetary spacecraft, including the Pioneer Venus Orbiter, ISEE-C, Helios B, Vela, Prognoz 7, Venera 11, and Venera 12. The time structures are discussed along with the spectra, and the burst intensity distribution. Attention is given to events observed on March 5, April 6, November 4, and November 19, 1979, taking into account the location of each event. The implications of the more recent results are discussed. It is pointed out that for a better understanding of the origin of the emissions, it is necessary to have a coordinated observation program with several satellites separated by large distances.

  10. Theta and gamma coherence across the septotemporal axis during distinct behavioral states.

    PubMed

    Penley, Stephanie C; Hinman, James R; Sabolek, Helen R; Escabí, Monty A; Markus, Etan J; Chrobak, James J

    2012-05-01

    Theta (4-12 Hz) and gamma (40-100 Hz) field potentials represent the interaction of synchronized synaptic input onto distinct neuronal populations within the hippocampal formation. Theta is quite prominent during exploratory activity, locomotion, and REM sleep. Although it is generally acknowledged that theta is coherent throughout most of the hippocampus, there is significant variability in theta, as well as gamma, coherence across lamina at any particular septotemporal level of the hippocampus. Larger differences in theta coherence are observed across the septotemporal (long) axis. We have reported that during REM sleep there is a decrease in theta coherence across the long axis that varies with the topography of CA3/mossy cell input rather than the topography of the prominent entorhinal input. On the basis of differences in the rat's behavior as well as the activity of neuromodulatory inputs (e.g., noradrenergic and serotonergic), we hypothesized that theta coherence across the long axis would be greater during locomotion than REM sleep and exhibit a pattern more consistent with the topography of entorhinal inputs. We examined theta and gamma coherence indices at different septotemporal and laminar sites during distinct theta states: locomotion during maze running, REM sleep, following acute treatment with a θ-inducing cholinomimetic (physostigmine) and for comparison during slow-wave sleep. The results demonstrate a generally consistent pattern of theta and gamma coherence across the septotemporal axis of the hippocampus that is quite indifferent to sensory input and overt behavior. These results are discussed with regards to the neurobiological mechanisms that generate theta and gamma and the growing body of evidence linking theta and gamma indices to memory and other cognitive functions. PMID:21748821

  11. Correlation of the Hippocampal theta rhythm to changes in hypothalamic temperature

    NASA Technical Reports Server (NTRS)

    Saleh, M. A.; Horowitz, J. M.; Hsieh, A. C. L.

    1974-01-01

    Warming and cooling the preoptic anterior hypothalamic area in awake, loosely restrained rabbits was found to evoke theta rhythm. This is consistent with previous studies indicating that theta rhythm is a nonspecific response evoked by stimulation of several sensory modalities. Several studies have correlated theta rhythm with alertness. A neural pathway involving the hypothalamus, the hippocampus, the septal area, and the reticular formation is proposed. Thus, a role of this pathway may be to alert the animal to changes in its body temperature.

  12. Light-front description for the theta dependence of meson masses in the massive Schwinger model

    SciTech Connect

    Burkardt, M.; Harada, K.

    1998-05-01

    We present a continuum formulation for {theta} vacua in the massive Schwinger model on the light front, where {theta} enters as a background electric field. The effective coupling of the external field is partially screened due to vacuum polarization processes. For small fermion masses and small {theta}, we calculate the mass of the meson and find agreement with results from bosonization. {copyright} {ital 1998} {ital The American Physical Society}

  13. Pentaquark {Theta}{sup +} production from the reaction {gamma}p {yields} {pi}{sup +} K{sup -} {Theta}{sup +}

    SciTech Connect

    W. Liu; C. M. Ko; V. Kubarovsky

    2004-02-01

    The cross section for {Theta}{sup +} production from the reaction {gamma}p {yields} {pi}{sup +} K{sup -} {Theta}{sup +}, which was observed in the CLAS experiment at the Jefferson National Laboratory, is evaluated in a hadronic model that includes couplings of {Theta}{sup +} to both KN and K*N. With their coupling constants determined from the empirical {pi} NN(1710) and {rho} NN(1710) coupling constants using the SU(3) symmetry, the cross section for this reaction has been evaluated by taking {Theta}{sup +} to have spin 1/2 and isospin 0 but either positive or negative parity. We find that the cross section is 10-15 nb if {Theta}{sup +} has positive parity as predicted by the chiral soliton model. The cross section is reduced by more than a factor of 10 if {Theta}{sup +} has negative parity as given by lattice QCD studies. For both parities, the differential distribution peaks at small negative four momentum transfer as expected from the dominating t-channel kaon-exchange diagram that involves only the coupling of {Theta}{sup +} to KN.

  14. Steady advance of coal and gas bursts

    NASA Astrophysics Data System (ADS)

    Shanbing, Yu

    1988-02-01

    This paper establishes a one-dimensional model to analyse the mechanism of coal and gas bursts. It is found that the intrinsic factor governing bursts is the coupling of the initiation of the moving of coal fragments with the gas seepage. A typical (strong) burst can be treated as a steady advance process. The significant dimensionless parameters concerning bursts and an approximate burst criterion are given, and they are in good agreement with the statistics of field data.

  15. X-ray bursts: Observation versus theory

    NASA Technical Reports Server (NTRS)

    Lewin, W. H. G.

    1981-01-01

    Results of various observations of common type I X-ray bursts are discussed with respect to the theory of thermonuclear flashes in the surface layers of accreting neutron stars. Topics covered include burst profiles; irregular burst intervals; rise and decay times and the role of hydrogen; the accuracy of source distances; accuracy in radii determination; radius increase early in the burst; the super Eddington limit; temperatures at burst maximum; and the role of the magnetic field.

  16. Gamma-ray burst models.

    PubMed

    King, Andrew

    2007-05-15

    I consider various possibilities for making gamma-ray bursts, particularly from close binaries. In addition to the much-studied neutron star+neutron star and black hole+neutron star cases usually considered good candidates for short-duration bursts, there are also other possibilities. In particular, neutron star+massive white dwarf has several desirable features. These systems are likely to produce long-duration gamma-ray bursts (GRBs), in some cases definitely without an accompanying supernova, as observed recently. This class of burst would have a strong correlation with star formation and occur close to the host galaxy. However, rare members of the class need not be near star-forming regions and could have any type of host galaxy. Thus, a long-duration burst far from any star-forming region would also be a signature of this class. Estimates based on the existence of a known progenitor suggest that this type of GRB may be quite common, in agreement with the fact that the absence of a supernova can only be established in nearby bursts. PMID:17293332

  17. The use of cubic Nd-Ba-Cu-O seeds to create {theta}[100], 90{degree}-{theta}[100], and {theta}[001] tilt Y-Ba-Cu-O grain boundaries.

    SciTech Connect

    Field, M. B.

    1998-10-20

    Using seeding techniques to control the orientation of grains, we have been able to create a wide variety of YBa{sub 2}Cu{sub 3}O{sub 6+x}, grain boundaries. In addition to five domain samples with 90{degree}[100] twist and tilt grain boundaries, we have now developed a method to produce grain boundaries in the same sample that have the misorientations {theta}[001] tilt, {theta}[100] tilt, and 90{degree} {approximately} {theta}[100], where the disorientation angle {theta} is fully controllable. We will demonstrate how these boundaries can be synthesized, give experimental evidence via polarized light microscopy and electron backscatter patterns (EBSP) that the intended grain boundaries were indeed formed, and discuss the importance of these boundaries in future grain boundary studies.

  18. Cholinergic Blockade Reduces Theta-Gamma Phase Amplitude Coupling and Speed Modulation of Theta Frequency Consistent with Behavioral Effects on Encoding

    PubMed Central

    Gillet, Shea N.; Climer, Jason R.; Hasselmo, Michael E.

    2013-01-01

    Large-scale neural activation dynamics in the hippocampal-entorhinal circuit local field potential, observable as theta and gamma rhythms and coupling between these rhythms, is predictive of encoding success. Behavioral studies show that systemic administration of muscarinic acetylcholine receptor antagonists selectively impairs encoding, suggesting that they may also disrupt the coupling between the theta and gamma bands. Here, we tested the hypothesis that muscarinic antagonists selectively disrupt coupling between theta and gamma. Specifically, we characterized the effects of systemically administered scopolamine on movement-induced theta and gamma rhythms recorded in the superficial layers of the medial entorhinal cortex (MEC) of freely moving rats. We report the novel result that gamma power at the peak of theta was most reduced following muscarinic blockade, significantly shifting the phase of maximal gamma power to occur at later phases of theta. We also characterize the existence of multiple distinct gamma bands in the superficial layers of the MEC. Further, we observed that theta frequency was significantly less modulated by movement speed following muscarinic blockade. Finally, the slope relating speed to theta frequency, a correlate of familiarity with a testing enclosure, increased significantly less between the preinjection and recovery trials when scopolamine was administered during the intervening injection session than when saline was administered, suggesting that scopolamine reduced encoding of the testing enclosure. These data are consistent with computational models suggesting that encoding and retrieval occur during the peak and trough of theta, respectively, and support the theory that acetylcholine regulates the balance between encoding versus retrieval. PMID:24336727

  19. Resting state theta band source distribution and functional connectivity in remitted schizophrenia.

    PubMed

    Shreekantiah Umesh, D; Tikka, Sai Krishna; Goyal, Nishant; Nizamie, S Haque; Sinha, Vinod Kumar

    2016-09-01

    Increased resting theta activity is one consistent observation occurring during all the phases of schizophrenia. However, the resting theta oscillations during the remission phase are yet unclear. We studied resting theta current source density and functional connectivity in remitted schizophrenia and compared with healthy controls. Significantly increased current source density was found in the dominant anterior cingulate cortex. Increased connectivity between the inferior parietal lobe bilaterally and between the left inferior parietal lobe and right middle frontal gyrus was also found. It may be concluded that schizophrenia patients have aberrant regional theta band current source density and functional connectivity even during remission. PMID:27484634

  20. Theta variation and spatiotemporal scaling along the septotemporal axis of the hippocampus

    PubMed Central

    Long, Lauren L.; Bunce, Jamie G.; Chrobak, James J.

    2015-01-01

    Hippocampal theta has been related to locomotor speed, attention, anxiety, sensorimotor integration and memory among other emergent phenomena. One difficulty in understanding the function of theta is that the hippocampus (HPC) modulates voluntary behavior at the same time that it processes sensory input. Both functions are correlated with characteristic changes in theta indices. The current review highlights a series of studies examining theta local field potential (LFP) signals across the septotemporal or longitudinal axis of the HPC. While the theta signal is coherent throughout the entirety of the HPC, the amplitude, but not the frequency, of theta varies significantly across its three-dimensional expanse. We suggest that the theta signal offers a rich vein of information about how distributed neuronal ensembles support emergent function. Further, we speculate that emergent function across the long axis varies with respect to spatiotemporal scale. Thus, septal HPC processes details of the proximal spatiotemporal environment while more temporal aspects process larger spaces and wider time-scales. The degree to which emergent functions are supported by the synchronization of theta across the septotemporal axis is an open question. Our working model is that theta synchrony serves to bind ensembles representing varying resolutions of spatiotemporal information at interdependent septotemporal areas of the HPC. Such synchrony and cooperative interactions along the septotemporal axis likely support memory formation and subsequent consolidation and retrieval. PMID:25852496

  1. Increased oscillatory theta activation evoked by violent digital game events.

    PubMed

    Salminen, Mikko; Ravaja, Niklas

    2008-04-11

    The authors examined electroencephalographic (EEG) oscillatory responses to two violent events, the player character wounding and killing an opponent character with a gun, in the digital game James Bond 007: NightFire. EEG was recorded from 25 (16 male) right-handed healthy young adults. EEG data were segmented into one 1-s baseline epoch before each event and two 1-s epochs after event onset. Power estimates (microV(2)) were derived with the fast Fourier transform (FFT) for each artefact free event. Both of the studied events evoked increased occipital theta (4-6Hz) responses as compared to the pre-event baseline. The wounding event evoked also increased occipital high theta (6-8Hz) response and the killing event evoked low alpha (8-10Hz) asymmetry over the central electrodes, both relative to the pre-event baseline. The results are discussed in light of facial electromyographic and electrodermal activity responses evoked by these same events, and it is suggested that the reported EEG responses may be attributable to affective processes related to these violent game events. PMID:18325669

  2. D3-instantons, mock theta series and twistors

    NASA Astrophysics Data System (ADS)

    Alexandrov, Sergei; Manschot, Jan; Pioline, Boris

    2013-04-01

    The D-instanton corrected hypermultiplet moduli space of type II string theory compactified on a Calabi-Yau threefold is known in the type IIA picture to be determined in terms of the generalized Donaldson-Thomas invariants, through a twistorial construction. At the same time, in the mirror type IIB picture, and in the limit where only D3-D1-D(-1)-instanton corrections are retained, it should carry an isometric action of the S-duality group SL(2, {Z} ). We prove that this is the case in the one-instanton approximation, by constructing a holomorphic action of SL(2, {Z} ) on the linearized twistor space. Using the modular invariance of the D4-D2-D0 black hole partition function, we show that the standard Darboux coordinates in twistor space have modular anomalies controlled by period integrals of a Siegel-Narain theta series, which can be canceled by a contact transformation generated by a holomorphic mock theta series.

  3. Theta responses are abnormal in mild cognitive impairment: evidence from analysis of theta event-related synchronization during a temporal expectancy task.

    PubMed

    Caravaglios, Giuseppe; Muscoso, Emma Gabriella; Di Maria, Giulia; Costanzo, Erminio

    2013-07-01

    We examined the hypothesis that the attention/executive deficits in mild cognitive impairment (MCI) due to Alzheimer's disease is associated to an abnormal cortical activation, revealed by the method of event-related synchronization/desynchronization (ERS/ERD) in the theta band during a paradigm of temporal orienting of attention. MCI patients (n = 25) and healthy elderly (HE) matched controls (n = 15) performed a task in which periodically omitted tones had to be predicted and their virtual onset time had to be marked by pressing a button. Single-trial theta responses were measured, respectively, before and after the motor response. Then, theta responses were compared to theta power during eyes closed resting state (ERD/ERS method).The temporal course of the task was characterized by two different behavioural conditions: (1) a pre-event epoch, in which the subject awaited the virtual onset of the omitted tone, (2) a post-event (after button pressing) epoch, in which the subject was in a post-motor response condition. The most important findings are summarized as follows: (1) in both groups, the pre-event epoch was characterized by theta ERS on temporal electrodes, but HE had a greater theta ERS compared to that of MCI group; (2) in both groups, during the post-motor condition, there was a theta ERS on prefrontal regions, and, also in this case, HE showed a greater theta enhancement compared to that of MCI patients; (3) HE showed evidence of lateralization: during the waiting epoch, theta ERS was dominant on the right posterior temporal lead (T6), whilst, during the post-motor epoch, theta ERS was greater on the left, as well as the midline prefrontal leads. Compared to the traditional neuropsychological measures for the episodic memory, these theta ERS indicators were less accurate in differentiating MCI patients from healthy elderly. The clinical relevance of these findings is that the weaker theta reactivity in MCI would indicate an early impairment in the

  4. Mapping the after-effects of theta burst stimulation on the human auditory cortex with functional imaging.

    PubMed

    Andoh, Jamila; Zatorre, Robert J

    2012-01-01

    Auditory cortex pertains to the processing of sound, which is at the basis of speech or music-related processing. However, despite considerable recent progress, the functional properties and lateralization of the human auditory cortex are far from being fully understood. Transcranial Magnetic Stimulation (TMS) is a non-invasive technique that can transiently or lastingly modulate cortical excitability via the application of localized magnetic field pulses, and represents a unique method of exploring plasticity and connectivity. It has only recently begun to be applied to understand auditory cortical function. An important issue in using TMS is that the physiological consequences of the stimulation are difficult to establish. Although many TMS studies make the implicit assumption that the area targeted by the coil is the area affected, this need not be the case, particularly for complex cognitive functions which depend on interactions across many brain regions. One solution to this problem is to combine TMS with functional Magnetic resonance imaging (fMRI). The idea here is that fMRI will provide an index of changes in brain activity associated with TMS. Thus, fMRI would give an independent means of assessing which areas are affected by TMS and how they are modulated. In addition, fMRI allows the assessment of functional connectivity, which represents a measure of the temporal coupling between distant regions. It can thus be useful not only to measure the net activity modulation induced by TMS in given locations, but also the degree to which the network properties are affected by TMS, via any observed changes in functional connectivity. Different approaches exist to combine TMS and functional imaging according to the temporal order of the methods. Functional MRI can be applied before, during, after, or both before and after TMS. Recently, some studies interleaved TMS and fMRI in order to provide online mapping of the functional changes induced by TMS. However, this online combination has many technical problems, including the static artifacts resulting from the presence of the TMS coil in the scanner room, or the effects of TMS pulses on the process of MR image formation. But more importantly, the loud acoustic noise induced by TMS (increased compared with standard use because of the resonance of the scanner bore) and the increased TMS coil vibrations (caused by the strong mechanical forces due to the static magnetic field of the MR scanner) constitute a crucial problem when studying auditory processing. This is one reason why fMRI was carried out before and after TMS in the present study. Similar approaches have been used to target the motor cortex, premotor cortex, primary somatosensory cortex and language-related areas, but so far no combined TMS-fMRI study has investigated the auditory cortex. The purpose of this article is to provide details concerning the protocol and considerations necessary to successfully combine these two neuroscientific tools to investigate auditory processing. Previously we showed that repetitive TMS (rTMS) at high and low frequencies (resp. 10 Hz and 1 Hz) applied over the auditory cortex modulated response time (RT) in a melody discrimination task. We also showed that RT modulation was correlated with functional connectivity in the auditory network assessed using fMRI: the higher the functional connectivity between left and right auditory cortices during task performance, the higher the facilitatory effect (i.e. decreased RT) observed with rTMS. However those findings were mainly correlational, as fMRI was performed before rTMS. Here, fMRI was carried out before and immediately after TMS to provide direct measures of the functional organization of the auditory cortex, and more specifically of the plastic reorganization of the auditory neural network occurring after the neural intervention provided by TMS. Combined fMRI and TMS applied over the auditory cortex should enable a better understanding of brain mechanisms of auditory processing, providing physiological information about functional effects of TMS. This knowledge could be useful for many cognitive neuroscience applications, as well as for optimizing therapeutic applications of TMS, particularly in auditory-related disorders. PMID:23007549

  5. Inhibitory theta burst stimulation of affected hemisphere in chronic stroke: a proof of principle, sham-controlled study.

    PubMed

    Di Lazzaro, Vincenzo; Rothwell, John C; Talelli, Penelope; Capone, Fioravante; Ranieri, Federico; Wallace, Amanda C; Musumeci, Gabriella; Dileone, Michele

    2013-10-11

    Non-invasive brain stimulation is presently being tested as a potential therapeutic intervention for stroke rehabilitation. Following a model of competitive interactions between the hemispheres, these interventions aim to increase the plasticity of stroke hemisphere by applying either excitatory protocols to the damaged hemisphere or inhibitory protocols to the non-stroke hemisphere. Here we test the safety and feasibility of using an inhibitory protocol on the stroke hemisphere to improve the response to conventional therapy via a homeostatic increase in learning capacity. Twelve chronic stroke patients received TBS to stroke hemisphere (6 patients inhibitory TBS and 6 sham TBS) followed by physical therapy daily for 10 working days. Patients and therapists were blinded to the type of TBS. Action Research Arm Test (ARAT), Nine-Hole Pegboard Test (NHPT) and Jebsen-Taylor Test (JTT) were the primary outcome measures, grip and pinch-grip dynamometry were the secondary outcome measures. All patients improved ARAT and JTT scores for up to 3 months post-treatment. ARAT scores improved significantly in both real and sham groups, but only patients receiving real TBS significantly improved on the JTT: 3 months post-treatment mean execution time was reduced compared to baseline by 141 s for real group and by 65s for the sham group. This small exploratory study suggests that ipsilesional inhibitory TBS is safe and that it has the potential to be used in a larger trial to enhance the gain from a late rehabilitation program in chronic stroke patients. PMID:23978513

  6. Comet Bursting Through Relaxation

    NASA Astrophysics Data System (ADS)

    Jacobson, Seth A.; Scheeres, D. J.

    2012-10-01

    Comets may be excited and occupy non-principal axis (complex) rotation states for a large fraction of their lifetimes. Many comet nuclei have been identified or are suspected to occupy non-principal axis (complex) rotation [Belton 2005, etc.] as well as have evolving rotation rates [Belton 2011, etc.]. Comet orbits drive these rotation states through cycles of excitation due to surface jets and relaxation due to time variable internal stresses that dissipate energy in the anelastic comet interior. Furthermore, relaxation from complex rotation can increase the loads along the symmetry axis of prolate comets. These loads stretch the body along the symmetry axis and may be the cause of the characteristic ``bowling pin’’ shape and eventually may lead to failure. This is an alternative model for comet bursting. Each cycle deposits only a small amount of energy and stress along the axis, but this process is repeated every orbit during which jets are activated. Our model for the evolution of comet nuclei includes torques due to a number of discrete jets located on the surface based on Neishtadt et al. [2002]. The model also includes internal dissipation using an approach developed by Sharma et al. [2005] and Vokrouhlicky et al. [2009]. These equations are averaged over the instantaneous spin state and the heliocentric orbit so the long-term evolution of the comet can be determined. We determine that even after the inclusion of internal dissipation there still exist non-principal axis equilibrium states for certain jet geometries. For ranges of dissipation factors and jet geometries, prolate comets are found to occupy states that have time variable internal loads over long time periods. These periodic loadings along the symmetry axis may lead to ``necking’’ as the body extends along the axis to release the stress and eventually disruption.

  7. Iron Inhibits Respiratory Burst of Peritoneal Phagocytes In Vitro

    PubMed Central

    Gotfryd, Kamil; Jurek, Aleksandra; Kubit, Piotr; Klein, Andrzej; Turyna, Bohdan

    2011-01-01

    Objective. This study examines the effects of iron ions Fe3+ on the respiratory burst of phagocytes isolated from peritoneal effluents of continuous ambulatory peritoneal dialysis (CAPD) patients, as an in vitro model of iron overload in end-stage renal disease (ESRD). Material and Methods. Respiratory burst of peritoneal phagocytes was measured by chemiluminescence method. Results. At the highest used concentration of iron ions Fe3+ (100 μM), free radicals production by peritoneal phagocytes was reduced by 90% compared to control. Conclusions. Iron overload may increase the risk of infectious complications in ESRD patients. PMID:22203913

  8. GENERAL: New Canards Bursting and Canards Periodic-Chaotic Sequence

    NASA Astrophysics Data System (ADS)

    Yooer, Chi-Feng; Xu, Jian-Xue; Zhang, Xin-Hua

    2009-07-01

    A trajectory following the repelling branch of an equilibrium or a periodic orbit is called a canards solution. Using a continuation method, we find a new type of canards bursting which manifests itself in an alternation between the oscillation phase following attracting the limit cycle branch and resting phase following a repelling fixed point branch in a reduced leech neuron model. Via periodic-chaotic alternating of infinite times, the number of windings within a canards bursting can approach infinity at a Gavrilov-Shilnikov homoclinic tangency bifurcation of a simple saddle limit cycle.

  9. Continuous Tuning and Calibration of Vibratory Gyroscopes

    NASA Technical Reports Server (NTRS)

    Hayworth, Ken

    2003-01-01

    A method of control and operation of an inertial reference unit (IRU) based on vibratory gyroscopes provides for continuously repeated cycles of tuning and calibration. The method is intended especially for application to an IRU containing vibratory gyroscopes that are integral parts of microelectromechanical systems (MEMS) and that have cloverleaf designs, as described in several previous NASA Tech Briefs articles. The method provides for minimization of several measures of spurious gyroscope output, including zero-rate offset (ZRO), angle random walk (ARW), and rate drift. These benefits are afforded both at startup and thereafter during continuing operation, in the presence of unknown rotation rates and changes in temperature. A vibratory gyroscope contains a precision mechanically resonant structure containing two normal modes of vibration nominally degenerate in frequency and strongly coupled via a Coriolis term. In the case of the cloverleaf design MEMS gyro, these normal modes of vibration are plate rocking modes. The rocking motion of the plate is described by giving two angles, theta(sub 1) and theta(sub 2). A proof mass consisting of a post orthogonal to the plate ensures a high degree of Coriolis coupling of vibratory energy from one mode into the other under inertial rotation. The plate is driven and sensed capacitively across a few-microns-wide gap, and the normal mode frequencies can be tuned electrostatically by DC voltages applied across this gap. In order to sense rotation, the resonator plate is caused to rock in the theta(sub 1) direction, then any small motions in the theta(sub 2) direction are sensed, rebalanced, and interpreted as inertial rotation. In this scenario, the "drive" has been assigned to the theta(sub 1) direction, and the "sense" has been assigned to the theta(sub 2) direction.

  10. A Type II Radio Burst without a Coronal Mass Ejection

    NASA Astrophysics Data System (ADS)

    Su, W.; Cheng, X.; Ding, M. D.; Chen, P. F.; Sun, J. Q.

    2015-05-01

    Type II radio bursts are thought to be a signature of coronal shocks. In this paper, we analyze a short-lived type II burst that started at 07:40 UT on 2011 February 28. By carefully checking white-light images, we find that the type II radio burst is not accompanied by a coronal mass ejection, only by a C2.4 class flare and narrow jet. However, in the EUV images provided by the Atmospheric Imaging Assembly on board the Solar Dynamics Observatory, we find a wave-like structure that propagated at a speed of ∼600 km s‑1 during the burst. The relationship between the type II radio burst and the wave-like structure is, in particular, explored. For this purpose, we first derive the density distribution under the wave by the differential emission measure method, which is used to restrict the empirical density model. We then use the restricted density model to invert the speed of the shock that produces the observed frequency drift rate in the dynamic spectrum. The inverted shock speed is similar to the speed of the wave-like structure. This implies that the wave-like structure is most likely a coronal shock that produces the type II radio burst. We also examine the evolution of the magnetic field in the flare-associated active region and find continuous flux emergence and cancellation taking place near the flare site. Based on these facts, we propose a new mechanism for the formation of the type II radio burst, i.e., the expansion of the strongly inclined magnetic loops after reconnecting with a nearby emerging flux acts as a piston to generate the shock wave.

  11. The Burst Monitor (GBM) on-board GLAST

    NASA Astrophysics Data System (ADS)

    Georgii, R.

    The Gamma-ray Large-Area Space Telescope (GLAST) will be the next major NASA mission for high-energy γ-ray astronomy after EGRET. Presently the launch is foreseen for the end of 2005. Its scientific objective will be to observe AGNs, pulsars, SN remnants and interactions of cosmic rays with the interstellar medium from 10 MeV to 300 GeV. Another important objective will be the study of γ-ray burst spectra and time profiles at the high-energy end. A Burst Monitor ((GBM) will be on board of GLAST and will be built, by a collaboration of MSFC/UAH and the MPE, to enhance the γ-ray burst-detection capability of GLAST considerably. It will measure burst spectra between 5 keV and 30 MeV with an energy resolution between ≈3% (at 20 MeV) and ≈50% (at 5 keV). Thus an energy range of more than 6 decades will be accessible in burst spectra for the first time. Moreover it will measure the light curves with an absolute time accuracy of 10 μsec. Furthermore the GBM will provide an on-board position to the main instrument for repointing purposes, allowing for an observation of a burst with the main telescope within 10 minutes. Through an energy range similar to that of BASTE continuity with the large data base of γ-ray burst-spectra parameters can be achieved, putting the expected high-energy emission in a better context. In this talk the scientific goals of the GBM and its technical realisation will be presented.

  12. Structure of auroral precipitation during a theta aurora from multisatellite observations

    SciTech Connect

    Feldstein, Y.I.; Newell, P.T.; Sandahl, I.

    1995-09-01

    A {theta} aurora previously discussed on the basis of Viking images (northern hemisphere) and DE 1 images (southern hemisphere) is reexamined in light of additional data, primarily the auroral plasma distribution as determined from the Viking, DMSP F6, and DMSP F7 satellites. This event, which occurred before a substorm expansion phase on August 3, 1986, appeared in the images to consist of a single arc along the morning side in the northern hemisphere and along the evening side in the southern hemisphere and was isolated from the auroral oval in both sets of images. On the basis of the auroral plasma distribution inferred from three satellites, the brightest arcs do occur at the locations indicated by the imagers, both the arcs are in fact connected to the main oval with continuous precipitation, and weaker secondary arcs (not observed by the imagers) occur in the opposite hemisphere magnetically conjugate to the bright arcs. These observations support the interpretation of the {theta} aurora as occurring on closed field lines as a result of the expansion of the morning and evening sector ovals into the polar cap. A careful examination of the characteristics of the observed auroral energy plasma suggests additional conclusions. It appears that the ionospheric manifestation of the recently discovered low-energy electron layer can be identified with a complicated structure of soft precipitation at the poleward edge of the main precipitation region. Finally, unlike recent reports, the ions were not observed to have a cutoff in the polar cap that is any sharper than that of the electrons. 48 refs., 13 figs.

  13. BATSE Observations of the Large-Scale Isotropy of Gamma-Ray Bursts

    NASA Technical Reports Server (NTRS)

    Briggs, Michael S.; Paciesas, William S.; Pendleton, Geoffrey N.; Meegan, Charles A.; Fishman, Gerald J.; Horack, John M.; Brock, Martin N.; Kouveliotou, Chryssa; Hartmann, Dieter H.; Hakkila, Jon

    1996-01-01

    We use dipole and quadrupole statistics to test the large-scale isotropy of the first 1005 gamma-ray bursts observed by the Burst and Transient Source Experiment (BATSE). In addition to the entire sample of 1005 gamma-ray bursts, many subsets are examined. We use a variety of dipole and quadrupole statistics to search for Galactic and other predicted anisotropies and for anisotropies in a coordinate-system independent manner. We find the gamma-ray burst locations to be consistent with isotropy, e.g., for the total sample the observed Galactic dipole moment (cos theta) differs from the value predicted for isotropy by 0.9 sigma and the observed Galactic quadrupole moment (sin(exp 2) b - 1/3) by 0.3 sigma. We estimate for various models the anisotropies that could have been detected. If one-half of the locations were within 86 deg of the Galactic center, or within 28 deg of the Galactic plane, the ensuing dipole or quadrupole moment would have typically been detected at the 99% confidence level. We compare the observations with the dipole and quadrupole moments of various Galactic models. Several Galactic gamma-ray bursts models have moments within 2 sigma of the observations; most of the Galactic models proposed to date are no longer in acceptable agreement with the data. Although a spherical dark matter halo distribution could be consistent with the data, the required core radius is larger than the core radius of the dark matter halo used to explain the Galaxy's rotation curve. Gamma-ray bursts are much more isotropic than any observed Galactic population, strongly favoring but not requiring an origin at cosmological distances.

  14. Gamma-Ray Bursts: A Mystery Story

    NASA Technical Reports Server (NTRS)

    Parsons, Ann

    2007-01-01

    With the success of the Swift Gamma-Ray Burst Explorer currently in orbit, this is quite an exciting time in the history of Gamma Ray Bursts (GRBs). The study of GRBs is a modern astronomical mystery story that began over 30 years ago with the serendipitous discovery of these astronomical events by military satellites in the late 1960's. Until the launch of BATSE on the Compton Gamma-ray Observatory, astronomers had no clue whether GRBs originated at the edge of our solar system, in our own Milky Way Galaxy or incredibly far away near the edge of the observable Universe. Data from BATSE proved that GRBs are distributed isotropically on the sky and thus could not be the related to objects in the disk of our Galaxy. Given the intensity of the gamma-ray emission, an extragalactic origin would require an astounding amount of energy. Without sufficient data to decide the issue, a great debate continued about whether GRBs were located in the halo of our own galaxy or were at extragalactic - even cosmological distances. This debate continued until 1997 when the BeppoSAX mission discovered a fading X-ray afterglow signal in the same location as a GRB. This discovery enabled other telescopes, to observe afterglow emission at optical and radio wavelengths and prove that GRBs were at cosmological distances by measuring large redshifts in the optical spectra. Like BeppoSAX Swift, slews to new GRB locations to measure afterglow emission. In addition to improved GRB sensitivity, a significant advantage of Swift over BeppoSAX and other missions is its ability to slew very quickly, allowing x-ray and optical follow-up measurements to be made as early as a minute after the gamma-ray burst trigger rather than the previous 6-8 hour delay. Swift afterglow measurements along with follow-up ground-based observations, and theoretical work have allowed astronomers to identify two plausible scenarios for the creation of a GRB: either through core collapse of super massive stars or

  15. Mechanism for fast radio bursts

    NASA Astrophysics Data System (ADS)

    Romero, G. E.; del Valle, M. V.; Vieyro, F. L.

    2016-01-01

    Fast radio bursts are mysterious transient sources likely located at cosmological distances. The derived brightness temperatures exceed by many orders of magnitude the self-absorption limit of incoherent synchrotron radiation, implying the operation of a coherent emission process. We propose a radiation mechanism for fast radio bursts where the emission arises from collisionless bremsstrahlung in strong plasma turbulence excited by relativistic electron beams. We discuss possible astrophysical scenarios in which this process might operate. The emitting region is a turbulent plasma hit by a relativistic jet, where Langmuir plasma waves produce a concentration of intense electrostatic soliton-like regions (cavitons). The resulting radiation is coherent and, under some physical conditions, can be polarized and have a power-law distribution in energy. We obtain radio luminosities in agreement with the inferred values for fast radio bursts. The time scale of the radio flare in some cases can be extremely fast, of the order of 1 0-3 s . The mechanism we present here can explain the main features of fast radio bursts and is plausible in different astrophysical sources, such as gamma-ray bursts and some active galactic nuclei.

  16. Cyclotron line strength variations in gamma-ray burst GB870303 - Possible evidence of neutron star rotation

    NASA Technical Reports Server (NTRS)

    Graziani, Carlo; Fenimore, Edward E.; Murakami, Toshio; Yoshida, Atsumasa; Lamb, D. Q.; Wang, John C. L.; Loredo, Thomas J.

    1992-01-01

    An exhaustive search of the Ginga data on gamma-ray burst GB870303 reveals two separate time intervals during which statistically significant line features are evident. One interval shows a single prominent line feature at about 20 keV; a second, shows two line features at about 20 and 40 keV. From model fits to the data, we find that both sets of lines are well-described by cyclotron resonant scattering in a magnetic field B about 1.8 x 10 exp 12 G, and that the differences in the line strengths between the two intervals are significant. The variations are qualitatively similar to those produced by a change in the viewing angle theta relative to the magnetic field. We conjecture that the change in theta is due to rotation of the neutron star, and derive limits P = 45-180 sec on the rotation period P.

  17. The synchronous activity of lateral habenular neurons is essential for regulating hippocampal theta oscillation.

    PubMed

    Aizawa, Hidenori; Yanagihara, Shin; Kobayashi, Megumi; Niisato, Kazue; Takekawa, Takashi; Harukuni, Rie; McHugh, Thomas J; Fukai, Tomoki; Isomura, Yoshikazu; Okamoto, Hitoshi

    2013-05-15

    Lateral habenula (LHb) has attracted growing interest as a regulator of serotonergic and dopaminergic neurons in the CNS. However, it remains unclear how the LHb modulates brain states in animals. To identify the neural substrates that are under the influence of LHb regulation, we examined the effects of rat LHb lesions on the hippocampal oscillatory activity associated with the transition of brain states. Our results showed that the LHb lesion shortened the theta activity duration both in anesthetized and sleeping rats. Furthermore, this inhibitory effect of LHb lesion on theta maintenance depended upon an intact serotonergic median raphe, suggesting that LHb activity plays an essential role in maintaining hippocampal theta oscillation via the serotonergic raphe. Multiunit recording of sleeping rats further revealed that firing of LHb neurons showed significant phase-locking activity at each theta oscillation cycle in the hippocampus. LHb neurons showing activity that was coordinated with that of the hippocampal theta were localized in the medial LHb division, which receives afferents from the diagonal band of Broca (DBB), a pacemaker region for the hippocampal theta oscillation. Thus, our findings indicate that the DBB may pace not only the hippocampus, but also the LHb, during rapid eye movement sleep. Since serotonin is known to negatively regulate theta oscillation in the hippocampus, phase-locking activity of the LHb neurons may act, under the influence of the DBB, to maintain the hippocampal theta oscillation by modulating the activity of serotonergic neurons. PMID:23678132

  18. Decrease of theta response in euthymic bipolar patients during an oddball paradigm.

    PubMed

    Atagün, M İ; Güntekin, B; Ozerdem, A; Tülay, E; Başar, E

    2013-06-01

    Theta oscillations are related to cognitive functions and reflect functional integration of frontal and medial temporal structures into coherent neurocognitive networks. This study assessed event-related theta oscillations in medication-free, euthymic patients with bipolar disorder upon auditory oddball paradigm. Twenty-two DSM-IV euthymic bipolar I (n = 19) and II (n = 3) patients and twenty-two healthy subjects were included. Patients were euthymic for at least 6 months, and psychotropic-free for at least 2 weeks. EEG was recorded at 30 electrode sites. Auditory oddball paradigm and sensory stimuli were used. Event-related Oscillations were analyzed using adaptive filtering in two different theta frequency bands (4-6 Hz, 6-8 Hz). In healthy subjects, slow theta (4-6 Hz) responses were significantly higher than those of euthymic patients upon target, non-target and sensory stimuli (p < 0.05). Fast theta (6-8 Hz) responses of healthy subjects were significantly higher than those of euthymic patients upon target-only stimuli (p < 0.05). Reduced theta oscillations during auditory processing provide strong quantitative evidence of activation deficits in related networks in bipolar disorder. Fast theta responses are related to cognitive functions, whereas slow theta responses are related to sensory processes more than cognitive processes. PMID:24427202

  19. Axial laser heating of three meter theta pinch plasma columns

    NASA Astrophysics Data System (ADS)

    Hoffman, A. L.; Lowenthal, D. D.

    1980-10-01

    A 3-m long plasma column formed and confined by a fast rising solenoidal field was irradiated from one end by a powerful pulsed CO2 laser. It was found that beam trapping density minima could be maintained for the length of the laser pulse if the plasma diameter exceeded about 1.5 cm. The erosion of the density minimum was governed by classical diffusion processes. Three meter long plasmas in 2.6 cm bore plasma tubes could be fairly uniformly heated by 3.0 kJ of CO2 laser irradiation. Best results were obtained when heating began before or during the theta pinch implosion phase and the plasma fill pressure exceeded 1.0 torr H2. Plasma line energies of about 1 kJ/m could be obtained in a magnetic field rising to 6 T in 4.7 microseconds.

  20. Spike-timing error backpropagation in theta neuron networks.

    PubMed

    McKennoch, Sam; Voegtlin, Thomas; Bushnell, Linda

    2009-01-01

    The main contribution of this letter is the derivation of a steepest gradient descent learning rule for a multilayer network of theta neurons, a one-dimensional nonlinear neuron model. Central to our model is the assumption that the intrinsic neuron dynamics are sufficient to achieve consistent time coding, with no need to involve the precise shape of postsynaptic currents; this assumption departs from other related models such as SpikeProp and Tempotron learning. Our results clearly show that it is possible to perform complex computations by applying supervised learning techniques to the spike times and time response properties of nonlinear integrate and fire neurons. Networks trained with our multilayer training rule are shown to have similar generalization abilities for spike latency pattern classification as Tempotron learning. The rule is also able to train networks to perform complex regression tasks that neither SpikeProp or Tempotron learning appears to be capable of. PMID:19431278

  1. Chimera states in bursting neurons

    NASA Astrophysics Data System (ADS)

    Bera, Bidesh K.; Ghosh, Dibakar; Lakshmanan, M.

    2016-01-01

    We study the existence of chimera states in pulse-coupled networks of bursting Hindmarsh-Rose neurons with nonlocal, global, and local (nearest neighbor) couplings. Through a linear stability analysis, we discuss the behavior of the stability function in the incoherent (i.e., disorder), coherent, chimera, and multichimera states. Surprisingly, we find that chimera and multichimera states occur even using local nearest neighbor interaction in a network of identical bursting neurons alone. This is in contrast with the existence of chimera states in populations of nonlocally or globally coupled oscillators. A chemical synaptic coupling function is used which plays a key role in the emergence of chimera states in bursting neurons. The existence of chimera, multichimera, coherent, and disordered states is confirmed by means of the recently introduced statistical measures and mean phase velocity.

  2. Public Kepler Data on the Bright Star Theta Cygni

    NASA Astrophysics Data System (ADS)

    Haas, Michael Robert; Bryson, S. T.; Rowe, J. F.; Still, M. D.

    2011-01-01

    The bright star Theta Cygni (Kepler ID 11918630) has been observed by Kepler in both short (59 sec) and long (29.4 min) cadence for a period of approximately 50 days starting on MJD 55410. These observations were made at the request of the Kepler Guest Observer Office and are intended for immediate public release. The purpose is to demonstrate Kepler's exquisite photometric precision on bright, highly saturated targets. Theta Cygni is a F3V/M3V binary with a visual magnitude of 4.9/13.0. The short-cadence data show evidence of granulation (i.e., convection) out to about 1 mHz ( 100 c/d) and clear detection of numerous p-modes with a peak near 1.8 mHz ( 150 c/d). The high-frequency noise floor has a 3-sigma upper envelope of 0.4 ppm. The amplitude of the p-modes agrees with the stellar effective temperature, indicating that the star has a thin convective layer. Since a custom aperture was employed, the light curves will be constructed manually and placed on the Guest Observer website (http://keplergo.arc.nasa.gov/). The corresponding pixel-level data will be available from the Kepler archive (http://archive.stsci.edu/kepler/). The Kepler mission can accommodate a small number of such bright targets every quarter. Observing proposals can be submitted annually to the peer-reviewed Guest Observer Program, or much less formally on a quarterly basis for Director's Discretionary Time (see http://keplergo.arc.nasa.gov/GOprogramDDT.shtml). Kepler was selected as the 10th mission of the Discovery Program. Funding for this mission is provided by NASA, Science Mission Directorate.

  3. Age-related oscillatory theta modulation of multisensory integration in frontocentral regions.

    PubMed

    Yan, Tianyi; Bi, Xiaoshan; Zhang, Mengmeng; Wang, Wenhui; Yao, Zhiqi; Yang, Weiping; Wu, Jinglong

    2016-08-01

    This study used electroencephalogram measurements to investigate the effects of aging on oscillatory theta modulation during an audiovisual discrimination task. By a wavelet-based time-frequency analysis, age-related theta oscillation response differences were observed within a relatively restricted time range (0-500 ms) over frontal-central regions. Older adults showed stronger theta spectral power during visual and audiovisual stimuli in the left frontal regions; however, young adults showed stronger theta spectral power during auditory and audiovisual stimuli in the central regions. These findings suggest that multisensory oscillatory theta responses differ according to age, which further proves that the left frontal regions play an important role in audiovisual integration. PMID:27272690

  4. Can induced theta vacua be created in heavy-Ion collisions?

    PubMed

    Buckley; Fugleberg; Zhitnitsky

    2000-05-22

    We discuss a phenomenon important to the development of the early Universe which may be experimentally testable in heavy-ion collisions. An arbitrary induced straight theta vacuum state should be created in heavy-ion collisions, similar to the creation of the disoriented chiral condensate. It should be a large domain with a wrong straight theta(ind) not equal0 orientation which will mimic the physics of the early Universe when it is believed that the fundamental parameter straight theta(fund) not equal0. We test this idea numerically in a simple model where we study the evolution of the phases of the chiral condensates in QCD with two quark flavors with nonzero straight theta(ind) parameter. We see the formation of a nonzero straight theta(ind) vacuum on a time scale of 10(-23) s. PMID:10990805

  5. Theta lingua franca: a common mid-frontal substrate for action monitoring processes.

    PubMed

    Cavanagh, James F; Zambrano-Vazquez, Laura; Allen, John J B

    2012-02-01

    We present evidence that a multitude of mid-frontal event-related potential (ERP) components partially reflect a common theta band oscillatory process. Specifically, mid-frontal ERP components in the N2 time range and error-related negativity time range are parsimoniously characterized as reflections of theta band activities. Forty participants completed three different tasks with varying stimulus-response demands. Permutation tests were used to identify the dominant time-frequency responses of stimulus- and response-locked conditions as well as the enhanced responses to novelty, conflict, punishment, and error. A dominant theta band feature was found in all conditions, and both ERP component amplitudes and theta power measures were similarly modulated by novelty, conflict, punishment, and error. The findings support the hypothesis that generic and reactive medial prefrontal cortex processes are parsimoniously reflected by theta band activities. PMID:22091878

  6. Effects of thienodiazepine derivatives, etizolam and clotiazepam on the appearance of Fm theta.

    PubMed

    Nakamura, J; Mukasa, H

    1992-12-01

    The effects of new thienodiazepine anxiolytics, etizolam and clotiazepam, on the appearance of frontal midline theta activity (Fm theta) were studied by the double-blind crossover method. The results were as follows; 1) Both clotiazepam and placebo tended to increase the Fm theta appearance in all subjects, but etizolam showed no such tendency. 2) Clotiazepam significantly increased the Fm theta appearance as compared with placebo in subjects with a high neurotic tendency (N-scale of MPI above 19). 3) Clotiazepam tended to increase the Fm theta appearance as compared with placebo and etizolam in subjects with a high anxiety level (MAS score above 14). 4) Apparently more subjects complained of drowsiness after the administration of etizolam than after clotiazepam or placebo. PMID:1363923

  7. Loss of hippocampal theta rhythm results in spatial memory deficit in the rat.

    PubMed

    Winson, J

    1978-07-14

    Rats learned, using distal room cues, to run to a goal on an elevated, circular track starting from any position on the track. The goal was one of eight equidistant, recessed cups set around the track, the goal cup being distinguished from the others solely by its position in the room. After learning, electrolytic lesions were made in the medial septal nucleus eliminating hippocampal theta rhythm in some animals but not in others. Rats without theta rhythm were no longer able to perform the spatial task, whereas rats with undisturbed theta rhythm retrained normal performance. Although rats without theta rhythm could not find their way directly to the goal, they recognized its location when they came upon it by chance. This type of spatial deficit appears similar to that shown by hippocampally lesioned patient H.M. Subsequent tests demonstrated that rats deprived of theta rhythm before training could nevertheless learn the task. PMID:663646

  8. Radiative generation of {theta}{sub 13} with the seesaw threshold effect

    SciTech Connect

    Mei Jianwei; Xing Zhizhong

    2004-09-01

    We examine whether an appreciable value of the lepton flavor mixing angle {theta}{sub 13} at the electroweak scale {lambda}{sub EW} can be radiatively generated from {theta}{sub 13}=0 deg. at the grand unified theory (GUT) scale {lambda}{sub GUT}. It is found that the renormalization-group running and seesaw threshold effects may lead to {theta}{sub 13}{approx}5 deg. at low energies for two simple large-maximal mixing patterns of the Maki-Nakagawa-Sakata matrix in the minimal supersymmetric standard model. If {theta}{sub 12} is sufficiently large at {lambda}{sub GUT}, it will be possible to radiatively produce {theta}{sub 13}{approx}5 deg. at {lambda}{sub EW} both in the standard model and in its supersymmetric extensions. The mass spectrum of three heavy right-handed Majorana neutrinos and the cosmological baryon number asymmetry via leptogenesis are also calculated.

  9. Theta-Frequency Resonance at the Cerebellum Input Stage Improves Spike Timing on the Millisecond Time-Scale

    PubMed Central

    Gandolfi, Daniela; Lombardo, Paola; Mapelli, Jonathan; Solinas, Sergio; D’Angelo, Egidio

    2013-01-01

    The neuronal circuits of the brain are thought to use resonance and oscillations to improve communication over specific frequency bands (Llinas, 1988; Buzsaki, 2006). However, the properties and mechanism of these phenomena in brain circuits remain largely unknown. Here we show that, at the cerebellum input stage, the granular layer (GRL) generates its maximum response at 5–7 Hz both in vivo following tactile sensory stimulation of the whisker pad and in acute slices following mossy fiber bundle stimulation. The spatial analysis of GRL activity performed using voltage-sensitive dye (VSD) imaging revealed 5–7 Hz resonance covering large GRL areas. In single granule cells, resonance appeared as a reorganization of output spike bursts on the millisecond time-scale, such that the first spike occurred earlier and with higher temporal precision and the probability of spike generation increased. Resonance was independent from circuit inhibition, as it persisted with little variation in the presence of the GABAA receptor blocker, gabazine. However, circuit inhibition reduced the resonance area more markedly at 7 Hz. Simulations with detailed computational models suggested that resonance depended on intrinsic granule cells ionic mechanisms: specifically, Kslow (M-like) and KA currents acted as resonators and the persistent Na current and NMDA current acted as amplifiers. This form of resonance may play an important role for enhancing coherent spike emission from the GRL when theta-frequency bursts are transmitted by the cerebral cortex and peripheral sensory structures during sensory-motor processing, cognition, and learning. PMID:23596398

  10. The presence of pacemaker HCN channels identifies theta rhythmic GABAergic neurons in the medial septum

    PubMed Central

    Varga, Viktor; Hangya, Balázs; Kránitz, Kinga; Ludányi, Anikó; Zemankovics, Rita; Katona, István; Shigemoto, Ryuichi; Freund, Tamás F; Borhegyi, Zsolt

    2008-01-01

    The medial septum (MS) is an indispensable component of the subcortical network which synchronizes the hippocampus at theta frequency during specific stages of information processing. GABAergic neurons exhibiting highly regular firing coupled to the hippocampal theta rhythm are thought to form the core of the MS rhythm-generating network. In recent studies the hyperpolarization-activated, cyclic nucleotide-gated non-selective cation (HCN) channel was shown to participate in theta synchronization of the medial septum. Here, we tested the hypothesis that HCN channel expression correlates with theta modulated firing behaviour of MS neurons by a combined anatomical and electrophysiological approach. HCN-expressing neurons represented a subpopulation of GABAergic cells in the MS partly overlapping with parvalbumin (PV)-containing neurons. Rhythmic firing in the theta frequency range was characteristic of all HCN-expressing neurons. In contrast, only a minority of HCN-negative cells displayed theta related activity. All HCN cells had tight phase coupling to hippocampal theta waves. As a group, PV-expressing HCN neurons had a marked bimodal phase distribution, whereas PV-immunonegative HCN neurons did not show group-level phase preference despite significant individual phase coupling. Microiontophoretic blockade of HCN channels resulted in the reduction of discharge frequency, but theta rhythmic firing was perturbed only in a few cases. Our data imply that HCN-expressing GABAergic neurons provide rhythmic drive in all phases of the hippocampal theta activity. In most MS theta cells rhythm genesis is apparently determined by interactions at the level of the network rather than by the pacemaking property of HCN channels alone. PMID:18565991

  11. Movement-Related Theta Rhythm in Humans: Coordinating Self-Directed Hippocampal Learning

    PubMed Central

    Kaplan, Raphael; Doeller, Christian F.; Barnes, Gareth R.; Litvak, Vladimir; Düzel, Emrah; Bandettini, Peter A.; Burgess, Neil

    2012-01-01

    The hippocampus is crucial for episodic or declarative memory and the theta rhythm has been implicated in mnemonic processing, but the functional contribution of theta to memory remains the subject of intense speculation. Recent evidence suggests that the hippocampus might function as a network hub for volitional learning. In contrast to human experiments, electrophysiological recordings in the hippocampus of behaving rodents are dominated by theta oscillations reflecting volitional movement, which has been linked to spatial exploration and encoding. This literature makes the surprising cross-species prediction that the human hippocampal theta rhythm supports memory by coordinating exploratory movements in the service of self-directed learning. We examined the links between theta, spatial exploration, and memory encoding by designing an interactive human spatial navigation paradigm combined with multimodal neuroimaging. We used both non-invasive whole-head Magnetoencephalography (MEG) to look at theta oscillations and Functional Magnetic Resonance Imaging (fMRI) to look at brain regions associated with volitional movement and learning. We found that theta power increases during the self-initiation of virtual movement, additionally correlating with subsequent memory performance and environmental familiarity. Performance-related hippocampal theta increases were observed during a static pre-navigation retrieval phase, where planning for subsequent navigation occurred. Furthermore, periods of the task showing movement-related theta increases showed decreased fMRI activity in the parahippocampus and increased activity in the hippocampus and other brain regions that strikingly overlap with the previously observed volitional learning network (the reverse pattern was seen for stationary periods). These fMRI changes also correlated with participant's performance. Our findings suggest that the human hippocampal theta rhythm supports memory by coordinating exploratory

  12. Experimental search for radiative decays of the pentaquark baryon {Theta}{sup +}(1540)

    SciTech Connect

    Barmin, V. V.; Asratyan, A. E.; Borisov, V. S.; Curceanu, C.; Davidenko, G. V.; Dolgolenko, A. G.; Guaraldo, C.; Kubantsev, M. A.; Larin, I. F.; Matveev, V. A.; Shebanov, V. A.; Shishov, N. N.; Sokolov, L. I.; Tumanov, G. K.; Verebryusov, V. S.

    2010-07-15

    The data on the reactions K{sup +}Xe {sup {yields}}K{sup 0{gamma}}X and K{sup +}Xe {sup {yields}}K{sup +{gamma}}X, obtained with the bubble chamber DIANA, have been analyzed for possible radiative decays of the {Theta}{sup +}(1540) baryon: {Theta}{sup +} {sup {yields}}K{sup 0}p{gamma} and {Theta}{sup +} {sup {yields}}K{sup +}n{gamma}. No signals have been observed, and we derive the upper limits {Gamma}({Theta}{sup +} {sup {yields}}K{sup 0}p{gamma})/{Gamma}({Theta}{sup +} {sup {yields}}K{sup 0}p) < 0.032 and {Gamma}({Theta}{sup +} {sup {yields}}K{sup +}n{gamma})/{Gamma}({Theta}{sup +} {sup {yields}}K{sup +}n{gamma}) < 0.041 which, using our previous measurement of {Gamma}({Theta}{sup +} {sup {yields}}KN) = 0.39 {+-} 0.10 MeV, translate to {Gamma}({Theta}{sup +} {sup {yields}}K{sup 0}p{gamma}) < 8 keV and {Gamma}({Theta}{sup +} {sup {yields}}K{sup +}n{gamma}) < 11 keV at 90% confidence level. We have also measured the cross sections of K{sup +}-induced reactions involving emission of a neutral pion: {sigma}(K{sup +}n {sup {yields}}K{sup 0}p{pi}{sup 0}) = 68 {+-} 18 {mu}b and {sigma}(K{sup +}N {sup {yields}}K{sup +}N{pi}{sup 0}) = 30 {+-} 8 {mu}b for incident K{sup +} momentum of 640 MeV.

  13. Evidence that the recently discovered theta 1-globin gene is functional in higher primates.

    PubMed

    Shaw, J P; Marks, J; Shen, C K

    A new subfamily of the alpha-globin-like family has recently been identified in higher primates, rabbit, galago and possibly the horse. One member of this subfamily, theta 1, is downstream from the adult alpha 1-globin gene. In orang-utan, but not in rabbit or galago, the theta 1-gene appears to be structurally intact, suggesting that it may be functional in this species. The orang-utan theta 1-gene possesses initiation and termination codons, and the predicted polypeptide differs from the orang-utan alpha 1-globin by 55 amino acids. The upstream promoter boxes CCAAT and ATA are present, although approximately 150 base pairs (bp) farther upstream than in the alpha 1-gene. This structural difference in the promoter between the orang-utan theta 1- and alpha 1-genes has led Proudfoot to speculate that the theta 1-gene may be inactive. We have now cloned the theta 1- and alpha 1-globin genes from the olive baboon, and have compared their sequences with those of orang-utan. The unique promoter structure of the orang-utan theta 1-gene is highly conserved in baboon, although the orang-utan and baboon diverged nearly 30 million years ago. The coding sequences of the two theta 1-genes differ by only 6.3% with 22 out of 27 nucleotide substitutions being codon third position silent changes. These data support the view that the theta 1-gene has been functional in the baboon, orang-utan, and by implication, in man. We also estimate that the duplication event generating the theta 1- and alpha-globin-like subfamilies may have occurred as much as 260 million years ago. PMID:3561513

  14. Frontal and rostral anterior cingulate (rACC) theta EEG in depression: implications for treatment outcome?

    PubMed

    Arns, Martijn; Etkin, Amit; Hegerl, Ulrich; Williams, Leanne M; DeBattista, Charles; Palmer, Donna M; Fitzgerald, Paul B; Harris, Anthony; deBeuss, Roger; Gordon, Evian

    2015-08-01

    In major depressive disorder (MDD), elevated theta current density in the rostral anterior cingulate (rACC), as estimated by source localization of scalp-recorded electroencenphalogram (EEG), has been associated with response to antidepressant treatments, whereas elevated frontal theta has been linked to non-response. This study used source localization to attempt to integrate these apparently opposite results and test, whether antidepressant response is associated with elevated rACC theta and non-response with elevated frontal theta and whether theta activity is a differential predictor of response to different types of commonly used antidepressants. In the international Study to Predict Optimized Treatment in Depression (iSPOT-D), a multi-center, international, randomized, prospective practical trial, 1008 MDD participants were randomized to escitalopram, sertraline or venlafaxine-XR. The study also recruited 336 healthy controls. Treatment response and remission were established after eight weeks using the 17-item Hamilton Rating Scale for Depression (HRSD17). The resting-state EEG was assessed at baseline with eyes closed and source localization (eLORETA) was employed to extract theta from the rACC and frontal cortex. Patients with MDD had elevated theta in both frontal cortex and rACC, with small effect sizes. High frontal and rACC theta were associated with treatment non-response, but not with non-remission, and this effect was most pronounced in a subgroup with previous treatment failures. Low theta in frontal cortex and rACC are found in responders to antidepressant treatments with a small effect size. Future studies should investigate in more detail the role of previous treatment (failure) in the association between theta and treatment outcome. PMID:25936227

  15. Cosmology: Home of a fast radio burst

    NASA Astrophysics Data System (ADS)

    Lorimer, Duncan

    2016-02-01

    Our understanding of fast radio bursts -- intense pulses of radio waves -- and their use as cosmic probes promises to be transformed now that one burst has been associated with a galaxy of known distance from Earth. See Letter p.453

  16. Soft-spectrum gamma-ray bursts

    NASA Technical Reports Server (NTRS)

    Laros, J. G.; Fenimore, E. E.; Fikani, M. M.; Klebesadel, R. W.; Kane, S. R.

    1985-01-01

    A typical gamma to ray burst (GRB), when observed over the approximately 30 keV to 1 MeV range, has a 1 to 10 s duration and a spectrum describable in terms of a several-hundred-keV exponential function. However, KONUS data indicate that some GRBs may belong to a separate class of short (approximately 0.1 s), soft (kT 50 keV) events. This result has been questioned because the KONUS experiments, with only 4 s spectral time resolution and a lack of information approximately 30 keV, are not particularly well suited for the detection and study of these bursts. The UC Berkely/Los Alamos Solar X-Ray Spectrometer/GRB experiment on the International Cometry Explorer (ICE), with nearly continuous coverage of approxiomately one-sixth of the sky down to 5 keV at 0.5 s resolution, is better designed for such a task. Using ICE data, it was confirmed that soft-spectrum events do indeed exist, apparently with properties that set them apart from the general GRB population. Results from the ICE experiment are presented.

  17. Kolmogorov and trigonometric widths of the Besov classes B^r_{p,\\theta} of multivariate periodic functions

    NASA Astrophysics Data System (ADS)

    Romanyuk, A. S.

    2006-02-01

    Precise (in order) estimates of the Kolmogorov widths in the space L_q, 1, of the classes B^r_{1,\\theta} and B^r_{\\infty,\\theta} and also of the trigonometric widths of the classes B^r_{p,\\theta} in L_q for p and q satisfying certain relations are obtained.

  18. On burst-and-coast swimming performance in fish-like locomotion.

    PubMed

    Chung, M-H

    2009-09-01

    Burst-and-coast swimming performance in fish-like locomotion is studied via two-dimensional numerical simulation. The numerical method used is the collocated finite-volume adaptive Cartesian cut-cell method developed previously. The NACA00xx airfoil shape is used as an equilibrium fish-body form. Swimming in a burst-and-coast style is computed assuming that the burst phase is composed of a single tail-beat. Swimming efficiency is evaluated in terms of the mass-specific cost of transport instead of the Froude efficiency. The effects of the Reynolds number (based on the body length and burst time), duty cycle and fineness ratio (the body length over the largest thickness) on swimming performance (momentum capacity and the mass-specific cost of transport) are studied quantitatively. The results lead to a conclusion consistent with previous findings that a larval fish seldom swims in a burst-and-coast style. Given mass and swimming speed, a fish needs the least cost if it swims in a burst-and-coast style with a fineness ratio of 8.33. This energetically optimal fineness ratio is larger than that derived from the simple hydromechanical model proposed in literature. The calculated amount of energy saving in burst-and-coast swimming is comparable with the real-fish estimation in the literature. Finally, the predicted wake-vortex structures of both continuous and burst-and-coast swimming are biologically relevant. PMID:19567970

  19. Spin asymmetries in {gamma} N {yields} {bar K}* {Theta}{sup +}

    SciTech Connect

    Yongseok Oh; Hungchong Kim; Su Houng Lee

    2004-11-01

    The photoproduction processes of the exotic {Theta}{sup +}(1540) baryon and the K* meson from the nucleon targets, i.e., {gamma}n {yields} K*{sup -} {Theta}{sup +} and {gamma}p {yields} {bar K}*{sup 0}{Theta}{sup +} are investigated in a hadronic model. We consider K and K* exchanges as well as the s and u channel nucleon and {Theta} terms. Various spin asymmetries together with cross sections are first computed in order to study the production mechanisms and the parity of the {Theta}{sup +}(1540) baryon. Within the uncertainties arising from the model-dependence of the production mechanisms and several coupling constants, we find that some target-recoil double spin asymmetries, C{sub xx{prime}}{sup TR} and C{sub xx{prime}}{sup TR} are sensitive to the parity of {Theta}{sup +}. In addition, the parity asymmetry of this reaction on the neutron target, which can be obtained by analyzing K* decay distribution, is found to be useful to estimate the K* N{Theta} coupling.

  20. Someone has to give in: theta oscillations correlate with adaptive behavior in social bargaining

    PubMed Central

    Zamorano, Francisco; López, Tamara; Rodriguez, Carlos; Cosmelli, Diego; Aboitiz, Francisco

    2014-01-01

    During social bargain, one has to both figure out the others’ intentions and behave strategically in such a way that the others’ behaviors will be consistent with one’s expectations. To understand the neurobiological mechanisms underlying these behaviors, we used electroencephalography while subjects played as proposers in a repeated ultimatum game. We found that subjects adapted their offers to obtain more acceptances in the last round and that this adaptation correlated negatively with prefrontal theta oscillations. People with higher prefrontal theta activity related to a rejection did not adapt their offers along the game to maximize their earning. Moreover, between-subject variation in posterior theta oscillations correlated positively with how individual theta activity influenced the change of offer after a rejection, reflecting a process of behavioral adaptation to the others’ demands. Interestingly, people adapted better their offers when they knew that they where playing against a computer, although the behavioral adaptation did not correlate with prefrontal theta oscillation. Behavioral changes between human and computer games correlated with prefrontal theta activity, suggesting that low adaptation in human games could be a strategy. Taken together, these results provide evidence for specific roles of prefrontal and posterior theta oscillations in social bargaining. PMID:24493841

  1. Photoproduction of the \\Theta^+ resonance on the nucleon in a Regge model

    SciTech Connect

    H. Kwee; M. Guidal; M. Polyakov; M. Vanderhaeghen

    2005-09-15

    We estimate the reaction mechanisms for the photoproduction of the {Theta}{sup +}(1540) resonance on the nucleon, through K and K* Regge exchanges. We compare the size of the cross sections for the {gamma}n {yields} K{sup -} {Theta}{sup +} and {gamma}p {yields} {bar K}{sup 0} {Theta}{sup +} reactions, and investigate their sensitivity to the spin-parity assignments J{sup P} = (1/2){sup {+-}}, (3/2){sup {+-}} for the {Theta}{sup +} resonance. The model allows to estimate the cross sections corresponding with a given upper bound on the width of the {Theta}{sup +}. Within this model, the cross sections on the neutron are found to be around a factor 5 larger than the ones on the proton, due to the presence of charged K exchange for the reaction on a neutron target. Furthermore, the photon asymmetry is found to display a pronounced sensitivity to the parity of the {Theta}{sup +}, making it a very promising observable to help determining the quantum numbers of the {Theta}{sup +} resonance.

  2. Hippocampal Non-Theta-Contingent Eyeblink Classical Conditioning: A Model System for Neurobiological Dysfunction

    PubMed Central

    Cicchese, Joseph J.; Berry, Stephen D.

    2016-01-01

    Typical information processing is thought to depend on the integrity of neurobiological oscillations that may underlie coordination and timing of cells and assemblies within and between structures. The 3–7 Hz bandwidth of hippocampal theta rhythm is associated with cognitive processes essential to learning and depends on the integrity of cholinergic, GABAergic, and glutamatergic forebrain systems. Since several significant psychiatric disorders appear to result from dysfunction of medial temporal lobe (MTL) neurochemical systems, preclinical studies on animal models may be an important step in defining and treating such syndromes. Many studies have shown that the amount of hippocampal theta in the rabbit strongly predicts the acquisition rate of classical eyeblink conditioning and that impairment of this system substantially slows the rate of learning and attainment of asymptotic performance. Our lab has developed a brain–computer interface that makes eyeblink training trials contingent upon the explicit presence or absence of hippocampal theta. The behavioral benefit of theta-contingent training has been demonstrated in both delay and trace forms of the paradigm with a two- to fourfold increase in learning speed over non-theta states. The non-theta behavioral impairment is accompanied by disruption of the amplitude and synchrony of hippocampal local field potentials, multiple-unit excitation, and single-unit response patterns dependent on theta state. Our findings indicate a significant electrophysiological and behavioral impact of the pretrial state of the hippocampus that suggests an important role for this MTL system in associative learning and a significant deleterious impact in the absence of theta. Here, we focus on the impairments in the non-theta state, integrate them into current models of psychiatric disorders, and suggest how improvement in our understanding of neurobiological oscillations is critical for theories and treatment of psychiatric

  3. A critical test of the hippocampal theta model of anxiolytic drug action.

    PubMed

    Yeung, Michelle; Treit, Dallas; Dickson, Clayton T

    2012-01-01

    Hippocampal theta rhythms have been associated with a number of behavioural processes, including learning, memory and arousal. Recently it has been argued that the suppression of hippocampal theta is a valid indicator of anxiolytic drug action. Like all such models, however, it has relied almost exclusively on the experimental effects of well-known, clinically proven anxiolytic compounds for validation. The actual predictive validity of putative models of anxiolytic drug action, however, cannot be rigorously tested with this approach alone. The present study provides a stringent test of the predictive validity of the theta suppression model, using the drug phenytoin (50 mg/kg and 10 mg/kg), and a positive comparison compound, diazepam (2 mg/kg). Phenytoin has two important properties that are advantageous for assessing the validity of the theta suppression model: 1) it is a standard antiepileptic drug with no known anxiolytic effects, and 2) its primary mechanism of action is through suppression of the persistent sodium current, an effect that should also suppress hippocampal theta. Because of the latter property, we also directly compared the effects of phenytoin in the theta suppression model with its effects in the most widely tested behavioural model of anxiolytic drug action, the elevated plus-maze. While an anxiolytic-like effect of phenytoin in the theta suppression model might be expected simply due to its suppressive effects on sodium channel currents, anxiolytic effects in both tests would provide strong support for the predictive validity of the theta suppression model. Surprisingly, phenytoin produced clear anxiolytic-like effects in both neurophysiological and behavioural models, thus providing strong evidence of the predictive validity of the theta suppression model. This article is part of a Special Issue entitled 'Anxiety and Depression'. PMID:21723303

  4. Theta oscillations during the processing of monetary loss and gain: A perspective on gender and impulsivity

    PubMed Central

    Kamarajan, Chella; Rangaswamy, Madhavi; Chorlian, David B.; Manz, Niklas; Tang, Yongqiang; Pandey, Ashwini K.; Roopesh, Bangalore N.; Stimus, Arthur T.; Porjesz, Bernice

    2008-01-01

    Event-related oscillations (EROs) have proved to be very useful in the understanding of a variety of neurocognitive processes including reward/outcome processing. In the present study, theta power (4.0–7.0 Hz) following outcome stimuli in the time window of the N2-P3 complex (200–500 ms) was analyzed in healthy normals (20 males and 20 females) while performing a gambling task that involved monetary loss and gain. The main aim was to analyze outcome processing in terms of event-related theta power in the context of valence, amount, gender, and impulsivity. The S-transform was used for the signal processing of the ERO data in terms of time-frequency-power. Results from filtered waveforms showed a partially consistent phase-alignment of the increased theta activity corresponding to N2 and P3 components following the outcome stimuli. Gain conditions produced more theta power than loss conditions. While there was anterior involvement in both gain and loss, posterior activation was stronger during gain conditions than during loss conditions. Females exhibited posterior maxima during gain conditions while males had an anterior maxima during both loss and gain conditions. The current source density of theta activity in females involved larger areas of the scalp including a bilateral frontal activity while males predominantly had a frontal midline activity. Theta power was significantly higher in females than males across all conditions. Low theta (4.0–5.5 Hz) predominantly contributed to the posterior activity during gain conditions. High theta (5.5–7.0 Hz) was more associated with impulsivity measures than low theta activity. These findings may offer valuable clues to understand outcome processing, impulsivity, and gender differences. PMID:18616934

  5. Hippocampal Non-Theta-Contingent Eyeblink Classical Conditioning: A Model System for Neurobiological Dysfunction.

    PubMed

    Cicchese, Joseph J; Berry, Stephen D

    2016-01-01

    Typical information processing is thought to depend on the integrity of neurobiological oscillations that may underlie coordination and timing of cells and assemblies within and between structures. The 3-7 Hz bandwidth of hippocampal theta rhythm is associated with cognitive processes essential to learning and depends on the integrity of cholinergic, GABAergic, and glutamatergic forebrain systems. Since several significant psychiatric disorders appear to result from dysfunction of medial temporal lobe (MTL) neurochemical systems, preclinical studies on animal models may be an important step in defining and treating such syndromes. Many studies have shown that the amount of hippocampal theta in the rabbit strongly predicts the acquisition rate of classical eyeblink conditioning and that impairment of this system substantially slows the rate of learning and attainment of asymptotic performance. Our lab has developed a brain-computer interface that makes eyeblink training trials contingent upon the explicit presence or absence of hippocampal theta. The behavioral benefit of theta-contingent training has been demonstrated in both delay and trace forms of the paradigm with a two- to fourfold increase in learning speed over non-theta states. The non-theta behavioral impairment is accompanied by disruption of the amplitude and synchrony of hippocampal local field potentials, multiple-unit excitation, and single-unit response patterns dependent on theta state. Our findings indicate a significant electrophysiological and behavioral impact of the pretrial state of the hippocampus that suggests an important role for this MTL system in associative learning and a significant deleterious impact in the absence of theta. Here, we focus on the impairments in the non-theta state, integrate them into current models of psychiatric disorders, and suggest how improvement in our understanding of neurobiological oscillations is critical for theories and treatment of psychiatric

  6. Gamma-Ray Bursts: The End Game

    NASA Astrophysics Data System (ADS)

    Lamb, Don

    1997-11-01

    The nature of gamma-ray bursts has been one of the greatest unsolved mysteries in astrophysics for more than a quarter century. A major reason for this is that no definite counterparts to the bursts could be found at other wavelengths, despite intense efforts spanning more than two decades. Consequently, the study of gamma-ray bursts has been isolated from the rest of astronomy. Scientists studying them have had only the laws of physics and the bursts themselves to guide them in attempting to solve the burst mystery. All of this changed dramatically with the discovery earlier this year of fading X-ray and optical sources in the arcminute-sized positional error boxes of several gamma-ray bursts. For the first time, temporal, as well as spatial, coincidence could be used to associate these X-ray and optical sources with the gamma-ray bursts. As a result, the odds are great that the fading X-ray and optical sources are counterparts of the bursts, and that the study of gamma-ray bursts has finally been connected with the rest of astronomy. In this talk, we describe the dramatic new information about the nature of gamma-ray bursts that the X-ray, optical, and radio observations of the fading sources have provided, and emphasize the implications that this information has for the distance scale to the bursts.

  7. Observations of Gamma-Ray Bursts

    NASA Technical Reports Server (NTRS)

    Fishman, G. J.

    1995-01-01

    Some basic observed properties of gamma-ray bursts are reviewed. Although some properties were known 25 years ago, new and more detailed observations have been made by the Compton Observatory in the past three years. The new observation with the greatest impact has been the observed isotropic distribution of bursts along with a deficiency of weak bursts which would be expected from a homogeneous burst distribution. This is not compatible with any known Galactic population of objects. Gamma-ray bursts show an enormous variety of burst morphologies and a wide spread in burst durations. The spectra of gamma-ray bursts are characterized by rapid variations and peak power which is almost entirely in the gamma-ray energy range. Delayed gamma-ray burst photons extending to GeV energies have been detected for the first time. A time dilation effect has also been reported to be observed in gamma-ray, bursts. The observation of a gamma-ray burst counterpart in another wavelength region has yet to be made.

  8. Do gamma-ray burst sources repeat?

    NASA Technical Reports Server (NTRS)

    Meegan, Charles A.; Hartmann, Dieter H.; Brainerd, J. J.; Briggs, Michael S.; Paciesas, William S.; Pendleton, Geoffrey; Kouveliotou, Chryssa; Fishman, Gerald; Blumenthal, George; Brock, Martin

    1995-01-01

    The demonstration of repeated gamma-ray bursts from an individual source would severely constrain burst source models. Recent reports (Quashnock and Lamb, 1993; Wang and Lingenfelter, 1993) of evidence for repetition in the first BATSE burst catalog have generated renewed interest in this issue. Here, we analyze the angular distribution of 585 bursts of the second BATSE catalog (Meegan et al., 1994). We search for evidence of burst recurrence using the nearest and farthest neighbor statistic and the two-point angular correlation function. We find the data to be consistent with the hypothesis that burst sources do not repeat; however, a repeater fraction of up to about 20% of the observed bursts cannot be excluded.

  9. Spindle Bursts in Neonatal Rat Cerebral Cortex

    PubMed Central

    Yang, Jenq-Wei; Reyes-Puerta, Vicente; Kilb, Werner; Luhmann, Heiko J.

    2016-01-01

    Spontaneous and sensory evoked spindle bursts represent a functional hallmark of the developing cerebral cortex in vitro and in vivo. They have been observed in various neocortical areas of numerous species, including newborn rodents and preterm human infants. Spindle bursts are generated in complex neocortical-subcortical circuits involving in many cases the participation of motor brain regions. Together with early gamma oscillations, spindle bursts synchronize the activity of a local neuronal network organized in a cortical column. Disturbances in spindle burst activity during corticogenesis may contribute to disorders in cortical architecture and in the activity-dependent control of programmed cell death. In this review we discuss (i) the functional properties of spindle bursts, (ii) the mechanisms underlying their generation, (iii) the synchronous patterns and cortical networks associated with spindle bursts, and (iv) the physiological and pathophysiological role of spindle bursts during early cortical development. PMID:27034844

  10. Spindle Bursts in Neonatal Rat Cerebral Cortex.

    PubMed

    Yang, Jenq-Wei; Reyes-Puerta, Vicente; Kilb, Werner; Luhmann, Heiko J

    2016-01-01

    Spontaneous and sensory evoked spindle bursts represent a functional hallmark of the developing cerebral cortex in vitro and in vivo. They have been observed in various neocortical areas of numerous species, including newborn rodents and preterm human infants. Spindle bursts are generated in complex neocortical-subcortical circuits involving in many cases the participation of motor brain regions. Together with early gamma oscillations, spindle bursts synchronize the activity of a local neuronal network organized in a cortical column. Disturbances in spindle burst activity during corticogenesis may contribute to disorders in cortical architecture and in the activity-dependent control of programmed cell death. In this review we discuss (i) the functional properties of spindle bursts, (ii) the mechanisms underlying their generation, (iii) the synchronous patterns and cortical networks associated with spindle bursts, and (iv) the physiological and pathophysiological role of spindle bursts during early cortical development. PMID:27034844

  11. Mammalian Polymerase Theta Promotes Alternative-NHEJ and Suppresses Recombination

    PubMed Central

    Mateos-Gomez, Pedro A.; Gong, Fade; Nair, Nidhi; Miller, Kyle M.; Lazzerini-Denchi, Eros; Sfeir, Agnel

    2016-01-01

    The alternative nonhomologous end-joining (alt-NHEJ) machinery facilitates a number of genomic rearrangements, some of which can lead to cellular transformation. This error-prone repair pathway is triggered upon telomere de-protection to promote the formation of deleterious chromosome end-to-end fusions1,2,3. Using next-generation sequencing technology, we found that repair by alt-NHEJ yields non-TTAGGG nucleotide insertions at fusion breakpoints of dysfunctional telomeres. Investigating the enzymatic activity responsible for the random insertions enabled us to identify Polymerase theta (Polθ; encoded by PolQ) as a critical alt-NHEJ factor in mammalian cells. PolQ inhibition suppresses alt-NHEJ at dysfunctional telomeres, and hinders chromosomal translocations at non-telomeric loci. In addition, we found that PolQ loss results in increased rates of homology directed repair (HDR), evident by recombination of dysfunctional telomeres and accumulation of Rad51 at double stranded breaks. Lastly, we show that depletion of PolQ has a synergistic impact on cell survival in the absence of BRCA genes, suggesting that the inhibition of this mutagenic polymerase represents a valid therapeutic avenue for tumors carrying mutations in HDR genes. PMID:25642960

  12. ''Theta gun,'' a multistage, coaxial, magnetic induction projectile accelerator

    SciTech Connect

    Burgess, T.J.; Duggin, B.W.; Cowan, M. Jr.

    1985-11-01

    We experimentally and theoretically studied a multistage coaxial magnetic induction projectile accelerator. We call this system a ''theta gun'' to differentiate it from other coaxial accelerator concepts such as the mass driver. We conclude that this system can theoretically attain railgun performance only for large caliber or very high injection velocity and, even then, only for long coil geometry. Our experiments with a three-stage, capactor bank-driven accelerator are described. The experiments are modeled with a 1-1/2 dimensional equivalent circuit-hydrodynamics code which is also described. We derive an expression for the conditions of coaxial accelerator-railgun ''velocity breakeven'' in the absence of ohmic and hydrodynamic effects. This, in conjunction with an expression for the magnetic coupling coefficient, defines a set of geometric relations which the coaxial system must simultaneously satisfy. Conclusions concerning both the existence and configuration of a breakeven coaxial system follow from this requirement. The relative advantages and disadvantages of the coaxial induction projectile accelerator, previously cited in the literature, are critiqued from the viewpoint of our analysis and experimental results. We find that the advantages vis-a-vis the railgun have been overstated. 13 refs., 17 figs.

  13. Bursts of star formation in computer simulations of dwarf galaxies

    SciTech Connect

    Comins, N.F.

    1984-09-01

    A three-dimensional Stochastic Self-Propagating Star Formation (SSPSF) model of compact galacies is presented. Two phases of gas, active and inactive, are present, and permanent depletion of gas in the form of long lived, low mass stars and remnants occurs. Similarly, global infall of gas from a galactic halo or through galactic cannibalism is permitted. We base our parameters on the observed properties of the compact blue galaxy I Zw 36. Our results are that bursts of star formation occur much more frequently in these runs than continuous nonbursting star formation, suggesting that the blue compact galaxies are probably undergoing bursts rather than continuous, nonbursting low-level star formation activity.

  14. Phase dependency of long-term potentiation induction during the intermittent bursts of carbachol-induced β oscillation in rat hippocampal slices

    PubMed Central

    Nishimura, Motoshi; Nakatsuka, Hiroki; Natsume, Kiyohisa

    2012-01-01

    The rodent hippocampus possesses theta (θ) and beta (β) rhythms, which occur intermittently as bursts. Both rhythms are related to spatial memory processing in a novel environment. θ rhythm is related to spatial memory encoding process. β rhythm is related to the match/mismatch process. In the match/mismatch process, rodent hippocampus detects a representation matching sensory inputs of the current place among the retrieved internal representations of places. Long-term synaptic potentiation (LTP) is induced in both processes. The cholinergic agent carbachol induces intermittent θ and β oscillations in in vitro slices similar to in vivo bursts. LTP is facilitated during the generation of θ oscillation, suggesting that the facilitation of LTP is dependent upon the phases of intermittent burst (burst phases) of the oscillation. However, whether this is the case for β oscillation has not yet been studied. In the present study, LTP-inducing θ-burst stimulation was administered at the different burst phases of carbachol-induced β oscillations (CIBO), and the synaptic changes were measured at CA3-CA3 pyramidal cell synapses (CA3 synapse) and at CA3-CA1 pyramidal cell synapses (CA1 synapse). At the CA3 synapse, the largest magnitude of LTP was induced at the late burst phases of CIBO. At the CA1 synapse, LTP was induced only at the late burst phases. Modulation of LTP was suppressed when CIBO was blocked by the application of atropine at both synapses. The results suggest that the bursts of hippocampal β rhythm can determine the optimal temporal period for completing with the match/mismatch process.

  15. The observation of theta wave modulation on brain training by 5 Hz-binaural beat stimulation in seven days.

    PubMed

    Yamsa-Ard, Traisak; Wongsawat, Yodchanan

    2015-08-01

    Traditional buddhist meditation method maybe easy for someone with high experience. However, for the beginner, it is very difficult to keep mental concentration with the tradition way for more than 5 minutes. This research aims to observe effect of the new method for meditation in various analysis methods. A piano music mixed with a 5 Hz (theta band enhancement) binaural beat frequency was used to modulate the brain signals continuously for 7 days. Male of the average age of 33.5±3.84 and female of the average age of 28.6±2.49 were participated. All participants were acquired EEGs twice, before the experiment and seven days after the experiment. We also proposed the observations on the changes of absolute powers, relative powers and brain connectivity (coherence) of the participants. After seven days of training, the absolute power, relative power, and coherence were clearly closer to the normative database. We can initially say that the recommended meditation method can efficiently mimic the effect of having the traditional buddhist meditation on enhancing the delta and theta powers in the brain. PMID:26737822

  16. Analysis of Burst Observations by GLAST's LAT Detector

    NASA Technical Reports Server (NTRS)

    Band, David L.; Digel, Seth W.

    2003-01-01

    Analyzing data from GLAST's Large Area Telescope (LAT) will require sophisticated techniques. The PSF and effective area are functions of both photon energy and the position in the field-of-view. During most of the mission the observatory will survey the sky continuously and thus the LAT will detect each count from a source at a different detector orientation; each count requires its own response function! The likelihood as a function of celestial position and photon energy will be the foundation of the standard analysis techniques. However the 20 MeV-300 GeV emission at the time of the approx.100 keV burst emission (timescale of approx.10 s) can be isolated and analyzed because essentially no non-burst counts are expected within a PSF radius of the burst location during the burst. Both binned and unbinned (in energy) spectral fitting will be possible. Longer timescale afterglow emission will require the likelihood analysis that will be used for persistent sources.

  17. Gamma Ray Burst 150518a measured at different wavelengths

    NASA Astrophysics Data System (ADS)

    Apala, Ellizabeth Ann; Soderberg, Alicia Margarita; West, Michael

    2016-01-01

    Gamma Ray Burst (GRB's), extremely energetic flashes of Gamma Rays, are caused by either deaths of massive unstable stars or colliding binary neutron stars. A unique burst, GRB 150518a, had two recorded bursts fifteen minutes apart which is very rare and is considered to be ultra-long, lasting around thirty minutes total and is associated with a Supernova explosion. GBR 150518a is also extremely close compared to the average burst being measured to have a redshift of .2, this is important to note because GRB's measuring less than a redshift of .3 only are seen every ten years. Gamma rays are emitted by supernovae, neutron stars, black holes, and quasars and by studying GRB's it allows us to see more deeply into how these objects function. The first few days of GRB 150518as' detected afterglow was plotted in different wavelengths, including optical, x-ray, radio, and infrared, in flux verses time. Data is continuously being added as time goes on. This research is funded by the NSF, grant number 1358990.

  18. Theta rhythm and the encoding and retrieval of space and time

    PubMed Central

    Hasselmo, Michael E.; Stern, Chantal E.

    2013-01-01

    Physiological data demonstrates theta frequency oscillations associated with memory function and spatial behavior. Modeling and data from animals provides a perspective on the functional role of theta rhythm, including correlations with behavioral performance and coding by timing of spikes relative to phase of oscillations. Data supports a theorized role of theta rhythm in setting the dynamics for encoding and retrieval within cortical circuits. Recent data also supports models showing how network and cellular theta rhythmicity allows neurons in the entorhinal cortex and hippocampus to code time and space as a possible substrate for encoding events in episodic memory. Here we discuss these models and relate them to current physiological and behavioral data. PMID:23774394

  19. Beam heated linear theta-pinch device for producing hot plasmas

    DOEpatents

    Bohachevsky, Ihor O.

    1981-01-01

    A device for producing hot plasmas comprising a single turn theta-pinch coil, a fast discharge capacitor bank connected to the coil, a fuel element disposed along the center axis of the coil, a predetermined gas disposed within the theta-pinch coil, and a high power photon, electron or ion beam generator concentrically aligned to the theta-pinch coil. Discharge of the capacitor bank generates a cylindrical plasma sheath within the theta-pinch coil which heats the outer layer of the fuel element to form a fuel element plasma layer. The beam deposits energy in either the cylindrical plasma sheath or the fuel element plasma layer to assist the implosion of the fuel element to produce a hot plasma.

  20. Status of the iota (1440) and theta (1640) as gluonium candidates

    SciTech Connect

    Lockman, W.S.

    1983-04-01

    A review of the experimental evidence for the iota (1440) and theta (1640) states is presented. The measured properties of these states are compared with various theoretical predictions. A likely interpretation is that these states contain a large gluonic admixture.

  1. Hippocampal Theta Input to the Amygdala Shapes Feedforward Inhibition to Gate Heterosynaptic Plasticity

    PubMed Central

    Bazelot, Michaël; Bocchio, Marco; Kasugai, Yu; Fischer, David; Dodson, Paul D.; Ferraguti, Francesco; Capogna, Marco

    2015-01-01

    Summary The dynamic interactions between hippocampus and amygdala are critical for emotional memory. Theta synchrony between these structures occurs during fear memory retrieval and may facilitate synaptic plasticity, but the cellular mechanisms are unknown. We report that interneurons of the mouse basal amygdala are activated during theta network activity or optogenetic stimulation of ventral CA1 pyramidal cell axons, whereas principal neurons are inhibited. Interneurons provide feedforward inhibition that transiently hyperpolarizes principal neurons. However, synaptic inhibition attenuates during theta frequency stimulation of ventral CA1 fibers, and this broadens excitatory postsynaptic potentials. These effects are mediated by GABAB receptors and change in the Cl− driving force. Pairing theta frequency stimulation of ventral CA1 fibers with coincident stimuli of the lateral amygdala induces long-term potentiation of lateral-basal amygdala excitatory synapses. Hence, feedforward inhibition, known to enforce temporal fidelity of excitatory inputs, dominates hippocampus-amygdala interactions to gate heterosynaptic plasticity. Video Abstract PMID:26402610

  2. Correlation of hippocampal theta rhythm with changes in cutaneous temperature. [evoked neuron response in thermoregulation

    NASA Technical Reports Server (NTRS)

    Horowitz, J. M.; Saleh, M. A.; Karem, R. D.

    1974-01-01

    A possible role for the hippocampus in alerting an animal to changes in cutaneous temperature was examined. Following local warming or cooling of the ears of unanesthetized, loosely restrained rabbits, theta waves (4-7 Hz EEG waves) were recorded from electrodes straddling the hippocampus. The onset of the hippocampal theta rhythm was correlated with changes in cutaneous temperature, an observation consistent with studies indicating that the theta rhythm is a nonspecific response evoked by stimulation of several sensory modalities. Additional data from cats and rabbits were correlated with specific neurons within the hippocampus, namely pyramidal cells. Post stimulus time histograms obtained by excitation of the dorsal fornix were interpreted in terms of excitatory and inhibitory inputs to pyramidal cells. Thus, the theta rhythm, which appears to be evoked by changes in cutaneous temperature, can be related to a specific type of hippocampal neuron which is in turn connected with other areas of the brain involved in temperature regulation.

  3. Validity and reliability of electroencephalographic frontal alpha asymmetry and frontal midline theta as biomarkers for depression.

    PubMed

    Gold, Christian; Fachner, Jörg; Erkkilä, Jaakko

    2013-04-01

    Electroencephalographic (EEG) frontal alpha asymmetry (FAA) and frontal midline (FM) theta have been suggested as biomarkers for depression and anxiety, but have mostly been assessed in small and non-clinical studies. In a clinical sample of 79 adults with depression (ICD-10: F32), resting EEG and scales of depression (MADRS) and anxiety (HADS-A) were measured at intake and after 3 months. FAA and FM theta values were referenced to a normative population database. Internal consistency, test-retest reliability, and correlations with psychiatric tests were examined. Reliability was sufficient. However, FAA and FM theta values were close to the general population, and correlations with psychiatric tests were mostly small and non-significant, with the exception of FAA on F7-F8 z-scores and HADS-A. We conclude that the validity of FAA and FM theta and therefore their potential as biomarkers for depression and anxiety remain unclear. PMID:23278257

  4. Epoetin Theta in Anaemic Cancer Patients Receiving Platinum-Based Chemotherapy: A Randomised Controlled Trial

    PubMed Central

    Tjulandin, Sergei A; Bias, Peter; Elsässer, Reiner; Gertz, Beate; Kohler, Erich; Buchner, Anton

    2010-01-01

    Introduction Recombinant human erythropoietin (r-HuEPO) is used to treat symptomatic anaemia due to chemotherapy. A new r-HuEPO, Epoetin theta (Eporatio®), was investigated and compared to placebo and Epoetin beta in a randomised, double-blind clinical trial in adult cancer patients receiving platinum-based chemotherapy, using a fixed weekly starting dose of 20,000 IU Epoetin theta. The primary efficacy endpoint was the responder rate (complete Hb response, Hb increase ≥ 2 g/dL). Research Design and Methods 223 patients were randomised to s.c. treatment for 12 weeks with either Epoetin theta (n = 76) once per week, Epoetin beta (n = 73) three times per week or placebo (n = 74). The starting dose was 20,000 IU once weekly Epoetin theta or 450 IU/kgBW per week Epoetin beta administered in 3 equal weekly doses. Results In the Epoetin theta group were significantly more responders than in the placebo group (65.8 vs. 20.3%, P < 0.0001). Epoetin beta was also more effective than placebo (71.2 vs. 20.3%, P < 0.0001). The mean weekly dose at the time of complete Hb response was lower in the Epoetin theta group (30,000 IU) than in the Epoetin beta group (42,230 IU). Epoetin theta was clearly more effective than placebo. Conclusion This small study showed, that Epoetin theta is a safe and effective treatment of symptomatic anaemia due to platinum-based chemotherapy in cancer patients. PMID:21331363

  5. Zeeman effect in the X-ray star candidates HD 77581 and theta super 2 Orionis.

    NASA Technical Reports Server (NTRS)

    Kemp, J. C.; Wolstencroft, R. D.

    1973-01-01

    The discovery of Zeeman effects is reported in HD 77581 and theta super 2 Orionis, optical candidates for the X-ray sources Vela XR-1 and 2U 0525-06, respectively. The maximum longitudinal magnetic fields recorded were -10,000 G in HD 77581 and +1500 G in theta super 2 Ori. Various polarimetric data are also given, including evidence for a variable linear polarization in HD 77581.

  6. Differentiating neutrino models on the basis of $\\theta_{13}$ and lepton flavor violation

    SciTech Connect

    Albright, Carl H.; /Northern Illinois U. /Fermilab

    2008-03-01

    The authors show how models of neutrino masses and mixings can be differentiated on the basis of their predictions for {theta}{sub 13} and lepton flavor violation in radiative charged lepton decays and {mu} - e conversion. They illustrate the lepton flavor violation results for five predictive SO(10) SUSY GUT models and point out the relative importance of their heavy right-handed neutrino mass spectra and {theta}{sub 13} predictions.

  7. Creep modeling of welded joints using the theta projection concept and finite element analysis

    SciTech Connect

    Law, M.; Payten, W.; Snowden, K.

    2000-02-01

    Modeling of welded joints under creep conditions with element analysis was undertaken using the theta projection method. The results were compared to modeling based on a simple Norton law. Theta projection data extends the accuracy and predictive capability of finite element modeling of critical structures operating at high temperature and pressure. In some cases analyzed, it was found that the results diverged from those gained using a Norton law creep model.

  8. Comments on the slip factor and the relation Delta phi = -h Delta theta

    SciTech Connect

    Ng, K.Y.; /Fermilab

    2009-09-01

    The definition of the slip factor can be obtained from the phase equation. However, a derivation using the relation {Delta}{phi} = -h{Delta}{theta} leads to a different slip-factor definition. This apparent paradox is examined in detail and resolved. Here {Delta}{phi} is the rf phase difference and {Delta}{theta} is the azimuthal phase difference around the accelerator ring between an off-momentum particle and the synchronous particle, while h is the rf harmonic.

  9. Enhancement of encoding and retrieval functions through theta phase-specific manipulation of hippocampus.

    PubMed

    Siegle, Joshua H; Wilson, Matthew A

    2014-01-01

    Assessing the behavioral relevance of the hippocampal theta rhythm has proven difficult, due to a shortage of experiments that selectively manipulate phase-specific information processing. Using closed-loop stimulation, we triggered inhibition of dorsal CA1 at specific phases of the endogenous theta rhythm in freely behaving mice. This intervention enhanced performance on a spatial navigation task that requires the encoding and retrieval of information related to reward location on every trial. In agreement with prior models of hippocampal function, the behavioral effects depended on both the phase of theta and the task segment at which we stimulated. Stimulation in the encoding segment enhanced performance when inhibition was triggered by the peak of theta. Conversely, stimulation in the retrieval segment enhanced performance when inhibition was triggered by the trough of theta. These results suggest that processes related to the encoding and retrieval of task-relevant information are preferentially active at distinct phases of theta.DOI: http://dx.doi.org/10.7554/eLife.03061.001. PMID:25073927

  10. Phase-locked hippocampal theta-band responses are related to discriminative eyeblink conditioned responding.

    PubMed

    Nokia, Miriam S; Wikgren, Jan

    2013-11-01

    Hippocampal electrophysiological oscillatory activity is undoubtedly related to learning and memory. The relative power of spontaneously occurring hippocampal theta (∼4-8 Hz) oscillations predicts how fast and how well an animal will learn: more theta predicts faster acquisition of the conditioned response in eyeblink conditioning in both rats and rabbits. Here, our aim was to study how hippocampal theta-band responses to conditioned stimuli elicited during very-long delay discrimination eyeblink conditioning relate to the accompanying conditioned behavior. We trained adult male New Zealand White rabbits using 1500-ms auditory stimuli as conditioned stimuli and a 100-ms airpuff as an unconditioned stimulus. The reinforced conditioned stimulus overlapped and co-terminated with the unconditioned stimulus whereas the non-reinforced conditioned stimulus was always presented alone. Consistent with previous results, hippocampal theta-band responses to the conditioned stimuli diminished in amplitude across training. Interestingly, hippocampal theta-band responses were most consistently time-locked when a well-trained animal failed to suppress behavioral learned responses to the non-reinforced conditioned stimulus. We suggest that phase-locking of hippocampal theta-band oscillations in response to external stimuli reflects retrieval of the dominant memory trace (adaptive or not) along with initiating the most prominent action scheme related to that memory trace. PMID:24029698

  11. Chemotherapy disrupts learning, neurogenesis and theta activity in the adult brain.

    PubMed

    Nokia, Miriam S; Anderson, Megan L; Shors, Tracey J

    2012-12-01

    Chemotherapy, especially if prolonged, disrupts attention, working memory and speed of processing in humans. Most cancer drugs that cross the blood-brain barrier also decrease adult neurogenesis. Because new neurons are generated in the hippocampus, this decrease may contribute to the deficits in working memory and related thought processes. The neurophysiological mechanisms that underlie these deficits are generally unknown. A possible mediator is hippocampal oscillatory activity within the theta range (3-12 Hz). Theta activity predicts and promotes efficient learning in healthy animals and humans. Here, we hypothesised that chemotherapy disrupts learning via decreases in hippocampal adult neurogenesis and theta activity. Temozolomide was administered to adult male Sprague-Dawley rats in a cyclic manner for several weeks. Treatment was followed by training with different types of eyeblink classical conditioning, a form of associative learning. Chemotherapy reduced both neurogenesis and endogenous theta activity, as well as disrupted learning and related theta-band responses to the conditioned stimulus. The detrimental effects of temozolomide only occurred after several weeks of treatment, and only on a task that requires the association of events across a temporal gap and not during training with temporally overlapping stimuli. Chemotherapy did not disrupt the memory for previously learned associations, a memory independent of (new neurons in) the hippocampus. In conclusion, prolonged systemic chemotherapy is associated with a decrease in hippocampal adult neurogenesis and theta activity that may explain the selective deficits in processes of learning that describe the 'chemobrain'. PMID:23039863

  12. Fear and safety engage competing patterns of theta-gamma coupling in the basolateral amygdala.

    PubMed

    Stujenske, Joseph M; Likhtik, Ekaterina; Topiwala, Mihir A; Gordon, Joshua A

    2014-08-20

    Theta oscillations synchronize the basolateral amygdala (BLA) with the hippocampus (HPC) and medial prefrontal cortex (mPFC) during fear expression. The role of gamma-frequency oscillations in the BLA is less well characterized. We examined gamma- and theta-frequency activity in recordings of neural activity from the BLA-HPC-mPFC circuit during fear conditioning, extinction, and exposure to an open field. In the BLA, slow (40-70 Hz) and fast (70-120 Hz) gamma oscillations were coupled to distinct phases of the theta cycle and reflected synchronous high-frequency unit activity. During periods of fear, BLA theta-fast gamma coupling was enhanced, while fast gamma power was suppressed. Periods of relative safety were associated with enhanced BLA fast gamma power, mPFC-to-BLA directionality, and strong coupling of BLA gamma to mPFC theta. These findings suggest that switches between states of fear and safety are mediated by changes in BLA gamma coupling to competitive theta frequency inputs. PMID:25144877

  13. Enhancement of encoding and retrieval functions through theta phase-specific manipulation of hippocampus

    PubMed Central

    Siegle, Joshua H; Wilson, Matthew A

    2014-01-01

    Assessing the behavioral relevance of the hippocampal theta rhythm has proven difficult, due to a shortage of experiments that selectively manipulate phase-specific information processing. Using closed-loop stimulation, we triggered inhibition of dorsal CA1 at specific phases of the endogenous theta rhythm in freely behaving mice. This intervention enhanced performance on a spatial navigation task that requires the encoding and retrieval of information related to reward location on every trial. In agreement with prior models of hippocampal function, the behavioral effects depended on both the phase of theta and the task segment at which we stimulated. Stimulation in the encoding segment enhanced performance when inhibition was triggered by the peak of theta. Conversely, stimulation in the retrieval segment enhanced performance when inhibition was triggered by the trough of theta. These results suggest that processes related to the encoding and retrieval of task-relevant information are preferentially active at distinct phases of theta. DOI: http://dx.doi.org/10.7554/eLife.03061.001 PMID:25073927

  14. Social exclusion modulates event-related frontal theta and tracks ostracism distress in children.

    PubMed

    van Noordt, Stefon J R; White, Lars O; Wu, Jia; Mayes, Linda C; Crowley, Michael J

    2015-09-01

    Social exclusion is a potent elicitor of distress. Previous studies have shown that medial frontal theta oscillations are modulated by the experience of social exclusion. Using the Cyberball paradigm, we examined event-related dynamics of theta power in the EEG at medial frontal sites while children aged 8-12 years were exposed to conditions of fair play and social exclusion. Using an event-related design, we found that medial frontal theta oscillations (4-8Hz) increase during both early (i.e., 200-400ms) and late (i.e., 400-800ms) processing of rejection events during social exclusion relative to perceptually identical "not my turn" events during inclusion. Importantly, we show that only for the later time window (400-800ms) slow-wave theta power tracks self-reported ostracism distress. Specifically, greater theta power at medial frontal sites to "rejection" events predicted higher levels of ostracism distress. Alpha and beta oscillations for rejection events were unrelated to ostracism distress at either 200-400ms or 400-800ms time windows. Our findings extend previous studies by showing that medial frontal theta oscillations for rejection events are a neural signature of social exclusion, linked to experienced distress in middle childhood. PMID:26048623

  15. Continuous Time Representations of Song in Zebra Finches.

    PubMed

    Troyer, Todd W

    2016-05-18

    Neurons in the songbird nucleus HVC produce premotor bursts time locked to song with millisecond precision. In this issue of Neuron, Lynch et al. (2016) and Picardo et al. (2016) provide convincing evidence that the population of these bursts contain a continuous representation of time throughout song. PMID:27196971

  16. The LOFT burst alert system and its burst onboard trigger

    NASA Astrophysics Data System (ADS)

    Schanne, Stéphane; Götz, Diego; Le Provost, Hervé; Château, Frédéric; Bozzo, Enrico; Brandt, Søren

    2014-07-01

    The ESA M3 candidate mission LOFT (Large Observatory For x-ray Timing) has been designed to study strong gravitational fields by observing compact objects, such as black-hole binaries or neutron-star systems and supermassive black-holes, based on the temporal analysis of photons collected by the primary instrument LAD (Large Area Detector), sensitive to X-rays from 2 to 50 keV, offering a very large effective area (>10 m2), but a small field of view (ø<1°). Simultaneously the second instrument WFM (Wide Field Monitor), composed of 5 coded-mask camera pairs (2-50 keV), monitors a large part of the sky, in order to detect and localize eruptive sources, to be observed with the LAD after ground-commanded satellite repointing. With its large field of view (>π sr), the WFM actually detects all types of transient sources, including Gamma-Ray Bursts (GRBs), which are of primary interest for a world-wide observers community. However, observing the quickly decaying GRB afterglows with ground-based telescopes needs the rapid knowledge of their precise localization. The task of the Loft Burst Alert System (LBAS) is therefore to detect in near-real- time GRBs (about 120 detections expected per year) and other transient sources, and to deliver their localization in less than 30 seconds to the observers, via a VHF antenna network. Real-time full resolution data download to ground being impossible, the real-time data processing is performed onboard by the LBOT (LOFT Burst On-board Trigger system). In this article we present the LBAS and its components, the LBOT and the associated ground-segment.

  17. Bursting for enhanced ablation of materials

    NASA Astrophysics Data System (ADS)

    Hendow, Sami; Rea, Edward; Kosa, Nadhir; Bengtsson, Magnus; Shakir, Sami

    2014-03-01

    A significant enhancement in the rate of material removal is demonstrated using a nanosecond-pulsed UV fiber laser in multi-pulsing burst mode, as compared to the case without bursting. Percussion drilling and scribing of thin-film and bulk material tests show that, in general, laser bursts with increased pulse count and reduced pulse spacing show higher rates of material removal. A considerable improvement in removal rate is demonstrated, when bursting is applied to scribing of mono-crystalline silicon (m-Si) and up to 30% in percussion drilling speed. Likewise, improved material removal is demonstrated for scribing of thin film of indium tin oxide (ITO) on glass or metal film on sapphire. Examples of material processing are given with and without bursting at similar experimental conditions of average power, scan speed, and burst/pulse energies. Experimental results included are for m-Si, ITO thin films on glass, and metal films on sapphire.

  18. Hardness/intensity correlations among BATSE bursts

    NASA Technical Reports Server (NTRS)

    Paciesas, William S.; Pendleton, Geoffrey N.; Kouveliotou, Chryssa; Fishman, Gerald J.; Meegan, Charles A.; Wilson, Robert B.

    1992-01-01

    Conclusions about the nature of gamma-ray bursts derived from the size-frequency distribution may be altered if a significant correlation exists between burst intensity and spectral shape. Moreover, if gamma-ray bursts have a cosmological origin, such a correlation may be expected to result from the expansion of the universe. We have performed a rudimentary search of the BATSE bursts for hardness/intensity correlations. The range of spectral shapes was determined for each burst by computing the ratio of the intensity in the range 100-300 keV to that in 55-300 keV. We find weak evidence for the existence of a correlation, the strongest effect being present when comparing the maximum hardness ratio for each burst with its maximum rate.

  19. Stirling Colgate and Gamma-Ray Bursts

    NASA Astrophysics Data System (ADS)

    Lamb, Donald

    2014-10-01

    Even before the discovery of gamma-ray bursts (GRBs), Stirling Colgate proposed that bursts of x rays and gamma rays might be produced by a relativistic shock created in the supernova explosion of a massive star. We trace the scientific story of GRBs from their detection to the present, highlighting along the way Stirling's interest in them and his efforts to understand them. We summarize our current understanding that short, soft, repeating bursts are produced by magnetic neutron stars; short, hard bursts are produced by the mergers of neutron star-neutron star binaries; and long, hard bursts are produced by the core collapse of massive stars that have lost their hydrogen and helium envelopes. We then discuss some important open questions about GRBs and how they might be answered. We conclude by describing the recent serendipitous discovery of an x-ray burst of exactly the kind he proposed, and the insights into core collapse supernovae and GRBs that it provided.

  20. GRB 050717: A Long, Short-Lag Burst Observed by Swift and Konus

    SciTech Connect

    Krimm, H. A.; Hurkett, C.; Osborne, J. P.; Pal'shin, V.; Golenetskii, S.; Norris, J. P.; Barthelmy, S. D.; Gehrels, N.; Parsons, A. M.; Zhang, B.; Burrows, D. N.; Perri, M.

    2006-05-19

    The long burst GRB 050717 was observed simultaneously by the Burst Alert Telescope (BAT) on Swift and the Konus instrument on Wind. Significant hard to soft spectral evolution was seen. Early gamma-ray and X-ray emission was detected by both BAT and the X-Ray Telescope (XRT) on Swift. The XRT continued to observe the burst for 7.1 days and detect it for 1.4 days. The X-ray light curve showed a classic decay pattern including evidence of the onset of the external shock emission at {approx} 45 s after the trigger; the afterglow was too faint for a jet break to be detected. No optical, infrared or ultraviolet counterpart was discovered despite deep searches within 14 hours of the burst. The spectral lag for GRB 050717 was determined to be 2.5 {+-} 2.6 ms, consistent with zero and unusually short for a long burst. This lag measurement suggests that this burst has a high intrinsic luminosity and hence is at high redshift (z > 2.7). GRB 050717 provides a good example of classic prompt and afterglow behavior for a gamma-ray burst.

  1. GRB 050717: A Long, Short-Lag Burst Observed by Swift and Konus

    NASA Technical Reports Server (NTRS)

    Krimm, H. A.; Hurkett, C.; Pal'shin, V.; Norris, J. P.; Zhang, B.; Barthelmy, S. D.; Burrows, D. N.; Gehrels, N.; Golenetskii, S.; Osborne, J. P.; Parsons, A. M.; Perri, M.; Willingale, R.

    2005-01-01

    The long burst GRB 050717 was observed simultaneously by the Burst Alert Telescope (BAT) on Swift and the Konus instrument on Wind. Significant hard to soft spectral evolution was seen. Early gamma-ray and X-ray emission was detected by both BAT and the X-Ray Telescope (XRT) on Swift. The XRT continued to observe the burst for 7.1 days and detect it for 1.4 days. The X-ray light curve showed a classic decay pattern including evidence of the onset of the external shock emission at approx. 50 s after the trigger; the afterglow was too faint for a jet break to be detected. No optical, infrared or ultraviolet counterpart was discovered despite deep searches within 14 hours of the burst. The spectral lag for GRB 050717 was determined to be 2.5 +/- 2.6 ms, consistent, with zero and unusually short for a long burst. This lag measurement suggests that this burst has a high intrinsic luminosity and hence is at high redshift (z > 2.7). 050717 provides a good example of classic prompt and afterglow behavior for a gamma-ray burst.

  2. Error control coding for meteor burst channels

    NASA Astrophysics Data System (ADS)

    Frederick, T. J.; Belkerdid, M. A.; Georgiopoulos, M.

    The performance of several error control coding schemes for a meteor burst channel is studied via analysis and simulation. These coding strategies are compared using the probability of successful transmission of a fixed size packet through a single burst as a performance measure. The coding methods are compared via simulation for several realizations of meteor burst. It is found that, based on complexity and probability of success, fixed-rate convolutional codes with soft decision Viterbi decoding provide better performance.

  3. Ballerina - pirouettes in search of gamma bursts

    NASA Astrophysics Data System (ADS)

    Brandt, S.; Lund, N.; Pedersen, H.; Hjorth, J.; BALLERINA Collaboration

    1999-09-01

    The cosmological origin of gamma ray bursts has now been established with reasonable certainty. Many more bursts will need to be studied to establish the typical distance scale, and to map out the large diversity in properties which have been indicated by the first handful of events. We are proposing Ballerina, a small satellite to provide accurate positions and new data on the gamma-ray bursts. We anticipate a detection rate an order of magnitude larger than obtained from Beppo-SAX.

  4. Working Memory Performance Correlates with Prefrontal-Hippocampal Theta Interactions but not with Prefrontal Neuron Firing Rates

    PubMed Central

    Hyman, James M.; Zilli, Eric A.; Paley, Amanda M.; Hasselmo, Michael E.

    2009-01-01

    Performance of memory tasks is impaired by lesions to either the medial prefrontal cortex (mPFC) or the hippocampus (HPC); although how these two areas contribute to successful performance is not well understood. mPFC unit activity is temporally affected by hippocampal-theta oscillations, with almost half the mPFC population entrained to theta in behaving animals, pointing to theta interactions as the mechanism enabling collaborations between these two areas. mPFC neurons respond to sensory stimuli and responses in working memory tasks, though the function of these correlated firing rate changes remains unclear because similar responses are reported during mPFC dependent and independent tasks. Using a DNMS task we compared error trials vs. correct trials and found almost all mPFC cells fired at similar rates during both error and correct trials (92%), however theta-entrainment of mPFC neurons declined during error performance as only 17% of cells were theta-entrained (during correct trials 46% of the population was theta-entrained). Across the population, error and correct trials did not differ in firing rate, but theta-entrainment was impaired. Periods of theta-entrainment and firing rate changes appeared to be independent variables, and only theta-entrainment was correlated with successful performance, indicating mPFC-HPC theta-range interactions are the key to successful DNMS performance. PMID:20431726

  5. Neutron Stars and Thermonuclear X-ray Bursts

    NASA Technical Reports Server (NTRS)

    Bhattacharyya, Supid

    2007-01-01

    This viewgraph presentation describes neutron stars and thermonuclear x ray bursts. The contents include: 1) Neutron Stars: why do we care?; 2) Thermonuclear Bursts: why do we care?; 3) Neutron Stars: Mass, Radius and Spin: a. Continuum Spectroscopy of Bursts b. Spectral Lines from Bursts c. Timing Properties of Bursts; 4) Neutron Star Atmosphere: Thermonuclear Flame Spreading; and 5) Future Prospects and Conclusions.

  6. Bursting behaviour in coupled Josephson junctions.

    PubMed

    Hongray, Thotreithem; Balakrishnan, J; Dana, Syamal K

    2015-12-01

    We report an interesting bow-tie shaped bursting behaviour in a certain parameter regime of two resistive-capacitative shunted Josephson junctions, one in the oscillatory and the other in the excitable mode and coupled together resistively. The burst emerges in both the junctions and they show near-complete synchronization for strong enough couplings. We discuss a possible bifurcation scenario to explain the origin of the burst. An exhaustive study on the parameter space of the system is performed, demarcating the regions of bursting from other solutions. PMID:26723143

  7. Statistics of cosmological gamma-ray bursts

    NASA Technical Reports Server (NTRS)

    Dermer, Charles D.

    1992-01-01

    A phenomenological model of gamma-ray burst spectra is used to calculate the statistics of gamma-ray bursts originating at cosmological distances. A model of bursters with no source evolution in a q sub 0 = 1/2 Friedmann cosmology is in accord with recent observations of the differential V/Vmax distribution. The data are best fit with an average peak-burst luminosity of (4 +/- 2) x 10 exp 51 ergs/s and a present-day source emissivity of 940 +/- 440 bursts/(10 exp 10 yr) cu Mpc. A spectral test of the cosmological hypothesis is proposed.

  8. Gravitational wave bursts from cosmic strings

    PubMed

    Damour; Vilenkin

    2000-10-30

    Cusps of cosmic strings emit strong beams of high-frequency gravitational waves (GW). As a consequence of these beams, the stochastic ensemble of gravitational waves generated by a cosmological network of oscillating loops is strongly non-Gaussian, and includes occasional sharp bursts that stand above the rms GW background. These bursts might be detectable by the planned GW detectors LIGO/VIRGO and LISA for string tensions as small as G&mgr; approximately 10(-13). The GW bursts discussed here might be accompanied by gamma ray bursts. PMID:11041921

  9. Bursting behaviour in coupled Josephson junctions

    NASA Astrophysics Data System (ADS)

    Hongray, Thotreithem; Balakrishnan, J.; Dana, Syamal K.

    2015-12-01

    We report an interesting bow-tie shaped bursting behaviour in a certain parameter regime of two resistive-capacitative shunted Josephson junctions, one in the oscillatory and the other in the excitable mode and coupled together resistively. The burst emerges in both the junctions and they show near-complete synchronization for strong enough couplings. We discuss a possible bifurcation scenario to explain the origin of the burst. An exhaustive study on the parameter space of the system is performed, demarcating the regions of bursting from other solutions.

  10. Solar Flares, Type III Radio Bursts, Coronal Mass Ejections, and Energetic Particles

    NASA Technical Reports Server (NTRS)

    Cane, Hilary V.; Erickson, W. C.; Prestage, N. P.; White, Nicholas E. (Technical Monitor)

    2002-01-01

    In this correlative study between greater than 20 MeV solar proton events, coronal mass ejections (CMEs), flares, and radio bursts it is found that essentially all of the proton events are preceded by groups of type III bursts and all are preceded by CMEs. These type III bursts (that are a flare phenomenon) usually are long-lasting, intense bursts seen in the low-frequency observations made from space. They are caused by streams of electrons traveling from close to the solar surface out to 1 AU. In most events the type III emissions extend into, or originate at, the time when type II and type IV bursts are reported (some 5 to 10 minutes after the start of the associated soft X-ray flare) and have starting frequencies in the 500 to approximately 100 MHz range that often get lower as a function of time. These later type III emissions are often not reported by ground-based observers, probably because of undue attention to type II bursts. It is suggested to call them type III-1. Type III-1 bursts have previously been called shock accelerated (SA) events, but an examination of radio dynamic spectra over an extended frequency range shows that the type III-1 bursts usually start at frequencies above any type II burst that may be present. The bursts sometimes continue beyond the time when type II emission is seen and, furthermore, sometimes occur in the absence of any type II emission. Thus the causative electrons are unlikely to be shock accelerated and probably originate in the reconnection regions below fast CMEs. A search did not find any type III-1 bursts that were not associated with CMEs. The existence of low-frequency type III bursts proves that open field lines extend from within 0.5 radius of the Sun into the interplanetary medium (the bursts start above 100 MHz, and such emission originates within 0.5 solar radius of the solar surface). Thus it is not valid to assume that only closed field lines exist in the flaring regions associated with CMEs and some

  11. Fast radio burst/gamma-ray burst cosmography

    SciTech Connect

    Gao, He; Zhang, Bing; Li, Zhuo E-mail: zhang@physics.unlv.edu

    2014-06-20

    Recently, both theoretical arguments and observational evidence suggested that a small fraction of fast radio bursts (FRBs) could be associated with gamma-ray bursts (GRBs). If such FRB/GRB association systems are commonly detected in the future, the combination of dispersion measures (DM) derived from FRBs and redshifts derived from GRBs makes these systems a plausible tool to conduct cosmography. We quantify uncertainties in deriving the redshift-dependent DM{sub IGM} as a function of z and test how well dark energy models can be constrained with Monte Carlo simulations. We show that with several tens of FRB/GRB systems potentially detected in a decade or so, one may reach reasonable constraints on wCDM models. When combined with Type Ia supernova (SN Ia) data, unprecedented constraints on the dark energy equation of state may be achieved, thanks to the prospects of detecting FRB/GRB systems at relatively high redshifts. The ratio between the mean value and luminosity distance (D {sub L}(z)) is insensitive to dark energy models. This gives the prospect of applying SN Ia data to calibrate using a relatively small sample of FRB/GRB systems, allowing a reliable constraint on the baryon inhomogeneity distribution as a function of redshift. The methodology developed in this paper can also be applied if the FRB redshifts can be measured by other means. Some caveats of putting this method into practice are also discussed.

  12. Transcriptional burst frequency and burst size are equally modulated across the human genome

    SciTech Connect

    Dar, Roy D.; Simpson, Michael L; Weinberger, Leor S.; Razooky, B; Cox, Chris D.; McCollum, James M.; Trimeloni, Tom; Singh, A

    2012-01-01

    Gene expression occurs either as an episodic process, characterized by pulsatile bursts or as a constitutive, Poisson-like accumulation of gene products. It is not clear which mode of gene expression (constitutive versus bursty) predominates across a genome or how transcriptional dynamics are influenced by genomic position and promoter sequence. Here, we use time-lapse fluorescence microscopy, building off of theoretical studies that exploit the time-resolved structure of stochastic fluctuations in gene expression, to develop a three-dimensional method for mapping underlying gene-regulatory mechanisms. Over 8,000 individual human genomic loci were analyzed, and at virtually all loci, episodic bursting as opposed to constitutive expression was found to be the predominant mode of expression. Quantitative analysis of the expression dynamics at these 8,000 loci indicates that both frequency and size of transcriptional bursts vary equally across the human genome independent of promoter sequence. Strikingly, weaker expression loci modulate burst frequency to increase activity, while stronger expression loci modulate burst size to increase activity. Transcriptional activators, such as TNF, generate similar patterns of change in burst frequency and burst size. In summary, transcriptional bursting dominates across the human genome, both burst frequency and burst size vary by chromosomal location, and transcriptional activators alter burst frequency and burst size, depending on the expression level of the locus.

  13. Helium bubble bursting in tungsten

    SciTech Connect

    Sefta, Faiza; Juslin, Niklas; Wirth, Brian D.

    2013-12-28

    Molecular dynamics simulations have been used to systematically study the pressure evolution and bursting behavior of sub-surface helium bubbles and the resulting tungsten surface morphology. This study specifically investigates how bubble shape and size, temperature, tungsten surface orientation, and ligament thickness above the bubble influence bubble stability and surface evolution. The tungsten surface is roughened by a combination of adatom “islands,” craters, and pinholes. The present study provides insight into the mechanisms and conditions leading to various tungsten topology changes, which we believe are the initial stages of surface evolution leading to the formation of nanoscale fuzz.

  14. Role of hippocampal H1 receptors in radial maze performance and hippocampal theta activity in rats.

    PubMed

    Masuoka, Takayoshi; Kamei, Chiaki

    2007-07-12

    Histamine H1 antagonists impaired the spatial memory performance. On the other hand, it is well recognized that the hippocampal theta rhythm plays a critical role in spatial memory. However, little work has been done the effect of H1 antagonists on the hippocampal theta rhythm which was associated with the memory performance. We investigated the effect of pyrilamine, a selective H1 receptor antagonist, on spatial memory performance as well as hippocampal theta rhythm during the memory task in rats. Effect of pyrilamine on spatial memory was measured using eight-arm radial maze with four arms baited. Hippocampal theta rhythm during the radial maze task was recorded with a polygraph system with a telemetric technique. Intraperitoneal injection of pyrilamine resulted in impairments of both reference and working memory on the radial maze task. The working memory deficit induced by pyrilamine was antagonized by the intrahippocampal injection of histamine and 6-[2-(4-imidazolyl)ethylamino]-N-(4-trifluoromethylphenyl)heptanecarboxamide (HTMT), a histamine H1 agonist. Intraperitoneal injection of pyrilamine decreased the hippocampal theta power at a dose that impaired reference and working memory. This effect was antagonized by the intrahippocampal injection of histamine and HTMT at a dose that ameliorated the working memory deficit. Intrahippocampal injection of pyrilamine impaired working memory and simultaneously decreased the hippocampal theta power. These results suggest that: (i) the hippocampal H1 receptors play an important role in the working memory processes on the radial maze performance and (ii) the decrease in the hippocampal theta power is associated with the working memory deficit induced by the blocking of H1 receptors. PMID:17562388

  15. Self-regulation of frontal-midline theta facilitates memory updating and mental set shifting

    PubMed Central

    Enriquez-Geppert, Stefanie; Huster, René J.; Figge, Christian; Herrmann, Christoph S.

    2014-01-01

    Frontal-midline (fm) theta oscillations as measured via the electroencephalogram (EEG) have been suggested as neural “working language” of executive functioning. Their power has been shown to increase when cognitive processing or task performance is enhanced. Thus, the question arises whether learning to increase fm-theta amplitudes would functionally impact the behavioral performance in tasks probing executive functions (EFs). Here, the effects of neurofeedback (NF), a learning method to self-up-regulate fm-theta over fm electrodes, on the four most representative EFs, memory updating, set shifting, conflict monitoring, and motor inhibition are presented. Before beginning and after completing an individualized, eight-session gap-spaced NF intervention, the three-back, letter/number task-switching, Stroop, and stop-signal tasks were tested while measuring the EEG. Self-determined up-regulation of fm-theta and its putative role for executive functioning were compared to an active control group, the so-called pseudo-neurofeedback group. Task-related fm-theta activity after training differed significantly between groups. More importantly, though, after NF significantly enhanced behavioral performance was observed. The training group showed higher accuracy scores in the three-back task and reduced mixing and shifting costs in letter/number task-switching. However, this specific protocol type did not affect performance in tasks probing conflict monitoring and motor inhibition. Thus, our results suggest a modulation of proactive but not reactive mechanisms of cognitive control. Furthermore, task-related EEG changes show a distinct pattern for fm-theta after training between the NF and the pseudo-neurofeedback group, which indicates that NF training indeed tackles EFs-networks. In sum, the modulation of fm-theta via NF may serve as potent treatment approach for executive dysfunctions. PMID:25538585

  16. POPULATION III GAMMA-RAY BURSTS AND BREAKOUT CRITERIA FOR ACCRETION-POWERED JETS

    SciTech Connect

    Nagakura, Hiroki; Suwa, Yudai; Ioka, Kunihito

    2012-08-01

    We investigate the propagation of accretion-powered jets in various types of massive stars such as Wolf-Rayet stars, light Population III (Pop III) stars, and massive Pop III stars, all of which are the progenitor candidates of gamma-ray bursts (GRBs). We perform two-dimensional axisymmetric simulations of relativistic hydrodynamics, taking into account both the envelope collapse and the jet propagation (i.e., the negative feedback of the jet on the accretion). Based on our hydrodynamic simulations, we show for the first time that the accretion-powered jet can potentially break out relativistically from the outer layers of Pop III progenitors. In our simulations, the accretion rate is estimated by the mass flux going through the inner boundary, and the jet is injected with a fixed accretion-to-jet conversion efficiency {eta}. By varying the efficiency {eta} and opening angle {theta}{sub op} for more than 40 models, we find that the jet can make a relativistic breakout from all types of progenitors for GRBs if a simple condition {eta} {approx}> 10{sup -4}({theta}{sub op}/8 Degree-Sign ){sup 2} is satisfied, which is consistent with analytical estimates. Otherwise no explosion or some failed spherical explosions occur.

  17. Line strength variations in gamma-ray bursts GB870303 - Possible evidence of neutron star rotation

    NASA Technical Reports Server (NTRS)

    Graziani, C.; Fenimore, E. E.; Murakami, T.; Yoshida, A.; Lamb, D. Q.; Wang, J. C. L.; Loredo, T. J.

    1992-01-01

    An exhaustive search of the Ginga data on gamma-ray burst GB870303 reveals two separate time intervals during which statistically significant line features are evident. One (previously unreported) interval shows a single prominent line feature at about 20 keV; a second, corresponding to the interval reported by Murakami et al. (1988), shows two line features at 20 and 40 keV. From model fits to the data, we find that both sets of lines are well-described by cyclotron resonant scattering in a magnetic field B around 1.8 x 10 exp 12 G, and that the differences in the line strengths between the two intervals are significant. The variations are qualitatively similar to those produced by a change in the viewing angle theta relative to the magnetic field. We conjecture that the change in theta is due to rotation of the neutron star, and derive limits of 45-180 sec on the rotation period P.

  18. Low-Frequency Radio Bursts and Space Weather

    NASA Technical Reports Server (NTRS)

    Gopalswamy, N.

    2016-01-01

    Low-frequency radio phenomena are due to the presence of nonthermal electrons in the interplanetary (IP) medium. Understanding these phenomena is important in characterizing the space environment near Earth and other destinations in the solar system. Substantial progress has been made in the past two decades, because of the continuous and uniform data sets available from space-based radio and white-light instrumentation. This paper highlights some recent results obtained on IP radio phenomena. In particular, the source of type IV radio bursts, the behavior of type III storms, shock propagation in the IP medium, and the solar-cycle variation of type II radio bursts are considered. All these phenomena are closely related to solar eruptions and active region evolution. The results presented were obtained by combining data from the Wind and SOHO missions.

  19. The Spectral Evolution of Gamma-Ray Bursts

    NASA Technical Reports Server (NTRS)

    Band, David L.

    1999-01-01

    The proposed project was a continuation of our work on the spectral evolution of gamma-ray bursts begun when the Co-I on this proposal. Lyle Ford, was my graduate student. In the proposal we discussed two projects. The first was finishing and publishing the last chapter of Professor Ford's thesis. In this research effort we looked for correlations in the energies of pairs of counts recorded by the BATSE Spectroscopy Detectors within a short time of each other. A greater correlation within a short time would indicate that the observed broadband spectrum is really composed of narrowband spectral components which last for a short time and which rapidly sum to the observed spectrum. We did not find any evidence for such narrowband emission, and are setting limits on its presence. Professor Ford is revising the last chapter of his thesis for publication with my participation. The second project was a continuation of my study of the cross-correlations between the gamma-ray burst lightcurves in different energy bands. I published a first study with this technique (1997. Ap.J., 486, 928) which showed that "hard-to-soft" spectral evolution is prevalent both within and between the bursts' intensity spikes. I proposed to continue developing this technique. However, I have been somewhat disillusioned about using this methodology quantitatively since it averages the spectral evolution on a given timescale over the entire burst. Nonetheless, I have been applying the technique to new bursts which are scientifically interesting for other reasons. Attached I include the cross-correlations for the burst GRB 990123, the burst during which ROTSE discovered an optical transient. The solid curve is the autocorrelatl'on of BATSE's channel 3 (100-300 keV), while the dashed, dot-dashed and 3 dots-dashed curves are the crosscorrelations of channel 3 with channels 1 (25-50 keV), 2 (50-100 keV), and 4 (300-2000 keV). The order of, and separation between, the curves on the positive lag side

  20. Search for $\\Theta^{++}$ Pentaquarks in the Exclusive Reaction $\\gamma p\\to K^+K^-p$

    SciTech Connect

    V. Kubarovsky; Marco Battaglieri; Raffaella De Vita; John Goett; Lei Guo; Gordon Mutchler; Paul Stoler; Dennis Weygand; Pawel Ambrozewicz; Marco Anghinolfi; Gegham Asryan; Harutyun AVAKIAN; Harutyun Avakian; H. Bagdasaryan; Nathan Baillie; Jacques Ball; Nathan Baltzell; V. Batourine; Ivan Bedlinski; Ivan Bedlinskiy; Matthew Bellis; Nawal Benmouna; Barry Berman; Angela Biselli; Sylvain Bouchigny; Sergey Boyarinov; Robert Bradford; Derek Branford; William Briscoe; William Brooks; Stephen Bueltmann; Volker Burkert; Cornel Butuceanu; John Calarco; Sharon Careccia; Daniel Carman; Shifeng Chen; Eric Clinton; Philip Cole; Patrick Collins; Philip Coltharp; Donald Crabb; Hall Crannell; Volker Crede; John Cummings; Rita De Masi; Daniel Dale; Enzo De Sanctis; Pavel Degtiarenko; Alexandre Deur; Kahanawita Dharmawardane; Chaden Djalali; Gail Dodge; Joseph Donnelly; David Doughty; Michael Dugger; Oleksandr Dzyubak; Hovanes Egiyan; Kim Egiyan; Latifa Elouadrhiri; Paul Eugenio; Gleb Fedotov; Herbert Funsten; Marianna Gabrielyan; Liping Gan; Michel Garcon; Ashot Gasparian; Gagik Gavalian; Gerard Gilfoyle; Kevin Giovanetti; Francois-Xavier Girod; Oleksandr Glamazdin; John Goetz; Evgueni Golovatch; Atilla Gonenc; Christopher Gordon; Ralf Gothe; Keith Griffioen; Michel Guidal; Nevzat Guler; Vardan Gyurjyan; Cynthia Hadjidakis; Kawtar Hafidi; Rafael Hakobyan; John Hardie; F. Hersman; Kenneth Hicks; Ishaq Hleiqawi; Maurik Holtrop; Charles Hyde-Wright; Yordanka Ilieva; David Ireland; Boris Ishkhanov; Eugeny Isupov; Mark Ito; David Jenkins; Hyon-Suk Jo; Kyungseon Joo; Henry Juengst; James Kellie; Mahbubul Khandaker; Wooyoung Kim; Franz Klein; Friedrich Klein; Alexei Klimenko; Mikhail Kossov; Laird Kramer; Joachim Kuhn; Sebastian Kuhn; Sergey Kuleshov; Jeff Lachniet; Jean Laget; Jorn Langheinrich; David Lawrence; Tsung-shung Lee; Ji Li; Kenneth Livingston; Hai-jiang Lu; Marion MacCormick; Nikolai Markov; Bryan McKinnon; Bernhard Mecking; Joseph Melone; Mac Mestayer; Curtis Meyer; Tsutomu Mibe; Konstantin Mikhaylov; Ralph Minehart; Marco Mirazita; Rory Miskimen; Vasiliy Mochalov; Viktor Mokeev; Ludyvine Morand; Steven Morrow; Maryam Moteabbed; Pawel Nadel-Turonski; Itaru Nakagawa; Rakhsha Nasseripour; Silvia Niccolai; Gabriel Niculescu; Maria-Ioana Niculescu; Bogdan Niczyporuk; Megh Niroula; Rustam Niyazov; Mina Nozar; Mikhail Osipenko; Alexander Ostrovidov; Kijun Park; Evgueni Pasyuk; Craig Paterson; Joshua Pierce; Nikolay Pivnyuk; Dinko Pocanic; Oleg Pogorelko; Sergey Pozdnyakov; John Price; Yelena Prok; Dan Protopopescu; Brian Raue; Gregory Riccardi; Giovanni Ricco; Marco Ripani; Barry Ritchie; Federico Ronchetti; Guenther Rosner; Patrizia Rossi; Franck Sabatie; Carlos Salgado; Joseph Santoro; Vladimir Sapunenko; Reinhard Schumacher; Vladimir Serov; Youri Sharabian; Nikolay Shvedunov; Elton Smith; Lee Smith; Daniel Sober; Aleksey Stavinskiy; Samuel Stepanyan; Stepan Stepanyan; Burnham Stokes; Igor Strakovski; Steffen Strauch; Mauro Taiuti; David Tedeschi; Aram Teymurazyan; Ulrike Thoma; Avtandil Tkabladze; Svyatoslav Tkachenko; Luminita Todor; Clarisse Tur; Maurizio Ungaro; Michael Vineyard; Alexander Vlassov; Lawrence Weinstein; Michael Williams; Elliott Wolin; Michael Wood; Amrit Yegneswaran; Lorenzo Zana; Jixie Zhang; Bo Zhao

    2006-04-28

    The reaction {gamma}p {yields} K{sup +}K{sup -}p was studied at Jefferson Lab with photon energies from 1.8 to 3.8 GeV using a tagged photon beam. The goal was to search for a {Theta}{sup ++} pentaquark, a narrow doubly charged baryon state having strangeness S = +1 and isospin I = 1, in the pK{sup +} invariant mass spectrum. No statistically significant evidence of a {Theta}{sup ++} was found. Upper limits on the total and differential production cross section for the reaction {gamma}p {yields} K{sup -}{Theta}{sup ++} were obtained in the mass range from 1.5 to 2.0 GeV/c{sup 2}, with an upper limit of about 0.15 nb, 95% C.L. for a narrow resonance with a mass M{sub {Theta}{sup ++}} = 1.54 GeV/c{sup 2}. This result places a very stringent upper limit on the {Theta}{sup ++} width.

  1. Event-related delta and theta synchronization during explicit and implicit emotion processing.

    PubMed

    Knyazev, G G; Slobodskoj-Plusnin, J Y; Bocharov, A V

    2009-12-29

    Emotion information processing may occur in two modes which are differently represented in conscious awareness. Fast online processing involves coarse-grained analysis of salient features, and is not represented in conscious awareness; offline processing takes hundreds of milliseconds to generate fine-grained analysis, and is represented in conscious awareness. These processing modes may be studied using event-related electroencephalogram theta and delta synchronization as a marker of emotion processing. Two experiments were conducted, which differed on the mode of emotional information presentation. In the explicit mode subjects were explicitly instructed to evaluate the emotional content of presented stimuli; in the implicit mode they performed a gender discrimination task. Firstly, we show that in both experiments theta and delta synchronization is stronger upon presentation of "emotional" than "neutral" stimuli, and in subjects who are more sensitive, or experience higher emotional involvement than in less sensitive or detached subjects. Secondly, we show that in the implicit mode theta and delta synchronization is more pronounced in an early (before 250 ms post-stimulus) processing stage, whereas in the explicit mode it is more pronounced in a later processing stage. Source localization analysis showed that implicit processing of angry and happy (relative to neutral) faces is associated with higher early (before 250 ms) theta synchronization in the right parietal cortex and the right insula, respectively. Explicit processing of angry and happy faces is associated with higher late (after 250 ms) theta synchronization in the left temporal lobe and bilateral prefrontal cortex, respectively. PMID:19796666

  2. Coherent theta-band EEG activity predicts item-context binding during encoding.

    PubMed

    Summerfield, Christopher; Mangels, Jennifer A

    2005-02-01

    Episodic memories consist of semantic information coupled with a rich array of contextual detail. Here, we investigate the neural processes by which information about the sensory context of a learning event is "bound" to the semantic representation of the to-be-encoded item. We present evidence that item-context binding during encoding is mediated by frontoposterior electroencephalographic (EEG) phase locking within and between hemispheres in the theta (4-8 Hz) band. During a task in which subjects encoded words in different font colors, later memory for the word was associated with sustained frontal theta activity and frontoposterior theta-band coherence, primarily within the left hemisphere. When the word-color association was later successfully retrieved, however, neurons synchronized their theta-band responses bilaterally in a more sustained fashion, particularly during the latter part of the stimulus epoch (>800 ms). Our results confirm the importance of functional coupling between frontal and posterior regions for successful encoding. One interpretation of these data is hemispheric contributions to item and context encoding may be asymmetric, with left hemisphere coherence facilitating semantic processing of an item and right hemisphere coherence facilitating processing of sensory context. Theta-band coherence may be an important mechanism by which brain networks exchange information during learning. PMID:15652304

  3. Monte Carlo simulation studies of ring polymers at athermal and theta conditions

    NASA Astrophysics Data System (ADS)

    Fuereder, Ingo; Zifferer, Gerhard

    2011-11-01

    By use of an intramolecular criterion, i.e., the direct proportionality between mean square dimension and chain length, theta conditions for linear chains and ring shaped polymers are evaluated for several types of cubic lattice chains (simple cubic, body centered cubic, and face centered cubic). The properties of the rings are evaluated for the same thermodynamic conditions under which they are prepared thus allowing for a natural amount of knots which have been identified by use of Alexander polynomials. For the limit of infinite chain lengths the same theta parameter is found for linear chains and rings. On the contrary, a significant theta point depression occurs due to an additional excluded volume effect if unknots are exclusively regarded. Parameters characteristic of the shape of rings and chains under theta conditions extrapolated to infinite chain length fairly well coincide with respective data for random walks. Mean square dimensions (characteristic of the size) of theta systems are slightly in excess as compared to nonreversal random walks due to the necessity of avoiding overlaps on a local scale. Furthermore athermal systems are studied as well for comparison; mean square dimensions are described by use of scaling relations with proper short chain corrections, shape parameters are given in the limit of infinite chain length.

  4. Mathematically gifted adolescents mobilize enhanced workspace configuration of theta cortical network during deductive reasoning.

    PubMed

    Zhang, L; Gan, J Q; Wang, H

    2015-03-19

    Previous studies have established the importance of the fronto-parietal brain network in the information processing of reasoning. At the level of cortical source analysis, this eletroencepalogram (EEG) study investigates the functional reorganization of the theta-band (4-8Hz) neurocognitive network of mathematically gifted adolescents during deductive reasoning. Depending on the dense increase of long-range phase synchronizations in the reasoning process, math-gifted adolescents show more significant adaptive reorganization and enhanced "workspace" configuration in the theta network as compared with average-ability control subjects. The salient areas are mainly located in the anterior cortical vertices of the fronto-parietal network. Further correlation analyses have shown that the enhanced workspace configuration with respect to the global topological metrics of the theta network in math-gifted subjects is correlated with the intensive frontal midline theta (fm theta) response that is related to strong neural effort for cognitive events. These results suggest that by investing more cognitive resources math-gifted adolescents temporally mobilize an enhanced task-related global neuronal workspace, which is manifested as a highly integrated fronto-parietal information processing network during the reasoning process. PMID:25595993

  5. Modulation of theta phase synchronization in the human electroencephalogram during a recognition memory task.

    PubMed

    Kim, Sung-Phil; Kang, Jae-Hwan; Choe, Seong-Hyun; Jeong, Ji Woon; Kim, Hyun Taek; Yun, Kyongsik; Jeong, Jaeseung; Lee, Seung-Hwan

    2012-08-01

    To the extent that recognition memory relies on interactions among widely distributed neural assemblies across the brain, phase synchronization between brain rhythms may play an important role in meditating those interactions. As the theta rhythm is known to modulate in power during the recognition memory process, we aimed to determine how the phase synchronization of the theta rhythms across the brain changes with recognition memory. Fourteen human participants performed a visual object recognition task in a virtual reality environment. Electroencephalograms were recorded from the scalp of the participants while they either recognized objects that had been presented previously or identified new objects. From the electroencephalogram recordings, we analyzed the phase-locking value of the theta rhythms, which indicates the degree of phase synchronization. We found that the overall phase-locking value recorded during the recognition of previously viewed objects was greater than that recorded during the identification of new objects. Specifically, the theta rhythms became strongly synchronized between the frontal and the left parietal areas during the recognition of previously viewed objects. These results suggest that the recognition memory process may involve an interaction between the frontal and the left parietal cortical regions mediated by theta phase synchronization. PMID:22610314

  6. The effects of alpha/theta neurofeedback on personality and mood.

    PubMed

    Raymond, Joshua; Varney, Carolyn; Parkinson, Lesley A; Gruzelier, John H

    2005-05-01

    Alpha/theta neurofeedback has been shown to be successful both in treating addictions and in enhancing artistry in music students. How its effects are mediated are not yet clear. The present study aimed to test the hypothesis that alpha/theta neurofeedback works inter alia by normalising extreme personality and raising feelings of well being. 12 participants with high scores for Withdrawal (as measured by the PSQ) were given either alpha/theta neurofeedback or mock feedback and their personality and mood were assessed. Withdrawal scores on the PSQ-80 were not found to change in either group but significant effects were found for the Profile Of Mood States (POMS), with real feedback producing higher overall scores than mock feedback (P = 0.056). Real feedback caused participants to feel significantly more energetic (P < 0.01) than did mock feedback. Sessions of real feedback made participants feel more composed (P < 0.01), agreeable (P < 0.01), elevated (P < 0.01) and confident (P < 0.05), whilst sessions of mock feedback made participants feel more tired (P < 0.05), yet composed (P < 0.01). These findings suggest that, whilst 9 sessions of alpha/theta neurofeedback was insufficient to change personality, improvements in mood may provide a partial explanation for the efficacy of alpha/theta neurofeedback. PMID:15820636

  7. Hippocampal Theta Modulation of Neocortical Spike Times and Gamma Rhythm: A Biophysical Model Study

    PubMed Central

    Spaak, Eelke; Zeitler, Magteld; Gielen, Stan

    2012-01-01

    The hippocampal theta and neocortical gamma rhythms are two prominent examples of oscillatory neuronal activity. The hippocampus has often been hypothesized to influence neocortical networks by its theta rhythm, and, recently, evidence for such a direct influence has been found. We examined a possible mechanism for this influence by means of a biophysical model study using conductance-based model neurons. We found, in agreement with previous studies, that networks of fast-spiking GABA -ergic interneurons, coupled with shunting inhibition, synchronize their spike activity at a gamma frequency and are able to impose this rhythm on a network of pyramidal cells to which they are coupled. When our model was supplied with hippocampal theta-modulated input fibres, the theta rhythm biased the spike timings of both the fast-spiking and pyramidal cells. Furthermore, both the amplitude and frequency of local field potential gamma oscillations were influenced by the phase of the theta rhythm. We show that the fast-spiking cells, not pyramidal cells, are essential for this latter phenomenon, thus highlighting their crucial role in the interplay between hippocampus and neocortex. PMID:23056213

  8. Gamma-Ray Bursts 2012 Conference

    NASA Astrophysics Data System (ADS)

    It is a pleasure to announce the next combined Fermi/Swift GRB conference covering recent advances in all aspects of gamma-ray burst observations and theory. This conference will be held in Munich, Germany, on 7-11 May 2012, and follows similar previous combined Fermi/Swift meetings in Huntsville (Oct. 2008) and Annapolis (Nov. 2010). Gamma-ray bursts are the most energetic explosions in the Universe and are thought to be the birth signatures of black holes. This is an exciting time in the GRB field as various missions provide a wealth of new data on this still puzzling phenomenon. The Fermi misson provides unprecedented spectral coverage over 7 decades in energy, and among others discovered new spectral components which challenge our standard picture of the prompt emission. The Swift mission continuous to swiftly monitor and locate GRBs in multiple wavebands, providing the basis for all ground-based follow-up observations towards redshift measurements and afterglow and host property investigations. AGILE, INTEGRAL, Suzaku and Konus continue to provide crucial information on GRB properties, and the MAXI mission provides an all sky X-ray monitoring of transients. There is also growing capability for follow-up observations by ground-based telescopes at basically all wavelengths. Besides the classical optical/infrared/radio observations, searches are underway for TeV emission, neutrinos and gravitational waves. Moreover, new experiments are expected to have returned first data, among others POGO on the prompt polarization properties, UFFO on very early optical emission, or ALMA on sub-millimeter properties. And last but not least, the unexpected is bringing us child-like astonishments at least once per year with a "GRB-trigger" which turns out to be not related to GRBs. Complementing all these new observational results, a huge theoretical effort is underway to understand the GRB phenomenon and keep up with the constant new puzzles coming from the data. This conference

  9. Optical search for gamma-ray bursts

    NASA Astrophysics Data System (ADS)

    Hudec, R.; Ceplecha, Z.; Ehrlich, J.; Borovicka, J.; Hurley, K.; Ateia, J.-L.; Barat, C.; Niel, M.; Vedrenne, G.; Estulin, I. V.

    Preliminary results from an optical search for light pulses associated with gamma-ray bursts by means of the Czechoslovak Fireball Network plate collection at the Ondřejov Observatory are given. Optical monitoring represents more than 7700 hours, but no real optical counterpart was found. Problems associated with the optical search for gamma-ray bursts are discussed.

  10. Physics issues of gamma ray burst emissions

    NASA Technical Reports Server (NTRS)

    Liang, Edison

    1987-01-01

    The critical physics issues in the interpretation of gamma-ray-burst spectra are reviewed. An attempt is made to define the emission-region parameter space satisfying the maximum number of observational and theoretical constraints. Also discussed are the physical mechanisms responsible for the bursts that are most consistent with the above parameter space.

  11. The Case of the Disappearing Spindle Burst.

    PubMed

    Tiriac, Alexandre; Blumberg, Mark S

    2016-01-01

    Sleep spindles are brief cortical oscillations at 10-15 Hz that occur predominantly during non-REM (quiet) sleep in adult mammals and are thought to contribute to learning and memory. Spindle bursts are phenomenologically similar to sleep spindles, but they occur predominantly in early infancy and are triggered by peripheral sensory activity (e.g., by retinal waves); accordingly, spindle bursts are thought to organize neural networks in the developing brain and establish functional links with the sensory periphery. Whereas the spontaneous retinal waves that trigger spindle bursts in visual cortex are a transient feature of early development, the myoclonic twitches that drive spindle bursts in sensorimotor cortex persist into adulthood. Moreover, twitches-and their associated spindle bursts-occur exclusively during REM (active) sleep. Curiously, despite the persistence of twitching into adulthood, twitch-related spindle bursts have not been reported in adult sensorimotor cortex. This raises the question of whether such spindle burst activity does not occur in adulthood or, alternatively, occurs but has yet to be discovered. If twitch-related spindle bursts do occur in adults, they could contribute to the calibration, maintenance, and repair of sensorimotor systems. PMID:27119028

  12. Observations of short gamma-ray bursts.

    PubMed

    Fox, Derek B; Roming, Peter W A

    2007-05-15

    We review recent observations of short-hard gamma-ray bursts and their afterglows. The launch and successful ongoing operations of the Swift satellite, along with several localizations from the High-Energy Transient Explorer mission, have provoked a revolution in short-burst studies: first, by quickly providing high-quality positions to observers; and second, via rapid and sustained observations from the Swift satellite itself. We make a complete accounting of Swift-era short-burst localizations and proposed host galaxies, and discuss the implications of these observations for the distances, energetics and environments of short bursts, and the nature of their progenitors. We then review the physical modelling of short-burst afterglows: while the simplest afterglow models are inadequate to explain the observations, there have been several notable successes. Finally, we address the case of an unusual burst that threatens to upset the simple picture in which long bursts are due to the deaths of massive stars, and short bursts to compact-object merger events. PMID:17293336

  13. Forecasting SEP Events with Solar Radio Bursts

    NASA Astrophysics Data System (ADS)

    Coffey, J. R.; Winter, L. M.

    2015-12-01

    Solar Energetic Particle (SEP) events from the Sun occur when particles associated with solar bursts like CMEs and flares are propelled into space. These events can cause substantial damage to objects in their paths, like satellites, by penetrating into them and causing radiation. In a related recent study a method was devised to forecast the occurrence of an SEP event using properties of the type II and type III radio bursts measured from WIND/WAVES (Winter & Ledbetter 2015). This study analyzed 27 SEP events from 2010 to 2013. We now present an analysis of type II and type III bursts in solar cycle 23, associated with the 63 SEP events from 2000-2003. Parameters including the peak flux of type II bursts, integral flux of type II and II bursts, and the duration of type III bursts are used to create a radio index. This index is used to predict whether or not an SEP event will occur. Cycle 23 was more active than cycle 24, with significantly more radio bursts and SEP events. Our results show that the radio index successfully predicts the occurrence of SEPs for the events in the more active solar cycle 23. We also find that, in general, the higher the radio index the higher the peak proton flux will be following the burst.

  14. ADP study of gamma-ray bursts

    NASA Astrophysics Data System (ADS)

    Lamb, Don Q.; Wang, John C. L.; Heuter, Geoffry J.; Graziani, Carlo; Loredo, Tom; Freeman, Peter

    This grant supported study of cyclotron scattering lines in the spectra of gamma-ray bursts through analysis of Ginga and HEAO-1 archival data, and modeling of the results in terms of radiation transfer calculations of cyclotron scattering in a strong magnetic field. A Monte Carlo radiation transfer code with which we are able to calculate the expected properties of cyclotron scattering lines in the spectra of gamma-ray bursts was developed. The extensive software necessary in order to carry out fits of these model spectra to gamma-ray burst spectral data, including folding of the model spectra through the detector response functions was also developed. Fits to Ginga satellite data on burst GB880205 were completed and fits to Ginga satellite data on burst GB870303 are being carried out. These fits have allowed us to test our software, as well as to garner new scientific results. This work has demonstrated that cyclotron resonant scattering successfully accounts for the locations, strengths, and widths of the observed line features in GB870303 and GB880205. The success of the model provides compelling evidence that these gamma-ray bursts come from strongly magnetic neutron stars and are galactic in origin, resolving longstanding controversies about the nature and distance of the burst sources. These results were reported in two papers which are in press in the proceedings of the Taos Workshop on Gamma-Ray Bursts, and in a paper submitted for publication.

  15. ADP study of gamma-ray bursts

    NASA Technical Reports Server (NTRS)

    Lamb, Don Q.; Wang, John C. L.; Heuter, Geoffry J.; Graziani, Carlo; Loredo, Tom; Freeman, Peter

    1991-01-01

    This grant supported study of cyclotron scattering lines in the spectra of gamma-ray bursts through analysis of Ginga and HEAO-1 archival data, and modeling of the results in terms of radiation transfer calculations of cyclotron scattering in a strong magnetic field. A Monte Carlo radiation transfer code with which we are able to calculate the expected properties of cyclotron scattering lines in the spectra of gamma-ray bursts was developed. The extensive software necessary in order to carry out fits of these model spectra to gamma-ray burst spectral data, including folding of the model spectra through the detector response functions was also developed. Fits to Ginga satellite data on burst GB880205 were completed and fits to Ginga satellite data on burst GB870303 are being carried out. These fits have allowed us to test our software, as well as to garner new scientific results. This work has demonstrated that cyclotron resonant scattering successfully accounts for the locations, strengths, and widths of the observed line features in GB870303 and GB880205. The success of the model provides compelling evidence that these gamma-ray bursts come from strongly magnetic neutron stars and are galactic in origin, resolving longstanding controversies about the nature and distance of the burst sources. These results were reported in two papers which are in press in the proceedings of the Taos Workshop on Gamma-Ray Bursts, and in a paper submitted for publication.

  16. Burst suppression probability algorithms: state-space methods for tracking EEG burst suppression

    NASA Astrophysics Data System (ADS)

    Chemali, Jessica; Ching, ShiNung; Purdon, Patrick L.; Solt, Ken; Brown, Emery N.

    2013-10-01

    Objective. Burst suppression is an electroencephalogram pattern in which bursts of electrical activity alternate with an isoelectric state. This pattern is commonly seen in states of severely reduced brain activity such as profound general anesthesia, anoxic brain injuries, hypothermia and certain developmental disorders. Devising accurate, reliable ways to quantify burst suppression is an important clinical and research problem. Although thresholding and segmentation algorithms readily identify burst suppression periods, analysis algorithms require long intervals of data to characterize burst suppression at a given time and provide no framework for statistical inference. Approach. We introduce the concept of the burst suppression probability (BSP) to define the brain's instantaneous propensity of being in the suppressed state. To conduct dynamic analyses of burst suppression we propose a state-space model in which the observation process is a binomial model and the state equation is a Gaussian random walk. We estimate the model using an approximate expectation maximization algorithm and illustrate its application in the analysis of rodent burst suppression recordings under general anesthesia and a patient during induction of controlled hypothermia. Main result. The BSP algorithms track burst suppression on a second-to-second time scale, and make possible formal statistical comparisons of burst suppression at different times. Significance. The state-space approach suggests a principled and informative way to analyze burst suppression that can be used to monitor, and eventually to control, the brain states of patients in the operating room and in the intensive care unit.

  17. Backstreaming Electrons Associated With Solar Electron Bursts

    NASA Astrophysics Data System (ADS)

    Skoug, R. M.; Steinberg, J. T.; de Koning, C. A.; Gosling, J. T.; McComas, D. J.

    2007-12-01

    Solar electron bursts are frequently observed in the ACE/SWEPAM suprathermal electron measurements at energies below 1.4 keV. A significant fraction of such events show backscattered electrons, beginning after the burst onset and traveling back towards the Sun along the magnetic field direction. Such backscattered particles imply a scattering mechanism beyond the spacecraft location. Some bursts also show backstreaming conic distributions, implying mirroring at magnetic field enhancements beyond the spacecraft. Here we present a study of these backstreaming particles during solar electron events. We examine the occurrence of backstreaming electrons and their relationship to other burst characteristics such as pitch angle width, duration, and energy range. We also investigate the time delay between burst onset and the appearance of backscattered electrons, including energy and pitch-angle dispersion. We examine the pitch angle distribution and energy dependence of backstreaming electrons, and consider possible origins of these electron distributions and their relationship to solar wind structure beyond the spacecraft.

  18. Gamma Ray Bursts: a 1983 Overview

    NASA Technical Reports Server (NTRS)

    Cline, T. L.

    1983-01-01

    Gamma ray burst observations are reviewed with mention of new gamma-ray and optical transient measurements and with discussions of the controversial, contradictory and unresolved issues that have recently emerged: burst spectra appear to fluctuate in time as rapidly as they are measured, implying that any one spectrum may be incorrect; energy spectra can be obligingly fitted to practically any desired shape, implying, in effect, that no objective spectral resolution exists at all; burst fluxes and temporal quantities, including the total event energy, are characterized very differently with differing instruments, implying that even elementary knowledge of their properties is instrumentally subjective; finally, the log N-log S determinations are deficient in the weak bursts, while there is no detection of a source direction anisotropy, implying that Ptolemy was right or that burst source distance estimates are basically guesswork. These issues may remain unsolved until vastly improved instruments are flown.

  19. Gamma ray bursts: a 1983 overview

    SciTech Connect

    Cline, T.L.

    1983-10-01

    Gamma ray burst observations are reviewed with mention of new gamma-ray and optical transient measurements and with discussions of the controversial, contradictory and unresolved issues that have recently emerged: burst spectra appear to fluctuate in time as rapidly as they are measured, implying that any one spectrum may be incorrect. Energy spectra can be obligingly fitted to practically any desired shape, implying, in effect, that no objective spectral resolution exists at all. Burst fluxes and temporal quantities, including the total event energy, are characterized very differently with differing instruments, implying that even elementary knowledge of their properties is instrumentally subjective. Finally, the log N-log S determinations are deficient in the weak bursts, while there is no detection of a source direction anisotropy, implying that Ptolemy was right or that burst source distance estimates are basically guesswork. These issues may remain unsolved until vastly improved instruments are flown.

  20. Gamma and Beta Bursts Underlie Working Memory.

    PubMed

    Lundqvist, Mikael; Rose, Jonas; Herman, Pawel; Brincat, Scott L; Buschman, Timothy J; Miller, Earl K

    2016-04-01

    Working memory is thought to result from sustained neuron spiking. However, computational models suggest complex dynamics with discrete oscillatory bursts. We analyzed local field potential (LFP) and spiking from the prefrontal cortex (PFC) of monkeys performing a working memory task. There were brief bursts of narrow-band gamma oscillations (45-100 Hz), varied in time and frequency, accompanying encoding and re-activation of sensory information. They appeared at a minority of recording sites associated with spiking reflecting the to-be-remembered items. Beta oscillations (20-35 Hz) also occurred in brief, variable bursts but reflected a default state interrupted by encoding and decoding. Only activity of neurons reflecting encoding/decoding correlated with changes in gamma burst rate. Thus, gamma bursts could gate access to, and prevent sensory interference with, working memory. This supports the hypothesis that working memory is manifested by discrete oscillatory dynamics and spiking, not sustained activity. PMID:26996084

  1. Altered Theta Oscillations and Aberrant Cortical Excitatory Activity in the 5XFAD Model of Alzheimer's Disease

    PubMed Central

    Siwek, Magdalena Elisabeth; Müller, Ralf; Henseler, Christina; Trog, Astrid; Lundt, Andreas; Wormuth, Carola; Broich, Karl; Weiergräber, Marco; Papazoglou, Anna

    2015-01-01

    Alzheimer's disease (AD) is an age-related neurodegenerative disorder characterized by impairment of memory function. The 5XFAD mouse model was analyzed and compared with wild-type (WT) controls for aberrant cortical excitability and hippocampal theta oscillations by using simultaneous video-electroencephalogram (EEG) monitoring. Seizure staging revealed that 5XFAD mice exhibited cortical hyperexcitability whereas controls did not. In addition, 5XFAD mice displayed a significant increase in hippocampal theta activity from the light to dark phase during nonmotor activity. We also observed a reduction in mean theta frequency in 5XFAD mice compared to controls that was again most prominent during nonmotor activity. Transcriptome analysis of hippocampal probes and subsequent qPCR validation revealed an upregulation of Plcd4 that might be indicative of enhanced muscarinic signalling. Our results suggest that 5XFAD mice exhibit altered cortical excitability, hippocampal dysrhythmicity, and potential changes in muscarinic signaling. PMID:25922768

  2. Event-related theta activity reflects memory processes in pronoun resolution.

    PubMed

    Heine, Angela; Tamm, Sascha; Hofmann, Markus; Bösel, Rainer M; Jacobs, Arthur M

    2006-12-18

    A recent eye-tracking study reported a reverse effect of a noun's lexical frequency in the context of the resolution of coreferring pronouns. Investigating the neurophysiological basis of this effect, the present electroencephalographic study found differential patterns in theta activation when participants read pronouns referring to nouns of different frequency classes. Evoked theta power after pronoun onset increased with the frequency of the critical noun. This finding suggests differential load on memory resources depending on the nouns' frequency. Elevated attention promoting memory encoding for low-frequency words is assumed to facilitate the resolution of pronouns. Location of sources of differential theta activity in the parahippocampal region is accounted for by its role in an association network that mediates memory processes. PMID:17179854

  3. Frontal Midline Theta Reflects Anxiety and Cognitive Control: Meta-Analytic Evidence

    PubMed Central

    Cavanagh, James F.; Shackman, Alexander J.

    2014-01-01

    Evidence from imaging and anatomical studies suggests that the midcingulate cortex (MCC) is a dynamic hub lying at the interface of affect and cognition. In particular, this neural system appears to integrate information about conflict and punishment in order to optimize behavior in the face of action-outcome uncertainty. In a series of meta-analyses, we show how recent human electrophysiological research provides compelling evidence that frontal-midline theta signals reflecting MCC activity are moderated by anxiety and predict adaptive behavioral adjustments. These findings underscore the importance of frontal theta activity to a broad spectrum of control operations. We argue that frontal-midline theta provides a neurophysiologically plausible mechanism for optimally adjusting behavior to uncertainty, a hallmark of situations that elicit anxiety and demand cognitive control. These observations compel a new perspective on the mechanisms guiding motivated learning and behavior and provide a framework for understanding the role of the MCC in temperament and psychopathology. PMID:24787485

  4. Frontal midline theta reflects anxiety and cognitive control: meta-analytic evidence.

    PubMed

    Cavanagh, James F; Shackman, Alexander J

    2015-01-01

    Evidence from imaging and anatomical studies suggests that the midcingulate cortex (MCC) is a dynamic hub lying at the interface of affect and cognition. In particular, this neural system appears to integrate information about conflict and punishment in order to optimize behavior in the face of action-outcome uncertainty. In a series of meta-analyses, we show how recent human electrophysiological research provides compelling evidence that frontal-midline theta signals reflecting MCC activity are moderated by anxiety and predict adaptive behavioral adjustments. These findings underscore the importance of frontal theta activity to a broad spectrum of control operations. We argue that frontal-midline theta provides a neurophysiologically plausible mechanism for optimally adjusting behavior to uncertainty, a hallmark of situations that elicit anxiety and demand cognitive control. These observations compel a new perspective on the mechanisms guiding motivated learning and behavior and provide a framework for understanding the role of the MCC in temperament and psychopathology. PMID:24787485

  5. Cueing vocabulary during sleep increases theta activity during later recognition testing.

    PubMed

    Schreiner, Thomas; Göldi, Maurice; Rasch, Björn

    2015-11-01

    Neural oscillations in the theta band have repeatedly been implicated in successful memory encoding and retrieval. Several recent studies have shown that memory retrieval can be facilitated by reactivating memories during their consolidation during sleep. However, it is still unknown whether reactivation during sleep also enhances subsequent retrieval-related neural oscillations. We have recently demonstrated that foreign vocabulary cues presented during sleep improve later recall of the associated translations. Here, we examined the effect of cueing foreign vocabulary during sleep on oscillatory activity during subsequent recognition testing after sleep. We show that those words that were replayed during sleep after learning (cued words) elicited stronger centroparietal theta activity during recognition as compared to noncued words. The reactivation-induced increase in theta oscillations during later recognition testing might reflect a strengthening of individual memory traces and the integration of the newly learned words into the mental lexicon by cueing during sleep. PMID:26235609

  6. Theta coupling between V4 and prefrontal cortex predicts visual short-term memory performance.

    PubMed

    Liebe, Stefanie; Hoerzer, Gregor M; Logothetis, Nikos K; Rainer, Gregor

    2012-03-01

    Short-term memory requires communication between multiple brain regions that collectively mediate the encoding and maintenance of sensory information. It has been suggested that oscillatory synchronization underlies intercortical communication. Yet, whether and how distant cortical areas cooperate during visual memory remains elusive. We examined neural interactions between visual area V4 and the lateral prefrontal cortex using simultaneous local field potential (LFP) recordings and single-unit activity (SUA) in monkeys performing a visual short-term memory task. During the memory period, we observed enhanced between-area phase synchronization in theta frequencies (3-9 Hz) of LFPs together with elevated phase locking of SUA to theta oscillations across regions. In addition, we found that the strength of intercortical locking was predictive of the animals' behavioral performance. This suggests that theta-band synchronization coordinates action potential communication between V4 and prefrontal cortex that may contribute to the maintenance of visual short-term memories. PMID:22286175

  7. Patterns of theta oscillation reflect the neural basis of individual differences in epistemic motivation.

    PubMed

    Mussel, Patrick; Ulrich, Natalie; Allen, John J B; Osinsky, Roman; Hewig, Johannes

    2016-01-01

    Theta oscillations in the EEG have been shown to reflect ongoing cognitive processes related to mental effort. Here, we show that the pattern of theta oscillation in response to varying cognitive demands reflects stable individual differences in the personality trait epistemic motivation: Individuals with high levels of epistemic motivation recruit relatively more cognitive resources in response to situations possessing high, compared to low, cognitive demand; individuals with low levels do not show such a specific response. Our results provide direct evidence for the theory of the construct need for cognition and add to our understanding of the neural processes underlying theta oscillations. More generally, we provide an explanation how individual differences in personality traits might be represented on a neural level. PMID:27380648

  8. Patterns of theta oscillation reflect the neural basis of individual differences in epistemic motivation

    PubMed Central

    Mussel, Patrick; Ulrich, Natalie; Allen, John J. B.; Osinsky, Roman; Hewig, Johannes

    2016-01-01

    Theta oscillations in the EEG have been shown to reflect ongoing cognitive processes related to mental effort. Here, we show that the pattern of theta oscillation in response to varying cognitive demands reflects stable individual differences in the personality trait epistemic motivation: Individuals with high levels of epistemic motivation recruit relatively more cognitive resources in response to situations possessing high, compared to low, cognitive demand; individuals with low levels do not show such a specific response. Our results provide direct evidence for the theory of the construct need for cognition and add to our understanding of the neural processes underlying theta oscillations. More generally, we provide an explanation how individual differences in personality traits might be represented on a neural level. PMID:27380648

  9. Cloaked Gamma-Ray Bursts

    NASA Astrophysics Data System (ADS)

    Eichler, David

    2014-06-01

    It is suggested that many gamma-ray bursts (GRBs) are cloaked by an ultrarelativistic baryonic shell that has high optical depth when the photons are manufactured. Such a shell would not fully block photons reflected or emitted from its inner surface, because the radial velocity of the photons can be less than that of the shell. This avoids the standard problem associated with GRBs that the thermal component should be produced where the flow is still obscured by high optical depth. The radiation that escapes high optical depth obeys the Amati relation. Observational implications may include (1) anomalously high ratios of afterglow to prompt emission, such as may have been the case in the recently discovered PTF 11agg, and (2) ultrahigh-energy neutrino pulses that are non-coincident with detectable GRB. It is suggested that GRB 090510, a short, very hard GRB with very little afterglow, was an exposed GRB, in contrast to those cloaked by baryonic shells.

  10. Unthermalized plasma in bursts sources

    NASA Technical Reports Server (NTRS)

    Karakula, S.; Tkaczyk, W.

    1985-01-01

    The pair e(+)-e(-) annihilation phenomena in hot plasma was studied in order to evaluate the photon energy spectrum. The spectra of the broadening 0.511 MeV annihilation line was calculated in the case of unthermalized plasma, i.e., T sub e(-) does not equal T sub e(+). The energy spectra from annihilation process for unthermalized positrons are characterized by the presence of flat part for energies greater than 0.511 MeV. The flattening in the spectrum of annihilation unthermalized plasma is a strong indication that the observed features of the hard tailed spectrum of the gamma bursts can be well described by annihilation of hot positrons and cold electrons. It is proposed that the mechanism for the production of unthermalized positrons is associated with the charge separation in Eddington limited accretion onto a neutron star.

  11. CLOAKED GAMMA-RAY BURSTS

    SciTech Connect

    Eichler, David

    2014-06-01

    It is suggested that many gamma-ray bursts (GRBs) are cloaked by an ultrarelativistic baryonic shell that has high optical depth when the photons are manufactured. Such a shell would not fully block photons reflected or emitted from its inner surface, because the radial velocity of the photons can be less than that of the shell. This avoids the standard problem associated with GRBs that the thermal component should be produced where the flow is still obscured by high optical depth. The radiation that escapes high optical depth obeys the Amati relation. Observational implications may include (1) anomalously high ratios of afterglow to prompt emission, such as may have been the case in the recently discovered PTF 11agg, and (2) ultrahigh-energy neutrino pulses that are non-coincident with detectable GRB. It is suggested that GRB 090510, a short, very hard GRB with very little afterglow, was an exposed GRB, in contrast to those cloaked by baryonic shells.

  12. Spatiotemporal chaos from bursting dynamics

    SciTech Connect

    Berenstein, Igal; De Decker, Yannick

    2015-08-14

    In this paper, we study the emergence of spatiotemporal chaos from mixed-mode oscillations, by using an extended Oregonator model. We show that bursting dynamics consisting of fast/slow mixed mode oscillations along a single attractor can lead to spatiotemporal chaotic dynamics, although the spatially homogeneous solution is itself non-chaotic. This behavior is observed far from the Hopf bifurcation and takes the form of a spatiotemporal intermittency where the system locally alternates between the fast and the slow phases of the mixed mode oscillations. We expect this form of spatiotemporal chaos to be generic for models in which one or several slow variables are coupled to activator-inhibitor type of oscillators.

  13. Theta oscillations are sensitive to both early and late conflict processing stages: effects of alcohol intoxication.

    PubMed

    Kovacevic, Sanja; Azma, Sheeva; Irimia, Andrei; Sherfey, Jason; Halgren, Eric; Marinkovic, Ksenija

    2012-01-01

    Prior neuroimaging evidence indicates that decision conflict activates medial and lateral prefrontal and parietal cortices. Theoretical accounts of cognitive control highlight anterior cingulate cortex (ACC) as a central node in this network. However, a better understanding of the relative primacy and functional contributions of these areas to decision conflict requires insight into the neural dynamics of successive processing stages including conflict detection, response selection and execution. Moderate alcohol intoxication impairs cognitive control as it interferes with the ability to inhibit dominant, prepotent responses when they are no longer correct. To examine the effects of moderate intoxication on successive processing stages during cognitive control, spatio-temporal changes in total event-related theta power were measured during Stroop-induced conflict. Healthy social drinkers served as their own controls by participating in both alcohol (0.6 g/kg ethanol for men, 0.55 g/kg women) and placebo conditions in a counterbalanced design. Anatomically-constrained magnetoencephalography (aMEG) approach was applied to complex power spectra for theta (4-7 Hz) frequencies. The principal generator of event-related theta power to conflict was estimated to ACC, with contributions from fronto-parietal areas. The ACC was uniquely sensitive to conflict during both early conflict detection, and later response selection and execution stages. Alcohol attenuated theta power to conflict across successive processing stages, suggesting that alcohol-induced deficits in cognitive control may result from theta suppression in the executive network. Slower RTs were associated with attenuated theta power estimated to ACC, indicating that alcohol impairs motor preparation and execution subserved by the ACC. In addition to their relevance for the currently prevailing accounts of cognitive control, our results suggest that alcohol-induced impairment of top-down strategic processing

  14. Effects of subjective preference of colors on attention-related occipital theta oscillations.

    PubMed

    Kawasaki, Masahiro; Yamaguchi, Yoko

    2012-01-01

    Human daily behaviors are often affected by subjective preferences. Studies have shown that physical responses are affected by unconscious preferences before conscious decision making. Accordingly, attention-related neural activities could be influenced by unconscious preferences. However, few neurological data exist on the relationship between visual attention and subjective preference. To address this issue, we focused on lateralization during visual attention and investigated the effects of subjective color preferences on visual attention-related brain activities. We recorded electroencephalograph (EEG) data during a preference judgment task that required 19 participants to choose their preferred color from 2 colors simultaneously presented to the right and left hemifields. In addition, to identify oscillatory activity during visual attention, we conducted a control experiment in which the participants focused on either the right or the left color without stating their preference. The EEG results showed enhanced theta (4-6 Hz) and decreased alpha (10-12 Hz) activities in the right and left occipital electrodes when the participants focused on the color in the opposite hemifield. Occipital theta synchronizations also increased contralaterally to the hemifield to which the preferred color was presented, whereas the alpha desynchronizations showed no lateralization. The contralateral occipital theta activity lasted longer than the ipsilateral occipital theta activity. Interestingly, theta lateralization was observed even when the preferred color was presented to the unattended side in the control experiment, revealing the strength of the preference-related theta-modulation effect irrespective of visual attention. These results indicate that subjective preferences modulate visual attention-related brain activities. PMID:21820064

  15. NMR solution structure of the theta subunit of DNA polymerase III from Escherichia coli.

    PubMed Central

    Keniry, M. A.; Berthon, H. A.; Yang, J. Y.; Miles, C. S.; Dixon, N. E.

    2000-01-01

    The catalytic core of Escherichia coli DNA polymerase III contains three tightly associated subunits (alpha, epsilon, and theta). The theta subunit is the smallest, but the least understood of the three. As a first step in a program aimed at understanding its function, the structure of the theta subunit has been determined by triple-resonance multidimensional NMR spectroscopy. Although only a small protein, theta was difficult to assign fully because approximately one-third of the protein is unstructured, and some sections of the remaining structured parts undergo intermediate intramolecular exchange. The secondary structure was deduced from the characteristic nuclear Overhauser effect patterns, the 3J(HN alpha) coupling constants and the consensus chemical shift index. The C-terminal third of the protein, which has many charged and hydrophilic amino acid residues, has no well-defined secondary structure and exists in a highly dynamic state. The N-terminal two-thirds has three helical segments (Gln10-Asp19, Glu38-Glu43, and His47-Glu54), one short extended segment (Pro34-Ala37), and a long loop (Ala20-Glu29), of which part may undergo intermediate conformational exchange. Solution of the three-dimensional structure by NMR techniques revealed that the helices fold in such a way that the surface of theta is bipolar, with one face of the protein containing most of the acidic residues and the other face containing most of the long chain basic residues. Preliminary chemical shift mapping experiments with a domain of the epsilon subunit have identified a loop region (Ala20-Glu29) in theta as the site of association with epsilon. PMID:10794414

  16. Regional and inter-regional theta oscillation during episodic novelty processing.

    PubMed

    Lee, Gwan-Taek; Lee, Chany; Kim, Kyung Hwan; Jung, Ki-Young

    2014-10-01

    Recent event-related potential (ERP) and functional magnetic resonance imaging (fMRI) studies suggest that novelty processing may be involved in processes that recognize the meaning of a novel sound, during which widespread cortical regions including the right prefrontal cortex are engaged. However, it remains unclear how those cortical regions are functionally integrated during novelty processing. Because theta oscillation has been assumed to have a crucial role in memory operations, we examined local and inter-regional neural synchrony of theta band activity during novelty processing. Fifteen right-handed healthy university students participated in this study. Subjects performed an auditory novelty oddball task that consisted of the random sequence of three types of stimuli such as a target (1000Hz pure tone), novel (familiar environmental sounds such as dog bark, buzz, car crashing sound and so on), and standard sounds (950Hz pure tone). Event-related spectra perturbation (ERSP) and the phase-locking value (PLV) were measured from human scalp EEG during task. Non-parametric statistical tests were applied to test for significant differences between stimulus novelty and stimulus targets in ERSP and PLV. The novelty P3 showed significant higher amplitude and shorter latency compared with target P3 in frontocentral regions. Overall, theta activity was significantly higher in the novel stimuli compared with the target stimuli. Specifically, the difference in theta power between novel and target stimuli was most significant in the right frontal region. This right frontal theta activity was accompanied by phase synchronization with the left temporal region. Our results imply that theta phase synchronization between right frontal and left temporal regions underlie the retrieval of memory traces for unexpected but familiar sounds from long term memory in addition to working memory retrieval or novelty encoding. PMID:25014407

  17. Transient loss of plasma from a theta pinch having an initially reversed magnetic field

    SciTech Connect

    Heidrich, J. E.

    1981-01-01

    The results of an experimental study of the transient loss of plasma from a 25-cm-long theta pinch initially containing a reversed trapped magnetic field are presented. The plasma, amenable to MHD analyses, was a doubly ionized helium plasma characterized by an ion density N/sub i/ = 2 x 10/sup 16/ cm/sup -3/ and an ion temperature T/sub i/ = 15 eV at midcoil and by N/sub i/ = 0.5 x 10/sup 16/ cm/sup -3/ and T/sub i/ = 6 eV at a position 2.5 cm beyond the end of the theta coil.

  18. Sin/sup 2/theta/sub W/ and radiative corrections

    SciTech Connect

    Marciano, W.J.

    1986-01-01

    Precision measurements of sin/sup 2/theta/sub W/ and the effects of radiative corrections are surveyed. A world average sin/sup 2/theta/sub W/ = 0.229 +- 0.004 is obtained. Comparison of deep-inelastic ..nu../sub ..mu../N scattering and m/sub W/ or m/sub Z/ is shown to test the standard model at the quantum loop level and constrain new physics. Implications for grand unified theories are briefly discussed.

  19. TMS-induced theta phase synchrony reveals a bottom-up network in working memory.

    PubMed

    Miyauchi, Eri; Kitajo, Keiichi; Kawasaki, Masahiro

    2016-05-27

    Global theta phase synchronization between the frontal and sensory areas has been suggested to connect the relevant areas for executive processes of working memory (WM). However, little is known regarding network directionality (i.e. top-down or bottom-up) of this interaction. To address the issue, the present study conducted transcranial magnetic stimulation (TMS)-electroencephalography (EEG) experiment during WM tasks. Results showed that TMS-induced increases in theta phase synchronization were observed only when TMS was delivered to the sensory areas but not the frontal area. These findings suggest that network directionality represented in WM is bottom-up rather than top-down. PMID:27063284

  20. LINKING SHORT GAMMA-RAY BURSTS AND THEIR HOST GALAXIES

    SciTech Connect

    Rhoads, James E.

    2010-02-01

    The luminosities of short-duration gamma-ray burst (SGRB) host galaxies appear to be anticorrelated with both the isotropic equivalent gamma-ray energy and the gamma-ray luminosity of the explosions, based on a sample of 12 bursts with host galaxy redshifts and photometry. The correlation does depend on the correct identification of the GRB 050509b host, but is otherwise robust. In particular, simple observational selection effects only strengthen the statistical significance of this correlation, from approx95% to approx99%. The correlation may indicate that there are two physically distinct groups of SGRBs. If so, it requires that the more luminous class of explosions be associated with the younger class of progenitors. Alternatively, it could be due to a continuous distribution of burst and host properties, in which case it could be used as a crude SGRB distance indicator. As one possible explanation, we find that the effect of binary neutron star masses on inspiral time and energy reservoir produces a correlation of the appropriate sign, but does not automatically reproduce the correlation slope or the full range of SGRB energy scales. If confirmed by larger samples, this correlation will provide a valuable new constraint on SGRB progenitor models.

  1. THE BURST MODE OF ACCRETION IN PRIMORDIAL PROTOSTARS

    SciTech Connect

    Vorobyov, Eduard I.; DeSouza, Alexander L.; Basu, Shantanu E-mail: alexander.desouza@gmail.com

    2013-05-10

    We study the formation and long-term evolution of primordial protostellar disks harbored by first stars using numerical hydrodynamics simulations in the thin-disk limit. The initial conditions are specified by pre-stellar cores with distinct mass, angular momentum, and temperature. This allows us to probe several tens of thousand years of the disk's initial evolution, during which we observe multiple episodes of fragmentation leading to the formation of gravitationally bound gaseous clumps within spiral arms. These fragments are torqued inward due to gravitational interaction with the spiral arms on timescales of 10{sup 3}-10{sup 4} yr and accreted onto the growing protostar, giving rise to accretion and luminosity bursts. The burst phenomenon is fueled by continuing accretion of material falling onto the disk from the collapsing parent core, which replenishes the mass lost by the disk due to accretion, and triggers repetitive episodes of disk fragmentation. We show that the burst phenomenon is expected to occur for a wide spectrum of initial conditions in primordial pre-stellar cores and speculate on how the intense luminosities ({approx}10{sup 7} L{sub Sun }) produced by this mechanism may have important consequences for the disk evolution and subsequent growth of the protostar.

  2. Observing a Burst with Sunglasses

    NASA Astrophysics Data System (ADS)

    2003-11-01

    Unique Five-Week VLT Study of the Polarisation of a Gamma-Ray Burst Afterglow "Gamma-ray bursts (GRBs)" are certainly amongst the most dramatic events known in astrophysics. These short flashes of energetic gamma-rays, first detected in the late 1960's by military satellites, last from less than one second to several minutes. GRBs have been found to be situated at extremely large ("cosmological") distances. The energy released in a few seconds during such an event is larger than that of the Sun during its entire lifetime of more than 10,000 million years. The GRBs are indeed the most powerful events since the Big Bang known in the Universe, cf. ESO PR 08/99 and ESO PR 20/00. During the past years circumstantial evidence has mounted that GRBs signal the collapse of extremely massive stars, the so-called hypernovae. This was finally demonstrated some months ago when astronomers, using the FORS instrument on ESO's Very Large Telescope (VLT), documented in unprecedented detail the changes in the spectrum of the light source ("the optical afterglow") of the gamma-ray burst GRB 030329 (cf. ESO PR 16/03). A conclusive and direct link between cosmological gamma-ray bursts and explosions of very massive stars was provided on this occasion. Gamma-Ray Burst GRB 030329 was discovered on March 29, 2003 by NASA's High Energy Transient Explorer spacecraft. Follow-up observations with the UVES spectrograph at the 8.2-m VLT KUEYEN telescope at the Paranal Observatory (Chile) showed the burst to have a redshift of 0.1685 [1]. This corresponds to a distance of about 2,650 million light-years, making GRB 030329 the second-nearest long-duration GRB ever detected. The proximity of GRB 030329 resulted in very bright afterglow emission, permitting the most extensive follow-up observations of any afterglow to date. A team of astronomers [2] led by Jochen Greiner of the Max-Planck-Institut für extraterrestrische Physik (Germany) decided to make use of this unique opportunity to study the

  3. Spectral evolution of gamma-ray bursts

    NASA Technical Reports Server (NTRS)

    Band, D.; Matteson, J.; Ford, L.; Schaefer, B.; Teegarden, B.; Cline, T.; Paciesas, W.; Pendleton, G.; Fishman, G.; Meegan, C.

    1992-01-01

    BATSE's Spectral Detectors provide a series of high resolution spectra over the duration of a gamma-ray burst; fits to these spectra show the evolution of the continuum as the burst progresses. The burst continuum can usually be fit by the spectral form AE sup alpha exp(-E/kT) from around 25 keV to more than 3 MeV, with varying trends in the value and evolution of the spectral parameters. As a result of limited statistics for E greater than 1 - 2 MeV in the individual spectra, a high energy power law is not required. Only long duration strong bursts can be studied by fitting a series of spectra, and therefore our conclusions concern only this class of burst. The bursts we analyzed tend to be characterized by a hard-to-soft trend both for individual intensity spikes and for the burst as a whole: the hardness leads the count rate in spectra which resolve the temporal variations, while the hardness of successive spikes decreases. We also summarize the performance of the Spectral Detectors and the development of analysis tools to date.

  4. The Case of the Disappearing Spindle Burst

    PubMed Central

    Tiriac, Alexandre; Blumberg, Mark S.

    2016-01-01

    Sleep spindles are brief cortical oscillations at 10–15 Hz that occur predominantly during non-REM (quiet) sleep in adult mammals and are thought to contribute to learning and memory. Spindle bursts are phenomenologically similar to sleep spindles, but they occur predominantly in early infancy and are triggered by peripheral sensory activity (e.g., by retinal waves); accordingly, spindle bursts are thought to organize neural networks in the developing brain and establish functional links with the sensory periphery. Whereas the spontaneous retinal waves that trigger spindle bursts in visual cortex are a transient feature of early development, the myoclonic twitches that drive spindle bursts in sensorimotor cortex persist into adulthood. Moreover, twitches—and their associated spindle bursts—occur exclusively during REM (active) sleep. Curiously, despite the persistence of twitching into adulthood, twitch-related spindle bursts have not been reported in adult sensorimotor cortex. This raises the question of whether such spindle burst activity does not occur in adulthood or, alternatively, occurs but has yet to be discovered. If twitch-related spindle bursts do occur in adults, they could contribute to the calibration, maintenance, and repair of sensorimotor systems. PMID:27119028

  5. Solar Micro-Type III Burst Storms and Long Dipolar Magnetic Field in the Outer Corona

    NASA Astrophysics Data System (ADS)

    Morioka, A.; Miyoshi, Y.; Iwai, K.; Kasaba, Y.; Masuda, S.; Misawa, H.; Obara, T.

    2015-08-01

    Solar micro-type III radio bursts are elements of the so-called type III storms and are characterized by short-lived, continuous, and weak emissions. Their frequency of occurrence with respect to radiation power is quite different from that of ordinary type III bursts, suggesting that the generation process is not flare-related, but due to some recurrent acceleration processes around the active region. We examine the relationship of micro-type III radio bursts with coronal streamers. We also explore the propagation channel of bursts in the outer corona, the acceleration process, and the escape route of electron beams. It is observationally confirmed that micro-type III bursts occur near the edge of coronal streamers. The magnetic field line of the escaping electron beams is tracked on the basis of the frequency drift rate of micro-type III bursts and the electron density distribution model. The results demonstrate that electron beams are trapped along closed dipolar field lines in the outer coronal region, which arise from the interface region between the active region and the coronal hole. A 22 year statistical study reveals that the apex altitude of the magnetic loop ranges from 15 to 50 RS. The distribution of the apex altitude has a sharp upper limit around 50 RS suggesting that an unknown but universal condition regulates the upper boundary of the streamer dipolar field.

  6. A search for the radio counterpart to the 1994 March 1 gamma-ray burst

    NASA Technical Reports Server (NTRS)

    Frail, D. A.; Kulkarni, S. R.; Hurley, K. C.; Fishman, G. J.; Kouveliotou, C.; Meegan, C. A.; Sommer, M.; Boer, M.; Niel, M.; Cline, T.

    1994-01-01

    We report on the results of a search for the radio counterpart to the bright gamma-ray burst of 1994 March 1. Using the Dominion Radio Astrophysical Observatory Synthesis Telescope sensitive, wide-field radio images at 1.4 GHz and 0.4 GHz were made of a region around GRB 940301. A total of 15 separate radio images were obtained at each frequency, sampling a near-continuous range of post-burst timescales between 3 and 15 days, as well as 26, 47, and 99 days. We place an upper limit of 3.5 mJy on a fading/flaring radio counterpart at 1.4 GHz and 55 mJy at 0.4 GHz. Unlike past efforts our counterpart search maintains high sensitivity over two decades of post-burst time durations. Time-variable radio emission after the initial gamma-ray burst is a prediction of all fireball models, currently the most popular model for gamma-ray bursts. Our observations allow us to put significant constraints on the fireball parameters for cosmological models of gamma-ray bursts.

  7. QoS differentiation scheme with multiple burst transmission and virtual resource reservation for optical burst switching networks

    NASA Astrophysics Data System (ADS)

    Arakawa, Yutaka; Yamanaka, Naoaki

    2007-08-01

    We propose what we believe to be a new scheme to provide basic quality of service (QoS) in optical burst switching networks. Our proposal consists of multiple burst transmission (MBT) and virtual resource reservation (VRR). With MBT, consecutive bursts headed to the same destination are serially transmitted, and, at the transmission of high-priority bursts, the wavelength resource reserved by the head burst is kept reserving for the following bursts. We call it VRR. Computer simulations show that our proposal offers a larger differentiation of burst loss than the conventional offset-based QoS differentiation scheme. Also, it can improve the burst loss rate of both high-priority and low-priority bursts. Moreover, it can minimize the burst loss rate of high-priority bursts even when the high-priority traffic occupies a large percentage of the network traffic. The proposed scheme can be applied to the future multiservice optical network architecture.

  8. Eddy current technique for predicting burst pressure

    DOEpatents

    Petri, Mark C.; Kupperman, David S.; Morman, James A.; Reifman, Jaques; Wei, Thomas Y. C.

    2003-01-01

    A signal processing technique which correlates eddy current inspection data from a tube having a critical tubing defect with a range of predicted burst pressures for the tube is provided. The method can directly correlate the raw eddy current inspection data representing the critical tubing defect with the range of burst pressures using a regression technique, preferably an artificial neural network. Alternatively, the technique deconvolves the raw eddy current inspection data into a set of undistorted signals, each of which represents a separate defect of the tube. The undistorted defect signal which represents the critical tubing defect is related to a range of burst pressures utilizing a regression technique.

  9. Burst Oscillations: Watching Neutron Stars Spin

    NASA Technical Reports Server (NTRS)

    Strohmayer, Tod

    2010-01-01

    It is now almost 15 years since the first detection of rotationally modulated emission from X-ray bursting neutron stars, "burst oscillations," This phenomenon enables us to see neutron stars spin, as the X-ray burst flux asymmetrically lights up the surface. It has enabled a new way to probe the neutron star spin frequency distribution, as well as to elucidate the multidimensional nature of nuclear burning on neutron stars. I will review our current observational understanding of the phenomenon, with an eye toward highlighting some of the interesting remaining puzzles, of which there is no shortage.

  10. Genetic variability in the human cannabinoid receptor 1 is associated with resting state EEG theta power in humans.

    PubMed

    Heitland, I; Kenemans, J L; Böcker, K B E; Baas, J M P

    2014-11-01

    It has long been postulated that exogenous cannabinoids have a profound effect on human cognitive functioning. These cannabinoid effects are thought to depend, at least in parts, on alterations of phase-locking of local field potential neuronal firing. The latter can be measured as activity in the theta frequency band (4-7Hz) by electroencephalogram. Theta oscillations are supposed to serve as a mechanism in neural representations of behaviorally relevant information. However, it remains unknown whether variability in endogenous cannabinoid activity is involved in theta rhythms and therefore, may serve as an individual differences index of human cognitive functioning. To clarify this issue, we recorded resting state EEG activity in 164 healthy human subjects and extracted EEG power across frequency bands (δ, θ, α, and β). To assess variability in the endocannabinoid system, two genetic polymorphisms (rs1049353, rs2180619) within the cannabinoid receptor 1 (CB1) were determined in all participants. As expected, we observed significant effects of rs1049353 on EEG power in the theta band at frontal, central and parietal electrode regions. Crucially, these effects were specific for the theta band, with no effects on activity in the other frequency bands. Rs2180619 showed no significant associations with theta power after Bonferroni correction. Taken together, we provide novel evidence in humans showing that genetic variability in the cannabinoid receptor 1 is associated with resting state EEG power in the theta frequency band. This extends prior findings of exogenous cannabinoid effects on theta power to the endogenous cannabinoid system. PMID:25116250

  11. Study of traffic statistics of assembled burst traffic in optical burst-switched networks

    NASA Astrophysics Data System (ADS)

    Yu, Xiang; Chen, Yang; Qiao, Chunming

    2002-07-01

    Optical Burst Switching (OBS) is considered as a promising switching technique for building the next generation optical Internet. In OBS networks, one important issue is how the performance will be affected by bursts assembled from packets, which is the basic transmission unit in OBS. In this paper, we study the fundamental statistic properties such as the burst length distribution, inter-arrival time distribution, as well as correlation structure of assembled burst traffic from burst assembly algorithms. From both theoretical and empirical results, it is demonstrated that after the assembly, the traffic will in general approach the Gaussian distribution. In particular, the variance of assembled traffic decreases with the increase in the assembly window size and the traffic load. However, the long range dependence in the input traffic will not change after assembly. Such smoothed assembled traffic will enhance the OBS performance by reducing burst loss and increase OBS throughput. This result is useful for the future study of OBS node and networks.

  12. Complex transitions between spike, burst or chaos synchronization states in coupled neurons with coexisting bursting patterns

    NASA Astrophysics Data System (ADS)

    Gu, Hua-Guang; Chen, Sheng-Gen; Li, Yu-Ye

    2015-05-01

    We investigated the synchronization dynamics of a coupled neuronal system composed of two identical Chay model neurons. The Chay model showed coexisting period-1 and period-2 bursting patterns as a parameter and initial values are varied. We simulated multiple periodic and chaotic bursting patterns with non-(NS), burst phase (BS), spike phase (SS), complete (CS), and lag synchronization states. When the coexisting behavior is near period-2 bursting, the transitions of synchronization states of the coupled system follows very complex transitions that begins with transitions between BS and SS, moves to transitions between CS and SS, and to CS. Most initial values lead to the CS state of period-2 bursting while only a few lead to the CS state of period-1 bursting. When the coexisting behavior is near period-1 bursting, the transitions begin with NS, move to transitions between SS and BS, to transitions between SS and CS, and then to CS. Most initial values lead to the CS state of period-1 bursting but a few lead to the CS state of period-2 bursting. The BS was identified as chaos synchronization. The patterns for NS and transitions between BS and SS are insensitive to initial values. The patterns for transitions between CS and SS and the CS state are sensitive to them. The number of spikes per burst of non-CS bursting increases with increasing coupling strength. These results not only reveal the initial value- and parameter-dependent synchronization transitions of coupled systems with coexisting behaviors, but also facilitate interpretation of various bursting patterns and synchronization transitions generated in the nervous system with weak coupling strength. Project supported by the National Natural Science Foundation of China (Grant Nos. 11372224 and 11402039) and the Fundamental Research Funds for Central Universities designated to Tongji University (Grant No. 1330219127).

  13. EEG Theta and Gamma Responses to Semantic Violations in Online Sentence Processing

    ERIC Educational Resources Information Center

    Hald, Lea A.; Bastiaansen, Marcel C. M.; Hagoort, Peter

    2006-01-01

    We explore the nature of the oscillatory dynamics in the EEG of subjects reading sentences that contain a semantic violation. More specifically, we examine whether increases in theta ([Approximately]3-7 Hz) and gamma (around 40 Hz) band power occur in response to sentences that were either semantically correct or contained a semantically…

  14. An Alpha and Theta Intensive and Short Neurofeedback Protocol for Healthy Aging Working-Memory Training

    PubMed Central

    Reis, Joana; Portugal, Ana Maria; Fernandes, Luís; Afonso, Nuno; Pereira, Mariana; Sousa, Nuno; Dias, Nuno S.

    2016-01-01

    The present study tested the effects of an intensive and short alpha and theta neurofeedback (NF) protocol in working memory (WM) performance in a healthy elder population and explored the effects of a multimodal approach, by supplementing NF with cognitive tasks. Participants were allocated to four groups: NF (N = 9); neurofeedback supplemented with cognitive training (NFCT) (N = 8); cognitive training (CT) (N = 7) and sham neurofeedback (Sham-NF) (N = 6). The intervention consisted in 30-min sessions for 8 days. The NF group presented post intervention increases of alpha and theta relative power as well as performance in the matrix rotation task. In addition, a successful up training of frontal theta showed positive correlation with an improvement of post-training alpha and a better performance in the matrix rotation task. The results presented herein suggest that an intensive and short NF protocol enables elders to learn alpha and theta self-modulation and already presents moderate improvements in cognition and basal EEG. Also, CT group showed moderate performance gains on the cognitive tasks used during the training sessions but no clear improvements on neurophysiology and behavioral measurements were observed. This study represents a first attempt to study the effects of an intensive and short NF protocol in WM performance of elders. The evidence presented here suggests that an intensive and short NF intervention could be a valid alternative for introduction of older populations to NF methodologies. PMID:27458369

  15. Clonidine reverses spatial learning deficits and reinstates theta frequencies in rats with partial fornix section.

    PubMed

    Ammassari-Teule, M; Maho, C; Sara, S J

    1991-10-25

    Rats received knife-cuts to the dorsal fornix or sham-operations. Half of the animals from each group were injected with clonidine (0.01 mg/kg) and the others with saline before each daily trail of a 10-trial radial 8-arm maze task. The number of choices before the first repetition and the run time were used as performance indices. Lesioned rats were significantly impaired in the acquisition of this task. Clonidine-treated rats, lesioned or not, had an acquisition profile indistinguishable from that of sham-operated saline-injected rats, in spite of their increased run time. When tested one week after the last learning trial in a no-drug condition, lesioned rats treated with clonidine throughout learning maintained a high level of performance during the 5-day retraining phase. A parallel analysis of theta rhythms recorded in an independent group of rats placed in equivalent treatment and/or lesion conditions was then performed. Preoperatively, clonidine injections decreased theta frequency during both alert immobility and movement. Partial fornix lesions produced an increase in theta frequency. Finally, clonidine in fornix-damaged rats decreased theta frequency, thus reinstating the postoperative values at a level statistically no different from that recorded preoperatively. The role of clonidine in restoring the function of the septo-hippocampal input in partially fornix-damaged rats through a noradrenergic modulation of hippocampal acetylcholine release is discussed. PMID:1662515

  16. Theta function solutions of the quantum Knizhnik-Zamolodchikov-Bernard equation for a face model

    NASA Astrophysics Data System (ADS)

    Finch, Peter E.; Weston, Robert; Zinn-Justin, Paul

    2016-02-01

    We consider the quantum Knizhnik-Zamolodchikov-Bernard equation for a face model with elliptic weights, the SOS model. We provide explicit solutions as theta functions. On the so-called combinatorial line, in which the model is equivalent to the three-colour model, these solutions are shown to be eigenvectors of the transfer matrix with periodic boundary conditions.

  17. Theta Phase Precession in Rat Ventral Striatum Links Place and Reward Information

    PubMed Central

    Redish, A. David

    2011-01-01

    A functional interaction between the hippocampal formation and the ventral striatum is thought to contribute to the learning and expression of associations between places and rewards. However, the mechanism of how such associations may be learned and used is currently unknown. We recorded neural ensembles and local field potentials from the ventral striatum and CA1 simultaneously as rats ran a modified T-maze. Theta-modulated cells in ventral striatum almost invariably showed firing phase precession relative to the hippocampal theta rhythm. Across the population of ventral striatal cells, phase precession was preferentially associated with an anticipatory ramping of activity up to the reward sites. In contrast, CA1 population activity and phase precession were distributed more uniformly. Ventral striatal phase precession was stronger to hippocampal than ventral striatal theta and was accompanied by increased theta coherence with hippocampus, suggesting that this effect is hippocampally derived. These results suggest that the firing phase of ventral striatal neurons contains motivationally relevant information and that phase precession serves to bind hippocampal place representations to ventral striatal representations of reward. PMID:21414906

  18. Lack of the Metabotropic Glutamate Receptor Subtype 7 Selectively Modulates Theta Rhythm and Working Memory

    ERIC Educational Resources Information Center

    Holscher, Christian; Schmid, Susanne; Pilz, Peter K. D.; Sansig, Gilles; van der Putten, Herman; Plappert, Claudia F.

    2005-01-01

    Metabotropic glutamate receptors (mGluRs) are known to play a role in synaptic plasticity and learning. We have previously shown that mGluR7 deletion in mice produces a selective working memory (WM) impairment, while other types of memory such as reference memory remain unaffected. Since WM has been associated with Theta activity (6-12 Hz) in…

  19. The Acquisition of Dialectal Phonemes in a Study Abroad Context: The Case of the Castilian Theta

    ERIC Educational Resources Information Center

    Knouse, Stephanie M.

    2012-01-01

    This exploratory study investigates the incorporation of dialectal variants in second language (L2) pronunciation and how the learning context intersects with this acquisition. Specifically, this research examines to what extent L2 learners of Spanish acquire the regional phoneme /[theta]/ from north-central Spain in both study abroad (SA) and…

  20. Measuring $\\theta_{13}$ via Muon Neutrino to Electron Neutrino Oscillations in the MINOS Experiment

    SciTech Connect

    Toner, Ruth B.

    2011-01-01

    One of the primary goals in neutrino physics at the present moment is to make a measurement of the neutrino oscillation parameter $\\theta_{13}$. This parameter, in addition to being unknown, could potentially allow for the introduction of CP violation into the lepton sector. The MINOS long-baseline neutrino oscillation experiment has the ability to make a measurement of this parameter, by looking for the oscillation of muon neutrinos to electron neutrinos between a Near and Far Detector over a distance of 735 km. This thesis discusses the development of an analysis framework to search for this oscillation mode. Two major improvements to pre-existing analysis techniques have been implemented by the author. First, a novel particle ID technique based on strip topology, known as the Library Event Matching (LEM) method, is optimized for use in MINOS. Second, a multiple bin likelihood method is developed to fit the data. These two improvements, when combined, increase MINOS' sensitivity to $\\sin^2(2\\theta_{13})$ by 27\\% over previous analyses. This thesis sees a small excess over background in the Far Detector. A Frequentist interpretation of the data rules out $\\theta_{13}=0$ at 91\\%. A Bayesian interpretation of the data is also presented, placing the most stringent upper boundary on the oscillation parameter to date, at $\\sin^2(2\\theta_{13})<0.09(0.015)$ for the Normal (Inverted) Hierarchy and $\\delta_{CP}=0$.

  1. White paper report on using nuclear reactors to search for a value of theta13

    SciTech Connect

    Anderson, K.; Anjos, J.C.; Ayres, D.; Beacom, J.; Bediaga, I.; de Bellefon, A.; Berger, B.E.; Bilenky, S.; Blucher, E.; Bolton, T.; Buck, C.; Bugg, W.; Busenitz, J.; Choubey, S.; Conrad, J.; Cribier, M.; Dadoun, O.; Dalnoki-Veress, F.; Decowski, M.; de Gouvea, Andre; Demutrh, D.; Dessages-Ardellier, F.; Efremenko, Y.; von Feilitzsch, F.; Finley, D.; Formaggio, J.A.; Freedman, S.J.; Fujikawa, B.K.; Garbini, M.; Giusti, P.; Goger-Neff, M.; Goodman, M.; Gray, F.; Grieb, C.; Grudzinski, J.J.; Guarino, V.J.; Hartmann, F.; Hagner, C.; Heeger, K.M.; Hofmann, W.; Horton-Smith, G.; Huber, P.; Inzhechik, L.; Jochum, J.; Jostlein, H.; Kadel, R.; Kamyshkov, Y.; Kaplan, D.; Kasper, P.; de Kerret, H.; Kersten, J.; Klein, J.; Knopfle, K.T.; Kopeikin, V.; Kozlov, Yu.; Kryn, D.; Kuchler, V.; Kuze, M.; Lachenmaier, T.; Lasserre, T.; Laughton, C.; Lendvai, C.; Li, J.; Lindner, M.; Link, J.; Longo, M.; Lu, Y.S.; Luk, K.B.; Ma, Y.Q.; Martemyanov, V.P.; Mauger, C.; Manghetti, H.; McKeown, R.; Mention, G.; Meyer, J.P.; Mikaelyan, L.; Minakata, H.; Naples, D.; Nunokawa, H.; Oberauer, L.; Obolensky, M.; Parke, S.; Petcov, S.T.; Peres, O.L.G.; Potzel, W.; Pilcher, J.; Plunkett, R.; Raffelt, G.; Rapidis, P.; Reyna, D.; Roe, B.; Rolinec, M.; Sakamoto, Y.; Sartorelli, G.; Schonert, S.; Schwertz, T.; Selvi, M.; Shaevitz, M.; Shellard, R.; Shrock, R.; Sidwell, R.; Sims, J.; Sinev, V.; Stanton, N.; Stancu, I.; Stefanski, R.; Seukane, F.; Sugiyama, H.; Sukhotin, S.; Sumiyoshi, T.; Svoboda, R.; Talaga, R.; Tamura, N.; Tanimoto, M.; Thron, J.; von Toerne, E.; Vignaud, D.; Wagner, C.; Wang, Y.F.; Wang, Z.; Winter, W.; Wong, H.; Yakushev, E.; Yang, C.G.; Yasuda, O.

    2004-02-26

    There has been superb progress in understanding the neutrino sector of elementary particle physics in the past few years. It is now widely recognized that the possibility exists for a rich program of measuring CP violation and matter effects in future accelerator {nu} experiments, which has led to intense efforts to consider new programs at neutrino superbeams, off-axis detectors, neutrino factories and beta beams. However, the possibility of measuring CP violation can be fulfilled only if the value of the neutrino mixing parameter {theta}{sub 13} is such that sin{sup 2} (2{theta}{sub 13}) greater than or equal to on the order of 0.01. The authors of this white paper are an International Working Group of physicists who believe that a timely new experiment at a nuclear reactor sensitive to the neutrino mixing parameter {theta}{sub 13} in this range has a great opportunity for an exciting discovery, a non-zero value to {theta}{sub 13}. This would be a compelling next step of this program. We are studying possible new reactor experiments at a variety of sites around the world, and we have collaborated to prepare this document to advocate this idea and describe some of the issues that are involved.

  2. Changes in theta and beta oscillations as signatures of novel word consolidation.

    PubMed

    Bakker, Iske; Takashima, Atsuko; van Hell, Janet G; Janzen, Gabriele; McQueen, James M

    2015-07-01

    The complementary learning systems account of word learning states that novel words, like other types of memories, undergo an offline consolidation process during which they are gradually integrated into the neocortical memory network. A fundamental change in the neural representation of a novel word should therefore occur in the hours after learning. The present EEG study tested this hypothesis by investigating whether novel words learned before a 24-hr consolidation period elicited more word-like oscillatory responses than novel words learned immediately before testing. In line with previous studies indicating that theta synchronization reflects lexical access, unfamiliar novel words elicited lower power in the theta band (4-8 Hz) than existing words. Recently learned words still showed a marginally lower theta increase than existing words, but theta responses to novel words that had been acquired 24 hr earlier were indistinguishable from responses to existing words. Consistent with evidence that beta desynchronization (16-21 Hz) is related to lexical-semantic processing, we found that both unfamiliar and recently learned novel words elicited less beta desynchronization than existing words. In contrast, no difference was found between novel words learned 24 hr earlier and existing words. These data therefore suggest that an offline consolidation period enables novel words to acquire lexically integrated, word-like neural representations. PMID:25761007

  3. DNA BINDING POTENTIAL OF BROMODICHLOROMETHANE MEDIATED BY GLUTATHIONE S-TRANSFERASE THETA 1-1

    EPA Science Inventory


    DNA BINDING POTENTIAL OF BROMODICHLOROMETHANE MEDIATED BY GLUTATHIONE S-TRANSFERASE THETA 1-1. R A Pegram1 and M K Ross2. 2Curriculum in Toxicology, University of North Carolina, Chapel Hill, NC; 1Pharmacokinetics Branch, NHEERL, ORD, United States Environmental Protection Ag...

  4. Effect of Sudarshan Kriya (meditation) on gamma, alpha, and theta rhythm during working memory task

    PubMed Central

    Chandra, Sushil; Sharma, Greeshma; Mittal, Alok Prakash; Jha, Devendra

    2016-01-01

    Aims: The present study focuses on analyzing the effects of Sudarshan Kriya yoga (SKY) on brain signals during a working memory (WM) task. To envision the significant effects of SKY on WM capacity (WMC), we chose a control group for contriving a cogent comparison that could be corroborated using statistical tests. Subjects and Methods: A total of 25 subjects were taken in the study, of which 10 were allotted to a control group and 15 to an experimental group. Electroencephalograph was taken during a WM task, which was an automated operation span test before and after SKY with 90 days intervals. No SKY was given to the control group. Statistical Analysis Used: t-test and one-way ANOVA were applied. Results: SKY promoted the efficient use of energy and power spectral density (PSD) for different brain rhythms in the desired locations as depicted by the gamma (F8 channel), alpha, and theta 2 (F7 and FC5) bands. It was found that gamma PSD reduced for both phases of memory in the experimental group. Alpha energy increased during the retrieval phase in the experimental group after SKY. Theta 1 rhythm was not affected by SKY, but theta 2 had shown left hemispheric activation. Theta rhythm was associated with memory consolidation. Conclusions: SKY had shown minimized energy losses while performing the task. SKY can improve WMC by changing the brain rhythms such that energy is utilized efficiently in performing the task. PMID:26865775

  5. GLUTATHIONE S-TRANSFERASE THETA 1-1-DEPENDENT METABOLISM OF THE DISINFECTION BYPRODUCT BROMODICHLOROMETHANE

    EPA Science Inventory

    ABSTRACT
    Bromodichloromethane (BDCM), a prevalent drinking water disinfection by-product, was previously shown to be mutagenic in Salmonella expressing glutathione S-transferase (GST) theta 1-1 (GST T1-1). In the present study, in vitro experiments were performed to study the...

  6. An Alpha and Theta Intensive and Short Neurofeedback Protocol for Healthy Aging Working-Memory Training.

    PubMed

    Reis, Joana; Portugal, Ana Maria; Fernandes, Luís; Afonso, Nuno; Pereira, Mariana; Sousa, Nuno; Dias, Nuno S

    2016-01-01

    The present study tested the effects of an intensive and short alpha and theta neurofeedback (NF) protocol in working memory (WM) performance in a healthy elder population and explored the effects of a multimodal approach, by supplementing NF with cognitive tasks. Participants were allocated to four groups: NF (N = 9); neurofeedback supplemented with cognitive training (NFCT) (N = 8); cognitive training (CT) (N = 7) and sham neurofeedback (Sham-NF) (N = 6). The intervention consisted in 30-min sessions for 8 days. The NF group presented post intervention increases of alpha and theta relative power as well as performance in the matrix rotation task. In addition, a successful up training of frontal theta showed positive correlation with an improvement of post-training alpha and a better performance in the matrix rotation task. The results presented herein suggest that an intensive and short NF protocol enables elders to learn alpha and theta self-modulation and already presents moderate improvements in cognition and basal EEG. Also, CT group showed moderate performance gains on the cognitive tasks used during the training sessions but no clear improvements on neurophysiology and behavioral measurements were observed. This study represents a first attempt to study the effects of an intensive and short NF protocol in WM performance of elders. The evidence presented here suggests that an intensive and short NF intervention could be a valid alternative for introduction of older populations to NF methodologies. PMID:27458369

  7. A Monte Carlo Study of Skewed Theta Distributions on DIF Indices.

    ERIC Educational Resources Information Center

    Monaco, Malina

    The effects of skewed theta distributions on indices of differential item functioning (DIF) were studied, comparing Mantel Haenszel (N. Mantel and W. Haenszel, 1959) and DFIT (N. S. Raju, W. J. van der Linden, and P. F. Fleer) (noncompensatory DIF). The significance of the study is that in educational and psychological data, the distributions one…

  8. Characterization of the Theta to Beta Ratio in ADHD: Identifying Potential Sources of Heterogeneity

    ERIC Educational Resources Information Center

    Loo, Sandra K.; Cho, Alexander; Hale, T. Sigi; McGough, James; McCracken, James; Smalley, Susan L.

    2013-01-01

    Objective: The goal of this study is to characterize the theta to beta ratio (THBR) obtained from electroencephalogram (EEG) measures, in a large sample of community and clinical participants with regard to (a) ADHD diagnosis and subtypes, (b) common psychiatric comorbidities, and (c) cognitive correlates. Method: The sample includes 871…

  9. The effects of theta transcranial alternating current stimulation (tACS) on fluid intelligence.

    PubMed

    Pahor, Anja; Jaušovec, Norbert

    2014-09-01

    The objective of the study was to explore the influence of transcranial alternating current stimulation (tACS) on resting brain activity and on measures of fluid intelligence. Theta tACS was applied to the left parietal and left frontal brain areas of healthy participants after which resting electroencephalogram (EEG) data was recorded. Following sham/active stimulation, the participants solved two tests of fluid intelligence while their EEG was recorded. The results showed that active theta tACS affected spectral power in theta and alpha frequency bands. In addition, active theta tACS improved performance on tests of fluid intelligence. This influence was more pronounced in the group of participants that received stimulation to the left parietal area than in the group of participants that received stimulation to the left frontal area. Left parietal tACS increased performance on the difficult test items of both tests (RAPM and PF&C) whereas left frontal tACS increased performance only on the easy test items of one test (RAPM). The observed behavioral tACS influences were also accompanied by changes in neuroelectric activity. The behavioral and neuroelectric data tentatively support the P-FIT neurobiological model of intelligence. PMID:24998643

  10. Propofol and sevoflurane induce distinct burst suppression patterns in rats

    PubMed Central

    Kenny, Jonathan D.; Westover, M. Brandon; Ching, ShiNung; Brown, Emery N.; Solt, Ken

    2014-01-01

    Burst suppression is an EEG pattern characterized by alternating periods of high-amplitude activity (bursts) and relatively low amplitude activity (suppressions). Burst suppression can arise from several different pathological conditions, as well as from general anesthesia. Here we review current algorithms that are used to quantify burst suppression, its various etiologies, and possible underlying mechanisms. We then review clinical applications of anesthetic-induced burst suppression. Finally, we report the results of our new study showing clear electrophysiological differences in burst suppression patterns induced by two common general anesthetics, sevoflurane and propofol. Our data suggest that the circuit mechanisms that generate burst suppression activity may differ among general anesthetics. PMID:25565990

  11. CMEs and frequency cutoff of solar bursts

    NASA Astrophysics Data System (ADS)

    Stanislavsky, Al.; Konovalenko, Al.; Koval, Ar.; Volvach, Y.; Zarka, P.

    2016-05-01

    Radio observations of solar bursts with high-frequency cutoff by the radio telescope UTR-2 (near Kharkiv, Ukraine) at 8-33 MHz on 17-19 August 2012 are presented. Such cutoff may be attributed to the emergence of the burst sources behind limb of the Sun with respect to an observer on the Earth. The events are strongly associated with solar eruptions occurred in a new active region. Ray tracing simulations show that the CMEs play a constructive role for the behind-limb bursts to be detected in ground-based observations. Likely, due to tunnel-like cavities with low density in CMEs, the radio emission of behind-limb solar bursts can be directed towards the Earth.

  12. Overview Animation of Gamma-ray Burst

    NASA Video Gallery

    Gamma-ray bursts are the most luminous explosions in the cosmos. Astronomers think most occur when the core of a massive star runs out of nuclear fuel, collapses under its own weight, and forms a b...

  13. Expected Performance of the GLAST Burst Monitor

    NASA Technical Reports Server (NTRS)

    Meegan, Charles; Fishman, Gerald; Kouveliotou, Chryssa; Wilson-Hodge, Colleen; Paciesas, William; Preece, Robert; Briggs, Michael; Bhat, Narayana; Connaughton, Valerie; Greiner, Jochen; vonKienlin, Andreas; Diehl, Roland; Steinle, Helmut; Bissaldi, Elisabetta; Kippen, R. Marc

    2007-01-01

    The GLAST Burst Monitor (GBM) will enhance LAT observations of GRBs by extending the spectral coverage from the LAT threshold down to approx. 8 kev, and will provide a trigger for re-orienting the spacecraft to observe delayed emission from selected bursts outside the LAT field of view. GBM consists of twelve NaI scintillation detectors operating in the 8 kev to 1 MeV energy range and two BGO scintillation detectors operating in the 150 keV to 30 MeV energy range. Detector resolution, effective area, and angular response have been determined by calibrations. Analyses indicate that the on-board burst threshold will be approx. 0.7 photon/cm2/s and the on-board burst localization accuracy will typically be better than 8 degrees.

  14. Expected Performance of the GLAST Burst Monitor

    SciTech Connect

    Meegan, Charles; Fishman, Gerald; Kouveliotou, Chryssa; Wilson-Hodge, Colleen; Bissaldi, Elisabetta; Diehl, Roland; Greiner, Jochen; Kienlin, Andreas von; Lichti, Giselher; Steinle, Helmut; Kippen, R. Marc

    2008-05-22

    The GLAST Burst Monitor (GBM) will enhance LAT observations of GRBs by extending the spectral coverage from the LAT threshold down to {approx}8 keV, and will provide a trigger for re-orienting the spacecraft to observe delayed emission from selected bursts outside the LAT field of view. GBM consists of twelve NaI scintillation detectors operating in the 8 keV to 1 MeV energy range and two BGO scintillation detectors operating in the 150 keV to 30 MeV energy range. Detector resolution, effective area, and angular response have been determined by calibrations. Analyses indicate that the on-board burst threshold will be {approx}0.7 photons cm{sup -2}s{sup -1} and the on-board burst localization accuracy will typically be better than 8 deg.

  15. Gamma-Ray Bursts: An Overview

    NASA Technical Reports Server (NTRS)

    Fishman, Gerald J.

    1995-01-01

    A history and overview of the observed properties of gamma-ray bursts are presented. The phenomenon of gamma-ray bursts is without precedent in astronomy, having no observed property that would be a direct indicator of their distance and no counterpart object in another wavelength region. Their brief, random appearance only in the gamma-ray region has made their study difficult. The observed time profiles, spectral properties, and durations of gamma-ray bursts cover a wide range. All proposed models for their origin must be considered speculative. It is humbling to think that even after 25 years since their discovery, the distance scale of gamma-ray bursts is still very much debatable.

  16. Properties of multiple event gamma ray bursts

    SciTech Connect

    Lochner, J.C.

    1991-01-01

    We present results from a study of 37 multiple event gamma ray bursts found in the monitoring data of the PVO gamma ray burst detector. We define these bursts as those which have two or more distinct emission events separated by a return to the background intensity. Significant correlation exists between the duration of the first event and the duration of the second event, while some correlation exists between the hardness of the events and only weak correlation exists in the intensity of the events. Although the time profiles of events in a burst may be similar, as measured in the phase portrait, there is no general rule about the degree of similarity of the time profiles. Subdividing the data according to the recurrence time, we find a tendency for the strength of the correlation in the hardness to increase with decreasing separation between the events. 2 refs., 2 figs., 1 tab.

  17. Properties of multiple event gamma ray bursts

    SciTech Connect

    Lochner, J.C.

    1991-12-31

    We present results from a study of 37 multiple event gamma ray bursts found in the monitoring data of the PVO gamma ray burst detector. We define these bursts as those which have two or more distinct emission events separated by a return to the background intensity. Significant correlation exists between the duration of the first event and the duration of the second event, while some correlation exists between the hardness of the events and only weak correlation exists in the intensity of the events. Although the time profiles of events in a burst may be similar, as measured in the phase portrait, there is no general rule about the degree of similarity of the time profiles. Subdividing the data according to the recurrence time, we find a tendency for the strength of the correlation in the hardness to increase with decreasing separation between the events. 2 refs., 2 figs., 1 tab.

  18. Theoretical investigations of X-ray bursts

    NASA Technical Reports Server (NTRS)

    Taam, Ronald E.

    1987-01-01

    Current theoretical understanding of the X-ray burst phenomenon is reviewed, providing a framework in which the burst radiation can be used as a diagnostic of the fundamental properties of the underlying neutron star. The typical Type I X-ray burst is detected as a rapid increase in emission to a level about a factor of 10 above that seen during the quiescent state and recurs on time scales which range from several hours to several days. The thermonuclear flash model has successfully reproduced the basic features of the X-ray burst phenomenon and thereby provided strong theoretical evidence that neutron stars are involved. Topics covered include: theory of the emission spectrum; oscillation modes and prospects for diagnosing the thermal state of neutron stars through experiments on board the X-Ray Timing Explorer or the Advanced X-Ray Astrophysics Facility; applications to the mass and radius of a neutron star.

  19. Gamma Ray Burst Discoveries with SWIFT

    NASA Technical Reports Server (NTRS)

    Gehrels, Neil

    2007-01-01

    Gamma-ray bursts are among the most fascinating occurrences in the cosmos. They are thought to be the birth cries of black holes throughout the universe. There has been tremendous recent progress in our understanding of bursts with the new data from the SWIFT mission. SWIFT was launched in November 2004 and is an international multiwavelength observatory designed to determine the origin of bursts and use them to probe the early Universe. Findings from the mission will be presented with emphasis on the relativistic outflows from GRBs. A huge step forward has been made in our understanding of the mysterious short GRBs. High redshift bursts have been detected from enormous explosions early in the universe. GRBs have been found with giant X-ray flares occurring in their afterglow, challenging predictions of the fireball model. These, and other topics, will be discussed.

  20. Axion stars and fast radio bursts

    NASA Astrophysics Data System (ADS)

    Iwazaki, Aiichi

    2015-01-01

    We show a possible origin of fast radio bursts. They arise from the collisions between axion stars and neutron stars. The bursts are emitted in atmospheres of the neutron stars. The observed frequencies of the bursts are given by the axion mass ma such as ma/2 π ≃2.4 GHz (ma/10-5 eV ) . By the comparison of the theoretical with observed event rate ˜10-3 per year in a galaxy, we can determine the mass ˜10-12M⊙ of the axion stars. The mass is identical to the one estimated as the masses of axion miniclusters. Using these values, we can explain short durations (˜ms ) and amount of radiation energies (˜1043 GeV ) of the bursts.

  1. Spectral evolution in gamma-ray bursts

    NASA Technical Reports Server (NTRS)

    Norris, J. P.; Share, G. H.; Messina, D. C.; Matz, M.; Kouveliotou, C.; Dennis, B. R.; Desai, U. D.; Cline, T. L.

    1986-01-01

    The Hard X-ray Burst Spectrometer (HXRBS) and the Gamma-Ray Spectrometer (GRS) on NASA's Solar Maximum Mission satellite have independently monitored cosmic gamma-ray bursts since launch in February 1980. Several bursts with relatively simple pulse structure and sufficient intensity have been analyzed for evidence of spectral variability on time scales shorter than the pulse durations. In many of these bursts pulse structures are found, ranging in duration from 1 to 10 seconds, which exhibit a trend of hard-to-soft spectral evolution. No significant evidence for soft-to-hard evolution has been found. The HXRBS data above 100 keV and the GRS data above 1 MeV indicate that the spectral evolution generally is not due to time-varying absorption features at energies below 100 keV.

  2. GLAST Burst Monitor Trigger Classification Algorithm

    NASA Technical Reports Server (NTRS)

    Perrin, D. J.; Sidman, E. D.; Meegan, C. A.; Briggs, M. S.; Connaughton, V.

    2004-01-01

    The Gamma Ray Large Area Space Telescope (GLAST), currently set for launch in the first quarter of 2007, will consist of two instruments, the GLAST Burst Monitor (GBM) and the Large Area Telescope (LAT). One of the goals of the GBM is to identify and locate gamma-ray bursts using on-board software. The GLAST observatory can then be re-oriented to allow observations by the LAT. A Bayesian analysis will be used to distinguish gamma-ray bursts from other triggering events, such as solar flares, magnetospheric particle precipitation, soft gamma repeaters (SGRs), and Cygnus X-1 flaring. The trigger parameters used in the analysis are the burst celestial coordinates, angle from the Earth's horizon, spectral hardness, and the spacecraft geomagnetic latitude. The algorithm will be described and the results of testing will be presented.

  3. Impulsive solar X-ray bursts

    NASA Technical Reports Server (NTRS)

    Crannell, C. J.; Frost, K. J.; Maetzler, C.; Ohki, K.; Saba, J. L.

    1977-01-01

    A set of 22 simple, impulsive solar flares, identified in the OSO-5 hard X-ray data, were analyzed together with coincident microwave and meterwave radio observations. The rise times and fall times of the X-ray bursts are found to be highly correlated and effectively equal, strongly suggesting a flare energizing mechanism that is reversible. The good time resolution available for these observations reveals that the microwave emission is influenced by an additional process, evident in the tendency of the microwave emission to peak later and decay more slowly than the symmetric X-ray bursts. Meterwave emission is observed in coincidence with the 5 events which show the strongest time correlation between the X-ray and microwave burst structure. This meterwave emission is characterized by U-burst radiation, indicating confinement of the flare source.

  4. POPULATION SYNTHESIS AND GAMMA RAY BURST PROGENITORS

    SciTech Connect

    C. L. FREYER

    2000-12-11

    Population synthesis studies of binaries are always limited by a myriad of uncertainties from the poorly understood effects of binary mass transfer and common envelope evolution to the many uncertainties that still remain in stellar evolution. But the importance of these uncertainties depends both upon the objects being studied and the questions asked about these objects. Here I review the most critical uncertainties in the population synthesis of gamma-ray burst progenitors. With a better understanding of these uncertainties, binary population synthesis can become a powerful tool in understanding, and constraining, gamma-ray burst models. In turn, as gamma-ray bursts become more important as cosmological probes, binary population synthesis of gamma-ray burst progenitors becomes an important tool in cosmology.

  5. Bursts of intermediate ions in atmospheric air

    NASA Astrophysics Data System (ADS)

    Hõrrak, U.; Salm, J.; Tammet, H.

    1998-06-01

    The mobility spectrum of air ions has been measured at Tahkuse Observatory in Estonia for several years. The average concentration of intermediate ions with mobilities of 0.05-0.5 cm2 V-1 s-1 in atmospheric air is about 50 cm-3. On the level of this low background, high concentration bursts of intermediate air ions occur occasionally. A burst can be followed by subsequent evolution of intermediate ions into larger ones. To explain the bursts of intermediate air ions, two hypotheses can be advanced: (1)A burst of neutral particles occurs due to homogeneous nucleation, and the particles are charged by the attachment of cluster ions. (2) The cluster ions grow by ion-induced nucleation in proper environmental conditions.

  6. NASA's Swift Sees 'Dual Personality' Burst

    NASA Video Gallery

    These animations illustrate two wildly different explanations for GRB 101225A, better known as the "Christmas burst." First, a solitary neutron star in our own galaxy shreds and accretes an approac...

  7. The Gamma-Ray Burst Next Door

    NASA Technical Reports Server (NTRS)

    Wanjek, Christopher

    2003-01-01

    I hesitate to spawn a thousand bad sci-fi flicks, but here it goes: Scientists now say that some gamma-ray bursts, the most powerful explosions in the universe, originate in nearby galaxy clusters. If one were to occur nearby, it could wipe out life on Earth. Fortunately, the chances of mass extinction are slimmer than the Chicago Cubs meeting the Boston Red Sox in the World Series (. . . and the Red Sox winning). But a new analysis of over 1400 archived gamma-ray bursts reveals that about 100 bursts originated within 325 million light-years of Earth, and not billions of light-years away as previously thought. If so, there's no reason why a burst couldn't go off in our galaxy.

  8. A data channel scheduling algorithm based on burst migration for optical burst switching networks

    NASA Astrophysics Data System (ADS)

    Zhang, Min; Yang, Xiaolong; Liu, Hui

    2004-05-01

    Currently optical burst switching (OBS) has been regarded as the most promising backbone networking technology for the next-generation Internet. In the OBS network, the data channel scheduling is one of key problems. Bandwidth efficiency and QoS support are its two concern focuses. However, the existing algorithms pay more attention to bandwidth efficiency. In this paper, we develop an efficient data channel scheduling algorithm, called BM-VF-SBD. It effectively integrates several mechanisms (i.e., void filling, burst migration and selective burst discard) to reduce the bandwidth fragment and support QoS. Its basic idea is in that a new burst is scheduled by migrating some bursts to other channels if none of voids in any channels can accommodate it; otherwise repeating the above processes after selectively dropping some bursts. Meanwhile under an effective data structure, such as the balanced binary search tree, its computational complexity will be o[(2w+1)log w] at most, and be close to LAUC-VF and ODBR. In the proposed algorithm, burst migration plays a key role in the improvement of bandwidth efficiency while selective burst discard has great effects on the two sides. The simulation results show that it performs much better than LAUC-VF and ODBR in burst loss probability (overall or individual) and bandwidth fragment ratio.

  9. Gamma-ray burst locations from the Burst and Transient Source Experiment

    NASA Technical Reports Server (NTRS)

    Brock, M. N.; Meegan, C. A.; Roberts, F. E.; Fishman, G. J.; Wilson, R. B.; Paciesas, W. S.; Pendleton, G. N.

    1992-01-01

    The Burst and Transient Source Experiment (BATSE) consists of eight anisotropic gamma-ray spectrometers at the corners of the Compton Gamma Ray Observatory. BATSE monitors the full sky from a fixed orientation and determines the direction of gamma-ray bursts with an accuracy appropriate for studying the bursts' celestial distribution. We describe the calculation of gamma-ray burst directions from measurements made by BATSE. We present a sample of calculated directions from BATSE's measurement of solar flaxes and compare the calculated directions with the solar direction. We describe the systematic errors apparent in these data and discuss ongoing efforts to correct them.

  10. Enhanced Constraints on theta13 from A Three-Flavor Oscillation Analysis of Reactor Antineutrinos at KamLAND

    SciTech Connect

    The KamLAND Collaboration; Gando, A.; Gando, Y.; Ichimura, K.; Ikeda, H.; Inoue, K.; Kibe, Y.; Kishimoto, Y.; Koga, M.; Minekawa, Y.; Mitsui, T.; Morikawa, T.; Nagai, N.; Nakajima, K.; Nakamura, K.; Narita, K.; Shimizu, I.; Shimizu, Y.; Shirai, J.; Suekane, F.; Suzuki, A.; Takahashi, H.; Takahashi, N.; Takemoto, Y.; Tamae, K.; Watanabe, H.; Xu, B. D.; Yabumoto, H.; Yoshida, H.; Yoshida, S.; Enomoto, S.; Kozlov, A.; Murayama, H.; Grant, C.; Keefer, G.; Piepke, A.; Banks, T. I.; Bloxham, T.; Detwiler, J. A.; Freedman, S. J.; Fujikawa, B. K.; Han, K.; Kadel, R.; O'Donnell, T.; Steiner, H. M.; Dwyer, D. A.; McKeown, R. D.; Zhang, C.; Berger, B. E.; Lane, C. E.; Maricic, J.; Miletic, T.; Batygov, M.; Learned, J. G.; Matsuno, S.; Sakai, M.; Horton-Smith, G. A.; Downum, K. E.; Gratta, G.; Efremenko, Y.; Perevozchikov, O.; Karwowski, H. J.; Markoff, D. M.; Tornow, W.; Heeger, K. M.; Decowski, M. P.

    2010-09-24

    We present new constraints on the neutrino oscillation parameters {Delta}m{sub 21}{sup 2}, {theta}{sub 12}, and {theta}{sub 13} from a three-flavor analysis of solar and KamLAND data. The KamLAND data set includes data acquired following a radiopurity upgrade and amounts to a total exposure of 3.49 x 10{sup 32} target-proton-year. Under the assumption of CPT invariance, a two-flavor analysis ({theta}{sub 13} = 0) of the KamLAND and solar data yields the best-fit values tan{sup 2} {theta}{sub 12} = 0.444{sub -0.030}{sup +0.036} and {Delta}m{sub 21}{sup 2} = 7.50{sub -0.20}{sup +0.19} x 10{sup -5} eV{sup 2}; a three-flavor analysis with {theta}{sub 13} as a free parameter yields the best-fit values tan{sup 2} {theta}{sub 12} = 0.452{sub -0.033}{sup +0.035}, {Delta}m{sub 21}{sup 2} = 7.50{sub -0.20}{sup +0.19} x 10{sup -5}eV{sup 2}, and sin{sup 2} {theta}{sub 13} = 0.020{sub -0.016}{sup +0.016}. This {theta}{sub 13} interval is consistent with other recent work combining the CHOOZ, atmospheric and long-baseline accelerator experiments. We also present a new global {theta}{sub 13} analysis, incorporating the CHOOZ, atmospheric and accelerator data, which indicates sin{sup 2} {theta}{sub 13} = 0.017{sub -0.009}{sup +0.010}, a nonzero value at the 93% C.L. This finding will be further tested by upcoming accelerator and reactor experiments.

  11. Optimal Codes for the Burst Erasure Channel

    NASA Technical Reports Server (NTRS)

    Hamkins, Jon

    2010-01-01

    Deep space communications over noisy channels lead to certain packets that are not decodable. These packets leave gaps, or bursts of erasures, in the data stream. Burst erasure correcting codes overcome this problem. These are forward erasure correcting codes that allow one to recover the missing gaps of data. Much of the recent work on this topic concentrated on Low-Density Parity-Check (LDPC) codes. These are more complicated to encode and decode than Single Parity Check (SPC) codes or Reed-Solomon (RS) codes, and so far have not been able to achieve the theoretical limit for burst erasure protection. A block interleaved maximum distance separable (MDS) code (e.g., an SPC or RS code) offers near-optimal burst erasure protection, in the sense that no other scheme of equal total transmission length and code rate could improve the guaranteed correctible burst erasure length by more than one symbol. The optimality does not depend on the length of the code, i.e., a short MDS code block interleaved to a given length would perform as well as a longer MDS code interleaved to the same overall length. As a result, this approach offers lower decoding complexity with better burst erasure protection compared to other recent designs for the burst erasure channel (e.g., LDPC codes). A limitation of the design is its lack of robustness to channels that have impairments other than burst erasures (e.g., additive white Gaussian noise), making its application best suited for correcting data erasures in layers above the physical layer. The efficiency of a burst erasure code is the length of its burst erasure correction capability divided by the theoretical upper limit on this length. The inefficiency is one minus the efficiency. The illustration compares the inefficiency of interleaved RS codes to Quasi-Cyclic (QC) LDPC codes, Euclidean Geometry (EG) LDPC codes, extended Irregular Repeat Accumulate (eIRA) codes, array codes, and random LDPC codes previously proposed for burst erasure

  12. Supernovae and gamma-ray bursts connection

    SciTech Connect

    Valle, Massimo Della

    2015-12-17

    I’ll review the status of the Supernova/Gamma-Ray Burst connection. Several pieces of evidence suggest that long duration Gamma-ray Bursts are associated with bright SNe-Ic. However recent works suggest that GRBs might be produced in tight binary systems composed of a massive carbon-oxygen cores and a neutron star companion. Current estimates of the SN and GRB rates yield a ratio GRB/SNe-Ibc in the range ∼ 0.4% − 3%.

  13. Supernovae and gamma-ray bursts connection

    NASA Astrophysics Data System (ADS)

    Valle, Massimo Della

    2015-12-01

    I'll review the status of the Supernova/Gamma-Ray Burst connection. Several pieces of evidence suggest that long duration Gamma-ray Bursts are associated with bright SNe-Ic. However recent works suggest that GRBs might be produced in tight binary systems composed of a massive carbon-oxygen cores and a neutron star companion. Current estimates of the SN and GRB rates yield a ratio GRB/SNe-Ibc in the range ˜ 0.4% - 3%.

  14. Gamma-Ray Burst Class Properties

    NASA Technical Reports Server (NTRS)

    Hakkila, Jon; Haglin, David J.; Pendleton, Geoffrey N.; Mallozzi, Robert S.; Meegan, Charles A.; Roiger, Richard J.

    2000-01-01

    Guided by the supervised pattern recognition algorithm C4.5 developed by Quinlan in 1986, we examine the three gamma-ray burst classes identified by Mukherjee et al. in 1998. C4.5 provides strong statistical support for this classification. However, with C4.5 and our knowledge of the Burst and Transient Source Experiment (BATSE) instrument, we demonstrate that class 3 (intermediate fluence, intermediate duration, soft) does not have to be a distinct source population: statistical/systematic errors in measuring burst attributes combined with the well-known hardness/intensity correlation can cause low peak flux class 1 (high fluence, long, intermediate hardness) bursts to take on class 3 characteristics naturally. Based on our hypothesis that the third class is not a distinct one, we provide rules so that future events can be placed in either class 1 or class 2 (low fluence, short, hard). We find that the two classes are relatively distinct on the basis of Band's work in 1993 on spectral parameters alpha, beta, and E (sub peak) alone. Although this does not indicate a better basis for classification, it does suggest that different physical conditions exist for class 1 and class 2 bursts. In the process of studying burst class characteristics, we identify a new bias affecting burst fluence and duration measurements. Using a simple model of how burst duration can be underestimated, we show how this fluence duration bias can affect BATSE measurements and demonstrate the type of effect it can have on the BATSE fluence versus peak flux diagram.

  15. Gamma-Ray Burst Class Properties

    NASA Technical Reports Server (NTRS)

    Hakkila, Jon; Haglin, David J.; Pendleton, Geoffrey N.; Mallozzi, Robert S.; Meegan, Charles A.; Roiger, Richard J.

    1999-01-01

    Guided by the Supervised pattern recognition algorithm C4.5, we examine the three gamma-ray burst classes identified by Mukherjee et al. C4.5 provides strong statistical support for this classification. However, with C4.5 and our knowledge of the BATSE instrument, we demonstrate that Class 3 (intermediate fluence, intermediate duration, soft) does not have to be a distinct source population: statistical/systematic errors in measuring burst attributes combined with the well-known hardness/intensity correlation can cause low peak flux Class I (high fluence, long, intermediate hardness) bursts to take on Class 3 characteristics naturally. Based on our hypothesis that the third class is not a distinct one, we provide rules so that future events can be placed in either Class I or Class 2 (low fluence, short, hard). Using classified bursts from the BATSE 4B Catalog, we plot log(N>P) vs. log(P) curves and study spectral features of each class. We find that the two classes are relatively distinct on the basis of spectral parameters, alpha, Beta, and E(sub peak) alone. Although this does not indicate a better basis for classification, it does suggest that different physical conditions exist for Class I and Class 2 bursts. In the process of studying burst class characteristics, we identify a new bias that affects measurement of burst fluences and durations. Using a simple model of how burst duration can be underestimated, we generally characterize how this fluence duration bias affects BATSE measurements, and demonstrate the type of effect it can have on the BATSE fluence vs. peak flux diagram.

  16. Bursting the Taylor cone bubble

    NASA Astrophysics Data System (ADS)

    Pan, Zhao; Truscott, Tadd

    2014-11-01

    A soap bubble fixed on a surface and placed in an electric field will take on the shape of a cone rather than constant curvature (dome) when the electrical field is not present. The phenomenon was introduced by J. Zeleny (1917) and studied extensively by C.T. Wilson & G.I. Taylor (1925). We revisit the Taylor cone problem by studying the deformation and bursting of soap bubbles in a point charge electric field. A single bubble takes on the shape of a cone in the electric field and a high-speed camera equipped with a micro-lens is used to observe the unsteady dynamics at the tip. Rupture occurs as a very small piece of the tip is torn away from the bubble toward the point charge. Based on experiments, a theoretical model is developed that predicts when rupture should occur. This study may help in the design of foam-removal techniques in engineering and provide a better understanding of an electrified air-liquid interface.

  17. Meteor burst communications improvement study

    NASA Astrophysics Data System (ADS)

    Peterson, David

    1993-07-01

    Two identical Meteor Burst Radio Terminals were developed, fabricated, and delivered to the Air Force. Each is controlled by a PC computer in a menu driven manner. The mode of operation is full duplex. The RF frequency range is 40 to 60 MHz with tuning increments of 25 KHz. Data rates are 4, 8, 16, 32, 64, 128, 256, and 512 kbps. Modulation is coherent Binary Phase Shift Keying (BPSK) and incoherent Differential Phase Shift Keying (DPSK). Protocol includes Automatic Repeat Request (ARQ) with source and destination addressing, message number, start of message, and end of message. Messages are packetized, and Reed Solomon (R-S) coding is an option. The ARQ is under the control of a Cyclic Redundancy Check Code (CRCC) which detects binary errors within each packet. The terminal is intended to increase meteor trail availability and data throughput by several orders of magnitude--by operating with new antennas that provide much higher gains without sacrificing meteor trail acquisition performance.

  18. Gamma-ray burst cosmology

    NASA Astrophysics Data System (ADS)

    Wang, F. Y.; Dai, Z. G.; Liang, E. W.

    2015-08-01

    Gamma-ray bursts (GRBs) are the most luminous electromagnetic explosions in the Universe, which emit up to 8.8 × 1054 erg isotropic equivalent energy in the hard X-ray band. The high luminosity makes them detectable out to the largest distances yet explored in the Universe. GRBs, as bright beacons in the deep Universe, would be the ideal tool to probe the properties of high-redshift universe: including the cosmic expansion and dark energy, star formation rate, the reionization epoch and the metal enrichment history of the Universe. In this article, we review the luminosity correlations of GRBs, and implications for constraining the cosmological parameters and dark energy. Observations show that the progenitors of long GRBs are massive stars. So it is expected that long GRBs are tracers of star formation rate. We also review the high-redshift star formation rate derived from GRBs, and implications for the cosmic reionization history. The afterglows of GRBs generally have broken power-law spectra, so it is possible to extract intergalactic medium (IGM) absorption features. We also present the capability of high-redshift GRBs to probe the pre-galactic metal enrichment and the first stars.

  19. Frontal midline theta reflects individual task performance in a working memory task.

    PubMed

    Maurer, Urs; Brem, Silvia; Liechti, Martina; Maurizio, Stefano; Michels, Lars; Brandeis, Daniel

    2015-01-01

    Frontal midline (fm-)theta activity has been related to working memory (WM) processes, as it typically increases with WM load. The robustness of this effect, however, varies across studies and subjects, putting limits to its interpretation. We hypothesized that variation in the fm-theta effect may reflect individual differences in task difficulty with increasing WM load as indicated by behavioural responses. We further tested whether effects in the alpha range are robust markers of WM load. We recorded 64-channel EEG from 24 healthy adults while they memorized either 2 or 4 unfamiliar symbols (low vs. high WM load) in a modified Sternberg task. The last 2 s of the retention phase were analyzed for WM load-related changes in the theta (5-7 Hz) and alpha range (lower: 8-10 Hz, upper: 10.5-12.5 Hz). Higher WM load led to less accurate and slower responses. The increase of fm-theta with WM load was most pronounced at fm electrodes, localized to anterior cingulate regions, and correlated with the participants' decrease in accuracy due to higher WM load. Alpha peak frequency increased in the high compared to the low WM load condition, corresponding to a decrease in lower alpha range across all channels. The results demonstrate that previously reported variation in fm-theta workload effects can partly be explained by variation in task difficulty indexed by individual task accuracy. Moreover, the results also demonstrate that alpha WM load effects are prominent when separating upper and lower alpha. PMID:24687327

  20. MIF protein are theta-class glutathione S-transferase homologs.

    PubMed Central

    Blocki, F. A.; Ellis, L. B.; Wackett, L. P.

    1993-01-01

    MIF proteins are mammalian polypeptides of approximately 13,000 molecular weight. This class includes human macrophage migration inhibitory factor (MIF), a rat liver protein that has glutathione S-transferase (GST) activity (TRANSMIF), and the mouse delayed early response gene 6 (DER6) protein. MIF proteins were previously linked to GSTs by demonstrating transferase activity and observing N-terminal sequence homology with a mu-class GST (Blocki, F.A., Schlievert, P.M., & Wackett, L.P., 1992, Nature 360, 269-270). In this study, MIF proteins are shown to be structurally related to the theta class of GSTs. This is established in three ways. First, unique primary sequence patterns are developed for each of the GST gene classes. The patterns identify the three MIF proteins as theta-like transferase homologs. Second, pattern analysis indicates that GST members of the theta class contain a serine residue in place of the N-terminal tyrosine that is implicated in glutathione deprotonation and activation in GSTs of known structure (Liu, S., et al., 1992, J. Biol. Chem. 267, 4296-4299). The MIF proteins contain a threonine at this position. Third, polyclonal antibodies raised against recombinant human MIF cross-react on Western blots with rat theta GST but not with alpha and mu GSTs. That MIF proteins have glutathione-binding ability may provide a common structural key toward understanding the varied functions of this widely distributed emerging gene family. Because theta is thought to be the most ancient evolutionary GST class, MIF proteins may have diverged early in evolution but retained a glutathione-binding domain. PMID:8298459

  1. Measurement of Neutrino Mixing Angle thetas13 Using Neutron Captured on Hydrogen in Daya Bay

    NASA Astrophysics Data System (ADS)

    Xu, Jianyi

    The Daya Bay Reactor Neutrino Experiment aims to measure the last unknown neutrino mixing angle theta13, by measuring the disappearance of electron anti-neutrinos produced by the six nuclear reactors of the Daya Bay Nuclear Power Plant. In total eight functionally identical anti-neutrino detectors are deployed underground, with two detectors distributed at each of the two near sites close to the reactor cores and four detectors placed at a far site ˜2 km away from the reactor cores. The number of observed electron anti-neutrinos are measured via inverse-beta decay reaction, v¯e+ p+ → e+ + n. The positrons deposit energy in the liquid scintillator and annihilate with electrons, emitting gammas, which is the prompt signals for detection. The neutrons are captured on either gadolinium or hydrogen atoms and emit gammas with total energy ˜8 MeV or ˜2 MeV, respectively, producing the delayed signals. The ratio between the numbers of anti-neutrinos from far site and near site detectors is used to measure the oscillation parameters. With 55 calendar days of data, the Daya Bay experiment first published its result using neutron-captured-on-gadolinium signals in March 2012, with best-fit sin2 2theta13 = 0.092+/-0.016( stat.)0.005(syst.), excluding the zero-theta 13 hypothesis at 5.2sigma confidence level. Subsequently results with higher statistics and improved systematic uncertainty have further constrained sin2 2theta13 = 0.085 +/- 0.006. In this thesis, an independent oscillation analysis using the neutron-captured-on- hydrogen signals is presented, which could cross-check the neutron-captured-on-gadolinium analysis result with independent anti-neutrino samples and different systematic uncertainty. With 190 live days of data and 6 detectors, the rate-only analysis gives best-fit sin2 2theta13 = 0.078 +/- 0.02.

  2. Physics of Gamma Ray Burst Sources

    NASA Technical Reports Server (NTRS)

    Meszaros, Peter

    2004-01-01

    During this grant period, the physics of gamma-ray bursts was investigated. A number of new results have emerged. The importance of pair formation in high compactness burst spectra may help explain x-ray flashes; a universal jet shape is a likely explanation for the distribution of jet break times; gravitational waves may be copiously produced both in short bursts from compact mergers and in long bursts arising from collapsars; x-ray iron lines are likely to be due to interaction with the stellar atmosphere of the progenitor; prompt optical flashes from reverse shocks will give diagnostics on the Lorentz factor and the environment; GeV and TeV emission from bursts may be expected in the external shock; etc. The group working with the PI included postdocs Dr. Bing Zhang (now assistant professor at University of Nevada); Dr. Shiho Kobayashi; graduate student Lijun Gou; collaborators Drs. Tim Kallman and Martin Rees. Meszaros shared with Rees and Dr. Bohan Paczynsky the AAS Rossi Prize in 2000 for their work on the theory of gamma ray bursts. The refereed publications and conference proceedings resulting from this research are summarized below. The PI gave a number of invited talks at major conferences, also listed.

  3. Photospheric Radius Expansion During Magnetar Bursts

    NASA Astrophysics Data System (ADS)

    Watts, Anna L.; Kouveliotou, Chryssa; van der Horst, Alexander J.; Göǧüş, Ersin; Kaneko, Yuki; van der Klis, Michiel; Wijers, Ralph A. M. J.; Harding, Alice K.; Baring, Matthew G.

    2010-08-01

    On 2008 August 24 the new magnetar SGR 0501+4516 (discovered by Swift) emitted a bright burst with a pronounced double-peaked structure in hard X-rays, reminiscent of the double-peaked temporal structure seen in some bright thermonuclear bursts on accreting neutron stars. In the latter case this is due to Photospheric Radius Expansion (PRE): when the flux reaches the Eddington limit, the photosphere expands and cools so that emission becomes softer and drops temporarily out of the X-ray band, re-appearing as the photosphere settles back down. We consider the factors necessary to generate double-peaked PRE events, and show that such a mechanism could plausibly operate in magnetar bursts despite the vastly different emission process. Identification of the magnetic Eddington limit in a magnetar would constrain magnetic field and distance and could, in principle, enable a measurement of gravitational redshift. It would also locate the emitting region at the neutron star surface, constraining the burst trigger mechanism. Conclusive confirmation of PRE events will require more detailed radiative models for bursts. However, for SGR 0501+4516 the predicted critical flux (using the magnetic field strength inferred from timing and the distance suggested by its probable location in the Perseus arm of our Galaxy) is consistent with that observed in the August 24 burst.

  4. Voyager observations of Jovian millisecond radio bursts

    NASA Technical Reports Server (NTRS)

    Alexander, J. K.; Desch, M. D.

    1984-01-01

    Voyager Planetary Radio Astronomy data collected over 30-day intervals centered on the two close encounters with Jupiter were utilized to study the characteristics of millisecond-duration radio bursts (s-bursts) at frequencies between 5 and 15 MHz. In this frequency range, s-bursts are found to occur almost independently of Central Meridian Longitude and to depend entirely on the phase of Io with respect to the observer's planetocentric line of sight. Individual bursts typically cover a total frequency range of about 1.5 to 3 MHz, and they are usually strongly circularly polarized. Most bursts in a particular s-burst storm will exhibit the same polarization sense (either right-hand or left-hand), and there is some evidence for a systematic pattern in which one polarizations sense is preferred over the other as a function of Io phase and Central Meridian Longitude. These data are all suggestive of a radio source that is located along the instantaneous Io flux tube and that extends over a linear dimension of 5000 km along the field lines in both the northern and southern Hemispheres.

  5. BurstCube: A Gamma-ray Burst Detecting Swarm of CubeSats

    NASA Astrophysics Data System (ADS)

    Perkins, Jeremy S; Racusin, Judith L.; Krizmanic, John F; McEnery, Julie E.

    2014-08-01

    The study of gamma-ray bursts (GRBs) has seen major advances in the past decade based on the results of several highly successful missions like Swift and Fermi. These prolific GRB detectors have enabled multi-wavelength follow-up of hundreds of GRBs and have allowed us to answer some of the outstanding questions in this field as well as prompted research in many new directions. It is critical to continue GRB detection, especially with gravitational wave detectors coming online in the next few years, e.g. advanced LIGO/Virgo, and the continued operation of multi-messenger observatories such as IceCube. Without the detection and study of counterparts to these future non-photon detections, the full characterization of a GRB would be difficult. The current GRB detection technology is at a mature level such that small, inexpensive detectors on CubeSats could perform as well or better than the current generation of GRB scintillator detectors. This paper will detail the design parameters and performance of small, GRB detecting CubeSats operating in a swarm that can detect, localize, and characterize GRBs via the high energy photon signatures.

  6. From Enigma to Tool: Gamma-Ray Burst Reveals Secrets of Host Galaxy

    NASA Astrophysics Data System (ADS)

    2001-05-01

    , astronomers debated whether the explosions were close, in our own Milky Way Galaxy, or far, in distant galaxies. In addition, a plethora of theories attempted to explain the bursts, but a lack of observational data prevented scientists from choosing among the theories. Optical and radio telescopes first spotted the "afterglows" from gamma- ray bursts in 1997. It was quickly determined that the explosions are occurring in very distant galaxies. Subsequent observations, most astronomers believe, have narrowed the theories down to two: either the explosions are the result of pairs of old, superdense neutron stars colliding with each other or are the death throes of young, very massive stars. "This burst in 1998 came from a region near the center of its host galaxy, where star birth is occuring at a rapid rate. This supports the theory that gamma-ray bursts come from the death explosions of very young, massive stars," said Kulkarni. The burst, known as GRB 980703, was detected by a satellite on July 3, 1998, and the VLA first observed it a day later. The astronomers continued to observe the object with the VLA at intervals over the next 1,000 days. This is the longest period over which a gamma-ray-burst afterglow ever has been observed; the previous record-holder was a burst in 1997 that was followed with the VLA for a period of 445 days. "The afterglow of the burst kept getting fainter with time, but we then noticed that the intensity of radio emission was leveling off. We realized that the burst afterglow was still fading, but what was remaining steady was radio emission from the galaxy itself," Berger said. This allowed the scientists to study the characteristics of the galaxy, and of the region within the galaxy where the burst occurred. They concluded that the gamma-ray burst occurred near the center of the galaxy in a region where the galaxy is experiencing its maximum amount of star formation. "If, as we believe, gamma-ray bursts come from the super-explosions of massive

  7. Solar Type II Radio Bursts and IP Type II Events

    NASA Technical Reports Server (NTRS)

    Cane, H. V.; Erickson, W. C.

    2005-01-01

    We have examined radio data from the WAVES experiment on the Wind spacecraft in conjunction with ground-based data in order to investigate the relationship between the shocks responsible for metric type II radio bursts and the shocks in front of coronal mass ejections (CMEs). The bow shocks of fast, large CMEs are strong interplanetary (IP) shocks, and the associated radio emissions often consist of single broad bands starting below approx. 4 MHz; such emissions were previously called IP type II events. In contrast, metric type II bursts are usually narrowbanded and display two harmonically related bands. In addition to displaying complete dynamic spectra for a number of events, we also analyze the 135 WAVES 1 - 14 MHz slow-drift time periods in 2001-2003. We find that most of the periods contain multiple phenomena, which we divide into three groups: metric type II extensions, IP type II events, and blobs and bands. About half of the WAVES listings include probable extensions of metric type II radio bursts, but in more than half of these events, there were also other slow-drift features. In the 3 yr study period, there were 31 IP type II events; these were associated with the very fastest CMEs. The most common form of activity in the WAVES events, blobs and bands in the frequency range between 1 and 8 MHz, fall below an envelope consistent with the early signatures of an IP type II event. However, most of this activity lasts only a few tens of minutes, whereas IP type II events last for many hours. In this study we find many examples in the radio data of two shock-like phenomena with different characteristics that occur simultaneously in the metric and decametric/hectometric bands, and no clear example of a metric type II burst that extends continuously down in frequency to become an IP type II event. The simplest interpretation is that metric type II bursts, unlike IP type II events, are not caused by shocks driven in front of CMEs.

  8. Fractionally charged Wilson loops as a probe of {theta} dependence in CP{sup N-1} sigma models: Instantons versus large N

    SciTech Connect

    Keith-Hynes, Patrick; Thacker, H. B.

    2008-07-15

    The behavior of Wilson loops with fractional charge is used to study the {theta} dependence of the free energy density {epsilon}({theta}) for the CP{sup 1}, CP{sup 5}, and CP{sup 9} sigma models in two space-time dimensions. The function {epsilon}({theta}) is extracted from the area law for a Wilson loop of charge q={theta}/2{pi}. For CP{sup 1}, {epsilon}({theta}) is smooth in the region {theta}{approx_equal}{pi} and well described by a dilute instanton gas throughout the range 0<{theta}<2{pi}. For CP{sup 5} and CP{sup 9} the energy exhibits a clear cusp and evidence for discrete, degenerate vacua at {theta}={pi}, as expected from large N arguments. For CP{sup 9} the {theta} dependence is in good quantitative agreement with the leading-order large N prediction {epsilon}({theta})=(1/2){chi}{sub t}{theta}{sup 2} throughout the range 0<{theta}<{pi}.

  9. Reduced Theta-Band Power and Phase Synchrony during Explicit Verbal Memory Tasks in Female, Non-Clinical Individuals with Schizotypal Traits

    PubMed Central

    Choi, Jeong Woo; Jang, Kyoung-Mi; Jung, Ki-Young; Kim, Myung-Sun; Kim, Kyung Hwan

    2016-01-01

    The study of non-clinical individuals with schizotypal traits has been considered to provide a promising endophenotypic approach to understanding schizophrenia, because schizophrenia is highly heterogeneous, and a number of confounding factors may affect neuropsychological performance. Here, we investigated whether deficits in explicit verbal memory in individuals with schizotypal traits are associated with abnormalities in the local and inter-regional synchrony of brain activity. Memory deficits have been recognized as a core problem in schizophrenia, and previous studies have consistently shown explicit verbal memory impairment in schizophrenic patients. However, the mechanism of this impairment has not been fully revealed. Seventeen individuals with schizotypal traits and 17 age-matched, normal controls participated. Multichannel event-related electroencephalograms (EEGs) were recorded while the subjects performed a continuous recognition task. Event-related spectral perturbations (ERSPs) and inter-regional theta-band phase locking values (TPLVs) were investigated to determine the differences in local and global neural synchrony between the two subject groups. Additionally, the connection patterns of the TPLVs were quantitatively analyzed using graph theory measures. An old/new effect was found in the induced theta-band ERSP in both groups. However, the difference between the old and new was larger in normal controls than in schizotypal trait group. The tendency of elevated old/new effect in normal controls was observed in anterior-posterior theta-band phase synchrony as well. Our results suggest that explicit memory deficits observed in schizophrenia patients can also be found in non-clinical individuals with psychometrically defined schizotypal traits. PMID:26840071

  10. Reduced Theta-Band Power and Phase Synchrony during Explicit Verbal Memory Tasks in Female, Non-Clinical Individuals with Schizotypal Traits.

    PubMed

    Choi, Jeong Woo; Jang, Kyoung-Mi; Jung, Ki-Young; Kim, Myung-Sun; Kim, Kyung Hwan

    2016-01-01

    The study of non-clinical individuals with schizotypal traits has been considered to provide a promising endophenotypic approach to understanding schizophrenia, because schizophrenia is highly heterogeneous, and a number of confounding factors may affect neuropsychological performance. Here, we investigated whether deficits in explicit verbal memory in individuals with schizotypal traits are associated with abnormalities in the local and inter-regional synchrony of brain activity. Memory deficits have been recognized as a core problem in schizophrenia, and previous studies have consistently shown explicit verbal memory impairment in schizophrenic patients. However, the mechanism of this impairment has not been fully revealed. Seventeen individuals with schizotypal traits and 17 age-matched, normal controls participated. Multichannel event-related electroencephalograms (EEGs) were recorded while the subjects performed a continuous recognition task. Event-related spectral perturbations (ERSPs) and inter-regional theta-band phase locking values (TPLVs) were investigated to determine the differences in local and global neural synchrony between the two subject groups. Additionally, the connection patterns of the TPLVs were quantitatively analyzed using graph theory measures. An old/new effect was found in the induced theta-band ERSP in both groups. However, the difference between the old and new was larger in normal controls than in schizotypal trait group. The tendency of elevated old/new effect in normal controls was observed in anterior-posterior theta-band phase synchrony as well. Our results suggest that explicit memory deficits observed in schizophrenia patients can also be found in non-clinical individuals with psychometrically defined schizotypal traits. PMID:26840071

  11. On Gamma-Ray Bursts

    NASA Astrophysics Data System (ADS)

    Ruffini, R.; Bernardini, M. G.; Bianco, C. L.; Caito, L.; Chardonnet, P.; Cherubini, C.; Dainotti, M. G.; Fraschetti, F.; Geralico, A.; Guida, R.; Patricelli, B.; Rotondo, M.; Rueda Hernandez, J. A.; Vereshchagin, G.; Xue, S.-S.

    2008-09-01

    We show by example how the uncoding of Gamma-Ray Bursts (GRBs) offers unprecedented possibilities to foster new knowledge in fundamental physics and in astrophysics. After recalling some of the classic work on vacuum polarization in uniform electric fields by Klein, Sauter, Heisenberg, Euler and Schwinger, we summarize some of the efforts to observe these effects in heavy ions and high energy ion collisions. We then turn to the theory of vacuum polarization around a Kerr-Newman black hole, leading to the extraction of the blackholic energy, to the concept of dyadosphere and dyadotorus, and to the creation of an electron-positron-photon plasma. We then present a new theoretical approach encompassing the physics of neutron stars and heavy nuclei. It is shown that configurations of nuclear matter in bulk with global charge neutrality can exist on macroscopic scales and with electric fields close to the critical value near their surfaces. These configurations may represent an initial condition for the process of gravitational collapse, leading to the creation of an electron-positron-photon plasma: the basic self-accelerating system explaining both the energetics and the high energy Lorentz factor observed in GRBs. We then turn to recall the two basic interpretational paradigms of our GRB model: 1) the Relative Space-Time Transformation (RSTT) paradigm and 2) the Interpretation of the Burst Structure (IBS) paradigm. These paradigms lead to a "canonical" GRB light curve formed from two different components: a Proper-GRB (P-GRB) and an extended afterglow comprising a raising part, a peak, and a decaying tail. When the P-GRB is energetically predominant we have a "genuine" short GRB, while when the afterglow is energetically predominant we have a so-called long GRB or a "fake" short GRB. We compare and contrast the description of the relativistic expansion of the electron-positron plasma within our approach and within the other ones in the current literature. We then turn

  12. Modeling gamma-ray bursts

    NASA Astrophysics Data System (ADS)

    Maxham, Amanda

    Discovered serendipitously in the late 1960s, gamma-ray bursts (GRBs) are huge explosions of energy that happen at cosmological distances. They provide a grand physical playground to those who study them, from relativistic effects such as beaming, jets, shocks and blastwaves to radiation mechanisms such as synchrotron radiation to galatic and stellar populations and history. Through the Swift and Fermi space telescopes dedicated to observing GRBs over a wide range of energies (from keV to GeV), combined with accurate pinpointing that allows ground based follow-up observations in the optical, infrared and radio, a rich tapestry of GRB observations has emerged. The general picture is of a mysterious central engine (CE) probably composed of a black hole or neutron star that ejects relativistic shells of matter into intense magnetic fields. These shells collide and combine, releasing energy in "internal shocks" accounting for the prompt emission and flaring we see and the "external shock" or plowing of the first blastwave into the ambient surrounding medium has well-explained the afterglow radiation. We have developed a shell model code to address the question of how X-ray flares are produced within the framework of the internal shock model. The shell model creates randomized GRB explosions from a central engine with multiple shells and follows those shells as they collide, merge and spread, producing prompt emission and X-ray flares. We have also included a blastwave model, which can constrain X-ray flares and explain the origin of high energy (GeV) emission seen by the Fermi telescope. Evidence suggests that gamma-ray prompt emission and X-ray flares share a common origin and that at least some flares can only be explained by long-lasting central engine activity. We pay special attention to the time history of central engine activity, internal shocks, and observed flares. We calculate the gamma-ray (Swift/BAT band) and X-ray (Swift/XRT band) lightcurves for arbitrary

  13. Astrophysical Implications of the Superstring-Inspired E{sub 6} Unification and Shadow Theta-Particles

    SciTech Connect

    Das, C. R.; Laperashvili, L. V.; Tureanu, A.

    2010-06-23

    We have developed a concept of parallel existence of the ordinary (O) and mirror (M), or shadow (Sh) worlds. E{sub 6} unification, inspired by superstring theory, restores the broken mirror parity at the scale {approx}10{sup 18} GeV. With the aim to explain the tiny cosmological constant, we consider the breakings: E{sub 6{yields}}SO(10)xU(1){sub Z}--in the O-world, and E'6{yields}SU(6)'xSU(2)'{sub {theta}-}-in the Sh-world. We assume the existence of shadow {theta}-particles and the low energy symmetry group SU(3)'{sub C}xSU(2)'{sub L}xSU(2)'{sub {theta}x}U(1)'{sub Y} in the shadow world, instead of the Standard Model. The additional non-Abelian SU(2)'{sub {theta}}group with massless gauge fields, 'thetons', has a macroscopic confinement radius 1/{Lambda}'{sub {theta}.} The assumption that {Lambda}'{sub {theta}{approx_equal}2}.3{center_dot}10{sup -3} eV explains the tiny cosmological constant given by recent astrophysical measurements. Searching for the Dark Matter (DM), it is possible to observe and study various signals of theta-particles.

  14. The Cosmic Gamma-Ray Bursts

    NASA Astrophysics Data System (ADS)

    Djorgovski, S. G.; Frail, D. A.; Kulkarni, S. R.; Sari, R.; Bloom, J. S.; Galama, T. J.; Harrison, F. A.; Price, P. A.; Fox, D.; Reichart, D. E.; Yost, S.; Berger, E.; Diercks, A.; Goodrich, R.; Chaffee, F.

    2002-12-01

    Cosmic γ-ray bursts are one of the great frontiers of astrophysics today. They are a playground of relativists and observers alike. They may teach us about the death of stars and the birth of black holes, the physics in extreme conditions, and help us probe star formation in the distant and obscured universe. In this review we summarise some of the remarkable progress in this field over the past few years. While the nature of the GRB progenitors is still unsettled, it now appears likely that at least some bursts originate in explosions of very massive stars, or at least occur in or near the regions of massive star formation. The physics of the burst afterglows is reasonably well understood, and has been tested and confirmed very well by the observations. Bursts are found to be beamed, but with a broad range of jet opening angles; the mean γ-ray energies after the beaming corrections are ~ 1051 erg. Bursts are associated with faint ( ~ 25 mag) galaxies at cosmological redshifts, with ~ 1. The host galaxies span a range of luminosities and morphologies, but appear to be broadly typical for the normal, actively star-forming galaxy populations at comparable redshifts and magnitudes. Some of the challenges for the future include: the nature of the short bursts and possibly other types of bursts and transients; use of GRBs to probe the obscured star formation in the universe, and possibly as probes of the very early universe; and their detection as sources of high-energy particles and gravitational waves.

  15. Increase in short-term memory capacity induced by down-regulating individual theta frequency via transcranial alternating current stimulation.

    PubMed

    Vosskuhl, Johannes; Huster, René J; Herrmann, Christoph S

    2015-01-01

    Working memory (WM) and short-term memory (STM) supposedly rely on the phase-amplitude coupling (PAC) of neural oscillations in the theta and gamma frequency ranges. The ratio between the individually dominant gamma and theta frequencies is believed to determine an individual's memory capacity. The aim of this study was to establish a causal relationship between the gamma/theta ratio and WM/STM capacity by means of transcranial alternating current stimulation (tACS). To achieve this, tACS was delivered at a frequency below the individual theta frequency. Thereby the individual ratio of gamma to theta frequencies was changed, resulting in an increase of STM capacity. Healthy human participants (N = 33) were allocated to two groups, one receiving verum tACS, the other underwent a sham control protocol. The electroencephalogram (EEG) was measured before stimulation and analyzed with regard to the properties of PAC between theta and gamma frequencies to determine individual stimulation frequencies. After stimulation, EEG was recorded again in order to find after-effects of tACS in the oscillatory features of the EEG. Measures of STM and WM were obtained before, during and after stimulation. Frequency spectra and behavioral data were compared between groups and different measurement phases. The tACS- but not the sham stimulated group showed an increase in STM capacity during stimulation. WM was not affected in either groups. An increase in task-related theta amplitude after stimulation was observed only for the tACS group. These augmented theta amplitudes indicated that the manipulation of individual theta frequencies was successful and caused the increase in STM capacity. PMID:26005411

  16. Increase in short-term memory capacity induced by down-regulating individual theta frequency via transcranial alternating current stimulation

    PubMed Central

    Vosskuhl, Johannes; Huster, René J.; Herrmann, Christoph S.

    2015-01-01

    Working memory (WM) and short-term memory (STM) supposedly rely on the phase-amplitude coupling (PAC) of neural oscillations in the theta and gamma frequency ranges. The ratio between the individually dominant gamma and theta frequencies is believed to determine an individual’s memory capacity. The aim of this study was to establish a causal relationship between the gamma/theta ratio and WM/STM capacity by means of transcranial alternating current stimulation (tACS). To achieve this, tACS was delivered at a frequency below the individual theta frequency. Thereby the individual ratio of gamma to theta frequencies was changed, resulting in an increase of STM capacity. Healthy human participants (N = 33) were allocated to two groups, one receiving verum tACS, the other underwent a sham control protocol. The electroencephalogram (EEG) was measured before stimulation and analyzed with regard to the properties of PAC between theta and gamma frequencies to determine individual stimulation frequencies. After stimulation, EEG was recorded again in order to find after-effects of tACS in the oscillatory features of the EEG. Measures of STM and WM were obtained before, during and after stimulation. Frequency spectra and behavioral data were compared between groups and different measurement phases. The tACS- but not the sham stimulated group showed an increase in STM capacity during stimulation. WM was not affected in either groups. An increase in task-related theta amplitude after stimulation was observed only for the tACS group. These augmented theta amplitudes indicated that the manipulation of individual theta frequencies was successful and caused the increase in STM capacity. PMID:26005411

  17. QKD-Based Secured Burst Integrity Design for Optical Burst Switched Networks

    NASA Astrophysics Data System (ADS)

    Balamurugan, A. M.; Sivasubramanian, A.; Parvathavarthini, B.

    2016-03-01

    The field of optical transmission has undergone numerous advancements and is still being researched mainly due to the fact that optical data transmission can be done at enormous speeds. It is quite evident that people prefer optical communication when it comes to large amount of data involving its transmission. The concept of switching in networks has matured enormously with several researches, architecture to implement and methods starting with Optical circuit switching to Optical Burst Switching. Optical burst switching is regarded as viable solution for switching bursts over networks but has several security vulnerabilities. However, this work exploited the security issues associated with Optical Burst Switching with respect to integrity of burst. This proposed Quantum Key based Secure Hash Algorithm (QKBSHA-512) with enhanced compression function design provides better avalanche effect over the conventional integrity algorithms.

  18. Herringbone bursts associated with type II solar radio emission

    NASA Technical Reports Server (NTRS)

    Cairns, I. H.; Robinson, R. D.

    1987-01-01

    Detailed observations of the herringbone (HB) fine structure on type II solar radio bursts are presented. Data from the Culgoora radiospectrograph, radiometer and radioheliograph are analyzed. The characteristic spectral profiles, frequency drift rates and exciter velocities, fluxes, source sizes, brightness temperatures, and polarizations of individual HB bursts are determined. Correlations between individual bursts within the characteristic groups of bursts and the properties of the associated type II bursts are examined. These data are compatible with HB bursts being radiation at multiples of the plasma frequency generated by electron streams accelerated by the type II shock. HB bursts are physically distinct phenomena from type II and type III bursts, differing significantly in emission processes and/or source conditions; this conclusion indicates that many of the presently available theoretical ideas for HB bursts are incorrect.

  19. Forces in a thin cosine(n{theta}) helical wiggler

    SciTech Connect

    Caspi, S.

    1995-03-01

    We commence with the derivation of the Lorentz force density on a surface of discontinuity based on the expressions of fields and currents previously derived (Appendix A). Applying such Lorentz body forces to the equilibrium condition of an infinitesimal surface area yields a set of differential equations for the local total force. In attempting to solve such differential equations it may prove to be useful and prudent to reduce their complexity by first transforming all fields, current densities and Lorentz forces to a coordinate system that is aligned with the direction of the current flow. A Frenet--Serret rotating unit vector coordinate system may serve such a purpose and will reduce the 3 components of the Lorentz force to 2. We proceed with obtaining such a conversion through the use of differential geometry, although a more straight forward approach may exist through the use of surface developability and coordinate transformation. Following a solution to the force equations we continue with and example of a nested set of a combined function dipole and quadrupole that employ an identical periodicity {omega}. The expressions for the self force and the mutual force on each magnet element are obtained. Finally, by reducing the periodicity {omega} to zero we obtain the force expressions for long (2D) multipole magnets including both the self and interactive forces.

  20. Sources of type III solar microwave bursts

    NASA Astrophysics Data System (ADS)

    Zhdanov, Dmitriy; Lesovoi, Sergey; Tokhchukova, Susanna

    2016-06-01

    Microwave fine structures allow us to study plasma evolution in an energy release region. The Siberian Solar Radio Telescope (SSRT) is a unique instrument designed to examine fine structures at 5.7 GHz. A complex analysis of data from RATAN-600, 4-8 GHz spectropolarimeter, and SSRT, simultaneously with extreme UV data, made it possible to localize sources of III type microwave drift bursts in August 10, 2011 event within the entire frequency band of burst occurrences, as well as to determine the most probable region of primary energy release. To localize sources of III type bursts from RATAN-600 data, an original method for data processing has been worked out. At 5.7 GHz, the source of bursts was determined along two coordinates whereas at 4.5, 4.7, 4.9, 5.1, 5.3, 5.5 and 6.0 GHz, their locations were identified along one coordinate. The size of the burst source at 5.1 GHz was found to be maximum as compared to source sizes at other frequencies.

  1. Swift: A Gamma Ray Bursts Explorer

    NASA Technical Reports Server (NTRS)

    Gehrels, Neil

    2003-01-01

    Swift is a NASA gamma-ray burst MIDEX mission that is in development for launch in December 2003. It is a multiwavelength transient observatory for GRB astronomy. The goals of the mission are to determine the origin of GRBs and their afterglows and use bursts to probe the early Universe. It will also.perform a survey of the hard X-ray sky to a sensitivity level of -1 mCrab. A wide-field camera will detect more than a hundred GRBs per year to 5 times fainter than BATSE. Sensitive narrow-field X-ray and UV/optical telescopes will be pointed at the burst location in 20 to 70 sec by an autonomously controlled 'swift' spacecraft. For each burst, arcsec positions will be determined and optical/UV/X-ray/gamma-ray spectrophotometry performed. Measurements of redshift will be made for many of the bursts. The instrumentation is a combination of superb existing flight-spare hardware and design from XMM and Spectrum-X/JET-X contributed by collaborators in the UK and Italy and development of a coded-aperture camera with a large-area (approximately 0.5 square meter) CdZnTe detector array. The hardware is currently in final stages of fabrication and initial stages of integration and test. Key components of the mission are vigorous follow-up and outreach programs to engage the astronomical community and public in Swift.

  2. GRB Catalog: Bursts from Vela to Swift

    NASA Technical Reports Server (NTRS)

    Angelini, L.

    2008-01-01

    Gamma ray burst (GRB) astronomy started when the first event was recorded on July 2, 1967 by Vela 4a and 4b. Since then many missions have flown experiments capable of detecting GRBs. The events collected by these older experiments are mostly available in paper copy, each containing a few ten to a few hundred bursts. No systematic effort in cataloging of these bursts has been available. In some cases the information is unpublished and in others difficult to retrieve. The first major GRB catalog was obtained by GRO with the BATSE experiment. It contains more than 2000 bursts and includes homogeneous information for each of the bursts. With the launch of Swift, the first Gamma-ray/X-ray mission dedicated to the study of GRBs and their afterglows, a wealth of information is collected by the Swift instrument as well as from ground-based telescopes. This talk will describe the efforts to create a comprehensive GRBCAT and its current status and future prospective.

  3. THE FERMI GAMMA-RAY BURST MONITOR

    SciTech Connect

    Meegan, Charles; Lichti, Giselher; Bissaldi, Elisabetta; Diehl, Roland; Greiner, Jochen; Von Kienlin, Andreas; Steinle, Helmut; Bhat, P. N.; Briggs, Michael S.; Connaughton, Valerie; Paciesas, W. S.; Preece, Robert; Wilson, Robert B.; Fishman, Gerald; Kouveliotou, Chryssa; Van der Horst, Alexander J.; McBreen, Sheila

    2009-09-01

    The Gamma-Ray Burst Monitor (GBM) will significantly augment the science return from the Fermi Observatory in the study of gamma-ray bursts (GRBs). The primary objective of GBM is to extend the energy range over which bursts are observed downward from the energy range of the Large Area Telescope (LAT) on Fermi into the hard X-ray range where extensive previous data sets exist. A secondary objective is to compute burst locations onboard to allow re-orienting the spacecraft so that the LAT can observe delayed emission from bright bursts. GBM uses an array of 12 sodium iodide scintillators and two bismuth germanate scintillators to detect gamma rays from {approx}8 keV to {approx}40 MeV over the full unocculted sky. The onboard trigger threshold is {approx}0.7 photons cm{sup -2} s{sup -1} (50-300 keV, 1 s peak). GBM generates onboard triggers for {approx}250 GRBs per year.

  4. Oscillations During Thermonuclear X-ray Bursts

    NASA Technical Reports Server (NTRS)

    Strohmayer, Tod E.; White, Nicholas E. (Technical Monitor)

    2001-01-01

    High amplitude, nearly coherent X-ray brightness oscillations during thermonuclear X-ray bursts were discovered with the Rossi X-ray Timing Explorer (RXTE) in early 1996. Spectral and timing evidence strongly supports the conclusion that these oscillations are caused by rotational modulation of the burst emission and that they reveal the spin frequency of neutron stars in low mass X-ray binaries, a long sought goal of X-ray astronomy. Studies carried out over the past year have led to the discovery of burst oscillations in four new sources, bringing to ten the number with confirmed burst oscillations. I review the status of our knowledge of these oscillations and indicate how they can be used to probe the physics of neutron stars. For a few burst oscillation sources it has been proposed that the strongest and most ubiquitous frequency is actually the first overtone of the spin frequency and hence that two nearly antipodal hot spots are present on the neutron star. This inference has important implications for both the physics of thermonuclear burning as well as the mass - radius relation for neutron stars, so its confirmation is crucial. I discuss recent attempts to confirm this hypothesis for 4U 1636-53, the source for which a signal at the putative fundamental (290Hz) has, been claimed.

  5. Rotational IMRT delivery using a digital linear accelerator in very high dose rate 'burst mode'.

    PubMed

    Salter, Bill J; Sarkar, Vikren; Wang, Brian; Shukla, Himanshu; Szegedi, Martin; Rassiah-Szegedi, Prema

    2011-04-01

    Recently, there has been a resurgence of interest in arc-based IMRT, through the use of 'conventional' multileaf collimator (MLC) systems that can treat large tumor volumes in a single, or very few pass(es) of the gantry. Here we present a novel 'burst mode' modulated arc delivery approach, wherein 2000 monitor units per minute (MU min(-1)) high dose rate bursts of dose are facilitated by a flattening-filter-free treatment beam on a Siemens Artiste (Oncology Care Systems, Siemens Medical Solutions, Concord, CA, USA) digital linear accelerator in a non-clinical configuration. Burst mode delivery differs from continuous mode delivery, used by Elekta's VMAT (Elekta Ltd, Crawley, UK) and Varian's RapidArc (Varian Medical Systems, Palo Alto, CA, USA) implementations, in that dose is not delivered while MLC leaves are moving. Instead, dose is delivered in bursts over very short arc angles and only after an MLC segment shape has been completely formed and verified by the controller. The new system was confirmed to be capable of delivering a wide array of clinically relevant treatment plans, without machine fault or other delivery anomalies. Dosimetric accuracy of the modulated arc platform, as well as the Prowess (Prowess Inc., Concord, CA, USA) prototype treatment planning version utilized here, was quantified and confirmed, and delivery times were measured as significantly brief, even with large hypofractionated doses. The burst mode modulated arc approach evaluated here appears to represent a capable, accurate and efficient delivery approach. PMID:21364260

  6. Posttranslationally caused bioluminescence burst of the Escherichia coli luciferase reporter strain.

    PubMed

    Ideguchi, Yamato; Oshikoshi, Yuta; Ryo, Masashi; Motoki, Shogo; Kuwano, Takashi; Tezuka, Takafumi; Aoki, Setsuyuki

    2016-01-01

    We continuously monitored bioluminescence from a wild-type reporter strain of Escherichia coli (lacp::luc+/WT), which carries the promoter of the lac operon (lacp) fused with the firefly luciferase gene (luc+). This strain showed a bioluminescence burst when shifted into the stationary growth phase. Bioluminescence profiles of other wild-type reporter strains (rpsPp::luc+ and argAp::luc+) and gene-deletion reporter strains (lacp::luc+/crp- and lacp::luc+/lacI-) indicate that transcriptional regulation is not responsible for generation of the burst. Consistently, changes in the luciferase protein levels did not recapitulate the profile of the burst. On the other hand, dissolved oxygen levels increased over the period across the burst, suggesting that the burst is, at least partially, caused by an increase in intracellular oxygen levels. We discuss limits of the firefly luciferase when used as a reporter for gene expression and its potential utility for monitoring metabolic changes in cells. PMID:26506945

  7. Burst Memory and Event Trigger System for the Magnetospheric Multiscale Mission

    NASA Astrophysics Data System (ADS)

    Kletzing, C. A.; Ergun, R. E.; Torbert, R. B.; Burch, J. L.; Bounds, S. R.; Hesse, M.; Mauk, B.; Moore, T. E.; Young, D. T.

    2005-12-01

    To achieve the highest resolution measurement of the physics of magnetic reconnection, the MMS SMART measurements will utilize a high data rate burst storage system for capturing those intervals when the MMS spacecraft traverse important regions of interest. Two basic modes of data taking are planned, Slow Survey and Fast Survey. Fast Survey mode is targeted at the broad regions of the magnetosphere where reconnection can occur. Slow Survey is aimed an regions of secondary science importance. In Fast Survey, all instruments in the SMART suite continually send high rate data to the Central Instrument Data Processor (CIDP) which holds this data in a circular buffer. Along with this data, each instrument sends a burst data quality (BDQ) flag which represents the scientific "quality" of the preceding period for consideration as a burst interval. The CIDP on each spacecraft collects the individual BDQ's and combines them via a predetermined algorithm into a spacecraft data quality (SDQ) flag. Each spacecraft then sends its individual SDQ to the other three spacecraft via the Interspacecraft Ranging and Alarm System (IRAS). After a short latency period all four spacecraft have all four SDQ values and compute a mission data quality (MDQ) flag. If this flag is above the appropriate threshold then all spacecraft save identical data intervals from from the circular buffer for transmission to the ground during the next downlink. If This flexible scheme will yield optimized science data collection and allows the evolution of the burst data criteria as the best burst triggers are identified.

  8. Two dimensional (r-theta) transport model for synchrotron radiation of FRC plasma

    NASA Astrophysics Data System (ADS)

    Qerushi, Artan; Barnes, Dan; TAE Team

    2013-10-01

    A two dimensional (r-theta) transport model has been developed for describing the power loss in FRC reactor plasmas and the transport of energy due to synchrotron radiation as well as the transport of energy due to synchrotron radiation. The transport model uses 1d FRC equilibrium profiles and solves the equation of radiative transfer in two dimensions (r-theta) taking into account the absorption and emission of synchrotron radiation. Relativistic expressions are used for both the absorption and the emission coefficients of synchrotron radiation. The reflection of synchrotron radiation from metal walls is taken into account using the approach of Krajcik. The results of the two-dimensional calculations are compared with simpler 1d calculations, which use an approach developed by Dawson and Berk et al., and 0d calculations which use an approach developed by Trubnikov.

  9. Temporal synchrony and gamma to theta power conversion in the dendrites of CA1 pyramidal neurons

    PubMed Central

    Vaidya, Sachin P.; Johnston, Daniel

    2014-01-01

    Timing is a crucial aspect of synaptic integration. For pyramidal neurons that integrate thousands of synaptic inputs spread across hundreds of microns, it is thus a challenge to maintain the timing of incoming inputs at the axo-somatic integration site. Here we show that pyramidal neurons in the rodent hippocampus use a gradient of inductance in the form of HCN channels as an active mechanism to counteract location-dependent temporal differences of dendritic inputs at the soma. Using simultaneous multi-site whole cell recordings complemented by computational modeling, we find that this intrinsic biophysical mechanism produces temporal synchrony of rhythmic inputs in the theta and gamma frequency ranges across wide regions of the dendritic tree. While gamma and theta oscillations are known to synchronize activity across space in neuronal networks, our results identify a novel mechanism by which this synchrony extends to activity within single pyramidal neurons with complex dendritic arbors. PMID:24185428

  10. XPDC2-R{theta} a two-dimensional electrostatic PIC code

    SciTech Connect

    Birdsall, C.K.; Cooperberg, D.; Gopinath, V.P.; Mirrashidi, P.; Vahedi, V.; Verboncoeur, J.

    1995-12-31

    A two dimensional particle-in-cell simulation has been written using a cylindrical R-{theta} Poisson field solver. The simulator is capable of simulating coaxial structures with and without a central conductor. In the presence of a central conductor, an external circuit consisting of V,I sources and R-L-C elements can be self-consistently simulated with the plasma equations. The simulation model includes the PIC-MCC package to model collisions between charged particles and neutral species. The field solve in the {theta} direction can be done using finite-difference or Fourier transforms. The simulator is currently being used to study the diocotron and Kelvin-Helmholtz instabilities. The ability to generate movies to study time-varying phenomenon will be discussed. In addition, comparisons with theory and 1D models will also be presented.

  11. Phase transitions, {theta} behavior, and instantons in QCD and its holographic model

    SciTech Connect

    Parnachev, Andrei; Zhitnitsky, Ariel R.

    2008-12-15

    In the holographic model of QCD, {theta} dependence sharply changes at the point of confinement-deconfinement phase transition. In large N QCD such a change in {theta} behavior can be related to the breakdown of the instanton expansion at some critical temperature T{sub c}. Associating this temperature with confinement-deconfinement phase transition leads to the description of the latter in terms of dissociation of instantons into the fractionally charged instanton quarks. To elucidate this picture, we introduce the nonvanishing chiral condensate in the deconfining phase and assume a specific Lagrangian for the {eta}{sup '} field in the confining phase. In the resulting picture the high-temperature phase of the theory consists of the dilute gas of instantons, while the low-temperature phase is described in terms of freely moving fractional instanton quarks.

  12. Advantages of horizontal directional Theta method to detect the edges of full tensor gravity gradient data

    NASA Astrophysics Data System (ADS)

    Yuan, Yuan; Gao, Jin-Yao; Chen, Ling-Na

    2016-07-01

    Full tensor gravity gradient data contain nine signal components. They include higher frequency signals than traditional gravity data, which can extract the small-scale features of the sources. Edge detection has played an important role in the interpretation of potential-field data. There are many methods that have been proposed to detect and enhance the edges of geological bodies based on horizontal and vertical derivatives of potential-field data. In order to make full use of all the measured gradient components, we need to develop a new edge detector to process the full tensor gravity gradient data. We first define the directional Theta and use the horizontal directional Theta to define a new edge detector. This method was tested on synthetic and real full tensor gravity gradient data to validate its feasibility. Compared the results with other balanced detectors, the new detector can effectively delineate the edges and does not produce any additional false edges.

  13. Direct simulation of a turbulent boundary layer up to R(sub)(theta)= 1410

    NASA Technical Reports Server (NTRS)

    Spalart, Philippe R.

    1986-01-01

    The turbulent boundary layer on a flat plate, with zero pressure gradient, is simulated numerically at four stations between R sub theta = 225 and R sub theta = 1410. The three-dimensional time-dependent Navier-Stokes equations are solved using a spectra method with up to about 10 to the 7th power grid points. Periodic spanwise and stream-wise conditions are applied, and a multiple-scale procedure is applied to approximate the slow streamwise growth of the boundary layer. The flow is studied, primarily, from a statistical point of view. The solutions are compared with experimental results. The scaling of the mean and turbulent quantities with Reynolds number is examined and compared with accepted laws, and the significant deviations are documented. The turbulence at the highest Reynolds number is studied in detail. The spectra are compared with various theoretical models. Reynolds-stress budget data are provided for turbulence-model testing.

  14. Search for the Theta+ pentaquark in the gamma d -> Lambda n K+ reaction measured with CLAS

    SciTech Connect

    Silvia Niccolai; Marco Mirazita; Patrizia Rossi; Nathan Baltzell; Daniel Carman; Kenneth Hicks; Bryan McKinnon; Tsutomu Mibe; Stepan Stepanyan; David Tedeschi; Gary Adams; Pawel Ambrozewicz; Sergio Pereira; Marco Anghinolfi; Gegham Asryan; Harutyun AVAKIAN; H. Bagdasaryan; Nathan Baillie; Jacques Ball; V. Batourine; Marco Battaglieri; Ivan Bedlinski; Ivan Bedlinskiy; Ivan Bedlinski; Ivan Bedlinskiy; Mehmet Bektasoglu; Matthew Bellis; Nawal Benmouna; Barry Berman; Angela Biselli; Sergey Boyarinov; Sylvain Bouchigny; Robert Bradford; Derek Branford; William Briscoe; William Brooks; Stephen Bueltmann; Volker Burkert; Cornel Butuceanu; John Calarco; S.L. Careccia; Bryan Carnahan; Shifeng Chen; Philip Cole; Patrick Collins; Philip Coltharp; Donald Crabb; Hall Crannell; V. Crede; John Cummings; Natalya Dashyan; Pavel Degtiarenko; Rita De Masi; Airton Deppman; Enzo De Sanctis; Alexandre Deur; Raffaella De Vita; Kahanawita Dharmawardane; Chaden Djalali; Gail Dodge; Joseph Donnelly; David Doughty; Michael Dugger; Oleksandr Dzyubak; Hovanes Egiyan; Kim Egiyan; L. El Fassi; Latifa Elouadrhiri; Paul Eugenio; Gleb Fedotov; Gerald Feldman; Herbert Funsten; Michel Garcon; Gagik Gavalian; Gerard Gilfoyle; Kevin Giovanetti; Francois-Xavier Girod; John Goetz; Atilla Gonenc; Christopher Gordon; Ralf Gothe; Keith Griffioen; Michel Guidal; Nevzat Guler; Lei Guo; Vardan Gyurjyan; Cynthia Hadjidakis; Kawtar Hafidi; Hayk Hakobyan; Rafael Hakobyan; John Hardie; F. Hersman; Ishaq Hleiqawi; Maurik Holtrop; Charles Hyde-Wright; Yordanka Ilieva; David Ireland; Boris Ishkhanov; Eugeny Isupov; Mark Ito; David Jenkins; Hyon-Suk Jo; Kyungseon Joo; Henry Juengst; James Kellie; Mahbubul Khandaker; Wooyoung Kim; Andreas Klein; Franz Klein; Alexei Klimenko; Mikhail Kossov; Laird Kramer; V. Kubarovsky; Joachim Kuhn; Sebastian Kuhn; Sergey Kuleshov; Jeff Lachniet; Jorn Langheinrich; David Lawrence; Tsung-shung Lee; Kenneth Livingston; H. Lu; Marion MacCormick; Nikolai Markov; Bernhard Mecking; Jonathan Mellor; Joseph Melone; Mac Mestayer; Curtis Meyer; Konstantin Mikhaylov; Ralph Minehart; Rory Miskimen; Viktor Mokeev; Ludyvine Morand; Steven Morrow; Maryam Moteabbed; Gordon Mutchler; Pawel Nadel-Turonski; James Napolitano; Rakhsha Nasseripour; Gabriel Niculescu; Maria-Ioana Niculescu; Bogdan Niczyporuk; Megh Niroula; Rustam Niyazov; Mina Nozar; Jorge De Olivei Echeimberg; Mikhail Osipenko; Alexander Ostrovidov; K. Park; Evgueni Pasyuk; Craig Paterson; Joshua Pierce; Nikolay Pivnyuk; Dinko Pocanic; Oleg Pogorelko; Sergey Pozdnyakov; Barry Preedom; John Price; Yelena Prok; Dan Protopopescu; Brian Raue; Gregory Riccardi; Giovanni Ricco; Marco Ripani; Barry Ritchie; Federico Ronchetti; Guenther Rosner; Franck Sabatie; Carlos Salgado; Joseph Santoro; Vladimir Sapunenko; Reinhard Schumacher; Vladimir Serov; Youri Sharabian; Nikolay Shvedunov; Elton Smith; Lee Smith; Daniel Sober; Aleksey Stavinskiy; Stepan Stepanyan; Burnham Stokes; Paul Stoler; Igor Strakovski; Steffen Strauch; Mauro Taiuti; Ulrike Thoma; Avtandil Tkabladze; Svyatoslav Tkachenko; Luminita Todor; Clarisse Tur; Maurizio Ungaro; Michael Vineyard; Alexander Vlassov; Daniel Watts; Lawrence Weinstein; Dennis Weygand; M. Williams; Elliott Wolin; Michael Wood; Amrit Yegneswaran; Lorenzo Zana; Jixie Zhang; Bo Zhao; Zhiwen Zhao

    2006-04-26

    For the first time, the reaction gamma d -> Lambda n K+ has been analyzed in order to search for the exotic pentaquark baryon Theta+(1540). The data were taken at Jefferson Lab, using the Hall-B tagged-photon beam of energy between 0.8 and 3.6 GeV and the CEBAF Large Acceptance Spectrometer (CLAS). No statistically significant structures were observed in the nK+ invariant mass distribution. The upper limit on the gamma d -> Lambda Theta+ integrated cross section has been calculated and found to be between 5 and 25 nb, depending on the production model assumed. The upper limit on the differential cross section is also reported.

  15. Alpha-theta effects associated with ageing during the Stroop test.

    PubMed

    Nombela, Cristina; Nombela, Manuel; Castell, Pedro; García, Teodoro; López-Coronado, Juan; Herrero, María Trinidad

    2014-01-01

    The Stroop effect is considered as a standard attentional measure to study conflict resolution in humans. The response of the brain to conflict is supposed to change over time and it is impaired in certain pathological conditions. Neuropsychological Stroop test measures have been complemented with electroencephalography (EEG) techniques to evaluate the mechanisms in the brain that underlie conflict resolution from the age of 20 to 70. To study the changes in EEG activity during life, we recruited a large sample of healthy subjects of different ages that included 90 healthy individuals, divided by age into decade intervals, which performed the Stroop test while recording a 14 channel EEG. The results highlighted an interaction between age and stimulus that was focused on the prefrontal (Alpha and Theta band) and Occipital (Alpha band) areas. We concluded that behavioural Stroop interference is directly influenced by opposing Alpha and Theta activity and evolves across the decades of life. PMID:24867024

  16. Alpha-Theta Effects Associated with Ageing during the Stroop Test

    PubMed Central

    Nombela, Cristina; Nombela, Manuel; Castell, Pedro; García, Teodoro; López-Coronado, Juan; Herrero, María Trinidad

    2014-01-01

    The Stroop effect is considered as a standard attentional measure to study conflict resolution in humans. The response of the brain to conflict is supposed to change over time and it is impaired in certain pathological conditions. Neuropsychological Stroop test measures have been complemented with electroencephalography (EEG) techniques to evaluate the mechanisms in the brain that underlie conflict resolution from the age of 20 to 70. To study the changes in EEG activity during life, we recruited a large sample of healthy subjects of different ages that included 90 healthy individuals, divided by age into decade intervals, which performed the Stroop test while recording a 14 channel EEG. The results highlighted an interaction between age and stimulus that was focused on the prefrontal (Alpha and Theta band) and Occipital (Alpha band) areas. We concluded that behavioural Stroop interference is directly influenced by opposing Alpha and Theta activity and evolves across the decades of life. PMID:24867024

  17. A Reconnection Switch to Trigger gamma-Ray Burst Jet Dissipation

    SciTech Connect

    McKinney, Jonathan C.; Uzdensky, Dmitri A.

    2012-03-14

    Prompt gamma-ray burst (GRB) emission requires some mechanism to dissipate an ultrarelativistic jet. Internal shocks or some form of electromagnetic dissipation are candidate mechanisms. Any mechanism needs to answer basic questions, such as what is the origin of variability, what radius does dissipation occur at, and how does efficient prompt emission occur. These mechanisms also need to be consistent with how ultrarelativistic jets form and stay baryon pure despite turbulence and electromagnetic reconnection near the compact object and despite stellar entrainment within the collapsar model. We use the latest magnetohydrodynamical models of ultrarelativistic jets to explore some of these questions in the context of electromagnetic dissipation due to the slow collisional and fast collisionless reconnection mechanisms, as often associated with Sweet-Parker and Petschek reconnection, respectively. For a highly magnetized ultrarelativistic jet and typical collapsar parameters, we find that significant electromagnetic dissipation may be avoided until it proceeds catastrophically near the jet photosphere at large radii (r {approx} 10{sup 13}-10{sup 14}cm), by which the jet obtains a high Lorentz factor ({gamma} {approx} 100-1000), has a luminosity of L{sub j} {approx} 10{sup 50}-10{sup 51} erg s{sup -1}, has observer variability timescales of order 1s (ranging from 0.001-10s), achieves {gamma}{theta}{sub j} {approx} 10-20 (for opening half-angle {theta}{sub j}) and so is able to produce jet breaks, and has comparable energy available for both prompt and afterglow emission. A range of model parameters are investigated and simplified scaling laws are derived. This reconnection switch mechanism allows for highly efficient conversion of electromagnetic energy into prompt emission and associates the observed prompt GRB pulse temporal structure with dissipation timescales of some number of reconnecting current sheets embedded in the jet. We hope this work helps motivate the

  18. Experimental tests of a topside generation mechanism for auroral medium frequency burst radio emissions

    NASA Astrophysics Data System (ADS)

    Broughton, M.; Labelle, J. W.; Roberg-Clark, G. T.; McCready, M. A.; Bunch, N. L.; Weatherwax, A. T.

    2011-12-01

    The auroral zone is the source of multiple kinds of radio emissions that can be observed on the ground. The study of radio emissions offers a way to remotely sense space plasma processes and, in the case of auroral emissions, to use the auroral ionosphere as a large-scale plasma physics laboratory. Medium frequency (MF) burst is an impulsive radio emission at 1.5-4.5 MHz observed on the ground. Its generation mechanism is unknown, and it is often associated with the onset of substorms. Using continuous wave measurements, Bunch and LaBelle [2009] reported that MF burst is made up of both structured and unstructured features. The most commonly observed structured feature appears as a "backwards seven" on a time-frequency spectrogram. Recently, LaBelle [2011] proposed that MF bursts originate as Langmuir waves on the topside of the ionosphere that subsequently mode-convert into electromagnetic waves that are observed on the ground. We report two experimental tests of this theory. First, the theory predicts that the maximum frequency of MF burst must lie below the maximum ionospheric plasma frequency along the source magnetic field line. We have identified eleven instances where MF bursts were observed during operations of the Sondrestrom incoherent scatter radar near Kangerlussuaq, Greenland. A preliminary analysis of these data suggests that for all or nearly all eleven cases the maximum frequency of the MF burst lies below the maximum F-region plasma frequency inferred from the radar data. The second prediction of the theory concerns the "backwards seven" fine structures. The theory predicts that the lower frequency of a "backwards seven" fine structure must lie above the L-mode cutoff along the wave propagation path. Assuming a slab ionosphere, LaBelle [2011] found that this prediction held for the six fine structures reported by Bunch and LaBelle [2009]. In 2010, continuous wave measurements were made at South Pole Station, yielding over one hundred observations

  19. Trans-theta logistics: a new family of population growth sigmoid functions.

    PubMed

    Kozusko, F; Bourdeau, M

    2011-12-01

    Sigmoid functions have been applied in many areas to model self limited population growth. The most popular functions; General Logistic (GL), General von Bertalanffy (GV), and Gompertz (G), comprise a family of functions called Theta Logistic ([Formula: see text] L). Previously, we introduced a simple model of tumor cell population dynamics which provided a unifying foundation for these functions. In the model the total population (N) is divided into reproducing (P) and non-reproducing/quiescent (Q) sub-populations. The modes of the rate of change of ratio P/N was shown to produce GL, GV or G growth. We now generalize the population dynamics model and extend the possible modes of the P/N rate of change. We produce a new family of sigmoid growth functions, Trans-General Logistic (TGL), Trans-General von Bertalanffy (TGV) and Trans-Gompertz (TG)), which as a group we have named Trans-Theta Logistic (T [Formula: see text] L) since they exist when the [Formula: see text] L are translated from a two parameter into a three parameter phase space. Additionally, the model produces a new trigonometric based sigmoid (TS). The [Formula: see text] L sigmoids have an inflection point size fixed by a single parameter and an inflection age fixed by both of the defining parameters. T [Formula: see text] L and TS sigmoids have an inflection point size defined by two parameters in bounding relationships and inflection point age defined by three parameters (two bounded). While the Theta Logistic sigmoids provided flexibility in defining the inflection point size, the Trans-Theta Logistic sigmoids provide flexibility in defining the inflection point size and age. By matching the slopes at the inflection points we compare the range of values of inflection point age for T [Formula: see text] L versus [Formula: see text] L for model growth curves. PMID:21528359

  20. Frontal-posterior theta oscillations reflect memory retrieval during sentence comprehension.

    PubMed

    Meyer, Lars; Grigutsch, Maren; Schmuck, Noura; Gaston, Phoebe; Friederici, Angela D

    2015-10-01

    Successful working-memory retrieval requires that items be retained as distinct units. At the neural level, it has been shown that theta-band oscillatory power increases with the number of to-be-distinguished items during working-memory retrieval. Here we hypothesized that during sentence comprehension, verbal-working-memory retrieval demands lead to increased theta power over frontal cortex, supposedly supporting the distinction amongst stored items during verbal-working-memory retrieval. Also, synchronicity may increase between the frontal cortex and the posterior cortex, with the latter supposedly supporting item retention. We operationalized retrieval by using pronouns, which refer to and trigger the retrieval of antecedent nouns from a preceding sentence part. Retrieval demand was systematically varied by changing the pronoun antecedent: Either, it was non-embedded in the preceding main clause, and thus easy-to-retrieve across a single clause boundary, or embedded in the preceding subordinate clause, and thus hard-to-retrieve across a double clause boundary. We combined electroencephalography (EEG), scalp-level time-frequency analysis, source localization, and source-level coherence analysis, observing a frontal-midline and broad left-hemispheric theta-power increase for embedded-antecedent compared to non-embedded-antecedent retrieval. Sources were localized to left-frontal, left-parietal, and bilateral-inferior-temporal cortices. Coherence analyses suggested synchronicity between left-frontal and left-parietal and between left-frontal and right-inferior-temporal cortices. Activity of an array of left-frontal, left-parietal, and bilateral-inferior-temporal cortices may thus assist retrieval during sentence comprehension, potentially indexing the orchestration of item distinction, verbal working memory, and long-term memory. Our results extend prior findings by mapping prior knowledge on the functional role of theta oscillations onto processes genuine to human

  1. Continuum optical circular polarisation in the young O star Theta 1 Orionis C?

    NASA Astrophysics Data System (ADS)

    Moffat, A. F. J.; Eversberg, T.

    2000-06-01

    Recently, Donati & Wade (1999) have claimed rather spectacular, large, variable circular polarisation in the optical continuum of Theta 1 Orionis C, obtained with the échelle spectropolarimeter MuSiCoS. However, based on experience with the William-Wehlau spectropolarimeter, a similar unit using two fiber feeds, we suggest that this is the spurious result of instrumental effects. We propose a remedy to eliminate the effect.

  2. Alpha and theta brain oscillations index dissociable processes in spoken word recognition.

    PubMed

    Strauß, Antje; Kotz, Sonja A; Scharinger, Mathias; Obleser, Jonas

    2014-08-15

    Slow neural oscillations (~1-15 Hz) are thought to orchestrate the neural processes of spoken language comprehension. However, functional subdivisions within this broad range of frequencies are disputed, with most studies hypothesizing only about single frequency bands. The present study utilizes an established paradigm of spoken word recognition (lexical decision) to test the hypothesis that within the slow neural oscillatory frequency range, distinct functional signatures and cortical networks can be identified at least for theta- (~3-7 Hz) and alpha-frequencies (~8-12 Hz). Listeners performed an auditory lexical decision task on a set of items that formed a word-pseudoword continuum: ranging from (1) real words over (2) ambiguous pseudowords (deviating from real words only in one vowel; comparable to natural mispronunciations in speech) to (3) pseudowords (clearly deviating from real words by randomized syllables). By means of time-frequency analysis and spatial filtering, we observed a dissociation into distinct but simultaneous patterns of alpha power suppression and theta power enhancement. Alpha exhibited a parametric suppression as items increasingly matched real words, in line with lowered functional inhibition in a left-dominant lexical processing network for more word-like input. Simultaneously, theta power in a bilateral fronto-temporal network was selectively enhanced for ambiguous pseudowords only. Thus, enhanced alpha power can neurally 'gate' lexical integration, while enhanced theta power might index functionally more specific ambiguity-resolution processes. To this end, a joint analysis of both frequency bands provides neural evidence for parallel processes in achieving spoken word recognition. PMID:24747736

  3. EEG theta and Mu oscillations during perception of human and robot actions.

    PubMed

    Urgen, Burcu A; Plank, Markus; Ishiguro, Hiroshi; Poizner, Howard; Saygin, Ayse P

    2013-01-01

    The perception of others' actions supports important skills such as communication, intention understanding, and empathy. Are mechanisms of action processing in the human brain specifically tuned to process biological agents? Humanoid robots can perform recognizable actions, but can look and move differently from humans, and as such, can be used in experiments to address such questions. Here, we recorded EEG as participants viewed actions performed by three agents. In the Human condition, the agent had biological appearance and motion. The other two conditions featured a state-of-the-art robot in two different appearances: Android, which had biological appearance but mechanical motion, and Robot, which had mechanical appearance and motion. We explored whether sensorimotor mu (8-13 Hz) and frontal theta (4-8 Hz) activity exhibited selectivity for biological entities, in particular for whether the visual appearance and/or the motion of the observed agent was biological. Sensorimotor mu suppression has been linked to the motor simulation aspect of action processing (and the human mirror neuron system, MNS), and frontal theta to semantic and memory-related aspects. For all three agents, action observation induced significant attenuation in the power of mu oscillations, with no difference between agents. Thus, mu suppression, considered an index of MNS activity, does not appear to be selective for biological agents. Observation of the Robot resulted in greater frontal theta activity compared to the Android and the Human, whereas the latter two did not differ from each other. Frontal theta thus appears to be sensitive to visual appearance, suggesting agents that are not sufficiently biological in appearance may result in greater memory processing demands for the observer. Studies combining robotics and neuroscience such as this one can allow us to explore neural basis of action processing on the one hand, and inform the design of social robots on the other. PMID:24348375

  4. EEG theta and Mu oscillations during perception of human and robot actions

    PubMed Central

    Urgen, Burcu A.; Plank, Markus; Ishiguro, Hiroshi; Poizner, Howard; Saygin, Ayse P.

    2013-01-01

    The perception of others’ actions supports important skills such as communication, intention understanding, and empathy. Are mechanisms of action processing in the human brain specifically tuned to process biological agents? Humanoid robots can perform recognizable actions, but can look and move differently from humans, and as such, can be used in experiments to address such questions. Here, we recorded EEG as participants viewed actions performed by three agents. In the Human condition, the agent had biological appearance and motion. The other two conditions featured a state-of-the-art robot in two different appearances: Android, which had biological appearance but mechanical motion, and Robot, which had mechanical appearance and motion. We explored whether sensorimotor mu (8–13 Hz) and frontal theta (4–8 Hz) activity exhibited selectivity for biological entities, in particular for whether the visual appearance and/or the motion of the observed agent was biological. Sensorimotor mu suppression has been linked to the motor simulation aspect of action processing (and the human mirror neuron system, MNS), and frontal theta to semantic and memory-related aspects. For all three agents, action observation induced significant attenuation in the power of mu oscillations, with no difference between agents. Thus, mu suppression, considered an index of MNS activity, does not appear to be selective for biological agents. Observation of the Robot resulted in greater frontal theta activity compared to the Android and the Human, whereas the latter two did not differ from each other. Frontal theta thus appears to be sensitive to visual appearance, suggesting agents that are not sufficiently biological in appearance may result in greater memory processing demands for the observer. Studies combining robotics and neuroscience such as this one can allow us to explore neural basis of action processing on the one hand, and inform the design of social robots on the other. PMID

  5. Carbachol-induced rhythmic slow activity (theta) in cat hippocampal formation slices.

    PubMed

    Konopacki, J; Gołebiewski, H; Eckersdorf, B

    1992-04-24

    Application of the cholinergic agonist, carbachol, produced theta-like rhythmical waveforms, recorded in the stratum moleculare of the dentate gyrus in the cat hippocampal formation slices. This effect of carbachol was antagonized by atropine but not D-tubocurarine. These results provide first direct evidence that the hippocampal formation neuronal network in the cat is capable of producing synchronized slow wave activity when isolated from pulsed rhythmic inputs of the medial septum. PMID:1511270

  6. Desynchronization of Theta-Phase Gamma-Amplitude Coupling during a Mental Arithmetic Task in Children with Attention Deficit/Hyperactivity Disorder

    PubMed Central

    Kim, Jun Won; Kim, Bung-Nyun; Lee, Jaewon; Na, Chul; Kee, Baik Seok; Min, Kyung Joon; Han, Doug Hyun; Kim, Johanna Inhyang; Lee, Young Sik

    2016-01-01

    Introduction Theta-phase gamma-amplitude coupling (TGC) measurement has recently received attention as a feasible method of assessing brain functions such as neuronal interactions. The purpose of this electroencephalographic (EEG) study is to understand the mechanisms underlying the deficits in attentional control in children with attention deficit/hyperactivity disorder (ADHD) by comparing the power spectra and TGC at rest and during a mental arithmetic task. Methods Nineteen-channel EEGs were recorded from 97 volunteers (including 53 subjects with ADHD) from a camp for hyperactive children under two conditions (rest and task performance). The EEG power spectra and the TGC data were analyzed. Correlation analyses between the Intermediate Visual and Auditory (IVA) continuous performance test (CPT) scores and EEG parameters were performed. Results No significant difference in the power spectra was detected between the groups at rest and during task performance. However, TGC was reduced during the arithmetic task in the ADHD group compared with the normal group (F = 16.70, p < 0.001). The TGC values positively correlated with the IVA CPT scores but negatively correlated with theta power. Conclusions Our findings suggest that desynchronization of TGC occurred during the arithmetic task in ADHD children. TGC in ADHD children is expected to serve as a promising neurophysiological marker of network deactivation during attention-demanding tasks. PMID:26930194

  7. A continuum model of transcriptional bursting

    PubMed Central

    Corrigan, Adam M; Tunnacliffe, Edward; Cannon, Danielle; Chubb, Jonathan R

    2016-01-01

    Transcription occurs in stochastic bursts. Early models based upon RNA hybridisation studies suggest bursting dynamics arise from alternating inactive and permissive states. Here we investigate bursting mechanism in live cells by quantitative imaging of actin gene transcription, combined with molecular genetics, stochastic simulation and probabilistic modelling. In contrast to early models, our data indicate a continuum of transcriptional states, with a slowly fluctuating initiation rate converting the gene between different levels of activity, interspersed with extended periods of inactivity. We place an upper limit of 40 s on the lifetime of fluctuations in elongation rate, with initiation rate variations persisting an order of magnitude longer. TATA mutations reduce the accessibility of high activity states, leaving the lifetime of on- and off-states unchanged. A continuum or spectrum of gene states potentially enables a wide dynamic range for cell responses to stimuli. DOI: http://dx.doi.org/10.7554/eLife.13051.001 PMID:26896676

  8. Interaction function of coupled bursting neurons

    NASA Astrophysics Data System (ADS)

    Xia, Shi; Jiadong, Zhang

    2016-06-01

    The interaction functions of electrically coupled Hindmarsh–Rose (HR) neurons for different firing patterns are investigated in this paper. By applying the phase reduction technique, the phase response curve (PRC) of the spiking neuron and burst phase response curve (BPRC) of the bursting neuron are derived. Then the interaction function of two coupled neurons can be calculated numerically according to the PRC (or BPRC) and the voltage time course of the neurons. Results show that the BPRC is more and more complicated with the increase of the spike number within a burst, and the curve of the interaction function oscillates more and more frequently with it. However, two certain things are unchanged: ϕ = 0, which corresponds to the in-phase synchronization state, is always the stable equilibrium, while the anti-phase synchronization state with ϕ = 0.5 is an unstable equilibrium. Project supported by the National Natural Science Foundation of China (Grant Nos.  11272065 and 11472061).

  9. Arc burst pattern analysis fault detection system

    NASA Technical Reports Server (NTRS)

    Russell, B. Don (Inventor); Aucoin, B. Michael (Inventor); Benner, Carl L. (Inventor)

    1997-01-01

    A method and apparatus are provided for detecting an arcing fault on a power line carrying a load current. Parameters indicative of power flow and possible fault events on the line, such as voltage and load current, are monitored and analyzed for an arc burst pattern exhibited by arcing faults in a power system. These arcing faults are detected by identifying bursts of each half-cycle of the fundamental current. Bursts occurring at or near a voltage peak indicate arcing on that phase. Once a faulted phase line is identified, a comparison of the current and voltage reveals whether the fault is located in a downstream direction of power flow toward customers, or upstream toward a generation station. If the fault is located downstream, the line is de-energized, and if located upstream, the line may remain energized to prevent unnecessary power outages.

  10. Gamma-Ray Burst Progenitors: Merger Model

    NASA Astrophysics Data System (ADS)

    Ruffert, Maximilian

    2002-04-01

    The mergers of neutron stars and black holes remain a viable model for gamma-ray burst central engines, at least for the class of short bursts: their time scales, occurrence rates and energy output seem to be consistent with observations. We will present results of our latest simulations showing how the orbit of a neutron star around a black hole shrinks due to gravitational radiation, how the neutron star's matter gets accreted by the black hole, and how the tidal forces of the black hole finally shred the neutron star into a thick disk. In this process, huge amounts of energy are radiated away by gravitational waves and by neutrinos emitted from the hot disk. The neutrino luminosities are so large that an appreciable fraction (some few percent!) of neutrinos annihilate with antineutrinos creating the clean fireball necessary to power gamma-ray bursts.

  11. Gamma-ray burst theory after Swift.

    PubMed

    Piran, Tsvi; Fan, Yi-Zhong

    2007-05-15

    Afterglow observations in the pre-Swift era confirmed to a large extend the relativistic blast wave model for gamma-ray bursts (GRBs). Together with the observations of properties of host galaxies and the association with (type Ic) SNe, this has led to the generally accepted collapsar origin of long GRBs. However, most of the afterglow data was collected hours after the burst. The X-ray telescope and the UV/optical telescope onboard Swift are able to slew to the direction of a burst in real time and record the early broadband afterglow light curves. These observations, and in particular the X-ray observations, resulted in many surprises. While we have anticipated a smooth transition from the prompt emission to the afterglow, many observed that early light curves are drastically different. We review here how these observations are changing our understanding of GRBs. PMID:17293324

  12. Coherent emission in fast radio bursts

    NASA Astrophysics Data System (ADS)

    Katz, J. I.

    2014-05-01

    The fast (ms) radio bursts reported by Lorimer et al. Science 318, 777 (2007) and Thornton et al. Science 341, 53 (2013) have extremely high brightness temperatures if at the inferred cosmological distances. This implies coherent emission by "bunches" of charges. Fast radio bursts, like the giant pulses of the Crab pulsar, display banded spectra that may be harmonics of plasma frequency emission by plasma turbulence and are inconsistent with emission by charge distributions moving relativistically. We model the emission region as a screen of half-wave dipole radiators resonant around the frequencies of observation, the maximally bright emission mechanism of nonrelativistic charges, and calculate the implied charge bunching. From this we infer the minimum electron energy required to overcome electrostatic repulsion. If fast radio bursts are the counterparts of Galactic events, their Galactic counterparts may be detected from any direction above the horizon by radio telescopes in their far sidelobes or by small arrays of dipoles.

  13. Are short Gamma Ray Bursts similar to long ones?

    NASA Astrophysics Data System (ADS)

    Ghirlanda, G.; Bernardini, M. G.; Calderone, G.; D'Avanzo, P.

    2015-09-01

    The apparent separation of short and long Gamma-Ray Bursts (GRBs) in the hardness ratio vs duration plot has been considered as a direct evidence of the difference between these two populations. The origin of this diversity, however, has been only confirmed with larger GRB samples but not fully understood. In particular, the hardness ratio is only a proxy of the shape of the spectra of GRBs and itself, together with the observed duration, does not consider the possible different redshift distribution of short and long bursts, which might arise from their different progenitors' nature. By correcting the spectral shape of short and long GRBs for the redshift effects, short GRBs are harder than long ones due to a harder low energy spectral component while the two populations have similar (rest frame) peak energy. In the rest frame, the temporal break of the long/short duration distribution is blurred away and short and long GRBs have a continuous differential duration distribution. Moreover, they show similar luminosities but their energetics differ by a factor proportional to their different average duration. The spectral evolution of long GRBs shows that the initial phase (of the order of 0.3 s rest frame) has similar spectral properties of that of short GRBs. As a consequence, the different hardness at low energies might be due to a prolonged spectral evolution of long GRBs with respect to short ones. Finally, we show that long GRBs can have a null lag similarly to short bursts. Moreover, we find that a considerable fraction of long (and most of short) GRBs are inconsistent with the lag-luminosity relation which could be a boundary in the corresponding plane, rather than a correlation.

  14. Medial septal GABAergic projection neurons promote object exploration behavior and type 2 theta rhythm

    PubMed Central

    Gangadharan, Gireesh; Shin, Jonghan; Kim, Seong-Wook; Kim, Angela; Paydar, Afshin; Kim, Duk-Soo; Miyazaki, Taisuke; Watanabe, Masahiko; Yanagawa, Yuchio; Kim, Jinhyun; Kim, Yeon-Soo; Kim, Daesoo; Shin, Hee-Sup

    2016-01-01

    Exploratory drive is one of the most fundamental emotions, of all organisms, that are evoked by novelty stimulation. Exploratory behavior plays a fundamental role in motivation, learning, and well-being of organisms. Diverse exploratory behaviors have been described, although their heterogeneity is not certain because of the lack of solid experimental evidence for their distinction. Here we present results demonstrating that different neural mechanisms underlie different exploratory behaviors. Localized Cav3.1 knockdown in the medial septum (MS) selectively enhanced object exploration, whereas the null mutant (KO) mice showed enhanced-object exploration as well as open-field exploration. In MS knockdown mice, only type 2 hippocampal theta rhythm was enhanced, whereas both type 1 and type 2 theta rhythm were enhanced in KO mice. This selective effect was accompanied by markedly increased excitability of septo-hippocampal GABAergic projection neurons in the MS lacking T-type Ca2+ channels. Furthermore, optogenetic activation of the septo-hippocampal GABAergic pathway in WT mice also selectively enhanced object exploration behavior and type 2 theta rhythm, whereas inhibition of the same pathway decreased the behavior and the rhythm. These findings define object exploration distinguished from open-field exploration and reveal a critical role of T-type Ca2+ channels in the medial septal GABAergic projection neurons in this behavior. PMID:27208094

  15. Interstellar absorption along the line of sight to Theta Carinae using Copernicus observations

    NASA Technical Reports Server (NTRS)

    Allen, M. M.; Jenkins, E. B.; Snow, T. P.

    1992-01-01

    A profile fitting technique is employed to identify the velocities and Doppler b values for H I and H II clouds along the line of sight to Theta Car. Total abundances and depletions for 12 elements, plus column densities for the J = 0 to J = 5 rotational levels of H2 are obtained. Electron densities for both clouds are calculated from the ratios of the fine-structure levels of C II and N II, obtaining 0.08/cu cm and 1.2/cu cm. The fine-structure levels of C I, which led to 120/cu cm, are used to calculate the neutral hydrogen density for the H I region. D I is also present in the data from the Theta Car line of sight, yielding a D/H ratio of 5 x 10 exp -6. Elemental depletions are calculated for the H I region as well. Comparison of the results for Theta Car and those for Zeta Oph and Alpha Vir shows that the absolute depletions are different; however, the relative depletions are remarkably stable for different physical conditions.

  16. Confocal reflectance theta line-scanner for imaging tissues in vivo

    NASA Astrophysics Data System (ADS)

    Dwyer, Peter J.; DiMarzio, Charles A.; Fox, William J.; Zavislan, James M.; Rajadhyaksha, Milind

    2005-03-01

    A confocal reflectance theta line-scanner is being developed for imaging human tissues in vivo. The theta line scanner design potentially offers a newer alternative to current point scanners that may simplify the optics, electronics and mechanics and lead to smaller, inexpensive confocal microscopes. An oscillating galvanometric mirror directly scans in the pupil of a cylindrical lens and one-half of an objective lens, to produce a focused, scanned line in the object plane within tissue. Backscattered light is collected by the other half of the objective lens and focused onto a linear CMOS detector. The illumination is with a diode laser at 830 nm and imaging with a 10X, 0.8 NA water immersion lens. The illumination and detection paths are thus oriented at an angle (theta) to each other, and are separate everywhere except in the confocal plane. This configuration eliminates back-scattered light from optical components and enhances contrast. Optical design analysis has been verified with experimental results, demonstrating lateral resolution on the order of 1 um and optical sectioning (axial resolution) better than 5 um within living human skin. A Fourier optics-based analytical model is in progress to evaluate line spread functions versus illumination and detection pupil conditions. Nuclear and cellular detail is imaged in the epidermis of human skin in vivo and ex vivo (freshly excised specimens). Such a scanner may prove useful for imaging human tissues in clinical and intra-operative settings.

  17. Upgrade of a Theta Pinch Plasma Source for Energetic Plasma Flow Generation

    NASA Astrophysics Data System (ADS)

    Jung, Soonwook; Andruczyk, Daniel; Ruzic, David; CenterPlasma-Material Interactions Team

    2011-10-01

    DEVeX is a theta pinch device used to investigate fusion-related material interaction such as vapor shielding and ICRF antenna interactions with plasma-pulses in a laboratory setting. However, recent upgrades of the device indicate that guiding magnet and crowbar operation hinder plasma flow to the target when the magnetic field at the theta coil is reversed from that of the guiding magnet. This reversal occurs mainly due to finite inductance and resistance at the crowbar switch. Therefore, an upgrade for more suitable fusion-related material study is required. In this study, several upgrades to produce higher-temperature plasma have been carried out. Major modification of theta coil is carried out and its effects on plasma parameters are theoretically predicted with simulation. The results will be compared with experiments including voltage/current measurement at the coil, plasma parameter measurement with triple Langmuir probe and time of flight technique, and incident energy measurement with thermocouples. The research reported in this paper was performed in support of Contract number DE-FG02-04ER54765 with the U.S. Department of Energy and Oak Ridge National Laboratory.

  18. Concurrent working memory task decreases the Stroop interference effect as indexed by the decreased theta oscillations.

    PubMed

    Zhao, Y; Tang, D; Hu, L; Zhang, L; Hitchman, G; Wang, L; Chen, A

    2014-03-14

    Working memory (WM) tasks may increase or decrease the interference effect of concurrently performed cognitive control tasks. However, the neural oscillatory correlates of this modulation effect of WM on the Stroop task are still largely unknown. In the present study, behavioral and electroencephalographic (EEG) data were recorded from 32 healthy participants during their performance of the single Stroop task and the same task with a concurrent WM task. We observed that the Stroop interference effect represented in both response times (RTs) and theta-band event-related spectral perturbation (ERSP) magnitude reduced under the dual-task condition compared with the single-task condition. The reduction of interference in theta-band ERSP was further positively correlated with interference reduction in RTs, and was mainly explained by the source in the left middle frontal gyrus. In conclusion, the present study suggests that the effect of concurrent WM tasks on the reduction of the Stroop interference effect can be indexed by EEG oscillations in theta-band rhythm in the centro-frontal regions and this modulation was mediated by the reduced cognitive control under the concurrent WM task. PMID:24406438

  19. DE 1 observations of theta aurora plasma source regions and Birkeland current charge carriers

    SciTech Connect

    Menietti, J.D.; Burch, J.L. )

    1987-07-01

    The authors have performed detailed analyses of the DE 1 high-altitude plasma instrument (HAPI) electron and ion data for four passes during which theta auroras were observed. The data indicate that the theta auroras occur on what appear to be closed field lines with particle signatures and plasma parameters that are quite similar to those of the magnetospheric boundary plasma sheet. The field-aligned currents computed from particle fluxes in the energy range 18 eV < E < 13 keV above the theta auroras are observed to be generally downward on the dawnside of the arcs with a narrower region of larger (higher density) upward currents on the duskside of the arcs. These currents are carried predominantly by field-aligned beams of accelerated cold electrons. Of particular interest in regions of upward field-aligned current are downward electron beams at energies less than the inferred potential drop above the spacecraft. These beams may be due to atmospheric secondaries or to ionospheric electrons that have convected into a region of field-aligned electric field.

  20. Working memory performance inversely predicts spontaneous delta and theta-band scaling relations.

    PubMed

    Euler, Matthew J; Wiltshire, Travis J; Niermeyer, Madison A; Butner, Jonathan E

    2016-04-15

    Electrophysiological studies have strongly implicated theta-band activity in human working memory processes. Concurrently, work on spontaneous, non-task-related oscillations has revealed the presence of long-range temporal correlations (LRTCs) within sub-bands of the ongoing EEG, and has begun to demonstrate their functional significance. However, few studies have yet assessed the relation of LRTCs (also called scaling relations) to individual differences in cognitive abilities. The present study addressed the intersection of these two literatures by investigating the relation of narrow-band EEG scaling relations to individual differences in working memory ability, with a particular focus on the theta band. Fifty-four healthy adults completed standardized assessments of working memory and separate recordings of their spontaneous, non-task-related EEG. Scaling relations were quantified in each of the five classical EEG frequency bands via the estimation of the Hurst exponent obtained from detrended fluctuation analysis. A multilevel modeling framework was used to characterize the relation of working memory performance to scaling relations as a function of general scalp location in Cartesian space. Overall, results indicated an inverse relationship between both delta and theta scaling relations and working memory ability, which was most prominent at posterior sensors, and was independent of either spatial or individual variability in band-specific power. These findings add to the growing literature demonstrating the relevance of neural LRTCs for understanding brain functioning, and support a construct- and state-dependent view of their functional implications. PMID:26872594